

An Efficient Computation of

Convex Closure on Abstract Events

by

Dwight Samuel Bedasse

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

©Dwight Samuel Bedasse 2004

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 ii

Abstract

The behaviour of distributed applications can be modeled as the occurrence of events and how
these events relate to each other. Event data collected according to this event model can be
visualized using process-time diagrams that are constructed from a collection of traces and
events. One of the main characteristics of a distributed system is the large number of events that
are involved, especially in practical situations. This large number of events, and hence large
process-time diagrams, make distributed-system observation difficult for the user. However,
event-predicate detection, a search mechanism able to detect and locate arbitrary predicates
within a process-time diagram or event collection, can help the user to make sense of this large
amount of data.

Ping Xie used the convex-abstract event concept, developed by Thomas Kunz, to search for
hierarchical event predicates. However, his algorithm for computing convex closure to construct
compound events, and especially hierarchical compound events (i.e., compound events that
contain other compound events), is inefficient. In one case it took, on average, close to four hours
to search the collection of event data for a specific hierarchical event predicate. In another case, it
took nearly one hour.

This dissertation discusses an efficient algorithm, an extension of Ping Xie’s algorithm, that
employs a caching scheme to build compound and hierarchical compound events based on
matched sub-patterns. In both cases cited above, the new execution times were reduced by over
94%. They now take, on average, less than four minutes.

 iii

Acknowledgements

I would like to thank my advisor Dr. Paul A.S. Ward for his wisdom and limitless patience in
helping me to understand my research topic. Furthermore, without his support and guidance, from
start to finish, this thesis would not have been a reality.

I’d like to let my colleagues in the Shoshin Research Group, at the University of Waterloo,
know how much I appreciate them for always being there whenever I needed technical support.

I am grateful to the International Council for Canadian Studies for providing the funding
necessary to complete graduate school.

Finally, I’d like to thank my wife Andrea for all her love, emotional support and
encouragement. Without her, my research work would have been much more difficult.

 iv

Table of Contents
Chapter 1 Introduction ... 1

1.1 Motivations and Contribution.. 1
1.2 Organization .. 2

Chapter 2 Event Models and Event-Predicate Detection .. 3
2.1 Understanding Event Models .. 3

2.1.1 Causality Relations... 3
2.1.2 Fidge/Mattern (F/M) Vector Timestamp.. 4

2.2 Event-Predicate Detection ... 6
2.2.1 Event Predicates ... 6
2.2.2 Event-Predicate Language.. 7
2.2.3 Predicate-Detection Algorithm... 8

2.3 Constructing Convex Events ... 10
2.3.1 Representing Convex Events.. 10

2.4 Convex Closure Computation ... 12
2.4.1 The Definitions... 12
2.4.2 Ping Xie’s Algorithm7 .. 13
2.4.3 Algorithm for Dealing with Compound Events ... 17
2.4.4 Pruning Technique.. 19
2.4.5 An Overview of Ping Xie’s Implementation.. 21

Chapter 3 Experiments and Results of Two Hierarchical Event-Predicates 26
3.1 Experiment 1 ... 27

3.1.1 First Search Result.. 27
3.2 Experiment 2 ... 29

3.2.1 First Search Result.. 29
3.3 Comparison of Results from Experiments 1 and 2.. 30

Chapter 4 Proposed Algorithm .. 31
4.1 The Approach .. 31

4.1.1 The Basic Idea .. 31
4.1.2 Our Algorithm .. 34

4.2 Results from Experiments 1 and 2 using the Proposed Algorithm...................................... 38
4.2.1 Experiment 1 Analysis ... 39
4.2.2 Experiment 2 Analysis ... 39

Chapter 5 Conclusion and Future Work... 41

 v

5.1 Conclusion... 41
5.2 Future Work .. 41

Appendix A First Search Result of Ping Xie’s Algorithm in Experiment 1........................... 42
Appendix B First Search Result of Ping Xie’s Algorithm in Experiment 2 47
Appendix C First Search Result of Proposed Algorithm in Experiment 1 52
Appendix D First Search Result of Proposed Algorithm in Experiment 2 57
Appendix E Cache Performance Results of Proposed Algorithm in Experiment 1 62
Appendix F Cache Performance Results of Proposed Algorithm in Experiment 2 64
BIBLIOGRAPHY ... 66

 vi

List of Figures
Figure 1.1: A potential event pattern that could be useful in debugging a distributed program 2
Figure 2.1: An example of an event collection with F/M timestamp ... 4
Figure 2.2: The event-predicate language .. 9
Figure 2.3: ASCII equivalence of operators that are defined in the event-predicate language 9
Figure 2.4: Producer-consumer race problem .. 10
Figure 2.5: An example of a parse tree representing a hierarchical event predicate 11
Figure 2.6: An example of a convex event, E .. 12
Figure 2.7: An event collection that is used for an example of a convex-closure computation ... 14
Figure 2.8: Computing the back vector of Figure 2.7, given E = {e1,3, e3,7}................................ 15
Figure 2.9: Computing the front vector of Figure 2.7, given E = {e1,3, e3,7}................................ 18
Figure 2.10: An example of computing the convex closure of two convex events...................... 19
Figure 2.11: An example of pruning variables’ domain for A║(a→b) .. 20
Figure 2.12: A parse tree representing A║(a→b)... 21
Figure 2.13: Step 1 in creating an event database .. 23
Figure 2.14: Step 2 in creating an event database .. 23
Figure 2.15: Step 3 in creating an event database .. 24
Figure 2.16: A process-time diagram in Eclipse .. 24
Figure 2.17: Pattern selection dialog .. 25
Figure 2.18: The first matched events for Pattern4 .. 25
Figure 3.1: Test environment: software and hardware ... 27
Figure 3.2: An example of a process-time diagram for b║(c→a).. 28
Figure 4.1: An illustration of our proposed-algorithm approach.. 32
Figure 4.2: An example of a cached-closure violation... 34

 vii

List of Tables
Table 3:1: Comparison of Results from Experiments 1 and 2.. 30
Table 4:1: Cache Performance Results from Experiment 1 ... 38
Table 4:2: Cache Performance Results from Experiment 2 ... 39

 viii

Chapter 1
Introduction

1.1 Motivations and Contribution

Understanding the behaviour of a distributed application is often difficult because of the large
amount of event data that is collected and the complexity of how these events relate to each other
across many concurrently-executing processes. Events are occurrences of interest that help a user
trying to understand the behaviour of the application.

One approach to understanding such behaviour is to collect event information according to an
event model and visualize this information using a process-time diagram. This diagram shows the
partial-order relationship between events. Events could be remote procedure calls (RPCs), alarms,
communication with remote processes, etc.

In Figure 1.1, the events surrounded by the dashed lines depict an event pattern that represents
events on processes A and C both happening before an event on process B, but with no
synchronization between them. If the collection of event data is small, as shown in Figure 1.1,
this pattern could be located by inspection. However, in a large collection of event data, locating
event patterns by inspection is not feasible. As a result, a search mechanism is needed to help
alleviate this problem.

The event pattern previously cited is an example of a simple pattern because it is made up of
relationships between primitive events. However, there are complex patterns that are made up of
relationships between compound events (sets of primitive events). Apart from locating patterns of
interest, the events matching a pattern, especially a complex pattern, can be replaced by an
abstract event. An abstract event is a compound event that satisfies a pattern of interest and can be
displayed in a process-time diagram. This is especially useful if multiple occurrences of that
pattern exist.

Ping Xie [15] developed an algorithm that helps to search for simple and complex patterns.
However, his algorithm is inefficient when searching for complex patterns. This dissertation
presents an efficient algorithm that, in some cases, reduces the execution time of Ping Xie’s
algorithm by over 94%: two different cases that searched for complex patterns took, on average,
nearly four hours and close to one hour, respectively, to find their first set of matched events.
Using our method, the respective pattern matches take less than four minutes to find.

1

A

B

C

Figure 1.1: A potential event pattern that could be useful in debugging a distributed
program

1.2 Organization

Chapter 2 describes the event model of a distributed computation, and details of the search
mechanism developed by Ping Xie. Chapter 3 explains Ping Xie’s convex-closure algorithm and
describes a series of experiments that were performed to analyze the operation of his algorithm.
Chapter 4 presents our improved algorithm and results from its implementation, including a
performance analysis. Chapter 5 concludes the thesis and discusses possible future work.

2

Chapter 2
Event Models and Event-Predicate Detection

2.1 Understanding Event Models

An event model is a model of distributed computation in which the computation is decomposed
into sequential entities, such as processes and threads, communicating via message passing.
Events on those sequential entities are sends, receives, and anything else of interest. Figure 2.1 is
an example of a process-time diagram that shows event information collected from the execution
of a distributed application. The information is collected in accordance with the event model
described. This diagram contains three processes P1, P2, and P3, and five events b, d, e, f, and u.
Time increases from left to right.

In this thesis, only four types of primitive events are considered: unary, synchronous,
asynchronous send, and asynchronous receive. A unary event is an event that does not involve
any process interaction. An example of a unary event is u in Figure 2.1. A synchronous event is a
single event that is imagined to occur simultaneously on two processes. This type of event is used
to model synchronous communication between processes. An example of a synchronous event in
Figure 2.1 is b, the two halves of which are connected by a vertical, undirected line.
Asynchronous send and receive events are used to model asynchronous communication as
initiating on one process and terminating on another, respectively. This type of communication is
represented by a slanted and directed line connecting both processes. In Figure 2.1, e is an
asynchronous-send event and f is the corresponding asynchronous-receive event.

2.1.1 Causality Relations

Understanding causality is fundamental to understanding the behaviour of distributed applications
[3]. Given the ordering within processes and the communication between them, the causality
relationship between any two primitive events can be determined using the happened-before and
concurrent relations introduced by Lamport [10].

Definition 1: Happened-Before

The happened-before relation, denoted →, on the set of events of a computation is the smallest
relation satisfying the following three conditions:

1. if e and f are events in the same process, and e occurs before f, then e→f.

2. if e is the sending of a message by one process and f is the receipt of that message by
another process, then e→f.

3.

1In this thesis, only communication involving exactly two processes is discussed and for purposes of formal
description the “one event” view of synchronous communication is adopted.

3

P1

u[1,0,0]

e[0,1,0]

d[0,0,1] f[0,2,2]

b[2,2,0]

b[2,2,0]

P2

P3

Time

Figure 2.1: An example of an event collection with F/M timestamp

4. if e→f and f→g then e→g.

Definition 2: Concurrent

Two distinct events e and f are said to be concurrent if ¬(e→f) and ¬(f→e). This is denoted as
e║f.

2.1.2 Fidge/Mattern (F/M) Vector Timestamp

Based on Lamport’s work [10], Fidge and Mattern [6, 7, 11]2 developed the concept of a partially
ordered logical clock, and a corresponding algorithm that timestamps events using integer
vectors. A comparison of the vector timestamps of any two events allows the causality relation
between them to be determined in constant time.

The timestamp algorithm assigns each primitive event e a vector timestamp Te. Te is an integer
vector of size N, where N is the number of processes in the computation. The algorithm is as
follows:

1. Each process Pi in the computation maintains a vector Ci of size N. Each Ci is initialized
to a zero vector at the beginning of Pi.

2. Whenever process Pi performs a unary event e:

Ci[i] = Ci[i] + 1

Te = Ci

3. If e is an asynchronous send event, its timestamp is calculated in a similar way:

Ci[i] = Ci[i] + 1

Te = Ci

2The concept of vector timestamps was developed independently by Fidge and Mattern.

4

 In addition, the outgoing message carries a copy of the updated Ci, denoted as Ci
′

hereafter.

4. If f is an asynchronous receive event on process Pj corresponding to a send event e on
process Pi, Cj and Tf are calculated as follows:

Ci
′ [i] = Ci

′ [i] + 1

Cj[j] = Cj[j] + 1

{ n1p ,,K∈∀ }

}

}
}

,Cj[p] = max(Cj[p], Ci
′ [p])

Tf = Cj

5. If event e is a synchronous event on Pi and Pj, then e’s timestamp is calculated as follows:

Ci[i] = Ci[i] + 1

Cj[j] = Cj[j] + 1

{ n1p ,,K∈∀ ,Te[p] = max(Cj[p], Ci[p])

Furthermore, local vector clocks on Pi and Pj are updated respectively as follows:

{ n1p ,,K∈∀ ,Ci[p] = Te[p]

{ n1p ,,K∈∀ ,Cj[p] = Te[p]

Ci[j] = Ci[j] + 1

Cj[i] = Cj[i] + 1

Applying the algorithm for events u, e, and f (from Figure 2.1) are as follows:

Event d: Applying rule 1, P3’s clock C3 is initialized to [0,0,0] ;

 Applying rule 2 to event d, a unary event, results in the following:

C3[3] = C3[3] + 1

Td = C3 = [0,0,1]

Event e: Applying rule 1, P2’s clock C2 is initialized to [0,0,0];

Since e is an asynchronous send event, we apply rule 3, which is the same as
rule 2, to get e’s timestamp:

Te = [0,1,0]

5

Event f: Since f is the asynchronous receive event from e, we apply rule 4 as follows:

C2
′ [2] = C2

′ [2] + 1 = 2

C3[3] = C3[3] + 1 = 2

{ 3,,1K∈∀p },C3[p] = max(C3[p], C2
′ [p])

Tf = C3 = [0,2,2]

Cheung [3] proved that the following theorem can be used to deduce the happened-before
relation between any two events e and f:

Theorem 1: Precedence Test

 e→f T⇔ e[p] < Tf[p], where event e occurs on process p3.

Based on Theorem 1, if Td[3] < Te[3], d→e. However, this condition is false as seen from their
timestamps above. Hence, event d did not happen-before event e. Similarly, event e did not
happened-before event d and thus, based on Definition 2, d and e are concurrent.

2.2 Event-Predicate Detection

Event-predicate detection is a search mechanism that locates events that satisfy an event pattern
of interest to the user. As such it consists of the following three parts:

1. a formalization of event predicates

2. a predicate language

3. a predicate-detection algorithm.

2.2.1 Event Predicates

The user may be interested in a pattern that is made up of a single primitive event a or a related
pair of primitive events a→b. The mechanism involved in finding a single primitive event is
trivial, i.e., either it exists or it does not and therefore, can be mapped to true/false (T/F).
Similarly, any related primitive event pair a→b or a║b can also be mapped to T/F based on
Theorem 1. However, locating event patterns that are made up of related pairs of compound
events (hierarchical event predicates), for example (a→b)║(c→d), presents a challenge:

 a→b maps to T/F

therefore,

 (a→b)║(c→d) maps to T/F║T/F

which is undefined.

3If e is a synchronous event, either of the two processes in which e occurs can be chosen.

6

Nevertheless, (a→b)║(c→d) can be evaluated in terms of the logical expression

 a→b c→d a║c a║d ∧ ∧ ∧ ∧ b║c ∧ b║d

but this method is cumbersome and does not scale. On the other hand, instead of mapping a→b to
its usual T/F status, it could be mapped to a compound event. As a result, we could write
(a→b)║(c→d) provided there is a definition for the causality relation between compound events.

Two possible definitions, as observed by Kunz [9], for the precedence relation between two
compound events E and F are

1. E→F if and only if Ee∈∀ and :Ff ∈∀ e→f,

and

2. E→F if and only if ∃ and Ee∈ :Ff ∈∃ e→f.

Based on research on event abstraction [3, 8, 9, 12], the first definition is too restrictive
because compound events that are clearly related become concurrent with each other.

Cheung [3] chose the second definition and observed that its relation is not a partial-order
relation between arbitrary compound events. As a result, he proposed a class of compound events,
called contractions, to preserve the partial-order relation between them. However, Summers [12]
illustrated a system of contractions for which the transitive property does not hold and proposed a
slightly more restrictive definition of contractions to preserve the transitive property.

Kunz [9] proposed another class of compound events called convex events. Contrary to
Cheung’s and Summers’ work on event abstraction [8, 9], Kunz [9] decided not to preserve the
partial-order properties of the second definition that deals with the precedence relation between
compound events. Instead, he chose to preserve the atomicity property of compound events―
convex events do not have outside interference. However, a set of events that is not convex does
have outside interference and does not appear, intuitively, to be very useful [16]. Therefore, this
kind of event set is replaced by its convex closure. For a pair of event sets, the convex closures
have the same precedence relationship as the original sets. A pair of convex events requires only
two vector timestamps to correctly and efficiently deduce the precedence relation, based on the
second definition, for the convex events, i.e., one vector timestamp per convex event. Ping Xie
[15] chose the second definition and used convex events to build hierarchical event predicates.

A convex event is defined as follows:

Definition 3: Convexity of Event Sets

A set of events E is convex if and only if E y x, ∈∀ : x→z∧ z→y E.z∈⇒

Events x, y, and z are not necessarily primitive events. However, the convexity property must
hold for all constituent events of a compound event.

2.2.2 Event-Predicate Language

A predicate language is made up of variables, logical connectives, and predicates. In the
context of this thesis, variables are used to represent only primitive events and compound
events [16]. Predicates involving the happened-before and concurrent relations play an important
role in the expressiveness of the language. These predicates help to support the expression of

7

hierarchical event predicates, such as (a→b)║(c→d) that is made up of four primitive-event
predicates a, b, c, and d, and the event-predicate operators ║ and →. This example will be
revisited in the next section.

This thesis adopts Ping Xie’s event-predicate language [15]. However, the syntax of his
predicate language was adapted from Jaekl’s work [8]. Jaekl showed that his event-predicate
language was sufficient for expressing a number of problem classes, such as finding subroutines,
identifying bottlenecks, and detecting symmetry in communication. Figure 2.2 lists the
production rules used to recognize event predicates.

Ping Xie et al. used the base_comp production rule to define a primitive event predicate as a
tuple [trace, type, text], trace is the textual name of the trace on which a matching primitive event
must occur. Type specifies the event type (for example, thread-end or RPC-call) that the matching
event must belong to. Text is any extra information that must be attached to the event. In addition,
flexibility is added to both string fields, trace and text, in that, they support regular expression
matching.

Expression in the language is strengthened with the addition of the limited operator because
there is no negation operator. It represents the following event predicate [16]:

Two events, e and f, are said to satisfy the limited operator a c, if and only if e→f, e and f
satisfy a and c respectively, and there does not exist a third event g such that e→g, g→f, and g
satisfies b.

→b

The limited operator a c provides a degree of control that enables the user to detect the
presence of simple communication-symmetry problems quite easily [8]. For example

→b

4, Figure 2.4
shows the execution of a producer and a consumer communicating via a bounded buffer of size
one. Each message is designated: sw = send write, rw = receive write, sr = send request, rr =
receive request, sd = send data, and rd = receive data. The extraneous write, surrounded by the
dashed line, indicates a synchronization problem and causes the buffer to overflow. This buffer-
overflow problem can be detected using the predicate [B, rw,] [B, rw,] (see Figure 2.4).  →],,[sdB

2.2.3 Predicate-Detection Algorithm

Algorithms used to locate events that satisfy event patterns can be grouped into two
classes [16]: online detection algorithms and offline detection algorithms. An online detection
algorithm locates events against predicates as the events are collected during execution. An
offline detection algorithm locates events against predicates after they have been collected from
an execution of a target application. This thesis discusses only offline predicate detection5. Ping
Xie’s [15] event-predicate detection approach is based on the naive backtracking (BT) algorithm.
Figure 2.5 shows the parse tree corresponding to the hierarchical event predicate (a→b)║(c→d)6.

4Taken from Jaekl’s thesis.
5Ping Xie’s [15] event-predicate detection system uses an offline event-predicate algorithm.
6Example was taken from Ping Xie’s [15] thesis.

8

predicates ⇒ ()()*";"_| namecomppredicate
predicate ⇒ clauseID ":" =

clause ⇒ ()*termoperatorterm
operator ⇒ "−−>"

 | ||""
 | ""  →term
 | ""∧
 | ""∨

term ⇒ ID
 | event

 | ()"""" clause
event ⇒ component”.”component

 | component
comp_name ⇒ componentCID ":" =
component ⇒ Base_comp

 | CID
base_comp ⇒ []""","",""" texttypeprocess

ID ⇒ ()*ALNUMALPHA
CID ⇒ ()*ALNUMALPHA

ALPHA ⇒ []_"","""","""" ZAza −−

ALNUM ⇒ []"""",_"","""","""" 90ZAza −−−

Figure 2.2: The event-predicate language

The ASCII equivalence of the operators defined in Figure 2.2 is shown in Figure 2.3.

Formal ASCII Meaning
→ −−> Happened-before operator
║ | | Concurrent operator

A C →B A−(B)−>C Limited operator
∧ AND Conjunction
∨ OR Disjunction

Figure 2.3: ASCII equivalence of operators that are defined in the event-predicate
language

9

P

B

sw

C

rw

sr

rr sd

rd

sw

rw

sw

rw

rr sd

sr rd
Figure 2.4: Producer-consumer race problem

In Figure 2.5, a, b, c, and d are primitive events. A, B, and C are convex events. For example, A
represents the convex closure of an event set consisting of events a, and b with a preceding b.
Event pairs that are from either a’s and b’s domain or c’s and d’s domain respectively, satisfying
a→b or c→d respectively, may not be convex and thus their convex closures must be computed
before any further searching takes place. A domain represents a collection of primitive events that
belong to a particular process. Nodes A and B represent the convex-closures of event sets a→b
and c→d, respectively. A precedence test can now be carried out between the convex events, at
nodes A and B, to ascertain whether they are concurrent. If they are concurrent, the algorithm
computes another convex closure for them and returns it as a match. Otherwise, the search
backtracks to the last leaf node visited, which is d’s domain in this example. The next satisfying
event in d’s domain is selected and predicate c→d is evaluated again. If all the events in d’s
domain have been tested and c→d cannot be satisfied, the search further backtracks to c’s domain
and selects the next satisfying event from it. This new assignment is evaluated against all the
satisfying events in d’s domain. It is possible that the current convex event at node A is not
concurrent with any possible convex events at node B. If this is the case, the search further
backtracks to b’s domain and tries to build a new convex event for the events that satisfy a→b.
This backtracking and evaluating process continues until either a match is found or all possible
combinations of the events from the domains of predicates a, b, c, and d are tested. If the latter
case occurs, the hierarchical event predicate is not satisfied.

2.3 Constructing Convex Events

Kunz [9], in an early attempt to construct convex events, developed a limited algorithm that
computes the convex closure of a class of compound events that contain only two primitive
events that belong to the same process. Ping Xie [15] realized this limitation and proposed a
comprehensive algorithm that computes the convex closures for arbitrary compound events and
hierarchical compound events. Hierarchical compound events are compound events that contain
other compound events.

2.3.1 Representing Convex Events

In Figure 2.6, a convex event is represented as two vectors, a front vector and a back vector, that
contain only primitive events. They are defined as follows [9]:

10

 b c d

A B

C

 → →

 ║

 a

Figure 2.5: An example of a parse tree representing a hierarchical event predicate

Definition 4: Front Vector

Let E be a convex event. The front vector of E is defined as

 (){ }efpfEffepEee →∧∧∈¬∃∧∃∧∈ on occurs :occurs on which |

Definition 5: Back Vector

Let E be a convex event. The back vector of E is defined as

 (){ }fepfEffepEee →∧∧∈¬∃∧∃∧∈ on occurs :occurs on which |

In addition, we introduce a supplementary definition as follows [9]:

Definition 6: Location Set

 The location set of an event set E, lE is defined as

 lE = {p:∃ep ∈ E}

where p is a process in the computation and the notation ep indicates event e happened in process
p.

Based on Definitions 4 and 5, the front vector and the back vector of a convex event E represent
E’s boundaries, i.e., the front vector marks E’s beginning and the back vector marks E’s end.

In Figure 2.6, each primitive event that is a constituent of the front vector is the only event
from the process that it occurs on that does not have any predecessors from its process in E. For
example, event b is the only event in the front vector that occurs on P2 and it has no predecessors
in E that occur on P2. The primitive events that make up the back vector have the same
characteristics except none of them have any successors from their process in E. For example,
event d is the only event in the back vector that occurs on P1 and it has no successors in E that
occur on P1. Event d has successors e and f, but they do not occur on P1, and event b has one
predecessor, a, that does not occur on P2.

11

P1

P2

P3
c

a

b

d

e

f

E

k

l

j

ifront vector back vector

Figure 2.6: An example of a convex event, E

2.4 Convex Closure Computation

This section describes Ping Xie’s [15] convex-closure computation, including related definitions,
computing the back vector and the front vector, complexity analysis of his algorithm, and how his
algorithm deals with an event set that includes compound events. In addition, an overview of the
implementation of Ping Xie’s offline event-predicate detection system is presented.

2.4.1 The Definitions

Several key definitions, involving the relationships between and among primitive events, need to
be introduced before the convex-closure algorithm is discussed. The definitions are as
follows [15]:

Definition 7: Greatest Predecessor

Let e and f be two arbitrary primitive events and P be a process on which e occurs. e is f’s
greatest predecessor on P, denoted gpP(f) = e, if and only if e→f and there does not exist a third
primitive event g occurring on P such that e→g and g→f.

Definition 8: Least Successor

Let e and f be two arbitrary primitive events and P be a process on which e occurs. e is f’s least
successor on P, denoted lsP(f) = e, if and only if f→e and there does not exist a third primitive
event g occurring on P such that f→g and g→e.

Referring to Figure 2.6, l’s greatest predecessor on P1, P2, and P3 is k, j, and i respectively. The
following theorem [9] makes it possible to locate a primitive event’s greatest predecessor on each
process in O(N) time, where N is the number of processes.

The definition for the Least Predecessor and the Greatest Predecessor is formally defined, for
the first time, in this thesis.

12

Theorem 2: Location of Greatest Predecessor on each Process

Let Te be the F/M timestamp for a primitive event e. The index of its greatest predecessor on
process Pi is equal to Te[Pi]-1 if Te[Pi] is greater than 0. Otherwise, e has no predecessor on Pi.

Theorem 2 plays an integral role in the convex-closure computation, especially in the
construction of the back vector. Unfortunately, a counterpart of Theorem 2 for the least successor
does not exist because F/M timestamps do not encode the least-successor information.

Definition 9:

 Sback(E) := {t ∈ Et has no successors in E}

where E is an arbitrary primitive event set.

Definition 10:

 Sfront(E) := {t ∈ Et has no predecessors in E}

where E is an arbitrary primitive event set.

The next two definitions, especially the latter, define the set of greatest predecessors for an
arbitrary primitive event set E with the former being a precursor to it.

Definition 11:

Let E be an arbitrary primitive event set and N be the number of processes in the computation. A
primitive event set for E, denoted U(E),is defined as follows:

]},1[and)(where,|{)(:)(NiESegpttESEU backpback i
∈∈=∪=

Definition 12:

Let E be a primitive event set. The set of E’s greatest predecessors on each process, denoted
GP(E), is defined as follows:

 preceding with)(from on occuring

 occurs, on which process oneleast at for |)(
:)(








¬∃
∈

=
etEUPe

tPEUt
EGP

GP(E) is obviously a subset of U(E) and contains only the latest event, if there is more than one
event, from the same process in U(E). In other words, no two events in GP(E) are from the same
process. However, GP(E) may contain more than one event per process because of synchronous
events that necessitate additional events needed in the other process on which they occur.

2.4.2 Ping Xie’s Algorithm7

In Figure 2.7, ei,j is used to represent the jth event on process Pi. The algorithm to compute the
convex closure, the front and back vectors, for a primitive event set E consists of two steps:

1. locate the back vector of E’s convex closure

2. locate the front vector of E’s convex closure by checking all the events between
the back vector and Sfront(E)

7This section was adopted from Ping Xie’s thesis [15] except the examples.

13

P1

P2

P3

e1,3 [3,0,0,0]

P4

e1,4 [4,0,0,0]

e2,3[4,3,0,0]

e2,4 [4,4,0,0] e2,5 [4,5,4,0] e2,7 [5,7,4,0]

e3,3 [4,5,3,0]

e3,4 [4,5,4,0] e3,5 [6,5,5,0]

e4,4 [4,5,4,4] e4,5 [4,5,4,5]

e3,2 [4,5,2,0] e3,6 [6,8,6,0]

e3,7 [6,8,7,6]

e2,6 [5,6,4,0]

e1,5 [5,0,0,0]

Figure 2.7: An event collection that is used for an example of a convex-closure

computation

Algorithm 1 gives the pseudo-code for computing the back vector of the convex-closure of an
arbitrary primitive event set E.

Algorithm 1

1. function COMPUTE_BACK(E)
2. Sback := { } ;in successors no has | EtEt∈

3. Sfront := { } ;in rspredecesso no has | EtEt∈

4. Back := Sback;
5. for each event e in Sback
6. Te := e’s F/M vector timestamp;
7. for i:=1 to N /* for N processes */
8. {
9. if Te[i] = 0 OR Pi = Pe

10. continue;
11. f := ei,j; /* j := Te[i]–1 */
12. if f is not in Sfront AND (){ }fgSgg front →∧∈¬∃ :

13. continue;
14. if there exist an event g from Pi in Back with g preceding f
15. replace g with f in Back;
16. else if there does not exist an event from Pi in Back
17. add f to Back;
18. }
19. return Back;

14

Lines 2-4:

Line 5:

Sback = {e3,7}, Sfront = {e1,3}, and Back = {e3,7}, respectively.

e = e3,7

i=1 i=2 i=3 i=4 Lines 5-17:

Te = [6,8,7,6]

f=e1,5

Back += e1,5

Te = [6,8,7,6]

f=e2,7

Back += e2,7

Te = [6,8,7,6]

continue

Te = [6,8,7,6]

f=e4,5

Back += e4,5

Line 19: Back = {e1,5, e2,7, e3,7, e4,5}

Figure 2.8: Computing the back vector of Figure 2.7, given E = {e1,3, e3,7}

Computing the Back Vector

In Algorithm 1, it is necessary to first locate Sback(E) and Sfront(E) to compute the back vector of
E’s convex closure. The computation of Sback(E) and Sfront(E) is carried out with the help of F/M
vector timestamps. Algorithm 1 does not compute U(E) directly, but computes GP(E) by
checking events in Sback(E). For each event e in Sback(E), its greatest predecessor on each process
is located using Theorem 2. If more than one event from the same process is in the set of these
greatest predecessors, only the latest event (i.e., one that has no successors from its process in the
set) is kept in the set, as required by the definition of GP(E). The others are discarded. GP(E) is
obtained after Sback(E) is completely checked. The events in GP(E) are then checked against
events that are in Sfront(E). The events in GP(E) that are not part of Sfront(E) or did not happen after
any of the events in Sfront(E) are removed. Finally, the remaining events in GP(E) are precisely the
events of the back vector of E’s convex closure.

In Algorithm 1, lines 2 and 3 locate Sback(E) and Sfront(E) respectively. Line 4 initializes the back
vector Back using Sback(E). Lines 5-17 are a combination of the calculation of U(E), GP(E), and
Back. Figure 2.8 illustrates how Algorithm 1 works.

Complexity Analysis

Algorithm 1 needs O(N) timestamp computations and O(N3) timestamp comparisons, where N
is the number of processes in the computation.

Line 6 is the only place in Algorithm 1 that a timestamp computation is required and in the
worst case |Sback(E)| = N, because Sback(E) cannot contain more than one event from a process.

There are four places in Algorithm 1 where timestamp comparisons are required: lines 2, 3, 12,
and 14. Lines 2 and 3 require timestamp comparisons to compute Sback and Sfront respectively. The
number of timestamp comparisons required to compute Sback and Sfront is O(E2). The number of
timestamp comparisons carried out on lines 12 and 14 is determined by the number of iterations
of lines 12 and 14, which is as follows:

∑
∈

×=
backSe

front seS rspredecessogreatest ' T

15

In the worst case where each event e in Sback has N greatest predecessors, the equation can be
reduced as follows:

 NSS backfront ××= T

Note that both Sfront and Sback are of size N in the worst case because neither of them can contain
more than one event from a process. Therefore, the worst-case complexity of Algorithm 1
is O(N2) + O(N3) = O(N3) in terms of timestamp comparisons.

Computing the Front Vector

The computation of the front vector requires the use of locating a primitive event’s least
successors. Unfortunately, the F/M vector timestamp does not encode least successor information.
As a result, the algorithm (Algorithm 2) has to check all events between Sfront and the back vector,
Back. This presents an efficiency problem, how to avoid checking an event twice. Ping Xie [15]
solved this problem by checking the events in the convex-closure in a predefined order.

Each process in the back vector is selected separately, starting with those that have events in
Sfront. The events from the selected process are checked: starting with the event in Sfront and ending
with the event in Back. During the checking, whenever an asynchronous send event or a
synchronous event is encountered, if its partner process P’ satisfies the following three conditions:

1. P′ has not yet been checked,

2. P′ has events in the back vector, and

3. there is no event in Sfront on P′,

P′ is selected for future checking. The algorithm also maintains a temporary event set, S, for each
iteration of the loop over the processes. The partner events are stored in S so that the algorithm
knows which event to start with whenever P′ is checked. However, before a new process is
checked, the algorithm computes Sfront from S and updates the front vector using Sfront. Figure 2.9
illustrates how Algorithm 2 works.

Algorithm 2

1. function COMPUTE_FRONT(E)
2. Back := COMPUTE_BACK(E);
3. Sfront := { } ;in rspredecesso no has | EtEt∈

4. Front := Sfront;
5. Scanned := {};
6. S := {};
7. do
8. P := lSfront;
9. for each process p in P

10. {
11. start := the event from p in Sfront;
12. end := the event from p in Back;

16

13. for each event f between start and end inclusive
14. {
15. if f is neither an asynchronous send event nor a synchronous event
16. continue;
17. t := f’s partner event;
18. if Pt does not have events in Back OR Pt is in Scanned
19. continue;
20. if there is an event from Pt in Sfront
21. continue;
22. if no event from Pt is in S
23. add t to S;
24. else if t precedes the event from Pt in S
25. replace that event with t;
26. }
27. add p to Scanned;
28. }
29. add events in S to Front;
30. Sfront := { } ;in rspredecesso no has | StSt∈

31. S := S – Sfront;
32. while Sfront is not empty;
33. return Front;

Complexity Analysis

Algorithm 2 uses Algorithm 1, on line 2, and thus must be O(N3).

2.4.3 Algorithm for Dealing with Compound Events

It is incorrect to compute the convex closure of two convex events by simply merging their front
and back vectors [15]. Figure 2.108 illustrates this point.

In Figure 2.10, the rectangles E and F represent two convex events and e represents a primitive
event that is not a part of E and F. However, it can be seen in the figure that e is a member of the
convex closure of E and F, specifically its back vector. As a result, merging the back vectors of
both E and F is not enough to build the correct back vector for E and F’s convex closure because
e is not included during the merging [15].

8Taken from Ping Xie’s thesis [15].

17

Lines 3-5:

Lines 6-8:

Back = {e1,3, e2,7, e3,7, e4,6}, Sfront = {e1,3}, and Front = Sfront

Scanned = {}, S = {}, and P = {1}

f=e1,3 f=e1,4 f=e1,5 Lines 14-27:

 t=e2,3

S+= e2,3

t=e2,6 t=e3,5

S+= e3,5

Lines 28-32: Scanned={1}, Sfront={e2,3}, Front={e1,3,e2,3}, and S={e3,5}

Line 8: P = {2}

f=e2,3 f=e2,4 f=e2,5 f=e2,6 f=e2,7 Lines 14-27:

 continue t=e3,2

S= e3,2

t=e3,4

continue t=e3,6

Lines 28-32: Scanned={1,2}, Sfront={e3,2}, Front={e1,3,e2,3,e3,2}, and S={}

Line 8: P = {3}

f=e3,2 f=e3,3 f=e3,4 f=e3,5 & e3,6 f=e3,7 Lines 14-27:

continue t=e4,4

S= e4,4

t=e2,5

continue

continue

t= e4,5

Lines 28-32: Scanned={1,2,3}, Sfront={e4,4}, Front={e1,3,e2,3,e3,2,e4,4}, and S={}

Line 8: P = {4}

f=e4,4 f=e4,5 Lines 14-27:

continue t= e3,7

continue

Lines 28-32: Scanned={1,2,3,4}, Sfront={}, Front={e1,3,e2,3,e3,2,e4,4}, and S={}

Figure 2.9: Computing the front vector of Figure 2.7, given E = {e1,3, e3,7}

Ping Xie [15] took a simple approach to computing the convex closure between two convex
events. He used the primitive events of the front and back vectors of both convex events to build
an event set. The resulting convex closure of this set, by applying Algorithm 1 and Algorithm 2,
is the convex closure between the two convex events. Algorithms 3, 4, and 5 give the pseudo-
code for computing the convex closure between two convex events.

Algorithm 3

1. function EXPAND(E)

2. E′:= {};

3. for each event e in E

18

P1

P2

P3

P4

P5

E

Figure 2.10: An example of computing the co

4. if e is a primitive event

5. Add e to E′;

6. else

7. Add e’s back vector to E′;

8. Add e’s front vector to E′;

9. return E′;

Algorithm 4

1. function COMPUTE_BACK_EXT(E)

2. return COMPUTE_BACK(EXPAND(E));

Algorithm 5

1. function COMPUTE_FRONT_EXT(E)

2. return COMPUTE_FRONT(EXPAND(E));

2.4.4 Pruning Technique

Ping Xie [15] employed a pruning technique, know
performance of the naive BT algorithm. The relevancy
node’s convex event that has been computed to remo
another node before its sub-tree is evaluated. Figures
mechanism9.

9Taken from Ping Xie’s thesis [15].

19
e

nvex closure

n as relevan
-restriction

ve events fro
2.11 and 2.1
F

f

 of two convex events

cy-restriction, to improve the
mechanism is based on using a
m event domains belonging to

2 are used to help illustrate this

P1

P2

P3

P4

P5

b3

z

E

b2

b1

f3

f2

f1x

y

Figure 2.11: An example of pruning variables’ domain for A║(a→b)

Suppose that E, in Figure 2.11 is the convex event that has been computed and is associated
with node A in Figure 2.12 E can be used to remove primitive events from a’s domain and b’s
domain before node B’s sub-tree, in Figure 2.12, is evaluated. An event e is removed from a’s
domain and b’s domain if it satisfies one of the following two conditions:

1. Pe ∈ lE,

2. (e→f) ∧ (Pe = Pf) ∧ (f ∈ GP(E))

These two conditions apply specifically to an event predicate that contains the concurrent
relation as seen in Figure 2.12. For example, if event x or y in Figure 2.11 is associated with a’s
domain or b’s domain then any convex event, associated with node B in Figure 2.12, that contains
either x or y cannot be concurrent with E because events x, and y satisfy conditions 1 and 2,
respectively. In other words both conditions check for events in a’s domain or b’s domain that
happened-before E. Therefore, any convex event containing either x or y will happen-before E
according to our precedence relation definition between two compound events. As a result, events
x and y would not be included as matched events from a’s domain or b’s domain for satisfying the
event predicate in Figure 2.11, A║(a→b).

Ping Xie [15] described a third pruning condition that he did not implement because it requires
the least successor of Sfront(E) in each process LS(E) to be computed which is an expensive
exercise due to the fact that F/M timestamp does not encode the least-successor information. The
third condition is defined as follows:

Definition 13:

Let N be the number of processes in the computation LS(E) is defined as follows:

V(E) := Sfront(E) ∪ {t | t = lspi(e), where e ∈ Sfront(E) and i ∈ [1, N]} ,

20

 B A

 a b

C

… →

 ║

Figure 2.12: A parse tree representing A║(a→b)

LS(E):=
 preceding with)(in from event primitive aexist not

does thereoccurs, on which process oneleast at for |)(







 ∈

teEVPe
tPEVt

LS(E) represents the least successors of Sfront(E) on each process.

The third pruning condition is then as follows:

(f→e) ∧ (Pe = Pf) ∧ (f ∈ LS(E)) .

The primitive event z in Figure 2.11 satisfies the third condition where z is associated with
event e that is defined in the condition.

In contrast to dealing with concurrent predicates, such as A║(a→b), the pruning strategies
described above are ineffective in dealing with the happened-before predicate, for example,
A→(a→b), because of the involvement of an existential quantifier in the precedence definition
[15]. As a result, Ping Xie introduced a pruning condition for dealing with the happened-before
predicate: only the events contained in E, a convex event that is associated with A, are excluded
because this predicate represents the precedence test for two disjoint convex events that can be
determined locally. Similarly, this condition is the only one applied to the limited operator.

The relevance of pruning to our research will be dealt with later in the thesis.

2.4.5 An Overview of Ping Xie’s Implementation

Ping Xie’s [15] offline event-predicate detection system was built on top of the Eclipse
platform. This platform is designed for building integrated development environments (IDEs) that
can be used to create applications as diverse as web sites, embedded JavaTM programs, C++
programs, and Enterprise JavaBeansTM [4]. Ping Xie chose to build his application in the Java
IDE. However, Eclipse does not provide tools for event timestamping and event scrolling. As a
result, these key functions were ported from the Partial-Order Event Tracer (POET) [13, 14] by
Ping Xie.

POET is a client/server application composed of a number of processes. These processes
communicate with each other to provide an event visualization tool that offers a wide range of

21

functions from collecting run-time event data to presenting collected events using a process-time
diagram. Several different computing environments have been instrumented for POET including
Java, PVM, OSF DCE, and µC++.

Each computing environment has its own target-description file that describes the event types
in the environment and encodes information on how to present the events in a process-time
diagram [14]. Information about events displayed in POET can be saved to an ASCII file known
as a UEF file. This file contains information about events and the relationships between them
including event type, partner event, stream data, trace data, etc. Therefore, an event display can
be generated from a UEF file and a target-description file that relates to the computing
environment from which the events were collected.

Ping Xie implemented a user interface to capture a UEF file and a target-description file to
build the process-time diagram in Eclipse. In addition, the collection of events is stored in a
relational database. He used the HSQL (Client/Server mode) 1.7.1 database system that is part of
the Hyades Project. The Hyades Project is an integrated test, trace and monitoring environment
based on Eclipse that provides standards, tools, and tool operability across the test process [5]. An
example of importing a UEF file into an event database is shown in Figures 2.13 through 2.15.
Figure 2.16 shows an example of a process-time diagram of an imported event database in
Eclipse.

Figure 2.1310 is called an Eclipse new wizard window. The user opens this window by selecting
menus File, New, and Other, sequentially. “POET” is selected from the list of Java project
types that are located in the left panel of the window. This action produces only one selection in
the right panel of the window, “Event Database.” Therefore, clicking on the Next button
produces a new window that allows the creation of an empty event database, Figure 2.14.

This window is opened with a default container name that includes the name of the project.
The user supplies the name of the database and selects the database system. As seen in
Figure 2.14, the name of the event database is philos2. The remaining four fields in Figure 2.14
are automatically set with default values whenever the database system is selected. The Next
button is clicked again. This action produces a new window that imports a UEF file and a target-
description file, Figure 2.15.

Figure 2.15 shows that the user selected philos.uef. This file contains event data that were
collected from a µC++ program called Philosophers. In addition, the target-description file that
corresponds to the µC++ computing environment was selected. The user clicks Finish to create
the philos event database. In addition, the name of the database, supplied in Figure 2.14, is placed
under the project name that is located in the upper-left panel of the Eclipse parent window. The
user double-clicks the database name to produce the process-time diagram, Figure 2.16.

10An empty project in Eclipse must be created before Figure 2.13 can be produced. The example assumes
that the project was named test.

22

Figure 2.13: Step 1 in creating an event database

Figure 2.14: Step 2 in creating an event database

23

Figure 2.15: Step 3 in creating an event database

Figure 2.16: A process-time diagram in Eclipse

24

Figure 2.17: Pattern selection dialog

Figure 2.17 was produced from menu option “POET” from Figure 2.16. The user clicks
Browse to locate files, with a “.pattern” extension, that contain the event predicates. As seen in
the figure above, Pattern4 was selected from a pattern file. The user locates the first matched
events of Pattern4 by clicking Find. Other matched events, if any, can be located by subsequent
Find operations. The first matched events of Pattern4 are shown below11.

Figure 2.18: The first matched events for Pattern4

Philosopher(0xe24a8) || (Philosopher(0xea5a8) → uSemaphore(0xe1c24))

11Each matched event is shown with an arrow pointing at it.

25

Chapter 3
Experiments and Results of Two Hierarchical Event-Predicates

This chapter presents two hierarchical event-predicate detection experiments. These experiments
are not intended to provide a thorough analysis of event-predicate-detection performance. Rather,
both are intended to demonstrate the cause of the inefficiency of Ping Xie’s algorithm.

Both Experiments 1 and 2 are based on finding the first search result as demonstrated in
Section 2.4.4. A set of results was collected from the section of Ping Xie’s application that
matches events and computes their convex-closures. Ping Xie’s application had only two data
structures that captured matched events, referred to hereafter as the left domain/node and the right
domain/node. The result set our experiments collected consists of the following information:

1. The number of matched event sets from left’s and right’s domains, categorized as follows:

a) PRIM-PRIM − one event from each domain

b) CONVEX-PRIM − multiple events from left’s domain and one event from
right’s domain or PRIM-CONVEX which is the converse of CONVEX-PRIM

c) CONVEX-CONVEX − multiple events from each domain

2. The number of convex closures of event sets PRIM-PRIM, CONVEX-PRIM, and
CONVEX-CONVEX

3. The time taken to compute the closure of each category of event set

4. The front vector and the back vector of each closure of each category of event set

The set of results was written to three text files. Each file contains the information about each
category of event set. However, in this document only a subset of the information in each file is
presented: Appendices A and B consist of a subset of the set of results from Experiments 1 and 2,
respectively.

Each result is written on a single line of six columns. For example:

7 50 {[8,3]} {[1,4]} {[1,3][8,3]} {[1,4][8,3]}.

Each column is separated by spaces. The third and fourth columns are matched events from left’s
domain and right’s domain, respectively. Since, in this example, both columns contain one event
from each domain, together they represent the PRIM-PRIM event set {[8,3][1,4]}. The numerical
value 7 in the first column indicates that this is the seventh PRIM-PRIM event set. Note that there
is no synchronization among the three files. That is, there is no information in the files that relates
to the sequence of occurrences among the category of event sets. The second column indicates the
time taken, in milliseconds, to compute the closure of only the event set, in this case 50 ms. The
last two columns are the front vector and the back vector of the convex closure of the event set
represented in the third and fourth columns, respectively.

26

Hardware Intel Pentium IV 1.99GHz/480MB

Operating System Red Hat 9.0/Kernel 2.4.20-8

JDK SUN JDK 1.4.2_02 for Linux

RDBMS HSQL (Client/Server mode) 1.7.1 (installed locally)

Figure 3.1: Test environment: software and hardware

The following experiments used an event database philos that contains events collected from a
µC++ program called Philosophers. This program simulates the classical Dining-Philosophers
problem. In addition, the hardware and software used in the experiments can be seen in Figure 3.1

3.1 Experiment 1

The event predicate for experiment 1 is as follows:

SemaphoreBlock1 := ["uSemaphore(0xe1c24)", "", ""];

PhilosopherA := ["Philosopher(0xe24a8)", "", "uP"];

PhilosopherB := ["Philosopher(0xea5a8)", "", "uP"];

PatternA := (PhilosopherB −−> SemaphoreBlock1);

Pattern4 := PhilosopherA | | PatternA;

Predicate Pattern4 is evaluated against philos. In the context of this program, an event associated
with a text string “µP” represents a P operation on a semaphore. Predicate SemaphoreBlock1
represents any type of unary event on semaphore uSemaphore(0xe1c24). Predicate PatternA
searches for pairs of the P operation from Philosopher(0xea5a8) that precedes
uSemaphore(0xe1c24). Therefore, Pattern4 finds concurrent pairs of P operation from
Philosopher(0xe24a8) and PatternA.

3.1.1 First Search Result

The matched events {[1,112][7,48][8,30]} are the first search result for Pattern4 and were found
in approximately four hours. The search consisted of 47,047 convex closures of PRIM-PRIM
event sets and only one convex closure of a PRIM-CONVEX event set.

From the results in Appendix A, the first matched event from left’s domain and right’s domain
is [8,3] and [1,4], respectively. The search continues with other matched events from right’s
domain in increments of one event up to event [1,571]. This trend is repeated whenever the
matched event from left’s domain changes.

27

P1

P2

P3

a1

b1

c

a2 an

b3b2

Figure 3.2: An example of a process-time diagram for b║(c→a)

The time taken to compute the convex closure of each event set up to the 139th event set was
less than 35 milliseconds per closure. However, from the 140th event set, the closure computation
time per event set increased to 260 milliseconds and significantly increased to nearly one second
at the 542nd event set. This increase in time is due to the gradual increase in the number of events
in the closure computation. The expense of the first search result was mainly attributed to Ping
Xie’s algorithm that computed closures over a similar set of events many times. Based on
Algorithms 3, 4, and 5, the closure of each subsequent event set repeats the closure computation
for the previous event set. For example, the closure computation for event set {[8,3][1,546]}
involved checking events between event set {[8,3][1,545]} that had been checked in the previous
closure computation. This trend is seen throughout the entire search result.

Experiment 1 could have taken less time if Ping Xie’s third pruning condition was
implemented. Figure 3.2 illustrates a process-time diagram that depicts a subset of events for
event pattern b║(c→a) that is similar to Pattern4 with primitive events b, c, and a belonging to
processes PhilosopherA, PhilosopherB, and SemaphoreBlock1, respectively.

Suppose in the search operation, event b1 was matched as an event from PhilosopherA. Ping
Xie’s search algorithm would match event c from PhilosopherB. Pruning conditions one and two
would be applied to event c with respect to event b1. Event c does not satisfy either condition. As
a result, c is concurrent with event b1 and could be a possible matched event for b║(c→a). His
search algorithm then matches event a1 from SemaphoreBlock1 that satisfies the sub-pattern
c→a. Ping Xie computes the convex-closure of event set {c, a1} and evaluates whether the
closure is concurrent with event b1. Obviously, they are not concurrent pairs because a1 is a
successor to b1. His search algorithm continues to compute closures over event sets {c, a2} to {c,
an}.Again, these closures will not be concurrent with event b1 for the same reason. However, if he
had evaluated the events from SemaphoreBlock1 against b1 as he did with events from
PhilosopherB, he would have significantly reduced the number of convex closures that were
performed. Events a1 to an would have been pruned from SemaphoreBlock1’s domain. This
approach is simple and does not require the third pruning condition because b1 is a primitive
event, but if event b1 was a compound event, the third pruning condition would become
necessary.

28

3.2 Experiment 2

The event predicate for experiment 2 is as follows:

SemaphoreReceive := ["uSemaphore(0xe1c24)", "thread received", ""];

SemaphoreBlock := ["uSemaphore(0xe1c24)", "thread block", ""];

PhilosopherA := ["Philosopher(0xe24a8)", "", "uP"].SemaphoreReceive;

PhilosopherB := ["Philosopher(0xea5a8)", "", "uP"].SemaphoreReceive;

Semaphore := ["uSemaphore(0xe1c24)", "thread received", ""];

Pattern := (PhilosopherA −−> PhilosopherB)

−(Semaphore)−>SemaphoreBlock

Predicate Pattern is also evaluated against philos. Predicate SemaphoreBlock represents unary
events of type “thread block” on semaphore uSemaphore(0xe1c24). Therefore, predicate Pattern
finds pairs of synchronized P operations on uSemaphore(0xe1c24) from process
Philosopher(0xe24a8) and Philosopher(0xea5a8) that precedes a “thread block” before a “thread
received” on the same semaphore.

3.2.1 First Search Result

The matched events {[1,1][1,3][1,4][7,3][8,3]} are the first search result for Pattern and were
found after nearly one hour. The search consisted of 148 convex closures of PRIM-PRIM event
sets and 6014 convex closures of CONVEX-PRIM event sets.

From the results in Appendix B, the first matched event from left’s domain and right’s domain
from the PRIM-PRIM event set category is [7,3] and [8,3], respectively. Although not shown in
Appendix B, the first matched events, from the CONVEX-PRIM event set category, from left’s
domain are {[1,1][7,3][8,3]} and the first matched event from right’s domain is {[1,4]}.With
regards to the PRIM-PRIM event set category, the search continues with other matched events
from right’s domain in increments of nine events up to event [8,138]. This trend is repeated
whenever the matched event from left’s domain changes. In contrast, for the CONVEX-PRIM
event-set category, the search continues with other matched events from right’s domain in
increments of six events up to event [1,560]. This trend is closely repeated whenever the matched
events from left’s domain change.

The time taken to find the first search result for Pattern can be explained in a similar way to
that of Pattern4. However, the first search result for Pattern took significantly less time to find
than Pattern4’s first result because Pattern computed significantly fewer convex closures than
Pattern4. Pattern4 required 47,048 convex-closure computations while Pattern required 6,162
convex-closure computations.

29

No. of Convex-Closures per

Event-Set Category Total

Experiments PRIM-
PRIM

CONVEX-
PRIM

CONVEX-
CONVEX

Convex-
Closures Time(hrs)

Experiment 1 47, 047 1 0 47,048 4
Experiment 2 148 6,014 0 6,162 1

Table 3:1: Comparison of Results from Experiments 1 and 2

3.3 Comparison of Results from Experiments 1 and 2

From Table 3.1, it can be inferred that the average time taken to compute the closure of a
CONVEX-PRIM event set is almost twice the average time taken to compute the closure of a
PRIM-PRIM event set, for these patterns and event set. The number of times a unique event set
was matched from left’s domain was collected in a fourth text file. This file contains information
about the sequence of occurrences among the category of event sets during a search operation. A
subset of this information for Experiment 1 and 2 is presented in Appendices E and F,
respectively. Each line of results consists of four columns of data. Column 1 represents the
number of times a unique event set from left’s domain was matched. Other column data will be
dealt with in Chapter 4 because they are not relevant to our analysis in this chapter.

From Experiment 1, the total number of unique PRIM event sets, which is the number of times
the backtracking algorithm selects a matched primitive event from left’s domain, is 154. This data
was taken directly from the fourth text file because there was only one PRIM-CONVEX event set
throughout the search operation. However, Column-1 data from Experiment 2 could not be
ascertained for both PRIM and CONVEX event sets from left’s domain because the entire search
operation consisted of interleaving event sets.

Hence, our aim to categorize event sets was nullified because we hypothesized that Ping Xie’s
convex-closure computation was ineffective for PRIM-CONVEX event sets. This hypothesis
proved to be false. Experiment 1 consisted of 1,429 unique front vectors. As a result, a unique
front vector was computed, on average, for every 33 convex-closures computed. Similarly,
Experiment 2 consisted of 185 unique front vectors and therefore, on average, 33 convex-closures
were computed for each unique front vector. Therefore, the inefficiency of Ping Xie’s offline
event-predicate detection system, for Experiments 1 and 2, as described earlier, is caused by the
large number of closures computed over similar sets of events.

30

Chapter 4
Proposed Algorithm

4.1 The Approach

The proposed algorithm is an extension of Ping Xie’s algorithm, and is based on caching matched
sub-patterns. These sub-patterns are represented by the categories of event sets described in
Chapter 3. However, CONVEX-CONVEX event sets are not dealt with in our approach because
there was no instance of CONVEX-CONVEX sub-patterns that were matched. Therefore, our
algorithm only dealt with PRIM-PRIM and CONVEX-PRIM categories of event sets.

4.1.1 The Basic Idea

As discovered by our experiments, Ping Xie’s algorithm computes closures over a similar set of
matched events many times. Therefore, our algorithm employs a caching approach to computing
the closure over the back vector of the cached convex event and the new matched primitive event.
Figure 4.1 illustrates the basic idea of our proposed algorithm.

Suppose that the event predicate we are searching for is x4→(y1→z3) and events x4, y1, and z3
represent primitive events that belong to processes 4, 1, and 3, respectively. Primitive events a,
and c1 are matched events from left’s and right’s domains, respectively. Ping Xie’s approach is to
compute the convex-closure of event set {a, c1}, CC({a, c1}), which is E1 in the figure. In
addition, the event q is matched from process 4. At this point, the relation q→E1 is evaluated.
From Figure 4.1, it can be seen that event q does not happen-before E1. As a result, the search
operation backtracks to right’s domain and matches another event, c2. Ping Xie’s algorithm then
computes CC({a, c2}), shown as E2 in the figure. This time, event q happen-before E2 and
therefore a match is found for the event predicate x4→(y1→z3). In addition, it can be seen, from
Figure 4.1, that E2 is a superset of E1. On the other hand, our approach caches E1 and computes
the convex-closure of the event set {a, b2, c1, c2} provided the cached matched event(s) from
left’s domain is equal to the current matched event(s) from left’s domain and the cached matched
event(s) from right’s domain precedes the current matched event(s) from right’s domain, a=a and
c1→ c2. The resulting convex-closure E2 is the front vector of E1 (cached front vector) and the
back vector of CC({a, b2, c1, c2}) if the location set of E2 is equal to the location set of E1 and
E1→ c2. The following theorems prove the correctness of this cached-closure computation.

Theorem 3

CC({E, e′}) = CC({E, e, e′) ⇔ E ≤ e ≤ e′

Proof

For the purpose of these theorems, we use the reflexive form of happened-before:

a ≤ b ⇔ a→b or a = b.

Assume E ≤ e ≤ e′ CC({E, e′}) ≠ CC({E, e, e′)

31

P1

P2

P3
c1

a

b1

E1

c1

c2

E2

c2

P1

P2

P3

b2

a

b1 b2

P4
q

P4
q

Figure 4.1: An illustration of our proposed-algorithm approach

∃x : x ∈ CC({E, e′}) ∧ x ∉ CC({E, e, e′) or x ∉ CC({E, e′}) ∧ x ∈ CC({E, e, e′)

1. x ∈ CC({E, e′}) ⇔ ∃y, z : y, z ∈ {E, e′} : y ≤ x ≤ z

Therefore ∃y, z : y, z ∈ {E, e′, e} : y ≤ x ≤ z

Hence x ∈ CC({E, e, e′).

2. x ∉ CC({E, e′}) ∧ x ∈ CC({E, e, e′)

Therefore ∃y, z : y, z ∈ {E, e, e′} : y ≤ x ≤ z

Since E ≤ e ≤ e′, z ≤ e′

Therefore x ≤ e′

Since y ∈ {E, e, e′} and E ≤ e ≤ e′, ∃w: w ∈ E : w ≤ y

Therefore ∃w: w ∈ E : w ≤ x since y ≤ x

Therefore ∃w: w ∈ {E, e′} : w ≤ x

Hence x ∈ CC({E, e′}).

Lemma 1

∃a, b : a, b ∈ CC(E) ∪ {e} and ∃w : a ≤ w ≤ b ∧ CC(E) < {e} then w ∈ CC(E ∪ {e})

Proof

Proof is performed by contradiction.

Assume a, b ∈ CC(E) ∪ {e}, a ≤ w ≤ b and w ∉ CC(E ∪ {e})

Since a, b ∈ CC(E) ∪ {e}, 1.(a, b ∈ CC(E)) ∨ 2.(a, b ∈ {e}) ∨ 3.((a ∈ CC(E) and b ∈ {e}))

1. Since a ∈ CC(E), ∃x : x ∈ E : x ≤ a.

32

Since b ∈ CC(E), ∃y : y ∈ E : b ≤ y.

Therefore x ≤ a ≤ w ≤ b ≤ y.

Since x ≤ a ≤ w ≤ b ≤ y, ∃x, y : x, y ∈ E : x ≤ w ≤ y.

Therefore w ∈ CC(E).

Since w ∈ CC(E), w ∈ CC(E ∪ {e}) because CC(E) ⊆ CC(E ∪ {e}).

2. Since a, b ∈ {e}, e ≤ w ≤ e .

e ≤ w ≤ e ⇒ w = e.

Therefore w ∈ CC(E ∪ {e}).

3. a ∈ CC(E) ⇒ ∃x : x ∈ E : x ≤ a.

Since b ∈ {e} ∃x, b : x, b ∈ E ∪ {e} : x ≤ w ≤ b.

Hence w ∈ CC(E ∪ {e}).

Theorem 4

If lCC(E ∪{e}) = lCC(E) ∧ CC(E) < {e} then

CC(E ∪{e}) = CC(E) ∪ CC(back(CC(E)) ∪ {e}),

where E is an arbitrary event set and e is an arbitrary primitive event.

Proof

First we show CC . }){(}){))((()(eECCeECCbackCCE ∪⊆∪∪

If x ∈ CC(E) ∪ CC(back(CC(E)) ∪ {e}) then x ∈ CC(E) or x ∈ CC(back(CC(E)) ∪ {e})

If x ∈ CC(E) then x ∈ CC(E ∪ {e}) because CC(E) ⊆ CC(E ∪ {e}).

If x ∈ CC(back(CC(E)) ∪ {e}) then a ≤ x ≤ b for a, b ∈ back(CC(E)) ∪ {e}.

Since back(CC(E)) ⊆ CC(E) then a, b ∈ CC(E) ∪ {e} and x ∈ CC(E ∪ {e}) by Lemma 1.

Therefore, CC(E) ∪ CC(back(CC(E)) ∪ {e}) ⊆ CC(E ∪ {e}).

Next we show that CC . In other words, we’ll
show that ∀z : z ∈ CC(E ∪ {e}) ⇒ z ∈ CC(E) ∨ (back(CC(E)) ≤ z ≤ {e}).

}){))((()(}){(eECCbackCCECCeE ∪∪⊆∪

Proof is performed by contradiction.

1. ∃z : z ∈ CC(E ∪ {e}) ∧ z ∉ CC(E) ∧ z ¬(≤) {e}.

z ∈ CC(E ∪ {e}) ⇒ ∃y : y ∈ E ∪ {e}: z ≤ y

Since z ∉ CC(E) ∧ CC(E) < e, then y ∉ E.

Thus y = {e} and z ≤ e.

2. ∃z : z ∈ CC(E ∪ {e}) ∧ z ∉ CC(E) ∧ z ║ back(CC(E)).

If z ║ back(CC(E)) then Pz ∉ lback(CC(E)), where Pz is the process in which z occurs.

33

P1

P2

P3 c

a

b

d

e

c1

E

P4
g

h

front vector back vector c2

Figure 4.2: An example of a cached-closure violation

However, lback(CC(E)) = lCC(E) (by definition of back, definition 12) = lCC(E ∪ {e}).

Therefore, Pz ∉ lCC(E ∪ {e}).

However, z ∈ CC(E ∪ {e}) and therefore, Pz ∈ lCC(E ∪ {e})

3. ∃z : z ∈ CC(E ∪ {e}) ∧ z ∉ CC(E) ∧ z < back(CC(E)).

Since z ∈ CC(E ∪ {e}), ∃x : x ∈ E ∪ {e}: x ≤ z

Since z < back(CC(E)) then x ∈ E.

Since CC(E) < {e} thus z ∈ CC(E).

Figure 4.2 shows an example that does not satisfy Theorem 4 because event h is a receive event
that lies between the back vector of E and c2, and its partner event g does not occur in the location
set of E. Furthermore, event g is preceded by the front vector of E. Therefore, the front vector of
the convex-closure of {a, c2} is different from the cached front vector {a, b, c}. Hence,
Theorem 4 would not apply.

4.1.2 Our Algorithm

Based on Theorems 3 and 4, our proposed algorithm is performed as follows:

If ((cached matched-event(s) from left node = current matched event(s) from left node) AND

 (cached matched-event(s) from right node PRECEDES

 current matched-event(s) from right node))

Then

 /* Cached-closure computation */

34

 Compute convex-closure of input event set containing the back vector of

 the cached convex event and current matched event from right’s domain

 If Theorem 4 prerequisites are violated Then apply Ping Xie’s algorithm

Else

 Compute convex-closure using Ping Xie’s algorithm

Cache newly computed convex closure.

Algorithms 6, 7, 8, and 9 implement the cached-closure computation. Algorithm 6 builds the
input event set E′, using the events in the back vector of the cached convex event E (Backcache)
and the current matched event from right’s domain r′. The back vector is computed using
Algorithm 712. The pseudo code that checks for the condition that violates the prerequisites for
Theorem 4 is shown in Algorithm 813. Algorithm 9 implements Algorithm 8.

Algorithm 6

1. function DBMERGE(E)
2. E′:= {};
3. for each event e in E
4. if e is a primitive event
5. Add e to E′; /* r′ */
6. else
7. Add e’s back vector to E′; /* Backcache */
8. return E′;

Algorithm 7

1. function DB_BACK(E)

2. return COMPUTE_BACK(DBMERGE(E));

Algorithm 8

1. function DB_FRONT(E, Frontcache, Backcache)
2. Back := COMPUTE_BACK(DBMERGE(E));
3. Sfront := { } ;in rspredecesso no has | EtEt∈

4. Front := Backcache;
5. Scanned := {};
6. S := {};

12Algorithm 7 employs Ping Xie’s algorithm, Algorithm 1.
13The changes that were made to Algorithm 2 can be identified by their bold-faced line numbers.

35

7. do
8. P := lBack;

9. if P ≠ lBackcache
10. return (COMPUTE_FRONT_EXT(E));
11. for each process p in P
12. {
13. start := the event from p in Front;
14. end := the event from p in Back;
15. for each event f between start and end inclusive
16. {
17. if f is an asynchronous send event or a unary event
18. continue;
19. t := f’s partner event;

20. if (Pt is not in lBackcache AND an event g in Frontcache precedes t)

21. return (COMPUTE_FRONT_EXT(E));
22. if Pt does not have events in Back OR Pt is in Scanned
23. continue;
24. if there is an event from Pt in Sfront
25. continue;
26. if no event from Pt is in S
27. add t to S;
28. else if t precedes the event from Pt in S
29. replace that event with t;
30. }
31. add p to Scanned;
32. }
33. add events in S to Front;
34. Sfront := { };in rspredecesso no has | StSt∈

35. S := S – Sfront;
36. while Sfront is not empty;
37. return Front;

Algorithm 9

1. function DB_FRONT_EXT(E)

2. for each event e in E

36

3. if e is convex event

4. Frontcache = e’s front vector;

5. Backcache = e’s back vector;

6 else Frontcache = Backcache = e;

7. return DB_FRONT(E, Frontcache, Backcache);

4.1.2.1 Implementing Theorem 4 Checks in Algorithm 8

Only two lines in Algorithm 8 check for Theorem 4 prerequisite violations:

Line 9 checks the condition that if the location set of the newly computed back vector (Back) is
not equal to the location set of the cached back vector, Theorem 4 is not applicable. In other
words, Frontcache and Back will have two different location sets. Therefore, the resulting cached-
closure computation would be invalid because the front vector and the back vector of a convex
event always have the same location set.

Line 20 implements the conditions illustrated in Figure 4.2. Although the location sets of both
Backcache and Back are equal, Theorem 4 can still be inapplicable based on the following two
conditions:

1. A partner event g of any event, between Backcache and r′, belongs to a process that is not in
the location set of Backcache.

2. g is preceded by an event in Frontcache

Line 17 implies that event g must be the partner event of an asynchronous-receive event or a
synchronous event.

4.1.2.2 Complexity Analysis

Algorithms 6, 7, 8, and 9 were used to implement our cached-closure computation. The
complexity analysis for each algorithm is as follows:

Algorithm 6

The cost of Algorithm 6 is determined by the number of iterations of line 4 because r′ is only
one event. The number of iterations of line 3 depends on Nc, the number of processes that were
present in Backcache. In the worst case Nc = N, and thus the complexity is O(N).

Algorithm 7

Algorithm 7 requires invocation of Algorithm 6, at cost O(N). It then invokes Algorithm 1 at
cost O(N3). It thus has a cost of O(N3).

Algorithm 8

The cost differences between Agorithm 2 and 8 can be seen in the different lines that Agorithm
8 has, over Algorithm 2. First, in lines 8 and 9, it must determine if there is a cache hit. The cost
of this is the cost of the number of elements in the back cache, which is N in the worst case. This
is thus O(N) cost.

37

No. of
Convex
Closures

No. of
Unique
Fronts

Average No. of
Closures per
Unique Fronts

No. of successful
Cached-
Closures

PRIM-
PRIM 47,047 1,429 32.9 45,617

PRIM-
CONVEX 1 1 1.0 - Category of

Event Sets
CONVEX-
CONVEX 0 0

 Overall 47,048 1,430 33.9 45,617

Table 4:1: Cache Performance Results from Experiment 1

The second difference is then that the algorithm must determine if there location sets match.
This is determined by lines 15 to 21. In those lines, the events in the convex closure between
back and "e" are checked to see if they are receives or synchronous, with partners that are outside
the location set of the original closure, and those partners are successors to the cached value of
Front. If they are, then Ping Xie's algorithm is employed (line 21). The worst case cost of this is
O(NpNe) where Np is the number of processes and Ne is the number of events, since it is possible
that all but a small number of events are part of the closure increment, and all but one process is
in the location set. While this is bad in theory, in practice, the number of events is much smaller
than the total number of events in the system.

Algorithm 9

The cost of Algorithm 9 is determined by the number of iterations of line 2. The number of
iterations of lines 4 and 5 depends on Nc. In the worst case Nc = N, and thus the complexity is
O(N).

4.2 Results from Experiments 1 and 2 using the Proposed Algorithm

The data in Tables 4.1 and 4.2 came from an entire data set collected during the search operation
in Experiments 1 and 2 using our algorithm, respectively. A subset of the data collected in
Experiment 1 can be seen in Appendices C and E. In addition, a subset of the data collected in
Experiment 2 can be seen in Appendices D and F.

The data in the last Column of Table 4.1 refers to the number of successful cached-closure
computations: the number of times our algorithm was able to use Theorem 4. This data was
collected in a fourth text file, described in Section 3.3. Each line of results consists of four
columns of data: Column 1 was defined in Section 3.3; Column 2 is self-explanatory; Column 3
shows the number of times a unique event set from left’s domain was matched against an event
set from right’s domain; and Column 4 refers to the data in the last Column of Table 4.1.

38

No. of
Convex
Closures

No. of
Unique
Fronts

Average No. of
Closures per
Unique Fronts

No. of successful
Cached-
Closures

PRIM-
PRIM 148 44 3.4 -

CONVEX-
PRIM 6,014 141 42.7 - Category of

Event Sets
CONVEX-
CONVEX 0 0

 Overall 6,162 185 46.1 5,754

Table 4:2: Cache Performance Results from Experiment 2

4.2.1 Experiment 1 Analysis

The overall cache hit rate (OCHR) in Experiment 1 is calculated from the following expression:

Closures-ConvexofNo.Overall

Closures-Cached Successful of No. OCHR =

==
 47,048

45,617 OCHR 0.970

Therefore, OCHR in Experiment 1 is 0.970. In other words, for every 1000 cached closure
computations, 970 were satisfied from the cache. This result indicates that Theorem 4 was always
applicable when a result was found in cache. Hence the number of unique fronts equals the
number of times Ping Xie’s algorithm was invoked instead of cache, 1,430 (47,048 − 45,617)
times. As a result, the time taken to perform the first search result in Experiment 1 was
significantly reduced, from nearly four hours to less than three minutes. A comparison of data in
Appendix A and in Appendix C confirms the improved performance of the Proposed Algorithm
over Ping Xie’s algorithm. The 140th closure computation took on average less than 1 millisecond
instead of 260 milliseconds. The 542nd down to 568th closure computations, each took on average
less than 10 milliseconds instead of as much as 1,230 milliseconds, and so on.

4.2.2 Experiment 2 Analysis

The overall cache hit rate (OCHR) in Experiment 2 is calculated as follows:

==
 6,162

5,754 OCHR 0.934.

39

Therefore, for every 1000 cached closure computations in Experiment 2, 934 were satisfied from
the cache.

In Table 4.2, the entire first search result in Experiment 2 consisted of 148 closures of PRIM-
PRIM event sets and 6,014 closures of CONVEX-PRIM event sets. A total of 185 unique front
vectors were computed out of 6,162 closure computations, 44 of which were computed from
PRIM-PRIM event sets and 141 of which were computed from CONVEX-PRIM event sets.

As a result, a unique front vector was computed, on average, for every 3 convex-closures
computed from a PRIM-PRIM event set and for every 43 convex-closures from a CONVEX-
PRIM event set. From this result, caching was less effective for PRIM-PRIM event sets than it
was for CONVEX-PRIM event sets for this pattern because of the interleaving of both event sets
and the fact that our cache size was one, throughout the search operation. Therefore, the
execution times for the PRIM-PRIM event-set category obtained from Ping Xie’s algorithm and
our algorithm are similar (see Appendices B and D).

40

Chapter 5
Conclusion and Future Work

5.1 Conclusion

This thesis has presented an efficient algorithm that reduces the execution time of Ping Xie’s
algorithm by over 94% for experiments 1 and 2. This was done by building hierarchical event
predicates (complex patterns) in an incremental manner and employing a simple caching scheme
that uses the most recently stored cache based on matched sub-patterns. The cache hit rate for the
two hierarchical event predicates in experiments 1 and 2 were 0.970 and 0.934, respectively. As a
result, both experiments took less than four minutes instead of experiment 1 that took almost four
hours and experiment 2 that took close to one hour, to find the first search result.

The major cost of a convex-closure computation is the expense incurred when computing the
front vector. This is caused by the fact that the F/M timestamp does not encode least-successor
information and therefore the closure computation has to iterate over all constituent events in the
resulting convex closure to compute the front vector [15]. By applying an incremental closure
algorithm with the use of a suitable caching scheme, we were able to achieve significant
improved performance over Ping Xie’s algorithm.

5.2 Future Work

A possible future study is to perform a wider range of experiments, considering alternative event-
data sets, on different hierarchical event predicates. This approach should produce a more
comprehensive understanding of our algorithm.

A second future study that needs to be done, which is a spin-off from the above approach, is to
study various caching schemes and see how well they perform. This may lead to an approach that
favours a particular caching scheme based on certain criteria: the make-up of hierarchical event
predicates, the size of the event collection, etc.

Finally, search operations of various hierarchical event predicates may consist of a reasonable
number of Theorem-4 violations and/or closure computations involving CONVEX-CONVEX
event sets. Therefore, this outcome presents two more possible future tasks: the development of a
suitable patch and an approach to efficiently computing the closures of CONVEX-CONVEX
event sets.

41

Appendix A
First Search Result of Ping Xie’s Algorithm

in Experiment 1

42

43

1 0 {[8,3]} {[1,4]} {[1,3][8,3]} {[1,4][8,3]}
2 10 {[8,3]} {[1,5]} {[1,3][7,9][8,3]} {[1,5][7,9][8,3]}
3 0 {[8,3]} {[1,6]} {[1,3][7,9][8,3]} {[1,6][7,10][8,3]}
4 0 {[8,3]} {[1,7]} {[1,3][7,9][8,3]} {[1,7][7,10][8,3]}
5 0 {[8,3]} {[1,8]} {[1,3][7,9][8,3]} {[1,8][7,10][8,4]}
6 10 {[8,3]} {[1,9]} {[1,3][7,9][8,3][9,3]} {[1,9][7,10][8,4][9,3]}
7 0 {[8,3]} {[1,10]} {[1,3][7,9][8,3][9,3]} {[1,10][7,10][8,4][9,3]}
8 10 {[8,3]} {[1,11]} {[1,3][7,9][8,3][9,3]} {[1,11][7,10][8,6][9,3]}
9 0 {[8,3]} {[1,12]} {[1,3][7,9][8,3][9,3]} {[1,12][7,10][8,7][9,3]}
10 0 {[8,3]} {[1,13]} {[1,3][7,9][8,3][9,3]} {[1,13][7,10][8,7][9,3]}
11 0 {[8,3]} {[1,14]} {[1,3][7,9][8,3][9,3]} {[1,14][7,10][8,7][9,4]}
12 10 {[8,3]} {[1,15]} {[1,3][7,9][8,3][9,3][10,3]} {[1,15][7,10][8,7][9,4][10,3]}
13 0 {[8,3]} {[1,16]} {[1,3][7,9][8,3][9,3][10,3]} {[1,16][7,10][8,7][9,4][10,3]}
14 0 {[8,3]} {[1,17]} {[1,3][4,1][7,9][8,3][9,3][10,3]} {[1,17][4,2][7,10][8,7][9,9][10,3]}
15 0 {[8,3]} {[1,18]} {[1,3][4,1][7,9][8,3][9,3][10,3]} {[1,18][4,2][7,10][8,7][9,10][10,3]}
16 10 {[8,3]} {[1,19]} {[1,3][4,1][7,9][8,3][9,3][10,3]} {[1,19][4,2][7,10][8,7][9,10][10,3]}
17 0 {[8,3]} {[1,20]} {[1,3][4,1][7,9][8,3][9,3][10,3]} {[1,20][4,2][7,10][8,7][9,10][10,4]}
18 10 {[8,3]} {[1,21]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,21][4,2][7,10][8,7][9,10][10,4][11,3]}
19 30 {[8,3]} {[1,22]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,22][4,2][7,10][8,7][9,10][10,4][11,3]}
20 0 {[8,3]} {[1,23]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,23][4,2][7,10][8,7][9,10][10,6][11,3]}
21 0 {[8,3]} {[1,24]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,24][4,2][7,10][8,7][9,10][10,7][11,3]}
22 10 {[8,3]} {[1,25]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,25][4,2][7,10][8,7][9,10][10,7][11,3]}
23 0 {[8,3]} {[1,26]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,26][4,2][7,10][8,7][9,10][10,7][11,4]}
24 0 {[8,3]} {[1,27]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,27][2,4][4,2][7,15][8,7][9,10][10,7][11,4]}
25 0 {[8,3]} {[1,28]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,28][2,4][4,2][7,15][8,7][9,10][10,7][11,4]}
26 10 {[8,3]} {[1,29]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,29][2,4][4,2][7,15][8,7][9,10][10,7][11,6]}
27 0 {[8,3]} {[1,30]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,30][2,4][4,2][7,15][8,7][9,10][10,7][11,7]}
28 0 {[8,3]} {[1,31]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,31][2,4][4,2][7,15][8,7][9,10][10,7][11,7]}
29 0 {[8,3]} {[1,32]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,32][2,4][4,2][7,16][8,7][9,10][10,7][11,7]}
30 0 {[8,3]} {[1,33]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,33][2,4][4,4][7,16][8,7][9,15][10,7][11,7]}

44

…
140 260 {[8,3]} {[1,143]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,143][2,16][3,12][4,14][5,12][6,12][7,51][8,42][9,48][10,37][11,43]}
141 230 {[8,3]} {[1,144]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,144][2,16][3,12][4,14][5,12][6,12][7,51][8,43][9,48][10,37][11,43]}
142 261

{[8,3]}

{[1,145]}

{[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]}

{[1,145][2,16][3,12][4,14][5,12][6,12][7,51][8,43][9,48][10,37][11,43]}
 …

542 951 {[8,3]} {[1,545]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,545][2,56][3,48][4,52][5,54][6,58][7,186][8,145][9,163][10,162][11,171]}
543 1252 {[8,3]} {[1,546]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,546][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,162][11,171]}
544 982 {[8,3]} {[1,547]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,547][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,162][11,171]}
545 971 {[8,3]} {[1,548]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,548][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,163][11,171]}
546 971 {[8,3]} {[1,549]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,549][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
547 972 {[8,3]} {[1,550]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
548 981 {[8,3]} {[1,551]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,551][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,165][11,174]}
549 982 {[8,3]} {[1,552]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,552][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,174]}
550 981 {[8,3]} {[1,553]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,553][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,174]}
551 1002 {[8,3]} {[1,554]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,554][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,175]}
552 961 {[8,3]} {[1,555]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,555][2,56][3,48][4,52][5,58][6,60][7,187][8,145][9,163][10,168][11,180]}
553 981 {[8,3]} {[1,556]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,556][2,56][3,48][4,52][5,58][6,60][7,187][8,145][9,163][10,168][11,181]}
554 982 {[8,3]} {[1,557]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,557][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,171][11,181]}
555 991 {[8,3]} {[1,558]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,558][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,181]}
556 992 {[8,3]} {[1,559]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,559][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
557 1011 {[8,3]} {[1,560]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
558 982 {[8,3]} {[1,561]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,561][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,174][11,183]}
559 1021 {[8,3]} {[1,562]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,562][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
560 992 {[8,3]} {[1,563]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,563][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
561 1011 {[8,3]} {[1,564]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,564][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,184]}
562 981 {[8,3]} {[1,565]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,565][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,189]}
563 1001 {[8,3]} {[1,566]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,566][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,190]}
564 1011 {[8,3]} {[1,567]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,567][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,195]}
565 1042 {[8,3]} {[1,568]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,568][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
566 1262 {[8,3]} {[1,569]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,569][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
567 1021 {[8,3]} {[1,570]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,570][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
568 1022 {[8,3]} {[1,571]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,571][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}

45

…
16551 792 {[8,21]} {[1,541]} {[1,541][2,56][3,48][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,169]}
16552 791 {[8,21]} {[1,542]} {[1,542][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,160][11,169]}
16553 811 {[8,21]} {[1,543]} {[1,543][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
16554 801 {[8,21]} {[1,544]} {[1,544][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
16555 831 {[8,21]} {[1,545]} {[1,545][2,56][3,48][4,52][5,54][6,58][7,186][8,145][9,163][10,162][11,171]}
16556 831 {[8,21]} {[1,546]} {[1,546][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,162][11,171]}
16557 812 {[8,21]} {[1,547]} {[1,547][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,162][11,171]}
16558 831 {[8,21]} {[1,548]} {[1,548][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,163][11,171]}
16559 821 {[8,21]} {[1,549]} {[1,549][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
16560 811 {[8,21]} {[1,550]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
16561 821 {[8,21]} {[1,551]} {[1,551][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,165][11,174]}
16562 832 {[8,21]} {[1,552]} {[1,552][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,174]}
16563 811 {[8,21]} {[1,553]} {[1,553][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,174]}
16564 831 {[8,21]} {[1,554]} {[1,554][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,175]}
16565 861 {[8,21]}

{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
{[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}

{[1,555]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,555][2,56][3,48][4,52][5,58][6,60][7,187][8,145][9,163][10,168][11,180]}
16566 851 {[8,21]} {[1,556]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,556][2,56][3,48][4,52][5,58][6,60][7,187][8,145][9,163][10,168][11,181]}
16567 882 {[8,21]} {[1,557]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,557][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,171][11,181]}
16568 861 {[8,21]} {[1,558]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,558][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,181]}
16569 851 {[8,21]} {[1,559]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]}
16570 1102

{[8,21]} {[1,560]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}

16571 861 {[8,21]} {[1,561]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,561][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,174][11,183]}
16572 851 {[8,21]} {[1,562]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,562][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
16573 851 {[8,21]} {[1,563]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,563][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
16574 872 {[8,21]} {[1,564]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,564][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,184]}
16575 861 {[8,21]} {[1,565]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,565][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,189]}
16576 871 {[8,21]} {[1,566]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,566][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,190]}
16577 871 {[8,21]} {[1,567]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,567][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,195]}
16578 862 {[8,21]} {[1,568]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,568][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
16579 881 {[8,21]} {[1,569]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,569][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
16580 881 {[8,21]} {[1,570]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,570][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
16581 861 {[8,21]} {[1,571]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,571][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}

{[1,559][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}

46

…
32373 631 {[8,63]} {[1,568]} {[1,215][2,23][3,19]...[9,72][10,58][11,66]} {[1,568][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
32374 621 {[8,63]} {[1,569]} {[1,215][2,23][3,19]...[9,72][10,58][11,66]} {[1,569][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
32375 621 {[8,63]} {[1,570]} {[1,215][2,23][3,19]...[9,72][10,58][11,66]} {[1,570][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
32376

611

{[8,63]}

{[1,571]}

{[1,215][2,23][3,19]...[9,72][10,58][11,66]}

{[1,571][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
 …

36574 802 {[8,30]} {[1,558]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,558][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,181]}
36575 811 {[8,30]} {[1,559]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,559][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
36576 811 {[8,30]} {[1,560]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
36577 801 {[8,30]} {[1,561]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,561][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,174][11,183]}
36578 811 {[8,30]} {[1,562]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,562][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
36579 791 {[8,30]} {[1,563]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,563][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
36580 802 {[8,30]} {[1,564]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,564][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,184]}
36581 801 {[8,30]} {[1,565]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,565][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,189]}
36582 811 {[8,30]} {[1,566]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,566][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,190]}
36583 821 {[8,30]} {[1,567]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,567][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,195]}
36584 801 {[8,30]} {[1,568]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,568][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
36585 811 {[8,30]} {[1,569]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,569][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
36586 802 {[8,30]} {[1,570]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,570][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
36587

801

{[8,30]}

{[1,571]}

{[1,111][2,13][3,13]...[9,42][10,30][11,36]}

{[1,571][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
 …

47037 0 {[8,138]} {[1,562]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,562][2,56][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
47038 10

{[8,138]} {[1,563]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,563][2,56][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}

47039 0 {[8,138]} {[1,564]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,564][2,56][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,184]}
47040 0 {[8,138]} {[1,565]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,565][2,56][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,189]}
47041 0 {[8,138]} {[1,566]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,566][2,56][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,190]}
47042 0 {[8,138]} {[1,567]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,567][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,195]}
47043 10

{[8,138]} {[1,568]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,568][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}

47044 0 {[8,138]} {[1,569]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,569][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
47045 0 {[8,138]} {[1,570]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,570][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
47046 0 {[8,138]}

{[1,571]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]}

{[1,571][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}

 47047 120 {[8,30]} {[1,112]} {[1,111][8,30]} {[1,112][8,30]}

Appendix B
First Search Result of Ping Xie’s Algorithm

in Experiment 2

47

48

1 10 {[7,3]} {[8,3]} {[1,1][7,3][8,3]} {[1,3][7,4][8,3]}
2 150 {[7,3]} {[8,12]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,51][2,4][3,6][4,4][5,4][6,6][7,25][8,12][9,22][10,9][11,19]}
3 190 {[7,3]} {[8,21]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,81][2,10][3,6][4,8][5,6][6,6][7,34][8,21][9,30][10,19][11,25]}
4 240 {[7,3]} {[8,30]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,111][2,10][3,12][4,10][5,6][6,12][7,46][8,30][9,40][10,25][11,31]}
5 321 {[7,3]} {[8,39]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,135][2,14][3,12][4,14][5,12][6,12][7,48][8,39][9,48][10,37][11,40]}
6 371 {[7,3]} {[8,48]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,177][2,16][3,18][4,16][5,16][6,18][7,64][8,48][9,61][10,45][11,55]}
7 420 {[7,3]} {[8,57]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,201][2,22][3,18][4,20][5,18][6,18][7,70][8,57][9,66][10,55][11,61]}
8 571 {[7,3]} {[8,66]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,237][2,22][3,24][4,22][5,22][6,24][7,82][8,66][9,79][10,63][11,73]}
9 601 {[7,3]} {[8,75]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,255][2,26][3,24][4,26][5,24][6,24][7,84][8,75][9,84][10,73][11,76]}
10 671 {[7,3]} {[8,84]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,297][2,28][3,30][4,28][5,28][6,30][7,100][8,84][9,97][10,81][11,91]}
11 661 {[7,3]} {[8,93]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,315][2,32][3,30][4,28][5,30][6,30][7,102][8,93][9,100][10,85][11,97]}
12 731 {[7,3]} {[8,102]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,351][2,34][3,36][4,34][5,34][6,36][7,115][8,102][9,112][10,99][11,109]}
13 762 {[7,3]} {[8,111]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,381][2,40][3,36][4,38][5,36][6,36][7,124][8,111][9,120][10,109][11,115]}
14 791 {[7,3]} {[8,120]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,411][2,40][3,42][4,40][5,40][6,42][7,133][8,120][9,130][10,117][11,127]}
15 831 {[7,3]} {[8,129]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,441][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}
16 941 {[7,3]} {[8,138]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,477][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}

 17 130 {[7,15]} {[8,138]} {[1,27][3,3][5,3][6,1][7,15][8,10][9,15][11,6]}

{[1,51][3,6][5,4][6,6][7,25][8,12][9,22][11,19]}
18 150 {[7,15]} {[8,12]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,81][2,10][3,6][4,8][5,6][6,6][7,34][8,21][9,30][10,19][11,25]}
19 180 {[7,15]} {[8,21]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,111][2,10][3,12][4,10][5,6][6,12][7,46][8,30][9,40][10,25][11,31]}
20 271 {[7,15]} {[8,30]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,135][2,14][3,12][4,14][5,12][6,12][7,48][8,39][9,48][10,37][11,40]}
21 340 {[7,15]} {[8,39]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,177][2,16][3,18][4,16][5,16][6,18][7,64][8,48][9,61][10,45][11,55]}
22 391 {[7,15]} {[8,48]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,201][2,22][3,18][4,20][5,18][6,18][7,70][8,57][9,66][10,55][11,61]}
23 771 {[7,15]} {[8,57]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,237][2,22][3,24][4,22][5,22][6,24][7,82][8,66][9,79][10,63][11,73]}
24 551 {[7,15]} {[8,66]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,255][2,26][3,24][4,26][5,24][6,24][7,84][8,75][9,84][10,73][11,76]}
25 631 {[7,15]} {[8,75]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,297][2,28][3,30][4,28][5,28][6,30][7,100][8,84][9,97][10,81][11,91]}
26 631 {[7,15]} {[8,84]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,315][2,32][3,30][4,28][5,30][6,30][7,102][8,93][9,100][10,85][11,97]}
27 691 {[7,15]} {[8,93]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,351][2,34][3,36][4,34][5,34][6,36][7,115][8,102][9,112][10,99][11,109]}
28 731 {[7,15]} {[8,102]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,381][2,40][3,36][4,38][5,36][6,36][7,124][8,111][9,120][10,109][11,115]}
29 771 {[7,15]} {[8,111]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,411][2,40][3,42][4,40][5,40][6,42][7,133][8,120][9,130][10,117][11,127]}
30 801 {[7,15]} {[8,120]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,441][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}

49

...
71 701 {[1,1][7,3][8,3]} {[1,424]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,424][2,44][3,42][4,40][5,40][6,42][7,138][8,127][9,133][10,117][11,129]}
72 731 {[1,1][7,3][8,3]} {[1,430]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,430][2,44][3,42][4,40][5,42][6,42][7,138][8,127][9,136][10,120][11,130]}
73 741 {[1,1][7,3][8,3]} {[1,436]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,436][2,46][3,42][4,40][5,42][6,42][7,141][8,127][9,136][10,121][11,133]}
74 771 {[1,1][7,3][8,3]} {[1,442]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,442][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}
75 792 {[1,1][7,3][8,3]} {[1,448]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,448][2,46][3,42][4,46][5,42][6,46][7,148][8,130][9,141][10,127][11,135]}
76 821 {[1,1][7,3][8,3]} {[1,454]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,454][2,46][3,42][4,46][5,42][6,46][7,148][8,133][9,142][10,129][11,135]}
77 831 {[1,1][7,3][8,3]} {[1,460]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,460][2,46][3,46][4,46][5,42][6,46][7,150][8,135][9,148][10,130][11,135]}
78 842 {[1,1][7,3][8,3]} {[1,466]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,466][2,46][3,46][4,46][5,42][6,48][7,151][8,135][9,148][10,133][11,138]}
79 841 {[1,1][7,3][8,3]} {[1,472]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,472][2,46][3,46][4,46][5,42][6,48][7,154][8,135][9,150][10,133][11,139]}
80 861 {[1,1][7,3][8,3]} {[1,478]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,478][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}
81 871 {[1,1][7,3][8,3]} {[1,484]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,484][2,46][3,48][4,46][5,46][6,48][7,154][8,139][9,154][10,135][11,147]}
82 851 {[1,1][7,3][8,3]} {[1,490]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,490][2,50][3,48][4,46][5,48][6,48][7,156][8,145][9,154][10,138][11,148]}
83 1152 {[1,1][7,3][8,3]} {[1,496]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,496][2,52][3,48][4,46][5,48][6,48][7,159][8,145][9,154][10,139][11,151]}
84 891 {[1,1][7,3][8,3]} {[1,502]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,502][2,52][3,48][4,52][5,48][6,48][7,160][8,145][9,159][10,145][11,151]}
85 912 {[1,1][7,3][8,3]} {[1,508]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,508][2,52][3,48][4,52][5,48][6,52][7,166][8,145][9,160][10,147][11,153]}
86 901 {[1,1][7,3][8,3]} {[1,514]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,514][2,52][3,48][4,52][5,48][6,54][7,166][8,145][9,163][10,148][11,156]}
87 912 {[1,1][7,3][8,3]} {[1,520]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,520][2,52][3,48][4,52][5,48][6,54][7,168][8,145][9,163][10,151][11,157]}
88 921 {[1,1][7,3][8,3]} {[1,526]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,526][2,52][3,48][4,52][5,54][6,54][7,169][8,145][9,163][10,156][11,163]}
89 952 {[1,1][7,3][8,3]} {[1,532]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,532][2,54][3,48][4,52][5,54][6,54][7,175][8,145][9,163][10,157][11,165]}
90 941 {[1,1][7,3][8,3]} {[1,538]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,538][2,56][3,48][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,166]}
91 951 {[1,1][7,3][8,3]} {[1,544]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,544][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
92 971 {[1,1][7,3][8,3]} {[1,550]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
93 982 {[1,1][7,3][8,3]}

{[1,560]} {[1,1][2,1][3,1]...[10,3][11,3]}

{[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
 ...

155 711 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,418]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,418][2,40][3,42][4,40][5,40][6,42][7,136][8,121][9,132][10,117][11,127]}
156 1021 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,424]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,424][2,44][3,42][4,40][5,40][6,42][7,138][8,127][9,133][10,117][11,129]}
157 751 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,430]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,430][2,44][3,42][4,40][5,42][6,42][7,138][8,127][9,136][10,120][11,130]}
158 751 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,436]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,436][2,46][3,42][4,40][5,42][6,42][7,141][8,127][9,136][10,121][11,133]}
159 792 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,442]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,442][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}
160 821 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,448]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,448][2,46][3,42][4,46][5,42][6,46][7,148][8,130][9,141][10,127][11,135]}
161 821 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,454]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,454][2,46][3,42][4,46][5,42][6,46][7,148][8,133][9,142][10,129][11,135]}
162 841 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,460]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,460][2,46][3,46][4,46][5,42][6,46][7,150][8,135][9,148][10,130][11,135]}

50

…
163 852 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,466]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,466][2,46][3,46][4,46][5,42][6,48][7,151][8,135][9,148][10,133][11,138]}
164 861 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,472]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,472][2,46][3,46][4,46][5,42][6,48][7,154][8,135][9,150][10,133][11,139]}
165 891 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,478]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,478][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}
166 892 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,484]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,484][2,46][3,48][4,46][5,46][6,48][7,154][8,139][9,154][10,135][11,147]}
167 871 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,490]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,490][2,50][3,48][4,46][5,48][6,48][7,156][8,145][9,154][10,138][11,148]}
168 921 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,496]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,496][2,52][3,48][4,46][5,48][6,48][7,159][8,145][9,154][10,139][11,151]}
169 921 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,502]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,502][2,52][3,48][4,52][5,48][6,48][7,160][8,145][9,159][10,145][11,151]}
170 911 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,508]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,508][2,52][3,48][4,52][5,48][6,52][7,166][8,145][9,160][10,147][11,153]}
171 912 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,514]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,514][2,52][3,48][4,52][5,48][6,54][7,166][8,145][9,163][10,148][11,156]}
172 941 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,520]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,520][2,52][3,48][4,52][5,48][6,54][7,168][8,145][9,163][10,151][11,157]}
173 941 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,526]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,526][2,52][3,48][4,52][5,54][6,54][7,169][8,145][9,163][10,156][11,163]}
174 951 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,532]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,532][2,54][3,48][4,52][5,54][6,54][7,175][8,145][9,163][10,157][11,165]}
175 951 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,538]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,538][2,56][3,48][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,166]}
176 952 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,544]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,544][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
177 981 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,550]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
178 1242 {[1,1][2,1][3,1]...[10,3][11,3]}

{[1,560]} {[1,1][2,1][3,1]...[10,3][11,3]}

{[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
 ...

2149 651 {[1,45][2,5]...[10,12][11,18]} {[1,400]} {[1,45][2,5]...[10,12][11,18]} {[1,400][2,40][3,40][4,40][5,36][6,42][7,130][8,117][9,130][10,112][11,120]}
2150 651 {[1,45][2,5]...[10,12][11,18]} {[1,406]} {[1,45][2,5]...[10,12][11,18]} {[1,406][2,40][3,40][4,40][5,36][6,42][7,132][8,117][9,130][10,115][11,121]}
2151 691 {[1,45][2,5]...[10,12][11,18]} {[1,412]} {[1,45][2,5]...[10,12][11,18]} {[1,412][2,40][3,42][4,40][5,40][6,42][7,133][8,120][9,130][10,117][11,127]}
2152 681 {[1,45][2,5]...[10,12][11,18]} {[1,418]} {[1,45][2,5]...[10,12][11,18]} {[1,418][2,40][3,42][4,40][5,40][6,42][7,136][8,121][9,132][10,117][11,127]}
2153 711 {[1,45][2,5]...[10,12][11,18]} {[1,424]} {[1,45][2,5]...[10,12][11,18]} {[1,424][2,44][3,42][4,40][5,40][6,42][7,138][8,127][9,133][10,117][11,129]}
2154 691 {[1,45][2,5]...[10,12][11,18]} {[1,430]} {[1,45][2,5]...[10,12][11,18]} {[1,430][2,44][3,42][4,40][5,42][6,42][7,138][8,127][9,136][10,120][11,130]}
2155 701 {[1,45][2,5]...[10,12][11,18]} {[1,436]} {[1,45][2,5]...[10,12][11,18]} {[1,436][2,46][3,42][4,40][5,42][6,42][7,141][8,127][9,136][10,121][11,133]}
2156 691 {[1,45][2,5]...[10,12][11,18]} {[1,442]} {[1,45][2,5]...[10,12][11,18]} {[1,442][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}
2157 711 {[1,45][2,5]...[10,12][11,18]} {[1,448]} {[1,45][2,5]...[10,12][11,18]} {[1,448][2,46][3,42][4,46][5,42][6,46][7,148][8,130][9,141][10,127][11,135]}
2158 701 {[1,45][2,5]...[10,12][11,18]} {[1,454]} {[1,45][2,5]...[10,12][11,18]} {[1,454][2,46][3,42][4,46][5,42][6,46][7,148][8,133][9,142][10,129][11,135]}
2159 711 {[1,45][2,5]...[10,12][11,18]} {[1,460]} {[1,45][2,5]...[10,12][11,18]} {[1,460][2,46][3,46][4,46][5,42][6,46][7,150][8,135][9,148][10,130][11,135]}
2160 721 {[1,45][2,5]...[10,12][11,18]} {[1,466]} {[1,45][2,5]...[10,12][11,18]} {[1,466][2,46][3,46][4,46][5,42][6,48][7,151][8,135][9,148][10,133][11,138]}
2161 761 {[1,45][2,5]...[10,12][11,18]} {[1,472]} {[1,45][2,5]...[10,12][11,18]} {[1,472][2,46][3,46][4,46][5,42][6,48][7,154][8,135][9,150][10,133][11,139]}
2162 771 {[1,45][2,5]...[10,12][11,18]} {[1,478]} {[1,45][2,5]...[10,12][11,18]} {[1,478][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}

51

…
2163 782 {[1,45][2,5]...[10,12][11,18]} {[1,484]} {[1,45][2,5]...[10,12][11,18]} {[1,484][2,46][3,48][4,46][5,46][6,48][7,154][8,139][9,154][10,135][11,147]}
2164 801 {[1,45][2,5]...[10,12][11,18]} {[1,490]} {[1,45][2,5]...[10,12][11,18]} {[1,490][2,50][3,48][4,46][5,48][6,48][7,156][8,145][9,154][10,138][11,148]}
2165 801 {[1,45][2,5]...[10,12][11,18]} {[1,496]} {[1,45][2,5]...[10,12][11,18]} {[1,496][2,52][3,48][4,46][5,48][6,48][7,159][8,145][9,154][10,139][11,151]}
2166

1082

{[1,45][2,5]...[10,12][11,18]}

{[1,502]}

{[1,45][2,5]...[10,12][11,18]}

{[1,502][2,52][3,48][4,52][5,48][6,48][7,160][8,145][9,159][10,145][11,151]}
 ...

5139 490 {[1,225][2,23]...[10,66][11,72]} {[1,478]} {[1,225][2,23]...[10,66][11,72]} {[1,478][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}
5140 501 {[1,225][2,23]...[10,66][11,72]} {[1,484]} {[1,225][2,23]...[10,66][11,72]} {[1,484][2,46][3,48][4,46][5,46][6,48][7,154][8,139][9,154][10,135][11,147]}
5141 531 {[1,225][2,23]...[10,66][11,72]} {[1,490]} {[1,225][2,23]...[10,66][11,72]} {[1,490][2,50][3,48][4,46][5,48][6,48][7,156][8,145][9,154][10,138][11,148]}
5142 521 {[1,225][2,23]...[10,66][11,72]} {[1,496]} {[1,225][2,23]...[10,66][11,72]} {[1,496][2,52][3,48][4,46][5,48][6,48][7,159][8,145][9,154][10,139][11,151]}
5143 511 {[1,225][2,23]...[10,66][11,72]} {[1,502]} {[1,225][2,23]...[10,66][11,72]} {[1,502][2,52][3,48][4,52][5,48][6,48][7,160][8,145][9,159][10,145][11,151]}
5144 531 {[1,225][2,23]...[10,66][11,72]} {[1,508]} {[1,225][2,23]...[10,66][11,72]} {[1,508][2,52][3,48][4,52][5,48][6,52][7,166][8,145][9,160][10,147][11,153]}
5145 560 {[1,225][2,23]...[10,66][11,72]} {[1,514]} {[1,225][2,23]...[10,66][11,72]} {[1,514][2,52][3,48][4,52][5,48][6,54][7,166][8,145][9,163][10,148][11,156]}
5146 580 {[1,225][2,23]...[10,66][11,72]} {[1,520]} {[1,225][2,23]...[10,66][11,72]} {[1,520][2,52][3,48][4,52][5,48][6,54][7,168][8,145][9,163][10,151][11,157]}
5147 581 {[1,225][2,23]...[10,66][11,72]} {[1,526]} {[1,225][2,23]...[10,66][11,72]} {[1,526][2,52][3,48][4,52][5,54][6,54][7,169][8,145][9,163][10,156][11,163]}
5148 571 {[1,225][2,23]...[10,66][11,72]} {[1,532]} {[1,225][2,23]...[10,66][11,72]} {[1,532][2,54][3,48][4,52][5,54][6,54][7,175][8,145][9,163][10,157][11,165]}
5149 591 {[1,225][2,23]...[10,66][11,72]} {[1,538]} {[1,225][2,23]...[10,66][11,72]} {[1,538][2,56][3,48][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,166]}
5150 591 {[1,225][2,23]...[10,66][11,72]} {[1,544]} {[1,225][2,23]...[10,66][11,72]} {[1,544][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
5151 601 {[1,225][2,23]...[10,66][11,72]} {[1,550]} {[1,225][2,23]...[10,66][11,72]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
5152

881

{[1,225][2,23]...[10,66][11,72]}

{[1,560]}

{[1,225][2,23]...[10,66][11,72]}

{[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
 ...

6004 10

{[1,459][5,43]...[10,132][11,138]} {[1,496]} {[1,459][2,47]….[10,132][11,138]} {[1,496][2,52][5,48][7,159][8,145][9,154][10,139][11,151]}

6005 0 {[1,459][5,43]...[10,132][11,138]} {[1,502]} {[1,459][2,47]…..[10,132][11,138]} {[1,502][2,52][4,52][5,48][7,160][8,145][9,159][10,145][11,151]}
6006 0 {[1,459][5,43]...[10,132][11,138]} {[1,508]} {[1,459][2,47]…...[10,132][11,138]} {[1,508][2,52][4,52][5,48][6,52][7,166][8,145][9,160][10,147][11,153]}
6007 0 {[1,459][5,43]...[10,132][11,138]} {[1,514]} {[1,459][2,47]…...[10,132][11,138]} {[1,514][2,52][4,52][5,48][6,54][7,166][8,145][9,163][10,148][11,156]}
6008 0 {[1,459][5,43]...[10,132][11,138]} {[1,520]} {[1,459][2,47]…...[10,132][11,138]} {[1,520][2,52][4,52][5,48][6,54][7,168][8,145][9,163][10,151][11,157]}
6009 10

{[1,459][5,43]...[10,132][11,138]} {[1,526]} {[1,459][2,47]…...[10,132][11,138]} {[1,526][2,52][4,52][5,54][6,54][7,169][8,145][9,163][10,156][11,163]}

6010 0 {[1,459][5,43]...[10,132][11,138]} {[1,532]} {[1,459][2,47]…...[10,132][11,138]} {[1,532][2,54][4,52][5,54][6,54][7,175][8,145][9,163][10,157][11,165]}
6011 0 {[1,459][5,43]...[10,132][11,138]} {[1,538]} {[1,459][2,47]…...[10,132][11,138]} {[1,538][2,56][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,166]}
6012 0 {[1,459][5,43]...[10,132][11,138]} {[1,544]} {[1,459][2,47]…...[10,132][11,138]} {[1,544][2,56][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
6013 0 {[1,459][5,43]...[10,132][11,138]} {[1,550]} {[1,459][2,47]…...[10,132][11,138]} {[1,550][2,56][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
6014 0 {[1,459][5,43]...[10,132][11,138]} {[1,560]} {[1,459][2,47]…...[10,132][11,138]} {[1,560][2,56][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}

Appendix C
First Search Result of Proposed Algorithm

in Experiment 1

52

53

1 0 {[8,3]} {[1,4]} {[1,3][8,3]} {[1,4][8,3]}
2 10 {[8,3]} {[1,5]} {[1,3][7,9][8,3]} {[1,5][7,9][8,3]}
3 0 {[8,3]} {[1,6]} {[1,3][7,9][8,3]} {[1,6][7,10][8,3]}
4 0 {[8,3]} {[1,7]} {[1,3][7,9][8,3]} {[1,7][7,10][8,3]}
5 0 {[8,3]} {[1,8]} {[1,3][7,9][8,3]} {[1,8][7,10][8,4]}
6 0 {[8,3]} {[1,9]} {[1,3][7,9][8,3][9,3]} {[1,9][7,10][8,4][9,3]}
7 0 {[8,3]} {[1,10]} {[1,3][7,9][8,3][9,3]} {[1,10][7,10][8,4][9,3]}
8 10 {[8,3]} {[1,11]} {[1,3][7,9][8,3][9,3]} {[1,11][7,10][8,6][9,3]}
9 0 {[8,3]} {[1,12]} {[1,3][7,9][8,3][9,3]} {[1,12][7,10][8,7][9,3]}
10 0 {[8,3]} {[1,13]} {[1,3][7,9][8,3][9,3]} {[1,13][7,10][8,7][9,3]}
11 0 {[8,3]} {[1,14]} {[1,3][7,9][8,3][9,3]} {[1,14][7,10][8,7][9,4]}
12 0 {[8,3]} {[1,15]} {[1,3][7,9][8,3][9,3][10,3]} {[1,15][7,10][8,7][9,4][10,3]}
13 0 {[8,3]} {[1,16]} {[1,3][7,9][8,3][9,3][10,3]} {[1,16][7,10][8,7][9,4][10,3]}
14 0 {[8,3]} {[1,17]} {[1,3][4,1][7,9][8,3][9,3][10,3]} {[1,17][4,2][7,10][8,7][9,9][10,3]}
15 0 {[8,3]} {[1,18]} {[1,3][4,1][7,9][8,3][9,3][10,3]} {[1,18][4,2][7,10][8,7][9,10][10,3]}
16 20 {[8,3]} {[1,19]} {[1,3][4,1][7,9][8,3][9,3][10,3]} {[1,19][4,2][7,10][8,7][9,10][10,3]}
17 0 {[8,3]} {[1,20]} {[1,3][4,1][7,9][8,3][9,3][10,3]} {[1,20][4,2][7,10][8,7][9,10][10,4]}
18 0 {[8,3]} {[1,21]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,21][4,2][7,10][8,7][9,10][10,4][11,3]}
19 0 {[8,3]} {[1,22]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,22][4,2][7,10][8,7][9,10][10,4][11,3]}
20 0 {[8,3]} {[1,23]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,23][4,2][7,10][8,7][9,10][10,6][11,3]}
21 0 {[8,3]} {[1,24]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,24][4,2][7,10][8,7][9,10][10,7][11,3]}
22 0 {[8,3]} {[1,25]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,25][4,2][7,10][8,7][9,10][10,7][11,3]}
23 0 {[8,3]} {[1,26]} {[1,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,26][4,2][7,10][8,7][9,10][10,7][11,4]}
24 0 {[8,3]} {[1,27]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,27][2,4][4,2][7,15][8,7][9,10][10,7][11,4]}
25 0 {[8,3]} {[1,28]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,28][2,4][4,2][7,15][8,7][9,10][10,7][11,4]}
26 0 {[8,3]} {[1,29]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,29][2,4][4,2][7,15][8,7][9,10][10,7][11,6]}
27 0 {[8,3]} {[1,30]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,30][2,4][4,2][7,15][8,7][9,10][10,7][11,7]}
28 10 {[8,3]} {[1,31]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,31][2,4][4,2][7,15][8,7][9,10][10,7][11,7]}
29 0 {[8,3]} {[1,32]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,32][2,4][4,2][7,16][8,7][9,10][10,7][11,7]}
30 0 {[8,3]} {[1,33]} {[1,3][2,3][4,1][7,9][8,3][9,3][10,3][11,3]} {[1,33][2,4][4,4][7,16][8,7][9,15][10,7][11,7]}

54

…
140 0 {[8,3]} {[1,143]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,143][2,16][3,12][4,14][5,12][6,12][7,51][8,42][9,48][10,37][11,43]}
141 0 {[8,3]} {[1,144]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,144][2,16][3,12][4,14][5,12][6,12][7,51][8,43][9,48][10,37][11,43]}
142 0 {[8,3]}

{[1,145]}

{[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]}

{[1,145][2,16][3,12][4,14][5,12][6,12][7,51][8,43][9,48][10,37][11,43]}
 …

542 0 {[8,3]} {[1,545]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,545][2,56][3,48][4,52][5,54][6,58][7,186][8,145][9,163][10,162][11,171]}
543 0 {[8,3]} {[1,546]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,546][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,162][11,171]}
544 0 {[8,3]} {[1,547]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,547][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,162][11,171]}
545 0 {[8,3]} {[1,548]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,548][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,163][11,171]}
546 0 {[8,3]} {[1,549]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,549][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
547 0 {[8,3]} {[1,550]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
548 0 {[8,3]} {[1,551]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,551][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,165][11,174]}
549 10 {[8,3]} {[1,552]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,552][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,174]}
550 0 {[8,3]} {[1,553]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,553][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,174]}
551 0 {[8,3]} {[1,554]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,554][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,175]}
552 10 {[8,3]} {[1,555]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,555][2,56][3,48][4,52][5,58][6,60][7,187][8,145][9,163][10,168][11,180]}
553 0 {[8,3]} {[1,556]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,556][2,56][3,48][4,52][5,58][6,60][7,187][8,145][9,163][10,168][11,181]}
554 0 {[8,3]} {[1,557]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,557][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,171][11,181]}
555 10 {[8,3]} {[1,558]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,558][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,181]}
556 0 {[8,3]} {[1,559]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,559][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
557 0 {[8,3]} {[1,560]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
558 0 {[8,3]} {[1,561]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,561][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,174][11,183]}
559 10 {[8,3]} {[1,562]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,562][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
560 0 {[8,3]} {[1,563]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,563][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
561 0 {[8,3]} {[1,564]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,564][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,184]}
562 10 {[8,3]} {[1,565]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,565][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,189]}
563 0 {[8,3]} {[1,566]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,566][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,190]}
564 0 {[8,3]} {[1,567]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,567][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,195]}
565 10 {[8,3]} {[1,568]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,568][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
566 0 {[8,3]} {[1,569]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,569][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
567 0 {[8,3]} {[1,570]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,570][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
568 0 {[8,3]} {[1,571]} {[1,3][2,3][3,1][4,1][5,1][6,1][7,9][8,3][9,3][10,3][11,3]} {[1,571][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}

55

…
16551 0 {[8,21]} {[1,541]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,541][2,56][3,48][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,169]}
16552 0 {[8,21]} {[1,542]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,542][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,160][11,169]}
16553 20

{[8,21]} {[1,543]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,543][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}

16554 0 {[8,21]} {[1,544]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,544][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
16555 10

{[8,21]} {[1,545]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,545][2,56][3,48][4,52][5,54][6,58][7,186][8,145][9,163][10,162][11,171]}

16556 0 {[8,21]} {[1,546]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,546][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,162][11,171]}
16557 10

{[8,21]} {[1,547]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,547][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,162][11,171]}

16558 0 {[8,21]} {[1,548]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,548][2,56][3,48][4,52][5,54][6,58][7,187][8,145][9,163][10,163][11,171]}
16559 0 {[8,21]} {[1,549]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,549][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
16560 0 {[8,21]} {[1,550]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
16561 0 {[8,21]} {[1,551]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,551][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,165][11,174]}
16562 0 {[8,21]} {[1,552]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,552][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,174]}
16563 0 {[8,21]} {[1,553]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,553][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,174]}
16564 0 {[8,21]} {[1,554]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,554][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,166][11,175]}
16565 20

{[8,21]} {[1,555]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,555][2,56][3,48][4,52][5,58][6,60][7,187][8,145][9,163][10,168][11,180]}

16566 0 {[8,21]} {[1,556]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,556][2,56][3,48][4,52][5,58][6,60][7,187][8,145][9,163][10,168][11,181]}
16567 20 {[8,21]} {[1,557]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,557][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,171][11,181]}
16568 10

{[8,21]} {[1,558]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,558][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,181]}

16569 0 {[8,21]} {[1,559]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,559][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
16570 0 {[8,21]} {[1,560]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
16571 0 {[8,21]} {[1,561]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,561][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,174][11,183]}
16572 0 {[8,21]} {[1,562]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,562][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
16573 10 {[8,21]} {[1,563]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,563][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
16574 10

{[8,21]} {[1,564]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,564][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,184]}

16575 0 {[8,21]} {[1,565]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,565][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,189]}
16576 0 {[8,21]} {[1,566]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,566][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,190]}
16577 0 {[8,21]} {[1,567]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,567][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,195]}
16578 0 {[8,21]} {[1,568]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,568][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
16579 0 {[8,21]} {[1,569]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,569][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
16580 11

{[8,21]} {[1,570]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,570][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}

16581 0 {[8,21]} {[1,571]} {[1,81][2,11][3,7][4,11]...[8,21][9,33][10,21][11,30]} {[1,571][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}

56

…
32373 0 {[8,63]} {[1,568]} {[1,215][2,23][3,19]...[9,72][10,58][11,66]} {[1,568][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
32374 0 {[8,63]} {[1,569]} {[1,215][2,23][3,19]...[9,72][10,58][11,66]} {[1,569][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
32375 0 {[8,63]} {[1,570]} {[1,215][2,23][3,19]...[9,72][10,58][11,66]} {[1,570][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
32376

10 {[8,63]}

{[1,571]}

{[1,215][2,23][3,19]...[9,72][10,58][11,66]}

{[1,571][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
 …

36574 0 {[8,30]} {[1,558]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,558][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,181]}
36575 20

{[8,30]} {[1,559]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,559][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}

36576 0 {[8,30]} {[1,560]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
36577 0 {[8,30]} {[1,561]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,561][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,174][11,183]}
36578 0 {[8,30]} {[1,562]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,562][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
36579 10

{[8,30]} {[1,563]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,563][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}

36580 0 {[8,30]} {[1,564]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,564][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,184]}
36581 0 {[8,30]} {[1,565]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,565][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,189]}
36582 0 {[8,30]} {[1,566]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,566][2,56][3,48][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,190]}
36583 0 {[8,30]} {[1,567]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,567][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,195]}
36584 0 {[8,30]} {[1,568]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,568][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
36585 0 {[8,30]} {[1,569]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,569][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
36586 0 {[8,30]} {[1,570]} {[1,111][2,13][3,13]...[9,42][10,30][11,36]} {[1,570][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
36587

0 {[8,30]}

{[1,571]}

{[1,111][2,13][3,13]...[9,42][10,30][11,36]}

{[1,571][2,56][3,48][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
 …

47037 0 {[8,138]} {[1,562]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,562][2,56][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}
47038 10

{[8,138]} {[1,563]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,563][2,56][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,183]}

47039 0 {[8,138]} {[1,564]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,564][2,56][4,52][5,60][6,60][7,187][8,145][9,163][10,175][11,184]}
47040 0 {[8,138]} {[1,565]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,565][2,56][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,189]}
47041 0 {[8,138]} {[1,566]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,566][2,56][4,52][5,60][6,62][7,187][8,145][9,163][10,175][11,190]}
47042 10

{[8,138]} {[1,567]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,567][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,195]}

47043 0 {[8,138]} {[1,568]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,568][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,196]}
47044 0 {[8,138]} {[1,569]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,569][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,198]}
47045 0 {[8,138]} {[1,570]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]} {[1,570][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}
47046 10 {[8,138]}

{[1,571]} {[1,477][2,49][4,47]...[9,153][10,138][11,147]}

{[1,571][2,56][4,52][5,60][6,64][7,187][8,145][9,163][10,175][11,199]}

 47047 120 {[8,30]} {[1,112]} {[1,111][8,30]} {[1,112][8,30]}

Appendix D
First Search Result of Proposed Algorithm

in Experiment 2

57

58

1 10 {[7,3]} {[8,3]} {[1,1][7,3][8,3]} {[1,3][7,4][8,3]}
2 170 {[7,3]} {[8,12]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,51][2,4][3,6][4,4][5,4][6,6][7,25][8,12][9,22][10,9][11,19]}
3 200 {[7,3]} {[8,21]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,81][2,10][3,6][4,8][5,6][6,6][7,34][8,21][9,30][10,19][11,25]}
4 411 {[7,3]} {[8,30]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,111][2,10][3,12][4,10][5,6][6,12][7,46][8,30][9,40][10,25][11,31]}
5 401 {[7,3]} {[8,39]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,135][2,14][3,12][4,14][5,12][6,12][7,48][8,39][9,48][10,37][11,40]}
6 410 {[7,3]} {[8,48]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,177][2,16][3,18][4,16][5,16][6,18][7,64][8,48][9,61][10,45][11,55]}
7 451 {[7,3]} {[8,57]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,201][2,22][3,18][4,20][5,18][6,18][7,70][8,57][9,66][10,55][11,61]}
8 571 {[7,3]} {[8,66]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,237][2,22][3,24][4,22][5,22][6,24][7,82][8,66][9,79][10,63][11,73]}
9 601 {[7,3]} {[8,75]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,255][2,26][3,24][4,26][5,24][6,24][7,84][8,75][9,84][10,73][11,76]}
10 601 {[7,3]} {[8,84]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,297][2,28][3,30][4,28][5,28][6,30][7,100][8,84][9,97][10,81][11,91]}
11 611 {[7,3]} {[8,93]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,315][2,32][3,30][4,28][5,30][6,30][7,102][8,93][9,100][10,85][11,97]}
12 681 {[7,3]} {[8,102]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,351][2,34][3,36][4,34][5,34][6,36][7,115][8,102][9,112][10,99][11,109]}
13 711 {[7,3]} {[8,111]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,381][2,40][3,36][4,38][5,36][6,36][7,124][8,111][9,120][10,109][11,115]}
14 741 {[7,3]} {[8,120]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,411][2,40][3,42][4,40][5,40][6,42][7,133][8,120][9,130][10,117][11,127]}
15 731 {[7,3]} {[8,129]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,441][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}
16 801 {[7,3]} {[8,138]} {[1,1][2,1][3,1]...[9,3][10,3][11,3]} {[1,477][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}

 17 131 {[7,15]} {[8,138]} {[1,27][3,3][5,3][6,1][7,15][8,10][9,15][11,6]}

{[1,51][3,6][5,4][6,6][7,25][8,12][9,22][11,19]}
18 140 {[7,15]} {[8,12]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,81][2,10][3,6][4,8][5,6][6,6][7,34][8,21][9,30][10,19][11,25]}
19 210 {[7,15]} {[8,21]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,111][2,10][3,12][4,10][5,6][6,12][7,46][8,30][9,40][10,25][11,31]}
20 281 {[7,15]} {[8,30]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,135][2,14][3,12][4,14][5,12][6,12][7,48][8,39][9,48][10,37][11,40]}
21 361 {[7,15]} {[8,39]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,177][2,16][3,18][4,16][5,16][6,18][7,64][8,48][9,61][10,45][11,55]}
22 390 {[7,15]} {[8,48]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,201][2,22][3,18][4,20][5,18][6,18][7,70][8,57][9,66][10,55][11,61]}
23 471 {[7,15]} {[8,57]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,237][2,22][3,24][4,22][5,22][6,24][7,82][8,66][9,79][10,63][11,73]}
24 530 {[7,15]} {[8,66]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,255][2,26][3,24][4,26][5,24][6,24][7,84][8,75][9,84][10,73][11,76]}
25 590 {[7,15]} {[8,75]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,297][2,28][3,30][4,28][5,28][6,30][7,100][8,84][9,97][10,81][11,91]}
26 631 {[7,15]} {[8,84]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,315][2,32][3,30][4,28][5,30][6,30][7,102][8,93][9,100][10,85][11,97]}
27 641 {[7,15]} {[8,93]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,351][2,34][3,36][4,34][5,34][6,36][7,115][8,102][9,112][10,99][11,109]}
28 651 {[7,15]} {[8,102]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,381][2,40][3,36][4,38][5,36][6,36][7,124][8,111][9,120][10,109][11,115]}
29 691 {[7,15]} {[8,111]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,411][2,40][3,42][4,40][5,40][6,42][7,133][8,120][9,130][10,117][11,127]}
30 691 {[7,15]} {[8,120]} {[1,27][2,5][3,3]...[9,15][10,10][11,6]} {[1,441][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}

59

...
71 600 {[1,1][7,3][8,3]} {[1,424]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,424][2,44][3,42][4,40][5,40][6,42][7,138][8,127][9,133][10,117][11,129]}
72 600 {[1,1][7,3][8,3]} {[1,430]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,430][2,44][3,42][4,40][5,42][6,42][7,138][8,127][9,136][10,120][11,130]}
73 621 {[1,1][7,3][8,3]} {[1,436]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,436][2,46][3,42][4,40][5,42][6,42][7,141][8,127][9,136][10,121][11,133]}
74 140 {[1,1][7,3][8,3]} {[1,442]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,442][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}
75 151 {[1,1][7,3][8,3]} {[1,448]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,448][2,46][3,42][4,46][5,42][6,46][7,148][8,130][9,141][10,127][11,135]}
76 260 {[1,1][7,3][8,3]} {[1,454]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,454][2,46][3,42][4,46][5,42][6,46][7,148][8,133][9,142][10,129][11,135]}
77 270 {[1,1][7,3][8,3]} {[1,460]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,460][2,46][3,46][4,46][5,42][6,46][7,150][8,135][9,148][10,130][11,135]}
78 371 {[1,1][7,3][8,3]} {[1,466]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,466][2,46][3,46][4,46][5,42][6,48][7,151][8,135][9,148][10,133][11,138]}
79 391 {[1,1][7,3][8,3]} {[1,472]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,472][2,46][3,46][4,46][5,42][6,48][7,154][8,135][9,150][10,133][11,139]}
80 461 {[1,1][7,3][8,3]} {[1,478]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,478][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}
81 510 {[1,1][7,3][8,3]} {[1,484]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,484][2,46][3,48][4,46][5,46][6,48][7,154][8,139][9,154][10,135][11,147]}
82 531 {[1,1][7,3][8,3]} {[1,490]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,490][2,50][3,48][4,46][5,48][6,48][7,156][8,145][9,154][10,138][11,148]}
83 531 {[1,1][7,3][8,3]} {[1,496]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,496][2,52][3,48][4,46][5,48][6,48][7,159][8,145][9,154][10,139][11,151]}
84 550 {[1,1][7,3][8,3]} {[1,502]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,502][2,52][3,48][4,52][5,48][6,48][7,160][8,145][9,159][10,145][11,151]}
85 110 {[1,1][7,3][8,3]} {[1,508]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,508][2,52][3,48][4,52][5,48][6,52][7,166][8,145][9,160][10,147][11,153]}
86 131 {[1,1][7,3][8,3]} {[1,514]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,514][2,52][3,48][4,52][5,48][6,54][7,166][8,145][9,163][10,148][11,156]}
87 200 {[1,1][7,3][8,3]} {[1,520]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,520][2,52][3,48][4,52][5,48][6,54][7,168][8,145][9,163][10,151][11,157]}
88 270 {[1,1][7,3][8,3]} {[1,526]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,526][2,52][3,48][4,52][5,54][6,54][7,169][8,145][9,163][10,156][11,163]}
89 310 {[1,1][7,3][8,3]} {[1,532]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,532][2,54][3,48][4,52][5,54][6,54][7,175][8,145][9,163][10,157][11,165]}
90 320 {[1,1][7,3][8,3]} {[1,538]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,538][2,56][3,48][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,166]}
91 380 {[1,1][7,3][8,3]} {[1,544]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,544][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
92 431 {[1,1][7,3][8,3]} {[1,550]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
93 521 {[1,1][7,3][8,3]}

{[1,560]} {[1,1][2,1][3,1]...[10,3][11,3]}

{[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
 ...

155 0 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,418]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,418][2,40][3,42][4,40][5,40][6,42][7,136][8,121][9,132][10,117][11,127]}
10 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,424]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,424][2,44][3,42][4,40][5,40][6,42][7,138][8,127][9,133][10,117][11,129]}

157 20 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,430]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,430][2,44][3,42][4,40][5,42][6,42][7,138][8,127][9,136][10,120][11,130]}
158 0 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,436]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,436][2,46][3,42][4,40][5,42][6,42][7,141][8,127][9,136][10,121][11,133]}
159 10 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,442]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,442][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}
160 40 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,448]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,448][2,46][3,42][4,46][5,42][6,46][7,148][8,130][9,141][10,127][11,135]}
161 20 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,454]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,454][2,46][3,42][4,46][5,42][6,46][7,148][8,133][9,142][10,129][11,135]}
162 0 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,460]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,460][2,46][3,46][4,46][5,42][6,46][7,150][8,135][9,148][10,130][11,135]}

156

60

…
163 0 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,466]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,466][2,46][3,46][4,46][5,42][6,48][7,151][8,135][9,148][10,133][11,138]}
164 10 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,472]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,472][2,46][3,46][4,46][5,42][6,48][7,154][8,135][9,150][10,133][11,139]}
165 50 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,478]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,478][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}
166 10 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,484]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,484][2,46][3,48][4,46][5,46][6,48][7,154][8,139][9,154][10,135][11,147]}
167 10 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,490]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,490][2,50][3,48][4,46][5,48][6,48][7,156][8,145][9,154][10,138][11,148]}
168 20 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,496]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,496][2,52][3,48][4,46][5,48][6,48][7,159][8,145][9,154][10,139][11,151]}
169 20 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,502]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,502][2,52][3,48][4,52][5,48][6,48][7,160][8,145][9,159][10,145][11,151]}
170 0 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,508]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,508][2,52][3,48][4,52][5,48][6,52][7,166][8,145][9,160][10,147][11,153]}
171 30 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,514]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,514][2,52][3,48][4,52][5,48][6,54][7,166][8,145][9,163][10,148][11,156]}
172 30 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,520]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,520][2,52][3,48][4,52][5,48][6,54][7,168][8,145][9,163][10,151][11,157]}
173 20 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,526]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,526][2,52][3,48][4,52][5,54][6,54][7,169][8,145][9,163][10,156][11,163]}
174 0 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,532]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,532][2,54][3,48][4,52][5,54][6,54][7,175][8,145][9,163][10,157][11,165]}
175 20 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,538]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,538][2,56][3,48][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,166]}
176 0 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,544]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,544][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
177 0 {[1,1][2,1][3,1]...[10,3][11,3]} {[1,550]} {[1,1][2,1][3,1]...[10,3][11,3]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
178 30 {[1,1][2,1][3,1]...[10,3][11,3]}

{[1,560]} {[1,1][2,1][3,1]...[10,3][11,3]}

{[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
 ...

2149 10 {[1,45][2,5]...[10,12][11,18]} {[1,400]} {[1,45][2,5]...[10,12][11,18]} {[1,400][2,40][3,40][4,40][5,36][6,42][7,130][8,117][9,130][10,112][11,120]}
2150 10 {[1,45][2,5]...[10,12][11,18]} {[1,406]} {[1,45][2,5]...[10,12][11,18]} {[1,406][2,40][3,40][4,40][5,36][6,42][7,132][8,117][9,130][10,115][11,121]}
2151 50 {[1,45][2,5]...[10,12][11,18]} {[1,412]} {[1,45][2,5]...[10,12][11,18]} {[1,412][2,40][3,42][4,40][5,40][6,42][7,133][8,120][9,130][10,117][11,127]}
2152 20 {[1,45][2,5]...[10,12][11,18]} {[1,418]} {[1,45][2,5]...[10,12][11,18]} {[1,418][2,40][3,42][4,40][5,40][6,42][7,136][8,121][9,132][10,117][11,127]}
2153 10 {[1,45][2,5]...[10,12][11,18]} {[1,424]} {[1,45][2,5]...[10,12][11,18]} {[1,424][2,44][3,42][4,40][5,40][6,42][7,138][8,127][9,133][10,117][11,129]}
2154 20

{[1,45][2,5]...[10,12][11,18]} {[1,430]} {[1,45][2,5]...[10,12][11,18]} {[1,430][2,44][3,42][4,40][5,42][6,42][7,138][8,127][9,136][10,120][11,130]}

2155 0 {[1,45][2,5]...[10,12][11,18]} {[1,436]} {[1,45][2,5]...[10,12][11,18]} {[1,436][2,46][3,42][4,40][5,42][6,42][7,141][8,127][9,136][10,121][11,133]}
2156 10 {[1,45][2,5]...[10,12][11,18]} {[1,442]} {[1,45][2,5]...[10,12][11,18]} {[1,442][2,46][3,42][4,44][5,42][6,42][7,142][8,129][9,138][10,127][11,133]}
2157 10 {[1,45][2,5]...[10,12][11,18]} {[1,448]} {[1,45][2,5]...[10,12][11,18]} {[1,448][2,46][3,42][4,46][5,42][6,46][7,148][8,130][9,141][10,127][11,135]}
2158 10 {[1,45][2,5]...[10,12][11,18]} {[1,454]} {[1,45][2,5]...[10,12][11,18]} {[1,454][2,46][3,42][4,46][5,42][6,46][7,148][8,133][9,142][10,129][11,135]}
2159 10

{[1,45][2,5]...[10,12][11,18]} {[1,460]} {[1,45][2,5]...[10,12][11,18]} {[1,460][2,46][3,46][4,46][5,42][6,46][7,150][8,135][9,148][10,130][11,135]}

2160 0 {[1,45][2,5]...[10,12][11,18]} {[1,466]} {[1,45][2,5]...[10,12][11,18]} {[1,466][2,46][3,46][4,46][5,42][6,48][7,151][8,135][9,148][10,133][11,138]}
2161 20 {[1,45][2,5]...[10,12][11,18]} {[1,472]} {[1,45][2,5]...[10,12][11,18]} {[1,472][2,46][3,46][4,46][5,42][6,48][7,154][8,135][9,150][10,133][11,139]}
2162 30 {[1,45][2,5]...[10,12][11,18]} {[1,478]} {[1,45][2,5]...[10,12][11,18]} {[1,478][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}

61

…
2163 10 {[1,45][2,5]...[10,12][11,18]} {[1,484]} {[1,45][2,5]...[10,12][11,18]} {[1,484][2,46][3,48][4,46][5,46][6,48][7,154][8,139][9,154][10,135][11,147]}
2164 10 {[1,45][2,5]...[10,12][11,18]} {[1,490]} {[1,45][2,5]...[10,12][11,18]} {[1,490][2,50][3,48][4,46][5,48][6,48][7,156][8,145][9,154][10,138][11,148]}
2165 10 {[1,45][2,5]...[10,12][11,18]} {[1,496]} {[1,45][2,5]...[10,12][11,18]} {[1,496][2,52][3,48][4,46][5,48][6,48][7,159][8,145][9,154][10,139][11,151]}
2166 20 {[1,45][2,5]...[10,12][11,18]}

{[1,502]} {[1,45][2,5]...[10,12][11,18]}

{[1,502][2,52][3,48][4,52][5,48][6,48][7,160][8,145][9,159][10,145][11,151]}
 ...

5139 491 {[1,225][2,23]...[10,66][11,72]} {[1,478]} {[1,225][2,23]...[10,66][11,72]} {[1,478][2,46][3,48][4,46][5,46][6,48][7,154][8,138][9,151][10,135][11,145]}
5140 80 {[1,225][2,23]...[10,66][11,72]} {[1,484]} {[1,225][2,23]...[10,66][11,72]} {[1,484][2,46][3,48][4,46][5,46][6,48][7,154][8,139][9,154][10,135][11,147]}
5141 10 {[1,225][2,23]...[10,66][11,72]} {[1,490]} {[1,225][2,23]...[10,66][11,72]} {[1,490][2,50][3,48][4,46][5,48][6,48][7,156][8,145][9,154][10,138][11,148]}
5142 0 {[1,225][2,23]...[10,66][11,72]} {[1,496]} {[1,225][2,23]...[10,66][11,72]} {[1,496][2,52][3,48][4,46][5,48][6,48][7,159][8,145][9,154][10,139][11,151]}
5143 30 {[1,225][2,23]...[10,66][11,72]} {[1,502]} {[1,225][2,23]...[10,66][11,72]} {[1,502][2,52][3,48][4,52][5,48][6,48][7,160][8,145][9,159][10,145][11,151]}
5144 0 {[1,225][2,23]...[10,66][11,72]} {[1,508]} {[1,225][2,23]...[10,66][11,72]} {[1,508][2,52][3,48][4,52][5,48][6,52][7,166][8,145][9,160][10,147][11,153]}
5145 0 {[1,225][2,23]...[10,66][11,72]} {[1,514]} {[1,225][2,23]...[10,66][11,72]} {[1,514][2,52][3,48][4,52][5,48][6,54][7,166][8,145][9,163][10,148][11,156]}
5146 20 {[1,225][2,23]...[10,66][11,72]} {[1,520]} {[1,225][2,23]...[10,66][11,72]} {[1,520][2,52][3,48][4,52][5,48][6,54][7,168][8,145][9,163][10,151][11,157]}
5147 0 {[1,225][2,23]...[10,66][11,72]} {[1,526]} {[1,225][2,23]...[10,66][11,72]} {[1,526][2,52][3,48][4,52][5,54][6,54][7,169][8,145][9,163][10,156][11,163]}
5148 10 {[1,225][2,23]...[10,66][11,72]} {[1,532]} {[1,225][2,23]...[10,66][11,72]} {[1,532][2,54][3,48][4,52][5,54][6,54][7,175][8,145][9,163][10,157][11,165]}
5149 10 {[1,225][2,23]...[10,66][11,72]} {[1,538]} {[1,225][2,23]...[10,66][11,72]} {[1,538][2,56][3,48][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,166]}
5150 40 {[1,225][2,23]...[10,66][11,72]} {[1,544]} {[1,225][2,23]...[10,66][11,72]} {[1,544][2,56][3,48][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
5151 10 {[1,225][2,23]...[10,66][11,72]} {[1,550]} {[1,225][2,23]...[10,66][11,72]} {[1,550][2,56][3,48][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
5152

10

{[1,225][2,23]...[10,66][11,72]}

{[1,560]}

{[1,225][2,23]...[10,66][11,72]}

{[1,560][2,56][3,48][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}
 ...

6004 0 {[1,459][5,43]...[10,132][11,138]} {[1,496]} {[1,459][2,47]….[10,132][11,138]} {[1,496][2,52][5,48][7,159][8,145][9,154][10,139][11,151]}
6005 10 {[1,459][5,43]...[10,132][11,138]} {[1,502]} {[1,459][2,47]…..[10,132][11,138]} {[1,502][2,52][4,52][5,48][7,160][8,145][9,159][10,145][11,151]}
6006 0 {[1,459][5,43]...[10,132][11,138]} {[1,508]} {[1,459][2,47]…...[10,132][11,138]} {[1,508][2,52][4,52][5,48][6,52][7,166][8,145][9,160][10,147][11,153]}
6007 0 {[1,459][5,43]...[10,132][11,138]} {[1,514]} {[1,459][2,47]…...[10,132][11,138]} {[1,514][2,52][4,52][5,48][6,54][7,166][8,145][9,163][10,148][11,156]}
6008 0 {[1,459][5,43]...[10,132][11,138]} {[1,520]} {[1,459][2,47]…...[10,132][11,138]} {[1,520][2,52][4,52][5,48][6,54][7,168][8,145][9,163][10,151][11,157]}
6009 0 {[1,459][5,43]...[10,132][11,138]} {[1,526]} {[1,459][2,47]…...[10,132][11,138]} {[1,526][2,52][4,52][5,54][6,54][7,169][8,145][9,163][10,156][11,163]}
6010 0 {[1,459][5,43]...[10,132][11,138]} {[1,532]} {[1,459][2,47]…...[10,132][11,138]} {[1,532][2,54][4,52][5,54][6,54][7,175][8,145][9,163][10,157][11,165]}
6011 0 {[1,459][5,43]...[10,132][11,138]} {[1,538]} {[1,459][2,47]…...[10,132][11,138]} {[1,538][2,56][4,52][5,54][6,54][7,180][8,145][9,163][10,160][11,166]}
6012 0 {[1,459][5,43]...[10,132][11,138]} {[1,544]} {[1,459][2,47]…...[10,132][11,138]} {[1,544][2,56][4,52][5,54][6,54][7,181][8,145][9,163][10,162][11,169]}
6013 0 {[1,459][5,43]...[10,132][11,138]} {[1,550]} {[1,459][2,47]…...[10,132][11,138]} {[1,550][2,56][4,52][5,54][6,60][7,187][8,145][9,163][10,163][11,174]}
6014 0 {[1,459][5,43]...[10,132][11,138]} {[1,560]} {[1,459][2,47]…...[10,132][11,138]} {[1,560][2,56][4,52][5,60][6,60][7,187][8,145][9,163][10,172][11,183]}

Appendix E
 Cache Performance Results of Proposed

Algorithm in Experiment 1

62

No. of time left
event set changes

No. of events in left
event set No.of iterations

No. of successful
cached

computation
0 1 1 0
0 1 2 0
0 1 3 1
0 1 4 2
0 1 5 3
0 1 6 3
0 1 7 4
0 1 8 5
0 1 9 6
0 1 10 7
0 1 11 8
0 1 12 8
0 1 13 9
0 1 14 9
0 1 15 10

…
50 1 161 16270
50 1 162 16271
50 1 163 16272
50 1 164 16273
50 1 165 16274
50 1 166 16275
50 1 167 16276
50 1 168 16277
50 1 169 16278
50 1 170 16279
50 1 171 16280
50 1 172 16281
50 1 173 16282
50 1 174 16283
50 1 175 16284
…

153 1 84 45607
153 1 85 45608
153 1 86 45609
153 1 87 45610
153 1 88 45611
153 1 89 45612
153 1 90 45613
153 1 91 45614
153 1 92 45615
153 1 93 45616
153 1 94 45617
154 1 1 45617
155 1 1 45617

63

Appendix F
Cache Performance Results of Proposed

Algorithm in Experiment 2

64

No. of time left
event set changes

No. of events in left
event set No.of iterations

No. of successful
cached

computation
0 1 1 0
1 3 2 0
1 3 3 0
1 3 4 0
1 3 5 1
1 3 6 2
1 3 7 2
1 3 8 2
1 3 9 2
1 3 10 3
1 3 11 4
1 3 12 5
1 3 13 6
1 3 14 7

…
3 11 82 167
3 11 83 168
3 11 84 169
3 11 85 170
4 1 1 170
5 11 1 170
5 11 2 171
5 11 3 172
5 11 4 173
5 11 5 174
5 11 6 175

…
293 9 12 5742
293 9 13 5743
293 9 14 5744
294 1 1 5744
295 7 1 5744
295 7 2 5745
295 7 3 5745
295 7 4 5746
295 7 5 5746
295 7 6 5746
295 7 7 5747
295 7 8 5748
295 7 9 5749
295 7 10 5750
295 7 11 5751
295 7 12 5752
295 7 13 5753
295 7 14 5754

65

BIBLIOGRAPHY

[1] A.A. Basten. Hierarchical Event-Based Behavioral Abstraction in Interactive Distributed

Debugging: A Theoretical Approach. Master’s thesis, Eindhoven University of

Technology, August 1993.

[2] T. Basten, T. Kunz, J. P. Black, M. H. Coffin, and D. J. Taylor. Vector time and causality

among abstract events in distributed computations. Distributed Computing, vol. 11, pages

21-39, 1997.

[3] W. H. Cheung. Process and Event Abstraction for Debugging Distributed Programs. PhD

thesis, University of Waterloo, Waterloo, Ontario, Canada, September 1989.

[4] Eclipse.org. The Eclispe Project. http://www.eclipse.org.

[5] Eclipse.org. The Hyades Project. http://www.eclipse.org/hyades.

[6] C.J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In

Proceedings of the 11th Australian Computer Science Conference, Brisbane, pages 56-66,

February, 1988. Appeared as ACM SIGPLAN Notices, 24(1), January 1989.

[7] C.J. Fidge. Logical time in distributed computing systems. IEEE Computer, 24(8):28-33,

August 1991.

[8] C.E. Jaekl. Event-Predicate Detection in the Debugging of Distributed Applications.

Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 1996.

[9] T. Kunz. Abstract Behaviour of Distributed Executions with Applications to Visualization.

PhD thesis, Technical University of Darmstadt, Federal Republic of Germany, February

1994.

[10] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21(7):558-565, July 1978.

[11] F. Mattern. On the relativistic structure of logical time in distributed systems. In M.

Cosnard et al., editors, Parallel and Distributed Algorithms, pages 215-226. Elsevier

Science Publishers B.V., Amsterdam, North-Holland, The Netherlands, 1989.

[12] J.A. Summers. Precedence-Preserving Abstraction for Distributed Debugging. Master’s

thesis, University of Waterloo, Waterloo, Ontario, Canada, 1992.

66

[13] D.J. Taylor. Event displays for debugging and managing distributed systems. In

International Workshop on Network and Systems Management, pages 112-124, Kyongju,

Korea, August 1995.

[14] D.J. Taylor, T. Kunz and J.P. Black. Achieving target-system independence in event

visualization. In CD-ROM Proceedings of the CAS Conference, 1995.

[15] Ping Xie. Convex-Event Based Offline Event-Predicate Detection. Master’s thesis,

University of Waterloo, Waterloo, Ontario, Canada, 2003.

[16] Ping Xie and D.J. Taylor. Specifying and locating hierarchical patterns in event data. In

CD-ROM Proceedings of the CAS Conference, 2004.

67

	Introduction
	Motivations and Contribution
	Organization

	Event Models and Event-Predicate Detection
	Understanding Event Models
	Causality Relations
	Fidge/Mattern (F/M) Vector Timestamp

	Event-Predicate Detection
	Event Predicates
	Event-Predicate Language
	Predicate-Detection Algorithm

	Constructing Convex Events
	Representing Convex Events

	Convex Closure Computation
	The Definitions
	Ping Xie’s Algorithm7
	Algorithm for Dealing with Compound Events
	Pruning Technique
	An Overview of Ping Xie’s Implementation

	Experiments and Results of Two Hierarchical Event-Predicates
	Experiment 1
	First Search Result

	Experiment 2
	First Search Result

	Comparison of Results from Experiments 1 and 2

	Proposed Algorithm
	The Approach
	The Basic Idea
	Our Algorithm
	Implementing Theorem 4 Checks in Algorithm 8

	Results from Experiments 1 and 2 using the Proposed Algorithm
	Experiment 1 Analysis
	Experiment 2 Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	BIBLIOGRAPHY

