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Abstract 

Traditional optical design is a numerical process based on ray tracing theory. The traditional 

method has the limitation of the application of the spectacle lens because of the necessity of initial 

configurations and the evaluations of the aberrations of the lens. This study is an initial attempt to 

investigate an analytic lens design method, Lagrange, which has a potential application in modern 

spectacle lens for eliminating the limitation of the traditional method. 

The Lagrange method can derive the differential equations of an optical system in term of the 

output and input of the system. The generalized Snell’s law in three-dimensional space and the 

normal of a refracting surface in fundamental differential geometry are used to complete the 

derivation. Based on the Lagrange method, the solution of a refracting surface which can perfectly 

image a point at infinity is obtained. Then, a Plano-convex lens and a Bi-convex lens from this 

solution are designed. In spherical coordinates, the differential equation of the single surface system 

is: 

�
(−n2 + n1 cosθ) ∂f

∂θ
− n1 sinθ f = 0

∂f
∂φ

= 0
;  f(0) = r   

where f represents the surface. n1 and  n2 are indices.  r is the distance from the vertex point of the 

surface to the image point. The solution of the equations is: 

f = (n1−n2) r
−n2+n1 cosθ

   

In conclusion, the Lagrange solves unknown lens surface based on definable inputs and outputs 

according to customer requirements. The method has the potential applicants of the modern 

customized lens design. Moreover, the definable outputs make the simultaneous elimination of 

several aberrations possible. 
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Chapter 1 

Spectacle Lens Design Review 

1.1 Introduction 

Spectacle Lenses are used to correct the refractive errors of the eye and hence improve visual acuity 

and performances.  Spectacle lenses are special imaging systems because they are combined with the 

eye’s optics, which increases its complexity. Traditional design methods use the simplified eye 

model, which only contributes an optical aperture of the whole system. This chapter summarizes the 

basic principles of the traditional spectacle lens, and briefly introduces current trends of modern 

spectacle lens design. 

1.2 Fundamental Concepts for Traditional Spectacle Lens Design 

1.2.1 Far Point and Far Point Sphere 

The far point is the on-axis point which is conjugate with its image on retina (fovea vision) when the 

eye is not accommodating. Figure 1.1 illustrates the far points for the emmetropic, myopic and 

hyperopic eye. The far point for emmetropic eye is at infinity. For myopic eye, it is in front of the 

retina, and for hyperopic eye, it is behind the retina.  
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When the eye rotates, the far point will follow the rotation. As a result, a far point sphere is 

formed in a three dimensional space. The center of the far point sphere is same as the center of the 

eye rotation. Figure 1.2 illustrates the spectacle lens corrections for a hyperopic eye and a myopic eye 

respectively. The axis of symmetry of the lens is the lens optical axis. Because of the eye rotation, an 

object sphere is also made. Traditional spectacle lens design assumes that the stop size of the system 

is infinitesimally small, and the effective stop is at the center of the eye rotation[1]. The eye rotation 

increases the complexity of the spectacle lens and makes the system dynamic.  

Figure 1.1 The definition of the far point 
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1.2.2 A Perfect Imaging System and Spherical Spectacle Lens Aberration 

Figure 1.3 shows a perfect imaging system, and only chief rays are drawn here[2]. C is the center of 

the entrance pupil. All the lights coming from the edges of the object, P and Q, will be focused at the 

edges of the image, P’ and Q’ respectively. The lights from an arbitrary point on the object, O, will be 

focused on the image point, O’. The distance OZ and O’Z’ has the relation: OZ=m*O’Z’, where m (a 

constant) is the magnification of the system. Theoretically, an infinite number of surfaces (degrees of 

Figure 1.2 The far point sphere: A) the correction for a hyperopic 

eye B) the correction for a myopic eye 
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freedom) are needed to perfectly image infinite number of points[2]. A spectacle lens only has two 

surfaces, which also increases the design difficulty.  

 
Traditional spectacle lenses use spherical surfaces. A spherical surface can image a point, but 

suffers from aberrations. Aberration is defined as the deviations of the rays from the ideal image on 

the image plane[3]. Aberrations are categorized into chromatic aberrations and monochromatic 

aberrations. Chromatic aberrations are dependent on the material and hence the refractive index of the 

lens, and will not be discussed here. Ray tracing methods are used to calculate monochromatic 

aberrations. The paraxial image (Gaussian image) is considered as the ideal image. Aberrations can 

be expressed as a power series with different orders[4]. 

Only third order aberrations are considered in the spectacle lens design. They are spherical 

aberration, coma, oblique astigmatism, field curvature and distortion. Practically, the aberrations of a 

lens system are the combinations of these individual aberrations[5]. 

It is impossible to correct all these aberrations with two surfaces. According to Atchison, the 

aberrations greatly relying on pupil size can be neglected for spectacle lens system[1]. Therefore, 

both spherical aberrations and comas which are highly dependent on pupil size do not affect the 

image quality of the eye and spectacle lens system.  

Figure 1.3 A perfect imaging system 
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Spherical aberration is formed because the paraxial rays and the marginal rays from an on-axis 

point are not focused at the same point by the lens. As shown in Figure 1.4, the spherical aberration is 

the difference between the focuses of the paraxial rays and the marginal rays. The formation of coma 

has the similar reason as the spherical aberration formation. The difference is whether the object is on 

the optical axis or not. Figure 1.5 illustrates the coma of a lens. The paraxial rays are focused as a 

point on the image plane, whereas the marginal rays are imaged as a circle. Both the spherical 

aberration and coma can be drastically reduced by adding a small pupil to reduce the marginal rays.  

 

 
The correction of oblique astigmatism is a major objective for the spectacle lens design. 

Oblique astigmatism is produced when a pencil of light from an off-axis point is refracted obliquely 

Figure 1.4 The spherical aberration of a plus spherical lens 

Figure 1.5 The coma aberration of a plus spherical lens 



 

 6 

by a spherical surface[6]. Figure 1.6 and Figure 1.7 illustrate the principle of the oblique astigmatism. 

In Figure 1.6, only tangential rays are drawn. O is an off-axis point. The lens optical axis is the 

rotation symmetry axis of the lens surface. C is the curvature center, and the axis passing through OC 

is known as auxiliary axis. This axis is also the rotation symmetry axis. For this axis, O becomes an 

on-axis point. The principle ray and the lens optical axis define the tangential plane. The rays in the 

tangential plane are imaged as a line O1O2. The image of the paraxial rays of the principle ray is at 

somewhere between O1O2. In Figure 1.6, it is shown as Ot. 

 
The sagittal rays are illustrated in Figure 1.7. The sagittal rays and the principle ray all pass 

through a sagittal circle on the surface. The sagittal circle is rotation symmetric around the auxiliary 

axis. The sagittal image is on the auxiliary axis because the sagittal rays are rotational symmetric. It is 

obvious that the sagittal image Os is not coincident with the tangential image Ot, as shown in Figure 

1.6.  

Figure 1.6 Oblique astigmatism: tangential rays only 
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For a single spherical surface, the locations of the sagittal and tangential images can be found 

by Coddington equations[7]. Figure 1.8 illustrates the layout for the tangential focus. O is the object, 

and Ot is the tangential image. OAOt is the principle ray, and OA’Ot is a paraxial ray. The AA’ is so 

small that it can be regarded as the tangential line which is vertical to the normal CA. -t is the length 

of OA. The negative sign is added if the object is at the left side of the surface. t’ represents the length 

of AOt. U is the angle between OA and the lens axis. 𝜃 is the angle between the normal CA and the 

lens axis. i is the incidence angle, and i’ is the refraction angle. BA is vertical to OA. Then, we have 

the following relations: 

𝜃 = 𝑖 − 𝑈 ⟺ 𝑑𝜃 = 𝑑𝑖 − 𝑑𝑈                                                                                                           (1-1) 

In the triangle OAB, we have:  

𝐴𝐵 = −𝑡 𝑡𝑎𝑛 𝑑𝑈 ≈ −𝑡 𝑑𝑈                                                                                                               (1-2) 

In the triangle AA’B, because AA’ is vertical to AC and AB is vertical to OA, the angle A’AB is 

equal to i. Therefore, we have: 

𝐴𝐵 = 𝐴𝐴′ 𝑐𝑜𝑠 𝑖                                                                                                                                  (1-3) 

In the sector ACA’, we have: 

Figure 1.7 Oblique astigmatism: sagittal rays only 
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𝐴𝐴′ = 𝑟 𝑑𝜃                                                                                                                                        (1-4) 

where 𝑟 is the radius. Combine all the equations above, we have: 

𝐴𝐵 = −𝑡 (𝑑𝑖 − 𝑑𝜃) = 𝑟 𝑐𝑜𝑠 𝑖  𝑑𝜃                                                                                                   (1-5) 

For the refracted ray, we have the similar equation as: 

−𝑡′ (𝑑𝑖′ − 𝑑𝜃) = 𝑟 𝑐𝑜𝑠 𝑖′  𝑑𝜃                                                                                                            (1-6) 

By differentiating the both sides of Snell’s law, we have: 

𝑛 𝑐𝑜𝑠 𝑖  𝑑𝑖 = 𝑛′ 𝑐𝑜𝑠 𝑖′  𝑑𝑖′                                                                                                                  (1-7) 

where 𝑛 and 𝑛′ are the object space index and the image space index  respectively. Combining the 

equations 1-5, 1-6 and 1-7, we obtain the Coddington equation for the tangential focus: 

𝑛′ cos2 𝑖′

𝑡′
− 𝑛 cos2 𝑖

𝑡
= 𝑛′ cos 𝑖′−𝑛 cos 𝑖

𝑟
                                                                                                   (1-8) 

 
Now we derive another Coddington equation for the sagittal focus. The layout is shown as 

Figure 1.9. O is the object and Os is the sagittal image. The ray OAOs is the principle ray. −s is the 

length of OA. s′ is the length of AOs. OC is the auxiliary axis. The sagittal image Os is on the 

auxiliary axis. Notice that the area of the triangle OAOs is equal to the sum of the areas of the triangle 

OAC and ACOs. The area of a triangle XYZ is given by 1
2

 𝑋𝑌 𝑌𝑍 sin𝑌. Therefore, we have: 

Figure 1.8 The tangential image layout 
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−1
2

 𝑠 𝑠′ sin(180° − 𝑖 + 𝑖′) = −1
2

 𝑠 𝑟 sin(180° − 𝑖) + 1
2

 𝑠′𝑟 sin 𝑖′  

⟺ 𝑠 𝑠′ sin(𝑖 − 𝑖′) = − 𝑠 𝑟 sin 𝑖 +  𝑠′ 𝑟 sin 𝑖′ 

⟺−𝑛′ sin 𝑖 cos 𝑖′−𝑛′ cos 𝑖 sin 𝑖′

𝑟
= −𝑛′ sin 𝑖

𝑠′
+ 𝑛′ sin 𝑖′

𝑠
                                                                       (1-9) 

Then, according to Snell’s law, 𝑛 𝑠𝑖𝑛 𝑖 = 𝑛′ sin 𝑖′, we have the Coddington equation for the 

sagittal focus as: 

𝑛′ cos 𝑖′−𝑛 cos 𝑖
𝑟

= 𝑛′

𝑠′
− 𝑛

𝑠
                                                                                                                    (1-10) 

 
In terms of the Coddington equations and the third-order theory, the sagittal and tangential 

power errors of a thin spectacle lens are given as: 

𝐹𝑠′ = 𝐹𝑜 + 𝐹𝐿 + 𝐸𝑠                                                                                                                    (1-11) 

𝐹𝑡′ = 𝐹𝑜 + 𝐹𝐿 + 𝐸𝑡                                                                                                                     (1-12) 

where 𝐹𝑠′ and 𝐹𝑡′ are sagittal and tangential focus vergences. 𝐹𝑜 is the object vergence, and 𝐹𝐿 is the 

power of the lens. 𝐸𝑠 and 𝐸𝑡 are the sagittal and tangential power errors. We have: 

𝐸𝑠 = 𝑦2 𝑋 = 𝑦2  𝐹𝐿
𝑛 (𝑛−1)2

�𝐹22  2 𝑛+1
2

+ 𝐹2  −𝐹𝐿 𝑛 (𝑛+2)+2 𝑙 (𝑛2−1)
2

+ [𝐹𝐿 𝑛−𝑙 (𝑛−1)]2

2
�                        (1-13) 

𝐸𝑡 = 𝑦2 𝑌 = 𝑦2  𝐹𝐿
𝑛 (𝑛−1)2

�𝐹22  4𝑛+5
2

+ 𝐹2  −𝐹𝐿 (𝑛−2)2+2 (3𝑙+2𝐹𝑜) (𝑛2−1)
2

+ 𝐹𝐿2 𝑛 (𝑛+2)
2

− 𝐹𝐿  𝑙 (𝑛 −

1)(𝑛 + 2) − 𝐹𝐿  𝐹𝑜 𝑛 (𝑛2 − 1) + 𝑙2 (2 𝑛+1) (𝑛−1)2

2
+ 2 𝑙 𝐹𝑜 (𝑛 − 1)(𝑛2 − 1)�                              (1-14) 

Figure 1.9 The sagittal image layout 
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where 𝑦 is the height of the principle ray.  𝑙 is the distance from the vertex of the back surface to the 

center of the rotation of the eye. 𝐹2 is the power of the back surface[8]. Eventually, the oblique 

astigmatism of the thin spectacle spherical lens is given as: 

 OA = 𝐸𝑡 − 𝐸𝑠                                                                                                                                (1-15) 

Field curvature is discussed when the oblique astigmatism has been corrected. Now, the off-

axis point is perfectly imaged in the local paraxial area defined by the chief ray. Field curvature is 

produced because the images of the objects at infinity lie on a curved surface rather than a plane 

surface. This curved surface is known as the Petzval surface. The curvature of the Petzval surface is 

expressed as: −𝐹𝐿
𝑛

, where 𝐹𝐿 is the power of the lens and 𝑛 is the index of the lens material[9]. 

Distortion is evaluated when the field of curvature does not exist. Distortion is produced 

because the magnification of the spherical lens is not a constant from its center to periphery. There 

are two kinds of distortion. First, the distortion changes the shape of the image in peripheral vision 

when the eye looks though the center of the lens. Second, the distortion also occurs when the eye 

rotates to use the edge of the lens[10]. Figure 1.10 illustrates these two cases. 
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1.3 Single Focal Spectacle Lenses Principle 

Traditional spectacle lens images the distant object onto the far point of the eye to correct the 

refractive errors, such as myopia, hyperopia and astigmatism. The astigmatic eye has an asymmetric 

corneal curvature, and the horizontal and vertical curvatures are unequal. As a result, the rays in these 

two planes are focused at different positions on the optical axis. This leads to a blur image on the 

retina. Ocular astigmatism is usually combined with myopia or hyperopia. Traditionally, astigmatic 

eyes can be corrected by sphero-cylindrical, toric and atoric lens. Here, we only discuss the eye 

without astigmatism for simplicity. Details of the corrections of the astigmatic eyes can be found in 

Jalie’s book, the principles of ophthalmic lenses.[6] 

Figure 1.10 Spectacle lens distortion: A) the eye looks straight B) the 

eye rotates 
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Spectacle lenses have two main categories, single focal lens and multifocal lens. Single focal 

lens has the same power on the entire lens. It can be designed for either distant vision or near vision in 

terms of the different requirements of the wearers. 

Multifocal lenses are produced for the correction of presbyopia. Presbyopia refers to a 

condition in which the eye loses accommodation. A multifocal lens is separated into two or three 

parts which have different powers corresponding to distant, intermediate and near vision. Patients 

with multifocal lenses suffer from image jump and blind areas because of the sharp boundary between 

these segments. To solve this problem, progressive addition lenses were invented. The simplest 

progressive addition lens inserts a corridor zone between the distance and near viewing areas. As 

shown in figure 1.11, this corridor zone has continuous spherical power change along a vertex 

line[11]. Minkwitz theorem proofs that the continuous power change will bring unwanted 

astigmatism whose axis is oblique. The detailed Minkwitz theorem can be found in reference [12]. 

This unwanted astigmatism will result in a serious swimming effect in the periphery areas of the lens, 

which becomes huge barrier for the universal use of the progressive lens. The swimming image 

occurs  because the magnification difference in the lens periphery distorts the observed movement of 

an object from the actual physical movement[11]. This imaging distortion is known as skew 

distortion. The skew distortions are produced when the axis of the lens astigmatism in each point of 

the lens periphery  are not parallel to the vertical or horizontal plane, i.e. oblique[13]. The correction 

of this distortion is the main target of the progressive lens designer. 
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There are three methods for the single focal lens design in terms of three different 

objectives[14]: 

1) Eliminating Oblique Astigmatism 

Oblique astigmatism is eliminated when the sagittal and tangential focuses are coincident. This 

target can be achieved by choosing a base curve (usually the front surface) in terms of the 

Tscherning’s ellipse, which was demonstrated by Marius Tscherning in 1904. Figure 1.12 shows the 

Tscherning’s ellipse under the thin lens approximation, and this lens is designed for the distant vision. 

The top half of the ellipse is the Ostwalt form leading to a flat surface solution, whereas the bottom 

half of the ellipse is the Wollaston form leading to a steep surface solution. The solution of the 

Wollaston part is not widely used for spectacle lens because the steep curvature affects the cosmetic 

appeal of the wearers[15]. The equation of the Tscherning’s Ellipse is given as: 

𝐹12 (𝑛 + 2) − 𝐹1  �2
𝑙
 (𝑛2 − 1) + 𝐹𝐿  (𝑛 + 2)� + 𝑛 �𝐹𝐿 + 𝑛−1

𝑙
�
2

= 0                                         (1-1) 

where, 𝐹1 is the base curve power; 𝑛 is the index of the lens; 𝐹𝐿 is the total power of the lens; 𝑙 is the 

distance from the vertex of the back surface to the center of the eye rotation[16]. In Figure 1.12, 

notice that the range of the lens power is from +7 D to -23.25 D. Out of this range, the oblique 

Figure 1.11 A progressive addition lens 
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astigmatism can only be minimized. This kind of lens is known as point-focal lens. Detailed third-

order equations and the derivations of the Tscherning’s ellipse for both the spherical and aspheric lens 

can be found in references [17][8]. 

 
2) Reducing Mean Oblique Power Error 

The point-focal lens can eliminate or minimize oblique astigmatism, but it cannot correct the 

field of curvature. The image of the point-focal lens is on its Petzval surface rather than the far point 

sphere, as shown in Figure 1.13. Therefore, the concept of mean oblique power error is introduced. 

Mean oblique power error is defined as 𝐸𝑠+𝐸𝑡
2

, where 𝐸𝑠 is the tangential power error, and 𝐸𝑡 is the 

sagittal power error. The lens whose mean oblique power error is zero is known as the Percival lens. 

This lens is bent so that the image of the least confusion is on the retina. The far point sphere is 

somewhere between the tangential focal shell and the sagittal focal shell, as shown in Figure 1.14. 

However, the solution of zero mean oblique error is slightly different from the solution of the least 

confusion[17]. 

Figure 1.12 Tscherning’s ellipse for thin lenses 
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3) Eliminating Tangential Error 

The minimum tangential error lens is designed to let 𝐸𝑡 = 0. The lens is free from the 

tangential power error. Many commercial lens series use this form to balance the performance of the 

lens for flexible real vertex distances. The real vertex distance refers to the distance from vertex of the 

back surface to the center of the eye rotation. When this distance is longer than the empirical distance 

(usually 27cm), the lens performance is similar to a point-focal lens. On the other hand, the lens 

performance is similar to a Percival lens[18]. 

Figure 1.13 The point-focal lens design 

Figure 1.14 The Percival lens design 
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There are two obvious defects for the spherical lens. First, as mentioned above, the power 

range of the astigmatism free lens is limited from +7 D to -23.25 D. The spherical lenses are not 

effective, especially for high positive lenses. Second, because of the limited degree of freedom of the 

spherical lens, the off-axial aberrations cannot be reduced simultaneously[19][20]. Therefore, 

aspheric lens was invented to overcome these barriers. The aspherical surface can be expressed as: 

𝑧(𝑟) = 𝑐 𝑟2

1+�1−(1+𝑘)𝑐2 𝑟2
                                                                                                                      (1-2) 

where 𝑧(𝑟) represents the sag of the surface (the height at each point);  𝑟 represents the radial 

distance from the z axis; 𝑐 represents the curvature at vertex, and 𝑘 is known as conic constant. If one 

of the lens surface is aspheric, there are two or three solutions for the back and front surfaces, and 

both the oblique astigmatism and mean oblique error can be effectively reduced simultaneously[17]. 

More complicated aspherical surface is expressed as: 

𝑧(𝑟) = 𝑐 𝑟2

1+�1−(1+𝑘)𝑐2 𝑟2
+ 𝛼4 𝑟4 + 𝛼6 𝑟6 + 𝛼8𝑟8 + ⋯                                                                     (1-3) 

where 𝛼𝑖 is the coefficient of the polynomial. These extended terms increase the surface complexity 

and the degree of freedom. This makes the elimination of several aberrations achievable. The 

extended aspheric surface is applied in many lens patents, such as the US patent 4,504,128, US patent 

6,012,813, and European patent 0,886,166,B1. 

1.4 Modern Lens Design and Current Spectacle Lens Design 

In lens manufacturing industry, Lens blanks are categorized as finished and semi-finished lens 

blanks[21]. Finished lenses have both the front and back surfaces completed, and are ready to be used 

by an optical dispensary. A combination of the finished lenses can be chosen for the specific power 

prescription of a patient. However, semi-finished lenses have one of the surfaces unfinished. The 

semi-finished lenses are mostly used by multifocal lenses. The completed surface usually contains the 
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base curve and power arrangement. Then, the unfinished surface is cut and polished in terms of the 

suitable power and axis for the completed surface. 

Traditional lens surfaces include spherical, toric and aspherical surfaces, and traditional 

spectacle lens products are the lens series (finished lenses) rather than customized lenses (semi-

finished lenses). Nowadays, the increasing demands of the better vision and various visual 

requirements of the wearers stimulate the development of the personalized lens, and the more 

complicated lens surface is required, especially for the multifocal lenses. Fortunately, current 

technologies can manufacture complex lens surface. Free-form lens surface can be made by advanced 

computer-aided and ultra-precision surfacing and polishing technologies[22][23]. Mathematically, the 

free-form surfaces are expressed by either analytic functions, such as polynomials, or exact 

mathematic expressions. Therefore, new lens design concepts and techniques can potentially provide 

novel solutions. 

In this thesis, an analytic design method called Lagrange will be introduced in chapter 2. The 

Lagrange provides an analytic lens surface solution which can combine all aberrations. This method 

can design entire lens area and increase the degree of freedom. Chapter 3 derives the equation and its 

solution based on a single surface system which can perfectly image a point on optical axis. Chapter 4 

discusses two lens design examples in terms of the solution given in chapter 3. Chapter 5 provides the 

conclusions from the above discussions and the future work. 
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Chapter 2 

Introduction to Lagrange Optical Design 

2.1 Background 

Traditional optical design is a forward and numerical process. Figure 2.1 illustrates this process. First, 

the initial configuration of a lens is chosen. Then, the aberrations of the lens are calculated by ray 

tracing. At last, the lens solution is determined by modifying the lens parameters, such as the surface 

curvatures and material indices. Modern optical design software, such as Zemax or Code V, can 

target more than one aberration in terms of sophisticated metric functions, but the initial 

configurations of the lens are still needed.  

This automatic lens design method is known as optimization. Based on this method, a free-

form progressive lens designed in Zemax was introduced by Tocci, in 2007.[24] Combining with a 

complex eye model (Liou and Brennan, 1997), both the front and back surfaces of the lens were 

optimized to image far, mid-range and near objects in terms of the rotation of the eye model. The 

back surface was expressed by a polynomial which has 40 terms, and all their coefficients were 

modified during optimization.  After the optimization, the back surface became a free-form surface 

which leaded to an outstanding performance of the lens corresponding to the far, mid-range and near 

configurations. The enormous calculations of the aberrations and ray tracing make the optimization a 

time-consuming task, and the selection of the initial point also restrict its usage within only 

experienced optical designers. 
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This chapter introduces an analytic and inverse technique which breaks the barrier of the initial 

configurations and the aberration calculations. We name this technique Lagrange. 

2.2 Lagrange Design Method 

Figure 2.2 demonstrates the Lagrange design process. This process can be described as finding an 

unknown optical system by the given input and output ray fields, which are unified vector functions 

with the system parameters as variables. The ray tracing is stilled need, but we avoid calculating the 

aberrations because the output is already given. In this sense, it is an inverse and analytic process. 

Now, we need to build a relation between the input, the system and the output. 

 
Suppose that we have a multi-surface lens system, as shown in Figure 2.3. In the Figure, 𝑓𝑖 

represents the 𝑖 th surface. 𝑅𝑖 represents the input ray field of the 𝑖 th surface, and 𝑅𝑖+1 represents the 

output ray field. 𝑛𝑖 is the index. The input ray field is refracted by each surface, and the output ray 

field becomes the input of the next surface. In order to solve the surface 𝑓𝑖, we need to find the 

Figure 2.1 The forward optical design process 

Figure 2.2 The Lagrange design process 
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mathematical relations among  𝑓𝑖, 𝑅𝑖 and 𝑅𝑖+1. It is well known that the light propagation between 

different mediums follows Snell’s law. Based on the Snell’s law, a system of the equations based on 

the ray refraction on each surface can be derived. The analytic solutions of the surfaces are obtained 

by solving the associated equations. 

 

2.3 Snell’s Law in Three-dimensional Space and the Surface Normal 

In order to find the relation among the input, the output and the surface, Snell’s law is needed. In two-

dimensional space, it is well-known that Snell’s law is expressed as: 

𝑛𝑖 𝑠𝑖𝑛𝛼𝑖 = 𝑛𝑖+1 𝑠𝑖𝑛𝛼𝑖+1                                                                                                                   (2-1) 

where 𝛼𝑖 is the incident angle. 𝛼𝑖+1 is the refracted angle. 𝑛𝑖 is the index. However, In three-

dimensional space, Snell’s law is presented as a vector form which is more general than the equation 

2-1. Assume that 𝑝𝑖 is the unit direction vector of the incident ray. 𝑝⃗𝑖+1 is the unit direction vector of 

the refracted ray. 𝑢�⃗ 𝑖 is the unit direction vector of the normal, as shown in Figure 2.4. Because 𝑝𝑖, 

𝑝𝑖+1, and 𝑢�⃗ 𝑖 are in the same plane and satisfy Snell’s law, we can have 𝑢�⃗ 𝑖 as a linear combination of 

the 𝑝𝑖 and 𝑝𝑖+1: 

𝑈𝑖  𝑢�⃗ 𝑖 = 𝑛𝑖+1 𝑝⃗𝑖 − 𝑛𝑖 𝑝𝑖+1                                                                                                                 (2-2) 

Figure 2.3 A multi-surface optical system 
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where |𝑢�⃗ 𝑖| = |𝑝𝑖+1| = |𝑝𝑖| = 1. Taking the cross product on the both sides of the equation 2-2, and 

noting that  𝑢�⃗ 𝑖 × 𝑢�⃗ 𝑖 = 0, we have: 

𝑛𝑖+1 𝑝𝑖  × 𝑢�⃗ 𝑖 = 𝑛𝑖 𝑝𝑖+1 × 𝑢�⃗ 𝑖 ⟺ 𝑛𝑖+1 𝑠𝑖𝑛𝛼𝑖+1 = 𝑛𝑖 𝑠𝑖𝑛𝛼𝑖                                                         (2-3) 

Then, Snell’s law in vector form is defined as: 

𝑈��⃗ 𝑖 = 𝑛𝑖+1 𝑝⃗𝑖+1 − 𝑛𝑖 𝑝𝑖                                                                                                                      (2-4) 

where 𝑈��⃗ 𝑖 = 𝑈𝑖  𝑢�⃗ 𝑖. 

 
Then, we define the normal of the surface as the composite function of the 𝑓𝑖: 

𝑁��⃗ 𝑖 = 𝑔⃗(𝑓𝑖)                                                                                                                                         (2-5) 

Now, notice that the normal of the surface and the normal in Snell’s law have the same direction. 

Therefore, we combine the equations 2-4 and 2-5: 

𝑁��⃗ 𝑖
�𝑁��⃗ 𝑖�

= ±𝑢�⃗ 𝑖 = ± 𝑈��⃗ 𝑖
𝑈𝑖
⟺ 𝑔�⃗ (𝑓𝑖)

|𝑔�⃗ (𝑓𝑖)| = ± 𝑛𝑖+1 𝑝⃗𝑖+1−𝑛𝑖 𝑝⃗𝑖
|𝑛𝑖+1 𝑝⃗𝑖+1−𝑛𝑖 𝑝⃗𝑖|

                                                                           (2-6) 

The equation 2-6 is the relation among the input 𝑝𝑖, the output 𝑝𝑖+1 and the surface 𝑓𝑖 for the  𝑖 th 

surface. For a lens system which has 𝑛 surfaces, we have 𝑛 equations having the form of the equation 

2-6. By solving these equations, we can obtain the solution of the lens system. 

Figure 2.4 Snell’s law in vector 

form 
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2.4 Conclusion 

An inverse optical design method, Lagrange, is introduced in this chapter. This method eliminates the 

limitation of the traditional design method by which the initial configurations and the evaluation of 

the aberration are need. A system of equations can be obtained by connecting the Snell’s law in three-

dimensional space with the normal of the surface of the lens. The detailed mathematical derivation of 

the equation of a single surface system is given in the next chapter. 
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Chapter 3 

Single Surface System Design using Lagrange 

3.1 Introduction 

We define a single surface system as a refractive surface which can perfectly image a single point. 

This system is composed by a point, a surface and the image without any aberration. The surface 

separates two mediums with different indices. The whole system is built in spherical coordinates. The 

Lagrange and fundamental differential geometry is applied to derive the equations in the form of the 

equation 2-6. 

3.2 Spherical Coordinates 

The basic properties of the spherical coordinates, (𝑟,𝜃,𝜑), are introduced here. The transformation 

between Cartesian coordinates, (𝑥,𝑦, 𝑧), and spherical coordinates is[25]: 

𝑥 = 𝑟 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑  

𝑦 = 𝑟 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑                                                                                                                                (3-1) 

𝑧 = 𝑟 𝑐𝑜𝑠𝜃  

A position vector is represented as: 

𝑟 = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧 𝑘                                                                                                                            (3-2) 

where the vector 𝑖, 𝑗 and 𝑘 are unit vectors. They are the Cartesian coordinate basis corresponding to 

x, y and z axis respectively. The basis of the spherical coordinate is expressed as: 

𝑒𝑟 = 𝜕𝑟 𝜕𝑟⁄
|𝜕𝑟 𝜕𝑟⁄ | = 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑 𝑖 + 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑 𝑗 + 𝑐𝑜𝑠𝜃 𝑘  

𝑒𝜃 = 𝜕𝑟 𝜕𝜃⁄
|𝜕𝑟 𝜕𝜃⁄ | = 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑 𝑖 + 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑 𝑗 − 𝑠𝑖𝑛𝜃 𝑘                                                                      (3-3) 
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𝑒𝜑 = 𝜕𝑟 𝜕𝜑⁄
|𝜕𝑟 𝜕𝜑⁄ | = −𝑠𝑖𝑛𝜑 𝑖 + 𝑐𝑜𝑠𝜑 𝑗  

where 𝜃 is the angle down from the north pole, and 𝜑 is the angle around the equator, as shown in 

Figure 3.1. We can also use the spherical coordinate basis to express the Cartesian coordinate basis: 

𝑖 = 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑 𝑒𝑟 + 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑 𝑒𝜃 − 𝑠𝑖𝑛𝜑 𝑒𝜑  

𝑗 = 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑 𝑒𝑟 + 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑 𝑒𝜃 + 𝑐𝑜𝑠𝜑 𝑒𝜑                                                                                  (3-4) 

𝑘 = 𝑐𝑜𝑠𝜃 𝑒𝑟 − 𝑠𝑖𝑛𝜃 𝑒𝜃  

 
Notice that a spherical coordinate is a coordinate system composed by innumerable Cartesian 

coordinates. Each Cartesian coordinate has the basis corresponding to the specific directions of the 

position vector, (𝜃,𝜑). For example, the Cartesian coordinate corresponding to the direction (𝜃1,𝜑1) 

is different from the Cartesian coordinate corresponding to the direction (𝜃2,𝜑2). These two 

Cartesian coordinates have different basis. 

Figure 3.1 Spherical coordinates 
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3.3 The Normal of a Surface in Spherical Coordinates 

Figure 3.2 illustrates the definition of the normal of a surface. In spherical coordinates, any surface 

can be expressed as: 

𝑓 = 𝑓(𝜃,𝜑) 𝑒𝑟                                                                                                                                   (3-5) 

where 𝑓 is the position vector for the arbitrary point on the surface. 𝑓(𝜃,𝜑) is the function of 𝜃 and 

𝜑. Notice that 𝑒𝑟 is also the function of 𝜃 and 𝜑 in terms of the equation 3-3. 

 
Suppose that there is a point, C, on the surface, and the position vector of C is given by: 

𝑓𝑐 = 𝑓(𝜃𝑐,𝜑𝑐) 𝑒𝑟(𝜃𝑐 ,𝜑𝑐)                                                                                                                  (3-6) 

On this surface, we have the 𝜃-parameter curve passing through point C: 

𝜂(𝜃) = 𝑓(𝜃,𝜑𝑐) 𝑒𝑟(𝜃,𝜑𝑐)                                                                                                                (3-7) 

where 𝜑𝑐 is considered as a constant, and 𝜃 is the variable. This curve is shown as the dash line in 

Figure 3.2. For the same reason, we have the φ-parameter curve: 

Figure 3.2 The normal of a surface 

in spherical coordinates 
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𝜓�⃗ (𝜑) = 𝑓(𝜃𝑐,𝜑) 𝑒𝑟(𝜃𝑐,𝜑)                                                                                                               (3-8) 

The tangential vector of the 𝜃-parameter curve is expressed as: 

𝜏𝜃(𝜃) = 𝜕𝜂��⃗ (𝜃)
𝜕𝜃

= 𝜕�𝑓(𝜃,𝜑𝑐) 𝑒𝑟(𝜃,𝜑𝑐)�
𝜕𝜃

=  𝜕𝑓(𝜃,𝜑𝑐)
𝜕𝜃

 𝑒𝑟(𝜃,𝜑𝑐) + 𝑓(𝜃,𝜑𝑐) 𝑒𝜃(𝜃,𝜑𝑐)                              (3-9) 

Then, the tangential vector on point C is given as: 

𝜏𝜃(𝜃𝑐) = 𝜕𝑓(𝜃,𝜑𝑐)
𝜕𝜃

 𝑒𝑟(𝜃,𝜑𝑐) + 𝑓(𝜃,𝜑𝑐) 𝑒𝜃(𝜃,𝜑𝑐) �𝜃=𝜃𝑐                                                                (3-10) 

For the same reason, the tangential vector of the φ-parameter curve is expressed as: 

𝜏𝜑(𝜑) = 𝜕𝜓���⃗ (𝜑)
𝜕𝜑

= 𝜕�𝑓(𝜃𝑐,𝜑) 𝑒𝑟(𝜃𝑐,𝜑)�
𝜕𝜑

= 𝜕𝑓(𝜃𝑐,𝜑)
𝜕𝜑

 𝑒𝑟(𝜃𝑐 ,𝜑) + 𝑓(𝜃𝑐 ,𝜑) 𝑠𝑖𝑛𝜃𝑐  𝑒𝜑(𝜃𝑐 ,𝜑)                  (3-11) 

The tangential vector on point C is: 

𝜏𝜑(𝜑𝑐) = 𝜕𝑓(𝜃𝑐,𝜑)
𝜕𝜑

 𝑒𝑟(𝜃𝑐 ,𝜑) + 𝑓(𝜃𝑐 ,𝜑) 𝑠𝑖𝑛𝜃𝑐  𝑒𝜑(𝜃𝑐 ,𝜑) �𝜑=𝜑𝑐                                                     (3-12) 

At last, the normal of the surface at C is defined as: 

𝑁��⃗ = 𝜏𝜃(𝜃𝑐) × 𝜏𝜑(𝜑𝑐)                                                                                                                     (3-13) 

Now, for an arbitrary point on the surface, we define 𝑝 and 𝑞 as: 

𝑝 = 𝜕𝑓(𝜃,𝜑)
𝜕𝜃

;𝑞 = 𝜕𝑓(𝜃,𝜑)
𝜕𝜑

                                                                                                                  (3-14) 

According to the equation 3-9, the tangential vector of the 𝜃-parameter curve for the arbitrary point 

on the surface is: 

𝜏𝜃 = 𝑝 𝑒𝑟 + 𝑓 𝑒𝜃                                                                                                                             (3-15) 
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For the same reason, according to the equation 3-11, the tangential vector of the 𝜑-parameter curve 

for the arbitrary point is: 

𝜏𝜑 = 𝑞 𝑒𝑟 + 𝑓 𝑠𝑖𝑛𝜃 𝑒𝜑                                                                                                                    (3-16) 

Therefore, for the arbitrary point on the surface, the normal of the surface is expressed as:  

𝑁��⃗ = 𝑔⃗(𝑓) = 𝜕𝑓
𝜕𝜃

× 𝜕𝑓
𝜕𝜑

= 𝑓2 𝑠𝑖𝑛𝜃 𝑒𝑟 − 𝑓 𝑠𝑖𝑛𝜃 𝑝 𝑒𝜃 − 𝑓 𝑞 𝑒𝜑                                                         (3-17) 

3.4 The Differential Equations for the Single Surface System 

Now, we start to derive the equations of the system by the Lagrange method. Figure 3.3 is the system 

layout. Point 𝑠 is an object on Z axis. 𝑠′ is the image. 𝑠 represents the position vector of the point 𝑠. 

𝑅�⃗ 𝑖 represents an incident ray vector, and 𝑅�⃗ 𝑖+1 represents the refracted ray vector. 𝑢�⃗ 𝑖 represents the 

normal direction, which is a unit vector. 𝑓𝑖 represents the 𝑖th surface in a multi-surface system. From 

the equation 2-2, the direction vector of the normal in Snell’s law in three-dimensional space is given 

as: 

𝑢�⃗ 𝑖 = 𝑈��⃗ 𝑖
�𝑈��⃗ 𝑖�

                                                                                                                                           (3-18) 

where �𝑈��⃗ 𝑖� is equal to 𝑈𝑖 which is in the equation 2-2. 
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According to the equation 3-17, the normal of the surface is: 

𝑁��⃗ 𝑖 = 𝑔⃗(𝑓𝑖) = 𝑓𝑖
2 𝑠𝑖𝑛𝜃 𝑒𝑟 − 𝑓𝑖 𝑠𝑖𝑛𝜃 𝜕𝑓𝑖

𝜕𝜃
 𝑒𝜃 − 𝑓𝑖  𝜕𝑓𝑖

𝜕𝜑
 𝑒𝜑                                                                 (3-19) 

In order to simplify the expressions, we define: 

𝑝𝑖 = 𝜕𝑓𝑖
𝜕𝜃

; 𝑞𝑖 = 𝜕𝑓𝑖
𝜕𝜑

                                                                                                                            (3-20) 

The magnitude of 𝑁��⃗ 𝑖 is easy to get as: 

�𝑁��⃗ 𝑖� = �𝑓𝑖
4 𝑠𝑖𝑛2𝜃 + 𝑓𝑖

2 𝑠𝑖𝑛2𝜃 𝑝𝑖2 + 𝑓𝑖
2 𝑞𝑖2                                                                                    (3-21) 

According to the equation 2-6, we have: 

𝑢�⃗ 𝑖 = 𝑈��⃗ 𝑖
�𝑈��⃗ 𝑖�

= ± 𝑁��⃗ 𝑖
�𝑁��⃗ 𝑖�

                                                                                                                             (3-22) 

Multiply 𝑈��⃗ 𝑖 on both sides of the equation 3-22, we have: 

�𝑈��⃗ 𝑖� �𝑁��⃗ 𝑖� = ±𝑁��⃗ 𝑖 𝑈��⃗ 𝑖                                                                                                                           (3-23) 

Figure 3.3 The single surface layout 
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Then, substitute the equations 3-19 and 3-21 into 3-23, we have:  

�𝑈��⃗ 𝑖� �𝑓𝑖
4 𝑠𝑖𝑛2𝜃 + 𝑓𝑖

2 𝑠𝑖𝑛2𝜃 𝑝𝑖2 + 𝑓𝑖
2 𝑞𝑖2 = ±�𝑓𝑖

2 𝑠𝑖𝑛𝜃 𝑈𝑖1 − 𝑓𝑖 𝑠𝑖𝑛𝜃 𝑝𝑖 𝑈𝑖2 − 𝑓𝑖 𝑞𝑖 𝑈𝑖3�            (3-24) 

where 𝑈𝑖1, 𝑈𝑖2 and 𝑈𝑖3 are the three components along the 𝑒𝑟, 𝑒𝜃 and 𝑒𝜑 directions respectively. 

Because the point is on the axis, 𝑈𝑖3 is equal to 0 (proved by equation 3-40). As a result, the 

magnitude of 𝑈��⃗ 𝑖 is: 

�𝑈��⃗ 𝑖�
2

= 𝑈𝑖12 + 𝑈𝑖22                                                                                                                         (3-25) 

Then, Square the both sides of the equation 3-24, we have: 

�𝑓𝑖 𝑠𝑖𝑛𝜃 𝑝𝑖  𝑈𝑖1 + 𝑓𝑖
2 𝑠𝑖𝑛𝜃 𝑈𝑖2�

2
+ �𝑈𝑖12 + 𝑈𝑖22� 𝑓𝑖

2 𝑞𝑖2 = 0                                                        (3-26) 

This equation is correct if and only if 𝑓𝑖 𝑠𝑖𝑛𝜃 𝑝𝑖  𝑈𝑖1 + 𝑓𝑖
2 𝑠𝑖𝑛𝜃 𝑈𝑖2 = 0 and 𝑞𝑖2 = 0. Therefore, we 

have the differential equations of the single surface system: 

�𝑝𝑖  𝑈𝑖1 + 𝑈𝑖2 𝑓𝑖 = 0
𝑞𝑖 = 0                                                                                                                          (3-27) 

3.5 The Solution for Imaging Infinity Object 

For the single surface system, i is equal to 1. We suppose that the object s is at infinity. The image s′ 

is at the origin of the coordinates, as shown in Figure 3.3. Then, we have: 

𝑠 = (0,0, 𝑠3); 𝑠3 → ∞                                                                                                                     (3-28) 

𝑠′��⃗ = (0,0,0)                                                                                                                                     (3-29) 

The surface is expressed as: 
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𝑓1 = 𝑓1 𝑒𝑟                                                                                                                                         (3-30) 

where 𝑓1 is the function of 𝜃 and 𝜑. Then, the incident ray vector 𝑅�⃗ 1 is represented as: 

𝑅�⃗ 1 = 𝑓1 − 𝑠                                                                                                                                      (3-31) 

We define the magnitude of 𝑅�⃗ 1 as 𝐿1: 

𝐿1 = �𝑅�⃗ 1� = �𝑓1
2 + 𝑠32 − 2 𝑓1 𝑠 = �𝑓1

2 + 𝑠32 − 2 𝑓1 𝑠3 𝑐𝑜𝑠𝜃                                                   (3-32) 

The unit direction vector of the incident ray is defined as 𝑝1: 

𝑝1 = 𝑅�⃗ 1
𝐿1

                                                                                                                                             (3-33) 

Then, 𝑝11, 𝑝12 and 𝑝13 is defined as the three components of 𝑝1 along the direction of 𝑒𝑟, 𝑒𝜃 and 𝑒𝜑 

respectively. Therefore, 

𝑝11 = 𝑝1 𝑒𝑟 = 𝑓1−𝑠
𝐿1

 𝑒𝑟 = 𝑓1−𝑠3 𝑐𝑜𝑠𝜃

�𝑓12+𝑠32−2 𝑓1 𝑠3 𝑐𝑜𝑠𝜃
≈ −𝑐𝑜𝑠𝜃  

𝑝12 = 𝑝1 𝑒𝜃 = 𝑓1−𝑠
𝐿1

 𝑒𝜃 = 𝑠3 𝑠𝑖𝑛𝜃

�𝑓12+𝑠32−2 𝑓1 𝑠3 𝑐𝑜𝑠𝜃
≈ 𝑠𝑖𝑛𝜃                                                                    (3-34) 

𝑝13 = 𝑝1 𝑒𝜑 = 𝑓1−𝑠
𝐿1

 𝑒𝜑 = 0  

The image is at the origin, so the refracted ray passes through the origin. Therefore, we have: 

𝑅�⃗ 2 = −𝑓1                                                                                                                                         (3-35) 

The magnitude of 𝑅�⃗ 2 is given by: 
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𝐿2 = �𝑅�⃗ 2� = 𝑓1                                                                                                                                 (3-36) 

The unit direction vector of the refracted ray is defined as: 

𝑝2 = 𝑅�⃗ 2
𝐿2

= −𝑒𝑟                                                                                                                                 (3-37) 

Then, the three components of the 𝑝2 are represented as: 

𝑝21 = −1  

𝑝22 = 0                                                                                                                                            (3-38) 

𝑝23 = 0  

According to Snell’s law, the equation 2-2, we have: 

𝑈��⃗ 1 = 𝑛2 𝑝2 − 𝑛1 𝑝1                                                                                                                         (3-39) 

Then, the three components of 𝑈��⃗ 1 are calculated as: 

𝑈11 = 𝑈��⃗ 1 𝑒𝑟 = 𝑛2 𝑝21 − 𝑛1 𝑝11 = −𝑛2 + 𝑛1 𝑐𝑜𝑠𝜃  

𝑈12 = 𝑈��⃗ 1 𝑒𝜃 = 𝑛2 𝑝22 − 𝑛1 𝑝12 = −𝑛1 𝑠𝑖𝑛𝜃                                                                                 (3-40) 

𝑈13 = 𝑈��⃗ 1 𝑒𝜑 = 𝑛2 𝑝23 − 𝑛1 𝑝13 = 0  

At last, substituting the equation 3-40 into the differential equations 3-27, we have the equations of 

the single surface system: 

�
(−𝑛2 + 𝑛1 𝑐𝑜𝑠𝜃) 𝜕𝑓1

𝜕𝜃
− 𝑛1 𝑠𝑖𝑛𝜃 𝑓1 = 0

𝜕𝑓1
𝜕𝜑

= 0
                                                                                       (3-41) 
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Because of 𝜕𝑓1
𝜕𝜑

= 0, the equations are transformed into a first order ordinary differential equation 

under the initial condition, 𝑓1(0) = 𝑟1, which is: 

(−𝑛2 + 𝑛1 𝑐𝑜𝑠𝜃) 𝜕𝑓1
𝜕𝜃

− 𝑛1 𝑠𝑖𝑛𝜃 𝑓1 = 0; 𝑓1(0) = 𝑟1                                                                      (3-42) 

This equation can be easily solved by software on computer, MATLAB or Wolfram Mathematica. 

The solution is given by: 

𝑓1(𝜃) = (𝑛1−𝑛2) 𝑟1
−𝑛2+𝑛1 𝑐𝑜𝑠𝜃

                                                                                                                         (3-43) 

At last, the surface solution in Spherical coordinates is expressed as: 

𝑓1 = (𝑛1−𝑛2) 𝑟1
−𝑛2+𝑛1 𝑐𝑜𝑠𝜃

 𝑒𝑟                                                                                                                         (3-44) 

3.6 Conclusion 

The differential equations of a single surface image system are built in spherical coordinates. This 

system can perfectly image a point on the optical axis. For the point at infinity, a first order ordinary 

differential equation is derived, and the expression of the surface is obtained by solving the equation. 

Based on this solution, two lens design examples are introduced in the next chapter. These two lenses 

are designed as aberration free systems. 
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Chapter 4 

Lens Design Examples 

4.1 Introduction 

In order to assess the single surface solution obtained in the previous chapter, we provide two types of 

the lens design examples, a Plano-convex lens and a Bi-convex lens. The optical design software, 

ZEMAX, was used to simulate the lenses and evaluate their image qualities. ZEMAX produced by 

Radiant Zemax Ltd. can be used to visualize and analyze optical systems by ray tracing. We use 

ZEMAX to evaluate whether our systems are aberration free or not. 

4.2 A Plano-convex Lens Example 

We want to design a Plano-convex lens whose back focal length is 30 millimeter (mm). The lens can 

image an on-axis point at infinity without any aberration. The front surface of the lens is a plane 

surface, and the back surface is the solution from the Lagrange equations. The index of the lens is 

1.53, and the diameter of the lens is 16mm; therefore, the field of view of the lens is 30 degree. The 

field of view of a lens is defined as α: 

𝛼 = 2𝑎𝑟𝑐𝑡𝑎𝑛 𝑑
2𝑓

                                                                                                                                 (4-1) 

where 𝑑 is the diameter of the exit aperture of the lens, and 𝑓 is the back focal length. The incident 

rays are parallel to the axis because the object is at infinity. Therefore, the lens is same as the single 

surface system which has already been discussed in the previous chapter. The solution of the back 

surface is: 

𝑓1(𝜃) = (𝑛1−𝑛2) 𝑟1
−𝑛2+𝑛1 𝑐𝑜𝑠𝜃

 𝑒𝑟                                                                                                                     (4-2) 
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where 𝑛1 = 1.53, 𝑛2 = 1 and 𝑟1 = 30. The 𝑟1 is assigned to 30 mm here because the back focal 

length of the Plano-convex lens is 30 mm. In order to simulate the surface solution in ZEMAX, the 

exact solution 4-2 has to be fitted to the aspherical surface polynomial. In ZEMAX, we chose the 

surface type as extended even asphere surface to fit our solution, the equation 4-2. As a result, an 

approximation is needed. 

In ZEMAX, each surface has its own Cartesian coordinate. The optical axis of an optical 

system is defined as the rotational symmetry axis. The surface vertex is the origin of the coordinate. 

Both the x and y axis pass through the vertex and vertical to the optical axis. The aspherical surface 

polynomial in ZEMAX is defined as: 

𝑧(𝑟) = 𝑐 𝑟2

1+�1−(1+𝑘)𝑐2 𝑟2
+ 𝛼4 𝑟4 + 𝛼6 𝑟6 + 𝛼8𝑟8 + ⋯                                                                     (4-3) 

where the 𝑧(𝑟) represents the sag (height) of the surface. 𝑟 represents the radial distance from the 

optical axis. 𝑐 represents the vertex curvature, and 𝑘 is the conic constant. In this example, we assume 

that 𝑘 is equal to zero.  

Now, the form of the equation 4-2 need to be transferred from spherical coordinates to 

Cartesian coordinate. In terms of the equation 3-1 and 3-1, the transformation result can be obtained 

as: 

𝑧′(𝑟) = −�𝑛1
2 𝑟1−𝑛1 𝑛2 𝑟1+�𝑛12 𝑛22 𝑟2−𝑛24 𝑟2+𝑛12 𝑛22 𝑟12−2𝑛1 𝑛23 𝑟12+𝑛24 𝑟12

𝑛12−𝑛22
− 𝑟1�                           (4-4) 

Substituting 𝑛1 = 1.53, 𝑛2 = 1 and 𝑟1 = 30 into the equation 4-4, we have: 

𝑧′(𝑟) = 30 − 0.745767769(24.327 + √252.81 + 1.3409𝑟2)                                                      (4-5) 
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Then, we are looking for the curvature c and the coefficients 𝛼𝑖 (𝑖 = 4,6,⋯ ) in the equation 4-

3. To find the coefficients, we expand both 𝑧(𝑟) and 𝑧′(𝑟) into Taylor series. The curvature and 

coefficients can be obtained by comparing the coefficients in these two Taylor series. The equation 4-

4 and 4-5 are expanded at 𝑟 = 0: 

𝑧(𝑟) = 𝑐 𝑟2

2
+ �𝛼4 + 𝑐3

8
� 𝑟4 + �𝛼6 + 𝑐5

16
� 𝑟6 + �𝛼8 + 5𝑐7

128
� 𝑟8 +⋯+ �𝛼30 + 334305 𝑐29

67108864
� 𝑟30 + 𝑂[𝑟]31   

                                                                                                                                                           (4-6) 

𝑧′(𝑟) = 𝛼′2 𝑟2 + 𝛼′4 𝑟4 + 𝛼′6 𝑟6 + 𝛼′8 𝑟8 + ⋯+ 𝛼′30 𝑟30 + 𝑂[𝑟]31                                            (4-7) 

The values of the coefficients in the equation 4-7 are listed in Table 4.1. 

Table 4.1 The values of the coefficients in the equation 4-7 for the Plano-convex lens 

𝛼′2 = −0.03144654088050315 𝛼′4 = 0.00004169798135622274 

𝛼′6 = −1.105826968880959 × 10−7 𝛼′8 = 3.665804810362721 × 10−10 

𝛼′10 = −1.361035706321253 × 10−12 𝛼′12 = 5.414182919799957 × 10−15 

𝛼′14 = −2.256314924498844 × 10−17 𝛼′16 = 9.723558420697984 × 10−20 

𝛼′18 = −4.297799232069514 × 10−22 𝛼′20 = 1.937613678944548 × 10−24 

𝛼′22 = −8.87565175784872 × 10−27 𝛼′24 = 4.119176955752118 × 10−29 

𝛼′26 = −1.932711716297499 × 10−31 𝛼′28 = 9.152741543562206 × 10−34 

𝛼′30 = −4.369138887775922 × 10−36  

 

By comparing the coefficients of the equation 4-6 and 4-7, we can find the relation between 𝛼𝑖 

and 𝛼′𝑖 (𝑖 = 4, 6, 8⋯30), as shown in Table 4.2: 
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Table 4.2 The coefficient relation between the equations 4-6 and 4-7 

𝑐 = 2 𝛼′2 𝛼4 = 𝛼′4 −
𝑐3

8
 

𝛼6 = 𝛼′6 −
𝑐5

16
 𝛼8 = 𝛼′8 −

5𝑐7

128
 

𝛼10 = 𝛼′10 −
7𝑐9

256
 𝛼12 = 𝛼′12 −

21𝑐11

1024
 

𝛼14 = 𝛼′14 −
33𝑐13

2048
 𝛼16 = 𝛼′16 −

429𝑐15

32768
 

𝛼18 = 𝛼′18 −
715𝑐17

65536
 𝛼20 = 𝛼′20 −

2431𝑐19

262144
 

𝛼22 = 𝛼′22 −
4199𝑐21

524288
 𝛼24 = 𝛼′24 −

29393𝑐23

4194304
 

𝛼26 = 𝛼′26 −
52003𝑐25

8388608
 𝛼28 = 𝛼′28 −

185725𝑐27

33554432
 

𝛼30 = 𝛼′30 −
334305 𝑐29

67108864
  

 

Then, α′i can be calculated according to Table 4.1 and 4.2. The α′i values are given in Table 

4.3: 
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Table 4.3 The values of the coefficients ready for simulation for the Plano-convex lens 

𝑐 = −0.0628930817610063 

𝛼4 = 0.00007279499183890061 𝛼6 = −4.907996661105414 × 10−8 

𝛼8 = 5.186282893632812 × 10−10 𝛼10 = −9.400339032719032 × 10−13 

𝛼12 = 6.663149939644952 × 10−15 𝛼14 = −1.497754744437778 × 10−17 

𝛼16 = 1.097108696803296 × 10−19 𝛼18 = −3.886578503942006 × 10−22 

𝛼20 = 2.075874672935443 × 10−24 𝛼22 = −8.403331746444717 × 10−27 

𝛼24 = 4.28265150580097 × 10−29 𝛼26 = −1.875509824771732 × 10−31 

𝛼28 = 9.35476328887972 × 10−34 𝛼30 = −4.297219434120701 × 10−36 

 

Finally, we need to evaluate the approximate error. Because 𝑧(𝑟) and 𝑧′(𝑟) are expanded at 

𝑟 = 0. Therefore, the largest error occurs when 𝑟 is maximum. The maximum 𝑟 is equal to 8 because 

the aperture size of the lens is 8 mm. The error is given as: 

𝑧(𝑟𝑚𝑎𝑥) = 𝑧′(𝑟𝑚𝑎𝑥) + 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥                                                                                                      (4-8) 

𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 = |𝑧(𝑟𝑚𝑎𝑥) − 𝑧′(𝑟𝑚𝑎𝑥)| = |𝑧(8) − 𝑧′(8)| = 0.00001628865824                               (4-9) 

The error is small enough to be neglected. 

Now, we are ready to simulate the lens in ZEMAX. The steps for the simulation are illustrated 

in Figure 4.1. 
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First, we open ZEMAX, and set it into “Sequential Mode”. The “Sequential Mode” and “Non-

sequential Model” can be chosen in “File” menu. Keep “field data” and “wavelength data” as default. 

We only use one field in object space , and the field angle is zero. The wavelength is 0.55 microns as 

default. Click the “Gen” button on the shortcut bar to open the “General” window. In this window, in 

order to prevent the marginal rays being blocked by the aperture, we need to change “Aperture Type” 

to “Entrance Pupil Diameter”, and change the “Aperture value” to 16, which is same as the diameter 

of the lens, 16 mm. 

Second, we set up the surfaces in “Lens Data Editor” window. Insert two surfaces after “OBJ” 

which is the object surface of the system. Then, we set the surface data: 

Surface “OBJ”: 

Surf: Type Standard 

Comment OBJECT 

Radius Infinity 

Thickness Infinity 

  

Figure 4.1 The simulation steps in ZEMAX 
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Surface “1”: 

Surf: Type Standard 

Comment REFERENCE SURFACE 

Radius Infinity 

Thickness 20 

Notice: this surface is just for clearly illustrating the layout of the lens. We call it dummy surface. 

Surface “2”: 

Surf: Type Standard 

Comment FRONT SURFACE 

Radius Infinity 

Thickness 4 

Glass Model; 1.53 0.0 

Semi-Diameter 8 
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Surface “STO”: 

Surf: Type Ext Asphere 

Comment BACK SURFACE 

Radius -15.9 

Thickness Solve Type: Marginal Ray Height 

Height: 0 

Pupil Zone: 0 

Semi-Diameter 8 

Notice: The surface “STO” represents the stop or aperture. The radius of this surface can be 

calculated by taking the reciprocal of the curvature c, which is given in Table 4.3. The Marginal Ray 

Height Solve (M-Solve) is the solve type to find the paraxial back image distance[26]. 

Open “Extra Data Editor” window in “Editor” menu. In this window, we set the “Max Term#” 

of “STO*” surface to 15 and “Norm Radius” to 1. Then, input all the polynomial coefficients which 

are given in Table 4.3. 

Now, we can check the layout of the system by clicking the “Lay” button on the shortcut bar. 

The layout is shown in Figure 4.2. Only the chief ray and marginal rays are displayed here. Of cause, 

you can change the number of rays displayed in the “setting” tab. 
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The spot diagram can be found in analysis menu. It is shown as Figure 4.3. 

 
In Figure 4.3, the circle is the airy disk of the system. The radius of the airy disk is 1.22 times 

wavelength[27]. In Figure 4.3, we can see that the RMS radius of the spots is 0.179 microns. This 

Figure 4.2 The layout of the Plano-convex lens in ZEMAX 

Figure 4.3 The spot diagram of the Plano-convex lens in 

ZEMAX 
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value is much smaller than the radius of the airy disk, 2.756 microns. It is also found that all the spot 

are inside the airy disk. Therefore, the optical system is diffraction limited. 

The Huygens Point Spread Function can also be checked in the analysis menu, as shown in 

Figure 4.4. 

 
This figure illustrates that the Strehl Ratio of the system is 1. Strehl ratio refers to the ratio of 

the peak intensity of the point spread function (PSF) with aberrations to the peak intensity of the PSF 

without aberration. The unit Strehl Ratio means the lens is already aberration free[27]. 

4.3 A Bi-convex Lens Example 

We want to perfectly image the object not only at infinity but also at the mid-distant and near-distant. 

A Bi-convex lens can be designed to image near object. For example, we need image a point on-axis 

which is 1 meter from the vertex of the front surface of a Bi-convex lens; and the image is 30 mm 

away from the back surface vertex on axis. 

Figure 4.4 The Huygens Point Spread Function of the 

Plano-convex lens in ZEMAX 
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The design idea is described as following: first, according to the reversibility of the ray in 

geometric optics, one point can be imaged to infinity by the Plano-convex lens given in previous 

section; then, we use another Plano-convex lens to image this infinity image on the designed point; at 

last, we combine these two Plano-convex lenses to obtain the Bi-convex lens. 

We start at designing the first half of the Bi-convex lens. The previous solution, the equation 3-

44, is again used. This time, set n1 to 1.5, n2 to 1 and r1 to 1000 mm (1 meter). By the same way as 

the pervious example, we have the transformed solution as: 

−𝑧′(𝑟) = −1000 + 0.745767768(810.9 + √280900. + 1.3409𝑟2)                                         (4-10) 

The negative sign means that the surface is inversed. The polynomial coefficients can also be 

obtained by the same method as previous example. The results are shown in Table 4.4. 

Table 4.4 The values of the coefficients for the front surface of the Bi-convex lens 

𝑐 = 0.001886792452830189 

𝛼4 = −1.965464779650315 × 10−9 𝛼6 = 1.192643188648614 × 10−15 

𝛼8 = −1.134240068837495 × 10−20 𝛼10 = 1.850268731810085 × 10−26 

𝛼12 = −1.180357022358282 × 10−31 𝛼14 = 2.387904837416268 × 10−37 

𝛼16 = −1.574231065932167 × 10−42 𝛼18 = 5.019133815113658 × 10−48 

𝛼20 = −2.412709142674087 × 10−53 𝛼22 = 8.790181814979436 × 10−59 

𝛼24 = −4.031824265643405 × 10−64 𝛼26 = 1.589098111427521 × 10−69 

𝛼28 = −7.13356594083297 × 10−75 𝛼30 = 2.949197913834118 × 10−80 

𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 = |𝑧(8) − 𝑧′(8)| =  1.89654 × 10−13 

 

Again, the approximate error is so small that it can be neglected. 
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We continue building the Bi-convex lens on the previous Plano-convex lens, which, now, is the 

back half of the Bi-convex lens. We change the “Surf: Type” of the surface 2 from “Standard” to “Ext 

Asphere”. This surface represents the front surface. Keep other surfaces data same as the previous 

example. The setting for surface 2 is given as: 

Surface “2”: 

Surf: Type Ext Asphere 

Comment FRONT SURFACE 

Radius 530 

Thickness 3 

Glass Model; 1.53 0.0 

Semi-Diameter Solve Type: Automatic 

Open the “General” window from the shortcut tools, and change the “Aperture Type” to 

“Entrance Pupil Diameter”, and set the “Aperture Value” to 16. Then, open the “Extra Data Editor” 

window. Set the “Max Term#” to 15 and the “Norm Radius” to 1 for the surface 2. At last, input all 

the polynomial coefficients in Table 4.4 into the “Extra Data Editor” window. The layout is shown in 

Figure 4.5; the spot diagram is given in Figure 4.6; and the Huygens Point Spread Function is also 

illustrated in Figure 4.7. 
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Figure 4.5 The layout of the Bi-convex lens in ZEMAX 

Figure 4.6 The spot diagram of the Bi-convex lens in 

ZEMAX 
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Again, in Figure 4.6, we can find that the RMS radius, which is 0.2 micros, is much smaller 

than the radius of the airy disk, 2.758 micros. In Figure 4.7, the Strehl Ratio is 0.976, which means 

that the lens is an aberration free system. 

4.4 Conclusion 

The Plano-convex lens and Bi-convex lens for imaging distant and near point are designed in terms of 

the solution obtained in chapter 3. The Bi-convex lens is just a combination of two Plano-convex 

lenses. Both of the two lenses are aberration free. This is proved by analyzing the spot diagrams and 

Point Spread Function of the lenses in Zemax. 

  

Figure 4.7 The Huygens Point Spread Function of the Bi-

convex lens in ZEMAX 
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Chapter 5 

Conclusion 

The objective of the study was to introduce a new spectacle lens design technique, the Lagrange, 

which is different from traditional lens design methods. It is an inverse, analytic and three-

dimensional design technique, which helps in designing personalized spectacle lens. Comparing with 

traditional methods, the Lagrange solves unknown lens surface based on definable inputs and outputs 

(objects and images) according to customer requirements. This increases the degree of freedom and 

the flexibility of the design. The method is efficient for the spectacle lens which has limited surfaces. 

Moreover, in this method, the definable outputs make the simultaneous elimination of several 

aberrations possible. 

5.1 The Lagrange Method Conclusion 

The Lagrange is to solve an unknown optical system by the given input and output ray fields, which 

are unified vector functions with the system parameters as variables in terms of the object and image 

of the system.  In order to build the mathematic model of the lens systems in three-dimensional space, 

the Snell’s law is generalized to a vector form and combined with the surface normal in fundamental 

differential geometry. For a single aberration free surface to image a point at infinity, the Lagrange 

derives a system of partial differential equations, and the solution is an exact expression.  

In spherical coordinates, the differential equations of a single aberration free surface for 

imaging a single point is: 

�𝑝𝑖  𝑈𝑖1 + 𝑈𝑖2 𝑓𝑖 = 0
𝑞𝑖 = 0                                                                                                                            (5-1) 

where 𝑓𝑖 represents the 𝑖th surface in a multi-surface system; 𝑝𝑖 = 𝜕𝑓𝑖
𝜕𝜃

; 𝑞𝑖 = 𝜕𝑓𝑖
𝜕𝜑

 and 𝑈𝑖1, 𝑈𝑖2 and 𝑈𝑖3 

are the three components of the normal of the surface along the 𝑒𝑟, 𝑒𝜃 and 𝑒𝜑 directions respectively. 
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The differential equations of a single aberration free surface for imaging a single point at infinity are: 

�
(−𝑛2 + 𝑛1 𝑐𝑜𝑠𝜃) 𝜕𝑓

𝜕𝜃
− 𝑛1 𝑠𝑖𝑛𝜃 𝑓 = 0

𝜕𝑓
𝜕𝜑

= 0
; 𝑓(0) = 𝑟                                                                          (5-2) 

where 𝑟 is the distance from the vertex point of the surface to the image point. The solution of the 

equations is: 

𝑓 = (𝑛1−𝑛2) 𝑟
−𝑛2+𝑛1 𝑐𝑜𝑠𝜃

 𝑒𝑟                                                                                                                            (5-3) 

Based on this solution, two lens design examples were obtained to evaluate the Lagrange 

method. First, a Plano-Convex lens was design to image an on-axis point at infinity. The front surface 

of the lens was a plane surface, and the back surface used the equation 5-3. Second, a Bi-Convex lens 

can be designed to image near object. The Bi-Convex lens was just a combination of two Plano-

Convex lenses. In terms of the image analysis in ZEMAX, we found that these two lenses were 

aberration free. As a result, the solution from the Lagrange fitted our requirement of designing an 

aberration free system. 

5.2 Discussion and Future Work 

Traditional spectacle lens design is based on the two-dimensional (2D) ray tracing and aberration 

theory, which consider the lens system is rotational symmetric around an optical axis. This design 

method is a forward and numerical method, as explained in chapter 2, which is widely applied on 

finished lenses. The defects of the traditional lenses are obvious. First, the optical axis of the lens is 

also its rotational symmetry axis, and Snell’s law is approximately linear only in the paraxial area of 

the lens. As a result, only the center of the lens is well designed, and the image quality becomes 

worse towards the lens periphery. Second, the finished lenses have the limitations for the spectacle 

lens application because of the flexibility of the individual’s eye data. The human eye is a 
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complicated optical system, and the eye parameters vary with individuals. Moreover, the finished 

lenses do not always meet the various visual behavior requirements. 

Modern spectacle lenses tend to focus on semi-finished lenses or customized lenses which have 

two free-form surfaces. This personalized lens can combine individual’s eye parameters and their 

visual demands. Future work will focus on further application of the Lagrange for the personalized 

lens design. The Lagrange will be used to design the unfinished surface of the semi-finished lens 

according to the unique prescription of each patient. When the patient gazes through the lens 

periphery, the aberrations including oblique astigmatism, field of curvature, distortion and even 

spherical aberration will be eliminated. This means that the lens will have more than one optical axis 

in terms of the number of the gazing directions. In conclusion, a multi-axis surface designed by the 

Lagrange will be the objective in future. 
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