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Abstract

In a large number of applications arising in various fields of study, time series are
approximated using linear MMSE estimates. Essentially, the time series of interest is
estimated as a linear combination of the past values of the series itself, or other time series
that influence the former. Such approximations include finite order moving average and
autoregressive approximations as well as the causal Wiener filter. In this dissertation, we
study two topics related to the estimation of wide sense stationary (WSS) time series using
linear MMSE estimates. First, we study the convergence properties of finite order linear
MMSE estimates of a WSS time series. Next, we study the problem of detecting causal
connections within a family of WSS time series using linear MMSE estimates.

In the first part of this dissertation, we study the asymptotic behaviour of autoregressive
(AR) and moving average (MA) approximations. Our objective is to investigate how
faithfully such approximations replicate the original sequence, as the model order as well as
the number of samples approach infinity. We consider two aspects: convergence of spectral
density of MA and AR approximations when the covariances are known and when they
are estimated. Under certain mild conditions on the spectral density and the covariance
sequence, it is shown that the spectral densities of both approximations converge in Lo
as the order of approximation increases. It is also shown that the spectral density of
AR approximations converges at the origin under the same conditions. Under additional
regularity assumptions, we show that similar results hold for approximations from empirical
covariance estimates.

In the second part of this dissertation, we address the problem of detecting interde-
pendence relations within a group of WSS time series. The objective is to understand
the interaction of different time series and to determine whether one series is causally in-
fluenced by others. We use Granger-causality as a tool to identify and measure causal
connections. Ideally, in order to infer the complete interdependence structure of a complex
system, dynamic behaviour of all the processes involved should be considered simultane-
ously. However, for large systems, use of such a method may be infeasible and computa-
tionally intensive, and pairwise estimation techniques may be used to obtain sub-optimal
results. In this dissertation, we investigate the problem of determining Granger-causality in
an interdependent group of jointly WSS time series by using pairwise causal Wiener filters.
Analytical results are presented, along with simulations that compare the performance of
a method based on finite impulse response (FIR) Wiener filters to another using directed
information, a tool widely used in literature. The problem is studied in the context of
cyclostationary (CS) processes as well. Finally, a new technique is proposed that allows
the determination of causal connections under certain sparsity conditions.
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Chapter 1

Introduction

A time series is a sequence of data measured at successive instants of time. It can
be represented by an indexed set of observations {X(n)}ner, T C R; where typically, the
indexing set T is the set of integers Z or the set of positive integers N. Such sequences are
frequently encountered in a wide variety of applications, notably in the fields of statistics,
econometrics, statistical signal processing and mathematical finance. Examples of time
series include the amounts of rainfall at a certain town recorded daily, the daily closing
price of a stock, or the population of a country recorded annually.

When the observations are a set of random variables defined over a probability space
(Q, F, IP) and an index set T C Z, a time series is essentially a discrete time stochastic
process or a random sequence. If the statistical properties of the process do not change as
a function of the index n, it is called a stationary process.

The main purpose of time series analysis is to formulate efficient mathematical models
that facilitate characterization of the stochastic processes being studied. Quite often,
information related to the statistical behaviour of the process is contained in the past
values of the process itself, or in the past values of some other process that influences the
original process. Such a system is known as a causal system. The objective of modeling is
to accurately analyze and quantify the nature of this information flow from past to present.
This enables one to extract meaningful information from the set of observations, which can
be used to estimate the properties of the processes and to analyze the inter-relations of
multiple processes. These, in turn, facilitate the prediction of future values based on known
values from the past, i.e., forecast data before they are observed.

A popular approach in time series analysis is to use an estimation technique that
minimizes the mean squared error (MSE), which is a common measure of the quality



of estimation. Such an estimator is called a minimum mean squared error (MMSE)
estimator. When this estimator is a linear function of the values of one or more time
series, we call it a linear MMSE estimator. Autoregressive (AR) and moving average
(MA) estimates, as well as the causal Wiener filter; all belong to this class of estimators.

1.1 Motivation

Analyzing and estimating time series through linear MMSE approximations is a vast topic
and finds application in a wide variety of research areas. In this dissertation, two problems
related to the estimation of time series using causal linear MMSE estimators are addressed.
In the first part, we study the asymptotic properties of the autoregressive and moving aver-
age approximations as the model order approaches infinity. In the second part, we analyze
the causal interplay among a number of time series through linear MMSE approximations.

1.1.1 Convergence of the spectral density of finite order approx-
imations of stationary time series

Mathematical models for time series often involve a weighted sum of terms representing
values sampled in the past, either of the original process itself or of some other process that
carries information of the original process. Due to the limitation of computational power,
for all practical purpose such an infinite sequence has to be truncated up to a finite number
of terms, thereby reducing the exact model of infinite order to an approximate model of
finite order. It is of interest to explore how close such a finite order approximation is to the
original infinite order process, and how faithfully it replicates the properties of the latter.
In particular, one would like to inquire whether the properties of the approximated version
converge asymptotically to those of the original sequence as the order of approximation is
increased.

While some results are available on the convergence of the approximating finite order
autoregressive process in the time domain, there are not many on the spectral properties of
the same as the order of approximation approaches infinity. The spectral density of a wide
sense stationary (WSS) stochastic process is defined as the discrete time Fourier transform
of its covariance sequence and it represents the distribution of power over the frequency
domain. Furthermore, the value of the spectral density at the origin (i.e., at frequency
A = 0) is of special significance for stationary ergodic sequences because of the following
invariance principle. Let X,, = 23" X (k) where {X (k)} is a WSS ergodic process. Let
the value of the spectral density be finite at the origin and denote it by I'>. This quantity



is called the time average variance constant (TAVC) of the process ([!, 2]) and according
to the following version of the central limit theorem

V(X — p) = N0, FZ)

where = denotes convergence in distribution.

As a consequence of the above result, I'? plays a major role in the steady-state simulation
problem, where the objective is to compute the limit lim,, ., X,, where it exists ([3]).

Exact computation of autoregressive (AR) estimates require the knowledge of the co-
variance sequence of the original time series. However, in many practical applications, the
true sequence is unknown and has to be estimated from a finite sample of observations.
The limiting behaviour of the spectral density of the AR approximation, when computed
empirically from sampled data, is also an issue of interest. In this case, one has to find a
relation between the model order p and the sample size N that can guarantee convergence.
While there are some results available that study the asymptotic behaviour of the AR es-
timate computed empirically, many of these assume the associated innovation sequence to
be martingale difference. However, in most signal processing applications, as well as in the
simulation of Markov processes, the assumption that the driving sequence is a martingale
difference is too strong since all that can be guaranteed is stationarity of the underlying
stochastic process and the use of resulting Lo theory.

1.1.2 Inferring underlying causal structures in a family of sta-
tionary time series

Inferring dependence relations in a family of random processes from a finite set of obser-
vations is a problem encountered in many applications that arise in a diverse variety of
fields. Given a family of time series, the objective is to determine whether one process is
affected by the other, and, if possible, to quantify this influence. Granger-causality can be
used as a tool to measure such causal connections. The objective is to represent the causal
interconnections in the form of a connected graph, like the one in figure 1.1, where nodes
indicate individual processes and directed edges indicate causal influences.

Ideally, in order to infer the complete interdependence structure of a complex system,
one should simultaneously consider the dynamic behaviour of all the processes involved.
However, for a large system, use of such a method may be infeasible due to computational
burden. An alternative approach is to consider each pair of processes separately, detect
whether one causes the other, and finally use this information to infer about causal links
within the entire group. Examples of such pairwise techniques include the Wiener filter and



Figure 1.1: An Example of a graph representing causal interdependence within a family of
random processes

directed information. It is of interest to know to what extent such pairwise methods may
reveal the original interdependence relations of the system. Not many analytical results,
however, are available on the topic.

Furthermore, when causal interactions among time series are inferred and represented
as a graph, it is preferable to have a depiction which identifies and preserves only the edges
corresponding to the strongest dependences. Such a representation is devoid of weak or
spurious links and is much easier to interpret and use, compared to a complicated mesh of
many interconnections. There is therefore a need to incorporate the notion of parsimony
in the estimation technique through a sparsity constraint of some form, so that only the
most significant edges are preserved.

1.2 Contributions

In the first part of this dissertation, we analyze the asymptotic behaviour of the spectral
density of linear MMSE approximations of wide sense stationary time series. We consider
convergence with respect to an L, norm defined over the frequency domain. Under a mild
regularity condition, we show that, as the model order approaches infinity,

e The spectral density of the moving average (MA) estimate converges to that of the
original process in Ls.



e The spectral density of the autoregressive (AR) estimate converges to that of an
infinite order AR approximation in Ls.

e The time average variance constant (TAVC) of the AR estimate converges to that of
the infinite order AR approximation.

Next, we consider the case when AR parameters are computed empirically using the
estimated covariance sequence. Under additional conditions, we show that as the model
order p and the number of observations N both approach infinity, as long as p = o(N'/3),

e The AR parameters converge to the parameters corresponding to the infinite order
AR approximation in mean square.

e The spectral density of the AR approximation converges to that of an infinite order
AR approximation in mean over L.

e The time average variance constant (TAVC) of the AR approximation converges to
that of the infinite order AR approximation in mean.

In the second phase of this dissertation, we investigate the utility of the pairwise causal
Wiener filter in detecting Granger-causality within a group of jointly wide sense stationary
real-valued time series.

e We present analytical results on the efficacy of the causal Wiener filter in detecting
Granger-causality.

e We compare its performance with that of another popular pairwise estimation tech-
nique, namely, directed information, under a Gaussian framework and show that the
results are comparable.

e We derive a technique to estimate cyclostationary processes through time-invariant
AR estimates and extend the method to detect Granger-causality within a family of
cyclostationary processes.

e Finally, we present a technique that infers interdependence relations by eliminating
weaker connections and preserving only the strongest ones.

In the remainder of this chapter, we review some of the theoretical preliminaries that
are relevant to this research.



1.3 Wide sense stationary processes

Definition 1.3.1. Wide Sense Stationary (WSS) Process: Let {X(t)},.r be a real-
valued stochastic process defined over a probability space (0, F, IP) (with T C R). Let
IE[ - ] denote mathematical expectation and let px (-, -) denote the covariance of the process

{X(t)}, i.e.,
pxltn ) = B[ (X(00) - BLX0)]) (X(00) - BLX ()]
Then {X(t)} is said to be wide sense stationary (WSS) if

(i) It is second order, i.e., IE[X (t)?] < oo for allt € T
and
for all ty, to, T such that ty,to,t1 +7,to +7 €T,
(i) IB[X (t1)] = E[X (t; + 7)]
(Z’LZ) px(t1,t1 + 7') = px(tg,tg + 7')

For a WSS process, covariance is only a function of the separation between the two time
instants. As such, it is written as a function with a single argument, denoted by Rx(7):

px(tl,tl — T) = Rx(’7'> (131)

When the context is clear, Rx(7) is denoted by R(7). In particular, for discrete time WSS
processes, 7 can only take integer values. In such cases, the covariance sequence is defined
as the sequence {R(k)}rez. This notation is used in the remainder of this dissertation
while dealing with discrete time WSS stochastic processes.

When for a WSS process {X(n)}, IE[X(n)] = 0, the covariance sequence {R(k)} is
given by

R(k) = EIX ()X (n — k)]

Through the remainder of this dissertation, all processes are considered zero-mean,
unless mentioned otherwise.



Definition 1.3.2. Jointly Wide Sense Stationary (WSS) Processes: Let {X(n)},

{Y(n)} be two WSS processes defined over the probability space (2, F, IP) . The two
processes are said to be jointly WSS if

EXn)Y(n—-Fk)|=EXn+7)Y(n+71—k)| foralrkeZ

The quantity IE[X(n)Y (n — k)] is denoted by Rxy (k) and is termed as the cross-
covariance of {X(n)} and {Y'(n)}. Note that while the covariance sequence of a real-valued
WSS process is symmetric (i.e., R(k) = R(—k)), the same does not hold for the cross-
covariance of two real-valued jointly WSS processes. In general, Rxy (k) # Rxy(—k).

WSS processes are characterized by a quantity known as the power spectral density

(often simply referred to as spectral density), which provides a frequency domain repre-
sentation of the covariance.

Definition 1.3.3. Spectral Density: Let {X(t)} be a WSS process with covariance
Rx (7). The spectral density (or power spectral density) of {X(t)} is defined as the Fourier
transform of the covariance Rx (1) ([/], P-208). The spectral density of a real-valued
discrete time WSS process with covariance sequence {Rx(k)} is defined as the discrete
time Fourier Transform of {Rx(k)} and is given by

Sx(\) =Y Ry (k)e 2™, A e ( 1 1}

23
keZ

When the context is clear, the suffix y is removed.
The covariance sequence can be represented in terms of the spectral density as follows:

1/2
R(k) = / S(N)e2™ M d\

1/2

The Fourier Transform of a function f : R — C is defined when f(¢) is integrable or
square-integrable, i.e., when f € Ly or f € Ly. When f € Ly, i.e., when

/R )t < oo

the Fourier Transform of f is defined as ([5], P-9):

f\) = /R ft)e 2mMqt (1.3.2)
7



Under the additional condition that

/R|f()\)|d>\ < 00

the inversion formula
10 = [ Foneman
R

exists for almost all £. On the other hand, when a function f is square-integrable, i.e.,
when f € Lo with

/R F(B)Pdt < o

the Fourier Transform is defined in the following way. First, one defines the same when
f € LiN Ly, i.e., when it is both integrable and square-integrable, according to equation
(1.3.2). The definition is then extended to any square-integrable function using the fact
that Ly N Ly is dense in Ly ([5], P-157). It follows from Parseval’s identity that the Fourier
transform of a square-integrable function is square-integrable itself.

It follows that the spectral density of a WSS process exists when R(7) is an integrable
or square-integrable function of 7. For a discrete time stochastic process, integrability and
square-integrability translate to summability and square-summability respectively. More-
over, a summable sequence is also square-summable.

Likewise, for jointly WSS processes, {X(n)} and {Y(n)} the cross-spectral density
Sxy(A) is given by the discrete time Fourier transform of the cross-covariance sequence

{Rxy(k)}.

SX,Y()\) _ Z R)gy(k’)e_%m}\k

k=—o00

1.4 Causal linear MMSE estimators of WSS processes

Let {X(n)} and {Y(n)} be two real-valued discrete time WSS process defined on the
probability space (€2, F, IP) and the former is to be estimated using information from the
latter. Let Fy be the o-field generated by {Y'(n)} (Fy C F). An estimator of X (n), given
the process {Y(n)}, is a Fy-measurable function X (n).

Definition 1.4.1. The minimum mean squared error (MMSE) estimate of X(n), given
the process {Y(n)} is defined as the estimator X*(n) such that the mean squared error
E[(X(n) — X*(n))?] is a minimum among all Fy-measurable functions X (n).
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The MMSE estimator, in essence, is the conditional expectation of X (n) given Fy,
written as [E[X (n)|Fy]. It is the “best” estimator of X (n) among all measurable functions
of {...,Y(-1),Y(0),Y(1),...}.

While IE[X (n)|Fy] is the “best” estimator of X (n) given the complete information of

{Y(n)}, in general, depending on the statistical properties of the processes involved, it
may not be tractable. In such cases, it is often useful to use the linear MMSE estimator.

Definition 1.4.2. The linear MMSE estimator of X (n), given the process {Y (n)}, is the

estimator X*(n) where

X*(n) = Z a* (k)Y (n — k)
k=—00

and the parameters are chosen so that the mean squared error

E (X(n)— > a(k)Y(n—k))

k=—o0

is minimized when a(k) = a*(k) for each k.

Essentially, X*(n) is the “best” estimator of X (n) among all the elements in the closure
of the set of all linear combinations of {...,Y(—1),Y(0),Y(1),...}.

In the context of time varying processes, an estimator is termed as causal if it does
not use values from the future to estimate the present. Define Fy (n) as the o-field gener-
ated by {Y(n),Y(n —1),...}. Then the causal MMSE estimate of X (n) given {Y(n)} is
E[X (n)|Fy (n)].

Finally, the causal linear MMSE estimate is defined as follows.

Definition 1.4.3. The causal linear MMSE estimate of X (n) given {Y (n)} is an element
in the closure of the set of linear combinations of the present and past values of Y (n) of the
form X*(n) = 320 a*(k)Y (n — k) such that the mean squared error IE[(X (n) — X*(n))?]
is a minimum for X*(n) among all linear combinations > a(k)Y (n — k).

When the above estimate includes a finite number of terms from the past of {Y(n)},
we call it a finite-order linear estimate. In the general form, this is also tantamount to the
causal Wiener filter (when all the past values of {Y(n)} are used in estimation) and
the finite impulse response (FIR) Wiener filter (when only a finite number of past
values of {Y'(n)} are used).



Let {X(n)} and {Y'(n)} be two jointly WSS processes. The FIR Wiener filter of order
p that estimates X (n) using {Y'(n)} is given by

X(n) =Y wy(k)Y(n—k)
k=0

where the parameters {w(n)}, also known as the filter coefficients, minimize the mean
squared error. They can be computed by solving the Wiener-Hopf equations, given by

P
> w(j)Ry(k - j) = Rxy(k) for k=0,....p
k=0
where { Ry (k)} is the covariance sequence of {Y(n)} and {Rx y(k)} is the cross-covariance
sequence of {X(n)} and {Y(n)}. In this dissertation, we would be interested in estimating
X (n) using only the past values of {Y(n)} (starting from Y (n — 1)). The Wiener filter
estimate in that case is a linear combination of {Y(n —1),...,Y (n — p)} that minimizes
the mean squared estimation error.

In the remainder of this section, two more examples belonging to this class of estimators
are introduced. These are the moving average (MA) estimate and the autoregressive
(AR) estimate. We also discuss the autoregressive moving average (ARMA) model,
which is a combination of the MA and AR models.

Definition 1.4.4. Moving Average (MA) Estimate: A moving average estimate of
order p is the linear MMSE estimate of X (n) of the form

Xp(n) =Y ap(k)v(n — k)

where {v(n)} is a white noise sequence, i.e.,

Elv(n)v(n — k)] = {"” k=0

0  otherwise

It is thus a representation of X (n) in terms of a finite number of terms from a sequence
of white noise where the parameters {a,(k)} minimize the mean squared error.

Definition 1.4.5. Autoregressive (AR) Estimate: An autoregressive estimate of or-
der p for a real-valued WSS process {X(n)} is the linear MMSE estimate of X (n) of the
form

i



Thus it represents X (n) in terms of its p most recent values, where the parameters
{b,(k)} minimize the mean squared error..

A more general estimation approach is the ARMA model, of which both the MA and
AR models are special cases. An ARMA model is defined as follows.

Definition 1.4.6. Autoregressive Moving Average (ARMA) Model: An autore-
gressive moving average model of order p, q (written as ARMA (p,q)) for a real-valued WSS
process { X (n)} is the linear MMSE estimate of X (n) of the form

Xpq(n) = Z ca(Pv(n —j)+ Y dy(k)X (n — k)

where {v(n)} is a white noise sequence. The parameters {c,(k)} and {d,(k)} minimize the
mean squared error.

The Yule-Walker equations ([, 6, 7]) enable one to find the “best” ARMA model
of a given order. The equations are based on the principle of least square estimation and
are obtained by minimizing the mean squared error in estimation. Let h(n) be the causal
impulse response of a WSS process {X(n)} with covariance sequence {R(k)}. The Yule-
Walker equations for fitting an ARMA(p,q) model to {X(n)} with parameters {a(j)} and
{b(k)} are given by:

olc(k) f0<k<gq
0 ifg<k<p+q

R(k)+ > b(j)R(k—j) = {

where
q

—k
c(k) =) _alj+k)h*(j)

=0

and 02 = IE[?(n)]. These equations can be used to estimate a zero-mean WSS discrete time
stochastic process whose covariance sequence is known. If the original covariance sequence
{R(k)} is not available, R(k)s may be replaced with their empirical values, computed

through sampled observations.

Bolk) — %ZLWHX(”)X(”— k), |k|<N-1
v 0 k| >N

where N is sufficiently large.
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1.5 Granger-causality

Granger-causality is a mathematical tool that is widely used to quantify causal relations
between WSS processes [, 9]. A process {X(n)} is said to Granger-cause another process
{Y(n)} if the mean squared error in estimating Y'(n) from the past values of Y (n) (i.e.,
Y(n—1),Y(n—2),...) is greater than that in estimating Y (n) from the past observations

of both {X(n)} and {Y (n)} combined ( ie,Y(n—1),Y(n—2), ...and X(n—1), X(n—2),

) . In other words, the past values of {X(n)} carry additional information on Y'(n) that

is not available in the past values of Y (n) itself and therefore an inclusion of these values
reduce the error in estimation.

Definition 1.5.1. Consider a system of two WSS processes {X(n)}, {Y(n)}. Let the
system have a model order p. {Y(n)} is first modeled as an univariate autoregressive
process of order p with error Oy, i.e.,

Za (n—1i) + 0y (n)

=1

where the parameters {a(i)} minimize the mean squared error, and then modeled as an
autoregression that also includes past observations of {X (n)} with error Oy x :-

:Zb(@') n—z—i—z X(n—1i) + Oy.x(n)

where the parameters {b(i)}, {c(i)} minimize the mean squared error. {X(n)} is said to
Granger-cause {Y (n)} if
E[07] > BE[65 «]

Following Geweke [10, 11], the extent of Granger-causality can be measured through
the quantity known as Wiener-Granger causality from {X(n)} to {Y'(n)}, given by

(B
oy =l (Eww)

Granger-causality attempts to detect causality between time series by comparing mean
squared estimation errors. It may be noted that Granger-causality is only a tool to analyze
how a number of processes are inter-related, whether one process is truly caused by another,
is a deeper problem and of a more abstract nature.
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1.6 A Hilbert space of square-integrable random vari-
ables

The idea of a Hilbert space, i.e., a complete, inner product space, plays a fundamental role
in the theory of functional analysis. In this section, we briefly discuss how a Hilbert space
can be defined in the context of random variables ([12], P-15).

We begin by considering the space of all real-valued square integrable random variables
on (2, F, IP) , i.e., random variables X (w) with IE[X?] < oo and call this space Ly(IP).
Without loss of generality, let X, Y € Lo(IP) be two zero-mean random variables and
define

(X,Y) =E[XY]

It is easily verified that for X, Y, Z € Ly(IP) and o, f € R,

(i) (X,Y) = (Y, X)
(i) (aX +8Y,7Z) = (X, Z) + B(Y, Z)
and

(i) (X, X) = E[X?] >0

Moreover, IE[X?] = 0 & X = 0 almost surely.

Therefore, (-,-) satisfy the required properties of an inner product on Ly(IP). The
naturally defined norm of a random variable X, based on this inner product, is /IE[X?].
When X has zero mean, this is equal to the standard deviation of X. It can be further
shown that this space is complete with respect to the corresponding norm ([13], [12]). An
immediate consequence is the following theorem ([12], P-21, Theorem 2.4).

Theorem 1.6.1. Ly(IP) is a Hilbert space.

Recall that two elements a, b in a Hilbert space are said to be orthogonal to each other
if their inner product (a,b) is zero. In this case, a,b € Ly(IP) are orthogonal to each other
when [E[ab] = 0.

A very important result from the theory of Hilbert spaces is the projection theorem
([5], P-139).
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Theorem 1.6.2. Projection Theorem: Let G be a Hilbert subspace of the Hilbert space
H and let G+ be defined as

Gt={z€H:{(z,2)=0 for all z € G}
Let x € H. Then there exists a unique element y* € G such that x — y* € G+, and

—*ll = inf llz —
[l ="l = inf |z —yli
The element y* is called the orthogonal projection of x on G.

Let H be a Hilbert space of real-valued second order random variables and G be a
Hilbert subspace of H. Let x € H. Then, the orthogonal projection of x on G is the
(almost surely) unique element y* in G that minimizes ¢ = ||y — z||> = E[(y — z)?] for
y € G. If one considers y as an estimate of z, given the subspace GG, then ¢ is the mean
squared error in estimation. Therefore, the orthogonal projection of x on G gives the
minimum mean squared error (MMSE) estimator of z, given G. This theorem is thus of
great importance to estimation theory.

The theory in the next section is largely developed by exploiting properties of Hilbert
spaces in the context of second order processes.

1.7 Wold decomposition theorem

The Wold decomposition theorem enables a decomposition of any WSS process into an
infinite sum of orthogonal elements. In this section, we discuss the theorem for a real-
valued stochastic process. Note that the theorem is valid when {X(n)} is an R¥-valued
process.

Given a real-valued second order stochastic process { X (t),t € T} defined on (92, F, IP)
we can construct the space of all finite linear combinations of the form

n

> a(i)X(t), a(i) €R, t; €T

=0

and also include their limits in the mean square when they exist. The space Hyx, the
closure of all such linear combinations, is a Hilbert space with respect to the inner product
(-,-) defined above. It is called the Hilbert space generated by (the linear combinations of)
the process {X ()}, or (the closure of) the linear span of {X(¢)} ([12], P-21).
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For a second order discrete time stochastic process {X(n)},ez, we define Hy(n) as the
linear span of {X(n), X(n —1),X(n —2),...}, i.e., the closure of all linear combinations
of X(n) and all its past values. When there is no cause of ambiguity, the subscript X is
dropped and it is simply written as H(n).

H(n) is a Hilbert space with the inner product IE[-,-]. X(n) is an element of H(n)
but is (in general) not an element of the subspace H(n — 1). Define IE[Y|H (n)] as the
projection of the random variable Y onto the space H(n). By the projection theorem,
X (n) can be written as

X(n) = E[X(n)|H(n — 1)] + nx(n)

where the quantity nx(n) is an element of H(n) but is orthogonal to the subspace H(n—1).

In the same way, IE[X(n)|H(n — 1)] (which is an element of H(n — 1)) can further
be decomposed as a sum of two orthogonal components, one being its projection on the
subspace H(n — 2) of H(n — 1) and the other being the part orthogonal to H(n — 2). It is
easy to see that the second component, being an element of H(n — 1), is also orthogonal
to nx(n). If the procedure is repeated indefinitely, a representation of X (n) is obtained in
terms of the orthogonal elements nx(n), nx(n — 1), ... and the space N,ezH(n).

The process {nx(n)}nez is called the innovation process of X.

Definition 1.7.1. Innovation Process: Given a discrete time WSS process {X(n)},
the innovation process {nx(n)} is defined as

nx(n) = X(n) — E[X (n)|Hx(n - 1)]

Again, the subscript X is dropped when the context is clear. By construction, n(i) and
n(j) are orthogonal to each other, i.e., IE[n(i)n(j)] = 0, whenever i # j. It can also be
shown that when {X (n)},ez is WSS, {n(n)}nez is also WSS ([12], P-27). Without loss of
generality, it is assumed that IE[n*(n)] = 1.

Let the linear span of {n(n)},cz be denoted by N(n). The space N,z H (n) is denoted by
H_ and corresponds to the “remote past” of {X(n)}. It can be shown that N(n)®H_, =
H(n). The statement of the Wold decomposition theorem is as follows ([12], P-28):

Theorem 1.7.1. Wold decomposition theorem: Let {X(n)},cz be a discrete time
real-valued WSS process and let {n(n)}nez be the corresponding innovation process. Then,
X (n) can be written as

X(n)=U(n)+V(n) (1.7.3)

where
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(1) U(n) is the projection of X (n) on N(n), i.e.,
U(n) = E[X(n)|N(n)]

and has the representation

(i) V(n) is a (linearly) deterministic process. It is the projection of X (n) on H_, i.e.,

V(n) = E[X (n)| H_o)

A detailed derivation of the Wold decomposition theorem can be found in [12]. The
proof uses the same construction described in this section.

The above theorem allows us to write X (n) as

o0

X(n) = Za(k)n(n —k)+V(n)

k=0

It is clear from the preceding discussion that a(0) = 1. When {X(n)} is a (linearly)
deterministic process, it is completely determined from H(n — 1); i.e., X(n) € H(n — 1)
for all n, and the innovation process is the zero-sequence. In that case,

When, {X(n)} is purely non-deterministic or regular, H_,, = {0}, so that

X(n) =3 a(k)n(n — k)

k=0

When {X(n)} is a zero-mean, regular WSS process, the innovation process {n(n)} is
WSS and zero-mean as well. Moreover, by construction, (n(i),n(j)) = 0 for i # j and
[In(n)|| =1 for all n. Thus the above construction corresponds to a moving average-type
representation of {X(n)} of infinite order.

On the other hand, by the projection theorem, IE[X (n)|H(n — 1)] gives the minimum
mean squared error estimate of {X(n)} given the subspace H(n —1). As H(n — 1) is the
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closure of the vector subspace spanned by the linear combinations of the past values of
{X(n)}, E[X(n)|H(n —1)] can be seen as an infinite order autoregressive approximation
of X (n).

If we define H?(n — 1) as the linear span of {X(n —1),X(n —2),...,X(n —p)}, then
E[X (n)|HP(n — 1)] gives the pth order autoregressive approximation of X (n). Likewise,
the p-th order FIR Wiener filter estimate of X (n) from the past values of {Y(n)} can
be seen as the projection of X (n) on the subspace HY.(n — 1), the linear span of {Y(n —
1),Y(n—2),...,Y(n —p)}. The infinite impulse response (IIR) causal Wiener filter is a
projection of X (n) on Hy(n —1).

1.8 Organization of the thesis

In this chapter we have presented the motivation behind this research and have listed the
key contributions of this dissertation. We have also introduced some of the theoretical
concepts that would be used throughout this dissertation. The rest of this dissertation is
organized as follows. In chapter 2, a short survey of existing research literature on related
topics is presented. Results on the convergence of the spectral densities of the MA and
AR estimates using true covariances are discussed in chapter 3. In chapter 4, results on
the convergence of the spectral density of the AR estimate using empirical AR parameters
are presented, along with some simulation examples. This is followed by some results
on the performance of the pairwise causal Wiener filter in inferring Granger-causality in
large families of WSS time series in chapter 5. In chapter 6, we discuss a time-invariant
AR estimate for cyclostationary processes and extend this method to analyze Granger-
causality between two cyclostationary processes. In chapter 7, we present a technique
that infers Granger-causality under certain sparsity constraints on the interdependence
relations. Finally, the main contributions of this research are reviewed in chapter 8 and
possible directions of future research are discussed.
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Chapter 2

Literature Review

Analysis and estimation of time series through linear MMSE approximations have a long
and rich history of research. In this chapter, we discuss some of the major contributions
already available in literature. We begin with a brief introduction on the history of the
development of the estimation problem. Due to the vastness of the subject, in the subse-
quent sections, our focus will be restricted to some specific aspects of the problem that are
relevant to this dissertation.

2.1 Introduction

A major breakthrough in the area of MMSE estimation was achieved in the late 1920’s and
early 1930’s due to the contributions of Udny Yule and Gilbert Walker, who developed the
well-known Yule-Walker equations. In 1927, Yule [11] suggested the use of autoregressive
models to analyze time series data related to sunspots, in lieu of the then established
periodogram method. These methods were developed further by Walker in 1931 [15].
About the same time, Eugene Slutsky is attributed to have first demonstrated the method
of moving averages in the context of real data [16]. Shortly after, Norbert Wiener published
his work [17] on an optimal predictor that minimizes the mean squared estimation error in
case of a stationary signal mixed with additive noise.

The problem of estimating an infinite order process and its spectral density using a
finite order model is encountered in many applications, and has a long history of research
[18]. A detailed survey of the key papers and results in this area is available in [19]. In
general, there are two approaches for estimating the spectral density of a WSS process:
the parametric and the non-parametric. In the parametric methods one first solves the

18



Yule-Walker equations to fit an ARMA model to the available data and then obtains the
approximate power spectral density using directly the empirically computed parameters.
On the other hand, in the non-parametric approach, the spectral density is estimated as an
approximation of the discrete time Fourier Transform of the empirical covariance sequence,
given by:

2.2 AR approximations and their asymptotic behaviour

The autoregressive (AR) estimation problem becomes more complicated when there is no
a priori knowledge on the order of the process being estimated. In such cases one has to
estimate an order for the model, based on the available information so that it can provide
a “best fit” to the observed data. There are a number of problems that have been studied
related to the choice of an optimal order and much research has been devoted for such
choices.

The basic principle behind Akaike’s “Final Prediction Error” Criterion (FPE) [20], [21]
is a minimization of mean squared error for the one-step-ahead predictor developed using
the proposed model in comparison with an independent sequence of the original process.
The AR model order for which this error is the least, is chosen as the optimal order.

Another approach suggested by the same author is the famous Akaike Information Cri-
terion (AIC) [22]. Essentially, this method chooses a model order for which the Kullback-
Leibler distance between the model and the original process is the least. Several candidate
models for a given process can be ranked according to their AIC, with the model having
the least AIC providing the best estimate. Among a wide variety of applications, this
method can also be used to obtain the “best” order for an AR model of a discrete time
WSS process.

Related issues are the estimation of the power spectral density in the work of Parzen

[23, 24, 25]. In [23], the author attempted to compare the time domain approach of the
innovation process to the spectral approach in the context of estimating stationary time
series. In [24] and [25], the author reviewed the problem of estimating an infinite order AR

process from a finite order model and developed a criterion for selecting the order of the AR
model. This approach involves the introduction of the “Criterion AR Transfer Function”
or CAT function. For each model order M, this criterion computes the integrated relative
mean squared error of the spectral estimate of an AR(M) model and chooses that M for
which this error is minimized. A generalization of this approach was presented in [20].
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Other methods for model order selection include the Hannan-Quinn Criterion (HQC)
method [27] and the Bayesian Information Criterion (BIC) or the Schwarz Criterion [28, 29].
These approaches are also based on information theoretic considerations and can be used
as alternatives to the AIC.

In [30], the AR and the non-parametric “window” spectral estimation were compared
on the basis of an extensive simulation of series constructed from a variety of models. The
authors also commented on the relative merits of the FPE, AIC and CAT; and compared
the performances of the Burg method and the Yule-Walker Equations with respect to
spectral estimation.

Optimal order selection for AR models and various application still remains an active
research area. Recent publications include [31], [32] and [33]. Among these, [31] did a
comparative study of the AIC, HQC and BIC on the basis of simulation results while the
other two papers suggested slight modifications of the existing methods.

There have been a few works that have explored the nature and rate of convergence
of finite order estimates of WSS time series in the time and frequency domain. In [31],
asymptotic properties of finite-order AR approximations of an infinite-order AR process
were considered. It was shown that the model order selected through Akaike’s information
criterion (AIC) and its variants are asymptotically efficient. The asymptotic properties
of the AR approximation when computed from the same realization of a time series were
discussed in the works of Ing and Wei [35, 36]. As an extension of the result in [31], it was
shown in [30] that the asymptotic efficiency of the AIC is valid even when the predictors
are computed from the same realization.

A result on the pointwise convergence of the AR parameters was presented in [37]. A
very useful result in this context is Baxter’s inequality [38]. This result and its various
corollaries have been used in the literature to obtain convergence results that are similar to
the ones obtained in this research. In [39], it was shown that under certain assumptions on
the relative asymptotic rates of the model order and the number of observations, estimates
of the spectral density obtained from finite-order AR estimates are consistent. In the works
of Pourahmadi [10, 41, 42], the nature and rates of convergence of the AR parameters were
discussed for univariate and multivariate stochastic processes. Similar results on the rate
of convergence have been published in [13] and [11].

In practice, the AR parameters are often derived using estimates of the covariance
sequences and not the original covariance sequence of the process itself, as the latter is not
readily available!. While studying the asymptotic behavior of such estimates, one has to

"'We use the term “theoretical AR estimates” to refer to AR approximations based on solving the
Yule-Walker equations using the true covariances and the term “empirical AR estimates” to refer to AR

20



impose conditions on the relationship between the number of samples /N used for estimation
and the order of estimation p. It was shown by Berk [39] that the AR parameters derived
from an estimated covariance sequence converges in probability as long as p = o{ N %}
2. Mean square convergence of the AR parameters as the number of samples approaches
infinity while the model order remains finite was studied in [15]. In [10], the authors
proved theorems on the rate of almost sure convergence of the covariance estimates to
their true values, and subsequently derived the same for the AR parameters based on
AR models driven by martingale difference innovation sequences. Their theorems require
p = O{(In N)*} for some @ < oo. Among more recent works, [17, 18] and [19] have
studied the convergence of the estimated covariance matrix and AR parameters to their
corresponding theoretical values under similar assumptions. This assumption, however, is
too restrictive in the context of signal processing applications, where in many cases only
wide sense stationarity of the process can be guaranteed.

2.3 Determining causality within a family of WSS
time series

Complex systems consisting of several interacting units are encountered extensively in

various fields of study [50, 51], ranging from econometrics and finance to neuroscience,
climatology and ecology. Detailed discussions on the key issues and challenges in this area
have been presented in [52, 53] and [51], along with comprehensive surveys of the available

literature. Analyzing the interplay between the dynamic behaviour of the various units
involved and their interdependence relations has recently become a key issue in multidis-
ciplinary research [55, 50, 57]. Given a family of dynamic systems, the objective is to
analyze the interdependence relations among the individual units, and identify whether
one is influenced by the others. Such systems are often modeled as a group of stochas-
tic processes, and the interdependence relations among processes are represented in the
form of a graph, where nodes correspond to the processes involved and edges (directed or
undirected) indicate dependence relations [53]. The problem arises in a wide variety of

approximations based on empirical estimates of the covariance sequence.
2Standard notation:

k=o{Z} = Zlim |k(Z)|:O

—oo  |Z|

k(2]
4

k=0{Z} = lim sup < 00
Z— 00
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applications including economics, biology, cognitive sciences and ecology [58, 59]; and as
pointed out in [57] and [60], the issue of inferring information on the network topology
from a set of measurements is one that still lacks proper understanding.

One of the earliest works in the area was presented in [01], where the authors discussed
means to derive phylogenic connections among various organisms. For each of a large
number of species, a number of physiological characteristics were identified and quantified
in terms of numbers. The “closeness” of two species was estimated by computing the
product-moment correlation coefficient for the two; which was used in turn to reconstruct
a hierarchial structure. Similar work was done in [62], [63] and [(1], among others.

Another well-known approach [59] is found in the field of finance, where one is interested
in deriving a network-like structure for a given set of stock prices that evolve over time [65].
A metric is defined on the basis of correlation coefficients (the idea of such a metric was
introduced in [66]) and a hierarchical topology is obtained using the minimum spanning
tree approach.

The issue of determining interdependence among several time series was also studied by
[67], [68] and [69]. These papers suggested modified methods to estimate the correlation
matrix, which can then be used to derive network topology following the ideas developed
in [65].

Granger-causality [3, 9, 70, 71] has often been used to identify how one time series
“Influences” another. Essentially, a process {X(n)} is said to “Granger-cause” another
process {Y(n)} if given the past history of {Y'(n)}, the additional knowledge of the past
history of {X(n)} leads to a better prediction of the present value of {Y(n)} (ie., a
reduction in the mean squared error). The theory was further developed by Geweke [10, 11]
through an analysis of Granger-causality in the spectral domain. Related is the notion of
causal Wiener filters [17]; where one attempts to fit a linear predictor for Y'(n) using the
past values of {X(n)}.

A useful summary of some of the interesting works done in this field was presented in
[59]. A more recent survey on the research on Granger-causality across various fields of
applications, including graphical representations of causality can be found in [72].

Among the recent works that have addressed this problem, in [57], the authors proposed
a method in which driving signals were externally applied to the system and the dynamic
response was measured. The network structure was inferred by comparing this response
with the “undriven” dynamics of the system. A network of coupled phase oscillators
was considered and the required information was obtained by performing measurements
under different (and independent) driving conditions, under the assumption that all units
communicate with each other. In [73], a means of identifying modular structure within a
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given network was suggested by using the properties of phase oscillators. The notion of
Granger-causality was used in [71] to study the effect of one part of the nervous system
upon another. In [60], the authors considered a sparsely connected network and suggested a
methodology to reconstruct the topology in a noisy environment and under low availability
of data; using an L; minimization technique.

Information theoretic tools present a useful framework to investigate such influences.
While mutual information [75] is a symmetric quantity that only measures the amount
of information shared between random vectors without any insight on the direction of
information flow, it can be modified to develop asymmetric measures; including directed
information; a quantity that was introduced in [76] and subsequently formalized in [77]
and transfer entropy [78, 79]. In recent years, directed information has been used in the
context of identifying hidden causal links among time series [30, 81, 82].

It was pointed out in [$3] that when two processes are jointly Gauss-Markov, there is
an equivalence between Granger-causality and directed information. Equivalence relations
between the two were derived in [53] for Gaussian linear models and in [54] under fairly
general frameworks. In [31], it was shown that transfer entropy and Granger-causality
are entirely equivalent, for Gaussian variables. Similar results were presented in [32] in
the context of neural spike trains, where the authors developed an estimator of directed
information that infers causality.

When a system consists of more than two processes, ideally, observations from each
process should be simultaneously taken into account to detect the interdependence rela-
tions. For large systems, however, this is computationally demanding. Moreover, in most
practical applications, approximations of moments and covariances are used in lieu of their
true values, which may lead to the detection of false edges between nodes. Alternatively,
instead of considering all processes simultaneously, one can look at the interdependence
relations between each pair of processes. Even though estimating pairwise causal relations
of processes may fail to reveal all the interconnections of a network; it can provide valuable
information on the structure at much less computational costs.

In [85], the authors considered the problem of approximating the joint distribution
of multiple random processes where each node has at most one parent in the directed
information graph. Using the Kullback-Leibler (KL) divergence as the metric to find the
best approximation, it was shown that the optimal approximate joint distribution can be
obtained by maximizing the sum of pairwise directed information. In [30], the authors used
pairwise, infinite impulse response (IIR) Wiener filters to define a coherence-based metric
and then reconstruct the network topology as the minimum spanning tree connecting the
nodes. This method was shown to outperform the correlation-based methods, especially
when the number of available samples was low. In [58], sufficient conditions were derived
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to guarantee the exact reconstruction of the link structure of a network while considering
the coherence-based metric defined earlier. Similar methods based on the Wiener filter
were suggested in [87] and [59] along with several interesting analytical results.

An important consideration in MMSE estimation is often that of parsimonious model-
ing, a priority on keeping the model simple. When the interaction of several inter-dependent
agents are being described, it is particularly useful if the most significant dependences are
identified, as opposed to having a model which detects all dependences. Not only is a
model involving a smaller number of non-zero parameters easier to interpret, but it is also
more accurate as it eliminates some of the spurious connections detected because of inad-
equate data. In the context of a graphical representation of the causal connections of a
family of time series, it would be useful to restrict the number of edges going into a node,
so that only edges corresponding to the strongest influences are retained.

The above issue is often addressed through tools like the lasso (“least absolute shrink-
age and selection operator”) [88], where the optimal MMSE estimator is derived under a
constraint that enforces a bound on the absolute sum (the ¢; norm) of the parameters.
While this method does not directly restrict the number of non-zero parameters, it can
successfully reduce the less significant parameters while retaining the more influential ones,
and is relatively easy to implement. In [39], the authors provided a necessary condition for
the lasso variable selection to be consistent, and subsequently presented a modified version
where different parameters in the ¢; penalty where assigned adaptive weights.

An extension of the lasso method is the group lasso [90, 91], where estimation accuracy
is improved by dividing the prediction parameters in groups, and optimizing the estimator
through the implementation of a constraint on these groups. Conditions under which the
group lasso method consistently estimates sparse structures of causal connections were
derived in [92].

A lasso-based technique to measure causal relationships from time-course gene expres-
sion data was presented in [93]. In [941], the authors presented a comparative discussion
on various graphical Granger methods, including the lasso. A method similar to the group
lasso technique that seeks to identify the group structure among various lag variables in-
volved in a temporal model was discussed in [95]. Related is the method proposed in [90]
which derived sparsity connections under a Gaussian framework, or that of [387], where a
sub-optimal Wiener filter based algorithm was used to restrict the number of edges.

Achieving parsimonious models through the detection of the most significant groups
of parameters remains an area of considerable interest at present. In the context of the
problem of detecting Granger-causality among a number of time series, this is an area of
particular importance.
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2.4 Conclusion

In this chapter we have presented a short review of the available literature on finite order
approximations of time series and on the topic of inferring causal relations from the dynamic
response of a complex system. It is evident from our survey, that while the AR estimation
problem has been studied in some detail, and several issues, including that of an optimal
AR model order has been addressed quite thoroughly; few results are available on the
convergence of the spectral density of the approximating finite order AR process.

The main motivation behind the first part of this dissertation is to study the asymp-
totic behavior of the spectral density of finite order approximation models, as the order
approaches infinity, and to obtain conditions under which the spectral density of the ap-
proximation converges to the spectral density of the infinite order AR estimate of the
original process. We thereby identify a class of stochastic processes for which the spectral
density of the original process may be derived from that of an approximating AR sequence.
We look at convergence of the spectral density at the origin, and with respect to an L, norm
defined over the frequency domain. We also consider the case where the AR parameters are
computed empirically, using estimated covariances, and present conditions for convergence
of the spectral density of the approximating AR sequence. Some of our preliminary results
were presented in [97] and [98]. The main results of this part were published in [99].

Identifying interdependence and causal connections within a given collection of time
series, on the other hand, is a topic that has begun to attract significant interest in recent
years. While several techniques have been proposed for the purpose, the problem is still
not completely understood and many issues remain yet to be addressed. The objective of
the second part of this dissertation is to find ways to understand the interplay among a
number of time series and devise methods to detect causal dependence. We investigate the
efficiency of a simple pairwise estimation technique, i.e., the causal Wiener filter, in detect-
ing Granger-causality in a large system of time series and present some analytical results.
Furthermore, we also propose a sub-optimal method using pairwise FIR Wiener filters to
detect causal connections among families of WSS time series and compare its performance
to that of directed information through simulation. Noting that a large class of time se-
ries are cyclostationary, we propose a simple, time-invariant AR estimation technique for
such processes and use a similar idea to detect Granger-causality. Finally, we propose a
technique that restricts the number of edges in the graphical representation of a system of
interdependent time series through the implementation of a novel penalty function. Some
of these results were presented at [100].
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Chapter 3

Convergence of Spectral Density of
Finite Order Estimates of Stationary
Time Series

3.1 Introduction

Linear estimation of a time series from a finite number of past observations is a problem
encountered in a diverse variety of applications including econometrics, statistical signal
processing and neuroscience. This chapter deals with the spectral properties of finite
order linear approximations for a reqular zero-mean, real-valued wide sense stationary
(WSS) sequence with finite second moment. From the Wold decomposition [12, |, it
follows that such a process can be expressed as an infinite weighted sum of unit-variance,
uncorrelated random variables called the innovation process. This is a moving average
(MA) type model for the process. By a one-step application of the projection theorem,
on the other hand, one obtains an infinite order autoregressive (AR) model of the process,
wherein the process is expressed as a weighted sum of all its past values, plus the current
value of the innovation process. The main motivation of this research is to explore how
such models behave asymptotically, as the model order approaches infinity, and whether
the approximated versions approach the original process in the limit both in the time and
frequency domain. Specifically, we are interested in studying the asymptotic behaviour of
the spectral density of autoregressive (AR) and moving average (MA) estimates.
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We look at convergence of the spectral density at the origin, and with respect to an Lo
norm defined over the frequency domain. The motivation for considering convergence in
Lo comes from an Electrical Engineering perspective, noting that the spectral density of
a discrete time stochastic process represents the distribution of power over the frequency
domain, and that its square-integral over the domain of frequency is an indicator of the
total energy of the process.

Additionally, we also look at the convergence of the spectral density at the origin. Recall
that the time average variance constant (TAVC, denoted by I'?) of a WSS ergodic process
{X(n)} is defined as the spectral density of the process at the origin. If X7 = 1 ST X(n)
is the sample mean, then according to the central limit theorem due to Ibragimov and
Linnik [102],

VT(Xy - ) = N(0,T?)

where = denotes convergence in distribution.

In steady state simulations, where the objective is to find the limit of X; as T — oo
[3], T? plays an important role. The quantity can be estimated through approximations
for the spectral density at the origin, instead of directly estimating the moments.

We begin this chapter with a study of the asymptotic behavior of the spectral density
of MA estimates of a stationary time series. We consider a truncated version of Wold’s
equation, consisting of the first p terms of the sum. It is shown that for any p, this
truncated version gives the MMSE moving average estimation for the given process. Next
it is shown that this estimate converges in quadratic mean to the original process and when
the coefficients of the Wold expansion of the original process are absolutely summable (i.e.,
the sequence is in £; '), its spectral density converges to that of the original process in L.

Next, we study the asymptotic properties of the spectral density of AR estimates. In
this chapter, we consider the case where AR parameters are derived based on knowing
the true covariances of the original process. It is shown that when the spectral density of
the process is strictly non-vanishing in (—%, %] and its covariance sequence is absolutely
summable, the spectral density of the approximating AR sequence converges in Lo, and also
at the origin, as the order of approximation goes to infinity. In the context of simulating
Markov processes, this is a fairly general condition, as a non-vanishing spectral density is

guaranteed when a Markov process has a continuous spectral density [103].

'Let Z denote the set of integers.
Then, ¢; denotes the space of all real sequence {{;} such that 3, |{;| < o0
{5 denotes the space of all real sequence {1;} such that >, 912 < o0
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3.2 Preliminaries

Consider a zero-mean, regular, discrete time, real-valued WSS stochastic process { X (n) }nez
defined on a probability space (€2, F, IP). Let Lo(IP) denote the Hilbert space of random
variables with finite second moment with the inner product IE[-, -] defined thereon. Two
zero mean random variables XY € Ly(IP) are said to be orthogonal if IE[XY] = 0. Let
R(k) = IE[X(n)X (n — k)] denote the covariance sequence.

The spectral density S(\) is defined as the discrete time Fourier transform of the
covariance sequence.

11
_ k —2mAk A _ - =
> R(k)e , e( 2,2}

kEZ

For n € Z define the space H(n) = linear span of {X(n), X(n —1),X(n —2),...}.

Let Y be a random variable defined on Ly(IP). Define IE[Y |H (n)] as ‘the projection of
Y onto the space H(n) with respect to the inner-product IE[-,:]. Then IE[Y|H(n)] is the
minimum mean squared error (MMSE) linear estimate of Y given H(n).

Define {v(n)},ez as the innovation process associated with {X(n)},ez, i-e.,
v(n) = X(n) — E[X(n)|H(n - 1)]

with [E[v(n)] = 0 and IE[v(n)v(k)] = 62§(n — k), where (k) denotes the Kronecker delta.
Without loss of generality it is assumed that o, = 1. By construction, v(n) is orthogonal
to H(k — 1), for all & < n. The sequence {v(k)}rezr<n spans the subspace H(n) and
constitutes an orthogonal basis in Ly(IP) for the latter. Note that IE[X (n)|H(n — 1)]
corresponds to the MMSE linear estimate of X (n) given the space H(n — 1) and it can
therefore be written as a weighted sum of all the past values of X (n) as follows:

o

E[X(n)|H(n —1)] ib (3.2.1)

where the b(k)s minimize the mean squared error. The corresponding mean squared error
is

1D <X(n)—Zb(k)X(n—k)> = E[(X(n) - BIX()|H(n - 1)])’]

= E[*(n)] =1forall n (3.2.2)
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IE[X (n)|H(n—1)] is thus an infinite order AR estimate of X (n). On the other hand, being
a WSS process, X(n) may be expressed in terms of its Wold decomposition as follows
12, 101]. )
Za ) forall n € Z (3.2.3)
k=0

Withz la(k)|* < co and a(0) = 1.

This gives an infinite order moving average representation of X (n). The coefficients {b(k)}
and {a(k)} are related to each other as follows. For each k,

b(k) = a(j)b(k - j) (3.2.4)

Let p be a positive integer, and define the space H?(n) = linear span of { X (n), X(n—1),
X(n—2),... X(n—p+1)}, ie., the space of all linear combinations of the p most recent
values of the sequence at time n, including X (n); and all their limits in the mean square
when they exist. HP(n) is then a closed Hilbert subspace of H(n), for all p and n. Clearly,
H>(n) = H(n), by definition.

Define X ,(n) as the MMSE AR approximation of X (n) of order p. Then X,(n) is a
linear combination of {X(n — 1), X(n —2),..., X(n — p)} and is given by

X,(n) = B[X (n)|H(n — 1)] Zb (3.2.5)
where the coefficients b,(k) minimize the error IE[(X(n) — > F_ b,(k)X (n — k))?]. The
coefficients b,(k) can be obtained as solutions to the Yule-Walker equations [4, (] given by:

B,=R,'r, (3.2.6)
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where

R(0)  R(1) R(p—1)
R(1)  R(0) R(p—2)
R, = , |
R(p—1) R(p-2) R(0)

and

Let {R,(k)}rez and { R(k)} ez be the covariance sequences of X, (n) and IE[X (n)|H (n—
1)] respectively. Let Sx (A) and Sg(A) denote the respective spectral densities.

Sx,(0 = > Fy(k)e >

keZ

Sy()\) — Z Ekef%m)\k

kEZ

Finally, let Xp(n) denote the best p-th order moving average estimate of {X(n)} and
let S (A) denote its spectral density.

A sequence of random variables {X(n,w)} is said to converge to a random variable
{X(w)} in quadratic mean if the convergence is in Ly(IP). A sequence of functions f, :
( L 1} — R is said to converge in Ly when the convergence is in Lo (( L 1] ,R).

202 T 202
3.3 Moving average approximations of regular sta-
tionary sequences
Consider a moving average approximation of X (n) of order p, constructed using the inno-

vation sequence {v(n)}. Note by assumption, Var[v(n)] = 02 =1 for all n € N. We begin
with some results on the moving average estimate.

Pro~position 3.3.1. The best p-th order moving average approzimation of X (n) is given
by Xp(n) => 1 oalk)v(n—k).
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Proof. Let Xp(n) =Y 1_o a(k)v(n—k) be the p-th order moving average estimator of X (n)
and £(n) be the corresponding mean squared estimation error. Then

tEn) = E (Z a(k)v(n —k) =Y a(k)v(n— k))

| \k=0 k=0
F N )
= E (Z(d(k:) —a(k)v(n—k) = > a(k)y(n - k;))
L k=0 k=p+1
The MMSE estimate is obtained by setting
9¢(n)
=0for k=0,1,... 3.

Ja(h) 0 for 0,1,....p (3.3.7)

This gives a(k) =a(k) k=0,1,...,p (3.3.8)

Thus, the best p-th order moving average approximation of X (n) is given by a truncation
of the infinite sum up to the first p terms. n

The next result is related to the mean square convergence of the p-th order approx-
imation that readily follows from the properties of the innovation process and the Wold
decomposition.

Proposition 3.3.2. As p — oo, )N(p(n) converges to X (n) in quadratic mean.

Proof. The proof is trivial. We start by noting that as the process {X(n)} is square-
integrable, we have > 2 a?(k) < oo; since IE[X?(n)] = > 2, a*(k). Then,

lim E[(X,(n) — X(n))?] = limE ( > a(k)v(n— k:))

pP—00 p—00
=p+1
— : 2
- ;520(2 a <k>>
k=p+1
= 0 (3.3.9)

where we use the orthogonality of the v(n)s and the square-summability of the a(k)s. O
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3.3.1 Convergence of the spectral density in L,

For all functions F : (—1,1] — C such that f : |F(V)]?d\ < oo, define || - || to be the Ly

norm as follows:
171l - ‘ [ iroypa|

Proposition 3.3.3. Under the condition Y ;- |a(k)| < oo where {a(k)} denotes the se-

quence of coefficients in the Wold decomposition, the spectral density of )?p(n) converges
in Ly to that of X(n) as p — co.

l\.’:\»—‘

Proof. Let >"°,la(k)| = S. It follows from the properties of the innovation process, that
the covariance sequence of {X(n)} is {R(k)} where

k) =Y a(l)a(l -

=0

The spectral density S()) is given by

S = YD ala(l — k)e

keZ 1=0
_ Z a(l)e—le)\ Z a(l _ k:)627rz(l—k:))\
=0 l—k=—00

= ATNAT (=)
where for M, N € N

N
_ Z a(l)€—27rzl>\

=M

and
oo

AT\ =) a(he >

=M

Similarly, the spectral density of X,(n) is given by

Sg,(A) = AN A5(=A)
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Now consider

[s) =55, M| = 14 MNAF(=X) - 450 A5(-)]
= 11(AB) + A, >><Ap<—A>+Ap+1< N) -
= H Ag()‘>Ap+l )+Ap+1
< H Ag()‘) p+1 ”+||Ap+1

1
2

_|_

= |/ [1pa
3

where

/ AR
1

2

Li(p, A) = [AF(V) AR (= V)
Ly(p, ) = | A7 (MAF (=)

s (o) (3 o

Then, I(p,A) = [AB(N)IAZ

(=

2
k=p+1
and similarly,
Lp,A) = [AZL(VPIAS (=

IN

(z o

k=p+1

- sz(fjm(

k=p+1

Il(p7 >\) <

L(p,\) <

34

M

k)!)

Since the sum > .7, |a(k)]| is non-decreasing and converges to S < o0, for any given € > 0,
there exists a positive integer p such that 3 % |a(k)| <

N

€
4

NI LY

2S’

A""(—MH

1
2

k‘)l>2 (g Ia(k)l)2

so that

)

AN AT (=M

(3.3.10)

(3.3.11)

(3.3.12)



Combining (3.3.11) and (3.3.12) with (3.3.10) yields

Jsoo-ss 0] < (|, 5o + |/ 5

Thus, for any € > 0, there exists a positive integer p such that [|S(A) = Sg (A)|] < e for
all \. Therefore, Sg () converges in Ly to S(A) as p — oc. O

1
2

V)
™

+

t\.’)»—t

3.4 AR approximations of regular stationary sequences
based on true covariances

We begin by looking at the asymptotic behavior of the AR approximation given by (3.2.5).
Define v,(n) as the error in estimation corresponding to the AR-p approximation of {X(n)},
ie.,

vp(n) = X(n) — E[X (n)|H"(n — 1)]

Lemma 3.4.1. As p — oo, IE[X(n)|H?(n —1)] — E[X(n)|H(n — 1)] and v,(n) — v(n)
i quadratic mean.

Note that for all p € N

Ely,(n)|H(n—1)] = E[(X(n) = E[X(n)|H(n = D])|H(n - 1)]
= E[X(n)[H(n - 1)] - E[X(n)|H"(n - 1)]
= (X(n) - E[X(n)|H"(n - 1)]) — (X(n) — E[X(n)|H(n — 1)])
= vy(n) —v(n) (3.4.13)

Let E[v,(n)|H(n — 1)] = ¢,(n). Then ¢,(n) = v,(n) — v(n) and Ele,(n)] = E[v,(n) —
v(n)] = 0. As X(n) is a WSS sequence in n and v,(n) is constructed as a linear combination
of X(n), X(n—1), ..., X(n — p) whose coefficients do not depend on n, it follows that
vp(n) is also a WSS sequence in n. The variance of v,(n), then, is only a function of p.
Let Var[y,(n)] = o7. By (3.4.13), and the fact that v(n) is orthogonal to the subspace
H(n —1) (and hence to €,(n)) we obtain:

o2 = Var[v(n)] + Var[e,(n)]
1 4 Varle,(n)]

1+ E[ey(n)’]

1 forall pe N

v
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Note that for any ¢, p € N such that ¢ > p, H?(n — 1) C HY(n — 1). It follows then, that
E[X (n)|H9(n —1)] is at least as good a linear estimate of X (n) as IE[X (n)|H?(n — 1)}, in
terms of mean squared error. Therefore,

B[(X (n) — E[X (n)|H(n — 1)])*] < E[(X(n) — E[X(n)|H"(n - 1)])°]

and hence
2 2
op < T,

Hence, the sequence o2

, 1s a non-increasing sequence in p, bounded below by 1 and must
therefore have a limit as p — oo that is bounded from below by 1. It can be shown that

the limit is in fact equal to 1. A rigorous proof is available in [12, lemma 3.1(b)].

We now present a few preliminary lemmas that would be used to derive the convergence
results on the spectral density of the AR approximation. Throughout the rest of this
chapter, it is assumed that the spectral density S()\) is non-vanishing in (—%, %}

We start with the following lemma on the pointwise convergence of the coefficients b, (k)
[37, Proposition 3.1].

Lemma 3.4.2. As p — oo, b,(k) — b(k) for each k € N.

Proof. For cach p € Nand k € {1,...,p} define b,(0) = 1 and b,(k) = —b,(k). For any p,
vp(n) is given by

vo(n) = 3" B,(k) X (n — k)
k=0

The above can be written in the matrix form as v = BX where v = [1y(n — p) - - - v, (n)]7,
X = [X(n —p)---X(n)]" and B is a lower triangular matrix whose first column is
[00(0) - - - by(p)]”. The matrix B is invertible with inverse A which satisfies X = Av. The
inverse A is lower triangular with first column [ag(0)---a,(p)]” and the elements a,(k)

satisfy for all n € N

X(n) =Y ap(k)vp_r(n— k) (3.4.14)
and for p > k )
k
by(k) = — Z ap()by- (k = j) (3.4.15)

By definition, v,(n) and v,,(m) are orthogonal to each other for n # m and hence (3.4.14)
provides an orthogonal decomposition of X (n). Therefore,

E[X(n)vy_g(n—k)] = ap(k:)a;_,C (3.4.16)
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From (3.2.3), on the other hand, we have
E[X(n)v(n — k)] = a(k) (3.4.17)

However, by lemma 3.4.1, v,(n) — v(n) in quadratic mean. It then follows from (3.4.16)

and (3.4.17) that for all k € N

T [a,(k)o2_ — a(k)| = T [E[X (n)uyi(n — k) — X (m)un — )|
< lim [ELCOE,-r(n — k) = vin - )|
= 0
and hence plgr;o ay(k) = a(k) (3.4.18)

Finally, to show the pointwise convergence of b,(k) (and therefore that of b,(k)) first observe
that b,(0) = b(0) = 1 holds for all p. Let

Jim b,(7) = —b(7)
for all j < k. Then, using the recursive relation given by (3.4.15) and comparing with
(3.2.4), one obtains 3
lim b,(k+1) = —b(k+ 1)
pP—00
Therefore, by the principle of mathematical induction, as p — oo, Bp(k) — —b(k); ie.,
by(k) — b(k) for each k € N. O

Next, we present a key result on the summability of the AR coefficients known as
Baxter’s inequality [38, Theorem 2.2].

Let {X(n)} be a WSS process with spectral density function S(\) > 0 and let X ,(n)
be the p-th order MMSE linear predictor of X (n), defined by (3.2.5) and let o2 be the
corresponding mean squared error. Let {b(k)} be the limits of the coefficients {b,(k)} and
let % > 0 be the limit of JZ as p — oo (in our case 02 = 1 by lemma 3.4.1). Define the
sequence {u,(k)} as u,(k) = —b’;—(f) and let {U(k)} be the limit of {u,(k)}. Then, the
theorem is stated as follows. ’

Theorem 3.4.1. Baxter’s Inequality: Let S()\) is a positive continuous function whose
Fourier coefficients have v moments for some v > 0, i.e.,
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oo
Z m|cm| <0
m=0

where {c,,} are the Fourier coefficients. Then, there exists an integer N > 0 and a
constant ¢ > 0, both depending only on S(\) such that for allp > N,

p o]

D2+ INup(k) —UR) < e Y (27 + kDU K)]

k=1 k=p+1

Note that the Fourier coefficients of the spectral density are the elements of the covari-
ance sequence {R(k)}.

The above theorem can be used to establish the following lemma on the convergence of
the coefficients {b,(k)} as p — oo.

Lemma 3.4.3. When the spectral density of {X(n)} is strictly positive in A € (—3,1],
and the covariance sequence is in {1, i.e.,

ST IR()| < oo

kEZ
then
p
lim Y |b,(k) — b(k)| = 0
p—ro0
k=1

Proof. The proof is a simple application of Baxter’s inequality. Note that when the co-
variance sequence is in ¢q, the spectral density is continuous. Pointwise convergence of the
b,(k) to b(k) for each k follows from lemma 3.4.2. Moreover, summability of the covariance
sequence also implies that the sequence has a finite 0-th moment (v = 0 in Theorem 3.4.1).
It then follows from Theorem 3.4.1 that under the assumption that the spectral density of
{X(n)} is strictly positive in A € (—3, 1], there exists a positive integer N and a constant
¢ > 0 such that

) % - b(k)‘ <c Y [b(k) (3.4.19)

for all p > N. Since the covariance sequence has been assumed to be in ¢;, the sequence
of AR coefficients of the original process are also in ¢, [20], i.e.,
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Z|b )| < oo

Then, for any € > 0, there exists an mteger Ny such that

Z|b |<—

k=p+1
for all p > Ny. Define N* = max{N, Ny}. Then for all p > N*
[ )
2
=11 7p
Therefore,
p
b,(k
lim p(2>—b(k)‘20
P—00 — o,

It follows from the triangle inequality that

p p p
b,(k) — b(k) b, (k) b(k)
DT < D R+ | (k)
k=1 p k=11 P k=11 P
p 2 p
by (k) 1
< S|P o+ s
=11 p % =1
Therefore, as p — oo,
p 2 1 p
+ 1 P b(k
p—>00 ‘ p—)ookX: p ‘ pi)Igo 0‘?) ;| ( )l

By (3.4.20), the first limit on the right hand side is zero and by lemma 3.4.1,
lim 012, =1

p—00

Therefore,

p
lim )~ |b,(k) — b(k)| = 0
p—00

k=1
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The two main results of the following section are applications of the above lemma.

Lemma 3.4.4. If the spectral density S(A) > 0 for A € (-3, é] and the covariance sequence

is in l, ie.,
> IR(k)| < o0

keZ

Z|a )| < oo

i.e., the coefficients of Wold decomposmon are also in (;.

then

The above is a direct consequence of [104, Theorem 3.8.4, P-78].

3.4.1 Convergence of the spectral density in L,

Here we present a sufficient condition for the Ly convergence of the spectral density of the
AR approximation as p — oo.

Proposition 3.4.1. Let S(\) > 0 for A € (—3%,3] and let >, , |R(k)| < co. Then as
p — 00, Sx,(A) converges to Sx(A) in Lo.

Proof. We begin by noting that when the sequence { R(k)} is in ¢; and the spectral density
is strictly positive (as stated above), both {a(k)} (by lemma 3.4.4) and {b(k)} are also in
/1 and the conditions of Lemma 3.4.3 are satisfied.

For some p and k, R,(k) may be obtained from (3.2.5) as

Ry(k) = IE[X,(n)X,(n— k)]

= [E pr(j)X(n—j)pr(l)X(n— k—=1)

p—1 p—t

= ib;(j) +Z by(7)by(7 +t)(R(k—t) + R(k+1t)) (3.4.21)

t=1 j=1

Consider the WSS process given by > ¥_, b(7) X (n—j) and let { R,(k)} be its covariance
sequence. Proceeding as in the case of (3. i 21) we can obtain a similar expression for R, (k)
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as follows.

= S RGIRM) + X0 Y0 + O~ 1)+ R+ 1)

t=1 1

bS]
=

<.
I

so that for all k € Z

|Rp(k7) - }_%p(k” =

> (0#0) — BG)R(K)

p—
2
pt

< Z |(b*(5) = b5(5)) | [ R (k)

+ZZ| b(j +1) = bp(1)bp (5 + ) (|R(k = )] + [R(k + 1))

t=1 j=

pz: b(j+1t)—b,(j)by(j+1) (R(k—1t)+ R(k+1))

Jj=

Summing over all k € Z

S IR(4) ~ Ry(h)] < (Z\b? )~ B0

hez
+2p2§pzf|b b(j +1t) — bp(§)by(j + 1) )Z|R
= (ii [b(1)b(j) — bp(i)bp(j)!> ; | R (k)
< (;gw(i)llb(ﬁ |+;;Ib JI1b(7) i)|)%|3(k‘)|
< (g|b(i)|+§;lbp(i)|> <i§:|b(i)—bp(i)|> %!R(k)

As the covariance sequence has been assumed to be in ¢, the sequence {b(k)} is also in
¢y [26] and by lemma (3.4.3), as p — oo the second term of the above product goes to 0.

Finally, by the same lemma,
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P P
Ji 310,01 < Jims 32 00

Therefore,
lim > Ry (k) = Ry(k)| =0 (3.4.22)

Now note that

R,(k) = E[(X(n) ) = D )X (n - i)) (X(n k) —v(n+ k)

— R - J;bum(k —i)- i iRk + )
+fj BONELX (n + & — ()] + f; HOELX (0 — i) + B)]
B [(iﬂ b(i)X(n—i)) (iﬂ b(j)X(nJrk—j))]
— R(k)— Ailb(j)}%(k—j)— ilb(z’) (k+1) + zlb a(|k| - 7)
+(§: b(i)) +ZZb b(i +t)(R(k+1) + R(k — 1))

Therefore,

[Ro(k) =R(K)| < D PGIIRE =5+ D @R+ + Y b()lla(lkl = )]

Jj=p+1 i=p+1 j=p+1

+ ( > Ib(’i)!2> R+ > bOIIbG + 1)[(IR(k + )] + |R(k —t)])

i=p+1 t=1 i=p+1

Summing over all k € Z,
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SRy~ Rk < (iw )zm —m(zw )zu«mr

keZ kEZ i=p+1 keZ

+(.Z|b )Zra|k|—gr+(2|b )DR(k)
+ (Z’Z \b<i>nb<i+t>|) OILETIES L)

_ (Z |b<j>|) (2Z|R<k>r+2|a<k>\)

+ (Z Ib(i)|> > IR(K)

As p — 00, each term on the right hand side of the above inequality goes to zero, because
the covariance sequence and the sequences {b(k)} and {a(k)} are in ¢;. Therefore,

lim Y " |R,(k k)| =0 (3.4.23)
P ez
Combining the results of (3.4.22) and (3.4.23) we obtain
lim ) " [R,(k k)| =0 (3.4.24)
P e
Finally,
1
1 2 2
2 —_— J—
lim HS Sy()\)H — lim / S (By(k) - Rlk))e ™| dA
p=oo | J_1
~3 |kez
1
2
< I}Lrgo / Z IR, (k ) > d\
2 keZ
< 1 R,(k)—R
< lm (Z Ry (k) R<k>\>
keZ
=0
where (3.4.24) is used for the last equality. This completes the proof. ]
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3.4.2 Convergence of the spectral density at the origin

We now study conditions under which the spectral density of the finite order AR approx-
imation converges at the origin. As mentioned earlier, S(0) is referred to as the Time
Average Variance Constant (TAVC) and plays an important role in simulations.

Proposition 3.4.2. Let S(\) > 0 for A € (=1, 1] and let 3, ., |R(k)| < 0o. Then, asp —

o0, the spectral density of IE[X (n)|HP(n—1)] = X,(n) converges to that of IE[X (n)|H (n—
1)] at the origin.
Proof. Refer to equation (3.4.21) for an expansion of R, (k) for each k, for a given p:

p—1 p—t

:Zp:b?;(f) (k) + 3> " by ()b, + ) (R(k — t) + R(k +1))

t=1 j=1

Summing the above over all k£ € Z gives

> Ry(k) = (Zb;( +2zsz j+t>ZR(k‘)

keZ t=1 keZ
» 2
= (Z bp(j)> > R(k)
j=1 keZ
From where it follows that

lim > Ry(k) = lim (Z ) > R(k) (3.4.25)

J keZ

Proceeding similarly, using the expression in (3.2.1), one obtains the following expres-
sion for ), ., Ry:

> Ry = (Zb )2 > R(k) (3.4.26)

k€EZ kEZ

Recall that by lemma 3.4.3, under the stated conditions,

p
li by(k) —b(k)] =0
s D 105 (8) = bG8
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Clearly, then,
p
li b,(k) —b(k)) =0 3.4.27
JYim > (0(k) = b(k) (3.4.27)
ie.,

lim <zp: bp(k)) = <§: b(k)) (3.4.28)

Combining (3.4.28) with (3.4.25), and comparing with (3.4.26), we obtain

Tim Y R,(k) = (Z b(k)) "Rk = S RE)

keZ keZ

This completes the proof.

3.5 Conclusion

In this chapter, we have considered two kinds of finite order approximation for a real-valued,
zero-mean WSS process {X(n)}: a moving average approximation and an autoregressive
approximation. We have shown that both approximations converge in quadratic mean as
p — 0Q.

We have provided a proof of the convergence of the spectral density of an autoregressive
approximation of a WSS process when the spectral density is strictly positive and the
covariance sequence is absolutely summable. Thus, under the said conditions, the TAVC
exists and is well defined for the limiting AR approximation. Moreover, any unbiased
spectral estimator derived from a finite autoregressive approximation will converge to the
spectrum of the original process at the origin. This will enable easy approximation of the
TAVC of the original process, which plays a significant role in the context of steady-state
simulation.

Further, it has been shown that the spectral density of both the moving average and
the autoregressive type approximations converge in Lo when the spectral density is strictly
positive and the coefficients of the Wold expansion are absolutely summable. These are
fairly general conditions and are satisfied ny a large class of WSS stochastic processes.
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A sufficient condition for the spectral density of a WSS process to be strictly positive
is given in [105, theorem 11.2]. If {R(k)} is such that

R(k)+ R(k+2)>2R(k+1) for k >0

and
R(0) + R(2) > 2R(1)

then the spectral density is strictly positive. For a Markov process, the strict positivity of
the spectral density is guaranteed as long as the process has a continuous spectral density

[103].

For a zero-mean wide sense stationary process having an infinite order moving average
representation, one example where the condition ) ., |a(k)| < oo is met is the case
when R(k) tends to zero at an exponential rate as k — oo; i.e., there exists constants
C € R, a € (0,1) such that R(k) ~ Cal*l [106]. A more trivial example is that of a process
that has a finite order moving average representation. In such cases, the spectral density
of the original process can be approximated over A € (—%, %} from that of the finite order
estimate.
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Chapter 4

Convergence of Spectral Density of
Empirically Computed AR
Approximations of Stationary Time
Series

4.1 Introduction

In the previous chapter, results were presented on the asymptotic behaviour of the spec-
tral density of finite order MMSE estimates of WSS time series. However, due to the
unavailability of the actual covariance sequence of the process under consideration, in
most practical applications, AR approximations are computed using estimates of the co-
variance quantities based on a finite set of observations. In this chapter we study the
asymptotic behavior of the spectral density of AR approximations when they are derived
empirically. Throughout this chapter, the term “theoretical AR estimates” is used to refer
to AR approximations based on solving the Yule-Walker equations using the true covari-
ances and the term “empirical AR estimates” is used to refer to AR approximations based
on empirical estimates of the covariance sequence.

Define {X (n)} to be a strong mixing, regular, real-valued, zero-mean, discrete time
WSS process with a strictly positive spectral density and an absolutely summable covari-
ance sequence. The fourth moment of the corresponding innovation sequence is assumed to
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be finite. We study the asymptotic properties of the spectral density of the AR estimates
of such processes when they are derived using estimates of covariance computed using a
sample of size N. Under a mild assumption, we show that as long as the model order
p=o{N %}, spectral density of the AR estimate converges in mean with respect to an Lo
norm, as both p and N approach infinity. It is further shown that under the same condition
on N and p, the spectral density of the approximating AR sequence converges at the origin
in mean.

Finally, we study the spectral estimation of two WSS processes using AR parameters
through simulation for different sample sizes and model orders. These results complement
our theoretical findings.

4.2 Preliminaries

Recall that, when the true covariance sequence of {X(n)} is known, the AR parameters
are computed using the Yule-Walker equations (3.2.6).

B, = R;lrp
where
R(0) R(1) R(p—1)
R(1) R(0) R(p —2)
R, = ) : .
R(p—1) R(p—2) R(0)
mp = [R(1) R(2) ... R(p)]"
and

B, = [by(1) ... by(p)]"
B, as defined above gives the theoretical parameters for the p-th order AR estimate.
However, in practice, the covariance sequence {R(k)} of {X(n)} is often unavailable and

has to be estimated from a sequence of observations. Given an ensemble of N observations
of {X(n)}, R(k) is typically estimated by

Ry(k) = {% Sonc X ()X (n = |k), [k <N —1

(4.2.1)
0, k| > N

The p-th order AR parameters {b, y(k)} (for some model order p < N) are then estimated
by replacing R(k) with Ry (k) in the Yule-Walker equations:

B,n =R, \fp N (4.2.2)
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The corresponding AR estimate of X (n) is given by

Xpn(n) = by (k)X (n — k) (4.2.3)

Unlike the theoretical AR parameters {b,(k)}, which are fixed for a given p, the estimated

AR parameters {b, n(k)} - are random variables and in general, X,n(n) is different from
the theoretically derived X ,(n).

Let {R, n(k)}rez denote the covariance sequence of the estimates {X, y(n)}, condi-

tioned on the set of parameters B, n = [byn(1) ... by (D).
Ry, (k) = BLX,n (1) X, n (0 = k) [{ Bp,n )] (4.2.4)

Then {R, n(k)}rez is dependent on the parameters {b, x(k)} and thus a stochastic se-
quence. Let S %, N()\) denote the corresponding spectral density.

Sg ) =D Ry n(k)e >

kEZ

For a given N and p, the spectral density of {X, v(n)} is not a deterministic function but

a stochastic process defined on (—%, %] x(Q, F, IP). For a fixed value of A\, Sy ()) is a
p,N

random variable.

Let ||-||, denote the vector Euclidean norm and let |||, and ||| denote the spectral
norm and the Frobenius norm of matrices respectively.

Let {X(n)} be a real-valued, WSS sequence that is strong mixing and whose innovation
sequence has a finite fourth moment. As in [15] (a similar assumption can also be found
in [39]) we assume that the following condition holds.

A 4.2.1. There exists an Ny € Z such that for all N > Ny and for all p < N,
HR;l(Rp,N - Rp)H2 < Ky <1

Lemma 4.2.1. At any instant n, for any l,m € {1,...,p}, X(n—1)X(n—m) are asymp-
totically independent of the empirical AR parameter set {Bp N} as |(n —p) — N| — oc.

Proof. The above follows from the fact that {X(n)} is a strong mixing process. The
difference |(n — p) — N| indicates the separation in time between the computation of the

parameters b, v (k) and the finite past of {X(n)} used in its autoregressive approximation.
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Let F/ = o{X(t) : i <t
{X(@@),....,X(5)} Let A
coefficient oy as follows:

< j} be the sigma-algebra generated by the random variables
€ F' o and B € Fg¥, with t > 0. Define the strong mixing

0 = Sup P(AN B) —P(A)P(B)|

By the strong mixing property, we have

lim sup |[P(AN B) —P(A)P(B)| =0

t—o0 A,B

For some positive integer N, Ry (k) is FY,_-measurable (as per its definition in (4.2.1))
for k € {1,...,N}. Bach b, (k) is a measurable function of Ry(1),..., Ry(N); and
therefore also F_-measurable, for k € {1,...,p}. On the other hand, the product terms
X(n—1)X(n—m) are F° -measurable for [,m € {1,...,p}. Let o{Bp.n} and o{X(n —
1)X (n—m)} denote the sigma-algebras generated by {b, y(k)} and X (n—1)X (n—m) with
k,l,m e {1,...,p}. Then,

J{BP,N} c F¥_and o{X(n — )X (n—m)} C Fol,

From the strong mixing property, it follows that for any C € U{Bp, ~ntand D € o{X(n —
lim  |P(C'ND)—PC)B(D)| =0

|(n—p)—N[—o0

and the result follows. O

As a corollary, it also follows that

lim | E[by,n (k)byn ()X (0= X (n=1m)] ~IE[by,n (k) by n (/) ELX (n—0) X (n—m)]| = 0

|(n—p)—N|—o0
Thus, whenever (n — p) >> N, b, ()b, (j) and X (n — 1)X (n — m) are uncorrelated.

Lemma 4.2.2. Let R(k) be the covariance sequence and let }?N(k) be its estimate defined
by (4.2.1). Let the spectral density S(\) be square-integrable, i.e.,

N

/ (S(\))%dA < o0

N |=

and let E[2(n)] < oo. Then, for large N, E[(Ry(k) — R(k))?] < B where K; is a
constant.

50



Define ¢y (k) as the least-square estimate of R(k), i.e.,

> X(n)X(n— |k|) for [k < N —1

n=|k|+1

1
en(k) = Nk

Hannan[107, P-39] has shown that

lim (N — [k])IE[(cn (k) — R(K))] < K

N—o0 -

where K is some positive constant. The result follows readily, observing that ]A%N(k:) =

N;k‘ CN(kJ).

Next we present a key lemma on the mean square convergence of the AR parameters.
This result is stronger than that by Berk [39] where a convergence in probability of the
AR parameters was shown.

Lemma 4.2.3. Let {X(n)} be a real-valued zero-mean, strong mizing, wide sense station-
ary process with covariance sequence {R(k)} and spectral density S(\) such that {R(k)}
is summable and S(X\) is strictly positive for X € (—3,3]. Let A 4.2.1 hold and let

272
E[v*(n)] < oo. Then, when model order p = o{N3}

lim I (Dbp(k)—},]v(k)\) =0

Proof. Begin by noting that the conditions of lemma 4.2.2 are satisfied as a square-
summable covariance sequence guarantees a square-integrable spectral density by Parseval’s
theorem. Recall that > 7 (b, n(k) — by(k))? gives the square of the Euclidean norm of the

difference between vectors B, and Bp, N-

It follows from the strict positivity of the spectral density that HR}j 1H , 18 bounded
for all p [108]. ||7rp]|, is bounded as the covariance sequence is square-summable. Let
(supp ||R§ 1H 5 7ol )2 = K. Recall also, that the Frobenius norm of a matrix is always
at least as large as its spectral norm.

Let Ry Y (Ry N — R,) = Cpn. Observe that

A~

-1
RP,N

= IR+,
< 1B, 2+ Con)
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By A 4.2.1, for all N > N, the quantity (I + Cp n)~* can be expanded as a power
series and we obtain

N, < IR, I+Z(—C ~)F
= 2
< s, (1431 mu)
< B3, 1+2Kz;)
k=1
=
1—- K,

Therefore, HR;lN

‘ is bounded for all N > Ny. Let
2

sup R_NH = K3
p<N,N>Np
B~ Bos], = s = ]

= R;]-(RP’N R )Rp N,rp + R;}V( IFP,N)

2

< o], (1R R = Rl = el )
A p A
< || B, p Y (R(k) = R (k)2 | RS, Il
k=—p
+ | By, Z(R(k)z%N(k))2)
=—D

It follows, then, that
2

E{(HBP—B,,,N‘LH < Ky(2p+1) sup IE[(R(I@)—RN(k)Y}( K2p+1>

7p<k<p

< Ky(2p+ 1)t (\/K2 +1)

52



where lemma 4.2.2 has been used. Therefore,

e [(E-su) | < (-l

K
< lim Ksp(2p + 1) Nl (VEp +1)°

Clearly, when p = o{ N é} ! the above limit is zero. This completes the proof. O]

4.3 Convergence of the spectral density of the empir-
ical AR estimate

4.3.1 Convergence of the spectral density in L,

In this subsection, we study the asymptotic behavior of the spectral density of the em-
pirically derived AR estimate with respect to an L, norm. As before, for all functions

F:(—=3,3] = Csuch that [, [F(A)]*d)\ < oo, define || - || to be the Ly norm as follows:
2

IF| = ‘ / e

We consider the limiting properties of HIE HSXp v SYH H as both p, N go to infinity.

l\)\»—‘

Proposition 4.3.1. Let {X(n)} be a real-valued zero-mean, strong mizing, wide sense
stationary process with covariance sequence {R(k)} and spectral density S(X\) such that
{R(k)} is in 01 and S(X) is strictly positive for X € (=1 1]. Let A 4.2.1 hold and let

202
E[v'(n)] < oco. Then, when model order p = o{Né}; as p — 00, HSXpN — SYH H

converges to 0.

IStandard notation:

_ _ |k(Z)]

_ L IR
E=0{Z} = Zlgl(l)obup 7 < o0
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Proof. Consider the p-th order AR estimate 3}, b,(k) X (n—Fk) and its covariance sequence
{R,(k)}, given by (3.4.21):

:ibg(j) +pzp2bp by(j +t)(R(k —t) + R(k + 1))

It follows from (4.2.4), that

Ryn(k) = E[X,nn)X,n(n—k){Bpyn}]
_ [(zb,,N n—j>zép,N<z>X<n—k—z>)'{BP,N}]
=1
_ zpjza +prZbPN Voo w (G + £ (R — £) + R (k + 1))

where R*(k) = IE[X (n)X (n — k)|{Bp.n}]. When the parameters {b, (k)} are computed
sufficiently ahead of time from the current ensemble of the finite past of {X(n)}, ie., when
(n —p) >> N, R*(k) can be replaced by R(k) by virtue of the asymptotic independence
shown in lemma 4.2.1 and we obtain

k) = zpj byn(7)2R Z i bon(j+1)(R(k—1t)+ R(k+1)) (4.3.5)

For all k € Z

o4



Summing over all k£ € Z

> [Ryn(k) = Ry(k)

keZ

< ( by (i) () — bp@bp(j)y) > IR
< (;;m DNl ) |+;;|b Ml () )%m
- (Z by (0)] + Z |bp<z'>|> (Z by (i) - bp@)\) > IR(k) (4.3.6)
Then, 7 7 7
HIEHSXW—SYHH — ]E[%ZZ(RPN(k)—E(k))eXp 2mixk H
< B[ et T %@p(m—mn‘

(4.3.7)

It was shown in proposition 3.4.1, that under the given conditions, the second term of
the above inequality goes to zero as p (and N) goes to infinity. From (4.3.6), it follows
that,
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A}EOIE Z|RP7N(k)_§p(k)|

< lim IE[ <Zrép,w<i>|+§j|bp<z'>|) (Z\Bpw—bp(m)]
> IR(k)]

< (i) g (2| (000

IE (Z |Bp,N(i) - bp(i)‘)

+ <Z !bp(z')!> E [(Z by (1) — bp(i)|>] ) (4.3.8)

where we use the Cauchy-Schwarz inequality. It follows from Baxter’s inequality [38,
Theorem 2.2] that (>_7_, [b,(¢)|) is bounded for all p. By lemma 4.2.3,

. 2
IE [( P b (i) — bp(z')]> converges to zero. Consequently, the lower moment

E [(Z |6p,N(i) - bp(i)l)]

goes to zero as well. Finally, it can be shown using Baxter’s inequality and lemma 4.2.3 that
. 2
limy 00 [E {( b |bp7N(i)|> } is bounded. Therefore, the first term in equation (4.3.7)

converges to zero and the result follows. O

4.3.2 Convergence of the spectral density at the origin

Finally, we present a result on the convergence of S (0) to Sx(0).
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Proposition 4.3.2. Let {X(n)} be a real-valued zero-mean, strong mixing, wide sense
stationary process with covariance sequence {R(k)} and spectral density S(\) such that
{R(k)} is in 01 and S(X) is strictly positive for X € (—=%,3]. Let A 4.2.1 hold and let
E[4(n)] < co. Then, when model order p = o{N3}, as p — oo, S, v (0) converges to

S+(0) in mean.

Proof. Refer to (4.3.5) for an expression for the estimated covariance R, y (k). Summing
these terms over all k € Z gives

S ) = (LA + 23 X bt +1)) X R0
= (Zép,m)) > R(k)

Using the expression for Y, , R(k) derived in (3.4.26), we obtain

= B ZRPN(IC)_ZE(]‘C)
= E (Z%Nm) —(me) > R(k)
= E ZBpN(J)+Zb(j)) < BpN(])_Zb(])) > R(k)

IN

1D (ZEP,NUHZMJ')) E (ZBP,N@)—Zb(j)) > R(k)

Jj=1 J=1

where the Cauchy-Schwarz inequality has been used at the last step. By construction,

A

R, N is a positive semi-definite Toeplitz matrix [15]. Consider the characteristic polynomial
given by:

~ ~ ~

P(:L') =1- bp,N(l)m - bp,N(Q)x2 - bva(p)ZL‘p

57



Since ﬁp, N s positive semi-definite, P(z) must have all its roots outside the unit disk [109,

P-540], [110]. Tt follows, then, that the algebraic sum of the parameters b, 5 (k) is bounded
by 1 [111]. Similarly, the sum of theoretically derived AR parameters, i.e., >, _, by is also
bounded by 1. Therefore,

E [[S5, ,(0) = Sx(0)]

<2 |E (Zép,N(j>—Zb(j>>

Jj=1 Jj=1

> R(k)

=0
by lemma 4.2.3 and lemma 3.4.3. ]

4.4 Simulation results

In this section, we present simulation results for the spectral estimation problem using
AR approximations based on a finite number of observations. The WSS processes under
consideration include an AR(12) process and an ARMA(4,4) process. Note that the first
process has a finite order AR representation while the second has an infinite order AR
representation. The AR(12) process is given by

X(n) = v(n)+09X(n—1)—0.75X(n —2)+ 0.8X(n —3) —0.6X(n —4) + 0.5X (n — 5)
045X (n — 6) + 0.3X(n — 7) — 0.25X (n — 8) + 0.15X (n — 9) + 0.05X (n — 11)
+10.25X (n — 12)

and the ARMA(4,4) process is given by
X(n) = v(n)+09v(n—1)—0.5v(n—1)—0.2v(n—3) +0.1v(n —4)
H0.7X(n — 1) — 0.6X (n — 2) + 04X (n — 3) — 0.5X (n — 4)

The spectral densities of these two processes are given in figures 4.1 and 4.2 respectively.

Two types of innovation process are considered. First, the innovation sequence {v(n)} is
generated from a standard normal distribution. Next, {v(n)} is generated from a Gaussian
mixture distribution with the following parameters:

p=[-05 —0400405"; o®=[25.441134 1.1]"; w =1[0.250.15.2 .3 .1]"
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Figure 4.1: Spectral density of AR(12) process under consideration
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Figure 4.2: Spectral density of ARMA(4,4) process under consideration
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where p, 02 and w denote the expectations, variances and weights of the respective com-
ponents.

For both types of innovation, samples of sizes 1000, 20,000 and 100,000 are drawn
arbitrarily; and for each sample size, various model orders are considered. Using the

empirical AR parameters [b, v(1) ... b, n(p)]”, the spectral density is estimated as
. 1
S (M) = pq 2mink P 2midk
(1 = 2 k1 bpn(K)e?m > (1 = 2 k1 by (k)e*™ )
For each set of observations ¢, i = 1,...,50; the corresponding error (, (i) in estimation

is found by computing numerically the Ly norm of the difference |S X, n(A) = S(A)| over

(=3:3):

1

Guvli) = | [ 18,000 = SO 2

[N

Finally, for each pair of p and NNV, the expected value of (, y is estimated from the
sample mean calculated over 50 runs of simulation. Semilogarithmic plots of average error
versus pﬁd for Gaussian and Gaussian mixture innovation are presented in figures 4.3, 4.4
and figures 4.5 and 4.6 respectively.

It is seen that for both the processes, and for both types of innovation sequence, for a
finite number of observations, the estimation error reaches a minimum when p is close to
N3. For lower values of %3 the error is high due to underestimation, as the model order p
is too low. For large p, the effect of bias in higher order terms of the estimated covariance
sequence }?N(k:) becomes significant, thereby increasing the error. It is also noted that for
bsoth processes, a larger sample size corresponds to a lower estimation error for the same
p

= ratlo.

We conclude this section with simulation results that examine the behavior of the
estimation error as the sample size N increases while the model order p remains fixed.
For the AR(12) process we keep the model order fixed at 20 and calculate the average
Lo error in spectral estimation for samples sizes of 5000, 10,000, 20,000, 50,000, 100, 000
and 500,000. For the ARMA(4,4) process the same sample sizes are considered for model
orders 20 and 200. The plots for Gaussian and Gaussian mixture innovations are presented
in figures 4.7, 4.8 and figures 4.9 and 4.10 respectively.

For a fixed p, as the sample size is increased, the estimated covariance terms RN(k)
approach the original covariance quantities R(k) for k = 1,..., p; thereby leading to the
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Figure 4.3: Estimation error for different sample size (N) and model order (p) for AR(12)
process - Gaussian innovation
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Figure 4.4: Estimation error for different sample size (N) and model order (p) for
ARMA(4,4) process - Gaussian innovation
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Figure 4.5: Estimation error for different sample size (N) and model order (p) for AR(12)
process - Gaussian mixture innovation
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Figure 4.6: Estimation error for different sample size (N) and model order (p) for
ARMA (4,4) process - Gaussian mixture innovation
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better estimation of the AR-p parameters. In case of the finite-order AR process, since the
order of estimation p is greater than the actual order of the process, the estimation error
reduces steadily and approaches zero as IV is increased.

The ARMA model, on the other hand, has an infinite order AR representation and
hence in its case the error can never go down to zero for a finite p; as there would always
be an infinite number of higher order AR parameters that would remain undetermined.
However, the error would reduce and tend to converge to a non-zero limit as /V is increased
while p is kept fixed. Moreover, this limiting error would be lower for a higher model order.

Simulation results for the ARMA model for both the model orders show a reduction
in estimation error as N is increased. For sample sizes 5,000 and 10,000, the error cor-
responding to model order 200 is higher than that corresponding to a model order of 20.
This is because p = 200 is too large for these values of N and the effect of bias in the
estimated covariance terms is significant. For large N, the limiting error for p = 200 is
seen to be lower than that for p = 20; as expected by theory.

It is observed that the plots remained almost identical when the innovation sequence
was drawn from a Gaussian mixture distribution instead of a Gaussian distribution. While
ARMA and AR models with Gaussian noise can be estimated through an explicit com-
putation of the maximum likelihood function, such analysis is not feasible for processes
generated from non-Gaussian type noises. The usefulness of the AR estimation method
lies in its applicability across a variety of distributions, as long as the innovation sequence
is uncorrelated and the resulting process is WSS.

4.5 Conclusion

In this chapter we have considered asymptotic behavior of AR approximations when the
covariance sequence of the original process is unavailable and has to be estimated through
observed samples. For this case, the following additional conditions are imposed: the pro-
cess is assumed to be strong mixing and the corresponding innovation sequence is assumed
to have a finite fourth moment. Under a mild assumption, a result on the convergence in
mean square of the empirical AR parameters is derived when the model order p = o{ N %}.
Furthermore, under the same conditions, it is shown that the spectral density of the AR
approximation converges in mean with respect to an L, norm defined over the space of
functions on \ € (—%, %} and that the spectral density at the origin, i.e., the time average
variance constant (TAVC) of the AR approximation converges to that of an infinite order
AR expansion of the process in mean.
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The condition p = o{N3} is the same as the one imposed in [39] where a convergence
in probability result was established for the AR parameters. However, the results of this
paper are stronger than that of [39] since convergence in mean square of the AR parameters
implies convergence in probability. It may be noted that Berk’s result could have been used
to show convergence in mean square, if we could show that the squares of the AR parameters
were uniformly integrable. However, proving uniform square integrability would have been
much harder, compared to the direct approach used in this thesis.

Finally, through simulation, we have studied the problem of estimating the spectral
density of a WSS process through AR estimates based on a finite number of observations.
For different sample sizes N and model orders p, spectral estimation of an ARMA (4,4)
and an AR(12) process has been simulated and the average of the Ly norm of the error
has been plotted. As expected, for the same model order, the simulation results indicate a
general improvement in estimation with an increasing sample size. It is also seen that for
both the examples considered, the error reaches a minimum when p? is close to N.
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Chapter 5

Detecting Causality in a Family of
Stationary Processes: A Wiener
Filter Based Approach

5.1 Introduction

Causality is the relation between two events, where the second event is seen to occur as
a consequence of the first. The first event is termed as the “cause” and the second is
termed as the “effect”. The topic of causality has been studied and analyzed extensively in
philosophy over millennia and has gained significant interest in science. In the deterministic
sense, an event A is said to cause an event B when the occurrence of A is always followed by
that of B. In contrast, A is said to probabilistically cause B, if (informally), the occurrence
of A increases the probability of the occurrence of B.

There are various approaches that attempt to detect and quantify causality between
events, random variables and stochastic processes. In this thesis, we use “Granger-causality”
as a tool to determine and quantify causality among stochastic processes. In this case, mean
squared estimation error is interpreted as a measure of causality. It may be noted that
Granger-causality is distinct from true causality; “{X(¢)} Granger-causes {Y (¢)}” does
not necessarily imply that {X ()} causes {Y(¢)}. Granger-causality is only an instrument
used to comprehend the interplay among a number of stochastic processes; the true nature
of causality is a much deeper problem.
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Inferring causal dependences in a family of dynamic systems from a finite set of obser-
vations is a problem encountered in a diverse variety of fields, including economics, biology,
neuroscience, meteorology and ecology. Given a set of random processes, the objective is
to determine whether one process is influenced by the others, and to investigate the nature
of this influence. It is customary to represent causal connections in the form of a connected
graph, where the individual processes are depicted by nodes and the interdependence re-
lations are depicted by directed edges.

Ideally, in order to infer the complete interdependence structure of a complex system,
dynamic behaviour of all the processes involved should be considered simultaneously. How-
ever, for large systems, use of such a method may be infeasible. Alternatively, pairwise
methods, i.e., methods that evaluate causal interdependence between each pair of pro-
cesses, can be used to obtain sub-optimal solutions to the problem at lower computational
costs. In this chapter, we investigate the problem of determining Granger-causality in
an interdependent group of jointly wide sense stationary (WSS) real-valued discrete time
stochastic processes by using pairwise causal Wiener filters. Through simulation examples,
we compare the performance of this approach with another that uses directed information
as a tool to infer causality. It is seen that a pairwise Wiener filter-based method can
help obtain useful and reasonably accurate information about the causal structure of the
system.

We begin by discussing the problem formally and introduce the notion of Granger-
causality. This is followed by several analytical results that relate the pairwise Wiener
filter to Granger-causality. Next, we propose a technique that uses pairwise finite impulse
response (FIR) Wiener filters to detect causal interdependence relations. The performance
of this method is compared to that of a method using directed information through a
simulation example. Finally, the efficacy of the pairwise FIR Wiener filter based technique
is illustrated through an example that uses real data.

5.2 Preliminaries

Consider a system of N jointly wide sense stationary (WSS) discrete time, real-valued,
zero-mean, regular stochastic processes defined over a probability space (€2, F, IP). De-
note each process by {X;(n)} for i = {1,..., N}. The index n indicates time and takes
values in the set of integers. Since these processes are jointly WSS, the column vector
[Xi(n) ... Xn(n)]T denotes an R¥-valued multivariate discrete time WSS process. De-
note this process by X (n).

The objective is to determine the inter-dependence relations among these processes and
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represent these dependences in the form of a directed or undirected graph; where nodes
correspond to the individual processes and edges indicate dependence relations. A directed
edge in the graph essentially represents a causal filter; i.e., the existence of a directed edge
from node i to node j implies that X;(n) is affected by X;(n — 7) for some 7 > 0. An
undirected edge, on the other hand, represents a mutual dependence relation; i.e., an
undirected edge between nodes ¢ and j implies that X;(n) and X;(n) are inter-dependent.
No prior information is available on the interconnections and the topology of the system
has to be estimated using only a series of observations recorded at these nodes.

In general, while investigating the inter-relations among a collection of processes, one
of the four following objectives may be of interest.

1.

To determine if a node i is directly related to node j; i.e., whether the nodes ¢ and j
are connected by an edge.

. To ascertain the direction of this dependence; i.e., to determine if ¢ causes 7, if j

causes ¢ or if both of them mutually influence each other.

. To find a quantitative measure of the interdependence between processes ¢ and j.

This relates to the distance between the corresponding nodes.

To determine how the processes are related; i.e., to obtain a model that clearly depicts
interdependence relations and can be used to predict and estimate one process from
the knowledge of the other.

In this chapter, we are primarily interested in questions 1, 2 and 3.

The following terminology is used.

1.

If there is a directed edge from j to i, node j is called a “parent” of node ¢ and node
1 is called a “child” of node j.

. If there is a directed path from j to ¢, node j is called an “ancestor” of node ¢ and

node 7 is called a “descendant” of node j.

. Processes corresponding to nodes that do not have edges entering from any other

process are called “driving processes”.

A simple example of three nodes is illustrated in figure 5.1, where Bs;(z) and Bs(2)
are the z-domain representation of causal linear filters, i.e.,

Bsi(2) = bga(k)z"
k=1
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Figure 5.1: A system of three processes

B&Q(Z) = Z b&g(k?)Zik
k=1

and {v3(n)} is a white noise sequence. The process corresponding to the child node 3 is
given by

Xs(n) = bya(k)X1(n— k) + > bsa(k)Xa(n — k) + v3(n)

In the system represented in figure 5.2, nodes 1, 2 and 5 are driving processes. For
node 7, nodes 4 and 6 are parents, nodes 1 to 6 are ancestors, nodes 8 and 9 are children
and nodes 8, 9 and 10 are descendants.

The system can be formally described as follows. Let LY (IP) denote the Hilbert space
of R¥-valued random vectors with finite second moment, equipped with the inner product
IE[-, -] defined thereon. Let Hx (n) denote the linear span of { X (n), X (n—1), X (n—2),...},
i.e., the closure of the linear combinations of X (n) and all its past values at time n. As
{X(n)} is an RN -valued WSS stochastic process, Hx(n) is a Hilbert space [12, P-21]. For
any square integrable RY-valued random variable Y, define IE[Y'| Hx (n)] as the projection
of Y onto the space Hx(n). Then E[Y|Hx(n)] is the minimum mean squared error
(MMSE) linear estimate of Y given Hx(n).

By Wold decomposition theorem [12, 101], {X (n)} may be uniquely represented in the
following form:

[e.e]

X(n) =) _ Akw(n—k) (5.2.1)
k=0
where v(n) = [vi(n) ... vn(n)]? is the corresponding R¥-valued innovation process

and

A(k) = [a; (k)] € RTY
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Figure 5.2: Example of a system of interdependent WSS processes

for each k. The innovations are such that
E[v;(n)vi(n — k)] = 0 for all k # 0

E[v;(n)vj(n — k)] =0 for all i # j, and for all k € Z

In addition, the process {X (n)} can also be expressed as an infinite order autoregression
as follows.

X (n) =E[X (n)|Hx(n —1)] +v(n)
where IE[X (n)|Hx (n — 1)] is essentially a weighted sum of the past values of X (n); i.e.,

E[X(n)|Hx(n—1)]=>_ B(k)X(n—k) (5.2.2)

k=1

[e.e]

with B(k) = [b;;(k)] € RV*N for each k.

Following (5.2.2), Each scalar innovation process {v;(n)} corresponds to the real-valued
process {X;(n)} as follows:
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> by — k) + vi(n) (5.2.3)

1 j=1

Mg

B
Il

and following (5.2.1), each process can also be expressed as a linear combination of the
past and present innovations:

Z Z a; ;(k)vj(n — k) + v;(n) (5.2.4)

k=1 j=1

The mathematical tool that quantifies causal relations among processes in the context of
the proposed model is Granger-causality. Recall that, for a system of two process {X;(n)}
and {X;(n)} with a model order p, Granger-causality [3] is defined as follows. Denote by
HY(n — 1) the linear span of {Xj(n —1), ..., Xi(n —p)}, and let H;(n — 1) be the linear
span of {X;(n—1),...,X;(n—p), X;(n—1),...,X;(n—p)}. Recall that IE[-|-] denotes the
projection operator. Let £[-|-] be the corresponding estimation error.

X;(n) is first modeled as an univariate autoregressive process using the past values of
itself; i.e., as a projection on HY(n — 1)

Xi(n) = E[X;(n)|Hf (n — 1)] + [ Xi(n)| H (n — 1)]
where

TLX ()| HY (0 — 1) Zau Xi(n— k)
and then modeled as an autoregression that also includes past observations of {X;(n)}

Xi(n) = E[Xi(n)|H};(n — 1)] + §[Xi(n) | H} ;(n — 1)]

where
E[X;(n)|H? (n — 1)] Z@” — k) + Y Bii(k)X;(n— k)

{X;(n)} is said to Granger-cause {X;(n)} if the mean squared error in case of the latter
is strictly less than that for the former.
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I [(§[X:(n)| HY (n = D])?] > 1B [(€[Xi(n)[H; (n = 1)])7]

When the system is causally influenced by an infinite past, the model order p is allowed
to approach oo. For the rest of this dissertation, we assume the processes to be dependent
on an infinite past. In other words, the system is allowed to have infinite memory.

When there is more than one process involved, one has to take into account all the
processes simultaneously to determine Granger-causality. Given a family of N processes
{Xix(n)}, ke {1,...,N}, {Xi(n)} Granger-causes {X;(n)} (j # i) if the mean squared
error in estimating X;(n) from the past values of all the processes excluding those of
{Xi(n)} is greater than that in estimating X;(n) from the past values of all the processes,
including those of {X;(n)}.

The above definition of Granger-causality can be extended beyond linear estimates
as follows. Let F(n) be the sigma-algebra generated by all the processes {Xx(n)}, k =
1,...,N, up to time n, and let F_;(n) be the sigma-algebra generated by the processes
{Xk(n)}rz; up to time n. Clearly, F_;(n) C F(n) C F. {X,;(n)} is said to Granger-cause
[Xin)}, if

IP(X;(n) € A|F(n—1)) # P(Xi(n) € A|F_j(n—1))

where A is any Borel subset of R. Essentially, this means that the past of {X;(n)} carries
additional information on the present of {X;(n)}, not included in the past of the other
processes. While the second definition is more general, it is not very easy to use in practical
applications, as it requires the knowledge of distributions. Since we are interested in linear
MMSE estimates in this thesis, we would be using the first definition, that defines Granger-
causality in terms of mean squared errors and autoregressive parameters.

Determining causality in this way will necessitate the determination of the autore-
gressive parameters through the method of least squares. However, for a family of WSS
processes having infinite memory, the problem of determining the parameters is non-trivial
and involves a significant level of computation. If the model is simplified by assuming that
the system has a finite memory; i.e., instead of an infinite weighted sum of past observa-
tions, the estimate depends on the p most recent values; even then for each ¢, there are
p(N—1) and pN parameters to be derived. For large N and p this becomes computationally
burdensome.

The same problem may also be addressed from an information theoretic perspective.
Recall that for two random variables X and Y, the mutual information is defined as

f(&ﬂz/y/}(ﬂﬂ%ﬂ@ (%) dzdy
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where p(z), p(y) are the respective marginal probability distributions of X and Y, and
p(z,y) is their joint probability distribution. The conditional mutual information of two
random variables X and Y, conditioned on another random variable Z, is the expected
value of the mutual information of X and Y, given Z. It is defined as

i [ e o ()

where p(x,y, z) denotes the joint probability distribution function of X, ¥ and Z; and
p(z,z) and p(y, z) are the joint distributions of X, Z and Y, Z respectively. Finally, for
a number of random variables {X;};—1. n, the mutual information is defined using the
following recursion.

.....

I(Xl,XQ,,XN) = I(Xl,XQ,,XN_l) — I(X1;X277XN—1|XN)

The mutual information of two random variables (or two random vectors) is a symmetric
quantity, devoid of any directional aspect. However, while the notion of causality is not
inherent in mutual information, it may be introduced through directed information. For
two Rf-valued random vectors X Y Xt = [X(1) ... X", Yt =[Y(1) ... Y()]%;
the directed information from X* to Y* is given by [33, 53]:

(Xt =YY = ZIX’ ()Y

where X' = [X(1) ... X(4)].

For two stochastic processes, {X(n)} and {Y(n)}, the directed information rate is given
by

1
(X = Y) = lim ~I(X' = Y?)
t—oo t

when the limit exists [31], where X*, Y* are random vectors as defined above. When both
the processes are stationary and ergodic, the limit is well-defined [31, .

We conclude this section with a result that relates Granger-causality and multivariate
AR models. Let H;(n) denote the linear span of {X;(n), X;(n — 1), X;(n — 2),...} and let
H(n) denote the linear span of the present and past values of all the processes { Xx(n)};
k =1,...,N. Let H_j(n) denote the same for all the processes except {X;(n)}. In
each case, we also include the limits in the mean square of the sums when they exist.
By construction, H;(n), H(n) and H_;(n) are Hilbert spaces; equipped with the inner-
product IE[,-]. Recall that IE[-|-] denotes the projection operator and £[-|-] denotes the
corresponding estimation error.
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For any process {X;(n)}, let P, C {1,..., N} denote the set of indices corresponding
to its parents, and also include the process {X;(n)} itself. Following (5.2.3), for all [ € P,
there exists at least one k > 1 such that b;;(k) # 0. Let Hp,(n) denote the linear span of
all the processes {X;(n)}ep, and their past values. Then, (5.2.3) can be expressed as:

=D bulk)Xi(n = k) +wi(n) (5.2.5)

k=1 IleP;

Lemma 5.2.1. {X,(n)} Granger-causes {X;(n)} if and only if j € P;.

Proof. The proof uses the fact that the projection of an element of a Hilbert space on
a closed Hilbert subspace is unique. Let j € P, and {X;(n)} does not Granger-cause
{X;(n)}. Then,

E [(¢[Xi(n)|H(n — 1)))*] = E[}(n)]
and in this case,

E[X;(n)|H(n — 1)] = E[X;(n)|Hp,(n — 1))

We have,

ZZbN ) Xi(n — k) + v5(n)

k=1 lep;

Let £[X;(n)|H_j(n—1)] = v;_;(n). Since H_j(n—1) C H(n—1), E[X;(n)|H_j(n—1)]
is an element in H(n — 1), and therefore,

E[v;_;(n)] = B[} (n)]
On the other hand, since by our assumption {X;(n)} does not Granger-cause {X;(n)},

E[Vf_](n)] = IE[I/Q(H)] (5.2.6)
But if the above holds, then there are two elements in H(n — 1) that achieve the minimum
distance from X (n), namely, IE[X;(n)|H_;(n—1)] and IE[X;(n)|H (n—1)]. In other words,
X (n) has two projections on H(n — 1). From the uniqueness of the projection operation,
this is a contradiction and (5.2.6) can only hold when the parameters {b;;(k)} are zero
for all k, in which case j¢ P,. Therefore, when j € P;, (5.2.6) does not hold and {X;(n)}
Granger-causes {X;(n)}.
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To prove the reverse, recall that the process {X;(n)} is said to Granger-cause {X;(n)}
if and only if

IE [(§[X:(n)|[H(n — 1)))*] < T [(€[Xi(n)|H-;(n — 1)])°]

i.e., the exclusion of information on the past history of {X;(n)} strictly increases the
error in estimating X (n).

Clearly then, since the representation in (5.2.5) is unique, it immediately follows that
if {X;(n)} Granger-causes {X;(n)}; past values of {X;(n)} will appear in the MMSE
estimate of X;(n). In other words, X;(n) must have an expansion of the form (5.2.5); i.e.,
Jj € P

This completes the proof. Note that both results hold when the terms involving { X;(n)}
are absent on the right hand side of (5.2.5).

]

Corollary 5.2.1. For a system of N processes, Granger-causality can be completely de-
termined by implementing an N dimensional Multivariate autoregressive (MVAR) model.

The result follows directly from the above lemma. An MVAR model solves for each
parameter {b; ;(k)} in (5.2.2). For the processes j not in P;, b; ;(k) will be zero for all k.

For a system of many interdependent processes, ideally, causal links should be detected
following corollary 5.2.1, where the parameters are computed using covariance and cross-
covariance sequences of the processes. However, for a large system, implementation of such
a method would be computationally challenging. Moreover, since one has to work with
estimates of covariances in lieu of the exact quantities; false edge detection is likely.

As an example, we simulate a system of 10 jointly WSS time series having causal
connections as depicted in figure 5.2, with arbitrarily chosen parameters and standard
normal innovation. MVAR parameters are computed using 1,000,000 sample realizations.
The computed parameters below a certain threshold are set to zero. The configuration of
the system thus obtained is presented in figure 5.3.

While most of the edges of the original system are identified, some additional edges
are falsely detected as well. This results due to the deviation of the estimates of cross-
covariance terms from their true values. The results are also sensitive to the selection of
the model order p, and closer p is to the actual model order, more accurate are the results.

Instead of considering all the processes together; one may attempt to infer the underly-
ing structure by observing the pairwise dynamics of processes. In other words, it is simply
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Figure 5.3: Granger-causality inferred through MVAR approach

investigated whether there is a causal link from {X;(n)} to {X;(n)}, ignoring the dynam-
ics of the other processes. This is repeated for each pair of processes and tested for both
directions of causality, and the results are then used to determine the general structure of
the system.

For a system of N processes and a model order p, a pairwise approach requires solving
N? systems of linear equations, each with p unknowns. Noting that solving each such
system requires O(p?) operations, this method requires O(N?p?) operations in all. In
comparison, the MVAR approach that directly solves for the Np least square parameters
for each of the N individual processes, involves O(Np?) operations. Thus, even though a
pairwise method may not reveal all causal branches, it can nonetheless provide a means to
obtain a quick and easy insight into the system.

In the following sections, we investigate the efficacy of pairwise causal Wiener filters for
this purpose. Some theoretical results are presented on the applicability and limitations
of such an approach. This is followed by simulation examples where the performance of
pairwise FIR Wiener filters in detecting causal connections is compared to that of directed
information.
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5.3 Results on a pairwise Wiener filter based approach
The following assumptions are made on the system.

1. There is no instantaneous causality; i.e., there is no pair of nodes {7, j} such that
Xi(n) and X;(n) affect each other.

2. There are no closed loops or directed cycles in the graph.

The first assumption is inherent in the model formulation of 5.2.2. While the first assump-
tion asserts that there is no undirected edge (representing instantaneous mutual causation)
in the system, it does not eliminate the possibility of bidirectional edges between two
nodes, in the case where present values of both nodes are causally affected by the past val-
ues of each other. The existence of such edges is precluded by the second assumption. In
the rest of this section, we present a few theoretical results on the pairwise causal Wiener
filter.

Theorem 5.3.1. Let {X1(n)} and {Xa(n)} be jointly WSS and let the error in estimating
Xao(n) from Xi(n — 1) through a causal Wiener filter be {[Xo(n)|Hi(n —1)]. If {Xi(n)}
Granger-causes {Xa(n)}, then

B[(¢[Xa(n)[Hi(n — 1)])*] < E[X5(n)]
Proof. Note that by definition,
E[(§[Xa(n)|Hi(n — 1)])*] < E[X;(n)]
We have to show that the above inequality is strict. Now, the equality can hold only if
E[(E[Xa(n)|Hi(n — 1)])*] =0

Since IE[Xy(n)|H;(n — 1)] is the projection of X5(n) on Hy(n — 1), this can only happen if
Xs(n) is orthogonal to the subspace Hi(n — 1), i.e., [E[X3(n)Xi(n — )] =0 for all > 1.
We shall show that this cannot hold.

Since the system consists of only two processes,
§[Xo(n)[Hyz(n — 1)] = §[Xa(n)[H(n — 1)] = v2(n)

Recall that the causal Wiener filter from X;(n — 1) to Xs(n) is the linear minimum mean
squared error (MMSE) estimator of the latter based on X;(n — 1) and its past values.
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Zwm )Xi(n — k) +{[Xo(n)|Hi(n — 1)]

Since {X;(n)} Granger-cause {X5(n)}, due to lemma 5.2.1, X5(n) can be represented
as

Zbgg X2 n— +Zb21 X1 n—k)+V2(n)

Taking z-transforms on both sides, and rearranging, we obtain

(1 > bm(k)z—’f> Xy(z) = (Z bQ,l(k)z—k> X1(2) + Na(2)

Assuming (1 — Y77 bao(k)z7%) to be invertible, X5(n) can be expressed as an autore-
gression of {X;(n)} as follows

where the parameters {cy(k)} are derived from

i CQJ(k‘)Z_k = (]_ - f: bgyg(kﬁ)z_k> 7 (f: b271(k7)2_k>
k=1 k=1

k=1

and the error &1(n) is a linear combination of {v»(n)}, with the z-transform

§2|1 (1 - 2522 > NQ(Z)

In general, ¢y1(k) # 0, and therefore, for [ > 1,
E[X3(n)Xi(n —1)] #0
Clearly, then, X5(n) is not orthogonal to Hy(n — 1), i.e.,
E[(¢[Xa(n)| Hi(n — 1))*] < E[X3(n)]
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This result relates the pairwise causal Wiener filter and the notion of Granger-causality.
It is worth noting here that the reverse is not necessarily true. Consider, for instance, the
case where

a
S
!

aXo(n — 1)+ 11(n)
Xso(n) = BXa(n — 1) + 1n(n)

Here, E[(¢[Xa(n)|Hi(n — 1))?] < IE[XZ(n)], and yet {X3(n)} is not Granger-caused by
{Xi(n)}.

Proposition 5.3.1. If two processes {X1(n)} and {Xo(n)} constitute a system such that
{X1(n)} Granger-causes {X3(n)} and {X2(n)} does not Granger-cause {X1(n)} then, in
general,

E [([X1(n)[Hi(n = 1)])?] < B [(§[X:1(n)[H2(n — 1)])?]
Proof. Let the processes be defined as follow.
Xi(n) | = [b11(k) 0 Xi(n —k) v1(n)
|: XQ(TL) :| N kZ:; |:b271(]€) b2’2(k>:| |: Xg(n — ]{?) :| + |: Vg(n) :|

It immediately follows that

I8 [(§[X1 (n) [ Hy(n — 1)])*] = [v5 (n)]

On the other hand, we have

XQ(’I’L) = Z ng(k’)Xl(’I’L — ]{7) + Z bgg(k:)Xg(n - k) + 1/2(71)
k=1 k=1

Proceeding through the same steps as in theorem 5.3.1, we obtain

Xo(n) = ca1(k)X1(n — k) + &p(n) (5.3.7)
k=1

X1(n) can be expressed as
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Xi(n) = Zbll )X1(n — k) +b14(1 (Zb“ Xl(n—j—1)+1/1(n—1)>+l/1(n)

= Zdll X1 n—]{)‘{‘bl,l(l)yl(n_1)+V1(n)

where the parameters {d; ;(k)} are functions of the parameters {b; 1(k)}. Note that by
construction, both v4(n) and v4(n — 1) are orthogonal to Hy(n — 1) and hence

E [(¢[X1(n)|[Ha(n — 1)])?] = B [(§[X1(n)|Hi(n — 1)])?] (5.3.8)
where the equality holds if b;1(1) = 0 and

E[X,(n)|Hy(n —1)] Zdn )X1(n —k)

For the above to hold there must exist parameters { fi 2} such that

Zfl,Q( X27”L— Zdll Xln—k)
k=1

or, using (5.3.7),

me (Zcm )Xi(n—k—7)+&p(n—Fk ) Zd“ ) X1(n —k)
k=1

7j=1

The sequence {&1(n)} is by construction, a linear combination of the innovation
{v2(n)} and hence orthogonal to the process {X;(n)}. Therefore, the above equality can
only hold if

Z fi2(k)épn(n—k) =0

However, each of the terms &;;(n — k) is a linear combination of {v»(n)}, an orthogonal
sequence, and therefore the above, in general, will not be zero. Therefore, the inequality
in (5.3.8) is strict and the result is proved.

O
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In order to infer interdependence between two processes using a causal Wiener filter
approach, X;(n) is estimated as IE[X;(n)|H;(n —1)]. As long as X;(n) is not orthogonal to
H,;(n—1), this estimate will be non-zero and the mean squared error IE [(£[X;(n)|Hj(n — 1)])?
will be strictly less than IE[X?(n)]. Pairwise causality can then be inferred through an anal-
ysis of the mean squared errors IE [(£[X;(n)|Hj(n — 1)])?]. Here, we present three results
on a causal Wiener filter approach to a system consisting of more than two jointly WSS
processes.

Proposition 5.3.2. If E[(¢[X:(n)|H;(n —1)])?] < E[Xi(n)?], then at least one of the
following must be true:

1. {X;(n)} is an ancestor of {X;(n)}.

2. {X;(n)} is an ancestor of {X;(n)}.

3. {Xi(n)}, {X;(n)} have a common ancestor.

Proof. For any two processes {X;(n)} and {X;(n)}, the following always holds.

I [(§[X(n)| H;(n — 1)])*] < B[Xi(n)’]

Let the processes at nodes ¢z, j be such that they do not satisfy any of the three criteria.
Let A; be the set of indices corresponding to the ancestor processes associated with {X;(n)}
and include the index 7. Let A; be the set of indices corresponding to the ancestor processes
associated with {X;(n)} and include the index j. The processes {X;(n)} and {X;(n)} can
then be expressed as:

Xi(n) =Y alkyu(n — k) + vi(n)

leA; k=1

Xj(n) =YY dalknn = k) +v;(n)

l€A; k=1

Such an expression can be arrived at by a step-by-step expansion of the ancestor pro-
cesses associated with {X;(n)} and {X;(n)}. Since nodes i and j have neither a common
ancestor nor an ancestor-descendant relation; A; and A; are mutually exclusive. Since the
individual {¢;(n)} are innovations, they are orthogonal to each other. Therefore, the terms
{vi(n = k) }iea, and {vy(n — k)}iea, are uncorrelated.
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Therefore, for any 7 € N,
B[X;(n)X;(n —7)] =0

Thus, X;(n) is orthogonal to H;(n —1) (likewise, X;(n) is orthogonal to H;(n—1)) and

hence
B [(§[Xi(n)| H;(n — 1)])*] = E[X?(n)]
Therefore for IE [(£[X;(n)|H;(n — 1)])?] < IE[X:(n)?] to hold, at least one of the three

criteria must be satisfied.

O

Proposition 5.3.3. If node j is an ancestor of node i, then
IE [(§[Xi(n)|H;(n — 1)])*] < BIX?(n)]
Proof. Let j be an ancestor of i. Then, X;(n) can be expressed as

Xi(n) = vi(n —7) + ¢ 5(n)

where ¢;(n — 7) € H;j(n — 7) for some 7 € N and ¢; ;(n) is orthogonal to H;(n — 7).
Noting that H;(n — 7) C H;(n — 1), it is easy to see that

IE [(B[X;(n)|H;(n — 1])*] > E[j(n—7)] >0
and therefore,

I [(§[Xi(n)[H;(n — D)])*] = BXF(n)] - B [(E[Xi(n)|H;(n - 1)))]

Proposition 5.3.4. Let the processes {X;(n)} and {X;(n)} be such that

1. There is no directed path between the two and the process {Xy(n)} is their only
common ancestor.

Or,
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2. The two have no common ancestor and the process {Xx(n)} is the only intermediate
node in a directed path between the two that extends (without loss of generality) from
j to 1.

Then,

The two causal structures mentioned are depicted in figure 5.4.

N2 VAR
YT B

Figure 5.4: Causal structures corresponding to proposition 5.3.4

N\
T

Proof. Consider the case when {Xy(n)} is a common ancestor. Note that

X,(n) = E[X,(n)| Hi(n — 1) + €[X,(n)| He(n — 1)

The error &[X;(n)|Hi(n — 1)] is the part in X;(n) that is orthogonal to Hy(n — 1).
This can be expressed as a weighted sum of innovations {v;(n)}ica,, corresponding to
the processes {X;(n)}ica, i+ The set of indices A, includes the process i itself and all
ancestors of {X;(n)}, excluding k.

Since there is no directed path going from {X;(n)} to {X;(n)}, the corresponding
innovation {v;(n)} is absent in {[X;(n)|Hy(n — 1)]. Since there is no directed path from
{Xi(n)} to {X;(n)}, the innovation {v;(n)} and {X;(n)} are orthogonal to each other.
Finally, since {X;(n)} has no common ancestor with {X;(n)} apart from {X(n)}, the
innovations {v;(n)}ica,, are not present in Xj;(n) and are therefore orthogonal to { X;(n)}.
Combining, it is seen that each of the individual innovations that constitute £[X;(n)|Hg(n—
1)] are orthogonal to the process {X;(n)} and its past values, and consequently to the
subspace H;(n — 1). Therefore, {[X;(n)|Hk(n — 1)] is orthogonal to H;(n — 1) too. The
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error in estimating X;(n) from H;(n — 1) will include the quantity {[X;(n)|Hg(n —1)] (and
possibly some additional terms consisting of innovations not included in A;/,. Therefore,

I [(§[X:(n)| H;(n = 1)])*] = B [(€[Xi(n)[Hi(n — 1)])°]

Now consider the case when, without loss of generality, there is a directed path from
{X;(n)} to {X;(n)} and {X\(n)} is the only intermediate node. As the nodes have no com-
mon ancestor, it immediately follows that the innovations that constitute £[X;(n)|Hg(n—1)]
come from processes other than {X;(n)}. None of these processes is an ancestor to {X;(n)},
neither is { X;(n)} an ancestor to any of them. Therefore, these processes are all orthogonal
to the process {X;(n)} and hence to H;(n — 1). Therefore,

I8 [(§[Xi(n)[ H;(n — 1)])?*] > B [(§[X;(n)| Hr(n — 1)])?]
O

While a causal Wiener filter has the notion of direction inherent in itself, that is not the
case with the non-causal Wiener filter. However, the latter, too, may be used in conjunction
with the former to infer information on causal links. The following result is related to this.

Proposition 5.3.5. Let G;j;(\) be the frequency response of the non-causal Wiener filter
that estimates process {X;(n)} from {X;(n)}. If G;;(A) is causal (i.e., devoid of anti-causal
terms), then {X;(n)} does not cause {X;(n)}.

Proof. Tt is known that the frequency response of the non-causal Wiener filter that esti-
mates process {X;(n)} from {X;(n)} is given by

Sii(A)

S;(A)

Gi(\) =

where S;(\) is the power spectral density of {X;(n)} and S;;(\) is the cross power
spectral density of {X;(n)} and {X;(n)}.

Si(A) = Z E[X;(n)X;(n — ]{;)]6—2m/\k
Szj</\) = Z E[Xl(n)Xj(n k)]6—2m)\k
k=—o00



Consider processes {X;(n)} and {X;(n)} that are related as follows.

Zﬁ +§1|J( )

where >"37 | B(k)X;(n—k) = E[X;(n)|H;(n—1)] and the error & ;(n) is such that IE[X;(n—
k)&ijj(n)] = 0 for all k > 0. Observe that, by construction, &;;(n) is a weighted sum of
innovations that includes v;(n), since v;(n)¢ H;(n — 1).

The cross power spectral density .S; ;(\), then, is

Sig(A) = Z E[X;(n)X;(n — t)]e 2™
= Z (Zﬁ(k)lE [X;(n — k)X;(n—t)] + E [X;(n — t)&);(n)] ) —2mt
- l;()\)S] )T)_'_SSJ()‘)

where B()) is given by

_ Z B(k)e—Qm)\k
k=1

and Se () is the cross power spectral density of {&; ;(n)} and {X;(n)}, given by

Ses(N) =D BLX;(n — )&y (n)]e
Then,
Gyj(N) = B(A) + ifj(%)

Gij(\) represents a causal filter if it does not contain negative powers of e=*™*. By
definition, B(A) is a causal filter. S;(\), the spectral density of {X;(n)}, has both causal
and anti-causal terms. Finally, by construction, IE[X(n — t)&;;(n)] can be non-zero only
for ¢ < 0; and consequently, if S¢ () is not zero it must be anti-causal. Therefore, if
G1;(A) is a causal filter, then

1. E[X;(n + k)&;(n)] = 0 for all £ > 0, i.e., X;(n) is orthogonal to &;(n — k) for all
k> 0.

87



2. Gy(N) = B(N)

&);(n) is a linear combination of the innovations, and it includes the quantity v;(n). For
Xj(n) to be orthogonal to &;;(n — k) for all k& > 0, it must be orthogonal to each of the
individual innovations that constitute &;;(n — k). Therefore

E[X;(n)v;(n — k)] =0

for all & > 0. But this can only happen if {X;(n)} is not an ancestor of {X;(n)}, in
which case {X;(n)} does not Granger-cause {X;(n)}, by lemma 5.2.1. This completes the
proof. O]

5.4 Efficacy of Wiener filters in detecting causality:
simulation and real data

Motivated by the results obtained in section 5.3, in this section, the effectiveness of FIR
Wiener filters in determining the causal structure of a system is investigated through
simulation. The processes are first normalized to make them zero-mean and of equal
variance 0. Recall that H}(n — 1) denotes the linear span of {X;(n —1), ..., X;(n —p)}
for each j € {1,..., N}. The objective is to fit a one-step FIR Wiener filter-based predictor
of order p for each pair of processes. Essentially, this is equivalent to projecting X;(n) onto
the space HJ(n — 1); for each i and j, i # j; i.e., X;(n) is estimated as

Xin) = S0 X, (0~ )

The parameters [er](l) . l;f] (p)]* = BZ;’ can be estimated as

A~

B?, = hatR(X?)"'#(X?))
where . . .
R;(0) R;(1) R;(p—1)
RO - Rj.(l) Rj.(o) R; (p_— )
Bip-1) Bp-2) £5(0)



is the estimated p-th order covariance matrix for { X;(n)} and #(X};) = [Ri;(1)... Ri;(p)]”
is a vector containing the estimated cross-covariance terms of {X;(n)} and {X; ( )} Let
the corresponding estimated mean squared error be denoted by E[(£[X;(n n)|HY (n — 1)])?].
If this error is significantly close to the variance of the processes, i.e., if for some pre-defined
threshold of significance €y,

o2 — B[(E[X;(n)[H (n — 1)])?]| < € it is concluded that there is no edge from j to i.

Otherwise, if ]E[(f[XZ(nﬂHf(n — D)3 < E[(E[X;(n)|H! (n — 1)])?], it is concluded that
there is an edge from j to 7. This ensures that there are no closed loops in the connected
graph that represents causal relations.

Once all edges are detected, an additional step is employed to eliminate some of the false
edges. Within the graph, we detect all triangles; i.e., all sets of three nodes (z Jj, k) that are
connected. Denote IE[(£[X;(n)|HP (n—1)])?] by d(i, ). Whenever d(i, ) +d(j, k) < d(i, k),

d(i, k) is set to zero. In the reduced graph thus obtained, d(-, 1) is a quasimetric.

This method was used for a simulated system of jointly WSS Gaussian processes with
N = 10, having the configuration of figure 5.2, and the same parameters as used to demon-
strate the multivariate autoregressive approach (figure 5.3). The system was simulated on
MATLAB using 50,000 sample realizations. All processes were suitably scaled and shifted
to make them zero mean and of equal variance.

It was observed that the method could successfully identify driving processes and ac-
curately reveal the hierarchical order of nodes, although the interconnections were over-
estimated through the detection of several false edges, in addition to the edges present in
the original system. The hierarchical order of nodes determined by the method remained
consistent when the original filter parameters were varied within a reasonable range. The
results were also affected by the choice of the threshold parameter €;. A smaller value of ¢
resulted in the detection of an increased number of false edges between driving processes
whereas for larger values some of the original edges remained undetected.

For comparison, a second method, involving the notion of directed information was also
used for the same system. For a suitable order p, define RP-valued random vectors X}, X J’.’
as X! = [X;(n) ... Xi(n—p+1)]" and X? = [X;(n) ... X;(n—p+1)]" respectively. For
k<p let XF=[Xi(n—p+k) ... X;(n—p+1)]T. For Gaussian processes, the directed
information from X7 ' to X7 simplifies to [53]:

Z log det R(XF)/det R(XF™1)

I(XP™" 5 XP) =
( det R(XF, X571 /det R(XH, X771

J
k 1
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where R(XF) is the covariance matrix of [Xi(n) ... Xi(n—k+1)]"; R(XF, X}) is the
covariance matrix of [X;(n) ... X;(n—k+1) X;(n) ... X;(n—1+41)]" and by definition,
R(X?)=1.

Directed information is approximated using estimates of covariance terms in the above
expression. Denote the estimated directed information as [ (X]p " X7?). Directed
information rate from process {X;(n)} to {X;(n)} is approximated as

A

I(X; — X)) = f(X;?—l — XP)

D

To determine the existence of edges in the graph, a procedure analogous to the Wiener
filter method is followed. If the directed information computed is significantly close to 0,
i.e., if for some threshold of significance e, > 0, |[I(X; — X;)| < €, it is concluded that
there is no edge from j to i. Otherwise, if |I(X; — X;)| > [I[(X; — X)|, it is concluded
that there is an edge from j to 7. Finally, to obtain a quasimetric akin to the one in the
Wiener filter approach, we replace each |I(X; — X,)| with di,j) = K — [I(X; — X,
where K = max; ; ]f (X; = X;)| + €2, and remove all edges that do not satisfy the triangle
inequality with d(-,-).

Results of the directed information based method were found to be comparable to those
obtained by the Wiener filter approach. Driving processes were accurately identified. For
this method too, results were seen to be sensitive to the threshold parameter 5. A smaller
€5 lead to the false detection of additional edges; while when e, was too large, some of the
original edges remained undetected.

The structures revealed by the proposed methods are graphically represented in figure
5.5. An edge between two nodes represents a causal filter between the corresponding
processes.

The section is concluded with an example of using FIR Wiener filters in determining
Granger-causality among time series from real data. We consider a set of currency exchange
rates of some of the world’s leading economies. Fluctuations in daily exchange rates of these
currencies against the Swiss Franc for the period January 1, 2009 to December 31, 2012
were used. The data was obtained from the Bank of Canada website [113]. Causal links
were estimated using the Wiener filter based method and is presented in figure 5.6. It
is interesting to note that in this example, currencies of economies involved in significant
two-way trade indicated stronger dependence. It would have been nicer if there was any
way to compare our results with the ground truth in this case.
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Figure 5.5: A system of 10 processes- top: system recovered through FIR Wiener fil-
ter(p=7), bottom: system recovered through directed information(p=7).
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Figure 5.6: Interrelation of currencies inferred using causal Wiener filters (p=10)

5.5 Conclusion

In this chapter, we have presented several results on the utility of pairwise Wiener filtering
in determining Granger-causality within a family of stochastic processes. It follows from
our results that the method may be employed to obtain useful information on the interde-
pendence relations in a system of jointly WSS random processes. Our theoretical results
as well as simulations demonstrate that this method reliably reconstructs the hierarchical
structure of nodes and detects most of the edges in the original system.

It is, however clear that there is a limit to the information that may be inferred through
such means. The method is not sufficient to unambiguously determine all interdependence
relations within a system, and while the general hierarchy of nodes is revealed, there is no
direct way of distinguishing between parents and distant ancestors.

Nonetheless, as demonstrated by the simulation results, Wiener filtering can be a quick,
efficient tool in obtaining reasonably accurate information on the causal connections of a
family of stochastic processes. The method is similar to that proposed in [59]; and yet
much easier to implement. For FIR Wiener filters one only needs to estimate a small
number of covariance and cross-covariance terms as opposed to spectral densities required
for the IIR (infinite impulse response) case.

The performance of the FIR Wiener filter is comparable to a directed information based
approach. However, while the latter has gained popularity in recent years; it involves es-
timating the distributions of the processes involved, and is therefore computationally bur-
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densome for general processes. In that regard, Wiener filtering is an easier and more robust
alternative in detecting causal structures for jointly WSS processes where no information
is available on either the distribution or the support set of the processes.
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Chapter 6

Cyclostationary Processes: AR
Estimation and Granger-causality

6.1 Introduction

In the previous chapter, we addressed the problem of detecting Granger-causality within
a group of WSS processes. While WSS processes are relatively easy to analyze, a number
of processes observed in real applications are non-stationary and therefore require more
involved treatment. Many processes encountered in various fields of study, including com-
munications and control systems involve parameters that vary periodically with time. A
large class of such processes can be appropriately modeled as cyclostationary (CS) pro-
cesses [114]. In this chapter, the problems of autoregressive estimation and detection of
Granger-causality are studied in the context of the latter. After an introductory discus-
sion on some preliminary results, we present a method of estimating CS processes using
time-invariant autoregressions. Finally, the method is extended in the context of detecting
Granger-causality.

We begin with a discussion on some preliminary results on cyclostationary processes.
Some of these results can be found in [115, 116, 117] and [118].
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6.2 Preliminaries

Let {X(n)}nez be a real-valued, zero-mean, discrete time stochastic process defined over
a probability space (2, F, IP) . {X(n)} is said to be cyclostationary (CS) [114] if the
covariance sequence IE[X (n)X (n — k)] = R(n, k) is periodic in the following sense.

R(n, k) = R(n+ i1y, k) (6.2.1)

where ¢ is an integer. We call Tj the period of the cyclostationary (CS) process {X (n)}.

The p-th order autoregressive (AR-p) estimate of X (n) is its best linear predictor based
on its p most recent values. It is given by

Bp(n, k)X (n —k)

~=a><>
3

I
NE

k=1

where the parameters (3,(n, k) are derived by the method of least squares; i.e., the mean
squared error

p

&(n) =E (X(n) — Y by(n,k)X(n— k)) (6.2.2)

k=1

is minimized when b,(n, k) = 5,(n, k). If the instantaneous error corresponding to the
AR-p estimate is given by v,(n), then

X(n) =Y By(n, k)X (n— k) + vp(n)

Lemma 6.2.1. If X(n) is estimated as an autoregression of order p with time-varying
parameters of the form

P
X,(n) =" By(n, k)X (n — k)
k=1
then the parameters 5,(n, k) are periodic in n with period Ty, i.e.,

Bp(n, k) = B,(n + iTh, k)

where © is an integer.
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Proof. The proof is trivial. The Yule-Walker equations derived through the method of
least squares lead to the following system of simultaneous equations.

By(n) = R, (n)ry(n)

where
R(n—1,0) -+ R(n—1,p—1)
R,(n) = : :
R(n—p,1—-p) -~ R(n-p0)
rp(n) = [R(n,1) R(n,2) ... R(n,p)|"
and

By(n) = [By(n,1) ... ﬁp(mp)]T

The result follows readily, noting that R,(n) = Ry(n +i1p) and rp(n) = rp(n + 1p),
due to the periodic property of R(n, k).

O

Theorem 6.2.1. The error {v,(n)} is a CS process with
Elvp(n)vp(n — k)] = Elvp(n + To)vp(n + To — k)]

Proof. By definition,

= =) Bn.k)X(n—k)

with S,(n,0) = —1 for all n, p. Then, the covariance of {v,(n)} is given by
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Elv,(n)vy(n = 7)) = E[(Z&(miﬂ@—i)) (Zﬁp(n—T%)X(n—T—k))]

= 2D Bn)By(n— 7 k)R(n — j,k—j+7)
j=0 k=0

= D ) Bn+To,)Bp(n—7+To, k)R(n — j+ To, k — j +7)
=0 k=0
= E[v,(n+ To)vy(n+ Ty — 7))

where the second last step follows from the fact that {X(n)} is CS and from lemma
6.2.1.

]

Corollary 6.2.1. The innovation process associated with a cyclostationary process is an
orthogonal sequence with a variance that varies with period Tj.

The innovation process {v(n)} of the process {X(n)} is the component of {X(n)} that
is orthogonal to the linear span Hx(n — 1). The proof follows readily from lemma 6.2.1,
noting that v,(n) — v(n) in quadratic mean [12, Lemma 3.1(b)].

6.3 Representation of a CS process as a vector-valued
WSS process

Let the CS process {X(m)} be such that, for any m, k,
E[X?(m)] > E[X(m)X (m — k)] (6.3.3)

For each m € Z, let n = {ﬂ-‘, and let 1+ = m — Ty qﬂ-‘ — 1> Define a family of T

To TO
stochastic processes {Y;(n)}i—1

.....

The cross-covariance of any two processes {Y;(n)} and {Y;(n)} can be found as follows,
using (6.2.1).
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E[Y;(n)Y;(n — k)] = R(i, KTo + i = j)

Since the expression is independent of n, it follows that {Y;j(n)} constitute a family of
jointly WSS processes [116]. Furthermore, if {Y'(n)} is defined as the R*-valued process
Y (n) = [Yi(n) ... Yg,(n)]T then {Y(n)} is a multivariate WSS process. Define {v;(n)}
as the corresponding family of innovation processes.

vin) =v((n—1)Ty+1)
Finally, let {v(n)} be the corresponding vector-valued innovation process. v(n) =
[i(n) ... v, (n)]T.
The original CS process can be expressed in terms of {Y;(n)} in the form of a vector

autoregressive (VAR) model (This is similar to the construction in [I18]). For some n, i,
let m = (n —1)Tp + 4. Then,

Yin) = Y B(m,k)X(m— k) +v(m)

= YO0+ 0D K~ B) + )

where the new parameters v; ;(k) are given by v; ;(k) = 8(i, KTy + i — j).

The above system of equations represents the individual processes {Y;(n)} in terms of
the past of all the processes in the system. However, in this representation, the value of
Yi(n) at time instant n is dependent on those of {Y}(n)};<; and therefore this cannot be
used directly to develop an expression for an AR expansion of the vector-valued process
{Y (n)}. To obtain such an expression, the following adjustments are made.

Define the R70*To_valued lower triangular matrix T'(0) as

72’1(0) 0 .- 0

%‘,1(0) %’,2(0)

7T0,1(O) ’7T0,2(0) 0
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For k > 0 define the matrices I'(k) as I'(k) = [, ;(k)].

Y (n) = +Zr k) + v(n)

and therefore,

(I —T(0) Zr k)+ (I -T(0) " v(n)

Where I denotes the Tj x Tj identity matrix. Note that the determinant of (I —I'(0))
is unity and therefore the matrix is invertible. Rearranging, then, we obtain the following
VAR representation of {Y (n)}.

o)

Y(n) = ) (I-T(0)"'T(k)Y(n—k) +(I-T0) v

k=1

= ZF' — k) +v'(n)

where IV(k) = (I — T'(0)) "' T'(k) for k > 0 and v/(n) = (I — T(0))"" v(n).

Given N cyclostationary processes with the same period T}, the above decomposition
can be used to express the system as a combination of NTj real-valued WSS processes,
and the standard tools to detect Granger-causality can be thereby applied. However, this
requires a high level of computation that has to be carried out using a large number of
samples.

6.4 Time-invariant AR model to estimate CS pro-
cesses

A CS process can be expressed as both an autoregression with periodically varying param-
eters and a VAR model. However, using such estimates are computationally burdensome,
as compared to a WSS process of the same model order, the number of parameters involved
in a CS process is higher by a factor of Tjy. Furthermore, larger number of data points are
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needed to find reliable estimators of R(n, k) forn =1,... Ty and k = 1,...,p where p is
the order of the AR model.

An alternative is to treat the CS process as a WSS process and obtain a time-invariant
AR model. Define

For:=1,...,T}, define

Rx(h) =5 3 Yilw)Yiln k)

n=|k|+1

A

R; n(k) are empirical covariances of the WSS processes {Y;(n)}. Assume the processes to
be covariance-ergodic.

~

lim R, (k) = E[Y;(n)Yi(n - k)]

N—o0

Finally, define

R(k) = Tio S EIX ()X (- k)

R(k) so defined, does not depend on i. Also, by (6.3.3), R(0) > R(k).

Lemma 6.4.1. For all k, limy_, Ry (k) = R(k).

Proof.
lim Ry(k) = lim — Yi(n)Y;(n — k)
N—o0 N—oo N i1 1

where n;(N) = {N’i-‘. Note that as N — oo, n;(N) — oo for all ¢ and

To
R

for all 2. Therefore,
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ni(N)

lim Ry(k) = Z(lim #) T Y Yin)Yin - k)

N—oo n;(N)—oo N; N) 1

[l

The limit of Ry (k) gives the arithmetic mean of the different covariance values of the

CS process at the same lag k. The terms é(k:) can be estimated through Ry (k), and can

be used to determine time-invariant AR parameters ép = [Ep(l) Ab;,(T 0)]T by solving
the Yule-Walker equations

B, = R,'F,

14

The parameters so obtained essentially minimize the limiting mean squared error

lim. % 3 (X(n) ~S B X (n k))

Note that as the sequence {E(k)} is positive semidefinite by construction, it is a valid
covariance sequence, i.e., there exists some WSS stochastic process {Z(n)} with covariance
sequence {R(k)}. The time-invariant AR model obtained using {R(k)} is essentially the
AR model corresponding to {Z(n)}.

6.5 Granger-causality between CS processes

In this section, we explore the problem of inferring causal relations among CS processes
with the same period Ty. Two CS processes { X (n)}, {Y(n)} with period T} are said to be
jointly CS if

EX(n)Y(n—k)] =E[X(n+iT0)Y (n+iTo — k)]

for any integer values of k, 7. In other words, the cross-covariance terms are periodic with
period Tj.
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Consider two jointly CS processes {X;(n)} and {X;(n)} having the same period Tj.
The definition of Granger-causality given in chapters 1 and 5 can be slightly modified to
accommodate CS processes. Unlike the WSS case, here, the estimation parameters and
error variances will no longer be stationary but will vary with period Ty. Again, for a
model order of p, {X;(n)} is first modeled as an univariate AR process with error &;;; i.e.,

Xi(n) = Z i i(n, k) Xi(n — k) + &ji(n)

and then modeled as an autoregression that also includes past observations of {X;(n)}
with error &; ;:-

Xi(n) = Z Bii(n, k) Xi(n — k) + Z Bij(n, k) X;(n — k) + &ijij(n)

We say that {X;(n)} Granger-causes {X;(n)} if for some n € {1,...,Tp},

In terms of the projection notation, {X;(n)} Granger-causes {X;(n)} if for some n €
{1,...,Tp},
IE [(§[X:(n) | Hi(n — 1)])*] > I [(€[Xi(n)| Hij(n — 1)])]

For a family of N jointly CS processes {Xy(n)}k=1.. n, {Xi(n)} is said to be Granger-
caused by {X;(n)} if there exists some n € {1,...,T} such that

I [(§[X (n)| Hj(n — 1)])*] > I [(£[X;(n)|H (n — 1)])*]

To check for the above condition, one requires to solve for the least square parameters
for each n, from 1 to 7y. When the period Tj is large, this becomes computationally
intensive.

For a system consisting of a large number of jointly CS processes with the same period,
the ideal approach to determine causal relations will be to fit a multivariate autoregressive
(MVAR) model. However, because of the cyclostationarity of the processes involved, the
MVAR parameters will vary periodically, and so the number of equations required to solve
will be multiplied by a factor of Ty, compared to the WSS case.

Following the ideas of chapter 5, a pairwise Wiener filter approach can be used to detect
Granger-causality for CS processes as well. However, because the processes are CS with

102



the same period Tj, the Wiener filter parameters, too, will vary periodically. As a result,
one has to separately solve for Wiener filter parameters for each n = 1,...,Ty. While such
a method will lead to accurate estimation of the processes, this, too, would involve a high
level of computation.

Alternatively, a time-invariant Wiener filter estimate may be used, analogous to the
time-invariant AR estimates discussed in section 6.4, which finds the best time-invariant
estimate of X;(n) in terms of a linear combination of the past values of X;(n). In that

case, the time-invariant average cross-covariance R; ;(7) is computed as

T
Rij(r) = lim — > Xi(n)X;(n—7)
n=71+1

The above quantity is equal to the arithmetic mean of the quantities {R; ;(n, T)}n=1.. 13-
The Wiener-Hopf equations are solved by using this average cross-covariance R; j(7). Let
§,); be the corresponding error.

The following result shows that for CS processes, this time-invariant Wiener filter can
be used to determine if {X;(n)} is Granger-caused by {X;(n)}.

Theorem 6.5.1. Consider a system of two jointly cyclostationary processes {X;(n)} and
{X;(n)}, with period Ty. If {X;(n)} Granger-causes {X;(n)}, then

E[E;,] < Ri(0)

Proof. Note that for the required condition to be satisfied, we need to show the existence
of some 7 > 0 for which R; j(7) # 0.

Since {X;(n)} Granger-causes {X;(n)}, there exists some m € {1,...,T,} for which

p p
Xi(m) =Y Bij(m k)X (m = k) + > Bia(m, k)Xo(m — k) + &i5(m)
k=1 k=1
Taking z-transforms on both sides, and re-arranging

Xi(2) = (1 = Bialm, k)z_k> (Z Bij(m, k)2  X;(2) + &u,j(z))

Shifting back to the time-domain, the above becomes

Xi(m) = cij(m, k)X (m — k) + Y dij(m, k)& i(m — k)

k=0

103



where the parameters ¢; j(m, k)s and d; ;(m, k)s can be derived from the §; ;(m, k)s and
Bi.;j(m, k)s, and in general, §; j(m, k) # 0. Thus, >~ ¢; j(m, k) X;(m — k) is a non-trivial
estimator of X;(m). It follows then, that the time-varying causal Wiener filter with the past
values of X;(n) as input and X;(n) as output, will be non-trivial as well for n = m, and the
estimation error will be less or equal to that corresponding to » -, ¢;;(m, k)X;(m — k).
Then, X;(m) is not orthogonal to the past values of X;(m), and there exists some 7 such
that

E[X(m) X (m — 7)) 0

Therefore, R, j(m,7) # 0. It follows, then, that E” (1) is also non-zero and the result
follows. O

The above result has a similarity with theorem 5.3.1. Like theorem 5.3.1, here too, the
reverse, in general, is not true.

6.6 Results with real data

In this section, the efficacy of Wiener filters in determining Granger-causality is studied
in the context of data obtained from a practical application. Fluctuations in many of the
variables involved in climate and weather may be characterized as cyclostationary [117].
In this example, daily mean temperatures of several cities in Ontario for the year 2010,
obtained from the Canadian climate data website [119] were used. Dependence relations
were inferred through the pairwise Wiener filter-based method proposed in chapter 5.
Causal connections inferred using our approach is presented in figure 6.6.

The pattern of inter-relations detected by our method relates closely to the geographical
locations of the cities considered. Temperatures of cities that are close to each other are
seen to reflect stronger dependence relations. Also, in general, the direction of causality is
observed to be from West to East.

6.7 Conclusion

In this chapter, the problem of estimating CS time series through AR approximations has
been studied. Starting with a brief discussion on the background of the theory of estimating
CS processes, we have developed a time-invariant AR estimator of such processes.

104



© Daniel Dalet#Fd:maps.com

‘_ ookout

.. a Geraldton
P2

7= Kenora S

T

Figure 6.1: Interrelation of daily mean temperature in cities of Ontario

&
”
<

105



Furthermore, we have shown that a time-invariant causal Wiener filter, based on the
same principles, can be used to detect causality among several CS processes having the
same period. While for a pair of CS processes, time-varying Wiener filters are more accurate
for estimation, it is interesting to note that the easy-to-compute time-invariant version can
also be used for the detection of Granger-causality.

Our result further shows that the results on the pairwise causal Wiener filter presented
in chapter 5 are also applicable to CS processes. Moreover, the technique proposed in
section 5.4 can be used to determine interdependence relations within a family of CS time
series as well, as demonstrated through the example with temperature related data.
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Chapter 7

Detecting Causality Under Sparsity
Constraints

7.1 Introduction

Recall the problem of determining the underlying causal connections for a family of a num-
ber of WSS processes from their dynamic behaviour. From a theoretical perspective, the
best solution is obtained by solving equations for the multivariate autoregressive (MVAR)
model, which determines the ordinary least square predictor of the system. In terms of
practical usability, however, this approach has several limitations.

In almost all practical scenarios, true covariance and cross-covariance terms are not
directly available and have to be estimated from data. These estimates are likely to deviate
at least slightly from their true values which would result in the detection of additional
spurious links of causality. Often the observed values of the time series themselves are
contaminated with additional noise, which exacerbates the problem. Lack of knowledge
about the exact model order leads to further complications. Finally, characteristics of time
series observed in the real world may not adhere strictly to those of a WSS process, which
would again adversely affect the outcome of the method. As a result, the configuration
identified by the MVAR model is often a complicated mesh with causal links between most
of the pairs of nodes.

A model that indicates causal linkage between almost every pair of processes is difficult
to interpret. It is more useful to identify and keep the more significant links, i.e., the
links that reflect the strongest dependences, and remove the weaker ones. Finally, the
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least square estimates often tend to have high variances, and in those cases, more accurate
prediction can be made by setting some of the smaller parameters to zero [38]. For the
above reasons, a sparse model with fewer non-zero parameters is preferable in the context
of multivariate prediction.

A causal network with fewer edges is easier to interpret and more conducive to predic-
tion. In this chapter, we suggest a technique that modifies the MVAR approach with a
constraint that reduces the number of edges entering a node. In other words, it restricts
the number of processes affecting (or Granger-causing) any given process.

7.2 Problem formulation

Consider a system of N discrete time, real-valued, zero-mean, regular stochastic processes
defined over a probability space (€2, F, IP). Let each process be denoted by {X;(n)} for
i={1,...,N}. Let X(n) =[Xi(n) ... Xny(n)]". The objective is to find a causal linear
MMSE estimate of the RV-valued process X (n) using the most recent p past observations,
under the restriction that the number of processes directly influencing any process is small,
i.e., we are interested in finding a multivariate AR model that preserves only the strongest
causal links in the system. The required estimate X? is a linear combination of the past
values of X (n).

p
X? =) B'(k)X(n-k)
k=1
where Br(k) = [l;f (k)] is a matrix in RP*P. For each individual process X;(n), the

estimate is given by
P N
=> Z bi (k) X;(n — k) (7.2.1)
k=

,_.
<.
Il

—-

Define Bf’ as the matrix whose elements are the optimal parameters corresponding to the
process {X;(n)}.
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Each column of the above matrix represents an edge. The suffix j correspond to the
influencing process, while & is the time lag. The parameters {0} ;(k)} minimize the mean

squared error IE[(X;(n) — X (n))?] for each i, under the following condition of sparsity: for

any i, the parameters (u)fj(k) = 0 for all k, for most js.

Ideally, conditions of sparsity can be achieved by restricting the number of non-zero
parameters of the predictor, i.e., the size of the support set of the parameters, often loosely
termed as the “fy norm” of the parameters. But a constraint on the support set of the
parameters is non-convex and difficult to implement. A more tractable alternative is to
use a constraint on the ¢; norm of the parameters, i.e., their absolute sum [120, , ].

Suppose, the goal is to find a set of optimal parameters {a; ...ay} that minimizes the
objective function f(ay ...ay), subject to the condition that the support of the a;s is small,
ie.,

N
> Ly SC<N
=1

where 1 denotes the indicator function. This problem can be reformulated to set the
constraint as

N
Z ;| < Cy
i=1

If the function f(-) is convex, this is now a convex optimization problem which can be
addressed readily.

A popular technique that uses ¢; constraints to restrict the number of non-zero pa-
rameters in the MMSE predictor is known as the “least absolute shrinkage and selection
operator”, abbreviated as lasso ([88]). Essentially, the method determines a linear es-
timator by minimizing the residual sum of squares, subject to the absolute sum of the
parameters being bounded by a constant.

Suppose the data consists of {Z(n),Y(n)},=1.7, where Y(n) = [Yi(n)...Yx(n)]".
Without loss of generality, let the sample means be 0, i.e.,
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and

T
1
TZYZ(TL) =0fori=1,...,K
n=1
The lasso estimates b = [b; ... bg]? are given by

T K 2 K
b = argmin ¢ » (Z(n) — me@)) subject to Y [bi < 6 (7.2.2)
n=1 =1 =1

Note that the residual sum of squares Y _ (Z(n) - K bﬂ@(n)) is an estimator of the

2
mean squared error [E {(Z(n) — Zf; bﬁﬂ(n)) } . The lasso estimates are thus the MMSE

parameters under an ¢; constraint. The optimal parameters are often computed by solving
an unconstrained minimization problem where S5 |b;| is the penalty function:

T

b = arg min Z (Z(n) - Z@K(M) + /\Z |4

n=1

7.3 The lasso and group lasso methods in the context
of multivariate AR models

In the simplest case, when p = 1, the objective is to estimate X;(n) (for any i) as a
multivariate AR-1 model, with a restriction on the number of non-zero parameters. In this
model, each parameter represents an individual edge, and therefore, restricting the number
of edges is equivalent to restricting the number of non-zero (or significant) parameters. The
constraint on the support of the set of parameters can be replaced by a constraint on their
absolute sum. The problem, then, is identical to that formulated in (7.2.2) and the optimal

parameters b! = [5211(1) Z)Z{N(l)]T are given by
T-1 N 2 N
b} = arg min Z (Xz(n) - Zb;j(l)Xj(n - 1)) subject to Z |b11](1)| <4
n=1 j=1 j=1
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Even though the lasso method serves the purpose in the AR-1 case, the scenario is more
complicated for p > 1. Recall that the objective function in this case is

Z( Y <n—k>)

]: k=1

Extending the lasso approach, one can choose to replace the terms |Iu911](1)| in the constraint
conditions of the AR-1 model with the absolute sums along the corresponding edges, i.e.,

p v
D10, (k)
k=1

However, this approach does not distinguish among parameters in different edges. The
constraint

N p .

AT

J=1 k=1
puts a bound on the sum of all the parameters in all edges as a whole. While this translates
to a reduced number of significant parameters, it does not implement a restriction on the
number of edges. Indeed, it is quite possible that in spite of the lasso approach reducing
many of the Np parameters close to zero, the number of edges remain significantly large.
For instance, consider the case where for some 1,

0 (k

(k) = pfork=1forj=1,....N
= 0 otherwise

In the above example, the matrix Bf has few non-zero elements and the absolute sum of
all the elements is low; and yet the process {X;(n)} depends on the past values of all the
N processes in the system. The /; norm, then, is not a suitable penalty function to use in
this context.

To successfully implement a method that would reduce the number of edges, it is nec-
essary to decouple the parameters associated with different edges, while grouping together
parameters belonging to the same edge. Instead of using a constraint that restricts all
the parameters together, then, it may be possible to restrict parameters within individual
edges.

To address the limitation in the lasso method, the group lasso (glasso) method was
proposed in [90], which incorporates the above idea. In this technique, the objective
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function is minimized using the parameters in groups. The penalty function is defined as
the absolute sum of the ¢5 norm of each individual group. In the context of our problem,
the optimal parameters in the group lasso method are given by

This method successfully decouples parameters based on their corresponding groups.
The technique is particularly useful when each group of parameters is expected to be either
all zero or all non-zero.

7.4 A new method for detecting causality under spar-
sity constraints

In this section, we propose a novel method that can achieve the goal of restricting the
number of edges in the graphical representation of a system of several time series.

Recall that the p-th order multivariate AR estimator of X;(n) is given by

Kipn) = 32 ST 0 ()X, (0 — k)

k=1 j=1
Taking Z-transforms on both sides,
N p
Xiol2) = SO0, (2)
j=1 k=1
N
= B )X()
j=1

where
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l;z ;(2) gives the z-domain representation of the parameters corresponding to the edge from
node j to i. Motivated by this inherent structure, we define the following function g,(-) :
R? — R as follows. For ¢ = [¢(1) ... ¢(p)]7T, let

1
2
p

Z c(k)e 2 A

k=1

gp(c) = d\ (7.4.3)

NI

We drop the suffix , when there is no scope of confusion.

Lemma 7.4.1.
g(c) = k) +2> ) e(k)el)) (cos(2mA(k — j)))dA
1 k=1 j=j1>12=1

Proof. The result is derived through a simplification of the expression of (7.4.3).

1
2 p
g(c) = c(k)e 2™ dX
_1 k=1

N
ol
kS
o
—~
™
S~—
o
S
2
)
=)
>
=
~
no
+
VR
3
8
=z
V)
o~
=,
)
=)
>
=z
~
[N}
QL
>~

=1 k=1
= / s (k) (cos*(2mAk) + sin®(27\k))
N PP 1/2
+2 Z Z c(k)e(j) (cos(2mAk)cos(2mAj) + sin(2wAk)sin(2w\j)) ) d\
_ D) 237D clh)el) (cos(2mA(E — 1))
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It is interesting to note that the above expression is very similar to the ¢, norm of the
vector ¢ used in the glasso technique. The difference is due to the additional terms of the
form c(k)c(j)cos(2nA(k — 7)). Unlike the glasso method, however, this technique inherits
the temporal structure of the lag parameters through its formulation in the frequency
domain.

Let sz = [l;f](l) . lv)zj (p)]*. In the context of our problem, g(lv)ﬁj) can be interpreted
as a measure of how “strong” the edge is from node j to node i. A bound on the absolute
sum Zjvzl g(lu)ﬁ j) forces some of the less significant edges entering node ¢ to vanish, while
parameters on different edges remain decoupled.

Lemma 7.4.2. ¢g(-) : R? — R is a convex function.

Proof. Let t € [0,1]. Let a,b € R?, a = [a(1)...a(p)]T, b = [b(1)...b(p)]*. For all
re (3,4

272

p

> ta(k)e ™ 43 (1= t)b(k)e W

k=1

Xp:u — t)b(k)e 2

p
< Z ta(k)e 2™ 4
k=1 k=1
p p
= t|> a(k)e ™M+ (1-1) > b(k)ez’””“‘
k=1 k=1
Integrating both sides over \ € (—%, %}, we obtain

g(ta+ (1 -1)b) <tg(a) + (1 —1)g(b)

Thus, g(+) is convex. O
It follows that minimization of the estimated error using g(-) as a penalty function is a
convex optimization problem and therefore tractable.
For the multivariate AR-p estimator, we propose the use of

N

G = Z Q(Bij)

J=1
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as the penalty function, where Bf ; denotes the jth column of Bf . The optimal param-
eters are given by

N

T—p 2 N
BP = arg min Z (Xl(n) - Z Eﬁj(k)Xj(n - k:)) subject to Zg(ij) <4
k

=1 j=1

hS]

n=1 j=1

The parameters can be computed by solving the following unconstrained optimization
problem:

T—p P N . 2 N .
BY = argmin{ ) (Xi(n) — Zbﬁj(k)xj(n—k)> +AY g(b?))
: —

n=1 k=1 j:1

Finally, the existence of edges is determined as follows. For each pair of nodes i, j if
G; < K for some threshold K, we conclude that the causal effect of node j on node 7 is
not significant, or there is no edge from ;5 to .

7.5 Comparison with the glasso method: A simple
example

In this section we compare the efficacy of the proposed method to achieve the objective of
having fewer edges, with that of the glasso method for a system with N = p nodes. We
consider the following cases.

1. All the edges entering node i have exactly one non-zero parameter.

b, =[c0... 0 forj=1,2,...,p

2. Two of the edges entering node ¢ have non-zero parameters, which are evenly dis-
tributed between the two edges, as indicated below.

'[cc (\_%’J times) 00 ...(p— \_gj times)]T

for j =1
ng = [cc ...(p— L%DJ times) 00 (LgJ times)]T
for j =2

(00 ... 0" for2<j<p
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3. Only one edge entering node ¢ has non-zero parameters.

B cc ... forj=1
Y00 ... 0T for1<j<p

For all the above cases, the lasso penalty function, i.e., the absolute sum of the pa-
rameters is the same, viz. plc|. From the perspective of having fewer edges, however, the
penalty function should be the greatest for the first case and the least for the third.

The values of Zf\il g(f)ﬁ ;) are plotted for the above three cases in figure 7.1 by varying
the order of autoregression (and the number of nodes) p from 1 to 15, with ¢ = 1. For
comparison, the corresponding plots for the glasso penalty function Zjvzl Hf)f ;1|2 are also
presented.

It is seen that for both methods, the penalty is the highest for the first case, where the
number of input edges is the maximum possible (N), and is the least for the third case
where there is only one input edge.

For case 1, where each of the p edges has a single parameter with the same value ¢, the
penalty function for both the methods is simply p|c|, the sum of the individual parameters.
For the other two cases, the penalty functions corresponding to the two approaches reflect
similar characteristics. For case 2, where the same number of non-zero parameters (with
the same absolute sum) is distributed evenly between two edges, the penalty function is
lower than that for case 1. Finally, for the third case, where all non-zero parameters appear
on a single edge, the penalty function is significantly lower than the first two cases. The
difference in the penalty functions for cases 2 and 3 are seen to be comparable for the two
methods.

This example attests that like the glasso penalty function, the proposed penalty function
is an appropriate choice when the objective is to restrict the number of causal connections.
In both methods, a higher number of edges is aptly penalized.

It is observed that for both cases 2 and 3, the glasso penalty increments more signifi-
cantly with the number of non-zero parameters within an edge, compared to the proposed
alternative. The latter flattens out eventually, indicating insensitivity to higher model or-
ders. As seen from the plot, for p = 15, the penalty functions corresponding to the all 1s
vector of case 3 for the glasso and the proposed method are 3.8730 and 2.087 respectively.
For p = 10,000, the glasso penalty is 100, while that for the latter is only 4.1956. The
penalty function of our proposed method, thus, is more affected by the number of existing
edges and less by the number of non-zero parameters within the edges.
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When a system has a long memory, the present value depends on a large number of
past values, i.e., the autoregressive parameters decay slowly with increasing lag, and the
model order p is large. In other words, for such systems, the “influential” edges contain a
large number of non-zero parameters. As such, when determining the optimal parameters
for such processes, the method should be such, that while a higher number of edges is
severely penalized, a higher number of parameters along the same edge is not penalized
significantly. The proposed method satisfies this requirement more tightly than the glasso,
and will therefore be more appropriate for detecting causal interdependence relations.

15 T T T T T T —
o Case-1 o
.&— Case-2, new method N2
—e- Case-3, new method -2
510l = Case-2, glasso ﬂ,-ﬂ
= = C(Case-3, glasso
3] £
2
) L
oy i
[} £
[ - — =)
-8
F 5 o o :
1 1

2 4 6 8 10 12 14

Order of autoregression

Figure 7.1: Proposed penalty functions for different examples, compared with those for
glasso

7.6 Simulation Results

In this section we demonstrate the utility of the proposed method in inferring interdepen-
dence relations among several stochastic processes. A system of six Gaussian, zero-mean
WSS processes with equal variances and model order p = 4 was simulated using 7" = 800
samples for each process. The number of samples T was deliberately chosen to be small so
that the interdependence relations among the processes are not clearly detectable through
the MVAR approach. Interdependence relations of the original system are graphically
represented in Fig. 7.6.

Gradient descent method with line search [123] was used for optimization and a model
order p = 4 was used. The estimation parameters were first computed by fitting the regular
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Figure 7.2: A system of six interdependent WSS processes

MVA}DL model and then they were further optimized using the proposed method. Values
of g(bﬁ ;) for the regular MVAR model and the proposed technique are tabulated below in

tables 7.1 and 7.2 respectively. The corresponding values of ||Bf ;1|2 for the glasso method
are presented in tables 7.3 and 7.4. The edges that exist in the original system are depicted
in bold font.

Table 7.1: g(tv)z ;) computed from the MVAR parameters estimated directly

=1 j=2 j=3 j=4 j=> | j=6
0.7611 | 0.1444 | 0.1361 | 0.1737 | 0.1010 | 0.2278
0.0559 | 0.5832 | 0.0771 | 0.1370 | 0.1742 | 0.0965
0.3674 | 0.8408 | 0.0301 | 0.0428 | 0.0808 | 0.1609
0.0188 | 0.5071 | 0.2185 | 0.0399 | 0.0556 | 0.1297
0.3323 | 0.0587 | 0.0612 | 0.7161 | 0.0916 | 0.0658
0.0129 | 0.0384 [ 0.0315 | 0.1999 | 0.4758 | 0.0601

o e

D—‘)—‘bﬁb—‘b—l
DY | W DN

It is seen that both methods successfully detected the original edges in the system. In
table 7.1, where the estimates were computed directly through the method of least squares,
due to the limited number of samples, parameters were inaccurate and the original edges
were not easily determined. After the implementation of the proposed method, however,
the values of g(tv)z ;) were significantly reduced for the cases where there is no edge along

(7,1 i, while those corresponding to the actual edges were affected only slightly. As a result,
in table 7.2, actual edges distinctly stood out from the spurious ones, and the original
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Table 7.2: g(lu)ﬁ ;) after optimizing through the proposed method

i=1 i=2 i=3 =4 i=5 | j=6
0.6177 | 0.0460 | 0.0109 | 0.0369 | 0.0112 | 0.1153
0.0281 | 0.4630 | 0.0234 | 0.0223 | 0.0453 | 0.0098
0.2707 | 0.7305 | 0.0068 | 0.0049 | 0.0042 | 0.0346
0.0188 | 0.5071 | 0.2185 | 0.0399 | 0.0556 | 0.1297
0.2570 | 0.0084 | 0.0109 | 0.6304 | 0.0275 | 0.0101
0.0120 | 0.0384 | 0.0315 | 0.1999 | 0.4758 | 0.0601

o =

)—‘D—‘Dﬂlb—‘b—‘
SO | W N~

Table 7.3: [|b? ill2 computed from the MVAR parameters estimated directly

=1 j=2 j=3 j=4 j=> | j=6
0.5107 | 0.0626 | 0.0261 | 0.0330 | 0.0113 | 0.0195
0.0125 | 0.5326 | 0.0162 | 0.0506 | 0.1114 [ 0.0754
0.3298 [ 0.7869 | 0.0021 | 0.0022 | 0.0111 [ 0.0049
0.0893 | 0.6216 | 0.1485 | 0.0595 | 0.0724 | 0.0633
0.2915 | 0.0087 | 0.0105 | 0.7035 | 0.0311 [ 0.0212
0.0334 | 0.0421 | 0.0520 | 0.2259 | 0.5861 | 0.0453

o =

»—A»—A»ﬂd>—->—-
SO | W N~

configuration could be easily recovered. The performance of the proposed method is seen
to be similar to that of the glasso method in this example.

As a second example, we consider the currency exchange rates used in chapter 5. Fluc-
tuations in daily exchange rates of the currencies of some of the world’s leading economies
against the Swiss Franc, for the period January 1, 2009 to December 31, 2012, obtained
from the Bank of Canada website [113] were used. The data was used to find the interde-
pendence relations among the different conversion rates using our proposed method. The
optimal values of g(lv)ﬁ ;) are presented below in table 7.5.

The most significant interdependence relations detected through the proposed method
are illustrated in figure 7.3. For comparison, we also present here the interdependence
relations indicated by the pairwise Wiener filter based approach from chapter 5 in figure
7.4. Tt is interesting to note that while the interconnections are slightly different from those
in figure 7.4, the basic pattern bears a strong resemblance.
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Table 7.4: HB‘Z’ ;ll2 computed after optimizing through glasso

=1 J=2 J=3 j=4 J=5 J=6
i=1]0.6820 | 0.2790 | 0.1689 | 0.2176 | 0.1939 | 0.2151
i=2| 0.1057 | 0.6413 | 0.1127 | 0.1761 | 0.2677 | 0.2015
i=3 | 0.3987 | 0.8770 | 0.0730 | 0.0619 | 0.1293 | 0.1358
i=4 | 0.0893 | 0.6216 | 0.1485 | 0.0595 | 0.0724 | 0.0633
i=5 1 0.3429 | 0.0620 | 0.0367 | 0.7482 | 0.0715 | 0.0745
i=6 | 0.0334 | 0.0421 | 0.0520 | 0.2259 | 0.5861 | 0.0453
Table 7.5: g(lv)ﬁ ;) for currency conversion rates
USD | GBP | Euro | Yuan | Yen INR
US Dollar 1.1608 | 0.0423 | 0.1557 | 0.3874 | 0.0555 | 0.0715
Great Britain Pound | 0.6959 | 0.7090 | 0.1794 | 0.3049 | 0.1295 | 0.0875
Euro 0.5021 | 0.0389 | 1.0315 | 0.2432 | 0.0476 | 0.0381
Chinese Yuan 0.8819 | 0.0715 | 0.2598 | 1.0154 | 0.0320 | 0.1485
Japanese Yen 1.0380 | 0.1179 | 0.2365 | 0.5786 | 0.7054 | 0.0858
Indian Rupee 0.5294 | 0.0467 | 0.1225 | 0.2860 | 0.0426 | 0.8537

7.7 Conclusion

In this chapter, we have presented a new method that detects causal interconnections
within a group of time series under a constraint that restricts the number of edges. The
proposed penalty function is derived using the frequency domain representation of each
edge, and can be intuitively interpreted as the “strength” of the edge. It is seen that the
expression has an interesting similarity with that of the penalty function corresponding to
the glasso method, and differs only in the additional product terms.

Implementation of the method on the simulated example and real data indicates that
the technique is comparable to the glasso method in terms of performance. With an
appropriate choice of the parameter A, desired results can be obtained. Our method,
however, is more computationally intensive, as it requires the computation of an integration
numerically.
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However, as indicated in the plots of figure 7.1, the proposed penalty function exhibits
an advantage over the glasso method in the context of long memory processes. The former
is less sensitive to a higher number of non-zero parameters in the same edge, compared
to that of the glasso technique. Due to this property, optimization carried out under a
constraint on G; will preserve the significant edges, without severely affecting the individual
parameters within the significant edges.

. Euro
Great Britain .

Poun

Japanese
us Yen

Dollar

Chinese
Yuan

Indian
Rupee

Figure 7.3: Interrelation of currencies inferred using the proposed method (p = 10)

Great Britain

Japanese

Dollar

Figure 7.4: Interrelation of currencies inferred using pairwise Wiener filters (p = 10), for
comparison

121



Chapter 8

Conclusion

8.1 Summary

In this dissertation, we focused on two problems related to the estimation of time series
through linear MMSE approximations. First, we studied the asymptotic behaviour of
AR and MA estimates of WSS time series and presented results on the convergence of
the spectral density of the approximating sequences. Next, we analyzed the problem of
detecting causal interdependence relations within a family of WSS time series.

In chapter 3, it was shown that the spectral density of both the MA and the AR type
approximations converge in L, when the covariance sequence is summable and when the
spectral density is strictly positive. It was also established that under the same conditions,
the time average variance constant (TAVC) of a WSS time series converges to that of the
infinite order AR approximation of the series. These conditions for convergence are fairly
general and are satisfied by a large class of stochastic processes.

Furthermore, in chapter 4, we considered asymptotic behavior of AR approximations
when empirical covariances, computed from a sample of size N, are used to estimate the
AR parameters in lieu of the true covariance sequence. Under some additional regularity
conditions and a mild assumption, a result on the convergence in quadratic mean of the
empirical AR parameters was derived when the model order p = of N %}. The spectral
density and the TAVC of the approximating AR sequence were shown to converge under
the same conditions.

In chapter 5, we studied the utility of pairwise causal Wiener filters in detecting inter-
dependence relations among several jointly WSS time series. We presented some results
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that linked the causal Wiener filter with Granger-causality, a tool that is used to identify
causal connections. We also proposed a simple technique that uses the FIR Wiener filter
to detect Granger-causality, the performance of which was compared to that of directed in-
formation. Our results indicated that while ideally, such interdependence relations should
be derived through the simultaneous consideration of all processes involved, pairwise esti-
mation techniques like the Wiener filter can be useful to obtain suboptimal results at low
computational costs.

Noting that many processes encountered in practice are non-stationary, in chapter 6,
we reviewed the problem of AR approximation of cyclostationary processes and presented
a time-invariant AR estimation technique for the same. It was also shown that the former
may be extended to develop a time-invariant Wiener filter to detect Granger-causality, the
performance of which was demonstrated using climate related data.

Finally, in chapter 7, we considered the case where a multivariate AR model is to be
derived for a group of random processes under the condition that each process is influenced
by a small number of other processes. A new method was proposed in this regard which
is based on the frequency-domain representation of the parameters along each edge. This
method was compared to the group lasso method.

8.2 Extensions

Following the results presented in this dissertation, there are several directions in which
future research may be pursued. Some of the possible extensions are discussed below.

The estimation of the TAVC, addressed in chapters 3 and 4 arise mainly in the context
of steady-state simulation. Often the process being simulated is Markov. We would like to
investigate whether there is an easier characterization of the condition of strict-positivity
of the spectral density for Markov processes.

In chapter 4, we identified conditions for the spectral density of the approximating AR
sequence to converge in mean. More interesting would be to find conditions on p and N for
the spectral density to converge in quadratic mean, i.e., in Ly(IP). This, however, requires
the fourth moment of the sum (3_}_, |bxpn — bip|) to converge, which would necessitate
the existence of a higher moment of the innovation sequence and a stronger restriction on p
with respect to N. It would also be worthwhile to identify a class of random processes that
satisfy the conditions imposed in chapter 4. Furthermore, it would be interesting to see if
there can be more relaxed conditions for these convergence results than the ones imposed
by us.
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An interesting extension of this work would be to find conditions on p and N for the
spectral density to converge almost surely when the original sequence is only assumed to
be in Ly(P). As discussed in our literature survey, results on almost sure convergence of
the AR estimates are available only under the assumption that the associated innovation
is Martingale difference. It would be interesting to find out if the same can be derived
under more relaxed conditions.

In chapters 5 and 6 it was shown that the pairwise Wiener filter can be useful in
gathering reasonably accurate information on the underlying causal structure of a group
of WSS or CS processes at low computational cost. An interesting extension would be
to somehow quantify the accuracy of this method. For instance, given that the technique
detects an edge between two nodes, we would like to know the probability that there is an
edge between the corresponding nodes in the original system. The question of convergence
is relevant in this context as well. It would be interesting to see under what conditions the
pairwise FIR Wiener filters converge to their causal IIR counterparts.

The performance of directed information and the Wiener filter were seen to be compara-
ble in detecting Granger-causality in our simulations for the Gaussian example. Although
the former has gained considerable popularity in this area, its computation involves the
estimation of conditional probability density functions, which is, in general, not easy. It
would be of interest to investigate whether directed information can be estimated under
more general settings, and then compare the two techniques under such relaxed conditions.

In chapter 7, we proposed a new method to determine causal connections in a family
of time series where a restriction on the number of edges is imposed through a penalty
function that represents the “strength” of edges. While it is seen that the new method
has some similarity with the group lasso technique, it would be interesting to find an
analytical relation between the two penalty functions. This would provide more insight on
which technique to choose depending on the estimation problem at hand. We would also
like to identify fast, efficient algorithms to solve the optimization problem we formulated.

The results presented in chapters 5, 6 and 7 chiefly deal with applications, and as such,
we would like to see how these methods perform in various practical scenarios. Through
extensive experimentation with real data, these techniques may be modified and perfected
in the future in accordance with the specific field of application.
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