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Abstract

Multiple Description Coding (MDC) was first formulated by A. Gersho and H. Witsen-
hausen as a way to improve the robustness of telephony links to outages. Lots of studies
have been done in this area up to now. Another application of MDC is the transmission of
an image in different descriptions. If because of the link outage during transmission, any
one of the descriptions fails, the image could still be reconstructed with some quality at
the decoder side. In video coding, inter prediction is a way to reduce temporal redundancy.
From an information theoretical point of view, one can model inter prediction with Causal
Video Coding (CVC). If because of link outage, we lose any I-frame, how can we recon-
struct the corresponding P- or B-frames at the decoder? In this thesis, we are interested
in answering this question and we call this scenario as causal video coding with possible
loss of the first encoded frame and we denote it by CVC-PL as PL stands for possible loss.

In this thesis for the first time, CVC-PL is investigated. Although, due to lack of time,
we mostly study two-frame CVC-PL, we extend the problem to M-frame CVC-PL as well.
To provide more insight into two-frame CVC-PL, we derive an outer-bound to the achiev-
able rate-distortion sets to show that CVC-PL is a subset of the region combining CVC and
peer-to-peer coding. In addition, we propose and prove a new achievable region to highlight
the fact that two-frame CVC-PL could be viewed as MDC followed by CVC. Afterwards,
we present the main theorem of this thesis, which is the minimum total rate of CVC-PL
with two jointly Gaussian distributed sources, i.e. X1 and X2 with normalized correlation
coefficient r, for different distortion profiles (D1, D2, D3). Defining Dr = r2(D1 − 1) + 1,
we show that for small D3, i.e. D3 ≤ Dr +D2− 1, CVC-PL could be treated as CVC with
two jointly Gaussian distributed sources; for large D3, i.e. D3 ≥ DrD2

Dr+D2−DrD2
, CVC-PL

could be treated as two parallel peer-to-peer networks with distortion constraints D1 and
D2; and for the other cases of D3, the minimum total rate is 1

2
log (1+λ)(D3+λ)

(Dr+λ)(D2+λ)
+ 1

2
log Dr

D1D3

where λ =
D3−DrD2+r

√
(1−D1)(1−D2)(D3−Dr)(D3−D2)

Dr+D2−(D3+1)
.

We also determine the optimal coding scheme which achieves the minimum total rate.
We conclude the thesis by comparing the scenario of CVC-PL with two frames with a
coding scheme, in which both of the sources are available at the encoders, i.e. distributed
source coding versus centralized source coding. We show that for small D2 or large D3, the
distributed source coding can perform as good as the centralized source coding. Finally,
we talk about future work and extend and formulate the problem for M sources.
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Chapter 1

Introduction

1.1 Motivations and Objectives

In Multiple Description Coding (MDC), as shown in Fig. (1.1), two descriptions of a given
source, i.e. R1 and R2, are sent out through three channels. The first decoder with
distortion constraint D1 receives R1, the second decoder with distortion constraint D2

receives R2 and the third decoder reproduces a reconstructed frame given R1 and R2, with
distortion constraint D3. MDC has different applications, but it is more interesting to us
when we compare it with progressive coding, in which we send out M encoded packets
of a given source. In this case, we cannot reproduce the reconstructed source unless we
receive all the packets in the specific order. What if because of network conditions we
lose one or more packets? If real-time decoding is not a necessary condition, we can just
wait for the lost packets to be retransmitted, but what if we would like to have real-
time communication. Here is when MDC comes into mind, in which having received any
non-empty subset of encoded packets, we can reproduce a reconstructed frame [6].

From an information theoretical point of view, lots of studies have been done considering
different scenarios facing MDC. In 1979, El-Gamal and Cover studied the achievable region
for MDC and presented it in a Shannon Theory workshop. Although Witsenhausen’s
achievable region in [16] is a subspace of El-Gamal and Cover’s region, Ozarow in [8]
proved that this distortion-rate region for Gaussian distributed source is tight. MDC with
Binary Symmetric Source (BSS) has been of the interest for researchers from an information
theoretical point of view as well. Wolf, Wyner and Ziv, studied the achievable region for
BSS [17] and in [20], Zhang and Berger elaborated on these results and derived tight lower
bounds for some portions of the El-Gamal and Cover’s achievable rate-distortion region.
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Figure 1.1: Mutliple description coding.

Researchers have studied different configurations of MDC as well. In [19], they con-
sidered a configuration in which all the decoders and the encoder have the same side
information. In [15], the Wyner-Ziv setting of MDC was posed. A special case of MDC is
two-layer Scalable Video Coding (SVC), in which we just consider distortion constarints
D1 and D3 and since D2 is not of the interest, we remove the second decoder. In [4], a
two-layer SVC was considered and the necessary and sufficient conditions to have no excess
rate condition at each layer were derived. In [9], Rimoldi derived the tight achievable re-
gion of two-layer SVC. It is easy to see that El-Gamal and Cover’s achievable region in [5]
for MDC could be reduced to Rimoldi’s achievable region in [9].

In Causal Video Coding (CVC), we encode a given frame using all the previous frames
and the previous encoded frames and we reproduce a reconstructed frame using all the
encoded frames at the current and the previous layers. In Fig. (1.2), we sketch a CVC
with three correlated frames. For example, one can see that at the second layer, X2 is
encoded using X1 and the encoded frame at the first layer, and the reconstructed frame
X̂2 is reproduced using the encoded frames at the first and the second layers.

An extension of CVC, is Scalable Causal Video Coding (SCVC), in which at each layer
we have two pairs of encoders and decoders. One pair uses all of the previous encoded

2
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Figure 1.2: A three-frame causal video coding. One can see that at each layer, Xk is
encoded using all the previous frames and all the previous encoded frames.

frames (the same as CVC) and the other pair uses just a subset of the previous encoded
frames, which is a set of the encoded frames having been encoded by the first encoders at
each layer. In Fig (1.3), as an example, we show a SCVC with three frames. If we just
have one single frame, SCVC is reduced into SVC.

CVC is a general case in video communication [18]. If because of network conditions, we
lose the first encoded frame, the second decoder should be able to reconstruct the second
frame with a given distortion constraint. This scenario is not only very interesting but
also could happen a lot in telecommunication. We refer to the scenario of causal video
coding with possible loss of the first encoded frame by CVC-PL as PL stands for possible
loss. In Fig. (1.4), we show a two-frame CVC-PL, in which the first encoded frame is
available at the third decoder but not at the second decoder. One can see that two-frame
CVC-PL is a combination of CVC and MDC. In [14], the authors presented an achievable
region for multi-stage sequential coding with correlated sources. In this thesis for the first
time, CVC-PL is investigated. Although, due to lack of time, we mostly study two-frame
CVC-PL, we extend the problem to M-frame CVC-PL as well.

In this thesis, we are interested in CVC-PL with two jointly Gaussian distributed

3
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Figure 1.3: A three-frame scalable causal video coding. One can see that at each layer,
there are two pairs of encoders and decoders. One pair uses all the previous encoded frames
and the other pair uses just a subset of the previous encoded frames.

sources. The final goal is to derive the minimum total rate for different distortion profiles
and to study the best coding scheme to achieve the minimum total rate. To find the best
coding scheme, we refer to the achievable region in [14], which is not a tight region but
we show that using this region, we could achieve the outer-bound on the achievable total
rates. There are different approaches to show that an inner-bound and an outer-bound
of the total rate are tight. In up-bottom approach, people present a coding scheme and
show that the total rate using this coding scheme is equal to its outer-bound. In [13],
Wang and Viswanath, used a bottom-up approach in which they built a coding scheme
such that the inner-bound and the outer-bound became tight. A closed form expression
for the minimum total rate gives us a very good insight into CVC-PL. For the purpose of
comparison, we consider a centralized source coding in which both sources are available at
both encoders. Without loss of generality, we present a coding scheme and derive its total
rate to see the difference between the presented centralized source coding and CVC-PL as
a distributed source coding.
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Figure 1.4: A two-frame CVC-PL. As it is shown, the second frame is encoded such that
it can be decoded if the first encoded frame may or may not be available at the second
decoder.

1.2 Thesis Organization

The thesis is organized as follows. Chapter 2 presents a literature survey on multiple
description coding and causal video coding, followed by a review of the previous research
proposed on two-frame CVC-PL. Chapter 3 presents and proves the minimum total rate
of CVC-PL with two jointly Gaussian distributed sources. Finally, Chapter 4 summarizes
and concludes the thesis and provides recommendations for future work.
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Chapter 2

Background

The main components of this research are multiple description coding and causal video
coding. In this chapter, background information required to understand later chapters is
described. In the first section, we present some notions and definitions that will be used
throughout this thesis. In the next section, we talk about rate-distortion region of a given
peer-to-peer scenario and regarding this region, we study rate-distortion theorem. After-
wards, we consider multiple description coding and we talk about the previous research
works accomplished in the area of multiple description coding. We explain causal video
coding for M correlated sources in section 2.4 and we elaborate more on jointly Gaussian
distributed sources. Finally, we present and formulate the scenario of two-frame CVC-PL.

2.1 Notions and Definitions

We show an n-order frame X as X, where

X = {X1, ..., X2}

and Xi is a random variable from a sample space Xi at time i. We say X is an IID source
if and only if,

pX(x) =
n∏
i=1

p(Xi)

If source X is an IID source, then we use X as a general random variable at any time.
Note that throughout this thesis, we always assume that all the sources are IID. The pdf

6



of an IID, zero-mean Gaussian distributed source X is defined as follows

pX(x) =
n∏
i=1

1√
2πσ

exp− x2i
2σ2

and is presented by X ∼ N(0, σ2). The distortion between X and X̂ is measured by a
single-letter distortion measure δ : X × X̂ → [0,∞). We measure the distortion between
X and X̂ as the arithmetic average distortion per symbol,

d(X, X̂) =
1

n
Σn
i=1δ(Xi, X̂i)

and we call d as a single-letter fidelity criterion. There are different single-letter distortion
measures used in different problems. For a discrete source, a very well-used distortion
measure is hamming distance,

δ(Xi, X̂i) =

{
1, if Xi 6= X̂i

0, if Xi = X̂i

Considering a continuous source, squared error is the most-used single-letter distortion
measure,

δ(Xi, X̂i) = |Xi − X̂i|2

From an information theoretical point of view, we are mostly interested in average distor-
tion which is the expectation of single-letter fidelity criterion, i.e. E(X,X̂)[d(X, X̂)].

Encoding Function and Decoding Function
A (|S|, n) code consists of an encoding function f which maps an n-order frame X to a
finite-length sequence of 0s and 1s, i.e. S, and a decoding function g which maps S to an
n-order reconstructed frame X̂, as follows

f(X) = S

g(f(X)) = X̂

where |S|, is the length of sequence S.

Strongly Typical Sequence [3]
Let pX(x) be a probability distribution of an IID source X. For any ε ≥ 0, a sequence of
x is said to be ε− strongly typical if

1 . | 1
n
N(a|x)− p(a)| ≤ ε

2 . ∀a ∈ X with p(a) = 0, N(a|x) = 0 (2.1)

7



where N(a|x) is the number of occurrences of the symbol a in the sequence x. The set of
ε− strongly typical sequences x with respect to a distribution p(x), is called the strongly

typical set and is denoted by A
∗(n)
ε (X) or A

∗(n)
ε .

Strongly Jointly Typical Pair of Sequences [3]
A pair of sequences (x,y) is said to be ε − strongly jointly typical with respect to a
distribution p(x, y) if

1 . | 1
n
N(a, b|x,y)− p(a, b)| ≤ ε

2 . ∀(a, b) ∈ (X ,Y) with p(a, b) = 0, N(a, b|x,y) = 0 (2.2)

Where N(a, b|x,y) is the number of occurrences of the symbols (a, b) in the sequence (x,y).
The set of ε−strongly jointly typical sequences (x,y) with respect to a distribution p(x, y),

is called the strongly jointly typical set and is denoted by A
∗(n)
ε (X, Y ) or A

∗(n)
ε . From the

definition in (2.2), it follows that if a pair of sequence is ε − strongly jointly typical, i.e.

(x,y) ∈ A∗(n)ε (X, Y ), then x ∈ A∗(n)ε (X) and y ∈ A∗(n)ε (Y ).

2.2 Classical Rate-Distortion Region

A classical peer-to-peer compression network is depicted in Fig. (2.1). Given an IID source
X, we are interested in the minimum compression rate R that guarantees distortion con-
straint D, and we denote it by rate-distortion function, R(D). We present the classical
rate-distortion theory in the following but before that we present rate-distortion region.

A rate-distortion pair (R,D) is said to be achievable if and only if for any ε > 0, with
n sufficiently large, there exist encoding and decoding functions f and g such that

log
E|S|
n
≤ R + ε

E[d(X, X̂)] ≤ D + ε

where |S| denotes the length of S. The rate-distortion region for a source is the set of all
the achievable rate-distortion pairs, (R,D).

The rate-distortion function R(D) is the infimum of rates R such that (R,D) is achiev-
able. R(D) specifies the minimum rate at which one must receive information about the
source output in order to be able to reproduce it with an average distortion that does not
exceed D [2]. Now we are ready to present rate-distortion theory,

8
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Figure 2.1: A classical peer-to-peer compression network.

Theorem 1 [2]
Given an IID source X ∼ pX(x), and distortion measure δ(X, X̂), the rate-distortion
function R(D) is,

R(D) = inf
pX̂|X(x̂|x):E[d(X,X̂)]≤D

I(X; X̂)

where the infimum is over all the conditional distributions pX̂|X(x̂|x) for which the corre-
sponding joint distributions pX,X̂(x, x̂) = pX̂|X(x̂|x)pX(x) satisfy distortion constraint D.

Having talked about the classical rate-distortion theory, in the following we first derive
R(D) for a zero-mean Gaussian distributed source and then we talk about Multiple De-
scription Coding (MDC) and Causal Video Coding (CVC).

9



Example 1
Given an IID source X ∼ N(0, σ2), we are interested in R(D),

I(X; X̂) = h(X)− h(X|X̂)

= h(X)− h(X − X̂|X̂)
(a)

≥ h(X)− h(X − X̂)
(b)

≥ 1

2
log(2πeσ2)− 1

2
log(2πeE[(X − X̂)2])

(c)

≥ 1

2
log(2πeσ2)− 1

2
log(2πeD)

=
1

2
log

σ2

D

where (a) is because of the fact that condition reduces entropy, (b) is because of the fact
that Gaussian distributed random variable maximizes entropy for a given variance, and
(c) comes from the problem assumption, i.e. E[(X − X̂)2] ≤ D and it happens if X̂ is
Gaussian distributed such that (X − X̂) ∼ N(0, D). Hence, for all D ≤ σ2,

inf
pX̂|X(x̂|x):E[d(X,X̂)]≤D

I(X; X̂) =
1

2
log

σ2

D

If D > σ2, we do not need to send any information to the decoder, and we could reconstruct
X̂ = E[X] = 0. In this case, E[(X − X̂)2] = σ2. In conclusion, we could derive R(D) as
follows,

R(D) =

{
1
2

log σ2

D
if σ2 ≥ D

0 if σ2 < D

2.3 Multiple Description Coding (MDC)

In this section, we first formulate MDC. Afterwards, we talk about the main results in
the literature for this scenario. Considering MDC as in Fig. (1.1), where X represents a
video frame, Sk and X̂k represent respectively its encoded frame and reconstructed frame at
encoder and decoder k, there are two encoder functions (f1, f2) and three decoder functions
(g1, g2, g3) as follows,

f1(X) = S1

f2(X) = S2

10



and

g1(f1(X)) = X̂1

g2(f2(X)) = X̂2

g3(f1(X), f2(X)) = X̂3

where S1 and S2 are the finite-length sequences of 0s and 1s. Having considered this
formulation, El-Gamal and Cover in [5] derived an achievable region for MDC,

Theorem 2 [5] Given an IID source X, the set of (R1, R2, D1, D2, D3) is achievable if
there exist auxiliary random variables (X̂1, X̂2, X̂3) jointly distributed with generic source
random variable X such that

R1 ≥ I(X; X̂1)

R1 ≥ I(X; X̂2)

R1 +R2 ≥ I(X; X̂1X̂2X̂3) + I(X̂1; X̂2)

and

E[d(X, X̂1)] ≤ D1

E[d(X, X̂2)] ≤ D2

E[d(X, X̂3)] ≤ D3 (2.3)

In [16], Witsenhausen attributed to El Gamal and Cover the following antecedent of the
theorem in (2.3) [20].

Theorem 3 [16]
Given an IID source X, the set of (R1, R2, D1, D2, D3) is achievable if there exist auxiliary
random variables (U1, U2) jointly distributed with generic source random variable X and
functions (g1, g2, g3) such that

R1 ≥ I(X;U1)

R1 ≥ I(X;U2)

R1 +R2 ≥ I(X;U1U2) + I(U1;U2)

and

E[d(X, f1(U1))] ≤ D1

E[d(X, f2(U2))] ≤ D2

E[d(X, f3(U1, U2))] ≤ D3 (2.4)

11
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Figure 2.2: Multiple description coding with four layers.

It is easy to see that the region in (2.4) is the subspace of the region in (2.3). But
in [8], Ozarow showed that the distortion-rate region in (2.4) for MDC with IID Gaussian
distributed source X is tight. To get more elaborated on Ozarow’s distortion-rate region,
we extend the problem as in Fig. (2.2) in which we add one more layer on the top of the
all the layers, i.e. (R0, D0), and we prove the following theorem. The proof is shown in
Appendix A,

Theorem 4 Given an IID source X, the set of (R0, R1, R2, R3, D0, D1, D2, D3) is achiev-
able if and only if
CASE 1: If D1 +D2 < D0(1 + exp(−2(R1 +R2))),

D0 ≥ exp(−2R0)

D1 ≥ exp(−2(R0 +R1))

D2 ≥ exp(−2(R0 +R2))

D3 ≥ exp(−2(R0 +R1 +R2 +R3))
1

1− (
√

Π−
√

∆)
2

∆ = D̄1D̄2 − exp(−2(R1 +R2))
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Π = (1− D̄1)(1− D̄2)

where Ȳ = Y/ exp(−2R0).
CASE 2: If D1 +D2 ≥ D0(1 + exp(−2(R1 +R2))),

D0 ≥ exp(−2R0)

D1 ≥ exp(−2(R0 +R1))

D2 ≥ exp(−2(R0 +R2))

D3 ≥ exp(−2(R0 +R1 +R2 +R3))

Besides MDC with Gussian distributed source, another special case of MDC was con-
sidered in [1], where the author called it ”no excess rate” condition by imposing R1 +R2 =
R(D3). In this case, it was shown that the El-Gamal Cover’s region in (2.3) is tight. But
without ”no excess rate” condition, Zhang and Berger in [21] showed that the region is not
tight for the very special binary symmetric case. In [13], Wang and Viswanath, generalized
the problem of MDC with a scalar Gaussian distributed source to the case with a vector
Gaussian distributed source. They showed that in this general case, the optimum total
rate could be achieved if and only if the auxiliary random variables introduced in [11] are
jointly Gaussian distributed.

Researchers have studied different configurations of MDC as well. In [19], they con-
sidered a configuration in which all the decoders and the encoder have the same side
information. In [15], the Wyner-Ziv setting of MDC was posed. A special case of MDC
is two-layer Scalable Video Coding (SVC) shown in Fig. (2.3), in which we just consider
distortion constarints D1 and D3 and since D2 is not of the interest, we remove the second
decoder. In [4], a two-layer SVC was considered and the necessary and sufficient conditions
to have no excess rate condition at each layer, i.e. R(D1) and R(D2), were derived. In
this case, SVC is called ”successive refinement of information”. In [9], Rimoldi derived
the tight achievable region of two-layer SVC. It is easy to see that El-Gamal and Cover’s
achievable region in [5] for MDC could be reduced to Rimoldi’s achievable region in [9].
M-layer SVC is an extension to the H.264 codec standard and is used by most of today’s
video conferencing devices. SVC allows video conferencing devices to send and receive
multi-layered video streams composed of a small base layer and optional additional layers
that enhance resolution, frame rate and quality [7]. Generally speaking, in SVC, at each
layer we are interested in reconstructing the same source in different resolutions by slightly
sending more bits to the decoder.
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Figure 2.3: A two-layer scalable video coding.

2.4 Causal Video Coding for Correlated Sources

Causal Video Coding (CVC) for M correlated sources, shown in Fig. (1.2), consists of M
encoders and M decoders, i.e. (fi, gi) for i = 1, ...,M . At layer k = 1, ...,M , encoding
function fk uses (X1, ...,Xk−1, S1, ..., Sk−1) as the side information to encode Xk to Sk,

fk(X1, ...,Xk, S1, ..., Sk−1) = Sk

where Sk is a finite-length sequence of 0s and 1s. At decoder k, (S1, ..., Sk) are decoded to
X̂k using decoding function gk,

gk(S1, ..., Sk−1, Sk) = X̂k

When M = 2, the causal coding model is the same as the sequential coding model of
correlated source proposed in [12]. However, whenM > 2, which is a typical case in MPEG-
series and H-series video coding, the causal coding model considered here is quite different
from sequential coding [18]. Visamanthan and Berger in [12] first studied sequential coding
for two correlated sources, derived an achievable region and showed that the region is tight.
In [18], the authors extended this achievable region for CVC of M correlated sources as
follows,
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Theorem 5 [18] Given IID sources (X1, ..., XM), the set of (R1, ..., RM , D1, ..., DM) is
achievable if and only if there exist auxiliary random variables (U1, ..., UM) jointly dis-
tributed with sources (X1, ..., XM) and functions (g1, ..., gM) such that

Ri ≥ I(X1, ..., Xi;Ui|U1, ..., Ui−1) i = 1, ...,M − 1

RM ≥ I(XM ;UM |U1, ..., UM−1)

and

E[d(Xi, gi(U1, ..., Ui))] ≤ Di i = 1, ...,M

and

Ui → (X1, ..., Xi, U1, ..., Ui−1)→ (Xi+1, ..., XM) i = 1, ...,M − 1

UM → (XM , U1, ..., UM−1)→ (X1, ..., XM−1)

In addition, they derived the minimum total rate and presented an iterative algorithm to
compute the minimum total rate.

Using the results in [18], the authors in [10], considered three jointly Gaussian dis-
tributed sources and derived a closed-form expression for the minimum total rate. Based
on the results in [10], it is easy to show that the minimum total rate for a sequential coding
of two jointly zero-mean Gaussian distributed sources, (X1, X2) is,

R1 +R2 ≥
1

2
log

1

D1

+
1

2
log

r2D1 + σ2
Z

D2

(2.5)

where
X2 = rX1 + Z

and X1 ∼ N(0, 1), X2 ∼ N(0, 1), r is the normalized correlation coefficient of X1 and X2,
Z ∼ N(0, σ2

Z) and is independent of X1.

2.5 Causal Video Coding with Possible Loss of the

First Encoded Frame (CVC-PL)

CVC is a general case in video communication [18]. If because of network conditions, we
lose the first encoded frame, the second decoder should be able to reconstruct the second
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frame with a given distortion constraint. This scenario is not only very interesting but also
could happen a lot in telecommunication. We refer to the scenario of causal video coding
with possible loss of the first encoded frame by CVC-PL as PL stands for possible loss.

In Fig. (1.4), we show a two-frame CVC-PL, in which the first encoded frame is available
at the third decoder but not at the second decoder. One can see that two-frame CVC-PL
is a combination of CVC and MDC. In [14], the authors presented an achievable region
for multi-stage sequential coding with correlated sources. In this thesis for the first time,
CVC-PL is investigated. Although, due to lack of time, we mostly study two-frame CVC-
PL, we extend the problem to M-frame CVC-PL as well. In the rest of this chapter, we first
formulate a two-frame CVC-PL. In addition, we present and prove the achievable region
derived in [14].

Considering CVC-PL with two frames as shown in Fig. (1.4), where X1 and X2 represent
two video frames, Sk and X̂k represent respectively encoded frame and reconstructed frame
at layer k, an n-order two-frame CVC-PL is a frame-by-frame coding scheme, modeled as
follows,

First Layer X1 is encoded using function f1 to S1 which is a finite-length sequence of 0s
and 1s, i.e. f1(X1) = S1, and S1 is decoded to X̂1 using decoding function g1, i.e.
g1(S1) = X̂1.

Second Layer Encoding function f2 uses (X1, S1) as the side information to encode X2

to S2,
f1(X1,X2, S1) = S2

S2 is decoded to X̂2 using decoding function g2,

g2(S2) = X̂2

Third Layer In the last layer, encoding function f3 uses all the previous encoded se-
quences and X1 as the side information to encode X2 to S3,

f3(X1,X2, S1, S2) = S3

S3 is decoded to X̂3 using decoding function g3,

g3(S1, S2, S3) = X̂3
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Achievability Definition
A set of (R1, R2, R3, D1, D2, D3) is achievable if ∀ε > 0 with n sufficiently large we have

log
E|Si|
n

≤ Ri + ε i = 1, 2, 3

E[d(X1, X̂1)] ≤ D1 + ε

E[d(X2, X̂j)] ≤ Dj + ε j = 2, 3

Theorem 6 [14]
Given IID sources X1 and X2, the set of (R1, R2, R3, D1, D2, D3) is achievable if there
exist auxiliary random variables (U1,W, U2) jointly distributed with (X1, X2) and functions
(g1, g2, g3) such that

R1 ≥ I(X1;U1)

R2 ≥ I(U1X1X2;W )

R3 ≥ I(X2;U2|U1,W )

and

D1 ≥ E[d(X1, g1(U1))]

D2 ≥ E[d(X1, g2(W ))]

D3 ≥ E[d(X1, g3(U1,W, U2))]

and

U1 → X1 → X2

U2 → (X2, U1,W )→ X1 (2.6)

The proof is shown in Appendix C.

Based on the above formulation for two-frame CVC-PL, the difference between two-
layer SVC and two-frame CVC-PL is the fact that in CVC-PL, we send the same description
to the second and third decoders while in SVC, at each layer we should send more bits
compared to the previous layer.

Having talked about all the pre-requests, in the next chapter we present and prove the
main theorem of the thesis, which is the minimum total rate of CVC-PL with two jointly
Gaussian distributed sources.
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Chapter 3

CVC-PL with Two Jointly Gaussian
Distributed Sources

Considering CVC-PL with two frames as shown in Fig. (1.2) and discussed in Chapter
2, in this chapter, we derive the minimum total rate for CVC-PL with two jointly Gaus-
sian distributed sources and we determine the optimal coding scheme which achieves the
minimum total rate.

A quick look at Fig. (1.2), one can see that a two-frame CVC-PL consists of a two-layer
causal video coding (the first and third decoders) and a peer-to-peer coding (the second
decoder) as shown in Fig. (3.1). The following outer-bound on R1 and R2 shows this fact
clearly. If (R1, R2, R3, D1, D2, D3) is achievable then

n(R1 + ε) ≥ H(S1)
(a)

≥ H(S1)−H(S1|X1)

= I(S1; X1)

(b)
=

n∑
i=1

I(X1i;S1|X−1i)

(c)
=

n∑
i=1

I(X1i;U1i)

where

(a). S1 is a function of X1, i.e. S1 = f(X1), so H(S1|X1) = 0
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Figure 3.1: In CVC-PL, if the first encoded frame is available at the decoder, causal video
coding and if it is not available at the decoder, peer-to-peer coding occurs.

(b). Chaining rule and X−1i = (X11, ..., X1(i−1))

(c). U1i = (S1, X
−
1i)

In addition, since X1 and X2 are IID sources,

U1i → X1i → X2i
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Also, we can derive an outer-bound on R2 as follows,

n(R2 + ε) ≥ H(S2)

= H(S2, g2(S2))

= H(g2(S2)) +H(S2|g2(S2))
(a)

≥ H(g2(S2))−H(g2(S2)|X1,X2) +H(S2|g2(S2), S1)−H(S2|g2(S2), S1,X1,X2)

= I(X1,X2; g2(S2)) + I(X1,X2;S2|S1, g2(S2))

(b)
=

n∑
i=1

I(X1i, X2i; g2(S2)|X−2i) +
n∑
i=1

I(X1i, X2i;S2|S1, g2(S2), X
−
1i, X

−
2i)

≥
n∑
i=1

H(X1i, X2i|X−1i, X−2i)−H(X1i, X2i|g2(S2), X
−
2i)

+
n∑
i=1

H(X1i, X2i|S1, g2(S2), X
−
1i, X

−
2i)−H(X1i, X2i|S2, S1, g2(S2), X

−
1i, X

−
2i)

(c)
=

n∑
i=1

I(X1i, X2i;Wi) +
n∑
i=1

I(X1i, X2i;U2i|Wi, U1i)

where

(a). Since g(S2) = g(f(X1,X2)) is a function of (X1,X2) , so H(g2(S2)|X1,X2) = 0 and
H(S2|g2(S2)) ≥ H(S2|g2(S2), S1)−H(S2|g2(S2), S1,X1,X2)

(b). Chaining rule and X−2i = (X21, ..., X2(i−1))

(c). Wi = (g2(S2), X
−
2i) and U2i = (S2, X

−
2i)

In addition, we can introduce X̂1k = g1(U1k), X̂2k = g2(Wk) and X̂3k = g3(U1k,Wk, U2k).
Introducing uniformly distributed time-sharing random variable Q on the discrete set
{1, ..., n}and random variables W = (WQ, Q), Ui = (UiQ, Q), Xi = (XiQ, Q) and X̂j =

(X̂jQ, Q) for i = 1, 2 and j = 1, 2, 3, one can write,

R1 + ε ≥ I(X1;U1)

R2 + ε ≥ I(X1, X2;W ) + I(X1, X2;U2|W,U1)

U1 → X1 → X2
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and

D1 + ε ≥ E[d(X1, X̂1)] =
1

n

n∑
k=1

E[d(X1k, X̂1k)] = E[d(X1, X̂1)]

Dj + ε ≥ E[d(X2, X̂j)] =
1

n

n∑
k=1

E[d(X2k, X̂jk)] = E[d(X2, X̂j)]

Letting ε− > 0,

R1 ≥ I(X1;U1)

R2 ≥ I(X1, X2;W ) + I(X1, X2;U2|W,U1)

U1 → X1 → X2

and

D1 ≥ E[d(X1, X̂1)]

Dj ≥ E[d(X2, X̂j)]

The above outer-bound gives us a hint to present the following achievable region. In terms
of information theoretical point of view, we can say that if U1 → (X1, X2)→ W then the
above outer-bound would be an achievable region. Another way, is to generate an auxiliary
random variable U21 which is jointly typical with U1 and then generating U22 conditioned
on U21. Actually, in this approach, we consider CVC-PL as a combination of MDC and
CVC and we derive the following achievable region,

Theorem 7 For a two-frame CVC-PL, given IID sources X1 and X2, the set of (R1, R2, R3,
D1, D2, D3) is achievable if there exist auxiliary random variables (U1, U21,W, U22) jointly
distributed with generic random variables (X1, X2) and functions (g1, g2, g3) such that

R1 ≥ I(X1;U1)

R2 ≥ I(X2;W |U21) + I(X2;U22|W,U21, U1)

R1 +R2 ≥ I(X1;U1, U21) + I(U1;U21) + I(X1, X2;W |U21)

R3 ≥ I(X2;U22|W,U21, U1) (3.1)

and

E[d(X1, g1(U1))] ≤ D1

E[d(X2, g2(W,U21))] ≤ D2

E[d(X2, g3(U1,W, U21, U22))] ≤ D3
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and

(U1, U21) → X1 → X2

U1 → (X2, U21)→ (W,U22)

The proof is shown in Appendix D. Having got some insight into CVC-PL, in the next
section, we will present and prove a theorem on the minimum total rate of a CVC-PL with
two jointly Gaussian distributed sources.

3.1 The Total rate of a CVC-PL with Two Jointly

Gaussian Distributed Sources

The approach we use in this section, is the bottom-up approach discussed in Chapter 1. X1

and X2 are IID, zero-mean jointly Gaussian distributed sources. Without loss of generality,
we assume unit-variance sources, i.e. σ1 = σ2 = 1. In addition, we consider MSE as the
average distortion, and we are interested in minimizing MSE at the decoders. We formulate
X1 and X2 as follows,

X1 = rX2 + Z2

X2 = rX1 + Z1

where Zk ∼ N(0, σ2
Z) for k = 1, 2 and r is the normalized correlation coefficient between

X1 and X2. The main result of the thesis is in the following theorem,

Theorem 8 For a given (D1, D2, D3), the minimum total rate RT = R1 +R2 +R3 is

RT =


1
2

log Dr

D1D3
D3 ≤ −1 +D2 +Dr

f(D1, D2, D3) o.w.
1
2

log 1
D1D2

1
D3
≤ −1 + 1

D2
+ 1

Dr

(3.2)

where

f(D1, D2, D3) =
1

2
log

(1 + λ)(D3 + λ)

(Dr + λ)(D2 + λ)
+

1

2
log

Dr

D1D3

(3.3)

and

λ =
D3 −DrD2 + r

√
(1−D1)(1−D2)(D3 −Dr)(D3 −D2)

Dr +D2 − (D3 + 1)
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To prove the theorem, we study the inner-bound and the outer-bound on the total rate
RT in three separate cases and we show that in all these three cases, the inner-bound and
the outer-bound are equal, i.e. they are tight bounds to the total rate, hence the theorem
is proved.

3.2 The Inner-Bound

CASE 1:max{0, Dr +D2 − 1} ≤ D3 ≤ DrD2

Dr+D2−DrD2
, 0 ≤ (D1, D2) ≤ 1

Let’s assume U2 = cte then R3 = 0 and

1. Quantize U1 = X1 +N1 where N1 ∼ N(0, D1

1−D1
), where N1 is independent of X1 and X2

2. Quantize W = X2 + γ(N1 + Z2) + N ′W where N ′W is independent of (X1, X2, N1). For
simplicity we define NW = γ(N1 + Z2) +N ′W , and N ′1 = N1 + Z2 such that

γ =
ρσN ′

1
σNW

(1−D1)

Dr

‘

σ2
NW

=
D2

1−D2

σ2
N ′

1
=

Dr

1−D1

3. Reconstruct X̂3 = MMSE(X2|U1,W ), so D3 = E[X2 −MMSE(X2|U1,W )]2

The covariance matrix of U1 and W is∑
U1,W

=

( 1
1−D1

r + ρσN ′
1
σNW

r + ρσN ′
1
σNW

1
1−D2

)
So, using item 3, D3 is

D3 =
σ2
N ′

1
σ2
NW

(1− ρ2)
σ2
N ′

1
+ r2σ2

NW
+ σ2

N ′
1
σ2
NW

(1− ρ2)− 2rρσN ′
1
σNW

Solving the equation of ρσN ′
1
σNW

as a function of D3, we have

ρσN ′
1
σNW

=
rD3 −

√
(D3−Dr)(D3−D2)
(1−D1)(1−D2)

1−D3
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To have the expression under the squared-root non-negative, either D3 ≤ min{Dr, D2} or
D3 ≥ max{Dr, D2}. So, one sufficient condition for this coding scheme to be achievable is

(D3 ≤ min{Dr, D2}) || (D3 ≥ max{Dr, D2}) (3.4)

For D3 ≥ max{Dr, D2}, we study the total rate in case 3. So, we just consider D3 ≤
min{Dr, D2}. According to the achievable region in (2.6) and selecting U1 and W from
items 1 and 2 respectively, and U2 = cte we set R1, R2 and R3 as follows,

R1 = I(X1;U1)

R2 = I(X1X2U1;W )

R3 = 0

Lets define Y = X2 + V where V ∼ N(0, α) and independent of (X1, X2, U1,W, U2). We
have the following lemma,
Lemma 1
Given

1

D3

> −1 +
1

D2

+
1

Dr

(3.5)

and
D3 > −1 +D2 +Dr (3.6)

If we define

α =
−ρσN ′

1
σNW

r + ρσN ′
1
σNW

then
h(U1|Y ) + h(W |Y )− h(U1,W |Y ) = 0
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The proof is in AppendixB. Using this lemma, we study the summation of R1, R2 and R3

as follows

( R1 +R2 )

= h(U1) + h(W )− h(U1,W |X1, X2) + h(U1,W )− h(U1,W )
(a)
= h(U1) + h(W )− h(U1,W |X1, X2) + h(U1,W )− h(U1,W )

− [h(U1|Y ) + h(W |Y )− h(U1,W |Y )]

= I(U1;Y ) + I(W ;Y ) + I(X1, X2;U1,W )− I(Y ;U1,W )

(b)
=

1

2
log

1 + ε

Dr + α
+

1

2
log

1 + α

D2 + α
+ h(X1, X2)− h(Y ) + h(Y |U1,W )− h(X1, X2|U1,W )

(c)
=

1

2
log

2πeσ2
Z(1 + α)

(Dr + α)(D2 + α)
+ I(Y ;V |U1,W )− h(X1|X2, U1)

(d)
=

1

2
log

σ2
Z(1 + α)

(Dr + α)(D2 + α)
+ h(V )− h(V |Y −MMSE(Y |U1,W ))

− h(X1 −MMSE(X1|U1)|r(X1 −MMSE(X1|U1)) + Z)

=
1

2
log

σ2
Z(1 + α)

(Dr + α)(D2 + α)
+ I(V ;X2 −MMSE(Y |U1,W ) + V )

− h(X1 −MMSE(X1|U1)|r(X1 −MMSE(X1|U1)) + Z)

=
1

2
log

σ2
Z(1 + α)

(Dr + α)(D2 + α)
+ I(V ;X2 −MMSE(X2|U1,W ) + V )

− h(Z|r(X1 −MMSE(X1|U1)) + Z)

(e)
=

1

2
log

(1 + α)(D3 + α)

(Dr + α)(D2 + α)
+

1

2
log

Dr

D1D3

where

(a). Using Lemma, h(U1|Y ) + h(W |Y )− h(U1,W |Y ) = 0

(b). Since V is independent of (X1, Z, U1,W, U2), I(Y ;W ) = 1
2

log 1+ε
D2+ε

and I(Y ;U1) =

h(Y )− h(Y −MMSE(Y |U1)|U1) = h(Y )− h(Y −MMSE(Y |U1)) = 1
2

log 1+ε
Dr+ε

(c). (c) can be achieved using entropy chaining rule

(d). h(A|B) = h(A|BC) if A→ B → C
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(e). Define X̃2 = X2 −MMSE(X2|U1,W ) where X̃2 is independent of V . We can show
that if X̃2 is Gaussian distributed, then E[(V −MMSE(V |X̃2+V ))2] = D3ε

D3+ε
. Hence,

I(V ; X̃2 + V ) = h(V )− h(V −MMSE(V |X̃2 + V )) =
1

2
log

D3 + ε

D3

So,

(R1 +R2 +R3) =
1

2
log

(1 + α)(D3 + α)

(Dr + α)(D2 + α)
+

1

2
log

Dr

D1D3

(3.7)

Intersecting conditions of (3.4),(3.5) and (3.6), we conclude the minimum total rate as in
(3.3).

CASE 2: D3 ≤ Dr +D2 − 1, Dr +D2 − 1 ≥ 0

First we study D3 = Dr +D2 − 1. In this case, we set ρσN ′
1
σNW

= −r, so

U1 = X1 +N1

W = X2 − r(Z2 +N1) +N ′W

and

R2 =
1

2
log

Dr

D3

For D3 < −1 + D2 + Dr, we again set γ = −r(1−D1)
Dr

and we send more rate R3 to send
random variable U2 such that

U2 = (X2 −MMSE(X2|X̂1, X̂2)) +N2

such that N2 ∼ N(0, D3

1−D3
) Hence,

R1 +R2 +R3 =
1

2
log

Dr

D1D3

(3.8)

CASE 3: D3 ≥ DrD2

Dr+D2−DrD2

In this case we set ρσN ′
1
σNW

= 0, so

R2 =
1

2
log

1

D2

and
1

D3

= −1 +
1

D2

+
1

Dr

26



3.3 The Outer-Bound

CASE 1:max{0, Dr +D2 − 1} ≤ D3 ≤ DrD2

Dr+D2−1, 0 ≤ (D1, D2) ≤ 1

If (R1, R2, R3, D1, D2, D3) is achievable then by introducing Y = X2+V where V ∼ N(0, ε)
and independent of (X1,Z, S1, S2, S3), we have

( R1 +R2 +R3)

≥ 1

n
[H(S1) +H(S2) +H(S3)]

≥ 1

n
[H(S1) +H(S2, S3)]

=
1

n
[H(S1) +H(S2, S3)−H(S1, S2, S3|X1,X2) +H(S1, S2, S3)−H(S1, S2, S3)]

≥ 1

n
[H(S1) +H(S2, S3)−H(S1, S2, S3|X1,X2) +H(S1, S2, S3)−H(S1, S2, S3)

− (H(S1|Y) +H(S2, S3|Y)−H(S1, S2, S3|Y))]

≥ 1

n
[I(S1; Y) + I(S2; Y) + I(X1,X2;S1, S2, S3)− I(Y;S1, S2, S3)]

≥ 1

2
log

1 + ε

r2D1 + σ2
Z + ε

+
1

2
log

1 + ε

D2 + ε

+
1

n
[h(X1,X2)− h(Y) + h(Y|S1, S2, S3)− h(X1,X2|S1, S2, S3)]

=
1

2
log

2πeσ2
Z(1 + ε)

(Dr + ε)(D2 + ε)
+

1

n
[I(Y; V|S1, S2, S3)− h(X1|X2, S1, S2, S3)]

≥ 1

2
log

2πeσ2
Z(1 + ε)

(Dr + ε)(D2 + ε)
+

1

n
[I(Y; V|S1, S2, S3)− h(X1|X2, S1)]

(a)

≥ 1

2
log

2πeσ2
Z(1 + ε)

(Dr + ε)(d2 + ε)
+

1

2
log

(D3 + ε)

D3

− 1

n
h(X1 −MMSE(X1|S1)|X2 − rMMSE(X1|S1))

=
1

2
log

2πeσ2
Z(1 + ε)

(Dr + ε)(D2 + ε)
+

1

2
log

(D3 + ε)

D3

− 1

n
h(Z|r(X1 −MMSE(X1|S1)) + Z)

≥ 1

2
log

(1 + ε)(D3 + ε)

(Dr + ε)(d2 + ε)
+

1

2
log

Dr

D3D1
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Hence,

(R1 +R2 +R3) ≥
1

2
log

(1 + ε)(D3 + ε)

(Dr + ε)(D2 + ε)
+

1

2
log

Dr

D1D3

(3.9)

for any ε ≥ 0. Therefore, if we set ε = α, (3.7) and (3.9) are equal.
Remark 1
Lets define T = Y −MMSE(S1, S2, S3), TN as its correspondence Gaussian distributed,
γ as the MMSE coefficient of V given TN , so (a) is derived as follows

I(Y; V|S1, S2, S3) ≥ h(V)− h(V|T)

≥ h(V)− h(V −MMSE(V|T))

≥
n∑
i=1

h(Vi)−
n∑
i=1

h(Vi − [MMSE(V|T)]i)

≥
n∑
i=1

h(Vi)−
n∑
i=1

h(Vi − γTNi )

≥ n

2
log

(D3 + ε)

D3

Remark 2
Maximizing (3.9) on ε, we have

ε∗ =
D3 −DrD2 + r

√
(1−D1)(1−D2)(D3 −Dr)(D3 −D2)

Dr +D2 − (D3 + 1)
(3.10)

ε∗ is positive if and only if
1

D3

> −1 +
1

D2

+
1

Dr

and
D3 > −1 +D2 +Dr

After some manipulation, one can show that, ε∗ = α.
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CASE 2: D3 ≤ Dr +D2 − 1, Dr +D2 − 1 ≥ 0

If (R1, R2, R3, D1, D2, D3) is achievable then

(R1 +R2 +R3) ≥
1

n
(H(S1) +H(S2) +H(S3))

≥ 1

n
(H(S1, S2, S3)−H(S1, S2, S3|X1,X2))

=
1

n
I(X1,X2;S1, S2, S3)

≥ 1

n
I(X1,X2; X̂1, X̂3)

(a)

≥ 1

2
log

Dr

D1D3

where (a) is from (2.5).

CASE 3: D3 ≥ DrD2

Dr+D2−DrD2

If (R1, R2, R3, D1, D2, D3) is achievable then

(R1 +R2 +R3) ≥
1

n
(H(S1) +H(S2) +H(S3))

≥ 1

n
(H(S1) +H(S2)−H(S1|X1)−H(S2|X2))

=
1

n
(I(X1;S1) + I(X2;S2))

≥ 1

2
log

1

D1

+
1

2
log

1

D2

.
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Chapter 4

Conclusion and Future Works

In this chapter, we first study the scenario in which both sources are available at the
encoders as shown in Fig. (4.1). Considering this scenario as a centralized sources scenario
and in the opposite, the scenario of CVC-PL as a distributed sources scenario, we compare
the results in Chapter 3 with the derived total rate for the presented centralized sources.
Afterwards, we conclude the thesis and talk about future work.

4.1 Centralized Sources vs. Distributed Sources

We model the scenario of centralized sources shown in Fig. (4.1) as follows,

First Layer (X1, X2) is encoded using function f1 to S1 which is a finite-length sequence
of 0s and 1s,

f1(X1,X2) = S1

S1 is decoded to X̂1 using decoding function g1,

g1(S1) = X̂1

Second Layer Encoding function f2 uses (X1, S1) as the side information to encode X2

to S2,
f2(X1,X2, S1) = S2

S2 is decoded to X̂2 using decoding function g2,

g2(S2) = X̂2
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Figure 4.1: In this scenario, X1 and X2 are available at both the encoders.

Third Layer In the last layer, encoding function f3 uses all the previous encoded se-
quences and X2 as the side information to encode X2 to S3,

f3(X1,X2, S1, S2) = S3

S3 is decoded to X̂3 using decoding function g3,

g3(S1, S2, S3) = X̂3

Achievability Definition
A set of (R1, R2, R3, D1, D2, D3) is achievable if ∀ε > 0 with n sufficiently large we have

log
E|Si|
n

≤ Ri + ε i = 1, 2, 3

E[d(X1, X̂1)] ≤ D1 + ε

E[d(X2, X̂j)] ≤ Dj + ε j = 2, 3

In this scenario, it is easy to show that the following region could be an achievable region,
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Theorem 9 Given IID sources X1 and X2, the set of (R1, R2, R3, D1, D2, D3) is achievable
if there exist auxiliary random variables (U1, U2, U3) and functions (g1, g2, g3) such that,

R1 ≥ I(X1X2;U1)

R2 ≥ I(X1X2;U2)

R1 +R2 ≥ I(U1;U2) + I(X1, X2;U1, U2)

R3 ≥ I(X1X2;U3|U1, U2)

and

D1 ≥ E[d(X1, g1(U1))]

D2 ≥ E[d(X2, g2(U2))]

D3 ≥ E[d(X2, g3(U1, U2, U3))]

The proof is shown in Appendix E. Considering jointly Gaussian distributed sources X1

and X2 as the previous arguments, we present the following coding scheme based on the
above achievable region,

U1 = X1 + a1Z1 +N1

U2 = X2 + a2Z2 +N2

U3 = (X2 −MMSE(X2|U1, U2)) +N3

where N1, N2 and N3 are jointly Gaussian distributed independent of X1 and X2 with the
following covariance matrix,

∑
N1,N2,N3

=


D1

1−D1
− a21σ2

Z ρ
√

( D1

1−D1
− a21σ2

Z)( D2

1−D2
− a22σ2

Z) 0

ρ
√

( D1

1−D1
− a21σ2

Z)( D2

1−D2
− a22σ2

Z) D2

1−D2
− a22σ2

Z 0

0 0 D3


and

X1 = rX2 + Z2

X2 = rX1 + Z1

and Zi ∼ N(0, σ2
Z) and independent of Xi, for i = 1, 2. We have an achievable set

(R1, R2, R3, D1, D2, D3) such that its summation is

R1 +R2 +R3 = I(U1;U2) + I(X1, X2;U1, U2, U3) (4.1)
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Figure 4.2: Numerical results on the difference of the summation rates, i.e. (4.1)-(3.2), for
normalized correlation coefficient r = 0.6 and D1 = 0.2

The numerical comparison between (3.2) and (4.1) is shown in Fig. (4.2). In this figure, it
is shown that by increasing D3, the absolute difference between (3.2) and (4.1), i.e. (4.1)-
(3.2), is decreasing and finally the difference is zero. Having both of the sources at both
of the encoders, i.e. centralized sources, could be a big condition. Based on the simulation
results, one can see that if D2 is small, the difference between the summation rates in
(3.2) and (4.1) is not large. Therefore, the distributed sources scenario, does not change
the result that much. In addition, one can have the same observation when D3 is large
enough.

4.2 Conclusion and Future Works

In this thesis, we considered two-frame causal video coding with possible loss of the first
encoded frame (CVC-PL). This scenario could happen a lot in telecommunication, e.g.
when one of the previous encoded packets is lost in a Causal Video Coding. If real-time
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communication is an issue, we cannot wait for the lost packet to be retransmitted. We
studied this scenario from different angles. We showed that one possible achievable region is
the combination of Causal Video Coding (CVC) and Multiple Description Coding (MDC).
In addition, we derived an outer-bound to the achievable rate-distortion sets, and we clearly
demonstrated that two-frame CVC-PL is a subspace of the region combining peer-to-peer
coding and CVC. In summary, the contributions of the thesis are as follows,

1. Provided insight into CVC-PL with two frames by deriving an outer-bound on the
achievable rate-distortion sets and by studying a new achievable region for this sce-
nario.

2. Derived the minimum total rate of CVC-PL and demonstrated a coding scheme to
achieve this total rate, in the case of two jointly Gaussian distributed sources.

3. Fully characterized the minimum total rate of CVC-PL with two jointly Gaussian dis-
tributed sources.

4. Showed that for small D3, i.e. D3 ≤ Dr + D2 − 1, CVC-PL could be treated as CVC
with two jointly Gaussian distributed sources.

5. Showed that for large D3, i.e. D3 ≥ DrD2

Dr+D2−DrD2
, CVC-PL could be treated as two

parallel peer-to-peer coding with distortion constraints D1 and D2.

6. Showed that if Dr +D2 − 1 < D3 <
DrD2

Dr+D2−DrD2
, the minimum total rate for CVC-PL

with two jointly Gaussian distributed sources is 1
2

log (1+λ)(D3+λ)
(Dr+λ)(D2+λ)

+ 1
2

log Dr

D1D3
where

λ =
D3−DrD2+r

√
(1−D1)(1−D2)(D3−Dr)(D3−D2)

Dr+D2−(D3+1)
.

In the future, we extend the scenario in Chapter 3 to M-jointly Gaussian distributed
sources. In Fig. (4.3), we have sketched a CVC-PL with three correlated frames. One can
consider this scenario as an example of a video coding when a packet lost but for the sake
of simplification, as shown in Fig. (4.3), we just consider the scenario in which the first
encoded frame, i.e. S1, may or may not be available at the decoder sides. We formulate
CVC-PL with M frames as follows,

First Layer X1 is encoded using function f1 to S1 which is a finite-length sequence of 0s
and 1s, i.e. f1(X1) = S1 and S1 is decoded to X̂1 using decoding function g1, i.e.
g1(S1) = X̂1.
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Figure 4.3: CVC-PL with three frames. The first encoded frame may or may not be
available at the second and third layers.

M th
1 Layer Encoding function fM,1 uses (X1, ...,XM−1, S1,1, S1,2, ..., SM−1,1) as the side

information to encode XM to SM,1,

fM,1(X1, ...,XM, S1,1, S2,1, ..., SM−1,1) = SM,1

SM,1 is decoded to X̂M,1 using decoding function gM,1,

gM,1(S1,1, S2,1, ..., SM−1,1, SM,1) = X̂M,1

M th
2 Layer In this layer, encoding function fM,2 uses all the previous encoded frames and

XM,2 as the side information to encode XM,2 to SM,2,

fM,2(X1, ...,XM, S1,1, S1,2, ..., SM,1) = SM,2

SM,2 is decoded to X̂M,2 using decoding function gM,2,

gM,2(S1,1, S1,2, ..., SM,1) = X̂M,2
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In addition, it is easy to extend the achievable region in (6) as follows,

Theorem 10 Given IID sources (X1, ..., XM), the set of (R1, ..., RM,1, RM,2, D1, ..., DM,1, DM,2)
is achievable if there exist auxiliary random variables (U1, . . . , UM) and (W2, . . . ,WM) and
functions (g1, g2,1, g2,2, ..., gM,1, gM,2) such that

R1 ≥ I(X1;U1)

Rk,1 ≥ I(X1, ..., Xk;Wk|U1, ..., Uk−1,W2, ...,Wk−1) + I(U1;Wk|W2, ...,Wk−1, U2, ..., Uk−1)

Rk,2 ≥ I(X1, ..., Xk;Uk|U1, ..., Uk−1,W2, ...,Wk) k = 2, ..,M − 1

RM,1 ≥ I(XM ;WM |U1, ..., UM−1,W2, ...,WM−1) + I(U1;WM |U2, ..., UM−1,W2, ...,WM−1)

RM,2 ≥ I(XM ;UM |U1, ..., UM−1,W2, ...,WM)

and

D1 ≥ E[d(X1, g1(U1))]

Dk,1 ≥ E[d(Xk, gk,1(W1, ...,Wk))]

Dk,2 ≥ E[d(Xk, gk,2(U1,W1, ...,Wk))]

and

U1 → X1 → (X2, ..., XM)

Wk → (X1, ..., Xk, U1, ..., Uk−1,W2, ...,Wk−1)→ (Xk+1, ..., XM)

Uk → (X1, ..., Xk, U1, ..., Uk−1,W2, ...,Wk)→ (Xk+1, ..., XM)

WM → (XM , U1, ..., UM−1,W2, ...,WM−1)→ (X1, ..., XM−1)

UM → (XM , U1, ..., UM−1,W2, ...,WM)→ (X1, ..., XM−1)

The proof is straightforward, followed by the proof in Appendix C. Having modeled CVC-
PL with M frames and having derived an achievable region for M-frame CVC-PL, in future
work, we are interested in deriving the minimum total rate in the case of M jointly Gaussian
distributed sources with covariance matrix shown in (4.2),

∑
X1,...,XM

=


1 a12 . . . a1M
a21 1 . . . a2M
...

...
. . .

...
aM1 aM2 . . . 1

 (4.2)

”What are the sufficient and necessary conditions to achieve the minimum total rate for
different distortion profiles?” is the question that will be answered in the future.
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Appendix A

Achievable Region of a Multiple
Description Coding with a Gaussian
Distributed Source

In this appendix, we prove Theorem 4.

A.1 Outer-Bound

CASE 1:D1 +D2 < D0(1 + exp(−2(R1 +R2)))
If the set of (R0, R1, R2, R3, D0, D1, D2, D3) is achievable then,

R0 ≥
1

n
H(S0) ≥

1

n
I(X; X̂0)

(a)

≥ 1

2
log(

1

D0

)

R0 +R1 ≥
1

n
(H(S0) +H(S1)) ≥

1

n
H(S0, S1) ≥

1

n
I(X; X̂1)

(b)

≥ 1

2
log(

1

D1

)

R0 +R2 ≥
1

n
(H(S0) +H(S2)) ≥

1

n
H(S0, S2) ≥

1

n
I(X; X̂2)

(c)

≥ 1

2
log(

1

D2

)

where (a,b,c) come from the rate-distortion function of zero-mean Gaussian dostributed
random variable derived in Example 1. Hence,

D0 ≥ exp(−2R0)

D1 ≥ exp(−2(R0 +R1))

D2 ≥ exp(−2(R0 +R2)) (A.1)

38



To derive an upper-bound on D3, we proceed as follows

R0 +R1 +R2 +R3 ≥
1

n
(H(S0) +H(S1) +H(S2) +H(S3))

(a)

≥ 1

n
[H(S0) +H(S3) +H(S1|S0) +H(S2|S0)

+ H(S1, S2|S0)−H(S1, S2|S0)]
(b)

≥ 1

n
I(X;S0, S1, S2, S3) +

1

n
I(S1;S2|S0)

(c)

≥ 1

n
I(X; X̂3) +

1

n
I(X̂1; X̂2|S0)

(d)

≥ 1

2
log

1

D3

+
1

n
I(X̂1; X̂2|S0) (A.2)

where

(a). Condition reduces entropy, i.e. H(A|B) ≤ H(A)

(b). Entropy chain inequality, i.e. H(A,B) ≤ H(A)+H(B) and the entropy of a function
of a random variable given that random variable is zero, i.e. H(f(A)|A) = 0

(c). Markov chain inequality, i.e. I(A;B) ≥ I(A; f(B))

(d). Rate-distortion theory, i.e. Theorem(1)

Lets define random variable Y = X + Z, where Z is a zero-mean Gaussian distributed
random variable with variance ε, independent of S0, X̂1, X̂2, i.e., Y → X → (S0, X̂1, X̂2).
Hence,

I (X̂1; X̂2|S0)

≥ I(Y; X̂1|S0) + I(Y; X̂2|S0) + I(Y;S0) + I(Y;S0)− 2I(Y;S0)− I(Y; X̂1, X̂2|S0)

= I(Y; X̂1, S0) + I(Y; X̂2, S0)− I(Y;S0)− h(Y) + h(Y|X̂1, X̂2, S0)
(a)

≥ I(Y; X̂0, X̂1) + I(Y; X̂0, X̂2)− I(Y;S0)−
n

2
log(2πe(1 + ε)) + h(Y|X̂1, X̂2, S0)

(b)

≥ n

2
log

1 + ε

D1 + ε
+
n

2
log

1 + ε

D2 + ε
− 2

n

2
log(2πe(1 + ε)) + h(Y|S0) + h(Y|X̂1, X̂2, S0)

(A.3)

where

39



(a). Markov chain inequality, i.e. I(A;B) ≥ I(A; f(B))

(b). Rate-distortion theory

Before going to the rest of the proof, we present a proposition called ”Entropy Power In-
equality” as follows,

Proposition[8]
Let W → X → Y be a Markov chain and Y = X + Z and Z is independent of W then

exp(
1

n
h(Y|W)) ≥ exp(

1

n
h(X|W)) + exp(

1

n
h(Z)) (A.4)

Using entropy power inequality in (A.4), we have

2

n
h(Y|S0) ≥ log[exp(

2

n
h(X|S0)) + 2πeε]

≥ log[2πe(exp(−2R0) + ε)] (A.5)

and
2

n
h(Y|W ) ≥ log(exp(

2

n
h(X|W )) + 2πeε) (A.6)

where W = (S0, X̂1, X̂2). Substituting (A.5) and (A.6) into (A.3), It can be easily shown
that,

I(X̂1; X̂2|S0) ≥
n

2
log

(exp(−2R0) + ε)(1 + ε)

(D1 + ε)(D2 + ε)

− n

2
log(2πe(1 + ε)) +

n

2
log(exp(−2(R0 +R1 +R2)t+ ε)

(A.7)

where

t =
2

n
I(X̂1; X̂2|S0)

Isolating t,

t ≥ (ε̄)(ε̄+ 1)

ε̄2 + ε̄(1 + ∆− Π) + ∆
(A.8)

Maximizing on ε̄,

t ≥ 1

1− (
√

Π−
√

∆)2
(A.9)
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Substituting (A.9) into (A.2) plus the results in (A.1), we proved the converse of Theo-
rem (4).
CASE 2:D1 +D2 ≥ D0(1 + exp(−2(R1 +R2)))
It is easy to derive the outer-bound in case 2,

R0 ≥
1

n
H(S0) ≥

1

n
I(X; X̂0) ≥ 1

2
log(

1

D0

)

R0 +R1 ≥
1

n
(H(S0) +H(S1)) ≥

1

n
H(S0, S1) ≥

1

n
I(X; X̂1) ≥ 1

2
log(

1

D1

)

R0 +R2 ≥
1

n
(H(S0) +H(S2)) ≥

1

n
H(S0, S2) ≥

1

n
I(X; X̂2) ≥ 1

2
log(

1

D2

)

R0 +R1 +R2 +R3 ≥
1

n
(H(S0) +H(S1) +H(S2) +H(S3))

≥ 1

n
H(S0, S1, S2, S3)

≥ 1

n
I(X; X̂3)

≥ 1

2
log(

1

D3

)

A.2 Inner-bound

Before going through the direct part of the proof, we present the following achievable region
which is an extension to the achievable region in [16]. According to the rate-distortion
achievable region in [16], the set (R0, R1, R2, R3, D0, D1, D2, D3) is achievable if there exist
auxiliary random variables (U0, U1, U2, U3) jointly distributed with X and if there exist
functions (g0, g1, g2, g3) such that

R0 ≥ I(X;U0)

R1 ≥ I(X;U1|U0)

R2 ≥ I(X;U2|U0)

R1 +R2 ≥ I(X;U1, U2|U0) + I(U1;U2|U0)

R3 ≥ I(X;U3|U0, U1, U2)
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and

E[d(X, g0(U0))] ≤ D0

E[d(X, g1(U0, U1))] ≤ D1

E[d(X, g2(U0, U2))] ≤ D2

E[d(X, g3(U0, U1, U2, U3))] ≤ D3 (A.10)

CASE 1:D1 +D2 < D0(1 + exp(−2(R1 +R2)))
We introduce a coding scheme and show that the concluded inner-bound coincides with
the outer-bound derived in the Convers part. In the first step, we quantize X such that
X = X̂0 +W0 and W0 ∼ N(0, D0). Afterwards, we send U1 and U2 such that

U1 = W0 +N1

U2 = W0 +N2

where the covariance matrix of N1 and N2, is∑
N1,N2

=

(
σ2
N1

ρσN1σN2

ρσN1σN2 σ2
N2

)
and for i = 1, 2

Di =
D0σ

2
Ni

D0 + σ2
Ni

The MMSE of W0 given Ui, i.e. MMSE(W0|Ui) for i=1,2 is

MMSE(W0|Ui) =
D0

D0 + σ2
Ni

Ui

Therefor, X̂1 and X̂2 would be,

X̂1 = X̂0 +MMSE(W0|U1)

X̂2 = X̂0 +MMSE(W0|U2)

We define U3 as the residue ofW0 andMMSE(W0|U1, U2), i.e. U3 = W0−MMSE(W0|U1, U2),
which is a zero-mean Gaussian distributed random variable with variance d, where

MMSE(W0|U1, U2) = c1U1 + c2U2 (A.11)
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and for i, j ∈ {1, 2} and i 6= j,

ci =
D0(σ

2
Nj
− ρσN1σN2)

σ2
N1
σ2
N2

(1− ρ2) +D0(σ2
N1

+ σ2
N2

)− 2D0ρσN1σN2

The variance d is derived as follows,

d =
D0σ

2
N1
σ2
N2

(1− ρ2)
σ2
N1
σ2
N2

(1− ρ2) +D0(σ2
N1

+ σ2
N2

)− 2D0ρσN1σN2

(A.12)

Finally U3 is quantized such that U3 = X̂3 +W3 and W3 ∼ N(0, D3).

Substituting all the random variables in (A.10), we have,

D0 ≥ exp(−2R0) (A.13)

Di ≥ D0 exp(−2Ri) (A.14)

R1 +R2 ≥
1

2
log(

D2
0

D1D2(1− ρ2)
) (A.15)

D3 ≥ d exp(−2R3) (A.16)

From (A.15), we have

ρ2 ≤ D̄1D̄2 − exp(−2(R1 +R2))

D̄1D̄2

(A.17)

where Ȳ = Y/D0.

Using inequality in (A.17), we arbitrarily choose ρ as,

ρ = −
√
D̄1D̄2 − exp(−2(R1 +R2))√

D̄1D̄2

(A.18)

Substitute (A.18) into (A.12) and (A.16) we have,

D3 ≥
D0 exp (−2(R1 +R2 +R3))

1− (
√

Π−
√

∆)
2

Now, we got an achievable region as follows,

D0 ≥ exp(−2R0)

D1 ≥ exp(−2(R0 +R1))

D2 ≥ exp(−2(R0 +R2))

D3 ≥ D0 exp(−2(R1 +R2 +R3))
1

1− (
√

Π−
√

∆)
2 (A.19)
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∆ = D̄1D̄2 − exp(−2(R1 +R2))

Π = (1− D̄1)(1− D̄2)

where Ȳ = Y/D0. Therefor, one can say that the following region is achievable which is a
subspace of the region in (A.19)

D0 = exp(−2R0)

D1 ≥ exp(−2(R0 +R1))

D2 ≥ exp(−2(R0 +R2))

D3 ≥ D0 exp(−2(R1 +R2 +R3))
1

1− (
√

Π−
√

∆)
2 (A.20)

Since in (A.20), D0 = exp(−2R0), we could substitute all ofD0 in (A.20) with exp(−2R0),

D0 = exp(−2R0)

D1 ≥ exp(−2(R0 +R1))

D2 ≥ exp(−2(R0 +R2))

D3 ≥ exp(−2(R0 +R1 +R2 +R3))
1

1− (
√

Π−
√

∆)
2 (A.21)

where Ȳ = Y/ exp(−2R0). We conclude that the following region is achievable,

D0 ≥ exp(−2R0)

D1 ≥ exp(−2(R0 +R1))

D2 ≥ exp(−2(R0 +R2))

D3 ≥ exp(−2(R0 +R1 +R2 +R3))
1

1− (
√

Π−
√

∆)
2 (A.22)

CASE 2:D1 +D2 ≥ D0(1 + exp(−2(R1 +R2)))
We introduce X̂0, U1, U2 and U3 such that they are independent of each other and inde-
pendent of N3,

X = X̂0 + U1 + U2 + U3 +N3

where

Û0 ∼ N(0, 1−D0)

Û1 ∼ N(0, D0 −D1)

Û2 ∼ N(0, D0 −D2)

U3 ∼ N(0, D2 +D1 −D0 −D3)

N3 ∼ N(0, D3) (A.23)
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and

X̂1 = X̂0 + U1

X̂2 = X̂0 + U2

X̂3 = X̂0 + U1 + U2 + U3

Substituting (A.23) into (A.10), we have

R0 ≥
1

2
log

1

D0

(A.24)

R1 ≥
1

2
log

D0

D1

(A.25)

R2 ≥
1

2
log

D0

D2

(A.26)

R1 +R2 ≥ I(X;U1, U2|U0) + I(U1;U2|U0) (A.27)

R3 ≥ I(X;U3|U0, U1, U2) (A.28)

Since U0, U1 and U2 are independent, I(U1;U2|U0) = 0. Hence,

I(X;U1, U2|U0) + I(U1;U2|U0) =
1

2
log

D0

D1 +D2 −D0

(A.29)

On the other hand, we can show that

I(X;U3|U0, U1, U2) =
1

2
log

D1 +D2 −D0

D3

(A.30)

Substituting (A.29) and (A.30) into (A.27) and substituting U3 introduced in (A.23) into
(A.28), we have

R1 +R2 ≥
1

2
log

D0

D1 +D2 −D0

(A.31)

R3 ≥
1

2
log

D1 +D2 −D0

D3

(A.32)

From (A.31), we can get an outer-bound on D1 +D2 −D0 as follows

D1 +D2 −D0 ≥ D0 exp(−2(R1 +R2)) (A.33)

45



Using (A.32) to find an outer-bound on D3 and then substituting (A.24) and (A.33) into
the derived outer-bound, we have

D3 ≥ (D1 +D2 −D0) exp(−2(R3))

≥ D0 exp(−2(R1 +R2 +R3))

≥ exp(−2(R0 +R1 +R2 +R3)) (A.34)

From (A.24), (A.25),(A.26) and (A.34), the distortion-rate region in case 2 is complete,

D0 ≥ exp(−2R0)

D1 ≥ exp(−2(R0 +R1))

D2 ≥ exp(−2(R0 +R2))

D3 ≥ exp(−2(R0 +R1 +R2 +R3))
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Appendix B

Proof of Lemma 1

It is easy to see that

det(Cov(U1,W |Y )) = σ2
U1|Y σ

2
W |Y − [r + ρσN ′

1
σNW

− r

1 + ε
]

So to satisfy h(U1|Y )+h(W |Y )−h(U1,W |Y ) = 0, we need to have r+ρσN ′
1
σNW
− r

1+α
= 0,

or

α =
−ρσN ′

1
σNW

r + ρσN ′
1
σNW

To make α non-negative, we have −r ≤ ρσN ′
1
σNW

≤ 0. So, sufficient conditions to have
−r ≤ ρσN ′

1
σNW

≤ 0 for any 0 ≤ D2 ≤ 1 are

1

D3

> −1 +
1

D2

+
1

Dr

and
D3 > −1 +D2 +Dr.
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Appendix C

Generating Codebooks, Encoding
and Decoding of an Achievable
Rate-Distortion Region for CVC-PL
with Two Frames

C.1 Generating Codebooks and Encoding

Generate a rate-distortion codebook C1 consisting of 2nR1 sequences U1 drawn IID∼∏
i p(u1i). Denote the sequences U1(1), . . . ,U1(2

nR1). Given a sequence x1, index it by

w1 if there exists a w1 such that (x1,U1(w1)) ∈ A
∗(n)
ε , the strongly jointly typical set.

If there is more than one such w1, send the first in lexicographic order. If there is no
such w1, let w1 = 1. Generate a rate-distortion codebook C2 consisting of 2nR2 sequences
U2 drawn IID∼

∏
i p(u2i). Denote the sequences U2(1), . . . ,U2(2

nR2). Given a sequence
(x1,x2,u1(w1)), index it by w2 if there exists a w2 such that (x1,x2, ,u1(w1),U2(w2)) ∈
A
∗(n)
ε , the strongly jointly typical set. If there is more than one such w2, send the first in

lexicographic order. If there is no such w2, let w2 = 1. Generate a rate-distortion codebook
C3 consisting of 2nR3 sequences U3 drawn IID∼

∏
i p(u3i|u1i, u2i). Denote the sequences

U3(1), . . . ,U3(2
nR3). Given a sequence x2, index it by w3 if there exists a w3 such that

(x2,U1(w1),U2(w2),U3(w3)) ∈ A∗(n)ε , the strongly jointly typical set. If there is more than
one such w3, send the first in lexicographic order. If there is no such w3, let w3 = 1.
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C.2 Decoding

Decoder i receives Ui(wi) and produces X̂i = gi(Ui(wi)) where i = 1, 2. The third decoder
receives (U1(w1),U2(w2),U3(w3)) and produces X̂3 = g3(U1(w1),U2(w2),U3(w3)).
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Appendix D

Generating Codebooks, Encoding
and Decoding of the Rate-Distortion
Achievable Region in Theorem (3.1)

D.1 Generating Codebooks and Encodings

Generate a rate-distortion codebook C1 consisting of 2nR1 sequences U1 drawn IID∼∏
i p(u1i). Denote the sequences U1(1), . . . ,U1(2

nR1). Generate a rate-distortion code-
book C21 consisting of 2nR21 sequences U21 drawn IID∼

∏
i p(u21i). Denote the sequences

U21(1), . . . ,U21(2
nR2). Given a sequence (x1), index them by (w1, w21) if there exists a

(w1, w21) such that (x1,U1(w1),U21(w21)) ∈ A
∗(n)
ε , the strongly jointly typical set. If

there is more than one such (w1, w21), send the first in lexicographic order. If there
is no such (w1, w21), let (w1, w21) = (1, 1). Generate a rate-distortion codebook C22

consisting of 2nR22 sequences U22 drawn IID∼
∏

i p(u22i|u21i). Denote the sequences
U22(1), . . . ,U22(2

nR3). Given a sequence x2, index it by w22 if there exists a w22 such

that (x1,x2,U21(w21),U22(w22)) ∈ A∗(n)ε , the strongly jointly typical set. If there is more
than one such w22, send the first in lexicographic order. If there is no such w22, let
w22 = 1. Generate a rate-distortion codebook C3 consisting of 2nR3 sequences U3 drawn
IID∼

∏
i p(u3i|u1i, u21i, u22i). Denote the sequences U3(1), . . . ,U3(2

nR3). Given a sequence

X2, index it by w3 if there exists a w3 such that (x2,U1(w1),U2(w2),U3(w3)) ∈ A∗(n)ε , the
strongly jointly typical set. If there is more than one such w3, send the first in lexicographic
order. If there is no such w3, let w3 = 1.
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D.2 Decoding

The first decoder receives U1(w2) and produces X̂1 = g1(U1(w1)) where i = 1, 2. The sec-
ond decoder receives (U21(w21),U22(w22)) and produces X̂2 = g2(U21(w21),U22(w22)). The
third decoder receives (U1(w1),U21(w21),U22(w22),U3(w3)) and produces X̂3 = g3(U1(w1),
U21(w21),U22(w22)).

51



Appendix E

Generating Codebooks, Encoding
and Decoding of an Achievable
Rate-Distortion Region when Both
Sources are Available at the Encoders

E.1 Generating Codebooks and Encoding

Generate a rate-distortion codebook C1 consisting of 2nR1 sequences U1 drawn IID∼∏
i p(u1i). Denote the sequences U1(1), . . . ,U1(2

nR1). Generate a rate-distortion code-
book C2 consisting of 2nR2 sequences U2 drawn IID∼

∏
i p(u2i). Denote the sequences

U2(1), . . . ,U2(2
nR2). Given a sequence (x1,x2), index them by (w1, w2) if there ex-

ists a (w1, w2) such that (x1,x2,U1(w1),U2(w2)) ∈ A
∗(n)
ε , the strongly jointly typical

set. If there is more than one such (w1, w2), send the first in lexicographic order. If
there is no such (w1, w2), let (w1, w2) = (1, 1). Generate a rate-distortion codebook C3

consisting of 2nR3 sequences U3 drawn IID∼
∏

i p(u3i|u1i, u2i). Denote the sequences
U3(1), . . . ,U3(2

nR3). Given a sequence x2, index it by w3 if there exists a w3 such that

(x2,U1(w1),U2(w2),U3(w3)) ∈ A∗(n)ε , the strongly jointly typical set. If there is more than
one such w3, send the first in lexicographic order. If there is no such w3, let w3 = 1.
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E.2 Decoding

Decoder i receives Ui(wi) and produces X̂i = gi(Ui(wi)) where i = 1, 2. The third decoder
receives (U1(w1),U2(w2),U3(w3)) and produces X̂3 = g3(U1(w1),U2(w2),U3(w3)).
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