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Abstract

In recent years, cloud storage systems have become very popular due to their good scal-
ability and high availability. However, these storage systems provide limited transactional
capabilities, which makes developing applications that use these systems substantially more
difficult than developing applications that use a traditional SQL-based relational database
management systems (DBMS). There have been solutions that provide transactional SQL-
based DBMS services on the cloud, including solutions that use cloud shared storage sys-
tems to store the data. However, none of these solutions take advantage of the shared cloud
storage architecture to provide DBMS high availability. These solutions typically deal with
the failure of a DBMS server by restarting this server and going through crash recovery
based on the transaction log, which can lead to long DBMS service downtimes that are
not acceptable to users. It is possible to run traditional DBMS high availability solutions
in cloud environments. These solutions are typically based on shipping the transaction
log from a primary server to a backup server, and replaying the log at the backup server
to keep it up to date with the primary. However, these solutions do not work well if the
primary and backup are in different, geographically distributed data centers due to the
high latency of log shipping. Furthermore, these solutions do not take advantage of the
capabilities of the underlying shared storage system.

We present a new transparent high availability system for transactional SQL-based
DBMS on a shared storage architecture, which we call CAC-DB (Continuous Access Cloud
DataBase). Our system is especially designed for eventually consistent cloud storage sys-
tems that run efficiently in multiple geographically distributed data centers. The database
and transaction logs are stored in such a storage system, and therefore remain available af-
ter a failure up to the failure of an entire data center (e.g., in a natural disaster). CAC-DB
takes advantage of this shared storage to ensure that the DBMS service remains available
and transactionally consistent in the face of failures up to the loss of one or more data
centers. By taking advantage of shared storage, CAC-DB can run in a geographically
distributed environment with minimal overhead as compared to traditional log shipping
solutions.

In CAC-DB, an active (primary) and a standby (backup) DBMS run on different servers
in different data centers. The standby catches up with the active’s memory state by replay-
ing the shared log. When the active crashes, the standby can finish the failover process and
reach peak througput very quickly. The DBMS service only experiences several seconds
of downtime. While the basic idea of replaying the log is simple and not new, the shared
storage environment poses many new challenges including the need for synchronization
protocols, new buffer pool management mechanisms, approaches for guaranteeing strong
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consistency without sacrificing performance and new shared storage based failure detection
mechanism. This thesis solves these challenges and presents a system that achieves the
following goal: if a data center fails, not only does the persistent image of the database
on the storage tier survive, but also the DBMS service can resume almost uninterrupted
and reach peak throughput in a very short time. At the same time, the throughput of
the DBMS service in normal processing is not negatively affected. Our experiments with
CAC-DB running on EC2 confirm that it can achieve the above goals.
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Chapter 1

Introduction

Today there are numerous distributed storage systems that are designed for a cloud com-
puting environment. These systems are scalable and highly-available, but provide only
limited functionality. First, they have a simple data model where the data is stored as
(key, value) pairs, and they only support simple operations, e.g., reading and writing
values by key. They do not support full SQL, so they they are often called “NoSQL”
systems. Second, they have very limited transactional capabilities. For example, Cassan-
dra [22] and Google’s Bigtable [15] only provide atomic read and write access to a single
row, while atomic multi-row queries and updates are not possible. Google’s Megastore
[10] does support multi-row atomic access, but multi-row transactions are limited to pre-
defined fine-grained database partitions. In contrast to cloud storage systems, relational
database management systems (DBMS) provide a rich query language in the form of SQL,
and strong ACID guarantees for transactions. This makes developing application that use
relational DBMS much simpler than applications that use cloud storage systems. However,
relational database systems are not as scalable and elastic as cloud storage systems.

It is possible to use a cloud storage system as the storage tier for a relational DBMS,
which can in turn support the data management needs of hosted applications. We call
this approach a shared-storage DBMS solution. There have been several shared-storage
DBMS solutions, such as running a DBMS on Amazon’s S3 storage service [13], ElasTras
[19] which uses HDFS [3] as the storage tier, and DAX [23] which uses a Dynamo-like
multi-master system as the storage tier.

The shared storage DBMS architecture is a promising architecture for data management
on the cloud. This architecture decouples storage scalability and availability (which become
the responsibility of the storage system) from query and transaction processing (which
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become the responsibility of the DBMS). However, all solutions that follow this architecture
lack DBMS-level high availability (HA), that is, an always-on hosted DBMS. If a data center
fails, the persistent image of the database in the cloud storage tier can survive in another
data center through the high availability mechanism of the cloud storage system. However,
the cloud storage high availability mechanism does not address DBMS high availability,
and a new DBMS server must be launched in another data center and must go through the
normal DBMS recovery process, typically based on replaying the transaction log. However,
this is a slow process resulting in a significant outage of the DBMS service that may not
be acceptable to users. For example, in DAX, the system experiences a downtime of about
270s when a DBMS server fails, and the time to reach peak throughput after a backup
server comes online is around 1000s (Figure 10 in [23]). Therefore, it is desirable to provide
DBMS-level high availability for shared storage DBMS architectures, and this is the focus
of this thesis.

A common approach to providing DBMS high availability is to ship the database trans-
action log over a network from a primary active DBMS to a backup standby DBMS running
on a different server machine. For example, MySQL, which we use in this thesis, has a high
availability solution based on Binlog (binary log) replication [5]. Binlog replication offers
two modes of replication from the active to the standby DBMS: asynchronous and syn-
chronous log shipping (asynchronous or synchronous to transaction commits). Committed
transactions may be lost if asynchronous log shipping is used, while the throughput of the
active DBMS will be reduced significantly if synchronous log shipping is used, especially in
a multi-data-center deployment. Any log shipping solution would suffer from high message
latency if the active and standby servers are in different, geographically distributed data
centers. Besides, log shipping solutions do not take advantage of the availability of shared
storage between the active and standby in a shared storage DBMS architecture.

In this thesis, we present a new transparent high availability solution for shared stor-
age DBMS architecture, which we call CAC-DB (for Continuous Access Cloud DataBase).
Our system is designed especially for eventually consistent cloud storage systems such as
Dynamo [20] or Cassandra [22]. These cloud storage systems run effectively in multiple,
geographically distributed data centers and can remain available in the face of failures up to
a disaster that crashes a whole data center. Our solution is based on DAX, which provides
a multi-tenant database service on top of an eventual consistency cloud storage system.
DAX’s storage tier provides scalability, elasticity, and availability that is decoupled from
the DBMS tenants. DAX works well across data centers and offers strong consistency guar-
antees to the DBMS tenants without sacrificing performance, which makes it an excellent
platform for implementing CAC-DB.

The basic idea of CAC-DB is to provide DBMS high availability by replaying the log
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Figure 1.1: CAC-DB System Overview

generated at an active DBMS on a different machine that is hosting a standby DBMS.
This idea is not new [5], but the log in our solution is in the shared storage system instead
of being shipped from the active to the standby. Figure 1.1 illustrates this architecture.

Having a log and database that are shared between active and standby provides many
benefits, but also raises many technical challenges. The main benefit of the shared database
and log in DAX is removing the latency of log shipping from the critical path of transaction
execution at the active server. The log records still need to be propagated from the active to
the standby, but the propagation is handled by DAX with minimal performance overhead
for the active. Another benefit is that DAX ensures that the standby can always access a
transactionally consistent version of the log that contains all log records of all committed
transactions, so no committed transactions are lost in case of a failure. A third benefit is
saving storage space, since the standby does not need to have its own copy of the database
and log as would be the case in a typical log shipping solution.

The challenges raised by having a shared database and log relate to coordinating access
to these shared files between the active and standby. First, in order to ensure that the
database and log remain consistent, the shared data can only have one writer at any
time. The standby in CAC-DB can read database and log pages, but it cannot write
these pages. Therefore, the standby needs novel page eviction mechanisms, since it can no
longer flush dirty pages. Second, it is important to guarantee that if the standby is slower

3



than the active and needs to catch up with it, the standby could do so without affecting
the throughput of the active. Third, the standby needs a strong consistency guarantee
without sacrificing performance during normal operation and during failover. In addition,
synchronization protocols between the active and the standby and a lightweight failover
detection mechanism based on shared storage are needed.

CAC-DB solves these challenges and achieves the following goals: (1) the overhead
during normal operation is low, (2) data remains consistent and accessible after a failure
up to the loss of one or more data centers (as in a natural disaster), and (3) the database
service experiences minimal outage after a failure and reaches peak throughput fast. We
show that CAC-DB has much better performance than a traditional log shipping approach,
which is not surprising in a geographically distributed setting.

The difference between CAC-DB and a log shipping solution can be summarized as fol-
lows. Compared to asynchronous log shipping, CAC-DB guarantees no committed trans-
actions are lost. Compared to synchronous log shipping, CAC-DB imposes a much lower,
almost negligible performance overhead on the active, especially in a multi-data-center de-
ployment. This is because DAX, on which CAC-DB is based, tries to hide the latency of
cross-data-center communication and remove it from the critical path of transaction com-
mit. CAC-DB does not require the log to be shipped and does not require an additional
local copy of the database at the standby, because the log and database are in shared
storage that is accessible to both active and standby. It should be noted that since the
persistent log and database are accessible to active and standby, the focus of CAC-DB is
on efficiently maintaining the in-memory state of the standby so that it is consistent with
the active. That way, if the active fails, the standby can take over managing the shared
log and database, go through the log-based recovery process fast since most of the log has
already been replayed, and reach peak throughput with minimal service interruption.

The remainder of the thesis is organized as follows. Chapter 2 provides a summary of
related work. In Chapter 3, we provide some background about DAX and ARIES recovery,
and present the architecture of CAC-DB. Chapter 4 describes CAC-DB during normal
operation, discussing buffer pool management, the synchronization protocol between active
and standby, and how to ensure that the standby does not regularly fall behind the active
and does not slow it down. Chapter 5 discusses failure detection and failover. We present
an empirical evaluation of a deployment of our system in Amazon’s Elastic Compute Cloud
(EC2) in Chapter 6. Chapter 7 concludes the thesis.
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Chapter 2

Related Work

There are different types of HA techniques which are used in database systems. Active-
standby HA is one of the most important techniques, and it is implemented by many
database systems [8, 16, 29, 25]. In active-standby HA based systems, log shipping is often
used. Log shipping may be synchronous or asynchronous. With synchronous log shipping,
committed transactions are not acknowledged to the client until the active and standby
both have made the update durably. Systems based on synchronous log propagation are
considered 2-safe systems [21, 28], which means that committed transactions are not lost
due to the failure of a single server. However, HA based on synchronous log shipping
may impose a large performance penalty on the throughput of the active server, since
each transaction commit is delayed until the log records are propagated. In contrast, with
asynchronous log shipping, transactions are acknowledged as soon as they are committed
at the active. Systems based on asynchronous propagation are 1-safe systems, which incur
much lower overhead at the active during normal operation. However, recently commit-
ted transactions may be lost if the active fails. We have tested and compared MySQL
semi-synchronous and asynchronous Binlog replication, and we discuss their drawbacks in
Chapter 6. RemusDB [25] is an active-standby HA system that implements DBMS high
availability as a service provided by the virtual machine layer. It uses asynchronous check-
pointing to propagate updates at the VM level from active to standby. RemusDB requires
the DBMS to run in a virtual machine, and it does not address the issues of geographically
distributed deployment; putting the active and standby in different data centers would
result in high latency for commits at the primary.

In CAC-DB, which is itself an active-standby system, the active does not need to wait
for the standby and therefore there is no additional throughput overhead on the active. In
addition, CAC-DB is built on the DAX storage system [23], which guarantees that updates
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are synchronized to different replicas in the storage tier in a way that is consistent with the
semantics of DBMS-level ACID transactions. Therefore, CAC-DB is 2-safe and addresses
the drawbacks of synchronous and asynchronous propagation. CAC-DB differs from other
database active-standby systems in that it is designed for a shared-storage environment
instead of a shared-nothing environment. In addition, a major advantage of CAC-DB
is that CAC-DB can provide fast failover across multiple geographically distributed data
centers, while other HA solutions require the active and standby to be in the same data
center.

There are also several HA approaches for shared access environments, where two or
more DBMS instances share a common network attached storage infrastructure, in which
the database is stored. The network attached storage stores data redundantly, which makes
the data reliable. If one DBMS server fails, other servers which can access to the same
database can take over quickly. This technique is implemented by many database systems,
such as Oracle RAC [30], and synchronized data nodes accessed through the NDB in
MySQL Cluster [8]. CAC-DB differs from these techniques in that it is an active-standby
system which is built on top of shared storage. In addition, shared access approaches are
designed for single-data-center failover while CAC-DB works in a geographically distributed
setting.

In this work, we assume a multi-tenant database service deployed on the DAX shared
storage system. Other works have been proposed that deploy a database service on cloud
shared storage. ElasTras [19] is an example of a system that is intended to host DBMS on
a shared storage tier. However, unlike DAX [23], ElasTras assumes that the storage tier
provides read and write operations with strong consistency while DAX assumes a storage
tier with eventual consistency. Recent work by Najaran et al. [27] has looked at hosting
relational database services on a storage tier based on Sinfonia [9]. However, their work
can only provide tuple-level access while DAX provides a block-level interface. In principle,
CAC-DB can be adapted to work with any system that uses shared storage, but of course
the details of how to do this are highly non-trivial, and are an interesting area of future
work for this thesis.

There are also several commercial services which are used as storage tiers for DBMS
tenants. A typical example is Amazon EBS, which can provide strongly consistent read
and write operations. However, EBS does not work across multiple data centers. EBS
is used as the storage tier in our experiments for Binlog replication since the active and
standby in this case maintain separate copies of the database in their respective data
centers. Brantner et al. [13] consider hosting database systems on Amazon Simple Stor-
age Service (S3). However, S3 only provides weak eventual consistency guarantees, which
makes offering transactional guarantees more complex. In contrast, DAX can offer trans-
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actional guarantees to the hosted database systems while at the same time providing good
performance.

For failure detection, systems typically implement automated or semi-automated mech-
anisms using some kind of heartbeat [6]. Such mechanisms require the active to send regular
heartbeat messages to indicate that it is still alive. Failure of the active to send a heart-
beat message within a prescribed interval is taken as an indication that it has failed. The
active’s heartbeat messages may be directed to the standby system or to a third-party
system. For example, a Bigtable [15] master system must maintain an active session with
the Chubby lock service [14] to ensure that it remains as the master. To keep its session
alive, the Bigtable master sends heartbeat messages to Chubby. Another example is the
failure detection service in Boxwood [24], which requires that clients send regular heart-
beat messages to a set of observers. CAC-DB relies on a heartbeat-based failure detection
mechanism that uses DAX storage for reliable, indirect communication of the heartbeats.
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Chapter 3

Background and System Overview

In this chapter, we describe the CAC-DB system architecture. Since CAC-DB is built on
DAX, we first provide some background about DAX. We also present an overview of the
ARIES recovery algorithm, which is used by many DBMS and which CAC-DB assumes
will be used.

3.1 Overview of DAX

DAX [23] uses cloud storage to implement a reliable, distributed, shared-block storage
service for hosted DBMS tenants. DAX implements a thin software layer called the DAX
client library that runs on the DBMS tenant machine to intercept the interaction between
the DBMS storage manager (InnoDB, in the case of MySQL) and the storage devices to
read or write data. The DAX client library converts these interactions to interactions
with the underlying cloud storage system (Cassandra, in the case of DAX). To the DBMS
tenant, DAX behaves like a disk, but in terms of implementation it is a scalable, reliable,
geographically distributed storage service.

The DAX service assumes that all DBMS data access is block-oriented. DAX stores
all database blocks in a single Cassandra column family, that is, each row consists of a
key and a single data column containing one data block. Each block accessed by a DBMS
maps to a single row in this column family, with the block id as the key of the row. The
DBMS storage manager remains responsible for data blocks caching, concurrency control,
and transactional recovery.
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The hosted DBMS in DAX expects that when it reads a data block, it will obtain
the most recently written version of that block, but Cassandra only provides eventual
consistency for data that is written. That is, the tenant can write one replica of a data
block and then read another replica to which the write has not yet propagated, leading to a
stale read. To solve this problem, DAX uses a technique called optimistic I/O for ensuring
consistent reads for hosted database systems, while avoiding most of the performance
penalty.

Cassandra provides multiple variants of the read and write operation that enable the
application to control how many replicas need to be read or written before the return
to the client. This allows the application to control the consistency vs. latency and
consistency vs. durability tradeoff. One variant of read is Read(1), which returns the first
response received to the client. This operation is cheap but may return stale data if the
first replica to respond is stale. Cassandra also provides Read(QUORUM), which waits
until a quorum of replicas responds and sends the most recent version from among the
data items received from the quorum of replicas to the client. This operation is relatively
expensive, especially if the replicas are distributed across geographically different data
centers. Similarly, Cassandra provides Write(1) and Write(QUORUM). The client can
choose cheap Read(1)/Write(1) operations, which are fast but not necessarily consistent
or durable. The client can also choose expensive Read(QUORUM)/Write(QUORUM)
operations, which are consistent and durable but may be slow. The goal of DAX is to use
cheap reads and writes while getting the consistency and durability of expensive reads and
writes. To enable the use of cheap Read(1) calls in DAX, each DBMS tenant maintains an
in-memory version list that records the most recent version numbers of different blocks.
These version numbers are also stored in the blocks in Cassandra. When a DBMS tenant
reads a block that is on the version list, the tenant can determine if it received the most
recent version of the block by comparing the version number read from storage to the
version number on the version list. DAX optimistically uses Read(1) for blocks on the
version list, and repeats the read if the returned version is stale. For blocks that are not
on the version list, DAX uses Read(QUORUM).

For writes, DAX also uses cheap Write(1) operations. However, this reduces fault
tolerance since the loss of the only replica containing an acknowledged write leads to loss
of data. To address this problem, DAX implements a technique called client-controlled
synchronization to complement optimistic I/O. In client controlled synchronization, DAX
uses a new type of write operation, called Write(CSYNC). Like Write(1), Write(CSYNC)
operations are acknowledged to the client as soon as one replica is updated. In addition,
Write(CSYNC) records the key (i.e., the block id) in a per-client sync-pending list at the
DAX server to which the client is connected. The key stays in the sync pending list until
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the remaining replicas have asynchronously acknowledged the update.

DAX provides the client with an API call named CSync (similar to fsync) by which
the client can tell DAX to ensure that all previously acknowledged writes must be syn-
chronized. This approach is very natural for a DBMS because many DBMS are already
designed to use explicit update synchronization points. For example, a DBMS that im-
plements the write-ahead logging protocol will write the log page and then issue a write
synchronization operation (e.g., fsync in Linux) to ensure the requirement of durability.
When the DBMS needs to ensure that a write is durable (at least k replicas updated), it
issues an explicit CSync synchronization request. On a CSync, the DAX server to which
the client is connected makes a snapshot of the client’s sync pending list and blocks until
at least k replica update acknowledgements have been received for each update on the list.
The synchronization request is then acknowledged to the client. A DBMS would typically
issue such an explicit synchronization request as part of commit processing. As part of
processing such a request, DAX ensures that the k replicas are distributed among various
data centers. Therefore, even if an entire data center fails, the database and log are avail-
able in other data centers, and reflect the changes made by all committed transactions. A
new DBMS instance can be launched in a different data center and can perform log-based
database recovery and restore the availability of the database service.

3.2 ARIES Recovery Protocol

ARIES [26] is a recovery algorithm for DBMS. Recovery in ARIES consists of two stages:
the redo stage and the undo stage. In the redo stage, the DBMS “repeats history”, starting
from the latest checkpoint in the log, and restores the database state to what it was at
the time of the crash. In the undo stage, the DBMS undoes all the actions of uncommit-
ted transactions, so that only the actions of committed transactions are reflected in the
database.

3.2.1 The Transaction Log

The transaction log records the history of actions executed by the DBMS. The log, phys-
ically, is a file of log records stored in stable storage. The log file is assumed to survive a
crash and can be used to perform recovery. The most recent portion of the log is stored
in a log buffer in main memory and is periodically forced (i.e., flushed) to stable storage,
usually as part of commit processing. Log records are written to stable storage at the
granularity of pages, just like data records.
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Figure 3.1: CAC-DB Architecture

Every log record has an id called the log sequence number (LSN), which is assigned in
monotonically increasing order. In the implementation of InnoDB, LSN mod the size of
the log file is the physical offset in the log file. Every page has a pageLSN, which is the
LSN of the most recent log record that makes a change to this page. In the buffer pool of
a DBMS, the pageLSN of a buffer page is the last change to make this page dirty. Based
on our system design, the standby has its own interpretation of pageLSN, shown in the
definition below:

Definition 1 pageLSN in the standby: In the buffer pool of the standby, the pageLSN
of a buffer page is the last change in the log the standby has applied to this page.

3.2.2 Checkpointing

When the DBMS takes a checkpoint, it is as if the DBMS takes a snapshot of its state.
The DBMS periodically takes checkpoints to reduce recovery time. Conceptually, taking
a checkpoint means that all the updates before the latest checkpoint have been flushed to
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stable storage. In InnoDB, a checkpoint is identified by its checkpointLSN. The log file
records the checkpointLSN of the latest checkpoint in a known location. All the updates
whose LSN is smaller than the latest checkpointLSN are guaranteed to be durable in the
storage tier.

The checkpointing technique that InnoDB uses is called fuzzy checkpointing. It is in-
expensive because it does not require the DBMS to write out pages at the checkpoint.
Instead, a background thread is responsible for writing dirty pages to the durable storage
periodically. At a checkpoint, InnoDB does not flush any dirty pages and only calculates
its new checkpointLSN and records this value in the log. The new checkpointLSN is equal
to the smallest oldest-lsn (the first LSN to make a page dirty) of all the dirty pages in the
buffer pool.

3.3 Overview of CAC-DB

Figure 3.1 illustrates the architecture of CAC-DB, which is built on DAX. In CAC-DB,
every database tenant has a primary server (active) and a backup server (standby) in
different data centers. The database and the transaction log are stored in the cloud storage
system. The active and standby servers both have (read and write) access to the shared
database and log. DAX replicates the database and log in the two data centers with the
active and standby, and hides most latencies related to propagating updates from the active
data center to the standby data center, so access by the standby typically incurs no cross-
data-center latency. It is important to note that even though both active and standby can
read and write the database and log, CAC-DB is designed so that only the active writes
(as well as reads) the database and log. The standby can read the database and log, but it
never writes to either. The reason for this restriction is that we want every database block
to have one writer in order to keep the database consistent without additional concurrency
control protocols. This restriction means that the standby cannot flush dirty pages from
its buffer pool, which requires changing the buffer eviction mechanism for the standby. We
will return to this point in Chapter 4.

The active accepts users requests, executes queries and performs database updates in
the shared storage. The standby does not accept user requests. Instead, the standby
continuously reads the shared transaction log and replays log records to update its internal
memory state (i.e., its buffer pool). This makes the contents of the standby buffer pool
closely resemble the most recent state of the active buffer pool. Thus, the standby is
“warm” and can take over quickly if the active fails.
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If the active fails, the database and log are available to the standby, and their state is
consistent with all committed transactions at the active. This is because the storage tier
in DAX provides transactionally consistent scalability and HA for the persistent image of
the database and log, independent of any DBMS instance. When the standby detects that
the active has failed, CAC-DB provides fast failover and atomic handover from active to
standby. The standby can then become the new active. The whole operation of a standby
server in CAC-DB can be divided into three phases:

1. Log Replay (phase 1): In the traditional log-based ARIES recovery algorithm [26],
the recovery procedure is based on repeating history, that is, executing exactly the
same actions that happened during normal processing before the failure. Repeating
history includes redo of log records of both complete and incomplete transactions
from the latest checkpoint in the transaction log. In ARIES, recovery, this redo
stage is followed by a subsequent undo stage. In CAC-DB, the standby continuously
replays the log that is produced by the active. The log replay procedure of CAC-DB
is naturally similar to the redo stage of ARIES recovery, so we reuse the code for the
redo stage of recovery in our standby log replay procedure. The standby can get the
complete transaction log from shared storage. We provide a consistency guarantee
for log writes in DAX, similar to optimistic IO, that guarantees (along with the
ARIES protocol) that the standby never skips any log records. CAC-DB uses batch
based log replay, in which a log file can be divided into many segments. The standby
repeatedly reads one segment from storage into memory, replays the log records in
this segment, and then reads the following segment.

2. Failure Detection (phase 2): For CAC-DB, we use a heartbeat-based failure
detection mechanism that uses DAX storage for reliable, indirect communication of
the heartbeats. We create a reliable counter in DAX for each active/standby pair
to support failover. The standby’s failure to read the latest counter value for more
than a fixed period is taken as an indication that the active has failed. The failure
detection mechanism is presented in Appendix A.

3. Failover (phase 3): After detecting the failure of the active, the standby performs
ARIES recovery. Since the standby is continuously replaying log records during
normal operation, it usually finds that it has already finished the redo stage of ARIES.
The standby performs the undo stage of ARIES recovery and becomes the new active.
The undo stage of ARIES recovery can proceed while the standby is servicing user
requests. That is, the standby actually becomes the active and then performs undo
recovery. The new active (the old standby) reaches peak throughput quickly because
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(1) it has a warm buffer pool, (2) it typically does not need to perform redo recovery,
and (3) it serves user requests while performing undo recovery. The recovery is based
on the ARIES algorithm [26] which guarantees atomic handover.

We illustrate the active and standby in the above three phases in a timeline diagram
shown in Figure 3.2.

Although the basic idea of replaying the log is not new, the fact that CAC-DB is
built on cloud shared storage and tries to take advantage of this storage creates many
new challenges. First, during the standby’s normal log replay, the standby cannot write
to the database, which means that it cannot flush dirty pages, which means that a new
mechanism is needed to manage the standby’s buffer pool. Second, we have to deal with
the case when the standby cannot catch up with the active, without placing any additional
overhead on the active. Third, we need to provide a strong consistency guarantee for the
standby because the underlying storage tier only supports eventually consistency. Finally,
a novel failover detection mechanism based on shared storage is needed. We address these
challenges through a series of novel techniques that we present in the next two chapters.
Chapter 4 focuses on normal operation and Chapter 5 focuses on failover.

In the implementation of CAC-DB, we choose MySQL as the DBMS, with InnoDB
as the storage engine, and DAX as the distributed storage service. For the DBMS tier,
CAC-DB can be easily re-implemented in another DBMS, such as PostgreSQL. This would
involve changes to the PostgreSQL code, along with the DAX client library for PostgreSQL.
For the storage tier, we choose DAX because DAX offers strong consistency guarantees to
the DBMS that works across data centers and without sacrificing performance. CAC-DB
can use another storage system that provides strong consistency to the DBMS, but the
solution would be limited by any limitations of the storage system. For example, if CAC-
DB uses HBase as the storage tier, it could work well in a single data center, but not across
data centers due to the limitation of HBase. HBase provides strong consistency for each
operation in one data center, but this per-operation strong consistency would be expensive
in a multi-data-center setting. Thus, HBase would be a good choice for the storage tier
when CAC-DB is used to provide DBMS-level HA in one data center. On the other hand,
DAX enables CAC-DB is to provide DBMS-level HA which can tolerate the crash of a
whole data center (as in the case of a natural disaster).
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Figure 3.2: The Three Phases of Active and Standby in CAC-DB
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Chapter 4

CAC-DB Log Replay

This chapter describes the normal operation of CAC-DB. During normal operation (i.e.,
no failure) the standby replays the log that is written in shared storage by the active. This
log replay phase of CAC-DB requires tackling challenges such as synchronizing the active
and standby, managing the buffer pool at the standby, and ensuring the consistency of the
data read by the standby. We discuss these challenges next.

4.1 Synchronizing Log Replay Between Active and

Standby

The basic architecture of CAC-DB is shown in Figure 3.1. The active and standby in CAC-
DB access the log and database in a shared storage tier, so there is no need to transfer data
between them over the network. The active writes log records to the shared transaction
log and the standby reads these log records and replays them to update the in-memory
state of its buffer pool.

For this log replay protocol, the standby needs to know when there are new log records
to read. The active sends a trigger message to the standby over the network to trigger
log replay. This message can be sent periodically (e.g., every second), or whenever the
active commits a transaction. In our implementation of CAC-DB, the active sends trigger
messages whenever the active commits a transaction, so that the standby can be triggered
immediately when new log records come. The active sends trigger messages to the standby
over a TCP socket.
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The standby also needs to know the log sequence number (LSN) of the latest checkpoint.
The standby needs this message to (1) manage the buffer pool, and (2) to judge whether
the standby has fallen too far behind the active and can therefore see an inconsistent
view of the log. Specifically, this LSN is used to judge whether the latest LSN written
by the active is going to catch up in the circular log file with latest LSN replayed by the
standby. We will return to this point in detail later in this chapter. Therefore, whenever
the active completes a checkpoint, it sends the LSN of that checkpoint to the standby over
the network.

When the standby receives a trigger message, it reads the most recent log records in
the log file and begins replaying them.

4.2 Managing Non-shared Data

The active and standby in CAC-DB reside on a shared storage tier, and the shared storage
can have only one writer at any time in order to ensure consistency. During normal oper-
ation, this writer is the active. In the next section, we present a buffer pool management
technique that enables the standby to replay the log and manage its buffer pool without
writing to the database. This approach takes care of database data, but a DBMS needs to
write much more than database data. For example, a DBMS needs to write information
related to its identity like server name or IP address. A DBMS also needs to write diag-
nostic and error logs that assist an administrator in tuning and problem solving. As part
of query processing, a server may write temporary intermediate data such as hash tables
for hash joins. It is not possible for the standby to completely avoid writing this type of
server-specific, private data.

Since the data written by the standby is server-specific, we do not need to store it as
part of the shared data (shared database and shared log file) on shared storage. Thus,
CAC-DB divides all data into two categories: shared data and non-shared data.

• Shared data: This data encompasses the database and the transaction log. It is
shared between the active and standby and should be stored in the shared storage
tier. The active is the only writer of the shared data and the standby can only read
this data.

• Non-shared data: This is sever-specific data such as the examples given above.
This data is specific to the primary or standby, so it is stored on local storage, or in
shared storage but separate from the database and log.
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We use MySQL as the DBMS in CAC-DB. In MySQL, there are several kinds of
non-shared data and we present how CAC-DB manages this data. First, MySQL stores
performance data in the performance schema database, and tables in this database are
views or temporary tables that use no persistent on-disk storage. MySQL will recreate
them when it restarts after a failure. Therefore, this kind of non-shared data does not
need to survive a failure. Second, MySQL stores metadata in the information schema
database, which is similar to the performance schema database. Third, MySQL creates
internal temporary tables while processing queries. MySQL creates a temporary table
initially as an in-memory table, then converts it to an on-disk table if it becomes too large.
If a failure happens, MySQL will rerun the query and recreate the associated temporary
data structures. Therefore, this kind of non-shared data does not need to survive a failure
either, and it is stored on local storage. Fourth, MySQL writes error messages to the
console or to an error log file. If the error messages are written to a file, and this error log
needs to survive a failure, CAC-DB stores this data in shared storage as a separate column
family.

The approach adopted for MySQL can be adopted for any other DBMS: ephemeral
non-shared data (that does not need to survive a failure) can be stored in local storage,
while non-shared data that needs to survive a failure can be stored in shared storage in a
server-specific area separate from the shared database and log. In any DBMS that we want
to use for CAC-DB, it should be easy to distinguish in the DBMS server code between
writes to the database and log on the one hand (shared data), and writes to server-specific
data on the other hand (non-shared data).

4.3 Buffer Pool Management in the Standby

A DBMS, whether it is the active or the standby, needs to flush dirty pages periodically
when it evicts them from its buffer pool during normal operation. However, the CAC-
DB design relies for consistency on the fact that only the active writes the database and
log. The standby can read the database and log, but it never writes to shared data to
avoid introducing inconsistency. This means that the standby cannot flush dirty pages,
which requires changing the buffer eviction mechanism for the standby. The general idea
of our solution is that we don’t evict pages from the end of buffer pool eviction list (e.g.,
the LRU list), if these pages may cause inconsistency (we illustrate this with an example
below). Instead, we can only evict a buffer page when that page is safe in shared storage.
A safe page can be evicted without being flushed, so the standby can avoid all writes to
the database.
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We present the details of our algorithm in the context of InnoDB, which we use for CAC-
DB. Other DBMS will require different implementation details, but the idea of evicting
only safe pages will still apply. In InnoDB, there are three lists of pages which are used
in buffer pool management. The flush list is a list that consists of all the dirty pages in
the buffer pool. A background thread flushes the dirty pages from the end of flush list
periodically. The pages in the LRU list and the pages in the free list together contain
all the pages in the buffer pool. The buffer pages that have not been used recently are
evicted when space is needed to cache newer pages, and this is done using the LRU list.
The evicted pages from the end of the LRU list include dirty pages and clean pages. If the
evicted pages are dirty, they are flushed to storage. When the DBMS needs a free frame
to load a page, it uses one from the free list.

In order to prevent the standby from writing database pages to the shared storage tier,
we have to suppress flushing buffer pages from the flush list and LRU list at the standby.
The standby has to replay the shared log, which causes it to touch different database pages,
so its buffer pool will eventually fill up and thus needs an eviction policy. We cannot simply
evict pages from the end of the LRU list or the flush list, since that will cause inconsistency
problems. For example, in Figure 4.1, cp1 represents the latest checkpointLSN received by
the standby from the active, and replay lsn represents the point to which the standby has
replayed the shared log. At the end of this timeline, we are sure that P2 with update1 and
P1 with update2 were flushed (by the active) to the storage tier because their updates are
before cp1. However, the active cannot ensure that P1 with updates after cp1 is flushed
to the storage tier. Therefore, if the standby evicts P1 after applying LSN = 60, when
the standby applies the log record with LSN = 70, it will need to load P1 from the
shared storage tier. However, because the active cannot ensure that P1 with LSN = 60 is
flushed to the storage tier, the standby may get P1 with LSN = 20, which misses update3,
update4, and update5. This causes inconsistency. On the other hand, P2 can be evicted
by the standby since we are sure that the latest LSN applicable to this page is reflected in
shared storage. That is, P2 is safe while P1 is unsafe.

In order to determine which pages can be evicted and which cannot, we first define safe
updates and safe pages.

Definition 2 Safe Updates: Safe updates are updates that happen before the latest check-
point at the active. For example, update1 and update2 in Figure 4.1 are safe. Because
updates before a checkpoint have been flushed to storage, these updates can be recovered by
reading the page, so they are safe.

Definition 3 Safe Page: A page whose updates are all safe updates is a safe page. In
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Figure 4.1: Safe Page Eviction
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Figure 4.1, page P2’s updates are all before cp1, so P2 is a safe page. Since there are
updates on P1 after cp1, P1 is not a safe page.

In CAC-DB, only the active can take a checkpoint and periodically send the check-
pointLSN (cpLSN) to the standby. The standby compares the LSN of an update with
the latest received cpLSN . If an update’s LSN is less than or equal to the latest received
cpLSN , this update is a safe update. If a page’s pageLSN (pLSN), which records the
latest update applied to this page, is smaller than or equal to cpLSN , this page is a safe
page.

In order to evict only safe pages, we design a new algorithm to manage the LRU list
and free list of the standby. Upon receipt of a checkpoint LSN from the active, the standby
scans the LRU list and checks the pageLSN of each page on the list to identify safe pages.
The standby changes the state of all safe pages to a state that indicates that this page can
be replaced, for example, by changing the dirty bit from dirty to clean and removing the
page from the flush list. Updated safe pages can now be evicted from the buffer pool.

In our solution, not every receipt of a checkpoint LSN will cause the standby to update
the LRU list. The standby updates the buffer pool lists only when there is not enough
space in the free list to assign to newly read pages. The standby updates the LRU list and
free list and does page evictions only when it needs to.

In our solution, the standby evicts the smallest number of pages possible. For example,
if the standby has updated 10 safe pages in the LRU list and the free list needs 2 more
pages, the standby will evict exactly 2 pages in order to maintain the utilization of the
buffer pool at the standby.

There may be scenarios where the free list is not enough to accommodate new pages and
all pages in the standby’s buffer pool are unsafe. In this case, the standby can either stop log
replay until the next checkpoint arrives so that more pages can be identified as safe, or the
standby can ask the active to take a new checkpoint immediately. In our implementation
of CAC-DB, the standby asks the active to take a new checkpoint immediately when faced
with this situation. The likelihood of this situation arising is related to the buffer pool
size of the standby and the size of the log file. The larger the size of the log file, the less
frequently checkpoints have to be taken, and the more frequently this situation arises. If
the standby has a small buffer pool and the log file is large, this situation will happen
relatively frequently. If the buffer pool of the standby is large and the log file is also
reasonably small, this situation will not happen very often.
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Figure 4.2: Evicting Unsafe Pages at the Standby

4.4 Handling a Slow Standby

The previous section provides a basic HA solution in shared storage environment. However,
this basic solution works only under the assumption that the standby can always catch up
with the active by replaying all the updates the active has recorded in the shared log. If
the standby falls behind the active, in this section, we present techniques for handling this
situation.

First, we start with a precise definition of the standby being “caught up” with the
active. In modern DBMS, the transaction log is typically implemented as a number of files
arranged as a circular file. This is done to keep the amount of space used by the log files
bounded. For example, in InnoDB, there are two log files by default in each log group.
When InnoDB starts, it writes log records in the first log file. When the first log file is filled,
InnoDB begins writing in the second log file. When both log files are filled, InnoDB will
return to the start of the first file and overwrite its old log content. InnoDB can overwrite
old log content since all the log records before the latest checkpoint LSN are reflected in
stable storage and hence will never be used, so they can be overwritten (the log replay
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procedure in the redo stage of ARIES recovery starts from the latest checkpoint LSN).
There is a mechanism to guarantee that new log records will not overwrite log records that
have not been checkpointed.

The inconsistencies caused by the standby falling too far behind the active arise if the
standby is so slow in applying log records that the active overwrites log content which the
standby has not yet replayed. For example, in Figure 4.2, all the log files are filled and
the active wraps around and writes log records from the start of the log file. In the figure,
the active has written the log record with LSN = 110. At that time, the standby has
replayed the log only up to the record with LSN = 40. If the active continues writing the
shared log, the new log records will eventually overwrite log records that the standby has
not replayed. If this happens, the standby cannot replay the shared log correctly, causing
inconsistency.

It is likely that the standby will not be able to catch up with the active using the
default DBMS setting, since the standby issues IO at a lower bandwidth than the active.
The active serves multiple concurrent clients that generate several IO streams. In contrast,
the standby replays the log sequentially, using only one IO stream. It is likely that the
single IO stream of the standby will not be fast enough to keep up with the multiple IO
streams of the active.

The specific manifestation of this problem in InnoDB is as follows. InnoDB uses the
asynchronous IO (AIO) mechanism. In this mechanism, several AIO arrays are used to
store AIO requests, and each AIO array is associated with a read/write IO thread. Since
we use storage that is accessed over a network instead of local disk, there is a large variance
in IO completion time, from single milliseconds to hundreds of milliseconds. The standby
performs log replay in batch mode, , where a batch of log records is read and the database
pages corresponding to these log records are then read into the buffer pool by IOs that are
issued in one batch using the AIO arrays. The standby must finish processing one batch
of log records completely before it can load another batch. For every batch, each AIO
array has nearly the same number of AIO requests, but the completion time for processing
all the AIO requests in different AIO arrays will vary due to variance in IO latency. The
faster IO threads have to wait for the slower IO threads, so IO bandwidth is not effectively
utilized and the completion time is determined by the slowest thread. The situation does
not arise in the active because the different IO threads can work independently without
impacting one another. Because of this difference, the IO processing speed in the standby
is slower than that the active, causing the standby to fall behind the active.

We present three ways to address the problem in the next sections.

24



4.4.1 Increasing IO Threads at the Standby

Since the standby falls behind the active due to having less IO intensity, a simple solution is
to increase the IO intensity of the standby. In InnoDB, this can be done by increasing the
number of IO threads and corresponding AIO arrays. The default number of IO threads
and AIO arrays in InnoDB is 4. In CAC-DB, we increase this number at the standby to 10.
With this change, we find in our experiments that the standby can easily keep up with the
active. Furthermore, the additional IO load generated by the standby does not interfere
with the active, so the throughput of the active is the same as it was before. Because the
standby does not fall behind the active, no inconsistency arises. In addition, when the
standby detects the failure of the active, it always finds in our experiments that it has
replayed all of the logs (i.e., the ARIES redo stage is over) and immediately begins ARIES
undo almost no system downtime. Furthermore, there is no situation in which the standby
must evict extra pages in the buffer pool (as required by the second solution which we
describe in the next section), so the buffer pool remains warm and the standby can quickly
reach peak throughput.

After failover, the standby decreases the number of read IO threads to the original
number (4 by default). Specifically, when the standby finishes the redo stage of ARIES
after failover, the AIO arrays are empty. Thus, we destroy these AIO arrays and the
associated IO threads, and we re-create the original number of AIO arrays and associated
IO threads. The reason we decrease the number of IO threads when the standby takes
over as active is to ensure that the IO intensity of the new active is not too high. More
IO threads means more IO capacity, and the DBMS is configured with a certain number
of IO threads to achieve a certain IO capacity. We increase the number of IO threads at
the standby to address the specific problem outlined above, but when the standby takes
over as active, it needs to be restored to the configured IO capacity (i.e., the configured
number of IO threads).

In our experiments, we have found this solution to be sufficient. We never encounter any
case in which the standby is slower than the active. However, there remains a possibility
that such a case may occur. If, for example, the standby is slow due to OS problems, hard-
ware problems, or load placed on the machine by other processes. In this case, increasing
the number of IO threads at the standby is not enough and we need an explicit synchro-
nization mechanism between the active and standby. We present two possible approaches
in the next two sections.
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4.4.2 Active Waits for a Slow Standby

The most direct way to prevent the active from overwriting the log records that have not
been replayed by the standby yet is to force the active to wait for the standby synchronously.
Specifically, every time the standby loads one batch of log records, it will send the start
LSN of this batch to the active. When the active wants to write new log records, it checks
whether its latest LSN (LSNa), plus the length of the new log records (lnewrec), will pass
the start LSN received from the standby (LSNstartbatch). If Equation 4.1 is satisfied, the
active will block until it receives a new start LSN from the standby, at which time it will
check the equation again:

LSNa + lnewrec ≥ LSNstartbatch (4.1)

Although this solution ensures proper synchronization between the active and standby,
it will reduce the throughput of the active if the standby cannot keep up with it. Our
experiments show that the throughput of the active with this additional synchronization
can be less than 50% of its throughput without the synchronization. One of the primary
objectives of this thesis is to avoid solutions that reduce the throughput of the active during
normal operation, so we do not use this solution. Instead, we use the solution described
next, which does not affect the active’s throughput.

4.4.3 Evicting Unsafe Pages at the Standby

Since we do not want the active to wait for the standby, we developed a solution where
the synchronization between the active and standby relies on the standby reacting to the
actions of the active without stopping them. In particular, instead of forcing the active to
wait for the standby, the standby can skip some log records to catch up with the active.
Specifically, upon receipt of cpLSN from the active, the standby can compare cpLSN with
its latest replayed LSN. There is an existing mechanism to guarantee that the latest LSN
at the active will not catch up with cpLSN when the log wraps around the end of the
file. Thus, if cpLSN is larger than the standby’s latest replayed LSN, the standby will
know that it has fallen behind the active, and it can skip all log records up to cpLSN .
For example, in Figure 4.2, the standby’s latest received checkpoint from the active is cp2.
As cp2 is larger than the standby’s replay lsn, the standby will skip log records from the
standby’s replay lsn to cp2. However, simply skipping log records without applying the
updates they contain would cause the state of the database pages in the buffer pool to
be inconsistent. In Figure 4.2, if the standby does not replay the log records between
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the standby’s replay lsn and cp2 , update3, update4, and update5 to page P1 would be
missed, whereas update6 may be applied. This would leave the copy of P1 in the buffer
pool inconsistent (recall that the standby only updates pages in the buffer pool not in
storage when replaying the log).

The solution to this problem is to simply evict P1 from the buffer pool of the standby,
relying on the fact that a consistent copy of P1 is available in shared storage and can be
read by the standby when needed.

Thus, the synchronization mechanism that we propose, and that we use in CAC-DB,
is as follows: If the latest checkpoint at the active is later than the latest replayed LSN
at the standby, the standby skips the log records until the latest checkpoint. Skipping log
records means that some updates will be missed, making some pages unsafe. The standby
evicts these unsafe pages from its buffer pool.

Definition 4 Unsafe Page: A page in the standby’s buffer pool that misses some updates
due to the standby skipping some log records.

To implement this synchronization approach, at every checkpoint the active sends an ar-
ray of pairs to the standby. Each pair represents an LSN and the page number to which the
LSN applies. The LSNs represented in this array are the LSNs between the previous check-
point LSN and the current checkpoint LSN, e.g., {(P2, 30), (P1, 40), (P1, 50), (P1, 60), (P1, 70)}
in Figure 4.2. Note that the array is ordered by LSN. If the standby decides that log records
must be skipped, it will do a binary search and find the (page-no, LSN) pairs with LSN
larger than standby’s replay lsn, e.g., {(P1, 50), (P1, 60), (P1, 70)} in Figure 4.2. For each
pair with larger LSN, the standby will check whether the page is in its buffer pool. If so,
these pages are unsafe pages and the standby evicts them. For example, in Figure 4.2,
assuming P1 is the in standby’s buffer pool, P1 will be deemed an unsafe page and will
be evicted. The same page P1 on the storage tier reflects update3, update4, and update5.
When the standby needs P1 again later, it can read it from the storage tier with all the
necessary updates. After the standby evicts all of the unsafe pages, it will continue to
replay the log.

Although this solution avoids inconsistency and has no impact on the throughput of
the active, it remains a concern that evicting pages from the buffer pool of the standby
will reduce the degree of warmth of the standby’s buffer pool. As time passes, if the
number of pages evicted is larger than the number of pages loaded, the standby’s buffer
pool will become colder and colder. In the limit, we may find that the work that CAC-DB
does to replay the log and keep the standby buffer pool warm is all lost due to unsafe page
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evictions, and that failover in CAC-DB is as expensive as starting a new server after failure
and performing ARIES recovery. Thus, this synchronization mechanism should be viewed
as a way to ensure correctness if the standby temporarily falls behind the active. In the
steady state, the standby should have sufficient IO capacity so that it rarely falls behind
the active, if at all.

To summarize, in CAC-DB the primary mechanism for ensuring that the standby does
not fall behind the active is to increase the IO capacity of the standby (Section 4.4.1).
CAC-DB also implements the mechanism of skipping log records and evicting unsafe pages
at the standby (Section 4.4.3). Forcing the active to wait for the standby when the standby
falls behind (Section 4.4.2) is not considered a good solution since it affects the throughput
of the active during normal operation.

4.5 Guaranteeing Consistent Reads at the Standby

This section focuses on techniques for guaranteeing strong consistency for the standby
when it reads log and data pages, while avoiding some, or most of, the consistency penalty.
The combination of optimistic IO and client-controlled synchronization in DAX guarantees
that the active always sees consistent versions when it reads log and data pages that it
has written (see Sections 3 and 4 in [23]). What we need to guarantee for CAC-DB is
that when the standby reads log and data pages written by the active, the standby sees
consistent versions.

As explained in Chapter 2, with optimistic IO the active maintains an in-memory
version list to record the most recent version numbers of various blocks. The entries in the
version list have the latest versions of the associated blocks. The DAX client library assigns
the lastest version numbers to blocks when they are written by the active. However, because
the standby cannot write to the shared storage, the entries in a version list maintained
by the standby would remain unchanged and would not reflect the latest version of the
associated blocks (recall that the latest versions are written by the active). Therefore,
optimistic IO for the active cannot work for the standby, and a new technique is required
for guaranteeing consistent reads at the standby. If the underlying cloud storage system
provides strong consistency, this problem would cease to exist. However, one of the goals
of DAX and CAC-DB is to avoid strong consistency, since it is too expensive for a system
that is deployed across geographically distributed data centers.

In this section, we develop techniques for guaranteeing consistent reads at the standby
without requiring the storage system to raise its consistency level all the way to strong
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Figure 4.3: Incompletely Written Log Blocks

consistency. We divide data read by the standby into two types: log files and data files.
The difference between log and data files is that log files are append-only while data files are
not. Because of this difference, we have developed separate techniques to ensure consistent
reads of log and data files.

4.5.1 Consistent Reads of Log Files

CAC-DB uses batch-based log replay, in which a log file can be divided into many segments.
The standby repeatedly reads one segment from storage into memory, replays the log in
this segment, and then reads the following segment.

In the current implementation of InnoDB, if one segment of log files is not fully written
(some blocks may be incomplete, e.g., the fourth block in Figure 4.3), the standby will
record the end lsn which represents the standby’s replayed position in the log, as shown in
Figure 4.3. When the standby reads the next segment, it will read from the last end lsn,
and will replay from that position, not skipping any log records. As log files are append-
only, if the standby can record the last replayed position with every read of a log segment,
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and then replay from that position in the next read of a log segment, the standby will be
guaranteed to replay the log in order and not skip any log records. This guarantees the
correctness of log reads.

Based on the above, we have developed two solutions to guarantee the correctness of
reads from the log file.

SOLUTION 1: The standby can use Read(1), which means that it can potentially
get an old version when it reads a new log segment. The standby will replay from the last
end lsn, which records the position to which the standby has replayed the last time, so it
will be able to handle stale reads from the log since it would ignore log records that it has
previously replayed. After replaying the current log segment, the standby will again record
the end lsn, which is the starting position of log replay for the next log segment read.

Using Read(1) may be sufficient to guarantee correctness of log replay. However, it does
not provide strong guarantees that log replay will make forward progress fast enough. If
the standby keeps reading stale log segment because of the Read(1) operation, the standby
may be much slower than the active and may fall behind. The problems of a slow standby
discussed in Section 4.4 would then arise.

SOLUTION 2: A better solution is for the standby to use Read(QUORUM) to read
the log file. Read(QUORUM) always obtains the most recent version of the log files,
because log writes in DAX are synchronized with at least k replicas as part of commit
processing. In this way, the standby can always make forward progress and keep up with
the active. In the implementation of CAC-DB, we use this solution, and we have found it
to be effective and inexpensive.

4.5.2 Consistent Reads of Data Files

Unlike append-only log files, data files experience multiple updates in different locations.
Therefore, the standby cannot use Read(1) and expect consistent reads. To overcome this
problem, we have developed a mechanism by which the standby can determine whether a
Read(1) has returned most recent version of a block. To achieve this, the standby maintains
an in-memory pageLSN list in its Dax client library. This is similar to the version list used
for optimistic IO in DAX [23]. In the pageLSN list, the standby records the latest pageLSN
of each page (this pageLSN is not the true largest pageLSN as written by the active, but
rather the largest pageLSN seen by the standby). The standby updates the pageLSN of
a page in the pageLSN list when it applies a log record to that page during log replay.
When a page is read using Read(1), the storage tier returns the first page replica that it
is able to obtain, and this returned page contains a pageLSN. The client library at the
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standby compares the pageLSN returned by the Read(1) with the corresponding pageLSN
in the pageLSN list to determine whether the page returned by the Read(1) is stale. The
standby does not need the most recent version of a page. If the Read(1) returns a page
with pageLSN equal to or larger than the corresponding pageLSN in the pageLSN list,
that page is sufficiently up to date for the standby, since the standby will replay the log
and update the page. The pageLSN list has a configurable maximum size. If the pageLSN
list grows beyond that size, entries are evicted from it using a least recently used (LRU)
policy.

The standby will also evict entries from the pageLSN list when unsafe pages are evicted
(recall Section 4.4.3). If the buffer pool manager at the standby evicts a safe page, the
corresponding entry is not evicted from the pageLSN list. The reason for the difference in
treatment between evicted unsafe pages and evicted safe pages is that after an unsafe page
evicted, the standby will skip log records to the most recent cpLSN to catch up with the
active, which means that the corresponding entries in the pageLSN list cannot be used to
check for consistency. If the standby does not evict these entries from the pageLSN list and
reads a page with the pageLSN larger than the corresponding value in the list but smaller
than the most recent cpLSN , there is no guarantee that this page is a consistent page.
The consistent version of the page in this case is the page with the last update before the
latest checkpoint.

For example, in Figure 4.2, the standby skips from its replay lsn to cp2 to catch up with
the active. In Section 4.2, we saw that P1 is an unsafe page and is evicted from the buffer
pool of the standby. If the standby does not evict the P1 entry (with value LSN = 40)
from the pageLSN list, the following scenario may occur and lead to inconsistency. There
are three updates on P1 between the standby’s replay lsn and cp2. When the standby
replays the log record with LSN = 90 and needs P1 again, it may read P1 with LSN = 50
or LSN = 60. Because the newly loaded P1 is larger than the entry in the pageLSN list,
the standby will assume it is a consistent page. However, P1 with LSN = 50 is not
a consistent page. When the standby skips to cp2, it skips the log records for update3,
update4, and update5. If the standby uses the page it reads with LSN = 50 or 60, it will
miss at least update5 whose LSN = 70. Since the standby skips log records, it needs to
read the most recent version of P1, with LSN = 70, which is the last update before cp2.
Therefore, the P1 entry must be evicted from the pageLSN list.

Since the pageLSN list is maintained in memory, it will be empty when the standby
first starts or when it restarts after a failure. The pageLSN list is populated gradually
as the standby reads pages. If the standby reads a page for which there is no entry in
the pageLSN list, either because the standby (1) has started recently (or restarted after
a failure) and is warming up (2) evicted the page as part of unsafe page eviction, or (3)
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evicted the entry from the pageLSN list because the list got too large, the standby cannot
use Read(1), since it will not be able to check the returned version for consistency. To deal
with this situation, we propose the concept of a consistent page.

Definition 5 Consistent Page: If a page is among the entries of the pageLSN list, then
a page in storage with a pageLSN equal to or larger than the corresponding pageLSN in the
pageLSN list is a consistent page. Otherwise, a page with the last update before the latest
checkpoint is a consistent page.

When the standby reads a page that is not in its buffer pool, it will always be the
case that this is the first time the standby encounters this page after the latest checkpoint.
If the standby had previously encountered this page after the last checkpoint, the page
would necessarily be in the buffer pool. This is because only safe pages, whose pageLSN
is smaller than the checkpoint LSN, can be evicted. Unsafe pages with updates after the
latest checkpoint cannot be evicted. If the page being read satisfies the definition of a
consistent page, the standby will not skip any updates recorded in the log file for that
page.

If a page being read is not in the pageLSN list because its entry was evicted when the
list got too large, then the page must have been safely evicted earlier. As a safe page is a
page whose last update is before the latest checkpoint, the current read would be the first
time the standby encounters this page in the log file after the latest checkpoint. In this
case, the standby will also not skip any updates on this page in the log file if the page is
consistent according to the definition above.

If a page is not in the pageLSN list or the Read(1) returns a version that is deemed
to be stale, we have developed three solutions to guarantee that the standby can obtain a
consistent page for the data files.

SOLUTION 1: The standby client library falls back to Read(ALL). It is guaranteed
that Read(ALL) will return the latest version of the page if it succeeds, which is definitely
a consistent page. However, Read(ALL) is not tolerant to failures of DAX servers. The
failure of even a single replica will prevent Read(ALL) operations from completing until
that replica is recovered, leading to a loss of availability [23]. This solution is therefore not
a good solution.

SOLUTION 2: The standby maintains version list that is identical to that of the
active. Every time the active updates the version list, it sends a message to the standby
to update its copy of the version list. After an acknowledgement is returned from the
standby, the update can be viewed as a successful update. By maintaining the version list,
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the standby can still use Read(1) and can determine whether a Read(1) has returned the
latest version of a page. However, this will negatively affect the performance of the active,
especially if the active and the standby are in different data centers. There is a round-trip
latency for every update of the version list. Thus, this solution is cheap for the standby,
but it is very costly for the active.

SOLUTION 3: Due to the drawbacks described above, we have designed a mecha-
nism that is cheap on both the active and the standby. First, we explain the concept of
durability on shared storage and semi-fuzzy checkpoint in the active.

Definition 6 Durability on Shared Storage: An update is durable on shared storage
if update acknowledgements have been received from at least k replicas.

Definition 7 Semi-fuzzy Checkpoint: The traditional fuzzy checkpoint can guarantee
all the updates before the latest checkpoint LSN are durable on disk. In our setting, a semi-
fuzzy checkpoint can guarantee all the updates before the latest checkpoint LSN are durable
on the shared storage.

Every time the active takes a semi-fuzzy checkpoint, it ensures that all the updates
made before the latest checkpoint are durable. Therefore, after a semi-fuzzy checkpoint,
consistent pages are durable on the shared storage with k replicas updated. With this
solution, the standby can use Read(QUORUM) to ensure that it obtains consistent pages.
In the implementation of a semi-fuzzy checkpoint in CAC-DB, the active directly calls
CSync every time it needs to take a checkpoint. Note that CSync is explained in detail
in Chapter 3.

Algorithms 1 and 2 summarizes the final version of the optimistic-IO protocol for data
files using SOLUTION 3. This solution is relatively cheap for both the active and the
standby, and is the one that we adopt in CAC-DB.
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Algorithm 1: Standby Read for Data Files
Input: blockId
Output: new pageLSN list, data

1 if pageLSN ∈ pageLSN list then
2 (data, pageLSN) := Read(1);
3 while pageLSN < pageLSN list.get(blockId) do
4 #retry a stale read;
5 #give up if too many retries and return an error;
6 (data, pageLSN) := Read(1);

7 else
8 #fall back to reading a quorum;
9 (data, pageLSN) := Read(QUORUM);

10 pageLSN list.put(blockId, pageLSN);
11 return data

Algorithm 2: Semi-fuzzy Checkpoint by Active

1 #blocks until writes on sync pending list are durable
2 CSync();
3 return cp lsn
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Chapter 5

CAC-DB Failover

This chapter describes the active and the standby’s operation for failover. Before failover
can be triggered, some failure detection approach is needed for the standby to detect
whether the active has failed. We use a failure detection approach that was developed
independently of this thesis by a co-op student. This failure detection approach is presented
in Appendix A. For failover, CAC-DB relies on the ARIES recovery protocol.

5.1 Failover

When the standby detects that the active has failed, the standby will start the failover
process. Failover relies on the ARIES recovery algorithm, which consists of redo stage
followed by an undo stage. Usually, the standby has already finished the redo stage when
failover starts, because the standby is always working to catch up with the active during
normal operation. Moreover, there are a few seconds of failure detection in which the
active does not generate new log records, and this time is usually sufficient for the standby
to finish the redo stage. After redo, the standby must do two things: (1) decrease the
number of read IO threads it uses, and (2) update the buffer pool. The need to decrease
the number of read IO threads was explained in Section 4.4.1. For updating the buffer
pool, the standby scans the LRU list and updates all safe pages to the replaceable state.

After these steps, the standby becomes the new active and can accept new transactions.
Many database systems, including InnoDB which we use in this thesis, can perform the
undo part of recovery while accepting new transactions at the same time. The DBMS
simply keeps locks on the objects accessed by the undo stage.
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One issue we have observed is that, the new active needs to clean space in the log for the
new log records of the new workload. To clean log space, the new active must flush dirty
pages from its buffer pool synchronously or asynchronously, and create a new checkpoint. In
InnoDB, the trigger points for synchronous flushing and asynchronous flushing are different
threshold ratios for the empty log space in the log file. We have found that the new active
typically finds log space almost full at the end of the redo stage, and performs synchronous
flushing before accepting new work. In the period of synchronous flushing, the system is
not processing any transactions, so this period is part of the system downtime at failover.

To avoid the long system downtime at failover, we provide a solution to prevent the
new active from reaching the trigger point for synchronous flushing. We have found the
new active performs synchronous flushing because the trigger points for asynchronous
flushing and synchronous flushing are too close. Therefore, we lower the threshold for
asynchronous flushing so that it is not too close to the threshold for synchronous flushing.
Using this approach, the DBMS performs more frequent asynchronous flushes but will
almost never need synchronous flushing. At failover, the new active will make asynchronous
flushing instead of synchronous flushing, which eliminates downtime for flushing. In our
implementation of CAC-DB, we changed the threshold for asynchronous flushing from the
default value of 3

4
to 1

2
.

In addition, CAC-DB can handle the case in which the standby fails, rather than the
active. First, our failure detection algorithm can easily be used to detect the failure of
the standby. To support failure detection of the standby, we create a reliable counter
in DAX for the active/standby pair. This counter is advanced by the standby and read
by the active to ensure that the standby is still alive. Second, when the active detects
that the standby fails, CAC-DB will immediately deploy a new standby, which begins to
replay the log from the latest checkpoint LSN in the shared log file and soon catches up
with the active. This reprotection operation is also used after failover: the old standby
becomes the new active, and CAC-DB creates a new standby for this active. We describe
the reprotection operation next.

5.2 Reprotection

Reprotection is used to launch a new standby for the new active after failover or when the
standby fails during normal operation. Reprotection in CAC-DB can tolerate the failure
of a data center in a multi-data-center setting, making use of the property that DAX can
be deployed across several data centers. The database and the log are replicated by DAX
in multiple data centers, so CAC-DB has flexibility in choosing the data center in which it
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creates the new standby. For example, assume that the active is in data center A and the
standby is in data center B. If the entire data center A fails, the standby in data center B
can perform the failover and become the new active. Simultaneously, when the old standby
detects that the old active has failed, CAC-DB immediately starts a new standby in data
center C. This is possible since DAX enables the database and log to be accessible from
any data center in which the system is deployed. This time from the instant that CAC-DB
starts a new standby to the instant when the new standby begins the log replay is typically
very short (around 12s in our experiments). Thus, there is only a short time in which the
system is not protected against failures.
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Chapter 6

Experimental Evaluation

We conducted an experimental evaluation of CAC-DB with several objectives. First, we
want to measure the performance of CAC-DB during failover. We show that CAC-DB
provides fast failover and compare its performance to MySQL Binlog replication. Second,
we want to test the performance of CAC-DB under different settings of the environment.
To do this, we conducted experiments under different buffer pool sizes and database sizes.
Third, we illustrate the performance of different design alternatives in our system.

6.1 Experimental Setup

We conducted all of the experiments described in this thesis on Amazon’s Elastic Compute
Cloud (EC2). Note that EC2 is widely used to host data-intensive services of the kind that
we are interested in supporting, so it is a natural setting for our experiments. Moreover,
EC2 allows us to run experiments that use multiple data centers. All of our experiments
use EC2 large instances (virtual machines), which have 7.5 GB of memory and a single,
locally attached 414 GB storage volume holding an ext3 file system. The virtual machines
run Ubuntu Linux with a 2.6.38-11-virtual kernel. Our solution is based on the DAX
prototype, which is based on Cassandra version 1.0.7, and we use MySQL version 5.5.8
with the InnoDB storage manager as the DBMS tenant.

All of the experiments ran a TPC-C transaction processing workload generated by the
Percona TPC-C [7] toolkit for MySQL [8]. We used a 100-warehouse TPC-C database
instance with an initial size of 10 GB. The database grows during a benchmark run due to
record insertions. For each DBMS, 50 concurrent TPC-C clients were used to generate the
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DBMS workload. The performance metric of interest in our experiments is throughput,
measured in TPC-C NewOrder transactions per minute (TpmC).

6.2 Behavior of CAC-DB During Failover

In this experiment, we demonstrate the effectiveness of CAC-DB during failover. We
consider two distributed CAC-DB configurations. In each configuration, there is one EC2
server running the active MySQL instance, one EC2 server running the standby MySQL
instance, and nine EC2 servers running as DAX servers and providing the CAC-DB storage
tier. Each database block is replicated six times across the nine DAX servers, for a total
data size of approximately 60 GB. The configurations that we test are as follows:

• One zone: All eleven servers are located in the same EC2 availability zone (roughly
analogous to a data center). For our experiment, we used the US East (N. Virginia)
availability zone.

• Different regions: The nine DAX servers are distributed evenly over three EC2
availability zones. All three zones are located in geographically-distributed EC2
regions: US East (N. Virginia), US West-1 (N. California), and US West-2 (Oregon).
US East houses the active MySQL instance, while US West-2 houses the standby
MySQL instance.

In each EC2 configuration, we tested two variants of CAC-DB in addition to DAX
without CAC-DB. The different systems tested are as follows:

1. DAX: The original DAX, which supports recovery after failure but no active/standby
high availability.

2. CAC-DB without optimization (CAC-DB-WO): CAC-DB without the optimization
to reduce synchronous flushing.

3. CAC-DB with optimization (CAC-DB-W): CAC-DB with the optimization to reduce
synchronous flushing.

In addition, we perform experiments to compare CAC-DB with MySQL’s integrated
replication solution, Binlog [5]. For Binlog, we consider three distributed Binlog configu-
rations. In each configuration, there is one EC2 server running the active MySQL instance
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and one EC2 server running the standby MySQL instance. For the storage tier, we use
either the local storage of the machines, where the MySQL server resides, Amazon’s Elastic
Block Storage service (EBS), or DAX running on other EC2 servers, as the storage tier.
In Binlog replication, the active and standby have separate copies of the database, so their
storage tiers are independent.

We tested Binlog replication in the one-zone and different-regions settings, as we did
with CAC-DB. In each setting, we tested six versions of MySQL Binlog replication. The
Binlog versions are as follows:

1. MySQL asynchronous Binlog with local disk (LAS): In this configuration, we use
MySQL’s asynchronous replication, in which the active writes events to its binary
log but does not synchronize with the standby to ensure that it has retrieved and
processed them. We use the local storage of the EC2 instance as the storage tier.

2. MySQL semi-synchronous Binlog with local disk (LS): Similar to the configura-
tion above, except that we use MySQL replication’s semi-synchronous replication,
in which the standby acknowledges receipt of a transaction’s events only after the
events have been written to its relay log and flushed to disk. The active waits to
receive the acknowledgement from the standby.

3. MySQL asynchronous Binlog with Amazon EBS service (EAS): Asynchronous repli-
cation, using a single EBS volume for each MySQL instance as the storage tier.

4. MySQL semi-synchronous Binlog with Amazon EBS service (ES): Similar to the
configuration above, except that we use MySQL’s semi-synchronous replication.

5. MySQL asynchronous Binlog with DAX (DAXAS): In this configuration, we use
MySQL’s asynchronous replication. We use a separate EC2 instance implementing
a DAX storage tier for each of the active and standby MySQL instances.

6. MySQL semi-synchronous Binlog with DAX (DAXS): Similar to the configuration
above, except that we use MySQL’s semi-synchronous replication.

In the next two sections, we describe experiments for DAX, the two versions of CAC-
DB, and the six versions of MySQL Binlog replication solutions. We compare their behavior
during failover in the one-zone and different-regions configurations. MySQL is configured
with a 5G buffer pool. We run the TPC-C benchmark and plot throughput in transactions
per minute (TpmC). The test was run for more than one hour before the failure and more
than one hour after the failure. A failure of the active was simulated by stopping the EC2
instance.
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Figure 6.1: Comparison Between DAX and CAC-DB In One Zone

6.2.1 Failover in One Zone

We compare DAX and CAC-DB in the one-zone configuration in Figure 6.1. In the figure,
the failure happens at 600s and we show throughput before and after the failure. The
throughput shown is the average throughput for a sliding window of 60 seconds. Before
the failure, all three methods show similar throughput, ranging from 900 to 1200TpmC.
This is expected since the three methods use the same type of DBMS and the same storage
tier. After failure, the CAC-DB variants reach their pre-failure performance in a short
period. DAX also reaches its pre-peak performance, but it does so after a considerable
delay. DAX recovers from a failure by starting a new MySQL instance and performing full
ARIES recovery, which takes time and incurs substantial down time.

To observe performance during failover, we zoom in on the period from 500s to 1000s
in Figure 6.2. To show the detailed behavior during failover, the throughput in Figure 6.2
is the average throughput for a sliding window of 10 seconds. CAC-DB-WO incurs around
100s of down time, during which it is taking a synchronous checkpoint. After these 100s,
it reaches peak throughput almost instantaneously. CAC-DB-W starts accepting new
transactions much sooner than CAC-DB-WO, but it reaches its peak throughput more
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Figure 6.2: DAX and CAC-DB During Failover in One Zone

gradually since it needs several asynchronous checkpoints. We believe that CAC-DB-W
is the better alternative in this tradeoff, since it incurs less downtime and is not much
slower than CAC-DB-W to recah its peak throughput. DAX is much slower than these
two alternatives. By 1000s, it is still slowly warming up its buffer pool.

Figure 6.3 compares results between Binlog replication solutions and CAC-DB-W in
the one-zone configuration. First, we compare the throughput before failure. We make
two observations about the performance of Binlog replication. First, the throughput of the
asynchronous Binlog solutions is higher than that of the semi-synchronous Binlog solutions,
because semi-synchronous Binlog solutions put an overhead on the active’s throughput. In
the semi-synchronous Binlog solution, for every transaction commit, the active cannot
continue executing subsequent statements until it receives the acknowledgement from the
standby. Second, the throughput of EAS/ES pairing is higher than LAS/LS pairing. We
observe that EBS provides better IO performance than local storage, and we study this
further in Section 6.4. Third, the throughput of DAXAS/DAXS pairing is higher than
LAS/LS pairing because DAX uses disk striping to increase random IO speed. Throughput
after failover is higher since the system is not protected so it does not incur the cost of
protection: the old standby becomes the active after the failure, and that new active does
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Figure 6.3: Comparison Between MySQL Binlog Replication Solutions and CAC-DB-W in
One Zone

not have a standby so does not pay the cost of Binlog replication.

In order to compare the failover performance of different solution, we list several metrics
related to failover in Table 6.1. The second row in the table lists downtime in seconds.
This is the time from the failure to the time when the new active can accept transaction.
The third row in the table shows how far behind the standby is when the active fails. We
use the size of the residual relay log that has not been replayed by the standby at the point
of failure to measure the standby’s lag behind the active. This measure is of relevance only
to the Binlog replication solutions, since the other solutions do not use a relay log.

In Table 6.1, we compare DAX with the two versions of CAC-DB. DAX incurs longer
downtime and takes longer to reach peak throughput than the CAC-DB methods. This is
because DAX needs to launch a new DBMS instance, and the new DBMS instance must
go through its recovery procedure, which leads to the longer downtime. DAX takes a
longer time to reach peak throughput, because the new DBMS instance needs to warm up
the cold buffer pool. CAC-DB takes a relatively short downtime because by the time the
standby detects the failure of the active, the standby has usually already finished replaying
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the transaction log and has thus almost finished the recovery procedure. CAC-DB takes a
shorter time to reach peak throughput because the standby becomes the new active with
a warmed-up buffer pool. Thus the value of CAC-DB to improve availability is clearly
demonstrated.

One-Zone DAX
CAC-
DB-WO

CAC-
DB-W

LAS LS EAS ES DAXAS DAXS

downtime(s) 220 130 4 220 2 850 900 2000 2100
time to peak
throughput (s)

1480 30 180 0 0 0 0 0 0

lag-behind
(MB)

18 0.002 79 84 178 179

Table 6.1: Failover Time Comparison for One-Zone

Table 6.1 also compares CAC-DB-WO and CAC-DB-W. As we saw before, CAC-DB-
WO has a longer downtime, because CAC-DB-WO needs to flush the dirty pages of the
buffer pool synchronously to clear log space for new log entries, during which the new
active cannot accept transactions. However, after the synchronous flush, the throughput
of CAC-DB-WO can reach peak shortly because of the warmed-up buffer pool. Instead
of synchronous flushing, CAC-DB-W uses asynchronous flushing, during which the new
active can accept new transactions. Therefore, the new active in CAC-DB-W can accept
new transactions as soon as it finishes the recovery (in fact, it is almost always done with
recovery by the time the failure is detected). Therefore, the downtime is very close to
the failure detection time (approximately 4s). However, repeated asynchronous flushing
involves more total work than the synchronous flush, so it takes about 180s for the through-
put to reach its peak value. We believe that the shorter downtime of CAC-DB-W makes it
the preferred choice. In Section 6.3 and later, we only do experiments with CAC-DB-W.

Table 6.1 also compares the Binlog replication solutions. Observe that LS shows a very
short downtime followed by LAS. In contrast, the EAS/ES pairing and DAXAS/DAXS
pairing show much longer downtimes. We find that the downtime in the Binlog solutions
is proportional to the size of the residual relay log that the standby has not replayed by
the time the standby detects the failure. The size of the residual relay log is determined
by the speed difference between the active and the standby. The Binlog based solutions on
the standby side function as follows: There are two threads on the the standby side. The
IO thread receives the binary log from the active and writes the relay log to the standby’s
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storage. Then, the SQL thread reads the relay log from the storage and replays them.
The IO workload from the binary log puts an overhead on the standby. In LS, there is
a very short downtime, because the low throughput of the active means that it is slow
enough for the standby to always keep up with it. In LAS, there is a longer downtime,
because the active does not wait for the standby during normal operation, so there is a
large residual relay log that the standby has not replayed when the standby detects the
failure. In EAS/ES and DAXAS/DAXS, there are much longer downtimes, because the
sequential IO operations needed to read and write to the binary log occur over the network,
which is slower than the local disk and therefore slows down the standby. When the active
fails, the standby is typically far behind the active and a substantial amount of log data
has not been replayed.

Table 6.1 quantifies the tradeoff that we expect to see in the Binlog solutions. If we
want short downtime, the standby must keep up with the active during normal operation
so its throughput would be low (LS). If the active runs faster, the standby has more work to
do after failure, so downtime is higher. We have seen that synchronous and asynchronous
solutions are comparable in this experiment. The differences between them will be more
pronounced in the different-regions experiment in the next section. The main conclusion
from the Binlog experiments is that CAC-DB avoids the problems of the different Binlog
solutions. CAC-DB has throughput during normal operation that is comparable to the
best Binlog solutions. After failure, it recovers faster than these solutions because it relies
on shared storage that is updated efficiently. The only Binlog solution that recovers faster
than CAC-DB is LS, which has poor throughput during normal operation. Thus, we see
that CAC-DB offers an alternative to log-shipping that has better performance. In addition
CAC-DB has the following advantages over Binlog replication:

• CAC-DB never loses committed transactions upon a failure, whereas Binlog replica-
tion – even semi-synchronous replication – may lose transactions.

• CAC-DB maintains only one copy of the database, whereas Binlog replication main-
tains two independent copies, one at the active and one at the standby.

• CAC-DB does not require the administrative overhead of setting up log shipping,
which is required for Binlog replication.

6.2.2 Failover in Different Regions

In this section, we study performance in the different-region configuration. We compare
DAX and the two variants of CAC-DB in Figure 6.4. We compare CAC-DB-W and Binlog
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Figure 6.4: Comparison Between DAX and CAC-DB in Different Regions
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Figure 6.5: Comparison Between MySQL Binlog Replications and CAC-DB-W in Different
Regions

replication in Figure 6.5. In these two figures, the active fails at 600s from the start of
the measurement period. In this experiment, we put the active in the US East zone and
the standby in the US West-2 zone. We list the downtime, the time that the new active
takes to reach peak throughput, and how far the standby lags behind the active in Table
6.2. We find that all of the solutions show behavior similar to that shown in the one zone
configuration, except that the throughput in the different-region configuration is slightly
lower than that in the one zone configuration, due to the inter-region latencies.

Looking at these results in more detail, we see from Figure 6.4 that the two variants
of CAC-DB outperform DAX, and we see that CAC-DB-W remains the preferable choice
since it does not incur a long downtime. For Binlog replication, we see from Figure 6.5 and
Table 6.2 that the semi-synchronous solutions (LS, ES, and DAXS) perform very poorly
before the failure, with throughput only one third of that of CAC-DB. In semi-synchronous
Binlog solutions, for every transaction commit, the active cannot execute the next state-
ment until it receives an acknowledgement from the standby that the transaction has been
propagated. Because the active and the standby are in two different geographic regions,
the long inter-region network latencies place a very high overhead on the throughput of
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the active. The difference between asynchronous Binlog solutions and synchronous Binlog
solutions in the different-region configuration is much larger than in the one zone configu-
ration. In addition, LAS, EAS, and DAXAS show similar throughput to the corresponding
value in the one zone configuration, because network latency does not greatly affect the
throughput of asynchronous Binlog solutions since the active does not wait for the standby
to acknowledge.

One-Zone DAX
CAC-
DB-WO

CAC-
DB-W

LAS LS EAS ES DAXAS DAXS

downtime (s) 300 180 4 570 2 1800 2 2100 2
time to peak
throughput (s)

900 30 220 0 0 0 240 0 1200

lag-behind
(MB)

31 0.0029 100 0.0019 110 0.0019

Table 6.2: Failover Time Comparison for Different Regions

Turning our attention to behavior after failure, we see that throughput is higher after
failover because the system after failover is not protected (has no standby) and so does
not incur the cost of protection. The downtime of LS, ES, and DAXS is nearly 0, because
the active is slow enough for the standby to always catch up. When the active fails,
there is very little residual relay log, so there is nearly no downtime. Second, LAS shows a
longer downtime in the different-zone configuration than that in the one-zone configuration,
because of the longer network latency between the active and the standby. Both EAS and
DAXAS show long downtime in different zones, because both the high network latency
and the sequential IO to the storage over the network put a high overhead on the standby,
which leads to the standby being slow. When the active fails, there is much log remaining
for the standby to replay before completing the failover.

As in the one-zone configuration, CAC-DB represents a good tradeoff that has high
throughput during normal operation and low time to recovery after failure. The per-
formance advantage of CAC-DB over Binlog replication is higher in the different-regions
configuration than the one-zone configuration because the network overhead is higher. In
addition to better performance, CAC-DB has the same advantages over Binlog replication
as in the one-zone configuration: never losing transactions, no database replication, and
lower database administration overhead.
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Figure 6.6: Reprotection After a Failure

6.3 Reprotection After a Failure

The reprotection mechanism of CAC-DB is shown in Figure 6.6. Similar to the experiment
described in Section 6.2, we run the different-region configuration. We run the test for
more than one hour before the failure and more than one hour after the failure. After the
failure, the old standby becomes the new active. We start a new standby as soon as failure
is detected. The performance of CAC-DB without reprotection is also shown for reference.

In the different region configuration we are able to start the new standby after 4 seconds
of the failure. The new standby is up and replaying logs after 12 seconds of being started,
meaning that the system is vulnerable to failure for only 4+12 seconds. We can see
from Figure 6.6 that reprotection does not significantly impact performance. The only
perceptible impact is that reprotection delays the time by which the new active reaches
peak throughput by about 30 seconds compared to the case of no reprotection. Thus, we
can see that CAC-DB effectively reprotects the DBMS after failover, with little impact on
performance.
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Figure 6.7: Average and 95% Confidence Interval of Throughput on Local Disk and EBS

6.4 Comparison Between Local Disk and EBS

In Figures 6.3 and 6.6, we observe better throughput for MySQL on EBS compared to local
disk on the EC2 instance. To analyze the difference between throughput in these two cases,
we deploy a single MySQL instance without protection on local disk and EBS and measure
throughput. We repeat each experiment ten times and present the 95% confidence interval
for the average throughput in Figure 6.7. The figure shows that in our setting, local disk
is slower on average than EBS, which can explain the variation in performance observed in
our experiments. However, we also see that the variance is high enough that the confidence
intervals overlap, so the difference in performance may be due to experimental error.

In addition, we use the “fio” tool to analyze different metrics of IO performance on
both local disk and EBS, based on specific IO workloads. The fio tool spawns a number
of threads or processes to perform a particular type of IO action, as specified by the
user. In our benchmark, we use an m1.large EC2 instance with 1xEphemeral RAID0 local
disk and a single EBS volume, and we simulate four kinds of IO workloads: sequential
read, sequential write, random read, and random write. We set the parameters in fio to
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Figure 6.8: Bandwidth Comparison Between Local Disk and EBS
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corresponding workload values, the parameter direct to “true” to use non-buffered IO,
the parameter ioengine to “synchronous”, the parameter filesize to “2048MB”, and the
parameter blocksize to “16KB”. We measure the performance of the four kinds of IO
workloads separately. Every time we start a new measurement, we clear the buffered
content in the memory to ensure a fair comparison. The comparison results are shown in
Figure 6.8. The figure shows that LocalDisk outperforms EBS in sequential operations,
while EBS performs better at random operations. For both sequential read and sequential
write, LocalDisk’s bandwidth is nearly triple that of EBS’s. For random read, EBS’s
bandwidth is nearly ten times that of LocalDisk’s. In addition, EBS’s random write’s
bandwidth is nearly twice LocalDisk’s. Our benchmark obtains similar results to those
shown in [2, 1]. Since transactional database workloads such as TPC-C involve many
random reads and writes across the dataset, MySQL replication solutions on EBS show
better throughput than those on local disk during normal operations, for both the one-zone
and different-regions experiments (Figures 6.3 and 6.5). During recovery, the log is read
in a sequential fashion, which is faster on local disk. This contributes to making recovery
on local disk faster, although the main reason recovery is faster on local disk is that there
is less relay log at the standby after failure.

6.5 Varying Buffer Pool Size

In this section, we study the effects of changing the ratio of database size to buffer pool size
on the performance of CAC-DB. We fix the database size to an initial size of 10GB (our
default database size) and change the buffer pool size to change the ratio. In the previous
sections, we use a 5GB buffer pool. In this section, we conduct experiments comparing
DAX and CAC-DB-W with buffer pool sizes of 2GB and 10GB. We use the one-zone and
different-regions configurations as before. The results for DAX and CAC-DB-W with 2GB
and 10GB buffer pools are shown in Figure 6.9 and Figure 6.10, respectively. Both figures
show that different buffer pool sizes do not negatively impact CAC-DB. As expected, a
larger buffer pool results in higher throughput during normal operation. After failover,
CAC-DB shows very little down time and fast time to peak throughput in both cases.
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Figure 6.9: Comparison Between DAX and CAC-DB-W With a 2GB Buffer Pool
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Figure 6.10: Comparison Between DAX and CAC-DB-W With a 10GB Buffer Pool
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Figure 6.11: Comparison Between Different Methods for Handling a Slow Standby
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Figure 6.12: Detailed View of the Methods for Handling a Slow Standby

6.6 Different Design Alternatives for Dealing with a

Slow Standby

In Chapter 4, three solutions are proposed to deal with a slow standby: (1) the active
waits for the standby synchronously, (2) unsafe page eviction, and (3) increasing read
IO threads. Our choice for CAC-DB is to increase IO threads. In this experiment, we
compare the performance of all three methods to justify our design decision. We use the
one-zone setting and the same configuration of EC2 instances as before (one instance for
the active, one for the standby, and nine for DAX), but we use a 10-warehouse TPC-C
database with an initial size of 1GB. Each database block is replicated six times across
the nine DAX servers, for a total data size of approximately 6 GB. The alternative of
Active-Wait-Synchronously, Unsafe-Page-Eviction, Increase-Read-I/O-Thread, and DAX
are compared in Figure 6.11. We show the throughput of each method for 600s before the
failure and 3400s after the failure. Figure 6.12 focuses on the period of 0 to 1000 seconds
in Figure 6.11.

Before the failure, Unsafe-Page-Eviction, Increase-Read-I/O-Thread, and DAX show
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similar throughput. However, the Active-Wait-Synchronously throughput fluctuates sig-
nificantly from below 500 to above 1500. This is because in this method, the active cannot
reclaim log space containing log records that the standby has not yet replayed. When the
active fills up the log and needs to reclaim log space, it must wait for the standby (and
stop accepting user requests), which causes throughput to drop to below 500. When the
standby catches up, the active can reclaim log space and rapidly recover to peak through-
put. This pausing and resuming of the active results in the fluctuation observed in the
experiment. InnoDB uses circular log files, so the active determines that it needs to wait
for the standby when the active wraps around the end of a log file and almost catches up
with the standby. We calculated the active’s cumulative throughput before failure to be
42.95% lower than the throughput of the other three methods. In addition, we calculated
the total synchronous wait time and found that the active is waiting for 45.18% of the
total time before the failure. This demonstrates that having the active synchronously wait
for the standby is not a viable solution.

Special-case
Active-Wait
-Synchronously

Unsafe-Page
-Eviction

DAX
Increase-Read
-I/O-Thread

downtime (s) 80 80 90 4
time to peak
throughput (s)

10 80 150 20

Table 6.3: Failover Time Comparison for Different Methods of Handling a Slow Standby

The disadvantage of Unsafe-Page-Eviction appears in the longer time it needs for re-
covery. We show the downtime of each method after failure and also the time that the
method takes to reach peak throughput in Table 6.3. The table shows that Increase-
Read-I/O-Thread outperforms other methods. Increase-Read-I/O-Thread has nearly 0s of
downtime and can rapidly reach peak throughput for the reason described in Section 6.2.
DAX has longer downtime and longer time to reach peak throughput for the same reason
as in Section 6.2. In Active-Wait-Synchronously, the standby has a relatively long down-
time, because it needs to go through a similar recovery procedure to that of DAX. When
the standby detects the failure, the standby-replayed-lsn is close to the latest checkpoint
LSN, because the standby always lags far behind the active. The standby must redo the
log from the standby-replayed-lsn, which represents a large number of log records. After
redo, the standby can immediately reach peak throughput, because it has a warmed-up
buffer pool. For Unsafe-Page-Eviction, the standby also has long downtime, because it
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Figure 6.13: Number of Pages in the Standby Buffer Pool

too needs to perform a long recovery procedure (redoes the log from the standby-replayed-
lsn). Unsafe-Page-Eviction also requires more time than Active-Wait-Synchronously and
Increase-Read-I/O-Thread to reach peak throughput, because the standby begins with a
colder buffer pool after the failover. This is because during normal operation before the
failure, every time the standby falls behind, it will skip the log to the checkpoint LSN and
evict all the unsafe pages from the buffer pool. Though the standby will continue load-
ing new pages from the storage tier, the number of pages loaded is less than the number
of pages evicted from the buffer pool. Therefore, the standby’s buffer pool will become
increasingly cold. To verify this, we record the number of pages in the standby’s buffer
pool for a 600-second period before the failure in Figure 6.13. The figure shows that al-
though the standby periodically loads new pages, the page eviction rate is greater than the
page loading rate. For example, from 90s-120s, the standby loads 404 pages. However, by
120s-130s, the standby evicts 1679 pages. Therefore, the number of pages in the standby’s
buffer pool decreases nearly 50% in 600s, which explains the longer time required by the
standby to reach peak throughput after the failover.

From this experiment, we conclude that we are justified in our design decision of in-
creasing IO threads to deal with a slow standby. This choice has throughput among the
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best before failure, and has the best behavior after failure.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis proposes CAC-DB, a DBMS-level HA solution that works in a geographically
distributed setting and takes advantage of shared storage. CAC-DB relies on a cloud
storage system that effectively replicates data across multiple data centers, and in this
thesis we use DAX as this storage system. CAC-DB builds on top of DAX, and deploys
an active and a standby server in different data centers. The underlying storage system
provides shared transactionally consistent access to the database and the log for both the
active and the standby. The standby continuously replays log records from the log that
it shares with the active, so that the memory state of the standby is always catching up
withe the memory state of the active. When the active fails and the standby starts the
recovery procedure, the system downtime is typically very short because the memory state
is already up to date. This results in a highly available system with very little performance
or administration overhead. Our experiments on Amazon EC2 show that the system
downtime for CAC-DB is close to zero, even when running in different geographically
distributed data centers. Thus, CAC-DB is a novel and effective DBMS high availability
solution that leverages cloud shared storage.

7.2 Directions for Future Work

We hope that this thesis will encourage further research into DBMS-level HA solutions
that work in a geographically distributed setting and leverage shared storage. We present
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some specific directions for future work next.

7.2.1 CAC-DB with Other DBMSes and Storage Systems

One interesting direction for future work would be to reimplement CAC-DB with other
popular cloud storage systems, such as HBase [4], or another DBMS, such as PostgreSQL.
This may expose new challenges and provide opportunities to produce a better solution.
Furthermore, if CAC-DB can be deployed successfully with other platforms, it will prove
its effectiveness and can have greater impact.

7.2.2 Eliminating the Need for Page Flushing After Failover

Our experiments on Amazon EC2 show that system downtime for CAC-DB is close to zero.
However, the time to reach peak throughput may be over 100s, mainly because the standby
must flush many pages asynchronously after failover. This is caused by inconsistencies
between the old lsn of the buffer pool pages in the active’s buffer pool and the standby’s
buffer pool.

At failover, the standby must flush those pages whose old lsn is smaller than a threshold
LSN to clear log space for newly created log records. However, because the standby reads
the log from shared storage, it cannot obtain information about the old lsn of the buffer
pool pages, and so it cannot update the old lsn of the pages in time. Therefore, there are
many pages whose old lsn is small and not updated for a long time, and these pages must
be flushed.

One interesting direction for future work is to solve the problem above and make the
old lsn for buffer pages in the standby’s buffer pool consistent with that in the active’s
buffer pool. One possible implementation would be that the active writes the old lsn for
buffer pages into the log file, so that the standby can obtain this information from the
shared storage and update the old lsn for its buffer pages when it replays the log during
normal operation. In this way, there will be fewer pages which must be flushed at failover,
thereby decreasing the time needed to reach peak throughput.
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Appendix A

Failure Detection in CAC-DB

In this appendix, we present the failure detection approach that the standby in CAC-DB
uses to determine that the active has failed. This failure detection algorithm was developed
independently of this thesis by a co-op student, and is presented here for completeness.

Before failover can be triggered, some approach is needed for the standby to detect
whether the active has failed. This can be accomplished “manually,” through human-
assisted monitoring of the active. However, automated or semi-automated failure detection
is often implemented using some kind of heartbeat mechanism. Such mechanisms require
that the active sends regular heartbeat messages to indicate that it is still “alive”. Failure
of the active to send a heartbeat message within a prescribed interval is taken as an
indication that the active has failed. The active’s heartbeat messages may be directed
to the standby system or to a third-party system. For example, a Bigtable [15] master
system must maintain an active session with the Chubby lock service [14] to ensure that
it remains the master. To keep its session alive, the Bigtable master sends heartbeat
messages to Chubby. Another example is the failure detection service in Boxwood [24],
which requires that clients send regular heartbeat messages to a set of observers.

CAC-DB uses a heartbeat-based failure detection mechanism that uses DAX storage
for reliable, indirect communication of heartbeats. There are several advantages to such a
design. First, because the detection mechanism relies only on the storage tier that CAC-
DB already uses to store the database and logs, there is no need to deploy and manage
any additional service (such as Chubby or Boxwood) for failure detection. In addition,
failure detection does not depend on the availability of direct communication between the
active and the standby systems. Finally, since there is no separate failure detection service
and no direct communication channel between the active and the standby, there are fewer
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system failure modes to be concerned about. If a storage tier is available, so is the failure
detection mechanism.

To support failure detection, we create a reliable counter in DAX for each of the ac-
tive/standby DBMS pairs for which we wish to support failover. The active system is
required to advance the counter regularly as long as it is running. The standby detects
failure by reading the counter and determining whether or not it has been advanced. Al-
gorithm 3 shows the algorithm used by the active. Failure of the active to increment the
counter at least once every Tmax time units will be interpreted by the standby as a primary
failure. Thus, the active sets an alarm, which is reset each time the counter is successfully
incremented. If the alarm times out (e.g., because of loss of communication between the
active and the storage tier), then the active must shut itself down. Our implementation
uses an operating system timer in the active server to implement the alarm.

Similarly, the standby, shown in Algorithm 4, regularly polls the counter in the storage
tier and promotes itself to the active if the counter’s value does not advance for more than
Tmax time units. This algorithm does not require clock synchronization between the active
and the standby. However, as shown, it does assume that the clocks progress at the same
rate on both servers. In practice, to account for clock drift between the active and the
standby, the standby may conservatively use a value larger than Tmax in its test at line 11
in Algorithm 4.

Algorithm 3: Failure Detection - Generating Heartbeats at the Active

Input: A shared reliable counter c, initialized to 0
Input: Maximum heartbeat period Tmax

Input: Heartbeat period T (T < Tmax)

1 next ← 1;
2 SetAlarm(Tmax);
3 try
4 while true do
5 if SetCounter(c,next)=success then
6 ResetAlarm(Tmax);
7 next ← next + 1;

8 Sleep(T);

9 catch alarm
10 ShutdownActive()
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Algorithm 4: Failure Detection - Monitoring Heartbeats at the Standby

Input: A shared reliable counter c, initialized to 0
Input: Maximum heartbeat period Tmax

Input: Polling period Tpoll (Tpoll < Tmax)

1 prev ← 0;
2 polls ← 0;
3 repeat
4 Sleep(Tpoll);
5 cur← GetCounter(c);
6 if cur > prev then
7 prev ← cur;
8 polls ← 0;

9 else
10 polls ← polls + 1;

11 until Tmax > Tpoll ∗ polls;
12 PromoteStandby()

Our detection mechanism assumes that the shared storage tier implements reliable
counters which can be read and updated using the GetCounter and SetCounter functions.
We assume that the storage system provides strong consistency for GetCounter operations,
i.e., GetCounter will return the value at least as recent as that written by the most recent
successful SetCounter operation. Unsuccessful SetCounter operations may or may not be
visible: GetCounter will see either the result of the latest successful SetCounter or that
of a more recent by an unsuccessful GetCounter.

In our CAC-DB prototype, the storage tier replicates the value of each counter across a
configurable number of storage tier servers, just as other data are replicated. GetCounter
and SetCounter are implemented by quorum-based replicated reads and writes. That
is, SetCounter operations are sent to all counter replicas and succeed only if a majority
of replicas acknowledge the operation. GetCounter operations are sent to all replicas
and return only after a majority of the replicas have responded to the request. The
latest (largest) value from this quorum is returned as the value of GetCounter. This
implementation is similar to Boxwood, which also uses quorums to track the state of the
active system.

In our implementation, we set the thresholds for failure detection to the following values:
T = 2s, Tmax = 9s, and Tpoll = 2s.
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