
Life Cycle Assessment of a Hybrid 

Poly Butylene Succinate Composite 
 

 

 

by 

 

 

Hassan Moussa 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Environmental Studies 

in 

Environment and Resource Studies 

 

 

 

Waterloo, Ontario, Canada, 2014 

 

 

© Hassan Moussa 2014 

 



 

 ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

 



 

 iii 

Abstract 

Poly butylene succinate (PBS) is a biodegradable plastic polymer that has physical and mechanical 

properties similar to common petroleum plastics like polypropylene (PP) and polyethylene (PE). PBS 

may be produced from petroleum or bio-based feedstocks, or by a hybrid combination of petroleum and 

bio-based resources. Producers are reducing content of petroleum components used for the production of 

PBS, and by doing so are seeking potential environmental performance improvements.  In this study, 

“hybrid” PBS refers to the production of PBS polymer from bio-based succinic acid (SAC) sourced from 

sorghum and petroleum-based 1, 4-butanediol (BDO).  

Given its biodegradability, PBS is commercially used for compostable bags and agricultural mulching 

film applications. A recent study in Ontario identified composite materials made with PBS blended with 

natural fibres like switchgrass (SG) as promising for applications in automotive products. Such novel 

composite materials are touted as potential bio-based alternatives to conventional petroleum-based 

plastics.  

Of the few studies that have considered the environmental performance of PBS materials, none have 

assessed the potential environmental impacts of a hybrid PBS composite. Therefore, this study undertook 

a life cycle assessment (LCA) of SG reinforced hybrid PBS composite (hybrid composite). LCA is an 

environmental management technique that is used to assess environmental aspects (inputs and outputs) 

and potential environmental impacts of a product or service throughout its life cycle. The analysis 

considered a cradle-to-gate system boundary and evaluated eleven environmental performance indicators. 

The environmental performance of the hybrid composite was compared to a conventional glass fibre (GF) 

reinforced polypropylene (PP) composite (baseline composite), a material that is widely used in 

automotive components. 
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Results showed that the production of the hybrid composite in comparison to the baseline composite 

decreased potential impact for most of the assessed indicators: cumulative energy demand by 40%, waste 

heat by 23%, global warming potential by 35%, smog by 2%, carcinogens by 54%, non-carcinogens by 

172%, respiratory effects by 22% and ecotoxicity by 45%. Increases in the values of impact indicators 

were apparent for ozone depletion, acidification, and eutrophication by 43%, 16%, and 322%, 

respectively.  

Analysis revealed that dominant influences on results were not related directly to the bio-based make-up. 

Rather, the biggest influence on the environmental performance of composite production were the sources 

of heat used in petroleum-based materials, the energy mix in electricity for bio-based materials, the type 

of reinforcing fibre and the co-product treatment methodology used.  

The study helps fill a gap in knowledge regarding bio-based chemicals and hybrid biodegradable plastic 

composites, and points to opportunities for future research on feedstocks for industrial composite 

materials. 

The importance of this study is that it helps to identify the environmental strengths and weaknesses 

associated with the production of the hybrid composite specifically, and bio-based materials more 

generally. It points to alternative material substitution options for use in the automotive industry. In this 

study, life cycle assessment exemplifies multidisciplinary methodologies, which seek to traverse the 

boundaries between the social and natural sciences and disciplines to support more sustainable policy 

decisions for a bio-economy. The systematic nature and the widely applicable consequences of this LCA 

study have the potential to contribute to industrial and business management, and reach the public policy 

arena in an effort to drive environmental and social change.  
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1. Introduction 
 

1.1 Bio-based Materials 

Pollution Probe and BIOCORP Canada (2004) defined bio-products as “commercial or industrial products 

that rely on energy, chemicals or processes available from living organisms” (p. 67). Similarly, the U.S. 

Farm Security and Rural Investment Act of 2002 (Farm Bill, 2002) defines a bio-based product as “a 

commercial or industrial product (other than food or feed) that is composed, in whole or in significant part, 

of biological products or renewable domestic agricultural materials (including plant, animal, and marine 

materials) or forestry materials” (U.S. Department of Agriculture [USDA], 2002, SEC. 9001). This 

definition was revised in the U.S. Farm Bill of 2008 to incorporate bio-based intermediate ingredients or 

feedstocks (USDA, 2008a). The bio-based market program (BioPreferred Program) was created and 

included in the 2002 Farm Bill section 9002 and reauthorized in the 2008 Farm Bill (USDA, 2002; USDA, 

2008). The BioPreferred Program categorizes bio-based products in groups with standard minimum bio-

based content. Products in these groups must meet or exceed the minimum bio-based content (USDA, 

2013). However, the BioPreferred and other U.S. programs based on bio-based products are largely silent 

on the sustainability benefits and costs of these products.  

While there are no conclusive results when comparing sustainability of bio-based with petroleum-based 

materials, interest in biomass and bio-based materials is partially due to the increased attention on climate 

change and greenhouse gas (GHG) emissions mitigation, the future of energy supply, air quality, and 

industrial technological advancements (Wood & Layzell, 2003; Bradley & Bradburn, 2010).  

Nevertheless, the expectation is that the potential environmental impacts of bio-based materials, at least 

from a GHG emissions perspective, will be lower than those of petroleum-based materials. In addition to 

GHG emissions, there are other impact categories that play key roles in evaluating the environmental 

performance of a product (Goedkoop et al., 2010). Studies by Zah et al. (2007), Khoo et al. (2010), and 
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Gironi and Piemonte (2010) suggest that the use of bio-based materials may potentially reduce GHG 

emissions and dependency on non-renewable resources, but may also contribute to problems of human 

health and eco-system quality due to impacts from intensive agricultural practices.  

Generally speaking, modern agriculture crop production systems are heavily dependent on fossil fuels for 

the production of synthetic fertilizers, pesticides and herbicides, farm machinery, and irrigation (Pimentel, 

Hepperly, Hanson, Douds, & Seidel, 2005). This energy-intensive industry has been associated with a broad 

range of ecological impacts, including water pollution (Carpenter et al., 1998), soil erosion (Gerhardt, 

1997), pesticide toxicity, and pest resistance (Carvalho, 2006). According to the Intergovernmental Panel on 

Climate Change (IPCC)’s 4th assessment report in 2007, agriculture is responsible for emitting 5.1-6.1 Gt of 

CO2-eq in 2005, which is equivalent to 10-12% of synthetic greenhouse gas (GHG) emissions globally 

(Smith et al., 2007). Moreover, and as discussed by Wood & Layzell (2003) and Bradley & Bradburn 

(2010), the finite nature of fossil fuel reserves and the environmental impacts associated with the extraction 

and consumption of these reserves highlights the increased concerns about the severe agricultural practices 

used for the cultivation of different bio-logical feedstocks that are used in the production of bio-materials 

(Pimentel et al., 2005).   

Parameters on bio-based materials vary as a result of type, quantity, quality, and location of the biomass 

used, as well as its intended use in the production process.  For that reason it is essential to have a data 

system that provides precise and reliable information on the availability and environmental profiles and 

impacts of biomasses and materials (Agriculture and Agri-Food Canada, 2008). This body of information 

would be broadly useful, for example, as biomass is used for the production of bio-fuels for ethanol and 

biodiesel, biomaterials for food packaging, bio-chemicals like bio-succinic acid, bio-polymers (e.g., hybrid 

poly butylene succinate), and reinforcement materials (e.g., switchgrass fibres).     

Though the environmental advantages are largely unclear, bio-based materials are gaining prominence due 

to the strong support by governmental policies, environmental regulations, environmental awareness, and 
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the potential to create jobs. These are also motivated by economic (e.g., escalating prices of petroleum 

counterparts), international security issues and political disputes in oil-exporting countries, and natural 

disasters related issues. Additionally, industrial leadership, technological advancements, and positive 

feedback from end-of-use industries have increased the demand and acceptance of end users to bio-based 

materials. 

1.2  Poly Butylene Succinate (PBS)  

PBS is an aliphatic polyester polymer that is versatile and stable in normal conditions, originally produced 

from petroleum resources. Its processability is similar to conventional polymers like polyethylene. However, PBS 

is presented as being totally biodegradable (Showa Denko K.K., 2010; Showa Denko, 2012; Ichikawa & 

Mizukoshi, 2012; Tserki, Matzinos, Pavalidou, Vachliotis, & Panayiotou, 2006; Kim, Kim, Jin, Park, & 

Yoon, 2001). PBS has limitations due to its low elasticity and low gas-barrier properties (Terasawa et al., 

2008; Twarowska-Schmidt & Tomaszewski, 2008; Ray, Okamoto, Maiti, & Okamoto, 2002). One approach 

to overcome low elasticity issues is to reinforce PBS with fibres that add structural integrity to the final 

material.  PBS is used in agricultural mulch film, packaging, civil engineering materials and construction 

products, and consumer goods (Ichikawa & Mizukoshi, 2012; Theunissen, 2012). The material was recently 

tested for manufacturing automotive parts (Terasawa et al., 2008; Theunissen, 2012). 

Since the late 1990s, a body of literature has grown on the mechanical and physical properties and 

biodegradability of petroleum-based PBS polymers (Fujimaki, 1998; Kim, 2001; Zhao et al., 2005; Tokiwa, 

Calabia, Ugwn, & Aiba, 2009). Yet few studies have assessed the environmental impacts of either the 

polymer or its composites throughout their life cycle (Ichikawa & Mizukoshi, 2012; Terasawa, Tsuneoka, 

Tamura, & Tanase, 2008). Ichikawa and Mizukoshi (2011) and Terasawa et al. (2008) carried out research 
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on “cradle-to-grave”  [1] system boundary. To our knowledge, however, no study has assessed the 

environmental impacts associated with the production of a hybrid or bio-based PBS polymer nor any of its 

composites. 

1.3 Switchgrass (SG) 

Studies on bio-based materials have identified switchgrass as a promising biomass crop suitable for bio-

energy and bio-based applications (Hewson & Oo, 2009; Karp & Shield, 2008; Keoleian & Volk, 2005; 

Sanderson et al., 1996), and recently as a potential reinforcing material for plastic composites (Mohanty, 

Misra, & Sahoo, 2010). 

Switchgrass (SG) is a perennial non-food grass crop native to North America that grows with moderate to 

high productivity, and is (1) adaptable to marginal farmlands, (2) drought-resistant, (3) requires less 

intensive agricultural practices (fertilizer, herbicide, and pesticide use) than other crops, (4) provides good 

resistance to pests and diseases, and (5) offers flexibility in different value-added uses (McLaughlin et al., 

1999; Samson et al., 1993). Switchgrass has a high photosynthetic efficiency (60% greater than corn), which 

provides a high energy gain per hectare (Rinehart, 2006). Moreover, its high cellulosic content makes 

switchgrass an ideal candidate for production of bio-products (Rinehart, 2006). For all of these reasons, 

switchgrass fibres are a viable potential reinforcing material for composites, including PBS-based plastics.  

1.4 Problem Statement and Objectives 

This study asks “What is the comparison in environmental profiles between bio-based and conventional 

composite materials?” This question is addressed by looking at a specific SG / PBS “hybrid” composite 

material produced for a hypothetical automotive part application. The study considers the viability of this 

                                                      
[1] Cradle-to-grave life-cycle assessment is the full LCA from resource extraction (cradle) to the use phase and disposal 
phase (grave). 
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hybrid composite in comparison to a conventional reinforced plastic that would typically be used in the 

auto part: glass fibre (GF) reinforcement in polypropylene (PP) polymer matrix. This conventional 

material is the “baseline” product used in this study. 

A life-cycle assessment (LCA) study was conducted across a cradle-to-gate [2] system boundary, drawing on 

new primary data collected on the production of bio-based succinic acid, which is the major precursor 

chemical in the production of PBS. This approach allowed the study to consider multiple environmental 

emissions and resource categories, across multiple production steps from raw materials to a finished 

composite material product.  

The specific objectives of this study are to: 

1. Quantify the potential life cycle environmental impacts associated with the production of the 

hybrid composite and the baseline composite materials. 

2. Compare the environmental performance of the hybrid composite vs. the baseline composite, 

examining the role of the bio-based composition in the material. 

3. Identify issues and areas of significance (“hotspots”) in the environmental life-cycle profile of 

the hybrid composite, and to discuss potential opportunities for improvement of the product system.  

It is anticipated that the results of this study will help inform at least two audiences to drive environmental 

and social change: 

1. Policy-makers should be interested in this study as the results would provide information relevant 

to the potential environmental costs and benefits of a more bio-based economy. For example, 

Ontario is developing strategies that support a more sustainable, effective, and diverse economy 

with high employment that has a societal and geographical cohesion (OMAFRA, 2011). 

                                                      
[2] Cradle-to-gate life-cycle assessment is a partial product life cycle from raw material extraction (cradle) through materials 
processing, and manufacturing to the factory gate.   
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Additionally, this study may help policy-makers to initiate dialogues with economic sectors 

through supporting the research and development of new bio-based technologies and materials with 

incentives that are specifically developed for that (OMAFRA, 2011). This may lead to the 

implementation of new Ontario’s policies and regulations for agricultural, rural, and industrial 

developments that plan for a balanced and secure supply and demand of affordable industrial 

feedstocks (Confederation of European Paper Industries, 2012).   

2. Companies should be interested as they seek reliable supply chains that link biomass growers, 

producers of bio-based materials that use biomass, and the manufacturers of bio-based products 

that may potentially replace conventional fossil-based products. The Biobased Industries 

Consortium (2013) and the Confederation of European Paper Industries (2012) state that such an 

approach  will help create an integrated economy that is more competitive technologically, 

environmentally, and socially.  

1.5  Thesis Structure 

In Chapter 2, the study presents information on plastics and composite materials in general and on bio-

plastics in particular, including their industrial applications. Additionally, criteria that are used in 

assessing a product environmental performance are discussed. The LCA methodological framework is 

also introduced in Chapter 2. Chapter 3 communicates the specific methods and data used in the 

modelling of the hybrid composite and the baseline composite. Chapter 4 presents life cycle impact 

assessment (LCIA) results looking at the comparison between the hybrid and the baseline composite and 

the different environmental emissions and impact categories. Chapter 5 discusses the study results, 

provides conclusions and indicates potential future research opportunities.    
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2. Literature Review 

2.1 Plastics and Composites 

2.1.1 Background 

The history of synthetic plastics goes back to the year 1855, when Alexander Parkes [3] synthetized and 

patented the first man-made thermoset (The Robinson Library, 2012). “Parkesine”, as the newly developed 

plastic was called, was derived from organic cellulose. The intention was to replace natural rubber with a 

cheaper mass-produced synthetic plastic (Society of the Plastics Industry, 2013). In 1909, Erinoid developed 

Casein plastics, derived from milk. The first biodegradable plastic was commercialized in 1990 by ICI 

under the name “Biopol” (British Plastics Federation [BPF], 2012).  

Today, plastics are widely used in nearly every aspect of our lives, steadily replacing materials such as 

metals and glass in many applications including packaging, construction, transportation, health, electricity 

and electronics, and agriculture. This is driven by factors related to cost, performance, processability, 

weight, and ability to resist corrosion (Industry Canada, 2012).  However, in spite of the technological 

advancements and enhancements in the environmental, mechanical and physical performance of plastic 

products and their composites, there is still an ongoing debate as to whether plastics are “good” or “bad” 

(PlasticsEurope, 2012a; PlasticsEurope, 2012b; Andrady & Neal, 2009; Thompson, Moore, vom Saal, & 

Swan, 2009; Ryan, Moore, van Franeker, & Moloney, 2009). 

On average, the global production of plastics has increased annually since the mid-20th century. In 1950 the 

global production was 1.3 million tonnes, and in 2010 reached 265 million tonnes (PlasticsEurope, 2007; 

PlasticsEurope, 2011), as illustrated in Figure 1. 

                                                      
[3] Alexander Parkes (1813-1890) was an English scholar who held over 80 patents in chemistry. 
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Figure 1: The global production of plastics (1950-2010) measured by millions of tonnes (PlasticsEurope, 

2007; PlasticsEurope, 2011) 

By 2010, three geopolitical zones accounted for 65.5% of the world’s plastics production (PlasticsEurope, 

2011). These zones are the North American Free Trade Agreement (NAFTA) countries, the European 

Union states (EU-27), and China (PlasticsEurope, 2011). In 2009, NAFTA countries, the EU-27 and China 

contributed 23.5%, 24.0% and 18%, respectively, to global plastic production (Haensel, 2011). However, in 

2010, China led the global plastics production, followed by the EU-27 and NAFTA countries by at 23.5%,  

21.5% and 20.5% respectively (PlasticsEurope, 2011), as in Figure 2. 

Another indicator that can help understand the increasing trend in the use of plastics is the global annual 

plastic consumption per capita. Statistics reveal an increase in the average plastic consumption per capita 

from 43 kg to 121.5 kg between 1980 and 2010 in North America and the EU-27 (PlasticsEurope, 2007),  

Figure 3.  
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Figure 2: Global plastic production (2010) by country and region (PlasticsEurope, 2011) 

 

 

Figure 3: Per Capita Demand Plastic Consumption kg per year (1980-2010) (PlasticsEurope, 2007) 
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A report by PlasticsEurope (2011) indicated that, in 2010, the packaging industry dominated the European 

industrial consumption of plastics by 39%, followed by the building and construction industry by 20.6%, the 

automotive industry by 7.5%, and electrical and electronics by 5.6% (PlasticsEurope, 2011). In Canada, as 

in EU, the industrial sectors that dominated the use of plastics were similar but with approximately double 

the consumption in the automotive sector (Industry Canada, 2012). The shipping and packaging industry led 

Canadian plastics consumption by 39%, followed by construction (33%), automotive (14%), and others 

(14%), which represents the End-Use-Market (Industry Canada, 2012; Industry Canada, 2011a), Figure 4. 

 

Figure 4: Canadian Plastics Consumption per Industrial Sectors (percentage of the total) (Industry 

Canada, 2012; Industry Canada, 2011a) 
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increased approximately from 135 kg to 171 kg per vehicle by 27% from 2001 and 2011. This is equal to 

9.2% of a car’s total weight.    
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In 2010, the European demand for plastics was dominated by five main resins:  Polypropylene (PP) at 

19%; polyethylene (PE), including low-density poly ethylene (LDPE) and linear low-density polyethylene 

(LLDPE) at 17%; high-density polyethylene (HDPE) at 12%; polyvinyl chloride (PVC) at 12%; and 

polystyrene (PS) at 8% (PlasticsEurope, 2011). 

In 2010 and 2011, American plastics demand was led by PE (HDPE, LLDPE and LDPE), followed by PP, 

PVC, PS and expandable polystyrene (EPS) (ACC, 2012b). During approximately the same time period, 

industry output in Canada was dominated by polyethylene (PE) resins (64%), followed by melamine 

formaldehyde (MF), urea formaldehyde (UF) and phenol formaldehyde (PF) resins (24.5%), and other 

resins (e.g., polystyrene, nylon, polyvinyl chloride, and rubber) (11.5%) (Industry Canada, 2011b) as 

illustrated in Figure 5. 

 

Figure 5: Canadian industry output by Resin Type (percentage of total) 

PE 
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By 2011, the use of plastics and composites in the North American automotive industry was dominated by 

polypropylene resins at 24%, followed by polyurethane at 15%, other engineering resins at 13% and nylon 

at 12% (ACC, 2012a), Figure 6.  

 

Figure 6: The percentage of average plastics/composites used in light vehicles in 2011 (ACC, 2012a). 

The evolution of the Canadian plastics industry in the past half-century has been impressive, robustly 

supporting the Canadian economy and even surpassing the growth of the total economy and other sectors 

(Empey & Clark, 2005). There are similarities between Canada’s and the rest of the world’s plastic 

industries, especially with regards to the problems they face, such as globalization, the cost and depletion of 

non-renewable resources, global warming, waste generation, and investment in new technologies (Empey & 

Clark, 2005).  

PlasticsEurope (2007 and 2011) and Pilz, Brandt and Fehringer (2010) claim that, in comparison to steel, 

the main advantages of plastics (relevant to this study) are the reduction in energy and non-renewable 
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resource use and carbon dioxide (CO2) emissions, especially during the use phase (PlasticsEurope, 2007; 

PlasticsEurope, 2011; Pilz, Brandt, & Fehringer, 2010).  Specifically, non-renewable resource use may be 

reduced by 22.4 million tonnes (PlasticsEurope, 2007; PlasticsEurope, 2011), GHG emissions by 124 

million tonnes, and energy consumption in the total life-cycle by 2.42 million GJ; additionally, a 107 

million-tonne reduction of total mass for the same functional units is also anticipated (Pilz et al., 2010; 

UNFCCC, 2009).  

According to their response when exposed to heat, plastic polymers are categorized into two basic groups: 

thermosets and thermoplastics. Thermoset plastics are polymers that can be supplied in liquid or powder 

form, are produced and formed upon heating, and cannot be re-processed or re-melted. Thermoset materials 

cannot be recycled to produce new thermosets, but they can be used as cheap fillers in other products. 

Examples of thermosets are epoxies (EP), furan, polyurethane cast elastomers (EP), unsaturated polyesters 

(UP), and phenolic (PF) (Society of the Plastics Industry [SPI], 2012; BPF, 2012).  

Thermoplastic polymers are mass-produced in pellet form and become soft, more fluid and formable when 

heated, but do not cure or set. They can be melted and hardened repetitively by heating and cooling, 

allowing them to be reused to produce new plastic shapes (Hudson, 2011; Society of Plastics Engineers, 

2001; SPI, 2012). Examples of thermoplastics include acrylonitrile butadiene styrene (ABS), nylons 

(polyamides) (PA), polypropylene (PP), polyethylene (high- and low-density) (HDPE & LDPE), polyvinyl 

chloride (PVC), and polyethylene terephthalate (PET) (BPF, 2012). Polybutylene succinate (PBS), the 

subject of this study, is a thermoplastic (Han, Wang, & Wu, 2012; Tsai & Wertheim, 2001).  

2.1.2  Bio-plastics 

When the grassroots-spawned environmental movement of the late 1900s sparked an interest in the general 

public to reduce environmental burdens associated with concerns over the landfill volume those plastics 

occupied, biodegradable plastics were introduced, leading in recent years to the production of PBS (Gironi 

& Piemonte, 2011).  
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Although not all bio-based polymers are biodegradable and not all biodegradable polymers are bio-based, 

both are called bio-plastics (Chin & Uematsu, 2011). There are three types of bio-plastics, as identified by 

Tokiwa et al. (2009) (see Figure 7): (1) bio-based non-biodegradable polymers such as polyethylene 

synthetized from biomass or renewable sources, nylon 11 and acetyl cellulose (AcC); (2) bio-based 

biodegradable polymers such as poly lactic acid (PLA) and poly hydroxyalkanoates (PHAs) from starch 

(Corn Refiners Association, 2012), poly hydroxybutyrate (PHB) and poly butylene succinate (PBS); and (3) 

non-bio-based biodegradable polymers such as poly butylene succinate (PBS), polycaprolactone  (PCL) and 

polyethylene suberate (PES). 

Corn and potato are currently the most popular sources for starches used in bio-material manufacturing 

(Agriculture and Agri-Food Canada, 2009). 

 

 

 

 

 

 

Figure 7: The three types of bio-plastic (Tokiwa et al., 2009). 

 
The social and financial impacts associated with the use of food crops as industrial feedstock are outside this 

study’s scope, but the problem of global food supply shortages and the increase in food prices stemming 

from such agricultural pursuits are significant considerations (Bailey, 2013; Haines & Van Gerpen, 2012; 

Hao, Colson, Karali, & Wetzstein, 2013; Chen & Khanna, 2013), although some researchers disagree 

(Zilberman, Hochman, Rajagopal, Sexton, & Timilsina, 2012). The study by Zilberman et al. (2012) argues 

that the relationship between bio-fuels and food prices is not defined and that there are other factors needed 

to be taken into account such as the location and the tupe of crops and fuels considered.  Nonetheless, 
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studies acknowledge the potential negative impacts associated with the extensive use of water, fertilizers, 

herbicides, deforestation and habitat loss on farms that provide feedstock to the bio-plastics industry 

(Stockholm Environment Institute, 2007; Reijnders, 2006).  

2.1.3 Bio-based Polymers  

Bio-based polymers are identified as polymers that are entirely or partly produced from biological sources 

of materials and feedstock, such as food crops, wood, grass and agricultural by-products (Flieger, 

Kantorova, Prell, Rezanka, & Votruba, 2003; Mohanty, Misra, & Drzal, 2002). These polymers are 

supposedly non-toxic and can be designed to be biodegradable or recyclable (Mohanty et al., 2002). 

According to Bray (2008) as cited by Tullo (2008),  in 2007 natural rubber represents 68% of all bio-based 

polymers on the market, while cellulosic and other polymers account for 29% and 3%, respectively. Other 

polymers refer to PLA with 38%, urethanes with 26%, and glycerin-based materials, nylon resins and 

polyhydroxy-alkanoates (PHA) with 12% each, Figure 8. 

According to Flieger et al. (2003) and Babu, O'Connor, & Seeram (2013), bio-based polymers could be 

produced either naturally or chemically. Naturally means by biological (living) systems (e.g., micro-

organisms, plants and animals), while chemically means synthesized from biological materials (e.g., sugar, 

starch, natural fats or oils).  

Pilz et al. (2010) identified two technologies to produce bio-based polymers. The first starts with the 

production of a monomer (e.g., lactic acid) to produce a polymer in a subsequent stage. The second 

technology starts with the production of a high volume monomer (e.g., polyethylene) or its derivatives. Both 

technologies have been proven feasible. However, what is important and relevant to this study is the non-

renewable energy used in production chain (e.g., the energy mix), which has an influence on the 

environmental profile of polymers in general (Pilz et al., 2010).  
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Figure 8: Global bio-based polymers based on 2007 production data (Source: SRI Consulting) 

Despite bio-based polymers still being in their preliminary development phase, interest in them and their 

composites is growing (Flieger et al., 2003; Mittal, 2011). Compared to conventional counterparts, the 

market share of bio-based polymers is relatively low, and thus the scale of environmental benefits 

associated with their production is minimal. Bachmann (2003) as cited by (USDA, 2008b) predicted the 

world bio-based polymers market to grow from 5-10% to 10-20% between 2010 and 2025. Here, it is 

important to understand that growth in bio-based polymers development and production is a potential step 

for the chemical industry towards a better environmental profile compared to conventional counterparts 

(Gross & Kalra, 2002; Pilz et al., 2010), as measured by  the potential for lower energy consumption and 

GHG emissions (OECD, 2011; Drachman, 2009; Gielen, Newman, & Patel, 2008). A study by de Jong, 

Higson, Walsh, & Wellisch (2012) confirmed the latter and indicated that the potential positive impact will 

affect the petrochemical industries, and the downstream users. That is claimed to be achievable if only 

“substantial progress is made in White Biotechnology and if the use of lignocellulosic feedstocks is 
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successfully developed” (Patel et al., 2006, p. V), and confirmed by The European Association for 

Bioindustries, EuropaBio (2008). 

Studies suggest that reductions in GHG emissions are attributable to the assumption that bio-based materials 

are carbon neutral and balance CO2 emissions emitted during the production and disposal phases (Hobson & 

Carus, 2012; Dahlke, Larbig, Scherzer, & Poltrock, 1998; Toyota Motor Corporation, 2012; Gross & Kalra, 

2002).  

Mittal (2011) and Hermann, Blok, & Patel (2007) suggest that the increased interest in the production of 

bulk bio-based chemicals in general and polymers in particular are influenced by two environmental 

urgencies. The first is related to the uncertainty of future petroleum supplies and associated prices, given 

that conventional chemicals and polymers are petrochemically derived. The second urgency is related to the 

need to produce chemicals and polymers with lower environmental impacts, in particular global warming. 

In some regions, legislation has encouraged industry leaders to focus more on bio-based polymers rather 

than conventional ones (Wallach, 2012; Bianco, Litz, Gottlieb, & Damassa, 2010; Hsu & Elliot, 2009; 

Bennett Jones 2008; Mittal, 2011). These necessities have led to a new perspective based on sustainable 

development and eco-design values, leading to interest in the production of more environmentally safe bio-

based materials (Averous & Boquillon, 2004).  

In 2010, the European Climate Change Program (ECCP) estimated the savings in GHG emissions from the 

bio-based plastics produced in the European Union to be 2.0-4.0 million tonnes (Crank et al., 2005). A more 

optimistic expectation estimated the reduction at 500-1,000 million tonnes (Hermann et al., 2007). 

Meanwhile, Drachman (2009) claimed that the use of bio-based materials will result in a 20% reduction in 

GHG emissions and energy consumption, and Gross and Karla (2002) stated that the potential reduction in 

CO2 emissions to be 10 million tonnes as a result of the anticipated production of 3.6 million tonnes of PLA 

alone by the year 2020. In Canada, bio-based materials have the potential to reduce GHG emissions, 
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improve environmental sustainability, and stimulate the economy (Sparling, Laughland, & Mitura, 2009; 

Pollution Probe and BIOCAP Canada, 2004).  

A study by BCC Research (2012) indicated that the global market trend for the use of bio-based plastics 

reflects a continuous average annual growth of more than 33% between 2010 and 2016 (estimated). The 

European market achieved nearly 34% growth in 2010 and 35.3% in 2011 and is expected to increase 

another 32.1% by 2016. The NAFTA market grew at 37.5% and 36.5% in 2010 and 2011, respectively, and 

is estimated a 33% by 2016 (BCC Research, 2012) (Figure 9). 

2.1.4 Biodegradable Polymers  

Conventional plastics end-of-life (E.O.L) management is a significant concern of environmentalists 

(Bohlmann, 2005; Rochman et al., 2013; European Commission, 2011a), sociologists  (Eriksson & 

Finnveden, 2009), and planners. Currently, most plastics end up as solid wastes in already overfilled and 

continuously declining landfill locations (Bohlmann, 2005). While plastics could be recycled and re-used, 

there are restrictions when it comes to, for example, food packaging (Health Canada, 2011). In “Division 23 

of the Food and Drugs Regulation”, Health Canada published guidelines addressing concerns for using 

recycled plastics in food packaging due to the permeablity of plastics (Health Canada, 2011; Stewardship 

Ontario, 2005). Incineration is another solution that is less environmentally preferable in comparison to 

recycling as there are concerns regarding emissions from incinerators (Eriksson & Finnveden, 2009; 

Bohlmann, 2005). 

Most important, however, is that conventional plastics do not degrade easily in natural landfills and 

composting environments. Some researchers consider the disposal of conventional plastic wastes in landfills 

in comparison to recycling and incineration end-of-life treatment options an environmental burden (Tokiwa 

et al., 2009; Thompson, Moore, vom Saal, & Swan, 2009; Barnes, Galgani, Thompson, & Barlaz, 2009; 

Huda, Drzal, Mohanty, & Misra, 2008). 
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Figure 9: Global Use of Bio-based Plastics (2010-2016) (BCC Research, 2012) 

The development of biodegradable polymers such as polybutylene succinate (PBS) and polylactic acid 

(PLA) resulted from an exploration of potential solutions to the environmental problems of plastic waste’s 

end-of-life (Kim, Yang, & Kim, 2005; Tokiwa et al.,2009; Zheng, Yanful, & Bassi, 2005) especially for 

products like agricultural films and chainsaw lubricants that are in direct contact with the environment 

(Drachman, 2009).  

Three types of degradable plastics are identified: biodegradable plastics that naturally degrade under the 

influence of microorganisms; biologically degradable plastics known as compostable plastics; and 

photodegradable/Oxo-degradable plastics that degrade in sunlight (Gautam, 2009; European Comission, 

2011b).  The natural degradation of biodegradable plastics occurs at the EOL in landfills under the effect of 

micro-organism enzymes such as bacteria, fungi and algae. The degradation can happen within a few weeks, 
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as claimed by Flieger et al. (2003) and Gautam  (2009), although others disagree (Nolan-Itu, 2002; Narayan, 

2009;  Song, Murphy, Narayan, & Davies, 2009; Cho, Moon, Kim, Nam, & Kim, 2011). 

During degradation, plastics undergo a process called depolymerisation, where polymers become low-

weight molecular monomers, dimers and oligomers. Subsequently, these oligomers become biomass, 

minerals, salt, water, and gases such as CO2 (under aerobic conditions) and methane (CH4) (under anaerobic 

conditions). Humic substances are the end-product of any degrading organic material (Tokiwa et al., 2009; 

Chin & Uematsu, 2011; Bohlmann, 2005).  Standards define biodegradable plastics as those plastics that 

undergo substantial and irreversible changes in their chemical structure under the influence of naturally 

existing microorganisms (Narayan & Pettigrew, 1999; Hemjinda, Krzan, Chiellini, & Miertus, 2007; 

Czichos, Saito, & Smith, 2011). These changes are accompanied by the loss of standard physical and 

mechanical properties (Kolybaba et al., 2003).  Standards were created to test the degradability of 

biodegradable plastics, such as ASTM D6400-99, ISO 14855-2, DIN V49000 and EN 13432 (Chin & 

Uematsu, 2011; Ichikawa & Mizukoshi, 2012; Hemjinda et al., 2007; Scott, Lemaire, Jakubowics, & Ojeda, 

2011).   

In recent years, global chemical producers have started commercializing a wide range of biodegradable 

polymers including well known synthetized polyesters, like PBS and PLA, (Shih & Jeng, 2011) and 

aliphatic-aromatic copolyesters (Nakajima-Kambe, Ichihashi, Matsuzoe, Kato, & Shintani, 2009). This was 

initiated to match the demand for biodegradable polymers that is expected to grow by 30% on an annual 

basis, as claimed by Leaversuch (2002). A recent study by Malveda & Yokose (2012) on biodegradable 

polymers challenged those growth expectations, and indicated that the annual growth in the North America, 

Europe and Asia consumption of biodegradable polymers is expected to reach only 13% in 2014. This 

growth is influenced mainly by increasing demand from the packaging industry (Malveda & Yokose, 2012). 

In North America, the growth in the consumption of biodegradable polymers is essentially driven by 

competitive pricing, continuous improvement in processability, overall competitive properties, and concerns 
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on local, state and federal levels regarding the end-of-life of non-biodegradable polymers (Malveda & 

Yokose, 2012).  

Based on their physical, chemical and structural properties, synthesized biodegradable polymers were 

categorized in two main groups. The first is highly crystalized and flexible, similar to the low density 

polyethylene (LDPE).  The second is semi-amorphous and more rigid, similar to polypropylene (PP), 

polystyrene (PS) and polyethylene terephthalate (PET) (Leaversuch, 2002). PBS falls under the second 

group of biodegradable polymers. Averous & Boquillon  (2004), Gautam (2009) and Mittal (2011) 

suggested a different classification to categorize biodegradable polymers based on their production routes. 

Three routes employ biomass, and the fourth is petrochemically synthesized, such as PBS. 

2.1.5 Natural Fibres 

Mohanty et al. (2002) and Lucintel (2011) classified natural fibres into wood fibres and non-wood natural 

fibres (Figure 10).  

Non-wood natural fibres such as switchgrass are increasingly gaining attention as reinforcing materials as 

an alternative to synthetic fibres (i.e., glass fibres) in industrial applications (Williams & Wool, 2000; 

Corbiere-Nicollier et al., 2001; Joshi, Drzal, Mohanty & Arora, 2003). 

In comparison with synthetic fibres, natural fibres are abundant, biodegradable, lightweight, cheaper, have a 

lower density, require less energy to be manufactured, have excellent chemical resistance and good molding 

ability, and are processable in conventional processing equipment (Tantatherdtam et al., 2009; Joshi et al., 

2003; Corbiere-Nicollier et al., 2001; Xu, Jayaraman, Morin, & Pecqueux, 2008; Westman, Fifield, 

Simmons, Laddha, & Kafentzis, 2010). Among the issues that require research and development are the 

dimensional stability of natural fibres (Kolybaba et al., 2003), resin compatibility and water absorption 

(Westman et al., 2010). Importantly, natural fibres are not considered to be a health hazard in comparison 

with glass fibres (Suddell, Evans, Isaac, & Crosky, 2002). 

 



 

 22 

 

 

 

 

 

 

 

 

 

Figure 10: Natural fibres categories and sub-categories that are used as reinforcing materials in plastic 

composites (Mohanty et al., 2002) 

Claims have been made that the production of natural fibre composites will result in a better environmental 

profile compared to glass fibre composites (Wotzel, Wirth, & Flake, 1999; Joshi et al., 2003; Nabi Saheb & 

Jog, 1999; Santulli, Janssen, & Jeronimidis, 2005). Joshi et al. (2003) claim that natural fibre composites are 

less dependent on non-renewable energy and materials, and result in lower pollutant and GHG emissions, 

while enhancing energy recovery at the end of life. However, the question is, whether this superiority can be 

generalized to all plastic composites made with natural fibres (Corbiere et al., 2001; Xu et al., 2008). A 

comprehensive cradle-to-grave life-cycle assessment is needed to determine the potential environmental 

impacts of natural fibre composites in comparison with glass fibre composites (Joshi et al., 2003; Corbiere-

Nicollier et al., 2001; Xu et al., 2008). As there are some factors that negatively affect the use perception of 

natural fibre composites, such as lower mechanical properties (i.e., tensile strength and flexural strength), 

lower thermal stability, less colour stability, increased odour, and volatile organic chemicals releases 

throughout the life-cycle of these composites (Tran et al., 2011). 

Natural Reinforcing 
Fibers 

Wood Fibres 

Non-Wood Fibres 

Straw fibers: 
Corn, wheat and rice 

Bast:  
Flax, kenaf, jute and hemp 

Seed / fruit: 
Cotton and coir 

Leaf: 
Sisal and pineapple leaf 

 

Grass fibers: 
Switchgrass and miscanthus 



 

 23 

The extraction and translocation of materials and agricultural practices have the biggest effect on the 

environmental impacts of biomass, including factors such as human toxicity, eco-toxicity, and water 

eutrophication (Corbiere-Nicollier et al., 2001; Xu et al., 2008). Poor agricultural practices can cause 

contamination of soil and water by heavy metals and phosphate due to the use of fertilizers, while the use of 

herbicides has little influence (Corbiere-Nicollier et al., 2001). Moreover, if the same lands were used for 

food crop cultivation during the rotation period, there is a possibility that the crops will be contaminated 

making it inedible or a threat to human health (Corbiere-Nicollier et al., 2001). 

Plastic composites that contain natural fibres and biodegradable polymers such as PBS and PLA are the 

focus of the research and development of many companies. Their aim is to produce plastics with a better 

environmental profile to replace conventional counterparts (Tantatherdtam et al., 2009; Santulli et al., 2005; 

van Dam, 2008).  

The increase in demand for natural fibre composites (Figure 11), is strongly influenced by government 

support, environmental regulations, economic, political and natural disasters, technological advancements, 

customer acceptance, positive feed-back from end-of-use industries, and escalating prices of petroleum-

based counterparts (Lucintel, 2011; Suddell, 2008; BioProducts Canada, 2004).  

Between 2005 and 2010, the global natural fibre composites market grew annually by 15%, from $1.09 

billion to $2.17 billion. It is expected to reach $3.81 billion by 2016, with an annual growth of 10%, as in 

Figure 11(Lucintel, 2011). Automotive and construction industries are leading the growth as the major 

consumers of natural fibre composites (Lucintel, 2011; Xu et al., 2008; Beckwith, 2008). Led by the 

construction industries, North America is the biggest global market for wood fibre composites (Lucintel, 

2011). The future demand of this market is estimated by Kline & Company INC. (2000) as cited by 

(Mohanty, Misra, & Drzal (2005) to be equal to 0.2 million tonnes. It was estimated that the North 

American natural fibre composites market value would grow tenfold between 2001 and 2006, from $150 

million to $1.5 billion (Kline & Company INC., 2002). 
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Figure 11: Global natural fibre composites market value 2005-2016 (Lucintel, 2011) 

Europe, led by the automotive industry, is the biggest global market for non-wood fibre composites, mostly 

bast fibres (i.e., flax, kenaf and hemp) composites (Carus & Gahle, 2008; Lucintel, 2011). 

In 2001, the European market was estimated to be equal to 30,000 to 40,000 tonnes, with a market value of 

$50 million to $65 million. This market was projected to grow at the same rate as the North American 

market (Kline & Company INC., 2002). The main advantage of using natural fibre composites (e.g., flax 

fibre and China reed fibre reinforced polypropylene composites) in the automotive industry is that these 

composites are lighter in weight and have good thermal and acoustic insulation properties (Lucintel, 2011; 

Joshi et al., 2003). 

2.1.6 Bio-based Plastic Composites in the Automotive Industry  

Henry Ford’s (1863-1947) ideas included the use of bio-based plastics in the 1930s (Crawford, 2009). Ford 

used hemp, wood pulp, cotton, flax and ramie as sources for natural fibres to reinforce plastic composites 
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for auto interiors (Crawford, 2009). In 1940, the world witnessed the production of the first plastic car using 

70% cellulose-based plastic (PlasticsEurope, 2010). The car was 30% lighter than its metal counterparts, but 

the cheap prices of steel and gasoline in the late 1940s made the plastic car financially unviable 

(PlasticsEurope, 2010). In 2009, the Ford Motor Company continued the bio-based trend in the auto 

industry, becoming the first company to use wheat straw as reinforcing material in back seats plastic bins on 

the 2010 Ford Flex model (de Guzman, 2010). As minor as these bins may seem in the larger scheme of 

automotive construction, they will nonetheless help reduce petrol consumption by 9 tonnes per year and 

CO2 emissions by 14 tonnes per year, as claimed by the Ford Motor Company (de Guzman, 2010). A report 

by Hill, Swiecki, and Cergger (2012) proposes that by the year 2020, a strict 54.5 mile per gallon (mpg) fuel 

economy target could only be met if lighter materials are used. This mpg is the new 2020 fuel economy 

standard target that the Obama administration and the automotive companies have agreed upon (Hill et al., 

2012). Several North American regulations related to vehicle GHG emissions are already in use and are 

continously under revision in efforts to improve them (EPA, 2011a; EPA, 2011b; Ministry of Justice, 2010; 

Government of Canada, 2012; EPA & National Highway Traffic Safety Administration, 2012). To 

understand what drives all of the previously mentioned regulations, we need to take into consideration the 

magnitude of passenger vehicles’ contribution to GHG emissions. In 2011, passenger vehicles accounted for 

17% of the United States total GHG emissions. It is expected that these regulations will help reduce car-

related GHG emissions by up to 40% in 2025 (Center for Climate and Energy Solutions, 2012). In a 

Canadian context, it is estimated that the implementation of new regulations the new models from 2017 to 

2025 will result in  5% lower GHG emissions annually in comparison to 2008 models (Environment 

Canada, 2012). 

However, the Organisation Internationale des Constructeurs d'Automobiles (OICA) (2010) disagrees with 

the current legislators’ approaches to reduce automotive GHG emissions and considers them incomplete and 

narrow (McCurdy, 2010). OICA (2010) states that the current worldwide automotive legislative approaches 
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are focused on shifting the burden of GHG emissions reduction totally on to the automotive industry 

(International Organization of Motor Vehicle Manufacturers [OICA], 2010). Instead, an integrated approach 

that includes all relevant stakeholders should be adopted (OICA, 2007). The proposed OICA  integrated 

approach focuses on five pillars: 1) Automaker and vehicle technology, e.g.,  the production of high-

performance light-weight cars with low emissions; 2) energy providers, such as the production of alternative 

highly efficient bio-fuels and ensuring that the required infrastructure is available; 3) driver behavior by 

improving drivers’ driving techniques to reduce fuel consumption and GHG emissions that eventually 

improve road safety; 4) traffic and infrastructure planning and management, by improving traffic flow and 

eradicating traffic congestions; and 5) CO2 related taxation, by influencing consumers’ decisions when 

buying a new vehicles (OICA, 2010). Our study falls concerns the first ‘pillar’ of automaker and vehicle 

technology.   

Recent initiatives by the automotive sector worldwide to become a more environmentally responsible 

industry arose as a response to societal concerns and pressure from governments (Hill et al., 2012; Lammers 

& Kromer, 2002; Suddell et al., 2002). For instance, the use of bio-based plastic materials and natural fibre 

composite materials was strongly motivated by European Union (EU) regulations (Suddell et al., 2002). One 

representative regulation is the European Directive 2000/53/EC, which stipulates that 95% of vehicles must 

be partly degradable or recyclable by 2015 (Suddell et al., 2002). In Asia, strict regulations that are similar 

to those implemented in the EU have been instituted by several governments, while in the U.S. such 

regulations are not yet in place or are not as strict as in other parts of the world (Hill et al., 2012). Yet, there 

are already roughly 1.5 million vehicles in the U.S. already using natural fibre (e.g., kenaf, jute, flax, hemp 

and sisal) composite materials (e.g., polypropylene and polyester) (Bledzki, Farouk, & Sperber, 2006).  

Through the use of bio-plastics and bio-fibre composites, the trend is to design and manufacture interior 

automotive parts that are lighter in weight in comparison to current counterparts (PlasticsEurope, 2012a; 

Chiaberge, 2011), safer for passengers, more fuel and energy efficient, shock absorbent, durable, and 
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economically sound (Lammers & Kromer, 2002; PlasticsEurope, 2012a; de Guzman, 2010). PlasticsEurope 

(2010) claim that 12-15% of a modern car’s total weight (average 120 kg) is made of plastic and plastic 

composites, leading to a 20-35% improvement in the car’s fuel economy (PlasticsEurope, 2010; 

PlasticsEurope, 2012a). If these parts, materials and composites are biodegradable (e.g., PBS, PLA, PHA), 

that would be considered an additional advantage, especially at the E.O.L. phase.   

Richard Bell, DuPont’s Global Development Manager for Renewable Materials, stated that while the 

automotive industry “is one of several market segments driving toward greater use of high-performance bio-

based materials to meet their sustainability challenges, the vast majority of available bio-based polymers fail 

to achieve the balance between the high performance required by the automotive industry and the requisite 

cost-effectiveness” (de Guzman, 2010, para. 20).  Today, bio-plastic and bio-plastic composite auto parts 

are used in door panels and inserts, rear parcel shelves, seatbacks, headliners, package trays, dashboards, 

trunk liners, glove box doors, gear shift knobs, horn buttons, accelerator pedals, distributor heads, interior 

trims, steering wheels, dashboards, body panels, spare tire covers, and spare-wheel pans (Terasawa et al., 

2008; Xu et al., 2008; Crawford, 2009; Lucintel, 2011). In addition, they can also be found as glass 

replacement in headlight lenses, bezels and windscreens, steel for fenders, spoilers, and dashboards 

(PlasticsEurope, 2010). PlasticsEurope claims that the stability of the replacement plastic parts is equal to or 

greater than the replaced parts regarding safety requirements (PlasticsEurope, 2010). 

By 2015, the global automotive sector is expected to consume 66,000 tonnes of natural fibre composites for 

door panels, inserts, and rare shelves, 106,000 tonnes for spare wheels pan covers and headliners, and 

147,000 tonnes for bumpers and protection trims (Lucintel, 2011).  A study by Kline & Company INC. 

(2000) (as cited by Mohanty et al., 2005) reports that North American demand for natural fibres (wood and 

non-wood) as reinforcing materials for plastic composites is projected to grow annually by 30% for 

automotive applications and 60% for designated building products. A study by Bledzki et al. (2006) 

confirms the latter, and predicts that the North American and European automotive industries will lead the 
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global annual growth of natural fibres use by nearly 54% (Bledzki et al., 2006). The reason for this growth, 

according to Suddell et al. (2002), is that almost all major car manufacturers use natural fibre composites for 

automotive interior parts. Germany, Europe’s biggest automotive producer, continues to lead the European 

demand for natural fibres. Germany’s demand for natural fibres grew from 4,000 tonnes in 1996 to 18,000 

tonnes in 2003, and from 70,000 tonnes in 2005 to 100,000 tonnes in 2010 (Suddell et al., 2002; Bledzki et 

al., 2006). Although Karus & Gahle (2006) agree that the trend is emerging, they dispute its alleged 

magnitude.  

2.1.7 Poly (butylene succinate) (PBS) 

There are three production routes for the production of PBS polymer. These routes are influenced by the 

source of carbon (renewable and non-renewable) and the type of feedstock used in the production process.  

They then adhere to the same technological sequence that starts with the esterification of succinic acid and 1, 

4 Butanediol (BDO) to produce PBS oligomers, followed by the polycondensation to produce PBS the 

polymer (Jacquel et al., 2011; Xu & Guo, 2010; Fujimaki, Hatano, Hokari, Seki, & Takiyama, 1994), Figure 

12. 

 

Figure 12: Poly (butylene succinate) production sequence. (a) Esterification, (b) Polycondensation (Jacquel 

et al., 2011) 



 

 29 

Different feedstocks and production routes will result in different potential environmental impacts. The 

three production routes are petroleum-based, bio-based and hybrid. Currently, almost all PBS produced 

globally is petroleum-based and mainly manufactured by Showa Denko K.K. of Japan (Showa Denko, 

2012; Xu & Guo, 2010). A bio-based route is theoretically a feasible route, because bio-succinic acid is 

commercially available and produced by more than one producer (Myriant, 2012; BioAmber, 2013; Smidt, 

2011). The production of bio-based BDO is still in its early stages and is not yet produced commercially on a 

large scale (Balboa, 2011; Nexant, 2012; Burk, Van Dien, Burgard, & Niu, 2011). A hybrid production 

route is the third option using bio-succinic acid and petroleum-based BDO. This route is the scenario to be 

used for this study. In addition, the envrionmental performace data from the first production route 

(petroleum-based), as generated by Moussa et al. (2012), will be used for comparison with the hybrid 

production route.  

While a sizeable body of literature has grown recently that discusses the mechanical/physical properties and 

biodegradability of PBS and its composites (Frollini, Bartolucci, Sisti, & Celli, 2013; Wan & Chen, 2013; 

Wang et al., 2012; Zeng et al., 2012; Qu, Tan, Ferg, & Hu, 2011; Zhu, Wang, Chen, & Xu, 2009; Tokiwa et 

al., 2009; Zhao et al., 2005; Kim et al., 2001; Fujimaki, 1998), few studies have addressed the environmental 

impacts throughout the life cycle of the material (Ichikawa & Mizukoshi, 2012; Moussa et al., 2012; 

Terasawa, Tsuneoka, Tamura, & Tanase, 2008). This research is intended to help bridge this gap. 

2.1.8   Switchgrass  

Switchgrass is a non-wood short fibre source (Lips & Elbersen, 2001; Mohanty et al. 2002) and a non-food 

perennial warm-season C4 prairie grass (WSG) native to North America (Samson, 2007; Elbersen, 

Christian, Yates, EL Bassam, & Sauerbeck, 2001). Is well-suited to marginal and fallow lands and can grow 

up to 180 centimeters in height (McLaughlin et al., 1999; McLaughlin & Walsh, 1998). During the North 

American summer seasons, the productivity yield of switchgrass is 8-12 tonnes per hectare, which is 

moderate to high compared to, for instance, corn productivity, which is 6.5 tonnes per hectare (Samson, 
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2007). In the winter, switchgrass productivity decreases but nevertheless remains steady throughout its life-

cycle (Samson, 2007), which makes the production cost of switchgrass lower in comparison with other 

annual crops, as claimed by Vogel (2004) as cited by Torrez, Johnson, & Boe, (2013).  In addition to having 

a relatively high and steady yield, switchgrass is resistant to draught, diseases and pests (Carvalho, 2006) 

and requires minimal agricultural management practices in terms of fertilizers, herbicides, pesticides, water 

usage (McLaughlin et al., 1999; Samson et al., 1993; Carvalho, 2006) and the use of heavy machinery, 

which means less use of non-renewable energy for the cultivation process (Pimentel et al., 2005). Moreover, 

switchgrass roots can reach 80 centimeters deep in soil, which aids in the protection of soil erosion (Prairie 

Lands Biomass LLC, 2012; Ma, Wood, & Bransby, 2000; Lips & Elbersen, 2001) and improves natural and 

wildlife habitat (Duffy & Nanhou, 2001). Switchgrass also helps decrease the amount of residues by 55% 

and phosphorous and nitrogen run-offs of into surface water by 36% and 39%, respectively (Prairie Lands 

Biomass LLC, 2012). The Intergovernmental Panel on Climate Change (IPCC), 4th assessment (2007) 

acknowledged in 2005 that, as a result of extensive agricultural practices, farming was responsible for 

emitting 5.1-6.1 Gt. Of CO2-eq (54.1% CH4 and 45.9% N2O), which is equivalent to 10-12% of synthetic 

GHG emissions globally (Smith et al., 2007). The benefits of switchgrass are illustrated in Figure 13. 

Switchgrass is usually used as forage (Duffy & Nanhou, 2001; Elbersen et al., 2001). However, because of 

its high lingo-cellulosic content (Samson, 2007; Rinehart, 2006), studies found it suitable to be used in 

paper production (Law, Kokta, & Mao, 2001; Girouard & Samson, 2000). It has also been tested as an energy 

crop for the production of electricity and ethanol as a biomass source instead of the conventional non-

renewable resources (Duffy & Nanhou, 2001; Elbersen et al., 2001).   

In a Canadian context, Samson (2007) claimed that using warm-season grasses like switchgrass as energy 

crops for the production of electricity and ethanol, instead of conventional feedstock, may have a major 

impact on the reduction of GHG emissions. It is estimated that using switchgrass pellets to generate 
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electricity will result in 90% lower GHG emissions in comparison with conventional feedstocks (Samson, 

2007). 

 

 

Figure 13: The ecological benefits of switchgrass (Randolph & Masters, 2008) 

However, switchgrass’s biggest advantage is its high photosynthesis yield (Samson, Ho Lem, & Bailey, 

2012; Samson, 2007; Rinehart, 2006) compared with other crops that are currently used as biomass. Corn, 

for example, has a 60% lower photosynthesis yield than switchgrass (Rinehart, 2006). Switchgrass could 

also help in reducing GHG emissions via soil carbon sequestration process (Duffy & Nanhou, 2001; 

Samson, 2007). In the U.S., the result of using switchgrass on Conservation Reserve Program (CRP) [4] 

lands was the storage of 40 tonnes of CO2 per hectare in comparison to traditional crops (Samson, 2007). In 

North America, the switchgrass carbon sequestration rate is 6.2-37.0 tonnes CO2 per hectare per year 

(Frank, Berdahl, Hanson, Liebig, & Johnson, 2004; Lee, Owens, & Doolittle, 2007), 20-30% higher than 

corn’s sequestration rate (McLaughlin & Walsh, 1998). Hence, switchgrass can be considered a possible 

                                                      
[4] CRP is a voluntary program intended to take highly erodible cropland out of production and stabilize soil loss through 
planting permanent cover crops. http://www.forestry.state.al.us  

http://www.forestry.state.al.us/
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solution to mitigate the effects of increased GHG emissions on global warming and climate change 

(Samson, 2007).  

Although the advantages of switchgrass cultivation have been identified by many studies, few have 

researched the disadvantages. Miller, Chamberlain, Alfaro and Sharp (2011) identified the potantial 

negative impacts for growing switchgrass on fallow lands.  Similarly, Hartman, Nippert, Brozco, & Springer 

(2011) highlighted the ecological disadvantages of cultivating switchgrass on marginal lands and the 

impacts on wildlife (e.g., possible spread of diseases) and soil quality. Harper and Keyser (2008) emphasize 

the importance of switchgrass in properly planned harvesting practices in order not to negatively affect the 

natural habitat. Tulbure, Wimberly and Owens (2012) suggested incorporating climate change impacts on 

switchgrass yield and economical viability when planning for future development using the plant, while 

Shastri, Hansen, Rodriguez & Ting (2012) focused on economical and technological related issues that 

negatively stimulate its industrial use. 

Despite these negative aspects, studies identified the potential benefits of using switchgrass as a source for 

natural fibres in plastic composites (Pfister & Larock, 2012; Van Den Oever, Elbersen, Keijsers, Gosselink, 

& De Klerk-Engels, 2003; Reddy & Yang, 2007). A recent study on the LCA of switchgrass cultivation in 

Ontario, Canada, highlighted the potential positive impacts associated with replacing glass fibres with 

switchgrass fibres as reinforcing material in plastic composites (Kalita, 2012). For this and the previously 

mentioned reasons, the choice of using switchgrass as the reinforcing material for the proposed hybrid 

plastic composite was based on its potential positive environmental impacts.    

2.1.9  Bio-based vs. Petroleum-based Products  

It is essential to understand that bio-based materials are not as-a-rule “environmentally superior” to their 

conventional counterparts, despite the general assumption that they are. For contributions to climate change 

this is the case if “GHG emissions from indirect land use change are neglected” (Weiss et al., 2012, p. 

S176). However, in addition to GHG emissions, there are other impact categories linked to land use, water 
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intake, eutrophication, acidification and ozone depleting materials that play key roles in evaluating a 

product’s environmental impact (Weiss et al., 2012; Tabone, Cregg, Beckman, & Landis, 2010; Goedkoop 

et al., 2010; Zah et al., 2007; Miller, Landis, & Theis, 2007; Broekema, 2013; Zah et al. 2007; Miller 2007, 

Milà I Canals et al., 2011). In comparing bio-based materials with petroleum counterparts, Detzel and 

Kruger (2006) highlighted the importance of “trade-offs” of various potential environmental categories in 

the process of decision-making. Based on the priority and importance of these trade-offs to the different 

environmental categories, preference may be given to either bio-based plastics or to conventional resources 

(Gironi & Piemonte, 2011). 

The unavailability of sufficient and reliable data was identified as the main reason for inconclusive results 

on the environmental impacts of bio-based materials (Milà I Canals et al., 2011). The inconclusive results 

will increase the uncertainty in LCA results, according to Von Blottnitz & Curran (2007). In addition to the 

previously mentioned reasons, the continuously changing environment and agricultural conditions add extra 

complexity to the data collection (Milà I Canals et al., 2011; Malça & Freire, 2010). 

A number of LCA studies and reports on bio-based materials were reviewed and discussed below to 

determine what criteria scholars use to identify the environmental perfromance of a product and in which 

areas bio-based materials are compared favourly  to conventional counterparts. Generally, there is no 

unified criteria to make such a determination.  

Zah et al. (2007) assessed the environmental impact (cradle-to-grave) associated with the production and 

use of 26 bio-fuels from Switzerland and other countries in comparison with three fossil fuels. They 

concluded that “not all bio-fuels can reduce environmental impacts as compared to fossil fuels” (Zah et al., 

2007, Abstract, para. 4). Although some bio-fuels offered a 30% reduction in cumulative energy demand 

(CED) and GHG emissions, they increased other environmental impacts, such as smog formation, 

eutrophication, and ecotoxicity. Hence, the study concluded that with the majority of bio-fuels, a trade-off 
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decision needs to be made between the benefits of GHG reduction and the negative influences of other 

environmental impacts (Zah et al., 2007). 

Studies by Haufe and Carus (2011) and La Rosa et al. (2013) showed that hemp reinforced PP composites 

in comparison to GF reinforced PP composites used in auto parts required less energy demand and 

generated fewer GHG emissions. Additionally, the study noted a proportional relationship between the 

content of hemp fibres in a composite, and the environmental performance of an auto part.    

Khoo et al. (2010) compared global warming potential (GWP), acidification, and photochemical ozone 

formation impacts for the production of carrier bags made from bio-based PHA and petroleum-based PP 

polymer. The study concluded that bio-based bags (based on U.S. electricity grid mix) caused a 69% higher 

production of environmental impacts in comparison with petroleum-based bags. The coal-fired energy 

source used for the production of the bio-based bags had the largest impact on GWP, acidification and 

photochemical ozone formation. The use of coal-fired electricity in the production of PHA bags resulted in a 

five-fold greater impact compared to PP bags. Moreover, while using natural gas-fired electricity resulted in 

the same impacts for both bio- and petroleum-based bags, using geothermal-generated electricity resulted in 

an 80% less impact than petroleum-based bags  (Khoo et al., 2010).  

James and Grant (2005) compared degradable and bio-based plastic bags with single-use and reusable 

petroleum-based plastic bags, using three envrionmental indicators: GHG emissions, resource depletion, and 

eutrophication.  Results indicate that bio-based PLA bags - if not properlly disposed - have higher GHG 

emissions and higher eutrophication value in comparison to petroleum-based single-use HDPE bags. While 

HDPE bags had a higher resource depletion value in comparison with PLA bags.   

Gironi and Piemonte (2011) conducted an LCA (cradle-to-gate) comparison study between drinking water 

bottles made of bio-based polylactic acid (PLA) and petroleum-based polyethylene terephthalate (PET). 

Results indicated that using PLA could help conserve non-renewable resources but will cause stresses to 

human health and the eco-system quality due to intensive agricultural practice (Gironi & Piemonte, 2011).     
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Kimura and Horikoshi (2005), in a cradle-to-grave LCA study of bio-based PLA in comparison with 

petroleum-based polymer (ABS), concluded that the production of PLA caused higher CO2 emissions than 

the production of ABS, but only when the sequestration of CO2 by the crops due to photosynthesis was 

considered, the production of PLA produced 14% lower CO2 emissions (Kimura & Horikoshi, 2005). 

However, this study did not take into consideration any of the other impact categories, such as 

eutrophication, acidification, land use and water intake, so results are not adequate to give a conclusive 

result regarding the environmental performance of the bio-based polymer.  

Tabone et al. (2010) compared the environmental impacts of 12 bio- and petroleum-based polymers using 

global warming, fossil fuel depletion, human health and ecotoxicity impacts category. Study results 

indicated that bio-based polymers caused lower global warming and fossil fuel depletion but had a higher 

impacts with regards to human health and ecotoxicity. The latter is attributable to extensive agricultural 

practices.    

A study by Terasawa et al. (2008) using CO2 emissions only to compare automotive interior parts made 

from PP with the same parts made of a bamboo-fibre-reinforced PBS composite indicated that as a result of 

the production of PP resins, fewer CO2 emissions will be emitted in comparison with the composite. On the 

other hand, when taking into consideration the full life cycle, from harvesting to end-of-life, the composite 

has almost 50% fewer CO2 emisisons. The study did not provide a proper justification for using CO2 

emissions as an adequate indicator to describe the environmental performance and whether the use of other 

impact indicators will provide the same results.   

A study by Ichikawa and Mizukoshi (2012) compared GHG emissions associated with the production of 

PBS, a petroleum-based and biodegradable resin and starch-PBS compound with petroleum-based LDPE 

and polystyrene (PS) resins. The study concluded that both PBS and the starch-PBS compound have lower 

GHG emissions than LDPE and PS resins. Still, this impact indicator is an inadequate representation for a 

product’s environmental performance. 
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With exclusion of PLA, the number of LCA studies on bio-based polymers in general and PBS and its 

composites in particular is limited. Nevertheless, there are no similar studies on PBS composites in general 

and hybrid PBS composites in particluar that quantify other potential environmental impacts than global 

warming potentials were found for comparison. Though most bio-based polymers LCA studies identifed the 

need for assessments that take into consideration broader environmental concerns, with exception of a few 

LCA studies that evaluate GWP and energy demand plus other impacts such as eutrophication, acidification 

and ozone depletion. The present study considers nine potential environmental impacts in addition to GWP 

and energy demand in its assessment of the production of PBS and PBS composites. 

Thus, and based on all of the above, this study looks to bridge the gap in knowledge on bio-based chemicals 

and hybrid biodegradable plastic composites in general and PBS in particular. As well, it hopes to provide 

an in-depth cradle-to-gate life-cycle assessment that considers several environmental emission and resource-

use categories, with the overall intention of framing and communicating a better understanding of the 

environmental performance of PBS, the hybrid composite under investigation.  

2.2 Life Cycle Assessment 

According to PRé Consultants (2010) and Helgeson and Lippiatt (2009), the multidisciplinary character of 

LCA tool is one of its most important characteristics and complexities.  In this study, some of the multiple 

disciplines sciences involved are: industrial and chemical engineering, environmental management, data 

management, chemistry, economics, environmental science, and health science. 

2.2.1 Background 

The best way to understand the concept of life cycle assessment (LCA) and its importance is consider the 

evolution of the concept and the conditions that helped develop it. LCA was previously known by many 

names such as environmental profile analysis, integral environmental analysis (IEA), eco-balance, and 

resource and environmental profile analysis (REPA). In 1997, ISO 14040 standard “Environmental 
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Management -- Life Cycle Assessment -- Principles and Framework” was the first LCA standard to be 

published by the International Organization for Standardization (ISO), which was revised in 2009.  In 

1998, another LCA standard was published entitled ISO 14041 Life Cycle Assessment – Goal and Scope 

Definition and Inventory Analysis, which was revised in 2003. In 2000 ISO published two more LCA 

standards: ISO 14042 Life Cycle Assessment -- Life Cycle Impact Assessment and ISO 14043 Life Cycle 

Assessment – Life Cycle Interpretation. In 2006, ISO 14044 Life Cycle Assessment – Requirements and 

Guidelines was introduced to replace ISO 14041, 14042 and 14043. Together the ISO 14040 series forms 

the basis of good LCA. 

ISO defines LCA as the “compilation and evaluation of the inputs, outputs and the potential 

environmental impacts of a product system throughout its life cycle” (ISO, 2006a, p. 2). The U.S. 

Environmental Protection Agency defines life cycle assessment as “a technique to assess the 

environmental aspects and potential impacts associated with a product, or service, by:  

1. compiling an inventory of relevant energy and material inputs and environmental releases; 

2. evaluating the potential environmental impacts associated with identified inputs and releases; 

and  

3. Interpreting the results to help you make a more informed decision” (Scientific Applications 

International Corporation [SAIC], 2006, p. 2).  

The Society of Environmental Toxicology and Chemistry (SETAC) define LCA in greater detail as: 

“A process to evaluate the environmental burdens associated with a product, process, or activity by 

identifying and quantifying energy and materials used and wastes released to the environment; assess 

the impact of those energy and materials used and releases to the environment; and to identify and 

evaluate opportunities to affect environmental improvements. The assessment includes the entire life 

cycle of the product, process or activity, encompassing, extracting and processing raw materials; 
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manufacturing, transportation and distribution; use, re-use, maintenance; recycling, and final 

disposal.” (Fava et al., 1994, p. 150) 

Contrary to traditional environmental impact assessments like IEA and REAP, life cycle assessment was 

neither meant to measure or predict impacts nor it was intended to be absolute or precise (ISO, 1998). 

LCA is recognized by practitioners as the best integrated tool available to assess the potential 

environmental impacts of a product or a service (Reap, Roman, Duncan, & Bras, 2008). Other qualitative 

and analytical environmental management and assessment tools such as Material Input per Service Unit, 

Environmental Performance Evaluation, Environmental Accounting, and Material, Energy and Toxic-

analysis are available, but not as useful as LCA (Fet, 1998). However, LCA is an imperfect method with 

limitations that continuously undergoes refinement (Reap, Roman, Duncan, & Bras, 2008; Nygren & 

Antikainen, 2010).  Though, the socio-economic aspects of a product are, typically, not addressed in an 

LCA study, these factors can addressed qualitatively as recommended by ISO 14040. LCA has been 

criticized for its results could be customized as desired by practitioners (Baumann & Tillman, 2004).  In 

LCA, it is recommended to include qualitative and quantitative data if both data are available 

(Hochschorner & Finnvenden, 2003).   

According to ISO 14040 and 14044 standards and Consoli et al. (1993) a life cycle assessment study 

consists of four methodological components. The first is the goal and scope definition which includes the 

purpose, system boundaries and functional unit identification. The second is the life cycle inventory (LCI) 

analysis, which includes input and output data collection and setting the co-product procedures. This is 

followed by the life cycle impact assessment (LCIA), which includes the potential environmental impacts 

evaluation and the LCA results calculation. The fourth and final component is the life cycle interpretation 

that focuses on the interpretation of LCI or LCIA phases’ results (ISO, 2006a; ISO, 2006b), Figure 14.  

Baumann and Tillman (2004) and ISO (2006a) identified two system boundaries to perform life cycle 

assessment studies: the cradle-to-grave and the cradle-to-gate. The difference between the two models is 
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related to the system boundary identification (Baumann & Tillman, 2004). A cradle-to-grave LCA is 

defined as a full life cycle assessment of a product starting from the extraction, acquisition, cultivation and 

harvesting of raw materials, through to the production of a product, then to the use phase and finally to the 

end of life stage (ISO, 2006a).  

 

Figure 14: The relationship between the different stages of LCA based on ISO (2006a) and ISO (2006b). 

A cradle-to-gate LCA is a partial life cycle assessment that begins exactly like the cradle-to-grave process 

but ends when the final product is produced and leaves the factory gate (Hammond & Jones, 2008),  

Figure 15. 
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Cradle-to-gate LCAs are commonly used for assessing the environmental profiles of polymers and 

composites for their ability to provide a preliminary impression of the environmental impacts of the 

materials (Yu & Chen, 2008). However, the results from cradle-to-gate LCAs will not be adequate for use 

in comprehensive decision making processes concerning a product’s environmental performance (ISO, 

1998). 

 

Figure 15: Life cycle models and system boundaries (Baumann & Tillman, 2004).   

The choice of which unit processes are included in the process system boundary is an essential step in the 

LCA study goal and scope.  It is preferable to set a system boundary in such way that all the system inputs 

and outputs are elementary flow [5] and product flow [6] (ISO, 2006a; ISO, 2006b).  

                                                      
[5] Elementary flow: a material or energy entering or leaving  the system without previous human transformation 
[6] Product flow: product entering or leaving the system to another product system  
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ISO 14040 standard and Baumann & Tillman (2004) identified four main areas in which LCA can help 

with: improving products’ environmental performance; policies, regulations and decision making 

(including design, development and purchasing of products and processes); green marketing and public 

relations (including eco-labeling, environmental product declaration and benchmarking); and the selection 

of environmental performance indicators. Wenzel (1998) and Baumann & Tillman (2004) describe LCA 

as a supportive tool for decision making which can benefit public policy makers, industry, environmental 

NGOs and consumers.  

2.2.2 Co-product Problem and Allocation Procedures  

One scholarly debate in LCA concerns situations when multiple products from a single process are co-

produced. These process outputs are not perceived as waste but that have economic or social function. The 

challenge in LCA is to distribute appropriately the environmental burdens of the single process among its 

multiple co-products. This is important as the allocation of system impacts among different products can 

have a major influence on the environmental performance of a product system.  

The ISO 14044 (2006) standard defines allocation as “partitioning the input or output flows of a process 

or a product system between the product system under study and one or more other product systems” (p. 

4). Two issues are necessary to be taken into account when allocation decisions are made in an LCA 

study: 1) All allocation procedures must be clearly stated and 2) for a unit process the total number of the 

allocated inputs and outputs must be equal before and after allocation (ISO, 2006b). The ISO 14044 

standard recommends that allocation should be avoided, whenever possible, and this recommendation is 

followed by many LCA studies (Moussa et al., 2012; Kim and Dale 2002; Wang, Saricks, & Santini, 

1999).   

Alternatively, avoiding allocation can happen by dividing a unit process into multiple sub-processes and 

using the output data from these sub-processes. Nevertheless, this will not completely solve the allocation 

problem state Ekvall & Finnveden (2001); or by expanding the system which is preferable to traditional 
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allocations (Weidema, 2000). System expansion means that the boundaries of the product system are 

expanded to include the use of the co-product(s) through the use of alternatives of other products that are 

already used in the market (ISO, 2006b; Weidema, 2000). The ISO 14044 standard suggests that if the 

process cannot be subdivided, co-products are required to be assigned burdens based on either physical 

properties (mass, energy or heating values) (Weidema, 2000; Mortimer, Elsayed, & Evans, 2007; Nuss & 

Gardner, 2013; Iriarte & Villalobos, 2013), or based on economic value (Jungbluth, Bauer, Dones, & 

Frischknecht, 2005; ISO, 2006b; Luo, van der Voet, Huppes, & Udo de Haes, 2009).  

Economic-based allocation is comparable to the methodology suggested and used by Guinée, Heijungs, 

and Huppes (2004). Pawelzik et al. (2013) argue that when product and co-products economic values are 

comparable, the use of mass allocation is preferable. Energy-based allocation is a preferable option when 

the energy content of products and co-products is essential for the LCA goal and scope (Pawelzik et al., 

2013). The choice of allocation procedures has a considerable impact on the results of an LCA study 

(Jungmeier, Werner, Jarnehammar, Hohenthal, & Richter, 2002; Luo, 2010; Edwards & Anex, 2009; 

Hetherington, McManus, & Gary, 2011; Morais, Martins, & Mata, 2010; Halleux, Lassaux, Renzoni, & 

Germain, 2008; Curran, 2007). LCA results can vary significantly based on the allocation method 

employed (Luo et al., 2009; Ekvall & Finnveden, 2001). For this reason, Luo et al. (2009) and 

Hetherington et al. (2011) have suggested and it is a good practice to use multiple allocation procedures in 

a study.  It is essential to acknowledge that different studies require different allocation approaches and 

procedures as suggested by Tsiropoulos, Cok, & Patel (2013).  

2.2.3 Life Cycle Inventory Data 

The biggest challenge that faces LCA practitioners when performing an LCA study is data collection. Life 

cycle inventory (LCI) data are defined as “the primary inputs for conducting LCA studies” (U.S. DOE, 

2009, p.1). The results of LCA studies are considered robust, defensible, and meaningful only when input 

data are consistent, accurate, and relevant (U.S. DOE, 2009). It is critical to differentiate between two types 
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of data, the foreground and background, (PRé Consultants, 2010; Nebel, Alcorn, & Wittstock, 2011). PRé 

Consultants (2010) defines foreground data as specific data, generally empirical that are required to model a 

product system. In contrast, background data are generic for materials, energy, etc.  Background data are 

generally secondary and tertiary sources and usually found in literature and databases (PRé Consultants, 

2010). de Bruijn, van Duin, & Huijbregts (2002) and Nebel, Alcorn, & Wittstock (2011) define the latter 

similarly.  

2.2.4 Assumptions and Limitations 

International standards demand that assumptions in an LCA study be defined and clearly stated. In 

addition, the assumptions must be in accordance with the goal and scope defined in the study (ISO, 

2006a). According to Wenzel et al. (2006) different assumptions will lead to different conclusions and “in 

general, differences in these assumptions proved to be more significant than differences in environmental 

impacts associated with different elements of each study” (p. 2).  

The ISO 14040 standard requires that the limitations of a study be communicated in a transparent and 

sufficient way to demonstrate the inherent uncertainties, difficulties and trade-offs in the LCA. It is 

essential to understand how the accuracy, transparency, quality and credibility of an LCA study will be 

affected by these uncertainties and limitations (Weidema, 2000; Heijungs & Huijbregts, 2004; 

Guldbrandsson et al., 2011; Baker & Lepech, 2009).  LCA practitioners understand these limitations and 

uncertainties while emphasizing the importance of reducing uncertainty where possible (Baker & Lepech, 

2009). However, a systematic framework to resolve uncertainties is still unavailable (Heijungs & 

Huijbregts, 2004). ISO 14040 recommends that “in some cases, the goal and scope of the study may be 

revised due to unforeseen limitations, constraints or as a result of additional information. Such 

modifications should be documented” (p. 7). Limitations associated with choices that are made during the 

LCI phase, must be clear and communicated (ISO, 2006a). These value-choices are related to the system 

boundary, the inclusion and exclusion of unit processes in addition to their inputs and outputs, cut-offs 
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criteria and data gaps. In addition, it is essential to communicate the level of data quality used in the study, 

in relation to uncertainties and allocation procedures (ISO, 2006a; UT Center for Clean Products, 2009). 

Assessing the data quality level is a limitation which needs thorough attention when performing an LCA 

study as it is unviable to collect site-specific or primary data for all the unit processes (ISO, 2006a; ISO, 

2006b). Often, LCA studies use publicly available data, with secondary and tertiary data used to fill the 

data gaps, knowing the uncertainties associated with the use of unrelated temporal, geographical, and 

technological specific system set of data (Strongwell Corporation, 2009). To understand the potential 

impacts of the limitations of an LCA study, statistical uncertainty, sensitivity and scenario analyses were 

performed in Chapter 4, sections 4.5 as possible solutions (ISO, 2006b).  

2.2.5 Life Cycle Impact Assessment (LCIA) 

LCIA is “aimed at evaluating the significance of potential environmental impacts using the LCI results” 

(ISO, 14040, 2006a, p. 14). The United States National Risk Management Research Laboratory indicates 

that “a life cycle impact assessment attempts to establish a linkage between the product or process and its 

potential environmental impacts” (NRMRL, 2012, p. 46). LCIA classifies and characterizes these potential 

impacts in a thorough process to provide a stronger basis for products’ comparison. 

LCIA involves three obligatory steps: the selection of relevant impact categories (e.g. energy demand, 

global warming, and acidification), establishing the connection between LCI results and each of the impact 

categories, and modeling the results using characterization factors (NRMRL, 2012; ISO, 2006a; ISO, 

2006b). These steps may include reviewing the LCA study goal and scope to assure the objectives have 

been met (ISO, 2006a; ISO, 2006b). The ISO 14040 states that “the LCIA addresses only the 

environmental issues that are specified in the goal and scope” (ISO, 2006a, p. 15). Therefore, LCIA does 

not include the assessment of all environmental issues in a product system. The interrelation between the 

different phases of LCA as illustrated in Figure 14 needs to be taken into account when choosing LCIA 

impact categories (ISO, 2006b). In this study, two indicators and nine impact categories were considered.   
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Cumulative Energy Demand (CED) Indicator 

The CED is a pre-existing midpoint method in SimaPro (System for Integrated Environmental Assessment 

of Products), expanded by PRé Consultants based on the method published by EcoInvent (Goedkoop, 

Oele, de Schryver, & Vieira, 2008), and developed initially as a response to the oil crises in the early 

1970s as indicated by Boustead & Hancock (1979). Energy demand is a well-developed indicator that is 

widely used in LCA studies (Gironi and Piemonte, 2011; Zah et al., 2007). This indicator is not only used 

to identify the possibilities and significances of energy reduction (VDI, 2012) or systems’ energy 

efficiency (Klöpffer, 1997), but could also be used as a tool to evaluate products based on energy 

performance (VDI, 2012; Frischknecht et al., 2007b). Modahl, Lyng, Raadal, & Askham (2012) indicate 

that “the CED results are heavily dependent on the LCA practitioner‘s knowledge of how to manipulate 

the pre-defined CED methods” (Abstract).  For those reasons CED is criticized (Huijbregts et al., 2010). 

CED method uses the characterization, weighting, and single score factors, however, normalization is 

excluded from this method (Goedkoop et al., 2008).  

Waste Heat Indicator 

Goedkoop et al. (2008) described waste heat as an inventory (elementary flow) indicator that is used to 

provide potential insights on the energy and environmental efficiency and performance of a product 

system. SimaPro LCA tool records all the waste heat discharged from a product system without 

differentiating between the sources of waste heat (Althaus et al., 2007).    

A study by the United States Department of Energy [U.S. DOE] (2004) indicated that in chemical 

processes, substantial amounts of energy inputs are released as waste heat emissions to air, water and soil. 

The U.S. DOE (2004) as cited by Bai (2010) and BCS (2010) estimated these amounts to be between 20-

50% energy inputs. Barker, Turner, Napier-Moore, Clark, & Davison (2009) as cited by Bundela & 

Chawla (2010) identified two general potential environmental impacts of waste heat: the impacts of energy 

use and the several pollutants (chemicals and particles) contained in the released waste heat. The reduction 
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of waste heat releases to the environment represents an opportunity for the reduction of energy demand 

and the environmental impacts associated with its use (Huijbregts et al., 2006; BCS Incorporated, 2008). 

Similarly, a study by Zhang & Akiyama (2009) indicated that in industry, waste heat reduction by 

improving systems’ efficiency or heat recovery will probably reduce energy that is used for electrical, and 

heat generation. In addition to the proportional relationship with energy demand, waste heat (as a heat 

source) contributes to global warming (Zhang, Cai, & Hu, 2013). Bundela & Chawla (2010) pointed out 

that the greatest potential environmental impact of waste heat discharges is on the aquatic ecosystem.  

Huijbregts et al. (2006) and BCS Incorporated (2008) emphasized on the potential environmental benefits 

and energy savings associated with waste heat reduction (improve efficiency), mainly because it is an 

emission-free source of energy.  

Other Impact Categories calculated using TRACI LCIA method 

The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) was 

developed by the U.S. Environmental Protection Agency for the US as a LCIA tool, pollution prevention 

tool and set of sustainability metrics (Frischknecht et al., 2007b). A stand-alone, mid-point LCIA method, 

TRACI uses characterization, normalization, and weighting factors (Goedkoop et al., 2008; European 

Commission, 2010; Bare, Norris, Pennington, & McKone, 2003; Bare, 2011; Goedkoop et al., 2008; 

Frischknecht et al., 2007b) to quantify potential environmental impacts across several impact categories: 

ozone depletion, global warming, photochemical oxidation (smog) formation, acidification, eco-toxicity, 

eutrophication, human health criteria air pollutants, human health carcinogen, human health and non-

carcinogen (Bare, 2011; Rossi & Margni, 2010; Goedkoop et al., 2008). TRACI does not include resource 

consumption in any impact categories (Frischknecht et al., 2007b), which is considered as a potential 

weakness in the approach compared to other LCIA methods; however, TRACI is still a valuable method 

since it is widely used in LCA studies in North America, the geographical location of this study intended 

audience.  
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2.2.6 Sensitivity and Scenario Analyses  

Sensitivity analysis is defined as “systematic procedures for estimating the effects of the choices made 

regarding methods and data on the outcome of a study” (ISO, 2006b, p. 5). In a similar way, PRé 

Consultants (2010) defines sensitivity analysis as “a way to understand the influence of the most important 

assumptions that were made, in order to get a better understanding of the magnitude of the effect of the 

assumptions that was made” (p. 37). ISO 14044 (2006) indicates that a sensitivity analysis considers 

whether variation in methods and parameters causes significant changes in results. These changes are 

considered significant if larger than a certain percentage value that is set by LCA practitioners. The values 

of these changes are calculated as a percentage of the initial results of methods and data used (ISO, 

2006b). Guo & Murphy (2012) indicate that a sensitivity analysis is often performed on boundary 

definition, allocation procedures, LCIA methods, and inventory data.  

According to Björklund (2002) a “scenario analysis involves calculating different scenarios, to analyse the 

influence of discrete input parameters on either output parameter values or priorities” (p. 67). Raynolds, 

Checkel, & Fraser (1998) as cited by Björklund (2002), describe a scenario analysis as a change in LCA 

results due to potential future conditions based on assumptions.   

One of the sensitivity and scenario analyses drawbacks is that it takes into account only one variable at a 

time, whereas the other variables are kept constant. The accuracy and effectiveness of each of the variables 

used in the analyses depend to a great extent on the reliability and availability of data, which is deemed to 

be insufficient in bio-based materials (Grabowski, 2013).  

2.2.7 LCA and Sustainability Assessment 

It is relevant to consider how LCA relates or contributes to broader sustainability assessment, which arises 

from concept of sustainable development defined by the Brundtland Commission’s report in 1987 as “a 

development that meets the needs of the present without compromising the ability of future generation to 
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meet their own needs” (p. 8). According to Gibson (2006) and Pope, Annandale, & Morrison-Saunders 

(2004), sustainability assessment is an integrative conceptual tool to help move toward sustainability. 

However, since the three dimensions of sustainability are summed-up separately, issues of incomplete 

perspective could result (German & Schoneveld, 2012). To complete the picture of sustainability, it is 

suggested that the social, economic and environmental dimensions, which are interdependent, be taken 

into consideration and assessed separately, yet, re-integrated under one assessment, which as noted by 

Gibson (2006) is a struggle. Pope, Annandale, & Morrison-Saunders (2004) and Sadler (1996) stated that 

such an “integrated assessment” is typically performed to minimize uncertainties, or to fulfil the “triple 

bottom line” objectives, while equally weighting the impacts of the three dimensions in the decision-

making process. However, in comparison to environmental and economic sustainability, social 

sustainability perceives less attention (Bell, 2000 as cited by Molnar & Morgan, 2001). Recently, the 

interest in social sustainability started to gain more recognition and legitimacy (German & Schoneveld, 

2012; Benoît & Vickery-Niederman, 2010), yet, and according to Foot & Ross (2004) there is no 

definition of social sustainability that is precise, complete, functional and agreed upon. Hence, the 

principles of social sustainability were made less sophisticated in order to be comfortably assess such a 

complex issue (German & Schoneveld, 2012). Gibson (2001), Devuyst (1999) and Sadler (1999) 

suggested that environmental assessment could be used as a building block for sustainability by including 

other dimensions (e.g., social) along with the environmental dimension.  

A study by Pope, Annandale, & Morrison-Saunders (2004) suggested that the theory of sustainability 

assessment is an evolution of environmental impact assessment, therefore, it is considered to be the “next 

generation” of environmental assessment (Sadler, 1999). As the latter, relates to environmental LCA, there 

is connection to other types of LCA methods with different scopes, for example, social LCA (SLCA) and 

economic LCA or life cycle cost (LCC) (Zamagni et al., 2009). Klöpffer (2008) suggested that a “life 

cycle sustainability assessment” (LCSA) could be done by conducting an LCA, an LCC and an SLCA 
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consecutivelly. According to the UNEP/SETAC Life Cycle Initiative (2011), LCSA refers “to the 

evaluation of all environmental, social and economic negative impacts and benefits in decision-making 

processes towards more sustainable products throughout their life cycle” (p. 3). Practically, and according 

to Hunkeler, Lichtenvort, & Rebitzer (2008), combining the LCA and LCC tools would raise issues of 

conflict in methodological choices (e.g., co-product treatment and system boundary definition).   
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3. Methodology and Data 

The current study follows the methodological and structural framework provided by the ISO 14040 and 

14044 international standards on life cycle assessment. These standards are intended to provide consistent, 

credible, transparent, and comparable results and are broadly accepted by stakeholders (Finkbeiner, Inaba, 

Tan, Christiansen, & Klüppel, 2006). As introduced in Section 2.2.1, the required methodological steps are 

addressed, and discussed in order here.  

3.1 Goal and Scope 

In this section, the goal and scope of this study are identified and stated in relation to the intended use of 

this LCA study.  

3.1.1 Goal 

The goal and objectives of this thesis were identified and described in Chapter 1. Results will be shared 

with research, industrial and government partners, to help facilitate the decision-making as it relates to the 

aspects and potential environmental impacts of the production of novel industrial bio-based products.  

3.1.2 Scope  

The LCA study of SG / PBS composite pellets was conducted for a cradle-to-gate production system 

described by seven major unit processes (Figure 16). These seven unit processes are described in details in 

Section 3.2.2. 

The cradle-to-gate system boundary ends when the hybrid composite is produced into a pellet form, which 

is then suitable for subsequent processing, for example into auto parts. The product system does not 

include the shipping of the hybrid composite pellets or further downstream activities like manufacturing of 

auto parts, car assembly, car use, and end-of-life.  
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Figure 16: System boundary for the production of the hybrid composite used in the auto part. 

Concerning foreground data, the boundary of this study includes the operation of capital equipment, but 

not its production, following established practice (PRé Consultants, 2010). This assumption is justified 

given that the environmental impacts of capital equipment are negligible when used for bulk production 

systems (Allen, 2002), and given the limited reliable information on the environmental impacts associated 

with the production of different capital equipment in the product system (Gorrée, Guinée, Huppes, & van 
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Oers, 2002). The present study acknowledges the fact that exclusion of the production of some of the 

capital equipment may result in an error in the results (PRé Consultants, 2010). For EcoInvent background 

data the profile of capital equipment is included (PRé Consultants, 2010). 

In order to accomplish objective #2 of this study, which is to compare the environmental performance of 

the hybrid composite to a baseline composite, glass fibre (GF) reinforced polypropylene (PP) composite in 

pellet form was chosen as the baseline. PP is a petroleum-based polymer that is widely used in the 

automotive industry for its suitable physical and mechanical properties (Borealis AG, 2010a).  GF is an 

inorganic and nonmetallic reinforcement fibre that is widely used in the automotive industry given its 

good mechanical and thermal properties. Many industrial sectors including the automotive industry are 

attracted to the light-weight, strength, and non-corrosive properties of PP-GF composites (ASD Reports, 

2013). The baseline composite was modeled similarly to the hybrid composite using a cradle-to-gate 

system boundary with three unit processes: glass fibre production, polypropylene production, and baseline 

composite production via extrusion (Figure 17). 

3.1.3 The Function and the Functional Unit 

This study assumes that both the hybrid and baseline composites can be used to manufacture an 

automotive part, represented here as a hypothetical automotive battery tray. The hypothetical part is 

assumed to be designed and produced in compliance with technical specifications and performance 

requirements that would be typical of an original equipment manufacturer (OEM). For example, this 

would include the volume (dimensions and thicknesses), parameters of scratch resistant, low gloss, low 

scrap, good processability, good impact resistance, low thermal expansion rate, and no emissions, fogging 

or odour when processed (Borealis AG, 2010b). The functional unit (FU) is one automotive battery tray 

made from composite materials.  
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Figure 17: System boundary for the production of the baseline composite material for use in an auto part 

3.1.4 Reference Flows 

A reference flow measures “the outputs from processes in a given product system required to fulfill the 

function expressed by the functional unit” (ISO, 2006b, p.5). In this study, the automotive battery tray can 

be produced from either the hybrid composite or the baseline composite. The two produced battery trays 

are equivalent in function and have the same volume and dimensions. A patent by Mohanty et al. (2010), a 

research partner, used in this study describes and confirms the substitutability of conventional composite 

with the hybrid material. The patent states that the mechanical and physical performance of materials 

made from either composite is essentially equal; this was not questioned within the current study. On this 

basis it is reasonable and fair to compare the composite materials in this manner. Table 1 describes the 

average physical and mechanical properties of the hybrid and baseline composite.  
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Table 1: Physical and mechanical properties of the two composite materials 

Material Property 
Hybrid Composite 

(Mohanty, Misra, & Sahoo, 
2010) 

 Baseline Composite  
(MatWeb, 2012; 
Anderson, 2011) 

Material Composition SG-PBS (50%:50%)  GF-PP (30%:70%) 

Density kg/m3 1,063 1,150 

Tensile Strength MPa 34±0.2 77.1 

Tensile Modulus GPa 3.1±0.04 6.25 

Flexural Strength MPa 46±0.6 110 

Flexural Modulus GPa 36±0.11 5.17 

Izod Impact       
    Strength 

J/m 25±2.1 109 

Heat Deflection 
Temperature 

oC 106.4 123 

 

The baseline composite is slightly denser than the hybrid composite (Table 1); hence there is a slight 

difference in mass. The reference flow for the hybrid composite battery tray (50% SG reinforced hybrid 

PBS composite) is 1 kg hybrid composite. The reference flow for the conventional composite (30% GF 

reinforced PP composite) is 1.1 kg baseline composite.  

3.1.5 Co-product Treatment  

Several co-products are encountered in the product systems analyzed. In the production of the hybrid 

composite, ammonium sulfate (AMS) is produced during the production of bio-SAC. The study applied a 

system expansion approach to this process (as described in Section 2.2.2). This was based on information 

received from Myriant Corporation on its operation in Louisiana, USA that all the AMS produced is sold 

in the region as fertilizer for agricultural use. The AMS market was further examined and it was 
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determined that the co-product AMS fertilizer is functionally equivalent to petrochemically-produced 

AMS and directly displaces it in the regional market (Myriant Corporation, 2011). The USA AMS market 

is more than 3.3 million tonnes per year (Maxwell, 2002), and the AMS co-product is a small fraction of 

it, therefore the operation of Myriant does not affect market prices. Under these circumstances the use of 

the system expansion approach is justified.     

Other co-products are apparent in background processes used in this study (Frischknecht et al., 2007b). On 

examination of the EcoInvent data, it is clear that system expansion approach and other allocation 

procedures were used to address the co-products problem (Frischknecht et al., 2007b). These other co-

products, approaches and procedures were not addressed or taken into consideration in this study, and are 

assumed to have minor influence on the LCA results.  

3.1.6 Limitations 

1. Like most LCA studies there are weaknesses in specific model assumptions and data quality. 

The study is limited by the use of published datasets primarily based on European production 

technologies, practices, conditions and assumptions. These data have technological and resource 

limitations when used in a different geographical context.  

2. The majority of data used in this study are from secondary or tertiary sources, and may be 

associated with high uncertainty, except for bio-SAC data that are empirical. To mitigate the high 

uncertainty concern, an assessment of uncertainty was calculated and uncertainty values are 

assigned by SimaPro pedigree uncertainty calculations.  

3. Transportation between the different production facilities (switchgrass, bio-succinic acid, 1, 

4-butanediol, poly butylene succinate, and the composite) was not considered. 

4. Switchgrass and soil carbon sequestration in Southern Ontario were not considered as a 

conservative assumption due to the unavailability of data specific to Ontario (as explained in 

Section 3.2.2.1). Also, after farming, SG is subjected to thermal, mechanical and chemical 
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treatments of fibres in preparation for use as a reinforcing material in the hybrid composite. These 

activities were not included (see Figure 16), as it was assumed that the potential environmental 

impacts of these processes are negligible in the whole LCA. 

5. The study uses a limited set of LCIA categories to assess the environmental performance of 

the product system. Eleven (11) indicators were used; however, several other category areas, such as 

land use, water use and resource depletion are not considered.   

3.2 Life Cycle Inventory (LCI)  

This section discusses the collection of input and output data for the product system under study. A 

combination of pre-existing and newly developed unit process data were utilized in the examination of the 

hybrid composite system. Secondary and tertiary data used for the modelling of all unit processes, and 

were obtained from either the EcoInvent database or the U.S. Life Cycle Inventory (U.S. LCI) database. 

For the production of bio-SAC empirical data were used, as provided by Myriant Corporation. 

Modifications were made to electricity and heat profiles, as described below (section 3.2.3). Data sources 

for the baseline composite system were entirely based on tertiary data sources. 

- EcoInvent is a life cycle inventory (LCI) database from the Swiss Centre for Life Cycle 

Inventories (the EcoInvent Centre). The EcoInvent database covers environmental activities at 

system and unit process levels, and is intended to be used as background data. The quality of 

EcoInvent data is supported and assured by the EcoInvent Centre validation and review system 

(Weidema et al., 2013).  

- The US LCI database provides reliable and transparent information on energy and material flows 

and is compatible with other LCI databases. Flows are associated with specific unit processes 

used for material production and services in the USA (Deru, 2009).  



 

 57 

The geographical locations of the different production facilities in the product system are discussed in 

Section 3.2.2. The transportation activities were assumed negligible given experience by others, 

suggesting that transportation aspects are minor to the overall LCA study for cases similar to the current 

study (Gironi and Piemonte, 2011; Franklin Associates, 2010; Khoo et al., 2010; and Zah et al., 2007). The 

potential environmental impacts of packaging materials used for packaging of the bio-SAC, hybrid PBS 

and the hybrid composite were not included and were assumed to be negligible. 

3.2.1 LCA Tool 

All unit processes were modelled using SimaPro software version 7.3.0.  First released in 1990, SimaPro 

was created by PRé Consultants in the Netherlands and is widely used in more than 80 countries (Earth 

Shift, 2012; Boureima, Sergeant, & Wynen, 2007; Glišović, 2000). SimaPro is used to assess and analyze 

the environmental performance of a product or a service, and designed based on the framework of the ISO 

14040 and 14044 standards (Earth Shift, 2012).   

SimaPro is widely used  by industry and academia, has an intuitive and user-friendly interface, is flexible 

in implementing LCA, contains a number of good databases (e.g., system and unit processes, and impact 

assessment methods) and datasets (e.g., EcoInvent and US LCI). SimaPro enables users to adjust and 

modify pre-existing LCIA methods, create new methods, adjust analyzing options, and compare two or 

more different products and processes (Boureima, Sergeant, & Wynen, 2007; Glišović, 2000; Menke, 

Davis, & Vigon, 1996). Additionally, the results of Kalita (2012), which this current study relied on, 

contained information on switchgrass in SimaPro files.  

A study by Zamagni, et al. (2009) discussed the limitations of LCA softwares noting that “main LCA 

software are not sufficiently capable of facilitating broadening and deepening LCA” (p. 11). In SimaPro, 

practitioners have little control over the availability and quality of background data (e.g., catalysts used in 

chemical processes) and the methodological choices related to co-product treatment in background data. 

Another limitation is how LCI data are assigned to the different indicators and impact categories, 
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especially if one aspect has the potential to affect more than one impact category or indicator. For 

example, nitrous oxide has the potential to affect both ozone depletion and GWP. Additionally, in SimaPro 

the uncertainties of LCIA methods are not calculated as part of the total uncertainty analyses, as only LCI 

uncertainties are calculated by the Monte Carlo Simulation (Andrae, 2010).  

3.2.2 Unit Processes 

3.2.2.1 Switchgrass Cultivation 

The modeling of switchgrass cultivation was based on a field data and research by Kalita (2012) from the 

University of Guelph. The work by Kalita was supported by the same partners also supporting this current 

study. This allowed for direct access to foreground data. The SG data time-line is from 2006 to 2011 and 

the technology used in switchgrass cultivation represents farm practices in current use in Ontario. The 

study by Kalita (2012) indicated areas of uncertainty in regards to switchgrass yield data. 

Kalita (2012) also employed SimaPro and used a combination of primary and secondary data (Table 2). 

Empirical data were obtained from one farm in Southern Ontario that provided well documented information 

on switchgrass cultivation practices. These data represent all input materials used on‐farm in the cultivation 

and harvesting of switchgrass, including diesel, seeds, herbicides, and nitrogen‐based fertilizer used to 

produce one tonne of switchgrass. Secondary data were obtained from literature and reports. 

The use of synthetic nitrogen-based fertilizer in SG cultivation results in emissions of nitrous oxide (N2O) 

and ammonia (NH3). In agricultural LCA studies, N2O is often a significant source of GHGs. In the 

current study, direct and indirect N2O emissions from ammonium nitrate fertilizer were calculated  based 

on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006) (Table 2). Kalita 

(2012) used an emission factor for N2O direct emissions calculated for Ontario as 0.017 kg N2O-N per kg 

of nitrogen based on a study by Rochette et al. (2008). In the current study, NH3 emissions were 
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calculated the same as by Kalita (2012) based on a study by Sheppard et al. (2010) as 6% of the nitrogen 

fertilizer used as in Table 2. 

Table 2: Process input and outputs for the cultivation of 1 kg of Ontario switchgrass 

Unit 
Process and 

Location 

Flow 
Type Input/output Unit Value Data Source  

Switchgrass -
Cultivation 
(1.0 kg). 
Ontario, 
Canada 
 

Input 
Materials 

Diesel Fuel L 3.34E-03 

Kalita (2012) 

Switchgrass Seed 

kg 

1.10E-04 

Glyphosate - pesticide 1.30E-05 

2,4 -dichlorophenoxyacetic 
Acid  - pesticide / herbicide 2.20E-05 

Atrazine - herbicide 2.40E-05 
Ammonium Nitrate (35% 
Nitrogen) - fertilizer 

15.55E-03 

Airborne 
Emissions 

Nitrous Oxide (N2O) 
Direct and Indirect 
Emissions 

kg 1.94E-04 IPCC (2006) 

Ammonia (NH3) kg 3.26E-1 
Kalita (2012) based 
on Sheppard et al. 
(2010) 

 

Background data used by Kalita are from both secondary and tertiary sources, and represent the production 

of input materials used on‐farm. These background data were based on previous studies, reports, and the 

US‐EI database adjusted for use in a Canadian context (Kalita, 2012). 0.5 kg of switchgrass was used for 

the production of 1 kg of the hybrid composite.  

3.2.2.2 Bio-Succinic Acid Production 

Primary data on the production of bio-SAC were provided by Myriant Corporation.  This firm is an 

industrial biotechnology company based in Quincy, Massachusetts with a stated mission to become “a 
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low-cost producer of high-value biochemicals” from renewable and non-food crop feedstocks (Myriant 

Corporation, 2011, p.1). Much of their business plans target bio-based products that are functionally 

similar to petroleum counterparts. Myriant manufactures a variety of chemical building blocks using 

patented technologies that are based on a single-step anaerobic fermentation process using biocatalysts 

that are capable of consuming sugar from different sources. Their aim is higher productivity and yield in 

comparison with other known biotechnologies (Myriant Corporation, 2011). In 2013, Myriant started the 

commercial production of bio-SAC at a new plant in Louisiana, USA. The plant is the first of its kind in 

North America, with an annual nominal production capacity of 13 million kg. As a part of the 

collaboration with the University of Waterloo, Myriant provided data (Table 3) that were collected by 

Myriant from their operations at a pilot-scale plant in 2012 and later validated by the new plant operations 

at Louisiana. These data were use in the LCA model in this study. Ammonium sulfate (AMS) is a 

significant co-product produced during the production of bio-SAC at the Myriant Corporation’s Louisiana 

plant.  

Background processes on the bio-SAC are based on the EcoInvent and US LCI databases. Electricity mix 

used was adjusted to fit the geographical location in Louisiana (see below Table 9, Section 3.2.3).  

Sorghum is used by Myriant Corporation as a feedstock for the production of bio-SAC because it is a non-

food crop in the USA (Myriant Corporation, 2011). Moreover, it is locally available and has low handling 

costs. However, the current study used Chinese data for the unit process for sorghum cultivation as there is 

a lack of data on USA production. The sorghum cultivation unit process includes the use of diesel, 

machines, fertilizers, and pesticides. In addition to sorghum, dextrose is used in a small amount for the 

production of bio-SAC. The dextrose GHG emissions value was assumed to be 0.62 kg CO2-eq per kg of 

dextrose based on a study by Tsiropoulos et al. (2013). 0.33 kg of bio-SAC is required for the production 

of 1 kg of the hybrid composite.  
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Table 3: Process input and outputs for the production of 1 kg bio-SAC 

Unit 
Process and 

Location 

Flow 
Type 

Input/output Unit Value Data Source  

This Table Intentionally Left Blank. 
Data Protected by Non-disclosure Agreement 
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3.2.2.3 1, 4-Butanediol Production 

Data on the production of 1, 4-butanediol (BDO) are from tertiary sources, based on an EcoInvent pre-

existing process in SimaPro for Europe from 2001. This pre-existing process is the only available BDO 

production process in SimaPro. For this reason it was used in this study and altered to fit the Japanese 

production context in regards to electricity and heat (Table 4). Additionally, it was assumed that the 

technology used for the production of BDO in Japan is similar to the original BDO production process 

from EcoInvent available in SimaPro. The technology used for the production of BDO is based on a one-

step continuous hydrogenation of 2-butyne-1, 4-diol from acetylene over modified nickel catalysts (Sutter, 

2007). 0.27 kg of petroleum-based BDO is required for the production of 1 kg of the hybrid composite.  

3.2.2.4 Hybrid PBS  

The hybrid PBS production was modeled in stages as three unit processes: hybrid PBS (3.6% water) 

production via polymerization, extrusion of hybrid PBS (wet) and drying of hybrid PBS pellet. Data for 

the modeling of the hybrid PBS were obtained and calculated (Table 5) from patents that represent a real 

production facility by Showa Denko of Japan, one of the biggest producers of PBS (Taka, Yasukawa, & 

Takiyama, 1994; Takiyama, Fujimaki, Seki, Hokari, & Hatano, 1994). The technologies described in these 

patents are the only publicly available technologies. The three unit processes were altered to fit the 

Japanese production context in regards to electricity and heat.  

Polymerization 

Data for the modeling of the hybrid PBS (3.6% water) production via polymerization were obtained and 

collected from patents (see Table 5). The production yield of the hybrid PBS polymerization process was 

assumed to be 100%, based on patents by Jentsch, Martin, & Zirngiebl (1997), Fujimaki et al. (1994), 

Imaizumi et al. (1998), and Takiyama et al. (1995).  
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Table 4: Process input and outputs for the production of 1 kg petroleum-based BDO 

Unit 
Process and 

Location 

Flow 
Type Input/output     Unit Value Data Source  

Petroleum-
based BDO 
Production 
(1.0 kg). 
Japan. 
 

Input 
Materials 
and Energy 

Acetylene 
kg 

3.20E-01 

EcoInvent data. 

Electricity based 

on  

Vivoda ( 2011) 

and heat based on 

Althaus et al. 

(2007). 

Both adjusted for 

Japanese context. 

Formaldehyde 7.33E-01 
Water, Cooling m3 4.90E-01 

Water, Deionized 
kg 

1.00E-00 

Liquid Nitrogen 3.12E-02 

Liquid Hydrogen 

kg 

5.40E-02 
Sodium Hydroxide 50% in 
Water 3.00E-03 

Copper - Catalyst 2.04E-04 

Nickel 99.5% - Catalyst 2.14E-04 

Electricity Mix, Japan kWh 0.18 

Heat, Japan MJ 24.75 

Airborne 
Emissions 
 

Ethane kg 4.61E-05 

Waste, Heat MJ 6.48E-01 

Formaldehyde 

kg 

5.70E-04 

1-butanol  3.10E-05 

NMVOC 1.29E-03 

Waste 
Materials 

Copper Catalyst Waste 2.26E-6 

Nickel Catalyst Waste 1.11E-08 

Waterborne 
Emissions 

Formaldehyde 

kg 

2.98E-05 

Copper ion  1.34E-06 

Nickel Ion 7.70E-7 

1-butanol  

kg 

1.10E-05 

BOD 5.78E-05 

COD 5.78E-05 

DOC 1.91E-05 

TOC 1.91E-05 
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The unit processes were altered to fit the Japanese production context in regards to electricity and heat 

consumed. 0.55 kg of hybrid PBS (3.6% water) is required for the production of 1 kg of the hybrid 

composite.  

Extrusion 

The extrusion of hybrid PBS (wet) into pellets was modeled based on a pre-existing process from 

EcoInvent in SimaPro, verified by Ecoinvent in 2007. The extrusion unit process was modified to fit the 

Japanese production context in regards to electricity use. The fractions of the extruded plastic that are lost 

during the extrusion process were modeled as waste disposal to municipal incineration (see Table 5). 0.50 

kg of hybrid PBS (wet) is required for the production of 1 kg of the hybrid composite.  

Drying 

The drying unit process was modelled simply as electricity consumption. This accounts for the fact that 

the process is essentially an electric oven. The consumption value was calculated for 1 kg of the hybrid 

PBS dry pellet based on a 0.35kW power source for 0.02 hour contact time and assumed an emission 

for drying of 0.041 kg of water vapour to air. Vapor emissions were calculated from Showa Denko of 

Japan’s process mass balance (Taka et al., 1994) (see Table 5). 0.50 kg of hybrid PBS pellets (dry) is 

required for the production of 1 kg of the hybrid composite.  

3.2.2.5 Composites Extrusion 

The study assumes that the extrusion technology was used for the production of both the baseline and 

hybrid composites (Gardner & Murdock, 2002; Zou, 2010; Van Den Oever, Elbersen, Keijsers, Gosselink, 

& De Klerk-Engels, 2003). The extrusion process was based on a pre-existing process from EcoInvent in 

SimaPro, verified in 2007 by EcoInvent. The extrusion unit process represents a small number of 

European and Swiss production conditions (Hischier, 2007) that were altered in this study to fit the 

Japanese production context in regards to electricity for the hybrid composite and the baseline composite. 
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The fraction of the extruded plastic that is lost during the extrusion process (0.4%) was modeled as waste 

disposal to municipal incineration. 

Table 5: Process input and outputs for the production of 1 kg hybrid PBS  

Unit 
Process and 

Location 

Flow 
Type Input/output Unit Value Data Source  

Hybrid PBS 
(3.6% Water) 
Production -
Polymerization  
(1.0 kg) 
Japan. 
 

Avoided 
Product 

BDO (unreacted) 

kg 

3.50E-02 

Taka et al. (1994) 

Input 
Materials 
and Energy 

Titanium in Ground 1.60E-05 
Petroleum-based BDO 5.31E-01 

Bio-SAC (99.5%) 6.50E-01 

Liquid Nitrogen 1.16E-01 
Electricity, Japan Mix kWh 1.37E-02 Vivoda (2011). 

Heat, Japan Mix MJ 1.82E-01 Althaus et al. 
(2007). 

Airborne 
Emissions 

Heat, Waste MJ 9.31E-02 

Taka et al. (1994) 
Tetrahydrofuran 

kg 

1.16E-01 

Nitrogen 3.97E-03 

Water Vapour  1.99E-01 

Final Waste Catalyst 9.90E-05 Titanium Tetra 
Isopropoxide 

Hybrid PBS 
(Wet) – 
Extrusion  
(1.0 kg). 
Japan. 

Input 
Materials 
and Energy 

Hybrid PBS (3.6% water) kg 1.10E-00 Taka et al. (1994) 

Waste 
Treatment 

Disposal Plastics Mixture, 
to Municipal Incineration   

kg 6.20E-02 Hischier (2007) 

Hybrid PBS 
Pellets - Drying  
(1.0 kg). 
Japan 

Input 
Materials 
and Energy 

Hybrid PBS (wet) kg 1.04E-00 

Taka et al. (1994) Electricity, Japan Mix kWh 0.70E-02 

Airborne 
Emissions Water Vapour kg 4.00E-02 

Data on the production of the two composites were based on secondary data obtained from the patent by 

Mohanty et al. (2010) (Table 6 and Table 7). The production processes for the two composites via 

extrusion were created as unit processes. Background processes for both composites are from EcoInvent.  
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Table 6: Process input and outputs for the production of 1 kg of hybrid composite via extrusion 

Unit 
Process and 

Location 

Flow 
Type Input/output Unit Value Data Source 

Hybrid 
Composite 
Production - 
Extrusion  
(1.0 kg). 
Japan 

Input 
Materials  

Hybrid PBS Pellets 

kg 

5.02E-01 
Mohanty et al. 

(2010) 

Switchgrass Fibres 5.02E-01 Kalita (2012) 

Waste 
Treatment 

Disposal Plastics Mixture, to 
Municipal incineration   0.40E-02 Hischier (2007) 

 

Table 7: Process input and outputs for the production of 1 kg of baseline composite via extrusion 

Unit 
Process and 

Location 

Flow 
Type Input/output Unit Value Data Source  

Baseline 
Composite  
Production – 
Extrusion  
(1.0 kg). 
Japan. 

Input 
Materials 

Polypropylene granulate 

kg 

7.03E-01 

Mohanty et al. 
(2010) 

Glass Fibres  3.01E-01 

Waste 
Treatment 

Disposal Plastics Mixture, to 
Municipal incineration   

0.40E-02 

 

3.2.2.6 Polypropylene Production 

Plastics used in packaging, consumer goods, and construction have been the subject of LCA studies for 

decades. These studies were supported and influenced by industry associations (e.g., Association of 

Plastics Manufacturers in Europe [APME]), and governmental departments (e.g., US EPA). Two major 

LCI databases for plastics have been developed by industry associations, one in Europe and one in the 

USA. This study used EU data from the Eco-profile of the European plastics industry (PlasticsEurope) 

because the US LCI data are incomplete and missing information on uncertainty and data quality (Suh, 

Leighton, Tomer, & Chen, 2013). 
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Polypropylene (PP) is a bulk commodity plastic that is produced by the polymerization of propylene. 

Propylene is produced from naphtha through steam cracking (Boustead, 2005). In SimaPro, EcoInvent 

provides data on the production of PP based on the average of 28 European production facilities from 

PlasticsEurope. These datasets represent cradle-to-gate system boundary that include all unit processes 

from the extraction of raw materials until the production of the PP (Hischier, 2007). This unit process was 

altered in this study to fit the Japanese production context in regards to electricity and heat. 

3.2.2.7 Glass Fibre Production 

Glass fibre (GF) is a non-metallic mineral-based reinforcing material that is widely used for automotive 

applications. GF is produced via the handling, melting and refining of raw materials (silica, soda ash, 

limestone, and cullet); the formation of glass fibres; and the finishing process. Sand the primary material 

for the production of GF is melted along with other chemicals in high-temperature furnaces resulting in a 

consistent melt (Kellenberger et al., 2007). The melted glass is formed into fibres and then treated 

chemically with water-soluble sizing and / or coupling agents (U.S. EPA, 1995).  

This study used inventory data for GF based on reports for the European Glass Manufacturing Industry.   

3.2.3 Auxiliary Unit Processes 

3.2.3.1 Electricity Generation  

Electrical energy underlies activities across almost all industrial processes. The choice of electricity 

generation sources, its emissions, and environmental profiles, are often of great impact on the results of an 

LCA study.  

Data on electricity in this study were specifically modelled to fit the geographical locations of the major 

unit processes for the production of the hybrid composite. Two electricity production profiles were 

developed, one for Japan and the other for the south eastern USA, specifically the region defined by the 
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SERC (South Eastern Reliability Council). SERC grid coverage includes Louisiana where the Myriant 

bio-SAC production facility is located. The SERC electricity mix was based on data from the Form EIA-

923, “Power Plant Operations Report” (U.S. Energy Information Administration 2012). These data are 

observed and collected from a model-based sample of plants by the U.S Energy Information 

Administration (U.S EIA) on a monthly basis (U.S. EIA, 2012).  

Electricity mixes were altered for all unit processes in the system boundaries (see Figure 16, Page 51) 

except for the cultivation of switchgrass and sorghum, and for the production of bio-SAC. The electricity 

used in the majority of unit processes were based on European electricity mixes, while in this study these 

were altered to be geographically located in Japan. A Japanese electricity mix based on 2009 generation by 

fuel type was used (Vivoda, 2011) (Table 8). Nevertheless, the emission factors associated with the 

Japanese electricity mix were still based on European averages. Electricity generated from coal and oil 

power plants were based on Belgian and French averages respectively, while electricity generated from 

nuclear power plants was based on Swiss averages. Based on economic trade statistics[7], the electricity 

distribution and transmission losses in 2009 were calculated to be 4.85% of electricity generation output. 

This percentage represents the losses that occur during distribution and transmission between the source 

and the consumer. 

Table 8: Japanese 2009 electricity generation mix by fuel type (Vivoda, 2011) 

Natural Gas Oil Hard Coal Hydro Nuclear Wind Power Solar Power 

29.3% 29.3% 24.9% 8.3% 7.1% 0.84% 0.26% 

The electricity mix used for the modeling of bio-SAC unit process was based on 2011 fuel mixes (Table 9) 

and emission factors that are representative of SERC electricity generation.    

                                                      
[7] www.tradingeconomics.com  

http://www.tradingeconomics.com/
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Table 9: SERC 2011 electricity generation mix by fuel type (U.S. EIA, 2012)  

Hard 
Coal 

Bituminious  
Coal 

Lignite 
Coal 

Natural 
Gas 

Nuclear Hydro Wood  Others 

32.7% 16.7% 0.2% 20.6% 23.8% 2.9% 1.4% 1.7% 

 

3.2.3.2 Heat Generation for Chemical Processes 

Similar to electricity, heat is utilized in almost all industrial processes, and has a great influence on LCA 

study results. In this study, all unit processes use heat to help carry out the processes, except for the 

cultivation of sorghum and switchgrass. For unit processes that are geographically located in Japan there 

are no available data on the average energy mixes used to generate heat for the chemical and plastic 

industry in SimaPro. The study created a new unit process for heat based on the energy mix provided by 

EcoInvent (Althaus et al., 2007).  It represents the average technology that is used to generate heat energy 

in the European chemical and plastics industry (Table 10). To generate 1 MJ of heat 0.3636 kg of cold 

water is required. However, the amount of input water was not taken into account because steam is 

normally used in a closed loop system. It is assumed that the technologies used to generate heat in Japan 

are similar to the European ones, with one exception, which is the electricity mix used in this case is the 

Japanese electricity mix (see Table 8).   

Table 10: Japan energy mix used for generation 1 MJ of heat (Althaus et al., 2007) 

Electricity Coal Fuel Oil Natural Gas 

0.008 kWh 0.193 MJ 0.284 MJ 0.800 MJ 

 

3.3 LCIA Impact Categories  

Pre-existing mid-point LCIA methods were used in this study to convert the input and output data into 

environmental performance indicators and impact categories for the hybrid and baseline composites. The 
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methods used were: cumulative energy demand (CED), waste heat calculated as an inventory indicator 

method, and other impact categories calculated using the TRACI LCIA method.  

3.3.1 Cumulative Energy Demand (CED) 

CED calculates the accumulated direct and indirect energy requirements associated with a product system 

(see Section 2.2.5) (Frischknecht et al., 2007b; Kim & Dale, 2008; Kraatz, Reinemann, & Berg, 2008; 

Huijbregts et al., 2010). In SimaPro the CED value is automatically calculated using preset conversion 

factors. When calculating CED, five energy resources were taken into account: non-renewable fossil, non-

renewable nuclear, renewable biomass, renewable water, and renewable wind, solar, and geothermal. 

3.3.2. Waste Heat 

In this study, waste heat is employed as an indicator to measure the energy efficiency performance of the 

product system. In SimaPro waste heat is calculated by accounting for all waste heat released in form of 

emissions to air, water, and soil (Althaus et al., 2010). The ISO 14044 (2006)  standard indicates that after 

characterization, “a set of inventory results that are elementary flows” (clause 4.4.2.5) could be presented 

as results. Under this logic, this study uses waste heat as a LCIA indicator method.  

In SimaPro, waste heat inventory indicator is a part of EcoInvent Selected LCI Results method (Goedkoop, 

Oele, de Schryver, & Vieira, 2008). Goedkoop et al. (2008) indicate that the use of any inventory indicator 

“does not replace the use of the complete set of LCI results and the application of LCIA methods” (p. 42). 

The selection of inventory indicators (e.g., waste heat and carbon monoxide) was meant to help LCA 

practitioners get access to a group of LCI results of products without any indication of their environmental 

significance. 

The growing concerns of non-renewable energy use and future economic and environmental costs (see 

Chapter 1, Section 1.1) in addition to the potential influence of waste heat reduction and recovery on 

products’ environmental performances as discussed in Chapter 2, Section 2.2.5.3, highlighted the 
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importance of incorporating waste heat indicator in this study. Yet, none of the assessed studies in the 

literature reviewed in Chapter 2 have quantified this indicator or used it as a metric for environmental 

performance of products.  

3.3.3 Other Impact Categories 

To provide a broader set of LCIA categories, the current study uses TRACI, an impact assessment method 

that is used to calculate the other impact categories that is widely applied in LCA studies in North 

America. It was developed by the U.S. EPA and is therefore highly credible (Bare, 2011). TRACI uses 

emissions factors for USA locations assessing multiple impact categories. Since this study is intended for 

North American audiences including research, industrial, and governmental partners, TRACI method is a 

relevant and useful method. Other approaches considered included alternative methods (e.g., Eco-Indicator 

95 and CML 2001) that are widely employed in LCA but that are based on European conditions.   

TRACI includes nine impact categories: ozone depletion, global warming potential, acidification, 

eutrophication, photochemical oxidation (smog) formation, carcinogens, non-carcinogens, respiratory 

effects and ecotoxicity. In this study all nine categories were used. Values were calculated in SimaPro 

software.  
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4. Results 

This chapter presents the LCA cradle-to-gate results for the reference flow of 1kg of the hybrid composite 

and 1.1 kg of the baseline composite, and provides results of the comparison between the hybrid and the 

baseline composites.  

The term “hybrid PBS” is used to describe the product that results from three unit processes: hybrid PBS 

(3.6% water) production via polymerization, hybrid PBS (wet) via extrusion, and hybrid PBS pellet via 

drying. The term “hybrid composite” refers to the 50% SG reinforced hybrid PBS composite and “baseline 

composite” refers to the 30% GF reinforced PP composite (Figures 16 and 17).   

4.1 Hybrid and Baseline Composite Comparison  

In this section the environmental impacts associated with the production of the 50% SG-reinforced hybrid 

PBS composite and the 30% GF-reinforced PP composite are presented, consistent with objective # 1 of 

this study. The results of cumulative energy demand, waste heat indicator, and other impact categories 

(calculated using TRACI method) for the production of the 1 kg hybrid composite and 1.1 kg baseline 

composite are summarized in Table 11.  

The hybrid composite had lower values for eight of the eleven assessed indicators and impact categories 

compared to the baseline composite (Table 11). Whereas, the values of ozone depletion, acidification, and 

eutrophication impact categories of the hybrid composite were higher in comparison to the baseline 

composite.    

Because these are composites, it is also important to understand the influence of the fibre component on 

the composite environmental impacts. Table 12 shows that switchgrass fibres have a small contribution to 

all of the indicators for the hybrid composite, whereas, glass fibres have a higher contribution to almost all 

the indicators of the baseline composite.  
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Table 11: Hybrid composite vs. baseline composite environmental profile results for all eleven indicators 

and impact categories for a reference flow of 1.0 kg hybrid composite and 1.1 kg baseline composite. Bold 

numbers represent the higher indicators’ values.   

Description Unit Baseline 
Composite 

Hybrid  
Composite 

% of 
Difference 

Indicator 

Cumulative Energy 
Demand MJ 80.9 48.7 -40% 

Waste Heat MJ 38.3 29.6 -23% 

Impact 
Category 

Ozone Depletion kg CFC-11 eq 1.29E-07 1.85E-07 +43% 

Global Warming 
Potential 

kg CO2 eq 2.88E+00 1.86E+00 -35% 

Smog kg O3 eq 1.60E-01 1.57E-01 -2% 

Acidification mol H+ eq 6.56E-01 7.64E-01 +16% 

Eutrophication kg N eq 4.48E-03 1.89E-02 +322% 

Carcinogens CTUh 1.15E-07 5.24E-08 -54% 

Non-Carcinogens CTUh 3.73E-07 -2.67E-07 -172% 

Respiratory Effects kg PM10 eq 2.50E-03 1.95E-03 -22% 

Ecotoxicity CTUe 3.89E+00 2.14E+00 -45% 

 

In the context of this study, what is important is whether the hybrid composite’s higher values of ozone 

depletion, acidification and eutrophication impact categories in comparison to the baseline composite are 

worth taking into consideration in the decision-making process comparing the two composites. These 

category indicators were found important to consider given experience by Schindler  (2012), Keller 

(2009), Selman & Greenhalgh (2009), Environment Canada (2001), Keller et al. (2004), Great Lakes 

Water Quality Agreement (2012) and Ontario Regulation 463/10 (2010).  
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In general, a comparison between GF and SG fibres is not considered fair unless it takes into account the 

mass difference between the two fibres. Yet, what is important in this study is that the two composites are 

functionally equivalent regardless of the fact that fibre content is different. Having said that, in comparison 

with SG cultivation, the production of GF is a highly intensive heat, electricity, and waste heat process. 

This is due to the glass melting process, which mainly uses energy generated from natural gas and 

electricity (Elvebakken, 2002 as cited by Kellenberger et al. 2007). The energy requirement and waste heat 

associated with the melting process are 12 MJ/kg and 5.8 MJ/kg, respectively as calculated by 

Table 12: Proportional influence of polymer and fibre on environmental indicators for the two composites 

for a reference flow of 1.0 kg hybrid composite and 1.1 kg baseline composite. 

Description 

Hybrid Composite Baseline Composite 

50% SG 
Fibre 

50% Hybrid 
PBS 

Polymer 

30% GF 
Fibre 

70% PP 
Polymer 

Indicator 
Cumulative Energy 
Demand 

1.2% 98.8% 20.6% 79.4% 

Waste Heat 2.4% 97.6% 47.5% 52.5% 

Impact 
Category  

Ozone Depletion 
 

3.0% 97.0% 99.8% 0.2% 

Global Warming 
Potential 

5.1% 94.9% 37.5% 63.5% 

Smog 2.0% 98.0% 70.0% 30.0% 

Acidification 
 

4% 96.0% 72.0% 28.0% 

Eutrophication 
 

0.5% 99.5% 92.0% 8.0% 

Carcinogenics 
 

4.0% 96.0% 75.0% 25.0% 

Non Carcinogenics 
 

2.0% 98.0% 99.0% 1.0% 

Respiratory Effects 
 

2.0% 98.0% 73.0% 27.0% 

Ecotoxicity 2.0% 98.0% 72.0% 28.0% 
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Windsperger (2002), and cited by Kellenberger et al. (2007). Additionally, the production process of GF 

causes a higher level of combustion emissions particularly CO2, nitrogen oxide (NOx), and hydrogen 

fluoride (HF).  These emissions also contain metallic dust and chlorides which are accounted in the 

TRACI impact assessment method under acidification, respiratory, and ozone depletion. The SG 

cultivation, on the other hand, is a low intensive, non-industrial production process. These grasses are 

grown and harvested with minimal energy and chemical inputs compared even to other commercial 

agriculture (McLaughlin et al., 1999; Samson et al., 1993; Carvalho, 2006). 

Similarly, in the comparison between the fraction of polymer contribution to the environmental profile of 

the composite, PP has a lower contribution (as a percentage) to CED, GWP, waste heat, and other category 

indicators (see above Table 12) in comparison to PBS. This is due to the economy of scale and efficiency 

of the one-step production process of PP via polymerization. PBS, on the other hand, is produced by 

means of two-stage polymerization process.  

In this comparison, it is noticeable that what influence the environmental performance of the composite is 

not whether the polymer is bio or petroleum based, but the type of reinforcing materials used in the 

composite.  

4.2 Hybrid Composite - Cumulative Energy Demand Indicator 

The CED required for the production of 1 kg hybrid composite is 48.7 MJ (Figure 18). The contribution of 

the major unit processes to CED for the production of 1 kg of the hybrid composite shows that the 

production of petroleum-BDO uses 28.2 MJ of total CED, and contributes 58% of CED.  

By looking at the production of BDO unit process in details, results indicate that heat generation and the 

production of formaldehyde are the two biggest contributors to BDO energy demand with 41%, and 34%, 

respectively. Natural gas for heat generation is responsible for 59% of heat CED value, while methanol 
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used for the production of formaldehyde contributes to 93% of formaldehyde CED value and that is a 

result to the natural gas used for methanol production.  

 

Figure 18: Contribution of major unit processes to CED required for the production of 1 kg of hybrid 

composite.  

4.3 Hybrid Composite - Waste Heat Indicator 

The amount of waste heat identified as “emissions to air, water and soil” is 29.6 MJ per 1 kg of the hybrid 

composite (Figure 19), and represents  61% of the cumulative energy demand required for the production 

of the hybrid composite.  

The production of petroleum-based BDO generates 22.3 MJ of waste heat, and contributes to 75% of 

waste heat (Figure 19). This is mainly resulting from the waste heat from natural gas burned in Japan to 

generate heat for the production of petroleum-BDO, which accounts for 61% of heat generation waste heat 

and 32% of BDO production total waste heat.  
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Figure 19: Contribution analysis of each unit process to waste heat indicator per 1 kg of hybrid composite   

 

The BDO production model in SimaPro was built by EcoInvent based on the assumption that 100% of the 

electricity used is converted to waste heat that is released to air (Sutter, 2007). A more in depth analysis on 

the waste heat associated with the production of petroleum-BDO indicates that waste heat from electricity 

use contributes 1.4% of BDO production waste heat. The technology used for the production of 

petroleum-based BDO goes back to the year 2001, yet, still represents the production technology in 

current use (Sutter, 2007). It is assumed that neither reactors heat insulation nor the heat recovery systems 

are therefore as effective as in more modern production facilities. Another possible explanation for the 

higher contribution of BDO production to waste heat indicator is that the generated waste heat has a 

temperature that makes the recovery process technologically and financially unviable (BCS Incorporated, 

2008).  
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Figure 19 shows a negative value of waste heat generated as a result of the production of bio-SAC. This is 

due to the emission and energy credit assigned as a result of the system expansion approach that was 

employed to address the AMS co-product problem. Therefore, there is a subtraction of generated waste 

heat from the production of petroleum-based AMS was considered as an avoided product and subtracted 

from the waste heat generated during the production of bio-SAC. Since the AMS waste heat value is 

greater than the combined contribution of all other unit processes, the value of bio-SAC waste heat is 

negative (Figure 19).  

Additionally, we can assume that most of the heat generated in the production of bio-SAC is recovered, 

since the factory in Louisiana is newly built using state of art technologies in regards to the insulation of 

reactors and heat recovery systems (Myriant Corporation, 2011).  

4.4 Hybrid Composite - Other Impact Categories 

TRACI characterization factors are used to calculate the results of other impact categories as discussed in 

Section 3.3.3.The results for the production of 1 kg of the hybrid composite are presented in Figure 20.  

Similar to the CED and waste heat indicators, the production of BDO contributes the most to ozone 

depletion, global warming potential, smog, carcinogens, non-carcinogens, respiratory effects, and 

ecotoxicity impacts (Figure 20), while bio-SAC production contributes the most to acidification. Figure 20 

shows values of ozone depletion, global warming, carcinogens, and non-carcinogens category indicators 

for the production of bio-SAC are negative. The reason is that some of the LCI values that are known to 

contribute to these category indicators result from the production of petroleum AMS (e.g., HCFC-22, 

arsenic, chromium, lead, and mercury). Here, as a result of the system expansion approach used to address 

the AMS co-product problem, these emissions are considered as avoided and thus subtracted from 

category indicators (see Figure 20).  
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Figure 20: Contribution of major processes to other impact categories for the hybrid composite 

production. 

The production of hybrid PBS contributes most to eutrophication. The electricity required for the 

production of oxygen used for the production of acetylene and required for the production of petroleum 

BDO contributes 99.8% of eutrophication potential as an impact category. This was found true given 

experience by Odeh and Cockerill (2008). Similar to CED and waste heat, it is the use of natural gas for 

heat in the production of BDO that contributes to ozone depletion, global warming, smog, acidification, 

non-carcinogens and respiratory effects (Figure 21). Additionally, the production of acetylene required for 
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the production of BDO contributes to eutrophication, carcinogens, and ecotoxicity indicators. This is 

mainly due to the influence of oxygen production used for the production of acetylene.  

 

Figure 21: Major processes contribution to other impact categories for BDO production. 

The contribution analysis of all the different unit processes and materials to other impact categories 

associated with the production of 1 kg bio-succinic acid are as in Figure 22. Similarly, the contribution of 

unit processes to the production of bio-SAC indicates that electricity use contributes the most to global 

warming, smog, acidification, carcinogens, non-carcinogens, and respiratory effects. This is mainly due to 

the impact of hard coal used as a part of SERC electricity grid mix as discussed in Section 3.2.3.1.  The 

cultivation of sorghum contributes most significantly to eutrophication, and ecotoxicity. Natural gas for 

heat generation contributes the most to ozone depletion.                          
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Figure 22: Major processes contribution to other impact categories for bio-SAC production. 

Figure 22 indicates that total values of ozone depletion and carcinogens impact categories are negative.  

This is a result of the co-product treatment where some emissions in the production of petroleum AMS 

(e.g., R-40, chromium, and lead) are avoided, hence, are subtracted. 

The contribution analyses results (Figure 20, Figure 21, and Figure 22) identify electricity use, heat 

generation, and the cultivation of sorghum as the biggest contributors to other impact categories calculated 

using the TRACI impact assessment method. The influence of electricity on the other impact indicators is 

important for businesses to consider electricity from renewable sources with better environmental 

performance, and policy-makers to create more incentives for using renewable energy.  
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4.5 Sensitivity and Scenario Analyses 

In this study, changes are considered significant if variation values shift by more than 10%. This is an 

arbitrary value but is consistent with suggested international practice (ISO, 2006b).  

Uncertainty analyses were performed assessing the level of confidence in data used in the product system. 

These analyses were done using the Monte Carlo simulation in SimaPro. The range of calculated 

uncertainty values are in the acceptable range of LCA studies (PRé Consultants, 2010).  

4.5.1 Sensitivity Analysis 

The influence of co-product methodology choice on results was tested. One sensitivity analysis is carried 

out to test co-product treatment method for the bio-SAC and the hybrid composite. The parameters 

considered were CED and GWP. These two indicators are widely used in literature (see Section 2.1.9) to 

assess the environmental performance of products, and are therefore easily understood across a variety of 

systems.  

By default, for the production of bio-SAC this study used the system expansion approach to address the 

co-product problem. For variation the study uses mass allocation instead. This decision was made in 

compliance with the ISO 14044 standard recommendations, which suggest that if allocation cannot be 

avoided, co-products are required to be divided based on physical association (mass, energy or heating 

values) (Weidema, 2000; Mortimer, Elsayed, & Evans, 2007; Nuss & Gardner, 2013; Iriarte & Villalobos, 

2013).  Mass allocation was used in this study as the approach for the co-product. Table 3, Section 

(3.2.2.2) indicates that the bio-SAC: AMS mass ratio is 1:1.49. Results for the sensitivity analyses are as in 

Table 13.  

There is a significant change in CED and GWP of both bio-SAC and hybrid composite when comparing 

system expansion with mass allocation (Table 13). For bio-SAC, values increased by 19% for CED and 

111% for GWP. Similarly for hybrid composite, indicator’s values are 15% and 58% higher for CED and 
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GWP, respectively. In the allocation method a co-product is not considered as avoided product, but is 

considered as a burden and its potential environmental impacts are allocated based on the amount of the 

co-product produced, in this case the AMS (as discussed in Section 3.2.2).  

Table 13: Sensitivity and scenario analyses results and percentage of change on CED and GWP category 

and impact indicators for bio-SAC and hybrid composite.  

Sensitivity 
& Scenario 
Analyses 

Bio-SAC 

Default Variation 

Category 
and Impact 
Indicator  

Co-product 
Treatment 

Feed- 
stock 

Production 
Route 

Geographical 
Location 

Co-product 
Treatment 

Feed-
stock 

Productio
n Route 

Geographical 
Location 

CED (MJ) 31.4 37.2 69.9 87.7 - 

Change (%) - +19% +123% +179% - 

GWP (kg 
CO2 –eq) 0.87 1.84 1.50 4.22 - 

Change (%) - +111% +72% +385% - 

Sensitivity / 
Scenario 
Analyses 

Hybrid Composite 

Default Variation 

Category 
and Impact 
Indicator  

Co-product 
Treatment 

Feed- 
stock 

Production 
Route 

Geographical 
Location 

Co-product 
Treatment 

Feed- 
stock 

Production 
Route 

Geographical 
Location 

CED (MJ) 48.7 56.0 68.0 74.8 44.6 

Change (%) - +15% +40% +54% -8% 

GWP (kg 
CO2 –eq) 1.9 3.0 2.8 3.84 1.58 

Change (%) - +58% +47% +102% -17% 

4.5.2 Scenario Analyses 

In this study, three scenario analyses were completed to test different initial assumptions around bio-based 

feedstocks, SAC production routes, and geographical location of production sites. Again, as in the 
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sensitivity analysis, the LCIA category indicators used were CED and GWP. The scenario analyses criteria 

are as shown in Table 14. 

Table 14: Scenario analyses criteria for assessing the production of bio-SAC and hybrid composite 

Scenario Analysis Criteria Default Variation 

Bio-based Feedstock to Bio-SAC 
Production Sorghum and Dextrose Dextrose 

SAC Production Route Bio-SAC Petroleum-SAC 

Hybrid Composite Production 
Geographical Location  

Japan Ontario 

 

4.5.2.1 Feedstock 

Initially, this study used a combination of sorghum grains and dextrose as feedstock for the production of 

bio-SAC. For variation, the study uses only dextrose. Myriant Corporation considers dextrose (from any 

source) as a potential replacement for the currently used feedstock. For this scenario analysis, the study 

used 1.82 kg of dextrose instead of 1.66 kg of sorghum grains and 1.33E-02 kg of dextrose. Table 13 

illustrates the scenario analyses results for CED and GWP impact indicators associated with the 

production of bio-SAC and the hybrid composite.   

There is a significant change in CED and GWP of both bio-SAC and hybrid composite when comparing 

sorghum and dextrose (default feedstock) with dextrose (variation feedstock). For bio-SAC, values 

increased by 123% for CED and 72% GWP. For the hybrid composite, values are 40% and 47% higher for 

CED and GWP, respectively. 

This is expected since the production of dextrose is an energy intensive process (Tsiropoulos et al., 2013) 

in comparison to the cultivation of sorghum. Additionally, the amount of dextrose used for variation is 
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greater than the amount used initially. The magnitude of change of bio-SAC values is greater than the 

hybrid composite indicator values. This is due to the fact that the contribution of bio-SAC production on 

the hybrid composite CED and GWP values is small at 14% and 15%, respectively.   

4.5.2.2 SAC Production Route 

By default, bio-SAC was used in the production of the hybrid composite; for variation, the study used 

petroleum-based SAC instead. The results of the scenario analyses are as illustrated in Table 13. 

Results indicate greater changes in CED and GWP values for bio-SAC and less significance change in 

regards to the hybrid composite when using petroleum-SAC instead of bio-SAC. Bio-SAC, The values of 

indicators are increased by 179% for CED and 385% for GWP. This is due to the high environmental 

burden associated with the production of petroleum-SAC via the catalytical hydrogenation of maleic 

anhydride followed by the hydrolysis of succinic anhydride (Patel et al. 2006; Jentsch et al. 1997). These 

processes are highly energy intensive in comparison to production of bio-SAC. The values of hybrid 

composite indicators are increased by 54% for CED and 102% for GWP. The magnitude of change for the 

hybrid composite indicators’ values is less in comparison to bio-SAC is a result for the low contribution of 

SAC to the environmental performance of the hybrid composite.  

4.5.2.3 Geographical Location 

Initially, the hybrid composite was assumed to be produced in Japan; as an alternative, the study uses 

Ontario, Canada since it is the location of the intended audience of this study. Scenario analyses results 

assessing the hybrid composite CED and GWP values are as illustrated in Table 13. 

As a result of the change in geographical location of the hybrid composite production, the study notes a 

slight improvement in CED and GWP values. For Ontario, values decreased by 8% and 17% for CED and 

GWP, respectively. This is mainly due to influence of the electricity grid mix used for the production of 

the hybrid composite in the different geographical locations. The Japanese electricity grid mix per fuel 
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type is based on Vivoda (2011) as discussed in Chapter 3, Section 3.2.3.1. Information on Ontario’s 

electricity grid mix by fuel type is based on database from the Independent Electricity System Operator 

(IESO) (2012) as described in Table 15. 

Table 15: Ontario 2012 electricity supply mix by fuel type (IESO, 2013) 

Natural Gas 
Bituminous 

Coal 
Lignite 

Coal 
Hydro Nuclear Wind Other 

14.6% 2.7% 0.1% 22.3% 56.4% 3.0% 0.8% 

* Other includes: wood waste, biogas, etc. 

Non-renewable fossil energy represents 83.5% of Japan electricity grid mix, with 25% being coal-fired 

electricity. In Ontario, 17.4% of electricity is generated using non-renewable fossil energy, with less than 

3% being coal-fired electricity. Results were expected since the coal-fired electricity has a drastic 

influence on the overall environmental performance of a product as found by others (e.g., Khoo & Tan, 

2010 and Puri, Compston, & Pantano, 2008). Nonetheless, the magnitude of change was less than 

expected.  
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5. Discussion 

The original objectives of this study (see Section 1.4) are re-visited in this chapter. This section discusses 

whether the application of bio-based materials in the automotive industry is an environmentally desirable 

alternative option, when replacing the baseline composite that is in common use. Three areas are explored 

specifically: the area of significance in the hybrid system, potential opportunities for enhancing the 

environmental performance of the hybrid composite, and the geographical influence.  

5.1 Comparison to Baseline Composite 

This study aimed to explore whether bio-based materials in general and the SG / hybrid PBS composite in 

particular are environmentally alternative options for use in different industries, mostly the automotive 

industry.  

The results of the current study align with the analysis of Weiss et al. (2012). However, there are some 

deviations from the general pattern of Weiss et al. (2012). The study by Weiss et al. (2012) assessed forty-

four LCA studies comparing bio and petroleum-based materials and concluded that bio-based materials in 

general have lower energy demand, global warming potential, carcinogens, non-carcinogens and ecotoxicity 

indicator values. However, Weiss et al. (2012) suggest that indicators of ozone depletion, smog, 

eutrophication and respiratory effects may be greater. In regards to acidification values, Weiss et al. (2012) 

found no conclusive result due to the level of high uncertainty; yet, the study stated that, in general bio-

based plastics and composites seem to reduce acidification.   

Bio-fuels studies are a relevant point of reference for the evaluation of bio-based materials.  The upstream 

production of bio-based materials and bio-fuels are similar, as both start from the cultivation of the 

agricultural feedstocks and continue to the production process via fermentation. Zah et al. (2007) 

compared 26 bio-fuels with three fossil fuels and stated that bio-fuels have lower CED and GWP, but at 

the same time results show higher value for smog, eutrophication and ecotoxicity indicators.   
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The results of this study support the choice of SG-reinforced hybrid PBS composite as an alternative 

option for use in the automotive industry. The potential change in study results from the initial ones is 

acknowledged if different sets of criteria, assumptions, and other impact categories were taken into 

account. Based on the latter, the decision making process in regards to the potential use of the hybrid 

composite as a replacement to the baseline composite is influenced to a great extent by the impact 

indicators used in the assessment.  Studies by Weiss et al. (2012), Kimura & Horikoshi (2005), and 

Huijbregts et al. (2005) supported this inference, and indicated that the inclusion of land use change, for 

example, in the LCIA will result in higher GHG emissions from the production of bio-based materials in 

comparison with conventional counterparts.  

The content of fibres in a composite represents an essential part of its structure: 50% by mass in the case 

of the hybrid composite and 30% by mass in the case of the baseline composite. For this reason, 

understanding the contribution of reinforcing fibre to the environmental performance of the composite is 

important. In the comparison between the two composites (see Section 4.1) it is apparent that the SG fibres 

contribute minimally to the environmental performance of the hybrid composite (in the range of 1%-5%); 

whereas, GF has significant influence on the environmental performance of baseline composite (varying 

from 21% to 99.8%). Therefore, the type of reinforcing material is a significant influence on the 

environmental profiles of plastic composite, regardless of whether the polymer matrix is biobased or 

petroleum based. 

Policy makers and industry experts should be aware that other combinations and compositions of 

composites can be produced, and would have different environmental profiles. Based on the results of this 

study, it is interesting to consider a hypothetical SG/PP composite. This could potentially have lower 

LCIA indicator values than either the baseline or the hybrid composite.  The lower LCIA indicator values 

are explained since PP in comparison to PBS has lower values across all assessed environmental impact 

categories and indicators (see Table 12, Section 4.1). Moreover, the SG environmental impact categories 
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and indicators are lower in comparison to GF. These findings align with those from Terasawa et al. (2008) 

in regards to the polymer GHG emissions, and by Haufe and Carus (2011) and La Rosa et al. (2013) in 

regards to the fibres.  

A broader analysis of product performance could be helpful to understand the sustainability performance 

of a product system. This is achievable by addressing different types of profiles or dimensions of the 

product system, like economic and social performance in addition to environmental performance, as in the 

spirit of LCSA (UNEP/SETAC Life Cycle Initiative, 2011). 

For industries, the economic performance of of plastic composites in general and the hypothetical SG/PP 

composite in particular is also important.In general, the cost of the bio-based materials remains higher than 

that of their conventional counterparts (Jong et al., 2012; Bell, 2013; Koronis, Silva, & Fontul, 2013). 

Whether such a new composite is suitable for applications in the automotive industry would, of course, 

need to be explored.  

A consideration that has not entered the analysis above is a potential weakness in the technical 

functionality of bio-based polymers. This was not considered in the functional unit in the analysis (see 

section 3.1.3) since the scope of study is cradle-to-gate and did not include downstream activities (e.g., use 

or end of life). Specifically, biodegradable composites (e.g., PBS composites) are more suitable for use in 

interior applications, as there is a risk that biodegradable components will hydrolyze, weaken, and degrade 

if exposed to sunlight, heat and moisture (T. Mizukoshi, personal communication, February 15, 2012; 

Koronis et al., 2013; Bledzki, Faruk, Jaszkiewicz, 2010). Adding hydrolysis inhibitor to biodegradable 

composites was found helpful to improving the hydrothermal aging, but not to stop it (Terasawa et al., 

2008). Currently, bio-based and biodegradable polymers and composites are widely used for automotive 

interior parts (Bledzki et al., 2010; Terasawa et al., 2008), for example, battery trays. The potential 

benefits of using these materials for automotive applications were discussed in details in Section (2.1.6).       
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An additional consideration that differentiates the hybrid / bio-based systems from conventional materials is 

end-of-life (E.O.L.) performance. Conventional plastics, where recycling is an option, retain some economic 

value at E.O.L; bio-based composites do not. The inclusion of end-of-life scenarios is important since the 

baseline composite retains an economic value at its end of life if properly disposed not as waste to landfill. 

Conventional composite materials can be recycled, and re-used or incinerated to recover energy. In contrast, 

the hybrid composite is supposedly biodegradable, which means it retains no financial value. This is 

because biodegradable plastics are classified as neither recyclable (have no material value) nor compostable 

(have no nutritional value), but disposed as waste to landfill (Regional Public Works Commissioners of 

Ontario [RPWCO], 2009). Furthermore, there are no proper infrastructure and landfill conditions 

(temperature, humidity, and microorganisms) that can naturally activate the biodegradation process, which 

means more anticipated problems in the landfills (RPWCO, 2009). 

When comparing the environmental performance (cradle-to-gate) of bio and petroleum based composites, 

this study suggests that it is important to focus on three main issues: the type of reinforcing materials in 

use, the energy mix used for heat production and the co-product treatment (allocation procedures).  

5.2 Areas of Significance and Enhancement Opportunities 

The generation of heat in the production of petroleum-based BDO and the use of electricity for the 

production of bio-SAC are the two areas of great influence on the environmental profile of the hybrid 

composite. These findings align with results from previous reports on conventional materials (U.S. EIA, 

2013; Wettestad, 2008) and with the literature on bio-based materials (Haufe & Carus, 2011; La Rosa et 

al., 2013; Khoo et al., 2010; Puri, Compston, & Pantano, 2008). 

There is a potential to ameliorate the environmental performance of the hybrid composite through 

improvements on the energy use (electricity and heat) and efficiency of the product system. A study by PE 

International (2011) indicates that the most widely used approaches to improve the environmental 
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performance of a chemical product are to employ alternative energy sources, use different feedstocks, or 

apply varying production routes and technologies.  

Two potential paths of change in process technology could help improve the environmental performance 

of the hybrid composite. The first relates to heat sources and electricity consumption in the production of 

BDO (Figure 21). If less fossil energy is used by means of substitution with other forms of energy there 

may be improvements in environmental performance. The second potential path is replacing the 

petroleum-based BDO with bio-based BDO. Similar to SAC, such a material would be produced using 

less energy and emitting fewer GHGs. Opportunities would also include bio-based BDO produced via the 

hydrogenation of bio-SAC using the Davy Process (Mang, 2012) or by means of the direct fermentation of 

sugar and biomass (Nexant, 2012). Bio-based BDO produced using the Davy Process offers a 33% 

reduction in non-renewable fossil energy demand and global warming potentials in comparison to 

petroleum-based BDO.  This direction is supported by results from studies by Ichikawa and Mizukoshi 

(2012), Gironi and Piemonte (2011), Khoo et al. (2010) and Tabone et al. (2010), which all indicated that 

bio-based materials in general may potentially cause lower GWP and CED in comparison with petroleum-

based counterparts.  

This current study notes that waste heat and CED (energy use) are proportionally interrelated. Results 

indicate that similar to energy demand and global warming, most of the waste heat is related to the 

production of BDO. Energy efficiency and environmental performance of chemical processes in general 

are a function of modern and innovative production technologies that use renewable feedstocks, and may 

help in saving energy demand, in addition to the use of a better energy and electricity sources (Mata, 

Smith, Young, Costa, 2003; Patt & Banhilzer, 2009). 
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5.3 Geographical Influence 

In this study, electricity drives some of the hybrid composite environmental performance impact 

categories. The mix of electricity on a power grid differs based on location. Given the novelty of bio-based 

technologies, it is relevant to consider whether the choice of geographical location, and therefore, 

electricity mix, might be a potential factor for industries to consider toward improving the environmental 

performance of bio-based materials produced (Collet et al., 2011).  

In the product system considered, for example, processes assumed to be in Japan, could instead be 

geographically located in Ontario. Such a scenario assumes that all the production facilities of materials 

are technologically identical except for their choice of electricity mix. The hybrid composite would then 

have lower values for CED, GWP, and waste heat indicators. This can be explained by the fact that in 

Onatrio, electricity from fossil sources accounts for 17.4%, while in Japan it accounts for 83.5%. The 

magnitude of change in results were less than expected (between 8-15% for CED, GWP, and waste heat), 

yet, such a shift in location is environmentally significant taking into consideration the volume of 

production through-out the operational life-time of the production facility.    

Similar, although the impact of electricity on the environmental profile of BDO is minimal, petroleum-

based BDO produced in Ontario instead of Japan would likely have lower CED and GWP indicators. This 

shifts the assumption that bio-SAC production is geographically located in Ontario instead of Louisiana, 

USA. As a result of such change it would be likely to have a lower energy demand and GWP indicators’ 

values due to the lower content of non-renewable fossil energy (mainly coal) in electricity grid mix in 

Ontario (2.8% as of 2012) in comparison with SERC electricity grid mix (49.6%). The magnitude of 

change in the environmental performance for the production of petroleum-based BDO and bio-SAC as a 

result of geographical change is likely to be greater in comparison with the hybrid composite. This 

observation is drawn based on results from Section 4.5.2 that show that the level of change in 

environmental performance of the intermediate products are greater than those of final products. Based on 
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the above, a broad observation can be drawn that the electricity mix in general has an influence on a 

system environmental performance, whether these materials are bio or petroleum-based.  

A shift in location would affect other decisions made in the LCA study. There would be a logical concern 

whether the co-product treatment methodology would remain valid or would need to be reconsidered. 

AMS produced as a co-product during the production of bio-SAC is sold locally in Lousiana as fertilizer. 

However, if an alternative location had no demand for the co-product, or if the co-product had significant 

impact on market prices, a different co-product treatment methodology would be necessary. Section 4.5.1 

noted significant influences in the environmental performance indicators for the hybrid composite as a 

result of changes in co-product treatment method.  

According to Weidema and Wesnaes (1996) addressing the potential influence of location on a product’s 

environmental performance is important. The findings of the current study in particular and any other LCA 

studies in general are not generalizable, unless, the significance of location is considered (McKone et al., 

2011; Khoo et al., 2010; Quantis, 2009; Ciroth et al., 2002). 

5.4 Policy and Business Implications  

For the intended audience of this study as introduced in Chapter 1, it is hoped that the results will be of 

value. 

1. The results of this study should be useful to policy-makers for future developments of Ontario 

energy infrastructure since, that energy-in-process of the production of bio-based materials are just 

as critical, if not more so, than the materials used in the manufacturing processes. This study 

showed that energy is the major contributor to the environmental impacts of bio-based materials, 

using clean energy will potentially result in a better environmental performance. Ontario has 

relatively clean energy at grid, in addition to the abundance of natural resources, and reliable infra-

structure, which support the agricultural and economic development opportunities in the province, 
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to ensure a competitive, innovative, and continuously growing economy that may potentially, help 

to position Ontario as a destination for global investors in the bio-industries in general and auto 

industry in particular. Furthermore, this study should inform policy-makers that supporting the 

development of future agricultural activities to mass produce bio-fibres for reinforcing plastic 

materials is not the ideal choice from an environmental prospective. This study results, showed 

that the contribution of SG fibres to the environmental performance of the hybrid composite is 

very minimal. For this reason, whether the natural fibres are locally cultivated and produced or 

imported has no significant environmental influence.       

Additionally, policy-makers could use the results of this LCA study to explore the potentials of 

future implementation of regulations and industry incentives, to provide transparent information on 

the environmental performance of bio-based materials. Moreover, acknowledging the fact that bio-

based industries are one of the bases of a bio-based economy, that is not only based on food, feed, 

and bio-fuels, but on advance industrial chemicals, and materials that may potentially replace the 

conventional counterparts in several industrial sectors, mainly automotive. However, the 

environmental performance of bio-based materials in general and the newly developed hybrid 

composite alone is not sufficient to build a solid decision to support moving forward toward a bio-

economy. Decisions should be based on the big picture that includes the development of 

agricultural, business, economic, social, food safety, and rural policies, which ensure balance 

between economic and industrial prosperity, social and environmental justice.   

2. Businesses could use this study to understand the potential environmental significance and 

benefits of bio-based materials, through identifying the environmental impacts of the different 

design and production stages, processes, and flows used on the environmental performance of the 

bio-based materials and the efficiency of its production system. Moreover, to recognize the 

potential to improve the overall environmental profile of these materials and the different 
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production stages and processes. Businesses are continuously looking for replacement materials 

that are mass produced and technically equivalent for the currently used materials, yet, with a 

better environmental and economic performance.  Additionally, this study informs businesses of 

alternative potential options, which could offer better environmental and economic performances 

in comparison to both the hybrid and baseline composites.   

Ontario automotive parts manufacturers are trying to regain their position among the top 10 global 

exporters8 through exploring future opportunities in the global bio-based auto parts market. 

However, recapturing this position is only possible if new generations of bio-based materials with 

a better financial, technological, and environmental performance are developed.  

This study holds valuable environmental insight for businesses, since; their procurement decisions 

have more power to influence the environmental impacts of products more than any other life 

cycle stage in their supply chain.            

5.5 Future Research 

A number of future research opportunities were identified: 

1. There is value in a future study using bio-based BDO instead of conventional BDO as a 

potential path for improving the environmental performance of the hybrid composite. Technically, 

such a polymer would no longer be “hybrid” but would then be almost all bio-based.  

                                                      
[8]  http://www.newswire.ca/en/story/1160775/canada-s-auto-parts-industry-gaining-ground-still-room-for-growth-

scotiabank 

 

http://www.newswire.ca/en/story/1160775/canada-s-auto-parts-industry-gaining-ground-still-room-for-growth-scotiabank
http://www.newswire.ca/en/story/1160775/canada-s-auto-parts-industry-gaining-ground-still-room-for-growth-scotiabank
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2. It is recommended that future study should use indicators in addition to the LCIA metrics 

assessed here.  Other considerations should include land use change (direct and indirect), loss of 

biodiversity, water and non-renewable resource depletion.  

3. It is recommended that future researches consider the environmental performance of the hybrid 

composite through its whole life cycle (cradle-to-grave). Specifically, it is desirable to include 

biodegradation activities and impacts in a more complete analysis of potential environmental 

performance.  

4. It is recommended that future researches pursue the interesting opportunity to explore the 

environmental performance of a SG-PP composite as a potential environmental and economic 

replacement to the hybrid and baseline composite.     

5. It is recommended that, in an ambitious and wider-scoped research, a system-thinking approach 

to LCA that looks at the environmental performance of bio-based materials as a part of a socio-

economic whole system. Conventional LCA is an imperfect tool as it does not yet address social and 

economic aspects and impacts of a product.  

5.6 Conclusion  

This study presents the first cradle-to-gate LCA of switchgrass reinforced hybrid poly (butylene succinate) 

composite. This was done to investigate the environmental performance of this newly developed 

composite in comparison to the baseline composite, identify the hotspots (heat and electricity), and 

recognize potential improvements that could help to improve the environmental impacts associated with 

the production of the hybrid composite.  

When comparing the environmental performance (cradle-to-gate) of bio and petroleum based composites, 

it is important to focus on three main issues: the sources of energy used in the production process, the 

reinforcing materials in use and the co-product treatment methodology. Results revealed that the 
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reinforcing material, not the polymer is what drives the potential environmental impacts of the produced 

composites, especially if the sources of energy in use are identical.   

The intention of the current multidisciplinary study is not to provide an absolute answer or a conclusive 

result, yet, it is expected to contribute to the general knowledge and understanding of the potential 

environmental impacts associated with the production of bio-based materials.   
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