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Abstract 

In human microbiome analysis, sequencing of bacterial 16S rRNA genes has revealed a role for 

the gut microbiota in maintaining health and contributing to various pathologies. Novel 

community analysis techniques must be evaluated in terms of bias, sensitivity, and 

reproducibility and compared to existing techniques to be effectively implemented. Next-

generation sequencing technologies offer many advantages over traditional fingerprinting 

methods, but this extensive evaluation required for the most efficacious use of data has not been 

performed previously.  Illumina libraries were generated from the V3 region of the 16S rRNA 

gene of samples taken from 12 unique sites within the gastrointestinal tract for each of 4 

individuals. Fingerprint data were generated from these samples and prominent bands were 

sequenced. Sequenced bands were matched with OTUs within their respective libraries. The 

results demonstrate that denaturing gradient gel electrophoresis (DGGE) represents relatively 

abundant bacterial taxa (>0.1%). The β-diversity of all samples was compared using Principal 

Coordinates Analysis (PCoA) of UniFrac distances and Multi-Response Permutation Procedure 

(MRPP) was applied to measure sample cluster strength and significance; indicator species 

analysis of fingerprint bands and Illumina OTUs were also compared. The results demonstrate 

overall similarities between community profiling methods but also indicate that sequence data 

were not subject to the same limitations observed with the DGGE method (i.e., only abundant 

taxa bands are resolved, unable to distinguish disparate samples). In addition, the effect of 

stochastic fluctuations in PCR efficiency (“PCR drift”) has not been rigorously tested and may 

differ for DGGE and next-generation sequencing. I compared pooled and individual reactions for 

samples of high and low template concentration for both Illumina and DGGE using the 

combined V3-V4 region of the 16S rRNA gene, and demonstrated that template concentration 
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has a greater impact on reproducibility than pooling. This research shows congruity between two 

disparate molecular methods, identifies sources of bias, and establishes new guidelines for 

minimizing bias in microbial community analyses.  
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Chapter 1. Introduction 

1.1 The human microbiome 

1.1.1 Introduction 

 

The impact that microorganisms have on human health has been a subject of study since the 

germ theory of disease replaced earlier explanations of illness in the late 19th century (Pasteur 

1881). Koch’s postulates, which describe the criteria necessary to link a given microorganism to 

the disease it causes, shaped future study of medical microbiology to the search for, and defense 

against, pathogenic microorganisms (Koch 1890). This focus on microorganisms as pathogens 

brought about a war on Bacteria (“germs”) that is ongoing. Only recently have researchers begun 

to investigate the abundance of microbial species that inhabit non-pathogenic niches within the 

environment provided by the human body.  

 

There are over 100 trillion microorganisms inhabiting the human gut, collectively known as the 

human gut “microbiome” or “microbiota” (Frank and Pace 2008). Though these terms are 

sometimes used interchangeably, “microbiome” refers to the collective genomes of the 

microorganisms whereas “microbiota” refers to the organisms themselves. Though frequently 

referred to as commensals, these microorganisms are more accurately classified as mutualists 

because of the beneficial relationship that they have with their hosts. Gut microbes metabolize 

energy sources that are otherwise inaccessible to their hosts, such as cellulose and resistant 

starches (Sonnenburg et al. 2005; Turnbaugh et al. 2006). Primary fermenters in the large 

intestine also produce short chain fatty acids that contribute about 10% of daily caloric intake in 

a typical western diet (Gill et al. 2006). Together, the genomes of gut microorganisms encode 

genes for the synthesis of essential amino acids and vitamins, and the detoxification of 
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potentially harmful xenobiotics (Gill et al. 2006). Beyond their metabolic contributions, the gut 

microbiota also influence development of the immune system: germ-free mice have reduced 

levels of helper T cells and cytotoxic T cells, as well as reduced levels of Immunoglobulin A and 

other immunological proteins (Round et al. 2010). Because of the magnitude of the impact 

microorganisms have on humans, many researchers have begun referring to a human 

“superorganism”, which includes the microbiota (Gill et al. 2006; Li et al. 2008; Sleator 2010).  

 

1.1.2 Normal composition 

 

The gut ecosystem is the densest known microbial habitat (Whitman et al. 1998). It is estimated 

that one gram of stool contains between 10
11

 and 10
12

 bacteria, making it 60% microbial by mass 

(O'Hara and Shanahan 2006). Throughout the gastrointestinal tract, both diversity and density of 

the microbiota increase along two axes: from proximal (mouth) to distal (colon) and from the 

tissue to the lumen (Sekirov et al. 2010).  

 

Although fluctuations in microbial composition were previously thought to be infrequent and due 

to factors such as antibiotic use or diarrhoea (Simon and Gorbach 1984), more recent studies 

have shown this is not the case. The microbial composition of the gut varies over time, even 

from day to day, but differences between individuals and across body sites persist (Caporaso et 

al. 2011). The gut microbiota is mainly composed of Bacteria, but also includes Archaea and 

Eukaryotes, as well as viruses (Ley et al. 2006). Culture-based methods have shown that 

anaerobic bacteria dominate over aerobic bacteria by a factor of 100 to 1000 (Simon and 

Gorbach 1984). 
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The community composition of the gut is characterized by shallow diversity. Most members of 

the gut belong to the phyla Firmicutes and Bacteroidetes, with lower abundances of 

Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacteria 

(Hugenholtz et al. 1998; Human Microbiome Project Consortium 2012; Stearns et al. 2011). The 

low diversity of the gut microbiota at a phylum level is juxtaposed with high levels of species 

and subspecies diversity: there are approximately 1000 species of bacteria in the gut (Human 

Microbiome Project Consortium 2012). This pattern of diversity may reflect adaptive radiation: a 

few early colonists resulting in a variety of descendant organisms (Ley et al. 2006).  

 

A variety of factors have been theorized to influence the shallow diversity of the gut microbiota. 

Compared to other microbial environments, such as soils and oceans, the mammalian gut has 

existed for a very short time: the microorganisms that inhabit the gut have not diverged 

sufficiently to form many separate phyla (Ley et al. 2006). The nature of the gut environment 

also results in a combination of competing selective pressures that differs from abiotic habitats: 

the host requires functional redundancy for stability whereas the microorganisms favour 

functional specialization to reduce interspecies competition for nutrients (Ley et al. 2006). The 

homogenizing force of mixing in the gut due to the muscular contractions of mechanical 

digestion also reduces niche breadth allowing for greater diversity at a shallow phylogenetic 

level (Ley et al. 2006).  

 

  

https://paperpile.com/c/8sUREf/2QUy
https://paperpile.com/c/8sUREf/2QUy
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1.1.3 Development of the microbiota 

 

Though humans were previously thought to be sterile prior to colonization during birth, 

increasing evidence suggests that this is not the case. Microorganisms have been found in 

umbilical cord blood (Jiménez et al. 2005), amniotic fluid (DiGiulio et al. 2008), and meconium 

(Jiménez et al. 2008) of healthy neonates. The inoculum received during birthing also has a large 

impact on the developing microbiota: that of vaginally delivered infants resembled their mothers’ 

vaginal microbiota (dominated by Lactobacillus, Prevotella, or Sneathia spp.) whereas that of C-

section infants resembled that of their mothers’ skin microbiota (dominated by Staphylococcus, 

Corynebacterium, and Propionibacterium spp.; Dominguez-Bello et al. 2010). Transfer of 

microbiota from mother to child continues after birth with lactic acid bacteria being transferred 

through breast milk (Martin et al. 2003; Martin et al. 2012). The microbiota of exclusively 

breastfed infants is characterized by a lower diversity than that of partially formula-fed infants 

due to lower diversity within the Firmicutes, and also by a higher relative abundance of 

Bifidobacteria (Azad et al. 2013).  

 

As the gut microbiota of infants develops into its climax community, the influences of these 

early factors is obscured, but not eliminated. Early colonizers can shape their environment to be 

more favourable for their growth by regulating gene expression in epithelial cells and thereby 

influence the composition and structure of the developing microbiota (Hooper and Gordon 

2001). The enduring influence of the initial colonizers is exemplified by the fact that the 

microbiota can reflect kinship relationships, with inherited genotypes acting on the initial 

inoculum that is received from the mother as well as subsequent colonizers (Ley et al. 2006).  
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1.1.4 Metabolic functions 

 

The gut microbiota act as an anaerobic bioreactor in fermenting non-digestible carbohydrates 

such as cellulose, pectins, and resistant starches as well as unabsorbed sugars and alcohols, and 

endogenous mucus (Cummings et al. 1996; Roberfroid et al. 1995). This fermentation provides 

as much as 8% of the total energy harvested by the host (Institute of Medicine of the National 

Academies 2006) and conventional mice have been shown to have 40% more body fat than 

germ-free mice on the same diet (Bäckhed et al. 2004). The microbiota also differ between obese 

and lean individuals in ways that are hypothesized to affect the host’s ability to extract energy 

from food (Hooper and Gordon 2001). These changes are apparent in the relative abundances of 

the two dominant bacterial phyla, Bacteroidetes and Firmicutes, resulting in an increased ability 

to extract energy in obese individuals (Turnbaugh et al. 2006). Jumpertz and coworkers showed 

that an increase of nutrient load resulted in a 20% increase in Firmicutes and a corresponding 

decrease in Bacteroidetes: this shift resulted in an increased capacity for energy harvest of about 

150 kcal (Jumpertz et al. 2011).  

 

1.1.5 Impact on the immune system 

 

The purpose of the immune system is to recognize and respond to pathogenic microorganisms, 

but intestinal microorganisms are not subject to indiscriminate eradication. The symbiosis of 

humans and their microbiota requires our immune system to be tolerant towards hundreds of 

species of microorganisms while simultaneously remaining vigilant against potential pathogens 

and preventing these microbes from penetrating the intestinal epithelium (Sommer and Bäckhed 
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2013). The microbiota themselves provide some protection from pathogenic organisms by means 

of niche occupation. The normal microbiota provide stability and prevent colonization by 

pathogens (Guarner and Malagelada 2003) by competing for epithelial attachment sites (Bernet 

et al. 1994) and nutrients (Hooper et al. 1999).   

 

The gut microbiota have a demonstrated effect on the immune system, including surface barriers: 

in the absence of microorganisms, intestinal epithelial cells have decreased cell-turnover rates 

and altered microvilli (Abrams et al. 1963). The epithelium of germ-free mice also has fewer 

goblet cells and a thinner mucus layer, which reverts to a normal phenotype upon exposure to the 

bacterial molecules lipopolysaccharide and peptidoglycan (Macpherson and Uhr 2004). In 

humans, the gut-associated lymphoid tissue (GALT) contains more immune cells than other 

body locations (Brandtzaeg et al. 1989) and this is likely due to the gut being so highly populated 

by microorganisms. The GALT of germ-free pigs has lower levels of immune cells (Butler et al. 

2000) and this trend is remediated after colonization of the gut (Umesaki et al. 1993).  

 

As well as influencing the development of the immune system within individuals, gut microbiota 

likely also influence the evolution of our immune system. Complex, co-evolved microbial 

communities are a common feature among vertebrates, while invertebrates seem to only harbour 

small numbers of bacterial species. It has been suggested that these microbial communities are 

responsible for the evolution of adaptive immunity, the branch of the immune system that learns 

from previous exposure, which is exclusive to vertebrates (McFall-Ngai 2007).   
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Tolerance towards our microbiota seems to be achieved by restricting their penetration outside of 

the lumen of the gut (Macpherson and Uhr 2004). The immunoglobulin IgA has an important 

role in this regulation (Suzuki et al. 2004): it coats the bacteria of the gut (Round and Mazmanian 

2009) and acts as a chemical barrier to prevent them from crossing the gut epithelium (Sommer 

and Bäckhed 2013). Some microbial cells do penetrate the epithelium where they are taken up by 

dendritic cells which then migrate to mesenteric lymph nodes and induce naive B cells to 

produce IgA (Macpherson and Uhr 2004). This process results in an estimated 80% of antibody 

production in humans (Brandtzaeg 2009). The immune system remains systemically ignorant of 

the microbiota because the immune response is local, not reaching further than the mesenteric 

lymph nodes (Macpherson et al. 2005).  

 

1.1.6 The gut microbiota and disease 

 

An increasing number of diseases and disorders have been correlated with an altered gut 

microbiota. Crohn’s disease and ulcerative colitis, the two most common forms of Inflammatory 

Bowel Disease (IBD), are both associated with increased numbers of bacteria that adhere to the 

intestinal mucosa such as Enterobacteriaceae, including Escherichia coli, and other 

Proteobacteria (Nagalingam and Lynch 2012). IBD is characterized by atypical levels of 

inflammation in the gastrointestinal tract and associated with higher antibody titres against the 

microbiota than found in healthy controls (Round and Mazmanian 2009). In most cases this 

systemic immune response is directed against organisms that have the capacity to be pathogenic 

(pathobionts) such as Helicobacter, Clostridium, and Enterococcus (Round and Mazmanian 
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2009). The gut microbiota has also been implicated in metabolic disorders including obesity, 

type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD; Ley et al. 2005).  

 

1.1.7 The gut-brain axis 

 

The impacts of the human microbiome on the host greatly exceed contributions to nutrient 

catabolism and the ability to outcompete pathogens. Gut “dysbiosis” has been implicated in an 

ever-increasing number of outwardly unrelated medical conditions ranging from chronic fatigue 

syndrome (Lakhan and Kirchgessner 2010) to autism (Parracho et al. 2005). There is a high 

comorbidity of depressive disorders and functional gastrointestinal ailments such as IBD: up to 

90% of subjects with IBD have a comorbid psychiatric condition (Whitehead et al. 2002). This 

correlation has motivated a variety of murine research studies. In 2004, Sudo and coworkers 

demonstrated that germ-free mice have a hyperactive hypothalamic-pituitary-adrenal (HPA) axis 

compared to conventional mice, meaning they have an exaggerated stress-response (Sudo et al. 

2004). In addition, changes to the HPA axis due to early life stress result in an altered gut 

microbiome (O'Mahony et al. 2009), demonstrating the bi-directionality of this relationship. 

Germ-free mice also have decreased cortical levels of Brain Derived Neurotrophic Factor 

(BDNF), a molecule responsible for neuronal cell growth and plasticity, as well as the 

monoamine neurotransmitters norepinephrine and 5-hydroxytryptamine (5-HT, commonly 

known as serotonin) (Forsythe et al. 2010). 

The effects of the gut microbiota are further supported by findings that some of these 

microorganisms are capable of producing neuroactive molecules such as serotonin, melatonin, 

acetylcholine, and gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter 
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of the central nervous system (CNS; Iyer et al. 2004). These neuroactive compounds may act 

directly on the human nervous system. Gut microbes also affect the central nervous system 

indirectly through Toll-like Receptors (TLRs) and immune cells, resulting in altered levels of 

circulating cytokines, through short chain fatty acids (SCFAs). The SCFA butyrate, a product of 

anaerobic bacterial metabolism, has been shown to have antidepressant effects when injected 

systemically (Schroeder et al. 2007). Butyrate is a histone deacetylase inhibitor that has the 

capacity to modulate epigenetic modifications via chromatin remodelling, which has been linked 

to mood disorders (Tsankova et al. 2006). This may be a result of free fatty acids interfering with 

the binding of albumin to tryptophan. Tryptophan is an amino acid precursor to serotonin (5-

HT), the depletion of which is associated with anxiety and depression (Graeff et al. 1996). 

Tryptophan which is bound by albumin is unavailable for uptake by the CNS, so if fatty acids 

interfere with this binding they may increase the amount of tryptophan available for uptake by 

the CNS (Gentil et al. 1977; Maes 2011).  

The inflammatory immune response observed in cases of depression is also associated with gut 

dysbiosis. Commensal gut microbes have been linked to the up-regulation of IL-10, an anti-

inflammatory cytokine, and development of healthy Treg populations, which are responsible for 

suppressing activation of the immune system and preventing autoimmune disorders (Forsythe et 

al. 2010; Macpherson and Uhr 2004; Ostman et al. 2006).  
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1.2 Microbiome community analysis 

1.2.1 Introduction 

 

More than 99% of microorganisms in many natural environments are not readily cultivable 

(Streit and Schmitz 2004). E. coli is thought of as a common gastrointestinal bacterium because 

it is easily cultured, however this Gammaproteobacteria member usually constitutes less than 

1% of gut species (Hamady and Knight 2009). Culturing is an invaluable tool, but it falls far 

short in revealing the microbial diversity of the gut environment. For this reason molecular 

microbiological methods are necessary for the study of these environments.  

 

When characterizing microbial communities, marker genes are targeted for amplification by 

PCR. The majority of microbial ecology studies have targeted the 16S rRNA gene because it is 

found in all prokaryotic microorganisms, is not prone to horizontal transfer, and it has both 

conserved regions and nine variable regions from which targets can be selected (Inglis et al. 

2012; Neufeld and Mohn 2006). Drawbacks of the 16S rRNA gene include that different 

microbial taxa possess variable gene copy numbers, which hinders assessment of relative 

abundances (Neufeld and Mohn 2006).  

 

1.2.2 Polymerase chain reaction 

 

Polymerase chain reaction (PCR) is useful for effective analysis of the human microbiome and 

other microbial communities, but it suffers from inherent biases. These biases can be classified 

into two general categories: selection, which is the result of inherent differences in amplification 
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efficiencies, and drift, which is the result of stochastic fluctuations and therefore non-

reproducible (Wagner et al., 1994). One aspect of selection is the tendency towards a 1:1 ratio of 

all products due to more abundant templates being less available for amplification because of 

reannealing (Suzuki and Giovannoni 1996). Although bias caused by differences in primer 

binding energies is not easily surmounted, reducing the number of rounds of amplification was 

proposed in order to limit the tendency toward this homogeneous product ratio (Inglis et al. 

2012; Polz and Cavanaugh 1998; Wagner et al. 1994). Bias caused by drift can be minimized by 

pooling replicate reactions because the way in which drift biases the products varies in each 

replicate as it is non-reproducible (Inglis et al. 2012; Polz and Cavanaugh 1998).  

 

1.2.3 Denaturing gradient gel electrophoresis 

 

Denaturing gradient gel electrophoresis (DGGE) is a fingerprinting technique which exploits two 

properties of DNA: partially denatured DNA cannot migrate through a polyacrylamide matrix, 

whereas double-stranded helices can (Lerman et al. 1984), and the melting temperature of a 

fragment of DNA depends on its sequence (Green et al. 2010; Muyzer and Smalla 1998) . As a 

result, DNA fragments of the same length can be electrophoretically separated on a gel by 

sequence, resulting in a visual representation of a sample’s community structure. DGGE uses a 

modified PCR to amplify fragments of the same length consisting of organismal DNA with the 

addition of a GC-rich region. This GC clamp prevents complete denaturation, which would result 

in single stranded DNA that would otherwise move rapidly through the gel (Muyzer et al. 1993).  

DGGE allows multiple samples to be analyzed rapidly and economically (Green et al. 2010), 

which is imperative in microbial ecology as microbial ecosystems should be studied over time to 

https://paperpile.com/c/8sUREf/rOVD0
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observe interactions between microorganisms and their environment (Muyzer and Smalla 1998). 

Compared to sequencing, DGGE is orders of magnitude less expensive and time-consuming 

(Inglis et al. 2012; Muyzer and Smalla 1998), although this is becoming decreasingly true with 

advances in sequencing technologies. In addition, DGGE allows for bands that change in 

intensity with changing conditions to be picked and sequenced (Inglis et al. 2012; Muyzer et al. 

1993) and can be very effective at identifying abundant indicator organisms because of this 

characteristic (Muyzer and Smalla 1998).  

 

Despite the strengths of DGGE, this method has limited resolving power and cannot detect 

organisms that represent much less than 1% of the sample community, even when using SYBR 

Green I stain to decrease background staining (Muyzer and Smalla 1998). It also works best with 

low diversity samples because high diversity samples generate many bands, causing individual 

bands to not be easily discernible (Green et al. 2010; Inglis et al. 2012). DNA fragments stop in 

the gel after the portion with the lowest melting temperature denatures, so fragments that vary 

from each other outside of this area may still result in a single band (Fischer and Lerman 1980; 

Lerman et al. 1984). Unrelated sequences can also result in bands in the same location on a gel 

(Muyzer et al. 1993) and one species can produce multiple bands due to multiple 16S rRNA 

operons (Nübel et al. 1996). DGGE is very flexible in terms of what target region is used (Green 

et al. 2010), but it is optimally applied to separating fragments of less than 500 base pairs (Myers 

et al. 1985).  

 

Because of its inability to resolve and detect low abundance organisms, DGGE is not able to 

completely visualize microbial communities or evaluate the diversity of high diversity samples. 
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However, it excels in initial screenings of many samples (Green et al. 2010) because it provides a 

rapid qualitative and semi-quantitative visual representation of community structure (Muyzer et 

al. 1993). Additionally, it is not capable of providing accurate quantitative diversity analysis due 

to the indirect relationship of species to bands within a fingerprint, resulting in biases in species 

richness and relative species abundance (Neilson et al. 2013). The strengths and weaknesses of 

this fingerprinting technique are well-complemented by sequencing-based characterization 

(Inglis et al. 2012).  

 

1.2.4 Sequencing 

 

DNA sequencing-based studies of the human microbiome can either be amplicon-based, with 

marker genes being sequenced to identify community members, or metagenomic, with randomly 

sheared fragments of DNA being sequenced. Metagenomic sequencing has the advantage of 

providing more functional information about a community but its random nature results in a 

sacrifice to taxonomic resolution, so amplicon sequencing is typically included in studies that 

aim to compare the identities of microorganisms within multiple samples (Kuczynski et al. 

2012).  

 

The dideoxy method of sequencing, now known as Sanger sequencing, was introduced in 1977 

and remained the method by which almost all sequencing was conducted for approximately 30 

years (Shendure and Ji 2008). Sanger sequencing uses chain-terminating nucleotide analogs to 

generate nucleotide-specific terminated fragments that are electrophoretically separated by size 

allowing the sequence to be read from terminal nucleotide of each fragment from shortest to 
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longest (Sanger et al. 1977). After decades of gradual improvements, Sanger sequencing is now 

capable of read lengths up to approximately 1000 bp with 99.999% accuracy (Shendure and Ji 

2008). Still, “next-generation” sequencing (NGS) has become the preferred method due to being 

“massively parallel”, thereby allowing for vastly more sequence reads to be obtained per 

experiment. This increase comes with sacrifices to read length and accuracy (Hutchison 2007), 

though these areas are constantly improving as they are solely a function of signal-to-noise ratio 

and not due in part to gel-related factors as is the case with Sanger sequencing (Mardis 2013). 

Because of this high degree of parallelism, avoidance of E. coli transformation and colony 

picking, and decreased reagent volumes required due to the immobilization of the molecules on a 

surface (Mardis 2013), next generation sequencing is significantly less costly and labour 

intensive than Sanger-based sequencing (Shendure and Ji 2008).  

 

The predominant NGS platforms all utilize sequencing-by-synthesis (Inglis et al. 2012), which 

involves a step-wise reaction: nucleotide addition, nucleotide detection, and washing to remove 

fluorescent labels (Mardis 2013). Common to all sequencing-by-synthesis technologies (Table 1) 

is that PCR amplicons from a single molecule become spatially clustered, allowing for a signal 

bright enough to be detected upon nucleotide addition (Shendure and Ji 2008).  

 

The first NGS method to become commercially available was 454 pyrosequencing, wherein each 

of the four nucleotides is added sequentially, and nucleotide additions release a pyrophosphate, 

which is detected by luciferase activity. The main source of error associated with pyrosequencing 

is indels resulting from misread homopolymer runs (Hutchison 2007; Shendure and Ji 2008). 

Illumina uses reversible chain-terminating nucleotides that are unblocked when the nucleotide-
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specific fluorescent tag is removed by washing. This suffers from increased base substitution 

errors due to the modified bases (Hutchison 2007). SOLiD (Supported Oligonucleotide Ligation 

and Detection) differs from 454 and Illumina in that it uses sequencing by ligation instead of by 

synthesis and as a result every base is matched to a probe twice, resulting in greater accuracy but 

shorter read lengths and longer run times (Hutchison 2007).  

 

Table 1. Comparison of commonly used next-generation sequencing technologies as of 12/2013 

from manufacturers’ websites.  

 Run time Read length 

(average) 

# of single reads 

(amplicon) 

cost per run 

Illumina MiSeq ~65 hours 2 x 300 bp 25 million ~$1000 

454 GS Jr. ~10 hours ~400 bp 70000  ~$1000 

SOLiD 5500 

Wildfire 

10 days 2 x 50 bp 1.2 billion ~$2500 

http://res.illumina.com/documents/products/datasheets/datasheet_miseq.pdf, http://www.gsjunior.com/instrument-

workflow.php,http://www3.appliedbiosystems.com/cms/groups/global_marketing_group/documents/generaldocume

nts/cms_088661.pdf 

 

 The output of next-generation targeted amplicon sequencing is a complex dataset that requires 

extensive downstream analysis to produce interpretable results (Inglis et al. 2012). 

Bioinformatics tools are available to aid in this analysis. These tools include the software 

package QIIME (Quantitative Insights Into Microbial Ecology), a tool that takes raw sequence 

data and performs Operational Taxonomic Unit (OTU) picking, taxonomic assignment, and 

downstream statistical analysis (Caporaso et al. 2010). More recently, AXIOME (Automation, 

eXtension, and Integration Of Microbial Ecology) was produced to streamline QIIME (as well as 

mothur, another microbial analysis package; Lynch et al. 2013).  
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Next generation sequencing is susceptible to a variety of biases. Multiplex sequencing allows for 

parallel sequencing of multiple samples using unique, sample-specific “barcodes” that are added 

to the fragment to be sequenced. These barcodes can be added by ligation, but modified 

“barcoded primers” are more commonly employed as they introduce less bias (Alon et al. 2011). 

Berry and colleagues used 11 different barcoded primers in triplicate on the same sample from 

the mouse gut lumen and demonstrated that these primers still result in less reproducible data 

sets than primers that are not barcoded, and the bias they introduce cannot be predicted from 

secondary structure of the primer (Berry et al. 2011).  

 

Sequencing results are biased by the method employed for DNA extraction (Martin-Laurent et al. 

2001) and sample storage conditions (Cardona et al. 2012). Frozen samples maintain the highest 

alpha diversity and differ least in beta diversity (Rubin et al. 2013). Low concentration samples 

are particularly susceptible to bias due to the increased impact of stochastic processes during 

PCR (Chandler et al. 1997). 

 

1.3 Hypotheses and objectives 

1.3.1 Sensitivity and clustering behaviour of fingerprinting and sequencing 

 

DGGE is known to be capable of distinguishing species that represents as little as ~1% of the 

sample being analyzed (Green et al. 2010; Muyzer et al. 1993). Samples included in clustering 

analysis must also be from similar sources because of the comigration of bands of different 

sequences, and the possibility of a single species forming multiple bands due to multiple variable 

16S rRNA operons. Although DGGE has been previously used in the analysis of the human 

microbiota (Kinross et al. 2008; Scanlan et al. 2006), its sensitivity and clustering behaviour 
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have not been directly compared to those of NGS. One of the objectives of this thesis is to 

compare the sensitivity and clustering behaviour of DGGE to that of Illumina sequencing in the 

analysis of the human microbiome. The sensitivity of DGGE is hypothesized to be limited to 

abundant organisms and this will be tested by comparing the relative abundance of picked 

DGGE bands to their respective OTU within samples. DGGE bands are also hypothesized to not 

cluster well by sample type across all samples because of the lack of a direct relationship 

between bands and their corresponding species within a sample.  

 

1.3.2 Reproducibility of fingerprinting and sequencing 

Both DGGE and Illumina sequencing are subject to the biases inherent in PCR amplification, 

one of which is a result of stochastic fluctuations and therefore non-reproducible. The pooling of 

replicate PCR amplifications has been suggested in order to minimize the effect of this bias and 

thereby increase the reproducibility of the technique being used subsequently to PCR (Inglis et 

al. 2012; Polz and Cavanaugh 1998). The impact that pooling has on increasing the 

reproducibility of fingerprinting and next generation sequencing methods has not been 

demonstrated. The reproducibility of DGGE is hypothesized to not be impacted by pooling 

because the bias is expected to not have a large enough effect to be apparent in abundant species. 

The reproducibility of Illumina sequencing is similarly hypothesized to be not substantially 

effected by pooling, though the bias will be more apparent than when using DGGE. Template 

concentration is hypothesized to be positively correlated with reproducibility.      
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Chapter 2. Methods 

 

2.1 Assessment of sensitivity and clustering behaviour of fingerprinting and sequencing 

2.1.1 Sampling  

 

As described previously (Stearns et al. 2011), all samples used were collected from four healthy 

adults: two men and two women. Stool samples were frozen at -20°C immediately after 

collection. Within 24 hours of stool sample collection, each subject was prepared for 

colonoscopy by Klean Prep. Oral biofilm was collected from supragingival plaque, subgingival 

plaque, and the tongue prior to gastroscopy and colonoscopy. Biopsies of the transverse colon, 

sigmoid colon, rectum, gastric antrum, gastric body, and duodenum were collected during 

gastroscopy and colonoscopy. All samples were stored at -80°C prior to DNA extraction. 

Samples collected were used in a previous study on the bacterial biogeography of the human 

gastrointestinal tract (Stearns et al. 2011).  

 

2.1.2 DNA extraction 

 

DNA was extracted from 500 µL of sample storage buffer (or 0.25 g of stool) of each sample 

using  the PowerSoil DNA Isolation Kit (MoBio) according to the manufacturer’s instructions 

with minor modifications: the addition of a 40 second bead-beating step and heating to 70°C for 

10 minutes prior to the contaminant binding step. Purified DNA was run on a 1% agarose gel for 

densitometric quantification, and spectrophotometrically quantified using a Nanodrop 1000 

(Thermo Scientific, USA).  
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2.1.3 PCR  

 

A nested PCR protocol was used to amplify the V3 region of the 16S rRNA gene. The first round 

used primers 27F and 1492R (Stackebrandt and Goodfellow 1991) and 25 cycles were used: 5 

minutes at 98°C, 25 times 1 minute at 98°C followed by 1 minute at 55°C then 2 minutes at 

72°C, and finally 7 minutes at 72°C. The second round used modified 341F and 518R primers 

(Muyzer et al. 1993) containing a six-base barcode, the Illumina adapter sequence, and regions 

for binding of the sequencing primers (Bartram et al. 2011). The number of cycles for the second 

round was 20: 5 minutes at 98°C, 20 times 30 seconds at 98°C followed by 1 minute at 55°C 

then 1 minute at 72°C, and finally 7 minutes at 72°C. Each reaction mixture was prepared in a 

25-µL volume consisting of the following components: 5 µL Phusion buffer, 0.05 µL dNTPs, 

0.05 µL of each primer, 0.25 µL Phusion Taq polymerase, 1.5 µL BSA (10 mg/mL), 1 µL 

template, and 18.6 µL PCR water. A separate PCR was performed for use in DGGE except that 

the forward primer was 341F-GC.  

 

2.1.4 Illumina library construction 

 

Triplicate PCR amplifications were pooled for each sample and gel purification was performed 

to remove primers and primer dimers by separating them on a 2% agarose gel and using a 

QIAquick Gel Extraction Kit (Qiagen, Mississauga, Ontario, Canada). The products for each 

sample were mixed in equal nanogram amounts, and quantified using a NanoDrop ND2000 

spectrophotometer (Thermo Scientific, Wilmington, DE) before being sequenced in two lanes of 

a Genome Analyzer IIx at the Plant Biotechnology Institute (National Research Council Canada; 
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Saskatchewan, Canada) using paired-end multiplex sequencing as previously described (Bartram 

et al. 2011).  

 

2.1.5 Denaturing gradient gel electrophoresis 

 

DGGE used a 30% to 70% denaturing gradient in 10% acrylamide gels that were run for  

15 hours at 85V with 10 ng of PCR product loaded in each lane. Gels were stained with SYBR 

green and imaged using a PharosFX Plus Molecular Imager (Bio Rad, USA). A total of 84 bands 

were picked (Fig. 1) and sequenced using single-pass Sanger sequencing (Beckman Coulter 

Genomics, USA).  

 

2.1.6 Indicator species analysis 

DGGE images were analysed in Gelcompar II (Applied Maths, USA) where bands were bands 

and band classes were automatically assigned and manually curated. Band class data was 

imported into PC-ORD (McCune et al. 2002) where Dufrene-Legendre indicator species analysis 

was conducted (Dufrene and Legendre 1997). The same analysis was conducted on sequencing 

data in QIIME through AXIOME (Caporaso et al. 2010; Lynch et al. 2013).  

 

2.2 Assessment of reproducibility of fingerprints and sequencing 

2.2.1 Sample selection 

 

Two of the stool samples used in the previous analysis were selected to assess reproducibility of 

sequencing and fingerprinting. Two soil samples were also selected from the Canadian 
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MetaMicrobiome Library (CM
2
BL; Neufeld et al. 2011): one from a temperate deciduous forest 

(6TD) and one from an agricultural soybean field (10AS). These soil samples were selected 

because of their varying land usage origins and soil chemistry profiles, most notably pH (6.4 for 

6TD and 7.6 for 10AS). The soil samples were included to evaluate the effect of varying levels 

of diversity within a sample on reproducibility because soils are much more diverse than stool.  

 

2.2.2 DNA extraction 

 

Five extractions for each sample were conducted and then pooled. Each extraction was 

performed on 0.25 g of sample using the PowerSoil DNA Isolation Kit (MoBio) according to the 

manufacturer’s instructions with minor modifications: the addition of a 40 second bead-beating 

step at 5 m/s using a FastPrep-24 (MP Bio, USA) and heating to 70°C for 10 minutes prior to the 

contaminant binding step. An ethanol precipitation concentrated and purified the DNA. Purified 

DNA was run on a 1% agarose gel for densitometric quantification, and spectrophotometrically 

quantified using a Nanodrop 1000 (Thermo Scientific, USA) and using Qubit fluorometric 

quantification (Life Technologies, USA).  

 

2.2.3 Sample preparation 

 

Each sample was diluted to create a high and low concentration template. Samples S3, 6TD, and 

10AS were diluted to 10 ng/µL and 0.1 ng/uL and sample S1 was diluted to 5 ng/µL and 0.1 

ng/µL. For each of the 8 samples (S1 high, S1 low, S3 high, S3 low, 6TD high, 6TD low, 10AS 

high, 10AS low) 20 reactions were performed (Table 2). Of these, 5 were not-pooled and the 

remaining were pooled in triplicate, resulting in 5 pooled products and 5 not pooled products for 
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each sample. SX replicates (Table 2) are from sample S3 but are separated in order to assess 

cross-lane variability during sequencing.  

 

Table 2. Summary of sample replicates and conditions. Numbers correspond to Illumina barcode 

tag used for sequencing, but were also used for DGGE with the exclusion of SX replicates.  

 S1 6TD 10AS S3 SX 

Pooled, high template 

concentration 

1, 2, 3, 4, 5 11, 12, 13, 

14, 15 

21, 22, 23, 

24, 25 

31, 32, 33, 

34, 35 

81, 82, 

83 

Pooled, low template 

concentration 

6, 7, 8, 9, 

10 

16, 17, 18, 

19, 20 

26, 27, 28, 

29, 30 

36, 37, 38, 

39, 40 

84, 85, 

86 

Not pooled, high template 

concentration 

41, 42, 43, 

44, 45 

51, 52, 53, 

54, 55 

61, 62, 63, 

64, 65 

71, 72, 73, 

74, 75 

87, 88, 

89 

Not pooled, low template 

concentration 

46, 47, 48, 

49, 50 

56, 57, 58, 

59, 60 

66, 67, 68, 

69, 70 

76, 77, 78, 

79, 80 

90, 91, 

92 

a.
 No-template controls 93, 94, 95, 96  

 

2.2.4 PCR 

Reactions were performed on the same thermocycler, a CFX96 Touch Real Time PCR Detection 

System (Bio Rad, USA), in randomized 96-well plates to limit bias due to possible thermal 

profile variations across wells. The entire procedure was performed twice on two separate days 

to assess possible variability introduced by sample manipulation. SX samples were excluded on 

one of the days in order to run identical products from these samples on both sequencer lanes. 

 

The combined V3-V4 regions were amplified using modified 341F and 816R primers containing 

a six-base barcode, the Illumina adapter sequence, and regions for binding of the sequencing 

primers (Bartram et al. 2011). The number of cycles was 30: 30 seconds at 95°C, 30 times 15 
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seconds at 95°C followed by 30 seconds at 50°C then 30 seconds at 68°C, and finally 5 minutes 

at 68°C. Each reaction was done in a 25-µL volume consisting of the following components: 2.5 

µL Thermal Polymerase buffer (10x; NEB), 0.05 µL dNTPs (100 µM), 0.05 µL 341F primer 

(100 µM), 0.5 µL 816R primer (10 µM), 0.125 µL Taq polymerase, 1.5 µL BSA (10 mg/mL), 1 

µL template, and 19.3 µL PCR water. A separate PCR was performed for use in DGGE with 

slight modification: the forward primer 341F-GC, the reverse primer was 518R, both were 100 

µM, and both were added in 0.05 µL volume to each reaction.  

 

2.2.5 Illumina library construction 

 

Products for each sample were gel purified to remove primers and primer dimers by separating 

them on a 1% agarose gel and using a QIAquick Gel Extraction Kit (Qiagen, Mississauga, 

Ontario, Canada). The products for each sample were mixed in equal nanogram amounts, and 

quantified using a NanoDrop ND2000 spectrophotometer (Thermo Scientific, Wilmington, DE) 

before being sequenced in two lanes of an Illumina MiSeq at Argonne National Labs (Lemont, 

IL) using paired-end sequencing as previously described (Bartram et al. 2011).  

 

2.2.6 DGGE 

 

Products were separated into those with high template concentration and those with low template 

concentration. Within these groups, products from each sample were distributed across multiple 

DGGE gels to reduce bias due to gel effects. For low template concentration gels approximately 

15 ng of PCR product was loaded into each well. For high template concentration gels 
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approximately 30-60 ng of PCR product was loaded into each well. No gels had both high and 

low template concentration samples and therefore this difference in amount of PCR product 

loaded was compensated for by the exposure time during image capture. DGGE used a 30% to 

70% denaturing gradient in 10% acrylamide gels that were run for 15 hours at 85V. Gels were 

stained with SYBR green and imaged using a PharosFX Plus Molecular Imager (Bio Rad, USA).  

 

2.2.7 Data analysis 

 

DGGE fingerprints were aligned in Gelcompar II (Applied Maths, USA) with bands and band 

classes assigned automatically and manually curated. A UGPMA dendrogram of the fingerprints 

was created in Gelcompar II using Pearson correlations. DGGE data were exported and analysed 

in PC-ORD (McCune et al. 2002) wherein indicator species analysis was performed (Dufrene 

and Legendre 1997), in addition to PCoA (Gower 2005) using a Bray-Curtis distance metric, 

NMS (Kruskal 1964) using a Pearson correlation, and MRPP.  

 

Sequencing data were clustered using CD-HIT (version 4.5.4; Li and Godzik 2006) and trees 

were built using FastTree2 (version 2.1.3; Price 2010) through AXIOME. Indicator species 

analysis, NMS, MRPP, and PERMDISP were carried out through AXIOME with NMS being 

performed for all samples together, and both NSM and PERMDISP being performed for each 

sample group individually (S1, S3, 6TD, 10AS, SX). All samples were rarefied to the fewest 

number of sequences in a sample within each analysis.  
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Chapter 3. Results and discussion 

 

3.1 Assessment of sensitivity of DGGE fingerprinting and Illumina sequencing 

3.1.1 Relative abundance of bands within community 

 

DGGE can provide an immediate visual representation of complex microbial communities, but it 

suffers from a lack of sensitivity. Bands must be visible to be included in analyses so low 

abundance organisms are not detected if the intensity of their band’s fluorescence is less than 

that of the background.  This study used human microbiome samples to compare the sensitivity 

of DGGE to that of Illumina sequencing by matching bands that were picked and sequenced to 

OTUs within their respective Illumina library and calculating the proportion of that sample that 

the picked band represented.  
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Figure 1. UPGMA dendrograms of DGGE fingerprints of human microbiome samples with 

picked bands numbered. Samples were taken from subjects 1-4 (S1-S4; Stearns et al. 2011).  

 

DGGE fingerprints of samples from 4 subjects showed the varying levels of microbial diversity 

found across 12 sites in the gastrointestinal tract. Stomach and duodenal communities had very 

few bands (Fig. 1), which corroborates previous accounts of low diversity in these environments 

(Bik et al. 2006; Zoetendal et al. 2008). All bands picked were relatively prominent within their 

sample.  
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Bands picked (bands 1-84 in Fig. 1) from each sample were sequenced and matched at 100% 

sequence identity with an OTU in their respective Illumina library. The proportion of sequences 

in its sample that the matched OTU represents was plotted on a log scale (Fig. 2). Picked 

sequences that did not match with any OTU in the sample are represented by vertical grey bars. 

As well as not matching an OTU at 100%, these unmatched bands did not have any close 

matches within their respective samples. Out of bands that were matched with an OTU, 48 of 56 

represented an OTU with 1% of more of the sequences in their sample. Almost all of the bands 

that did not match with an OTU in their Illumina library were gastric samples. As the same 

extracted DNA was used for both the DGGE and the Illumina PCRs, this cannot be due to 

problems with DNA extraction specific to gastric samples. It could be a result of differences in 

amplification efficiencies of the primers used for PCR because distinct primer modifications 

(GC-clamp or barcode) are used for DGGE and Illumina. This bias may be most apparent in the 

gastric samples due to their low diversity, or due to inhibitors present in extracted gastric DNA 

that preferentially affect either Taq (used for DGGE) or Phusion (used for Illumina libraries for 

high fidelity) polymerase.  
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Figure 2. Proportion of sample represented by picked bands (1-84). Picked band sequences that 

did not match to an OTU in their respective Illumina library are represented by vertical grey 

bars.   

 

3.1.2 Indicator species analysis 

 

Indicator species analysis is commonly used with human microbiome studies to identify 

microorganisms that are associated with pathologies (Mager et al. 2005; Russell et al. 2012). 

These pathologies are rarely the result of a single microorganism, so to fully describe them the 

input data for indicator species analysis must come from techniques with higher sensitivity. 

Indicator Values (IV) are assigned according to the fidelity (proportion of the species that are 
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within a given group) and specificity (proportion of samples within the group that contain the 

species; (Dufrene and Legendre 1997). An indicator value of 1 would be assigned to a perfect 

indicator species that is always present in the group in question and never present in other 

groups. Groups are assigned a priori. In this case multiple sets of groups were examined in order 

to account for varying niche breadth (De Cáceres et al. 2010): general site (mouth, stomach, 

bowel, stool), specific site (each of the 13 gastrointestinal sites), and subject (S1, S2, S3, S4).  

 

Indicator species analysis was run on DGGE profiles in PC-ORD and Illumina data in AXIOME. 

The number of indicator species with an indicator value greater than or equal to 0.5 with a p 

value equal to or less than 0.01 was tallied for both methods (Table 3). The number of indicator 

bands from DGGE for subjects is also higher than the number for specific site. This is not an 

expected result; microbial community composition should vary more by site than by subject. 

This is also contradicted by the Illumina data.  

 

Table 3. Number of indicator species (IV ≧ 0.5 and p ≦ 0.01) found using DGGE (wherein 

bands stand in for species) and Illumina (wherein OTUs stand in for species) 

 General Site Specific Site Subject 

DGGE 5 2 3 

Illumina  2225 1707 53 

General site: mouth, gastric, colon, or stool; Specific site: subgingival plaque left, subgingival plaque right, 

supragingival plaque left, supragingival plaque right, tongue, gastric antrum, gastric body, duodenum, transverse 

colon, sigmoid colon, rectum, and stool; Subject: subject 1, subject 2, subject 3, subject 4.  
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Using BLAST, the sequences of the indicator bands from DGGE were compared against a 

database of indicator species generated in AXIOME from Illumina data. All indicator bands from 

DGGE matched with an Illumina indicator OTU except for one of the two “specific site” 

indicator bands, which had not been picked and sequenced.  

 

3.2 Clustering behaviour of data from DGGE fingerprinting and Illumina sequencing 

  

Principal coordinates analysis (PCoA) is a form of multidimensional scaling that seeks to 

position objects in fewer dimensions while maintaining their distances as accurately as possible 

(Gower 2005). Non-metric multidimensional scaling (NMS) instead prioritizes representation in 

two dimensions with the goal of plotting similar objects together and dissimilar objects apart; the 

variation explained by the two axes is not necessarily maximized (Kruskal 1964). Samples were 

plotting using PCoA with a Bray-Curtis dissimilarity metric (Bray and Curtis 1957) for both 

Illumina data (Fig. 3A) and DGGE data (Fig. 3C). Illumina samples clustered by general 

sampling location, with colon and stool samples separating from gastric and mouth samples more 

than from each other. If UniFrac, which is based on phylogenetic distances (Lozupone and 

Knight 2005), is used as a distance metric (Fig. 3B), these patterns are still apparent. In contrast, 

DGGE samples do not clearly separate by general sampling location when using either PCoA 

with a Bray-Curtis dissimilarity metric (Fig. 3C), or NMS with Pearson correlation (Fig. 3D).  
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Figure 3. Ordination of DGGE and Illumina data using both PCoA and NMS. Shades of each 

colour indicates from which subject samples originate (S1-S4 corresponds to dark to light). 

 

One of the weaknesses of DGGE is that one band can correspond to multiple species and one 

species doesn’t necessarily result in one band (Green et al. 2010). Fragments with different 

sequences can co-migrate to the same position on a gel, and because some bacteria possess 

multiple 16S rRNA genes two or more bands can result from the same species. As a result of this 

DGGE fingerprints cannot be compared across different communities: comparisons must be 

“apples to apples” with samples being measured either over time, or with changing treatments, 

rather than between unrelated samples.  



 

32 
 

 

The poor performance of DGGE for clustering samples based on distinct body sites is evident in 

both PCoA and NMS plots when compared to ordinations obtained using sequencing data (Fig. 

3). This result is confirmed by Multi-Response Permutation Procedure (MRPP), which tests the 

degree of within group homogeneity (effect size, A) and the amount separation between groups 

(test statistic, T, where more negative indicates greater separation; Mielke Jr et al. 1976). MRPP 

was performed on both Illumina data and DGGE data using a priori groupings based on the 

general location from which a sample was obtained (mouth, gastric, colon, and stool). The effect 

size of a priori groups for Illumina data (A=0.14) is much greater than that for DGGE data 

(A=0.02) meaning that groups using Illumina data have much greater within-group homogeneity 

that those using DGGE data. The separation between groups using Illumina data (T=-23.45) is 

similarly much greater than groups using DGGE data (T=-5.73). Groups using data obtained 

from Illumina have both greater homogeneity within each group and greater separation between 

groups.  
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3.3 Assessment of reproducibility of DGGE fingerprint and Illumina sequencing data 

 

Polymerase chain reaction (PCR) is susceptible to two types of bias: selection and drift. 

Selection results from variable amplification efficiencies that are inherent in a given sample and 

drift is a result of stochastic fluctuation and therefore non-reproducible. Polz and Cavanaugh 

performed PCR on mixtures of known concentrations of genomic DNA from different species to 

determine the relative impact of bias due to selection and drift. Though bias due to drift is less 

than that due to selection when template concentrations are high, PCR amplifications are usually 

pooled in triplicate to minimize the effect of drift (Polz & Cavanaugh, 1998).   

 

3.3.1 Impact of pooling triplicate reactions on DGGE 

3.3.1.1 Tree construction 

 

The DGGE patterns of all samples (S1 stool, S3 stool, 6TD soil, 10AS soil) were aligned in 

Gelcompar II (Applied Maths, USA). Both bands and band classes were automatically assigned 

and manually curated. A UPGMA dendrogram was generated using Pearson correlations (Fig. 

4). Both stool samples grouped strongly by sample whereas the two soil samples separated from 

the stool samples, but not from each other. The high diversity of the soil samples caused 

Gelcompar to have difficulty discerning discrete fingerprint bands and resulted in this lack of 

separation. The pooling of triplicate amplifications did not result in any improvement in tree 

formation over non-pooled amplifications: pooled samples do not separate from non-pooled (Fig. 

4). Soil replicates that do group by sample appear to generally have had high template 

concentration.  

https://paperpile.com/c/8sUREf/qO9Cs
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Figure 4. UPGMA dendrogram of replicate DGGE fingerprints shows that stool samples separate 

clearly, whereas soil samples do not. Replicates that grouped by sample are coloured: S1 in red, 

S3 in blue, 10AS in yellow, 6TD in green. Pooled samples are indicated by a black circle and 

high template concentration samples are indicated by a white circle.  
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3.3.1.2 Multi-response permutation procedure (MRPP) 

 

To further test the effect of pooling PCR amplifications or analyzing individual reactions with 

DGGE fingerprints, I used MRPP analysis. MRPP tests the hypothesis that there is no difference 

between two a priori groups, assigned by the user. In MRPP, the T statistic is a measure of 

separation between groups: a more negative value means a stronger separation (Mielke Jr et al. 

1976). The effect size is provided by the change-corrected within group agreement (A) which is a 

measure of within-group homogeneity. If all samples within each group are identical (i.e., A=1), 

and if the within group homogeneity is equal to what would be expected by chance (i.e., A=0). 

The groups assigned in this case were the four samples: S1, S3, 6TD, and 10AS. Pooled and not-

pooled samples were compared independently. The separation and scatter of pooled samples 

(A=0.40 and T=-21.5) was the same as for not-pooled samples (A=0.40 and T=-21.4). The 

average within-group distances for each group in the analyses for pooled and not-pooled samples 

demonstrate no consistent effect of pooling  (Fig. 5), indicating that pooling replicate reactions 

doesn’t increase the accuracy of DGGE, because pooled samples do not cluster more tightly than 

samples that were not pooled.  
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Figure 5. Average within-group distances from MRPP for pooled and not-pooled replicates when 

grouped by sample type shows no consistent effect of pooling. 

 

3.3.2 Impact of Pooling on Sequencing 

3.3.2.1 Impact on Ordination using NMS and MRPP 

 

All samples that contributed fewer than 4000 sequences were removed from further analysis 

(Table 4; Supplementary Table 1). As the samples removed are fairly evenly distributed between 

high and low template concentration, sample source (S1, S3, 6TD, 10AS), and pooled and non-

pooled samples, their removal should not introduce bias to further analyses. The average number 

of sequences contributed by a sample was 32000, ranging from 4100 to 143000.  
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Table 4. Summary of samples removed from analyses due to low number of sequences 

contributed.  

 

Lane Barcode Sample Pooled 

Template 

Concentration Barcode 

Sequences 

Contributed 

1 V4_7R S1 Yes low CAGATC 222 

1 V4_40R S3 Yes low CATCTA 257 

1 V4_45R S1 No high GAGAAT 3699 

1 V4_46R S1 No low CTCAAT 2279 

1 V4_48R S1 No low TTGCAT 1835 

1 V4_52R 6TD No high AGTGTT 277 

1 V4_64R 10AS No high TAATCG 507 

1 V4_69R 10AS No low AGATTC 3006 

1 V4_71R S3 No high TGCGAA 147 

2 V4_3R S1 Yes high TTAGGC 0 

2 V4_40R S3 Yes low CATCTA 458 

 

 

 

NMS plots were generated using Bray Curtis dissimilarity. When all sample replicates were 

analyzed together, they clustered very clearly by sample (Fig. 6), regardless of whether samples 

are pooled or not pooled. Within sample type, stool samples are closer to each other than to soil 

samples, and soil samples are closer to each other than to stool samples. Pooled and not pooled 

samples were compared using MRPP: for pooled samples A=0.64 and T=-45.1; for not pooled 

samples A=0.58 and T=-41.1. This indicates that pooling samples may result in greater within-

group homogeneity and greater separation between groups, though this difference is not large.  
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Figure 6. NMS (Bray Curtis dissimilarity) of all sample replicates from Illumina data shows 

replicates clustering very strongly by sample: S1 (red), S3 (blue), 6TD (green), and 10AS 

(yellow).  

 

3.3.2.2 NMS and PERMDISP within each sample 

 

Each sample was analyzed independently using AXIOME in order to examine differences that 

were not visible when all samples were analyzed together. Each amplification originates from the 

same DNA extract, therefore each point should overlap ideally. However, because PCR and 

sequencing are susceptible to bias there is variation between replicate amplifications of the same 
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samples. Techniques that minimize bias will result in replicate amplifications clustering more 

tightly whereas techniques that increase bias with increase the variance between replicate 

amplifications. As the groups being analyzed within samples are not truly different samples, 

MRPP is not an appropriate technique to use: it provides a measure of the average homogeneity 

within groups across all groups rather than comparing the homogeneity of each group.  

 

NMS was also performed on each sample for each grouping (Fig. 7): template concentration 

(high and low), pooling (pooled and not pooled), and lane (lane 1 and lane 2). The most apparent 

difference in variance was between high and low template concentrations of the two soil samples 

(6TD and 10AS), with the high template concentration samples clustering more tightly than low 

template concentration. This pattern was also present in stool samples (S1, S3, and SX), though 

less clearly so. One possible explanation for this difference between soil and stool samples is that 

soils are a much more diverse environment; a low template concentration may bias amplification 

more than in a less-diverse sample such as stool. Differences in variance were less apparent 

between pooled and non-pooled samples. Lane 1 and Lane 2 are included to demonstrate 

variability introduced by sample manipulation as PCR for each lane was performed on a different 

day for all samples except SX. Only one PCR was performed for SX and this was sequenced on 

both lanes to assess variability associated with separate lanes.  

 

Although NMS provides a visual representation of differences in variance between groups, it is 

does not provide quantitative results. Quantitative data were obtained by using the QIIME 

analysis PERMDISP which tests whether the variances are significantly different between 

groups (Anderson 2004). Within each group the distance from each sample to the centroid of that 
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group is calculated and these distances are plotted in box plots (Fig. 8). The largest difference 

between within-group distances to the centroid was between the high and low template 

concentration groups. Across all samples high template concentration groups and pooled groups 

are shown to have lower average distances to the group’s centroid than low template 

concentration groups and not pooled groups. Samples from Lane 1 clustered more closely to the 

centroid, but this difference was inconsistent across samples, and the spread of distances to the 

centroid mostly overlaps for both lanes for all samples.  

 

As well as having a lower average distance to the centroid of the group, high template 

concentration replicates are demonstrated lower variability in distance to centroid than either low 

template concentration replicates, or pooled replicates. This means that high template 

concentration replicates are more consistently close to their group’s centroid, and therefore high 

template concentration replicates are more consistently reproducible than either low template 

concentration replicates, or pooled replicates.  
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Figure 7. NMS of replicates of each sample using Bray-Curtis dissimilarity. High template 

concentration, not-pooled, and lane 2 replicates are coloured red, low template concentration, 

pooled, and lane 1 replicates are coloured blue. Scales repeated across columns from left. 
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Figure 8. The distance to the centroid of the given group when using NMS ordination is plotted 

for replicates of each sample. Significance is indicated symbolically: 0-0.001 (***), 0.001-0.01 

(**), 0.01-0.05 (*). 
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Within PERMDISP, Analysis of Variance (ANOVA) was implemented to test the statistical 

significance of the differences in variance between groups (Table 5). The F ratio gives the actual 

variance over the expected variance: if there is no difference between groups it is equal to 1 and 

the higher the ratio the larger the effect of the group. The p value is the significance of the 

difference. The results show that the effect of template concentration is both large and significant 

for both soil samples, significant for samples S1 and SX, and approaches significance for S3. 

Neither the effect of pooling nor that of lane is significant. The effect of pooling approaches 

significance for both soil samples though its effect is much less than that of template 

concentration. The effect of lane approaches significance for sample S1, but this is likely due to 

more sample replicates from Lane 1 being removed from analysis due to low sequence counts as 

this effect is not seen in other samples.  
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Table 5. Analysis of Variance between groups of replicates of each sample. The F-ratio (F) gives 

the actual variance over the expected and p gives the significance of the difference. Significance 

is also indicated symbolically for convenience: 0-0.001 (***), 0.001-0.01 (**), 0.01-0.05 (*). 

 Template 

concentration  

Pooling Lane 

6TD F = 139.59 

p = 6.028e-14 

*** 

F = 1.7699 

p = 0.1918 

 

F = 0.1973 

p = 0.6596 

10AS F = 188.2 

p = 7.222e-16 

*** 

F = 3.3124 

p = 0.07686 

 

F = 0.0214 

p = 0.8845 

S1 F =11.16 

p = 0.002086 

** 

F = 1.2164 

p = 0.2781 

 

F = 3.1558 

p = 0.08488 

 

S3 F = 3.7378 

p = 0.06132 

F = 0.9439 

p = 0.3379 

F = 0.2749 

p = 0.6034 

SX F = 17.832 

p = 0.0003501 

*** 

F = 0.1687 

p = 0.6852 

F = 1.8203 

p = 0.191 

 

3.3.2.3 To pool or not to pool 

Based on the data produced, pooling does reduce the impact of bias due to PCR drift. However, 

the impact of pooling triplicate amplifications does not have as great an impact as the 

concentration of the template DNA.  

 

The impact of pooling in reducing bias is not sufficient to impact the clustering of samples, even 

when they are from similar sources: both stool samples and soil samples separated from each 

other clearly and clustered by sample type (soil or stool). Pooling triplicate reactions may help 

separate very similar samples, such as stool samples from the same individual or soil samples 

from the same location. Pooling also would be of greater value for samples with low template 
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concentrations as they are more susceptible to PCR biases than samples with high template 

concentration. To test this, I ran MRPP on all samples divided into four groups: all non-pooled 

high template concentration (A=0.70, T=-21.11); all pooled high template concentration (A=0.75, 

T=-23.12); all non-pooled low template concentration (A=0.55, T=-20.75); all pooled low 

template concentration (A=0.60, T=-21.16). As hypothesized, the difference in within-group 

homogeneity was greater for low template concentration samples than for high template 

concentration samples (∆A=0.06 for low template concentration; ∆A =0.04 for high template 

concentration). This is much less than the difference in within-group homogeneity between high 

template concentration samples and low concentration samples for either pooled or not pooled 

samples (∆A =0.15 for pooled; ∆A =0.16 for non-pooled). Pooling may also be more important 

for higher-diversity samples, such as soils, or when examining the rare biosphere.  

 

Caporaso and coworkers questioned whether the decreasing cost of sequencing should result in 

sequencing samples more deeply or sequencing a larger number of samples and concluded that 

increasing sequencing depth is not likely to provide additional insight comparable to inclusion of 

more samples (Caporaso et al., 2012). The question of whether to pool triplicate amplifications is 

similar, though the number of PCR amplifications is not strictly limited and so it is possible to 

both include more samples and pool triplicate amplifications. Protocols for both the Earth 

Microbiome Project and the Human Microbiome project require the pooling of triplicate 

reactions (Gilbert et al. 2010; Peterson et al. 2009). However, the increase in time and effort 

required to triple the number of amplifications being performed is likely not be warranted in 

cases where samples are very different.  

 

https://paperpile.com/c/8sUREf/mX5B
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Chapter 4. Conclusions and Future Considerations 

4.1 Conclusions 

The study of the human microbiota is currently a very prominent area of research within both 

microbial ecology and human pathophysiology. The microbial community composition of these 

environments differ from non-host-associated communities such as those found in soil and water 

likely due to the bi-directional selective pressures of the host-microbe mutualism (Ley et al. 

2006). In order to effectively analyze these microbial communities, available methods must be 

examined critically in terms of their strengths and weaknesses. My research compared a DGGE 

fingerprinting method and Illumina paired-end sequencing in terms of sensitivity, clustering 

behaviour, template concentration, and the value of pooling triplicate reactions in reducing the 

impact of PCR bias on each method. 

 

DGGE requires that the fluorescence of a band be greater than background fluorescence in order 

for the band to be included in analyses (Muyzer and Smalla 1998). In order for a band to have 

enough DNA to produce this level of fluorescence, a species must be abundant within the sample 

being analyzed. DGGE bands picked from gel fingerprints of human microbiome samples in this 

thesis were shown to represent more than 0.1% of their respective sample (excluding one outlier, 

which represented less than 0.1% of its sample; Table 1). This limit of the resolving power of 

DGGE, due to its relatively low signal-to-noise ratio, restricts DGGE to the analysis of dominant 

community members (Green et al. 2010). This degree of sensitivity is appropriate for examining 

changes in abundant microorganisms or varying conditions, but is not sufficient for examining 

the true extent of biodiversity within a given community. DGGE is also limited by its inability to 

distinguish individual bands within high-diversity samples, such as soils (Green et al. 2010; 
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Inglis et al. 2012). Even though DGGE could differentiate replicate amplifications of two stool 

samples, it could not differentiate between replicate amplifications of soil samples from different 

environments (Fig. 4).  

 

DGGE separates DNA fragments based on their melting behaviour (i.e. the concentration of 

denaturant at which they become partially denatured), which is not necessarily unique to a given 

fragment (Fischer and Lerman 1980). Within a sample, a single band can represent multiple 

species of bacteria. In addition, a band in the same position for two disparate samples is unlikely 

to represent the same species (Muyzer et al. 1993). Ordination cannot accurately cluster DGGE 

fingerprints derived from distinct environments, such as the mouth and colon, because these 

bands at the same position are interpreted as representing the same species. Because of the lack 

of direct relationship between species and bands, DGGE is not an appropriate tool for the 

analysis of samples from disparate environments, but is well suited to analyses of samples from 

very similar environments, or the same environment over time or varying treatments.  

 

Both DGGE and Illumina sequencing require PCR amplification and are therefore affected by its 

biases. The pooling of triplicate amplifications was suggested to reduce the impact of the bias 

due to non-reproducible fluctuations in amplification efficiencies (Polz and Cavanaugh 1998), 

but the impact of this pooling has not been previously demonstrated. In my thesis research, the 

impact of pooling on DGGE and sequencing was evaluated by comparing amplifications of 

samples that were pooled in triplicate to individual reactions for both high (5-10 ng/µL) and low 

(0.1 ng/µL) template concentration and high (soil) and low (stool) diversity. My results did not 

demonstrate a measurable effect of pooling replicates on DGGE fingerprint clustering. This is 
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likely because more abundant organisms are less affected by pooling than rarer organisms which 

are not observable using DGGE due to the limits of this method’s sensitivity.  

 

Unlike DGGE, sequencing results can be affected by pooling: groups of sample replicates were 

more homogeneous and had greater between-group separation when triplicate PCR 

amplifications were pooled. However, pooling also resulted in less reproducibility within 

samples than using a higher concentration of template. The impact of pooling seems to be 

especially important for high-diversity samples, and had a greater impact on samples with low 

template concentration than those with high template concentration. This corroborates the 

finding of others that low template concentration results in greater stochastic fluctuations in PCR 

amplifications (Chandler et al. 1997). For low diversity samples or high template concentrations, 

the effect of pooling was almost equivalent to the variability that was observed between 

sequencing lanes. When these conditions are met, or when samples are from sufficiently 

different environments (e.g. different individuals), the pooling of triplicate amplifications is 

therefore not required.  

 

Both DGGE fingerprinting and Illumina sequencing are useful tools for examining the human 

microbiota. DGGE provides a rapid and economical visual representation of the major 

constituents of a microbial community, and is well suited to tracking large changes in 

community composition over time or with varying treatments. Illumina sequencing provides a 

much greater depth of coverage and therefore allows for the analysis of low-abundance 

organisms within a community. It also allows for comparison and ordination of any samples, 

unlike DGGE, which requires samples to be from similar communities. The strengths and 
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weaknesses of these methods are somewhat complementary and the methods are best used in 

tandem to effectively analyse the human microbiota.  

 

4.2 Future Directions 

The work presented in this thesis compares the fingerprinting method DGGE and the Illumina 

sequencing platform in terms of their sensitivity, clustering behaviour of resulting data, and 

reproducibility for the purposes of studying the human microbiota. As the cost and time 

requirements associated with amplicon sequencing and data analysis continue to be reduced by 

technological advances, continued analysis will be needed to weigh the benefits and drawbacks 

of each of these methods.  

 

In order to evaluate the impact of pooling triplicate amplifications further, several other sources 

of bias should be examined. In this study, three DNA extractions were pooled for each sample. 

Further study should evaluate the impact of pooling multiple DNA extractions by comparing 

replicates from pooled DNA from multiple extractions to replicates from a single extraction. 

Variability in samples taken from a single community due to spatially varying composition may 

also result in variability in analyses. The difference between extractions taken from different 

portions of a donation, or from nearby areas in case of soil or other environmental samples, 

should also be examined. If significantly more variability results from not pooling multiple 

extractions, or between two samplings, than results from not pooling triplicate amplifications 

during PCR, this pooling would not be justified.  
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Both concentrations of template used in this thesis are fairly low compared to what is expected 

for high density human host environments, such as the colon. Based on the effect of template 

concentration observed, it is probable that higher concentrations of DNA (i.e. 50 ng/µL) would 

further reduce variation between replicates and eliminate the need for pooling multiple PCR 

amplifications.  

 

4.3 Significance 

 

The scope of microbial ecology encompasses a vast array of research areas from biogeochemical 

cycles to human health, and molecular methods such as DGGE and NGS continue to be 

instrumental in the expansion of this field. 16S rRNA gene fingerprinting and sequencing are 

invaluable tools for the study of microbial ecology. These molecular methods are capable of 

revealing levels of diversity that are not detectable through culturing. This research tests 

established practices for performing community analysis from various environments using PCR. 

Current protocols for both the Human Microbiome Project (Human Microbiome Project 

Consortium 2012) and the Earth Microbiome Project (Gilbert et al. 2010) include the pooling of 

triplicate PCR amplifications. However, my research suggests that will likely result in detectable 

differences. Although eliminating the pooling of triplicate PCR amplifications would decrease 

the effort associated with adding additional samples to any analysis, pooling should be 

maintained as an added precautionary “best practice”. That said, my data suggest that 

maximizing substrate concentrations for PCR (e.g., >10 ng) is a significantly important 

methodological consideration for PCR-based analyses of marker genes by NGS.   
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Appendix A: Supplementary Table 1. All samples sequenced with number of sequences 

contributed to analysis. Samples in grey were excluded due to a low number of sequences and 

samples in dark grey were negative controls.  

Lane Barcode Sample Pooled 
Template 
Concentration Barcode 

Sequences 
Contributed 

1 V4_1R S1 Yes high ATCACG 29907 

1 V4_2R S1 Yes high CGATGT 40939 

1 V4_3R S1 Yes high TTAGGC 40012 

1 V4_4R S1 Yes high TGACCA 24218 

1 V4_5R S1 Yes high ACAGTG 43532 

1 V4_6R S1 Yes low GCCAAT 16085 

1 V4_7R S1 Yes low CAGATC 222 

1 V4_8R S1 Yes low ACTTGA 15911 

1 V4_9R S1 Yes low GATCAG 36273 

1 V4_10R S1 Yes low TAGCTT 15054 

1 V4_11R 6TD Yes high GGCTAC 41985 

1 V4_12R 6TD Yes high CTTGTA 77059 

1 V4_13R 6TD Yes high AGTACG 70548 

1 V4_14R 6TD Yes high TCAGTC 50318 

1 V4_15R 6TD Yes high TTGAGC 97766 

1 V4_16R 6TD Yes low AAGCGA 15909 

1 V4_17R 6TD Yes low TCCTCA 15161 

1 V4_18R 6TD Yes low GGTTGT 12052 

1 V4_19R 6TD Yes low TGAGGT 23508 

1 V4_20R 6TD Yes low TACCGT 24562 

1 V4_21R 10AS Yes high CCAACT 71393 

1 V4_22R 10AS Yes high AGAGAG 42154 

1 V4_23R 10AS Yes high CACTTG 69607 

1 V4_24R 10AS Yes high TCAAGG 63817 

1 V4_25R 10AS Yes high AGTGGT 54384 

1 V4_26R 10AS Yes low GACACT 13211 

1 V4_27R 10AS Yes low CCTTCT 27644 

1 V4_28R 10AS Yes low GGATAA 20895 

1 V4_29R 10AS Yes low CCTTAA 14797 

1 V4_30R 10AS Yes low CAAGAA 12505 

1 V4_31R S3 Yes high GTTGAA 58081 

1 V4_32R S3 Yes high TCACAA 58995 

1 V4_33R S3 Yes high AGTCAA 54104 

1 V4_34R S3 Yes high CGAATA 70280 

1 V4_35R S3 Yes high GCTATA 60227 

1 V4_36R S3 Yes low GAGTTA 17204 

1 V4_37R S3 Yes low TTGGTA 17907 

1 V4_38R S3 Yes low AACGTA 29850 

1 V4_39R S3 Yes low GTACTA 16578 
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1 V4_40R S3 Yes low CATCTA 257 

1 V4_41R S1 No high TGTAGA 56188 

1 V4_42R S1 No high ATCAGA 48967 

1 V4_43R S1 No high ACATGA 44309 

1 V4_44R S1 No high TAGACA 42964 

1 V4_45R S1 No high GAGAAT 3699 

1 V4_46R S1 No low CTCAAT 2279 

1 V4_47R S1 No low AGGTAT 9222 

1 V4_48R S1 No low TTGCAT 1835 

1 V4_49R S1 No low TGGATT 36714 

1 V4_50R S1 No low ACCATT 5904 

1 V4_51R 6TD No high CTAGTT 39474 

1 V4_52R 6TD No high AGTGTT 277 

1 V4_53R 6TD No high TCTCTT 46185 

1 V4_54R 6TD No high GTAAGT 137519 

1 V4_55R 6TD No high CAATGT 34483 

1 V4_56R 6TD No low ATTCGT 26978 

1 V4_57R 6TD No low ATGACT 14975 

1 V4_58R 6TD No low ACTTCT 43590 

1 V4_59R 6TD No low CATAAG 4315 

1 V4_60R 6TD No low TTCTAG 20219 

1 V4_61R 10AS No high AAGATG 73682 

1 V4_62R 10AS No high TATGTG 52649 

1 V4_63R 10AS No high AATTGG 27085 

1 V4_64R 10AS No high TAATCG 507 

1 V4_65R 10AS No high ACTAAC 80471 

1 V4_66R 10AS No low TGTTAC 4272 

1 V4_67R 10AS No low ATACAC 32074 

1 V4_68R 10AS No low CTTATC 45677 

1 V4_69R 10AS No low AGATTC 3006 

1 V4_70R 10AS No low ACGGAA 30973 

1 V4_71R S3 No high TGCGAA 147 

1 V4_72R S3 No high GACCAA 49796 

1 V4_73R S3 No high CTGTCA 27838 

1 V4_74R S3 No high GCAGAT 27438 

1 V4_75R S3 No high TCGTGT 42015 

1 V4_76R S3 No low GAACCT 26648 

1 V4_77R S3 No low GTCATG 85676 

1 V4_78R S3 No low GATAGC 4595 

1 V4_79R S3 No low AAGTCC 31185 

1 V4_80R S3 No low ATTGCC 6566 

1 V4_81R SX yes high CCGAGA 53661 

1 V4_82R SX yes high CGCTGA 143162 

1 V4_83R SX yes high GGCACA 52548 

1 V4_84R SX yes low CGTGCA 27642 
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1 V4_85R SX yes low GGCCTT 27417 

1 V4_86R SX yes low CCTGGT 20185 

1 V4_87R SX yes high CAGGCT 41885 

1 V4_88R SX yes high GTCGCT 53682 

1 V4_89R SX yes high GCGTAG 35433 

1 V4_90R SX yes low CTGGAG 37627 

1 V4_91R SX yes low CTACGG 35151 

1 V4_92R SX yes low ACACCG 29416 

1 V4_93R negcont n/a n/a GTTCCG 241 

1 V4_94R negcont n/a n/a CAGCAC 642 

1 V4_95R negcont n/a n/a CCGTTC 464 

1 V4_96R negcont n/a n/a GCATCC 371 

2 V4_1R S1 Yes high ATCACG 23312 

2 V4_2R S1 Yes high CGATGT 30580 

2 V4_3R S1 Yes high TTAGGC 0 

2 V4_4R S1 Yes high TGACCA 28383 

2 V4_5R S1 Yes high ACAGTG 31086 

2 V4_6R S1 Yes low GCCAAT 19715 

2 V4_7R S1 Yes low CAGATC 24126 

2 V4_8R S1 Yes low ACTTGA 19623 

2 V4_9R S1 Yes low GATCAG 20025 

2 V4_10R S1 Yes low TAGCTT 16685 

2 V4_11R 6TD Yes high GGCTAC 31789 

2 V4_12R 6TD Yes high CTTGTA 37765 

2 V4_13R 6TD Yes high AGTACG 41893 

2 V4_14R 6TD Yes high TCAGTC 34343 

2 V4_15R 6TD Yes high TTGAGC 46193 

2 V4_16R 6TD Yes low AAGCGA 13917 

2 V4_17R 6TD Yes low TCCTCA 18927 

2 V4_18R 6TD Yes low GGTTGT 8183 

2 V4_19R 6TD Yes low TGAGGT 16947 

2 V4_20R 6TD Yes low TACCGT 9733 

2 V4_21R 10AS Yes high CCAACT 44346 

2 V4_22R 10AS Yes high AGAGAG 36900 

2 V4_23R 10AS Yes high CACTTG 44436 

2 V4_24R 10AS Yes high TCAAGG 43535 

2 V4_25R 10AS Yes high AGTGGT 50034 

2 V4_26R 10AS Yes low GACACT 14967 

2 V4_27R 10AS Yes low CCTTCT 15885 

2 V4_28R 10AS Yes low GGATAA 22784 

2 V4_29R 10AS Yes low CCTTAA 14842 

2 V4_30R 10AS Yes low CAAGAA 10201 

2 V4_31R S3 Yes high GTTGAA 42576 

2 V4_32R S3 Yes high TCACAA 38499 

2 V4_33R S3 Yes high AGTCAA 43807 
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2 V4_34R S3 Yes high CGAATA 51703 

2 V4_35R S3 Yes high GCTATA 57034 

2 V4_36R S3 Yes low GAGTTA 16813 

2 V4_37R S3 Yes low TTGGTA 20506 

2 V4_38R S3 Yes low AACGTA 20498 

2 V4_39R S3 Yes low GTACTA 12793 

2 V4_40R S3 Yes low CATCTA 458 

2 V4_41R S1 No high TGTAGA 33518 

2 V4_42R S1 No high ATCAGA 30673 

2 V4_43R S1 No high ACATGA 16622 

2 V4_44R S1 No high TAGACA 26813 

2 V4_45R S1 No high GAGAAT 23804 

2 V4_46R S1 No low CTCAAT 4158 

2 V4_47R S1 No low AGGTAT 8406 

2 V4_48R S1 No low TTGCAT 21612 

2 V4_49R S1 No low TGGATT 29469 

2 V4_50R S1 No low ACCATT 25817 

2 V4_51R 6TD No high CTAGTT 29569 

2 V4_52R 6TD No high AGTGTT 22184 

2 V4_53R 6TD No high TCTCTT 23581 

2 V4_54R 6TD No high GTAAGT 57618 

2 V4_55R 6TD No high CAATGT 24669 

2 V4_56R 6TD No low ATTCGT 14641 

2 V4_57R 6TD No low ATGACT 18141 

2 V4_58R 6TD No low ACTTCT 30553 

2 V4_59R 6TD No low CATAAG 16383 

2 V4_60R 6TD No low TTCTAG 15738 

2 V4_61R 10AS No high AAGATG 35874 

2 V4_62R 10AS No high TATGTG 32479 

2 V4_63R 10AS No high AATTGG 22976 

2 V4_64R 10AS No high TAATCG 11814 

2 V4_65R 10AS No high ACTAAC 46183 

2 V4_66R 10AS No low TGTTAC 15111 

2 V4_67R 10AS No low ATACAC 16895 

2 V4_68R 10AS No low CTTATC 19676 

2 V4_69R 10AS No low AGATTC 13698 

2 V4_70R 10AS No low ACGGAA 15970 

2 V4_71R S3 No high TGCGAA 23264 

2 V4_72R S3 No high GACCAA 33802 

2 V4_73R S3 No high CTGTCA 27377 

2 V4_74R S3 No high GCAGAT 30528 

2 V4_75R S3 No high TCGTGT 20118 

2 V4_76R S3 No low GAACCT 28758 

2 V4_77R S3 No low GTCATG 55074 

2 V4_78R S3 No low GATAGC 14274 
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2 V4_79R S3 No low AAGTCC 16168 

2 V4_80R S3 No low ATTGCC 15946 

2 V4_81R SX yes high CCGAGA 44568 

2 V4_82R SX yes high CGCTGA 41293 

2 V4_83R SX yes high GGCACA 35443 

2 V4_84R SX yes low CGTGCA 16991 

2 V4_85R SX yes low GGCCTT 16868 

2 V4_86R SX yes low CCTGGT 12231 

2 V4_87R SX yes high CAGGCT 32029 

2 V4_88R SX yes high GTCGCT 35515 

2 V4_89R SX yes high GCGTAG 25929 

2 V4_90R SX yes low CTGGAG 24184 

2 V4_91R SX yes low CTACGG 21652 

2 V4_92R SX yes low ACACCG 19598 

2 V4_93R -ve ctrl n/a n/a GTTCCG 248 

2 V4_94R -ve ctrl n/a n/a CAGCAC 866 

2 V4_95R -ve ctrl  n/a n/a CCGTTC 429 

2 V4_96R -ve ctrl n/a n/a GCATCC 610 

 


