
Scalable Embeddings for
Kernel Clustering on MapReduce

by

Ahmed Elgohary

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

© Ahmed Elgohary 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

There is an increasing demand from businesses and industries to make the best use of their
data. Clustering is a powerful tool for discovering natural groupings in data. The k-means al-
gorithm is the most commonly-used data clustering method, having gained popularity for its
effectiveness on various data sets and ease of implementation on different computing architec-
tures. It assumes, however, that data are available in an attribute-value format, and that each
data instance can be represented as a vector in a feature space where the algorithm can be ap-
plied. These assumptions are impractical for real data, and they hinder the use of complex data
structures in real-world clustering applications.

The kernel k-means is an effective method for data clustering which extends the k-means
algorithm to work on a similarity matrix over complex data structures. The kernel k-means al-
gorithm is however computationally very complex as it requires the complete data matrix to be
calculated and stored. Further, the kernelized nature of the kernel k-means algorithm hinders the
parallelization of its computations on modern infrastructures for distributed computing. This the-
sis defines a family of kernel-based low-dimensional embeddings that allows for scaling kernel
k-means on MapReduce via an efficient and unified parallelization strategy. Then, three practical
methods for low-dimensional embedding that adhere to our definition of the embedding family
are proposed. Combining the proposed parallelization strategy with any of the three embedding
methods constitutes a complete scalable and efficient MapReduce algorithm for kernel k-means.
The efficiency and the scalability of the presented algorithms are demonstrated analytically and
empirically.

iii

Acknowledgements

Thanks to everyone who directly or indirectly helped me to complete this thesis at this quality.
I would like to give a special mention to:

• My professors at Alexandria University, Prof. Noha Yousri, Prof. Mohamed Ismail, and
Prof. Moustafa Youssef, for guiding my first research endeavours, for being great examples
for work ethics, and for encouraging and helping me to join the University of Waterloo.

• My supervisors, Prof. Fakhri Karray and Prof. Mohamed Kamel, for the great opportunity
they offered me to join the University of Waterloo, and for the freedom and trust they gave
to me throughout the program.

• Mostafa Hassan for his precious advices in my first days at Waterloo.

• Waterloo professors, Prof. Ashraf Aboulnaga, Prof. Paul Marriott, and Prof. Ali Ghodsi,
for their great courses that were my most valuable assist in producing this thesis.

• Ahmed Farahat for guiding me in learning about several background fundamentals, for
closely mentoring all of my thesis research, and for his technical and non-technical advices.

• Radha Chitta for sharing her processed ImageNet data set that I used throughout all my
experiments.

• Mike Miao for his feedback and suggestions on this work, and for presenting parts of this
thesis at NIPS.

• Prof. Sagar Naik and Prof. Ali Ghodsi for accepting to be my thesis readers.

iv

Dedication

This thesis is dedicated to my parents, Iman and Ali.

v

Table of Contents

List of Tables ix

List of Figures x

List of Algorithms xi

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of Contributions . 3

1.3 Thesis Organization . 3

1.4 Notations . 4

2 Background and Related Work 5

2.1 MapReduce Framework . 5

2.2 Data Clustering . 6

2.3 Kernel Methods . 7

2.4 Kernel Approximations . 9

2.4.1 The Nyström Approximation . 9

2.4.2 Random Fourier Features . 10

2.5 Kernel-Based Clustering . 11

2.5.1 Kernel k-Means . 12

vi

2.5.2 Spectral Clustering . 13

2.5.3 Equivalence of Kernel k-Means and Spectral Clustering 14

2.6 Related Work . 14

2.6.1 Kernel k-Means Approximations . 14

2.6.2 Distributed Data Clustering . 15

2.6.3 MapReduce for Kernel Clustering . 16

3 Scaling Kernel k-Means on MapReduce 17

3.1 Approximate Nearest Centroid Embeddings . 17

3.2 Efficient MapReduce-Based Parallelization Strategy 19

3.2.1 APNC Embedding on MapReduce . 20

3.2.2 APNC Clustering on MapReduce . 21

3.3 APNC Embedding via Nyström Method . 22

3.4 APNC Embedding via Ensemble Nyström Method 24

3.5 APNC Embedding via Stable Distributions . 27

3.6 Analysis . 31

3.7 Implementation Details . 33

3.7.1 Deterministic versus Probabilistic Sampling 33

3.7.2 Handling Empty Clusters . 34

3.7.3 Convergence and Local Optima . 35

3.7.4 Clustering Output . 36

4 Experiments and Results 37

4.1 Single Node Experiments . 38

4.1.1 Datasets . 38

4.1.2 Setup . 38

4.1.3 Results . 42

4.2 Distributed Large-Scale Experiments . 42

vii

4.2.1 Datasets . 42

4.2.2 Setup . 46

4.2.3 Results . 53

5 Conclusions and Future Work 55

5.1 Conclusions . 55

5.2 Future Work . 56

References 58

viii

List of Tables

3.1 The space, time, and network communication complexities of the steps of the
proposed approach. 33

4.1 The properties of the datasets used in the single-node experiments. 38

4.2 The NMIs (%) of different kernel k-means approximations (single-node experi-
ments). In each sub-table, the best performing approximation(s) for each l, (ac-
cording to t-test with 95% confidence level) is highlighted in bold. 40

4.3 The properties of the data sets used in the large-scale experiments. 45

4.4 The NMIs (%) of different kernel k-means approximations (large-scale experi-
ments). In each sub-table, the best performing approximation(s) for each l, (ac-
cording to t-test with 95% confidence level) is highlighted in bold. 47

4.5 The clustering times in minutes of different APNC-Nys and APNC-SD. For each
dataset, the faster method according to t-test (with 95% confidence level) is high-
lighted in bold. 49

ix

List of Figures

4.1 Number of data instances per class in the USPS dataset 39

4.2 Number of data instances per class in the ImageNet-50k dataset 39

4.3 Clustering accuracy of kernel k-means approximations using different numbers
of samples l . 41

4.4 Clustering accuracy of APNC embeddings (APNC-SD and APNC-Nys) using
different values for the target dimensionality m 43

4.5 Clustering accuracy of APNC embeddings via Stable Distributions (APNC-SD)
using different values for the Gaussianity parameter t 44

4.6 Number of data instances per class in the RCV1 dataset 45

4.7 Number of data instances per class in the CovType dataset 45

4.8 Number of data instances per class in the ImageNet dataset 46

4.9 Embedding time of APNC embeddings via Nyström method (APNC-Nys) and
APNC embeddings via stable distributions (APNC-SD) using different sample
sizes l in different datasets . 48

4.10 Embedding time of APNC embeddings via Nyström method (APNC-Nys) and
APNC embeddings via stable distributions (APNC-SD) using different dataset
sizes . 49

4.11 The linear scalability of APNC embeddings . 50

4.12 Clustering time of APNC embeddings via Nyström method (APNC-Nys) and
APNC embeddings via stable distributions (APNC-SD) using different dataset
sizes . 50

4.13 The linear scalability of APNC clustering . 51

x

4.14 The embedding time of APNC embeddings using different values for the embed-
ding dimensionality (m) . 51

4.15 The clustering time of APNC embeddings using different values for the embed-
ding dimensionality (m) . 52

4.16 The NMIs (%) of APNC embeddings using different values for the embedding
dimensionality (m) . 52

xi

List of Algorithms

1 Lloyd k-means . 7
2 APNC Embedding on MapReduce . 20
3 APNC Clustering on MapReduce . 22
4 APNC Coefficients via Nyström Method . 23
5 APNC Coefficients via Ensemble Nyström Method 27
6 Approximate Kernel k-Means Using Stable Distributions 29
7 APNC Coefficients via Stable Distributions . 30
8 Deterministic Subset Sampling . 33
9 Handling Empty Clusters in APNC Clustering 34
10 Generating the Final Cluster Assignments . 36

xii

Chapter 1

Introduction

1.1 Motivation

In today’s era of big data, there is an increasing demand from businesses and industries to get an
edge over competitors by making the best use of their data. Clustering is one of the powerful tools
that data scientists can employ to discover natural groupings in data. The k-means algorithm [1]
is the most commonly-used data clustering method. It has gained popularity for its effectiveness
on many data sets as well as the ease of its implementation on different computing architectures.
The k-means algorithm, however, assumes that data are available in an attribute-value format, and
that all attributes can be turned into numeric values so that each data instance is represented as
a point or vector in some feature space where the algorithm can be applied. These assumptions
are impractical for real data and they hinder the utilization of complex data structures in real-
world clustering problems. Examples include grouping users in a social network based on their
friendship networks, clustering customers according to their behaviour, and grouping proteins
based on their structures. Data scientists tend to simplify these complex structures to a vectorized
format, and would accordingly lose the richness of the data they have.

In order to overcome this problem, much research has been conducted on clustering algo-
rithms that work on similarity matrices over data instances, rather than on a vector representation
of the data in a feature space. This has led to the advance of different similarity-based methods
for data clustering, such as kernel k-means [2] and spectral clustering [3]. The focus of this
thesis is on the kernel k-means algorithm [2]. Different from the traditional k-means algorithm,
the kernel k-means algorithm works on kernel matrices which encode different aspects of sim-
ilarity between complex data structures [4]. It has also been shown that the widely-accepted
spectral clustering method has an objective function which is equivalent to a weighted variant

1

of the kernel k-means algorithm [2], which means that optimizing that criterion allows for an
efficient implementation of the spectral clustering algorithm, in which computationally complex
eigendecomposition step is bypassed [5]. Accordingly, the methods proposed in this thesis can
be leveraged for scaling the spectral clustering method on MapReduce.

The kernel k-means algorithm, however, depends on calculating and storing the kernel matrix
over all data instances. Further, all entries of the kernel matrix need to be accessed in each
iteration. As a result, the kernel k-means algorithm has quadratic space and time complexities per
iteration. These complexities become scalability bottlenecks as the dataset size increases. Some
recent work [6,7] has been proposed to approximate the kernel k-means clustering, and allow its
application to large data. However, those algorithms are designed for centralized settings, and
assume that the data will fit on the memory/disk of a single machine.

This thesis proposes a family of algorithms for scaling the kernel k-means over cloud infras-
tructures for distributed computing. Such infrastructures tend to be composed of several com-
modity nodes, each of which is of a limited memory and computing power [8–10]. The nodes are
connected together in a shared-nothing cluster, which means that data transfers between different
nodes are done through the network. In such settings, ensuring the scalability and fault tolerance
of data analysis tasks is troublesome. MapReduce [9] is a programming model, supported by an
execution framework that provides scalable and fault-tolerant execution of analytical data pro-
cessing tasks over distributed infrastructures of commodity nodes. The proposed algorithms in
this thesis are designed to perfectly fit into the MapReduce programming model, and to adhere
to its computational constraints. We also optimize the execution of the proposed algorithms by
considering the different performance aspects of the target computing infrastructure.

Our approach is based on eliminating the scalability bottlenecks of the kernel k-means by
first learning an embedding of the data instances, and then using this embedding to approximate
the cluster assignment step in each iteration of the kernel k-means algorithm. We show that this
approach leads to a unified and MapReduce-efficient scaling strategy. In addition, we generalize
our approach by defining a family of embeddings characterized by only four properties, which
ensure the correctness of any embedding method in the defined family for scaling the kernel
k-means on MapReduce.

2

1.2 Summary of Contributions

The contributions of the thesis can be summarized as follows.

• The thesis proposes a generic family of kernelized low-dimensional embeddings, which is
called Approximate Nearest Centroid (APNC) embeddings, and defines its computational
and statistical properties that facilitate scaling kernel k-means on MapReduce.

• Exploiting the properties of APNC embeddings, the thesis presents a unified and efficient
parallelization strategy on MapReduce for approximating the kernel k-means using any
APNC embedding.

• The thesis proposes three practical instances of APNC embeddings which are based on the
Nyström method and the use of p-stable distributions for approximating vector norms.

• The presented algorithms are analyzed in terms of their space, time, and network commu-
nication complexities. These analytical results are used to prove the efficiency and the the
scalability of the proposed approach.

• Extensive medium and large-scale experiments were conducted to compare the proposed
approach to state-of-the-art kernel k-means approximations, and to demonstrate the effec-
tiveness and scalability of the presented algorithms.

1.3 Thesis Organization

The rest of this chapter describes the notations used throughout the thesis. The first part of Chap-
ter 2 gives an introductory background on data clustering, kernel methods, and cloud analytics
using MapReduce, while the second part discusses related work on scaling kernel-based cluster-
ing methods, and the recent efforts at adopting data anlytics tasks on MapReduce. The proposed
approach and algorithms are given in Chapter 3. The experiments conducted, and their results,
are described in Chapter 4. Finally, the conclusion of the thesis, and a set of possible future
extensions are presented in Chapter 5.

3

1.4 Notations

The following notations are used throughout the thesis unless otherwise indicated. Scalars are
denoted by small letters (e.g.,m, n), sets are denoted in script letters (e.g., L), vectors are denoted
by small bold italic letters (e.g., φ, y), and matrices are denoted by capital letters (e.g., Φ, Y). In
addition, the following notations are used:

For a set L:
L(b) the subset of L corresponding to the data block b.
|L| the cardinality of the set.

For a vector x ∈ Rm:
xi i-th element of x.
x(i) the i-th vector.
x[b] the vector x corresponding to the data block b.
‖x‖p the `p-norm of x.

For a matrix A ∈ Rm×n:
Aij (i, j)-th entry of A.
Ai: i-th row of A.
A:j j-th column of A.
AL:, A:L the sub-matrices of A which consist of the set L of rows and columns respectively.
AT the transpose of A.
A(b) the sub-matrix of A corresponding to the data block b.

4

Chapter 2

Background and Related Work

2.1 MapReduce Framework

Distributed cloud computing infrastructures tend to be composed of several commodity nodes,
each of which is of a limited memory and computing power [8–10]. The nodes are connected
together in a shared-nothing cluster which, means that data transfers between different nodes
are done through the network. In such settings of infrastructure, ensuring the scalability and
fault tolerance of data analysis tasks is troublesome. MapReduce [9] is a programming model
supported by an execution framework that provides scalable and fault tolerant execution of ana-
lytical data processing tasks over distributed infrastructures of commodity nodes. The simplicity
of the MapReduce API, together with its scalable and fault-tolerant execution framework, dis-
tinguished MapReduce and its open-source implementation Hadoop [11] as the most attractive
paradigm for data analytics tasks on large-scale cloud computing infrastructures.

The rationale behind MapReduce is to impose a set of constraints on data access at each node
and communication between different nodes, to ensure both the scalability and fault-tolerance of
the analytical tasks. A MapReduce job is executed in two phases of user-defined data transfor-
mation functions, namely, the map and reduce phases. The input data is split into physical blocks
distributed across the nodes, each block is viewed as a list of key-value pairs. In the first phase,
the key-value pairs of each input block b are processed by a single map function, running inde-
pendently on the node where the block b is stored. The key-value pairs are provided one-by-one
to the map function; the output of the map function is another set of intermediate key-value pairs.
The values associated with the same key across all nodes are grouped together and provided as
an input to the reduce function in the second phase. Different groups of values are processed
in parallel on different machines. The output of each reduce function is a third set of key-value

5

pairs, and collectively considered the output of the job. For complex analytical tasks, multiple
jobs are typically chained together [12], and/or many rounds of the same job are executed on the
input data set [13].

It is important to note that in addition to the processing time of the map and reduce functions,
a major portion of the job execution time is that taken to move the intermediate key-value pairs
across the network. Hence, minimizing the size of the intermediate key-value pairs significantly
reduces the overall running time of MapReduce jobs. Further, since the individual nodes in cloud
computing infrastructures are of very limited memory, a scalable MapReduce-algorithm should
ensure that the memory required per node remains within the bound of commodity memory sizes
as the data size increases. A significant amount of research has been devoted for scaling complex
data analytics algorithms on MapReduce by developing efficient parallelization strategies, or
even by introducing novel approximations that lead to MapReduce-efficient algorithms. Such
algorithms spanned text mining [14], graph mining [15, 16], nonnegative matrix factorization
[17], feature selection [18], regression [19], PageRank [20] and most recently column subset
selection [12].

2.2 Data Clustering

Data clustering is an unsupervised learning task that aims at discovering natural grouping in
unlabelled input datasets. Over the past decades, researchers have developed various application-
specific [21, 22] or general-purpose [23, 24] data clustering approaches. Data clustering has
been used in a wide spectrum of applications, ranging from news organization [20] to indoor
localization [25].

The k-means algorithm [1] is the most widely used algorithm for data clustering. The objec-
tive of the algorithm is to group the data points into k clusters, such that the Euclidean distances
between data points in each cluster and that cluster’s centroid are minimized. Let Pc denote the
set of data instances assigned to the cluster c and x̄(c) denote the centroid of the data instances in
Pc (i.e. x̄(c) = 1

nc

∑
i∈Pc

x(i)) where nc = |Pc|. The k-means objective is to assign the input data
points to k disjoint sets Pc for c = 1, 2, . . . , k such that following loss function is minimized:

Loss =
k∑
c=1

∑
i∈Pc

∥∥x(i) − x̄(c)∥∥2
2
. (2.1)

An iterative algorithm, namely Lloyd’s algorithm [26], is usually used for the optimization
of the loss function in 2.1. In each iteration, Lloyd’s algorithm assigns each data point to the

6

Algorithm 1 Lloyd k-means
Input: Dataset X = {x(1), x(2), . . . , x(n)}, Number of clusters k
Output: k clusters P1,P2, . . . ,Pk

1: Generate initial k centroids x̄(1), x̄(2), . . . , x̄(k)

2: repeat until convergence
3: Reset all cluster sets Pc ← {}, for c = 1, . . . , k
4: for i = 1 : n
5: ĉ← arg minc

∥∥x(i) − x̄(c)∥∥2
2

6: Pĉ ← Pĉ ∪ x(i)
7: end
8: Update cluster centroids as x̄(c) = 1

nc

∑
x∈Pc

x, for c = 1, . . . , k
9: end

nearest centroid, and calculates new centroids based on the current assignment of the data points.
Afterwards, cluster centroids are updated based on the new cluster assignments. Algorithm 1
outlines the steps of Lloyd’s algorithm. The algorithm is known to converge to a local-optimal
solution. In addition, it can be observed from the steps of algorithm 1 that data instances are
required to be represented in a vector form. Further, the k-means objective in general forces
the clusters to be separated by a hyperplane [5], which makes the k-means unable to discover
non-linearly separable clusters.

2.3 Kernel Methods

One appealing idea for dealing with data of non-linear structures is to use a mapping (embedding)
function to map each data instance x to a typically high-dimensional feature space (as φ = ϕ(x))
in which data instances become linearly separable. Applying a linear learning algorithm (e.g.
k-means) to the data instances in the new feature space provides an elegant replacement for
developing non-linear algorithms and applying them directly to non-linearly separable data in
their original form. However, mapping each data instance to the new feature space might be
intractable, or a computationally expensive step. Further, to obtain the desired linear-separability
properties, the new feature space is usually extremely high dimensional (possibly of infinite
dimensionality) and accordingly, working with the explicit mappings φ is most often infeasible.

Mercer’s theorem [27] was the key result that enabled researchers to put the idea of mapping
data instances to high-dimensional spaces into a computationally tractable framework, known as

7

kernel methods [4]. Mercer’s theorem indicates that a symmetric function (a kernel) κ(., .) can be
expressed as an inner producted κ(x(i), x(j)) = ϕ(x(i))Tϕ(x(j)) for some mapping function ϕ if
and only if κ(., .) is positive semi-definite. That is, the matrix whose entries are [κ(x(i), x(j))]i,j
is positive semi-definite for any set X = {x(1), x(2), . . . , x(n)}. According to that theorem, if
each data access step of a linear learning algorithm is expressed as an inner product of a pair
of instances, one will no longer need to explicitly compute each mapping ϕ(x(i)). Instead, each
inner product ϕ(x(i))Tϕ(x(j)) can be substituted with the output of the kernel function between
the two corresponding original data instances κ(x(i), x(j)). Throughout this thesis, for an input
dataset X = {x(1), x(2), . . . , x(n)}, we refer to the matrix [κ(x(i), x(j))]i,j as the kernel matrix.
The new feature space endowed by a kernel function is referred to as the kernel space.

The idea of kernel methods have been applied to several machine learning algorithms. The
most popular example of such an algorithm is the support vector machines [4]. Commonly used
kernel functions that have been employed successfully in various learning tasks are (1) the Radial
Basis Function (RBF) kernel, which is given by:

κ(x(i), x(j)) = exp

(
−
∥∥x(i) − x(j)∥∥2

2σ2

)
,

where σ is a tuning parameter known as the kernel width; (2) the Polynomial kernel, which is
given by:

κ(x(i), x(j)) =
(
x(i)

T
x(j) + 1

)d
,

where d is a tuning parameter that determines the polynomial degree; and (3) the Sigmoid kernel,
which is given by

κ(x(i), x(j)) = tanh
(
ax(i)

T
x(j) + b

)
,

where both a and b are tuning parameters.

Kernel methods have also been shown to be useful for handling datasets of complex structures
[28]. Examples of such data structures are text strings, graphs, and biological sequences. Since
most learning algorithms work on data points represented in a vector space, data scientists had to
simplify these complex structures to a vectorized format and accordingly lose the richness of the
data they had. Kernel methods allow for working with such complex data structures implicitly,
if the ”kernelized” learning algorithm is provided with a proper kernel function that encodes the
similarity between each pair of data instances.

8

2.4 Kernel Approximations

For a dataset of size n, computing the kernel matrix is ofO(n2), and storing that kernel matrix re-
quiresO(n2) of memory. Those quadratic complexities hinder the application of kernel methods
to large-scale datasets. In the past few years, methods for kernel approximation have been intro-
duced to enable using kernel methods for such datasets. The two most popular methods for kernel
approximations are the Nyström approximation [29] and the random Fourier features [30] [31].

2.4.1 The Nyström Approximation

The Nyström method [32] provides a low-rank approximation of a kernel matrix K of n data
instances, using the kernel matrix between all data instances and a few set of data instances L as

K̃ = DTA−1D , (2.2)

where |L| = l � n, A ∈ Rl×l is the kernel matrix over the data instances in L, and D ∈ Rl×n

is the kernel matrix between the data instances in L and all data instances. The approximation in
2.2 can be derived as follows: let Φ be a d×nmatrix of the n data instances mapped to the kernel
space (i.e. K = ΦTΦ), and Φ:L be a d× l sub-matrix of Φ whose columns are the data instances
in L. Suppose each column in Φ is approximated as a linear combination of the columns of Φ:L,
i.e. an approximate data matrix Φ̃ is given by Φ̃ = Φ:LT . The optimal value for T obtained
by minimizing the least square error ‖Φ− Φ:LT‖22 is T = (ΦT

:LΦ:L)−1ΦT
:LΦ. Substituting this

value of T back to Φ̃ and computing the approximate kernel matrix as K̃ = Φ̃T Φ̃ yields the
approximation in 2.2 [33].

For a fixed value of l, the accuracy of the Nyström approximation is determined by the set
of samples L. A number of approaches have been proposed in the literature for selecting the
samples used to compute the approximation. These approaches have varied from ”one-shot”
uniform and non-uniform probabilistic sampling [34], to adaptive probabilistic [35] and deter-
ministic sampling [36].

The ensemble Nyström method [37] is an extension of the Nsytröm approximation given in
Eq. 2.2, in which a low rank approximation of the kernel matrix is given by a weighted sum of q
low rank approximations computed using disjoint subsets of samples as

K̃ =

q∑
b=1

µbK̃
(b) (2.3)

9

where each K̃(b) is referred to as an expert, and is computed using a small subset of samples L(b)

as defined in Eq. 2.2 as
K̃(b) = D(b)TA(b)−1D(b) (2.4)

where
∣∣L(b)

∣∣ = l(b) � n, A(b) ∈ Rl(b)×l(b) is the kernel matrix over the data instances in
L(b), and D(b) ∈ Rl(b)×n is the kernel matrix between the data instances in L(b) and all data
instances. The authors in [37] proved that computing a low-rank approximation for a given
kernel matrix using the ensemble Nyström method with q > 1 achieves a better approximation
than the Nyström method, when the same number of sample data instances is used.

Three methods for computing the weights µb have been discussed in [37]. In the uniform-
weights method, all weights are assigned the same value as µb = 1

q
for b = 1, 2, .., q. The two

other methods are based on the use of a validation sample of data instances, whose exact pairwise
kernel matrix is denoted asKV . In the exponential-weights methods, the weight corresponding to
each expert b is computed as µb = exp(−ηεb)/Z, where εb is the approximation error (measured
in terms of the Frobenius norm or the spectral norm) of estimating KV using the expert b, η is
a tuning parameter, and Z is a normalization term. The third method is based the solving of a
regression problem to find the set of weights the minimizes the least square error of estimating
KV by combining all the experts in Eq. 2.3.

As the value of l increases, the O(l3) computational complexity of computing the inverse of
the matrix A can be an expensive step of computing the Nyström approximation given by Eq.
2.2. Li et al. [38] suggested to reduce that complexity by computing an approximate A−1 using
the stochastic singular value decomposition (SSVD) presented in [39]. That approximation was
shown to significantly reduce the computational complexity of the Nyström approximation with
a quite minor effect on the accuracy of the computed low-rank kernel approximation. Clearly,
the same approximation can be extended to be applied to the ensemble Nyström method, where
each of A(b)−1 is approximated using the SSVD.

2.4.2 Random Fourier Features

Rahimi and Recht have shown in [30] that any shift-invariant kernel (i.e. kernels in the form
κ(x,y) = κ(x− y)) can be approximated as

κ(x− y) = Eω
[
g(ω,x)Tg(ω,y)

]
,

where
g(ω,y) =

[
cos(ωTx) sin(ωTx)

]T
10

and ω follows a distribution p(ω) that is determined by κ(., .). By approximating the expectation
above by the sample mean using m i.i.d. vectors drawn from p(ω), each of which is denoted as
ω(i), κ(x− y) can approximately be expressed in the form of an inner producted as

κ(x− y) ≈ z(x)T z(y)

where

z(x) =
1√
m

[
cos(ω(1)Tx), . . . , cos(ω(m)Tx), sin(ω(1)Tx), . . . , sin(ω(m)Tx)

]
. (2.5)

Thus, computing the full kernel matrix of a given dataset can be replaced by computing the
corresponding explicit mapping z(x) of each data instance x, and applying the linear learning
algorithm directly to the computed representations.

The advantage of the random Fourier features (RFF) approach is that it enables exploiting
the ability of kernel methods to handle non-linearly separable data using a computationally inex-
pensive linear learning algorithm. However, it can be seen from Eq. 2.5 that the RFF approach
requires all data instances to be in a vectorized form, which hinders employing the RFF ap-
proximation for datasets of complex structures. In addition, the RFF approach is still limited
to shift-invariant kernels. Recent work has shown how to extend the idea of using explicitly
computed embeddings to approximate other types of kernels, such as additive homogenous ker-
nels [40] and dot product kernels [41]. However, all of these approaches require data instances
to be vectorized, and they are still limited to specific types of kernels.

2.5 Kernel-Based Clustering

This Section describes the two most popular and commonly-used kernel-based clustering algo-
rithms. The first is the kernel k-means algorithm [2] which is the result of applying the idea
of kernel methods to the k-means described in Section 2.2. The second is the spectral cluster-
ing algorithm [3] which in principle works on arbitrary pairwise similarity matrices (i.e. the
similarity function used does not have to adhere to Mercer’s definition). However, we list the
spectral clustering under this section as it was shown to have an equivalent objective function to
that of a weighted-variant of the kernel k-means [5]. Accordingly, the proposed kernel k-means
algorithms in this thesis can possibly be extended for scaling spectral clustering algorithms on
MapReduce.

11

2.5.1 Kernel k-Means

The kernel k-means [2] is a variant of the k-means algorithm in which the idea of kernel meth-
ods is used to enable the algorithm to work on datasets of complex structures and/or discover
non-linearly separable clusters. Let φ(i) be the mapping of a data instance i in the feature space
endowed implicitly by the kernel function κ(., .). The k-means loss function in Eq. 2.1 is ex-
tended in the kernel k-means to be

Loss =
k∑
c=1

∑
i∈Pc

∥∥∥φ(i) − φ̄(c)
∥∥∥2
2
, (2.6)

where φ̄(c)
= 1

nc

∑
i∈Pc

φ(i) and nc = |Pc|.

In Lloyd’s Algorithm (Algorithm 1), cluster assignments are made based on the `2-distance
between φ(i) and each cluster centroid φ̄(c) as

π(i) = arg min
c

∥∥∥φ(i) − φ̄(c)
∥∥∥
2
. (2.7)

Since neither φ(i) nor φ̄(c) can be assumed to be accessible explicitly, the square of the `2-
distance in Eq. (2.7) is expanded in terms of entries from the kernel matrix K as:∥∥∥φ(i) − φ̄(c)

∥∥∥2
2

= Kii −
2

nc

∑
a∈Pc

Kia +
1

n2
c

∑
a,b∈Pc

Kab , (2.8)

where Kab is the (a,b)-th entry of the kernel matrix.

That expansion makes the computational complexity of finding the nearest centroid to each
data instanceO(n), and that of a single iteration over all data instancesO(n2). Further, anO(n2)
space is needed to store the kernel matrix K. These quadratic complexities hinder applying
the kernel k-means algorithm to large datasets if the clustering is performed on a single node.
In MapReduce settings, computing the kernel matrix requires O(n2) data transfers across the
network. In addition, to find the best cluster assignment for a data instance i, the kernel between
i and all the other data instancesK:i must be loaded in the memory of a single node, which incurs
an O(n) memory requirement per node. As the dataset size n increases, K:i will not fit into the
memory of a single commodity node. Accordingly, it can be concluded that the original kernel
k-means algorithm cannot be implemented on MapReduce in a scalable way.

12

2.5.2 Spectral Clustering

Spectral clustering is derived from formulating the clustering problem as a normalized graph
partitioning problem, where the vertices of the graph correspond to data instances and each edge
between two vertices corresponds to the similarity between the two data instances represented
by the two vertices. The objective of the spectral clustering algorithm is to minimize the graph
cut resulting from partitioning the nodes into disjoint groups. Several cut objectives have been
presented in previous works [42–44]. The most commonly used one is the normalized cut [43,
45], which is defined in the case of bi-partitioning the graph into two subgraphs A and B as

NCut(A,B) = cut(A,B)

(
1

vol(A)
+

1

vol(B)

)
, (2.9)

where cut(A,B) is the sum of all edges connecting vertices in A and vertices in B, and vol(A)
is the sum of the edges connecting all pairs of vertices in A.

The spectral clustering algorithm requires computing an n×n matrix of all pairwise similar-
ities A of the input data instances (graph adjacency matrix). In addition, the algorithm requires
finding the eigenvectors of the n×n Laplacian matrix corresponding to the computed adjacency
matrix, which makes the time complexity of the spectral clustering algorithm O(n3), in addition
to the O(n2) space needed to store the laplacian matrix. The final clustering is obtained by run-
ning the k-means algorithm on the k leading eigenvectors of the Laplacian matrix, where k is the
number of the desired clusters.

Multiple approximations have been presented in previous work [45–47] to tackle the scalabil-
ity limitations of the spectral clustering. These approximations adopted different sample-based
approaches, in which l (l � n) data points are used to approximate the spectral clustering. As
a result, one has only to compute an eigen-decomposition of an l × l matrix which obviates the
O(n3) of the original spectral clustering algorithm, and replaces it with the O(l3) complexity
required for decomposing the l × l matrix. In [45], Fowlkes et al. exploited the the Nyström
approximation outlined in section 2.4.1 to compute approximate k-leading eigenvectors of the
Laplacian matrix of the given dataset, which reduces the complexity of the spectral clustering
algorithm to O(l3 + lnt), where t is the required number of the k-means iterations needed for
the algorithm to converge. In [47], Yan et al. suggested to find the exact clustering of l data
points (obtained via the k-means clustering or by random projections) using the original spectral
clustering algorithm. The obtained clustering labels are then propagated to the entire dataset.
That approach was shown to reduce the computational complexity of the spectral clustering to
O(l3 + lnt) too. Later in [46], Chen and Cai presented another approximation which was shown
empirically to achieve superior clustering accuracy to that of the Nyström-based approximation
and the approximation of Yan et al. [47]. The approach of Chen and Cai [46] is based on finding

13

a sparse representation of the entire dataset based on a sample of l data points (drawn randomly
out of the given dataset or computed using the k-means clustering). That approach reduces the
runtine complexity of the spectral clustering to O(l3 + l2n+ lnt).

2.5.3 Equivalence of Kernel k-Means and Spectral Clustering

The weighted kernel k-means is a variant of the kernel k-means, in which each data instance i is
assigned a weight wi [5]. The loss function in 2.6 is accordingly modified to be

Loss =
k∑
c=1

∑
i∈Pc

wi

∥∥∥φ(i) − φ̄(c)
∥∥∥2
2
, (2.10)

where

φ̄
(c)

=

∑
i∈Pc

wiφ
(i)∑

i∈Pc
wi

.

Dhillon et al. [5] showed that different cut objectives of the spectral clustering algorithm
have corresponding similarly weighted kernel k-means objective functions. For instance, the
weighted kernel k-means variant corresponding to the normalized graph cut defined in 2.9 is
obtained by setting the weight of each data instance wi to the degree of the corresponding vertex
in the (i.e. wi =

∑n
j=1Aij), and the kernel matrix K to K = σD−1 + D−1AD−1, where D is

a diagonal matrix whose diagonal entries are the degrees of the corresponding vertices, and σ is
a positive scalar that ensures the positive semi-definiteness of the kernel matrix K. The authors
in [5] exploited that equivalence to propose an approximate spectral clustering approach that
eliminates the O(n3) complexity incurred when finding the leading eigenvectors of the graph
Laplacian in the original spectral clustering algorithm.

2.6 Related Work

2.6.1 Kernel k-Means Approximations

The quadratic runtime complexity per iteration, in addition to the quadratic space complexity
of the kernel k-means, have limited its applicability to even medium-scale data sets on a single
machine. Recent work [6,7] to tackle these scalability limitations has focused only on centralized
settings with the assumption that the data set being clustered fits into the memory/disk of a single
machine. In specific, Chitta et al. [6] suggested restricting the clustering centroids to an at most

14

rank-l subspace of the span of the entire data set where l � n. That approximation reduces the
runtime complexity per iteration toO(l2k+nlk), and the space complexity toO(nl), where k is
the number of clusters. However, that approximation is not sufficient for scaling kernel k-means
on MapReduce, since assigning each data point to the nearest cluster still requires accessing
the current cluster assignment of all data points. It was also noticed by the authors that their
method is equivalent to applying the original kernel k-means algorithm to the rank-l Nyström
approximation of the entire kernel matrix [6]. That is algorithmically different from the Nyström-
based embedding method proposed in this thesis (details in Section 3.3) in the sense that we
use the concept of the Nyström approximation to learn low-dimensional embedding for all data
instances which allows for clustering the data instances by applying a simple and MapReduce-
efficient algorithm on their corresponding embeddings.

Later, Chitta et al. [7] exploited the Random Fourier Features (RFF) approach [30] to propose
fast algorithms for approximating the kernel k-means. However, these algorithms inherit the
limitations of the used RFF approach, as discussed in Section 2.4.2. Furthermore, the theoretical
and empirical results of Yang et al. [31] showed that the kernel approximation accuracy of RFF-
based methods depends on the properties of the eigenspectrum of the original kernel matrix, and
ensuring acceptable approximation accuracy requires using a large number of Fourier features,
which increases the dimensionality of the computed RFF-based embeddings. In our experiments,
we empirically show that our kernel k-means methods achieve clustering accuracy superior to
those achieved using the state-of-the-art approximations presented in [6] and [7].

2.6.2 Distributed Data Clustering

Clustering distributed data on infrastructures other than MapReduce has been considered signifi-
cantly in previous work [48–52]. Forman and Zhang. [51] focused on centroids-based clustering
algorithms such as the k-means. Their approach is based on sharing the same set of centroids
among all nodes, where each node uses these centroids to compute sufficient statistics of small
size about the cluster assignments made locally. The sufficient statistics computed at all nodes
are grouped at the end of each iteration at a centralized server that computes updated centroids to
be used in the following iteration. Januzaj et at. [50] proposed clustering the data locally at each
node once, and extracting representatives out of the resulting clusters. The local representatives
are sent to a centralized server which computes a set of global representatives that are then shared
among all nodes to compute the final cluster assignment of each data point. More recently, Datta
et al. [49] presented a fully decentralized approach to clustering distributed data over a peer-to-
peer network using the k-means algorithm. The basic idea behind their approach is that each
node runs a single k-means iteration over its local data then, the resulting local centroids are
synchronized only with the neighbour nodes at the end of each iteration. Afterwards, each node

15

starts the next iteration using the synchronized centroids until satisfying a convergence criteria.
The authors also showed how the algorithm should behave in a dynamic networks, where the
network structure or the data change over time. Later, Elgohary and Ismail [48] extended the
approach of [49] with an online cluster assignment approach that can achieve better clustering
accuracy, and most importantly, prevents ending up with one or more empty clusters.

2.6.3 MapReduce for Kernel Clustering

Other than the kernel k-means, the spectral clustering algorithm [3] is considered a powerful
approach to kernel-based clustering. Chen et al. [53] presented a distributed implementation of
the spectral clustering algorithm using an infrastructure composed of MapReduce, MPI [54], and
SStable1. In addition to the limited scalability of MPI, the reported running times are very large.
We believe this was mainly due to the very large network overhead resulting from building the
kernel matrix using SSTable. Later, Gao et al. [55] proposed an approximate distributed spectral
clustering approach that relied solely on MapReduce. The authors showed that their approach
significantly reduced the clustering time compared to that of Chen et al., [53]. However, in
the approach of Gao et al. [55], the kernel matrix is approximated as a block-diagonal, which
enforces inaccurate pre-clustering decisions that could result in degraded clustering accuracy.

Scaling other algorithms for data clustering on MapReduce was also studied in recent work
[13, 56, 57]. However, these works are limited to co-clustering algorithms [56], subspace clus-
tering [57], and metric k-centers and metric k-median with the assumption that all pairwise
similarities are pre-computed and provided explicitly [13].

The approach proposed in this thesis aims at supporting all types of kernels, while being scal-
able and efficient when implemented on MapReduce. Our approach preserves all the advantages
of kernel methods by being applicable to all data formats, not just data in vectorized forms. We
keep our approach generic by defining a whole family of low-dimensional embedding methods
characterized by only four properties, and we show that any embedding method that satisfies
these four properties can be employed for achieving the goals of our approach.

1http://wiki.apache.org/cassandra/ArchitectureSSTable

16

Chapter 3

Scaling Kernel k-Means on MapReduce

This chapter describes the details of the proposed scalable kernel k-means approach, which is
based on the observation that the linear k-means algorithm can be implemented in a quite effi-
cient manner on MapReduce. Accordingly, reducing the non-linear kernel k-means to an appro-
priate linear variant of the k-means algorithm allows for scaling the kernel k-means algorithm on
MapReduce. This reduction is possible if one can find a low-dimensional representation (embed-
ding) for each input data instance, such that clustering the embeddings using the linear k-means
algorithm provides close approximate clustering results to the clustering output of applying the
kernel k-means algorithm to the original dataset.

Obviously, the most challenging part of the proposed approach is how to perform that reduc-
tion in a Mapreduce-efficient manner while ensuring that clustering accuracy is not degraded as
a result of that reduction. We define a set of properties that ensures the efficiency and the correct-
ness of the reduction/embedding step. Afterwards, we provide a unified strategy for parallelizing
the computations of the embeddings and clustering them using the linear k-means algorithm.
Further, we present three practical embedding methods that satisfy the defined properties. Fi-
nally, we study the computational complexities of all the proposed algorithms and analytically
prove the scalability and the efficiency of our approach. Parts of the work presented in this
chapter appear in our papers [58–60].

3.1 Approximate Nearest Centroid Embeddings

This section defines a family of embeddings, called Approximate Nearest Centroid (APNC) em-
beddings, that can be used to scale the kernel k-means on MapReduce. Essentially, we aim at

17

embeddings that: (1) can be computed in a MapReduce-efficient manner, and (2) can approxi-
mate the cluster assignment step of the kernel k-means on MapReduce (Eq. 2.7). We start with
defining a set of properties which an embedding should have for the aforementioned conditions
to be satisfied. In the following section, we show how these properties can be used to develop a
MapReduce-efficient algorithm for kernel k-means.

Let i be a data instance, φ = Φ:i be a vector corresponding to i in the kernel space implicitly
defined by the kernel function. Let f : Rd → Rm be an embedding function that maps φ to a
target vector y, i.e., y = f (φ). In order to use f (φ) with the proposed MapReduce algorithm,
the following properties have to be satisfied.

Property 3.1.1 f (φ) is a linear map, i.e., y = f (φ) = Tφ , where T ∈ Rm×d.

If this property is satisfied, then for any cluster c, the embedding of its centroid is the same as the
centroid of the embeddings of the data instances that belong to that cluster:

ȳ(c) = f
(
φ̄

(c)
)

=
1

nc

∑
j∈Pc

f
(
φ(j)

)
=

1

nc

∑
j∈Pc

y(j) ,

where ȳ(c) is the embedding of the centroid φ̄(c).

Property 3.1.2 f (φ) is kernelized.

In order for this property to be satisfied, we restrict the columns of the transformation matrix T
to be in the subspace of a subset of data instances L ⊆ D, |L| = l and l ≤ n

T = RΦT
:L .

Substituting in f (φ) gives

y = f (φ) = Tφ = RΦT
:Lφ = RKLi , (3.1)

where KLi is the kernel matrix between the set of instances L and the i-th data instance, and
R ∈ Rm×l. We refer to R as the embedding coefficients matrix.

Suppose the set L definied in Property 3.1.2 consists of q disjoint subsets L(1),L(2),..., and
L(q).

18

Property 3.1.3 The embedding coefficients matrix R is in a block-diagonal form:

R =

 R(1) 0 0

0
. . . 0

0 0 R(q)

 ,

where q is the number of blocks and the b-th sub-matrix R(b) along with its corresponding subset
of data instances L(b) can be computed and fit in the memory of a single machine.

It should be noted that different embeddings of the defined family differ in their definitions of
the coefficients matrix R.

Property 3.1.4 There exists a function e (·, ·) that approximates the `2-distance between each
data point i and the centroid of cluster c in terms of their embeddings y(i) and ȳ(c) only, i.e.,

∃ e (·, ·) :
∥∥∥φ(i) − φ̄(c)

∥∥∥
2
≈ β e

(
y(i), ȳ(c)

)
∀ i, c ,

where β is a constant.

This property allows for approximating the cluster assignment step of the kernel k-means defined
in Eq.(2.7) as

π̃(i) = arg min
c

e
(
y(i), ȳ(c)

)
. (3.2)

Since β is a constant, π̃(i) will result in a cluster assignment for i close to π(i) of the kernel
k-means given by Eq.(2.7).

3.2 Efficient MapReduce-Based Parallelization Strategy

In this section, we show how the four properties of APNC embeddings can be exploited to de-
velop an efficient and unified parallel MapReduce algorithm for kernel k-means. We start with
the algorithm for computing the corresponding embedding for each data instance, then explain
how to use these embeddings for approximating the kernel k-means.

19

Algorithm 2 APNC Embedding on MapReduce
Input: Distributed data points D, Kernel function κ(., .), Embedding coefficients matrix R,
Sample data points L, Number of embedding blocks q
Output: Embedding matrix Y

1: for b = 1:q
2: map:
3: Load L(b) and R(b)

4: foreach < i,D{i} >
5: KL(b)i← κ

(
L(b),D{i}

)
6: y

(i)
[b] ← R(b)KL(b)i

7: emit(i,y(i)
[b])

8: end
9: end

10: map:
11: foreach < i,y(i)

[1] ,y
(i)
[2] , ...,y

(i)
[q] >

12: Y:i← join
(
y
(i)
[1] ,y

(i)
[2] , ...,y

(i)
[q]

)
13: emit(i,Y:i)
14: end

3.2.1 APNC Embedding on MapReduce

From Property 3.1.2 and Property 3.1.3, the embedding y(i) of a data instance i is given by

y(i) =

 R(1) 0 0

0
. . . 0

0 0 R(q)

 KLi , (3.3)

for a set of selected data points L. The set L consists of q disjoint subsets L(1),L(2),..., and L(q).
So, the vectorKLi can then be written in the form of q blocks asKLi = [KT

L(1)iK
T
L(2)i . . . K

T
L(q)i]

T .
Accordingly, the embedding formula in Eq. (3.3) can be written as

y(i) =

 R(1) 0 0

0
. . . 0

0 0 R(q)



KL(1)i
KL(2)i

...
KL(q)i

 =


R(1)KL(1)i
R(2)KL(2)i

...
R(q)KL(q)i

 . (3.4)

20

As per Property 3.1.3, each block R(b) and the sample instances L(b) used to compute its cor-
respondingKL(b)i are assumed to fit in the memory of a single machine. This suggests computing
y(i) in a piecewise fashion, where each portion y(i)[b] is computed separately using its correspond-
ing R(b) and L(b).

As mentioned in Section 2.1, the input blocks are processed in parallel in the map phase, and
each input block is processed sequentially. Our embedding algorithm on MapReduce computes
the embedding portions of all data instances in rounds of q iterations. In each iteration, each
mapper loads the corresponding coefficient block R(b) and data samples L(b) in its memory.
Afterwards, for each data point, the vector KL(b)i is computed using the provided kernel function
and then used to compute the embedding portion as y(i)

[b] = R(b)KL(b)i. Finally, in a single map
phase, the portions of each data instance i are concatenated together to form the embedding y(i).
It is important to note that the embedding portions of each data point will be stored on the same
machine, which means that the concatenation phase has no network cost. The only network cost
required by the whole embedding algorithm is only from loading the sub-matrices R(b) and L(b)

once for each b. Algorithm 2 outlines the embedding steps on MapReduce. We denote each key-
value pair of the input dataset D as < i,D{i} > where i refers to the index of the data instance
D{i}.

3.2.2 APNC Clustering on MapReduce

To parallelize the clustering phase on MapReduce, we make use of Properties 3.1.1 and 3.1.4.
As mentioned in Section 2.5.1, in each kernel k-means iteration, a data instance is assigned to its
closet cluster centroid given by Eq. (2.8). Property 3.1.4 tells us that each data instance i can be
approximately assigned to its closest cluster using only its embedding y(i) and the embeddings
of the current centroids. Further, Property 3.1.1 allows us to compute updated embeddings for
cluster centroids, using the embeddings of the data instances assigned to each cluster.

Let Ȳ be a matrix whose columns are the embeddings of the current centroids. Our MapRe-
duce algorithm for the clustering phase parallelizes each kernel k-means iteration by loading the
current centroids matrix Ȳ to the memory of each mapper, and using it to assign a cluster to each
data point represented by its embedding y(i). Afterwards, the embeddings assigned to each clus-
ter are grouped and averaged in a separate reducer, to find an updated matrix Ȳ to be used in the
following iteration. To minimize the network communication cost, we maintain an in-memory
matrix Z whose columns are the summation of the embeddings of the data instances assigned to
each cluster. We also maintain a vector g of the number of data instances in each cluster. We
only move Z and g of each mapper across the network to the reducers that compute the updated

21

Algorithm 3 APNC Clustering on MapReduce
Input: Distributed embeddings matrix Y , Embedding dimensionality m, Number of clusters k,
Discrepancy function e(., .)
Output: Cluster centroids Ȳ

1: Generate initial k centroids Ȳ
2: repeat until convergence
3: map:
4: Load Ȳ
5: Initialize Z ← [0]m×k and g← [0]k×1
6: foreach < i, Y:i >
7: ĉ = arg minc e(Y:i, Ȳ:c)
8: Z:ĉ ← Z:ĉ + Y:i
9: gĉ ← gĉ + 1

10: end
11: for c = 1:k
12: emit(c,< Z:c,gc >)
13: end
14: reduce:
15: foreach < c, Zc, Gc >
16: Ȳ:c ←

(∑
Z:c∈Zc

Z:c

)
/
(∑

gc∈G gc

)
17: emit(c,Ȳ:c)
18: end
19: end

Ȳ .1 Algorithm 3 outlines the clustering steps on MapReduce.

3.3 APNC Embedding via Nyström Method

In this section, we develop our first instance of APNC embeddings based on the popular Nyström
Method. In principle, one way to preserve the objective function of the cluster assignment step
given by Equations (2.7) and (2.8) is to find a low-rank kernel matrix K̃ over the data instances,
such that K ≈ K̃. Using this kernel matrix in Eq. (2.8) results in a cluster assignment which is
very close to the assignment obtained using the original kernel k-means algorithm.

1The in-memory Z and g can also be replaced by a MapReduce combiner [9]

22

Algorithm 4 APNC Coefficients via Nyström Method
Input: Distributed n data instances D, Kernel function κ(., .), Number of samples l, Target
dimensionality m.
Output: Sample data instances L, Embedding coefficients matrix R.

1: map:
2: for < i,D{i} >
3: with probability l/n, emit(0,D{i})
4: end
5: reduce:
6: for L← all values D{i}
7: KLL ← κ (L,L)
8: [Ṽ , Λ̃]← eigen(KLL,m)
9: R← Λ̃−1/2Ṽ T

10: emit(< S,R >)
11: end

If the low-rank approximation K̃ can be decomposed into W TW where W ∈ Rm×n and
m � n, then the columns of W can be directly used as an embedding that approximates the l2
distance between data instance i and the centroid of cluster c as∥∥∥φ(i) − φ̄(c)

∥∥∥
2
≈
∥∥w(i) − w̄(c)

∥∥
2
. (3.5)

To prove that, the right-hand side can be simplified to

w(i)Tw(i) − 2w(i)T w̄(c) + w̄(c)T w̄(c)

= K̃ii −
2

nc

∑
a∈Pc

K̃ia +
1

n2
c

∑
a,b∈Pc

K̃ab

The right-hand side is an approximation of the objective function of Eq. (2.8).

There are many low-rank decompositions that can be calculated for the kernel matrix K,
including the very accurate eigenvalue decompositions. However, the low-rank approximation
used has to satisfy the properties defined in Section 3.1, and accordingly can be implemented on
MapReduce in an efficient manner.

One well-known method for the low-rank approximation of kernel matrices is the Nyström
approximation [32]. Recall from Section 2.4.1 the the Nyström approximation is computed as

K̃ = DTA−1D , (3.6)

23

where |L| = l � n, A ∈ Rl×l is the kernel matrix over the data instances in L, and D ∈ Rl×n

is the kernel matrix between the data instances in L and all data instances. In order to obtain
a low-rank decomposition of K̃, the Nyström method calculates the eigendecomposition of the
small matrix A as A ≈ UΛUT , where U ∈ Rl×m is the matrix whose columns are the leading-m
eigenvectors of A, and Λ ∈ Rm×m is the matrix whose diagonal elements are the leading m
eigenvalues of A. Substituting this in Eq. (3.6) results in

K̃ = DTUΛ−1UTD . (3.7)

This means that a low-rank decomposition can be obtained as K̃ = W TW whereW = Λ−1/2UTD.
It should be noted that this embedding satisfies Properties 3.1.1 and 3.1.2 as D = ΦT

:LΦ, and ac-
cordingly y(i) = W:i = Λ−1/2UTΦT

:Lφ
(i). Further, Equation (3.5) tells us that e

(
y(i), ȳ(c)

)
=∥∥y(i) − ȳ(c)

∥∥
2

can be used to approximate the `2-distance in Eq. (2.7), which satisfies Property
3.1.4 of the APNC family.

The embedding coefficient matrix R = Λ−1/2UT is a special case of that described in Prop-
erty 3.1.3, which consists of one block of size m × l, where l is the number of instances used
to calculate the Nyström approximation, and m is the rank of the eigen-decomposition used to
compute both Λ and U . It can be assumed that R is computed and fits in the memory of a single
machine, since an accurate Nyström approximation can usually be obtained using a very few
samples and m ≤ l. Algorithm 4 outlines the MapReduce algorithm of computing the coeffi-
cients matrix R. The algorithm uses the map phase to iterate over the input dataset in parallel, to
uniformally sample l data instances. The sampled instances are then moved to a single reducer
that computes R as described above. Ṽ and Λ̃ denote the eigenvectors and eigenvalues matri-
ces computed using the truncated eigen-decomposition function eigen(KLL,m) in line 8 of the
algorithm.

3.4 APNC Embedding via Ensemble Nyström Method

The Nsytröm embedding can be extended by the use of the ensemble Nyström method [37]
outlined in section 2.4.1. A kernel low-rank approximation is computed in the ensemble Nyström
method as a weighted summation of q Nyström approximations as

K̃ = µ1D
(1)TA(1)−1D(1) + µ1D

(2)TA(2)−1D(2) + . . .+ µ1D
(q)TA(q)−1D(q) , (3.8)

which can be written in a matrix form as

24

K̃ = DT


µ1A

(1)−1 0 . . . 0

0 µ2A
(2)−1 . . . 0

...
...

0 0 . . . µqA
(q)−1

D, D =


D(1)

D(2)

...
D(q)

 (3.9)

Equivalently,

K̃ = DT


1
µ1
A(1) 0 . . . 0

0 1
µ2
A(2) . . . 0

...
...

0 0 . . . 1
µq
A(q)


−1

D (3.10)

Accordingly, Eq. 3.10 can be rewritten in the form of K̃ = W TW where W is given by

W =


1
µ1
A(1) 0 . . . 0

0 1
µ2
A(2) . . . 0

...
...

0 0 . . . 1
µq
A(q)


−1/2

D (3.11)

Equivalently,

W =


1√
µ1
A(1)−1/2 0 . . . 0

0 1√
µ2
A(2)−1/2 . . . 0

...
...

0 0 . . . 1√
µq
A(q)−1/2

D (3.12)

Suppose each positive semi-definite block A(b) of Eq. 3.12 is decomposed in the form

A(b) = U (b)Λ(b)U (b)T ,

where the columns of U (b) are the m(b) leading eigenvectors of A(b), and Λ(b) is a diagonal
matrix whose diagonal entries are the m(b) leading eigenvalues of A(b). Then, each A(b)(−1/2) in
Eq. 3.12 can be computed as

25

A(b)−1/2 = Λ(b)−1/2U (b)T .

As shown in Section 3.3, decomposing the kernel matrix in the form K̃ = W TW provides an
embedding method that can approximate the `2-distance of the kernel k-means. Equation 3.12
tells us that the embedding function provided by the ensemble Nyström method is in the form

y(i) = f
(
φ(i)

)
= W:i =


1√
µ1
A(1)−1/2 0 . . . 0

0 1√
µ2
A(2)−1/2 . . . 0

...
...

0 0 . . . 1√
µq
A(q)−1/2

D:i (3.13)

where D:i is an l-dimensional vector of the kernel between the data instance i and all the
sample instances in L(1), L(2), ..., and L(q) and l =

∑q
b=1 |Lb|, i.e.

D:i =
[
Φ:L(1) Φ:L(2) . . . Φ:L(q)

]T
φ(i)

The definition of D:i above shows that the ensemble Nyström embedding given by Eq. 3.13
satisfies properties 3.1.1 and 3.1.2 of APNC embeddings. Further, Eq. 3.13 shows that the
embedding coefficients matrix R of the ensemble Nyström embedding is in a block-diagonal
form, where

R =


1√
µ1
A(1)−1/2 0 . . . 0

0 1√
µ2
A(2)−1/2 . . . 0

...
...

0 0 . . . 1√
µq
A(q)−1/2

 (3.14)

Thus, the embedding given by Eq. 3.13 satisfies property 3.1.3 of APNC embeddings. Sim-
ilar to the Nyström embedding described in Section 3.3, the `2-distance of the kernel k-means
can be approximated directly by the `2-distance of the ensemble Nyström embeddings as∥∥∥φ(i) − φ̄(c)

∥∥∥
2
≈
∥∥y(i) − ȳ(c)

∥∥
2
, (3.15)

26

Algorithm 5 APNC Coefficients via Ensemble Nyström Method
Input: Distributed n data instances D, Kernel function κ(., .), Number of samples l, Target
dimensionality m, Ensemble size q
Output: Sample data instances L, Embedding coefficients matrix R.

1: map:
2: for < i,D{i} >
3: Draw r uniformally from 1 to n
4: if r ≤ l
5: emit(drq/le,D{i})
6: end
7: end
8: reduce:
9: foreach (b,L(b))

10: A← κ
(
L(b),L(b)

)
11: [Ṽ , Λ̃]← eigen(A,m

q
)

12: R(b) ← Λ̃−1/2Ṽ T

13: emit(< b, (L(b), R(b)) >)
14: end

where y(i) is given by Eq. 3.13 and ȳ(c) is the centroid of the embeddings assigned to the
cluster c. Accordingly, the ensemble Nyström embedding satisfies property 3.1.4 of APNC em-
beddings.

Algorithm 5 outlines the MapReduce algorithm of computing the coefficients matrix R given
by Eq. 3.14. For simplicity, we assume that blocks of R are computed with the same number of
samples. Similar to Algorithm 4 above, in the map phase the algorithm iterates over the input
dataset in parallel to uniformally sample l data instances. The sampled instances are then moved
to one of q possible reducers, each of which computes a block of R in parallel as described
above.

3.5 APNC Embedding via Stable Distributions

In this section, we develop our third embedding method based on the results of Indyk [61],
which showed that the `p-norm of a d-dimensional vector v can be estimated by means of p-
stable distributions. Given a d-dimensional vector r whose entries are i.i.d. samples drawn from

27

a p-stable distribution over R, the `p-norm of v is given by

||v||p = αE[|
d∑
i=1

viri|] , (3.16)

for some positive constant α. It is known that the standard Gaussian distribution N (0, 1) is
2-stable [61], which means that it can be employed to compute the `2-norm of Eq. (2.8) as

∥∥φ− φ̄∥∥
2

= αE[|
d∑
i=1

(φi − φ̄i)ri|] , (3.17)

where d is the dimensionality of the space endowed by the used kernel function and the entries
ri ∼ N (0, 1). The expectation above can be approximated by the sample mean of multiple
values for the term |

∑d
i=1(φi − φ̄i)ri| computed using m different vectors r each of which is

denoted as r(j). Thus, the `2-norm in Eq. 3.17 can be approximated as

∥∥φ− φ̄∥∥
2
≈ α

m

m∑
j=1

|
d∑
i=1

(
φir

(j)
i − φ̄ir

(j)
i

)
| (3.18)

Define twom-dimensional embeddings y and ȳ such that yj =
∑d

i=1φir
(j)
i and ȳj =

∑d
i=1 φ̄ir

(j)
i

or equivalently, yj = φTr(j) and ȳj = φ̄
T
r(j). Equation (3.18) can be expressed in terms of y

and ȳ as ∥∥φ− φ̄∥∥
2
≈ α

m

m∑
j=1

|yj − ȳj| =
α

m
‖y − ȳ‖1 . (3.19)

Since all of φ, φ̄ and r(j) are intractable to explicitly work with, our next step is to kernelize
the computations of y and ȳ. Without loss of generality, let Tj = {φ̂(1)

, φ̂
(2)
, ..., φ̂

(t)} be a set

of t randomly chosen data instances embedded and centered into the kernel space (i.e. φ̂
(i)

=
φ(i) − 1

t

∑t
j=1φ

(j)). According to the central limit theorem, the vector r(j) = 1√
t

∑
φ∈Tj φ

approximately follows a multivariate Gaussian distribution N (0,Σ), where Σ is the covariance
matrix of the underlying distribution of all data instances embedded into the kernel space [28].
But according to our definition of y and ȳ, the individual entries of r(j) have to be independent
and identically Gaussians. To fulfil that requirement, we make use of the fact that decorrelating
the variables of a joint Gaussian distribution is enough to ensure that the individual variables are
independent and marginally Gaussian. Using the whitening transform, r(j) is then redefined as

r(j) =
1√
t
Σ̃−1/2

∑
φ∈T (j)

φ , (3.20)

28

Algorithm 6 Approximate Kernel k-Means Using Stable Distributions
Input: Dataset X of n data instances, Kernel Function κ(., .),
APNC Parameters l,m, and t, Number of Clusters k
Output: Clustering Labels l

1: L ← uniform sample of l data instances from X
2: KLL ← κ(L,L)
3: H ← I − 1

l
eeT

4: KLL ← HKLLH
5: [V,Λ]← eigen(KLL)
6: E ← Λ−1/2V T

7: Initialize R← [0]m×l
8: for r = 1 : m
9: T ← select t unique values from 1 to p

10: Rr: =
∑

v∈T Ev:
11: end
12: K:L ← κ(X ,L)

13: Y ← RKT
:L

14: l← k-Means(Y , k, `1) // Lloyd k-means with the `1-distance.

where Σ̃ is an approximate covariance matrix estimated using a sample of l data points embedded
into the kernel space and centered as well. We denote the set of the l data points as L.

With r(j) defined as in Eq. (3.20), the computation of y and ȳ can be fully kernelized by
following similar simplification steps to those in [28]. Accordingly, y and ȳ can be computed as
follows: let KLL be the kernel matrix of L, and define a centering matrix H = I − 1

l
eeT where

I is an l × l identity matrix, and e is a vector of all ones. Denote the inverse square root of the
centered version of KLL as E.2 The embedding of a vector φ is then given by:

y = f(φ) = RΦT
:Lφ (3.21)

such that for j = 1 to m, Rj: = sTEH where s is an l-dimensional binary vector indexing t
randomly chosen values from 1 to l for each j. Algorithm 6 outlines the steps of the approximate
kernel k-means algorithm using stable distributions.

Now, we show that the embedding function f defined in Eq. (3.21) is an APNC Embedding
function. It is clear from Eq. (3.21) that f is a linear map in a kernelized form which satisfies

2The centered version of KLL is given by HKLLH . Its inverse square root can be computed as Λ−1/2V T where
Λ is a diagonal matrix of the eigenvalues of HKLLH , and V is the eigenvector matrix of HKLLH .

29

Algorithm 7 APNC Coefficients via Stable Distributions
Input: Distributed n data instances D, Kernel function κ(., .), Number of samples l, Target
dimensionality m, Tuning parameter t.
Output: Sample data instances L, Embedding coefficients matrix R.

1: map:
2: for < i,D{i} >
3: with probability l/n, emit(0,D{i})
4: end
5: reduce:
6: for L← all values D{i}
7: KLL ← κ (L,L)
8: H ← I − 1

l
eeT

9: [V,Λ]← eigen(HKLLH)
10: E ← Λ−1/2V T

11: for r = 1:m
12: T ← select t unique values from 1 to l
13: Rr: =

∑
v∈T Ev:

14: end
15: emit(< S,R >)
16: end

Properties 3.1.1 and 3.1.2. Equation (3.19) shows that the `2-norm of the difference between
a data point φ and a cluster centroid φ̄ can be approximated up to a constant by e(y, ȳ) =
‖y − ȳ‖1 which satisfies Property 3.1.4 of APNC family. The coefficients matrix R in Eq.
(3.21) is of a single block, which can be assumed to be computable in the memory of a single
commodity machine. That assumption is justified by observing that R is computed using a
sample of a few data instances that are used to conceptually estimate the covariance matrix of the
data distribution. Furthermore, the target dimensionality, denoted as m in Eq. (3.21), determines
the sample size used to estimate the expectation in Eq. (3.17), which also can be estimated by a
small number of samples. We validate the assumptions about l and m in our experiments. This
accordingly satisfies Property 3.1.3. We outline the MapReduce algorithm for computing the
coefficients matrix R, defined by Eq. (3.21) in Algorithm 7. Similar to Algorithm 4, we sample
l data instance in the map phase, and then R is computed using the sampled data instances in a
single reducer.

30

3.6 Analysis

In this section, the proposed algorithms are analyzed, in terms of their memory requirements per
node and their time and network communication complexities. For clarity, the network com-
munication complexity is analyzed separate from the time complexity, and the reported time
complexities indicate only the processing times of the map and reduce functions of each algo-
rithm. Let n be the total number of data instances being clustered. In Mapreduce settings, input
data are partitioned into b physical blocks distributed across different nodes. Input blocks are
processed in parallel by a number of worker threads in each map phase. It could happen that the
number of input blocks might be greater than the number of worker threads. In that case, one or
more worker threads will process more than one input block in each pass over the input dataset in
the map phase. We use p to denote the maximum number of input blocks processed by a single
mapper in each pass over the input dataset. If the number of worker threads is greater than or
equal to the number of the input blocks, the value of p will be 1.

In this section, let l̂ denote the cardinality of the largest subset of data instances used to
compute the embeddings as defined in Section 3.1 (i.e. l̂ = arg maxi |L(i)|). Also, let the size
of each block of R be bounded by m̂ × l̂. So, m̂ = m in Algorithms 4 and 7 while m̂ = m

q
in

Algorithm 5. Similar to Section 3.2 above, k is used to denote the target number of clusters, l is
the total number of data instances used to compute the corresponding APNC coefficients matrix
R, q is the number of blocks of R, and m denotes the target dimensionality of the computed
embeddings. In addition, let s denote the size of each input data instance.

As outlined in Algorithm 2, the space complexity per node to compute the embeddings is
determined by the amount of memory required to store each block of R and its corresponding
subset of data instances (loaded in line:3). Thus, the space complexity per node of the embedding
step is O(l̂(m̂ + s)). The only network communication needed in the embedding step is that of
loading each block of R and its corresponding subset of data instances by each mapper from the
distributed file system. Hence, the network cost of the embedding step is O(bl(m̂ + s))3. The
time complexity is dominated by the matrix-vector multiplication in line:6 which is of O(m̂l̂)
for each input data instance. The number of data instances per each physical input block is n

b
and

accordingly, the time complexity of the embedding step is O(n
b
pml̂).

It can be noticed in Algorithm 3 that the required memory per node in the clustering step is
that needed to store the current cluster centroids (loaded in line:4). Thus, the space complexity
of the clustering step is O(mk). The network communication per iteration is incurred by two
sources. The first is from loading the cluster centroids from the distributed file system in line:4,
and the second is from sending the new cluster assignment information to the reducer in line:12.

3Note that ql̂ was replaced with l

31

The total network communication cost per iteration from both sources is O(mkb). Suppose
the required number of iterations for convergence is t. Then, the overall network cost of the
clustering step is O(tbmk). The time complexity of computing the discrepancy between two
m-dimensional embeddings using the function e(., .) is typically O(m). The time complexity of
the clustering step is dominated by finding the nearest cluster centroid to each data point in each
iteration (line:7) which is O(mk). Therefore, the overall times complexity of the clustering step
is O(n

b
ptmk).

The three embedding methods outlined in Algorithms 4, 5, and 7 have the same space, time,
and network communication complexities. The required space complexity is O(l̂2), which is
the memory required to store the pairwise kernel matrix of the data instances used to com-
pute APNC coefficient matrix R in each algorithm. The time complexity is dominated by the
eigen-decomposition step in each algorithm. The eigen-decomposition step is typically O(l̂3).
However, in situations where the desired rank of the decomposition m̂ is much less than l̂ (i.e.
m̂ � l̂), the efficient yet accurate stochastic singular value decomposition (SSVD) [39] can be
used to compute an approximate eigen-decomposition in Algorithms 4 and 5. Using the SSVD
algorithm reduces the O(l̂3) time complexity of the decomposition step to O(l̂2m̂ + m̂3) [38],
which will still be the most expensive step in Algorithms 4 and 5. The network communication
cost is incurred only by moving the sampled data instances to the reduce function. Thus, the total
network communication cost of the three algorithms is O(ls).

Table 3.1 summarizes the complexities of the proposed algorithms. It can be observed that the
space complexities of all algorithms are independent from the dataset size n, which ensures the
scalability of the proposed approach regardless of the input dataset size. Furthermore, in Section
4.2 it is empirically shown that quite reasonable clustering accuracy can be achieved using very
small values for l and m. In addition, the table shows that the network communication costs of
Algorithm 2 and Algorithm 3 are coarse-grained to be functions of the number of physical input
blocks b, rather than of the number of input data instances n, which contributes significantly to the
efficiency of the proposed approach. The network communication and time complexities of the
three embedding proposed algorithms are independent from both n and b. The time complexities
of the embedding and the clustering steps are both linear in n. However, increasing the number
of data instances n translates into an increase in the number of data instances per block n

b
, or

an increase in the number of blocks b. In Mapreduce settings, the number of data instances per
block is typically kept constant by setting a maximum value for the block size. On the other hand,
increasing the number of blocks results in an increase to the number of blocks processed by each
worker thread in order to do one pass over the entire dataset (i.e. the value of p is increased).
However, the value of p can also be kept constant as n increases by adding more nodes/workers
to the cluster infrastructure, which allows for restricting the increase in the running time of the
clustering process to only the additional network communication cost incurred by the increase in

32

Algorithm 8 Deterministic Subset Sampling
Input: Distributed n data instances D, Number of samples l
Output: Sample data instances L

1: [Method 1] S ← Draw l indexes from 1 to n
2: [Method 2] Load S from DFS
3: map:
4: for < i,D{i} >
5: if i ∈ S
6: emit(D{i})
7: endif
8: end

the number of blocks.

Table 3.1: The space, time, and network communication complexities of the steps of the proposed
approach.

Step Space Complexity Network Complexity Time Complexity
Embedding (Alg. 2) O(l̂(m̂+ s)) O(bl(m̂+ s)) O(n

b
pml̂)

Clustering (Alg. 3) O(mk) O(tbmk) O(n
b
ptmk)

Nys-Coeff. (Alg. 4) O(l2) O(ls) O(min(l3, l2m+m3))

Ens-Nys-Coeff. (Alg. 5) O(l̂2) O(ls) O(min(l̂3, l̂2m+m3))
SD-Coeff. (Alg. 7) O(l2) O(ls) O(l3)

3.7 Implementation Details

In this section, we discuss some implementation details that contribute to the efficiency and the
scalability of the proposed kernel clustering approach.

3.7.1 Deterministic versus Probabilistic Sampling

It can be noticed from Algorithms 4, 5, and 7 that we used a probabilistic sampling approach
to uniformly choose the subset of data instances that are used to compute the embeddings. There

33

Algorithm 9 Handling Empty Clusters in APNC Clustering
Input: Partial summations of the embeddings assigned to each cluster Zc, Number of embed-
dings assigned to each cluster Gc, Backup embeddings U
Output: Sample data instances L

1: reduce:
2: Load the backup embeddings U
3: foreach < c, Zc, Gc >
4: g ←

∑
gc∈Gc gc

5: if g = 0
6: u← remove a sample from U
7: Ȳ:c ← u
8: else
9: Ȳ:c ←

(∑
Z:c∈Zc

Z:c

)
/g

10: endif
11: emit(c,Ȳ:c)
12: end
13: end

are two alternative deterministic ways for sampling l data instances from n distributed instances.
The first is to uniformly choose l distinct random indexes from 1 to n in a centralized way (on
a single machine), then write the chosen indexes to the distributed file system before they are
loaded by the mappers in the aforementioned algorithms. A data instance is then outputted to
the reducers if its key (index) is in the loaded list of indexes. The second way is to rely on a
pseudorandom number generator with a shared seed among all nodes. Each node first samples
l unique indexes from 1 to n, and keeps the sampled indexes in its memory. An instance is
outputted by a mapper if its index is in the list of chosen indexes. Algorithm 8 outlines the steps
of the deterministic sampling approach. Clearly, the probabilistic sampling approach adopted in
Algorithms 4, 5, and 7 is more efficient, and obviates the need to sample and store the set of
indexes S in the memory of each node.

3.7.2 Handling Empty Clusters

One common issue with the k-means clustering algorithm is how to prevent empty clusters.
In the centralized settings, the empty clusters problem is typically handled by assigning one
particular (usually arbitrary) sample to the empty cluster after each iteration. However, in our

34

distributed APNC clustering algorithm (Algorithm 3), empty clusters can be detected only in
the reduce phase, in which data instances are no longer accessible. Our simple and scalable
approach to handing the empty clusters is based on choosing a subset of backup embeddings U
in an initialization step of the algorithm. These backup embeddings are written to the distributed
file system and loaded to the memory of the reducer of the APNC clustering algorithm in each
iteration. Empty clusters are detected easily by the reducer after summing the total number of
data instances assigned to each cluster. The reducer then chooses an arbitrary data instance out
of the backup embeddings, and assigns it to the detected empty cluster. The number of backup
embeddings |U| is a tuning parameter to the APNC Clustering algorithm. It should be at least
equal to k − 1, where k is the number of clusters. However, we suggest to set the size of U
to a greater value than k − 1, to avoid producing the same cluster assignments in the following
iteration. The probabilistic sampling approach discussed in Section 3.7.1 can be employed to
efficiently generate the backup embeddings file. Algorithm 9 shows a revised outline for the
reducer of the APNC clustering algorithm with the proper steps for handling the empty clusters
problem.

3.7.3 Convergence and Local Optima

The k-means algorithm is known to achieve a local optimal clustering solution. In one-node
settings, one practical approach to tackling this problem is to run the k-means algorithm multiple
times with different initial cluster assignments, and take the clustering result that achieves the
best objective function (e.g. minimum least square error as defined in Eq. 2.6). A similar
approach can be integrated in the proposed APNC clustering algorithm. In fact, one does not need
to restart the clustering algorithm multiple times. Different runs with different initial conditions
can be executed in parallel. Recall that in Algorithm 3 the current centroids matrix Ȳ is loaded
to the memory of all mappers to decide the closest centroid to each data point. One can obtain q
different clustering solutions by using q matrices of clusters centroids, and letting each mapper
assign each data instance to the closest centroid in each matrix Ȳ (b) for b = 1, 2, ..., q.

The stopping (”convergence”) criterion used in our implementation is a fixed number of
iterations. We believe this is the most efficient approach to terminating the k-means iterations
in MapReduce settings. This criteria can be augmented by comparing the current centroids of
each iterations to the previous centroids, to make sure that further iterations can still improve the
clustering results.

35

Algorithm 10 Generating the Final Cluster Assignments
Input: Distributed n data instances D, Final centroids Ȳ , Discrepancy function e(., .)
Output: Cluster Assignments

1: Load Ȳ
2: map:
3: for < i,Y:i >
4: ĉ = arg minc e(Y:i, Ȳ:c)
5: emit(i,ĉ)
6: end

3.7.4 Clustering Output

In the APNC clustering algorithm (Algorithm 3), the last step of each iteration is to generate
new clustering centroids. At the end of the last iteration, the final clustering centroids are con-
sidered as the output of the algorithm. In most applications, finding the cluster assignment of
each data instance is needed. In that case, a map-only job should be used to assign each data in-
stance to its closest final centroid. Algorithm 10 outlines the steps for generating the final cluster
assignments.

36

Chapter 4

Experiments and Results

In this chapter, we present the experiments conducted to assess the effectiveness and the perfor-
mance of the proposed algorithms. We also study the effect of each algorithm’s tuning parameters
on both the effectiveness and the efficiency of the proposed approach. In addition, we empirically
demonstrate the scalability of the overall approach, and validate both the provided computational
complexities of the individual algorithms, and the analysis of the approach as a whole.

The experiments were conducted with a variety of datasets of different types, sizes, and
dimensionalities. The datasets used are also of different clusters distributions, and number of
clusters. Each dataset comes with ground-truth labels such that each data instance is assigned
a single label out of a set of predetermined labels. Our evaluation focuses on both the cluster-
ing accuracy and the running time of each algorithm. For all experiments, after the clustering
was performed, the cluster labels were compared to the ground-truth labels, and the Normal-
ized Mutual Information (NMI) [62] between clustering labels and the ground-truth labels was
calculated. We also recorded the running time (in minutes) of the steps of each algorithm.

We conducted two sets of experiments. The first was conducted on a single node to assess
the clustering accuracy of the proposed algorithms compared to both the previously proposed
kernel k-means approximation and the exact kernel k-means algorithm. Further, we studied the
effect of the tuning parameters on the clustering accuracy of each algorithm as a part of these
one-node experiments. The second set of experiments was conducted using large-scale datasets
in a distributed environment composed of 20 nodes. In these experiments, we have evaluated
the scalability and performance of the proposed algorithms. Additionally, we have reported the
clustering accuracy of each algorithm, to confirm the correctness and the effectiveness of the
proposed approach when applied to very large datasets.

37

4.1 Single Node Experiments

4.1.1 Datasets

We evaluated the proposed algorithms by conducting experiments on four medium-scale datasets,
called USPS, PIE, ImageNet-50k, and MNIST. The PIE dataset is a subset of 11,554 face im-
ages, in 68 classes, out of CMU PIE [63]. Both of the USPS and MNIST are handwritten digits
in 10 classes and their sizes are 9,298 and 70,000 respectively [64]. The ImageNet-50k dataset
is a subset of 50,000 images out of the 1,262,102 images of the Full-ImageNet dataset [65].
We used a preprocessed version of the original ImageNet dataset that was prepared by Chitta et
al. [6] to evaluate their approximate kernel k-means approach. Each image was represented by
a 900-dimensional vector based on SIFT descriptors computed using all the images of the full
ImageNet dataset. Each instance of the ImageNet-50k is assigned to one of 164 classes. The
properties of the datasets are summarized in Table 4.1. It should be noted that the four datasets
are of different sizes, numbers of features, numbers of classes, and class distributions. Both PIE
and MNIST are of balanced classes (i.e., classes are approximately of the same number of in-
stances), while USPS and ImageNet-50k are of imbalanced classes, as shown in Figures 4.1 and
4.2.

Table 4.1: The properties of the datasets used in the single-node experiments.

Data set Type # Intstances # Features # Clusters

USPS Digit Images 9,298 256 10
PIE Face Images 11,554 4,096 68

ImageNet-50k Images 50,000 900 164
MNIST Digit Images 70,000 784 10

4.1.2 Setup

The single-node experiments focused on evaluating the effectiveness of the approximate kernel
k-means algorithms proposed in this thesis, by comparing their clustering accuracy results to
those of the exact kernel k-means and other recently proposed approximations. In addition, we
extensively studied the effect of the proposed algorithms’ tuning parameters on the clustering
accuracy. We implemented cerntralized versions of the algorithms described in Chapter 3 -

38

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

Distribution of Classes in USPS Dataset

Class ID

N
u
m

b
e
r

o
f
D

a
ta

 I
n
st

a
n
ce

s

Figure 4.1: Number of data instances per class
in the USPS dataset

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

6000

7000
Distribution of Classes in ImageNet−50k Dataset

Class ID

N
um

be
r o

f D
at

a
In

st
an

ce
s

Figure 4.2: Number of data instances per class
in the ImageNet-50k dataset

APNC via Nyström method (APNC-Nys) and APNC via Stable Distributions (APNC-SD) - using
MATLAB on a single machine of 8GB RAM. We also compared them to the approximate Kernel
k-means approach (Approx KKM) presented in [6], and the two Random Fourier Features-based
algorithms (RFF and SV-RFF) presented in [7]. We used the MATLAB implementation provided
by the authors of the Approx KKM, RFF, and SV-RFF approaches 1.

For APNC-Nys, APNC-SD, and Approx KKM, we used three different values for the number
of samples l, while fixing the Gaussianity parameter t of APNC-SD to 100, and the embedding
dimensionality m to 1000. For a fair comparison, we set the number of fourier features used
in RFF and SV-RFF to 500, to obtain 1000-dimensional embeddings as in APNC-SD. An RBF
kernel was used for both the PIE and Imgnet-50k datasets. The kernel width parameter σ was
estimated for each dataset using the self-tuning method used in [46] and [6], where σ is computed
as σ = ρδ where ρ is set to the average euclidean distance between all pairs of data samples and
δ was tuned to the value in [0, 1] that achieved the best clustering accuracy. We used a neural
kernel for the USPS data set and a polynomial kernel for the MNIST data set (the definition of
each of the kernel functions used is given is Section 2.3). Following [6], the kernel parameters
a, b, and d were set to 0.0045, 0.11, and 5 respectively. Table 4.2 summarizes the average and
standard deviation of the NMIs achieved in 20 different runs of each algorithm for each dataset,
using different values for l. Being limited to only shift-invariant kernels, both RFF and SV-RFF
were only used for the data sets PIE and ImageNet-50k. Since neither RFF nor SV-RFF uses a
sample of data instance, their clustering accuracies are the same under different values for l. A
t-test with 95% confidence level was used to determine the best performing algorithm for each
dataset using each value for l. Further, Figure 4.3 shows the effect of the number of samples used

1Available at http://sites.google.com/site/radhacr/academics/projects/software

39

Table 4.2: The NMIs (%) of different kernel k-means approximations (single-node experiments).
In each sub-table, the best performing approximation(s) for each l, (according to t-test with 95%
confidence level) is highlighted in bold.

l = 50 l = 100 l = 300
Methods PIE - 11K, RBF

RFF 5.2± 0.12 5.2± 0.12 5.2± 0.12
SV-RFF 5.15± 0.11 5.15± 0.11 5.15± 0.11

Approx KKM 13.99± 0.6 14.66± 1.01 15.95± 0.83
APNC-Nys 18.52± 00.26 19.23± 00.36 20.20± 00.46
APNC-SD 18.62± 0.37 19.5± 0.38 20.12± 0.35

Exact KKM 20.7915± 0.4542
ImageNet - 50K, RBF

RFF 6.12± 0.04 6.12± 0.04 6.12± 0.04
SV-RFF 5.96± 0.06 5.96± 0.06 5.96± 0.06

Approx KKM 14.67± 0.25 15.12± 0.17 15.27± 0.15
APNC-Nys 15.62± 00.17 15.81± 00.12 15.79± 00.09
APNC-SD 15.66± 0.14 15.78± 0.14 15.76± 0.08

USPS - 9K, Neural
Approx KKM 37.60± 17.50 50.68± 11.28 57.17± 5.44

APNC-Nys 51.58± 11.74 55.77± 03.30 58.26± 00.95
APNC-SD 52.88± 7.25 55.34± 4.15 58.22± 0.87

Exact KKM 59.4367± 0.6591
MNIST - 70K, Polynomial

Approx KKM 19.07± 1.45 20.73± 1.30 22.38± 1.06
APNC-Nys 19.68± 00.71 20.82± 01.44 21.93± 00.69
APNC-SD 23.00± 1.57 23.08± 1.58 23.86± 1.82

on the clustering accuracy achieved by APNC-Nys, APNC-SD and Approx KKM compared to the
exact kernel k-means algorithm. Due to the large memory requirement of storing the kernel
matrix, we only used the exact kernel k-means algorithm for the datasets PIE and USPS.

The second set of the single-node experiments was conducted to study the effect of the in-
troduced tuning parameters on the clustering accuracy of the proposed algorithms. The first
parameter we studied was the value of the embedding dimensionality m. In each of the two
proposed algorithms (APNC-Nys and APNC-SD), we fixed the value of l to 300 and changed the
value of m from 50 to 1000. The clustering accuracy at m = 50, m = 250, m = 500, and

40

m = 1000 were recorded in each of the four datasets. Figure 4.4 shows the average and standard
deviation of the NMIs achieved in 20 different runs of APNC-Nys and APNC-SD in each dataset.
It should be noted that in APNC-Nys the value of m cannot be greater than the value of l. So, at

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 50 100 150 200 250 300

N
M

I
%

Number of Samples (l)

Effect of Number of Samples on the Clustering Accuracy

APNC-SD
APNC-Nys

Approx-KKM
Exact-KKM

(a) USPS

 10

 12

 14

 16

 18

 20

 22

 50 100 150 200 250 300

N
M

I
%

Number of Samples (l)

Effect of Number of Samples on the Clustering Accuracy

APNC-SD
APNC-Nys

Approx-KKM
Exact-KKM

(b) PIE

 14

 14.5

 15

 15.5

 16

 16.5

 17

 50 100 150 200 250 300

N
M

I
%

Number of Samples (l)

Effect of Number of Samples on the Clustering Accuracy

APNC-SD
APNC-Nys

Approx-KKM

(c) ImageNet-50k

 16

 18

 20

 22

 24

 26

 28

 30

 50 100 150 200 250 300

N
M

I
%

Number of Samples (l)

Effect of Number of Samples on the Clustering Accuracy

APNC-SD
APNC-Nys

Approx-KKM

(d) MNIST

Figure 4.3: Clustering accuracy of kernel k-means approximations using different numbers of
samples l

41

m = 500 and m = 1000 we reported the best NMI achieved by APNC-Nys which was obtained
at m = l = 300. Finally, the effect of the Gaussianity parameter t on the clustering accuracy of
APNC-SD was studied by reporting the NMIs achieved at t = 20, t = 50, t = 100, and t = 200.
The results obtained for each dataset are summarized in Figure 4.5.

4.1.3 Results

It can be observed from Table 4.2 that the centralized versions of the proposed algorithms
(APNC-Nys and APNC-SD) were significantly superior to all the other kernel k-means approx-
imations in terms of the clustering accuracy. Both methods performed similarly in all datasets
except for the MNIST, in which APNC-SD outperformed the APNC-Nys. The poor performance
of RFF and SV-RFF is consistent with the results of [31] that showed that for a fixed number of
Fourier features, the approximation accuracy of RFF-based methods are determined by the prop-
erties of the eigenspectrum of the kernel matrix being approximated, which vary among different
datasets. The table also shows that when using only 300 samples (i.e. l = 300), APNC-Nys
and APNC-SD achieve very close clustering accuracy to that of the exact kernel k-means, which
confirms the correctness and the reliability of the proposed approximations.

Figure 4.3 shows that increasing the number of samples used can improve the clustering
accuracy of the proposed algorithms. The improvement rate decreases as l increases. Figure
4.4 compares the effect of increasing the embedding dimensionality on the clustering accuracy
of APNC-Nys and APNC-SD. The figure shows that APNC-Nys is less sensitive to the value of
m, which means that in APNC-Nys one can set m to very small values (e.g. m = 50) without
worrying about the clustering accuracy. In addition, Figure 4.4 shows that setting m to a value
greater than 500 does not contribute significantly to improving the clustering accuracy of APNC-
SD. The effect of the Gaussianity parameter t on the clustering accuracy of APNC-SD seems to
be quite minor, as can be noticed from Figure 4.5. Setting the value of t to 50 was sufficient to
ensure the best clustering accuracy in most of the datasets.

4.2 Distributed Large-Scale Experiments

4.2.1 Datasets

The second part of the experiments was conducted using three real-world big datasets in a dis-
tributed environment of 20 nodes. The three datasets are called RCV1, CovType, and ImageNet.
The RCV1 dataset is a subset of 193,844 news documents in 103 categories prepared by Chen

42

et al. [53] to evaluate their distributed spectral clustering algorithms. Each document is repre-
sented by a very sparse vector of 47,236 tokens. The CovType dataset [66] is a set of 581,012
observations of cartographic variables in 7 classes. Each observation is associated with one of

 40

 45

 50

 55

 60

 65

 3.5 4 4.5 5 5.5 6 6.5 7

N
M

I
%

Embedding Dimensionality (m), log-scale

Effect of Embedding Dimensionality on the Clustering Accuracy

APNC-SD
APNC-Nys

(a) USPS

 18

 19

 20

 21

 22

 23

 3.5 4 4.5 5 5.5 6 6.5 7

N
M

I
%

Embedding Dimensionality (m), log-scale

Effect of Embedding Dimensionality on the Clustering Accuracy

APNC-SD
APNC-Nys

(b) PIE

 13

 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 3.5 4 4.5 5 5.5 6 6.5 7

N
M

I
%

Embedding Dimensionality (m), log-scale

Effect of Embedding Dimensionality on the Clustering Accuracy

APNC-SD
APNC-Nys

(c) ImageNet-50k

 16

 18

 20

 22

 24

 26

 28

 30

 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

N
M

I
%

Embedding Dimensionality (m), log-scale

Effect of Embedding Dimensionality on the Clustering Accuracy

APNC-SD
APNC-Nys

(d) MNIST

Figure 4.4: Clustering accuracy of APNC embeddings (APNC-SD and APNC-Nys) using differ-
ent values for the target dimensionality m

43

 40

 45

 50

 55

 60

 65

 2.5 3 3.5 4 4.5 5 5.5

N
M

I
%

t , log-scale

Effect of t on the Clustering Accuracy

(a) USPS

 18

 19

 20

 21

 22

 23

 2.5 3 3.5 4 4.5 5 5.5

N
M

I
%

t , log-scale

Effect of t on the Clustering Accuracy

(b) PIE

 13

 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 2.5 3 3.5 4 4.5 5 5.5

N
M

I
%

t , log-scale

Effect of t on the Clustering Accuracy

(c) ImageNet-50k

 16

 18

 20

 22

 24

 26

 28

 30

 2.5 3 3.5 4 4.5 5 5.5

N
M

I
%

t , log-scale

Effect of t on the Clustering Accuracy

(d) MNIST

Figure 4.5: Clustering accuracy of APNC embeddings via Stable Distributions (APNC-SD) using
different values for the Gaussianity parameter t

seven possible forest cover types. The CovType dataset was used by Chitta et al. [7] and Chen
et al. [46] to evaluate their large-scale kernel clustering approaches. We also used the full Im-
ageNet dataset described in Section 4.1.1 above. The full ImageNet dataset (called ImageNet)

44

was also used by Chitta et al. [6] to evaluate their approximate kernel k-means approach. The
properties of the datasets are summarized in Table 4.3. The three datasets are of three different
types and characteristics. They are also of different numbers of classes and numbers of features.
Their class distributions are plotted in Figures 4.6, 4.7, and 4.8.

Table 4.3: The properties of the data sets used in the large-scale experiments.

Data set Type # Intstances # Features # Clusters

RCV1 Documents 193,844 47,236 103
CovType Multivariate 581,012 54 7
ImageNet Images 1,262,102 900 164

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5
x 10

4 Distribution of Classes in RCV1 Dataset

Class ID

N
u

m
b

e
r

o
f

D
a

ta
 I

n
s
ta

n
c
e

s

Figure 4.6: Number of data instances per class
in the RCV1 dataset

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3
x 10

5 Distribution of Classes in CovType Dataset

Class ID

N
u
m

b
e
r

o
f
D

a
ta

 I
n
s
ta

n
c
e
s

Figure 4.7: Number of data instances per class
in the CovType dataset

45

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

18
x 10

4 Distribution of Classes in ImageNet Dataset

Class ID

N
u

m
b

e
r

o
f

D
a

ta
 I

n
s
ta

n
c
e

s

Figure 4.8: Number of data instances per class in the ImageNet dataset

4.2.2 Setup

The large-scale experiments were conducted on an Amazon EC2 [67] cluster which consists of
20 nodes (one master node and 19 workers). Each node had a 7.5GB RAM and a two-core
processor. All instances were running Debian 6.0.5, Hadoop version 1.0.3, and Java 1.7.0. Each
dataset was converted into a binary format in the form of a sequence of key-value pairs. Each
pair represented a data instance where the key was set to the data instance ID and the value was
the features vector corresponding to the data instance. A sparse representation for the features
vectors of the RCV1 dataset was used. That binary sequence of key-value pairs is the standard
format used in Mahout [68] for storing distributed matrices on Hadoop File System (HDFS).
Each dataset file was partitioned into 19 physical blocks of equal size, so that all blocks are
processed in parallel after being written to HDFS.

We combined the proposed embedding methods APNC-Nys and APNC-SD with our paral-
lelization strategy (the APNC embedding and the APNC clustering algorithms) and compared
them to a baseline two-stage method (called Two-Stage) that uses the exact kernel k-means clus-
tering results of a sample of l data instances to propagate the labels to all the other data in-
stances [6]. The Two-Stag method is used as a sanity check to evaluate the relative improvement
in clustering accuracy of the APNC-Nys and APNC-SD. APNC-Nys and APNC-SD were imple-
mented using Hadoop, while the Two-Stag method was implemented using MATLAB on a single
node, since we were only interested in its clustering accuracy. We evaluated the three algorithms
using three different values for l, while fixing m in APNC-Nys and APNC-SD to m = 500, and t

46

Table 4.4: The NMIs (%) of different kernel k-means approximations (large-scale experiments).
In each sub-table, the best performing approximation(s) for each l, (according to t-test with 95%
confidence level) is highlighted in bold.

l = 500 l = 1000 l = 1500
Methods RCV1 - 200K, RBF

Two-Stag 13.33±00.53 13.56±00.53 13.56±00.06
APNC-Nys 22.15±00.09 23.77±0.60 23.84±00.80
APNC-SD 22.21±00.39 24.34±00.26 23.55±00.17

CovType - 580K, RBF
Two-Stag 08.95±02.98 10.23±01.07 09.85±01.88

APNC-Nys 09.53±02.55 12.31±00.74 12.51±01.08
APNC-SD 15.96±01.03 15.08±01.40 15.56±00.18

ImageNet - 1.2M, RBF
Two-Stag 07.51±00.42 07.58±00.21 07.71±00.20

APNC-Nys 11.33±00.05 11.26±00.11 11.19±00.03
APNC-SD 11.27±00.06 11.26±00.04 11.10±00.05

in APNC-SD to t = 100. We used a self-tuned RBF kernel [53] for all datasets. We used a fixed
number of 20 iterations in the clustering step as a convergence criteria in both APNC-Nys and
APNC-SD.

Table 4.4 summarizes the average and standard deviation of the NMIs achieved in three
different runs of each algorithm. In addition, the time of the embedding step and the clustering
step in each algorithm was recorded. Figure 4.9 shows the embedding time at each value of l in
each algorithm when applied to the datasets RCV1, CovType, and ImageNet. The clustering
time was not affected by the value of l. So, we only report the clustering time of each algorithm
at l = 500. Table 4.5 summarizes the average and standard deviation of the clustering time of
each dataset, using APNC-Nys and APNC-SD. The faster method according to a t-test with a 95%
confidence level is highlighted in bold.

Another set of large-scale experiments was conducted to study the scalability of the proposed
algorithms. We studied the scalability of APNC-Nys and APNC-SD as a function of the dataset
size n, and of the embedding dimensionality m. We recorded the running time of the embedding
and the clustering step of APNC-Nys and APNC-SD when applied to subsets of each of the
datasets RCV1 and ImageNet. We used subsets of four different sizes in each dataset. Each
subset was parittioned into 19 blocks of equal size and distributed over the 20-node cluster.
Figures 4.10 and 4.11 show the running time of the embedding step of APNC-Nys and APNC-SD

47

 0

 2

 4

 6

 8

 10

 12

 14

500 1000 1500

T
im

e
 (

m
in

)

Number of Samples (l)

Effect of Number of Samples on the Embedding Time

APNC-SD
APNC-Nys

(a) RCV1

 0

 2

 4

 6

 8

 10

 12

 14

500 1000 1500
T

im
e
 (

m
in

)
Number of Samples (l)

Effect of Number of Samples on the Embedding Time

APNC-SD
APNC-Nys

(b) CovType

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

500 1000 1500

T
im

e
 (

m
in

)

Number of Samples (l)

Effect of Number of Samples on the Embedding Time

APNC-SD
APNC-Nys

(c) ImageNet

Figure 4.9: Embedding time of APNC embeddings via Nyström method (APNC-Nys) and
APNC embeddings via stable distributions (APNC-SD) using different sample sizes l in different
datasets

at different subsets of each of RCV1 and ImageNet. Figures 4.12 and 4.13 show the running
time of the clustering step of APNC-Nys and APNC-SD at different subsets of each of RCV1 and

48

Table 4.5: The clustering times in minutes of different APNC-Nys and APNC-SD. For each
dataset, the faster method according to t-test (with 95% confidence level) is highlighted in bold.

Datasets RCV1 CovType ImageNet
APNC-Nys 19.56 ± 0.07 16.44 ± 0.09 63.78 ± 2.75
APNC-SD 15.59 ± 0.44 15.84 ± 0.08 23.73 ± 0.31

ImageNet. Finally, for the full RCV1 and ImageNet datasets, we recorded the embedding and
the clustering time of APNC-Nys and APNC-SD using m = 50, m = 250, and m = 500, to study
the scalability of the proposed algorithms when the embdding dimensionality is varied. Figures
4.14 and 4.15 show the embedding time and the clustering time of each dataset at different values
of m. Also, we report the clustering accuracy of each dataset at the three values of m in Figure
4.16.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

50k 100k 150k 200k

T
im

e
 (

m
in

)

Number of Data Instances (n)

Embedding Time of Datasets of Different Sizes

APNC-SD
APNC-Nys

(a) RCV1

 0

 2

 4

 6

 8

 10

 12

 14

 16

100k 250k 500k 1.2m

T
im

e
 (

m
in

)

Number of Data Instances (n)

Embedding Time of Datasets of Different Sizes

APNC-SD
APNC-Nys

(b) ImageNet

Figure 4.10: Embedding time of APNC embeddings via Nyström method (APNC-Nys) and
APNC embeddings via stable distributions (APNC-SD) using different dataset sizes

49

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 40 60 80 100 120 140 160 180 200

T
im

e
 (

m
in

)

Number of Data Instances (n) x 1000

Embedding Time of Datasets of Different Sizes

APNC-SD
APNC-Nys

(a) RCV1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200
T

im
e
 (

m
in

)
Number of Data Instances (n) x 1000

Embedding Time of Datasets of Different Sizes

APNC-SD
APNC-Nys

(b) ImageNet

Figure 4.11: The linear scalability of APNC embeddings

 12

 13

 14

 15

 16

 17

 18

 19

 20

50k 100k 150k 200k

T
im

e
 (

m
in

)

Number of Data Instances (n)

Clustering Time of Datasets of Different Sizes

APNC-SD
APNC-Nys

(a) RCV1

 20

 30

 40

 50

 60

 70

100k 250k 500k 1.2m

T
im

e
 (

m
in

)

Number of Data Instances (n)

Clustering Time of Datasets of Different Sizes

APNC-SD
APNC-Nys

(b) ImageNet

Figure 4.12: Clustering time of APNC embeddings via Nyström method (APNC-Nys) and
APNC embeddings via stable distributions (APNC-SD) using different dataset sizes

50

 12

 13

 14

 15

 16

 17

 18

 19

 20

 40 60 80 100 120 140 160 180 200

T
im

e
 (

m
in

)

Number of Data Instances (n) x 1000

Clustering Time of Datasets of Different Sizes

APNC-SD
APNC-Nys

(a) RCV1

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200
T

im
e
 (

m
in

)
Number of Data Instances (n) x 1000

Clustering Time of Datasets of Different Sizes

APNC-SD
APNC-Nys

(b) ImageNet

Figure 4.13: The linear scalability of APNC clustering

 0

 1

 2

 3

 4

 5

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
in

)

Embedding Dimensionality (m)

Effect of Embedding Dimensionality on the Embedding Time

APNC-SD
APNC-Nys

(a) RCV1

 8

 10

 12

 14

 16

 18

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
in

)

Embedding Dimensionality (m)

Effect of Embedding Dimensionality on the Embedding Time

APNC-SD
APNC-Nys

(b) ImageNet

Figure 4.14: The embedding time of APNC embeddings using different values for the embedding
dimensionality (m)

51

 10

 12

 14

 16

 18

 20

 22

 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

m
in

)

Embedding Dimensionality (m)

Effect of Embedding Dimensionality on the Clustering Time

APNC-SD
APNC-Nys

(a) RCV1

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300 350 400 450 500
T

im
e
 (

m
in

)
Embedding Dimensionality (m)

Effect of Embedding Dimensionality on the Clustering Time

APNC-SD
APNC-Nys

(b) ImageNet

Figure 4.15: The clustering time of APNC embeddings using different values for the embedding
dimensionality (m)

 16

 18

 20

 22

 24

 1.6 1.8 2 2.2 2.4 2.6 2.8

N
M

I
%

Embedding Dimensionality (m), log-scale

Effect of Embedding Dimensionality on the Clustering Accuracy

APNC-SD
APNC-Nys

(a) RCV1

 8

 9

 10

 11

 12

 13

 1.6 1.8 2 2.2 2.4 2.6 2.8

N
M

I
%

Embedding Dimensionality (m), log-scale

Effect of Embedding Dimensionality on the Clustering Accuracy

APNC-SD
APNC-Nys

(b) ImageNet

Figure 4.16: The NMIs (%) of APNC embeddings using different values for the embedding
dimensionality (m)

52

4.2.3 Results

The Clustering Accuracy

Table 4.4 demonstrates the effectiveness of the proposed algorithms in distributed settings com-
pared to the baseline algorithm. Both APNC-Nys and APNC-SD achieved the same clustering
accuracy in the RCV1 and ImageNet datasets, while APNC-SD outperformed the APNC-Nys in
the CovType dataset. It is also worth noting that, to the best of our knowledge, the best reported
NMIs in the literature for the datasets RCV1, CovType, and ImageNet are 28.65% using the
spectral clustering [53], 14% using RFF [7], and 10.4% using Approx-KKM of [6] respectively.
Our algorithms managed to achieve better NMIs on both CovType and ImageNet, and a com-
parable clustering accuracy on RCV1. Table 4.4 also shows that the clustering accuracy can be
improved by increasing the number of samples used for computing the embeddings in APNC-Nys
and APNC-SD.

The Running Time

The running time of the proposed clustering approach consists of the time taken to compute the
embedding, in addition to the time of running the APNC clustering algorithm on the computed
embeddings.

Figure 4.9 shows that APNC-SD and APNC-Nys have comparable embedding times, which
matches our analysis in Section 3.6. On the other hand, Table 4.5 shows that the clustering step
of APNC-SD is faster than the clustering step of APNC-Nys, especially in the datasets with a
large number of clusterings (RCV1 and ImageNet). That advantage of the APNC-SD algorithm
is from using the `1-distance as its discrepancy function while APNC-Nys uses the `2-distance as
its discrepancy function.

To judge the overall efficiency of our algorithms, we compared the total clustering time on
the RCV1 dataset to the reported clustering running time of the same dataset on a 20-node cluster
in [53]. We are unaware of any reported results for a distributed kernel k-means implementation.
We are comparing our running times to the running times of the distributed spectral clustering
of [53], to just get a sense of the efficiency of our algorithms. With l = 1500, the total clustering
time using APNC-SD was on average 25 minutes, while the total clustering time of APNC-Nys
was 29 minutes. The reported running time for the same data set on a 20-node cluster in [53]
was 95 minutes. It is also worth noting that the reported clustering time for an images dataset
of size 2, 121, 863 on a 20-node cluster in [53] was 193 hours. Our approach was able to cluster
1, 262, 102 images in only 38 minutes using the APNC-SD algorithm and 78 minutes using the

53

APNC-Nys. By the linear scalability of our algorithms (explained in the following section), the
total clustering times of APNC-SD and APNC-Nys on that 2, 121, 863 images dataset is expected
to be 40 and 105 minutes respectively.

Scalability

The first part of our scalability study was concerned with the running time of the embedding and
the clustering steps as the number of data instances increases. Figures 4.10 and 4.11 show the
embedding time of four different subsets of the datasets RCV1 and ImageNet with the number
of samples l was fixed at 500, and the embedding dimensionality m set to 500. The figures
show that APNC-Nys and APNC-SD have very close embedding times in all data subsets. Most
importantly, the figures demonstrate the linear scalability of the embedding step of our approach
(i.e., with a fixed number of nodes, the embedding time increases linearly with the dataset size).
In terms of the clustering time, Figures 4.12 and 4.13 show that APNC-SD is always faster
than APNC-Nys. The difference in the clustering times of APNC-SD and APNC-Nys becomes
significant as the dataset size increases. The figures also confirms the linear scalability of the
clustering step of both methods.

The second part of our scalability study focused on the effect of the embedding dimensional-
ity m on the running time of the embedding and the clustering step. Figures 4.14 and 4.15 show
that both of APNC-Nys and APNC-Nys scale linearly, in terms of both embedding and clustering
time, as the value of m increases. Also, Figure 4.16 shows the effect of m on the clustering
accuracy. The figure matches our results in the single-node experiments, which indicates that the
clustering accuracy of APNC-Nys is less sensitive to the value of m than that of APNC-SD.

54

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we proposed distributed algorithms for scaling kernel k-means on MapReduce. We
started by explaining the infeasibility of implementing the original kernel k-means algorithm or
its previously proposed approximation on MapReduce in a scalable manner. Then, we defined
a family of kernelized low-dimensional embeddings characterized by a set of computational and
statistical properties. Based on those properties, we presented a unified parallelization strategy
that first computes the corresponding embeddings of all data instances of the given dataset, then
clusters them in a MapReduce-efficient manner. Next, we derived three embedding methods that
were shown to adhere to the properties of the defined embedding family. The first embedding
method is based on the Nström approximation; the second embedding method is an extension
of the Nyström-based method, in which we exploited the recently proposed ensemble Nyström
method to provide more accurate embeddings. The third embedding method was developed using
the properties of the p-stable distributions. We analyzed all of the proposed algorithms in terms
of their time, space, and network communication complexities. We used the analytical results
obtained to prove the scalability and the efficiency of the proposed approach.

A comprehensive set of experiments was conducted to validate the correctness, efficiency,
and scalability of the proposed approach and algorithms. We focused our experiments on the
Nyström-based embedding and the p-stable distributions-based embedding. Combining each of
the two embedding methods with the proposed parallelization strategy, we demonstrated the ef-
fectiveness of the presented algorithms by empirical evaluation on medium and large benchmark
data sets. We studied the tuning parameters of each algorithm and the scalability of the approach

55

as a whole. The results obtained showed that our approach is able to provide an accurate kernel
k-means approximation while being MapReduce-efficient and linearly scalable.

5.2 Future Work

Faster and More Memory-Efficient APNC Embeddings

In this thesis, we presented three instances of APNC embeddings with their corresponding
MapReduce implementations, given in Algorithms 4, 5, and 7. We have shown that the key
feature behind the scalability of the three instances is that their memory and time complexi-
ties are independent from the dataset size. However, there is still a room for developing faster
and more memory-efficient APNC embeddings. As shown in Table 3.1, the three embeddings
have quadratic memory requirements per node, and cubic time complexities either in the num-
ber of samples l, or in the target dimensionality m. By comparing the embedding times given
in Figure 4.9 to the clustering times given in Table 4.5, it can be seen that 66% of the overall
running time of the clustering algorithm was consumed only to computed the embeddings. One
possible future direction of this work could be developing faster embeddings that adhere to the
definition APNC embeddings given in Section 3.1. Reducing the memory requirements per node
can also contribute to improving the scalability and the accuracy of the proposed approach. As
shown in Figure 4.2, increasing the number of samples used can improve the clustering accu-
racy of APNC embeddings. However, the quadratic memory requirements per node of the three
presented APNC instances will hinder increasing the value of l above a certain threshold. Devel-
oping APNC embeddings that are of much tighter memory requirements per node will facilitate
using larger values for l when needed.

Spectral Clustering Extension

As pointed out by the authors in [53] and [55], the two main scalability bottlenecks of imple-
menting the spectral clustering algorithm on MapReduce are (1) building the all-pairs similarity
matrix, and (2) computing the eigenvectors of the corresponding graph Laplacian matrix. In Sec-
tion 2.5.3, we briefly elaborated on the results presented by Dhillon et al. in [5] that showed the
equivalence of the weighted kernel k-means and multiple variants of the spectral clustering. That
equivalence was exploited by the authors in [5] to propose a multilevel approach to approximat-
ing the spectral clustering, using appropriate weighted kernel k-means variants. That multilevel
approach is not suitable for MapReduce settings. One interesting extension of the approach in-
troduced in this thesis might be to integrate it with the equivalence of the spectral clustering and

56

the kernel k-means, for developing a scalable and efficient spectral clustering algorithm that fits
into the MapReduce model.

Theoretical Error Analysis

Besides our empirical comparison between the APNC via Nyström embeddings (APNC-Nys)
and APNC via Stable Distributions embeddings (APNC-SD), one possible future direction is
to theoretically compare both methods in terms of their respective approximation errors. That
theoretical comparison might provide an explanation for the superiority of APNC-SD to APNC-
Nys only in the MNIST (Table 4.2) and the CovType (Table 4.4) datasets, while being of similar
clustering accuracies in all the other datasts. In addition, as explained in Section 2.4.1, the
number of samples l used in the Nyström approximation corresponds to the cardinality of the
subset of columnsL sampled from the data matrix Φ (mapped to the kernel space), which provide
a good approximation for Φ when projected to the span of L. One the other hand, we have shown
in Section 3.5 that the number of samples l used in APNC-SD is the sample size used to estimate
the covariance matrix of the underlying distribution from which the columns of Φ are drawn.
This suggests the following open questions. Which method requires less number of samples to
achieve a certain clustering accuracy. Does the answer to that question depend on the dataset?
Does it depend on the used kernel function? We believe that providing a theoretical error analysis
for both methods might lead to a better understanding for how both methods compare to one
another.

The kernel k-means algorithm is known to converge to a local optimal solution. But our
approach uses different approximations for the kernel k-means algorithm depending on the em-
bedding method used. It is also important to theoretically study the convergence of the kernel
k-means when the approximations introduced in this thesis are employed.

MapReduce-Efficent Sampling

The accuracy of the Nyström approximation is determined by the selected samples of data in-
stances that are used for computing the approximation. Several methods have been proposed
for selecting a subset of instances that will improve the accuracy of the Nystrom approxima-
tion [34–36]. Studying the feasibility of implementing those methods on MapReduce in a scal-
able and efficient manner is an interesting future direction, as it might lead to improving the
cluster accuracy of the Nyström-based embeddings presented in this thesis.

57

References

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM Computing
Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[2] I. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means, spectral clustering and normalized
cuts,” in ACM SIGKDD KDD, 2004, pp. 551–556.

[3] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 4,
pp. 395–416, 2007.

[4] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, 2002.

[5] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without eigenvectors a multi-
level approach,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 29,
no. 11, pp. 1944–1957, 2007.

[6] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain, “Approximate kernel k-means: Solution to
large scale kernel clustering,” in ACM SIGKDD KDD, 2011, pp. 895–903.

[7] R. Chitta, R. Jin, and A. K. Jain, “Efficient kernel clustering using random Fourier features,”
in IEEE ICDM, 2012, pp. 161–170.

[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
and A. Rabkin, “A view of cloud computing.” Communication of the ACM, vol. 53, no. 4,
pp. 50–58, 2010.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

58

[10] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation for MapReduce,” in
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’10. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2010, pp. 938–948.

[11] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc., 2009.

[12] A. K. Farahat, A. Elgohary, A. Ghodsi, and M. S. Kamel, “Distributed Column Subset
Selection on MapReduce,” in Proceedings of the Thirteenth IEEE International Conference
on Data Mining, 2013.

[13] A. Ene, S. Im, and B. Moseley, “Fast clustering using MapReduce,” in ACM SIGKDD
KDD, 2011, pp. 681–689.

[14] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce, ser. Synthesis Lec-
tures on Human Language Technologies. Morgan & Claypool Publishers, 2010.

[15] U. Kang, C. Tsourakakis, A. Appel, C. Faloutsos, and J. Leskovec, “Hadi: Fast diameter
estimation and mining in massive graphs with hadoop,” CMU-ML-08-117, 2008.

[16] J. Xiang, C. Guo, and A. Aboulnaga, “Scalable maximum clique computation using mapre-
duce,” in Data Engineering (ICDE), 2013 IEEE 29th International Conference on, 2013,
pp. 74–85.

[17] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang, “Distributed nonnegative matrix
factorization for web-scale dyadic data analysis on mapreduce,” in Proceedings of the 19th
international conference on World wide web, ser. WWW ’10, 2010, pp. 681–690.

[18] S. Singh, J. Kubica, S. Larsen, and D. Sorokina, “Parallel large scale feature selection for
logistic regression,” Proceedings of the SIAM International Conference on Data Mining,
pp. 1171–1182, 2009.

[19] X. Meng and M. Mahoney, “Robust regression on mapreduce,” in Proceedings of the 30th
International Conference on Machine Learning (ICML-13), 2013, pp. 888–896.

[20] B. Bahmani, K. Chakrabarti, and D. Xin, “Fast personalized pagerank on mapreduce,” in
Proceedings of the 2011 ACM SIGMOD International Conference on Management of data,
ser. SIGMOD ’11, 2011, pp. 973–984.

[21] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: A partition-and-group frame-
work,” in Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, ser. SIGMOD ’07, 2007, pp. 593–604.

59

[22] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression patterns,” Journal of
computational biology, vol. 6, no. 3-4, pp. 281–297, 1999.

[23] B. Frey and D. Dueck, “Clustering by passing messages between data points,” Science, vol.
315, no. 5814, p. 972, 2007.

[24] N. A. Yousri, M. S. Kamel, and M. A. Ismail, “A distance-relatedness dynamic model for
clustering high dimensional data of arbitrary shapes and densities,” Pattern Recognition,
vol. 42, no. 7, pp. 1193–1209, 2009.

[25] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury, “No need
to war-drive: unsupervised indoor localization,” in Proceedings of the 10th international
conference on Mobile systems, applications, and services, ser. MobiSys ’12, 2012, pp.
197–210.

[26] S. Lloyd, “Least squares quantization in PCM,” Information Theory, IEEE Transactions on,
vol. 28, no. 2, pp. 129–137, 1982.

[27] J. Mercer, “Functions of positive and negative type, and their connection with the theory of
integral equations,” Philosophical Transactions of the Royal Society, London, vol. 209, pp.
415–446, 1909.

[28] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 34, no. 6, pp. 1092–1104, 2012.

[29] P. Drineas and M. W. Mahoney, “On the Nyström Method for approximating a Gram matrix
for improved kernel-based learning,” Journal of Machine Learning Research, vol. 6, pp.
2153–2175, 2005.

[30] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in NIPS, 2007,
pp. 1177–1184.

[31] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, “Nyström method vs random Fourier
features: A theoretical and empirical comparison,” in NIPS, 2012, pp. 485–493.

[32] C. Williams and M. Seeger, “Using the Nyström method to speed up kernel machines,” in
NIPS. MIT Press, 2000, pp. 682–688.

[33] A. K. Farahat, “Greedy representative selection for unsupervised data analysis,” Ph.D. dis-
sertation, University of Waterloo, 2012.

60

[34] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms for matrices II:
Computing a low-rank approximation to a matrix,” SIAM Journal on Computing, vol. 36,
no. 1, pp. 158–183, 2007.

[35] S. Kumar, M. Mohri, and A. Talwalkar, “On sampling-based approximate spectral de-
composition,” in Proceedings of the 26th International Conference on Machine Learning
(ICML’09). New York, NY, USA: ACM, 2009, pp. 553–560.

[36] A. K. Farahat, A. Ghodsi, and M. S. Kamel, “A novel greedy algorithm for Nyström ap-
proximation.” in Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics (AISTATS’11), 2011, pp. 269–277.

[37] S. Kumar, M. Mohri, and A. Talwalkar, “Ensemble Nyström Method,” in NIPS, 2009, pp.
1060–1068.

[38] M. Li, J. T. Kwok, and B.-L. Lu, “Making large-scale nyström approximation possible,” in
ICML, 2010, pp. 631–638.

[39] N. Halko, P.-G. Martinsson, Y. Shkolnisky, and M. Tygert, “An algorithm for the principal
component analysis of large data sets,” SIAM Journal on Scientific Computing, vol. 33,
no. 5, pp. 2580–2594, 2011.

[40] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit feature maps,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010.

[41] P. Kar and H. Karnick, “Random feature maps for dot product kernels,” in AISTATS, 2012,
pp. 583–591.

[42] L. Hagen and A. Kahng, “New spectral methods for ratio cut partitioning and clustering,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 11,
no. 9, pp. 1074–1085, 1992.

[43] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 22, no. 8, pp. 888–905, 2000.

[44] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “A min-max cut algorithm for graph parti-
tioning and data clustering,” in Proceedings of the First IEEE International Conference on
Data Mining (ICDM’01) 2001, 2001, pp. 107–114.

[45] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the nyström
method,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2,
pp. 214–225, 2004.

61

[46] X. Chen and D. Cai, “Large scale spectral clustering with landmark-based representation,”
in AAAI, 2011, pp. 313–318.

[47] D. Yan, L. Huang, and M. Jordan, “Fast approximate spectral clustering,” in Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’09). New York, NY, USA: ACM, 2009, pp. 907–916.

[48] A. Elgohary and M. Ismail, “Efficient data clustering over peer-to-peer networks,” in In-
telligent Systems Design and Applications (ISDA), 2011 11th International Conference on,
nov. 2011, pp. 208 –212.

[49] S. Datta, C. Giannella, and H. Kargupta, “Approximate distributed k-means clustering over
a peer-to-peer network,” Knowledge and Data Engineering, IEEE Transactions on, vol. 21,
no. 10, pp. 1372–1388, 2009.

[50] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, “Towards effective and efficient distributed clus-
tering,” in In Workshop on Clustering Large Data Sets (ICDM, 2003, pp. 49–58.

[51] G. Forman and B. Zhang, “Distributed data clustering can be efficient and exact,” SIGKDD
Explor. Newsl., vol. 2, no. 2, pp. 34–38, Dec. 2000.

[52] K. M. Hammouda and M. S. Kamel, “Models of distributed data clustering in peer-to-peer
environments,” Knowl. Inf. Syst., vol. 38, no. 2, pp. 303–329, 2014.

[53] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Chang, “Parallel spectral clustering in
distributed systems,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 33, no. 3, pp. 568 –586, 2011.

[54] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the
Message-Passing Interface. Cambridge, MA: MIT Press, 1994.

[55] F. Gao, W. Abd-Almageed, and M. Hefeeda, “Distributed approximate spectral clustering
for large-scale datasets,” in HPDC. ACM, 2012, pp. 223–234.

[56] S. Papadimitriou and J. Sun, “Disco: Distributed co-clustering with map-reduce: A case
study towards petabyte-scale end-to-end mining,” in Data Mining, 2008. ICDM ’08. Eighth
IEEE International Conference on, 2008, pp. 512–521.

[57] R. L. Ferreira Cordeiro, C. Traina, Junior, A. J. Machado Traina, J. López, U. Kang, and
C. Faloutsos, “Clustering very large multi-dimensional datasets with mapreduce,” in Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, ser. KDD ’11, 2011, pp. 690–698.

62

[58] A. Elgohary, A. K. Farahat, M. S. Kamel, and F. Karray, “Approximate nearest centroid
embedding for kernel k-means,” big Learning Workshop, Advances in Neural Information
Processing Systems (NIPS), 2013.

[59] ——, “Embed and conquer: Scalable embeddings for kernel k-means on mapreduce,” in
The SIAM International Conference on Data Mining (SDM), 2014.

[60] ——, “Embed and conquer: Scalable embeddings for kernel k-means on mapreduce,”
CoRR, vol. abs/1311.2334, 2013.

[61] P. Indyk, “Stable distributions, pseudorandom generators, embeddings and data stream
computation,” in Proceedings of the Symposium on Foundations of Computer Science,
2000.

[62] A. Strehl and J. Ghosh, “Cluster ensembles—A knowledge reuse framework for combining
multiple partitions,” Journal on Machine Learning Research, vol. 3, pp. 583–617, 2003.

[63] T. Sim, S. Baker, and M. Bsat, “The cmu pose, illumination, and expression database,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1615–1618, Dec. 2003.

[64] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM Trans.
Intell. Syst. Technol., vol. 2, no. 3, May 2011.

[65] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[66] K. Bache and M. Lichman, “UCI machine learning repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[67] “Amazon elastic compute cloud (Amazon EC2),” http://aws.amazon.com/ec2/.

[68] “Apache mahout,” http://mahout.apache.org.

63

http://archive.ics.uci.edu/ml
http://aws.amazon.com/ec2/
http://mahout.apache.org

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Summary of Contributions
	Thesis Organization
	Notations

	Background and Related Work
	MapReduce Framework
	Data Clustering
	Kernel Methods
	Kernel Approximations
	The Nyström Approximation
	Random Fourier Features

	Kernel-Based Clustering
	Kernel k-Means
	Spectral Clustering
	Equivalence of Kernel k-Means and Spectral Clustering

	Related Work
	Kernel k-Means Approximations
	Distributed Data Clustering
	MapReduce for Kernel Clustering

	Scaling Kernel k-Means on MapReduce
	Approximate Nearest Centroid Embeddings
	Efficient MapReduce-Based Parallelization Strategy
	APNC Embedding on MapReduce
	APNC Clustering on MapReduce

	APNC Embedding via Nyström Method
	APNC Embedding via Ensemble Nyström Method
	APNC Embedding via Stable Distributions
	Analysis
	Implementation Details
	Deterministic versus Probabilistic Sampling
	Handling Empty Clusters
	Convergence and Local Optima
	Clustering Output

	Experiments and Results
	Single Node Experiments
	Datasets
	Setup
	Results

	Distributed Large-Scale Experiments
	Datasets
	Setup
	Results

	Conclusions and Future Work
	Conclusions
	Future Work

	References

