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Abstract 

The experiments presented in this thesis provide novel insight into two scarcely 

studied areas in the field of lateral hip impact biomechanics. The high energy nature of hip 

impacts requires high sampling rates for accurate study of hip impact dynamics. However, to 

date only optical motion capture, with relatively lower sampling rates (240-400 Hz), has been 

used to measure pelvic deflection during hip impact experiments with human participants. As 

such, the results from the first study compared the differences between two measurement 

systems (3D optical motion tracking and 2D high speed videography) in measuring common 

variables of impact biomechanics (peak force, time to peak force, peak deflection, time to 

peak deflection and energy absorbed).  Although significant differences were seen between 

systems in measuring TFmax and Emax, the magnitude of differences were at or below 5% of 

the total magnitude of each measured variable. Furthermore, averaging impacts within a 

subject reduced the differences between systems for Emax.  Furthermore, this study showed 

the effect of sampling rate on measuring hip impact dynamics, and how sampling at lower 

frequencies affects the aforementioned variables.  Tests on the effect of sampling rate found 

differential effects contingent on the dependent variable measured. Sampling as low at 300 

Hz, significantly reduced measures of Fmax and Dmax, but only by on average 0.7 and 0.5 %, 

respectively. Whereas measures of TFmax and TDmax increased by on average 9.5 and 6.8 %. 

Sampling Emax at 500 Hz and 300 Hz increased measures of impact absorption by 2.2 and 2.8 

% respectively. Sampling at 4500 Hz was the lowest sampling rate that was not significantly 

different from 9000 Hz across all dependent variables. 

 

The second study in this thesis investigates the influence of contact area on load 

distribution during lateral hip impacts. In summary, this study shows that all three time-

varying signals (Ft, FTt and Dt ) were significantly correlated with time-varying contact area 

(Ct). These results lend support to the possibility of modeling lateral hip impacts with contact 

models, but provide little support for a Hertzian model adaptation. Analysis on the 

relationships between body mass and BMI found both anthropometric measures to correlate 

significantly with peak impact force, but not with peak impact force directed to the greater 
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trochanter. These results bring into question the feasibility of modeling hip fracture risk with 

body mass or BMI as inputs, without further investigating the distribution of impact force to 

the greater trochanter. In this study only contact area was significantly correlated with all 

measures of GT specific loading, and has never before been implemented in predictive 

modelling of hip fracture risk. Finally, this study found that although effective mass, total 

body mass and BMI were significantly correlated with the contact area at peak force, they 

only accounted for 21, 22 and 33% of the variance in CA. Altogether, this study sheds new 

light on the role that contact area plays in lateral hip impact loading and the importance of 

understanding load distribution during lateral hip impacts. It also highlights the importance 

of moving towards predictive models that incorporate more robust estimate of body 

composition and geometry, with hopes that these will better help estimate the risk of hip 

fracture.   

Overall, this thesis provides insight into the expected differences between measuring 

hip impact dynamics with two, relatively different measurement techniques. In addition, it 

highlights the need for further study on the relationship between contact geometry and hip 

fracture risk, something not currently implemented in most hip fracture risk models.   
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Chapter 1 
Thesis Overview 

Annually, there are an estimated nine million osteoporotic fractures worldwide. Of these 

nine million, 1.6 million are of the hip (Cummings and Melton, 2002). The majority of these 

hip fractures are caused by direct lateral-falls on the greater trochanter (Courtney et al., 1994; 

Hayes et al., 1996; Nevitt and Cummings, 1993), with the estimated economic burden of 

these injuries topping $2 billion annually in Canada (SMARTRISK, 2009). As a result, an 

extensive amount of research has focused on the mechanics of falls in efforts to better predict 

and reduce the risk of fracture for a given individual.  

From an engineering perspective, the risk of failure for any structure is fundamentally 

modelled as the ratio of applied load to load capacity. In the case of hip fracture, this refers to 

the ratio of the load applied to the greater trochanter during a fall, to the capacity of that hip 

to withstand such a load. If load surpasses capacity, the structure will fail.  

 The efficacy of any risk predicting model depends heavily on the inputs for that model. 

If inputs such as contact area, material stiffness, strain or applied stress are inaccurate or even 

nonexistent, estimating hip fracture risk becomes meaningless. Thus, any benefit from the 

use of predictive models in hip fracture research depends on sufficient and accurate 

characterization of the variables that best estimate the dynamic response of the pelvis to 

impact loads, and understanding how variations in these inputs can cause changes in 

predicted loads.  

This thesis attempted to address the unknowns relating to measuring inputs commonly 

used in the field of hip fracture mechanics, as well as explore understudied ones. 
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Specifically, the first study focused on the methods of quantifying the dynamics response of 

the pelvis, and the effects of sampling rate on measuring that response. The second study 

focused on contact area, and how it varies with force, deflection and body anthropometry. In 

addition, it investigated the extent to which body anthropometry and contact area explain the 

variability in impact load distribution. 

 

STUDY 1 

In-vivo studies of fall related hip impacts by Laing and Robinovitch (2010) directly 

measured the force-deflection response of the pelvis during low velocity “pelvis release 

experiments” (Robinovitch et al., 1991). This method involved tracking a marker on the 

opposite greater trochanter of the impacting hip, during the compressive phase of impact. In 

their study, pelvic deflection was measured with an eight-camera optical motion tracking 

system, sampling at 240Hz, whereas subsequent studies using this method have sampled 

pelvic deflection at 400Hz (Bhan et al., 2013; Levine et al., 2013; Levine, 2011).  Elsewhere, 

blunt lateral impact studies by Viano and colleagues (1989a; 1989b; 1983) used load cells, 

accelerometry and high-speed videography, sampling at 500 to 2000Hz, to quantify the load, 

compression and force-deflection response of cadaver specimens (hip and thorax) to impact 

loads in simulated automobile collisions. Similar studies of side-impact vehicle collisions, 

have measured pelvic deflection at 500 and even 1000 Hz sampling rates. The varied use of 

videography and optical motion capture raises obvious concerns of the comparability 

between seemingly different methods, and whether previously used sampling rates have been 

sufficient. Sampling pelvic deflection at higher rates provides two advantages: 1) lower 



 

 17 

sampling rates might not accurately capture peak pelvic deflection (a popular biomechanical 

variable), as the high frequency nature of impacts might result in underestimation of peak 

pelvic deflection; 2) higher sampling rates allow for a greater number of data points to define 

the force-deflection curve of the pelvis, which allows for more accurate modelling of the 

system (characterizing stiffness, energy absorption). Currently, technological limitations 

require the use of high speed videography to obtain these higher sampling rates (i.e. over 

1500 Hz). Unfortunately, high-speed videography has never been used with lateral pelvis 

release experiments and therefore it would be beneficial to compare high speed video to 

previously used methods.   

Accordingly, the purpose of the first study of this thesis was two-fold: 1) to determine 

the effects of motion capture system (3D optical motion tracking vs. 2D high speed 

videography) on five commonly reported measures of impact severity (peak force, time to 

peak force, peak deflection, time to peak deflection and energy absorbed); and 2) to 

determine the effect of sampling rate on the five aforementioned discrete measures of impact 

severity. Thirteen participants were recruited for lateral pelvis release experiments, where 

pelvic impact force and deflection were measured simultaneously with the two different 

motion tracking systems, at two drop heights (1.5 cm and 5cm). Data collected with high 

speed videography system was then used to determine the effect of sampling rate (9000 Hz 

compared to 4500, 1500, 500 and 300 Hz) on measures of impact severity.   

It was hypothesized that there would be no significant difference in any of the 

dependent measures of impact severity (peak force, time to peak force, peak deflection, time 

to peak deflection and energy absorbed) between the two motion capture systems (3D optical 
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motion tracking and high-speed videography) sampling at 1500 Hz, for either drop height 

(1.5cm and 5cm).  Furthermore, it was hypothesized that sampling at lower rates would 

reduce the measured peak force, peak deflection and energy absorbed, while increasing the 

time to peak force and time to peak deflection when compared to the “gold-standard” at 9000 

Hz. 

 

STUDY 2 

Direct impact on the trochanteric area of the hip during a sideways fall is particularly 

detrimental in the event of a fall (Hayes et al., 1996). As a result, many biomechanical 

interventions have been engineered to mitigate the force directed to the greater trochanter 

during an impact. Previous research has shown a positive correlation (r = 0.86) between BMI 

and soft tissue depth above the greater trochanter (Maitland et al., 1993), and it has been 

suggested that the additional soft tissue helps to reduce total pelvic stiffness and subsequently 

reduces the force transmitted to the greater trochanter (Laing and Robinovitch, 2008b; 

Robinovitch et al., 1995b). Interestingly, confounded within BMI (calculated as the mass of a 

person in kg divided by the square of their height in meters) is mass, which is directly related 

the impact energy (kinetic energy = 1/2mv2, where m = mass and v = linear velocity). 

Therefore, the increased mass typically associated with higher BMI would be expected to 

increase impact energy (and potentially increasing impact force). Mass has been used as a 

predictor of impact load previously (Dufour et al., 2012) and one finite element study 

suggests a detrimental effect of body mass, independent of BMI,  on risk of pelvic fracture 
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(Kim et al., 2013). Nevertheless, epidemiological literature continues to affirm a reduced risk 

of hip fracture for the elderly with high BMI (Armstrong et al., 2011; Morin et al., 2009).   

Although, a single-degree-of-freedom system approach has been beneficial in furthering our 

understanding of the mechanics of hip impacts, and predicting impact forces (Laing and 

Robinovitch, 2010; Robinovitch et al., 1991, 1997b), no literature exists on the spatial 

distribution (i.e. contact area) of loads on lateral pelvis during hip impact.  Additionally, little 

is known about how this load distribution changes as a function of individual 

anthropometries (ex. mass, BMI etc.), and how it relates back to hip fracture risk. It remains 

unknown if the reduced risk of hip fractures associated with higher BMI, is correlated with 

the load distribution in the geometry of this population. 

Accordingly, there were three primary objectives to this study, with the overall 

purpose to investigate the relationships between contact area and load distribution with 

respect to impact force, pelvic deflection and three anthropometric variables associated with 

hip fracture risk. Specifically, the second study of my thesis investigated whether: 1) time-

varying force (Ft) and deflection (Dt) were significantly correlated (Pearson product-moment 

correlation) with time-varying contact area (Ct) during the compressive phase of a lateral hip 

impact (from impact initiation to peak force), and if transformation of the impact force 

(power law transformation, FTt) was more highly correlated with contact area; as suggested 

by Hertzian contact theory; 2) if contact area at peak force was significantly correlated with 

different anthropometric variables associated with hip fracture risk (effective mass, total 

body mass, BMI); and 3) how contact area at peak force was associated with force 

distribution, specifically total peak force and force within a 5cm radius circle surrounding the 
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greater trochanter (GT relevant force). Particularly, how peak impact force (Fmax), 

normalized peak impact force (Fmax/meff), GT relevant peak force (FGT), normalized GT 

relevant peak force (FGT/meff) and the percent of total peak force directed to the GT relevant 

area (FGT%) correlated with the total contact area at peak force (CA), total body mass and 

BMI.  

It was hypothesized that: 1) time varying contact area would be positively correlated with 

time-varying impact force and deflection, with power-law transformation of impact force 

being correlated to a greater degree with time varying contact area; 2) contact area at peak 

force would be positively correlated with effective mass, total body mass and BMI; and 3) 

peak impact force (Fmax) would be positively correlated with total body mass, BMI and CA. 

Normalized peak impact force (Fmax/meff) would not be significantly correlated total body 

mass, BMI or CA. GT relevant force (FGT), normalized GT relevant force (FGT/meff) and the 

percent of total peak force directed to the GT relevant area (FGT%) would be correlated with 

the total contact area at peak force (CA), total body mass and BMI. 
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Chapter 2 
Literature Review 

 Fall Related Injuries in Older Adults 2.1

Hip fractures in older adults are a major public health concern. The lifetime risk of hip 

fracture for white, American women, from 50 years of age and onwards, is approximately 

17% (Melton, 2000). The majority of hip fractures, as determined by post-fracture patient 

reports, are caused by direct lateral falls impacting the greater trochanter (Courtney et al., 

1994; Hayes et al., 1996; Nevitt and Cummings, 1993). Recent numbers from the province of 

Ontario show that 1548 (per 100,000) hip and thigh injuries, resulting from falls, required 

hospital visits for adults over 80 years of age (OIDR 2011). In Canada, these falls and the 

catastrophic fractures they cause, represent the greatest economic burden on health care 

resources associated with incident fractures (Hopkins et al., 2012; Leslie et al., 2011). 

 There are approximately 23,000 incidents of hip fracture every year in Canada, with 

associated treatment costs of about $1 billion (Papadimitropoulos et al., 1997). Some studies 

estimate hip fractures cost the public Canadian healthcare system, $45,715 (per patient) in 

excess costs, when compared to matched controls (Hopkins et al., 2012).  The costs are even 

higher in the U.S. with nationwide annual treatment costs approximated at $10 billion 

(Melton, 1993). Without improvements in prevention, hip fracture incidence is expected to 

increase 4-fold by the year 2041 due to the demographic shifts towards a more aged 

population, and the exponential increase in fracture risk that accompanies advancing age 

(Jaglal et al., 1996, Papadimitropoulos et al., 1997, Wiktorowicz et al., 2001). 
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Recent evidence suggests that current screening strategies and pharmaceutical 

interventions have tempered the expected rate of increase in hip fracture incidence in Canada 

where all seniors have universal access to medical treatment (Leslie et al., 2009). However, 

globally, the reduction in incidence is less definitive (Kanis et al., 2012). In Norway and 

Sweden, where hip fracture rates are amongst the highest in the world (Figure 2.1), there has 

been a decrease in incidence over the past decade (Nilson et al., 2012; Omsland et al., 2012). 

Contrastingly, certain Asian countries are reporting an increase in the rate of hip fractures 

(Arakaki et al., 2011; Yoon et al., 2011). It is speculated that this increasing trend will 

continue as the demographics in certain Asian nations shift towards an increasingly aged 

population (Dhanwal et al., 2010; Dhanwal et al., 2011). Although the global variation in hip 

Figure 2.1: World-wide hip fracture incidence rates (women). Adapted from Kanis, Oden et al. 

(2012) 
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fracture incidence is pronounced, the debilitating effect a hip fracture has on an individual’s 

quality of life is more so.   

Hip fractures cause increased mortality (Empana et al., 2004; Ioannidis et al., 2009; 

McColl et al., 1998; Meyer et al., 2000; Wolinsky et al., 1997) and declines in mobility, 

physical activity, and functional independence (Norton et al., 2000; Wolinsky et al., 1997). 

Even when injuries do not occur following a fall, the subsequent ‘fear of falling’ that 

develops can trigger a cascade of diminished mobility, activity, strength, coordination, and 

independence (Howland et al., 1998; Jellesmark et al., 2012; Visschedijk et al., 2010).   

The need for additional prevention efforts to reduce the burden of these hip fractures 

is immense. Passive biomechanical interventions such as wearable hip protectors (i.e. 

protective padding systems built into garments) have shown a capability to reduce the 

severity of an impact (Ishimaru et al., 2012; Koike et al., 2009; Laing and Robinovitch, 

2006b; Laing and Robinovitch, 2008a; Nabhani and Bamford, 2002), and to reduce the risk 

of hip fractures in frail older adults (Kannus et al., 1999; Lauritzen et al., 1993). Similarly, 

compliant flooring systems have shown the capacity to absorb impact energy from a fall on 

the lateral pelvis (Casalena et al., 1998; Laing and Robinovitch, 2009; Laing et al., 2006; 

Maki and Fernie, 1990; Simpson et al., 2004; Sran and Robinovitch, 2008). The effectiveness 

of these intervention strategies stem from their ability to modulate the load response 

characteristics of the impacting hip. Furthermore, the designs of these interventions are based 

off a large volume of literature defining parameters which modulate the impact load and 

subsequent risk of fracture. 
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 Factors that Modulate Hip Fracture Risk 2.2

Predicting the likelihood that a fall will result in a hip fracture is a complex problem. 

From a structural engineering perspective, the risk of structural failure can be reduced to two 

simple variables; applied load and load tolerance. If the load applied to a structure exceeds its 

capacity to withstand that load, the structure will fail, or in the case of bone, fracture (Sellier, 

1965). In the field of hip fracture research, this requires accurately characterizing the factors 

that modulate loads applied to hip (geometry, impact velocity, deformation, stiffness) during 

a lateral fall and the tolerance of the hip (incorporating loading direction and loading rate)  

(Courtney et al., 1994; Ford et al., 1996; Pinilla et al., 1996).   

 

 Mechanics of Falls from Standing and Age-related Changes 2.2.1

Typically, the available energy from a standing-height fall exceeds that required to 

fracture the proximal femur (Courtney et al., 1995; Lotz and Hayes, 1990; Robinovitch et al., 

1991).  Yet, almost counter-intuitively, only 1-2% of falls in older adults result in a hip 

fracture (Sattin, 1992; Tinetti et al., 1988). Variations in fall bracing strategies have been a 

proposed explanation for this discrepancy.  Upper-limb bracing strategies (Feldman and 

Robinovitch, 2007; Hsiao and Robinovitch, 1998) and energy absorption in the lower limbs 

(Sandler and Robinovitch, 2001) are suspected to cause the lower impact velocities measured 

in experiments of young subjects falling from standing, when compared to those predicted by 

free-fall assumptions (Hsiao and Robinovitch, 1998; Robinovitch et al., 1991; van den 

Kroonenberg et al., 1996). Hsaio and colleagues (1998) found that during unexpected 

sideways falls initiated by sudden translation of a support surface, young adults tended to 
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avoid hip impact by rotating their trunk forward during descent to land on both outstretched 

hands. Feldman and colleagues (2007), also testing young adults, found that the hand 

impacted before the hip in a vast majority (about 95% of the 39 trials conducted) of falls 

initiated by a translating floor surface, and that the knee impacted (in 57% of trials) before 

the hip. Furthermore, they found that impact velocity of the pelvis decreased when the time 

interval between hand and pelvis impact increased (presumed to be result of greater upper 

extremity energy absorption).  Even though sideways falls can produce a wide range of 

impact configurations (Robinovitch et al., 2009), some studies have even shown bracing 

strategies to reduce hip impact velocities to as low as 0.8 m/s (Feldman and Robinovitch, 

2007).   

The benefit of reducing the impact velocity of the hip can be explained by simple 

impact models, where the body is considered to be a damped single-degree-of-freedom mass-

spring system with a linear spring constant. During an impact of this model, it is assumed 

that all of the kinetic energy of the mass (EKE = 1/2mv2) is converted into elastic strain energy 

(ESE = 1/2kx2) upon compression (where m = mass of object, v = velocity of mass, k = spring 

stiffness, x = linear deflection). This means that the energy at impact increases with the 

square of the velocity at impact. Thus, reducing impact velocity is an important factor that 

reduces impact energy, and presumably impact loads, as well as the risk of hip fracture. 

Interestingly, some evidence suggests that these same bracing mechanisms that 

reduce impact velocity in young adults, are diminished in the older adults. In terms of upper 

limb bracing, reduction in movement time has been shown in groups of older adult ( > 70 

years of age) women when compared to young women (18-35 years of age) as they moved 
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their hands to a protective position in preparation for sideways fall (DeGoede et al., 2001; 

Robinovitch et al., 2005).With regards to lower limb bracing, Wojcik and colleagues found, 

when examining single-step recoveries from forward-fall tether release experiments, that 

younger women completed a step an average 60 ms faster than older adult women (Thelen et 

al., 1997; Wojcik et al., 1999, 2001). This suggests that the way a person braces for an 

impact plays a substantial role in mitigating injury risk, and aging related changes in mobility 

and movement time diminish the ability of the faller to reduce impact velocity of the body; 

which might contribute to the increased incidence of fracture in older adults. 

  

 Hip Fracture Type In Relation to Bone Geometry and Quality  2.2.2

Hip fractures, or more specifically fractures of the proximal femur are categorized by 

their anatomical location. The most common, fall related, proximal femur fractures are 

categorized as cervical, intertrochanteric, or subtrochanteric. Cervical neck fractures are 

those occurring at the femoral neck; intertrochanteric are those occurring between the greater 

and lesser trochanter;  and subtrochanteric are fractures which occur distal to both trochanters 

(Figure 2.2) (Marks et al., 2003).  

Post-fracture mortality rates have been correlated to fracture type; with some studies 

reporting intertrochanteric (between the lesser and greater trochanter) fractures having a 

higher mortality risk compared to cervical fractures (Haentjens et al., 2007; Keene et al., 

1993; Lawton et al., 1983) and some reporting no difference (Aharonoff et al., 1997; Kenzora 

et al., 1984). Elsewhere, studies have shown that women more frequently suffer cervical 

fractures compared to men (p = 0.002), and that bone structural geometry, including femoral 
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neck axis length or hip axis length, femoral neck-shaft angle and cortical thickness, vary 

between fracture types (Dincel et al., 2008; Gnudi et al., 2002; Mautalen and Vega, 1993; 

Partanen et al., 2001; Pulkkinen et al., 2006). A recent experimental finite element study by 

Koivumaki (2010) evaluated the predicted principal strain distributions of 13 cervical and 13 

trochanteric (intertrochanteric and subtrochanteric) fractures. They found a significant 

difference in the two-dimensional strain ratio (compression to tension) between the two 

fracture types, and that their model could predict the fracture type based off of the local 

estimated strains (for 22 out of 26 specimens).  

Some studies have shown that reduced bone mineral density (BMD) has been 

correlated with an increased chance of hip fracture (Bruyere et al., 2009; Cheng et al., 1997; 

Pande et al., 2000). Others suggest that age-related declines in BMD and the increased 

incidence of falls does not fully account for the exponential rise in hip fracture incidence 

with aging (Horsman et al., 1985; Pinilla et al., 1996; Wainwright et al., 2005).  Over 80% of 

low trauma fractures occur in people who do not have bone-degrading diseases like 

osteoporosis (Siris et al., 2004). This suggests that after accounting for bone quality, age-

related changes in neuromuscular function might contribute more to the higher incidence of 

these fractures in older adults (Cummings and Nevitt, 1989, 1994; Jarvinen et al., 2008). 
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Figure 2.2 Hip fractures are specifically referred to as proximal femur fractures. Within the 

subset of proximal femur fractures are cervical, intertrochanteric and subtrochanteric 

classifications. Cervical neck fractures are those occurring at the femoral neck; 

intertrochanteric are those occurring between the greater and lesser trochanter; 

subtrochanteric are fractures which occur distal to both trochanters. 
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 Tolerance of the Proximal Femur 2.2.3

To experimentally measure femoral neck strength, the proximal end of the femur is 

mounted in a loading fixture, either by embedding it in plastic resin or clamping it in place, 

and a force is applied to the femoral head until the femoral neck fractures. When considering 

lateral falls, a simulated fall configuration is normally used to test the strength of the 

proximal femur under more realistic loading conditions (Figure 2.3) (Hayes et al., 1991).  

 

 

Figure 2.3: Biomechanical testing of the load capacity of the proximal femur is typically done in 

the simulated fall configuration. The specimen being tested is affixed to the apparatus at either 

the greater trochanter (shown) or the femoral head, and a lateral load is applied until failure. 
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The outcome measures of interest from mechanical testing come from the load (or 

force) applied to the structure and the resulting displacement (or deflection). The stiffness, 

ultimate load (force at failure), work to failure (area under load-displacement curve) and 

ultimate displacement are all parameters that reflect a different property of the structure 

(Figure 2.4).  

 

 

 

Figure 2.4: Parameters of interest in mechanical strength testing of biological materials and 

structures. 
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In-vitro mechanical failure testing of excised cadaveric human femurs have shown 

variable fracture-energy values across age groups. For example, Courtney et al. reports the 

mean (SD) energy to fracture to be significantly lower for older specimens (5.5 ± 3.0 J) 

compared to younger ones (18.0 ± 8.3 J) (1995). Additional studies have found energy-to-

fracture values ranging from 5 to 104 J (Courtney et al., 1994; Esses et al., 1989; Lotz and 

Hayes, 1990), with bone mineral density, rate of loading and loading direction all showing to 

have significant influence on the amount of energy the proximal femur can absorb (Beason et 

al., 2003; Courtney et al., 1994).  With regards to hip fracture risk, this suggests that the 

energy required to fracture the proximal femur can be an order of magnitude smaller than the 

potential energy available during a fall from standing (Courtney et al., 1995; Lotz and Hayes, 

1990; Robinovitch et al., 1991).   

In terms of force at failure, the fracture threshold for the proximal femur has been 

measured to range between 778 to 4040 N, with mean (SD) maximum loads, adjusted for 

total BMD, were 4050 (900) N (Lotz and Hayes, 1990). The mean (SD) fracture threshold for 

older, adult women reported by Cheng et al. was 3140 (1240) N (Cheng et al., 1997). 

Whether using energy or force as a measure of mechanical exposure, the proximal femur of 

older adults results in significant decreases in ability to resist fracture.  

 

 Loads Applied to Proximal Femur 2.2.4

Predicting the loads applied to the pelvis during a lateral impact on the hip is 

dependent on accurately recreating the intimal parameters of a fall (and pelvis) from standing 

height. Ideally, measuring the impact forces associated with falls from standing height, in the 
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laboratory would be done without protective padding. However, the inherent risk of injury 

with such an experiment becomes unethical and dangerous. Regardless, some studies have 

tried to quantify impact forces using padded force plates, and low severity (low velocity) hip 

impact simulations. 

 The average (SD) peak force applied to the hip during self-initiated sideways falls 

onto a 13 cm foam mattress overlying a force plate, has been reported to be 2252 (442) N 

(Nankaku et al., 2005). A study on hip loading during side jumps/dives by soccer 

goalkeepers found that peak vertical impact forces ranged between 3000 N to 8000 N, and 

were highly correlated with the vertical impact velocity (r2=0.74) (Schmitt et al., 2010).     

In attempts to simulate the end-stage impact of the pelvis under lower severity 

conditions, Robinovitch and colleagues  (1991) used “lateral pelvis release” experiments to 

measure the impact response of the pelvis to a low velocity (~1.0 m/s) impact. They used a 

simple nonlinear viscoelastic model (a mass above parallel spring and non-linear damper 

elements) created from free-fall data from “pelvis release experiments” to predict impact 

force from a fall from standing height. The average peak force predicted by their model (a 

free-fall of 0.7m), was on average 5600 N. Subsequent improvements to their model 

parameters (mass-spring model to eliminate the minimal contributions of damping and 

muscle contraction level) predicted peak forces ranging from 1150 to 5288 N (Robinovitch et 

al., 1997a). A study by van den Kroonenberg et al. (1995) also used a mass-spring model to 

predict peak forces of 2900, 3580, and 4260 N for 5, 50, and 95 percentile females during 

sideways falls from standing height. Laing et al. (2010) predicted average peak impact force 

to be 1846, 2649 and 3434 N for falls with hip impact velocities of 2, 3 and 4 m/s, 
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respectively. Experimental testing using a surrogate mechanical pelvis (simulated 

trochanteric soft tissue and proximal femur) at an impact velocity consistent with a fall from 

standing height, produced total peak hip impact forces of 4,000 N and femoral neck impact 

forces of 2,500 N (Majumder et al., 2007; Robinovitch et al., 1991). In addition, a finite 

element model produced by Majumder et al. simulating impact force following a sideways 

fall from standing height, estimated a peak force of 8331 N (2007). Indicating that these 

forces might be higher than currently measured or predicted. Overall, it is generally accepted 

that the force applied to the hip during a sideways fall from standing in an older adult is 

likely in the range of 3-8,000 N. 

 Variables that Modulate Hip Fracture Load 2.3

As with most biological structures, the complexity of materials that compose them 

underscore the difficulty in characterizing their response to external loads. Considering the 

pelvis, bone, muscle, fat and skin are only some of the biological tissues that make up the 

lateral hip. Evidently, determining the mechanical properties of the pelvis can be difficult, 

but fair insight can be garnered from simple approximations. 

 Revisiting the conservation of energy formulas presented previously (section 2.2.1), it 

can be seen that during the compressive phase of impact (from impact onset until when the 

relative velocity of the mass reaches zero), the total kinetic energy of the falling mass (EKE = 

1/2mv2) is converted into elastic strain energy (ESE = 1/2kx2). Or equivalently ESE = 1/2F2k-1, 

where F is the average force of the impact. Accordingly, the average compressive force 

generated during impact can be estimated as F = v(mk)1/2. These equations demonstrate that 

the fundamental variables influencing load applied to the pelvis are impact velocity 
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(dependent on fall height), effective mass, and effective stiffness of the impacting pelvis. The 

most difficult of these to measure is the effective stiffness, as it requires measuring how 

much the pelvis deforms in response to applied load (i.e. stiffness). As such to better estimate 

impact forces applied to the pelvis during a fall from standing, accurate methods of 

characterizing pelvis deformation and stiffness are required. 

 Pelvic Stiffness, Strain and Load Distribution 2.3.1

In considering the stiffness of the entire pelvis an approximation can be derived by 

considering the hip as a system of springs in-series. The soft tissues (k1), in series with the 

bony pelvis (k2), produce the effective stiffness (k*) of the impacting pelvis, which can be 

predicted as: 

𝑘∗ = � 𝑘1𝑘2
𝑘1+𝑘2

�                                                           (1) 

Thus the force applied to the hip equates to, 

                                             𝐹 = 𝑣�𝑚𝑘∗                                                         (2) 

Equation (2), in conjunction with equation (1), shows that any attenuation in peak impact force 

provided by biomechanically tuned devices, such as hip protectors or compliant flooring, depends on 

not only the stiffness of the device, but also the stiffness of the body and its soft tissues.  

 

Mechanically, soft tissues act as shock absorbers by decreasing system stiffness and 

absorbing energy during impact (Bouxsein et al., 2007; Etheridge et al., 2005; Laing and 

Robinovitch, 2006a; Laing and Robinovitch,2008b; Lauritzen and Askegaard, 1992; 
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Majumder et al., 2008; Robinovitch et al., 1995b; van Schoor et al., 2006). Robinovitch et al. 

(1995b) observed that the peak load applied to the proximal femur decreased by 71 N for 

each additional mm of cadaveric soft tissue incorporated into a mechanical test system of hip 

fractures. Similarly, van Schoor observed a 31% decrease in peak force applied to a 

mechanical hip impact simulator when surrogate soft tissues (foam) were increased from 

12.7 to 25.4 mm (2006).  Although both the aforementioned studies saw reductions in force 

with increasing soft tissue depth, van Schoor and colleagues measured force applied to the 

lateral hip at the surface of impact, while Robinovitch et al. measured the force applied to the 

proximal femur. This discrepancy in measurement is very important when considering the 

risk of fracture from a fall. To truly estimate fracture likelihood, the exact loading on the 

proximal femur is desirable, but in most in-vivo experiments, the external reaction force is all 

that is available (from load cells or force plates). Thus, interpreting the risk of fracture from 

and impact force that develops during a fall, is dependent on understanding how the 

geometrical and anatomical variations in the pelvis modulate force distribution upon impact. 

  How impact force is distributed spatially to the lateral pelvis depends on the structural 

composition of the lateral pelvis. Studies by Laing and Robinovitch (2008c) and Robinovitch 

and Hayes (1995a) reported regions directly overlying the greater trochanter to be two to 

three times stiffer than the tissues anterior or posterior. Using a customized indentation 

device composed of a 3.8 cm diameter cylindrical probe, Laing and Robinovitch (2008d) 

measured the localized force-deflection properties of the lateral hip from nine locations (3 x 3 

grid) centered about the greater trochanter. They found that soft tissue stiffness varied across 

pelvic locations (Figure 2.5), being stiffest directly over the greater trochanter (mean (SD) = 
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34.4 kN/m (SD 15.5)) and least stiff six cm posterior to the trochanter (averaging 14.1 kN/m 

(SD 7.2)). In the same study, using their measurements on the regional variations in soft 

tissue stiffness of the lateral pelvis, Laing and colleagues created a biofidelic hip impact 

simulator to measure peak femoral neck force and total impact force at the skin. They found 

hip protectors had a much greater influence on the femoral neck force compared to the total 

pelvic impact force. Where femoral neck force attenuation provided by hip protectors 

reached 34% compared to the unpadded trials, the hip protectors only reduced 9% of the total 

impact force. Furthermore, Laing and colleagues measured the effect that impact velocity, 

pelvic size and soft tissue stiffness had on the pelvic impact force and femoral neck force.  

They reported that increasing impact velocity substantially increased the femoral neck 

force and the pelvic impact force. However, only the femoral neck force was substantially 

influence by the pelvic size and soft tissue stiffness. They found that increasing the size of 

the pelvis decreased the percent of total pelvic impact force delivered to the femoral neck 

(from 77% in the small pelvis condition, to 47% in the large condition) due to an increase in 

impact energy shunted anterior and posterior to the proximal femur.  This interaction 

between contact area and pelvic stiffness in attenuating peak impact force, lends merit to 

studying, in more detail, how contact area relates to pelvic stiffness and deflection. 
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Figure 2.5: Regional variation in soft tissue stiffness of the lateral pelvis in an older adult 

woman. Stiffness was measured with a hand held device with rigid surface area, that measured 

the deflection (and load) as the device was loaded to areas of the lateral pelvis. Adapted from 

Laing and Robinovitch (2008c) 
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 Contact Pressure during Lateral Pelvic Impact 2.3.2

In a study on the effect of soft shell hip protectors on pressure distribution, Laing et 

al. reported that approximately 17 % and 46% of the total force applied to the pelvis during 

lateral falls on average was applied directly to tissues within a radii of 1.25 and 2.50 cm from 

the greater trochanter, respectively (2008a).  Choi and colleagues, using the biofidelic hip 

impact simulator previously mentioned (Laing and Robinovitch,2008b), reported that 83% of 

the total force was applied directly to the region over the greater trochanter and femoral 

diaphysis (2010b). The differences in force distribution between these studies can be 

explained by how they each measured pressure. Laing and colleagues used different sized 

circular load cells to attain average peak pressure for lateral release impacts on human 

participants. Choi et al. used a 2D pressure distribution plate, on top of a force plate, to sum 

pressures and get the percentage of total reaction force per defined area, for impacts from a 

mechanical surrogate pelvis. Interestingly, a subsequent study by Choi et al. (2010a) using 

the lateral release protocol with human participants, measured approximately 48.5 (SD=7) % 

of the total impact force was distributed to the greater trochanter. Even more intriguing, they 

found that only 23.8 (SD=7) % of the total impact force was distributed to this area in 

participants with high body mass index (BMI=kg/m2, > 25 vs. < 18) (Figure 2.6). Although, 

it is assumed that the differences in impact force distribution for high BMI participants is due 

to their reduced pelvic stiffness (Figure 2.7), the possibility remains that this altered 

“stiffness” is partly contributable to the larger pelvic geometry. How pelvic linear stiffness 

and contact area modulate the measured effective stiffness of the pelvis is something not well 

understood. 
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 Characterizing Pelvic Deflection and Contact Area 2.4

It is evident now, that in estimating the impact forces resulting from a fall from 

standing, the effective stiffness of the pelvis must be accurately characterized. The 

deformation the hip undergoes, as well as the changes in contact area, during a lateral impact 

are key determinants in estimating the effective stiffness of the pelvis. The concentration of 

this thesis will be on these two variables (deformation and contact area). 

 

 

 

 

 

 

 

Figure 2.6: Example peak pressure profiles from trials in the unpadded condition between 

participants of low (A) and high (B) BMI. For a low BMI participant in the unpadded 

condition, pressure centered over the GT and the contact area was small. For a high BMI 

participant in the unpadded condition, peak pressure occurred over the GT and contact area 

was larger compared to the low BMI participant in the same condition. the magnitude of 

pressure is indicated by a color scale. Pressure unit on a color bar is N/cm2 (1 N/cm2 = 10 kPa). 

Note the different pressure ranges in the scales for parts A and B (Choi et al., 2010a). 
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 Quantifying Deflection during Impact 2.4.1

Pelvis release experiments were originally used to predict the damping response of 

the pelvis in order to determine stiffness and damping properties for mathematical model 

predictions of impact force (Robinovitch et al., 1991). More recently, this protocol has been 

used to quantifying the force-deflection response of the pelvis to low velocity impacts (Laing 

and Robinovitch, 2010; Levine, 2011). Estimating pelvic stiffness via force-deflection 

methods assumes that during a lateral impact, the pelvis is primarily compressing in the 

frontal plane (or undergoing a central impact). The term central impact, or normal impact, is 

used when the velocity of the centre of gravity of the impacting body moves along the same 

line as the reaction force at the impacted surface. Using the force-deflection properties of the 

hip allowed for more direct measurement of effective stiffness (Laing and Robinovitch, 

2010).  Using this method, deflection was measured by tracking marker on the greater 

trochanter of the non-impacting hip during impact on a rigid force plate, measured with an 

eight-camera optical motion tracking system sampling at 240 Hz. Subsequent studies 

assessing pelvic stiffness have used similar methods, specifically with  three-camera optical 

motion tracking systems sampling at a 400 Hz (Levine, 2011). Although, the frequency 

content for the majority of voluntary human movement is below 30 Hz (Winter, 2005), the 

high frequency nature of impacts on the human body underscores necessity of sampling 

deflection at appropriate rates.  
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Although not explicitly tested, previous studies (as well as my pilot data), using the 

lateral pelvic release protocol to measure pelvic compression, have shown time to peak 

deflection to range from 0.02 to 0.05 seconds for 5 cm drop heights. This means that at a 

sampling rate of 240 Hz and a sampling rate of 400 Hz, between about 4-12 and 8-20 data 

points would be recorded during the compressive phase of loading (i.e. until peak force) for 

each impact, respectively. While the acceptable number of points required to define a force-

deflection curve depends largely on the behaviour that is exhibited by the object of interest, a 

rule of thumb in materials impact testing is at least 200 data points (Kessler and ASTM 

Committee D-20 on Plastics., 1987). Ideally then, in the instance of lateral pelvis release 

experiments, sampling pelvic deformation would occur between 4000 and 10000 Hz.  

Contrastingly, sampling at 240 Hz and above might be more than sufficient for lateral 

pelvis release studies. Suppose the deflection of the pelvis during impact can be modelled by 

a fictitious contact spring between a rigid mass and the rigid impacted surface (force plate). 

Presume that contact spring is linear and has a stiffness k1. Thus, the maximum deflection 

(xm)  is obtained with : 

 𝑥𝑚 = 𝑣1�
𝑚
𝑘1

                                                      (3) 

From which, assuming peak displacement results from integrating velocity (v1 is the initial 

velocity at impact) over a quarter-period, the duration of loading phase (t) is: 

𝑡 = 𝜋𝑥𝑚
2𝑣1

                                                         (4) 
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Subsequently, using experimental values of t (0.02s to 0.05s) obtained from force plate data, 

a dominant  signal frequency between 5 and 12.5 Hz is estimated (as the time at peak force in 

a spring is also the time at peak deflection). Thus, sampling at a rate of 240 Hz is more than 

19 times the main signal frequency, and could possibly be sufficient to capture the majority 

of signal frequencies of interest in the signal, but still miss important discrete events like 

peak force and peak deflection.  

Structural deformation studies in different fields of biomechanics have utilized high-

speed camera technology successfully at sampling rates much higher than currently seen in 

pelvic release trials. Blunt lateral impacts studies by Viano and colleagues (Viano et al., 

1989b; Viano and Lau, 1983) have used high-speed videography sampling at 500 to 1000Hz, 

to quantify the compression response of cadaver specimens (hip and thorax) to impact loads 

in car crashes. However, sampling rates this high have never been used to characterize pelvic 

deflection and pelvic stiffness in lateral release trials.  
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Figure 2.7: Example force vs. deflection traces from two individuals with varying BMI. Low 

BMI < 22.5 and high BMI > 28. Notice differences in the initial non-linear loading, followed by 

transition to linear and marked increase in stiffness, until a plateau near peak force. 
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 Contact Area 2.4.2

Robinovitch et al. (1991, 1997a) utilized pelvis release experiments to characterize 

the stiffness of the pelvis from the natural frequency of oscillation recorded from the force 

plate. They observed effective stiffness to increase with increasing force (presumably due to 

increasing contact area and tissue compression as the impact progressed) at low levels (< 300 

N) of force and remain constant for loads beyond 300 N. This non-linearity in pelvic stiffness 

is quite possibly a result of the contact area increasing during an impact, where it eventually 

maximizes and the force-deflection trace of a lateral impact becomes relatively linear (Figure 

2.8). 

Classical Hertz contact theory (Johnson, 1985) mathematically defines quasi-static 

contact, between rate-independent materials with small contact regions (relative to other 

dimensions of the object) and defines the relationship of linear elastic surfaces contacting 

with elliptical surface geometry (Figure 2.9).  

During an impact, the rate of change of the normal component of relative velocity 

depends on the interaction force F and the displacement x. As the contact region is 

compressed during the impact, the approach of the center of mass of the pelvis to the 

impacting surface results in a reaction force F at the point of contact as defined by: 

𝐹 = 𝑚𝑥̈ = 𝑘∗𝑥𝑛                                                   (5) 

Where n, is the non-linearity coefficient (n =3/2 in Hertzian contact) and k*, is the 

composite stiffness. Stiffness in this model is dependent on the material properties 
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(composite elastic modulus (E*)) in the deforming contact region and the geometry of the 

two contacting surfaces (composite radius (R*)) (Figure 2.9) where: 

1
𝐸∗

= 1
𝐸1

+ 1
𝐸2

                                                        (6) 

           1
𝑅∗

= 1
𝑅1

+ 1
𝑅2

                                                        (7) 

𝑘∗ =  4
3
𝐸∗𝑅∗

1
2�                                                      (8) 

Where the maximum contact area radius a is given by 

𝑎 =  �𝐹
𝑘∗
�
1
3� 𝑅∗

1
2�                                                   (9) 

Furthermore, the peak pressure, Po 

𝑃𝑜 ∝ �𝐸
∗

𝑅∗
�
2
3                                                       (10) 

These equations imply that the effects of material elastic modulus (E*) and geometry 

(R*) on composite stiffness are equivalent. Thus, changes in elastic modulus have the same 

effect as proportional changes in curvature, and vice versa. In essence, the effects of material 

properties and contact geometry are inseparable, and in theory, it is impossible to determine 

from force-deflection responses alone whether the difference between two stiffness 

measurements is due to differences in material properties, surface geometry, or both.   
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Figure 2.8: Theoretical force-deflection curve for lateral pelvis release. This illustrates how the 

change in contact area (from 1 to 2)  might potentially modulate the non-linear effective stiffness 

of the pelvis. 
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Since Hertzian contact theory assumes elastic impact, it is unclear whether it can 

describe the interaction between the lateral pelvis and an impacting surface. Firstly, the 

lateral pelvis is viscoelastic in nature and hip impacts are highly dynamic, both of which are 

unaccounted for in Hertzian contact models. Secondly, the complex geometry of the pelvis 

does not comply with the assumptions of made in Hertzian contact, and furthermore the 

internal structure of the pelvis (i.e. the bony skeleton) is what is more important, and is not 

readily definable with surface geometry only. Although it has been suspected that damping 

and energy dissipation play a role in this non-Hertzian behaviour of the lateral pelvis (Laing 

and Robinovitch, 2010; Robinovitch et al., 1997b), elastic models (mass-spring) have been 

shown to best predict the impact forces in hip impacts (Laing and Robinovitch, 2010; 

Robinovitch et al., 1991). Furthermore, an elastic understanding of how contact area 

increases stiffness has been proposed by Robinovitch  et al. (1991), where the soft tissue over 

lying the hip can be described by a rounded surface with an infinite number of springs and 

dampers in parallel. Where, assuming elasticity only (no dampers), as the impact initiates and 

contact area increases, more springs compress and create this non-linearity (Figure 2.10). 

Eventually, a stiffening of the soft tissue occurs at which point the stiffness of the underlying 

bone contributes to the linear portion of the force deflection profile of the hip.  This scenario 

proposed by Robinovitch et al. (1991), along with the proportionalities’ predicted by Hertz 

may provide some insight to the relationship between contact area and impact force, 

deflection and pelvic stiffness.  

 

 



 

 48 

 

 

 

 

 

 

 

 

Figure 2.9: Hertz contact theory approximates the interaction of two elastic contact surfaces, 

whose curvature is defined by the inverse of the surface radius (R1,R2). The surfaces are 

depicted as axisymmetric about the axis SA-SB, with material properties defined by E1 and E2. 

Note for contact with a flat (planar) surface R = ∞.  
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 Conclusions 2.4.3

From the review of literature, accurately predicting the risk of hip fracture is certainly 

non-trivial. Early research by Robinovitch et al. (1991, 1997b) utilized low velocity “pelvis 

release experiments” to measure the impact response the human pelvis using university-aged 

females. Consequently, the accurate characterization of impact response is highly dependent 

on the accuracy of experimental measurement techniques. Previous studies using the lateral 

pelvis release protocol, have not sampled pelvic deflection at rates over 400 Hz, and it is 

unknown whether this sampling rate is appropriate for the pelvis release experimental 

paradigm.  However, to sample at higher rates requires the use of high speed videography; 

which has never been used with lateral pelvis release experiments.  Additionally, little is 

known about the role that contact area plays in the distribution of load from lateral hip impact 

studies. Since most studies utilize net impact force from a force plate, very little is known 

about the relationship between load distribution and body size. This proposed thesis project 

aims to fill the gap in the current literature concerning these two areas in hip impact research. 

The specific hypotheses for these studies can be found in chapter one, and chapters three and 

four.   
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Chapter 3 
The Effect of Motion Capture Technique and Sampling Rate on 

Biomechanical Measures of Lateral Hip Impact Response 

 Introduction 3.1

Impact related injuries are devastating and can affect any part of the body susceptible. 

Fortunately, a considerable amount of literature exists on the biomechanics of impact injury 

to the human thorax (Cooper et al., 1982; Nahum et al., 1971; Song et al., 2009), abdomen 

(Beillas et al., 2013; Cooper and Taylor, 1989; Viano et al., 1989b) and hip (Cesari et al., 

1980; Etheridge et al., 2005; Robinovitch et al., 1991a), to impact loads. In-situ, these impact 

loads can occur in a variety of ways (high energy vs. low energy) and environments (traffic 

collisions, contact sports, in the home etc.), and all can cause a significant level of injury to a 

person. 

Hip fractures, for example, can occur from fall related impacts (relatively low 

velocity) in older adults (Grisso et al., 1991; Nevitt and Cummings, 1993; Zuckerman, 1996), 

or through high velocity side-impact vehicle collisions (Viano, 1988); both resulting in 

debilitating injuries. Naturally, many studies have focused on the biomechanical response of 

the human hip and pelvis to both high (Cesari et al., 1980; Viano et al., 1989b) and low 

velocity impacts (Beason et al., 2003; Etheridge et al., 2005), to understand the nature of 

these injuries and explore the possibilities of predicting or preventing them.  

In the study of hip fracture biomechanics, various experimental methods have been 

used to measure the loads, strains and energies applied to the lateral hip (proximal femur) 

during impact and the respective tolerances of the hip and pelvis to fracture or injury. Blunt 
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lateral impact studies by Viano and colleagues (1989a; 1989b; 1983) used load cells, 

accelerometry and high-speed videography, sampling at 500 to 2000Hz, to quantify the load, 

compression and force-deflection response of cadaver specimens (hip and thorax) to impact 

loads in simulated automobile collisions. Similar studies of side-impact vehicle collisions, 

have measured pelvic deflection at 500 or 1000 Hz sampling rates.  In-vivo studies of fall 

related hip impacts by Laing and Robinovitch (2010) directly measured the force-deflection 

behaviour of the pelvis during low velocity “pelvis release experiments” (Robinovitch et al., 

1991). This method involved tracking a marker on the opposite greater trochanter of the 

impacting hip, during the compressive phase of impact. In their study, pelvic deflection was 

measured with an eight-camera optical motion tracking system, sampling at 240Hz, whereas 

subsequent studies using this method have sampled pelvic deflection at 400Hz (Bhan et al., 

2013; Levine et al., 2013; Levine, 2011).  

At a minimum, to digitally sample any analog signal and preserve its frequency 

content, the sampling rate must be more than twice the highest frequency present in the 

signal. Incorrectly sampling a signal, or violating the Nyquist-Shannon sampling theorem, 

can cause frequency aliasing and alter the content of the signal of interest (Cho et al., 2011; 

Shannon, 1949).  Furthermore it is often suggested that, to adequately capture time-varying 

peaks or minimums, a sampling rate of at least ten times the highest frequency present in the 

signal is used. Therefore, in any impact testing, inappropriate sampling rates can introduce 

inaccuracies in the collected data and measures of impact severity (ex. peak force, peak 

deflection etc.). Unfortunately, the effects of sampling rate on biomechanical measures of 

interest, during impact testing, have never been studied and it remains unknown if the 
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sampling rates previously used during lateral release experiments were appropriate. Although 

the importance of sampling rate on an array of biomechanical signals has previously been 

highlighted (Andrews and Callaghan, 2003; Durkin and Callaghan, 2005; Jayne et al., 1990), 

it is of particular interest in impact studies due to the small time duration  over which impacts 

are applied to the body (i.e. high impulse).  

Additionally, it is also of interest to maximize the number of data points that are 

collected during impact experimentation. Since the force-deflection response is often of 

interest, either to characterize the energy absorbed, or to estimate the stiffness of the system 

being studied; a greater number of data points collected during the impact event reduces 

errors in numerical integration (calculating energy absorbed) and curve fitting (modeling 

stiffness). Previous studies using the “pelvis release” paradigm have reported the time to 

peak force for the majority of impacts to range between 0.02 to 0.05 seconds. At the highest 

sampling rate used previously for in-vivo “pelvis release “ studies (400Hz), this would imply 

anywhere between 8 and 20 data points were captured for any one impact. Higher velocity 

impact studies (~3-4 m/s) have shown peak force to occur below this range (< 20 ms) 

(Beason et al., 2003; Viano et al., 1989b), and studies using impact velocities of  about 8.5 

m/s reporting time to peak force below 10 ms (Matsui et al., 2003).  Clearly, this short 

duration, high impulse event requires a maximization of sampling rate in order to collect a 

sufficient amount of data points, in addition to not aliasing the underlying signal of interest.  

In the field of materials impact testing, 200 data points has been suggested as a “rule 

of thumb” to accurately characterize the force-deflection response of a material to impact 

loads (Kessler and ASTM Committee D-20 on Plastics., 1987). Using the time to peak force 
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with impacts seen in previous lateral impact studies (7-50 ms), complying with this 

suggestion of 200 data points requires sampling between 4000  to 10000+ Hz, depending on 

the condition of the experiment (i.e. higher or lower impact velocities) (Figure 3.1). At 

present, to achieve these greater sampling rates requires the use of high-speed videography. 

As previous lateral impact studies with human volunteers have used 3D optical motion 

tracking systems, it remains unknown how high-speed videography compares with 3D 

optical motion tracking for lateral pelvis release studies.  

Accordingly, the purpose of this study was two-fold: 1) To determine the effects of 

motion capture system (3D optical motion tracking vs. 2D high speed videography) on five 

commonly reported measures of impact severity (peak force, time to peak force, peak 

deflection, time to peak deflection and energy absorbed); 2) to determine the effects of 

sampling rate on the five aforementioned discrete measures of impact severity. Thirteen 

participants were recruited for lateral pelvis release experiments, where pelvic impact force 

and deflection were measured simultaneously with the two different motion tracking systems, 

at two drop heights (1.5cm and 5cm). Data collected with high speed videography system 

was then used to determine the effect of sampling rate (9000 Hz compared to 4500, 1500, 

500 and 300 Hz) on measures of impact severity.   

It was hypothesized that there would be no significant difference in any of the 

dependent measures of impact severity (peak force, time to peak force, peak deflection, time 

to peak deflection and energy absorbed) between the two motion capture systems (3D optical 

motion tracking and high-speed videography) sampling at 1500 Hz, for either drop height 

(1.5cm and 5cm).  Furthermore, it was hypothesized that sampling at lower rates would 
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reduce the measured peak force, peak deflection and energy absorbed, while increasing the 

time to peak force and time to peak deflection when compared to the “gold-standard” at 9000 

Hz. 

 

 

 

 

 

 

Figure 3.1 The effect of sampling rate on the number of data points theoretically collected during 

various time to peak force durations seen in lateral hip impact studies. Solid traces indicate impact 

durations commonly seen during in-vivo “lateral pelvis release experiments. The dashed traces 

indicate impact durations seen commonly during lateral impact studies conducted at higher impact 

velocities, with stiffer, cadaver specimens (3-4 m/s). The horizontal dashed line at 200 data points 

signifies the suggested number of data points for impact testing of materials (America Kessler and 

ASTM Committee D-20 on Plastics. 1987) 
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 Methods 3.2

 Participants 3.2.1

 Thirteen healthy, university-aged female participants were recruited from the general 

university population. Participants completed a short health questionnaire regarding medical 

history and current health status, confirming the information provided to the researcher 

during the recruiting stage of the study. Participants were excluded if they: 1) had a history of 

fracture to the femur, pelvis or spine, or fractures to any bone within the past year; 2) had 

experienced  any other musculoskeletal injury or physiological disorder within the past year; 

or 3) they had been diagnosed with osteopenia or osteoporosis. All participants provided 

informed written consent and the study was approved by the Office of Research Ethics at the 

University of Waterloo. 

 

 

Table 3-1 Anthropometrics for thirteen participants recruited in study. 

 Age (years) Height (cm) Mass (kg) BMI (kg/m²) 

Mean 24.5 166.7 66.0 23.7 

SD 3.2 6.9 11.5 3.8 
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 Experimental Protocol 3.2.2

 The experimental protocol required the participant, dressed in tight-fitting spandex 

shorts or tights, to lie on their left side with their pelvis supported by a sling above the impact 

surface (force plate). The participant’s arms were flexed above the shoulder and under the 

head to ensure that they would not contact the impact surface or provide any bracing during 

the pelvis release. The hips were flexed to 70 º, and knees flexed to 90 º. This position 

approximated the position assumed following a fall from standing height used in previous 

impact studies (Laing and Robinovitch, 2010; Robinovitch et al., 1991). The sling was 

attached to a height-adjustable set of strong nylon ropes and a turnbuckle; this unit was then 

connected to the electromagnet (Figure 3.2). With the magnet engaged, the participant’s 

pelvis was raised to a height of 1.5 cm or 5 cm. These heights were selected to provide an 

impact velocity of approximately 0.5 and 1.0 m/s, respectively.  Once suspended above the 

force plate, the participant was instructed to relax their core and extremity muscles. Upon the 

participant confirming that they were ‘ready’ to begin the trial, the magnet was subsequently 

disengaged at random times (between one and three seconds) and the subject’s pelvis was 

impacted on the force plate. 

 The time-varying loads applied to the pelvis were measured by the force plate (model 

OR6-3, Advanced Medical Technology, Inc., Watertown, Massachusetts, USA ), sampling at 

36000 Hz. Concurrently, two motion capture systems were used to track the position of one 

Optotrak smart marker (Northern Digital, Waterloo, Ontario, Canada) affixed to the area 

overlying the participant’s right greater trochanter (Figure 3.3). The motion of that one 

marker was collected simultaneously by both the 3D motion capture system (OPT, Optotrak, 
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Northern Digital, Waterloo, Ontario, Canada) sampling at 1500 Hz, and a 2D high speed 

videography system (HSV, AOS Technologies, Cheshire, CT) sampling at a rate of 9000 Hz, 

for two seconds. Each participant underwent four consecutive trials per height condition, for 

a total of eight trials. Order of height conditions were randomized before initiation of the 

experiment. 

 

 

 

 

 

Figure 3.2: The participant was positioned on their left side with their pelvis supported by the 

nylon sling. The upper torso and shoulder, as well as the lower legs were contacting the ground, 

but not the force plate. 
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Figure 3.3: Visibility of the greater trochanter optical marker from the perspective of the 

HSV and OPT camera. The placement was determined to ensure the complete visibility of 

the marker throughout the entire impact trial by both motion capture systems. 
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 Camera Calibration 3.2.3

 To ensure that the HSV system was measuring the same marker motion as the OPT 

system, a rigid body was created for the HSV camera, and used to align to the global co-

ordinate system of the OPT system.  The rigid body was affixed to the HSV so that the y-axis 

of the rigid body local co-ordinate system was parallel with the back of the HSV camera; this 

was assumed to be parallel with the image plane of the CCD sensor in the camera (Figure 

3.4). The x-axis of the rigid body was defined as being parallel with the long axis of the HSV 

camera (from back of camera to the lens), and orthogonal to the image plane of the camera 

sensor. The z-axis of the HSV rigid body was orthogonal to both the x and y-axis, and 

defined to be parallel with the vertical axis of the global z-axis of the OPT system.  

 The process of calibration was completed in multiple steps. The first step was the 

unique placement of four OPT camera banks to ensure a large capture volume that included 

the space directly above and around the force plate (where the impact trials were to take 

place), and also the space where the HSV camera was to view the impact trial from (Figure 

3.5). Once arranged, the OPT was calibrated using its manufacturer provided calibration 

cube, and a global co-ordinate system was established using the four marker digitizing probe 

to establish the origin, positive x-axis, and positive y-axis (a cross product of the x and y 

produced the orthogonal z-axis). These three established points were labeled with a 

permanent marker on the force plate so that there would be a consistent global reference 

frame, both within an experiment, as well as between them.  
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  The second step required setting up the HSV camera to view the impacts. To ensure 

that the HSV camera could view the impact, the participant was placed in the sling with the 

hip marker affixed to their right trochanter, assuming the impact configuration described 

above (section 3.3.2).  The HSV camera was then manually adjusted to ensure it was aligned 

to the OPT as well as capture the impact event. The live rigid body view of First Principles 

software was used as a guide for aligning the HSV with OPT. The HSV camera was 

considered to be aligned to the OPT when the angles between the three axis of the global 

coordinate system of the OPT and the transformation of the HSV camera rigid body in the 

global coordinate system were below 0.5 degrees. Once the HSV and OPT were aligned, the 

next step was to calibrate the HSV (Figure 3.6). 
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Figure 3.4: Design of rigid body for HSV camera. To ensure that the OPT and HSV systems 

were tracking the same marker motion, this rigid body was used to align the HSV to the OPT 

system’s global co-ordinate system. The difference in angle between the corresponding axes of 

the HSV rigid body and the global co-ordinate system of the OPT were minimized to below 0.5 

degrees. 
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Figure 3.5: Birds eye view of the experimental set up. Labeled are four OPT camera banks (1-4), the 

HSV camera, the force plate, and the two computer systems needed to collect both systems (CPU). 

Dotted lines show the theoretical field of view of each camera. With the force plate centered in the 

middle of the capture volume, four OPT camera banks were used to allow for proper alignment of 

OPT and HSV. The second OPT camera bank (OPT 2) was aligned to view the HSV camera rigid 

body. This allowed for proper calibration of the HSV with respect to the OPT system, and 

subsequently, the impact event.  
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Figure 3.6: This figure illustrates the theoretical alignment of two cameras tracking a vertical 

displacement vector (light grey line). Since the intersection of two planes is a line, minimizing 

rotations about the x and y axis would assure the best alignment between the two camera 

systems. The OPT and HSV camera system were aligned to reduce rotations between the x and 

y-axes of the HSV rigid body and the OPT global co-ordinate system. 
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Since 2D videography is in essence a planar view of space, its accuracy is dependent 

on being focused to the plane of motion of the object it is tracking. This is challenging during 

repeated impact trials where the participant is removed and placed back in the sling after 

each impact. In attempts to mitigate this source of error, two single plane laser levels were 

used to identify the location of the hip marker during calibration, and the location of that 

calibrating plane during impact trials. Therefore, with the participant still in the sling, and the 

HSV aligned to view the hip marker, two single plane laser levels were positioned 

(originating from either side of the HSV camera) to intersect at the hip marker. Since the 

intersection of two planes is a line, this allowed an estimate of the plane in space that the 

camera was to be focused to. It also allowed for repeatable positioning of the participant 

throughout the experiment. Once the two lasers were intersecting on the hip marker, the 

participant was removed from the sling, and a planar calibration object was positioned at the 

intersection of the two laser planes. The intersection point was easily identifiable with a 

planar calibration object as the correct position was when the two lasers made a line in a 

plane. Once the intersection point was identified, a still image was obtained and used as the 

calibrating frame for the HSV. This intersection point from the two lasers was then used to 

realign the participant to the calibrated image plane during each impact (Figure 3.7). 
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 Data Analysis 3.2.4

Since the deflection measured by both systems was temporally synced by external 

trigger, the HSV force data was down sampled to 1500 Hz to match the OPT force data. 

From this trace the frame of impact initiation was selected from the HSV force plate data. 

This time of initial impact (Timp) was determined by calculating the mean force and standard 

deviation during the first 500 samples of the unloaded  period at the beginning of the trial 

(prior to impact), and calculating the time at which force exceeded three times the standard 

Figure 3.7: Steps to calibrating the HSV system with the OPT system, and also the image 

plane. 
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deviation of the unloaded phase. This frame of impact initiation was used for both the HSV 

and OPT force data.  

 

3.2.4.1 OPT Force and Deflection Data 

 To calculate the peak force and peak deflection undergone by the pelvis during impact, 

the force of initial impact (Fimp) and vertical position (Dimp) of the right trochanter marker 

were measured at the frame of impact initiation (Timp). As the OPT measured deflection in 

reference to a global point of origin (corner of force plate), the deflection of the pelvis was 

calculated as the time-varying vertical position of the pelvic marker subtracted from this 

initial pelvic width (Dimp) (vertical position of marker at Timp). The time point at which peak 

pelvic deflection occurred was measured by subtracting every subsequent vertical position of 

the hip marker from Dimp. This gave a positive value for the deflection of the pelvis from the 

initiation of impact to peak deflection (Dmax). The peak force (Fmax) was calculated as the 

maximum force measured during the entire impact. The time at which peak force and peak 

deflection occurred were then subtracted by Timp, to give the time to peak force (TFmax) and 

time to peak deflection (TDmax), respectively. To calculate the energy absorbed at peak force 

(Emax), the force-deflection data from Timp  to TFmax was integrated by trapezoidal integration, 

calculated with the trapezoidal integration function native to MATLAB software (The 

MathWorks, Inc., Natick, Massachusetts) .  
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3.2.4.2 HSV Force and Deflection Data 

 The HSV system captured deflection by filming the same marker (Optotrak smart 

marker) on the right trochanter of the subject, as the OPT system. This video data was then 

post processed using the particle tracking feature of the ProAnalyst software (Xcitex, 

Cambridge, Massachusetts). ProAnalyst is a full-featured auto-tracking software which can 

measure position of unique objects in the image window. The theory behind analysis of 2D 

kinematics of an object can fundamentally be thought of as mapping of an object in space to 

the unique two-dimensional space represented by the photographic image (Figure 3.8). This 

technique requires calibration of the image plane to object space with a two dimensional 

calibration frame with known, identifiable landmarks.  Thus, a planar calibration object was 

used to determine calibrated distance per pixel. Deflection was calculated as the vertical 

distance the right trochanter marker travelled, subtracted from its position at the time of 

impact initiation (Timp ).  The peak deflection of the pelvis was calculated as the maximum 

positive value for the deflection of the pelvis from the initiation of impact to peak deflection 

(Dmax). The peak force (Fmax) was calculated from the maximum force measured during the 

entire impact. The time at which peak force and peak deflection occurred were then 

subtracted by Timp, to give the time to peak force (TFmax) and time to peak deflection (TDmax). 

To calculate the energy absorbed at peak force (Emax), the force-deflection data from Timp to 

TFmax was integrated by trapezoidal integration (MATLAB, The MathWorks, Inc., Natick, 

Massachusetts).  
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 Statistics 3.2.5

 From thirteen participants, a total of 46 trials at 1.5cm, and 43 trials at 5cm, had 

sufficient data (no marker occlusion) to compare between both systems.  Subsequently, those 

43 trials at the 5cm drop height were used to test the effects of sampling rate. To test for 

significant differences between the two systems sampling at 1500 Hz, the dependent variable  

of interest   (Fmax, TFmax, Dmax, TDmax, Emax) measured  by the OPT system was subtracted from 

the measurement by the HSV for every single impact trial. The mean difference was then 

bootstrapped (5000 iterations, with replacement) and the bias corrected and accelerated 

(BCa) 99% confidence intervals were calculated for each dependent variable (Efron, 1987). 

Figure 3.8: Example of spatial representation of object B in the object space, and its 

corresponding representation (A) in the image plane of the high speed camera. 
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If the BCa confidence interval for the dependent variable did not include zero, the dependent 

variable was deemed significantly different between systems (this was done for each drop 

height separately).  Additionally, since subjects in “lateral release experiments” generally are 

considered independent units of study, dependent measures of interest were averaged within 

subjects and a two-way repeated measures General Linear Model (GLM) was used to test 

significant differences between measurements systems and whether there was a significant 

interaction between measurement system (HSV and OPT) and drop height (1.5 and 5 cm).   

 

 For the second purpose of the study, the difference between dependent  variables 

measured at 9000 Hz (considered the ‘gold standard’ measurement in this study) and those  

measured at subsequent sampling rates (4500, 1500, 500 or 300 Hz) was calculated for each 

trial. The mean difference was then bootstrapped (5000 iterations, with replacement) and the 

BCa 99% confidence interval was calculated for each dependent variable, at each subsequent 

sampling rate. If the BCa confidence interval for the mean difference between the ‘gold 

standard’ 9000 Hz rate and subsequent sampling rate did not include zero, the dependent 

variable was deemed to be significantly different. A subject level analysis was also 

conducted for sampling rate effects, as dependent measures of interest were averaged within 

subjects and a one-way repeated measures General Linear Model (GLM) was used to test for 

significant differences between five levels of sampling rate (9000, 4500, 1500, 500, 300 Hz) 

for each dependent variable. Post-hoc pairwise comparisons were used to determine which 

sampling rates were significantly different from the 9000 Hz sampling rate level. Hyun-feldt 

corrections were used where violations of sphericity were detected. All confidence interval 
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inferences were used with 99% confidence intervals, and all subject level statistical analyses 

(GLM) were performed with using an α of 0.05 for uncorrected tests. All bootstrapping and 

subject level analyses were conducted with SPSS statistical software (SPSS Version 20, 

SPSS Inc., Chicago, IL, USA). 

 

 Results 3.3

 Effects of Motion Capture System 3.3.1

The only statistically significant differences between the HSV and OPT system were 

for TFmax and Emax, for both drop heights (Table 3-2). At the 1.5 cm drop height, the OPT 

system measured higher values for TFmax and Emax by 0.6 ± 1.2 (SD) ms and 0.2 ± 0.8 (SD) J, 

respectively. At the 5 cm drop height, the OPT system measured significantly higher values 

for TFmax by 0.7 ± 1.1 (SD) ms and Emax by 0.8 ± 1.4 (SD) J. There were no significant 

differences between camera system for Fmax, Dmax and TDmax at either height. At the subject 

level analysis (repeated measures GLM), only TFmax was significantly different between the 

two systems (F1, 12 = 19.370, p = 0.01), where OPT measured a greater time to peak force 

(51.3 ± 15.4 (SD) vs 50.6 ± 15.5 (SD))   compared to HSV (Table 3-3). Furthermore, no 

significant camera by height interaction was observed. Appendix B shows empirical 

cumulative distributions for each system, calculated for every dependent measure, across all 

trials, for all subjects. 
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Table 3-2: Mean and bootstrapped bias-corrected and accelerated 99% confidence intervals 

(BCa) for the difference in the measurement of the dependent variable of interest between the 

HSV and OPT systems (HSV value minus the OPT value). BCa intervals were calculated over 

5000 iterations. A significant difference between systems was concluded if the confidence 

interval did not include zero mean difference. Significantly different variables, by this 

definition, are denoted by *. 

 

 
 Mean Difference 

BCa 99% Confidence Interval 

 Lower Upper 
 1.5 cm    

 Fmax (N) -0.290 -0.881 0.231 

* TFmax (ms) -0.609 -0.928 -0.275 

 
Dmax (mm) -0.365 -0.939 0.218 

 
TDmax (ms) -0.304 -0.913 0.362 

* Emax (J) -0.235 -0.467 -0.010 

     

 
5 cm    

 
Fmax (N) 2.579 -1.572 6.967 

* TFmax (ms) -0.744 -1.070 -0.419 

 
Dmax (mm) -0.727 -1.674 0.224 

 
TDmax (ms) -0.124 -0.682 0.558 

* Emax (J) -0.811 -1.240 -0.384 
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Table 3-3: Subject level dependent variables measured for the HSV and OPT systems, at two 

drop heights tested. Main effect of height was ignored, but significant effects of 

system and a height by system interaction was evaluated. Data presented in 

parentheses are standard deviations. Variables that were deemed significantly 

different (p < 0.05) are denoted by *. 

  
Height HSV mean OPT mean 

System 
p-value 

System x 
Height p-value 

 

Fmax (N) 

   

0.283 0.194 
 1.5 cm 888.3 (134.5) 888.5 (134.4) 
    
 5 cm 1313.6 (211.6) 1310.7 (210.8) 
       

* TFmax (ms) 

   

0.001 0.769 
1.5 cm 57.0 (18.6) 57.6 (18.4) 
   
5 cm 44.3 (8.4) 45.0 (8.4) 

       
 

Dmax (mm) 

   

0.392 0.549 
 1.5 cm 30.2 (7.7) 30.5 (7.1) 
    
 5 cm 44.2 (8.6) 45.2 (6.8) 
       
 

TDmax (ms) 

   

0.469 0.777 
 1.5 cm 62.6 (16.8) 62.8 (16.4) 
    
 5 cm 55.3 (7.9) 55.4 (7.6) 
       
 

Emax (J) 

   

0.221 0.164 
 1.5 cm 11.2 (6.6) 11.0 (5.8) 
    
 5 cm 18.1 (7.3) 20.4 (9.0) 
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 Effects of Sampling Rate 3.3.2

In general, decreasing the sampling rate to levels below 4500 Hz decreased the 

measured Fmax and Dmax and increased TFmax and TDmax (Table 3-4).  The greatest significant 

differences were seen on temporal measures TFmax and TDmax, where decreasing sampling rate 

to 300 Hz resulted in, on average, a 3.7 ± 1.1 (SD) ms and 3.5 ± 2.2 (SD) ms increase in the 

time at which peak force and peak deflection was measured, respectively. Conversely, 

decreasing sampling rate from 9000 Hz to 300Hz, significantly reduced Fmax and Dmax by 8.8 

± 10.1 (SD) N and 0.2 ± 2.5 (SD) mm, respectively. Measurements of energy absorption 

significantly increased as sampling rate was reduced to 500 and 300 Hz, where Emax increased 

by 0.3 ± 0.7 (SD) J and 0.4 ± 1.1(SD) J, respectively. Across all dependent variables, 4500 

Hz was the only sampling rate that was not significantly different when compared to data 

sampled at 9000 Hz. At the subject level analysis (repeated measures GLM), sampling rate 

had a significant effect on every dependent variable measured (Table 3-5). Post-hoc pairwise 

analysis revealed that sampling Fmax  (F4, 48 = 32.367, p < 0.001) at 1500 Hz or below resulted 

in a mean 4.3 ±7.0 (SD) N reduction in peak force estimates (all p < 0.05 for rates at or 

below 1500 Hz).  Sampling  TFmax (F4, 48 = 421.174, p < 0.001) at 1500 Hz or below resulted 

in a mean 2.2 ± 1.5 (SD) ms increase in the measured time to peak force (all p < 0.001 for 

rates at or below 1500 Hz). Similarly, sampling  Dmax (F4, 48 = 25.200, p < 0.001) and TDmax 

(F4, 48 = 50.188, p < 0.001) at 500 and 300 Hz resulted in a mean 0.2 ± 0.2 (SD) mm decrease 

and 2.8 ± 2.2 (SD) ms increase  in the measured peak deflection and time to peak deflection, 

respectively (all p < 0.001).  However, only sampling Emax (F4, 48 = 5.176, p = 0.011) at 300 

Hz significantly increased by on average 0.4 ± 1.1 (SD) J when compared to data at 9000 Hz.   
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Table 3-4: Average and bootstrapped bias-corrected and accelerated 99% confidence intervals 

(BCa) for the mean difference in the measurement of the dependent variable of interest between 

9000 Hz and the subsequent sampling rate in question. Positive values indicate the measured 

value increased compared to that measured at 9000 Hz. BCa intervals were calculated over 

5000 iterations. Significant difference between systems were determined likely if the confidence 

interval did not include zero mean difference. Significantly different variables are denoted by *. 

 

   Sampling Rate (Hz) 

   4500  1500  500  300  

Fmax (N) 

mean  -0.188 -0.754* -3.391* -8.791* 

CI 
Lower -0.502 -1.319 -5.167 -13.373 

Upper 0.000 -0.251 -1.946 -4.961 

       

TFmax (ms) 

mean  0.119 0.664* 2.164* 3.740* 

CI 
Lower -0.002 0.535 1.937 3.313 

Upper 0.202 0.788 2.384 4.159 

       

Dmax (mm) 

mean  -0.247 -0.332* -0.487* -0.503* 

CI 
Lower -1.221 -1.308 -1.787 -1.679 

Upper 0.040 -0.029 -0.099 -0.133 

       

TDmax (ms) 

mean  0.298 0.717* 2.111* 3.520* 

CI 
Lower -0.194 0.162 1.419 2.758 

Upper 0.866 1.403 2.859 4.332 

       

Emax (J) 

mean  0.051 0.156 0.298* 0.418* 

CI 
Lower -0.047 -0.015 0.008 0.020 

Upper 0.136 0.326 0.573 0.802 
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Table 3-5: Subject level dependent variables measured across five sampling rates. Numbers in 

parentheses are standard deviations of the means above them. P-values denoted are for overall 

main effect of sampling rate tested for that variable. Sampling rate had a significant main effect 

on every variable measured, and variables measured that were significantly different compared 

to the 9000 Hz condition (pairwise post-hoc analyses) are denoted by *. All significance levels 

were evaluated at α < 0.05. 

 

   Sampling Rate   Sampling rate 
p-value  9000 4500 1500 500 300  

Fmax (N)       
p < 0.001 mean 1314.3 1314.1 1313.6 * 1310.9 * 1305.6 *  

 (212.0) (211.8) (211.7) (212.3) (210.3)  
        TFmax (ms)       

p < 0.001 mean 43.4 43.5 44.1 * 45.5 * 47.1 *  
 (8.4) (8.5) (8.4) (8.2) (8.3)  
        Dmax (mm)       

p < 0.001 mean 44.7 44.7 44.6 44.6 * 44.5 *  
 (9.3) (9.4) (9.4) (9.4) (9.4)  
        TDmax (ms)       

p < 0.001 mean 55.0 55.3 55.7 57.1 * 58.5 *  
 (8.5) (8.7) (8.6) (8.8) (8.7)  
        Emax (J)      

 
p = 0.021 mean 19.3 19.3 19.4 19.5 19.7 *  

 (8.9) (9.0) (8.9) (8.8) (8.8)  
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 Discussion 3.4

This study tested the differences between two motion tracking systems (3D optical 

motion tracking vs. 2D high speed videography) as they simultaneously measured the linear 

force-deflection response of the pelvis during lateral pelvis release experiments (Figure 3.9 

and Figure 3.10). Although it was hypothesized that there would be no significant difference 

between the two systems, tests revealed that both systems were similar in estimating all but 

two measures of impact severity, time to peak force (TFmax) and energy absorbed (Emax), 

which were significantly different between systems at both drop heights tested (Table 3-2).  

Alternatively, at the subject level, only TFmax was significantly different between the two 

systems (p < 0.001) with no significant interaction between system and height (Table 3-3).  

The second purpose of this study was to determine the effects of reduced sampling rates on 

measures of impact severity. As hypothesized, this study demonstrated that measurements of 

peak force and peak deflection significantly decreased when sampled at lower rates (1500, 

500, 300 Hz), while temporal measures (time to peak force and time to peak deflection) 

increased (Figure 3.10). Specifically, sampling at or below 1500 Hz significantly increased 

measures of time to peak force by on average 9.5 ± 0.6 (SE) % and increased time to peak 

deflection by on average 6.8 ± 0.1 (SE) %. Similarly, decreasing sampling rate from 9000 Hz 

to 300Hz significantly reduced Fmax and Dmax by 0.7 ± 0.1 (SE) % and 0.5 ± 0.1 (SE) %, 

respectively. Contrary to expectation, measurements of energy absorption ( Emax) showed 

significant increases (as opposed to hypothesized decreases)  as sampling rate was reduced to 

500 and 300 Hz, where Emax increased by 2.2 ± 0.8 (SE) % and 2.8 ± 1.2 (SE) %. 

Alternatively, no significant differences were found at 4500 or 1500 Hz for Emax when 
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compared to data sampled at 9000 Hz. At the subject level, sampling at or below 1500 Hz 

significantly reduced estimates of peak force, and time to peak force. Whereas, significant 

differences were seen in peak deflection (decreased) and time to peak deflection (increased) 

when sampled at or below 500 Hz, and at 300 Hz for energy absorbed. 

 

 
Figure 3.9: Time varying data showing trials which had the lowest differences between 

systems. A) Time-varying force for the same impact trial. B) Time-varying deflection for one 

impact trial. C) Force deflection trace for one impact. Black  data traces are measured by the 

high speed videography system (HSV), while grey traces are data measured by the Optotrak 

system (OPT). 
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Figure 3.10: Time varying data showing trials which had the greatest differences seen between 

systems in this study. A) Time-varying force for the same impact trial. B) Time-varying 

deflection for one impact trial. C) Force deflection trace for one impact. Black traces are data 

measured by the high speed videography system (HSV), while grey traces are data measured by 

the Optotrak system (OPT). 
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 Effects of Motion Capture System 3.4.1

The reason for the observed differences between systems for TFmax is uncertain, and 

considering its magnitude, of minimal consequence. In this study, both systems were synced 

with a common external trigger, but a significant mean difference was still measured. 

Furthermore, even after averaging together trials within a participant (subject level analysis), 

a significant difference remained between systems for time to peak force.  One possibility for 

this difference could be the presence of slight drift between systems as they sample over 

time. Temporal drift describes the gradual asynchrony between two digitally sampled signals, 

when collected by two separate data acquisition systems (DAQ). If two systems, sampling at 

the same frequency, are initiated at the same time— they can become asynchronous due to 

inherent differences in maintaining correlation with real time. Pilot testing on the 

synchronization between systems showed the presence of a slight drift between systems as 

they sampled square waves from a signal generator (Appendix A). These pilot tests showed a 

maximum possible drift between systems of three frames over two seconds of collection. 

However, the drift was not necessarily the same for each trial, and was random in nature.  

Regardless of the root cause of the temporal discrepancy, it is important to consider the 

magnitude of the difference between systems.  For two systems sampling at 1500 Hz, a 

discrepancy of one frame (1/1500) is approximately 0.667 ms (if the systems are off by two 

frames, the difference is 1.334 ms etc.). In this study, the mean difference between systems 

was -0.609, 99% CI [-0.928, -0.275] ms at the 1.5 cm drop height and -0.744, 99% CI [-

1.070, -0.419] ms at the 5 cm drop height. Meaning, on average, the Optotrak system 

measured a longer time to peak force than the high speed camera system, by about one frame, 
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which is relatively small in the context of pelvis release studies. In this study TFmax ranged 

around 44 to 58 ms (As measured by HSV—Table 3-3), making one frame approximately 

1.5% ((0.667 ms / 44 ms) x 100%) of total time to peak force at the most. Therefore, the 

differences in time to peak force, although statistically significant, are of minimal in the 

context of lateral pelvis release studies.  

Of greater interest are the observed differences between systems with regard to the 

measured absorbed energy (Emax). It is possible that the differences between systems in 

energy absorption are due to the differences in time to peak force, since OPT measured both 

a greater energy absorption and time to peak force compared to HSV. Hypothetically, if the 

OPT measured approximately one extra frame of data force, a significant amount of extra 

energy could be measured if the pelvis deflection during that extra frame was considerable. 

For example, if the pelvis was loaded at a constant 1m/s (initial velocity) during the time of 

peak force, it would deflect 0.00067 m over one frame (1/1500 x 1 m/s). If we use the 

average peak force measured by the OPT system at 5cm (~ 1311 N), this would result in an 

additional 0.87 J of energy measured by the OPT system (around the observed energy 

difference of 0.235 to 0.811 J, for the 1.5 and 5cm drop height respectively). However, upon 

observing the relationship between the difference in Emax and TFmax for both heights, this 

possibility accounted for some —but not all— of the differences between the systems (Figure 

3.11). If a longer time to peak force measured by the OPT system was responsible for all of 

the overestimation of energy absorption by OPT, all of the data points in Figure 3.11 would 

reside in the lower left quadrant (further analysis using contingency tables available in 
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Appendix C). However, this was not the case, and does not explain all of the discrepancy 

between OPT and HSV for Emax.  

Another reason for the differences between systems for Emax could be due to 

differences in tracking the deflection of the pelvic marker throughout the impact. Although 

the two systems were not significantly different in peak deflection measurements, any 

differences between systems during the course of the deflection interval can accumulate as 

significant differences in Emax. Trapezoidal integration, and numerical integration in general, 

is an additive process that amplifies low frequency spectral components of a signal (Winter 

and Patla, 1997). Therefore, slight non-constant errors (low frequency spectra) that might not 

appear significant in the maximum deflection of the pelvis can become amplified when Emax 

is calculated. A look at the differences between OPT and HSV during the entire interval of 

pelvic deflection shows this type of low frequency, non-constant, difference between systems 

(Figure 3.12). Since both systems track the marker using an inherent centroid estimation 

algorithm, there are bound to be systematic differences between both systems as the tracked 

the center of the marker over time. However, since this was not explicitly tested in this study, 

it is not clear which system is prone to which behavior. Moreover, how much this can alter 

measures of energy absorption is speculative, but still of possible concern (Appendix D).  

Here again, it is important to consider the differences between systems in the context 

of the magnitude of Emax. At the 1.5 cm drop height the HSV system measured an average 

Emax of 11.2 J with an average difference of 0.2 J. This equates to about 1.8% of the total 

energy measured ((0.2 J/11.2 J) x100%). Likewise, at the 5 cm height, an average Emax of 

18.1 J was measured, with an average difference of 0.8 J, equating to 4.4% of the total energy 
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measured. Intriguingly, averaging data within a participant for subject level analysis removed 

the significant difference between systems in terms of Emax. Subjects in “lateral release 

experiments” generally are considered independent units of study and averaging data across 

impact trials for statistical testing is common (Bhan et al., 2013; Levine et al., 2013a). This 

suggests that concerns of differences between studies due to different measurement 

technology might be lessened if data are analyzed at the subject level (since averaging will 

reduce variability). Although, this was not explicitly tested in this study, the results are 

encouraging for when comparing data between studies which used either 3D optical motion 

capture or 2D videography.  

It is worth mentioning that although both systems were statistically similar for force 

measurement, the least agreeable trial (shown in Figure 3.10) does raise concerns.  Since the 

force voltage signal was split after it was outputted from the force plate, ideally both 

computers should have the same measurement of force. Admittedly, there is a possibility that 

differences might exist between computer A/D cards in sampling this analog voltage signal, 

but the nature of the differences in force data shown in Figure 3.10, suggest the possibility 

for differences beyond just random errors in digital sampling (there seem to be shifts in both 

phase and amplitude). This necessitates further diagnostic testing to determine the root cause 

of these differences between systems in measuring force.  

  Finally, it is also worth emphasizing that the results obtained from this study are 

highly dependent on the methods utilized. The OPT system actively tracks its markers as 

they move through a pre-calibrated volume. HSV is largely post-processed and is highly 

dependent on the accuracy of manual calibration and the auto tracking software, which in 
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itself is highly dependent on the quality of the videography.  As such, considerable efforts 

were taken to ensure that the HSV system was aligned with the OPT system, and that the 

HSV system was accurately calibrated, to minimize differences in measuring force and 

deflection. Without these efforts, even greater differences between 2D videography and 3D 

motion tracking may have arisen. Furthermore, this study only set out to characterize the 

differences between the two systems, and determine if they agree. Whether the values 

measured are truly indicative of the underlying biological system remains unknown and of 

concern for future studies. 
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Figure 3.11: Relationship between difference in time to peak force and the difference in energy 

absorption measured by each system. Difference was calculated by subtracting the respective 

value measured by the Optotrak system (OPT) from that measured by the high speed video 

system (HSV). If the longer time to peak force measured by the OPT system was responsible for 

all of the overestimation of energy absorption by OPT, all of the data points would reside in the 

lower left quadrant (further analysis in Appendix C). However, this was not the case, and does 

not explain all of the discrepancy between OPT and HSV for Emax. 

 



 

 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Time-varying difference traces calculated for the deflection signals measured by 

both systems from impact initiation until peak force. These traces were calculated by 

subtracting the deflection measured by the high speed video system (HSV) from the deflection 

measured by the Optotrak system (OPT) or every time point, for every impact. Different 

colours represent different impact trials. Of interest is the time varying bias that occurs as the 

impact trial propagates between the two systems. This can lead to significant differences 

between systems upon integration to calculate energy.  

 



 

 86 

 Effects of Sampling Rate 3.4.2

In regards to sampling rate, this study provides important insight for both previous 

and future biomechanical impact studies using the lateral pelvis technique. It appears that 

previous studies (and future studies for that matter) using sampling rates below 1500 Hz 

might not completely capture certain measures of impact severity (Fmax, TFmax, Dmax, TDmax, 

Emax). However, the magnitude of the differences are minimal for Fmax and Dmax which all 

averaged to less than a 1% change from data sampled at 9000 Hz (Figure 3.13). 

Contrastingly, temporal measures of impact severity were more susceptible to the effects of 

sampling rate, where sampling as low as 300 Hz resulted in an increase in time to peak force 

and time to peak deflection of 9.5 ± 0.6 (SE) and 6.8 ± 0.7 (SE) %  respectively. Likewise, 

Emax increased by 2.8 ± 1.2 (SE) % when data was sampled at 300 Hz. All in all, sampling 

data at 4500 Hz was the lowest frequency that did not result in any significant differences for 

any dependent variable, and seems like a suitable sampling rate for future studies interested 

in measuring all of the dependent variables tested in this study. In terms of number of data 

points, sampling at 4500 Hz would result in 90 to 225 data points for impacts occurring 

between 20 and 50 ms (from initiation till peak force), which is a marked improvement from 

data sampled at 400 Hz (8 to 20 points) or 1000 Hz (20 to 50). 

Particularly interesting is the variability in measurements of energy absorption as a 

result of lower sampling rate.  Since energy absorbed is calculated by numerical integration, 

it is highly sensitive to the errors occurring during the entire force-deflection curve as a result 

of reduced sampling (Figure 3.14).  Specifically, numerical integration is sensitive to the 

number of partitions over which the finite integral is estimated. The greater the number of 
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discrete partitions over an interval, the smaller the estimation distance  between adjacent 

points for integration,  and subsequently the lower the error in estimating the integral of a 

curve between those points (Chapra and Canale, 2005). Thus, the higher the sampling rate, 

the smaller the interval between adjacent points. Resultantly, not only did sampling at 300 Hz 

produce a significant increase in Emax, its effect on each trial was highly variable (Figure 

3.15), where sampling the force-deflection curve at 300 Hz in some trials lead to an increase 

in energy and other to a large decrease. Comparatively, the effect of reduced sampling was 

more predictable for time to peak force, as all trials resulted in an increase when sampled at 

300 Hz.   

Averaging data within a participant at the subject level appears to reduce some of the 

variability in sampling Emax at lower sampling rates. In this study, analyzing data at the 

subject level reduced the lowest non-significant sampling rate to 500 Hz for Emax. 

Additionally, subject level analysis reduced the lowest non-significant sampling rate to 1500 

Hz for Dmax and TDmax.  This suggests that the effects of sampling rate are reduced when 

averaging data across multiple impacts from a subject. Admittedly this is not a substitute for 

undersampling biomechanical data, but it does allow for a better understanding of the 

differences between previously conducting studies at differing sampling rates that employed 

subject level analyses.  
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Figure 3.13: Mean percent difference in calculated dependent variable of interest at various 

sampling rates. Positive percent difference means the value increased compared to the value at 

9000 Hz. A negative percent difference means the value decreased. Values are labelled with the 

standard errors for the percent difference. Not confidence intervals, which are shown in Table 

3-4. * denotes sampling rates that were significantly different from the control 9000Hz level, as 

determined from the confidence intervals (Table 3-4). 
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Figure 3.14: The effect of sampling force deflection response of the pelvis at 300 Hz (black), 

compared to sampling it at 9000 Hz (grey) for two separate impact trials (separate participants). 

Panel A shows very little change in the force-deflection curve measured at 300 Hz, whereas data in 

in panel B is markedly different. The shape of the loading history has a large effect on how well 

reduced sampling can represent the underlying biological signal.   
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Figure 3.15: Percent difference from data measured at 9000 Hz to those measured at 4500, 

1500, 500 and 300 Hz. Data for every trial analyzed is shown. Panel on the left is energy 

absorbed (Emax) and on the right is time to peak force (TFmax). Of interest is the variability that 

reduced sampling rates can have on estimates of energy absorbance, compared to time to peak 

force. Both variables increase in variability as data sampling is reduced to 300 Hz, but the trend 

is more apparent for time to peak force. 
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 Limitations 3.4.3

This study had several limitations. Firstly, considering that previous studies of impact 

dynamics during falls on the hip have not filtered force or deflection data (Bhan et al., 2013; 

Laing and Robinovitch, 2008a; Laing and Robinovitch, 2010; Laing et al., 2006), force and 

deflection data were not filtered. The process of a filter design and filter cut-off is a 

confounding factor, and not clearly agreed upon in the impact biomechanics literature and 

was left out of this study.  Therefore, this study provides assessment of the differences in the 

measurement of raw data signals between systems. Second, this study used human 

participants impacted at 0.5 and 1.0 m/s, and the results presented here should only be 

extrapolated with caution. It was assumed in this study that the individual mechanical 

characteristics of each subject would not affect the observed difference/variance in dependent 

variables of interest.  However, this assumption was not critically assessed and it is possible 

that at extreme ends of the spectrum of biological tissue it becomes inappropriate. To verify 

these results for varying ranges of materials and configurations further testing is needed. 

Lastly, if the only question is whether there is a difference between these systems, then the 

answer is inevitably yes; there will always be a difference. If enough data is collected, then 

there is a high likelihood of seeing a "significant" difference. If there is not enough data, the 

likelihood is lower. What is more important to focus on is whether there is a difference 

between these systems that matters, and  the definition of "matters" depends on the specific 

research questions being explored. For the purposes of lateral pelvis release experiments the 

differences between these systems are minimal and within acceptable limits.  However, care 

must be taken in appropriating the acceptable level of difference when choosing a motion 
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capture technique or sampling rate for other impact related studies with vastly different 

subjects and methods, than that were used here. 

 

 Conclusions 3.4.4

In summary, this study shows that 3D optical motion capture and 2D high-speed 

videography perform similarly in measuring the impact response of the human pelvis during 

lateral pelvis release impact trials, at 1.5 and 5 cm drop height. Although significant 

differences were seen between systems in measuring TFmax and Emax, the magnitude of 

differences were at or below 5% of the total magnitude of each measured variable. 

Furthermore, averaging impacts within a subject reduced the differences between systems for 

Emax.   Tests on the effect of sampling rate found differential effects contingent on the 

dependent variable measured. Sampling as low at 300 Hz, significantly reduced measures of 

Fmax and Dmax, but only by on average 0.7 and 0.5 %, respectively. Whereas measures of 

TFmax and TDmax increased by on average 9.5 and 6.8 %. Sampling Emax at 500 Hz and 300 Hz 

increased measures of impact absorption by 2.2 and 2.8 % respectively. Sampling at 4500 Hz 

was the lowest sampling rate that was not significantly different from 9000 Hz across all 

dependent variables. These results show that 3D optical motion capture and 2D high-speed 

videography are comparable in measuring hip impact dynamics in human participants during 

lateral pelvis release trials. Additionally, they suggest that careful attention should be paid to 

sampling rate during lateral impact trials, with specific concern for the effect that sampling 

rate has on the dependent variable of interest.   
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Chapter 4 
Contact Area in Lateral Hip Impact Mechanics 

 Introduction 4.1

Previous studies have suggested that more than 90 % of hip fractures result from falls 

(Aharonoff et al., 1998; Grisso et al., 1991). However, only about 1-2 % of falls actually 

result in a hip fracture (Sattin, 1992; Tinetti et al., 1988).  Evidence suggests that the 

mechanics of the actual fall (i.e. direction of fall and location of impact) is a better predictor 

of hip fracture compared to indices of bone fragility (i.e. osteoporosis) (Ford et al., 1996; 

Greenspan et al., 1994; Hayes and Myers, 1997; Nevitt and Cummings, 1993).  Direct impact 

on the trochanteric area of the hip during a sideways fall is particularly detrimental in the 

event of a fall (Hayes et al., 1996). As a result, many biomechanical interventions have been 

engineered to mitigate the force directed to the greater trochanter (GT) during an impact.  

 Hip protectors (Koike et al., 2009; Laing et al., 2011; Laing and Robinovitch,2008b), 

compliant floors (Laing et al., 2004; Laing and Robinovitch, 2009; Laing et al., 2006), and 

even increased soft tissue thickness overlying the greater trochanter (Maitland et al., 1993; 

Majumder et al., 2008; Robinovitch et al., 1995b) have all been shown to reduce the impact 

force on the lateral hip.  If a simple springs-in-series approach is used to model impacts 

between the pelvis (of stiffness kp) and a surface (of stiffness kf), total system stiffness is 

calculated as: (𝑘𝑝 × 𝑘𝑓)/(𝑘𝑝 + 𝑘𝑓). By adding various materials of lesser stiffness between 

the bony pelvis/greater trochanter and impacting surface (ex. hip protector, compliant 

flooring, soft tissues) total system stiffness decreases. In effect, this reduces the frontal plane 
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compressive stiffness of the pelvis, and helps to reduce the peak impact force transmitted to 

the lateral hip.  

This reduced system stiffness is of particular interest when considering 

epidemiological research that suggests increased body mass index (BMI) is associated with a 

lower risk for hip fracture in the elderly (Armstrong et al., 2011; De Laet et al., 2005; Meyer 

et al., 1995a; Meyer et al., 1995b; Pruzansky et al., 1989; Stolee et al., 2009). Previous 

research has shown a positive correlation (r = 0.86) between BMI and soft tissue depth above 

the greater trochanter (Maitland et al., 1993), and it has been suggested that the additional 

soft tissue helps to reduce total pelvic stiffness and subsequently reduces the force 

transmitted to the greater trochanter (Laing and Robinovitch, 2008b; Robinovitch et al., 

1995b). However, confounded within BMI (calculated as the mass in kg divided by the 

square of height in meters) is mass, which is directly related the impact energy (kinetic 

energy = 1/2mv2,m= mass,v=linear velocity). Therefore, the increased mass that might come 

along with higher BMI would be expected to increase the force of impact. Appropriately, 

previous research has used mass or effective mass as significant predictors of impact load 

(Bouxsein et al., 2007; Dufour et al., 2012; Robinovitch et al., 1991; van den Kroonenberg et 

al., 1995). Despite these model predictions of increased load with increased mass, 

epidemiological literature continues to affirm a reduced risk of hip fracture for older adults 

with higher BMI (Armstrong et al., 2011; Morin et al., 2009).    

Although, a single-degree-of-freedom system approach has been beneficial in 

furthering our understanding of the mechanics of hip impacts, and predicting impact forces 

(Laing and Robinovitch, 2010; Robinovitch et al., 1991, 1997b), no literature exists on  the 
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spatial distribution (i.e. contact area) of loads on lateral pelvis during hip impact. Although 

mass-spring models might be good estimates using rigid body assumptions, the pelvis is a 

deformable and complex structure, and little is known about how this load distribution 

(loading specific to the greater trochanter) changes as a function of individual 

anthropometries (ex. mass, effective mass, BMI etc.), and how it relates back to hip fracture 

risk.   

A theoretical understanding of load distribution for simple elastic structures stems 

from the Hertzian contact theory of elastic deformation, which is a model that has been 

applied to a wide spectrum of biomechanical studies concerned with load distribution (Fregly 

et al., 2003; Gefen, 2007; Hirokawa, 1991). This theory describes the contact between an 

elastic sphere and a rigid half-space. The equations from the model describe the relationship 

between contact area (a) and the specific variables of interest in hip impact research (F = 

force, x = deflection), where the functional dependence with contact area is: 

𝑎 ∝  𝑥                                                            (11) 

𝑎 ∝  𝐹2 3�                                                             (12) 

   Although the lateral hip is not a sphere, it has been geometrically modelled as one 

before (Laing and Robinovitch,2008b), and these equations provide a mechanical basis for 

investigating the relationship between force, deflection, contact area and load distribution 

lateral hip impacts.  
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Although a closer look at load distribution would offer a better understanding of hip 

fracture risk between individuals, it has been scarcely studied in-vivo, with human 

participants. Early studies used the size of hematoma’s in hip fracture patients to estimate the 

total contact area between the lateral hip region skin surface and ground during impact at 110 

cm2 (Askegaard and Lauritzen, 1995), with other work suggesting the contact area of the 

actual greater trochanter might be only  2 - 6 cm2 (Lauritzen, 1997). A study by Laing et al. 

(2008c) on a mechanical test system, found that increasing the size of a surrogate lateral hip 

(anterior to posterior radius of curvature) decreased the percentage of total impact force 

transmitted to the femoral neck. Another study by Laing and Robinovitch (2008b), used 

various diameter load cells to determine the effect of soft shell hip protectors on the 

magnitude and distribution of impact force during lateral pelvis release experiments. They 

found that in the unpadded condition, only about 17 % of the total impact force was directed 

within a 1.25 cm radius around the greater trochanter. However, in their study they used 

separate trials with finite sized load cells to approximate this percentage, and were not able to 

estimate force distribution within a particular trial. A more recent study by Choi et al. 

(2010a) used a pressure plate of 4096 sensors to determine the pressure distribution over the 

hip during lateral pelvis release experiments.  In their study, they found significant 

differences in the effectiveness of hip protectors in reducing pressure to the lateral hip 

between a low (n=7) and high (n=7) BMI group of participants. In addition, they found low 

BMI participants had significantly higher peak pressure, with no difference in peak force 

between the groups. Contrastingly, a separate study by Levine et al. (2013) found 

significantly higher peak impact forces for high compared to low BMI participants, but this 
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relationship reversed when impact force was normalized by mass. The discrepancies between 

the two studies might lie in methodology, where in the Choi study, participants were bracing 

their upper body with their arm in attempts to mimic a more “realistic” falling configuration, 

with a slightly elevated torso. The study by Levine et al. had participants lie completely 

lateral, without engagement of the participants’ arm, in attempts to better study the dynamics 

of the impacted pelvis.  

Accordingly, there were three primary objectives to this current study, with the 

overall purpose to investigate the relationships between contact area and load distribution: 

First, to determine the relationship between time-varying impact variables. Particularly, 

whether time-varying force (Ft) and deflection (Dt) were significantly correlated (Pearson 

product-moment correlation) with time-varying contact area (Ct) during the compressive 

phase of a lateral hip impact (from impact initiation to peak force), and if transformation of 

the impact force (power law transformation, FTt) was more highly correlated with contact 

area; as suggested by Hertzian contact theory (equation 11 and 12). It was hypothesized that 

time varying contact area would be positively correlated with time-varying impact force and 

deflection, with power-law transformation of impact force being correlated to a greater 

degree with time varying contact area. Second, to investigate how contact area at peak force 

was associated with total peak force and force within a 5cm radius circle surrounding the 

greater trochanter (GT relevant force). In particular, how peak impact force (Fmax), 

normalized peak impact force (Fmax/meff), GT relevant peak force (FGT), normalized GT 

relevant peak force (FGT/meff) and the percent of total peak force directed to the GT relevant 

area (FGT%) correlated with the total contact area at peak force (CA), total body mass and 
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BMI. It was hypothesized that peak impact force (Fmax) would be positively correlated with 

total body mass, BMI and CA. Normalized peak impact force (Fmax/meff) would be 

significantly correlated with total body mass and BMI and CA. GT relevant force (FGT), 

normalized GT relevant force (FGT/meff) and the percent of total peak force directed to the GT 

relevant area (FGT%) would be correlated with the total contact area at peak force (CA), total 

body mass and BMI. Third, to determine if contact area at peak force and different 

anthropometric variables associated with hip fracture risk (effective mass, total body mass, 

BMI) were significantly correlated. It was hypothesized that contact area at peak force would 

be positively correlated with effective mass, total body mass and BMI. 

 

 Methods 4.2

 Participants 4.2.1

Twenty women, aged 18-35, were recruited from the university population (Table 4-1). 

Participants completed a short health questionnaire regarding medical history and current 

health status, confirming the information provided to the researcher during the recruiting 

stage of the study. Participants were excluded if they: 1) had a history of fracture to the 

femur, pelvis or spine, or fractures to any bone within the past year; 2) had experienced  any 

other musculoskeletal injury or physiological disorder within the past year; or 3) they had 

been diagnosed with osteopenia or osteoporosis. 
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Table 4-1: Anthropometrics for twenty female participants recruited in study. 

 
Age (years) Height (cm) Mass (kg) BMI (kg/m2) 

Mean 24.3 167.0 67.2 24.1 

SD 3.2 6.8 12.5 4.0 

COV (%) 13.1 4.1 18.6 16.7 

 

 Experimental Protocol 4.2.2

This study utilized the “lateral pelvis release” experimental setup, which was developed by 

Robinovitch et al. (1991), and has subsequently used to study many factors associated with 

hip impact dynamics (Bhan et al., 2013; Choi et al., 2010a; Laing and Robinovitch, 2008a; 

Levine et al., 2013). A lateral impact trial required that the participant lay on their left side 

with their pelvis supported by a sling, which was raised above the impact surface (pressure 

plate), which was placed above the force plate (Figure 4.1). The participant’s left arm was 

flexed overhead, with their right arm positioned across their chest to ensure that they would 

not contact the impact surface or provide any bracing during the trial. Participant hips were 

flexed to 70 º, and their knees flexed to 90 º, similar to the impact configuration mentioned in 

chapter three. The sling was attached to a height-adjustable turnbuckle, which was in-turn 

connected to an electromagnet. With the magnet engaged, the participant’s pelvis was raised 

to a height of five cm above the impacting surface (pressure plate and force plate). This 

height was selected to allow for a safe, but clinically relevant impact velocity of 1.0 m/s 

(Feldman and Robinovitch, 2007; Nankaku et al., 2005).  Once suspended in the sling, the 

participant was instructed to relax their core and extremity muscles. After reporting they 
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were ‘ready’, the magnet was subsequently disengaged, allowing the participant’s pelvis to 

fall onto the impact surface. This was repeated four times for each participant recruited for 

the study (n=20). 

 The deformation of the pelvis was measured simultaneously by two motion capture 

methods tracking the vertical displacement of an Optotrak smart marker (Northern Digital, 

Waterloo, Ontario, Canada) on the right hip of the participant (non-impacting hip). The 

motion of that one marker was collected simultaneously by both a three-dimensional motion-

capture system (Optotrak, Northern Digital, Waterloo, Ontario, Canada) sampling at 1500 

Hz, and a high speed camera (AOS Technologies, Cheshire, CT) sampling at a rate of 9000 

Hz, for two seconds. The time-varying loads applied to the pelvis were measured by the force 

plate (model OR6-3, Advanced Medical Technology, Inc., Watertown, Massachusetts, USA), 

sampling at 36000 Hz.  If the visibility of the hip marker was obscured or incompletely 

measured by one system, the redundant capturing of deflection by two systems allowed at 

least one set of complete data to be retained for that impact trial. Since, the initial study in 

this thesis (Chapter 2) found that both systems are comparable in measuring peak impact 

force and deflection, thus data from both systems were used interchangeably. This allowed 

for a greater number of impact trials to be used for analysis for each participant. 

 Force and deflection data sampled by the Optotrak system (OPT) was collected via 

NDI First Principles (Northern Digital, Waterloo, Ontario, Canada) software and outputted 

for analysis. The  high speed camera video and force (HSV) was collected via AOS Imaging 

Studio (Baden, Switzerland) and MiDAS DA (Xcitex, Cambridge, MA), respectively. This 

video data was then post processed using the particle tracking feature of the ProAnalyst 
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software (Xcitex, Cambridge, Massachusetts). ProAnalyst is a full-featured auto-tracking 

software which can measure position of unique objects in the image window. All three 

systems were synchronized with an external trigger, which initiated a two-second collection 

of the impact event. Contact pressure was measured with a rigid pressure plate (RSscan 

International, Olen, Belgium) which contained 4096 sensors (arranged in a 64 x 64 matrix) 

with each resistive sensor having an area of 0.762 x 0.508 cm. The pressure range 

measurable for each sensor ranged from 0.27 - 200 N/cm2, and was sampled at 500Hz. A 0 N 

threshold was used for each sensor. 
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Figure 4.1: Visibility of the greater trochanter optical marker from the perspective of the HSV 

and OPT camera. The placement was determined to ensure the complete visibility of the marker 

throughout the entire impact trial by both motion capture systems. The participant was 

positioned on their left side with the pelvis supported by the nylon sling. The upper torso and 

shoulder, as well as the lower legs were contacting the ground, not impacting the pressure plate.  
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 Data Analysis 4.2.3

Overall, 21 trials from the OPT system were analyzed, and the rest from the HSV (78 

in total). All deflection and force data was downsampled to 500 Hz to match the sampling 

rate for the pressure data. Although, the initial study in this thesis showed a significant 

difference between data sampled at 9000 Hz and 500 Hz, the results showed a mean 

reduction of less than 0.5 %. Thus for the correlational purpose of this study, sampling at 500 

Hz was deemed to not affect the results of this study. The synchronization of the two motion 

capture systems with the pressure plate was achieved by cross correlating the force signal 

measured by the pressure plate with that measured by the respective motion tracking system. 

To determine the compressive phase of the impact trial, the time of initial pelvic impact 

(Timp) was identified. Timp was defined as the time at which force exceeded twice the standard 

deviation of the previous 25 frames (unloaded) and Tmax was the time at which peak force 

(Fmax) occurred. The interval between Timp and Tmax was considered the loading phase of 

impact. This was also the interval where time-varying data (Ft  ,Dt   and Ct) were measured 

and analyzed.  Peak impact force (Fmax) was defined as the maximum vertical impact force 

measured by the force plate. The effective mass of the pelvis (meff) was calculated similarly 

to the method described by Levine et al. (2013) whereby the final twenty frames of the force 

plate signal were averaged to give an estimate of the mass interacting with the force plate, 

and dividing that force by gravity (9.81 m/s2). The normalized peak impact force (Fmax/meff) 

was then calculated by dividing Fmax by meff.  To calculate GT relevant force (FGT), the 

pressure image sampled at Tmax was obtained and the sensor with the highest measured force 

was assumed to be the center of the GT. A 5cm radius circle was then defined around this 
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sensor and those inscribed sensors established the GT relevant zone. The peak GT relevant 

force (FGT) was measured as the sum of the forces measured by the sensors in the GT zone at 

Tmax. The normalized GT relevant force (FGT/meff) was calculated by dividing FGT by meff.  

The percent of total peak force directed to the GT relevant area (FGT%) was calculated as the 

percent of total peak force measured in the GT relevant zone, divided by peak impact force  

(i.e. (FGT /Fmax) x 100%). The total contact area at peak force (CA) was calculated by the 

number of active sensors (> 0 N measured) by the active area of one sensor (0.387096 cm2). 

All signal conditioning and data processing was performed using customized Matlab 

(Mathworks, Natick, Massachusetts, U.S.A.) routines. 

 Statistics 4.2.4

For the first purpose of this study, the time-varying contact area was plotted as a 

function of time-varying force and time-varying deflection (data from the interval between 

Timp and Tmax). The Pearson product-moment correlation coefficient (r) was calculated to 

assess the linear association between contact area and force, as well as contact area and 

deflection for each impact analyzed. An average correlation value was then calculated across 

impacts within each participant, for a total of twenty correlation coefficients for each of the 

three time varying relationships. As Hertzian contact model describes a power law 

relationship between contact area and force, time-varying force data was transformed to the 

power of 2/3 and the correlation coefficient (r) was then also calculated for this transformed 

relationship. This was also averaged across impacts within a participant.   The average 

correlation coefficient was then calculated for each relationship of interest (Ft  to Ct  ,Dt  to Ct , 

FTt to Ct) using the average correlations calculated per participant. The average r for each 
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relationship (Ft  to Ct  ,Dt  to Ct , FTt to Ct)  was then bootstrapped via bias corrected and 

accelerated (BCa) methods (5000 iterations) to obtain a 95% confidence interval. If the 

bootstrapped confidence interval did not contain zero, a significant correlation was deemed 

to exist between the variables.  

For the second purpose of this study, separate Pearson product-moment correlations 

were calculated  between the five measures of impact load (Fmax , Fmax/meff , FGT , FGT/meff , 

FGT%) and total contact area at peak force (CA), total body mass and BMI.  Power sensitivity 

calculations determined that at a sample size of 20, a correlation with selected power of 0.8, 

required an effect size of 0.557 (with α = 0.05).  For the third purpose of this study, trial-

specific dependent measures were averaged within participant (twenty participants overall).  

Separate Pearson product-moment correlations were calculated to assess the degree of linear 

association between CA and meff, total body mass, and BMI. All statistical analyses were 

performed with the SPSS software package (SPSS Version 20, SPSS Inc., Chicago, IL, 

USA), and power analysis was performed with G*Power 3.1 software (Faul et al., 2009). 

 

 Results 4.3

 Time-varying Contact Area 4.3.1

Figure 4.2 shows how time-varying contact area and time-varying deflection for four 

separate participants. Additionally, Figure 4.3 shows how time-varying contact area and 

time-varying impact force for those same four subjects. All three time-varying signals (Ft, 

FTt and Dt ) were significantly correlated with time-varying contact area (Ct) (Table 4-
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2).There was a significant positive relationship between Ct  and Ft, r = 0.94, 95% CI [0.90, 

0.97]. Ct was also significantly related to FTt, r = 0.94, 95% CI [0.90, 0.97], the same as the 

untransformed Ft. Time-varying deflection was also significantly correlated to Ct, r = 0.86, 

95% CI [0.79, 0.92].  

 

 

Table 4-2: Correlations between time-varying contact area with time varying-force, 

transformed time-varying force, and time varying deflection. Correlations were calculated for 

every impact trial, and then averaged within participants. Bootstrapped mean correlations 

(bias corrected and accelerated) were calculated through 5000 iterations to determine the 95% 

confidence interval. Ft signifies time varying force, FTt is transformed time varying force and Ct 

is the time varying contact area. A significant correlation was concluded if the confidence 

interval did not include zero, and is denoted by *.   

Relationship Pearson correlation 95% Confidence Interval 

Lower Upper 
Ft to Ct 0.94* 0.90 0.97 

FTt to Ct 0.94* 0.90 0.97 
Dt  to Ct 0.86* 0.79 0.92 
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 Contact Area and Force Distribution 4.3.2

Average values for impact loading variables are shown in Table 4-5. Peak impact 

force (Fmax) was significantly correlated with effective mass (r = 0.744, p < 0.001), total body 

mass (r = 0.744, p < 0.001) and BMI (r = 0.573, p = 0.008), but not contact area at peak force 

(p = 0.079). Greater trochanter relevant force (FGT) was not significantly correlated with 

either total body mass (p = 0.278) or BMI (p = 0.865), but was significantly correlated with 

contact area at peak force (r = -0.544, p < 0.001). Normalized peak impact force (Fmax/meff) 

was not significantly correlated with mass, BMI or contact area at peak force (all p > 0.5). 

Normalized GT relevant force (FGT/meff) was significantly correlated with contact area at 

peak force (r = -0.785, p < 0.001), but not with mass (p = 0.329) nor BMI (r = -0.422, p = 

0.064). The percent of total peak force directed to the GT relevant area (FGT%) was 

significantly correlated with BMI (r = -0.538, p = 0.014) and contact area at peak force (r = -

0.963, p < 0.001), but not with total body mass (Table 4-6).  

 

 

Table 4-3: Mean values for impact force measures in this study. Also reported are standard 

deviations (SD) and coefficient of variations (COV). 

 Fmax (N) FGT (N) Fmax/meff (N/kg) FGT/meff (N/kg) FGT% (%) 
Mean 1278.2 1013.8 3.9 3.1 79.6 

SD 220.6 220.8 0.5 0.7 13.8 
COV 17.3 21.8 12.6 22.9 17.3 
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Table 4-4: Pearson product-moment correlations calculated between previously cited measures 

of hip fracture risk and five dependent variables of load distribution. 

 Mass BMI CA 

Fmax 
Pearson Correlation 0.744* 0.573* 0.402 

95% Confidence 
Interval 

Lower 0.514 0.231 -0.118 
Upper 0.925 0.834 0.744 

  p <0.001 p=0.008 p=0.079 
     

FGT 
Pearson Correlation 0.255 -0.041 -0.544* 

95% Confidence 
Interval 

Lower -0.304 -0.560 -0.801 
Upper 0.659 0.488 -0.130 

  p=0.278 p=0.865 p=0.013 
     

FGT% 
Pearson Correlation -0.354 -0.538* -0.963* 

95% Confidence 
Interval 

Lower -0.680 -0.827 -0.988 
Upper 0.118 -0.030 -0.909 

  p=0.125 p=0.014 p <0.001 
     

Fmax/meff 
Pearson Correlation 0.139 0.015 -0.076 

95% Confidence 
Interval 

Lower -0.500 -0.594 -0.675 
Upper 0.551 0.488 0.489 

  p=0.559 p=0.946 p=0.751 
     

FGT/meff 
Pearson Correlation -0.230 -0.422 -0.785* 

95% Confidence 
Interval 

Lower -0.613 -0.769 -0.952 
Upper 0.250 0.119 -0.344 

   p=0.329 p=0.064 p <0.001 
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 Contact Area and Anthropometrics 4.3.3

The average values for contact area and anthropometry are shown in Table 4-3.   

Effective mass (r = 0.455, p = 0.044), total body mass (r =0.472, p < 0.036) and body mass 

index (r =0.578, p < 0.008) were positively correlated with contact area at peak force (CA) 

(Table 4-4). Overall, body mass index was correlated with contact area, where increases in 

BMI were correlated with increases in contact area. The same positive relationships were 

evident for total body mass and effective mass, although both of those were correlated to a 

lower degree. 

 

 

 

Table 4-5: Mean contact area and body anthropometry measured across twenty participants. 

Also shown are standard deviations and coefficient of variations. 

 Mass (kg) BMI (kg/m2) meff (kg) CA (cm2) 
Mean 67.2 24.1 34.2 139.1 

SD 12.5 4.0 6.3 48.5 
COV 18.6 16.7 18.4 34.9 
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Table 4-6: Correlations between contact area at peak force (CA) and three common variables 

associated with hip fracture risk: body mass (Mass); body mass index (BMI); effective mass 

(meff). Pearson correlations significant at the 0.05 level are denoted by *. 

 CA 
   

Mass Pearson Correlation 0.472* 

95% Confidence Interval 
Lower 0.069 
Upper 0.748 

  
p = 0.036 

BMI Pearson Correlation 0.578* 

95% Confidence Interval 
Lower 0.133 
Upper 0.866 

  
p = 0.008 

meff Pearson Correlation 0.455* 

95% Confidence Interval 
Lower -0.003 
Upper 0.769 

  
p = 0.044 
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 Discussion 4.4

This study utilized human participants in a lateral pelvis release paradigm to explore 

the associations between contact area and impact deflection, force, and anthropometry. As 

hypothesized, time varying-force (r = 0.94) and deflection (r = 0.86) was positively 

correlated with time-varying contact area. However, contrary to hypotheses derived from 

Hertzian contact theory, transformed impact force (to the 2/3 power) was not correlated 

higher with time-varying contact area when compared to the untransformed impact force 

(both r =0.94). The second purpose of this study explored the associations between 

distribution of impact load and body anthropometry, as well as contact area. As was 

expected, total body mass and BMI were positively correlated with peak impact force, where 

body mass explained 55 %, and BMI explained 33 %, of the variance in peak impact force. 

Surprisingly, contact area was not correlated with peak impact force (p = 0.08). Furthermore, 

when normalized by mass, peak impact force was not significantly correlated with body 

mass, BMI, or contact area (as was hypothesized). Interestingly, none of the greater 

trochanter relevant loading measures (FGT, FGT/meff or FGT%) were significantly correlated 

with total body mass. Only FGT% was significantly correlated with BMI, where lower 

measures of BMI were associated with a higher percentage of total impact force directed to 

the GT relevant area (R2= 0.29). Contact area, however, was significantly correlated with 

every measure of GT relevant loading. Larger measures of contact area were associated with 

lower values of GT relevant peak force (R2= 0.30). After GT relevant peak force was 

normalized by total effective mass, smaller contact areas were associated with larger values 

of FGT/meff  (R2= 0.62). The highest correlation measured in this study was between FGT% and 
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contact area, whereby larger measures of contact area were associated with a smaller percent 

of total peak force directed to the GT relevant area (R2= 0.93). Lastly, this study explored the 

association between anthropometry and contact area. As hypothesized, contact area at peak 

force (CA) was positively correlated with a participant’s effective mass, total body mass and 

BMI, where each anthropometric variable accounted for 21, 22 and 33% of the variance in 

CA, respectively. 

 

 Time-varying Contact Area 4.4.1

The high level of correlation between all time-varying signals tested in this study (Ft  

to Ct  ,Dt  to Ct , FTt to Ct)  lends credence to the possibility of a hip specific contact model.  

However, applicability of a Hertzian model to lateral hip impact remains unclear.  The 

Hertzian contact model referenced in equations 11 and 12 describe a linear relationship 

between contact area and deflection, and a non-linear power law relationship between contact 

area and impact force. However, results from this study show that in actuality Ft  was 

correlated to a greater degree with Ct, as compared to Dt . Indeed, representative traces show 

this relationship between contact area and deflection (Figure 4.2) and contact area and force 

(Figure 4.3). However, transforming impact force did not increase the linear relationship 

between FTt and Ct , as theorized by Hertzian models.  

Nevertheless, a move to Hertzian contact models might be most appropriate when 

considering hip impact models for two reasons. Interestingly, for a Hertzian impact between 

an elastic sphere and an elastic plate, the initial contact between the two bodies will produce 
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a force of zero, which has proven to a difficulty with predictive lumped parameter models 

which include damping (especially Voigt models) of hip impact (Robinovitch et al., 1997). 

Regardless, this study does demonstrate the possibility for contact models as contact area 

shows an association with impact force and deflection, and further studies should attempt to 

better understand the true relationships between Ft and Dt in relation to Ct .  

 

 

 

 

 

 

 

 

 

 



 

 114 

 

Figure  4.2: Selected deflection and contact area traces for four separate participants. The top 

two panels show participants from opposite ends of the BMI spectrum. A) Lower BMI 

participant (BMI=20.7 kg/m2); B) higher BMI participant (BMI=30.8 kg/m2). The bottom two 

panels show two participants with the highest two highest peak contact areas measured. A) 

lower BMI participant (BMI=22.5 kg/m2) with a peak contact area of 251.3 cm2; B) higher 

BMI participant (BMI=33.2 kg/m2) with a peak contact area of 237.8 cm2. 



 

 115 

 

Figure 4.3: Selected force and contact area traces for four separate participants. The top two panels 

show participants from opposite ends of the BMI spectrum. A) Lower BMI participant (BMI=20.7 

kg/m2); B) higher BMI participant (BMI=30.8 kg/m2). The bottom two panels show two participants 

with the highest two highest peak contact areas measured. A) lower BMI participant (BMI=22.5 

kg/m2) with a peak contact area of 251.3 cm2; B) higher BMI participant (BMI=33.2 kg/m2) with a 

peak contact area of 237.8 cm2. 
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 Contact Area and Force Distribution 4.4.2

These results differ somewhat from previously reported studies using extreme BMI 

subgroups. A study by Levine et al. (2013) found that total peak impact force was 

significantly higher for high BMI participants (BMI > 28) compared to low BMI participants 

(<22.5). However, when peak force was normalized to the effective mass of the pelvis, the 

relationship between low and high BMI participants was reversed. The normalized peak 

force was significantly lower for high BMI participants (2.82 (0.58) N/kg) compared to the 

low-BMI participants (4.09(0.80) N/kg). In my study, BMI was only correlated with peak 

impact force (Fmax), explaining 33 % of the variance. But with normalized peak impact force 

(Fmax/meff), no significant relationship existed.  Additionally, Choi et al. (2010) found that 

neither total peak impact force nor the percent force that was applied to the danger zone (2.5 

cm wide U-shaped regions oriented along the femoral diaphysis and centered at the GT) was 

associated with BMI. Although they did find that high BMI participants (BMI > 25) had 23.8 

(SE=7) % of total impact force in the danger zone, while low BMI (BMI < 18.5) had 48.5 

(SE=6) % of total peak force distributed to the danger zone; this relationship was not 

significant. In this current study, we found that BMI was significantly correlated with the 

percent of force applied to a 5cm diameter “danger zone” (defined as GT relevant area in this 

study), with higher BMI being associated with a lower percentage of total impact force 

applied to the GT (R2=0.29).  Interestingly, both of these previous studies used cohorts of 

differing BMI groups, for example in the Choi study the average body mass and height of the 

average body mass and height were 47 kg (SD 4) and 162 cm (SD 5) in the low BMI group, 

and 75 kg (SD 9) and 163 cm (SD 5) in the high BMI group. My study did not separate by 
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extreme BMI groups and as a result the sample of participants tested here overlap with the 

BMI subgroups of these previous studies while also spanning the range between these 

extremes. Nevertheless, it is possible that at the extreme ends of anthropometry, the 

biomechanically relevant risk factors (mass, contact area, pelvic geometry) become more 

varied within extreme subgroups of BMI, and this diminishes any expected differences.  

This study also provides important insight into the relationship between reduced hip 

fracture risk and high BMI. Specifically, it shows that measures of body anthropometry 

(body mass and BMI), while correlating well with peak impact force, do not significantly 

correlate with actual loading distributed to the greater trochanter. In fact, contact area at peak 

force had the strongest relationship with GT relevant loading, where smaller values of CA 

were related with higher loading distributed to the greater trochanter (Figure 4.4 and 4.5). 

Although, BMI explained 33% of the variance in contact area it appears that the relationship 

between BMI and greater trochanter loading is not as well defined.  

The difficulty with relating impact loads with simple anthropometrics is evident when 

considering three participants in this study. Figure 4.6 shows the load distribution for two 

participants collected in this study who had comparable contact areas. One participant has a 

relatively low BMI (Panel A=22.5 kg/m2) and the other has a relatively high BMI (Panel 

B=33.2 kg/m2), yet both have similar contact area (A=247.1 cm2, B=237.8 cm2). 

Furthermore, both participants have similar peak impact force (Panel A =1464.9 N; Panel 

B=1485.2 N). Still, the peak force distributed to the GT relevant area for participant B is just 

10 % less than for participant A (A=770.4 N; B=688.7 N), even despite the fact that the mass 

of participant B is 21.5 % greater (A= 67.5 kg; B=86.0 kg). Alternatively, Figure 4.7 shows 
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the same participant from Figure 4.6 (A) compared to a participant with comparable BMI 

(Panel A=22.5 kg/m2 and Panel B=20.7 kg/m2), with stark differences in contact area 

(A=247.1 cm2, B=62.3 cm2), and force distributed to the GT relevant area (A=770.4 N; 

B=1184.0 N).   Evidently, the relationship between BMI and mass with greater trochanter 

loading is not as simple as previously presumed. 

It is possible that contact area at peak force could provide better prediction of hip 

impact loading to the greater trochanter. Previous models of hip fracture risk have associated 

total body mass as a significant predictor of impact loads, where by higher mass is associated 

with greater higher impact forces (Bouxsein et al., 2007; Dufour et al., 2012; Robinovitch et 

al., 1991; van den Kroonenberg et al., 1995). The results of this study show that this 

postulation is warranted when considering the total peak impact force measured by the entire 

force plate; but not as strongly supported when considering greater trochanter relevant 

loading. When considering the high correlation between total peak impact force and mass (r 

= 0.744), finding a good clinical predictor of CA could provide better estimates of hip 

fracture risk.  
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Figure 4.4: Correlations between loading parameters and contact area. The shade of each dot varies 

by the BMI of the participant according to the shade bar associated with each plot. 
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Figure 4.5: Load distribution images at peak force for six participants. The top three images 

are from three separate participants with a lower BMI (below 21 kg/m2). The bottom three 

images are from three participants with a higher BMI (above 28 kg/m2). Note the differences 

in contact area between participants of lower and higher BMI. Also of interest are the 

differences in the range of loads measured by each sensor in the pressure plate (evidenced 

from the range of the colour bars to the right of each image) between lower and higher BMI 

participants. Units for the colour bars are in Newtons, images depict each sensor of the 

pressure plate (64 x 64 =4096 sensors of 0.762 x 0.508 cm dimensions).     
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Figure 4.6: Pressure at peak force for two subjects who had relatively differing body mass 

indices (A=22.5 kg/m2, B=33.2 kg/m2), but similar contact area (A=247.1 cm2, B=237.8 cm2). 

Units for the colour bars are in Newtons, images depict each sensor of the pressure plate (64 x 

64 =4096 sensors of 0.762 x 0.508 cm dimensions).   

Figure 4.7: Pressure at peak force for two subjects who had comparable  body mass indices 

(A=22.5 kg/m2, B=20.7 kg/m2), but starkly different contact area (A=247.1 cm2, B=62.3 cm2). Units 

for the colour bars are in Newtons, images depict each sensor of the pressure plate (64 x 64 =4096 

sensors of 0.762 x 0.508 cm dimensions).   
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 Contact Area and Anthropometrics 4.4.3

The relationships between contact area and body anthropometry explored in this 

study have never been reported previously for impact studies with humans, and offer some 

insight into the association between hip fracture risk and body composition (Figure 4.7).  

Previous work by Laing and Robinovitch (2008c) using a mechanical hip testing system, 

showed that the percentage of total force transmitted to the femoral neck during impact 

increased with decreases in pelvis size, and postulated that this was likely the result of a 

decrease in total contact area. Other studies have shown that although the soft tissue 

overlying the greater trochanter offers partial protection in a fall causing direct impact to the 

lateral aspect of the hip, energy absorption by this soft tissue is insufficient to prevent 

fracture regardless of the thickness (Robinovitch et al., 1995b).  Thus, it has been postulated 

that alternative energy absorption mechanisms must be involved in the reduced risk of hip 

fracture present in high BMI individuals. The results of this study show that impacting the 

ground over a large contact area might be one of these alternative mechanisms. Clearly, 

contact area plays a role in the distribution of impact force to the greater trochanter (purpose 

2), but BMI only explains 33% of the variation in contact area. Thus it appears that some 

other property is largely responsible for reduced hip fracture risk, most likely contact 

geometry. 

  Unlike the assumptions of Hertzian contact models, the lateral hip is neither a sphere, 

nor composed of elastic material. It is a slightly more complex geometry and heterogeneous 

in its material properties. Furthermore, the inherent viscoelasticity of biological tissue (Fung, 

1993) implies spatiotemporal smoothness of biomechanical processes, and this smoothness 
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implies spatiotemporal correlation. For lateral hip impacts, the addition of soft tissue could 

increase this viscoelastic nature for the lateral hip. This increased viscoelasticity would then 

also reduce the spatial frequency of contact stresses applied to the hip during impacts 

(smaller changes in stress between adjacent contact regions). This reduction in spatial 

frequency implies a smaller concentration of total impact force to the greater trochanter. In 

simplest engineering terms “stiffness attracts load”, if there are two load paths and one is 

somewhat stiffer than the other, it will attract more load and hence its stress levels may be 

unacceptable. Unfortunately no study to date has addressed the relationship between regional 

material differences of the lateral hip and pressure distributions.   
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Figure  4.8: Correlations between body mass (Mass), body mass index (BMI) and effective mass 

(meff), with contact area (measured at peak force).   
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 Limitations 4.4.4

This study had several limitations. First, due to safety concerns we did not use older 

adults as participants. It is possible that the relationships explored here might differ in older 

adults, who might have different contact geometries and soft tissue distribution. Although the 

mean (SD) BMI for adults > 65 years of age has been reported to be 26.4 (3.7) kg•m2 for 

males and 25.1 (4.6) kg•m2 for females, and the participants tested in my study had a mean 

(SD) BMI of 24.1 (4) kg•m2, the contributions of fat, muscle and skeletal mass that 

contributes to BMI can have varied effects on the mechanical response across participants. 

Thus, directly extrapolating these results directly for older adults is cautioned, and warrants 

further study. Although BMI is commonly used as a surrogate measure of soft tissue 

thickness over the greater trochanter, it does not provide direct insights into the mechanisms 

by which impact dynamics are differentially influenced by BMI. Future work would 

absolutely benefit from directly measuring soft tissue thickness by ultrasound or diagnostic 

imaging.  

 Second, as noted above, due to safety issues, our impact velocity of approximately 1 

m/s (based on a 5 cm drop height ) is lower than the 3 m/s average impact velocity reported 

during unexpected falls from standing (Feldman and Robinovitch, 2007). However, our 

results show a high correlation between time-varying impact force and time-varying contact, 

as such higher velocity impacts are expected to also show similar relationships with contact 

area. Lastly, it is possible that the sample size in this study was too small to detect certain 

significant relationships tested here. A priori power calculations determined that at a sample 

size of 20, a correlation with selected power of 0.8, required an effect size of 0.557 (with α = 
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0.05). Agreeably, this lack of power requires further study into the relationships mentioned 

here, especially in regards to body anthropometry. However seeing as this is the first study to 

report relationships with contact area, further study was inevitable. It is worth mentioning 

that a study with more power could easily have failed to find a difference (e.g. because 

perhaps the true effect is smaller than I think), or it may as easily have found a difference. A 

study with more power is more likely to find a difference than one with less power, but as the 

effect size of the underlying relationship sinks it is worth considering how much it can add to 

estimates of hip fracture risk. 

 Conclusions 4.4.5

In summary, this study shows that all three time-varying signals (Ft, FTt and Dt ) were 

significantly correlated with time-varying contact area (Ct). These results lend support to the 

possibility of modeling lateral hip impacts with contact models, but provide little support for 

a Hertzian model adaptation. Analysis on the relationships between body mass and BMI 

found both anthropometric measures to correlate significantly with peak impact force, but not 

with peak impact force directed to the greater trochanter. These results bring into question 

the feasibility of modeling hip fracture risk with body mass or BMI as inputs, without further 

investigating the distribution of impact force to the greater trochanter. In this study only 

contact area was significantly correlated with all measures of GT specific loading, and has 

never before been implemented in predictive modelling of hip fracture risk. Finally, this 

study found that although effective mass, total body mass and BMI were significantly 

correlated with the contact area at peak force, they only accounted for 21, 22 and 33% of the 

variance in CA. Altogether, this study sheds new light on the role that contact area plays in 
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lateral hip impact loading and the importance of understanding load distribution during 

lateral hip impacts. It also highlights the importance of moving towards predictive models 

that incorporate more robust estimate of body material composition and geometry, with 

hopes that these will better help estimate the risk of hip fracture.   

 

Chapter 5 
Thesis Summary 

The experiments presented in this thesis provide novel insight into two scarcely 

studied areas in the field lateral hip impact biomechanics. With respects to the effect of 

measurement technique, this study shows that 3D optical motion capture and 2D high-speed 

videography perform similarly in measuring the impact response of the human pelvis during 

lateral pelvis release impact trials. Although significant differences were seen between 

systems in measuring TFmax and Emax, the magnitude of differences were at or below 5% of 

the total magnitude of each measured variable. Furthermore, averaging impacts within a 

subject reduced the differences between systems for Emax. This study also showed the effect 

of sampling rate on measuring the impact response of the human pelvis, where the degree of 

effect that sampling rate had was contingent on the dependent variable measured. Sampling 

as low at 300 Hz, significantly reduced measures of Fmax and Dmax, but only by on average 

0.7 and 0.5 %, respectively, whereas measures of TFmax and TDmax increased by on average 9.5 

and 6.8 %. Sampling Emax at 500 Hz and 300 Hz increased measures of impact absorption by 

2.2 and 2.8 % respectively. Sampling at 4500 Hz was the lowest sampling rate that was not 

significantly different from 9000 Hz across all dependent variables.  
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The second study of this thesis showed the influence of contact area on in load 

variables during lateral hip impacts. In particular, that all three time-varying signals (Ft, FTt 

and Dt ) were significantly correlated with time-varying contact area (Ct). These results lend 

support to the possibility of modeling lateral hip impacts with contact models, but provide 

little support for a Hertzian model adaptation. Analysis on the relationships between body 

mass and BMI found both anthropometric measures to correlate significantly with peak 

impact force, but not with peak impact force directed to the greater trochanter, bringing into 

question the feasibility of modeling hip fracture risk with body mass or BMI as inputs, 

without further investigating the distribution of impact force to the greater trochanter. 

Finally, this study found that although effective mass, total body mass and BMI were 

significantly correlated with the contact area at peak force, they only accounted for 21, 22 

and 33% of the variance in CA. Altogether, this study sheds new light on the role that contact 

area plays in lateral hip impact loading and the importance of understanding load distribution 

during lateral hip impacts. It also highlights the importance of moving towards predictive 

models that incorporate more robust estimate of body material composition and geometry, 

with hopes that these will better help estimate the risk of hip fracture.   
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 Appendix A

Synchronization and Drift Between OPT and HSV 

 

 

 

 

 

 

 

Figure 0.1: Representative square wave trial used to assess the synchronization of the OPT and HSV 

system by external trigger. Black tracing shows the square wave as measured by HSV, while the grey 

tracing shows that measured by the OPT. 
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Figure 0.2: Representative derivatives of the square wave trials shown in Figure 5.1. The 

spikes indicate where the square wave changed levels. Numbers indicate the difference in 

time of pulse measured between systems (by frame). Positive numbers indicate that the 

HSV measured a change in the square wave later than the OPT. Black tracing shows the 

square wave as measured by HSV, while the grey tracing shows that measured by the 

OPT. 
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Figure 0.3: Change in agreement between systems as a function of collection duration. Each 

trace is from a separate pilot trial (colour coded). Positive values indicate that HSV measured 

a change in square wave voltage later than the OPT (vice versa for the negative values). Notice 

how drift increases as a function of time, but the direction of the drift is not systematic, 

meaning in some trials the OPT was faster (negative values), while in other the HSV was 

faster. 
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 Appendix B

Empirical Cumulative Distributions 

 

 

 

 

Figure 0.4: Empirical cumulative distributions for each dependent variable of interest. 

The abscissa of each plot is logarithmic to allow for better visualization of the differences 

between systems at end ranges. Dark black lines depict measurements from the HSV 

system, and grey lines depict the OPT. 
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 Appendix C

Contingency Table Analysis 

 

 

 

 

 

There was not a significant association between a negative TFmax value and a negative 

Emax (χ2 (1) = 2.92, p = 0.10). In this analysis, “Negative” values were defined as those which 

were below zero. Values that were defined as “non-negative” made up all other 

measurements (including those which were zero). The assumption was that if a difference in 

measured energy absorption was directly due to an increased time to peak force, then there 

would be a significant association between the two. However, in this first level analysis it 

seems that the additional energy absorption measured by the Optotrak system is not related to 

the increased time to peak force measured by Optotrak. 

 

 

 

 

 

 

 

 

 Negative  
TFmax 

Non-negative  
TFmax 

Total 

Negative  Emax 42 19 61 
Non-negative  Emax 14 14 28 

Total 56 33 89 
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 Appendix D

Non-constant Errors in Deflection and Trapezoidal Integration 

 

A possible cause of disagreement between both motion capture systems for energy 

absorption can arise when the differences between systems in measuring deflection are non-

constant—i.e. the differences change over the duration of the deflection. To illustrate this, 

three separate theoretical difference traces were created to mimic some of the extreme time-

varying differences seen between systems in this thesis (Figure 3.10).  Each one of these 

traces was added to a deflection trial from a participant in this study (5cm drop height). 

Subsequently, the energy absorption was calculated for this altered trace and the energy 

absorbance was compared to the unadjusted trace. The overall peak differences for each 

“error” trace are not relatively high (0.25, 0.68, 1.31 mm), but the resulting energy 

differences can lead to similar disagreement to that seen between OPT and HSV. 
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Figure 0.5: Three difference traces that were created to simulate non-constant difference 

between systems. Separately, each one of these traces was added to an actual collected 

deflection trial from a participant. Subsequently, the energy absorbance was calculated. This 

was then compared to the energy calculated for the unadjusted force deflection trial (See Figure 

4.13).  
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Figure 0.6: Force deflection tracings for four separate trials. The black trial is an actual 

impact trial measured in this study. The rest of the trials (three in total) are hypothetical 

force deflection tracings if the deflection had an additional error in it. The peak deflection 

error for each force deflection trace corresponds with the trace in Figure 4.12. Values in 

the legend are energy calculations for that corresponding force deflection trace. 
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Table 0-1: Anthropometrics for every participant in collected in this study. Also reported are 

mean, standard deviation (SD) and coefficient of variation (COV) for each anthropometric 

measure. 

 

Participant Age Height (cm) Mass (kg) BMI (kg/m2) Meff (kg) 
1 20 174.0 66.0 21.8 12.5 

2 31 165.0 50.0 18.4 11.1 

3 21 169.0 60.0 21.0 12.4 

4 23 179.0 76.0 23.7 13.3 

5 23 169.0 66.0 23.1 13.7 

6 21 172.0 91.0 30.8 17.9 

7 26 173.0 67.5 22.6 13.0 

8 26 156.0 52.0 21.4 13.7 

9 25 159.0 52.0 20.6 12.9 

10 22 167.0 67.0 24.0 14.4 

11 28 174.0 70.0 23.1 13.3 

12 29 162.0 65.0 24.8 15.3 

13 23 160.0 69.0 27.0 16.8 

14 21 172.0 59.0 19.9 11.6 

15 25 163.0 55.0 20.7 12.7 

16 22 161.0 86.0 33.2 20.6 

17 28 175.0 87.0 28.4 16.2 

18 28 171.5 77.0 26.2 15.3 

19 22 156.0 50.0 20.5 13.2 

20 22 162.0 79.0 30.1 18.6 

Mean 24.3 167.0 67.2 24.1 14.4 
SD 3.2 6.8 12.5 4.0 2.5 

COV 13.1 4.1 18.6 16.7 17.2 
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