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Abstract

The automotive industry has long been searching for efficient ways to improve vehicle
performance such as drivability, fuel consumption, and emissions. Researchers in the au-
tomotive industry have tried to develop methods to improve fuel consumption and reduce
the emission gases of a vehicle, while satisfying drivability and ride comfort issues. Today,
by developing computer/software technologies, automotive manufacturers are moving more
and more towards modelling a real component (prototype) in a software domain (virtual
prototype). For instance, modelling the components of a vehicle’s powertrain (driveline)
in the software domain helps the designers to iterate the model for different operating
conditions and scenarios to obtain better performance without any cost of making a real
prototype.

The objective of this research is to develop and validate physics-based powertrain mod-
els with sufficient fidelity to be useful to the automotive industry for rapid prototyping. De-
veloping a physics-based powertrain model that can accurately simulate real phenomenon
in the powertrain components is of great importance. For instance, a high-fidelity simula-
tion of the combustion phenomenon in the internal combustion (IC) engine with detailed
physical and chemical reactions can be used as a virtual prototype to estimate physical
prototype characteristics in a shorter time than it would take to build a physical prototype.
Therefore, the powertrain design can be explored and validated virtually in the software
domain to reduce the cost and time of product development.

The main focus of this thesis is on development of an internal combustion engine model,
four-cylinder spark ignition engine, and a hydrodynamic torque converter model. Then,
the models are integrated along with the rest of a powertrain’s components (e.g. vehicle
longitudinal dynamics model) through acausal connections, which represents a more feasi-
ble physics-based powertrain model for model-based control design. The powertrain model
can be operated at almost all operating conditions (e.g. wide range of the engine speeds
and loads), and is able to capture some transient behaviour of the powertrain as well as
the steady state response. Moreover, the parametric formulation of each component in the
proposed powertrain model makes the model more efficient to simulate different types of
powertrain (e.g. for a passenger car or truck).
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Chapter 1

Introduction

A vehicle powertrain is a combination of mechanical, electrical, and hydraulic components

that transfer power from the engine, combustion released energy, to the wheels. The

combustion power is transferred through the mechanical mechanism such as manual or

automatic transmission system. The reduction of fuel consumption and emissions are two

active areas of vehicle research. It is of great importance to design powertrain components

to improve fuel consumption and reduce emissions while satisfying drivability and ride

comfort issues.

Recently by developing advanced simulation tools [30, 34, 56, 75, 85], modeling large

dynamic systems (high-fidelity models) has been efficiently done and iterated for different

operating conditions. Therefore, the efficient powertrain models have significantly helped

the automotive industry to reduce the cost of production.
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1.1 Background

Today, automobile manufacturers are moving towards more and more virtual vehicle pro-

totypes including prototypes of the powertrain. A virtual prototype is the modeling and

simulation of a physical (real) prototype in a software environment (virtual domain). The

main advantages of modeling virtual prototypes before making physical prototypes are:

• Lower expenses: the cost of making a virtual prototype is dramatically less than the

physical prototype.

• Higher quality: virtual prototypes enable the rapid virtual testing of many iterations

to study the effect of parameter changes on a design thus improving the quality of

the physical prototype when constructed.

• Shorter time to present the product to markets: this has recently been one of the key

progresses in attracting customers, by advertising and showing the virtual prototype

operations which are similar to the real prototypes.

In the automotive industry, specifically in vehicle dynamics modeling and simulation,

several software packages have been developed such as Adams, MapleSim, Dymola, CarSim,

and so on. In this project, the major part of the modeling and simulations are executed in

MapleSim.

MapleSim, one of the products of the Maplesoft company, is a multi-domain modeling

and simulation tool to build dynamic models from different domains (e.g. mechanical,

electrical, and hydraulic). The main advantages of employing this software for modeling

and simulation of the powertrain components are:
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• The powerful and user-friendly library which includes components from different

domains, and the ability to combine both causal and acausal components

• The ability to generate a user-defined component, either a causal or an acausal com-

ponent, by custom component option

• Powerful ability to generate symbolic equations and optimized simulation code

• Exploring the model in various ways such as parameter optimization, model reduc-

tion, and sensitivity analysis by manipulating the equations behind the model

An acausal system is suitable in vehicle dynamics modeling and simulation where the

connections are usually flanges and the response of the component is not only based on

the past/current inputs, but also it is affected by the future inputs.

Figure 1.1 shows the operation of the acausal system in comparison with the causal

system. In the causal model the direction of information flow is defined, see the lower

diagram in Figure 1.1, and the power flows in one direction (e.g. from left to the right side

of the component). In the acausal system, the upper diagram, the power flow direction

can be either from left to right or vice versa. Therefore, an acausal modeling approach is

more suitable for systems which the direction of information flow between components is

not specified (e.g. powertrain simulation) [32].

MapleSim provides a good library to generate acausal models from the library of com-

ponents and user-defined components (custom components).
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Acausal System
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Causal System
(Signal Connection)

Input or Output Input or Output

Input Output

Figure 1.1: Acausal vs. causal system

1.2 Motivation and Objectives

Cars play an important role in our everyday life. However, the fast growth of automotive

companies and consequently the number of cars has caused some serious problems regarding

the vehicle fuel and environmental issues.

Researchers in the automotive industry have tried to develop methods to improve fuel

consumption and reduce the exhaust gases and emissions of vehicles. For these purposes the

modeling and simulation of the vehicle powertrain (driveline) has been of great importance.

The power, or energy, in the powertrain can be generated either in the internal combustion

(IC) engine via chemical reactions or in the electric motors by using the charges of batteries

in hybrid electric vehicles (HEVs). Then, the generated power is transformed to mechanical

power, through the set of gears, clutches, and shafts, to move the vehicle.

From this point of view, the design of the detailed powertrain system model significantly
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helps the automotive manufacturers to evaluate the performance of the virtual powertrain

prototype and test different controllers to improve the fuel consumption and emission issues

while satisfying the drivability and ride comfort of passengers. The approach of powertrain

modeling with physical meaningful parameters and equations, which is called physics-based

modelling, gives a detailed view of powertrain components and operations. The most

important benefit of using physics-based models is to track the effects of the physical-

meaning parameters on the system operation. For instance, the schematic diagram in

Figure 1.2 shows different approaches to the modeling of IC engines. As indicated in Figure

1.2, the IC engine model includes more and more physical parameters by approaching from

the left to the right of the diagram.

The first approach shown in Figure 1.2, the empirical method, uses experimental data

to simulate the IC engine model. The empirical modeling approach is usually represented

by a group of look-up tables. The second approach, the power balancing, is a combination

of empirical data and physics-based equations. Mean-value engine modelling is an example

of using both physics-based equations (e.g. mass and energy conservation equations) and

look-up tables (e.g. combustion model). The third approach includes simulations of the

combustion model as well as thermodynamic equations. For instance, a two-zone combus-

tion model with flame propagation through the combustion chamber can be categorized

in this group. Finally, the most complex modeling approach can simulate the fluid flow

dynamics by employing finite element methods (FEM) and computational fluid dynamics

(CFD) packages.
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Simulation Time
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Figure 1.2: Different approaches of IC engine model

The major part of the proposed research is focused on the modeling and simulation

of powertrain components, specifically the physics-based acausal IC engine model and the

automatic transmission model, in the MapleSim environment.

As mentioned in the previous section, the approach of physics-based models has grown

up in the automobile industry. A high-fidelity physics-based powertrain model can rep-

resent a suitable virtual prototype of a real powertrain (physical prototype). Therefore,

the powertrain design can be explored and validated virtually in the software domain to

reduce the cost of making physical prototypes.

Typically, the major components in an automatic powertrain model, as shown in Fig-

ure 1.3, are: driver model, engine model, torque converter model, transmission model,

differential model, chassis model, brake model, tire model, and resistant forces model.

However some of the mentioned components can be modeled using the elements in the

MapleSim library such as the braking model and the tire model, so the main focus of the

proposed research is on modeling the IC engine and the automatic transmission (including

the math-based torque converter model).
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Figure 1.3: Schematic automatic driveline diagram

The proposed powertrain model is a fully acausal model. In other words, all components

(except for the driver) are connected through flange connections. The thick lines among

the components in Figure 1.3 represent the shaft or flange connections, and the thin arrows

represent the control signals. For instance, in an automatic transmission, the driver can

control the vehicle speed by changing the throttle angle via the gas pedal, or by pushing

on the brake pedal.

The proposed physics-based IC engine model will contain the four strokes in the Otto

cycle diagram: the intake, compression, combustion, and exhaust. All four stroke opera-

tions will be represented by physics-based modeling approaches. Furthermore, all causal

sub-systems, which are usually represented by look-up tables, such as the thermal efficiency
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and the volumetric efficiency in the mean-value model, will be replaced by fully physical

meaning representations.

The level of complexity of the combustion stroke, which is the most important part

of the model, will be defined so as to predict the brake power, the engine output shaft

power, and the emission gases (CO, NOx). For this purpose, the modeling approaches

will start by considering a single zone combustion model. Although the single zone cannot

predict the emission gases, it is a suitable approach to model physics-based combustion

to determine the variations of the pressure and the temperature, which will be compared

against literature values.

The next step will be using a two-zone approach to model combustion. In this level, the

combustion zone is divided into the burned and unburned zones, and the flame propaga-

tion (flame speed and shape) will be modeled during the combustion. Then the chemical

reactions will be entered in the flame propagation model to predict the emissions [68].

The proposed engine model will be added to the acausal torque converter model at the

pump shaft, and the rest of the powertrain components will connect to the torque con-

verter through the torque converter turbine shaft. The proposed physics-based powertrain

model is a complete package for component-level and system-level simulation to capture

both transient and steady state behaviour of the dynamic system. Moreover, the fast

simulation time makes the model appropriate for model-based control development and

hardware-in-the-loop (HIL) tests.

The original contributions of the proposed research can be summarized as follows:

• Physics-based torque converter model: The model is able to capture torque converter
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characteristics in all operating modes. The damping characteristics and frequency

response of the model as well as the parametric sensitivity analysis are studied in this

research. The model is reusable for different powertrain configurations. Since very

few literatures have studied a torque converter reverse flow operation, as well as flow

transition, the developed model in this dissertation is fully described the reverse flow

and flow transition simulation in both component-level and system-level simulation

(e.g. engine braking phenomenon in a powertrain simulation).

• Physics-based four-cylinder SI engine model: The developed SI engine model, in

Chapter 4 of this dissertation, is able to simulate in-cylinder variations at each crank

angle such as pressure, temperature, brake torque, fuel consumption, and emission

gases. The multibody dynamics is integrated along with the four-stroke (two-zone

combustion) SI engine model. The model is able to simulate many cycles simulation

with fast simulation time (faster than real-time simulation), which makes the model

suitable for an engine model-based control development and optimization.

• Acausal integrated powertrain model: The multibody crankshaft model of the SI

engine is connected to the acausal torque converter model, automatic transmission,

differential gear, brake, tire, and longitudinal chassis model (see Chapter 5). The

originality of the proposed powertrain model is its feasibility (due to the acausal mod-

eling approach), fast simulation (due to the optimized code generation in MapleSim),

and generating simulation results with variable engine operating speed. The whole

acausal powertrain model is treated as a hybrid dynamic system (includes both con-

tinuous and discrete state variables) with variable initial conditions at each time step.
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The powerful DAEs’ stiff solvers in MapleSim and custom component development

based on a Modelica language, helps more to handle complex hybrid dynamic system.

1.3 Thesis Layout

The current thesis is organized as:

Chapter 2: This chapter presents relevant literature review in three topics: torque

converter modeling, IC engine modeling, and powertrain modeling.

Chapter 3: In this chapter, the hydrodynamic torque converter model is fully de-

scribed. The dynamic model is created in the MapleSim software, and the model is simu-

lated in all operating modes. Moreover, the damping characteristics of the model is eval-

uated in different modes for both the linear and non-linear model. The torque converter

characteristic is also simulated in the integrated powertrain model.

Chapter 4: This chapter represents modeling and simulation of a spark ignition en-

gine. The SI engine model is created based on a four-stroke operation. The two-zone

combustion formulation along with the turbulent flame propagation model is employed to

model the combustion process. The model is able to generate simulation results at each

crank angle. Moreover, the physics-based SI engine model is cross-validated against the

GT-Power simulation results.

Chapter 5: In this chapter, the developed high-fidelity SI engine model is connected

to the acausal torque converter model, and the torque converter model is connected to

the automatic transmission and vehicle longitudinal dynamics through acausal rotational
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flange connection. The model is able to generate a many cycle simulation with variable

engine speed and load.

Chapter 6: This chapter summarizes the thesis, and highlights the main contributions

of the research. It also contains recommendations for future works.
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Chapter 2

Literature Review

The following sections review the existing literature on torque converter modeling and IC

engine modeling.

2.1 Torque Converter

The torque converter plays an important role in transmitting the engine torque during the

multiplication (converter) and coupling (lock-up) modes. The torque multiplication mode

happens in lower gear ratios to help the vehicle to start moving, and then at higher gear

ratios, the engine and transmission are mechanically connected via the torque converter

shaft which is called lock-up mode. Furthermore, during gear shifting, its response charac-

teristics considerably affect the vehicle longitudinal dynamics and, consequently, the fuel

consumption and drive quality.
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Figure 2.1 depicts the mechanism of a torque converter operation during multiplication

and coupling modes. In the intermediate speed, when the turbine speed is increasing, the

resultant velocity (νR) direction (fluid flow absolute direction) is changed. The resultant

velocity direction is significantly changed by increasing the turbine angular speed. There-

fore, as shown in the lowest part of the Figure 2.1, the resultant velocity direction hits

the back of the stator blades which causes the one-way clutch to disengage and the stator

starts rotating freely in a same direction as pump and turbine.

The torque converter characteristic is usually represented by the torque ratio plot,

the efficiency plot, and the capacity factor (K-factor) plot versus speed ratio (the ratio of

turbine to pump angular speed) (Figure 2.2). The torque ratio in modern torque converters

typically starts from some value around 2, in lower gear ratios, and approaches to unity

in higher gear ratios. In other words, the torque converter works analogous to a lock-up

clutch after the coupling point as if the pump and turbine shaft are mechanically connected.

The efficiency plot represents the net power that can be transmitted from the pump side

(driver side) to the turbine side (driven side). The capacity factor (K-factor), which is

almost independent of the individual speeds and loads, represents the ability of a torque

converter to multiply input torque [47].
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Figure 2.1: Torque converter operation
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Figure 2.2: Torque converter characteristic plots

A torque converter is an essential component in an automatic powertrain system and

it is necessary to know the structure and the dynamic equations of the torque converter.

In some powertrain simulations, a torque converter is implemented as a simple look up

table which does not reflect the effects of the torque converter parameters. The following

literature introduces the related works on dynamic torque converter models.

Ishihara and Emori [48] are among the first authors to consider torque converter tran-

sient response. The torque converter model in their work is expressed by three first-order

differential equations for pump, turbine, and energy conservation. The transient charac-

teristics and damping effects of the torque converter are studied in that paper and the
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numerical results are verified with experimental results. Moreover, it concludes that in

case of a slow unsteady (transient) phase, the working fluid inertia can be neglected and

the steady state equations can be used to describe the torque converter operation.

Kotwicki [54] derived the equations of torque converters to obtain a simplified quadratic

algebraic form of torque converter characteristics. The original equations are four steady-

state non-linear equations with four states: the angular speed of the pump, turbine, and

stator as well as the volumetric flow rate. The simplifications have been done by approx-

imating the volumetric flow rate as a function of the pump and turbine angular speed.

Due to the simple nature of algebraic equations in comparison with differential equations,

the simplified model in the Kotwicki paper is used along with some controllers to investi-

gate the powertrain dynamics and control. The proposed torque converter in his work is

equipped in a powertrain model along with an engine and a transmission.

A comprehensive study of torque converter dynamics is presented by Hrovat and To-

bler [47], who used four first-order nonlinear differential equations to represent the torque

converter dynamics. The stator dynamic equation is included in this paper [47], and

the coupling point, which typically happens when the speed ratio reaches around 90%,

is defined based on the stator torque. Bond graph theory is employed to model a torque

converter and the numerical results are verified by experimental tests. The proposed model

in [47] is useful for investigating the parameter effects on the torque converter performance.

Moreover, the transient characteristic of the torque converter can be evaluated. The au-

thors also derive the torque converter equations during the reversal flow mode. This mode,

which is also called the overrun mode, happens when the turbine speed is greater than the

pump speed and the flow direction is changed. In this case, the turbine drives the pump
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and the stator overruns. This mode of the torque converter could occur during engine

braking or coasting.

A torque converter model with lock-up clutch has been studied in [53, 58, 70]. The

simulation results along with experimental results of torque converter with lock-up clutch

show that the lock-up clutch improves the torque converter efficiency in higher speed ratios.

Xia and Oh [86] studied the effect of torque converter dynamics on vehicle longitudinal

dynamics. The proposed torque converter model in [86] is similar to Hrovat and Tobler’s

model [47]. The results are compared with Kotwicki’s model, which includes merely the

steady state behaviour of a torque converter represented by two algebraic equations. The

plots show better response of Xia and Ohs torque converter model and the simulation

results are closer to the experimental data. This paper [86] verifies that using a torque

converter model based on the differential equations is more realistic and the vehicle longi-

tudinal dynamics based on this model is more adjusted to the experiments.

In a paper by Pohl [65], the parameter values for three types of automobile torque

converters are given. This paper also studied the transient characteristics of the torque

converter using Hrovat and Tobler’s equations in the EASY5 software and compared the

results with experimental data. The results show that the simple static model can be

used for low frequency conditions (e.g. less than 1Hz). In other words, the transient fluid

momentum effects are insignificant for low frequency, but for higher frequencies, between

1− 10Hz, the transient fluid momentum must be considered to obtain acceptable results.

Adibi-Asl et al. [2] developed a math-based torque converter model in MapleSim and

studied the effects of the torque converter parameters such as the flow area, the blade
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angles, and the radii of the pump, the turbine, and the stator on the torque converter

performance.

The damping characteristics of a torque converter have been evaluated in [26, 50, 69].

Kesy and Kesy [50] studied the damping characteristic of a torque converter during a

torque multiplication mode, before coupling point, for different speed ratios. The authors

linearized the torque converter equations and approximated the transfer functions, between

angular speeds and torques, with a first order system. Moreover, the effects of the torque

converter parameters on damping coefficients are discussed in this paper.

Deur et al. [26] derive all transfer functions based on a linearized model for both before

and after coupling mode operations. The frequency response (bode diagram) is employed to

compare the damping characteristics of a transmission with and without a torque converter.

The authors conclude that the torque converter is able to significantly damp the high

frequency disturbances transferred from the pump to turbine side and vice versa. However,

the pump to pump and turbine to turbine high frequency damping performance is worse

than in the converter-less transmission.

The novelty of the physics-based torque converter model in this dissertation (Chapter

3) in comparison to the previous works are:

• All operating modes (multiplication, coupling, and reverse flow) are modeled as an

acausal component which is able to simulate flow transition from the forward to

the reverse flow operation and vice versa. Moreover, the acausal torque converter

model is integrated in an acausal powertrain model to study powertrain system-level

characteristics (e.g. engine braking).
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• The torque converter damping characteristics is evaluated in all operating modes;

more specifically the damping characteristics during the reverse flow mode has not

been evaluated before.

2.2 Internal Combustion Engine

The idea of developing combustion engines has been started since the Industrial Revolution

in Europe. The purpose of using combustion engines is converting chemical (fuel) reactions

to the mechanical work through a suitable mechanism. These engines have been classified

based on different criteria such as the type of fuel, working cycle, and ignition methods [45].

The internal combustion (IC) engines can also be categorized based on the fuel ignition:

• Spark ignition engine (SI): the fuel, petrol, is ignited via a spark plug, which is placed

at the top of the cylinder.

• Compression ignition engine (CI): the fuel, diesel, in this type has lower self-ignition

temperature compared to SI engines. Therefore by increasing the cylinder pressure

the temperature inside the cylinder is also increased, and thus the diesel fuel starts

self-igniting.

The IC engines, which have been widely used in commercial vehicle powertrains, are

usually working in four thermodynamic processes (i.e. four stroke engines). The schematic

of a four stroke cycle is shown in Figure 2.3. The process is started by inspiring fresh air

and fuel into the cylinder through the intake valve to obtain the air-fuel mixture. Then,
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the mixture is compressed up to a certain level, close to the top dead center (TDC), where

the fuel mixture is ignited via the spark plug. Finally the exhaust gases are driven out

from the cylinder through the exhaust valve.

Intake
valve

Exhaust
valve

Intake Compression Combustion Expansion Exhaust

Exhaust
valve

Exhaust
valve

Exhaust
valve

Exhaust
valve

Intake
valve

Intake
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Intake
valve

Intake
valve

Power stroke

Figure 2.3: Four stroke IC engine operation [courtesy of Wikipedia]

IC engines have been modeled in different ways based on the level of the model com-

plexity. For instance, the IC engine characteristics can be expressed by a group of look-up

tables, or simple torque-speed differential equations, or a more detailed model with chem-

ical reactions and fluid dynamics.

The following literature review represents some related studies in modeling and simula-

tion of IC engines. The reviews in this section are classified into two modeling approaches.

The first approach is the mean-value model, and the second is the spark ignition (SI) engine

with combustion model.
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2.2.1 Mean-value engine model (MVEM)

Mean-value engine models (MVEMs) are intermediate level IC engine models which include

more physical details than simplistic linear transfer function models, but significantly sim-

pler models than large complex cylinder by cylinder models [31]. In this modeling approach

the operating time scale is assumed longer than the engine cycle. The detailed combustion

dynamics cannot be captured by the MVEM, but the major engine component dynamics

can be mathematically formulated in this approach.

The MVEM has been well-known as a suitable plant model for model-based control

applications. The combinations of the physics-based components, which allow the physical

parameter effects to be evaluated and controlled, and the look-up table models, with fast

response, make the MVEM suitable for control applications. The schematic diagram below

(Figure 2.4) shows the look-up table models and the physics-based components in the

MVEM.

Look-up 
Tables

Physics-based
Models

Mean-value
Engine

Volumetric
Efficiency 

Conservation of
Mass

Conservation of
Energy

Thermodynamics
Equations

Spark 
Timing

Thermal
Efficiency

Figure 2.4: Schematic diagram of the MVEM modeling interfaces
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Conventionally, IC engine models were represented by empirical data such as look-up

tables, which express the IC engine characteristic variables as a function of the engine

rotational speeds and torques, or by static math-based models [20,67], which were not able

to capture the transient phenomena in the IC engine models.

The dynamic math-based IC engine models have been studied since 1970 [28,39]. These

models have been significantly useful to study transient phenomena such as fuel dynamics,

manifold pressure and temperature variations, air/fuel ratio (AFR) changes, and throttle

angle effects.

Powell [66] introduced a basic nonlinear model of an engine dynamics system. The

model includes engine dynamics, intake manifold dynamics, throttle dynamics, fuel injec-

tion dynamics, and exhaust-gas-recirculation (EGR) system. The dynamics of the com-

ponents are represented by simple first order differential equations. The overall model is

rewritten in the form of nonlinear state space equations for control purposes.

Aquino [10] was among the first researchers to develop a math-based fuel dynamics

model in an IC engine model. He introduced the wall-wetting phenomena by assuming

that a portion of the injected fuel is left on the port walls and would be evaporated after

some delay time. In Aquino’s math-based engine model, the fuel dynamics variables are

expressed as a function of the manifold pressure and the engine speed.

Dobner [27, 28] represented a math-based SI engine model with the carburetor model.

The carburetor model, which is used to control the air and the fuel flow in to the engine,

is represented by look-up tables as a function of the manifold pressure, the air/fuel ratio,

and the throttle angle. The engine model contains four sub-models (Figure 2.5) which are
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the carburetor, the intake manifold, the combustion, and the engine rotational dynamics

models.

Figure 2.5: SI model structure in [28]

Yuen and Servati [89] presented a simple math-based model of emission gases in the

MVEM. The emission gases such as CO and NOx are formulated as a function of air/fuel

ratio of the combustion mixture.

The most well-known version of the MVEM was introduced by Hendricks and Sorenson

in 1990 [42]. The model in this paper, which is a simple model of a four cylinder SI engine,

has three main states (three differential equations): the engine speed, manifold pressure,

and air mass flow rate. The instantaneous engine variables are expressed as a function of

the main state variables. For instance, the thermal efficiency and volumetric efficiency are

represented by look-up data as a function of the engine speed and the manifold pressure.

The simulation results show reasonable agreement with experimental data in the entire

operating range of the SI engine, with the accuracy of most variables within less than 2% of

the experimental results. The major developments of the MVEM have been accomplished
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by Hendricks et al. since 1990 [43,44].

Saeedi [71] developed a mean-value engine model in MapleSim software and validated

against the experimental results. The model includes several sub-models such as: speed

controller (driver model), throttle body, intake manifold, and engine (cylinder) model.

The developed mean-value engine model by Saeedi is expanded and integrated along with

automatic transmission and vehicle longitudinal dynamics in a driveline [3, 7].

2.2.2 Spark ignition (SI) engine and combustion model

The mean-value engine model (MVEM), which is widely used in model-based control ap-

plications, is partially a physics-based SI engine model, but detailed physical phenomena

such as the combustion model, including fuel chemical kinetics, and the emission model

cannot be represented by the MVEM.

Combustion modeling plays an important role in modeling an SI engine which contains

the detailed chemical kinetics during the combustion process, the released chemical energy,

and the emission gases. The combustion in the SI engine happens just before the end of

the compression stroke, extends through the combustion stroke, and ends after the peak

cylinder pressure occurs [45].

The mathematical models of spark ignition engines, from a thermodynamics point of

view, can be categorized into single zone and multi-zone models. In the single zone model

the fuel composition, temperature, and pressure are assumed to be uniform in the cylinder.

The multi-zone model is a more realistic model which contains the burned and unburned

regions [68]. Considering more zones in the combustion chamber increases the number of
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calculations, but the results can be more realistic, specifically in the case of evaluating the

formation of emissions [19,74,77].

In multi-zone models (e.g. two zones) the combustion chamber is divided into burned

and unburned zones. Each zone has different properties in terms of composition, temper-

ature, and pressure distribution. Essentially the equations are based on conservation of

mass and energy which are used to calculate the cylinder thermodynamic state variables

(e.g. cylinder pressure) [68]. The two-zone thermodynamic assumptions and mathematical

derivations are mentioned in the next section.

Benson et al. [18] studied a comprehensive simulation model of a four stroke SI engine

model. The proposed model simulated a full power cycle and gas dynamic model in the

exhaust pipe. Moreover, the simulations can predict NOx emissions. In their work, a two

zone combustion model is employed to simulate ignition (expansion) stroke. Equations

of each stroke (e.g. compression, ignition, and expansion) are derived and combustion

kinetics is used to model NOx emissions along the exhaust pipe. The simulation results

show good agreement with experimental results.

Blumberg et al [21] were among the first researchers that presented a physics-based

SI engine model. They described the SI engine complex structure as a group of separate

physically-based sub-models that are phenomenologically important. In other words, the

sub-models are presented based on fundamental physical formulations (e.g. conservation

of mass and energy) in a suitable way that can depict the phenomena in the proposed

sub-model.

Bayraktar [15] and Bayraktar and Durgun [16] developed a SI engine cycle with a
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combustion model as a flame propagation process. The model is based on a two-zone

combustion model, and all four strokes are mathematically formulated. The pressure and

temperature variations of the proposed math-based model show good agreement with the

experimental results for different engines (e.g. Figure 2 compares the theoretical pressure

variation with experiments). Although their math-based SI engine model can well predict

power, temperature, and pressure in a cylinder, it could not predict emissions (no chemical

kinetics is included in the model).

Figure 2.6: Pressure variations of the math-based model vs. experimental results [15]

Verhelst and Sheppard [82] presented a critical overview of SI engine combustion mod-

eling using a multi-zone approach. The authors mentioned that choosing multi-zone model

is largely dictated by the applications of the proposed engine model. For instance, if the
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goal of the SI engine model is to simulate the engine characteristics in a wide range of

operation and to evaluate the effect of engine parameters on the engine performance with

a reasonable level of accuracy, then a multi-zone model is recommended.

The two-zone SI engine combustion model has been simulated in Matlab/Simulink [76]

and Modelica/Dymola [61]. The combustion models, in these works, include physical and

thermodynamic formulations to simulate the generated power, but they did not include

integrated model of combustion chemical kinetics to predict emissions.

The developed physics-based SI engine model, in this dissertation (Chapter 4), is based

on the two-zone combustion with turbulent flame prorogation approach. The unique fea-

tures of the proposed physics-based model are:

• The SI engine model in MapleSim is able to capture many cycles simulation with

quite fast simulation time (real time simulation), which makes the model suitable for

model-based control development.

• The parametric (math-based) development of the model allows the user to manipulate

the math-based model (DAEs) for different purposes (e.g. parametric sensitivity

analysis).

• The mechanical part of the multi-domain model is created from the multi-body li-

brary of MapleSim which is connected to the rest of the powertrain (Chapter 5)

through the acausal flange connection (crankshaft). The whole system can be simu-

lated for a wide range of loads and speeds. Moreover, the model is able to generate

simulation for a variable engine speed (updating initial conditions) in one simulation

time frame.
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Chapter 3

Physics-based Torque Converter

Model

In an automobile with an automatic transmission, instead of a mechanical clutch, a torque

converter (a type of fluid coupling) can be utilized to transmit the engine’s power. The

major roles of a torque converter are multiplying torque generated by the engine and

absorbing torsional vibration of the engine and powertrain [80].

The torque converter includes three rotating elements: the pump (impeller), the tur-

bine, and the stator as shown in Figure 3.1.
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Figure 3.1: Cross section of a torque converter

The pump is attached to the engine shaft, which is called the prime mover, and the

turbine is connected to the transmission shaft. The stator, which is placed between the

pump and the turbine, redirects the returning fluid from the turbine to the pump. A

one-way clutch is used along with the stator to either lock or unlock the stator depending

on the fluid direction (whether it hits the front or back of the stator’s vanes).

Torque converters can be mathematically modeled by a look-up table, simple algebraic

equations, or differential equations. The look-up table model is a simple model based

on experimental data and can be easily implemented in a powertrain system model. The

simple algebraic equations express the pump’s torque and the turbine’s torque as a function

of the pump and turbine rotational speeds. However both look-up table and algebraic

equations do not convey information about torque converter parameters and dynamics,

but are fairly suitable models for model-based control design.
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The differential equation model of a torque converter, which is represented by four

first-order nonlinear differential equations, is suitable to show the transient effect of the

torque converter, e.g. the transient behaviour of a vehicle’s longitudinal dynamics during

gear shifting. Moreover, it can be used to evaluate the effects of the torque converter

parameters on the performance. This model is more realistic than simple look-up tables

and static models and contains all pump, turbine, and stator dynamics.

3.1 Torque Converter Operating Modes

The following sections presents modelling and simulation of a dynamic torque converter

in all operating modes (torque multiplication, coupling, and reverse flow modes) in the

MapleSim environment [56].

3.1.1 Forward Flow Operation

In the forward flow mode operation, which is usually used to simulate torque converters,

the pump side (connected to the engine shaft) is the driver shaft and the turbine shaft is

the driven shaft (load). In this mode the flow direction is positive and the speed ratio (the

ratio of the turbine speed to the pump speed) is always less than one.

The torque converter forward operation can be explained using the “coupling point”,

which is defined based on the stator torque (τs). In the torque multiplication range, below

the coupling point, the stator is fixed and its rotational speed (ws) is zero. In the coupling

range, which happens after the coupling point, the stator freely rotates and the stator
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torque is zero. The coupling point occurs when the turbine angular speed typically reaches

to 90% of the pump angular speed [47]. At this point, the algebraic summation of the

pump, turbine, and stator torques are almost zero, and the ratio between turbine torque

and pump torque approaches unity. In the multiplication mode, which operates below the

coupling point, the property of the fluid coupling helps to multiply the engine’s torque to

accelerate the vehicle. On the other hand, when the speed ratio reaches the coupling point

value, the turbine torque is almost the same as the transmitted torque from the engine.

The torque converter model in this section is based on four first-order differential equa-

tions, given in [47], which are implemented as a “custom components” in the MapleSim

software.

Ipẇp + ρTCSpQ̇TC = −ρTC
(
wpr

2
p + rp

QTC

ATC
tan(αp)− wsr2

s − rs
QTC

ATC
tan(αs)

)
QTC + τp

(3.1)

Itẇt + ρTCStQ̇TC = −ρTC
(
wtr

2
t + rt

QTC

ATC
tan(αt)− wpr2

p − rp
QTC

ATC
tan(αp)

)
QTC + τt

(3.2)

Isẇs + ρTCSsQ̇TC = −ρTC
(
wsr

2
s + rs

QTC

ATC
tan(αs)− wtr2

t − rt
QTC

ATC
tan(αt)

)
QTC + τs

(3.3)
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2
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2
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2
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QTC

ATC
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wt
QTC

ATC
ρTC(rt tan(αt)− rp tan(αp)) + ws

QTC

ATC
ρ(rs tan(αs)− rt tan(αt))− PL (3.4)
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Equations 3.1, 3.2, 3.3, and 3.4 are the pump, turbine, stator angular momentum and

conservation of energy (including power loss PL) equations respectively, which are imple-

mented in a custom component block (Figure 3.2). The pump torque (τp) and the turbine

torque (τt) are the inputs of the custom component block, and the stator torque is rep-

resented by τs in Equation 3.3. The states of the model are pump angular speed (wp),

turbine angular speed (wt), stator angular speed (ws), and volumetric flow rate (QTC).

The definition and values of the torque converter parameters are listed in Table 3.1.

Figure 3.2: Torque converter model in MapleSim environment

The stator torque (τs) is used as a switching criterion. In the multiplication range the

stator is fixed and the rotational speed (ws) is zero. In the coupling range the stator freely

rotates and the stator torque is zero (e.g. threshold=0.1 N.m) (Equation 3.5).

0 =


ws threshold ≤ τs

τs otherwise

(3.5)
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Table 3.1: Nominal values of the torque converter parameters of Honda CRV [65]

Fluid density (ρTC) 840 kg/m3 Turbine inertia (It) 0.026 kg.m2

Flow area (ATC) 0.0097 m2 Stator inertia (Is) 0.012 kg.m2

Pump radius (rp) 0.11 m Fluid inertia length (Lf ) 0.28 m
Turbine radius (rt) 0.066 m Shock loss coefficient (Csh) 1
Stator radius (rs) 0.06 m Frictional loss coefficient (Cf ) 0.25
Pump exit angle (αp) 0 deg Pump design constant (Sp) -0.001 m2

Turbine exit angle (αt) -59.04 deg Turbine design constant (St) -0.00002 m2

Stator exit angle (αs) 65 deg Stator design constant (Ss) 0.002 m2

Pump inertia (Ip) 0.092 kg.m2

This strategy is used to solve the aforementioned set of differential equations. In other

words, before the coupling point the stator angular speed (ws) is set to zero and there

are three differential equations (for wp, wt, QTC) and one algebraic equation (for τs). The

algebraic equation, which is the stator equation in the torque multiplication range, is used

to calculate the stator torque (τs). The coupling point happens when the stator torque goes

below the threshold value and the coupling range is started at this point. In the coupling

range, the aforementioned set of four differential equations are solved for wp, ws, wt, and

QTC . The stator torque and angular speed are shown in Figure 3.3. These plots clearly

illustrate the coupling point definition, and the concept of the torque multiplication range

(when the stator is fixed) and coupling range (when the stator freely rotates).
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Figure 3.3: Stator torque and angular speed

The torque converter model is validated during forward flow in both multiplication and

coupling modes. The simulation results are based on steady state calculations. In other

words, all derivative terms are set to zero in Equations 3.1, 3.2, 3.3, and 3.4.

Characteristic plots for torque ratio ( τt
τp

) and capacity factor ( wp√
τp

) are compared with

the corresponding experimental results for the Honda CRV torque converter [65], as shown

in Figure 3.4 and Figure 3.5. Although there are small differences between the simulation

and experimental results, the agreement is reasonable, and the qualitative performance of

the model is clearly representative of an actual torque converter.
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Figure 3.4: Torque ratio simulation and
experimental results

Figure 3.5: Capacity factor simulation
and experimental results

3.1.2 Reverse Flow Operation

In this mode, which happens during the engine braking or coasting, the turbine drives the

pump shaft, the flow direction is reversed, and the speed ratio exceeds one [47].

The dynamic equations of the torque converter, in forward flow operation, are slightly

changed to represent the reversed flow mode equations. The main changes are in the

blade angles (entrance and exit angles) and the angular speeds. The dynamic equations

of this mode are listed in Equations 3.6, 3.7, 3.8, and 3.9. In the literature, to the best

knowledge of the author, the torque converter simulation during the reverse flow mode and

the transition from the forward flow mode to the reverse flow mode operations have not

been studied. The transition from the forward flow mode to the reverse flow mode happens

when the speed ratio exceeds one due to the sudden sharp increase in the turbine angular
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speed and/or pump angular speed drop.

Ipẇp + ρTCSpQ̇TC = −ρTC
(
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wt
QTC

ATC
ρTC(rt tanαs − rp tanαt) + ws

QTC

ATC
ρTC(rs tanαp − rt tanαs)− PL (3.9)

The custom component torque converter, along with models of two dynamometers, is

shown in Figure 3.6. Dynamometers are electro-mechanical devices that are used to control

either the torque or the angular speed of the rotational shaft, and are included in this model

to test the torque converter. In this work, the dynamometer is modelled as a permanent

magnet DC motor (PMDC) along with a proportional-integral-derivative (PID) controller

to control either the torque or angular speed of the shaft. This modelling approach is

similar to a physical apparatus used to evaluate torque converter characteristics (SAE

J643), based on electric motor/generator dynamometers. The electric motor can produce

electric power to drive a mechanical shaft, or can be used as an electric generator by

absorbing mechanical power. The MapleSim multi-domain environment provides a good
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combination of causal (e.g. PID controller) and acausal (e.g. DC motor) components,

which helps us to model the proposed virtual test apparatus efficiently.

Figure 3.6: Torque converter model with dynamometers

In this simulation, the pump’s dynamometer controls the pump torque; the turbine’s

dynamometer initially controls the turbine torque, and then switches to controlling the

turbine speed at a later time. The dynamometer sub-models in MapleSim are shown in

Figure 3.7 (from the pump shaft) and Figure 3.8 (from the turbine shaft).
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Figure 3.7: Dynamometer (pump side) Figure 3.8: Dynamometer (turbine side)

The pump torque is controlled by a PID controller throughout the simulation to follow

the reference torque signal, which is a combination of constant and ramp functions, as

shown in Figure 3.9. The gains of the PID controller are obtained by trial-and-error, with

KP = 1, KI = 100, and KD = 0.01. The output of the PID controller is DC current to run

the PMDC motor. The turbine torque (Figure 3.10) is set to −200N.m in the first period

(up to the time = 10s), and then it is switched to speed control on turbine angular speed.

As expected from the torque results, during the reverse flow mode, the turbine torque

value is equal to the pump torque. In other words, in the forward mode the pump’s shaft

is the driver shaft (motor) and the turbine’s shaft is the driven shaft (load/generator), but

during the reverse flow mode (started around time = 11s) the turbine’s shaft is the driver

(motor) and the pump’s shaft is the driven one.
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Figure 3.9: Pump torque (forward to re-
verse mode)

Figure 3.10: Turbine torque (forward to
reverse mode)

The simulation results (Figure 3.11 and Figure 3.12) show that the speed ratio remains

greater than one and the flow rate direction is reversed during the reverse flow mode.

Using the torque converter in the reverse flow mode during engine braking can help

to slow down the vehicle without using an external braking mechanism. This idea will be

used, in Section 3.4.2, to simulate the torque converter operation during the flow reversal

in the powertrain along with the vehicle longitudinal dynamics to show the engine braking

phenomenon.
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Figure 3.11: Fluid flow rate (forward to
reverse mode)

Figure 3.12: Speed ratio (forward to re-
verse mode)

3.2 Sensitivity Analysis

A sensitivity analysis is used to investigate the effect of the parameters on the torque

converter performance characteristics. The effect of the torque converter’s parameters is

considered in torque converter manufacturing [51]. During the manufacturing process,

some errors can affect the geometric dimensions of torque converters such as flow area,

blade angles, and radius of the pump, turbine, and stator.

The proposed sensitivity analysis is a simple model of parameter variations (10%, 20%,

or 50% below and above the nominal value of the parameter), and shows the effects of these

variations on performance characteristics of the torque converter. The main parameters

investigated are: flow area, radius, and blade angles of the pump, turbine, and stator.

The flow area (ATC) in the circular path, in the proposed torque converter model, is
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assumed constant. The capacity factor is more sensitive to flow area variation (Figure

3.14) than the efficiency (Figure 3.13).

Figure 3.13: Efficiency vs. speed ratio
(flow area sensitivity analysis)

Figure 3.14: Capacity factor vs. speed
ratio (flow area sensitivity analysis)

The variation of pump, turbine, and stator radius (rp, rt, rs) show that the pump

and stator radius affect the performance characteristic plots more than the turbine radius.

Furthermore, the coupling point is displaced. For instance, Figure 3.15 shows that the

coupling point occurs at a higher speed ratio by increasing the pump radius, and moves to

the lower value by increasing the stator radius (Figure 3.19).
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Figure 3.15: Efficiency vs. speed ratio
(pump radius sensitivity analysis)

Figure 3.16: Capacity factor vs. speed
ratio (pump radius sensitivity analysis)

Figure 3.17: Efficiency vs. speed ratio
(turbine radius sensitivity analysis)

Figure 3.18: Capacity factor vs. speed
ratio (turbine radius sensitivity analysis)
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Figure 3.19: Efficiency vs. speed ratio
(stator radius sensitivity analysis)

Figure 3.20: Capacity factor vs. speed
ratio (stator radius sensitivity analysis)

The nominal value of the pump blade angle is set to zero in this study. Therefore the

variation of this parameter, based on the proposed sensitivity analysis, is not considered.

The efficiency (Figures 3.21 and 3.23) and capacity factor (Figures 3.22 and 3.24) plots

show that increasing the blade angles (αt and αs) from the nominal values affect torque

converter performance characteristics more than reducing the blade angles.
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Figure 3.21: Efficiency vs. speed ratio
(turbine exit blade angle sensitivity anal-
ysis)

Figure 3.22: Capacity factor vs. speed
ratio (turbine exit blade angle sensitivity
analysis)

Figure 3.23: Efficiency vs. speed ratio
(stator exit blade angle sensitivity anal-
ysis)

Figure 3.24: Capacity factor vs. speed
ratio (stator exit blade angle sensitivity
analysis)
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The sensitivity analysis results show that:

• The capacity factor is more sensitive than efficiency to the torque converter flow area.

• Both the capacity factor and efficiency are extremely sensitive to the radius of the

pump and stator. Furthermore, the coupling point is influenced by radius variations.

• Blade angle variations have significant effects on capacity factor and efficiency plots.

3.3 Damping Characteristics

In this section, torque converter damping characteristics are evaluated in three modes:

the torque multiplication mode (before coupling point), the coupling mode (after coupling

point), and the reverse flow mode. In the first step, the torque converter equations are

linearized to obtain system transfer functions and then the bode diagram of the transfer

functions are used to evaluate damping characteristics.

3.3.1 Linearization

The Jacobian linearization technique [12] is employed to linearize the nonlinear equations

around equilibrium points. Maple software is employed for this purpose, since it offers a

very powerful environment to deal with symbolic equations.

The torque converter equations are linearized in the torque multiplication mode, before

coupling point, in which the stator is stationary due to the one-way clutch. Therefore, the
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stator dynamic equation (Equation 3.3) can be neglected and there are three nonlinear

first-order differential equations (Equations 3.1, 3.2, and 3.4). A similar approach can be

used for the coupling mode, after coupling point, and the reverse flow mode operation.

The linearized Equations 3.10, 3.11, and 3.12 are:

Ipẇp + ρTCSpQ̇TC =

(
∂f1(wp, wt, QTC)

∂wp

)
EP

(wp − wpe) +

(
∂f1(wp, wt, QTC)

∂wt

)
EP

(wt − wte)

+

(
∂f1(wp, wt, QTC)

∂QTC

)
EP

(QTC −QTCe) + (τp − τpe) (3.10)

Itẇt + ρTCStQ̇TC =
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∂wt
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+

(
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)
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(QTC −QTCe) + (τt − τte) (3.11)

ρTC(Spẇp + Stẇt) + ρTC
Lf
ATC

Q̇TC =

(
∂f3(wp, wt, QTC)

∂wp

)
EP

(wp − wpe)

+

(
∂f3(wp, wt, QTC)

∂wt

)
EP

(wt − wte) +

(
∂f3(wp, wt, QTC)

∂QTC

)
EP

(QTC −QTCe) (3.12)

The subscript (EP ) means that the partial derivative is evaluated at an equilibrium

point where (wp, wt, QTC) = (wpe, wte, QTCe) and the functions f1(wp, wt, QTC), f2(wp, wt, QTCe),

and f3(wp, wt, QTC) represent the nonlinear, with respect to the state variables, part of the

Equations 3.1, 3.2, and 3.4. The equilibrium values and transfer functions are shown in

Table 3.2.

The simulation results for the pump speed (Figure 3.25), the turbine speed (Figure
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Table 3.2: Equilibrium points and transfer functions

Operation Equilibrium Point Transfer Function

Before τpe = 100 N.m Gpp = ∆wp
∆τp

= 1.28s(s+11)(s+415.85)
(s+5.93)(s+15.80)(s+410.97)

coupling τte = −150 N.m Gtp = ∆wt
∆τp

= 0.00003s(s+881.39)(s+935000)
(s+5.93)(s+15.80)(s+410.97)

point wpe = 207 rad/s Gpt = ∆wp
∆τt

= 0.00003s(s−12884)(s−1603.34)
(s+5.93)(s+15.80)(s+410.97)

wte = 207 rad/s Gtt = ∆wt
∆τt

= 4.57s(s+10.61)(s+414.51)
(s+5.93)(s+15.80)(s+410.97)

After τpe = 150 N.m Gpp = ∆wp
∆τp

= 1.3(s+347)(s+15.58+21.36I)(s+15.58−21.36I)
(s+338)(s+23.42+24.29I)(s+23.42−24.29I)

coupling τte = −150 N.m Gtp = ∆wt
∆τp

= 0.00003(s+11.13)(s+814)(s+1015276)
(s+338)(s+23.42+24.29I)(s+23.42−24.29I)

point wpe = 223 rad/s Gpt = ∆wp
∆τt

= 0.00003(s+49.73)(s−2268)(s−74189)
(s+338)(s+23.42+24.29I)(s+23.42−24.29I)

wte = 205 rad/s Gtt = ∆wt
∆τt

= 4.3(s+359)(s+8.42+11.96I)(s+8.42−11.96I)
(s+338)(s+23.42+24.29I)(s+23.42−24.29I)

Reverse τpe = −150 N.m Gpp = ∆wp
∆τp

= 1.3(s+16.21)(s+136.38)(s+367.47)
(s+17.86)(s+139.43)(s+364.62)

flow τte = 150 N.m Gtp = ∆wt
∆τp

= 0.00003(s+29.67)(s+3179)(s+93745)
(s+17.86)(s+139.43)(s+364.62)

mode wpe = 165 rad/s Gpt = ∆wp
∆τt

= 0.00003(s+51.29)(s+673)(s+810000)
(s+17.86)(s+139.43)(s+364.62)

wte = 376 rad/s Gtt = ∆wt
∆τt

= 4.5(s+3.1)(s+54.37)(s+430.74)
(s+17.86)(s+139.43)(s+364.62)

3.26), and flow rate (Figure 3.27), show a good agreement between the nonlinear and the

linear systems at different equilibrium points in the torque multiplication range.
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Figure 3.25: Pump angular speed (linear
vs. nonlinear)

Figure 3.26: Turbine angular speed (lin-
ear vs. nonlinear)

Figure 3.27: Flow rate (linear vs. nonlinear)
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3.3.2 Frequency response

One of the main advantages of using a torque converter in an automatic transmission is its

capability to filter disturbances [26,50] introduced either from the engine side, e.g. engine

pulsation or overanxious driver, or from the transmission side when the wheels hit road

bumps or potholes as shown schematically in Figure 3.28.

Figure 3.28: Schematic torque converter model subjected to disturbances

The transfer functions of the proposed torque converter model around some equilibrium

points for operating before and after coupling point and reverse flow modes are derived and

shown in Table 3.2. The transfer functions, which represent the relation between inputs (τp

and τt), and the outputs (wp and wt), are normalized with respect to a transmission without

a torque converter Go(s) = w(s)
τ(s)

= 1
(Ip+Is+It)s

. Once normalized with respect to Go(s), the

magnitude of the resulting transfer function provides a comparison of the response with

a torque converter to that without a torque converter. In particular, a magnitude less

than zero dB at a particular frequency indicates that disturbances at this frequency are

attenuated more when a torque converter is present. The gain diagrams (magnitude vs.

frequency) of the transfer functions are shown in Figure 3.29 (before coupling point), Figure

3.30 (after coupling point), and Figure 3.31 (reverse flow). One can see that the torque
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converter significantly damps the high frequency disturbances transferred from the pump to

turbine side (Gpt), and vice versa (Gtp). However, the pump to pump (Gpp) and turbine to

turbine (Gtt) damping performance of the torque converter is worse than the converter-less

transmission.

Figure 3.29: Gain diagram (before coupling point mode)

Figure 3.30: Gain diagram (after coupling point mode)
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Figure 3.31: Gain diagram (reverse flow mode)

The torque converter frequency response analysis, based on linear equations, shows

that the torque converter is working as a low-pass filter to damp disturbances which are

transferred from the pump side to the turbine side, and vice versa. The simulation results

for the nonlinear torque converter model, which is subjected to a disturbance torque in

a wide range of frequencies, confirm the results of linear gain diagrams. For instance, in

the forward flow mode operation, the pump torque is given as a combination of a nominal

value and disturbances τp = τpe + 10 sin(2πft) where the frequency (f) is varied from

0.5(Hz) to 100(Hz), and the turbine torque is assumed constant τt = τte . The plots of

the pump speed (wp) and the turbine speed (wt), Figure 3.32 and Figure 3.33, clearly show

the damping characteristics of the torque converter to filter high frequency disturbances

(e.g. from pump to turbine side).
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Figure 3.32: Nonlinear model response (before coupling point)

Figure 3.33: Nonlinear model response (after coupling point)

A similar simulation is generated for the reverse flow mode operation. In this case,

the turbine torque is assumed to be a disturbance input τt = τte + 10 sin(2πft) and the
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oscillation is transferred from the turbine side to the pump side, and the pump torque is

assumed constant τp = τpe . As expected from the linearized system, the disturbances from

the pump side are significantly damped (Figure 3.34), especially at higher frequencies.

Figure 3.34: Nonlinear model response (reverse flow mode)

3.4 Torque Converter Characteristics in Automatic

Driveline

The proposed torque converter model is placed between a mean-value engine model and

a transmission shaft, as shown in Figure 3.35. The mean-value engine model has been

developed in MapleSim by M. Saeedi [71]. The input to the mean-value engine is a throttle

angle controlled by depressing the accelerator pedal, and the outputs are fuel consumption

and the mechanical power delivered to the torque converter shaft.
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Figure 3.35: Powertrain model in MapleSim including torque converter

The transmission gearbox is modeled as a simple input-output torque with variable gear

ratios (Gi) along with the efficiency of each gear (Ei). The input torque to the gearbox

is the torque converter turbine torque (τin) and the output torque (τout) is multiplied by

the final drive ratio to obtain the driving torque. Equations 3.13 and 3.14 represent the

gearbox model that is implemented in a custom component block in MapleSim.

τout = τinGiEi (3.13)

win = Giwout (3.14)

The variation of each gear ratio based on the vehicle forward velocity (km/h) and engine

rotational speed (rpm) is listed in Table 3.3.
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Table 3.3: Gear ratios and efficiencies

Gear number Gear ratio Gear efficiency Forward velocity Engine speed

(Gi) (Ei) (km/h) (rpm)

#1 2.8 0.94 ν ≤ 15 n ≤ 1000

#2 1.6 0.94 15<ν<30 1000<n

#3 1.1 1 30<ν<50 1000<n

#4 0.8 0.98 50 ≤ ν 1000<n

The input throttle angle is a ramp function which is started at fully closed throttle

angle to the half-opened throttle angle. The longitudinal dynamics sub-model includes

vehicle mass, inertia, final drive ratio, and resistance forces such as aerodynamic drag and

rolling resistance forces. The details of the powertrain components is provided in Chapter

5. The vehicle parameters are listed in Table 3.4.

Table 3.4: Parameters for a compact sedan

Vehicle mass 1417 kg
Coefficient of rolling resistance 0.012
Coefficient of air drag 0.35
Frontal area 2.58 m2

Rolling radius of tire 0.3 m
Final drive ratio 3.64
Inertia of engine 0.42 kg.m2

Inertia of wheel and axle 1.5 kg.m2

The proposed powertrain model can be used for different modeling and control purposes.

In this section, we evaluate the effects of the torque converter lock-up clutch on the vehicle

longitudinal dynamics.
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3.4.1 Lock-up Clutch Simulation

In modern automatic transmissions, a lock-up clutch is implemented in the torque converter

to lock the engine and the transmission shafts at higher gear ratios (e.g. gear ratios = 3

and 4). The main advantage of using a lock-up clutch mechanism is improving the torque

converter efficiency. During the coupling mode, and without a lock-up clutch, the speed

ratio and the torque ratio remain around 0.9 and 1 respectively. Therefore the torque

converter efficiency, which is defined as products of the speed ratio and the torque ratio,

can at most reach 90%. The lock-up clutch mechanism increases the efficiency value to

100% due to the rigid connection between the pump and the turbine shafts. However

using the lock-up clutch, the mechanical connection generates some undesirable torque

pulses during the clutch engaging, which affects the drivability [40].

As discussed earlier, the power loss due to the torque converter fluid coupling is elim-

inated in the lock-up clutch model and consequently the powertrain efficiency has been

improved in comparison with the torque converter model without the lock-up clutch. The

simulation results of the forward velocity (Figure 3.36) show that the lock-up clutch im-

proves the vehicle forward velocity in comparison with the clutch-less torque converter for

the same throttle angle profile. However, there is a sharp acceleration peak due to the

lock-up clutch engagement as shown in Figure 3.37.

56



Figure 3.36: Lock-up clutch effect on for-
ward velocity

Figure 3.37: Lock-up clutch effect on for-
ward acceleration

3.4.2 Engine Braking Simulation

During vehicle deceleration, kinetic energy is lost due to the road load, aerodynamic forces,

mechanical braking, and engine braking [13]. Using the torque converter in the reverse flow

mode during engine braking can help to slow down the vehicle without using an external

braking mechanism. This is the most significant advantage of the reversal flow mode during

the engine braking, which saves the brakes from unnecessary wear and tear.

In this section, the input to the powertrain model is a throttle angle that feeds in to

the mean value engine sub-model to generate indicated power and torque to accelerate

the vehicle. The proposed math-based torque converter sub-model contains both forward

and reverse flow mode operations. The input throttle angle is a ramp function which is
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started at fully closed throttle angle and increased to the half-opened throttle angle. Then,

the driver pulls off his/her foot from the accelerator pedal and the throttle angle sharply

declines to the fully closed throttle position. Thus, the vehicle is first accelerated and then

decelerated.

The torque converter volumetric flow rate plot (Figure 3.38) depicts the transition from

the forward flow operation to the reverse flow operation. Consistent with expectations [47],

the flow rate becomes negative during the flow reversal. Moreover, the flow characteristics

during the gear shifting process are captured with the dynamic torque converter model. As

shown in this plot, there are sharp peaks due to the torque changes from the transmission

side (turbine torque).

Figure 3.38: Torque converter flow rate variations during forward flow and reverse flow
modes

The simulation results during the engine braking are compared with the case when the

driver disconnects the engine from the transmission during the vehicle deceleration (e.g.
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neutral gear). The engine rotational speed, Figure 3.39, sharply drops when the engine

shaft is disconnected from the rest of the powertrain. During engine braking, the trans-

mission shaft rotates the engine shaft, and the engine rotational speed is not decreasing as

quickly as the situation without engine braking. Figure 3.40 shows how the engine braking

phenomenon can slow down the vehicle during deceleration. This happens because part

of the vehicle kinetic energy is used to rotate the powertrain inertias during the torque

converter reverse flow operation.

Figure 3.39: Engine braking effect on en-
gine speed

Figure 3.40: Engine braking effect on for-
ward velocity

3.5 Chapter Summary

This chapter presents the model development and application of a hydrodynamic torque

converter. The torque converter model is able to operate at all three modes, and capture

59



both transient and steady state response for different inputs. The math-based torque

converter model along with the parametric sensitivity analysis was presented at the SAE

World Congress 2011 [2].

The torque converter simulation during the reverse flow operation was published in [4].

This paper includes the full evaluation of a torque converter damping characteristics. The

simulation results are generated for both the linearized model as well as the original non-

linear torque converter model. Then, the acausal torque converter model is integrated with

the mean value engine model, automatic transmission, and vehicle longitudinal dynamics to

study the torque converter characteristics in a powertrain such as lock-up clutch operation

during coupling mode, and engine braking phenomenon during reverse flow operation. The

simulation results were presented at the ASME Conference 2012 [3].

60



Chapter 4

Physics-based Spark Ignition Engine

Model

This chapter presents the cycle-by-cycle spark ignition (SI) engine model. The level of

complexity of the model in this study is defined such that it must be able to predict

in-cylinder thermodynamic properties (e.g. pressure, burned and unburned temperature),

emission gases, and mechanical torque, while having fairly fast simulation time (faster than

real-time simulation time).

The proposed SI engine model contains the four strokes in the Otto cycle diagram:

intake, compression, combustion-expansion (power), and exhaust. Figure 4.1 depicts the

typical Otto cycle diagram in SI engine.
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Figure 4.1: Otto cycle P-V diagram

The schematic diagram in Figure 4.2 depicts main inputs, outputs, and sub-models.

The main sub-models which are discussed in this paper are the single cylinder model and

emission model. The throttle body and manifold sub-model is similar to the model which is

developed by Saeedi [71] in MapleSim. However, the intake manifold model is expanded to

capture the manifold temperature and exhaust gas recirculation (EGR) effects. The main

inputs to the cylinder sub-model are the air/fuel mixture, which is delivered from intake

manifold, spark timing, which is fed to the model as a constant angle at each cycle, and

the engine rotational speed (rpm). The desired outputs of the model are torque delivered
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to the transmission shaft, and emission gases.

Figure 4.2: Schematic inputs/outputs diagram of single-cylinder SI engine

The details of the sub-models such as two-zone combustion, output torque, and emission

gases are discussed in the following sections.

4.1 Four-cylinder Spark Ignition Engine Model

This section represents the development of four-cylinder spark ignition engine model in the

MapleSim environment. The main sub-models in the four-cylinder engine model are: four-

stroke cylinder model, emission gases, intake manifold, exhaust gas recirculation (EGR),

spark timing, multi-body crankshaft, and dynamometer. Figure 4.3 depicts the whole

sub-models in the MapleSim.
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Figure 4.3: Four-cylinder SI engine model in MapleSim

The whole model consists of set of differential-algebraic equations (DAE) with variable

inputs and initial conditions at each cycle simulation. MapleSim solvers are very powerful

in terms of dealing with DAE systems and hybrid dynamic systems [49].

The details of the model along with the equations and inputs/outputs are described in

the following sub-sections.

4.1.1 Two-zone combustion model

In a two-zone combustion modeling approach, the combustion chamber is split into burned

and unburned zones [68]. The flame propagation (entrained zone) is moving from burned
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toward unburned zone during combustion as shown in Figure 4.4.

Figure 4.4: Schematic of two-zone combustion chamber

The flame propagation model in two-zone combustion has been mathematically pre-

sented in the literature [19], [45], and [77]. The well-known Blizard-Keck model [19] is

employed in this study. The flame’s shape is assumed spherical and the entrained zone

area is assumed very small in comparison to the burned and unburned zones. Equations

4.1 and 4.2 represent physics-based model of the flame propagation through the combus-

tion chamber. The entrained mass variation (ṁe) is proportional to the flame front speed,

laminar speed (Sl) and characteristics speed of eddies (Ut). The eddies’ length, wrinkles

around the flame front in Figure 4.4, is lt, and the time duration to burn the eddies is

tb = lt
Sl

. The eddies length (lt) and characteristics speed (Ut) are empirically calculated

from Equations 4.3 and 4.4 [19]. The mean inlet gas speed (Ui), maximum valve lift (Liv),

and inlet gas density (ρi) are constant parameters during the cycle. The unburned density
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defines as the ratio between unburned mass and unburned volume (ρu = mu
Vu

).

dme

dt
= ρuAf (Ut + Sl) (4.1)

dmb

dt
= ρuAfSl +

me −mb

tb
(4.2)

Ut = 0.08Ui

√
ρu
ρi

(4.3)

lt = 0.8Liv(
ρi
ρu

)3/4 (4.4)

The flame front area (Af ) is calculated from flame volume (Vf ), and spherical flame

propagation assumption (Equations 4.5 and 4.6). The sum of burned (Vb) and unburned

volume (Vu) at each crank angle must be equal to the total instantaneous volume of the

cylinder (Vθ). Equation 4.7 represents the instantaneous swept volume, where Vc, B,

θ, rcrank, and Lrod are clearance volume, bore diameter, crank angle, crank radius, and

connecting rod length, respectively. Similarly (Equation 4.8), the sum of burned (mb) and

unburned (mu) is equal to the total in-cylinder mass (mCyl), which is aspirated during the

intake stroke, from intake valve open (IVO) to intake valve close (IVC). The four physics-

based DAE equations (4.1, 4.2, 4.7, and 4.8), along with an empirical Wiebe function
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(S-shape mass/volume fraction) are used to find the values of burned mass (mb), unburned

mass (mu), entrained mass (me), burned volume (Vb), and unburned volume (Vu) at each

time step. The empirical Wiebe function has been proposed in two-zone combustion model

to relate the burned mass or volume to the total mass or volume. Equation 4.9 represent

the Wiebe function, where θSOC is the crank angle at start of combustion. The empirical

parameters (a1, a2, and BD) must be identified from the experimental data. However,

the burn-duration (BD) parameter can be calculated by curve fitted of experimental data

(Equation 4.12). In the next section, the homotopy parameter identification method will

be employed to identify the unknown empirical parameters.

Vf = Vb +
me −mb

ρu
(4.5)

Af = 0.25π(
2Vf
πB2

)2 (4.6)

Vb + Vu = Vθ = Vc +
πB2rcrank

8

(
1− cosθ − rcrank

Lrod
(sinθ)2

)
(4.7)

mb +mu = mCyl (4.8)

Vb
Vθ

= 1− exp

(
−a1(

θ − θSOC
BD

)a2+1

)
(4.9)
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The advantages of using two-zone combustion model with the turbulent flame propa-

gation, in comparison with dimensional and zero-dimensional approaches, are:

• The model is more realistic than a zero-dimensional mean-value model to predict

burned/unburned heat transfer, mass, pressure, and temperature.

• The model has a fairly fast simulation time; therefore it is computationally efficient

to run for many cycles.

• It can be integrated to the rest of the powertrain, or can be used in conjunction with

other software (e.g. GT-Power).

The main assumptions used to model a two-zone combustion SI engine model in this

paper are:

• The intake and exhaust strokes are isentropic processes.

• The compression and expansion strokes are modelled based on the first thermody-

namic law as a single zone model.

• The pressure distribution is uniform inside the cylinder during each stroke.

• The combustion process is modelled based on the turbulent flame propagation theory

in addition to the first law of thermodynamics.

• The flame front shape is assumed to be spherical. However, the flame thickness

(volume) is assumed small in comparison with burned and unburned zones.

• During the combustion, each zone has a uniform composition and temperature.
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• The burned/unburned gases are considered as ideal gases.

• The engine speed (rpm) is assumed constant at each cycle.

The whole cycle simulation is described by Figure 4.5. The intake stroke starts when the

piston goes from top-dead-centre (TDC) of the cylinder to the bottom-dead-centre (BDC).

During the intake process the homogenous air and fuel mixture enters into the cylinder

with the rate of the displaced volume (V̇d(t)). The intake pressure can be approximately

defined as the difference between intake manifold pressure and pressure loss through the

valves (∆Pv) (Equation 4.10). The mixture’s temperature during the intake process is

calculated from the ideal gas law, by assuming adiabatic process (Equation 4.11). The

ρmix represents the average density of the air-fuel mixture in the cylinder.

Pin = Pm −∆Pv (4.10)

Tin =
Pin
ρuRu

(4.11)

Then, the simulation switches to the compression stroke from BDC to some angles

close to the next TDC. The total mass of the mixture during the compression stroke is

constant, and the thermodynamic formulation is derived by assuming single zone control

volume with heat transfer towards the cylinder walls.
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Figure 4.5: Four-stroke cycle simulation procedure

The combustion process is started when the spark plug is ignited until the total mass

is burned. The burned duration (BD), as a fraction of crank angle, is empirically defined

by Equation 4.12 [17]. In this equation CR , n, Φ, and SA represent compression ratio,

engine speed, equivalence ratio, and spark advance angle, respectively.

BDO =

(
3.2989− 3.3612(

CR

7.5
)2 + 1.08(

CR

7.5
)2

)(
0.1222 + 0.9717(

n

1000
)− 0.0505(

n

1000
)2
)

(
4.311− 5.6383(Φ) + 2.3040(Φ)2

)(
1.068 + 0.290(

SAo

30
) + 0.2545(

SAo

30
)2

)
(4.12)

The temperature variations in the burned (Equation 4.13) and unburned zones (Equa-

tion 4.14) are calculated from 1st law of thermodynamics along with the conservation of

mass law. In this study, the mathematical formulation from [82] is used to calculate burned
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(Tb) and unburned (Tu) temperature. The in-cylinder pressure is sum of the burned and

unburned pressure at each crank angle (PCyl) as expressed in the Equations 4.15.

Ṫb =
1

cpbmb

(
PCylV̇ − (RbTb −RuTu) ṁb −

Ru

cpu

(
VuṖCyl + Q̇u

)
+ ṖCylV

)
(4.13)

Ṫu =
1

cpumu

(
ṖCylVu − Q̇u

)
(4.14)

ṖCyl =
γb − 1

V

(
(Effcomb)(LHV )

14.6Φ + 1
ṁb − PCylV̇

)
−
(
Q̇u + Q̇b

)
(4.15)

The specific heat capacity for the burned mixture at constant volume (cvb), constant

pressure (cpb), and the ratio (γb) are expressed as a function of burned temperature, from

empirical results [88], in Equations 4.16 and 4.17. Since the unburned temperature varia-

tions is not large, the specific heat capacity ratio (γu) is assumed constant (e.g. γb = 1.35).

Then, the specific heat capacity for the unburned mixture at constant volume (cvu) and

constant pressure (cpu) are calculated from the Equation 4.18. The specific gas constant

for the burned (Rb) and the unburned (Ru) mixture are calculated from Equation 4.19.

The burned (Mb) and unburned (Mu) mixture has different molecular weight.

γb = −0.013(
Tb

1000
)3 + 0.088(

Tb
1000

)2 − 0.214(
Tb

1000
) + 1.432 (4.16)
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cpb =
γbRb

γb − 1
, cvb = cpb −Rb (4.17)

cpu =
γuRu

γu − 1
, cvu = cpu −Ru (4.18)

Rb =
R̄

Mb

, Ru =
R̄

Mu

(4.19)

The heat transfer rate between mixture and cylinder walls for burned, Q̇b, and un-

burned, Q̇u, zones are calculated from the semi-empirical model developed by Hohen-

berg [46] as shown in Equation 4.20. The heat transfer area (Aw) includes both cylinder

head area, which is constant, and cylinder wall area which is the function of a crank angle.

Q̇i = 130(Aw)
(P 0.8

Cyl)(Ū
0.8
p )

(V 0.06)(T 0.4
i )

(Ti − Tw) , i = b, u (4.20)

The expansion stroke starts at the end of the combustion process and finishes when the

piston reaches to the BDC. The expansion and compression strokes are modeled based on

the single-zone control volume including heat transfer between the mixture and cylinder

walls. The mathematical formulation of the expansion and compression strokes are simpli-

fied version of the two-zone model during the combustion process. The total mass during

the compression stroke is assumed constant and unburned, and during the expansion is

constant and fully burned mixture [15].

Finally, the exhaust valve is opened and the piston moves from the BDC to the TDC
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and the exhaust gases are driven out through exhaust valve. The exhaust stroke is as-

sumed adiabatic process, no heat transfer, and the cylinder pressure is slightly above the

atmospheric pressure (Equation 4.21).

Pexh = (1.05 ... 1.25)P0 (4.21)

The exhaust gas temperature is calculated based on the burned gas temperature (Tb) at

the end of the expansion stroke. Equation 4.22 represents the relation between exhaust

gas temperature (Texh) and burned gas temperature at the end of the expansion stroke.

Texh =

(
Pexh

Pexpansion

)0.3

Tb (4.22)

4.1.2 Intake manifold model

The proposed intake manifold model in this research is developed based on the mean-value

engine formulation in [35]. Saeedi [71] created intake manifold model along with throttle

body in the MapleSim. The model in [71] does not include exhaust gas recirculation (EGR)

effect and intake manifold’s temperature variations. Figure 4.6 depicts the components (e.g.

custom components and look-up tables) along with the main inputs and outputs of the

sub-model. The main custom components in this sub-model are: throttle area calculation,

throttle air mass flow, and intake manifold.
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Figure 4.6: Intake manifold sub-model in MapleSim

The driver’s command, which is introduced as a throttle angle, is fed to the throttle

area custom component to be used for throttle area calculation (Equation 4.23) [39]. The

throttle area, which is the projected area of the oval shape throttle butterfly in the flow

direction, is function of a throttle bore (D), throttle pin (d), and throttle angle (φ). The

initial value of the throttle angle (φ0) at fully closed position is set to 7 degrees.

ATh =
πD2

4
(1− cosφ

cosφ0

) +
d

2cosφ

√
D2cos2φ− d2cos2φ0

+
D2cosφ

2cosφ0

arcsin(
dcosφ0

Dcosφ
)− d

2

√
D2 − d2 +

D2

2
arcsin(

d

D
) (4.23)

The throttle area and the intake pressure are used to calculate throttle air mass flow
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rate (Equation 4.24).

•
mTh =



(CDTh.ATh.P0)
/(√

R.T0

)(2γ/(γ − 1)

(
1−

(
Pm/P0

) γ−1
γ

))0.5(
Pm/P0

) 1
γ

when Pm/P0
>
(

2/(γ + 1)

) γ
γ−1

(CDTh.ATh.P0)
/(√

R.T0

)(2/(γ + 1)

) (γ+1)
2(γ−1)

γ0.5

when Pm/P0
6
(

2/(γ + 1)

) γ
γ−1

(4.24)

The intake manifold is assumed as a constant volume chamber with inflow mass (ṁTh)

and outflow mass (ṁCyl). Therefore, the physics-based model of the intake manifold can

be derived from the first thermodynamics law as well as the conservation of mass law in

the manifold control volume [59]. The schematic of the intake manifold control volume is

shown in Figure 4.7.
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Figure 4.7: Intake manifold control volume

According to the conservation of mass law, the control volume mass variations can be

derived from Equation 4.25. The calculation of the EGR mass flow rate (ṁEGR) is shown

in the next section.

dmcv

dt
= ṁTh + ṁEGR − ṁCyl (4.25)

The manifold pressure and temperature as well as the outflow mass, which flows toward

the cylinders, are calculated from Equations 4.26, 4.27, and 4.28. The ideal gas assumption

in the control volume is fairly reasonable assumption, since the manifold temperature and
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pressure variations are not very significant.

dPm
dt

=
γRTm
Vm

(
ṁTh(

TTh
Tm

) + ṁEGR(
TEGR
Tm

)− ṁCyl

)
(4.26)

dTm
dt

=
R(Tm)2

PmVm
(ṁTh(γ

TTh
Tm
− 1) + ṁEGR(γ

TEGR
Tm

− 1)− ṁCyl(γ − 1)) (4.27)

ṁCyl =
ηvSπB

2nPm
120RTm

(4.28)

The volumetric efficiency (ηv) in Equation 4.28 is introduce as the empirical look-

up table data, which is the function of the engine speed (n) and the manifold pressure

(Pm). The volumetric efficiency is represented in different empirical equations (correlation

models) [71]. In this study, the volumetric efficiency model is depicted in Figure 4.8 [41].
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Figure 4.8: Volumetric efficiency map [41]

The fuel injector is assumed to be placed in either intake manifold chamber or after

that (port injection). The amount of fuel mass rate (ṁFuel) is calculated based on the air

mass flow rate (ṁCyl) and equivalence ratio (Φ) as shown in Equation 4.29.

ṁFuel =
ṁCyl

14.6Φ
(4.29)

The equivalence ratio is defined as a ratio between stoichiometric air-fuel ratio and

actual air-fuel ratio (Equation 4.30). The stoichiometric air-fuel ratio for SI engines is
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typically around 14.6, and consequently the stoichiometric equivalence ratio is 1 .

Φ =
(A
F

)Stoichiometric

(A
F

)Actual
(4.30)

The air and fuel mass flow rate are the inputs to the cylinder models during the intake

stroke.

4.1.3 Exhaust gas recirculation (EGR) model

The objective of using exhaust gas recirculation (EGR) mechanism is reducing NOx emis-

sion by feeding back part of the exhaust gas (5% to 25%) into the intake manifold. The

EGR mechanism decreases the amount of the mass flow rate into the cylinders (ṁCyl),

and consequently peak pressure and adiabatic temperature will be reduced. Therefore

NOx emission, which is very sensitive to the adiabatic temperature, will be significantly

reduced. The EGR mechanism is usually active at medium load and engine speed (rpm)

operation such as vehicle cruising on highways. However, at high load operation (e.g.

uphill traveling) and low engine speed (e.g. ideal operation) the EGR mechanism is not

useful and must be switched off.

Likewise intake manifold models, there are different EGR models in different level of

complexity. In this study, the EGR model is formulated based on the mean value engine

model development from [35]. The schematic exhaust manifold model is shown in Figure

4.9. The exhaust gas is assumed to be an ideal gas, and the inflow exhaust mass flow rate

(ṁexIN) is assumed to be equal to the outflow intake mass flow rate (ṁCyl + ṁFuel).
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Figure 4.9: Exhaust manifold control volume

The exhaust manifold mathematical equations from [35] are employed to calculate ex-

haust manifold thermodynamic state variables (e.g.Pexh) (Equation 4.31), exhaust mass

flow rate (ṁexhOUT ) (Equation 4.32), and EGR mass flow rate (ṁEGR) (Equation 4.33).

CDex and CDEGR are empirical discharge coefficient through the exhaust (catalytic con-

verter) and EGR valves. The amount of EGR mass flow rate can be controlled by regulat-

ing the EGR throttle as shown in Figure 4.9. The EGR throttle control is introduced as

the EGR projected area (AEGR) in Equation 4.33.

dPexh
dt

=
RTexh
Vexh

(ṁexhIN − ṁexhOUT − ṁEGR) (4.31)
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ṁexhOUT = CDexhAexh

√
2Pexh
RTexh

(Pexh − P0) (4.32)

ṁEGR = CDEGRAEGR

√
2Pexh
RTexh

(Pexh − Pm) (4.33)

4.1.4 Emission model

The emission sub-model, which is created along with the two-zone combustion model,

takes the in-cylinder pressure, burned temperature, and volume as inputs and calculates

the emission gases (e.g. NO and CO). The emission calculation procedure is shown in

Figure 4.10.

81



Solve two-zone combustion model to calculate
pressure, temperature, burned mass, and volume

Calculate the equilibrium constants based on the
thermodynamic properties (free Gibbs energy)

Solve 11 non-linear algebraic equations to find
equilibrium concentration of species

Solve chemical kinetics differential equations to 
find kinetics concentration such as [NO] and [CO] 

Figure 4.10: Emission calculation procedure

The general formulation of air and fuel reaction is shown in Equation 4.53, where Υ1

and Υ2 represent type of the hydrocarbon fuel and Υ is given by Equation 4.35, and Φ

introduces equivalence ratio (the ratio between stoichiometric and real air-fuel ratio).

CΥ1HΥ2 + Υ(O2 + 3.46N2)→ χCO2CO2 + χCOCO + χH2OH2O + χH2H2+

χHH + χOHOH + χN2N2 + χNONO + χNN + χO2O2 + χOO (4.34)

Υ =
Υ1 + Υ2

4

Φ
(4.35)
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The products of the reaction are eleven species, and the coefficients χi represent the

mole fraction of each species during the reaction [81]. The proposed emission eleven species

are assumed in equilibrium, so four atom balance and seven equilibrium reaction equations

are derived to calculate equilibrium species at each time step. Four atom balance equations

for C, H, O, and N are listed in the set of equations in Equation 4.36.

C : Υ1 = χCO2 + χCO

H : Υ2 = 2χH2O + 2χH2 + χH + χOH

O : 2Υ = 2χCO2 + χCO + χH2O + χOH + χNO + 2χO2 + χO

N : 7.52Υ = 2χN2 + χNO + χN (4.36)

The seven equilibrium reactions are shown in Equation 4.37, where the molar fraction

of each species is represented by Xi. κPi represents the equilibrium constant of the ith

equilibrium reaction. The equilibrium constant is calculated based on the Gibbs free energy

(GBi) and combustion temperature (Equation 4.38). PCyl and P0 are in-cylinder pressure
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at each time step and ambient (reference) pressure respectively.

H2 ↔ H +H XH =

√
κP1

PCyl
P0

√
XH2

O2 ↔ O +O XO =

√
κP2

PCyl
P0

√
XO2

N2 ↔ N +N XN =

√
κP3

PCyl
P0

√
XN2

H2O ↔ H2 + 0.5O2 XH2 =
κP4

PCyl
P0

XH2O√
XO2

H2O ↔ 0.5H2 +OH XOH =
κP5

PCyl
P0

XH2O√
XH2

CO2 ↔ CO + 0.5O2 XCO =
κP6

PCyl
P0

XCO2√
XO2

0.5O2 + 0.5N2 ↔ NO XNO = κP7

√
XN2XO2 (4.37)

The specific Gibbs energy is a property of each species which varies with temperature.

Therefore, the specific Gibbs energy values of species (for eleven species) are modelled as

group of look-up tables based on physical properties [81].

κPi = exp

(
−∆GBi

R̄.Tb

)
(4.38)

The equilibrium concentration of each species at each time step is calculated by solving

four algebraic atom balance and seven nonlinear algebraic equilibrium concentration equa-

tions. Then, the well-known extended Zeldovich mechanism is employed to calculate the

kinetic concentration of NO (Equation 4.39) and a similar formulation is derived in [11]

84



for CO (Equation 4.40).

1

Vb

d[NO]

dt
=

2Γ1(1− ( [NO]
XNO

)2)

1 + [NO]
XNO

Γ1

Γ2+Γ3

Γ1 = 7.6× 1013exp(
−38000

Tb
)XOXN2

Γ2 = 1.5× 109exp(
−19500

Tb
)XOXNO

Γ3 = 2× 1014exp(
−23650

Tb
)XNOXH (4.39)

1

Vb

d[CO]

dt
= (Γ1 + Γ2)(1− [CO]

XCO

)

Γ1 = 6.76× 1010exp(
Tb

1102
)XCOXOH

Γ2 = 2.5× 1012exp(
−24055

Tb
)XO2XCO (4.40)

4.1.5 Friction model

In some studies on spark ignition engine modeling, the effect of friction has been neglected

for simplicity. In some engine operating conditions (e.g. full load and low engine speed

condition) the friction effect is small enough to be neglected, but at high engine speed

the friction effect is significant. Therefore, the friction effect in mechanical parts as well as
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piston-cylinder interactions must be considered in math-based thermodynamic calculations.

The main sources of power losses during the engine operation are:

• Pumping losses: this is significant power loss during part load operation (part load

throttling), and is included in the “intake manifold” sub-model.

• Heat transfer: this happens due to the temperature difference between in-cylinder

mixture and cylinder walls. The heat transfer is significant at low engine speed, since

the cycle time is more at low engine speed. The heat transfer model including both

convection and radiation are mentioned in the previous section.

• Mechanical losses: the damping coefficient in mechanical joints (crankshaft revolute

joints) is introduced to represent joint friction. The crankshaft multi-body model is

fully described in the next section.

• Piston friction: piston back and forth motion inside the cylinder generates power loss.

The piston friction is categorized into skirt friction and pressure ring friction [87].

The piston friction in this study is based on the mathematical model developed in [1].

The friction effect is introduced as a resistant pressure, negative pressure, in the four-stroke

formulation. The piston friction work, skirt and pressure ring friction, is mathematically

derived from Newton’s viscosity law (Equation 4.41). The oil dynamic viscosity (µ) is

assumed constant parameter during the four-stroke operation (e.g. SAE30 at 100oC).

However in more realistic cases the dynamic viscosity should be variable with in-cylinder

temperature, but its value is not significantly changed from the value at 100oC at higher
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temperatures. The piston speed (m/s) as a function of crank angle is defined in Equation

4.42, where the average piston speed is proportional to the engine angular speed (Ūp =

1
15
rcranknrpm ).

δWf = µUp(θ)πB∆x

(
Lskirt
Cskirt

+
Lring
εoil

)
(4.41)

Up(θ) = Ūp
π

2
sin(θ)

1 +
cos(θ)√

Lrod
rcrank

− sin2(θ)

 (4.42)

The skirt length (Lskirt), ring length (Lring), and skirt clearance (Cskirt) are assumed

constant parameters in the Equation 4.41 [1]. The parameter εoil represents the oil film

thickness between the ring and cylinder wall. The oil film distribution is variable with

piston position. For instance, the thickness is minimum at TDC and BDC and it reaches

to the maximum value at the middle position. Equation 4.43 represents the semi-empirical

relation between oil film thickness and crank angle [38], where A1 and A2 are constant

parameters.

εoil = A1 + A2 | sin(θ) | (4.43)

The mean effective friction pressure, which is introduced in the thermodynamic equa-
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tions, can be calculated by Equation 4.44, where ∆Vd is the displaced volume.

fmep =
δWf

∆Vd
(4.44)

The cycle simulation including piston friction effects along with parameters are dis-

cussed in the “Multi-cycle Simulation” section.

4.1.6 Crankshaft multi-body model

The crankshaft mechanism is converting thermodynamic power to the rotational mechani-

cal power (or break torque). In the cylinder model, the two-zone combustion was employed

to calculate in-cylinder pressure at each crank angle. The net force acting on the piston

area is calculated from Equation 4.45. PCyl, Patm, and Ap represent in-cylinder pressure at

each crank angle, atmospheric pressure, and piston area respectively as shown in Figure

4.11.
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Figure 4.11: Schematic model of piston-cylinder

Fp = (PCyl − Patm)Ap (4.45)

The calculated piston force from each cylinder is the input to the multi-body model.

The multi-body model includes four sub-model for four cylinders, flywheel, and revolute

joint which is connected to the dynamometer through flange connections (Figure 4.12).
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Figure 4.12: Multi-body sub-model in MapleSim

Each cylinder sub-model consists of piston, connecting rod, and crank which are con-

nected together through revolute joints as shown in Figure 4.13.

Figure 4.13: Multi-body cylinder model
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Piston motion inside the cylinder is back and forth vertical motion. Thus, the piston is

modeled as a prismatic joint. Figure 4.14 shows the piston sub-model. The piston force,

Equation 4.45, is the input to the prismatic joint. The piston mass and inertia are added

to the prismatic joint and the image file (CAD file) is attached to animate the multi-body

model. MapleSim is very powerful advanced modeling environment to handle large systems

and generate animation file gives a better insight of complex systems.

Figure 4.14: Multi-body piston model

The connecting rod and crank are simply modeled by combining rods and mass (inertia)

from the MapleSim multi-body library (Figure 4.15).
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Figure 4.15: Multi-body model of crank and connecting rod

The whole multi-body model can be visualized in the MapleSim as shown in Figure

4.16. The firing order of the four-cylinder model is 1-2-4-3.

92



Figure 4.16: 3D animation of the four-cylinder engine model

4.1.7 Dynamometer

Dynamometers are usually employed to test rotational components such as IC engine,

torque converter, and tires. Dynamometer can operate in both motor and generator modes.

In the motor mode, driver mode, dyno generates mechanical torque (positive torque) to

test the component. In the generator mode, driven mode, dyno absorbs mechanical energy

and can convert it to electrical energy.
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The proposed dynamometer in this research is the permamnent magnet DC motor

(PMDCM) which generates mechanical torque to keep the engine’s shaft angular speed

close to the reference angular speed. The engine’s shaft rotational speed must be kept

constant during the simulation, because the four-cylinder model based on the two-zone

combustion needs the constant rotational speed (rpm) at each cycle.

The dyno sub-model is shown in Figure 4.17. The input to the PMDCM is source

of current (idyno), and the output is resistant torque (load). The shaft’s angular speed is

controlled with tuning the PID controller so that it tracks the constant reference angular

speed (e.g. nRef = 3000rpm). The PID gains are tuned with trial and error method

(KP = 50, tI = 1s, and tD = 5s). Equation 4.46 represent the relation between source of

current (idyno(t)) with angular speed error signal (n(t)− nRef ).

idyno(t) = KP (n(t)− nRef ) +
KP

tI

∫
(n(t)− nRef )dt+KP tD

d(n(t)− nRef )
dt

(4.46)

94



Figure 4.17: Dynamometer sub-model in MapleSim

The resistant torque (τR),which delivers to the engine crankshaft, is calculated (Equa-

tion 4.47) from the PMDCM electromagnetic torque (τElecMag), and armature inertia (Iarm)

and damping (βarm). The angular velocity of the armature is represented by warm.

τR = τElecMag − Iarm
dwarm
dt

− βarmwarm (4.47)

The electromagnetic torque (τElecMag) is proportional to the input current (idyno) as

shown in Equation 4.48. The torque constant (Kdyno) is dependent on the flux density of
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the electromagnetic field and geometry of the armature.

τElecMag = Kdynoidyno (4.48)

The simulation results of the multi-body model with dynamometer at different engine

angular speeds are presented in the next section.

4.2 Multi-cycle Simulation

In the first step, the integrated two-zone combustion engine model along with the emission

prediction model are simulated for one full cycle (720 degrees of crank angle). In the

simplest scenario, the single cylinder model with three inputs is simulated. The inputs

to the single cylinder model are in-cylinder mass (mCyl), spark advanced angle (SA),

and engine speed (n). The simulation time for four-stroke operation, including emission

prediction, in one cycle is faster than real time. The simulations are executed on a 64-bit

Windows 7 computer with Intel (R) Core (TM) Duo 3.33 GHz CPU. For instance, the

simulation time for one cycle at 3000 rpm is about 0.035 seconds which is faster than real

time (0.04 seconds). The single cylinder parameter values, as well as fuel properties, are

provided in Table 4.1.

The in-cylinder pressure and volume during four-stroke operation of the single cylinder

model are shown as the Otto cycle simulation in Figure 4.18. The P-V diagram, which is

similar to the Figure 4.1, depicts the characteristic of the SI engine model.
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Table 4.1: SI engine model parameters and values

Fuel (CΥ1HΥ2) Υ1 = 8,Υ2 = 18 Rod length 0.17[m]
Equivalence ratio (Φ) 1 Bore diameter 0.085[m]
Gas universal constant (R̄) 8.314[J.(mol.K)−1] Compression ratio (CR) 10 : 1
Ambient pressure (P0) 1[bar] Engine speed (n) 3000[rpm]
Ambient temperature (T0) 293[K] Spark advance (SA) −30[deg]
Cylinder wall temperature 473[K] In-cylinder trapped mass 0.0005[kg]
Stroke length 0.1[m] Average heat capacity ratio (γ) 1.35

Figure 4.18: P-V Otto cycle simulation of four-stroke operation

The unburned temperature is defined during the intake, compression, and combustion

(Figure 4.19). However, the total mixture is fully burned at the end of combustion process

and the burned temperature is defined from start of the combustion process to the end of

the exhaust stroke as shown in Figure 4.20.
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Figure 4.19: Unburned temperature Figure 4.20: Burned temperature

The initial dip in the burned temperature is due to the initial condition. Figure 4.21

depicts that the burned temperature curve is insensitive to the initial conditions, since the

simulations converge after the initial combustion time step (or 0.4 degrees of crank angle).

That is the initial transient in the burned temperature plot does not affect the final con-

clusion of the simulation results. The most important data from the burned temperature

plot are the overall trend, peak temperature value, and exhaust temperature which are

used to calculate the engine performances (e.g. power, emission, and fuel consumption).
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Figure 4.21: Burned temperature profiles for three different initial burned temperature
estimates at the start of combustion (i.e. initial conditions for combustion)

The engine torque, which is calculated based on the in-cylinder pressure and volume,

is shown in Figure 4.22. The negative torque during compression and exhaust introduces

negative work to move the piston from BDC to TDC to compress the mixture during the

compression stroke, or to drive out the exhaust gases during the exhaust stroke.
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Figure 4.22: Mechanical/brake torque generated during the four-stroke operation

The emission sub-model generates the concentration of eleven species in equilibrium,

as shown in Figure 4.23, as well as the solution of chemical kinetics equations (Equations

4.39 and 4.40) for NO and CO as shown in Figure 4.24 and 4.25 respectively. The trends

of the emission gases are similar to the literature results [9].

The N2 equilibrium concentration has the highest molar fraction value at stoichiometric

condition, which is in agreement with the molar concentration of the fresh air in the

reactants. The H2O and CO2 are the next major species in the equilibrium products. The

rest of the products have the minor molar fraction contribution in the product as shown

in the Figure 4.23. The emission calculation can be repeated at each cycle with different

inputs such as spark timing and air-fuel ratio for many simulation cycles.
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Figure 4.23: Molar fraction of equilibrium species concentration

Figure 4.24: Kinetic NO emission Figure 4.25: Kinetic CO emission

The proposed model can be used to simulate many simulation cycles with variable

spark timing. In other words, the spark timing can be changed at any cycle for control

purposes. Figure 4.26 represents the in-cylinder pressure simulation of two consecutive

cycles in one simulation run with variable spark timing. The in-cylinder pressure curves

for two different spark advanced angle at constant engine speed show the significant effect
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of the spark timing on the engine performance, and the optimum spark advanced angle is

defined to obtain the best performance (maximum brake torque/power). For instance, more

advanced spark angle, at this specific engine operation, increases the cylinder temperature

and consequently the peak pressure is increased. However, much more advanced spark

angle burns the air-fuel mixture before piston rises, which causes imperfect and inefficient

combustion. The crank angle (θ(t)) is used as a criterion to switch from one cycle to the

other cycle. Each cycle takes two full rotations of crank, which is equal to 720 degrees.

The floor function in Equation 4.49 is used to define the start of intake stroke at each cycle,

and the start of other strokes (e.g. compression, combustion, expansion, and exhaust) is

defined based on the start of the previous stroke. For instance, the simulation starts from

zero crank angle (θ(t) = 0) and StartofIntake(t) = 0, then the whole cycle evolves during

720 degrees. At the end of the first cycle (at θ(t) = 720), the value of the floor function

is one, and the value of StartofIntake(t) becomes 720. The whole process of four-stroke

operation with new inputs (spark timing) is repeated for the new cycle simulation.

StartofIntake(t) = bθ(t)
720
c.720

StartofCompression(t) = StartofIntake(t) + 180

StartofCombustion(t) = StartofCompression(t) + 180 + SA(t)

StartofExpansion(t) = StartofCombustion(t) +BD(t)

StartofExhaust(t) = StartofExpansion(t) + 180

EndofExhaust(t) = StartofExhaust(t) + 180 (4.49)
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Figure 4.26: Many cycles simulation (variable spark timing) in one simulation time frame

The above simulation results are generated just based on the four-stroke thermodynamic

formulation. The more realistic model must include the crankshaft inertia and friction

model. The details of the whole components and sub-models are described in the previous

section. The following simulation results are generated based on the full model, including

multi-body and friction sub-models, at constant engine speed. The main inputs to the

four-cylinder engine model are throttle angle and dynamometer load torque. Moreover,

the engine speed during the simulation is assumed constant. The spark timing, valve

timing, and EGR mass flow rate can be varied from one cycle to the other one.

The model is able to generate many cycles simulation results in one simulation time

frame. However, the two-zone combustion assumptions are applied at each cycle (or two

fully rotations of the crankshaft). Therefore, the continuous input variables must be dis-

cretized at each cycle. The cycle time is defined as a time duration for two fully rotations

103



of the crankshaft. Equation 4.50 represents the relation between the cycle time (seconds)

and engine speed (rpm). For instance, the cycle time at 3000 rpm is 0.04 seconds.

∆tcycle =
120

n
(4.50)

The mass flow rate, the output of the intake manifold sub-model, is the input to the

cylinders. The total air-fuel mixture is assumed homogenously mixed in the intake mani-

fold. In other words, the injection model is just assumed as the homogenous port injection

model. Figure 4.27 shows the mass flow rate delivered into the cylinders and discretized

mass flow rate at each cycle. The plot shows the engine operation during 1 seconds at 3000

rpm, which represents 25 cycles. The discretized curve is identical to the actual continuous

mass flow rate after 0.4 seconds when the intake manifold state variables (e.g. mass flow

rate and pressure) reach to the steady state operation.

Figure 4.27: Mass flow rate delivered from the intake to the cylinders
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The in-cylinder mass during four-stroke operation is shown in Figure 4.28. The mass

flow enters to the cylinders during the intake stroke. The mass flow rate in proportional

to the piston speed. The rate of the exhaust mass, which leaves the cylinder during the

exhaust stroke, is assumed proportional to the piston speed as well. During the compres-

sion, combustion, and expansion strokes the intake and exhaust valves are assumed fully

closed and the total in-cylinder mass remains constant.

Figure 4.28: In-cylinder mass of the air-fuel mixture during four-stroke operation

In the other hand, the dynamometer generates the load torque to keep the engine

shaft’s speed as close as possible to the engine operating speed (reference engine speed).

Figure 4.29 shows the engine shaft’s speed (rpm) and reference engine speed (3000 rpm)

at full load operation. The dynamometer, which includes controller and PMDC motor,

works well to keep the engine shaft’s speed at 3000 rpm. The error, the difference from

the actual engine speed and the reference engine speed, is about 0.7 rpm, and the relative

error is 0.0002%.
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Figure 4.29: Engine shaft’s speed (connected to the dynamometer)

The engine brake torque, or shaft’s torque, at 3000 rpm shows similar oscillations (Fig-

ure 4.30). The oscillations are due to the piston movement in a cylinder. In other words,

the piston back and forth motion generates the oscillations with two different frequencies

as shown in Equation 4.51.
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Figure 4.30: Engine shaft’s torque (brake torque)

Up(θ) = Ūp
π

2
sin(θ) + Ūp

π

4

sin(2θ)√
Lrod
rcrank

− sin2(θ)
(4.51)

The friction model, which is discussed in the previous section by Equations 4.41, 4.42,

4.43, and 4.44, is introduced as the resistant mean effective pressure. The simulation

result (Figure 4.31) at different engine speed shows that the in-cylinder friction effect is

more significant at higher engine speed (rpm). The friction mean effective pressure is

proportional to the piston speed (Up), and the piston speed is proportional to the engine

speed (n). Thus, the friction mean effective pressure is increased by increasing the engine

speed. The variation is almost linear as shown in Figure 4.31, which corresponds to the

typical experimental plots [1].
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Figure 4.31: Friction mean effective pressure at different engine speed (rpm)

4.3 Model Validation

In this section the developed SI engine model, in MapleSim, is validated against the simu-

lation results from the GT-Power software [34]. GT-Power software, which is the product

of Gamma Technology Inc., has been widely used in automotive industry. The models in

GT-Power are calibrated and validated with experimental results. Therefore, GT-Power

can be used as a reliable reference for validation purposes.

The spark ignition engine models in GT-Power are developed based on the four-stroke

with two-zone combustion modelling approach. This makes the GT-Power software more

suitable for our SI engine model validation, since our model in the MapleSim is developed

based on the two-zone combustion approach. However, the exact mathematical equations
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can not be viewed in the GT-Power models, but the nature of the equations is same in

both GT-Power and MapleSim models. Figure 4.32 shows the full spark ignition model in

the GT-Power environment. The model includes all sub-components such as four in-line

cylinders, catalytic converter, throttle body, intake and exhaust manifold body.

Figure 4.32: Four-cylinder spark ignition engine model in the GT-Power environment

Since the intake and exhaust manifold sub-models in the GT-Power are modeled based

on the detailed formulation of the one-dimensional fluid flow, each sub-model must be

validated separately. The focus of our study is on in-cylinder variations of the SI engine

model such as in-cylinder pressure, burned and unburned temperature. Therefore to val-

idate the cylinder variables during the four-stroke operation, the single cylinder model

must be evaluated. For this purpose the simplified model of the SI engine based on the

two-zone combustion approach is employed as the reference GT-Power model (Figure 4.33)

to validate our SI engine model. The inputs to the single cylinder model is the air and fuel
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mixture. The model is operating at wide-open-throttle (WOT) at different engine speed

(e.g. 3000 rpm)

Figure 4.33: Single cylinder spark ignition engine model in the GT-Power environment

The diagram in the Figure 4.34 depicts the validation steps. In the first step, the engine

operating condition must be determined. Typically the engine operation is defined by the

engine speed and the load acting on the engine (or throttle angle). In this model, the engine

is running at wide-open-throttle (WOT) in all cases. The second step is specifying values

for the geometrical parameters (e.g. bore, stroke, compression ratio, and connecting rod

length) and environmental parameters (ambient temperature, pressure, and cylinder wall

temperature). The geometrical and environmental parameters are kept constant during

the simulation in both models (MapleSim and GT-Power). The third step is feeding an

identical mass flow (or mass flow rate) as the main input to the cylinder.
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Figure 4.34: Validation steps

The validation variables are categorized in three levels as shown inside the dashed

lines (Figure 4.34). In the first level the volume change (swept volume), which purely

depends on the geometrical parameters, along with the mass burned rate and heat release

during the two-zone combustion process are validated. These variables must be validated

precisely, since the next level variables are highly dependent on the first level variables.

The second level variables represents the in-cylinder pressure, temperate and heat transfer
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of the burned and unburned zones. The last set of variables somehow depends on the

pressure and temperature. For instance, the NO variation is very sensitive to the peak

burned (adiabatic) temperature.

The engine specifications are listed in the Table 4.2. The simulation results are gener-

ated at the constant engine speed (e.g. 3000 rpm). Figure 4.35 shows the instantaneous

volume, swept volume, during four-stroke operations. The plots are identical, since the

swept volume is just function of the engine geometries.

Table 4.2: SI engine model parameters and values (MapleSim and GT-Power model)

In-cylinder trapped mass 0.0005[kg] Engine speed (n) 3000[rpm]

Equivalence ratio (Φ) 1 Bore diameter 0.085[m]

Gas universal constant (R̄) 8.314[J.(mol.K)−1] Compression ratio (CR) 10

Ambient pressure (P0) 1[bar] Stroke length 0.1[m]

Ambient temperature (T0) 293[K] Inertia Ignored

Cylinder wall temperature 473[K] Rod length 0.18[m]
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Figure 4.35: Instantaneous in-cylinder volume (MapleSim vs. GT-Power model)

The mass fraction burned is the key variable which significantly affect the in-cylinder

thermodynamic properties such as pressure and temperature. Figure 4.36 shows the mass

fraction burned of the MapleSim model and GT-Power model (reference model) during the

combustion process. The S-shape of the both curves along with the start and the end points

are fairly match. The empirical parameters in the Wiebe function (4.9) must be tuned at

each operating point. The parameter identification technique, which is presented in the

next section, is used to tune the empirical parameters more efficiently. The apparent heat

release, the amount of chemical energy released during the combustion process, is shown

in the Figure 4.37. The heat release curve follows the S-shape Wiebe function.
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Figure 4.36: Mass fraction burned (MapleSim vs. GT-Power model)

Figure 4.37: Apparent heat release (MapleSim vs. GT-Power model)

The in-cylinder pressure variation during the power stroke is one of the main ther-
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modynamic variable which is measured with pressure sensors. Figure 4.38 compares the

in-cylinder pressure during the compression and power strokes of the MapleSim cylinder

model against the GT-Power model. The peak pressure and the trend of the pressure curve

are very sensitive to the trapped mass and mass fraction burned profile (Wiebe function).

The slight difference in the mass burned curve (Figure 4.36), between the MapleSim and

GT-Power model, induces the differences in the pressure plots.

Figure 4.38: In-cylinder pressure (MapleSim vs. GT-Power model)

The heat transfer rate between the burned zone and the cylinder wall affects the burned

zone temperature. Figure 4.39 depicts the heat transfer variation during the power stroke

(combustion and expansion) based on the Hohenberg correlation model [46]. The corre-

sponding temperature of the burned zone is shown in the Figure 4.40. The temperature

during the exhaust stroke is not significantly changed and reaches to 1200 K.
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Figure 4.39: Heat transfer rate between burned zone and cylinder wall (MapleSim vs.
GT-Power model)

Figure 4.40: Temperature of the burned zone during power and exhaust strokes (MapleSim
vs. GT-Power model)
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The specific heat ratio varies significantly at high combustion temperature. The un-

burned specific heat ratio is assumed constant due to the low temperature of the unburned

zone, but the burned specific heat ratio is formulated as a function of the burned tempera-

ture (Equation 4.16). Figure 4.41 shows the variation of the specific heat ratio during the

combustion and expansion process. The specific heat ratio drops at the peak combustion

temperature and rises during the expansion stroke.

Figure 4.41: Specific heat ratio variation (MapleSim vs. GT-Power model)

The brake torque, or mechanical torque, of the single cylinder model is plotted in the

Figure 4.42. The negative part of the torque represents the work needed to compress

the in-cylinder mixture during the compression stroke. Then, the spark is ignited and

the positive torque (positive work) is generated during the power stroke. The trend of

the torque curve is similar to the in-cylinder pressure curve. Moreover, the peak pressure

difference between the MapleSim and GT-Power model (Figure 4.38), which is about 2
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bar, generates the peak torque difference.

Figure 4.42: Brake torque (mechanical torque) (MapleSim vs. GT-Power model)

The emission sub-model generates the concentration of eleven species in equilibrium

as well as the solution of chemical kinetics equations for NO and CO as shown in the

Figures 4.43 and 4.44. The trend of both curves (MapleSim and GT-Power model) are

fairly similar, but the values are not identical. The differences in the in-cylinder pressure

and temperature affect the emission variation.
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Figure 4.43: Kinetic CO emission (MapleSim vs. GT-Power model)

Figure 4.44: Kinetic NO emission (MapleSim vs. GT-Power model)

The above simulation plots depicted a cycle simulation of the developed SI engine
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model in MapleSim, and cross-validation between the model and the GT-Power model.

The following plots show the characteristics (or performance) plots of the models at five

engine operating points (1000, 2000, 3000, 4000, and 5000 rpm). Then, the plots are

generated by fitting the best curve through the operating points. The brake power in

Figure 4.45 is calculated from Equation 4.52, where the brake mean effective pressure

(BMEP) is proportional to the average brake torque during a cycle (Figure 4.42). The

trends of both MapleSim and GT-Power models are almost identical. However, the brake

power in the MapleSim model is slightly more than GT-Power model due to the differences

in the brake mean effective pressure (BMEP) or average brake torque value (e.g. see Figure

4.42).

Powerbrake = BMEP.Vd.n (4.52)

The brake specific fuel consumption (BSFC), which represents somehow the engine

efficiency, is shown in Figure 4.46. Equation 4.53 shows the relation between BSFC and

brake power. The fuel mass flow rate (ṁfuel) is the identical input to both MapleSim and

GT-Power models, and burring condition is assumed stoichiometric at all operating points.

Therefore, the BSFC of the developed MapleSim model is lower than the GT-Power model

due to the differences in the brake power curves(Figure 4.45).

BSFC =
ṁfuel

Powerbrake
(4.53)
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Figure 4.45: Brake power Figure 4.46: Brake specific fuel consumption

Similarly, the specific kinetic emission (CO and NO) is calculated by Equation 4.54

and represented in Figures 4.47 and 4.48. The plots of both MapleSim and GT-Power

models show a good agreement in trends, but the values are different due to the differences

in the specific fuel consumption (Figure 4.46) as well as mass fraction (e.g. see Figure 4.43

and 4.44).

[CO]specific = [%CO]
ṁexhaust

Powerbrake
(4.54)

[NO]specific = [%NO]
ṁexhaust

Powerbrake
(4.55)
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Figure 4.47: Specific CO emission Figure 4.48: Specific NO emission

4.4 Parameter Identification

This section presents parameter identification technique to identify the empirical coeffi-

cients in the two-zone combustion SI engine model. The parameter identification tech-

nique can be applied to the correlation coefficients of the mass burned model, Hohenberg

heat transfer model, intake and exhaust manifold model (e.g. discharge coefficient), and

emission chemical kinetic model. The focus of this study is on identifying Wiebe function

coefficients to match the mass burned profile with experimental mass burned curve. As

discussed earlier, the simulation results of the flame propagation model in the MapleSim

are cross validated with the simulation results from the GT-Power software.

The mass burned profile is one of the main inputs which is used to calculate in-cylinder
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thermodynamic state variables (e.g. pressure, temperature), mechanical torque, and emis-

sion gases. Therefore, it is in great importance that the mass burned profile during the

combustion process must be calculated accurately.

For this purpose, homotopy optimization method is employed to minimize the error

between the experimental data, or GT-Power result, and the result from the math-based

SI engine model. Homotopy optimization procedure along with the details of the algorithm

steps are described in the reference [83, 84]. Homotopy optimization procedure, in which

the original differential equations is modified by coupling the experimental data to the

mathematical model using the homotopy parameter and the gains, has been utilized in this

research work to guarantee achieving a global minimum. The method has been successfully

applied for simple dynamic models [83] and complex dynamic systems [78] for parameter

identification purposes.

The following equations show the homotopy formulation to optimize states of a dynamic

system. Although more details of the homotopy formulation are provided in the references

[24,29,83]. A typical dynamic physical system is represented as a combination of ordinary

differential equations and algebraic constraints (Equation 4.56), which makes the set of

differential-algebraic equations (DAEs). The algebraic constrains must be satisfied at each

time step to update the new states (x). The objective of using parameter identification

technique is to identify some unknown parameters (ξ) of the system (DAEs).


ẋ(t, ξ) = f(t, x, ξ) , x(0, ξ) = x0

g(t, x, ξ) = 0

(4.56)
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In a homotopy formulation, the dynamic equation of a system is rearranged to include

the homotopy gain (KHT ) and the homotopy parameter (ςHT ) as shown in the Equation

4.57. The homotopy parameter (ςHT ) is set to one at the start of the optimization, and

decrements at each time step during the optimization. At the end of the optimization

the homotopy parameter is zero and the objective function (Equation 4.58) reaches to its

global minima.

ẋ(t, ξ) = f(t, x, ξ) + ςHTKHT (xRef − x) (4.57)

J(ξ) =
1

2

n∑
j=1

(∫ T

0

(
xjRef − x

j(ξ, t)
)
dt

)
(4.58)

The equations are derived in the Maple worksheet and the homotopy optimization

simulation is executed in the Matlab environment by collaboration with Dr. Ramin Ma-

soudi [57]. The homotopy gain is set to one (KHT = 1), and the homotopy parameter is

decrementing with fixed value (∆ςHT = 0.25). As mentioned before, the goal of apply-

ing homotopy optimization is identifying empirical parameters (a1 and a2) of the Wiebe

function (Equation 4.9). The initial guess of the unknown (empirical) parameters are cho-

sen arbitrary. For instance, in this simulation the initial values of the empirical Wiebe

parameters are set to one for both a1 and a2. The final values of the Wiebe empirical pa-

rameters, at the end of the simulation, are a1 = 2.2248 and a2 = 2.1169. The normalized

mass burned rate, during the combustion process, of the GT-Power model (reference data)

and the MapleSim model with initial guesses and optimized parameters are plotted in the

Figure 4.49.
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Figure 4.49: Mass fraction burned (homotopy optimization simulation)

4.5 Sensitivity analysis

This section presents parametric sensitivity analysis of the single cylinder SI engine model.

Sensitivity analysis is the study of the model’s parameters, and their effect on the model

outputs or performance [72]. Cylinder design parameters such as bore, stroke, and com-

pression ratio, play an important role to achieve higher performance (e.g. power) and

reduce undesirable in-cylinder phenomenon (e.g. knocking). A symbolic sensitivity analy-
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sis is used to study the effect of the design parameters on the SI engine performance. The

symbolic nature of the Maple/MapleSim environment results in very fast and efficient sim-

ulation [73]. It also facilitates a sensitivity analysis that identifies the critical parameters

for design and control purposes. Among various schemes used in the sensitivity analysis

of dynamical systems, internal differentiation is used in this research project due to its

reliability and robustness [63].

In this research [6], sensitivity of the flame propagation states (e.g. turbulent flame

speed, mass burned rate), in-cylinder pressure, and mechanical torque through the com-

bustion process with respect to the design parameters such as bore diameter and stroke

length are evaluated. However, the sensitivity analysis can be extended for the whole

four-stroke operation as well as emission sub-model.

A two-zone modeling formulation can be categorized into the flame propagation model

and in-cylinder thermodynamic formulation. However, the state variables of the flame

propagation model is used as the inputs to the in-cylinder thermodynamic model to cal-

culate pressure, temperature, and power. The flame propagation model includes two

differential and three algebraic equations, which must be solved simultaneously at each

crank angle to calculate flame propagation state variables such as burned/unburned mass,

burned/unburned volume, and entrained flame mass. The in-cylinder thermodynamic

model adds three differential equations to the flame propagation DAEs to calculate in-

cylinder pressure, burned and unburned temperature. The set of DAEs is expressed in

the Equation 4.59, and a dynamic sensitivity equation is derived in the Equation 4.60.

 Lj is the vector represents of the state variables with respect to the jth parameters (ξj).

The sensitivity equations are generated in the Maple worksheet by collaboration with Dr.
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Ramin Masoudi, and then the whole DAEs are solved in the MapleSim software.


ẋ(t, ξ) = f(t, x, ξ) , x(0, ξ) = x0

g(t, x, ξ) = 0

(4.59)

 ̇Lj =

(
∂f

∂x

)
 Lj +

(
∂f

∂ξj

)
(4.60)

The set of DAE equations of the flame propagation model and the in-cylinder ther-

modynamic model are solved simultaneously with an appropriate stiff solver to generate

sensitivity functions. The parameters value of the two-zone combustion model is listed in

the Table 4.1, and the sensitivity functions of the state variables are generated with respect

to the bore diameter and stroke length. The nominal value of the bore diameter (B̄) and

the stroke length (L̄) are 0.085m and 0.1m respectively. However, by changing the nominal

values the new sensitivity functions are regenerated. In other words, the sensitivity func-

tion simulation result is just valid for the specific values of the bore diameter and stroke

length.

The sensitivity of the mass burned profile with respect to the cylinder bore diameter

and the stroke length, through the combustion process, is shown in Figures 4.50 and 4.51.

The sign of the sensitivity function (e.g. negative for bore) means that by increasing the

bore diameter the amount of mass is decreased at the same crank angle. Similarly, the

positive sign of sensitivity plot with respect to the stroke length shows that the mass burned

value is increases by increasing the stroke length from the nominal value. Moreover, the

peak value of the plots indicates the maximum sensitivity happens at the specific crank
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angle corresponding to the peak value. Figure 4.52 shows the mass burned variations (kg)

at nominal bore and stroke values (B̄, L̄) and the small perturbation from the nominal

values (B̄ ±∆B, L̄±∆L). The curves of the Figure 4.52 from the nonlinear DAEs flame

propagation model approve the trend and the sign of the sensitivity functions.

Figure 4.50: Mass burned sensitivity function
with respect to the bore diameter

Figure 4.51: Mass burned sensitivity function
with respect to the stroke length
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Figure 4.52: Mass burned variations for different perturbations from the nominal values

The turbulent flame speed model is an algebraic equation in the flame propagation

DAEs formulation. The turbulent flame speed (Ut) is explicitly represented as a function

of unburned density in the Equation 4.3, which is a function of the main state variables

of the model (e.g. mb). Therefore, the sensitivity function of the turbulent flame speed

with respect to the bore (or stroke) parameter can be formulated as shown in the Equation

4.61, where fUt is the right hand side of the Equation 4.3. The sensitivity function of the

turbulent flame speed respect to the bore diameter, Figure 4.53, shows that the turbulent

flame speed decreases at the start of the combustion and then increases by increasing the

bore diameter. Figure 4.54 depicts the sensitivity of the turbulent flame speed with re-

spect to the stroke length. The negative sign of the curve during the combustion process

means that the turbulent flame speed decreases through the combustion chamber by in-

creasing the stroke length and vice versa. The characteristics of the sensitivity functions
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are verified in the Figure 4.55, which shows variation of the turbulent flame speed curve

for positive/negative deviation of the design parameters (bore/stroke) from the nominal

values.

∂Ut
∂ξj

=

(
∂fUt

∂mb

)
 Lmbj +

(
∂fUt

∂ξj

)
(4.61)

Figure 4.53: Turbulent flame speed sensitiv-
ity with respect to the bore diameter

Figure 4.54: Turbulent flame speed sensitiv-
ity with respect to the stroke length
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Figure 4.55: Turbulent flame speed variations for different perturbations from the nominal
values

The simulation results are extended for the in-cylinder pressure and mechanical torque

variation with respect to the design parameters during the combustion process. Since the

pressure, burned temperature, and unburned temperature are all nonlinear first order dif-

ferential equations, the corresponding sensitivity functions of the new states are integrated

with the flame propagation sensitivity functions ( Lxj ) to symbolically generate the sensi-

tivity graphs of the DAEs (Equation 4.62). Figures 4.56 and 4.57 represent the solution

of the sensitivity equations of the in-cylinder pressure with respect to the bore diameter

and stroke length. The peak pressure during the combustion process is very sensitive to

both bore diameter and stroke length. The total mass inside the combustion chamber is

constant during the combustion process. Therefore by increasing the combustion chamber
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volume, the peak pressure drops at the same operating conditions (Figure 4.58).
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(4.62)

Figure 4.56: Turbulent flame speed sensitiv-
ity with respect to the bore diameter

Figure 4.57: Turbulent flame speed sensitiv-
ity with respect to the stroke length
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Figure 4.58: In-cylinder pressure variations for different perturbations from the nominal
values

The similar approach, which used to generate turbulent flame speed sensitivity function,

is employed to derive mechanical torque sensitivity with respect to the design parameters

(Equation 4.63). The plots in Figure 4.61 show that the torque variations during the

combustion process is not as sensitive as the in-cylinder pressure. The main reason is that

the mechanical torque is proportional to product of the in-cylinder pressure and volume

at each crank angle. Therefore by increasing either the bore diameter or stroke length, the

peak pressure drops and the combustion chamber volume increases.

∂τ

∂ξj
=

(
∂f τ

∂P

)
 LPj +

(
∂f τ

∂ξj

)
(4.63)
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Figure 4.59: Turbulent flame speed sensitiv-
ity with respect to the bore diameter

Figure 4.60: Turbulent flame speed sensitiv-
ity with respect to the stroke length

Figure 4.61: Mechanical torque variations for different perturbations from the nominal
values
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4.6 Chapter Summary

This chapter presents the detailed four-stroke spark ignition (SI) engine model. The model

is developed based on the four-stroke in-cylinder operation such as intake, compression,

power, and exhaust. The power stroke includes combustion and expansion processes. The

combustion process is modeled based on the two-zone combustion (burned/unburned) and

turbulent flame propagation theory. The model consists of different sub-models such as

piston-cylinder, intake/exhaust manifold, EGR, emission gases, multi body dynamics, and

dynamometer (load). The model is able to generate many cycles simulation in one simu-

lation frame, and the inputs can be varied from cycle to cycle. The single-cylinder model

is cross-validated against the GT-Power single-cylinder SI engine model, and the results

were submitted to the International Journal of Mathematical and Computer Modeling of

Dynamical Systems [5].

The symbolic sensitivity analysis is applied to study the effect of the design parameters

on the SI engine performance. The symbolic nature of the Maple/MapleSim coding envi-

ronment helps to study the symbolic manipulation much faster and easier than any other

modeling tools. Moreover, the parameter identification technique is employed to identify

the empirical Wiebe function parameters. The mass burned during the combustion process

plays an important role to define the trend and peak values of the in-cylinder pressure and

temperature. Therefore, the empirical parameters must be precisely identified to obtain

accurate mass burned shape plot (S-shape).
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Chapter 5

Integrated Powertrain Model

This chapter presents the integrated acausal powertrain model, and the application of the

model to simulate powertrain characteristics with variable engine speed. The high-fidelity

physics-based powertrain model represents a suitable virtual prototype of a real powertrain

(physical prototype). Therefore, the proposed powertrain model can be explored and

validated virtually in the software to reduce the cost of making physical prototypes and

to design more robust and reliable powertrains. In the first section, the physics-based SI

engine model and the torque converter are integrated along with the vehicle’s longitudinal

dynamics. Then, the high-fidelity powertrain model is simulated for a period of time with

defined inputs to show the engine speed variations, multi-cycle simulation, and torque

converter’s impeller torque. Moreover, the proposed model shows the power of acausal

components to build a system model more efficiently.
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5.1 Modelling

In the previous chapters the details of the physics-based spark ignition engine model and

the torque converter model are discussed. The models are evaluated at different operating

conditions, and part of the results are validated against experimental results either from

the literature or industrial calibrated software (GT-Power software).

The high-fidelity SI engine model is connected to the torque converter model through

an acausal connection. The torque converter turbine’s shaft is connected to the automatic

transmission model, which is uses a gear shifting schedule. The automatic transmission

model is connected to the rear wheel of the vehicle. The fixed gear ratio between the

automatic transmission and the rear wheel introduces the final drive ratio (also called

differential gear ratio). The vehicle model includes the vehicle’s mass, inertia, and resistant

forces (e.g. aerodynamic and gravitational forces). Figure 5.1 depicts the powertrain model

in the MapleSim environment. The sub-models are connected through flange connections,

which are mechanical acausal connections.
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Figure 5.1: Acausal powertrain model in the MapleSim environment

The four-cylinder SI engine model is able to generate simulation results for many cycles

simulation, as discussed in the previous chapter. One of the main assumptions in the pro-

posed engine model is running the model at constant engine speed (rpm). This assumption

is modified in this section to simulate the powertrain model with variable loads. In other

words, in the previous chapter the dynamometer (load) is controlled to keep the engine’s

shaft speed at some reference speed. In the more realistic case, the powertrain model, the

load from the environment and road surface can not be controlled. Therefore, the load on

the engine’s shaft is variable and consequently the engine’s shaft speed is variable. How-

ever, the assumption of constant engine speed at each cycle is valid due to the two-zone

combustion modeling assumption. In other words, the engine speed is kept constant during

a four-stroke operation (720 degrees of crankshaft rotation), then the new cycle runs with
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new value of the shaft speed.

The idea to combine both variable engine speed during the simulation and constant

engine speed during the cycle, is using triggered sampler to discretize the multibody

crankshaft’s speed and hold it constant during the cycle. In other words, the actual engine

speed from the engine’s shaft sensor is discretized with variable sampling time. Figure 5.2

show the schematic triggered sampler to discretize the engine speed at each sampling time.

The sampling time is varied as a function of the engine speed (rpm), as shown in Equation

5.1. The cycle time (∆tcycle) represents the time duration for 720 degrees of crankshaft

rotation at the engine speed of nrpm.

Figure 5.2: Schematic diagram of triggered sampler to discretize engine speed

Tsampler ≡ ∆tcycle =
120

n
(5.1)

The automatic transmission model includes physics-based torque converter model and

rule-based gear shifting schedule. The torque converter model, which is discussed in detail

in Chapter 3, can capture the forward and reverse flow operation. The gearbox model
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with rule-based gear shifting schedule is represented by Equations 5.2 and 5.3. The input

torque to the gearbox is the torque converter turbine torque (τin) and the output torque

(τout) is multiplied by the final drive ratio (or differential gear ratio) and delivered to the

rear wheels.

τout = τinGiEi (5.2)

win = Giwout (5.3)

The variations of each gear ratio based on the vehicle longitudinal velocity and the engine

speed is listed in Table 3.3.

The brake model generates the resistant torque to decelerate the vehicle. For this

purpose, the brake model is placed between the differential model, final drive ratio, and

the tire model through acausal connection. The model is developed based on the Coulomb

friction theory. Equation 5.4 represents the resistant brake torque, which is available in the

MapleSim library [56]. The resistant braking torque is proportional to the geometry of

rotational discs (Cgeo), velocity-dependent friction coefficient (µω), and normal force acting

on the discs by pushing the brake pedal (driver’s command).

τbrake = CgeoµωFn (5.4)

The brake geometry constant (Cgeo) represents the brake’s disc geometry as shown in

Equation 5.5, where ri, ro, and Ndisc are inner and outer radius of the disc as well as the
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number of friction interfaces, respectively.

Cgeo =
Ndisc

2
(ri + ro) (5.5)

The normal force (Fn) is actually the input signal to the brake model and shows the

driver’s push on the brake pedal. Equation 5.6 shows the normalized form of the normal

force, where the Fnmax is provided as a constant parameter during the simulation. The

normalized signal (Fnormalized) is varied from zero (no braking) to one (fully braking) to

show the driver’s command to decelerate a vehicle.

Fn = FnmaxFnormalized (5.6)

The output torque from the differential, final drive ratio, rotates the wheels and axle.

In the vehicle longitudinal dynamics model, there are two tires instead of four tires. Since

the lateral dynamics is not considered, so each tire (front/rear) represents the properties of

two tires. Figure 5.3 shows the schematic tire model including the inputs. The axle torque

(τaxle) is acting on the tire’s axle to drive the wheels. The tire model is connected to the

vehicle longitudinal dynamics model through two flanges, which is shown by Fx and Fz in

Figure 5.3. Fx and Fz represent the axle longitudinal flange force and axle vertical force,

respectively.
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rtire

τaxle

Fz

Fx

Figure 5.3: Schematic tire model

Equation 5.7 represents the rotational motion of a tire, where Itire and rtire are tire

inertia and radius.

Itireω̇tire = τaxle − Fx.rtire (5.7)

There are different mathematical tire models such as Magic formula and linear saturation

model [64]. The linear saturation tire model is used in this study to calculate tire contact

force as shown in Equation 5.8. Fz0, Fx0, and ζ0 represent the nominal vertical load acting

on the tire, traction force at nominal vertical load, and the tire slip ratio at peak traction

force, respectively.
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Fx =


0 Fz < 0 Fz

Fx0
Fz0

ζ
ζ0
|ζ|< ζ0

Fz
Fx0
Fz0

ζ
|ζ0| |ζ|≥ ζ0

Fz > 0
(5.8)

The slip ratio (ζ), one of the key variables in tire modeling, is approximated by Equation

5.9.

ζ =
rtireωtire − νx

max (|rtireωtire|, |νx|)
(5.9)

The vehicle longitudinal dynamics model includes the vehicle geometry, mass, and re-

sistant forces such as aerodynamic force (Faero), rolling resistance (Froll), and gravitational

force (Fgrav). The front and rear tires introduce the rolling resistant forces. The tire con-

tact force (Equation 5.8) is a function of a vehicle’s weight and road friction coefficient.

Figure 5.4 shows the schematic vehicle model traveling on an inclined road.
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Figure 5.4: Schematic vehicle longitudinal dynamics model

The effect of a vehicle’s weight and road inclination and friction appears in the gravi-

tational and rolling resistant forces as derived in Equations 5.10 and 5.11.

Fgrav = Mvg sin(αroad) (5.10)

Froll = Frollf + Frollr = µroadMvg cos(αroad) (5.11)

The aerodynamic force is proportional to the squared forward velocity of the vehicle and

is represented by Equation 5.12.

Faero =
1

2
DairρairAfront|νx − νw|(νx − νw) (5.12)

Equation 5.13 represents the equation of motion of the vehicle in the longitudinal dynamics.
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The traction force (Fx) is calculated from the tire model.

Mvν̇x = Fx − Froll − Faero − Fgrav (5.13)

5.2 Simulation

The proposed physics-based powertrain model is able to capture both transient and steady

state characteristics. Moreover, the model is able to generate results for almost all operat-

ing conditions such as travelling up/down hills, with full/partial load, at low/high engine

speed for different vehicles. The whole powertrain model includes both casual and acausal

connections. The main causal connections are related to the gas exchange process in the

SI engine model. However, the powertrain sub-models are connected through acausal con-

nections such as rotational and translational ports. Unlike the causal modelling approach

which the physics of a model is hidden under the signal-flow connections, the acausal mod-

elling approach gives better insight of a physical meaning sub-models, parameters, and

connections [62].

The parameters and values of the vehicle including the chassis and the tire model are

provided in Table 5.1. The SI engine and torque converter specifications are listed in Table

4.1 and 3.1, respectively. The vehicle is travelling on a flat road (no road inclination), and

the engine is operating at fully-opened throttle angle (full load operation). As mentioned

before, the load acting on the vehicle’s chassis and tires are variable and consequently the

engine speed (rpm) is variable. Figure 5.5 shows the actual engine speed from the engine’s

shaft rpm sensor and discretized engine speed, which is used to run the SI engine model
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at each sampling time. The engine speed is assumed started from 600 rpm. Therefore,

the first engine cycle (or 720 degrees) takes 0.2 seconds as calculated in Equation 5.1. The

next engine cycle is repeated based on the engine speed at time equal to 0.2 seconds. The

sampling time is proportional to the inverse of the engine speed, so at higher engine speeds

the sampling time is shorter. Therefore, the approximated engine speed (discretized engine

speed) is much closer to the actual engine speed.

Table 5.1: Parameters for a compact sedan

Vehicle mass 1417 kg
Tire mass 10 kg
Coefficient of air drag 0.35
Frontal area 2.58 m2

Rolling radius of tire 0.3 m
Final drive ratio 3.64
Longitudinal tire slip ratio at max force 0.1
Inertia of wheel and axle 1 kg.m2

Ground inclination angle 0 degrees
Air density 1.2 kg.m−3

Road friction coefficient 0.02
Gravitational acceleration 9.81 m.s−2
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Figure 5.5: Variable engine speed in powertrain simulation

The vehicle forward velocity and acceleration is shown in Figure 5.6. The vehicle starts

from rest position (the initial velocity is zero). There is an acceleration peak at the start

of the motion. The acceleration curve shows some vibration with low amplitude and high

frequency, which is due to the engine pulsation (cranking). Although the longitudinal

powertrain vibration is out of scope of this research, the model can be used as a suitable

plant model to study longitudinal vibration of a powertrain due to the engine pulsation,

gear shifting, and environmental disturbances.
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Figure 5.6: Vehicle forward velocity and acceleration

Figure 5.7 shows the pump’s torque and turbine’s torque of the math-based torque

converter model. As discussed in the Chapter 3, one of the main advantages of using

a torque converter in an automatic transmission is its capability to filter disturbances

introduced from the engine side (e.g. engine cranking). In other words, the torque converter

model works as a filter to deliver smooth torque to the transmission shaft.
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Figure 5.7: Torque converter pump and turbine shaft’s torque

5.3 Chapter Summary

This chapter presents the acausal powertrain model including vehicle longitudinal dynam-

ics. The developed four-cylinder SI engine model (see Chapter 4) is connected to the

acausal torque converter model (see Chapter 3), and the torque converter turbine’s shaft

is connected to the rest of the powertrain such as automatic transmission with rule-based

gear shifting schedule, braking system, final drive ratio, wheels, and vehicle chassis. The

engine speed and load are variable during the powertrain simulation. Therefore, the as-

sumption of predefined load and speed in the previous chapter is modified by developing

triggered sampler circuit to discretize the engine’s shaft speed at each cycle. The proposed

powertrain model works in a wide range of engine speed and load, and can be adopted for

different types of vehicles.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this research, the physics-based powertrain model is developed in the MapleSim software.

The major modeling approach in this study is based on an acausal modeling rather than

causal, signal-flow, modeling approach. However, some physical phenomenon is event-

based, and can not be represented as an acausal model. For instance, the energy conversion

from the combustion chemical reactions to mechanical work is a unidirectional process and

can not be reversed.

The main focus of this dissertation is on developing physics-based hydrodynamic torque

converter model, SI engine model, and the integrated powertrain model. These three topics

are presented in detail in Chapter 3, Chapter 4, and Chapter 5 respectively. The following

sub-sections summarize the thesis and highlight the main contributions of this research.
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Acausal physics-based torque converter model :

The hydrodynamic torque converter is modelled at different operating modes such

as torque multiplication, coupling, and reverse flow operation. The model is fully

physics-based by deriving angular momentum equations of the impellers and the

conservation of the energy. The parametric sensitivity analysis and damping char-

acteristics of the torque converter model are evaluated at different operating modes.

The frequency response analysis shows that the torque converter can significantly

damp high frequency disturbances transferred from the pump side to the turbine

side and vice versa for all operating modes.

Engine braking due to a torque converter reverse flow operation :

The torque converter model can be integrated with vehicle longitudinal dynamics to

evaluate the torque converter transient characteristics during gear shifting and the

flow transition in the hydrodynamic torque converter. The transition happens when

the torque converter turbine’s shaft starts rotating faster than the pump’s shaft. This

phenomenon in the powertrain, which is called engine braking, can assist the braking

system to slow down the vehicle. The simulation results confirm the ability of the

model to represent the engine braking phenomenon in the automatic driveline, which

slows the forward speed during vehicle coasting.

Physics-based four-cylinder SI engine model :

The four-cylinder SI engine model is developed based on the two-zone combustion and

turbulent flame propagation theory along with the multi-body modeling approach for

the mechanical parts. The model can predict fuel consumption, brake power/torque,
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and kinetic emission gases (e.g. NO and CO) at different engine speed and throttle

angle. The model is able to generate multi-cycle simulation for different inputs from

one cycle to the other one. The whole model, including intake manifold, EGR, multi-

body crankshaft, and cylinders, consists of a set of differential-algebraic equations

(DAEs) with variable inputs and initial conditions at each cycle. MapleSim solvers

are very powerful in terms of handling the DAEs and hybrid dynamic system. Also,

by taking advantages of the symbolic nature of MapleSim in modeling, a symbolic

sensitivity analysis can be easily evaluated for design purposes.

Acausal powertrain model working at a wide range of speeds and loads :

The four-cylinder SI engine model is connected to the automatic transmission through

the hydrodynamic torque converter model. The automatic transmission model is

connected to the vehicle’s chassis and rear tires through a differential gear. Moreover,

the braking system is connected to the tires and can be controlled by the driver.

All components are connected through the rotational flange port, which represents

an acausal connection in MapleSim. The proposed physics-based powertrain model

is able to capture both transient and steady state characteristics. Moreover, the

model is able to generate results for almost all operating conditions such as travelling

up/down hills, with full/partial load, at high/low engine speed for different vehicles.
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6.2 Future Work

The physics-based powertrain is a plant model that can be used for different purposes. Each

sub-model in the integrated powertrain (e.g. IC engine and automatic transmission) can

be separately evaluated as well. Moreover, the whole powertrain model or the components

can be upgraded based on different vehicle parameters and even the new technologies. For

instance, the SI engine model can be replaced by a diesel engine or HCCI technology [90] to

evaluate the performance and operation of the powertrain. The mathematical formulation

of the dynamic powertrain model allows users to easily modify the equations of the system

for different purposes. The following subjects could be considered as potential future

research based on the current study:

Parametric sensitivity analysis of the powertrain :

The parametric (symbolic) sensitivity analysis has been done for the torque con-

verter [14] and the SI engine model at the component level. It is interesting research

to evaluate the effect of parameters on the powertrain’s performance in a system level

parametric sensitivity analysis. Moreover, studying the effect of the parameters si-

multaneously (multi-parameter sensitivity analysis) on the powertrain performance,

such as driveability, ride comfort, and fuel consumption, helps the designers to un-

derstand the interaction among different components and parameters to obtain more

efficient powertrain components.

Vibration analysis of the powertrain :

The developed cycle-by-cycle SI engine model is able to simulate the engine pulsation,

153



and the longitudinal vehicle model can simulate the vibrations which are induced from

the environment. Therefore, the proposed powertrain model can be used to study

the longitudinal powertrain vibration [23,25,60]. In Chapter 3, the torque converter

damping characteristics has been evaluated at the forward and reverse flow operation.

The damping characteristics of the torque converter’s lock-up clutch and the braking

system is an interesting future research.

Model-based control design for optimal gear shifting :

The math-based powertrain model makes it suitable for model-based control applica-

tions, where the controller is design based on the dynamics behaviour of the model.

One of the hot topics in the model-based powertrain control is generating gear shift-

ing maps to improve vehicle’s performance such as the ride comfort, the vehicle’s jerk

during gear shifting, and fuel consumption. This research is called the optimal gear

shifting strategy. Different optimization techniques, both on-line and off-line, can be

applied to the powertrain model to achieve better performance [36,37,52]. One of the

interesting model-based control strategies is model-predictive-control (MPC) which

can be used for different objective function to minimize fuel consumption and/or

enhance the ride comfort.

Variable valve timing (VVT) simulation :

The developed four-cylinder engine model in this study uses a fixed valve timing

during the intake and exhaust strokes. However, the model is able to be adapted

for a VVT simulation. The VVT topic is an active area of research [8, 33, 55], and

the VVT technology is implemented in some IC engines for better performance. The
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physics-based VVT model can be added to the current model to evaluate the effect

of VVT on the brake torque, fuel consumption, and emission gasses.

Acausal chemistry-based combustion model :

The current combustion model in this research is based on the two-zone modeling

approach with turbulent flame prorogation through the combustion chamber. The

combustion reactions are not fully modeled in the chemistry-based approach. The

causal thermodynamics, heat transfer, and chemistry-based emission model can be

replaced by the an acausal modeling approach to achieve a more feasible combustion

model. An interesting research in this area is developing acausal models [22,79] of the

chemical kinetic reactions (forward and backward directions), and compressible flow

thermodynamic (e.g. gas exchange process during the intake and exhaust process).
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