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Abstract 

Soil represents the largest global reservoir of microbial diversity for the discovery of 

novel genes and enzymes. Both stable-isotope probing (SIP) and metagenomics have been used 

to access uncultured microbial diversity, but few studies have combined these two methods for 

accessing the biotechnological potential of soil genetic diversity and fewer yet have employed 

functional metagenomics for recovering novel genes and enzymes for bioenergy or bioproduct 

applications. In this research, I demonstrate the power of combining functional metagenomics 

and SIP using multiple plant-derived carbon substrates and diverse soils for characterizing 

active soil bacterial communities and recovering glycosyl hydrolases based on gene 

expression. Three disparate Canadian soils (tundra, temperate rainforest and agricultural) were 

incubated with five native carbon (12C) or stable-isotope labelled (13C) carbohydrates (glucose, 

cellobiose, xylose, arabinose and cellulose). Sampling at defined time intervals (one, three and 

six weeks) was followed by DNA extraction and cesium chloride density gradient 

ultracentrifugation. Denaturing gradient gel electrophoresis (DGGE) of all gradient fractions 

confirmed the recovery of labeled nucleic acids. Sequencing of original soil samples and 

labeled DNA fractions demonstrated unique heavy DNA patterns associated with all soils and 

substrates. Indicator species analysis revealed many uncultured and unclassified bacterial taxa 

in the heavy DNA for all soils and substrates. Among characterized taxa, Salinibacterium 

(Actinobacteria), Devosia (Alphaproteobacteria), Telmatospirillum (Alphaproteobacteria), 

Phenylobacterium (Alphaproteobacteria) and Asticcacaulis (Alphaproteobacteria) were the 

bacterial “indicator species” for the heavy substrates and soils tested. Both Actinomycetales 

and Caulobacterales (genus Phenylobacterium) were associated with metabolism of cellulose. 
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Members of the Alphaproteobacteria were associated with the metabolism of arabinose and 

members of the order Rhizobiales were strongly associated with the metabolism of xylose.  

Annotated metagenomic data suggested diverse glycosyl hydrolase gene representation 

within the pooled heavy DNA. By screening only 2876 inserts derived from the 13C-cellulose 

heavy DNA, stable-isotope probing and functional screens enabled the recovery of six clones 

with activity against carboxymethylcellulose and methylumbelliferone-based substrates.  
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1.0. Introduction and literature review 

1.1. Soil overview 

 Soil is a naturally occurring material composed of organic and inorganic matter. It 

develops gradually by complex pedogenic processes (Agriculture and Agri-Food Canada, 

1998; Osman, 2013). It is in constant change, transforming energy and recycling materials 

through physical, chemical and biological processes. Among these processes, the degradation 

of organic matter plays an important role because it releases nutrients, which support plant, 

animal and microbial diversity (Oades, 1984). 

 Soils components are organic matter and different types of mineral particles (sand, silt 

and clay), which vary in size. The combined proportions of these particles determine soil 

texture, which is a stable characteristic of different soils. Texture regulates the soil 

environment - for example, in fine texture soils, microbial populations and activities are higher 

(Sessitsch et al., 2001; Osman, 2013) as texture regulates the pore size and the capacity of 

these soils to retain water (Thomsen et al., 1999). Soil physicochemical properties are mainly 

governed by precipitation and temperature, which directly affect the distribution of plants, 

animals and microorganisms (Campanella & Mitchell, 1968; Lin et al., 2003; Gelsomino & 

Cacco, 2006; Seyfried & Grant, 2007). The combination of the climatic conditions and specific 

soil-forming processes contribute to the development of specific soil types (Osman, 2013). On 

the other hand, soil structure is the arrangement of soil particles in aggregates and its formation 

is a result of different processes that include mechanical, pedogenic and microbial processes 

(Dexter, 1988; Astrow, 1996). Soil structure can be negatively or positively impacted by 

different natural phenomena such as drought, rain, freezing and thawing as well as by soil 

management practices such as tillage, crop rotation, fertilization and irrigation (Dexter, 1988; 
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Balesdent et al., 2000). 

 In soil pores, air, water and gas exchange with the environment occurs mainly through 

diffusion. Gases vary in volume and proportions depending of the type of components present 

in each soil (Conen & Smith, 2000; Smith et al., 2003). Also, modification of the porosity and 

pore size distribution can indirectly affect the rate of gas exchange (Del Grosso et al., 2000; 

Horn & Smucker, 2005). 

 When properly managed, soils can be a significant carbon sink. One of the practices that 

have been used for carbon sequestration is conservation tillage, which involves different 

methods of tillage to avoid soil erosion. Other methods include usage of semiarid lands, water 

management (e.g. irrigation systems and drainage), regrowth of native vegetation and biochar 

application (Lal & Kimble, 1977; Post et al., 2012). Soil organic matter is not only a substrate 

that provides food for microorganisms, but also influences the physical, chemical and 

biological properties of soils such as enhancement of aggregation, aeration, water movement, 

water retention, reduction of evaporation, soil conditioning, structure, porosity, water holding 

capacity, drainage, pH, stability and nutrient storage (Tisdall & Oades, 1982; Gregorich et al., 

1994; Li et al., 2007; Osman, 2013).  

 There are three types of organic matter present in soils. Firstly, soils contain fresh 

organic matter from biological materials such as decomposing plant and animal tissues. These 

are in the process of incorporation into soil and can be identified by their origin and structure; 

they represent 1-10% of the total organic matter in soil. Secondly, partially decomposed 

organic matter comprises about 10-40% of the total organic matter usually present in soils. 

Together these two types of organic matter are known as “the active soil organic matter” 

because microorganisms from soils actively degrade these materials. Thirdly, decomposed or 
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stable organic matter (also known as humus), is represented by stable, natural organic 

complexes coming from the products of biological decomposition and resynthesis. This matter 

can coat soil particles as a gum in the aggregates making them inaccessible to decomposing 

microorganisms. Humus comprises about 40-60% of the total organic matter in soils 

(Anderson, 1979; Osman, 2013). 

 

1.2. Soil classification 

 Soil classification systems organize information in order to be useful and it is a reflection 

of the existing knowledge about soils, as the knowledge increases and new concepts are 

developed the classification systems tend to be modified (Agriculture and Agri-Food Canada, 

1998). Classification of soils has been prepared based on measurable and observable properties 

such as morphological (horizon differentiation, soils depth), physical (color, texture, structure, 

compaction) and chemical and mineralogical (pH, organic matter, clay, iron, aluminum oxides) 

(Agriculture and Agri-Food Canada, 1998). 

 Soil texture is a physical property that has been used to classify soils using three defined 

textural fractions defined by the USDA: clay (< 0.002 mm), silt (0.002 – 0.05 mm) and sand (> 

0.05 mm). Using the particle size distribution and the textural triangle developed by the USDA, 

soils are classified in twelve textural classes. This method is the most widely used to 

qualitatively classify soils (Twarakavi et al., 2010). Soil classification in Canada is based on 

soil properties that reflect processes of soil development and environmental factors and it is 

based on knowledge acquired from the extensive number of soils present in Canada. This 

classification has been influenced by concepts elaborated by other countries where the U.S. 

system influenced the most (Agriculture and Agri-Food Canada, 1998). The Canadian system 
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for soil classification is designed to cover existing soils in Canada in order to organize and 

make more feasible sharing and understanding the information of the soils and the 

environmental factors that affect them. 

 

1.3. Soil overview from biomes and ecosystems used in this study 

1.3.1. Arctic tundra soils 

 Arctic tundra soils are dominated by the presence of permafrost (permanently frozen 

ground). The soil horizons remain separate and an organic layer can be part of the surface of 

the soil. This type of soil is classified as cryosolic order by the Canadian System of Soil 

Classification (Agriculture and Agri-Food Canada, 1998). Tundra is characterized by lower 

temperatures, lower precipitation and a short summer where only the surface layer thaws 

(active layer). In this layer the annual temperature ranges between -30°C and +15°C and is 

where many biogeochemical processes occur (Boike et al., 2012). The permafrost layer 

underneath allows the upper portion of the soils to remain saturated with water, therefore 

Arctic tundra soils are cool, anaerobic and the organic matter accumulated make these soils the 

largest reservoirs of carbon in the Earth (Billings, 1987). The estimated carbon content in 

permafrost is 1672 Pg and when it thaws the organic matter trapped becomes available for 

microbial metabolism (Mackelprang et al., 2011). 

 

1.3.2. Temperate rainforest soils 

 Forest soils have well differentiated layers or horizons with the surface layer known as 

the O horizon. The O horizon is divided in three sub-horizons each one of them contains large 

amounts and different types of organic matter where the undecomposed organic matter is at the 
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top and the decomposed organic matter is at the bottom. These three sub-horizons compose the 

forest floor and are characterized by intense microbial activity, which combined with physico-

chemical characteristics of these soils make them highly fertile (Gaudinski et al., 2000; 

Davidson et al., 2006; Lal & Lorenz, 2012). Temperate rainforest biome is characterized by 

two defined seasons, including a hot summer (30°C) and a cold winter (-30°C) with annual 

precipitation ranging from 50-200 cm. Because these soils are highly porous, rates of 

infiltration and percolation are rapid (Lorenz & Lal, 2012; Osman, 2013). According to the 

Canadian System of Soil Classification, luvisolic, podzolic and brunisolic orders are common 

soils in the Canadian temperate forest. These orders are characterized based on the presence of 

different components (texture, parental material, organic matter and color) in the B horizon 

(Agriculture and Agri-Food Canada, 1998). In this biome, trees have a large influence over the 

soil properties like pH and exchangeable cations. For example, it has been reported that Pinus 

sylvestris and Picea abies acidify soils due to the production of organic acids (Nilsson et al., 

1982; Priha & Smolander, 1999; Augusto et al., 2002; Lindroos et al., 2011). Also temperate 

forests are reservoirs of carbon where high amounts of carbon are stored in the soils and in the 

vegetation (Lal, 2005; Pan et al., 2011). 

 

1.3.3. Agricultural soils  

 Agricultural soils have originated from forest soils and were selected because of their 

desirable characteristics for agricultural use. These soils were managed using some practices 

such as fertilization, irrigation, cultivation, mechanization and land conservation in order to 

improve the characteristics and transform them into deep productive soils suitable to sustain 

annual crops of commercial value (Boyer & Groffman, 1996; Lorenz & Lal, 2012). These soils 
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do not show defined profiles because they were highly disturbed through different agricultural 

practices (Boyer & Groffman, 1996; Osman, 2013). These disturbances cause shifts in 

microbial communities (Altieri, 1999; Kaisermann et al., 2013). The incorporation of the 

organic matter is low, due to reduced organic residues, deposition and annual crop removal. 

Therefore the microbial activity is reduced. Also due to their smaller pores, the water 

percolation and infiltration is poor (Boyer & Groffman, 1996; Schjonning et al., 2002). Most 

agricultural soils have pH ranges between 6.5-7.5 because neutral pH values benefit the 

majority of the crops and the nitrogen-fixing bacteria grow better in neutral soils (Osman, 

2013).  

 The input of carbon in agricultural soils is from plant photosynthesis in addition to 

manure and organic residues that increase carbon content (Paustian et al., 1997; Lorenz & Lal, 

2012). Decomposition of soil organic matter by bacteria and fungi helps to recycle the carbon 

in agricultural soils (Viaud et al., 2000; Johnson et al., 2003). Fungi decompose fresh organic 

matter and bacteria consume both fresh and old organic matter. Fungi are more efficient in 

carbon assimilation than bacteria, and fungal communities are dispersed near the soil surface 

while bacterial communities are dominant in deeper layers. Bacteria decompose more labile 

substrates such as low molecular weight soluble sugars, amino acids and polyphenols that are 

solubilized and leached to the deepest layers of the soil (Cleveland et al., 2004; Lorenz & Lal, 

2012). 

 

1.4. Microbial diversity in soil 

 Biodiversity is a measure of the number of species that exist in a geographic region 

(Nannipieri et al., 2003). Total diversity includes ecological, metabolic and genetic diversity; 
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therefore, the study of microbial diversity in soils requires the understanding of the ecological 

(physical and chemical properties of soils), metabolic (carbon and energy sources present in 

soils) and genetic aspects (distribution of genetic information between organisms present in 

soils) (Finlay et al., 1997; Brussaard et al., 1997; Nannipieri et al., 2003; Fierer et al., 2007). 

Bacterial community structure and diversity can be used to test the quality of soils (Sharma et 

al., 2010). Therefore, it is important to comprehend the relationship between microbial 

diversity and soil function (Torsvik & Øvreås, 2002; Sharma et al., 2010; Monard et al., 2011); 

understanding the relations between genetic diversity in soils and bacterial community 

structure and between community structure and function is required (Neufeld et al., 2007a; 

Liebner et al., 2008; Urich et al., 2008). 

 Soils host diverse microhabitats with extensive physicochemical gradients and 

environmental conditions where microorganisms live in consortia, actively interacting with 

other members of the soil biota (Ladd et al., 1993; Stotzky, 1997; Brussaard et al., 1997). 

Microbial growth is larger on the surfaces of soil particles, usually within plant rhizosphere. 

Even in small soil aggregates there can be found many different microenvironments, where 

high microbial diversity can be present (Stotzky, 1997; Nannipieri et al., 2003; Gardner et al., 

2011). Among chemical characteristics of soil, pH seems to be the most important factor that 

influences soil bacterial richness and diversity with higher diversity found in neutral pH and 

lower diversity associated with acidic soils (Fierer & Jackson, 2006). A study in Arctic soils 

showed that the composition of the bacterial communities reflects pH-dependent trends 

apparent in other biomes and ecosystems (Chu et al., 2010) with Acidobacteria, 

Alphaproteobacteria, Actinobacteria, Betaproteobacteria and Bacteroidetes the dominant 

phyla in these soils. On the other hand, in agricultural soils, soil type (sand loam and clay) and 
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plant species seem to be the most important factors defining bacterial community composition 

(Girvan et al., 2003; Marschner et al., 2004). 

 

1.5. Microbial Processes in soil 

 Soil represents a complex and essential component of terrestrial ecosystems, critical for 

myriad important processes that sustain life. For example, soil represents a physical support for 

living creatures, a reservoir for organic and mineral substances and a medium in which a great 

variety of organisms live (Gobat et al., 2004; Bardgett, 2005). Soil microorganisms catalyze 

Earth’s biogeochemical reactions, including the degradation of organic matter and the 

recycling of nutrients (Van Veen & Kuikman, 1990; Bardgett, 2005; Borch et al., 2010). 

Microbial processes in soils such as organic matter decomposition, ammonification, 

denitrification, nitrification, nitrogen fixation, phosphorous and sulfur transformations are 

important because they govern soil productivity and fertility (Quastel, 1965; Gil-Sotres et al., 

2005; Osman, 2013). All of these are processes are regulated by enzymes with rates that 

depend on factors like soil temperature and oxygen (Davidson & Janssens, 2006; Gardner et 

al., 2011; Schimel & Schaeffer, 2012; Osman, 2013). For example, organic matter turnover is 

slow at low temperatures and in anaerobic soils (Bridgham et al., 1998; Koch et al., 2007). 

Other important microbial processes include synthesis of antibiotics and degradation of 

contaminants (Krueger et al., 1991; Raaijmakers et al., 2002; Handelsman, 2007; Prusov, 

2013). 

 There is still information that needs to be revealed about microbial processes in soils. A 

better understanding of how a microbial community is structured, which microorganisms are 

part of that community and how members interact with each other to maintain the community 
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functioning, is necessary (Handelsman, 2007). Attesting to the heterogeneity, interactivity and 

connectivity of the soil niche, traditional culture-based techniques grossly underestimate 

microbial diversity. Readily cultured microorganisms typically represent a very small 

proportion of soil microbial communities, typically less than 1% (Amann et al., 1995). The 

“uncultured majority” harbor an enormous reservoir of uncharacterized organisms, genes and 

enzymatic processes (Torsvik and Øvreås, 2002). An outstanding methodological challenge 

remains: how best to access the biotechnological potential contained within the DNA of 

uncultured microorganisms?  

 

1.6. Tools to assess the biotechnological potential in soil microbial communities 

1.6.1. Metagenomics 

 Metagenomics is currently defined as any functional or sequence-based cultivation-

independent analysis of the microorganisms from a determined habitat or environment 

(Handelsman, 2005; Sleator et al., 2008; Simon & Daniel, 2009). This broad methodological 

approach uses PCR-dependent or independent techniques to analyze natural microbial 

communities (Zhou et al., 1997; Xu, 2006) and enables studies of organisms that are not 

readily cultured (Handelsman, 2005; Guazzaroni et al., 2009). Metagenomics can complement 

or replace culture-based analysis and overcome some of their limitations. It is also a powerful 

tool for the evaluation of the phylogenetic diversity of the unexplored and uncharacterized 

microbial diversity present in soils, sediments or water (Neufeld & Mohn, 2006). 

 Metagenomics is a rapidly expanding area of research, providing new information about 

microbial life and providing access to novel biomolecules, enzymes and drugs of industrial 

importance. This methodological approach enables the analysis of the genetic diversity and 
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metabolic potential of microbial communities, as well as interactions between microorganisms 

and the environment, and the role that microbes potentially play in each community (Simon & 

Daniel, 2009). Even though applied metagenomics has unveiled the importance and potential 

of microbial diversity in different fields of study, still more studies in microbial metabolism are 

necessary. 

 Metagenomics captures environmental genomes from extracted community DNA, 

circumventing the need for cultivation and enabling the exploration of microbial genetic 

diversity and biotechnological potential (Simon & Daniel, 2009). Metagenomic analyses have 

exposed new microbial pathways and reactions, yielding novel enzymes and products of 

economic importance. Given that metagenomic studies demonstrate that the majority of total 

genetic diversity space remains unexplored, “it will be far more efficient and productive to 

seek new enzymes from metagenome libraries than to tweak the activities of existing ones” 

(Ferrer et al., 2009). Indeed, there are several recent examples of glycosyl hydrolases (e.g., 

cellulases) recovered by functional screening metagenomic libraries from terrestrial 

environments (e.g., Kim et al., 2008; Wang et al., 2009; Liu et al., 2011; Nacke et al., 2012). 

These studies reflect an important limitation of bulk DNA metagenomic library construction: 

in the absence of a suitable growth selection for phenotypes, many clones (e.g, tens of 

thousands) must be screened laboriously prior to recovering targets of interest. In addition, 

recovered clones are theoretically the most abundant target genes in the microbial community 

of interest. Targeted metagenomic approaches thus offer the potential to filter for sequences of 

particular microbial taxa of relevance to an activity of environmental or industrial relevance. 

 

1.6.2. Stable-isotope probing (SIP) 
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 Stable-isotope probing (SIP) is a culture-independent method for identifying 

microorganisms that assimilate a particular growth substrate (Radajewski et al., 2000; 

Radajewski et al., 2002; Dumont & Murrell, 2005; Neufeld et al., 2007b). For the analysis of 

nucleic acids of active organisms, a stable-isotope-labeled substrate (e.g., 13C-labelled or 15N-

labelled) incorporates within the DNA (DNA-SIP) or RNA (RNA-SIP) of active organisms 

and isopycnic ultracentrifugation can physically recover labeled nucleic acids from those of 

unlabeled community members. Molecular analysis of the labelled DNA or RNA can reveal 

phylogenetic and functional information about the microorganisms responsible for the 

metabolism of a particular substrate or link the identity of microorganisms in the environment 

to particular functions (Neufeld et al., 2007a; Chen & Murrell, 2010). 

 

1.6.3. Combining Stable Isotope Probing (SIP) and Metagenomics 

 Combining SIP with metagenomics can be useful in genome and metabolic network 

reconstruction of active and uncultivated microorganisms, providing insights into the functions 

of less-abundant community members and exploring complex environmental processes such as 

biodegradation (as reviewed in Wackett, 2004; Pinnell et al., 2010; Chen & Murrell, 2010).  

Until now, a small number of studies that combine DNA–SIP techniques with metagenomics 

have been published (Pinnell et al., 2010; Chen & Murrell, 2010). Initial studies showed 

clearly how combining these approaches can have advantages over conventional 

metagenomics, facilitating the establishment of a direct link between identity and function. 

None of the earlier studies combining SIP and metagenomics have been used to recover 

glycosyl hydrolases, although this could have been done in SIP studies related to carbohydrate 

metabolism. For example Kovatcheva-Datchary et al. ( 2009) used SIP and terminal restriction 
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fragment length polymorphism (T-RFLP) to study bacteria from the human colon using an in 

vitro model in order to find those involved in starch degradation. Analysis of 13C-labelled 16S 

rRNA genes indicated that Ruminococcus bromii, Pevotella spp. and Eubacterium rectale were 

involved in starch metabolism. Another group used SIP and denaturing gradient gel 

electrophoresis (DGGE) to identify that Dyella, Mesorhizobium sp., Sphingomonas sp. and an 

uncultured deltaproteobacterium affiliated with Myxobacteria were linked to cellulose 

degradation (el Zahar Haichar et al., 2007). Recently, a study used SIP incubations to 

determine the impact of oxygen on the metabolic responses of bacteria involved in cellulose 

and cellobiose degradation in an agricultural soil. The results suggested that cellulolytic 

bacteria are different from saccharolytic bacteria and oxygen availability defined the different 

taxonomic groups involved (Schellenberger et al., 2010). In each case, using SIP the authors 

were able to link microorganisms with function. On the other hand, studies using metagenomic 

approaches alone have reported novel glycosyl hydrolases. These discoveries were identified 

by screening metagenomic libraries for enzyme activities, or sequence analysis from different 

environmental samples (Sharma et al., 2008; Li et al., 2009; Simon & Daniel, 2009). 

Therefore, metagenomics has identified novel genes that encode enzymes that can be useful in 

industry, and SIP elucidates the functional role of microorganisms in diverse communities. 

Combining both methods will enable the retrieval of new genes and enzymes from uncultivated 

and low relative abundance microorganisms actively involved in different metabolic processes 

(Pinnell et al., 2010). In particular, this research proposal describes the application of DNA-

SIP and metagenomics for the recovery of a particular group of industrially relevant enzymes: 

glycosyl hydrolases. 

 Although several studies have combined DNA-SIP and metagenomic sequencing to 
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identify high proportions of genes from active microorganisms, such as those using glycerol 

(Schwarz et al., 2006), C1 compounds (Dumont et al., 2006; Chen et al., 2008; Kalyuzhnaya et 

al., 2008; Neufeld et al., 2008) and biphenyl (Sul et al., 2009; Lee et al., 2011). All of these 

studies were focused on the analysis of single substrates or individual samples. In addition, 

only one of these studies used functional metagenomic screens, expressing labeled DNA within 

a surrogate host for identifying enzyme activity (Schwarz et al., 2006). The ability to identify 

genes based on function, instead of sequence homology, is arguably the most powerful 

application of metagenomics for the recovery of novel genes (Neufeld et al., 2011) and a 

natural bedfellow of the SIP approach for targeting active-yet-uncultured microorganisms 

(Pinnell et al., 2010). 

 In this study, I expanded on previous efforts to combine SIP and metagenomics, focusing 

on the identification of soil microorganisms active in degrading plant-derived organic carbon, 

and the recovery of glycosyl hydrolases through activity-based functional metagenomic 

screens. The hypothesis was that combining metagenomics and stable-isotope probing (SIP) 

would identify novel microorganisms and enzymes, and the recovery of enzymes from these 

combined methods will be higher than previous efforts using conventional metagenomics. 

 

1.7. Glycosyl Hydrolases  

 The degradation of plant organic matter by the combined action of glycosyl hydrolase 

(GH) enzymes is an important soil function. The GH group of enzymes is distributed across a 

wide variety of organisms. They catalyze the hydrolysis of glycosidic bonds from complex 

carbohydrates (e.g., cellulose, hemicellulose) to release simple sugars (e.g., pentoses and 

hexoses) and as a result, GHs include important enzymes for biotechnological applications. 
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Because glycosidic bonds are considered among the most stable linkages that occur naturally, 

GHs are credited as some of the most proficient catalysts (Tkacz & Lange, 2004). 

 Until now, 133 families of glycosyl hydrolases have been defined and they have been 

grouped into 14 “clans” (Cantarel et al., 2009; Lombard et al., 2013). A protein clan is defined 

by amino acid sequences sharing common ancestry by virtue of shared tertiary structure, 

catalytic residues and mode of action (Henrissat & Bairoch, 1996). Glycosyl hydrolases can be 

classified according to substrate specificity and type of glycosidic bonds involved in hydrolysis 

(O- or S-glycosides). They can also be classified for their mechanism of action as either 

retaining or inverting the anomeric configuration (McCarter & Withers, 1994; Davies & 

Henrissat, 1995; Withers, 1995) the mode of action as exo- or endo-acting or based on amino 

acid sequence similarity (McCarter & Withers, 1994; Davies & Henrissat, 1995; Henrissat & 

Davies, 1997; Tkacz & Lange, 2004). Note that some enzymes that hydrolyze the same 

substrate may be from different families and enzymes with different substrate specificities can 

belong to the same family (Davies & Henrissat, 1995). 

Protein 3-D structures are highly conserved (Davies & Henrissat, 1995) and GHs 

contain a variety of folds that are not necessary related to enzyme substrate specificity. The 

type of fold that each GH contains is part of the characterization in the CAZy database 

(Lombard et al., 2013). The major structural folds described until now include the (!/")8 barrel, 

which is also known as a TIM barrel because this was first discovered in the triose phosphate 

isomerase. CAZy clans that have this type of fold are G,H and K and families 14, 29, 31, 67 

and 84. The !-jelly roll is also known as a swiss roll, and clans B and C use this type of fold. 

The !-propeller folds are found in glycosidases from clans F and J. The other major structural 
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fold involves the ("/")n barrel and this type of fold is found in clans L and M, also in GH 

families 9, 88 and 105 (Hancock & Withers, 2007; Lombard et al., 2013). 

GHs can also be divided according to the topology of the active site, which is directly 

related to the way that the enzyme functions with a determined substrate. Until now, all known 

GHs can be divided into three classes: a) Pocket or crater classes cleave a carbohydrate from 

the non reduced end and are found in monosachharidases (!-galactosidase and !-glucosidase) 

and exopolysaccharidases (! –amylase and glucoamylase); b) Cleft grooves are open structures 

present in endo-acting polysaccharidases such as endocellulases, chitinases, endoglucanases, 

where the open structure allow the enzyme to bind randomly in the internal linkages of 

polysaccharides; c) Tunnel structures involve a protein cleft that is partially covered with 

loops, giving a tunnel topology, attacking mainly the ends of the carbohydrates. The tunnel 

topology structure is found mainly in cellobiohydrolases and exocellulases (Davies & 

Henrissat, 1995; Hancock & Withers, 2007). 

 

1.7.1. Glycosyl hydrolases in industry  

 Glycosyl hydrolases can have a variety of uses related to the degradation of biomass, 

which can be used in ethanol production (Schäfer et al., 2007; Maki et al., 2009). 

Combinations of glycosyl hydrolases are used in the production of fruit and vegetable juice for 

extraction, clarification and stabilization (Tkacz & Lange, 2004). Xylanases have been used in 

baking industry to improve bread characteristics and quality by strengthening the gluten and 

extending shelf life. Also, it is used to make xylan sugar derivatives (xylose, xylocellobiose) 

(Subramaniyan & Prema, 2002; Tkacz & Lange, 2004; Butt et al., 2008). For pulp and paper 

pre-bleaching, xylanases help to minimize chlorine inputs in subsequent processing steps, 
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which improves paper properties (Subramaniyan & Prema, 2002; Tkacz & Lange, 2004; 

Schäfer et al., 2007). In animal food industries, 1,3-1,4-! glucanases and xylanases are used to 

hydrolyze non-starch polysaccharides, which are not able to be metabolized by young 

monogastric animal like chickens and piglets (Tkacz & Lange, 2004). Glycosyl hydrolases are 

also added to detergents for the washing of cotton fabrics, whiteness and assisting in the 

maintenance of colours (Schäfer et al., 2007).  

 

1.7.1.1. Cellulases in industry 

 One of the groups that has a variety of uses in industry are the cellulases, which are used 

in food processing, textiles, and laundry detergents. However, cellulases have future potential 

for biofuel production through the hydrolysis of cellulose (Kennedy et al., 2011; Horn et al., 

2012). Cellulose is a polymer of ß-1,4 linked glucose. The repeating unit of cellulose polymer 

is the cellobiose molecule. Cellulose is a stable crystalline structure (Warren, 1996). 

Cellulases, together with hemicellulases and polysaccharidases, are grouped as O-glycoside 

hydrolases (Lynd et al., 2002). 

Enzymatic hydrolysis of cellulose is not completely understood and only a small proportion of 

microorganisms are specialized in its degradation (Wilson, 2011). There are diverse 

mechanisms that cellulolytic microorganisms use to degrade cellulose. Most of the 

microorganisms that use the free cellulose mechanism are aerobic (Bayer et al., 2004; Wilson, 

2010). These cellulose degraders secrete their enzymes (cellulases) that attach to the substrate 

through a carbohydrate-binding module (CBM), which most of these cellulases possess. 

Although many anaerobic microorganisms also contain cellulases, the majority of them are 

cellulolytic enzyme systems known as cellulosome (Leschine, 1995; Wilson, 2011), they are 
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present in protuberances that are present in the bacterial cell wall when they grow on cellulosic 

materials (Lynd et al., 2002) and only few of these enzymes have CBM (Lynd et al., 2002; 

Gowen & Fong, 2010; Wilson, 2011). Cellulosome formation occurs under carbon-limited 

conditions and the composition of the cellulosome depends of the carbon sources used. For 

example, cellulases can be produced when soluble carbohydrates are present, such as 

cellobiose, but the cellulosome may need cellulose to trigger the expression of these enzymes 

(Lynd et al., 2002). 

Cellulases are diverse. They catalyze the hydrolysis of the ß-1,4 linkage between two 

glucose monomers and have eight different types of protein folding. Cellulases, like other 

enzymes that have to degrade insoluble substrates, contain a substrate-binding domain. There 

are 67 recognized families of CBMs  (Lombard et al., 2013). The CBMs connect the catalytic 

domain and the substrate through a linker peptide. The function of the CBM is not completely 

understood but it is clear that the CBM binds the enzyme to the substrate and enables access to 

the catalytic site (Lynd et al., 2002; Gowen & Fong, 2010; Wilson, 2011). The CBMs can have 

different affinity for cellulose, where some can have affinity for both crystalline and 

amorphous cellulose, and others display specificity for only one of these forms (Warren, 1996). 

 Most cellulases are endocellulases, with an open active site, which cleaves any 

accessible ß-1,4 linkages along the chain. Exocellulases have their active site inside of a tunnel, 

making that possible only the cleavage of one of the ends of the cellulose chain. This could 

explain why exocellulases have low activity in carboxymethylcellulose (CMC; Wilson, 2011). 

Among exocellulases, there are two distinctive groups: one group hydrolyses the reducing end 

and the other group cleaves the non-reducing end of the cellulose molecule (Wilson, 2011). 

Cellulose is also broken down by glucanases, which are mainly found in bacteria (Wilson, 
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2011). Endoglucanases act on random internal bonds in cellulose similar to endocellulases. 

Some exocellulases can have low endoglucanase activity (Warren, 1996). 

 Cellulose hydrolysis has been studied in the aerobic genera, Thermobifida and 

Cellulomonas, among major soil degraders of cellulose (Lynd et al., 2002), and the most 

studied environments for cellulases were the rumen and compost. Therefore, with the potential 

of metagenomics, soils become a great source for mining novel cellulases that can be useful in 

industry (Wilson, 2011). Previous metagenomic studies have examined cellulose degraders (Li 

et al., 2009) but the mechanisms for this process and microbial communities responsible in 

soils are still poorly understood (Wilson, 2011). Also, the vast majority of these industrial 

hydrolases are derived from cultured microorganisms, which may represent less than 1% of the 

existing diversity (Davies & Henrissat, 1995; Henrissat & Bairoch, 1996; Bauer et al., 1998). 

Bacteria and fungi are known as major cellulose and plant polysaccharide degraders  

(Bagnara et al., 1985; Leschine, 1995; Busk & Lange, 2013). Among the major cellulolytic 

bacteria, Cytophaga hutchinsoni is aerobic and uses cellulose as its only carbon source (Walker 

& Warren, 1937). In addition, the genus Cellvibrio, described by Winogradsky in 1929, is 

grouped into the aerobic cellulolytic bacteria (Mergaert et al., 2003). Anaerobic cellulolytic 

bacteria include members of the genera Clostridium and Acetivibrium (Eichorst & Kuske, 

2012). An extensive number of cellulolytic bacteria have been isolated from different 

ecosystems such as invertebrates gut (termite, snail, caterpillar, bookworm, beetle larvae) 

(Gupta et al., 2012; Huan et al., 2012), forest and agricultural soils (Hatami et al., 2008), 

grassland soils (Eichorst & Kuske, 2012) and rumen (Teather & Wood, 1982). Studies in the 

intestine show that the genus Fibrobacter plays an important role in the digestion of plant 

fibers (Lin & Stahl, 1995; Jun et al., 2007). 
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Studies in fungal communities exhibited that fungal cellulolytic activities vary 

according with the ecosystem and may be influenced by elevated CO2 (Weber et al., 2011). 

Using Congo Red and dinitrosalicyclic acid reagent method, cellulolytic fungi have been 

characterized and showed that Trichoderma reesei, Trichoderma harzianum and Neurospora 

crassa were important cellulose degraders (Sazci et al., 1986). Fungi have been isolated from 

different ecosystems, the majority of them were isolated from dead and decaying wood, other 

sources were paper pulp, sugarcane bagasse and cow manure (Naik et al., 2012). 

 Microbial diversity in the natural environment has only recently been studied with the 

advent of molecular (DNA- and RNA-based) techniques and this newly described diversity is 

recognized as an enormous reservoir of metabolic potential, which represents a near limitless 

source of new enzymes that could help satisfy the specific demands of industry. Unifying 

research efforts and different molecular and culture-based technologies can make this a 

possibility within reach (Schäfer et al., 2007). Recent research suggests a broad diversity of 

bacteria contribute to plant polymer degradation (Bernard et al., 2007; el Zahar Haichar et al., 

2007; Bernard et al., 2009; Schellenberger et al., 2010), suggesting that cultivation-

independent methods, like metagenomics, are most strategic for the recovery of genes and 

enzymes from these heterotrophic bacteria. 

 

1.8. Research hypothesis and objectives 

The proposed research will test two hypotheses:  

1. Combining metagenomics and stable-isotope probing (SIP) will lead to the identification of 

novel enzymes and microorganisms. 

2. The recovery of enzymes from this combined approach will be higher than by conventional 
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metagenomics. 

 

In order to test these hypotheses, this research had two key objectives: 

a. Determination of the active and uncultivated microorganisms involved in the metabolism of 

plant-derived carbohydrates from a selected subset of Canadian soil samples. 

b. Isolation and initial characterization of novel glycosyl hydrolases with potential for 

industrial applications. 
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2.0. Materials and Methods 

2.1. Soil samples.  

 Three soil-sampling sites represented by the Canadian MetaMicrobiome Library 

(http://www.cm2bl.org/) were used for this study: Arctic Tundra 1 (1AT), Temperate 

Rainforest (7TR) and Agricultural Soil – Wheat (11AW). Triplicate surface soils from the top 

10 cm below the litter layer were combined to prepare a single composite for each site. 

Composite soil samples were sieved (2 mm) and samples sent to the Agriculture and Food 

Laboratory, Laboratory services from the University of Guelph (Guelph, ON) for analysis of 

total organic and inorganic carbon, pH, total nitrogen content, particle size distribution, soil 

moisture content and bulk density. 

 

2.2. Stable isotope probing.  

 Prior to stable-isotope probing (SIP), composite soil samples were pre-incubated under 

experimental temperature conditions for two weeks to minimize carbon available to compete 

with labeled substrates. The conditions for this pre-incubation were dark storage at 15°C for 

1AT and dark storage at room temperature (~24°C) for 7TR and 11AW.  

 The SIP incubations were conducted with both stable-isotope (13C) and native (12C) 

substrates, in addition to no-substrate controls, for each of the three soils. Ten grams of soil 

were added to 120-mL serum vials and substrates were added as follows. Finely shredded 

cellulose was purified in our lab from Gluconacetobacter xylinus incubations with 13C or 12C 

glucose, as previously described (Pinnell et al., 2013), and 200 mg (6.6 mmol C) was mixed 

into serum vials in a single dose. Glucose, cellobiose, arabinose, and xylose incubations 

involved the addition of three weekly substrate pulses of 1.5 mmol of C, which are 
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approximately 5-500 times higher than normally detected in soils (Medeiros et al., 2006; Hill 

et al., 2008), but were chosen to ensure detectable labeling, similar to a previous experimental 

approach (Schellenberger et al., 2010). Substrates were D-Glucose (Bio Basic Inc.; Markham, 

ON), (U-13C6)-D-Glucose (Cambridge Isotope Laboratories Inc.; Cambridge, ON), D-(+)-

Cellobiose (Sigma-Aldrich; Oakville, Ontario), (UL-13C12)-Cellobiose (Omicron Biochemicals 

Inc.; South Bend, IN), D-(-)-Arabinose (Sigma-Aldrich), D-(UL-13C5)-Arabinose (Omicron 

Biochemicals Inc.), D-(+)-Xylose (Sigma-Aldrich), and D-(UL-13C5)-Xylose (Omicron 

Biochemicals Inc.). Serum bottles were sealed with butyl septa and crimp seals. 

 Incubation temperatures and conditions were the same as for the pre-incubation. Samples 

were collected at weeks one and three for glucose, cellobiose, arabinose, and xylose and weeks 

three and six for cellulose (Table 1). Serum vials were aerated once per week for one hour in a 

fume hood. The weight of incubation flasks was assessed weekly and water-filled pore space 

(WFPS) was maintained between 50-60% by adding distilled water and/or substrate for each 

incubation according to the following formula (Franzluebbers, 1999): 

 WFPS = w [#b #s / #s - #b ], 

where w is the gravimetric water content (%), #b is the soil bulk density (g/cm3), and #s is the 

soil particle density (2.65 g/cm3).  
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Table 1. Experimental design and amount of substrate used in the experiments!

 

Soils 

 

Substrate 

Sampling time points 

 

Tundra (1AT) 

Temperate rainforest (7TR) 

Agricultural soil - wheat (11AW) 

Glucose  (3 pulses of 1.5 mmol of carbon) 1 and 3 weeks 

Cellobiose (3 pulses of 1.5 mmol of carbon) 1 and 3 weeks 

Arabinose (3 pulses of 1.5 mmol of carbon) 1 and 3 weeks 

Xylose (3 pulses of 1.5 mmol of carbon) 1 and 3 weeks 

Cellulose (200 mg equivalent to 6.6 mmol of carbon) 3 and 6 weeks 
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2.3. Gas chromatography 

All experimental serum vial headspaces were monitored for CO2 accumulation with a 

Shimadzu GC-2014 equipped with a thermal conductivity detector (TCD), methanizer and a 

flame ionization detector (FID). In addition, no added carbon control soil incubations and 

separate serum bottles amended with 12C-glucose were monitored for headspace gases as 

surrogates for experimental bottles because an N2-free headspace was required for measuring 

O2 with the gas chromatograph. The headspace of these separate flasks were flushed with 

helium and supplemented with oxygen (20%). Headspace CO2 and O2 were measured every 

three days by direct injection of 0.5 mL of headspace gas through a packed Poropak Q column 

with a helium flow of 20 ml/min. The GC temperatures were maintained for the oven (80°C), 

TCD (280°C), methanizer (380°C) and FID (250°C).  

 

2.4. DNA extraction and isopycnic centrifugation  

Two grams of soil were sampled from each vial at weeks three and six for cellulose and 

at weeks one and three for glucose, cellobiose, arabinose and xylose. These soil samples were 

used for DNA extraction, isopycnic centrifugation and DGGE analysis. All initial DNA 

extractions were done with the PowerSoil DNA isolation kit (MO BIO Laboratories; Carlsbad, 

CA) according to the manufacturer’s instructions. Extracted DNA was quantified with 

spectroscopy (NanoDrop 2000 UV-Vis Spectrophotometer; Thermo Scientific; Montreal, QC) 

and electrophoresis on a 1% agarose gel. Cesium chloride (CsCl) gradients for all soils, 

substrates and time points were processed by ultracentrifugation and fractions collection as 

described previously (Neufeld et al., 2007b; Dunford & Neufeld, 2010).  
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2.5. Denaturing gradient gel electrophoresis (DGGE) 

Bacterial fingerprints of all SIP gradient fractions confirmed substrate-specific labeling 

of active soil Bacteria. The V3 regions of bacterial 16S rRNA genes were targeted for DGGE 

using primers 341f-GC (5' - CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG 

CCTACGGGAGGCAGCAG - 3') and 518r (5' - ATTACCGCGGCTGCTGG - 3'; Muyzer et al., 

1993). Each PCR contained 19.75 $l of UV-treated water, 2.5 $L ThermoPol Reaction Buffer 

(10X; New England BioLabs; Whitby, ON), 0.05 $l of dNTPs (100 $M), 0.05 $l of forward 

primer 341f-GC (100 $M), 0.05 $l of reverse primer 518r (100 $M), 1.5 $l of bovine serum 

albumin (BSA; 10 $g/mL), 0.25 $l of Taq DNA polymerase (New England BioLabs; 5U/$L) 

and 1 $l of DNA template purified from each gradient fraction. PCR amplification was 

performed on a DNA Engine (Bio-Rad; Mississauga, ON). Reaction conditions were initial 

denaturation at 95°C for 5 min, 30 cycles of denaturation at 95°C for 1 min, annealing at 55°C 

for 1 min, extension at 72°C for 1 min, followed by a final extension at 72°C for 7 min. All 

PCR products were first inspected on a 1% agarose gels prior to DGGE.  

Each lane of a 10% polyacrylamide gel with a denaturing gradient of 30-70% was 

loaded with 5 µl of each PCR product. Gels were run at 60°C for 14 h at 85 V in the DGGEK-

2001-110 (C.B.S. Scientific Inc.; San Diego, CA) as previously described (Green et al., 2010). 

A custom DGGE ladder was run at both ends of the gel for normalizing patterns. Gels were 

stained for 45 min with SYBR Green I Nucleic Acid Gel Stain (Thermo Fisher) and rinsed in 

water. Gel images were prepared with a Pharos Plus Molecular Imager System (Bio-Rad). 

 

2.6. Next-generation sequencing 

 High-throughput sequencing of the 16S rRNA gene V3 region and paired-end read 
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assembly were conducted as described previously (Bartram et al., 2011; Masella et al., 2012), 

targeting both the “heavy” and “light” fractions for each gradient for all soils, stable-isotope 

substrates and time points. Based on DGGE data the fractions that contained all or the majority 

of bands with 13C-labelled DNA were chosen to represent the heavy DNA and the fraction that 

had all or the majority of bands related with 12C-unlabelled DNA represented the light DNA. 

We sequenced fractions six (heavy) and ten (light) for 1AT and fractions five (heavy) and ten 

(light) for 7TR and 11AW (60 samples in total). Three 25-$L PCR amplifications per sample 

were conducted, each containing 5 $L of the 5X Phusion HF Buffer (Finnzyme, Finland), 

0.125 $L of the V3 F-modified primer (100 $M), 1.25 $L of an indexed reverse primer (10 

$M; V3-1R to V3-60R), 0.2 $L of dNTPs (100 $M), 0.25 $L of the Phusion High-Fidelity 

DNA Polymerase (2U/$L; Finnzyme) and 1 $L of DNA template (~1-10 ng). The PCR 

conditions were as follows: initial denaturation at 98°C for 2 min, 20 cycles of denaturation at 

98°C for 10 sec, annealing at 50°C for 30 sec and extension at 72°C for 15 sec. A final 

extension was at 72°C for 7 min. Triplicate reactions were pooled and PCR products from 

individual indexed composites were combined in equal ng ratios. The PCR products were 

visualized by electrophoresis on a 2% agarose gel. The correct band (330 bp) was excised and 

purified using Wizard SV Gel and PCR Clean-Up System (Promega; Madison, WI). Libraries 

were subjected to 108-base paired-end sequencing on the Genome Analyzer IIx (Illumina Inc.; 

San Diego, CA) at the Plant Biotechnology Institute (Saskatoon, SK). 

Shotgun metagenomic sequencing was performed on DNA from three pooled fractions 

of the 13C-labeled DNA from each treatment. Pooling of heavy DNA resulted in three 

composite samples for sequencing: 1) Low pH (fractions five, six and seven of A1T, fractions 

four, five and six of 7TR) for week 3 incubations with glucose, cellobiose, arabinose and 
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xylose, 2) Agricultural soil (fractions four, five and six for 11AW) for week 3 incubations with 

glucose, cellobiose, arabinose and xylose and 3) Cellulose (fractions five, six and seven for 

A1T, fractions four, five and six for 7TR and 11AW) for week 6 incubations with cellulose. 

Metagenomic DNA samples were prepared for shotgun sequencing on the Illumina sequencing 

platform using the Nextera DNA Sample Preparation Kit (Illumina Inc.). Beginning with 25-50 

ng of pooled heavy DNA, samples were fragmented and purified using the DNA Clean & 

Concentrator kit (Zymo Research Corporation; Irvine, CA). Purified fragments used as 

template for limited-cycle PCR amplification (5 cycles); indexed sequencing adapters 

(Epicentre; Madison, WI) were used for the PCR. Each amplified sample was purified and 

subjected to size selection (400-800 bp) using a Pippin Prep instrument (Sage Science, 

Beverly, MA). Afterwards, each library was quantified using the KAPA Library Quantification 

Kit (KAPA Biosystems; Woburn, MA). Equimolar samples were pooled, concentrated and 

quantified. Final concentrations were adjusted to 10 nM. Libraries were sequenced using the 

HiSeq2000 Sequencing System (Illumina) by the Institute for Genomic Biology Core Facility 

(University of Illinois). Sequencing was performed using a TruSeq SBS Kit (version 3) and 

data analyzed using the Cassava 1.8 pipeline. Error rates were estimated at below 0.3%. Each 

sample yielded 42-90 million 100-base paired-end reads and these reads were deposited in 

MG-RAST with identification numbers: Low pH forward 4482593.3, Low pH reverse 

4483544.3, Cellulose forward 4482599.3, Cellulose reverse 4483820.3, Agricultural forward 

4482600.3 and Agricultural reverse 4483819.3. 

 

2.7. Statistical analysis 

 Principal coordinates analysis (PCoA) with weighted UniFrac distances, multi-response 
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permutation procedures (MRPP) and indicator species (IS) analyses of 16S rRNA gene 

sequences generated by assembled paired-end Illumina reads were performed using automated 

exploration of microbial diversity (AXIOME) automation of PANDAseq (Masella et al., 

2012), the QIIME pipeline (Caporaso et al., 2010) and custom AXIOME analyses (Lynch et 

al., 2013). 

 

2.8. MG-RAST analysis and CAZy Annotation 

 Paired-end shotgun sequences from the pooled heavy DNA samples described above 

were analyzed for the presence of GHs using the MG-RAST pipeline (Meyer et al., 2008). 

Reads were annotated by comparison to sequences in the UniProt database (Apweiler et al., 

2004), with no maximum e-value cut off, a 54% minimum percentage identity cutoff and a 30 

bp minimum alignment length cutoff. Using custom Perl scripts, annotated by Swiss-Prot and 

Trembl databases (UniProt release 2012-4), hits were paired with matching GH family CAZy 

identifiers by comparing an extracted database of UniProt accession numbers to CAZy 

identifiers. Matches to UniProt sequences were annotated by GH family. 

 

2.9. Cellulose-enriched metagenomic library construction 

High molecular weight DNA (40-50 kb) was extracted from all three soil samples that 

were amended with 13C-labeled cellulose (week 6 time point), using a gentle enzymatic lysis 

(Zhou et al., 1996). Crude DNA was purified from humic acids using the Aurora (Boreal 

Genomics; Vancouver, BC) by using one wash cycle (70 V/cm, 10°C, 90 min) and two 

concentration cycles (70 V/cm, 10°C, 60 min). DNA was visualized using a 1% agarose gel 

and quantified with the NanoDrop 2000. Samples were subjected to cesium chloride density 
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gradient ultracentrifugation and fraction collection as described above with minor 

modifications to the DNA precipitation step to avoid potential problems recovering high 

molecular weight DNA from cesium chloride by PEG precipitation. Specifically, gradient 

fractions were diluted with one volume of water and two volumes of ethanol and incubated 

overnight at -20°C. DNA was precipitated by centrifugation for 30 min at 13,000 x g and the 

supernatant decanted. The DNA was dissolved in 300 $l of water and then precipitated by 

adding 1/10 volume of 3M sodium acetate and two volumes of ethanol. We used DGGE, as 

described above, to profile all fractions, confirming that the fingerprints generated from an 

alternative lysis protocol were the same as those observed previously. Subsequently, pooled 

samples and fractions for large-insert cosmid cloning were mixed in the same equal ng ratio 

used to prepare template for sequence-based metagenomics. 

 

2.9.1. Cosmid library construction 

 To increase the amount of DNA for 13C-cellulose enriched metagenomic library 

construction, triplicate multiple displacement amplification (MDA) reactions were conducted 

on the pooled cellulose sample using the illustra GenomiPhi V2 DNA Amplification Kit (GE 

Healthcare; Mississauga, ON), according to the manufacturer’s instructions. Each reaction 

included ~7 ng of DNA template in order to minimize potential amplification bias (Binga, 

Lasken, & Neufeld, 2008), yielding ~3-4 $g of DNA. Positive control reactions with kit-

supplied DNA and no-DNA negative controls were run in parallel. All MDA reaction products 

were quantified on a 1% agarose gel and triplicates pooled. 

In order to purify MDA-amplified DNA from residual %29 DNA polymerase, 100 µl of 

DNA solution was mixed with 613 µl of TE, 73 µl of 10X gel loading buffer and 6.8 µl of 20% 
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SDS. After heating at 65°C for 10 min, the sample was left on ice for 5 min and then 

centrifuged at 15,900 & g for 5 min to pellet protein. The DNA-containing supernatant was 

loaded onto a 1% pulsed-field agarose gel (with TAE buffer) in order to size-select 

metagenomic DNA. The pulsed field gel electrophoresis (PFGE) was run on a CHEF Mapper 

(Bio-Rad) at 14°C, 5.5 V/cm, an angle 120° and initial 1.0 – final 6.0 sec switch time for 20 h. 

The outer sides of gel containing size marker and a small portion of DNA sample were cut off 

and post-stained with SYBR green. A gel slice corresponding to 30-75 kb DNA was excised 

without UV exposure, followed by DNA electroelution and concentration. Following end-

repair using End-It DNA End-Repair kit (Epicentre), DNA was ligated to Eco72I-digested and 

SAP-treated vector pJC8. The ligation reaction mixture was packaged in vitro (Gigapack III 

XL Packaging Extracts, Stratagene) and then transduced into Escherichia coli HB101.  

Following overnight selection on LB-Tc agar plates, the resulting recombinant cosmid clones 

were pooled and saved in 7% DMSO in 1 ml aliquots at -75°C. Prior to pooling, a random 

selection E. coli clones from the plates were collected for analysis of cosmid DNA restriction 

patterns and arrayed into 96-well plates for functional screening. The average sizes of cloned 

metagenomic DNA and coverage of bacterial genomes were calculated based on sizes of 

EcoRI-HindIII fragments and the number of recombinant library clones.   

 

2.10. Functional screening 

 The 2876 randomly selected clones were used for functional screening using 0.2% 

carboxymethylcellulose (CMC) as a substrate and Congo Red dye application to detect 

substrate degradation (Teather & Wood, 1982). Minor protocol modifications included 

omitting plate overlays, using one week incubation times at 37°C and washing colonies from 
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plates prior to Congo Red staining (0.1% aqueous solution).  

In addition to a CMC screen, these same library clones were grown in LB-Tc (10 

µg/ml) overnight at 37°C. The following day, a 96-well deep well plate with Terrific Broth 

(TB) and 10 µg/ml tetracycline was inoculated and incubated at 37°C for 24 to 48 hours. Cell 

pellets were collected and frozen following culturing. For lysis, cell pellets were thawed and 

chemically lysed using BugBuster Protein Extraction Reagent (Novagen). Clones were 

characterized using a panel of 4-methylumbelliferone-based (4-MU) fluorogenic substrates. All 

clones were tested in a first round of screening on all substrates. Clones that demonstrated 

activity on one or more substrates were cultured again and rescreened on appropriate substrates 

to eliminate false-positive reactions. Reactions were carried out in opaque 384-well 

microplates. Library lysates were incubated with 0.1 mM of 4-MU-substrates for 1 h at 50°C in 

a 40 µL sodium citrate-buffered (50 mM, pH 5) reaction. Reactions were quenched by the 

addition of 40 µL of 0.2 M glycine (pH 10). Fluorescence was detected at 445 nm following 

excitation at 370 nm. Substrates screened included "-L-arabino-furanoside/pyranoside, !-D-

cellobio-pyranoside, !-D-glucopyranoside, !-D-xylopyranoside and N-acetyl-!-D-

galactosaminide. 

The average sizes of positive clones were calculated based on sizes of EcoRI-HindIII-

BamHI fragments.   

 

2.11. Analysis of end sequences  

Cosmid end-sequences were generated by Sanger sequencing of extracted positive hit 

cosmids, with M13 forward (5'- CACGACGTTGTAAAACGAC - 3') and M13 reverse (5' - 

GGATAACAATTTCACACAGG - 3') primers flanking the site of metagenomic DNA 
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insertion. For each clone, two end-sequences were obtained by The Centre for Applied 

Genomics (TCAG) and are referred to as “reverse” and “forward” reads. We used blastx 

searches of translated nucleotide sequences against an NCBI protein database and tblastx 

searches translated nucleotide sequences against a translated nucleotide database. End 

sequences were deposited in Genbank with accession numbers KG771718-KG771732. 

Posterior BLAST analysis was done searching for sequences similarities in the three libraries: 

Low pH, Agricultural and cellulose (forward and reverse). Sequences with >95% similarity 

and  >30 bp were recorded as positive matches. 
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3.0. Results and discussion 

3.1. Characterization of active soil Bacteria 

 We used DNA-SIP as a targeted approach for identifying active soil microorganisms 

involved in the metabolism of five plant-derived carbohydrates (glucose, cellobiose, xylose, 

arabinose and cellulose) in three disparate soil samples. Soil samples were selected from the 

CM2BL soil collection based on maximizing physicochemical diversity, encompassing a wide 

range of pH, geographical distance (e.g., latitude) and land usages. Physicochemical analyses 

of these three soil samples revealed that soils differed in texture, carbon content, bulk density 

and pH (Table 2). In particular, the pH was lower for the Arctic tundra and temperate rainforest 

soil samples, which suggested that microbial composition and diversity of these two samples 

would be fundamentally different than in the agricultural soil (Stotzky, 1997; Fierer & Jackson, 

2006). We maintained the water-filled pore space (WFPS) between 50% and 60% to maximize 

microbial activity, avoiding decreased aerobic microbial activity at WFPS values >60% (Linn 

& Doran, 1984; Franzluebbers, 1999).  
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 Labeled and unlabeled substrates were added to the soil samples in multiple doses over 

the period of one and three weeks (glucose, cellobiose, xylose and arabinose) or three and six 

weeks (cellulose; Table 1). The cellulose produced as substrate for SIP incubations by 

Gluconacetobacter xylinus was predominantly amorphous cellulose (Koizumi et al., 2008), 

which is more readily degraded than crystalline cellulose (Hall et al., 2010), likely because 

CBMs are not required for the degradation of amorphous cellulose (Wilson, 2011). Although 

substrate concentrations were likely several times higher than typical bulk soil concentrations 

(Medeiros et al., 2006; Hill et al., 2008) higher sugar substrate concentrations would be 

expected in the root rhizosphere and in areas of active plant matter decomposition (as reviewed 

in Hill et al., 2008), suggesting that our incubation conditions would not be unrealistic for 

some naturally occurring soils. In addition, these concentrations were chosen because it is 

critical that labeled isotope be more abundant than exogenous soil carbon sources for the 

success of DNA-SIP, enabling the separation and recovery of labeled DNA for subsequent 

molecular analyses (Neufeld et al., 2007a; Neufeld et al., 2007b). A previous proof of principle 

used similar substrate concentrations and incubation times with glucose and cellulose, 

demonstrating minimal-yet-detectable labeling of DNA in an Arctic tundra soil sample (Pinnell 

et al., 2013). 

 

3.2. Carbohydrate metabolism 

 Metabolism of labeled substrates in DNA-SIP incubations was confirmed by higher 

headspace CO2 production in all substrate-amended flasks, compared to uninoculated controls, 

for each of the three soils (Figure 1). In all cases, cellulose-amended flasks demonstrated 

reduced CO2 production compared to the other substrates, further justifying an extended 
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incubation time for this comparably recalcitrant substrate. The average amount of CO2 released 

after six days was 13% of headspace gases (cellulose not included), which, after subtracting the 

average CO2 produced in uninoculated flasks, was approximately equivalent to 1.4 mmol of 

carbon. This represents 93% of the total carbon added per week, respectively (1.5 mmol of 

carbon).  

 In addition to monitoring CO2 production in all flasks, separate soil incubations were 

prepared with a defined helium/oxygen headspace and glucose amendment, in order to monitor 

maximal rates of O2 consumption. The addition of glucose stimulated O2 consumption but the 

headspace remained oxic for each of the weekly incubation periods over the first three weeks 

(Fig. 2), indicating that weekly aeration of experimental flasks was sufficient to deplete CO2 

and replenish O2. Maintaining oxic conditions was important to ensure that the DNA-SIP 

incubation recovered DNA from microorganisms involved in degradation of complex 

carbohydrates like cellulose under oxic conditions, in addition to capturing DNA from 

microorganisms involved in anaerobic metabolism (Leschine, 1995). Indeed, recent oxic 

incubations demonstrated activity of anaerobic Clostridia (Schellenberger et al., 2010; Pinnell 

et al., 2013; Ronan et al., 2013), presumably because anoxic microenvironments exist even 

within oxic experimental microcosms. 
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Figure. 1. Carbon dioxide production for Arctic tundra (1AT; A), temperate rainforest (7TR; 

B) and agricultural (11AW; C) soils. Soil samples were amended with labeled (13C) or 

unlabeled (12C) substrates. The "control" represents a soil sample incubated without substrate. 
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Figure 2. Oxygen concentrations in soil incubations, with and without added glucose. 

Headspace was flushed with helium and amended with oxygen at weekly intervals for Arctic 

tundra (1AT; A), temperate rainforest (7TR; B) and agricultural (11AW; C) soils. 
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3.3. Confirmation of isotope labeling 

 For the two time points of all incubations (Table 1), DNA was retrieved for the analysis 

of bacterial community composition by DGGE, targeting the 16S rRNA gene V3 region 

(Green et al., 2010). Parallel 12C and 13C incubations were used to ensure that isotopic 

enrichment of nucleic acids occurred, by the demonstration of distinct fingerprint profiles in 

heavy fractions for 13C-incubated samples, but not for the corresponding 12C controls (Neufeld 

et al., 2007b). All DNA extracts from microcosm soils were subjected to density gradient 

ultracentrifugation and recovered in twelve fractions, which were visualized in agarose gels. 

Agarose gels for the one-week time points exhibited labeled DNA in 13C-incubated heavy 

fractions (e.g., fractions 1-7), compared to 12C-control fractions, for glucose, cellobiose, 

arabinose and xylose SIP incubations in temperate rainforest and agricultural soils. Labeled 

DNA for Arctic tundra soil was not clearly visualized at this time point of incubation (Figs. 3, 

5, 7, 9). The three-week time points demonstrated that all soils possessed more DNA than the 

one-week time point in 13C-incubated heavy fractions compared to 12C-control fractions, for 

glucose, cellobiose, arabinose and xylose SIP incubations (Figs. 4, 6, 8, 10). For cellulose, only 

temperate rainforest and agricultural soil incubations resulted in visible DNA in agarose gels 

corresponding to 13C-sample heavy fractions for both three and six-week time points (Figs. 

11,12) At earlier time points the labeled DNA associated with heavy fractions for 13C-

incubated samples was lower compared with the later time points. 

 Bacterial DGGE fingerprints from early time points fractions (Figs. 3, 5, 7, 9, 11) 

compared with corresponding late time point fractions, demonstrated unique patterns 

associated with the heavy fractions (e.g., fractions 1-7) for all 13C-incubated SIP microcosms 

(Figs. 4, 6, 8, 10, 12). Although some cross-gradient fingerprint variations were associated 
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with 12C control DNA, these differences were likely GC-content shifts, being pronounced only 

in the lightest fractions (e.g., fractions 10-12) and distinct from shifts associated with 

fractionated 13C DNA. Substrate- and soil-specific heavy fraction patterns were consistent for 

early and late time-point samples (Figs. 3-12), which indicated that detected active bacteria 

were consistent over time rather than changing due to food web dynamics (Neufeld et al., 

2007a).  

 Heavy DNA fingerprints were used to identify fractions containing 13C-labelled DNA for 

subsequent 16S rRNA gene sequencing, bulk DNA sequencing and functional metagenomics. 

Based on DGGE patterns, we identified fractions 5 and/or 6 as being representative of heavy 

DNA and fraction 10 as representing light DNA for all soils, substrates and incubation times 

(Figs. 4, 6, 8, 10).  
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Figure 3. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after glucose DNA-SIP incubation of arctic tundra, temperate rainforest 

and agricultural soils (1 week of incubation). Both 12C (unlabeled) incubations and 13C 

(labeled) incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels 

stained with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium 

chloride density gradient. 
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Figure 4. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after glucose DNA-SIP incubation of arctic tundra, temperate rainforest 

and agricultural soils (3 weeks of incubation). Both 12C (unlabeled) incubations and 13C 

(labeled) incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels 

stained with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium 

chloride density gradient. 
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Figure 5. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after cellobiose DNA-SIP incubation of arctic tundra, temperate rainforest 

and agricultural soils (1 week of incubation). Both 12C (unlabeled) incubations and 13C 

(labeled) incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels 

stained with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium 

chloride density gradient. 
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Figure 6. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after cellobiose DNA-SIP incubation of arctic tundra, temperate rainforest 

and agricultural soils (3 weeks of incubation). Both 12C (unlabeled) incubations and 13C 

(labeled) incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels 

stained with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium 

chloride density gradient. 
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Figure 7. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after arabinose DNA-SIP incubation of arctic tundra, temperate rainforest 

and agricultural soils (1 week of incubation). Both 12C (unlabeled) incubations and 13C 

(labeled) incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels 

stained with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium 

chloride density gradient. 
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Figure 8. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after arabinose DNA-SIP incubation of arctic tundra, temperate rainforest 

and agricultural soils (3 weeks of incubation). Both 12C (unlabeled) incubations and 13C 

(labeled) incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels 

stained with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium 

chloride density gradient. 
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Figure 9. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after xylose DNA-SIP incubation of arctic tundra, temperate rainforest and 

agricultural soils (1 week of incubation). Both 12C (unlabeled) incubations and 13C (labeled) 

incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels stained 

with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium chloride 

density gradient. 
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Figure 10. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after xylose DNA-SIP incubation of arctic tundra, temperate rainforest and 

agricultural soils (3 weeks of incubation). Both 12C (unlabeled) incubations and 13C (labeled) 

incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels stained 

with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium chloride 

density gradient. 
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Figure 11. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after cellulose DNA-SIP incubation of arctic tundra, temperate rainforest 

and agricultural soils (3 weeks of incubation). Both 12C (unlabeled) incubations and 13C 

(labeled) incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels 

stained with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium 

chloride density gradient. 
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Figure 12. Bacterial denaturing gradient gel electrophoresis fingerprints of density gradient 

fractions recovered after cellulose DNA-SIP incubation of arctic tundra, temperate rainforest 

and agricultural soils (6 weeks of incubation). Both 12C (unlabeled) incubations and 13C 

(labeled) incubations are shown. The gel strips shown beneath each DGGE are 1% agarose gels 

stained with ethidium bromide to demonstrate isopycnic separation of DNA within the cesium 

chloride density gradient. 
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3.4. Taxonomic characterization of heavy DNA 

Fractions were selected from soils, substrates and incubation times, for 16S rRNA gene 

profiling targeting the bacterial V3 region. Based on DGGE data, we selected fractions 6 

(heavy) and 10 (light) for Arctic tundra and fractions 5 (heavy) and 10 (light) for temperate 

rainforest and the agricultural soil. In addition, we sequenced 16S rRNA genes from DNA 

extracted from the initial soil samples used to establish SIP incubations, to determine whether 

light fractions resembled the original soil community as expected. Following paired-end read 

assembly, we analyzed 630,000 sequences (10,000 reads per sample) using an AXIOME 

management of QIIME (Caporaso et al., 2010; Lynch et al., 2013) and custom analyses. Beta 

diversity assessed by weighted UniFrac distances (Lopuzone & Knight, 2005) visualized 

within principal coordinate analysis (PCoA) plots showed that all samples from within each of 

the three soil treatments were clustered distinctly according to soil type (Fig. 13A), which was 

significant based on mixed-response permutation procedures analysis (MRPP; A=0.18, T=-

20.4, p<0.001). Both the Arctic tundra and temperate rainforest soil profiles clustered more 

closely to one another, which is likely a result of both soils sharing a low pH (Table 2), a major 

determinant of soil bacterial diversity and taxonomic composition (Lauber et al., 2009; 

Bartram et al., 2013). In addition, all heavy and light fraction profiles for the three soils were 

clustered distinctly (Fig. 13A), which was also highly significant (A=0.40, T=-28.3, p<0.001). 

Native soil phylogenetic profiles clustered with their respective light fractions, as was 

expected, indicating that the background bacterial community was consistent following SIP 

incubation. Although the two soil collection time points (Table 1) for some 13C-labelled 

substrates clustered together (Fig. 13B), the differences between heavy and light fractions were 

much greater than those observed between the five substrates used in this study. 
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Many taxonomic groups were affiliated with heavy DNA, light DNA and with each of 

the soil types (Fig. 13A). We used indicator species analysis (Dufrene & Legendre, 1997) with 

an indicator value (IV) threshold of 0.7 and 250 minimum sequence sum to assess the strongest 

operational taxonomic units most significantly associated with: a) all heavy DNA samples 

(versus all light DNA samples), b) all heavy DNA samples within each soil type (versus all 

light DNA for that same soil type), c) each individual substrate across all heavy DNA samples 

from all soil types (versus the heavy DNA for the other substrates from all soil types) and d) 

each substrate from within each soil type’s heavy DNA (versus the other substrates for that 

same soil type). 

When we compared OTUs associated with all heavy DNA samples versus all light 

DNA samples from all soils, the indicator species analysis revealed an overall strong presence 

of the genera Salinibacterium (Actinobacteria), Devosia (Alphaproteobacteria), 

Telmatospirillum (Alphaproteobacteria), Phenylobacterium (Alphaproteobacteria) and 

Asticcacaulis (Alphaproteobacteria) genera. Also, unclassified members of the uncultured 

Alphaproteobacteria Ellin329 were present in heavy fractions from all soils (Appendix A1, 

Fig. 14).  
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Figure 14. Indicator species associated with all heavy DNA samples from all soils. Average 

number of OTUs associated with light DNA samples (grey squares) are shown, in addition to 

the average abundance of indicator species across all heavy DNA samples (black squares). 
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The indicator species analysis from all heavy DNA samples versus all light DNA 

within each soil type showed that the predominant genera identified in heavy fractions from 

Tundra soil (1AT) were Salinibacterium (Actinobacteria), Rhodanobacter 

(Gammaproteobacteria), Conexibacter (Actinobacteria), Telmatospirillum 

(Alphaproteobacteria), Asticcacaulis (Alphaproteobacteria) and Burkholderia 

(Betaproteobacteria), unclassified members of the uncultured Alphaproteobacteria Ellin329 

and unclassified members of the orders Sphingomonadales, Acidobacteriales, 

Xanthomonadales, Solirubrobacterales, Rhodospirillales, Caulobacterales, Burkholderiales 

and Actinomycetales were also predominant in this soil (Appendix A2). The temperate 

rainforest soil (7TR) heavy DNA was dominated by OTUs classified to the genera Paucibacter 

(Betaproteobacteria), Burkholderia (Betaproteobacteria), Spirochaeta (Spirochaetes), 

Salinibacterium (Actinobacteria), Telmatospirillum (Alphaproteobacteria), Labrys 

(Alphaproteobacteria), Mesorhizobium (Alphaproteobacteria) and Phenylobacterium 

(Alphaproteobacteria). Also, members of the uncultured Alphaproteobacteria Ellin329, 

Betaproteobacteria Ellin6067, unclassified members of the orders Rhodospirillales, 

Caulobacterales, Burkholderiales, Actinomycetales, Rhizobiales and uncharacterized genera 

from other phyla such as the Verrucomicrobia were found (Appendix A2). The agricultural-

soil wheat (11AW) heavy DNA OTUs were represented by the genera Pseudomonas 

(Gammaproteobacteria), Devosia (Alphaproteobacteria), Pseudoxanthomonas 

(Gammaproteobacteria), Salinibacterium (Actinobacteria), Ramlibacter (Betaproteobacteria), 

Ochrobactrum (Alphaproteobacteria), Paenibacillus (Firmicutes) and Aeromicrobium 

(Actinobacteria) and further unclassified members of the orders Pseudomonadales, 

Rhizobiales, Caulobacterales, Actinomycetales and Burkholderiales (Appendix A2). 
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To investigate microorganisms related to the metabolism of the substrates, comparisons 

of each individual substrate across all heavy DNA samples from all soil types versus the heavy 

DNA for the other substrates from all soil types were made. The results showed that the orders 

associated with the metabolism of cellulose were dominated by Actinomycetales and 

Caulobacterales (genus Phenylobacterium; Appendix A3). Members of the 

Alphaproteobacteria were associated with the metabolism of arabinose, while members of the 

order Rhizobiales were strongly associated with the metabolism of xylose. There were no 

indicator species associated with the metabolism of glucose and cellobiose (Appendix A3). 

Comparing heavy DNA from each substrate from within each soil versus the other substrates 

for the same soil type, the predominant indicator species for the agricultural soil at the 

taxonomic level of genus associated with the metabolism of glucose was Paenibacillus 

(Firmicutes), Mezorhizobium (Alphaproteobacteria) and Devosia (Alphaproteobacteria; 

Appendix A4). The predominant indicators for cellulose in this soil were Cellvibrio 

(Gammaproteobacteria), unclassified members of the order Sphingomonadales and 

Actinomycetales (Appendix A4). In the temperate rainforest soil, the predominant order 

associated with the metabolism of cellulose was the Myxococcales (Deltaproteobacteria; 

Appendix A4). An OTU affiliated with Caulobacterales was associated with the metabolism of 

glucose in Arctic tundra. Nevskia (Gammaproteobacteria) and two OTUs affiliated with the 

Acidobacteria were associated with tundra cellulose assimilation (Appendix A4). No other 

OTUs were significant indicators for the remaining substrates (i.e., cellobiose, arabinose, 

xylose) for the three soils. 

Although our DNA-SIP incubation revealed many poorly classified indicator taxa, 

many of the indicator species associated with the heavy DNA were expected based on previous 
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studies. For example, Salinibacterium was isolated from seawater samples, frozen soils from 

glaciers (Han et al., 2003; Zhang et al., 2008) and permafrost Antarctic soil (Shin et al., 2012). 

Different species related to this genus utilize sucrose, glucose, cellobiose, D-mannose, 

melibiose, maltose, galactose, arabinose and fructose as sole carbon sources (Han et al., 2003; 

Zhang et al., 2008). Also, members of the genus Devosia were isolated from greenhouse soil 

and beach sediments. They were positive for the hydrolysis of aesculin, !-galactosidase, !-

glucosidase and N-acetyl-!-glucosaminidase. However, they also tested negative for the 

hydrolysis of CMC (Yoo et al., 2006; Lee, 2007). Phenylobacterium and Burkholderia were 

found among the most abundant taxa in Picea abis forest soils when communities derived from 

RNA were analyzed (Baldrian et al., 2012). Asticcacaulis was identified in tundra wetland 

soils from samples taken from a depth of 3-6 cm. The species belonging to this genus were 

identified as aerobic chemoorganoheterotrophs able to use glucose, sucrose, xylose, maltose, 

galactose arabinose, lactose, fructose, rhamnose and threalose among other carbon sources 

(Vasilyeva et al., 2006). The genus Spirochaeta was isolated from diverse environments, 

mainly from extremophilic aquatic environments. Some species from this genus are free-living 

saccharolytic and obligate or facultative anaerobes  (Hoover et al., 2003; Angelov et al., 2011). 

Spirochaeta americana was reported as a consumer of D-glucose, fructose, maltose, sucrose 

starch and D-mannitol (Hoover et al., 2003) and Spirochaeta thermophila was described as a 

cellulolytic organism; the study of its genome revealed a high proportion of genes encoding for 

more than 30 GHs (Angelov et al., 2011). Species from the genus Labrys were found in 

different rhizosphere habitats, degrading various monosaccharides and disaccharides as sole 

carbon and energy source (Islam et al., 2007). Additionally, Schellenberg and coworkers 

reported that in an agricultural soil (clay loam soil, pH 6.6), cellulose was metabolized by 
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Bacteroidetes, Chloroflexi and Planctomycetes; cellobiose and glucose were degraded 

predominantly by Actinobacteria (Schellenberger et al., 2010). The results also suggested that 

cellulolytic bacteria were different from saccharolytic bacteria and that oxygen availability 

defined the different taxonomic groups involved. Other study showed that under anoxic 

conditions, cellulose was metabolized by Actinobacteria, Bacteroidetes and Firmicutes; 

cellobiose and glucose were degraded by Firmicutes and members of the Burkholderiales, 

Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales and group 1 

Acidobacteria were associated with three different soils amended with cellulose (Eichorst & 

Kuske, 2012). A recent survey of active Bacteria in an Arctic tundra sample found Clostridium 

and Sporolactobacillus involved in 13C-glucose assimilation and Betaproteobacteria, 

Bacteroidetes and Gammaproteobacteria involved in the assimilation of carbon derived from 

13C-cellulose (Pinnell et al., 2013). Others have used SIP and labeled cellulose carbon to 

identify Dyella, Mesorhizobium, Sphingomonas and uncultured Deltaproteobacteria (affiliated 

with Myxobacteria) linked to cellulose degradation (el Zahar Haichar et al., 2007). 

 

3.5. MG-RAST analysis and Functional Annotation 

We used next-generation sequence analysis of bulk DNA to survey the prevalence of 

annotated glycosyl hydrolases (GHs) within three pooled samples targeted for subsequent 

functional metagenomic screens. Using the UniFrac-based PCoA plot (Fig. 13), we pooled 

heavy DNA samples representing all substrates (except cellulose) associated with low pH (i.e., 

temperate rainforest, Arctic tundra), heavy DNA for all substrates (except cellulose) from the 

agricultural soil and the cellulose-enriched DNA from the three soils. Posterior analysis of 

paired-end reads was performed by MG-RAST using annotations derived from the Swiss-
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Prot/Uniprot database. Only 19.4% (Low pH library) 19.6% (Cellulose library) and 22% 

(Agricultural library) of sequences were annotated by Swiss-Prot in MG-RAST using a 

threshold of e-value cutoff 0.01 and only a small percent of these sequences were annotated as 

GHs (Table 3), which is an important consideration for subsequent analysis of annotation data 

based on a minority of sequences. Nonetheless, using a custom perl script to convert Swiss-

Prot annotations to CAZy GH identifiers, we detected differential abundances of 81 unique GH 

families for the pooled cellulose library and 80 GH families for each of the low pH and 

agricultural soil composite libraries. The distribution of annotated GHs varied between samples 

and the most abundant families in the three pooled samples were GH1, 2, 3, 5, 9, 13, 23, 28 

and 35 (Appendix B). In addition, the three next-generation sequence datasets were very 

similar in their distributions (i.e., r > 0.99) for the three libraries and all had representation 

among GH families commonly associated with known cellulases (GH1, 3, 5, 6, 7, 8, 9, 12, 45, 

48, 61; Wang et al., 2011; Lombard et al. 2013), hemicellulases (GH 8, 10, 11, 12, 26, 28, 53, 

74; Wang et al.,2011; Lombard et al. 2013) and debranching enzymes (GH51, 54, 62, 67, 78, 

74; Lombard et al. 2013). From the GH families mentioned above, the GH families involved in 

the metabolism of cellulose that were most abundant in our data were GH families 3, 5 and 9 

(Fig. 15; Appendix B). Approximately 48% of the total GH sequences found in MG-RAST 

were annotated by Swiss-Prot and listed by CAZy database (Appendix B). Given that most GH 

family annotations were not represented by known CAZy identifiers and that only ~20% of our 

paired-end reads annotated in Swiss-Prot, the abundance and distribution of functional GH 

families in our pooled DNA is almost certainly underrepresented. As a result, we used 

functional screens of large-insert metagenomic libraries for the recovery of glycosyl hydrolases 

to circumvent these limitations of sequence-based analysis.   
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Table 3. Number of sequences with identified function categories by MG-RAST pipeline 

compared with the number of sequences annotated by Swiss-Prot and the number of glycosyl 

hydrolases annotated by MG-RAST pipeline. 

 

 

 

Library 

Sequences with 

identified functional 

categories  

Sequences annotated 

by Swiss-Prot 

database 

 

Sequences 

annotated as GH  

Low pH Forward 17,127,682 3,337,989 3,133 

Low pH Reverse 14,729,220 2,876,782 2,796 

Cellulose Forward 9,002,909 1,768,661 2,849 

Cellulose Reverse 7,999,214 1,560,613 2,533 

Agricultural Forward 12,969,405 2,978,794 2,956 

Agricultural Reverse 4,435,701 1,059,949 1,960 

Functional categories were assigned by MG-RAST pipeline using annotations given by one or 

more protein databases. Sequences annotated as GH were assigned using custom Perl scripts 

annotated by Swiss-Prot and TrEmbl databases and paired with matching GH family from 

CAZy identifiers. 
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Fig. 15 Glycosyl hydrolase families related with cellulases present in the pooled heavy DNA. 

Functional annotation of the metagenomic data reveals diverse glycosyl hydrolase (GH) gene 

representation within the pooled heavy DNA. Reads were annotated by comparison to 

sequences in the UniprotKB/Swiss-Prot database and using custom Perl scripts annotated by 

Swiss-Prot and TrEmbl databases hits were paired with matching GH family CAZy identifiers. 
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3.6. Enriched metagenomic library 

Pooled high molecular weight DNA from the 13C-cellulose enriched SIP incubations 

for the three soils were captured in cosmid libraries and screened for GHs involved in the 

degradation of cellulose and other plant-derived polymers based on activity. Multiple 

displacement amplification (MDA) increased the amount of nucleic acids derived from pooled 

cellulose DNA-SIP incubations prior to the isolation of 20-40 kb DNA fragments via pulsed 

field gel electrophoresis (PFGE). Cosmid pJC8 (Neufeld et al., 2011) was derived from the 

low copy and broad-host-range cosmid pRK7813 (Jones & Gutterson, 1987) and 

accommodates inserts of ~33 kb. To construct pJC8, recombination sequences (attL1 and 

attL2) flanking a gentamicin resistance marker were cloned into HindIII/EcoRI sites of 

pRK7813, increasing transfer efficiency of DNA from E. coli to many different bacterial hosts 

via conjugation (Neufeld et al., 2011). The cellulose-SIP metagenomic library generated 

~83,000 clones with an average insert size of ~31 kb based on restriction digestion of a subset 

of clones (Fig. 16). These results were similar to results from a library of ~10,500 clones 

generated from MDA-amplified SIP-enriched seawater DNA, which had an average insert size 

of 27 kb, ranging from 17 to 40 kb (Neufeld et al., 2008).  
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Figure 16. Size determination of inserts within the 13C-cellulose enriched metagenomic library 

in kilobases (Kb). The 13C-DNA from three soil samples were combined, MDA amplified and 

cloned into a cosmid to construct a metagenomic library. Randomly selected recombinant 

cosmids were analyzed by EcoRI/HindIII digestion. The upper shared band (denoted by “*”) 

represents the pJC8 cosmid backbone common to all clones. 
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3.7. Functional Screening 

 We used a combined functional screening approach for screening 2,876 randomly 

selected clones (i.e., ~120 bacterial genomes screened assuming 2 Mb average genome size) 

from the cellulose-enriched metagenomic library. Qualitative agar plate growth of clones using 

carboxymethylcellulose (CMC) as a substrate and Congo Red staining (Teather & Wood, 

1982) helped identify clones expressing both endoglucanase and glucosidase activities (EC 

3.2.1; Enebro et al., 2009). The results of this experiment showed two positive clones (2380 

and 2044) capable of clearing CMC (Appendix C). The same 2,876 clones were screened on 

five different methylumbelliferone-based substrates (Table 4) and six clones were identified 

with high activity on one (i.e., C122, C2194) or more than one (i.e, C424, C762, C1024, 

C1088) of these fluorogenic substrates. Substrate activity profiles of C424 and C1088 were 

very similar, as were those of C122 and C2194, suggesting that genomic DNA captured in 

these pairs of clones may have derived from the same active organism overlapping in part of 

the sequence and/or they were duplicate inserts. Another possibility is that the enzymes 

encoded in these two clones have similar activities, with a possible common conserved region. 

The restriction digestion patterns showed that these positive clones have an insert size between 

8 -21 kb (Table 4, Fig. 17) and also that C424 and 1088 had restriction sites in common. 

Therefore, it is likely that these clones contained overlapping inserts, but were not identical; 

the C122 and C2194 restriction patterns were distinct (Fig.17). Complete sequencing of these 

sequences would help clarify the relation between these two inserts. 
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Figure 17. Size determination of inserts from eight positive clones within the 13C-cellulose 

enriched metagenomic library. Recombinant cosmids were analyzed by EcoRI/HindIII/BamHI 

digestion. The upper shared band (denoted by “*”) represents the pJC8 cosmid backbone 

common to all clones. Both the 1 kb plus (L) and ! DNA digested with HindIII (!) ladders are 

shown. 
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Table 4. Substrate-specific activities of positive metagenomic clones from the 13C-cellulose 

DNA-SIP library screened on methylumbelliferone-based substrates and 

carboxymethylcellulose.  

 

Clone 

ID 

 

 

Insert 

Size 

(Kb)2 

Activity (µM MU released)1  

!-L-

arabino-

furanoside 

pyranoside 

"-D-

cellobio-

pyranoside 

"-D-

gluco-

pyranoside 

"-D-xylo-

pyranoside 

N-acetyl-

"-D-

galactos

aminide 

 

CMC3 

C122 21.6 0.4 0.2 0.6 0.7 124.2 - 

C424 8.2 0.9 57.6 109.4 1.6 0.7 - 

C762 13.5 2.4 5.4 21.2 0.7 0.4 - 

C1024 16.8 123.8 6.5 35.8 1.7 0.5 - 

C1088 11.9 0.5 25.6 79.2 1.2 0.6 - 

C2194 12.9 0.5 0.3 0.6 0.4 39.6 - 

C2380 14.9 0.38 0.46 0.53 0.41 0.40 +++ 

C2044 14.7 0.40 0.40 0.52 0.39 0.36 ++ 

1MU is methylumbelliferone units. 

2Insert size was calculated based on the restriction digestion using EcoRI/HindIII/BamHI. 

3CMC is carboxymethylcellulose; plate-based clearing (high “+++”, medium “++” and 

negative “-”) was detected by Congo Red stain and activity based on comparison to positive 

and negative controls.  



! "#!

 The high frequency of positive clones after screening 2,876 DNA-SIP-derived clones 

screened compares favorably to previous soil functional metagenomic studies reporting the 

recovery of single positive cellulose hits from screening thousands of clones. For example, a 

single cellulase and two xylanases were recovered from functional screening of 13,800 clones 

from three fosmid metagenomic libraries derived from grassland in Germany, with an insert 

size range between 19-30 kb (Nacke et al., 2012). Also, one cellulase was retrieved from the 

functional screening of 3,024 clones from a bacterial artificial chromosome metagenomic 

library derived from red soil in China, with insert sizes ranging from 25-165 kb (Liu et al., 

2011). In other case, one cellulase was recovered from functional screening of 14,000 clones 

with an average insert size of 5 kb from a metagenomic phage library from a forest soil in 

China (Wang et al., 2009). Finally, a positive clone was retrieved from a metagenomic fosmid 

library derived from wetland soil in Korea, after screening 70,000 clones with an average insert 

of 40 kb (Kim et al., 2008). Combining DNA-SIP and metagenomics helped recover soil 

glycosyl hydrolases in higher proportions than all of those reported previously via direct 

metagenomics, which demonstrates the power of using DNA-SIP as an activity-based pre-filter 

for targeted metagenomics approaches.  

 

3.8. BLAST analysis of end-sequences 

 Cosmids were profiled by Sanger sequencing with forward and reverse primers flanking 

the site of the metagenomic DNA insertion. For each clone, two end-sequences were obtained, 

referred to as “reverse” and “forward” reads. The sequences were characterized by blastx and 

tblastx. Blastx uses all six reading frames translated nucleotide sequence and compares against 

the NCBI protein database. This approach is widely used to find proteins encoded in an 



! "#!

unknown nucleotide sequence and is more sensitive than blastn because the comparison is 

made at the protein level. The tblastx analysis uses all six reading frames of a translated 

nucleotide sequence and compares against all six reading frames of a translated nucleotide 

database. This is a useful tool in the identification of novel genes because it circumvents the 

limitations of potential frameshift errors that can prevent some open reading frames from being 

detected (Altschul et al., 1990). End sequencing of positive metagenomic library hits 

demonstrated a diversity of bacterial origins in the cloned metagenomic DNA that was actively 

expressed in E. coli. Most clones had at least one end sequences with a highest match to 

Cellvibrio (Table 5), the known cellulolytic Gammaproteobacteria (Mergaert et al., 2003). 

Also, two sequences matched with Sorangium cellulosum, a cellulose degrader within the 

Deltaproteobacteria (Lampky, 1971). Other important matches included Saccharophagus 

degradans, Dyadobacter fermentans, Alicyclobacillus acidocaldarius and Chthoniobacter 

flavus (Table 5). Although these bacteria were not well studied, it was reported that they use 

cellulose and other carbohydrates as a carbon source and/or they contained glycosyl hydrolases 

encoded in their genome (Taylor et al., 2006; Lang et al., 2009; Cheng et al., 2011, Kant et al, 

2011). As predicted, the end sequence identities for C424 and C1088 were very similar 

taxonomically (i.e., Cellvibrio sp.). On the other hand, end-sequence data for C122 and C2194 

did not suggest a similar genomic origin (Table 5). Posterior analysis of reverse and forward 

end-sequences of the positive clones was done by comparing end sequences to Illumina 

forward and reverse reads from whole genome sequencing of the three SIP libraries. The 

results showed that the majority of end-sequences were represented in the cellulose library, as 

expected, and only few sequences matches were found in other libraries using the selected 

threshold (Table 6). 
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Table 6. Sequence matches for forward and reverse cosmid end sequences against whole 

genome paired-end Illumina data for the three SIP libraries. 

!
 
Clone 

Low pH 
forward 

Low pH 
reverse 

Agricultural 
forward 

Agricultural 
reverse 

Cellulose 
forward 

Cellulose 
reverse 

C122 forward 0 0 1 4 4 1 

C122 reverse 1 0 2 0 7 4 

C424 forward 0 0 2 0 0 0 

C424 reverse 0 0 0 0 2 1 

C762 forward 0 0 0 0 3 3 

C762 reverse 0 0 0 0 2 0 

C1024 forward 0 0 0 0 0 1 

C1024 reverse 0 0 0 0 1 0 

C1088 forward 0 0 0 0 1 0 

C1088 reverse 0 0 0 0 2 3 

C2194 forward 1 0 1 2 0 1 

C2194 reverse Failed 
sequencing 

reaction 

Failed 
sequencing 

reaction 

Failed 
sequencing 

reaction 

Failed 
sequencing 

reaction 

Failed 
sequencing 

reaction 

Failed 
sequencing 

reaction 
C2380 forward 0 0 0 0 1 1 

C2380 reverse 0 0 0 0 4 4 

C2044 forward 0 0 0 1 7 3 

C2044 reverse 0 0 0 0 0 0 
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4.0.Conclusions and future research 
 
This research used DNA-SIP and metagenomics to recover novel glycosyl hydrolases from the 

microbial communities present in multiple Canadian soils. Using DNA-SIP, I was able to 

identify groups of microorganisms able to assimilate carbon from carbohydrates such as 

glucose, cellulose, arabinose and xylose. These organisms were studied using labeled 

substrates and confirmed the recovery of labeled fractions using DGGE and next-generation 

sequencing. Heavy DNA enrichment patterns were found in all samples incubated with 13C-

labelled substrates, revealing microorganisms active in plant-derived carbohydrate 

assimilation. The use of high throughput sequencing of the 16S rRNA gene marker confirmed 

that heavy DNA was distinct from light DNA in all cases. These heavy DNA samples were 

valuable data for proceeding with functional metagenomics for the recovery of novel glycosyl 

hydrolase genes for potential industrial applications.  

 The analysis of whole genome sequencing yielded multiple glycosyl hydrolase 

annotations, suggesting that cosmid library screens successfully recovered diverse GH genes 

from active microorganisms. Studies in metagenomics reveal that analysis of low complexity 

communities is ideal for acquiring knowledge about community structure, function and 

adaptation (Williamson & Yooseph, 2012). Soil microbial communities are considered the 

most complex due to the diversity of the microorganisms that inhabit enormous spatial 

heterogeneity (Torsvik & Øvreås, 2002; Mocali & Benedetti, 2010). Therefore, information 

related with soil metagenomic studies is poor compared with the information from other 

environments (Williamson & Yooseph, 2012). Although metagenomics has revolutionized the 

study of microbial ecology, there are still many challenges that need to be addressed in the 

future using this technology (Williamson & Yooseph, 2012). 
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 My first hypothesis was to test whether combining metagenomics and stable-isotope 

probing (SIP) would lead to the identification of novel enzymes and microorganisms. The 

original hypothesis was confirmed by the results obtained in this research. The presence of 

novel genera of bacteria was shown in all soils. DNA sequence data suggested the presence of 

different GH families from cellulases, hemicellulases and debranching enzymes as well as a 

large group of uncharacterized GHs not present in CAZy database. Also, preliminary analysis 

in BLAST and CAZy from groups of contigs generated by ion torrent sequencing from the 

positive clones obtained, showed the presence not only of GHs, but glycosyl transferases (GT) 

and CBM enzymes involved in the metabolism of carbohydrates. Notably, many of them 

showed no similarities to GHs (data not shown). 

 My second hypothesis tested if the recovery of screened target enzymes from a combined 

DNA-SIP and metagenomics approach will be higher than by conventional metagenomics. 

This hypothesis was accepted because we recovered multiple enzymes from 2,876 clones 

screened, while all previous soil studies screened many more clones (10,000 to 70,000) than 

this study to recover single cellulases (Wang et al., 2009; kim et al., 2008; Liu et al., 2011; 

Nacke et al., 2012). My screening of 2,876 clones represents only an initial survey of the 

83,000 clones generated in our cellulose-enriched library and I anticipate many more recovered 

enzymes if further screening is done on this one SIP-enriched metagenomic library.  

My research has demonstrated the possibility of scaling DNA-SIP analysis for the interrogation 

of multiple environmental samples with multiple substrates, sampling at multiple time points. 

The utility of this pre-filter step prior to constructing metagenomic libraries was evident by the 

high proportion of positive clones with screening of a small proportion of the total clones 

available.  
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Combining SIP and metagenomics may also be useful in assigning metabolic function to both 

abundant microorganisms and low-relative abundance organisms that comprise the “rare 

biosphere” of soils. The rare biosphere comprises the microorganisms that are in low-relative 

abundance and can be detected by high-throughput sequencing (Lynch et al., 2012). Based on 

the results obtained, many uncharacterized OTUs were represented in the indicator species 

OTUs associated with heavy DNA. Regardless of initial abundance, DNA-SIP can characterize 

microorganisms that are active in metabolizing specific substrates (Neufeld et al., 2007b). 

Afterwards, metagenomics can aid with characterization or identification of the 

microorganisms involved in the metabolism of the substrate used. Importantly, indicator 

species analysis applied to heavy DNA can help circumvent the possibility that sequencing 

errors and chimeras may be common among detected rare biosphere members (Reeder & 

Knight, 2009; Lynch et al., 2012). 

 Future research will involve sequencing and assembly of inserts, as well as transposon 

mutagenesis and sub-cloning experiments for identifying the specific genes encoding glycosyl 

hydrolases responsible for the activity detected in my screens, as well as assessing their 

phylogenetic placement. Also, studies of protein expression will be helpful because many of 

the novel sequences will not have any representation in Genbank. Therefore, protein sequence 

and structure characterization will complement the results obtained in this work using SIP and 

metagenomics. 

 Also, screening additional inserts from the 13C-cellulose DNA-SIP library and libraries 

from the other pooled heavy DNA samples, will be important for comparison of these multiple 

heavy DNA pooled samples for maximizing novel glycosyl hydrolase gene recovery expanding 

the recovery of glycosyl hydrolases from these active and uncultivated soil bacteria and to 
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assess the bias introduced by the bacterial expression host, given that all of the positive clones 

recovered in this initial screen were not active in an alternative bacterial host (i.e., 

Sinorhizobium meliloti; data not shown).  

 This work demonstrated the power of combining functional metagenomics and DNA-SIP 

analysis for analyzing diverse environmental samples amended with multiple plant-derived 

carbon substrates, sampling at multiple time points. Using high-throughput sequencing of 16S 

rRNA genes of 13C-enriched samples allowed the identification of multiple GHs. MDA of 13C-

labelled metagenomic DNA circumvented the problem of low DNA concentration. A high-

quality cosmid library with an average insert 31 kb was constructed and screening of GHs from 

a small set of clones exhibited the value of these combined techniques for functional 

metagenomics research. 
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Appendix  

Appendix A: Indicator species results  

Tables A1 to A4 can be obtained upon request:  

A1. Indicator species results comparing heavy DNA samples versus light DNA samples from 

all three soils (1AT, 7TR, 11AW) using an indicator value threshold of 0.7 and a 250 sequence 

minimum sum. The number of OTUs is represented for each treatment as well as the sum of all 

columns. A representative OTU sequence is shown. 

 

A2. Indicator species results comparing heavy DNA samples versus light DNA samples from 

Tundra soil (1AT), Temperate rainforest soil (7TR) and Agricultural soils (7TR), using an 

indicator value threshold of 0.7 and a 250 sequence minimum sum. The number of OTUs is 

represented for each treatment as well as the sum of all columns. A representative OTU 

sequence is shown. 

 

A3. Indicator species results when comparing individual substrates versus the other substrates 

from heavy DNA samples from all three soils (1AT, 7TR, 11AW) using an indicator value 

threshold of 0.7 and a 250 sequence minimum sum. The number of OTUs is represented for 

each treatment as well as the sum of all columns. A representative OTU sequence is shown. 

 

A4. Indicator species results when comparing individual substrates versus the other substrates 

from heavy DNA samples within each soil (1AT, 7TR,11AW) using an indicator value 

threshold of 0.7 and a 250 sequence minimum sum. The number of OTUs is represented for 

each treatment as well as the sum of all columns. A representative OTU sequence is shown  
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Appendix B 
 
Number of glycosyl hydrolase families present in the pooled heavy DNA of three soils. 
 

GH  
Families 

Low pH 
forward 

Low pH 
reverse 

Agricultural 
forward 

Agricultural 
reverse 

Cellulose 
forward 

Cellulose 
reverse 

GH1 116 119 106 68 107 105 
GH2 68 63 63 52 63 56 
GH3 99 97 100 72 93 85 
GH4 11 9 14 13 8 10 
GH5 76 71 85 41 87 79 
GH6 13 11 11 7 13 13 
GH7 18 9 18 2 28 28 
GH8 13 13 12 9 12 11 
GH9 61 55 49 33 59 51 

GH10 40 39 38 24 39 38 
GH11 28 24 25 18 30 31 
GH13 136 121 132 100 127 126 
GH14 8 5 9 2 8 6 
GH15 12 10 8 5 11 10 
GH16 20 16 17 8 21 19 
GH17 26 17 15 8 14 14 
GH18 10 7 7 5 9 9 
GH20 26 21 21 9 16 18 
GH22 10 4 1 1 8 1 
GH23 197 146 191 140 149 141 
GH24 9 8 14 7 7 6 
GH25 4 3 4 1 4 4 
GH26 8 8 7 5 8 7 
GH27 30 29 24 16 23 21 
GH28 61 44 35 11 48 37 
GH29 14 14 13 10 14 11 
GH30 6 4 4 1 4 6 
GH31 41 35 39 21 39 29 
GH32 32 24 41 25 26 24 
GH33 11 10 13 4 18 10 
GH34 2 4 1 0 2 2 
GH35 60 54 40 13 47 39 
GH36 10 10 8 8 7 8 
GH37 49 46 45 34 46 32 
GH38 18 13 10 6 17 12 
GH39 3 3 2 0 2 3 
GH42 6 6 6 6 6 6 
GH43 1 1 1 1 1 1 
GH44 1 1 1 1 1 1 
GH45 3 3 2 0 4 4 
GH46 3 2 3 1 4 4 
GH47 23 16 19 6 26 21 
GH48 5 5 5 5 5 5 
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GH  
Families 

Low pH 
forward 

Low pH 
reverse 

Agricultural 
forward 

Agricultural 
reverse 

Cellulose 
forward 

Cellulose 
reverse 

GH1 116 119 106 68 107 105 
GH2 68 63 63 52 63 56 
GH3 99 97 100 72 93 85 
GH4 11 9 14 13 8 10 
GH5 76 71 85 41 87 79 
GH6 13 11 11 7 13 13 
GH7 18 9 18 2 28 28 
GH8 13 13 12 9 12 11 

GH49 3 3 3 2 4 3 
GH50 2 2 2 1 2 1 
GH51 16 15 12 9 14 14 
GH52 0 0 0 0 0 0 
GH53 8 7 4 3 7 6 
GH54 8 7 7 3 8 8 
GH55 2 1 2 0 2 1 
GH56 1 2 4 2 7 3 
GH57 7 6 7 6 7 6 
GH58 2 2 2 1 1 1 
GH61 2 2 2 0 3 4 
GH62 6 6 7 4 7 7 
GH63 6 3 2 1 3 3 
GH64 1 1 1 1 2 1 
GH65 7 7 4 2 7 5 
GH66 5 1 4 4 4 2 
GH68 4 4 10 10 2 3 
GH71 1 1 0 0 2 0 
GH73 4 5 3 1 5 5 
GH74 10 10 10 10 10 10 
GH76 4 4 3 0 4 4 
GH77 11 11 10 7 9 8 
GH79 5 6 2 4 2 3 
GH81 2 2 4 0 4 4 
GH82 2 1 0 0 1 1 
GH83 2 2 3 1 2 3 
GH84 1 0 1 0 1 1 
GH85 0 1 1 0 1 1 
GH88 1 0 1 1 1 1 
GH89 1 1 1 0 1 1 
GH95 3 3 3 2 3 3 
GH96 2 1 2 2 2 2 
GH99 6 4 4 1 5 3 

GH102 0 2 2 0 0 2 
GH103 2 2 2 2 2 2 
GH104 2 2 2 2 2 0 
GH105 1 1 1 1 1 0 
GH109 4 4 4 3 3 4 
GH110 7 7 5 3 3 3 
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GH  
Families 

Low pH 
forward 

Low pH 
reverse 

Agricultural 
forward 

Agricultural 
reverse 

Cellulose 
forward 

Cellulose 
reverse 

GH1 116 119 106 68 107 105 
GH2 68 63 63 52 63 56 
GH3 99 97 100 72 93 85 
GH4 11 9 14 13 8 10 
GH5 76 71 85 41 87 79 
GH6 13 11 11 7 13 13 
GH7 18 9 18 2 28 28 
GH8 13 13 12 9 12 11 

GH116 4 3 3 1 3 3 
Others* 

Total 
1,590 
3,133 

1,454 
2,796 

1,557 
2,956 

1,071 
1,960 

1,441 
2,849 

1,257 
2,539 

 
* Others represent the sequences that annotated for GHs but are not listed in CAZY. 
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Appendix C. Functional screening of positive clones with carboxymethylcellulose (CMC) as 

substrate. Clone C2380 (left) and C2044 (right) showed a clearing zone after staining with 

Congo Red.  

 


