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Abstract

This work is concerned with the theoretical development of dynamic equations for gy-

roelastic systems which are dynamic systems with four basic types of continuous mechanical

influences, i.e. inertia, elasticity, damping, and gyricity or stored angular momentum. As-

suming unrestricted or large attitude changes for the axes of the gyros and utilizing two

different theories of elasticity, i.e. the classical and micropolar theories of elasticity, the

energy expressions and equations of motion for the undamped classical and micropolar gy-

roelastic continua are derived. Whereas the micropolar gyroelastic continuum model with

extra coefficients and degrees of freedom is primarily developed to account for the asym-

metric elasticity, it also proves itself to be more comprehensive in describing the actual

gyroscopic system or structure.

The dynamic equations of the general three-dimensional gyroelastic continua are re-

duced to the case of a one-dimensional gyroelastic continua in the three-dimensional space,

i.e. three-dimensional gyrobeams. Two different gyrobeam models are developed, one

based on the classical beam torsion and bending theories and one based on the simplified

micropolar beam torsion and bending theories. Finite element models corresponding to

the classical and micropolar gyrobeams are built in MATLAB® and used for numerical

analysis.

The classical and micropolar gyrobeam models are analyzed and compared, against the

earlier gyrobeam models developed by other authors and also against each other, through

numerical examples. It is shown that there are significant differences between the developed

unrestricted classical gyrobeam model and the previously derived zero-order restricted

classical gyrobeam models. These differences are more pronounced in the shorter beams

and for the transverse gyricity case. The results also indicate that the unrestricted classical

and micropolar gyrobeam models behave very diversely in a wide range of micropolar elastic

constants even where the classical and micropolar elasticity models coincide.

As a foundation for development of the above-mentioned theories, the correct approach

for simplification of the micropolar elasticity to the classical elasticity, the simple torsion

and bending theories for micropolar beams, and the correct approximation of infinitesimal

rotations or microrotations are derived and presented.
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Chapter 1

Introduction

1.1 A historical overview of gyroelastic systems

With the general trend towards larger and lighter (and hence, more flexible) spacecraft,

of which some have been proposed that may extend up to a kilometer in length and

breadth, spacecraft shape and pose control problems have become increasingly important.

An example of such spacecraft (usually very large truss structures with regular repetitive

lattices) is shown in Figure 1.1. Generally, for such flexible spacecraft, three classes of

control problems can be characterized; motion control (path tracking), attitude control,

and shape control.

For stabilization (passive control) and attitude/shape control (active control) purposes,

using “angular momentum devices” or “stored angular momentum”, i.e. “momentum

wheels” (having an angular momentum vector with fixed direction and time-varying magni-

tude) and “control-moment gyros” or “gyroscopes” (having an angular momentum vector

with fixed magnitude and time-varying direction), mounted on rigid or flexible parts of

spacecraft has been an attractive strategy due to abundantly available solar energy for

actuator operation. Indeed, there are many advantages to using angular momentum de-

vices (momentum wheels or control moment gyros) instead of force devices (thrusters) for

controlling the spacecraft; they are efficient, light-weight, linear, and clean actuators which
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Figure 1.1: Conceptual schematic of a Solar Power Satellite (SPS) [1].

can be operated with accessible solar energy, do not need to be refueled, need very low

power to apply considerable moment, and need relatively little maintenance. However, it

is worthwhile to note that moment actuators are not applicable for path tracking control of

spacecraft and force actuators are essential for this purpose. Generally, angular momentum

devices can provide moment actuation to complement the force actuation of thrusters.

In this document, angular momentum devices will be referred to by the more general

term “gyro” (an actively controlled device which has an angular momentum vector with

time-varying magnitude and direction) and this work will be concerned with the dynamics

of flexible space structures which use the gyros for stabilization and attitude/shape control.

Attempts to use spin-stabilizing of orbiting satellites began in 1958 with Explorer I

(the first satellite of the United States) [2,3]. Later, gyroscopic stabilization was extended

further by the appearance of dual-spin spacecraft (gyrostat) and three-axis stabilized satel-

lites [2]. Dynamics, control, and stability analysis of flexible spacecraft with spinning

parts, often called gyroscopes, using discrete-coordinate representations, can be found in

the works of Meirovitch et al. [4–7]. Likins, Gale, Cherchas, Hughes, and Sharpe [8–12]

have also made considerable advances in this field. The space structures containing a/some

gyro(s) as discrete stored angular momentum are referred to as “gyroscopic systems”.

Aubrun and Margulies [13] addressed the use of actively controlled distributed gyros,
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referred to as gyrodampers, for active vibration control of large structures. Considering the

achievable damping factors, they showed the superiority of using many small gyrodampers

to the use of one large gyrodamper. Hablani and Skelton [14,15] investigated the effect of

stored angular momentum, labeled as “gyroscopicity”, on the characteristics of a flexible

vehicle. D’Eleuterio and Hughes [2, 16] proposed the term “gyricity” for stored angular

momentum in a flexible spacecraft and introduced the idea of flexible spacecraft with

four basic types of mechanical influences, i.e. inertia (mass), elasticity (stiffness), damping

(dissipation), and gyricity (gyroscope) influences. These factors can be modeled as both

lumped parameters and distributed parameters. The space structures ideally modeled

as systems with continuous distributions of inertia, elasticity, damping, and gyricity are

referred to as “gyroelastic systems”.

Figure 1.2: Schematic of a very large lattice structure [17] with the potential of housing a

gyro in each lattice.

For clarity of the (continuous) gyroelastic systems idea, consider a very large truss

structure with repetitive regular lattices. To avoid the complexity of working with a

huge number of (thousands of) ordinary differential equations such a structure is usually

idealized as an equivalent continuum with distributed parameters (continuous distributions
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of inertia, elasticity, and damping) which will result in a few partial differential equations

of motion [18]. Now assume that every lattice of this truss structure houses a small gyro

at its center, and therefore, the structure possesses many (thousands of) gyros or angular

momentum devices (see Figure 1.2). In the same way, to facilitate the dynamic analysis,

these many gyros can be ideally treated as a distributed parameter, i.e. a continuous

gyricity (stored angular momentum) distribution, and the real system can be modeled as an

ideal (continuous) gyroelastic body (gyroelastic continuum or more briefly gyrocontinuum).

In this way, it is assumed that every infinitesimal element of the equivalent continuum

houses its own gyro and the gyricity is treated as a time-varying field quantity (similar to

the commonly-time-invariant inertia, elasticity, and damping field quantities).

o

3

o x

1

o x

2

o x

Figure 1.3: A gyroelastic beam.

An example of ideal gyroelastic systems, i.e. a gyroelastic beam or more briefly a gy-

robeam, is shown in Figure 1.3 where the depicted discrete gyros are symbolic and represent

the continuous gyricity distribution over the beam. It is noteworthy that the continuous

gyroelastic continua (which is indeed an idealization of the real discrete gyroscopic struc-

ture) can be analyzed using either a continuous technique (such as the Fourier method)

or a discrete technique (such as the finite element method). In addition, keep in mind

4



that (like every new idea) whereas the gyroelastic systems seems not to be realistic at the

moment, there is the possibility that such systems become common as communication and

solar power satellites in future. Indeed, the idea of gyroelastic systems is one of those cases

when theory precedes the experiment.

The previous work on gyroelastic systems can be reviewed better by categorizing these

systems based on the approaches utilized for modeling them. Recalling that the two

essential parts of every gyroelastic system are elastic body and gyros (gyricity) distribution,

the key parameter for categorizing the models of gyroelastic systems will be the methods

and assumptions used for modeling the elasticity and gyricity.

The most popular theory for treating an elastic body (a continuum) is the linear “classi-

cal” (conventional) theory of elasticity, suitable for symmetric stress-strain analysis. How-

ever, a more complete theory is the linear “micropolar” (Cosserat) theory of elasticity,

useful for asymmetric stress-strain analysis. This asymmetric theory of elasticity is spe-

cially desirable for modeling the gyroelastic systems where an asymmetric stress tensor is

expected due to the presence of gyricity which results in a volume moment distribution

over the elastic body. Whereas there are other elasticity theories, the linear classical and

micropolar theories of elasticity will be used in this thesis for modeling the elastic body of

gyroelastic systems. These two theories will be explained in more detail in Chapter 2.

On the other hand, the gyros can be treated in two different ways. One way is to

assume that the axis of the gyros’ spinning wheel rotates (with respect to the elastic body)

just through very small angles; this results in the linear or “restricted” equations of motion

after neglecting the higher order terms (note that there is no limit on the spin rotation of

gyros’ wheels around their axes of rotation). The other way is to consider no restriction

on the rotation angles (i.e. rotation angles of the wheel axis and spin rotation of the wheel

around this axis); this gives rise to the general or “unrestricted” equations of motion.

Consequently, four categories can be characterized for gyroelastic systems; “restricted

classical gyroelastic systems”, “restricted micropolar gyroelastic systems”, “unrestricted

classical gyroelastic systems”, and “unrestricted micropolar gyroelastic systems”. As an

example, unrestricted micropolar gyroelastic systems or unrestricted micropolar gyrocon-

tinua are those in which linear micropolar theory of elasticity is utilized for modeling the
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elasticity and the gyros’ rotation angles are considered to be unrestricted (large).

The work on “restricted classical gyroelastic systems” has been mostly done by Hughes,

D’Eleuterio, and Damaren. D’Eleuterio and Hughes [2, 16, 19] examined the dynamics of

gyroelastic systems (bodies with continuous distributions of inertia, elasticity, and gyricity)

with a time-invariant distribution of gyricity and no dissipation. Their analysis contained

two main classes; constrained dynamics and unconstrained dynamics. For each class, the

equations of motion were derived, modal analysis was carried out, and the gyricity effect on

vibrational frequencies and mode shapes was investigated. The modal parameters (modal

coefficients), i.e.integrals of the mode shapes, were attained and a series of modal identities,

which these modal parameters should satisfy, were proved.

D’Eleuterio and Hughes found that for a nonspinning unconstrained gyroelastic system

(gyroelastic vehicle) the unconstrained motion can be described in terms of constrained

modal parameters and such a vehicle can exhibit a scleromorphic mode (pseudorigid mode)

with zero frequency and nonzero strain energy. In this mode, the gyroelastic vehicle ro-

tates uniformly while having a deformed state [20, 21]. It is worthwhile to note that for

unconstrained gyroelastic systems it was assumed that the orbital reference frame can be

taken as inertial.

A series of numerical examples (elastic structures containing a/some flexible rod(s)

with distributed gyricity) were presented by D’Eleuterio and Hughes to demonstrate the

theoretical results [2,16,19–21]. Usually in these examples, the Rayleigh-Ritz method was

utilized to obtain an approximate solution for the equations of motion (a set of partial

differential equations). Moreover, D’Eleuterio derived the equations of motion of a gyroe-

lastic vehicle from the force equilibrium (balance) equations of continuum mechanics and

verified the equations previously obtained from the Newtonian mechanics and Hamilton’s

principle [22].

Damaren and D’Eleuterio [23,24] extended the work to the case of lightly damped (lin-

ear viscous damping) gyroelastic continua and obtained the governing equations of motion.

They used a first-order perturbation approach to find the eigenvalues and eigenfunctions

of this system. In addition, using the results of the modal analysis and a modal expansion

of the Riccati operator, they found the controllability conditions of gyroelastic systems
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and solved the optimal control problem of these systems. The theoretical results were

illustrated using a numerical example, i.e. a gyroelastic plate. They considered a gyricity

distribution with time-varying direction and constant magnitude, for the control problem.

The variation in direction of gyricity distribution was assumed to be small enough, that

the governing equations of motion were linearizable. In other words, a distribution of con-

trol moment gyros was considered in which angular displacements of the gyros’ axis were

small. Results showed the effectiveness of the gyricity distribution for active shape control

of flexible spacecraft in addition to passive shape control or shape stabilization.

Controllability and observability of the gyroelastic continua were studied further by

Damaren and D’Eleuterio [25] and the concept of gyroelastic nodes and its relation to

sensor locating were investigated. The modal parameters were used for expressing the con-

trollability and observability conditions and it was mentioned that the results can be used

for determination of the minimum number of required sensors and the optimal distribution

of actuators. The bending of a uniform free-free rod was presented as a numerical example.

Also, using a modal approximation method and considering a quadratic performance index,

optimal control of gyroelastic systems was examined by Damaren and D’Eleuterio [26]. The

optimization of actuators placement was addressed and simple examples, i.e. the classical

gyroelastic beam and plate, were used for illustration of the results.

The dynamics and stability of a special case of the gyroelastic systems, i.e. an Euler-

Bernoulli beam containing a single tip-rotor, was studied by Yamanaka et al. [27, 28].

Using the Rayleigh-Ritz approximate solution for the equations of motion, stability, static

instability (divergence) and dynamic instability (flutter) regions were obtained and the

possibility of gyroscopic stabilization was examined. Analogous analyses for cantilevered

thin-walled beams with a tip-rotor were carried out by Song, Kwon, and Librescu [29–32].

Zee and Heppler [33] and Yamanaka et al. [34] examined the dynamics of a gyroelastic

beam in which both the magnitude and direction of the gyricity distribution may vary in

time and throughout the body. Again, the variation in direction of distributed gyricity was

assumed to be small. Numerical examples were focused on the vibrational response of a

gyroelastic beam to a gyricity distribution with ramped-up magnitude and fixed direction.

Peck and Cavender [35,36] proposed that embedded angular momentum could be used
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for structural adaptation, e.g. frequency shifting, modal coupling/decoupling, damping

redistribution, steady-state deflection, and phase adjustment. They performed experiments

on a testbed (2003 MSC/LOS) for validation of their results.

Whereas there are numerous papers on restricted classical gyroelastic systems, there

is only one preliminary paper on “restricted micropolar gyroelastic systems”. The idea of

a micropolar gyroelastic system, i.e. a micropolar (Cosserat) continuum with lots of very

small gyros, called a gyrocontinuum, was proposed by Brocato and Capriz [37]. Considering

some simplifying assumptions and using an unusual notation (for solid mechanics), they

derived the kinetic energy and inertia expressions and balance laws (i.e. conservation of

mass and balance of momentum) for such a continuum. However, the examples provided

by them illustrated the simple case of the linear elastic classical material containing a time-

invariant gyricity distribution (i.e. gyros with fixed axis and constant spin rate), which was

previously addressed by D’Eleuterio and Hughes [2, 16].

Finally, it is noteworthy that to the best of the author’s knowledge there is no work on

“unrestricted classical and micropolar gyroelastic systems”.

1.2 Thesis objectives and scope

As can be concluded, in almost all of the previous works, despite the existence of a vol-

ume (body) moment distribution over the elastic body (due to the gyricity distribution)

which results in an asymmetric stress tensor, the linear theory of classical (conventional,

symmetric) elasticity has been used for modeling the elasticity in the gyroelastic systems.

In these works, the volume moment distribution has been substituted by an equivalent

volume force distribution producing the same displacement field. Therefore, there has not

been any source for generating the asymmetry in the stress tensor. There is one paper by

D’Eleuterio [22] which has briefly mentioned the asymmetry of the stress tensor, and there

is one paper by Brocato and Capriz [37] which has suggested the idea of the micropolar

gyrocontinua. However, in the former, due to considering a very simple theory of asym-

metric elasticity with the classical constitutive relation (relating the symmetric portion of

the stress tensor to the symmetric strain tensor), the effect of this asymmetry has been in-
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cluded as an effective volume force and the results obtained previously (using the theory of

symmetric classical elasticity and the concept of equivalent volume force distribution) have

been repeated. The latter paper is unclear due to not using the usual notation of solid me-

chanics and not providing any example illustrating the attained results for the micropolar

gyrocontinua. Hence, the first goal of this thesis is to utilize the more advanced theory of

asymmetric elasticity, i.e. linear theory of micropolar (Cosserat) elasticity, for the deriva-

tion of the dynamic equations of gyroelastic continua, and to compare this formulation to

that obtained from the classical theory of elasticity.

In addition, the previous works in the field of gyroelasticity have been based on assump-

tions of small deformations for the elastic body and small attitude changes for the gyros’

axis which lead to restricted linearized equations of motion. In this thesis, while keeping

the assumption of small elastic deformations, formulating the general (unrestricted) equa-

tions of motion for gyroelastic systems, when the rotation angles of gyros’ axis are not

small, is taken as the second goal.

The final goal is to study and compare the behaviors of the so-obtained unrestricted

classical and micropolar gyroelastic continua which will be done via the numerical analysis

of gyroelastic beams as a case study.

To sum up, it can be said that the focus of this thesis is on the development and anal-

ysis of ideal continuous gyroelastic models (or gyrocontinuum models) without studying

the relationship between the practical or realistic discrete gyroscopic systems (structures)

and these idealized continuous models, which is the concern in an “equivalent continuum

modeling” or “equivalent continuous modeling”.

1.3 Thesis overview

The work is arranged into seven chapters. After this chapter (Chapter 1), containing the

introduction and the literature review, the background theories needed for the derivation

of the gyroelastic continua equations of motion, i.e. the general classical and micropolar

elasticity theories, dynamics of a gyro, and Hamilton’s principle are reviewed in Chapter 2.

The energy expressions and dynamic equations of general three-dimensional classical and
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micropolar gyroelastic continua are derived in Chapter 3. As a simple case of gyroelastic

continua, the three-dimensional classical and micropolar gyroelastic beams are addressed in

Chapter 4 where, in addition to the energy expressions and dynamic equations, the nondi-

mensionalization and finite element discretization of the dynamic equations are presented.

By implementing the finite element discretized models in MATLAB®, the classical and

micropolar gyroelastic beams are numerically analyzed and compared during Chapters 5

and 6. Finally, the summary of the work, conclusions, and future work recommendations

are given in Chapter 7.

Affixed to these chapters, there are six appendices which provide the extra information

to support the main chapters’ theories. A detailed review of the micropolar elasticity the-

ory, its associated apparent inconsistencies, and the correct approach for its simplification

to the classical elasticity theory are given in Appendix A. As one of the key subjects of this

work, the kinematics of rotating frames and bodies is reviewed in Appendix B where the

main focus is on the kinematics of infinitesimal rotations and the correct approximation of

them. A better understanding of the herein-developed micropolar beam torsion and bend-

ing theories is provided in Appendix C where the statics and dynamics of micropolar elastic

beams (without any gyricity distribution) are numerically analyzed. The Euler-Bernoulli

gyroelastic beam model, as a reference for investigation of current author’s classical and

micropolar gyroelastic beam models, is constructed and verified in Appendix D. As a

groundwork for future work on the effects of the gyricity distribution shape, a few gyroe-

lastic beams with non-uniform gyricity distributions are quickly presented in Appendix E.

Finally, Appendix F provides the conventions and definitions for the notations and symbols

used in this text.

10



Chapter 2

Background Theories

2.1 Introduction

As mentioned before, the essential parts of a gyrocontinuum are the elastic body and

the gyricity distribution. Therefore, studying them is a preliminary step for derivation

of the gyrocontinuum dynamic equations. This chapter is devoted to the preparation of

this background study. More precisely, the theories of elasticity utilized in this thesis to

represent the elasticity of a gyrocontinuum are reviewed and useful equations are derived.

Then, dynamics of a gyro mounted in a body element as a representation for the gyricity

distribution is taken into account and the corresponding equations are developed. Finally,

application of Hamilton’s principle and the calculus of variations for dynamic formulation

of a general continuous mechanical system is studied.

2.2 Theories of elasticity

When dealing with an elastic system, one of the most important steps in the derivation

of the equations of motion is selection of the proper theory of elasticity. The theory of

elasticity is utilized to relate the stress field, external force/moment distributions, defor-

mation (strain) field, and displacement field to each other. It makes it possible to obtain

11



dynamic partial differential equations (PDEs) in terms of just the displacement field vari-

ables and external force/moment distributions. Selection of the proper theory of elasticity

must be made based on the nature of deformation (small or large deformation, depen-

dent or independent rotation field), the material properties (linear or nonlinear, isotropic

or anisotropic), and the nature of the stress (symmetric or asymmetric, force stress or

force/couple stress).

The most popular elasticity theory is the classical theory of linear elasticity [38–41]

in which strain terms are small compared to unity, and the microrotation field vector

is dependent on the displacement field vector. In addition, it is assumed that internal

interactions between neighboring elements of an elastic body occur only by means of the

force stress (or simply stress) vector (elements of the stress tensor related to an interface

form the stress vector at any point). These assumptions lead to symmetric stress and

strain tensors and hence, this theory is also known as the symmetric theory of elasticity.

Actually, in the classical theory of elasticity, the presence of a volume moment distri-

bution over the elastic body will result in an asymmetric stress tensor. For such a case,

the conventional (or classical) constitutive law, relating the symmetric part of the stress

tensor to the symmetric strain tensor, can be utilized to determine the symmetric part

of the stress tensor. However, there will be no constitutive relation for determining the

antisymmetric (or skew-symmetric) part of the stress tensor. Instead, this antisymmet-

ric part can be determined from the angular momentum balance equation, relating the

antisymmetric part of the stress tensor to the volume moment distribution. Taking into

account the linear momentum balance equation, decomposing the stress tensor into its

symmetric and antisymmetric parts, and using the angular momentum balance equation

to substitute the antisymmetric part, the effect of the volume moment distribution will

appear as an effective (equivalent) force in the linear momentum balance equation. Hence,

the antisymmetric part of the stress tensor will not appear directly in the equations of

motion. This extended form of the classical theory of elasticity, in which a volume moment

distribution is used to determine the antisymmetric part of the stress tensor and is simply

included as an equivalent volume force distribution in the linear momentum balance equa-

tion, can be regarded as the simplest theory of asymmetric elasticity and can be referred

to as the classical theory of asymmetric elasticity. However, for simplicity and to avoid

12



misunderstanding, in this text it is referred to as just classical theory of elasticity and in

fact this classical theory of asymmetric elasticity is meant whenever the phrase “classical

theory of elasticity” is used.

The classical theory of elasticity produces acceptable results in numerous engineering

problems with various structural materials. However, for the cases with large stress gradi-

ents (e.g. in the vicinity of holes and cracks) or materials with significant microstructure

contribution (e.g. composites, polymers, soil, and bone), the classical theory of elasticity

fails to produce acceptable results [42]. In addition, it is not an appropriate theory for

asymmetric stress-strain analysis (which is the case when dealing with an elastic body

under the action of a volume moment distribution).

To improve the results of the classical theory of elasticity, Voigt added an independent

couple stress vector to the previous force stress vector to describe the interactions between

neighboring elements of an elastic body [42,43]. Voigt’s theory (couple-stress elasticity) was

developed further by the brothers E. and F. Cosserat who made another step and suggested

independent displacement and microrotation field vectors for describing the deformations

of an elastic body [42]. These assumptions (existence of the couple stress tensor and

independency of the displacement and microrotation fields) lead to six degrees of freedom

(DOFs) for every element of the body and a description of stress and strain in terms of

asymmetric tensors. The (geometrically nonlinear) Cosserat theory of elasticity, formulated

in an unclear manner, was further developed in a restricted linearized setting by other

scholars later. Notably, Eringen extended the theory to include microinertia effects and

renamed that into the micropolar theory of elasticty [42,44]. Nowadays, the linear theory is

known as linear theory of micropolar, Cosserat, or asymmetric elasticity. A complementary

discussion on characteristics of the “micropolar theory of elasticity” is given in Appendix A.

To provide a brief overview of the three-dimensional (3D) linear theory of micropolar

elasticity, consider a general homogeneous, isotropic, and centrally symmetric elastic body

(which means the elastic properties of the body are independent of the position, direction,

and inversion of the coordinate system) occupying a volume domain V in R3, bounded by

surface S. A body frame Fb and a position vector
→
p (described with respect to the inertial

frame Fo) correspond to each representative infinitesimal element of the body. Frames Fb
are body fixed frames which move and rotate with (are attached to) the elements of the

13



body (see Figure 2.1).
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V

S

dV

1

o x

2

o x

3

o x

1

b x

2

b x

3

b x

dV

Figure 2.1: A general elastic body and its representative infinitesimal element.

Assume that the body undergoes a motion and deformation due to the action of external

volume, surface, line, and point forces/moments (
→
f V ,

→
f S ,

→
f L ,

→
f P , →m

V , →m
S , →m

L , and →m
P ,

respectively). As mentioned previously, the internal loading at each point of the body can

be represented by means of an asymmetric force stress tensor ↔σ and an asymmetric couple

stress tensor
↔
χ of the forms (see Figure 2.2):

=
σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 = [σij] ,
=
χ =

 χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 = [χij] (2.1)

The motion and deformation of the body can be expressed by a displacement field vector

→u(
→
p, t) and an independent microrotation field vector →ϑ(

→
p, t) (see Appendix B regarding the

characteristics of this microrotation vector), assuming that the elastic body has no (large)
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Figure 2.2: Free body diagram of a representative element in a micropolar elastic body.

rigid body rotation. This leads to the description of the asymmetric strain tensor ↔ε:

=
ε =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 = [εij] =
–
∇

–
uT +

=
ϑ×, εij = uj , i − εijk ϑk (2.2)

and the asymmetric twist (wryness or torsion) tensor↔τ :

=
τ =

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 = [τij] =
–
∇

–
ϑT, τij = ϑj , i (2.3)

In the linear theory of micropolar elasticity, the constitutive relations have the forms:

σij =
(
µ+ κ

)
εij +

(
µ− κ

)
εji + λ εkk 1ij

χij =
(
γ + β

)
τij +

(
γ − β

)
τji + α τkk 1ij

(2.4)

where µ and λ are the Lamé coefficients (µ is also known as the shear modulus) as in the

classical theory of elasticity, and κ, γ, β, and α are referred to as the micropolar (Cosserat)
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elastic constants. A more detailed explanation of the micropolar elastic constants can be

found in Appendix A.

Considering the free-body diagram shown in Figure 2.2 the (first-order) differential

form of the micropolar equations of motion in terms of force stresses and couple stresses

are:
σji, j + f Vi = ρVij üj

εijk σjk + χji, j +mV

i = ıVij ϑ̈j
(2.5)

where
↔
ρV (

↔
ρV = ρV ↔1 , and ρV is the volume mass density of the body) is the tensor of

translational inertia per unit volume for the elastic body,↔ı
V (usually↔ı

V = ıV ↔1, and ıV is

the volume microinertia density [42]) is the tensor of body microrotational inertia per unit

volume, and →ϑ̈ is the angular acceleration field vector defined as:

→ϑ̈ =
d2

dt2

(
→ϑ
)
,

–
ϑ̈ =

d2

dt2

(
–
ϑ
)

(2.6)

It is worthwhile to mention that the body angular velocity vector is:

→ϑ̇ =
d

dt

(
→ϑ
)
,

–
ϑ̇ =

d

dt

(
–
ϑ
)

(2.7)

Also, the second relation in Eq. (2.5) can be rewritten into the following form:

σij − σji + εijk

(
χlk, l +mV

k

)
= εijk ı

V

kl ϑ̈l (2.8)

Using the constitutive relations of Eq. (2.4) and the definition of the strain and twist

tensors (given by Eqs. (2.2) and (2.3)), the dynamic equations given by Eq. (2.5) can be

formulated in terms of the displacement and microrotation vectors as:(
µ+ κ

)(
→∇ · →∇

)
→u+

(
µ− κ+ λ

)
→∇
(
→∇ ·→u

)
+ 2κ ↔∇

× ·→ϑ+
→
f V =

↔
ρV · →̈u((

γ + β
)
→∇ · →∇− 4κ

)
→ϑ+

(
γ − β + α

)
→∇
(
→∇ ·→ϑ

)
+ 2κ ↔∇

× ·→u+ →m
V =↔ı

V ·→ϑ̈
(2.9)

The system of governing dynamic equations of a micropolar elastic body in Eq. (2.9)

is a system of coupled linear PDEs with six unknowns; three displacements and three

independent microrotations. These linear governing equations can be written in tensor

form as:
M lin

ij üj +K lin

ij uj + C lin

ij ϑj = f Vi

Mang

ij ϑ̈j +Kang

ij ϑj + C ang

ij uj = mV

i

(2.10)
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where the inertia operators are:

M lin

ij = ρVij = ρV 1ij

Mang

ij = ıVij
(2.11)

and the stiffness operators have the form:

K lin

ij = −
(
µ+ κ

) d2

dxk dxk
1ij −

(
µ− κ+ λ

) d2

dxi dxj

Kang

ij = −
((
γ + β

) d2

dxk dxk
− 4κ

)
1ij −

(
γ − β + α

) d2

dxi dxj

(2.12)

and the circulatory operators are:

C lin

ij = C ang

ij = 2κ εijk
d

dxk
(2.13)

The above are actually the elements of the linear mass, stiffness, and circulatory tensor

operators [45] respectively.

Finally, based on the linear theory of micropolar elasticity, the elastic energy (i.e. the

total strain energy) Ue takes the form:

Ue =

∫
V

U V

e dV, U V

e =
1

2
σij εij +

1

2
χij τij (2.14)

where U V

e is the elastic (or strain) energy density.

Considering the assumptions of the classical theory of elasticity [38–41] the general

equations derived from the micropolar theory of elasticity, i.e. Eqs. (2.1)–(2.14), can be re-

duced to the well-known equations of the classical elasticity. Based on the classical theory

of elasticity, the internal loading at each point of the body is represented by means of the

force stress tensor, there is no couple stress and no microrotational inertia, and the micro-

rotation and displacement field vectors are dependent (indeed, as shown in Appendix A,

the microrotation vector is identical with the macrorotation vector which is dependent on

the displacement vector). The dependency between the microrotation and displacement
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Figure 2.3: Free body diagram of a representative element in a classical elastic body.

field vectors and their time derivatives can be described by the following relations:

→ϑ =
1

2 ↔
∇× ·→u

→ϑ̇ =
1

2 ↔
∇× · →̇u

→ϑ̈ =
1

2 ↔
∇× · →̈u

(2.15)

Note that the tensor ↔ϑ
× is the rotation tensor mentioned in the books on the classical

theory of elasticity. These assumptions lead to a description of the asymmetric force stress

(see Figure 2.3) and the symmetric strain tensors as follows:

=
σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 = [σij] (2.16)

=
ε =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 = [εij] =
1

2

(
–
∇

–
uT +

(
–
∇

–
uT

)T)
, εij =

1

2

(
ui, j + uj , i

)
(2.17)

18



Recall that in the classical elasticity theory the couple stress tensor
↔
χ is zero. Moreover,

though the twist tensor ↔τ is not zero (indeed ↔τ can be still given by Eq. (2.3) where →ϑ

is obtained from Eq. (2.15)), there is no need to define that as it will not appear in the

formulation of the classical elasticity.

In the linear theory of classical elasticity the only constitutive relation is of the form

(compare this to Eq. (2.4)):

σ s

ij =
1

2

(
σij + σji

)
= 2µ εij + λ εkk 1ij (2.18)

where µ and λ are the Lamé coefficients. In comparison to Eq. (2.5), from the free-body

diagram shown in Figure 2.2 the differential form of the dynamic equations in terms of

force stresses will be derived as:

σji, j + f Vi = ρVij üj

εijk σjk +mV

i = 0
(2.19)

Again, the second relation in Eq. (2.19) can be rearranged into the following form:

σij − σji + εijkm
V

k = 0 (2.20)

Using the constitutive relation in Eq. (2.18), the dynamic equations given by Eqs. (2.19)

and (2.20) can be combined and formulated in terms of the displacement vector as:

µ
(
→∇ · →∇

)
→u+

(
µ+ λ

)
→∇
(
→∇ ·→u

)
+
→
f V +

1

2 ↔
∇× · →m

V =
↔
ρV · →̈u (2.21)

Here, the system of governing dynamic equations is a relatively simpler system of lin-

ear PDEs (compared to Eq. (2.9)) with the three elements of the displacement vector as

independent unknowns.

Once more, the tensor form of the linear equations of motion for a classical elastic body

can be written as:

M lin

ij üj +K lin

ij uj = f Vi +
1

2
εijkm

V

k ,j (2.22)

where:

M lin

ij = ρVij = ρV 1ij (2.23)
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and:

K lin

ij = − µ d2

dxk dxk
1ij −

(
µ+ λ

) d2

dxi dxj
(2.24)

are elements of the linear mass and stiffness tensor operators. Finally, in the linear theory

of classical elasticity, the elastic (strain) energy Ue takes the following form:

Ue =

∫
V

U V

e dV, U V

e =
1

2
σij εij =

1

2
σ s

ij εij (2.25)

Notice that based on Eq. (2.21), in the classical theory of elasticity, the continuous

volume moment →m
V can be substituted by an effective volume force

→
f V defined as:

→
f V =

1

2 ↔
∇× · →m

V (2.26)

This is the effective or equivalent volume force distribution mentioned before. Note that for

Eq. (2.26) to be true, the volume moment →m
V should be differentiable over all the domain

V . In addition, it should vanish on the boundary surface S , or the volume moments on

the boundary surface S should be substituted with proper boundary surface forces.

A summary of the equations mentioned in this section can be found in Table 2.1. It

is noteworthy that the similarities between the subjects related to the force stresses and

displacements (in the classical or micropolar theory of elasticity) and those related to the

couple stresses and microrotations (in the micropolar theory of elasticity), i.e. parallel

or analogous forms of the definitions and equations mentioned so far, suggests a parallel

terminology to be used for denotation of these subjects. The dual terminologies used in

this text are listed in Table 2.2. Note that in Table 2.2 there are new terms which will be

discussed and used later in the following (see for example Chapter 4 or Appendix A).
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Table 2.1: A summary comparison of the classical and micropolar theories of elasticity.

Subject Classical Theory of Elasticity Micropolar Theory of Elasticity

Assumptions ϑi = − 1
2
εijkuj ,k independent ui and ϑi

existence of just σij , and χij = 0 existence of both σij and χij

Deformation

Tensor(s)
εij = 1

2
(ui, j + uj , i)

εij = uj , i − εijk ϑk
τij = ϑj , i

Constitutive

Relation(s)
1
2

(σij + σji) = 2µ εij + λ εkk 1ij
σij = (µ+ κ) εij + (µ− κ) εji + λ εkk 1ij

χij = (γ + β) τij + (γ − β) τji + α τkk 1ij

Equations

of Motion

σji, j + f Vi = ρVij üj

εijk σjk +mV

i = 0

σji, j + f Vi = ρVij üj

εijk σjk + χji, j +mV

i = ıVij ϑ̈j

µui, jj +(µ+λ)uj ,ji+f Vi − 1
2
εijkm

V

j ,k =

ρVij üj

(µ+ κ)ui, jj + (µ− κ+ λ)uj ,ji −
2κ εijk ϑj ,k + f Vi = ρVij üj

(γ + β)ϑi, jj − 4κϑi + (γ− β +α)ϑj ,ji−
2κ εijk uj ,k +mV

i = ıVij ϑ̈j

Force System combined (or effective) f Vi − 1
2
εijkm

V

j ,k separate f Vi and mV

i

Elastic Energy U V

e = 1
2
σij εij U V

e = 1
2
σij εij + 1

2
χij τij
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Table 2.2: Duality between terminologies in classical and micropolar theories of elasticity.

Term in Classical Elasticity Dual Term in Micropolar Elasticity

displacement u microrotation ϑ

(mass) density ρV microinertia density ıV

(force) stress σ couple stress χ

classical or Lamé constants µ and λ micropolar or Cosserat constants κ, γ , β , and α

strain ε twist or wryness τ

normal strain normal twist or torsion

tension torsion

tensile tortile or torsional

tensile or Young’s modulus E tortile or torsional modulus E
(tensile) bulk modulus B tortile or torsional bulk modulus B
(strain) Poisson’s ratio ν twist Poisson’s ratio ξ

2.3 Dynamics of a gyro

A gyro or gyroscope is a device composed of a high-speed spinning wheel with a direction-

varying axis of rotation which is mounted on a body. There also may be a/some actuator(s)

(or motors) for controlling the direction of the wheel’s axis, controlling the spinning speed

of the wheel, and compensating for energy dissipated by friction. Currently, gyros are an

important component in the aerospace industry. They have been used extensively as sensors

(in modern guidance systems) and as actuators (in stabilizing and controlling devices).

This section is devoted to the dynamic modeling of a gyro mounted in a representative

infinitesimal element of a moving body with no (large) rigid body rotation (see Figure 2.4).

Readers are referred to Appendix B for a review on rotational kinematics used in this

section for dynamic formulation of a gyro.

For the body element, there is a body frame Fb attached to it and the element motion in
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Figure 2.4: A gyro mounted in a representative element of a moving body.

R
3 is expressed by the displacement vector →u and microrotation vector →ϑ of this frame with

respect to the inertial reference frame Fo . Based on this, the translational and rotational

(angular) velocities and accelerations of the body element (or frame Fb ) will be →̇u, →ϑ̇, →̈u,

and →ϑ̈. The gyro is mounted in this element using the gimbals which enable the spinning

wheel’s axis to take any orientation in the body frame Fb, but prevent the gyro from being

translated with respect to the body element. Therefore, the translational motion of the

gyro is the same as the translational motion of the body element and can be defined by

the vectors →u, →̇u, and →̈u, too.

To define the rotational motion of the gyro, consider a new frame, called the axis frame

Fa, attached to the axis of the spinning wheel and not to the wheel itself (see Figure 2.5).

This means that the wheel has an angular velocity with respect to the axis frame Fa which

is its spinning velocity ϕ̇3 in the ax3 (the third coordinate axis of Fa) direction. In this way,

the orientation of the axis frame Fa with respect to the body frame Fb can be described

using two Euler angles; starting with the axis frame Fa coinciding with the body frame

Fb , frame Fa rotates about ax1 (or bx1) by an angle ϕ1 , followed by a second rotation of

ϕ2 about ax2 (see Figure 2.5). The angles ϕ1 and ϕ2 can correspond to the gyro’s gimbals
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angles which form a natural set of Euler angles.
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Figure 2.5: Orientation of the axis frame with respect to the body frame.

Based on Figure 2.5, the rotation matrix from axis frame Fa to frame Fb will be:

ba
∼C =

 cϕ2 0 sϕ2

sϕ1 sϕ2 cϕ1 − sϕ1 cϕ2

− cϕ1 sϕ2 sϕ1 cϕ1 cϕ2

 (2.27)

where s and c are the shortened forms of sine and cosine. The other useful rotation matrices

are:
ob
∼C =

=
1+

=
ϑ×

oa
∼C = ob

∼C
ba
∼C

(2.28)

Besides, the angular velocity of the axis frame Fa with respect to the body frame Fb
and the angular velocity of the rotor (gyro spinning wheel) relative to the axis frame Fa ,

represented by
→
φ̇ and

→
ψ̇ respectively, can be described in the axis frame as:

a

–
φ̇ =

 cϕ2

0

sϕ2

 ϕ̇1 +

 0

1

0

 ϕ̇2 (2.29)
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a

–
ψ̇ =

 0

0

1

 ϕ̇3 (2.30)

Note that the time integrals of angular velocity vectors
→
φ̇ and

→
ψ̇ , i.e. vectors

→
φ and

→
ψ ,

generally, have no physical meaning.

Based on the aforementioned descriptions the angular velocities of the axis frame Fa and

the gyro’s spinning wheel with respect to the inertial frame will be
(
→ϑ̇+

→
φ̇
)

and
(
→ϑ̇+

→
φ̇+

→
ψ̇
)

respectively. Now, by using the Newton-Euler formulation, the gyro’s equations of motion

will be obtained as:

−
→
f V =

↔
%V · →̈u

− →m
V =

↔
V ·

ad

dt

(
→ϑ̇+

→
φ̇+

→
ψ̇
)

+
(
↔ϑ̇
×

+
↔
φ̇
×
)
·
↔
V ·

(
→ϑ̇+

→
φ̇+

→
ψ̇
) (2.31)

where
→
f V and →m

V are vectors of volume forces and moments applied by the gyro on the

body element. In addition,
↔
%V (

↔
%V = %V ↔1, where %V is the mass of the gyro per unit volume

of the body) and
↔
V are tensors of the gyro translational and rotational inertia per unit

volume of body (not per unit volume of gyro). Note that a

=
V , i.e. the component matrix

of gyro rotational inertia in axis frame Fa , is usually a known constant and therefore the

time derivative of
↔
V with respect to the axis frame vanishes.

Then, by expressing:

ad

dt

(
→
φ̇
)

=
→
φ̈,

a

–
φ̈ =

d

dt

(
a

–
φ̇
)

=

 cϕ2

0

sϕ2

 ϕ̈1 +

 0

1

0

 ϕ̈2 +

 −sϕ2

0

cϕ2

 ϕ̇1 ϕ̇2 (2.32)

ad

dt

(
→
ψ̇
)

=
→
ψ̈,

a

–
ψ̈ =

d

dt

(
a

–
ψ̇
)

=

 0

0

1

 ϕ̈3 (2.33)

and:
ad

dt

(
→ϑ̇
)

=
d

dt

(
→ϑ̇
)
−
(
→ϑ̇+

→
φ̇
)
×→ϑ̇ = →ϑ̈−↔φ̇

× ·→ϑ̇ (2.34)

25



the gyro equations of motion can be rewritten as:

−
→
f V =

↔
%V · →̈u

− →m
V =

↔
V ·

(
→ϑ̈−↔φ̇

× ·→ϑ̇+
→
φ̈+

→
ψ̈
)

+
(
↔ϑ̇
×

+
↔
φ̇
×
)
·
↔
V ·

(
→ϑ̇+

→
φ̇+

→
ψ̇
) (2.35)

By using the matrix definitions given in Eqs. (2.27)–(2.30) and Eqs. (2.32) and (2.33) and

considering the following matrix relations:

=
V =

(
=
1+

=
ϑ×
)
b

=
V
(

=
1−

=
ϑ×
)
, b

=
V = ba

∼C
a

=
V ba

∼C
T = b

=
V (ϕ1, ϕ2)

–
φ̇ =

(
=
1+

=
ϑ×
)
b

–
φ̇,

b

–
φ̇ = ba

∼C
a

–
φ̇ =

b

–
φ̇(ϕ1, ϕ2, ϕ̇1, ϕ̇2)

–
ψ̇ =

(
=
1+

=
ϑ×
)
b

–
ψ̇,

b

–
ψ̇ = ba

∼C
a

–
ψ̇ =

b

–
ψ̇(ϕ1, ϕ2, ϕ̇3)

–
φ̈ =

(
=
1+

=
ϑ×
)
b

–
φ̈,

b

–
φ̈ = ba

∼C
a

–
φ̈ =

b

–
φ̈(ϕ1, ϕ2, ϕ̇1, ϕ̇2, ϕ̈1, ϕ̈2)

–
ψ̈ =

(
=
1+

=
ϑ×
)
b

–
ψ̈,

b

–
ψ̈ = ba

∼C
a

–
ψ̈ =

b

–
ψ̈(ϕ1, ϕ2, ϕ̈3)

(2.36)

one can derive the inertial frame description of these gyro dynamic equations.

It is also useful to determine the kinetic energy density T V of the system including

the body element and gyro. Recalling that
↔
ρV and ↔ı

V are tensors of the body element

translational and microrotational inertia per unit volume, this expression will be:

T V =
1

2 →̇
u ·
↔
ρV · →̇u+

1

2 →
ϑ̇ ·↔ı

V ·→ϑ̇+
1

2 →̇
u ·
↔
%V · →̇u

+
1

2

(
→ϑ̇+

→
φ̇+

→
ψ̇
)
·
↔
V ·

(
→ϑ̇+

→
φ̇+

→
ψ̇
) (2.37)

for a micropolar body element, and:

T V =
1

2 →̇
u ·
↔
ρV · →̇u+

1

2 →̇
u ·
↔
%V · →̇u+

1

2

(
→ϑ̇+

→
φ̇+

→
ψ̇
)
·
↔
V ·

(
→ϑ̇+

→
φ̇+

→
ψ̇
)

(2.38)

for a classical body element.

2.4 Hamilton’s principle

After selection of the theory of elasticity, the next step for dynamic analysis of an elastic

system is making the decision about the method of formulating the equations of motion.
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There are different methods (e.g. Newton-Euler, D’Alembert, Lagrange, and Hamilton) for

formulating the motion equations of a dynamic system. However, these methods can be

classified into two major groups.

The methods in the first group are based on differential principles, e.g. Newton’s second

law or D’Alembert’s principle, and consider the instantaneous state of the system to apply

their differential principle and derive the dynamic equations. On the other hand, methods

of the second group are founded on the more general integral principles, e.g. Hamilton’s

principle, and consider the entire motion of the system between two specific times to apply

their integral principle.

Hamilton’s principle is the most familiar integral principle for dynamic modeling of

mechanical systems. It originates from the more general principle of least action (or more

accurately the principle of stationary action) [46]. Hamilton’s principle states that out of

all possible paths between two specific states of a dynamic system at times t1 and t2 , the

system will actually travel along the path which is an extremal or a stationary curve (a

minimum, maximum, or saddle curve) of a functional (real-valued function of functions).

For a holonomic conservative system, described by N independent generalized coordinates

q1(t), q2(t), . . . , and qN(t), the functional is called the action integral and takes the following

form:

A =

∫
t

L(q1, q2, . . . , qN , q̇1, q̇2, . . . , q̇N , t) dt =

∫
t

L(
∼
q,
∼̇
q, t) dt (2.39)

where
∼
q and

∼̇
q are the N × 1 matrices of independent generalized coordinates and their

time derivative (generalized velocities) defined as:

∼
q =

[
q1 q2 · · · qN

]T

∼̇
q =

d

dt

(
∼
q
)

=
[
q̇1 q̇2 · · · q̇N

]T
(2.40)

and L(
∼
q,
∼̇
q, t) is the Lagrangian function of the system defined as the difference between

the kinetic energy T (
∼
q,
∼̇
q, t) of the system and its potential energy U(

∼
q, t):

L(
∼
q,
∼̇
q, t) = T (

∼
q,
∼̇
q, t)− U(

∼
q, t) (2.41)
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Based on the calculus of variations, the extremum value for the functional given in

Eq. (2.39) is obtained when its first variation is zero, that is when:

∆A = ∆
(∫
t

L(
∼
q,
∼̇
q, t) dt

)
=

∫
t

(
δ
∼
qT

∂L
∂
∼
q

+ δ
∼̇
qT ∂L

∂
∼̇
q

)
dt = 0 (2.42)

where δ
∼
q and δ

∼̇
q are N × 1 matrices of the virtual generalized displacements and velocities

[47], and ∂L
∂
∼
q

and ∂L
∂
∼
q̇

are N × 1 matrices of the form:

∂L
∂
∼
q

=

[
∂L
∂q1

∂L
∂q2

· · · ∂L
∂qN

]T

∂L
∂
∼̇
q

=

[
∂L
∂q̇1

∂L
∂q̇2

· · · ∂L
∂q̇N

]T
(2.43)

Using the integration by parts, Eq. (2.42) takes the form:

∆A =

∫
t

δ
∼
qT

∂L
∂
∼
q
dt+

[
δ
∼
qT

∂L
∂
∼̇
q

]t2
t1

−
∫
t

δ
∼
qT

d

dt

(∂L
∂
∼̇
q

)
dt = 0 (2.44)

and finally:

∆A =

[
δ
∼
qT

∂L
∂
∼̇
q

]t2
t1

+

∫
t

δ
∼
qT

(∂L
∂
∼
q
− d

dt

(∂L
∂
∼̇
q

))
dt = 0 (2.45)

Since the elements of the generalized coordinate matrix
∼
q are independent, and virtual

displacement matrix δ
∼
q is arbitrary, the necessary condition for ∆A to be zero is that the

coefficient matrix of the δ
∼
q , inside the integral given in Eq. (2.45), vanishes:

∂L
∂
∼
q
− d

dt

(∂L
∂
∼̇
q

)
= ∼0 (2.46)

or:
∂L
∂qi
− d

dt

(∂L
∂q̇i

)
= 0, i = 1, 2, . . . , N (2.47)

and for endpoints (i.e. t = t1 and t = t2 ) the following initial conditions (ICs) should be

satisfied:

at t = t1, t2 : δ
∼
q = ∼0 or

∂L
∂
∼̇
q

= ∼0 (2.48)
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The set of differential equations given by Eq. (2.47) is known as the set of Euler-

Lagrange differential equations. These equations along with the ICs given by Eq. (2.48)

(or the value of
∼
q(t1) and

∼̇
q(t1)) will be solved to produce a unique dynamic solution of

the system.

Now, again consider a general continuous elastic body occupying a domain V in R3 ,

bounded by surface S, which is under the action of both conservative and nonconservative

forces/moments. For such a system, which can be described by N continuous generalized

coordinates q1(
→
p, t), q2(

→
p, t), . . . , and qN(

→
p, t), the extended or unrestricted form of Hamil-

ton’s principle states that the time integral of the sum of the variation of the Lagrangian

function ∆L and the virtual work done by nonconservative forces/moments δWnc vanishes:∫
t

(
∆L+ δWnc

)
dt = 0 (2.49)

Recall that δWnc is the virtual work, not the variation of Wnc .

Here, a more general form of Hamilton’s principle can be written as:∫
t

(
∆L+ δWnc + δWcn

)
dt =

∫
t

(
∆L+ δW

)
dt = 0 (2.50)

where δWcn is the work done by conservative forces/moments which are not included in

the Lagrangian function. Using this form of Hamilton’s principle, there are two ways to

consider the effect of every conservative force/moment; either by including its correspond-

ing potential energy in the potential energy part of L or by including its virtual work in

δWcn. Even the terms included in the kinetic energy part of L can be considered as inertial

forces/moments, and instead of considering them in the kinetic energy part, their virtual

work can be included in δWcn. To sum up, the term δW is the virtual work done by all the

forces and moments whose effects are not included in the Lagrangian function as potential

or kinetic energy.

For the aforesaid continuous system, the Lagrangian appears as an integral over the

volume V and will have the form:

L =

∫
V

LV (
∼
q,
∼̇
q,
∼
q
,1
,
∼
q
,2
,
∼
q
,3
,
∼̇
q
,1
,
∼̇
q
,2
,
∼̇
q
,3
,
∼
q
,11
,
∼
q
,12
, . . . ,

→
p, t) dV (2.51)
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where LV is known as the Lagrangian density and
∼
q is the matrix of continuous generalized

coordinates. Here, depending on the theory used for modeling the elasticity of the system,

and the generalized coordinates chosen, the Lagrangian density will be a function, not only

of
∼
q and

∼̇
q , but also of their spatial derivatives, e.g.

∼
q
,1

,
∼
q
,12

, and
∼̇
q
,2

. Assuming that in

LV , third- and higher-order spatial derivatives of
∼
q , and second- and higher-order spatial

derivatives of
∼̇
q do not appear, the variation of LV will be:

∆LV = δ
∼
qT

∂LV

∂
∼
q

+ δ
∼̇
qT ∂LV

∂
∼̇
q

+ δ
∼
qT

, i

∂LV

∂
∼
q
, i

+ δ
∼̇
qT

, i

∂LV

∂
∼̇
q
, i

+ δ
∼
qT

, ij

∂LV

∂
∼
q
, ij

(2.52)

where for the terms with repeated subscripts the Einstein summation convention over those

subscripts, from 1 to 3, is understood.

In addition, the virtual work δW can be described in terms of the generalized force

matrix
∼
Q and the virtual displacement matrix δ

∼
q as:

δW =

∫
V

δ
∼
qT

∼
QV dV +

∮
S

δ
∼
qT

∼
QS dS +

∮
L

δ
∼
qT

∼
QL dL+

∑
P

δ
∼
qT

∼
QP (2.53)

Here the superscripts V , S , L , and P are used to distinguish between volume, surface,

line, and point generalized forces/moments, respectively, and the generalized force matrix

has the following form:

∼
Q =

[
Q1 Q2 · · · QN

]T

(2.54)

The elements of the generalized force matrix
∼
Q are the generalized forces corresponding

to the elements of the generalized coordinate matrix
∼
q .

Consequently, Eq. (2.50) can be rewritten as:∫
t

∫
V

(
δ
∼
qT

∂LV

∂
∼
q

+ δ
∼̇
qT ∂LV

∂
∼̇
q

+ δ
∼
qT

, i

∂LV

∂
∼
q
, i

+ δ
∼̇
qT

, i

∂LV

∂
∼̇
q
, i

+ δ
∼
qT

, ij

∂LV

∂
∼
q
, ij

)
dV dt

+

∫
t

∫
V

δ
∼
qT

∼
QV dV dt+

∫
t

∮
S

δ
∼
qT

∼
QS dS dt+

∫
t

∮
L

δ
∼
qT

∼
QL dL dt

+

∫
t

∑
P

δ
∼
qT

∼
QP dt = 0

(2.55)
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In Eq. (2.55), the terms involving the
∼̇
q ,

∼
q
, i

, and
∼̇
q
, i

can be manipulated employing

the integration by parts and Gauss’ theorem. In this way, the following relations will be

obtained:∫
t

∫
V

δ
∼̇
qT ∂LV

∂
∼̇
q
dV dt =

[ ∫
V

δ
∼
qT

∂LV

∂
∼̇
q
dV

]t2
t1

−
∫
t

∫
V

δ
∼
qT

(∂LV
∂
∼̇
q

)
, t
dV dt (2.56)

∫
t

∫
V

δ
∼
qT

, i

∂LV

∂
∼
q
, i

dV dt =

∫
t

∮
S

δ
∼
qT

∂LV

∂
∼
q
, i

ni dS dt−
∫
t

∫
V

δ
∼
qT

(∂LV
∂
∼
q
, i

)
, i
dV dt (2.57)

∫
t

∫
V

δ
∼̇
qT

, i

∂LV

∂
∼̇
q
, i

dV dt =

[ ∮
S

δ
∼
qT

∂LV

∂
∼̇
q
, i

ni dS

]t2
t1

−
[ ∫
V

δ
∼
qT

(∂LV
∂
∼̇
q
, i

)
, i
dV

]t2
t1

−
∫
t

∮
S

δ
∼
qT

(∂LV
∂
∼̇
q
, i

)
, t
ni dS dt+

∫
t

∫
V

δ
∼
qT

(∂LV
∂
∼̇
q
, i

)
, t i
dV dt

(2.58)

Additionally, by utilizing the Gauss’ theorem, the term including
∼
q
, ij

can be manipu-

lated in two different ways. The suitable form when i = j is as follows:∫
t

∫
V

δ
∼
qT

, ij

∂LV

∂
∼
q
, ij

dV dt =

∫
t

∮
S

δ
∼
qT

, i

∂LV

∂
∼
q
, ij

nj dS dt−
∫
t

∮
S

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, j
ni dS dt

+

∫
t

∫
V

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, ij
dV dt

=

∫
t

∮
S

δ
∼
qT

, j

∂LV

∂
∼
q
, ij

ni dS dt−
∫
t

∮
S

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, j
ni dS dt

+

∫
t

∫
V

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, ij
dV dt

(2.59)
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and when i 6= j , the suitable form will be:∫
t

∫
V

δ
∼
qT

, ij

∂LV

∂
∼
q
, ij

dV dt =

∫
t

∮
S

(
δ
∼
qT

∂LV

∂
∼
q
, ij

)
, i
nj dS dt−

∫
t

∮
S

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, i
nj dS dt

−
∫
t

∮
S

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, j
ni dS dt+

∫
t

∫
V

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, ij
dV dt

=

∫
t

∮
S

(
δ
∼
qT

∂LV

∂
∼
q
, ji

)
, j
ni dS dt−

∫
t

∮
S

δ
∼
qT

( ∂LV
∂
∼
q
, ji

)
, j
ni dS dt

−
∫
t

∮
S

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, j
ni dS dt+

∫
t

∫
V

δ
∼
qT

( ∂LV
∂
∼
q
, ij

)
, ij
dV dt

(2.60)

Considering the independence of the generalized coordinates and arbitrariness of the

virtual displacement matrix, and substituting from the Eqs. (2.56)–(2.60) into Eq. (2.55),

the following set of PDEs (in matrix form) will be obtained:

∂LV

∂
∼
q
−
(∂LV
∂
∼̇
q

)
, t
−
(∂LV
∂
∼
q
, i

)
, i

+
(∂LV
∂
∼̇
q
, i

)
, t i

+
( ∂LV
∂
∼
q
, ij

)
, ij

+
∼
QV = 0 (2.61)

Here for endpoints (i.e. t = t1 and t = t2) the following ICs should be satisfied:

at t = t1, t2; and over V : δ
∼
q = ∼0 or

∂LV

∂
∼̇
q
−
(∂LV
∂
∼̇
q
, i

)
, i

= ∼0

at t = t1, t2; and over S : δ
∼
q = ∼0 or

∂LV

∂
∼̇
q
, i

ni = ∼0
(2.62)

Besides, the procedure will result in the following valuable essential and natural boundary

32



conditions (EBCs and NBCs):

∂LV

∂
∼
q
, i

ni −
(∂LV
∂
∼̇
q
, i

)
, t
ni −

( ∂LV
∂
∼
q
, ij

+
∂LV

∂
∼
q
, ji

)
, j
ni

over S : δ
∼
q = ∼0 or +

( ∂LV
∂
∼
q
,11

)
,1
n1 +

( ∂LV
∂
∼
q
,22

)
,2
n2 +

( ∂LV
∂
∼
q
,33

)
,3
n3

+
∼
QS = ∼0

over S : δ
∼
q
,1

= ∼0 or
∂LV

∂
∼
q
,11

n1 = ∼0

over S : δ
∼
q
,2

= ∼0 or
∂LV

∂
∼
q
,22

n2 = ∼0

over S : δ
∼
q
,3

= ∼0 or
∂LV

∂
∼
q
,33

n3 = ∼0

︸ ︷︷ ︸ ︸ ︷︷ ︸
EBCs NBCs

(2.63)

In addition to the set of PDEs given by Eq. (2.61), the ICs in Eq. (2.62), and the boundary

conditions (BCs) in Eq. (2.63), the following equation should be satisfied:

−
∮
S

((
δqT

∂LV

∂
∼
q
,11

)
,1
n1 +

(
δqT

∂LV

∂
∼
q
,22

)
,2
n2 +

(
δqT

∂LV

∂
∼
q
,33

)
,3
n3

)
dS

+

∮
S

(
δqT

∂LV

∂
∼
q
, ij

)
, j
ni dS +

∮
L

δ
∼
qT

∼
QL dL+

∑
P

δ
∼
qT

∼
QP = 0

(2.64)

which itself can be divided into more subequations (i.e. other BCs over some boundary

curves or at some boundary points) depending on the problem to be solved.

The set of PDEs given in Eq. (2.61) are the corresponding Euler-Lagrange differential

equations for a continuous system. These equations along with the ICs in Eq. (2.62)

(or the value of
∼
q(
→
p, t1) and

∼̇
q(
→
p, t1) ) and the BCs in Eqs. (2.63) and (2.64) should be

solved to produce the unique dynamic solution of the system. Note that NBCs are not
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easily established without the use of Hamilton’s principle and the calculus of variations,

and it can be concluded that the NBCs are valuable products of this approach. Another

important benefit of using Hamilton’s principle for dynamic modeling of the continuous

systems is that some very powerful approximation procedures will be made available with

the integral form of the equations of motion (i.e. the equation given by Eq. (2.55)).

At last, it is noteworthy that the virtual work expression for a continuous elastic system

may also contain the terms including the spatial derivatives of the virtual displacement

matrix, i.e. the virtual work expression may be obtained as:

δW =

∫
V

(
δ
∼
qT

∼
QV + δ

∼
qT

, i ∼
Ri

V

)
dV +

∮
S

(
δ
∼
qT

∼
QS + δ

∼
qT

, i ∼
Ri

S

)
dS

+

∮
L

(
δ
∼
qT

∼
QL + δ

∼
qT

, i ∼
Ri

L

)
dL+

∑
P

(
δ
∼
qT

∼
QP + δ

∼
qT

, i ∼
Ri

P

) (2.65)

where the matrix
∼
Ri (which can be named the generalized moment matrix) has the fol-

lowing form:

∼
Ri =

[
Ri1 Ri2 · · · RiN

]T

(2.66)

whose elements correspond to the elements of matrix δ
∼
q
, i

. To manipulate such terms in

the virtual work expression the following relation will be useful:∫
t

∫
V

δ
∼
qT

, i ∼
Ri

V dV dt =

∫
t

∮
S

δ
∼
qT

∼
Ri

V ni dS dt−
∫
t

∫
V

δ
∼
qT

∼
Ri

V

, i
dV dt (2.67)

2.5 Theories for other dimensional bodies

At the end, it is noteworthy that this chapter’s results and equations, obtained for a

general 3D body in the 3D space, can be simplified to obtain the corresponding results and

equations for a two-dimensional (2D) or a one-dimensional (1D) body in the 3D, 2D, or

1D space. These simplified equations will be of interest when dealing with bodies which

can be modeled as plates (2D bodies) or beams (1D bodies). They will be provided in the

following chapters where they are being used.
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Chapter 3

Gyroelastic Continua

3.1 Introduction

As mentioned previously a general 3D gyrocontinuum is a dynamic system with four basic

types of continuous mechanical influences; inertia, elasticity, damping, and gyricity. In a

gyrocontinuum it is assumed that every infinitesimal element of the continuum houses an

infinitesimal gyro with an infinitesimal stored angular momentum, known as gyricity, and

the parameters related to this gyricity are treated as field quantities.

This chapter is devoted to the derivation of the equations of motion for a general 3D

gyrocontinuum, without any damping, occupying a volume domain V in R3 , bounded by

surface S , and under the action of some forces/moments, where it is assumed that the

continuum does not undergo any (large) rigid body rotation.

One of the best approaches for dynamic modeling of such a system is through Hamilton’s

principle which will result in the BCs as well as the equations of motion and in addition

will make some approximation methods available. To apply Hamilton’s principle however,

the expressions for the potential and kinetic energy of the system and the virtual work

done by external forces/moments are needed. Most of these have been reviewed to some

extent in Chapter 2 and therefore, in the following sections they will be presented briefly.
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3.2 Potential energy expression

The potential energy expression of a gyrocontinuum usually contains two terms; the po-

tential energy due to the elasticity and the potential energy due to the gravity. However,

in this thesis the gravity effect (whenever needed) will be taken into account as an external

volume force applied on the body:

→
f V =

(
ρV + %V

)
→
g (3.1)

where
→
g is the gravity vector. This body force produces a virtual work term and will appear

in the system virtual work expression.

Therefore, the only source of potential energy in the system will be the elasticity of the

body which when based on the micropolar theory of elasticity takes the following form:

U = Ue =
1

2

∫
V

(
σij εij + χij τij

)
dV (3.2)

Substitution from the micropolar constitutive relations given by Eq. (2.4) into Eq. (3.2)

will result in:

U =
1

2

∫
V

((
µ+ κ

)
εij εij +

(
µ− κ

)
εji εij + λ εkk εjj

)
dV

+
1

2

∫
V

((
γ + β

)
τij τij +

(
γ − β

)
τji τij + α τkk τjj

)
dV

=
1

2

∫
V

(
2µ
(
ε11 ε11 + ε22 ε22 + ε33 ε33

)
+ λ

(
ε11 + ε22 + ε33

)2)
dV

+
1

2

∫
V

µ
((
ε12 + ε21

)2

+
(
ε13 + ε31

)2

+
(
ε23 + ε32

)2)
dV

+
1

2

∫
V

κ
((
ε12 − ε21

)2

+
(
ε13 − ε31

)2

+
(
ε23 − ε32

)2)
dV

+
1

2

∫
V

((
γ + β

)
τij τij +

(
γ − β

)
τji τij + α τkk τjj

)
dV

(3.3)
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Now based on the definition of the strain tensor↔ε given by Eq. (2.2) and the definition

of the twist tensor↔τ given by Eq. (2.3) one can obtain the following relations:

εij εij =
(
uj , i − εijk ϑk

)(
uj , i − εijl ϑl

)
= uj , i uj , i − εijl ϑl uj , i − εijk ϑk uj , i + εijk εijl ϑk ϑl

= ui, j ui, j + 2 εijk ϑk ui, j + 2ϑk ϑk

εji εij =
(
ui, j + εijk ϑk

)(
uj , i − εijl ϑl

)
= ui, j uj , i − εijl ϑl ui, j + εijk ϑk uj , i − εijk εijl ϑk ϑl
= ui, j uj , i − 2 εijk ϑk ui, j − 2ϑk ϑk

εkk εjj = uk,k uj ,j = ui, i uj ,j

(3.4)

and:
τij τij = ϑj , i ϑj , i = ϑi, j ϑi, j

τji τij = ϑi, j ϑj , i

τkk τjj = ϑk,k ϑj ,j = ϑi, i ϑj ,j

(3.5)

Utilizing these relations, the potential energy expressions in Eq. (3.3) can be rewritten as:

U =
1

2

∫
V

((
µ+ κ

)
ui, j ui, j +

(
µ− κ

)
ui, j uj , i + λui, i uj ,j

)
dV

+
1

2

∫
V

(
4κ εijk ϑk ui, j + 4κϑk ϑk

)
dV

+
1

2

∫
V

((
γ + β

)
ϑi, j ϑi, j +

(
γ − β

)
ϑi, j ϑj , i + αϑi, i ϑj ,j

)
dV

=
1

2

∫
V

(
µui, j ui, j + µui, j uj , i + λui, i uj ,j

)
dV

+
1

2

∫
V

(
κui, j

(
ui, j − uj , i

)
+ 4κ εijk ϑk ui, j + 4κϑk ϑk

)
dV

+
1

2

∫
V

((
γ + β

)
ϑi, j ϑi, j +

(
γ − β

)
ϑi, j ϑj , i + αϑi, i ϑj ,j

)
dV

(3.6)
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The potential energy expression given by Eq. (3.6) can be simplified when the classical

theory of elasticity is used to model the elasticity of the system (i.e. when the couple stress

tensor
↔
χ is zero and the microrotation field vector →ϑ is dependent to the displacement field

vector →u through Eq. (2.15)). In this way, the following expression will be obtained:

U =
1

2

∫
V

(
µui, j ui, j + µui, j uj , i + λui, i uj ,j

)
dV (3.7)

Hence, based on the theory chosen for modeling the elasticity of the gyrocontinuum, its

potential energy will be obtained from Eq. (3.6) or (3.7); the expression given by Eq. (3.6)

contains six independent unknowns (i.e. u1 , u2 , u3 , ϑ1 , ϑ2 , and ϑ3 ) but the expression

given by Eq. (3.7) has just three independent unknowns (i.e. u1 , u2 , and u3).

3.3 Kinetic energy expression

The kinetic energy of a gyrocontinuum is the summation of the elastic body kinetic energy

and the gyricity kinetic energy. The kinetic energy of the elastic body is a result of its

linear velocity field vector →̇u(
→
p, t) and also its angular velocity field vector →ϑ̇(

→
p, t), but only

if it is micropolar. The kinetic energy of the gyricity is caused by its linear velocity field

vector, which is the same as the elastic body linear velocity vector →̇u(
→
p, t), and its rotation

rate field scalars ϕ̇1(
→
p, t), ϕ̇2(

→
p, t), and ϕ̇3(

→
p, t) along with the elastic body angular velocity

field vector →ϑ̇(
→
p, t) (which can be independent or dependent on the linear velocity field

vector →̇u(
→
p, t)). The rotation rate field scalars and the elastic body angular velocity field

vector describe the gyricity angular velocity field vector.

Based on Eq. (2.37) which gives the kinetic energy density (T V ) of an infinitesimal mi-

cropolar body element containing a gyro, the kinetic energy of a micropolar gyrocontinuum

38



takes the following form:

T =

∫
V

T V dV

=
1

2

∫
V

((
ρV + %V

)
→̇u · →̇u+→ϑ̇ ·

(
↔ı
V +

↔
V
)
·→ϑ̇+ 2

(
→
φ̇+

→
ψ̇
)
·
↔
V ·→ϑ̇

)
dV

+
1

2

∫
V

((
→
φ̇+

→
ψ̇
)
·
↔
V ·

(
→
φ̇+

→
ψ̇
))

dV

=
1

2

∫
V

((
ρV + %V

)
u̇i u̇i +

(
ıVij + Vij

)
ϑ̇j ϑ̇i + 2 Vij

(
φ̇j + ψ̇j

)
ϑ̇i

)
dV

+
1

2

∫
V

Vij

(
φ̇j φ̇i + ψ̇j ψ̇i + 2 φ̇j ψ̇i

)
dV

(3.8)

and from Eq. (2.38) the kinetic energy of a classical gyrocontinuum will be:

T =

∫
V

T V dV

=
1

2

∫
V

((
ρV + %V

)
→̇u · →̇u+→ϑ̇ ·↔

V ·→ϑ̇+ 2
(
→
φ̇+

→
ψ̇
)
·
↔
V ·→ϑ̇

)
dV

+
1

2

∫
V

((
→
φ̇+

→
ψ̇
)
·
↔
V ·

(
→
φ̇+

→
ψ̇
))

dV

=
1

2

∫
V

((
ρV + %V

)
u̇i u̇i + Vij ϑ̇j ϑ̇i + 2 Vij

(
φ̇j + ψ̇j

)
ϑ̇i

)
dV

+
1

2

∫
V

Vij

(
φ̇j φ̇i + ψ̇j ψ̇i + 2 φ̇j ψ̇i

)
dV

(3.9)

Recall that for a classical gyrocontinuum the angular velocity vector→ϑ̇(
→
p, t) is dependent

on the translational velocity field vector →̇u(
→
p, t), as in Eq. (2.15).
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3.4 Virtual work expression

Assume that the gyrocontinuum is under the action of some volume, surface, line, and

point forces/moments which can be conservative, e.g. a gravity force, or nonconservative,

e.g. a damping force/moment. The resultants of these forces/moments are denoted by
→
f V ,

→
f S ,

→
f L ,

→
f P , →m

V , →m
S , →m

L , and →m
P , respectively. For such a system, the virtual work

expression in terms of the body virtual translational and rotational motions will be:

δW =

∫
V

(
→
f V · δ→u+ →m

V · δ→ϑ
)
dV +

∮
S

(
→
f S · δ→u+ →m

S · δ→ϑ
)
dS

+

∮
L

(
→
f L · δ→u+ →m

L · δ→ϑ
)
dL+

∑
P

(
→
f P · δ→u+ →m

P · δ→ϑ
)

=

∫
V

(
f Vi δui +mV

i δϑi

)
dV +

∮
S

(
f Si δui +mS

i δϑi

)
dS

+

∮
L

(
f Li δui +mL

i δϑi

)
dL+

∑
P

(
f Pi δui +mP

i δϑi

)
(3.10)

Again, note that for a classical gyrocontinua (i.e. when the classical theory of elasticity is

being utilized) the microrotation and displacement field vectors will be dependent.

3.5 Equations of motion

As mentioned before the best approach to obtain a gyrocontinuum’s equations of motion

along with its ICs and BCs is through Hamilton’s principle. However, in this section,

just the equations of motion are of interest and the corresponding ICs and BCs will not be

considered. As a consequence, the motion equations can be simply derived as a combination

of the equations of motion of a general 3D elastic body (under the action of force and

moment distributions) and the equations of motion of the gyricity distribution (i.e. the

dynamic equations of a gyro mounted in a body element). These equations are given by

Eqs. (2.9), (2.21), and (2.35) and in fact, it is enough to substitute a portion of (i.e. the
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gyricity-effects portion of) the volume force and moment in Eq. (2.9) or (2.21) by the

volume force and moment terms in Eq. (2.35).

In this way, the equations of motion for a micropolar gyrocontinuum (a gyrocontinuum

where the micropolar theory is used for modeling the elasticity) take the form:

→
f V = −

(
µ+ κ

)(
→∇ · →∇

)
→u−

(
µ− κ+ λ

)
→∇
(
→∇ ·→u

)
− 2κ ↔∇

× ·→ϑ

+ ρV →̈u+ %V →̈u

→m
V = −

((
γ + β

)
→∇ · →∇− 4κ

)
→ϑ−

(
γ − β + α

)
→∇
(
→∇ ·→ϑ

)
− 2κ ↔∇

× ·→u

+↔ı
V ·→ϑ̈+

↔
V ·→ϑ̈+↔ϑ̇

× ·
↔
V ·→ϑ̇

+↔ϑ̇
× ·
↔
V ·

(
→
φ̇+

→
ψ̇
)

+
(
↔
φ̇
× ·
↔
V −

↔
V ·

↔
φ̇
×
)
·→ϑ̇

+
↔
V ·

→
φ̈+

↔
V ·

→
ψ̈ +

↔
φ̇
× ·
↔
V ·

(
→
φ̇+

→
ψ̇
)

(3.11)

and the corresponding equations for a classical gyrocontinuum (a gyrocontinuum where

the classical theory is utilized for modeling the elasticity) will be:

→
f V +

1

2 ↔
∇× · →m

V = − µ
(
→∇ · →∇

)
→u−

(
µ+ λ

)
→∇
(
→∇ ·→u

)
+ ρV →̈u+ %V →̈u+

1

2 ↔
∇× ·

(
↔
V ·→ϑ̈+↔ϑ̇

× ·
↔
V ·→ϑ̇

)
+

1

2 ↔
∇× ·

(
↔ϑ̇
× ·
↔
V ·

(
→
φ̇+

→
ψ̇
)

+
(
↔
φ̇
× ·
↔
V −

↔
V ·

↔
φ̇
×
)
·→ϑ̇
)

+
1

2 ↔
∇× ·

(
↔
V ·

→
φ̈+

↔
V ·

→
ψ̈ +

↔
φ̇
× ·
↔
V ·

(
→
φ̇+

→
ψ̇
))

(3.12)

Recall that the volume force and moment vectors
→
f V and →m

V in Eqs. (3.11) and (3.12)

may include the damping and gravity forces and moments as well as the external force and

moment distributions. In addition, vectors →ϑ̇ and →ϑ̈ in Eq. (3.12) are dependent to the

vectors →̇u and →̈u as in Eq. (2.15).

In the first relation of Eq. (3.11), the first three terms of the right-hand side represent

the contribution of the body elasticity due to the force stress tensor variation inside the

body and the next two terms are translational inertia terms due to elastic body and gyricity

mass densities. In the second relation of Eq. (3.11), again the first three terms of the right-

hand side are the body elasticity contribution due to the antisymmetric portion of the
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force stress tensor and the variation of the couple stress tensor inside the body. The rest of

terms in the right-hand side of the second relation in Eq. (3.11) represent the contribution

of elastic body and gyricity (micro)rotational inertia due to the microrotation of the elastic

body, the axis and spin rotations of the gyricity, and the interactions of these rotations.

An analogous explanation can be given for the right-hand side terms in Eq. (3.12). In

the right-hand side of this equation, the first two terms correspond to the contribution of

the body elasticity due to the variation of the symmetric portion of force stress tensor, the

next two terms indicate the role of the body and gyricity translational inertias, and the

rest of terms reflect the effect of gyricity rotational inertia. As mentioned previously in

Eq. (2.26), note that for a classical gyrocontinuum one half of the curl of the terms acting as

a volume moment will contribute in the equations of translational motion as an equivalent

volume force. Indeed, the effect of the volume moment-like terms on the variation of the

antisymmetric portion of the force stress tensor is reflected (with some limitations) by the

equivalent force-like terms.

The useful matrix form of the equations of motion, in Eqs. (3.11) and (3.12), can be

written as:

–
f V = −

(
µ+ κ

)
–
∇T

–
∇

=
1

–
u−

(
µ− κ+ λ

)
–
∇

–
∇T

–
u− 2κ

=
∇×

–
ϑ

+ ρV
–̈
u+ %V

–̈
u

–
mV = −

((
γ + β

)
–
∇T

–
∇− 4κ

)
=
1

–
ϑ−

(
γ − β + α

)
–
∇

–
∇T

–
ϑ− 2κ

=
∇×

–
u

+
=
ıV

–
ϑ̈+

=
V

–
ϑ̈+

=
ϑ̇
×

=
V

–
ϑ̇

+
=
ϑ̇
×

=
V
(

–
φ̇+

–
ψ̇
)

+
(

=
φ̇
×

=
V −

=
V

=
φ̇
×
)

–
ϑ̇

+
=
V

–
φ̈+

=
V

–
ψ̈ +

=
φ̇
×

=
V
(

–
φ̇+

–
ψ̇
)

(3.13)
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and:

–
f V +

1

2 =
∇×

–
mV = − µ

–
∇T

–
∇

=
1

–
u−

(
µ+ λ

)
–
∇

–
∇T

–
u

+ ρV
–̈
u+ %V

–̈
u+

1

2 =
∇×

(
=
V

–
ϑ̈+

=
ϑ̇
×

=
V

–
ϑ̇
)

+
1

2 =
∇×

(
=
ϑ̇
×

=
V
(

–
φ̇+

–
ψ̇
)

+
(

=
φ̇
×

=
V −

=
V

=
φ̇
×
)

–
ϑ̇
)

+
1

2 =
∇×

(
=
V

–
φ̈+

=
V

–
ψ̈ +

=
φ̇
×

=
V
(

–
φ̇+

–
ψ̇
))

(3.14)

Now, by recalling the matrix relations given in Section 2.3, especially those defined by

Eq. (2.36), and by imposing the necessary first-order approximation with respect to the

microrotation vector →ϑ (as explained and justified in Appendix B) the matrix form of the

equations of motion given by Eqs. (3.13) and (3.14) can be rewritten (approximately) as:

–
f V = −

(
µ+ κ

)
–
∇T

–
∇

=
1

–
u−

(
µ− κ+ λ

)
–
∇

–
∇T

–
u− 2κ

=
∇×

–
ϑ

+ ρV
–̈
u+ %V

–̈
u

–
mV = −

((
γ + β

)
–
∇T

–
∇− 4κ

)
=
1

–
ϑ−

(
γ − β + α

)
–
∇

–
∇T

–
ϑ− 2κ

=
∇×

–
u

+ b
=
ıV

–
ϑ̈+ b

=
V

–
ϑ̈

+
=
ϑ̇
× b

=
V
(
b

–
φ̇+

b

–
ψ̇
)

+
(
b

=
φ̇
× b

=
V − b

=
V

b

=
φ̇
×
)

–
ϑ̇

+
(

=
1+

=
ϑ×
)(

b

=
V

b

–
φ̈+ b

=
V

b

–
ψ̈ +

b

=
φ̇
× b

=
V
(
b

–
φ̇+

b

–
ψ̇
))

(3.15)

and:

–
f V +

1

2 =
∇×

–
mV = − µ

–
∇T

–
∇

=
1

–
u−

(
µ+ λ

)
–
∇

–
∇T

–
u

+ ρV
–̈
u+ %V

–̈
u+

1

2 =
∇× b

=
V

–
ϑ̈

+
1

2 =
∇×

(
=
ϑ̇
× b

=
V
(
b

–
φ̇+

b

–
ψ̇
)

+
(
b

=
φ̇
× b

=
V − b

=
V

b

=
φ̇
×
)

–
ϑ̇
)

+
1

2 =
∇×

(
=
1+

=
ϑ×
)(

b

=
V

b

–
φ̈+ b

=
V

b

–
ψ̈ +

b

=
φ̇
× b

=
V
(
b

–
φ̇+

b

–
ψ̇
))

(3.16)

It is noteworthy that the approximation included in relations given by Eqs. (3.15) and

(3.16) is enforced by the microrotation kinematics in the continuum elasticity model and
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not by the gyros’ kinematics. Therefore, in these equations no restriction or approximation

is imposed on the gyricity and gyricity-related parameters. The restrictions on gyricity and

gyricity-related parameters, if any, should be considered and imposed separately.

Finally, by applying the assumptions (restrictions) suggested by Damaren [23], i.e.:

‖→ϑ‖ � 1

‖→ϑ̇‖, ‖→φ̇‖ � 1 (1/s)

‖→ϑ̈‖, ‖→φ̈‖ � 1 (1/s2)

‖
→
ψ̇‖ � 1 (1/s)

‖
→
ψ̈‖ = 0 (1/s2)

(3.17)

and considering a zero-order approximation, i.e. neglecting the terms of order one and

higher, the equation given in Eq. (3.16) takes the following form:

–
f V +

1

2 =
∇×

–
mV = − µ

–
∇T

–
∇

=
1

–
u−

(
µ+ λ

)
–
∇

–
∇T

–
u

+ ρV
–̈
u+ %V

–̈
u

+
1

2 =
∇×

(
=
ϑ̇
× b

=
V

b

–
ψ̇
)

+
1

2 =
∇×

(
b

=
φ̇
× b

=
V

b

–
ψ̇
) (3.18)

or equivalently:(
ρV + %V

)
–̈
u− 1

4 =
∇× b

=
h×

=
∇×

–̇
u−

(
µ

–
∇T

–
∇

=
1+

(
µ+ λ

)
–
∇

–
∇T

)
–
u =

–
f V +

1

2 =
∇×

–
mV +

1

2 =
∇× b

=
h×

b

–
φ̇

(3.19)

where [23]:

→h =
↔
V ·

→
ψ̇, b

–
h = b

=
V

b

–
ψ̇ (3.20)

The equation given by Eq. (3.19) is the same as the equation derived by Damaren [23].

Compared to the zero-order restricted dynamic equations given in Eq. (3.18) or (3.19), the

here-in derived unrestricted dynamic equations given by Eq. (3.16) contain extra terms

due to considering a nonzero acceleration for the spin rotation of the gyros and assuming

nonsmall velocity and acceleration for their axes rotations.
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3.6 Justification of gyrocontinuum models

As noted in Section 1.2, the focus of this thesis is on gyrocontinuum modeling without

concern for the relationship between the realistic discrete gyroscopic system (structure)

and the idealized gyrocontinuum model which is the question of an “equivalent continuum

modeling”. However, a quick investigation of the actual gyroscopic structure can be very

useful, first for justifying the developed gyrocontinuum models and, second for clarifying

the capabilities and advantages of each gyrocontinuum model.

Recall that the gyroscopic structures suitable to be modeled as gyroelastic systems

are usually thought of as very large structures with repetitive regular lattices where every

lattice houses a small gyro at its center, similar to the one shown in Figure 1.2. In such

structures, each gyro or gyroscope is indeed more complex than just a spinning wheel

and also includes a casing or housing with all the required mechanisms (i.e. gimbals and

driving motors) for controlling the speed and direction of the gyro’s spinning wheel. The

exterior housing of the gyro is itself mounted in the structural lattice via a separate fixing

mechanism (which can be as simple as a piece of welding or a few bolts and nuts). Finally,

there might also exist (though very weak) interactions or elastic couplings (e.g. due to a

sort of reinforcement or connection) between the gyros mounted in neighboring lattices.

Compared to the simple spinning wheel model (shown in Figure 1.2), a more advanced

model (but not the most complex model that can be imagined) for a gyro mounted in

a structural lattice is schematically depicted in Figure 3.1. Note that the illustration in

Figure 3.1 is a 2D view of a 3D segment of the very large 3D gyroscopic lattice structure

extending in all three directions of the R3 space.

In Figure 3.1 the blue square and the dark red disk illustrate a structural lattice and its

mounted-in gyro’s spinning wheel. The black circle denotes the gyro’s housing including

the gimbals and the driving motors. The spring symbols are used to illustrate the possible

flexibilities, or the elastic couplings, between different parts or mechanisms in the model;

the green spring symbols represent the possible flexibility of the fixing mechanism between

the lattice and the gyro’s housing, the purple spring symbols show the flexibility of the

gyro’s gimbals and driving motors between the gyro’s housing and spinning wheel, and the

orange spring symbols denote the possible elastic coupling between the neighboring gyros.
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It is also worth mentioning that each depicted spring symbol may represent all types of

tension, compression, and torsion flexibilities or elastic couplings.

Figure 3.1: An advanced schematic model for a gyro mounted in a representative lattice

of a gyroscopic structure with regular repetitive lattices.

By matching the equations derived in the previous sections (especially the dynamic

equations given in Eqs. (3.11) and (3.12)) with the schematic shown in Figure 3.1, one can

conclude that a classical or micropolar gyrocontinuum model is an idealized continuous

model of a gyroscopic lattice structure where the mass and elasticity of the structure are

respectively characterized by the volume body mass density ρV and the Lamé coefficients

µ and λ , and the translational mass and rotational inertia of the gyros’ spinning wheel

are accounted for by the volume gyro mass density %V and the volume gyro rotational

inertia density
↔
V . The deformations of the structure are ideally characterized by a con-

tinuous displacement field vector →u and the rotations of the gyros’ housing are identified

as a (dependent or independent) continuous microrotation field vector →ϑ (in classical or

micropolar gyrocontinuum models). The rotations of a gyro’s spinning wheel with respect

to the gyro’s housing are given as continuous field variables ϕ1 , ϕ2 , and ϕ3 .

In addition to the aforementioned parameters which are common between the classical
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and micropolar gyrocontinuum models, there are extra parameters in a micropolar gyro-

continuum model (i.e. the microinertia density↔ı
V , the micropolar coupling elastic constant

κ, and the micropolar twist elastic constants γ , β , and α) which can help in representing

the actual gyroscopic lattice structure more accurately.

To be more precise, in a micropolar gyrocontinuum model the microinertia density↔ı
V

can represent the rotational inertia of the gyro’s gimbals and driving motors (depicted

as a black circle in Figure 3.1), the micropolar coupling constant κ may quantify the

flexibility of the fixing mechanism (illustrated by green spring symbols in Figure 3.1), and

the micropolar constants γ, β, and α can measure the elastic coupling between the housings

of the neighboring gyros (shown by purple spring symbols in Figure 3.1).

Note that in both classical and micropolar gyrocontinuum models the mass of the gyros’

housing can be integrated into %V as the relative translational displacement between the

housing and the spinning wheel, if any is insignificant. However, one should be careful not

to integrate the rotational inertia of the gyros’ housing into
↔
V as there is a significant

difference between the rotational displacements of the gyro’s housing and spinning wheel

(i.e. wheel’s spin rotation). Unlike the micropolar model, in the classical gyrocontinuum

model there is no parameter for quantifying the rotational inertia of the gyros’ housing

and it should be assumed negligible. Also, whereas the micropolar gyrocontinuum model

is not capable of explicitly modeling the flexibility of the gyro’s gimbals and driving motors

(denoted by purple spring symbols in Figure 3.1), for the cases where the rotational inertia

of the gyro’s gimbals and driving motors (represented as the microinertia density↔ı
V in a

micropolar gyrocontinuum model) is significantly smaller than the rotational inertia of the

gyro’s spinning wheel (denoted as the gyro rotational inertia density
↔
V ), one can assume

that the micropolar coupling elastic constant κ is also representing the flexibility of the

gyro’s gimbals and driving motors in addition to the flexibility of the fixing mechanism.

Indeed, in such a case one can assume that the flexibility of the gyro’s gimbals and driving

motors is in series with the flexibility of the fixing mechanism.

To sum up, as expected a micropolar gyrocontinuum has the advantage of being a

more comprehensive model of the actual gyroscopic system (lattice structure) at the price

of being a more complicated model; as mentioned earlier by employing the extra parameters

↔ı
V, κ, γ, β, and α it can conveniently account for the effects of rotational inertia of the gyros’
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housing, flexibility of the gyros’ gimbals and driving motors, and elastic coupling between

the neighboring gyros. A classical gyrocontinuum is, however, a more straightforward

and simpler model of the actual gyroscopic system which is especially advantageous where

the rotational inertia of the gyros’ housing can be assumed negligible, the gyros’ gimbals

and driving motors can be presumed rigid, and the effects of elastic coupling or interaction

between the neighboring gyros may be ignored. It is worth mentioning that in a micropolar

gyrocontinuum model these three conditions can be reflected by letting↔ı
V → 0, κ → ∞,

and γ, β, α→ 0which, as one may anticipate, reduces the micropolar gyrocontinuum model

to the classical gyrocontinuum model (as shown in Appendix A for this set of parameters

the micropolar elastic model simplifies to the classical elastic model).
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Chapter 4

Gyroelastic Beams

4.1 Introduction

This chapter is concerned with the dynamic modeling of classical and micropolar gyroe-

lastic beams. A gyroelastic beam, or more briefly a gyrobeam, is a linear elastic beam

of classical or micropolar material carrying a 1D distribution of gyros or gyricity where

this 1D gyricity distribution can be time-invarient or time-varying. Note that the term

“classical gyrobeams” refers to the gyrobeams which are characterized based on the clas-

sical theory of elasticity simplified for beams, e.g. Timoshenko beam theory [48], and the

term “micropolar gyrobeams” refers to those illustrated based on the simplified micropolar

theory of elasticity, e.g. the theory developed by Ramezani [49]. Despite the fact that the

elastic beam is linear, the system as a whole (i.e. the gyrobeam) can be linear or nonlinear.

For such a system, shown in Figure 4.1, the dynamic equations can be derived by

reducing the equations of motion of a general 3D gyrocontinuum (derived in Chapter 3)

to the special case of a 1D gyrobeam. The other way of writing the gyrobeam dynamic

equations is to start with derivation of the system Lagrangian (including the potential and

kinetic energy expressions) and virtual work expressions which are indeed the simplified

versions of the corresponding expressions for a general 3D gyrocontinuum (also derived

in Chapter 3). Then applying Hamilton’s principle to these expressions will result in the
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equations of motion along with the initial and boundary conditions (I/BCs). Recall that in

addition to generation of the BCs, some very useful approximation methods will be made

available through the Hamilton’s principle approach.
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Figure 4.1: A gyrobeam parallel to the first coordinate axis of the inertial frame.

Accordingly, in this thesis, the second approach will be utilized for dynamic model-

ing of a gyrobeam where for simplicity, it is assumed that the system has no source of

damping. In this way, to obtain the gyrobeam equations of motion, it will be enough to

obtain the system potential and kinetic energy expressions, combine them into the system

Lagrangian, derive the system virtual work expression, and apply Hamilton’s principle to

these Lagrangian and virtual work expressions. However, a preliminary step before de-

veloping the potential and kinetic energy and virtual work expressions is to choose the

appropriate beam theories and formulate the corresponding assumptions about the form

of deformation (i.e. displacement and microrotation) fields in the beam. Therefore, in

the following sections, the chosen beam theories and kinematics of the beam will be re-

ported firstly, and then the results will be used in derivation of the gyrobeam potential

and kinetic energy expressions, virtual work expression, and equations of motion. To help

with understanding of the derived equations and reporting of the developed models results,
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nondimensionalization of the gyrobeams equations is presented. Numerical solutions of the

nondimensionalized gyrobeams equations are initiated via a finite element formulation and

a numerical time integration.

4.2 Deformation theories

As mentioned before this chapter deals with both classical and micropolar gyrobeams which

require their own proper beam theories for modeling. The selection of these proper beam

theories is the subject of this section.

By assuming that the beam plane sections remain plane after torsion and a diameter

remains a straight line, the French engineer Alphonse Duleau derived an analytical solution

for the torsion problem of a classical circular beam in 1820 [50]. The Duleau torsion

theory is the most celebrated theory for torsion of classical beams with circular cross

sections. It is also widely applied to the torsion problem of classical beams with non-

circular cross section when an integrated torsion correction factor is introduced. On the

other hand, the most recognized and complete classical beam bending theory is the theory

developed by Stephen Timoshenko in the beginning of the 20th century [48]. Consequently,

the combination of simple longitudinal (tension-compression or axial tensile) deformation

theory (generalized Hooke’s law), Duleau torsion theory, and Timoshenko bending theory

(with required correction factors) is used in this thesis for modeling the classical gyrobeams

(regardless of the beam cross section shape).

About modeling the micropolar gyrobeams, however, the selection of the proper beam

theories is not that straightforward. This is due to the fact that whereas the kinematics of

classical beams and different theories for modeling them have been addressed extensively

in the literature [38,40,51,52], there are only a limited number of papers on the theory of

micropolar beam deformations, the complexity of most of them being far beyond what is

needed in the present work (note that simple enough beam theories are essential for modal

analysis of gyrobeams and equivalent continuum modeling of beam-like truss structures).

The torsion problem of micropolar elastic beams of various cross sectional shapes was

solved by Iesan [53], Gauthier [54], Park [55], and Potapenko [56]. In these works, for beams
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with noncircular cross sections, a warping function was considered in the deformation fields

which gives rise to extremely complicated solutions [53, 55, 56]. Even for circular cross

section beams, the obtained solution is very complex, containing Bessel functions [54].

There are also some papers on bending of the micropolar elastic beams [57–59]. How-

ever, the solutions provided in these papers are complicated as well, and therefore are not

suitable to be used in the present work. A simple solution of the micropolar beams bend-

ing problem was developed by Haung [60] where it was assumed that shear deformation

is negligible and microrotation over the beam cross section is constant and is equal to the

rotation of the beam plane section due to bending. Haung’s micropolar beam theory can be

considered as an extension of the classical Euler-Bernoulli beam bending theory. Another

simple but more general solution of the micropolar beams bending problem was addressed

by Ramezani [49]. In his paper, Ramezani followed Eringen’s method [61] of constructing

the micropolar plate theory and used a power series expansion technique to obtain the dy-

namic equations of micropolar elastic beams. He assumed that the microrotation (which is

constant through the beam cross section) is different from the bending rotation of the beam

plane section and developed a bending theory which is indeed an extension of the classical

Timoshenko beam theory to the case of micropolar beams. However, it is noteworthy that

due to a mistake made in the first step of the derivation of the equations (i.e. using an

incorrect definition for the strain tensor in terms of displacement and microrotation fields),

there are some errors in the equations of motion obtained by Ramezani.

Based on the aforementioned facts, the simple longitudinal deformation theory (gener-

alized Hooke’s law) combined with an extended form of the Duleau torsion theory and a

revised and extended form of the Ramezani’s micropolar beam bending theory, including

the complementary correction factors, will be utilized in the present work to model the

micropolar gyrobeams of arbitrary cross-sectional shapes.

4.3 Kinematics

Taking into account the chosen beam theories (mentioned in the previous section), it is

generally assumed for a linear elastic beam deformed in 3D space that the deformations
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are very small and plane sections of the beam remain plane after these deformations.

Accordingly, the beam total deformation is calculated as a summation of longitudinal

(axial), axial torsional, and lateral bending deformations (containing the effects of lateral

shear and microrotations if necessary).

Now consider the beam, shown in Figure 4.1 or more simply in Figure 4.2, whose neutral

(reference) axis is parallel to the first coordinate axis of the inertial reference frame, i.e.
ox1 . The principal axes of the beam’s cross section (which is assumed uniform along the

beam length) are parallel to the other coordinate axes of the inertial reference frame, i.e.
ox2 and ox3 . The most left and right points on the beam neutral axis are the beam’s

boundary points denoted by P1 and P2 . As shown in Figure 4.2, a body fixed frame,

called beam frame Fc , is located at the left end of the beam (with its origin at boundary

point P1 ) such that (neglecting the beam deformations) its first coordinate axis, i.e. cx1 ,

is coincident with the beam neutral axis and its second and third coordinate axes, i.e. cx2

and cx3, are coincident with the principal axes of the beam cross section. It is noteworthy

that the beam frame Fc is different from the body frames Fb corresponding to infinitesimal

elements of the beam and by assuming that the beam does not undergo any (large) rigid

body rotation, this beam frame Fc is always parallel to the inertial reference frame Fo .

The beam is of length L and its cross section is of area A, polar moment of area (polar

moment of inertia) I1 (about axis cx1 ), and second moments of area (area moments of

inertia) I2 and I3 (about axes cx2 and cx3 respectively). Note that:∫
A

cx2 dA = 0,

∫
A

cx3 dA = 0 (4.1)

and:

I2 =

∫
A

cx3
cx3 dA, I3 =

∫
A

cx2
cx2 dA, I1 = I2 + I3 (4.2)

where

∫
A

� dA represents the integral over the beam cross section.

Assuming that the deformations are very small, plane sections of the beam remain

plane after these deformations, and the torsional warping effects on the cross section are
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Figure 4.2: An elastic beam parallel to the first coordinate axis of the inertial frame.

negligible (i.e. any straight line on the beam cross section remains a straight line), the total

deformation of a micropolar elastic beam can be characterized by a displacement field of

the form:
u1 = ū1(t, cx1) + cx2 ȳ12(t, cx1) + cx3 ȳ13(t, cx1)

u2 = ū2(t, cx1) + cx2 ȳ22(t, cx1) + cx3 ȳ23(t, cx1)

u3 = ū3(t, cx1) + cx2 ȳ32(t, cx1) + cx3 ȳ33(t, cx1)

(4.3)

and a microrotation field of the form:

ϑ1 = ϑ̄1(t, cx1) + cx2 z̄12(t, cx1) + cx3 z̄13(t, cx1)

ϑ2 = ϑ̄2(t, cx1) + cx2 z̄22(t, cx1) + cx3 z̄23(t, cx1)

ϑ3 = ϑ̄3(t, cx1) + cx2 z̄32(t, cx1) + cx3 z̄33(t, cx1)

(4.4)

which are actually the first-order (or linear Taylor) expansions of the displacement and

microrotation fields on the beam’s cross section and around the beam’s neutral axis, i.e.

at cx2 = 0 and cx3 = 0. The variables ūi and ϑ̄i (i = 1, 2, 3 ) are deformations (i.e.

displacements and microrotations) on the beam’s neutral axis, and the variables ȳij and z̄ij

(i = 1, 2, 3 and j = 2, 3) are unknown coefficients to be determined later. Notice that, as
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given in Eqs. (4.3) and (4.4), these first-order expansions necessitate the unknown variables

ȳij and z̄ij to be constant over the beam cross section (i.e. do not vary with cx2 and cx3).

Based on the assumed displacement and microrotation fields, given by Eqs. (4.3) and

(4.4), and considering the fact that:

d

dxi
=

c d

dxi
(4.5)

the elements of the strain and twist tensors will be obtained as:

ε11 = ū1,1 + cx2 ȳ12,1 + cx3 ȳ13,1

ε22 = ȳ22

ε33 = ȳ33

ε12 = ū2,1 + cx2 ȳ22,1 + cx3 ȳ23,1 − ϑ̄3 − cx2 z̄32 − cx3 z̄33

ε21 = ȳ12 + ϑ̄3 + cx2 z̄32 + cx3 z̄33

ε13 = ū3,1 + cx2 ȳ32,1 + cx3 ȳ33,1 + ϑ̄2 + cx2 z̄22 + cx3 z̄23

ε31 = ȳ13 − ϑ̄2 − cx2 z̄22 − cx3 z̄23

ε23 = ȳ32 − ϑ1 − cx2 z̄12 − cx3 z̄13

ε32 = ȳ23 + ϑ1 + cx2 z̄12 + cx3 z̄13

(4.6)

and:
τ11 = ϑ̄1,1 + cx2 z̄12,1 + cx3 z̄13,1

τ22 = z̄22

τ33 = z̄33

τ12 = ϑ̄2,1 + cx2 z̄22,1 + cx3 z̄23,1

τ21 = z̄12

τ13 = ϑ̄3,1 + cx2 z̄32,1 + cx3 z̄33,1

τ31 = z̄13

τ23 = z̄32

τ32 = z̄23

(4.7)

However, when solving a 3D beam problem it is common to assume the problem as a

superposition of two plane force/couple stress problems (and not two plane strain/twist
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problems) in the cx1
cx2 and cx1

cx3 planes (or the ox1
ox2 and ox1

ox3 planes) where:

σ22 = σ33 = 0, χ22 = χ33 = 0 (4.8)

Whereas assuming a zero value for shear stresses σ23 and σ32 is natural in a classical elastic

beam (in fact, this results in some difficulties which are resolved by introducing a shear

correction factor), here for a micropolar elastic beam (where the existence of asymmetric

stress and strain tensors is not unusual) there is no need to add such an assumption.

Instead, it is helpful or natural to additionally assume:

χ23 = χ32 = 0 (4.9)

Finally, to assure that a straight line on the beam cross section remains a straight line

when the beam undergoes a deformation of the form given by Eqs. (4.3) and (4.4), it is

necessary to have:

u2,3 = − u3,2 (4.10)

By using the force and couple stresses given in Eqs. (4.8) and (4.9) to substitute into

the constitutive relations of the micropolar elasticity, given by Eq. (2.4), one can obtain

the following relations for the corresponding strain and twist elements:

ε22 = ε33 = − ν ε11

τ22 = τ33 = − ξ τ11

τ23 = τ32 = 0

(4.11)

In Eq. (4.11), ν is the strain Poisson’s ratio, relating normal strains to each other in a plane

force stress problem, and ξ is the twist Poisson’s ratio, relating normal twists (torsions)

to each other in a plane couple stress problem. These Poisson’s ratios are related to the

other material elastic constants as:

ν =
λ

2
(
µ+ λ

) , ξ =
α

2
(
γ + α

) (4.12)

Substitutions from Eq. (4.3) into Eq. (4.10) and from Eqs. (4.6) and (4.7) into Eq. (4.11),
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while noting that ȳij and z̄ij should be constant over the beam cross section, result in:

ȳ23 = − ȳ32

ȳ22 = ȳ33 = − ν ū1,1

z̄22 = z̄33 = − ξ ϑ̄1,1

z̄23 = z̄32 = 0

(4.13)

Additionally, one can define the torsional and bending rotations of the beam plane

sections, denoted by θ̄i , such that:

− θ̄1 =
1

A

∫
A

u2,3 dA =
1

A

∫
A

− u3,2 dA

θ̄2 =
1

A

∫
A

u1,3 dA

− θ̄3 =
1

A

∫
A

u1,2 dA

(4.14)

where Eq. (4.10) is recalled and the negative signs before θ̄1 and θ̄3 , in the first and third

relations, are introduced to insure the positiveness of a plane rotation θ̄i if it has the same

sense as the positive direction of the beam frame coordinate axis cxi (or in other words

if, based on the right-hand rule, it is pointing toward the positive direction of the beam

frame coordinate axis cxi). Substitution from Eq. (4.3) into Eq. (4.14) results in:

ȳ23 = − ȳ32 = − θ̄1

ȳ12 = − θ̄3

ȳ13 = θ̄2

(4.15)

At the end, regarding the determination of z̄12 and z̄13 , as in this text the simple

micropolar beam torsion and bending theories are desired and as there is no more necessary

constraint to add or reasonable assumption to make, one can simply assign:

z̄12 = z̄13 = 0 (4.16)
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By substituting the unknown coefficients ȳij and z̄ij (i = 1, 2, 3 and j = 2, 3) from

Eqs. (4.13), (4.15), and (4.16) into Eqs. (4.3) and (4.4), the displacement and microrotation

fields in a micropolar elastic beam can be rewritten as:

u1 = ū1(t, cx1)− cx2 θ̄3(t, cx1) + cx3 θ̄2(t, cx1)

u2 = ū2(t, cx1)− cx2 ν ū1,1(t, cx1)− cx3 θ̄1(t, cx1)

u3 = ū3(t, cx1) + cx2 θ̄1(t, cx1)− cx3 ν ū1,1(t, cx1)

(4.17)

ϑ1 = ϑ̄1(t, cx1)

ϑ2 = ϑ̄2(t, cx1)− cx2 ξ ϑ̄1,1(t, cx1)

ϑ3 = ϑ̄3(t, cx1)− cx3 ξ ϑ̄1,1(t, cx1)

(4.18)

which give rise to the following strain and twist fields:

ε11 = ū1,1 − cx2 θ̄3,1 + cx3 θ̄2,1

ε22 = ε33 = − ν ε11

ε12 = ū2,1 − cx3 θ̄1,1 − ϑ̄3 + cx3 ξ ϑ̄1,1

ε21 = − θ̄3 + ϑ̄3 − cx3 ξ ϑ̄1,1

ε13 = ū3,1 + cx2 θ̄1,1 + ϑ̄2 − cx2 ξ ϑ̄1,1

ε31 = θ̄2 − ϑ̄2 + cx2 ξ ϑ̄1,1

ε23 = − ε32 = θ̄1 − ϑ1

(4.19)

τ11 = ϑ̄1,1

τ22 = τ33 = − ξ τ11

τ12 = ϑ̄2,1

τ13 = ϑ̄3,1

τ21 = τ31 = 0

τ23 = τ32 = 0

(4.20)

where Eq. (4.11) is recalled and the terms containing the second-order spatial derivatives

(with respect to coordinate axis cx1 or ox1) as higher order terms are neglected. Remember

the difference between the symbol ϑ̄ denoting the beam’s neutral axis microrotations and
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the symbol θ̄ denoting the beam plane section rotations. Also note that the beam micro-

rotations are absolute rotations measured with respect to the inertial reference frame Fo
(not relative rotations with respect to the beam cross sectional plane).

Based on Eqs. (4.17) and (4.18), one can conclude that a micropolar beam has nine

independent continuous generalized coordinates, i.e. three beam neutral axis displacements

ūi , three rotations (one torsional and two bending rotations) of the beam’s plane section

θ̄i , and three beam neutral axis microrotations ϑ̄i (i = 1, 2, 3).

In the same way, by utilizing the simple longitudinal deformation theory, Duleau torsion

theory, and Timoshenko bending theory, the kinematics of a classical elastic beam can be

formulated as:
u1 = ū1(t, cx1)− cx2 θ̄3(t, cx1) + cx3 θ̄2(t, cx1)

u2 = ū2(t, cx1)− cx2 ν ū1,1(t, cx1)− cx3 θ̄1(t, cx1)

u3 = ū3(t, cx1) + cx2 θ̄1(t, cx1)− cx3 ν ū1,1(t, cx1)

(4.21)

and:
ε11 = ū1,1 − cx2 θ̄3,1 + cx3 θ̄2,1

ε22 = ε33 = − ν ε11

ε12 = ε21 =
1

2

(
ū2,1 − cx3 θ̄1,1 − θ̄3

)
ε13 = ε31 =

1

2

(
ū3,1 + cx2 θ̄1,1 + θ̄2

)
ε23 = ε32 = 0

(4.22)

where:

ν =
λ

2
(
µ+ λ

) (4.23)

Here, the microrotations (being identical with the macrorotations) are dependent on the

displacements as given by the first relation of Eq. (2.15), i.e. (compare this to Eq. (4.18)):

ϑ1 =
1

2

(
u3,2 − u2,3

)
=

1

2

(
θ̄1 + θ̄1

)
= θ̄1(t, cx1)

ϑ2 =
1

2

(
u1,3 − u3,1

)
=

1

2

(
θ̄2 − ū3,1 − cx2 θ̄1,1

)
≈ θ̄2(t, cx1)− cx2

1

2
θ̄1,1(t, cx1)

ϑ3 =
1

2

(
u2,1 − u1,2

)
=

1

2

(
ū2,1 − cx3 θ̄1,1 + θ̄3

)
≈ θ̄3(t, cx1)− cx3

1

2
θ̄1,1(t, cx1)

(4.24)
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Consequently, a classical beam has six independent continuous generalized coordinates,

i.e. three beam’s neutral axis displacements ūi and three rotations (one torsional and two

bending rotations) of the beam’s plane section θ̄i (i = 1, 2, 3).

It is worth noting that the displacement fields given by Eqs. (4.17) and (4.21) are useful

for derivation of the strains (except ε22 and ε33 which are obtained using Eq. (4.11)) and

the potential energy expression. However, when deriving the kinetic energy and virtual

work expressions it is more helpful to approximately express the displacements as:

u1 = ū1(t, cx1)− cx2 θ̄3(t, cx1) + cx3 θ̄2(t, cx1)

u2 ≈ ū2(t, cx1)− cx3 θ̄1(t, cx1)

u3 ≈ ū3(t, cx1) + cx2 θ̄1(t, cx1)

(4.25)

in both classical and micropolar elastic beams. Accordingly, the linear velocity and accel-

eration fields and the virtual displacement field will be obtained as:

u̇1 = ˙̄u1(t, cx1)− cx2
˙̄θ3(t, cx1) + cx3

˙̄θ2(t, cx1)

u̇2 ≈ ˙̄u2(t, cx1)− cx3
˙̄θ1(t, cx1)

u̇3 ≈ ˙̄u3(t, cx1) + cx2
˙̄θ1(t, cx1)

(4.26)

ü1 = ¨̄u1(t, cx1)− cx2
¨̄θ3(t, cx1) + cx3

¨̄θ2(t, cx1)

ü2 ≈ ¨̄u2(t, cx1)− cx3
¨̄θ1(t, cx1)

ü3 ≈ ¨̄u3(t, cx1) + cx2
¨̄θ1(t, cx1)

(4.27)

δu1 = δū1(t, cx1)− cx2 δθ̄3(t, cx1) + cx3 δθ̄2(t, cx1)

δu2 ≈ δū2(t, cx1)− cx3 δθ̄1(t, cx1)

δu3 ≈ δū3(t, cx1) + cx2 δθ̄1(t, cx1)

(4.28)

Analogously, whereas the microrotation fields given by Eqs. (4.18) and (4.24) are useful

for derivation of the strain and twist tensors and the potential energy expression, when

deriving the kinetic energy and virtual work expressions it is more helpful to approximate

the microrotation field vector as:

→ϑ ≈ →ϑ̄(t, cx1),
–
ϑ ≈

–
ϑ̄(t, cx1), ϑi ≈ ϑ̄i(t,

cx1) (4.29)
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in a micropolar beam, and as:

→ϑ ≈→θ̄(t,
cx1),

–
ϑ ≈

–
θ̄(t, cx1), ϑi ≈ θ̄i(t,

cx1) (4.30)

in a classical beam. Based on this definition the microrotational velocity and acceleration

field vectors (i.e. the time derivatives of →ϑ) will approximately be:

→ϑ̇ ≈ →
˙̄ϑ(t, cx1),

–
ϑ̇ ≈

–

˙̄ϑ(t, cx1), ϑ̇i ≈ ˙̄ϑi(t,
cx1)

→ϑ̈ ≈ →
¨̄ϑ(t, cx1),

–
ϑ̈ ≈

–

¨̄ϑ(t, cx1), ϑ̈i ≈ ¨̄ϑi(t,
cx1)

(4.31)

for a micropolar beam, and:

→ϑ̇ ≈→
˙̄θ(t, cx1),

–
ϑ̇ ≈

–

˙̄θ(t, cx1), ϑ̇i ≈ ˙̄θi(t,
cx1)

→ϑ̈ ≈→
¨̄θ(t, cx1),

–
ϑ̈ ≈

–

¨̄θ(t, cx1), ϑ̈i ≈ ¨̄θi(t,
cx1)

(4.32)

for a classical beam. Finally, one can approximately represent the virtual microrotation

field vector, correspondingly in micropolar and classical beams, as:

δ→ϑ ≈ δ→ϑ̄(t, cx1), δ
–
ϑ ≈ δ

–
ϑ̄(t, cx1), δϑi ≈ δϑ̄i(t,

cx1) (4.33)

and:

δ→ϑ ≈ δ→θ̄(t,
cx1), δ

–
ϑ ≈ δ

–
θ̄(t, cx1), δϑi ≈ δθ̄i(t,

cx1) (4.34)

4.4 Potential energy expression

As mentioned in Chapter 3, the only source of the potential energy in a gyrocontinuum

is the elasticity of the system and the system potential energy is equal to its total strain

energy. On the other hand, to derive the total strain energy expression of a gyrocontinuum,

the force and couple stress tensors are needed in addition to the strain and twist tensors.

Based on the results obtained in the previous section and by utilizing the constitutive rela-

tions given by Eq. (2.4) the elements of the force and couple stress tensors for a micropolar
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elastic beam will be derived as:

σ11 = E ε11

σ22 = σ33 = 0

σ12 =
(
µ+ κ

)
ε12 +

(
µ− κ

)
ε21

σ21 =
(
µ+ κ

)
ε21 +

(
µ− κ

)
ε12

σ13 =
(
µ+ κ

)
ε13 +

(
µ− κ

)
ε31

σ31 =
(
µ+ κ

)
ε31 +

(
µ− κ

)
ε13

σ23 = − σ32 = 2κ ε23

(4.35)

and:
χ11 = E τ11

χ22 = χ33 = 0

χ12 =
(
γ + β

)
τ12

χ21 =
(
γ − β

)
τ12

χ13 =
(
γ + β

)
τ13

χ31 =
(
γ − β

)
τ13

χ23 = χ32 = 0

(4.36)

where E is the tensile (Young’s) modulus, relating the normal force stresses to the normal

strains in a plane force stress problem, and E is the tortile (torsional) modulus, relating

the normal couple stresses to the normal twists (torsions) in a plane couple stress problem.

These moduli are defined as:

E =
µ
(

2µ+ 3λ
)

µ+ λ
= 2µ

(
1 + ν

)
E =

γ
(

2 γ + 3α
)

γ + α
= 2 γ

(
1 + ξ

) (4.37)

By substitution from Eqs. (4.35) and (4.36) into Eq. (3.2) (which gives the potential

energy expression of a general gyrocontinuum), the following expression will be obtained
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for the potential energy of a micropolar gyrobeam:

U =
1

2
E

∫
V

ε11 ε11 dV +
1

2

(
µ+ κ

) ∫
V

(
ε12 ε12 + ε21 ε21 + ε13 ε13 + ε31 ε31

)
dV

+
(
µ− κ

) ∫
V

(
ε12 ε21 + ε13 ε31

)
dV + 2κ

∫
V

ε23 ε23 dV

+
1

2
E
∫
V

τ11 τ11 dV +
1

2

(
γ + β

) ∫
V

(
τ12 τ12 + τ13 τ13

)
dV

(4.38)

which (analogous to the rearrangement in Eq. (3.3)) can be rearranged into:

U =
1

2
E

∫
V

ε11 ε11 dV +
1

2
µ

∫
V

(
ε12 + ε21

)2

dV +
1

2
µ

∫
V

(
ε13 + ε31

)2

dV

+
1

2
κ

∫
V

(
ε12 − ε21

)2

dV +
1

2
κ

∫
V

(
ε13 − ε31

)2

dV +
1

2
κ

∫
V

(
ε23 − ε32

)2

dV

+
1

2
E
∫
V

τ11 τ11 dV +
1

2

(
γ + β

) ∫
V

(
τ12 τ12 + τ13 τ13

)
dV

(4.39)

where V is the volume of the beam.

Now by splitting the volume integration into the integration over the cross section A

and the integration over the length L, substituting from Eqs. (4.19) and (4.20), and taking

the integration over the cross section, the potential energy expression, given by Eq. (4.39),
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takes the following form:

U =
1

2
E A

∫
L

ū1,1 ū1,1 dL+
1

2
E I2

∫
L

θ̄2,1 θ̄2,1 dL+
1

2
E I3

∫
L

θ̄3,1 θ̄3,1 dL

+
1

2
µA

∫
L

(
ū2,1 − θ̄3

)2

dL+
1

2
µA

∫
L

(
ū3,1 + θ̄2

)2

dL+
1

2
µ I1

∫
L

θ̄1,1 θ̄1,1 dL

+
1

2
κA

∫
L

(
ū2,1 + θ̄3 − 2 ϑ̄3

)2

dL+
1

2
κA

∫
L

(
ū3,1 − θ̄2 + 2 ϑ̄2

)2

dL

+
1

2
κ I1

∫
L

(
θ̄1,1 − 2 ξ ϑ̄1,1

)2

dL+ 2κA

∫
L

(
θ̄1 − ϑ̄1

)2

dL

+
1

2
E A

∫
L

ϑ̄1,1 ϑ̄1,1 dL+
1

2

(
γ + β

)
A

∫
L

(
ϑ̄2,1 ϑ̄2,1 + ϑ̄3,1 ϑ̄3,1

)
dL

=

∫
L

U L dL

(4.40)

where U L is the linear density of the potential energy or the potential energy per unit

length and recall that µ is the shear modulus.

The potential energy expression of a micropolar beam given by Eq. (4.40) will reduce to

the potential energy expression of a classical Timoshenko beam (including the contribution

from axial and torsional deformations) if the assumptions of the classical theory of elasticity

are applied. In this way, the following expression will be obtained for the potential energy

of a classical beam:

U =
1

2
E A

∫
L

ū1,1 ū1,1 dL+
1

2
E I2

∫
L

θ̄2,1 θ̄2,1 dL+
1

2
E I3

∫
L

θ̄3,1 θ̄3,1 dL

+
1

2
µA

∫
L

(
ū2,1 − θ̄3

)2

dL+
1

2
µA

∫
L

(
ū3,1 + θ̄2

)2

dL+
1

2
µ I1

∫
L

θ̄1,1 θ̄1,1 dL

=

∫
L

U L dL

(4.41)
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4.5 Kinetic energy expression

The kinetic energy expression of a gyrobeam contains the terms due to translational and

rotational motions of the elastic beam and the mounted-in gyros. This expression can be

derived by simplifying the general expressions given by Eqs. (3.8) and (3.9) characterizing

the kinetic energy of 3D micropolar and classical gyrocontinua. The simplification is done

by splitting the volume integration into the integration over the beam length L and the

integration over the beam cross section A, substituting from Eqs. (4.25), (4.29), and (4.30),

and taking the integration over A while assuming that the gyricity parameters (i.e.
↔
V ,

→
φ̇ , and

→
ψ̇ ) are constant over A . Note that the microrotation approximations mentioned

in Eqs. (4.29) and (4.30) especially make sense as the gyricity parameters are assumed

constant over A (they just vary with time t and along coordinate axis cx1).

Accordingly, for a micropolar gyrobeam one can derive the following kinetic energy

expression:

T =
1

2

(
ρV + %V

)
A

∫
L

(
˙̄u1 ˙̄u1 + ˙̄u2 ˙̄u2 + ˙̄u3 ˙̄u3

)
dL

+
1

2

(
ρV + %V

) ∫
L

(
I1

˙̄θ1
˙̄θ1 + I2

˙̄θ2
˙̄θ2 + I3

˙̄θ3
˙̄θ3

)
dL

+
1

2
A

∫
L

(
ıVij + Vij

)
˙̄ϑj

˙̄ϑi dL+ A

∫
L

Vij

(
φ̇j + ψ̇j

)
˙̄ϑi dL

+
1

2
A

∫
L

Vij

(
φ̇j φ̇i + ψ̇j ψ̇i + 2 φ̇j ψ̇i

)
dL

=

∫
L

T L dL

(4.42)
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and for a classical gyrobeam the following kinetic energy expression will be obtained:

T =
1

2

(
ρV + %V

)
A

∫
L

(
˙̄u1 ˙̄u1 + ˙̄u2 ˙̄u2 + ˙̄u3 ˙̄u3

)
dL

+
1

2

(
ρV + %V

) ∫
L

(
I1

˙̄θ1
˙̄θ1 + I2

˙̄θ2
˙̄θ2 + I3

˙̄θ3
˙̄θ3

)
dL

+
1

2
A

∫
L

Vij
˙̄θj

˙̄θi dL+ A

∫
L

Vij

(
φ̇j + ψ̇j

)
˙̄θi dL

+
1

2
A

∫
L

Vij

(
φ̇j φ̇i + ψ̇j ψ̇i + 2 φ̇j ψ̇i

)
dL

=

∫
L

T L dL

(4.43)

where T L is the linear density of the kinetic energy or the kinetic energy per unit length

and the tensor summation convention is used to summarize the expressions.

4.6 Virtual work expression

Assuming that the gyrobeam is subjected to the action of external (nonconservative) vol-

ume and boundary surface forces and moments
→
f V , →m

V ,
→
f S , and →m

S (where boundary

surface forces and moments are applied only on the most left and right beam cross sec-

tions), the general virtual work expression for a (micropolar or classical) gyrobeam can be

written as:

δW =

∫
V

(
→
f V · δ→u+ →m

V · δ→ϑ
)
dV +

∮
S

(
→
f S · δ→u+ →m

S · δ→ϑ
)
dS (4.44)

This general expression can be written in terms of the beam generalized coordinates by

splitting the volume integration into the integration over the length L and the integration

over the cross section A, substituting from Eqs. (4.25), (4.29), and (4.30), and taking the

integration over the beam cross section.
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Utilizing the general virtual work expression in Eq. (4.44) and the approximations in

Eqs. (4.28) and (4.33) the virtual work expression for a micropolar gyrobeam takes the

following form:

δW =

∫
L

(
A f̄

V

i δūi + m̄L

i δθ̄i + Am̄V

i δϑ̄i

)
dL

+ A f̄
S

i (P1) δūi(P1) + m̄P

i (P1) δθ̄i(P1) + Am̄S

i (P1) δϑ̄i(P1)

+ A f̄
S

i (P2) δūi(P2) + m̄P

i (P2) δθ̄i(P2) + Am̄S

i (P2) δϑ̄i(P2)

=

∫
L

δW L dL+ δW P

(4.45)

where:

A f̄
V

i =

∫
A

f Vi dA, A m̄V

i =

∫
A

mV

i dA

A f̄
S

i =

∫
A

f Si dA, A m̄S

i =

∫
A

mS

i dA

(4.46)

and:

m̄L

1 =

∫
A

(
cx2 f

V

3 − cx3 f
V

2

)
dA

m̄L

2 =

∫
A

cx3 f
V

1 dA

− m̄L

3 =

∫
A

cx2 f
V

1 dA

m̄P

1 =

∫
A

(
cx2 f

S

3 − cx3 f
S

2

)
dA

m̄P

2 =

∫
A

cx3 f
S

1 dA

− m̄P

3 =

∫
A

cx2 f
S

1 dA

(4.47)
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On the other hand, based on Eqs. (4.44), (4.28), and (4.34), the virtual work expression

for a classical gyrobeam will be:

δW =

∫
L

(
A f̄

V

i δūi + m̄L

i δθ̄i + Am̄V

i δθ̄i

)
dL

+ A f̄
S

i (P1) δūi(P1) + m̄P

i (P1) δθ̄i(P1) + Am̄S

i (P1) δθ̄i(P1)

+ A f̄
S

i (P2) δūi(P2) + m̄P

i (P2) δθ̄i(P2) + Am̄S

i (P2) δθ̄i(P2)

=

∫
L

δW L dL+ δW P

(4.48)

where again f̄
V

i , f̄
S

i , m̄V

i , m̄S

i , m̄L

i , and m̄P

i are as defined by Eqs. (4.46) and (4.47).

For both micropolar and classical gyrobeams δW L is the linear density of the virtual

work or the virtual work per unit length and δW P is the point virtual work.

4.7 Equations of motion

Having the potential and kinetic energy expressions along with the virtual work expression,

Hamilton’s principle can be used to derive the gyrobeam equations of motion and the

corresponding I/BCs. Here, it should be noted that the matrix of generalized coordinates

for a micropolar gyrobeam is:

∼
q =

[
ū1 ū2 ū3 θ̄1 θ̄2 θ̄3 ϑ̄1 ϑ̄2 ϑ̄3

]T

(4.49)

and for a classical gyrobeam is:

∼
q =

[
ū1 ū2 ū3 θ̄1 θ̄2 θ̄3

]T

(4.50)

Consequently, considering the discussions in Appendix B, special care is needed when

taking the variation of the terms including the time derivative of beam microrotations ϑ̄i

and beam plane section rotations θ̄i as generalized coordinates.
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To be more specific, noting that:

b∆
(
I1

)
= b∆

(
I2

)
= b∆

(
I3

)
= 0

b∆
(
↔ı
V

)
= b∆

(
↔
V
)

= b∆
(
→
φ̇
)

= b∆
(
→
ψ̇
)

= 0
(4.51)

and:
d

dt

(
I1

)
=

d

dt

(
I2

)
=

d

dt

(
I3

)
= 0

d

dt

(
↔ı
V

)
= ↔ϑ̇

× ·↔ı
V −↔ı

V ·↔ϑ̇
×

d

dt

(
↔
V
)

=
(
↔ϑ̇
×

+
↔
φ̇
×
)
·
↔
V −

↔
V ·

(
↔ϑ̇
×

+
↔
φ̇
×
)

d

dt

(
→ϑ̇
)

= →ϑ̈

d

dt

(
→
φ̇
)

=
→
φ̈+↔ϑ̇

× ·
→
φ̇

d

dt

(
→
ψ̇
)

=
→
ψ̈ +

(
↔ϑ̇
×

+
↔
φ̇
×
)
·
→
ψ̇

(4.52)

the relation given by Eq. (B.52) and the second relation in Eq. (B.69) will be desirably used

for taking the variation of the kinetic energy expression. In other words, for the kinetic

energy expression, the variations are taken with respect to body frame Fb while the time

derivatives are with respect to the inertial frame Fo . For the potential energy expression

however, the required variations and space derivatives are taken with respect to Fo .

Afterwards, based on the results obtained in Chapter 2, the motion equations and

I/BCs will take the following matrix forms:

∼
QL =

(∂T L

∂
∼̇
q

)
, t
−
(∂U L

∂
∼
q
,1

)
,1

+
∂U L

∂
∼
q

(4.53)
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and:

at t = t1, t2 ; and over L : δ
∼
q = ∼0 or

∂T L

∂
∼̇
q

= ∼0

at P1 ; and during t : δ
∼
q = ∼0 or

∼
QP +

∂U L

∂
∼
q
,1

= ∼0

at P2 ; and during t : δ
∼
q = ∼0 or

∼
QP − ∂U L

∂
∼
q
,1

= ∼0

(4.54)

where:

∼
QL =

δW L

δ
∼
q
,

∼
QP =

δW P

δ
∼
q

(4.55)

Before writing the final dynamic equations and I/BCs for a micropolar gyrobeam

through utilizing Eqs. (4.53) and (4.54), it is useful to define the vectors of body and

gyros angular momenta per unit volume, i.e. →I
V and

→
J V , and their first time derivatives

with respect to the inertial frame, i.e. →İ
V

and
→
J̇ V

, as:

→I
V =↔ı

V ·→
˙̄ϑ

→İ
V

=
d

dt

(
→I
V

)
=↔ı

V ·→
¨̄ϑ+↔

˙̄ϑ
×
·↔ı

V ·→
˙̄ϑ

(4.56)

and:

→
J V =

↔
V ·

(
→
˙̄ϑ+

→
φ̇+

→
ψ̇
)

→
J̇ V

=
d

dt

(
→
J V

)
=
↔
V ·→

¨̄ϑ+↔
˙̄ϑ
×
·
↔
V ·→

˙̄ϑ+↔
˙̄ϑ
×
·
↔
V ·

(
→
φ̇+

→
ψ̇
)

+
(
↔
φ̇
× ·
↔
V −

↔
V ·

↔
φ̇
×
)
·→

˙̄ϑ+
↔
V ·

→
φ̈+

↔
V ·

→
ψ̈ +

↔
φ̇
× ·
↔
V ·

(
→
φ̇+

→
ψ̇
) (4.57)

whose component matrices in the inertial frame (after imposing the required first-order

approximation on the microrotations as mentioned in Appendix B) are:

–
I V = b

=
ıV

–

˙̄ϑ

–
İ V

= b
=
ıV

–

¨̄ϑ
(4.58)
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and:

–
J V = b

=
V
(

–

˙̄ϑ+
b

–
φ̇+

b

–
ψ̇
)

–
J̇ V

= b

=
V

–

¨̄ϑ+
=

˙̄ϑ
×
b

=
V
(
b

–
φ̇+

b

–
ψ̇
)

+
(
b

=
φ̇
× b

=
V − b

=
V

b

=
φ̇
×
)

–

˙̄ϑ

+
(

=
1+

=
ϑ̄
×
)(

b

=
V

b

–
φ̈+ b

=
V

b

–
ψ̈ +

b

=
φ̇
× b

=
V
(
b

–
φ̇+

b

–
ψ̇
)) (4.59)

Now, by utilizing Eq. (4.53) and after adding the required correction factors (i.e. in-

cluding ks2
and ks3

as the shear correction factors and kt as the torsion correction factor),

the final equations of motion for a micropolar gyrobeam can be written as the following

nine equations:

A f̄
V

1 =
(
ρV + %V

)
A ¨̄u1 − E A ū1,11

A f̄
V

2 =
(
ρV + %V

)
A ¨̄u2 − ks2

µA
(
ū2,11 − θ̄3,1

)
− κA

(
ū2,11 + θ̄3,1 − 2 ϑ̄3,1

)
A f̄

V

3 =
(
ρV + %V

)
A ¨̄u3 − ks3

µA
(
ū3,11 + θ̄2,1

)
− κA

(
ū3,11 − θ̄2,1 + 2 ϑ̄2,1

)
m̄L

1 =
(
ρV + %V

)
I1

¨̄θ1 − kt µ I1 θ̄1,11 − κ I1

(
θ̄1,11 − 2 ξ ϑ̄1,11

)
+ 4κA

(
θ̄1 − ϑ̄1

)
m̄L

2 =
(
ρV + %V

)
I2

¨̄θ2 − E I2 θ̄2,11 + ks3
µA

(
ū3,1 + θ̄2

)
− κA

(
ū3,1 − θ̄2 + 2 ϑ̄2

)
m̄L

3 =
(
ρV + %V

)
I3

¨̄θ3 − E I3 θ̄3,11 − ks2
µA

(
ū2,1 − θ̄3

)
+ κA

(
ū2,1 + θ̄3 − 2 ϑ̄3

)
Am̄V

1 = A İ V1 + A J̇ V

1 − E A ϑ̄1,11 + 2 ξ κ I1

(
θ̄1,11 − 2 ξ ϑ̄1,11

)
− 4κA

(
θ̄1 − ϑ̄1

)
Am̄V

2 = A İ V2 + A J̇ V

2 −
(
γ + β

)
A ϑ̄2,11 + 2κA

(
ū3,1 − θ̄2 + 2 ϑ̄2

)
Am̄V

3 = A İ V3 + A J̇ V

3 −
(
γ + β

)
A ϑ̄3,11 − 2κA

(
ū2,1 + θ̄3 − 2 ϑ̄3

)

(4.60)

It is noteworthy that four modes of deformation are characterized by the relations in

Eq. (4.60); longitudinal displacement along the cx1 axis by the first relation, torsional

rotation around the cx1 axis by the fourth and seventh relations, bending deformation in

the cx1
cx2 plane by the second, sixth, and ninth relations, and bending deformation in the

cx1
cx3 plane by the third, fifth, and eighth relations. Also as can be expected, the relations

describing the two bending modes in the cx1
cx2 and cx1

cx3 planes are very similar. In fact,

the differences between the relations of these two modes are due to the fact that in the
cx1

cx2 plane, θ̄3 , ϑ̄3 , and ū2,1 are of the same positive direction, however, in the cx1
cx3

plane, the positive direction of θ̄2 and ϑ̄2 is opposite of the positive direction for ū3,1 .
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One can show that the dynamic equations in Eq. (4.61) correspond to the following

equilibrium equations:

σ11,1 + σ21,2 + σ31,3 + f V1 − ρV ü1 = 0

σ12,1 + f V2 − ρV ü2 = 0

σ13,1 + f V3 − ρV ü3 = 0

cx2

(
σ13,1 + f V3 − ρV ü3

)
− cx3

(
σ12,1 + f V2 − ρV ü2

)
= 0

cx3

(
σ11,1 + σ21,2 + σ31,3 + f V1 − ρV ü1

)
= 0

cx2

(
σ11,1 + σ21,2 + σ31,3 + f V1 − ρV ü1

)
= 0

σ23 − σ32 + χ11,1 +mV

1 − ıV1j ϑ̈j = 0

σ31 − σ13 + χ12,1 +mV

2 − ıV2j ϑ̈j = 0

σ12 − σ21 + χ13,1 +mV

3 − ıV3j ϑ̈j = 0

(4.61)

The dynamic equations given in Eq. (4.60) should be solved along with the following

I/BCs which are obtained by using Eq. (4.54):

at t = t1, t2 ; and over L :

δū1 = 0 or
(
ρV + %V

)
A ˙̄u1 = 0

δū2 = 0 or
(
ρV + %V

)
A ˙̄u2 = 0

δū3 = 0 or
(
ρV + %V

)
A ˙̄u3 = 0

δθ̄1 = 0 or
(
ρV + %V

)
I1

˙̄θ1 = 0

δθ̄2 = 0 or
(
ρV + %V

)
I2

˙̄θ2 = 0

δθ̄3 = 0 or
(
ρV + %V

)
I3

˙̄θ3 = 0

δϑ̄1 = 0 or A I V1 + AJ V
1 = 0

δϑ̄2 = 0 or A I V2 + AJ V
2 = 0

δϑ̄3 = 0 or A I V3 + AJ V
3 = 0

(4.62)
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at P1 ; and during t :

δū1 = 0 or A f̄
S

1 + E A ū1,1 = 0

δū2 = 0 or A f̄
S

2 + ks2
µA

(
ū2,1 − θ̄3

)
+ κA

(
ū2,1 + θ̄3 − 2 ϑ̄3

)
= 0

δū3 = 0 or A f̄
S

3 + ks3
µA

(
ū3,1 + θ̄2

)
+ κA

(
ū3,1 − θ̄2 + 2 ϑ̄2

)
= 0

δθ̄1 = 0 or m̄P
1 + kt µ I1 θ̄1,1 + κ I1

(
θ̄1,1 − 2 ξ ϑ̄1,1

)
= 0

δθ̄2 = 0 or m̄P
2 + E I2 θ̄2,1 = 0

δθ̄3 = 0 or m̄P
3 + E I3 θ̄3,1 = 0

δϑ̄1 = 0 or Am̄S
1 + E A ϑ̄1,1 − 2 ξ κ I1

(
θ̄1,1 − 2 ξ ϑ̄1,1

)
= 0

δϑ̄2 = 0 or Am̄S
2 +

(
γ + β

)
A ϑ̄2,1 = 0

δϑ̄3 = 0 or Am̄S
3 +

(
γ + β

)
A ϑ̄3,1 = 0

(4.63)

at P2 ; and during t :

δū1 = 0 or A f̄
S

1 − E A ū1,1 = 0

δū2 = 0 or A f̄
S

2 − ks2
µA

(
ū2,1 − θ̄3

)
− κA

(
ū2,1 + θ̄3 − 2 ϑ̄3

)
= 0

δū3 = 0 or A f̄
S

3 − ks3
µA

(
ū3,1 + θ̄2

)
− κA

(
ū3,1 − θ̄2 + 2 ϑ̄2

)
= 0

δθ̄1 = 0 or m̄P
1 − kt µ I1 θ̄1,1 − κ I1

(
θ̄1,1 − 2 ξ ϑ̄1,1

)
= 0

δθ̄2 = 0 or m̄P
2 − E I2 θ̄2,1 = 0

δθ̄3 = 0 or m̄P
3 − E I3 θ̄3,1 = 0

δϑ̄1 = 0 or Am̄S
1 − E A ϑ̄1,1 + 2 ξ κ I1

(
θ̄1,1 − 2 ξ ϑ̄1,1

)
= 0

δϑ̄2 = 0 or Am̄S
2 −

(
γ + β

)
A ϑ̄2,1 = 0

δϑ̄3 = 0 or Am̄S
3 −

(
γ + β

)
A ϑ̄3,1 = 0

(4.64)

The sets of dynamic PDEs and I/BCs for a micropolar gyrobeam, given by Eqs. (4.60)–

(4.64), can be revised provided that in each set the relations corresponding to each θ̄i are

replaced with the sum of relations corresponding to θ̄i and ϑ̄i in that set (i = 1, 2, 3).

Accordingly, the following sets of dynamic equations and I/BCs will be obtained for a

73



micropolar gyrobeam:

f̄
V

1 =
(
ρV + %V

)
¨̄u1 − E ū1,11

f̄
V

2 =
(
ρV + %V

)
¨̄u2 − ks2

µ
(
ū2,11 − θ̄3,1

)
− κ

(
ū2,11 + θ̄3,1 − 2 ϑ̄3,1

)
f̄
V

3 =
(
ρV + %V

)
¨̄u3 − ks3

µ
(
ū3,11 + θ̄2,1

)
− κ

(
ū3,11 − θ̄2,1 + 2 ϑ̄2,1

)
m̄L

1 + Am̄V

1 =
(
ρV + %V

)
I1

¨̄θ1 + A İ V1 + A J̇ V

1 − kt µ I1 θ̄1,11 − E A ϑ̄1,11

−
(

1− 2 ξ
)
κ I1

(
θ̄1,11 − 2 ξ ϑ̄1,11

)
m̄L

2 + Am̄V

2 =
(
ρV + %V

)
I2

¨̄θ2 + A İ V2 + A J̇ V

2 − E I2 θ̄2,11 −
(
γ + β

)
A ϑ̄2,11

+ ks3
µA

(
ū3,1 + θ̄2

)
+ κA

(
ū3,1 − θ̄2 + 2 ϑ̄2

)
m̄L

3 + Am̄V

3 =
(
ρV + %V

)
I3

¨̄θ3 + A İ V3 + A J̇ V

3 − E I3 θ̄3,11 −
(
γ + β

)
A ϑ̄3,11

− ks2
µA

(
ū2,1 − θ̄3

)
− κA

(
ū2,1 + θ̄3 − 2 ϑ̄3

)
m̄V

1 = İ V1 + J̇ V

1 − E ϑ̄1,11 + 2 ξ κ
I1

A

(
θ̄1,11 − 2 ξ ϑ̄1,11

)
− 4κ

(
θ̄1 − ϑ̄1

)
m̄V

2 = İ V2 + J̇ V

2 −
(
γ + β

)
ϑ̄2,11 + 2κ

(
ū3,1 − θ̄2 + 2 ϑ̄2

)
m̄V

3 = İ V3 + J̇ V

3 −
(
γ + β

)
ϑ̄3,11 − 2κ

(
ū2,1 + θ̄3 − 2 ϑ̄3

)

(4.65)

at t = t1, t2 ; and over L :

δū1 = 0 or
(
ρV + %V

)
A ˙̄u1 = 0

δū2 = 0 or
(
ρV + %V

)
A ˙̄u2 = 0

δū3 = 0 or
(
ρV + %V

)
A ˙̄u3 = 0

δθ̄1 + δϑ̄1 = 0 or
(
ρV + %V

)
I1

˙̄θ1 + A I V1 + AJ V
1 = 0

δθ̄2 + δϑ̄2 = 0 or
(
ρV + %V

)
I2

˙̄θ2 + A I V2 + AJ V
2 = 0

δθ̄3 + δϑ̄3 = 0 or
(
ρV + %V

)
I3

˙̄θ3 + A I V3 + AJ V
3 = 0

δϑ̄1 = 0 or A I V1 + AJ V
1 = 0

δϑ̄2 = 0 or A I V2 + AJ V
2 = 0

δϑ̄3 = 0 or A I V3 + AJ V
3 = 0

(4.66)
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at P1 ; and during t :

δū1 = 0 or A f̄
S

1 + E A ū1,1 = 0

δū2 = 0 or A f̄
S

2 + ks2
µA

(
ū2,1 − θ̄3

)
+ κA

(
ū2,1 + θ̄3 − 2 ϑ̄3

)
= 0

δū3 = 0 or A f̄
S

3 + ks3
µA

(
ū3,1 + θ̄2

)
+ κA

(
ū3,1 − θ̄2 + 2 ϑ̄2

)
= 0

δθ̄1 + δϑ̄1 = 0 or m̄P
1 + Am̄S

1 + kt µ I1 ϑ̄1,1 + E A ϑ̄1,1

+
(

1− 2 ξ
)
κ I1

(
θ̄1,1 − 2 ξ ϑ̄1,1

)
= 0

δθ̄2 + δϑ̄2 = 0 or m̄P
2 + Am̄S

2 + E I2 θ̄2,1 +
(
γ + β

)
A ϑ̄2,1 = 0

δθ̄3 + δϑ̄3 = 0 or m̄P
3 + Am̄S

3 + E I3 θ̄3,1 +
(
γ + β

)
A ϑ̄3,1 = 0

δϑ̄1 = 0 or Am̄S
1 + E A ϑ̄1,1 − 2 ξ κ I1

(
θ̄1,1 − 2 ξ ϑ̄1,1

)
= 0

δϑ̄2 = 0 or Am̄S
2 +

(
γ + β

)
A ϑ̄2,1 = 0

δϑ̄3 = 0 or Am̄S
3 +

(
γ + β

)
A ϑ̄3,1 = 0

(4.67)

at P2 ; and during t :

δū1 = 0 or A f̄
S

1 − E A ū1,1 = 0

δū2 = 0 or A f̄
S

2 − ks2
µA

(
ū2,1 − θ̄3

)
− κA

(
ū2,1 + θ̄3 − 2 ϑ̄3

)
= 0

δū3 = 0 or A f̄
S

3 − ks3
µA

(
ū3,1 + θ̄2

)
− κA

(
ū3,1 − θ̄2 + 2 ϑ̄2

)
= 0

δθ̄1 + δϑ̄1 = 0 or m̄P
1 + Am̄S

1 − kt µ I1 ϑ̄1,1 − E A ϑ̄1,1

−
(

1− 2 ξ
)
κ I1

(
θ̄1,1 − 2 ξ ϑ̄1,1

)
= 0

δθ̄2 + δϑ̄2 = 0 or m̄P
2 + Am̄S

2 − E I2 θ̄2,1 −
(
γ + β

)
A ϑ̄2,1 = 0

δθ̄3 + δϑ̄3 = 0 or m̄P
3 + Am̄S

3 − E I3 θ̄3,1 −
(
γ + β

)
A ϑ̄3,1 = 0

δϑ̄1 = 0 or Am̄S
1 − E A ϑ̄1,1 + 2 ξ κ I1

(
θ̄1,1 − 2 ξ ϑ̄1,1

)
= 0

δϑ̄2 = 0 or Am̄S
2 −

(
γ + β

)
A ϑ̄2,1 = 0

δϑ̄3 = 0 or Am̄S
3 −

(
γ + β

)
A ϑ̄3,1 = 0

(4.68)

These new sets of dynamic equations and I/BCs are more desirable as now they can be more

easily simplified to and compared with the corresponding sets for a classical gyrobeam.
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For a classical gyrobeam there is no need to define the vectors →I
V and →İ

V

as in the

classical elasticity the microinertia effects are ignored. However, it is useful to define the

vectors
→
J V and

→
J̇ V

as:

→
J V =

↔
V ·

(
→
˙̄θ +

→
φ̇+

→
ψ̇
)

→
J̇ V

=
d

dt

(
→
J V

)
=
↔
V ·→

¨̄θ +↔
˙̄θ
×
·
↔
V ·→

˙̄θ +↔
˙̄θ
×
·
↔
V ·

(
→
φ̇+

→
ψ̇
)

+
(
↔
φ̇
× ·
↔
V −

↔
V ·

↔
φ̇
×
)
·→

˙̄θ +
↔
V ·

→
φ̈+

↔
V ·

→
ψ̈ +

↔
φ̇
× ·
↔
V ·

(
→
φ̇+

→
ψ̇
) (4.69)

which imply:

–
J V = b

=
V
(

–

˙̄θ +
b

–
φ̇+

b

–
ψ̇
)

–
J̇ V

= b

=
V

–

¨̄θ +
=

˙̄θ
×
b

=
V
(
b

–
φ̇+

b

–
ψ̇
)

+
(
b

=
φ̇
× b

=
V − b

=
V

b

=
φ̇
×
)

–

˙̄θ

+
(

=
1+

=
θ̄
×
)(

b

=
V

b

–
φ̈+ b

=
V

b

–
ψ̈ +

b

=
φ̇
× b

=
V
(
b

–
φ̇+

b

–
ψ̇
)) (4.70)

Consequently, by either using Eqs. (4.53) and (4.54) or simplifying Eqs. (4.65)–(4.68), the

corresponding motion equations and I/BCs for a classical gyrobeam will be derived as:

f̄
V

1 =
(
ρV + %V

)
¨̄u1 − E ū1,11

f̄
V

2 =
(
ρV + %V

)
¨̄u2 − ks2

µ
(
ū2,11 − θ̄3,1

)
f̄
V

3 =
(
ρV + %V

)
¨̄u3 − ks3

µ
(
ū3,11 + θ̄2,1

)
m̄L

1 + Am̄V

1 =
(
ρV + %V

)
I1

¨̄θ1 + A J̇ V

1 − kt µ I1 θ̄1,11

m̄L

2 + Am̄V

2 =
(
ρV + %V

)
I2

¨̄θ2 + A J̇ V

2 − E I2 θ̄2,11 + ks3
µA

(
ū3,1 + θ̄2

)
m̄L

3 + Am̄V

3 =
(
ρV + %V

)
I3

¨̄θ3 + A J̇ V

3 − E I3 θ̄3,11 − ks2
µA

(
ū2,1 − θ̄3

)
(4.71)
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and:
at t = t1, t2 ; and over L :

δū1 = 0 or
(
ρV + %V

)
A ˙̄u1 = 0

δū2 = 0 or
(
ρV + %V

)
A ˙̄u2 = 0

δū3 = 0 or
(
ρV + %V

)
A ˙̄u3 = 0

δθ̄1 = 0 or
(
ρV + %V

)
I1

˙̄θ1 + AJ V
1 = 0

δθ̄2 = 0 or
(
ρV + %V

)
I2

˙̄θ2 + AJ V
2 = 0

δθ̄3 = 0 or
(
ρV + %V

)
I3

˙̄θ3 + AJ V
3 = 0

(4.72)

at P1 ; and during t :

δū1 = 0 or A f̄
S

1 + E A ū1,1 = 0

δū2 = 0 or A f̄
S

2 + ks2
µA

(
ū2,1 − θ̄3

)
= 0

δū3 = 0 or A f̄
S

3 + ks3
µA

(
ū3,1 + θ̄2

)
= 0

δθ̄1 = 0 or m̄P
1 + Am̄S

1 + kt µ I1 θ̄1,1 = 0

δθ̄2 = 0 or m̄P
2 + Am̄S

2 + E I2 θ̄2,1 = 0

δθ̄3 = 0 or m̄P
3 + Am̄S

3 + E I3 θ̄3,1 = 0

(4.73)

at P2 ; and during t :

δū1 = 0 or A f̄
S

1 − E A ū1,1 = 0

δū2 = 0 or A f̄
S

2 − ks2
µA

(
ū2,1 − θ̄3

)
= 0

δū3 = 0 or A f̄
S

3 − ks3
µA

(
ū3,1 + θ̄2

)
= 0

δθ̄1 = 0 or m̄P
1 + Am̄S

1 − kt µ I1 θ̄1,1 = 0

δθ̄2 = 0 or m̄P
2 + Am̄S

2 − E I2 θ̄2,1 = 0

δθ̄3 = 0 or m̄P
3 + Am̄S

3 − E I3 θ̄3,1 = 0

(4.74)

Analogous to the micropolar gyrobeam dynamic equations, there are four modes of

deformation characterized by the classical gyrobeam dynamic equations given in Eq. (4.71);

longitudinal displacement along the cx1 axis by the first relation, torsional rotation around

the cx1 axis by the fourth relation, bending deformation in the cx1
cx2 plane by the second

and sixth relations, and bending deformation in the cx1
cx3 plane by the third and fifth
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relations. Again, there are minor sign differences between the relations expressing the two

bending modes as the positive directions for θ̄3 and ū2,1 are the same while θ̄2 and ū3,1

have opposite positive directions.

It is worthwhile to note that (unlike the classical beam theories which do commonly need

shear correction factors) the micropolar beam theory presented here is expected to need

no shear correction factor (i.e. no correction factor needs to be introduced for reduction of

the potential energy associated with transverse shears). Moreover, the torsion correction

factor corresponding to a micropolar beam is likely to be different from the classical torsion

correction factor. However, all shear and torsion correction factors have been added to the

micropolar beam dynamic equations and I/BCs given in Eqs. (4.65)–(4.68), in the same

way as in the classical Duleau torsion and Timoshenko bending theories. This has been

done to allow for the recovery of the classical beam equations in the limit when the required

conditions are met. There is no loss of generality as the inserted correction factors can

be set to unity if it is determined this is the most appropriate choice for the micropolar

beam theory. However, derivations of the suitable shear and torsion correction factors,

corresponding to the presented micropolar beam torsion and bending theories, are beyond

the scope of this thesis and will not be pursued in this text.

4.8 Nondimensionalized equations of motion

Nondimensionalization is a technique for the partial or full removal of dimensions from the

equations describing a problem by a suitable grouping of involved dimensional parameters.

The method results in insight into the underlying problem and provides useful dimension-

less (or dimension-reduced) groups of parameters for reporting the results [62]. Here, the

dimensional gyrobeam equations of motion can have the dimensions reduced or eliminated

through nondimensionalization, which begins with dimensional analysis of the descriptive

equations, and involves scaling some parameters by the characteristic units of the system

while collecting the others into the dimensionless (or dimension-reduced) groups.

A dimensional analysis of the previously-derived dynamic equations indicates that the

fundamental dimensions involved in the gyrobeam dynamic problem are mass, length,
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and time denoted by M , L , and T in dimensional analyses. As it is common in the

similar problems, the next step for deriving the nondimensional equations is to scale the

lengths, coordinates, and displacements by the characteristic length of the system which is

chosen here to be the beam’s length (note that the microrotations and beam plane section

rotations do not need to be scaled as they are dimensionless). This scaling will result into

the following dimensionless parameters (dimensionless or dimension-reduced parameters

are denoted with a �̂ symbol):

L̂ =
L

L
= 1

cx̂i =
cxi
L

ox̂i =
oxi
L

ˆ̄ui =
ūi
L

(4.75)

It is also useful to define the nondimensional space derivative along the ox̂1 direction and

nondimensional line integral over the beam length as:

z, 1̂ = Lz,1∫
L̂

z dL̂ =
1

L

∫
L

z dL
(4.76)

where z is an arbitrary field variable.

Substituting from Eqs. (4.75) and (4.76) into the expressions for potential energy, ki-

netic energy, and virtual work of a gyrobeam (given by Eqs. (4.40), (4.42), and (4.45) for a

micropolar gyrobeam and by Eqs. (4.41), (4.43), and (4.48) for a classical gyrobeam), one

can conclude that it is also useful to scale (or nondimesionalize) the time as:

t̂ =
t

T̂
(4.77)

where

T̂ =

√
ρV L2

E
, [T̂ ] = T (4.78)

is a dimension-reduced group parameter directly proportional to the longitudinal natural

periods of the beam (or inversely proportional to the longitudinal natural frequencies of

the beam). Note that dimension of a parameter is represented by [�].
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Analogous to usage of dimensionless coordinate ox̂1 in Eq. (4.76), the dimensionless

time t̂ can be used to define the nondimensional time derivative and nondimensional time

integral as:
◦
z = z, t̂ = T̂ z, t = T̂ ż∫
t̂

z dt̂ =
1

T̂

∫
t

z dt
(4.79)

In addition to the group parameter T̂ there are other dimensionless parameter groups

which one may deduce to be useful for writing the nondimensional gyrobeam equations.

They are; dimensionless elastic moduli:

µ̂ =
µ

E
, κ̂ =

κ

E

γ̂ =
γ

E L2
, β̂ =

β

E L2
, Ê =

E
E L2

(4.80)

dimensionless polar/second moments of area:

Î1 =
I1

AL2
, Î2 =

I2

AL2
, Î3 =

I3

AL2
(4.81)

dimensionless slenderness ratios:

R̂i =

√
1

Î i
=

L√
Ii
A

(4.82)

dimensionless inertias:

%̂V =
%V

ρV

bı̂Vij =
bıVij
ρV L2

a̂Vij =
aVij
ρV L2

(4.83)

dimensionless forces:

ˆ̄f
V

i =
f̄
V

i L

E

ˆ̄f
S

i =
f̄
S

i

E

(4.84)
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dimensionless moments:

ˆ̄m
V

i =
m̄V
i

E

ˆ̄m
S

i =
m̄S
i

E L

ˆ̄m
L

i =
m̄L
i

E A

ˆ̄m
P

i =
m̄P
i

E AL

(4.85)

dimensionless potential and kinetic energy and virtual work:

Û =
U

E AL
, T̂ =

T
E AL

, δŴ =
δW
E AL

Û
L

=
U L

E A
, T̂

L

=
T L

E A
, δŴ

L

=
δW L

E A

δŴ
P

=
δW P

E AL

(4.86)

and dimensionless body and gyros angular momenta:

Î
V

i =
I Vi T̂
ρV L2

◦

Î
V

i = T̂
dÎ

V

i

dt
=
İ Vi T̂

2

ρV L2
=
İ Vi
E

Ĵ
V

i =
J V
i T̂

ρV L2

◦

Ĵ
V

i = T̂
dĴ

V

i

dt
=
J̇ V

i T̂
2

ρV L2
=
J̇ V

i

E

(4.87)

Finally, when dealing with a theoretical modal analysis on the gyrobeams, the gyrobeam

natural frequencies ω(i) can be nondimesionalized as:

ω̂(i) =

√
ρV L2

E
ω(i) = T̂ ω(i) (4.88)

Indeed, one can show that a theoretical modal analysis of the nondimensionalized gy-

robeam equations naturally results in dimensionless natural frequencies in the form given

by Eq. (4.88).
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By utilizing the definitions given by Eqs. (4.75)–(4.87) the following dimensionless ex-

pressions will be obtained for a micropolar gyrobeam:

Û =

∫
L̂

Û
L

dL̂ =
1

2

∫
L̂

ˆ̄u1, 1̂
ˆ̄u1, 1̂ dL̂+

1

2
Î2

∫
L̂

θ̄2, 1̂ θ̄2, 1̂ dL̂+
1

2
Î3

∫
L̂

θ̄3, 1̂ θ̄3, 1̂ dL̂

+
1

2
ks2

µ̂

∫
L̂

(
ˆ̄u2, 1̂ − θ̄3

)2

dL̂+
1

2
ks3

µ̂

∫
L̂

(
ˆ̄u3, 1̂ + θ̄2

)2

dL̂

+
1

2
kt µ̂ Î1

∫
L̂

θ̄1, 1̂ θ̄1, 1̂ dL̂

+
1

2
κ̂

∫
L̂

(
ˆ̄u2, 1̂ + θ̄3 − 2 ϑ̄3

)2

dL̂+
1

2
κ̂

∫
L̂

(
ˆ̄u3, 1̂ − θ̄2 + 2 ϑ̄2

)2

dL̂

+
1

2
κ̂ Î1

∫
L̂

(
θ̄1, 1̂ − 2 ξ ϑ̄1, 1̂

)2

dL̂+ 2 κ̂

∫
L̂

(
θ̄1 − ϑ̄1

)2

dL̂

+
1

2
Ê
∫
L̂

ϑ̄1, 1̂ ϑ̄1, 1̂ dL̂+
1

2

(
γ̂ + β̂

) ∫
L̂

(
ϑ̄2, 1̂ ϑ̄2, 1̂ + ϑ̄3, 1̂ ϑ̄3, 1̂

)
dL̂

(4.89)

T̂ =

∫
L̂

T̂
L

dL̂ =
1

2

(
1 + %̂V

) ∫
L̂

( ◦
ˆ̄u1

◦
ˆ̄u1 +

◦
ˆ̄u2

◦
ˆ̄u2 +

◦
ˆ̄u3

◦
ˆ̄u3

)
dL̂

+
1

2

(
1 + %̂V

) ∫
L̂

(
Î1

◦

θ̄1

◦

θ̄1 + Î2

◦

θ̄2

◦

θ̄2 + Î3

◦

θ̄3

◦

θ̄3

)
dL̂

+
1

2

∫
L̂

(
ı̂Vij + ̂Vij

) ◦

ϑ̄j
◦

ϑ̄i dL̂+

∫
L̂

̂Vij

( ◦
φj +

◦
ψj

) ◦

ϑ̄i dL̂

+
1

2

∫
L̂

̂Vij

( ◦
φj

◦
φi +

◦
ψj

◦
ψi + 2

◦
φj

◦
ψi

)
dL̂

(4.90)
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δŴ =

∫
L̂

δŴ
L

dL̂+
∑
P

δŴ
P

=

∫
L̂

(
ˆ̄f
V

i δˆ̄ui + ˆ̄m
L

i δθ̄i + ˆ̄m
V

i δϑ̄i

)
dL̂+

∑
P

(
ˆ̄f
S

i δˆ̄ui + ˆ̄m
P

i δθ̄i + ˆ̄m
S

i δϑ̄i

) (4.91)

∼̂
q =

[
ˆ̄u1 ˆ̄u2 ˆ̄u3 θ̄1 θ̄2 θ̄3 ϑ̄1 ϑ̄2 ϑ̄3

]T

(4.92)

The corresponding dimensionless expressions for a classical gyrobeam will be:

Û =

∫
L̂

Û
L

dL̂ =
1

2

∫
L̂

ˆ̄u1, 1̂
ˆ̄u1, 1̂ dL̂+

1

2
Î2

∫
L̂

θ̄2, 1̂ θ̄2, 1̂ dL̂+
1

2
Î3

∫
L̂

θ̄3, 1̂ θ̄3, 1̂ dL̂

+
1

2
ks2

µ̂

∫
L̂

(
ˆ̄u2, 1̂ − θ̄3

)2

dL̂+
1

2
ks3

µ̂

∫
L̂

(
ˆ̄u3, 1̂ + θ̄2

)2

dL̂

+
1

2
kt µ̂ Î1

∫
L̂

θ̄1, 1̂ θ̄1, 1̂ dL̂

(4.93)

T̂ =

∫
L̂

T̂
L

dL̂ =
1

2

(
1 + %̂V

) ∫
L̂

( ◦
ˆ̄u1

◦
ˆ̄u1 +

◦
ˆ̄u2

◦
ˆ̄u2 +

◦
ˆ̄u3

◦
ˆ̄u3

)
dL̂

+
1

2

(
1 + %̂V

) ∫
L̂

(
Î1

◦

θ̄1

◦

θ̄1 + Î2

◦

θ̄2

◦

θ̄2 + Î3

◦

θ̄3

◦

θ̄3

)
dL̂

+
1

2

∫
L̂

̂Vij
◦

θ̄j
◦

θ̄i dL̂+

∫
L̂

̂Vij

( ◦
φj +

◦
ψj

) ◦
θ̄i dL̂

+
1

2

∫
L̂

̂Vij

( ◦
φj

◦
φi +

◦
ψj

◦
ψi + 2

◦
φj

◦
ψi

)
dL̂

(4.94)
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δŴ =

∫
L̂

δŴ
L

dL̂+
∑
P

δŴ
P

=

∫
L̂

(
ˆ̄f
V

i δˆ̄ui + ˆ̄m
V

i δθ̄i + ˆ̄m
L

i δθ̄i

)
dL̂+

∑
P

(
ˆ̄f
S

i δˆ̄ui + ˆ̄m
S

i δθ̄i + ˆ̄m
P

i δθ̄i

) (4.95)

∼̂
q =

[
ˆ̄u1 ˆ̄u2 ˆ̄u3 θ̄1 θ̄2 θ̄3

]T

(4.96)

Now by using the obtained dimensionless expressions, the dimensionless equations of

motion and dimensionless I/BCs take the following general matrix forms:

∼
Q̂L

=
(∂T̂ L

∂
∼

◦
q̂

)
, t̂
−
(∂Û L

∂
∼̂
q
, 1̂

)
, 1̂

+
∂Û

L

∂
∼̂
q

(4.97)

and:

at t̂ = t̂1, t̂2 ; and over L̂ : δ
∼̂
q = ∼0 or

∂T̂
L

∂
∼

◦
q̂

= ∼0

at P1 ; and during t̂ : δ
∼̂
q = ∼0 or

∼
Q̂P

+
∂Û

L

∂
∼̂
q
, 1̂

= ∼0

at P2 ; and during t̂ : δ
∼̂
q = ∼0 or

∼
Q̂P − ∂Û

L

∂
∼̂
q
, 1̂

= ∼0

(4.98)

where:

∼
Q̂L

=
δŴ

L

δ
∼̂
q
,

∼
Q̂P

=
δŴ

P

δ
∼̂
q

(4.99)

Specially, the dimensionless equations of motion for micropolar and classical gyrobeams
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are:

ˆ̄f
V

1 =
(

1 + %̂V
) ◦◦

ˆ̄u1 − ˆ̄u1, 1̂1̂

ˆ̄f
V

2 =
(

1 + %̂V
) ◦◦

ˆ̄u2 − ks2
µ̂
(

ˆ̄u2, 1̂1̂ − θ̄3, 1̂

)
− κ̂

(
ˆ̄u2, 1̂1̂ + θ̄3, 1̂ − 2 ϑ̄3, 1̂

)
ˆ̄f
V

3 =
(

1 + %̂V
) ◦◦

ˆ̄u3 − ks3
µ̂
(

ˆ̄u3, 1̂1̂ + θ̄2, 1̂

)
− κ̂

(
ˆ̄u3, 1̂1̂ − θ̄2, 1̂ + 2 ϑ̄2, 1̂

)
ˆ̄m
L

1 =
(

1 + %̂V
)
Î1

◦◦

θ̄1 − kt µ̂ Î1 θ̄1, 1̂1̂ − κ̂ Î1

(
θ̄1, 1̂1̂ − 2 ξ ϑ̄1, 1̂1̂

)
+ 4 κ̂

(
θ̄1 − ϑ̄1

)
ˆ̄m
L

2 =
(

1 + %̂V
)
Î2

◦◦

θ̄2 − Î2 θ̄2, 1̂1̂ + ks3
µ̂
(

ˆ̄u3, 1̂ + θ̄2

)
− κ̂

(
ˆ̄u3, 1̂ − θ̄2 + 2 ϑ̄2

)
ˆ̄m
L

3 =
(

1 + %̂V
)
Î3

◦◦

θ̄3 − Î3 θ̄3, 1̂1̂ − ks2
µ̂
(

ˆ̄u2, 1̂ − θ̄3

)
+ κ̂

(
ˆ̄u2, 1̂ + θ̄3 − 2 ϑ̄3

)
ˆ̄m
V

1 =
◦

Î
V

1 +
◦

Ĵ
V

1 − Ê ϑ̄1, 1̂1̂ + 2 ξ κ̂ Î1

(
θ̄1, 1̂1̂ − 2 ξ ϑ̄1, 1̂1̂

)
− 4 κ̂

(
θ̄1 − ϑ̄1

)
ˆ̄m
V

2 =
◦

Î
V

2 +
◦

Ĵ
V

2 −
(
γ̂ + β̂

)
ϑ̄2, 1̂1̂ + 2 κ̂

(
ˆ̄u3, 1̂ − θ̄2 + 2 ϑ̄2

)
ˆ̄m
V

3 =
◦

Î
V

3 +
◦

Ĵ
V

3 −
(
γ̂ + β̂

)
ϑ̄3, 1̂1̂ − 2 κ̂

(
ˆ̄u2, 1̂ + θ̄3 − 2 ϑ̄3

)

(4.100)

and:
ˆ̄f
V

1 =
(

1 + %̂V
) ◦◦

ˆ̄u1 − ˆ̄u1, 1̂1̂

ˆ̄f
V

2 =
(

1 + %̂V
) ◦◦

ˆ̄u2 − ks2
µ̂
(

ˆ̄u2, 1̂1̂ − θ̄3, 1̂

)
ˆ̄f
V

3 =
(

1 + %̂V
) ◦◦

ˆ̄u3 − ks3
µ̂
(

ˆ̄u3, 1̂1̂ + θ̄2, 1̂

)
ˆ̄m
L

1 + ˆ̄m
V

1 =
(

1 + %̂V
)
Î1

◦◦

θ̄1 +
◦

Ĵ
V

1 − kt µ̂ Î1 θ̄1, 1̂1̂

ˆ̄m
L

2 + ˆ̄m
V

2 =
(

1 + %̂V
)
Î2

◦◦

θ̄2 +
◦

Ĵ
V

2 − Î2 θ̄2, 1̂1̂ + ks3
µ̂
(

ˆ̄u3, 1̂ + θ̄2

)
ˆ̄m
L

3 + ˆ̄m
V

3 =
(

1 + %̂V
)
Î3

◦◦

θ̄3 +
◦

Ĵ
V

3 − Î3 θ̄3, 1̂1̂ − ks2
µ̂
(

ˆ̄u2, 1̂ − θ̄3

)
(4.101)

4.9 Finite element formulation

As derived in the previous sections, the essential first-order approximation with respect to

the microrotation vector →ϑ (which in micropolar and classical gyrobeams is approximately
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equivalent to →ϑ̄ and→θ̄ respectively), imposed when deriving the component matrices of vec-

tors→I
V, →İ

V

,
→
J V, and

→
J̇ V

, linearizes the potentially nonlinear gyrobeam dynamic equations.

Consequently, the dynamic problem of a gyrobeam, either micropolar or classical, can be

characterized by a set of linear PDEs which seem quite effortless to solve in comparison

with nonlinear ones.

Indeed, the linear (dimensionless) equations of motion for micropolar and classical

gyrobeams, given by Eqs. (4.100) and (4.101), are two sets of linear hyperbolic PDEs

which are of second order in both space and time. These equations are known to be well-

posed (i.e. their solutions exist, are unique, and depend continuously on the auxiliary data

such as BCs) provided the corresponding linear dimensionless I/BCs are added to them.

Yet, no analytical solution is known for these linear PDEs and in practice they should be

solved approximately using a numerical technique.

In a numerical approach, usually the main stage (known as discretization) is converting

the continuous PDEs into a discrete system of algebraic equations which will be solved to

obtain an approximate solution. Considering the dynamics of a gyrobeam, the unknown

state variables (or functions) of the derived PDEs evolve in both space and time where their

variations in space are related to their variations in time. A common numerical approach

for solving such equations is to take different discretization methods (which are applied

in sequence) for handling the space and time derivatives separately (against discretization

of space and time derivatives in an integrated way). To be more precise, firstly, the

displacement-based finite element method (FEM) is used to only discretize the space while

the time derivatives are left untouched. This semi-discretization transforms the continuous

PDEs into a set of coupled ordinary differential equations (ODEs) with a finite number of

DOFs which can then be integrated using any standard ODE integration technique. The

so obtained set of ODEs can also be used for modal vibration analysis (i.e. determination

of natural frequencies and the corresponding mode shapes).

It is worthwhile to mention that the FEM is a well-developed and well-accepted nu-

merical method. It is also versatile and easy to use for our problem as it uses the (well-

established) shape functions instead of trivial functions (which are usually tricky to find).

In this approach, the FEM matrices and formulation should be developed based on the

problem (or PDEs) being analyzed, and in the present work the displacement-based FEM
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discretization is founded on the dimensionless forms of the potential and kinetic energy

and virtual work expressions (i.e. the dimensionless variational formulation or weak form

is used). In such a form, unlike the essential (or kinematic or geometric) BCs which should

be stated separately, the natural (or kinetic) BCs are implicitly contained in the functional

expression and are naturally satisfied in the limit when the number of elements increases.

Here, recall that the dimensionless gyrobeam dynamic PDEs are derived from a C0 vari-

ational problem [63] whose functional, created based on the dimensionless potential and

kinetic energy and virtual work expressions, contains at most first-order spatial deriva-

tives of the state variables. In such a problem, the orders of spatial derivatives in EBCs

and NBCs are zero and one, respectively, and the governing PDEs contain the spatial

derivatives of the state variables up to the second order.

In light of the above-mentioned problem characteristics, a dimensionless isoparametric

four-node element with (linear independent) cubic Lagrange polynomial basis functions

and C0 continuity is selected to generate the consistent displacement-based finite element

matrices. The idea of expanding the element coordinates and element (generalized) dis-

placements using the same shape functions is the basis of an isoparametric element, and the

C0 continuity means that the element displacement fields have continuous spatial deriva-

tives inside the element and are continuous across element boundaries (between adjacent

elements). The consistency of the finite element matrices is equivalent to employing the

same basis (or interpolation) functions, which are integrated exactly, for evaluation of all

the element matrices, e.g. mass, stiffness, and generalized force. These conditions fulfill the

completeness and compatibility requirements of the FEM (monotonic) convergence [63,64].

The conceptual (and not literal) and schematic pictures of the selected element as a

part of a gyrobeam (shown in Figure 4.1) are depicted in Figure 4.3. Note that in this

figure the three discrete gyros are symbolic (as are the discrete gyros in Figure 4.1) and

represent the continuous gyricity distribution over the element. In this text, the gyricity

distribution (and therefore the gyricity-related parameters) is (are) assumed to be constant

over the length of every element.
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Figure 4.3: Dimensional and dimensionless forms of the gyrobeam four-node element.

The selected dimensionless four-node element has four basis shape functions as:

Ĥ
〈1〉

(ex̂1) = − 9

2 l̂
3

(
ex̂1 −

l̂

3

)(
ex̂1 −

2 l̂

3

)(
ex̂1 − l̂

)
Ĥ
〈2〉

(ex̂1) = +
27

2 l̂
3
ex̂1

(
ex̂1 −

2 l̂

3

)(
ex̂1 − l̂

)
Ĥ
〈3〉

(ex̂1) = − 27

2 l̂
3
ex̂1

(
ex̂1 −

l̂

3

)(
ex̂1 − l̂

)
Ĥ
〈4〉

(ex̂1) = +
9

2 l̂
3
ex̂1

(
ex̂1 −

l̂

3

)(
ex̂1 −

2 l̂

3

)
(4.102)

where l̂ and ex̂1 are the dimensionless forms of the element’s length l and local frame

coordinate ex1 defined as:

l̂ =
l

L
ex̂1 =

ex1

L
, 0 ≤ ex̂1 ≤ l̂

(4.103)

It is noteworthy that whereas the summation of the dimensional element lengths is L ,
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the summation of the dimensionless element lengths equals L̂ or simply 1. Additionally,

from now on the adjectives “dimensionless” and “dimension-reduced” will be dropped for

brevity and the circumflex (i.e. the over-hat) denotes if a parameter is dimensionless or

dimension-reduced.

As the element is isoparametric, the element basis shape functions given by Eq. (4.102)

are used to interpolate the coordinates as well as the generalized coordinates (i.e. transla-

tional and rotational displacements) within the element. Denoting the nodal coordinates

by ox̂〈j〉i and cx̂〈j〉i and the nodal generalized coordinates by q̂ 〈j〉i , one can expand the within-

element coordinates ox̂i and cx̂i and generalized coordinates q̂i as:

ox̂i = Ĥ
〈1〉 ox̂〈1〉i + Ĥ

〈2〉 ox̂〈2〉i + Ĥ
〈3〉 ox̂〈3〉i + Ĥ

〈4〉 ox̂〈4〉i
cx̂i = Ĥ

〈1〉 cx̂〈1〉i + Ĥ
〈2〉 cx̂〈2〉i + Ĥ

〈3〉 cx̂〈3〉i + Ĥ
〈4〉 cx̂〈4〉i

q̂i = Ĥ
〈1〉
q̂ 〈1〉i + Ĥ

〈2〉
q̂ 〈2〉i + Ĥ

〈3〉
q̂ 〈3〉i + Ĥ

〈4〉
q̂ 〈4〉i

(4.104)

Also noting that:
d

dx̂i
=

c d

dx̂i
=

e d

dx̂i
(4.105)

the first spatial derivative of q̂i along ox̂1 can be expanded as:

q̂i, 1̂ = Ĥ
′ 〈1〉 ox̂〈1〉i + Ĥ

′ 〈2〉 ox̂〈2〉i + Ĥ
′ 〈3〉 ox̂〈3〉i + Ĥ

′ 〈4〉 ox̂〈4〉i (4.106)

where:

Ĥ
′ 〈j〉

= Ĥ
′ 〈j〉

(ex̂1) =
e d

dx̂i

(
Ĥ
〈j〉

(ex̂1)
)

=

e
dĤ

〈j〉

dx̂i
(4.107)

Regarding the nodal generalized coordinates, recall that every point of a micropolar

gyrobeam has nine DOFs and there are six DOFs corresponding to every point of a clas-

sical gyrobeam. These DOFs are summarized in the matrix of generalized coordinates

∼̂
q which for micropolar and classical gyrobeams is respectively given by Eqs. (4.92) and

(4.96). Accordingly, the nodal generalized coordinates, being the generalized coordinates

corresponding to a specific node j (i.e. a point), are also combined in a matrix denoted

by
∼̂
q 〈j〉 . This matrix has respectively nine and six elements for micropolar and classical
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gyrobeams:

∼̂
q 〈j〉 =

[
q̂ 〈j〉i
]

=
[

ˆ̄u
〈j〉
1

ˆ̄u
〈j〉
2

ˆ̄u
〈j〉
3 θ̄

〈j〉
1 θ̄

〈j〉
2 θ̄

〈j〉
3 ϑ̄

〈j〉
1 ϑ̄

〈j〉
2 ϑ̄

〈j〉
3

]T

∼̂
q 〈j〉 =

[
q̂ 〈j〉i
]

=
[

ˆ̄u
〈j〉
1

ˆ̄u
〈j〉
2

ˆ̄u
〈j〉
3 θ̄

〈j〉
1 θ̄

〈j〉
2 θ̄

〈j〉
3

]T
(4.108)

Now, one can define the matrix of the element(al) generalized displacements or the matrix

of the element(al) generalized coordinates as:

∼̂
q 〈e〉 =

[
∼̂
q 〈j〉
]

=
[
∼̂
q 〈1〉

T

∼̂
q 〈2〉

T

∼̂
q 〈3〉

T

∼̂
q 〈4〉

T
]T

(4.109)

with 36 and 24 entries for micropolar and classical gyrobeams, respectively.

The element generalized coordinate matrix
∼̂
q 〈e〉 can be used to rewrite the expansion

of a generalized coordinate q̂i in Eq. (4.104) as:

q̂i = ∼Ĥ q̂i ∼̂
q 〈e〉 (4.110)

where ∼Ĥ q̂i
is the shape function matrix corresponding to the generalized coordinate q̂i .

Denoting the N1×N2 zero matrix as ∼0N1×N2
, the shape function matrices of the micropolar

gyrobeam DOFs, being of dimensions 1× 36 and 3× 36, can be given as:

∼Ĥ ˆ̄u1
=
[
Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉

∼01×8

]
∼Ĥ ˆ̄u2

=
[
∼01×1

Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉

∼01×7

]
∼Ĥ ˆ̄u3

=
[
∼01×2

Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉

∼01×6

]
∼Ĥ θ̄1

=
[
∼01×3

Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉

∼01×5

]
∼Ĥ θ̄2

=
[
∼01×4

Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉

∼01×4

]
∼Ĥ θ̄3

=
[
∼01×5

Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉

∼01×3

]
∼Ĥ ϑ̄1

=
[
∼01×6

Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉

∼01×2

]
∼Ĥ ϑ̄2

=
[
∼01×7

Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉

∼01×1

]
∼Ĥ ϑ̄3

=
[
∼01×8

Ĥ
〈1〉

∼01×8
Ĥ
〈2〉

∼01×8
Ĥ
〈3〉

∼01×8
Ĥ
〈4〉
]

∼Ĥ
–
ϑ̄

=
[
∼03×6

(
Ĥ
〈1〉

=
1

)
∼03×6

(
Ĥ
〈2〉

=
1

)
∼03×6

(
Ĥ
〈3〉

=
1

)
∼03×6

(
Ĥ
〈4〉

=
1

) ]

(4.111)
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and for the classical gyrobeam DOFs, the 1× 24 and 3× 24 shape function matrices are:

∼Ĥ ˆ̄u1
=
[
Ĥ
〈1〉

∼01×5
Ĥ
〈2〉

∼01×5
Ĥ
〈3〉

∼01×5
Ĥ
〈4〉

∼01×5

]
∼Ĥ ˆ̄u2

=
[
∼01×1

Ĥ
〈1〉

∼01×5
Ĥ
〈2〉

∼01×5
Ĥ
〈3〉

∼01×5
Ĥ
〈4〉

∼01×4

]
∼Ĥ ˆ̄u3

=
[
∼01×2

Ĥ
〈1〉

∼01×5
Ĥ
〈2〉

∼01×5
Ĥ
〈3〉

∼01×5
Ĥ
〈4〉

∼01×3

]
∼Ĥ θ̄1

=
[
∼01×3

Ĥ
〈1〉

∼01×5
Ĥ
〈2〉

∼01×5
Ĥ
〈3〉

∼01×5
Ĥ
〈4〉

∼01×2

]
∼Ĥ θ̄2

=
[
∼01×4

Ĥ
〈1〉

∼01×5
Ĥ
〈2〉

∼01×5
Ĥ
〈3〉

∼01×5
Ĥ
〈4〉

∼01×1

]
∼Ĥ θ̄3

=
[
∼01×5

Ĥ
〈1〉

∼01×5
Ĥ
〈2〉

∼01×5
Ĥ
〈3〉

∼01×5
Ĥ
〈4〉
]

∼Ĥ
–
θ̄

=
[
∼03×3

(
Ĥ
〈1〉

=
1

)
∼03×3

(
Ĥ
〈2〉

=
1

)
∼03×3

(
Ĥ
〈3〉

=
1

)
∼03×3

(
Ĥ
〈4〉

=
1

) ]

(4.112)

These matrices are employed to derive the finite element matrices of the selected four-node

element from the potential and kinetic energy and virtual work expressions.

By using the expansions of the form given by Eq. (4.110) and the shape function ma-

trices given by Eq. (4.111), and taking into account the essential first-order approximation

with respect to →ϑ̄, the expressions for the potential and kinetic energy variations and the

virtual work of a micropolar gyrobeam element can be obtained as:

∆Û
〈e〉

= δ
∼̂
q 〈e〉

T

∼K̂
〈e〉

∼̂
q 〈e〉 (4.113)

∆T̂
〈e〉

= δ
∼

◦
q̂
〈e〉T

∼M̂
〈e〉

∼

◦
q̂
〈e〉

+ δ
∼

◦
q̂
〈e〉T

∫
l̂

∼Ĥ
T

–
ϑ̄ =̂
V
(

–

◦
φ+

–

◦
ψ
)
dl̂

= − δ
∼̂
q 〈e〉

T d

dt̂

(
∼M̂
〈e〉

∼

◦
q̂
〈e〉)
− δ

∼̂
q 〈e〉

T d

dt̂

(∫
l̂

∼Ĥ
T

–
ϑ̄ =̂
V
(

–

◦
φ+

–

◦
ψ
)
dl̂
)

= − δ
∼̂
q 〈e〉

T

∼M̂
〈e〉

∼

◦◦
q̂
〈e〉
− δ

∼̂
q 〈e〉

T

∼
Ĝ 〈e〉

∼

◦
q̂
〈e〉
− δ

∼̂
q 〈e〉

T

∼Ĉ
〈e〉

∼̂
q 〈e〉 − δ

∼̂
q 〈e〉

T

∼R̂
〈e〉

(4.114)

δŴ
〈e〉

= δ
∼̂
q 〈e〉

T

∼
Q̂〈e〉

(4.115)
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where:

∼K̂
〈e〉

=

∫
l̂

∼Ĥ
′

ˆ̄u1

T

∼Ĥ
′

ˆ̄u1
dl̂ + Î2

∫
l̂

∼Ĥ
′

θ̄2

T

∼Ĥ
′

θ̄2
dl̂ + Î3

∫
l̂

∼Ĥ
′

θ̄3

T

∼Ĥ
′

θ̄3
dl̂

+ ks2
µ̂

∫
l̂

(
∼Ĥ
′

ˆ̄u2
− ∼Ĥ θ̄3

)T (
∼Ĥ
′

ˆ̄u2
− ∼Ĥ θ̄3

)
dl̂

+ ks3
µ̂

∫
l̂

(
∼Ĥ
′

ˆ̄u3
+ ∼Ĥ θ̄2

)T (
∼Ĥ
′

ˆ̄u3
+ ∼Ĥ θ̄2

)
dl̂ + kt µ̂ Î1

∫
l̂

∼Ĥ
′

θ̄1

T

∼Ĥ
′

θ̄1
dl̂

+ κ̂

∫
l̂

(
∼Ĥ
′

ˆ̄u2
+ ∼Ĥ θ̄3

− 2 ∼Ĥ ϑ̄3

)T (
∼Ĥ
′

ˆ̄u2
+ ∼Ĥ θ̄3

− 2 ∼Ĥ ϑ̄3

)
dl̂

+ κ̂

∫
l̂

(
∼Ĥ
′

ˆ̄u3
− ∼Ĥ θ̄2

+ 2 ∼Ĥ ϑ̄2

)T (
∼Ĥ
′

ˆ̄u3
− ∼Ĥ θ̄2

+ 2 ∼Ĥ ϑ̄2

)
dl̂

+ κ̂ Î1

∫
l̂

(
∼Ĥ
′

θ̄1
− 2 ξ ∼Ĥ

′

ϑ̄1

)T (
∼Ĥ
′

θ̄1
− 2 ξ ∼Ĥ

′

ϑ̄1

)
dl̂

+ 4 κ̂

∫
l̂

(
∼Ĥ θ̄1
− ∼Ĥ ϑ̄1

)T (
∼Ĥ θ̄1
− ∼Ĥ ϑ̄1

)
dl̂

+ Ê
∫
l̂

∼Ĥ
′

ϑ̄1

T

∼Ĥ
′

ϑ̄1
dl̂ +

(
γ̂ + β̂

) ∫
l̂

(
∼Ĥ
′

ϑ̄2

T

∼Ĥ
′

ϑ̄2
+ ∼Ĥ

′

ϑ̄3

T

∼Ĥ
′

ϑ̄3

)
dl̂

(4.116)

∼M̂
〈e〉

=
(

1 + %̂V
) ∫

l̂

(
∼Ĥ

T

ˆ̄u1 ∼
Ĥ ˆ̄u1

+ ∼Ĥ
T

ˆ̄u2 ∼
Ĥ ˆ̄u2

+ ∼Ĥ
T

ˆ̄u3 ∼
Ĥ ˆ̄u3

)
dl̂

+
(

1 + %̂V
) ∫

l̂

(
Î1 ∼Ĥ

T

θ̄1 ∼
Ĥ

θ̄1
+ Î2 ∼Ĥ

T

θ̄2 ∼
Ĥ

θ̄2
+ Î3 ∼Ĥ

T

θ̄3 ∼
Ĥ

θ̄3

)
dl̂

+

∫
l̂

∼Ĥ
T

–
ϑ̄

(
b
=̂
ıV + b

=̂
V
)
∼Ĥ

–
ϑ̄
dl̂

(4.117)
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∼
Ĝ 〈e〉 =

∫
l̂

∼Ĥ
T

–
ϑ̄

(b
=

◦
φ
×
b

=̂
V − b

=̂
V

b

=

◦
φ
×
−
(
b

=̂
V
(b

–

◦
φ+

b

–

◦
ψ
))×)

∼Ĥ
–
ϑ̄
dl̂ (4.118)

∼Ĉ
〈e〉

= −
∫
l̂

∼Ĥ
T

–
ϑ̄

(
b

=̂
V

b

–

◦◦
φ+ b

=̂
V

b

–

◦◦
ψ +

b

=

◦
φ
×
b

=̂
V
(b

–

◦
φ+

b

–

◦
ψ
))×

∼Ĥ
–
ϑ̄
dl̂ (4.119)

∼R̂
〈e〉

=

∫
l̂

∼Ĥ
T

–
ϑ̄

(
b

=̂
V

b

–

◦◦
φ+ b

=̂
V

b

–

◦◦
ψ +

b

=

◦
φ
×
b

=̂
V
(b

–

◦
φ+

b

–

◦
ψ
))

dl̂ (4.120)

∼
Q̂〈e〉

=

∫
l̂

(
∼Ĥ

T

ūi

ˆ̄f
V

i + ∼Ĥ
T

θ̄i
ˆ̄m
L

i + ∼Ĥ
T

ϑ̄i
ˆ̄m
V

i

)
dl̂+

∑
P

(
∼Ĥ

T

ūi

ˆ̄f
S

i + ∼Ĥ
T

θ̄i
ˆ̄m
P

i + ∼Ĥ
T

ϑ̄i
ˆ̄m
S

i

)
(4.121)

Analogously, by using the expansions of the form given by Eq. (4.110) and the shape

function matrices given by Eq. (4.112), and taking into account the essential first-order

approximation with respect to →θ̄ , the expressions for the potential and kinetic energy

variations and the virtual work of a classical gyrobeam element will be derived as:

∆Û
〈e〉

= δ
∼̂
q 〈e〉

T

∼K̂
〈e〉

∼̂
q 〈e〉 (4.122)

∆T̂
〈e〉

= − δ
∼̂
q 〈e〉

T

∼M̂
〈e〉

∼

◦◦
q̂
〈e〉
− δ

∼̂
q 〈e〉

T

∼
Ĝ 〈e〉

∼

◦
q̂
〈e〉
− δ

∼̂
q 〈e〉

T

∼Ĉ
〈e〉

∼̂
q 〈e〉 − δ

∼̂
q 〈e〉

T

∼R̂
〈e〉

(4.123)

δŴ
〈e〉

= δ
∼̂
q 〈e〉

T

∼
Q̂〈e〉

(4.124)

where:

∼K̂
〈e〉

=

∫
l̂

∼Ĥ
′

ˆ̄u1

T

∼Ĥ
′

ˆ̄u1
dl̂ + Î2

∫
l̂

∼Ĥ
′

θ̄2

T

∼Ĥ
′

θ̄2
dl̂ + Î3

∫
l̂

∼Ĥ
′

θ̄3

T

∼Ĥ
′

θ̄3
dl̂

+ ks2
µ̂

∫
l̂

(
∼Ĥ
′

ˆ̄u2
− ∼Ĥ θ̄3

)T (
∼Ĥ
′

ˆ̄u2
− ∼Ĥ θ̄3

)
dl̂

+ ks3
µ̂

∫
l̂

(
∼Ĥ
′

ˆ̄u3
+ ∼Ĥ θ̄2

)T (
∼Ĥ
′

ˆ̄u3
+ ∼Ĥ θ̄2

)
dl̂ + kt µ̂ Î1

∫
l̂

∼Ĥ
′

θ̄1

T

∼Ĥ
′

θ̄1
dl̂

(4.125)
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∼M̂
〈e〉

=
(

1 + %̂V
) ∫

l̂

(
∼Ĥ

T

ˆ̄u1 ∼
Ĥ ˆ̄u1

+ ∼Ĥ
T

ˆ̄u2 ∼
Ĥ ˆ̄u2

+ ∼Ĥ
T

ˆ̄u3 ∼
Ĥ ˆ̄u3

)
dl̂

+
(

1 + %̂V
) ∫

l̂

(
Î1 ∼Ĥ

T

θ̄1 ∼
Ĥ

θ̄1
+ Î2 ∼Ĥ

T

θ̄2 ∼
Ĥ

θ̄2
+ Î3 ∼Ĥ

T

θ̄3 ∼
Ĥ

θ̄3

)
dl̂

+

∫
l̂

∼Ĥ
T

–
θ̄
b

=̂
V ∼Ĥ

–
θ̄
dl̂

(4.126)

∼
Ĝ 〈e〉 =

∫
l̂

∼Ĥ
T

–
θ̄

(b
=

◦
φ
×
b

=̂
V − b

=̂
V

b

=

◦
φ
×
−
(
b

=̂
V
(b

–

◦
φ+

b

–

◦
ψ
))×)

∼Ĥ
–
θ̄
dl̂ (4.127)

∼Ĉ
〈e〉

= −
∫
l̂

∼Ĥ
T

–
θ̄

(
b

=̂
V

b

–

◦◦
φ+ b

=̂
V

b

–

◦◦
ψ +

b

=

◦
φ
×
b

=̂
V
(b

–

◦
φ+

b

–

◦
ψ
))×

∼Ĥ
–
θ̄
dl̂ (4.128)

∼R̂
〈e〉

=

∫
l̂

∼Ĥ
T

–
θ̄

(
b

=̂
V

b

–

◦◦
φ+ b

=̂
V

b

–

◦◦
ψ +

b

=

◦
φ
×
b

=̂
V
(b

–

◦
φ+

b

–

◦
ψ
))

dl̂ (4.129)

∼
Q̂〈e〉

=

∫
L̂

(
∼Ĥ

T

ūi

ˆ̄f
V

i + ∼Ĥ
T

θ̄i
ˆ̄m
L

i + ∼Ĥ
T

θ̄i
ˆ̄m
V

i

)
dL̂+

∑
P

(
∼Ĥ

T

ūi

ˆ̄f
S

i + ∼Ĥ
T

θ̄i
ˆ̄m
P

i + ∼Ĥ
T

θ̄i
ˆ̄m
S

i

)
(4.130)

For both cases of micropolar and classical gyrobeams, the stiffness matrix ∼K̂
〈e〉

, mass

matrix ∼M̂
〈e〉

, gyricity matrix
∼
Ĝ 〈e〉, circulatory matrix ∼Ĉ

〈e〉
, generalized moment matrix ∼R̂

〈e〉
,

and generalized force matrix
∼
Q̂〈e〉

are the desired finite element matrices. Recall that, in

this thesis, the exact (not reduced or numerical) integration is used for computation of

these element matrices. In addition, the element mass, gyricity, circulatory, generalized

moment, and generalized force matrices are consistent, as the same interpolation functions

are employed in the derivation of them as in the derivation of the element stiffness matrix.

The aforementioned element matrices will be assembled, taking into consideration the

correspondence between the local element DOFs summarized as
∼̂
q 〈e〉 and the global as-

semblage DOFs summarized as
∼̂
q 〈g〉 [63], to form the system global matrices ∼K̂

〈g〉
, ∼M̂

〈g〉
,
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∼
Ĝ 〈g〉 , ∼Ĉ

〈g〉
, ∼R̂

〈g〉
, and

∼
Q̂〈g〉

. Note that the global generalized coordinate matrix
∼̂
q 〈g〉 is

constructed by pulling together the nodal generalized coordinate matrices
∼̂
q 〈j〉 of the whole

assemblage’s nodes. Accordingly, the gyrobeam’s potential and kinetic energy variations

and virtual work can be expressed in terms of the global matrices as:

∆Û = δ
∼̂
q 〈g〉

T

∼K̂
〈g〉

∼̂
q 〈g〉

∆T̂ = − δ
∼̂
q 〈g〉

T

∼M̂
〈g〉

∼

◦◦
q̂
〈g〉
− δ

∼̂
q 〈g〉

T

∼
Ĝ 〈g〉

∼

◦
q̂
〈g〉
− δ

∼̂
q 〈g〉

T

∼Ĉ
〈g〉

∼̂
q 〈g〉 − δ

∼̂
q 〈g〉

T

∼R̂
〈g〉

δŴ = δ
∼̂
q 〈g〉

T

∼
Q̂〈g〉

(4.131)

and (based on Hamilton’s principle) the semi-discretized gyrobeam dynamic ODEs will be

derived as:

∼
Q̂〈g〉 − ∼R̂

〈g〉
= ∼M̂

〈g〉

∼

◦◦
q̂
〈g〉

+
∼
Ĝ 〈g〉

∼

◦
q̂
〈g〉

+ ∼Ĉ
〈g〉

∼̂
q 〈g〉 + ∼K̂

〈g〉

∼̂
q 〈g〉 (4.132)

Recall that in the set of dynamic ODEs given by Eq. (4.132) the NBCs are taken into

account directly (in the evaluation of the generalized force matrix) and it is enough to just

impose the EBCs via one of the methods explained in [63]. Imposition of EBCs will result

in the final semi-discretized gyrobeam dynamic ODEs:

∼
Q̂− ∼R̂ = ∼M̂ ∼

◦◦
q̂ +

∼
Ĝ
∼

◦
q̂ + ∼Ĉ ∼̂q + ∼K̂ ∼̂

q (4.133)

which can be integrated with an ODE integration technique provided the ICs are given, or

can be used for modal vibration analysis even if the ICs are unknown.

4.10 Boundary conditions

As mentioned before in the weak formulation or variational form of the displacement-

based FEM, the NBCs are naturally taken into account in the evaluation of the (nodal)

generalized force and moment matrices and there are only EBCs which should be imposed

separately using the procedure explained in [63].

Some simple (but very common) BCs which can be considered for nodal points of

classical and micropolar gyrobeams and the essential generalized coordinates constraints

95



corresponding to them are presented in Table 4.1 where the BCs related to longitudinal,

torsional, and bending deformations are taken into account separately.

A complete set of BCs for a 3D gyrobeam may be represented as a combination of three

pairs of BCs corresponding to the tension-compression, torsion, and bending modes at the

gyrobeam’s left and right boundary points P1 and P2. For example, a classically cantilevered

3D gyrobeam can be addressed as having fixed-free BCs on tension-compression, (classical)

fixed-free BCs on torsion, and (classical) clamped-free BCs on bending at the left and right

boundary points P1 and P2 , or more clearly having fixed tension-compression, (classical)

fixed torsion, and (classical) clamped bending BCs at P1 and free tension-compression, free

torsion, and free bending BCs at P2 .

4.11 Time integration

Among different time integration techniques, a few are known to take advantage of the

special characteristics of the finite element matrices and to be very effective in the context

of FEM. These effective techniques can be categorized as direct integration methods and

mode superposition methods. Direct integration methods are those in which a numerical

step-by-step procedure is used on the original form of the differential equations to integrate

them. In the mode superposition methods, on the other hand, a transformation of the dif-

ferential equations is firstly carried out and then the transformed equations are integrated

exactly or numerically (using a step-by-step procedure).

The central difference method, Houbolt method, Wilson-θ method, and the Newmark

method are a few commonly used direct integration techniques. The central difference

method is an explicit conditionally stable integration method [63]. The Houbolt is an im-

plicit unconditionally stable method which needs a special starting procedure and provides

relatively high artificial damping [63, 65]. The Wilson-θ method with an optional coeffi-

cient θ is indeed a family of implicit integration methods which are unconditionally stable

provided θ ≥ 1.37 [63]. The Wilson-θ method with θ = 1.4 is a very common second-order

accurate and unconditionally stable method with algorithmic damping (which is sometimes

desirable). The Newmark method with two optional coefficients β and γ represents a family
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of implicit integration methods which are unconditionally stable provided 2β ≥ γ ≥ 1
2

[65].

The Newmark method with γ = 1
2

is second-order accurate and unconditionally stable but

introduce no algorithmic damping. The Newmark method with γ > 1
2

is unconditionally

stable and bring in some artificial damping but is only first-order accurate (taking γ > 1
2

and β = 1
4

(γ + 1
2
)2 maximizes the artificial damping).

The fact that in the Newmark method the algorithmic damping is only achievable

by sacrificing the accuracy is a disadvantage of this method. This shortcoming can be

overcome by using a variation of the Newmatk method, called α-method [65], which has

three coefficients α, β, and γ. Provided −1
3
≤ α ≤ 0, β = 1

4
(1−α)2, and γ = 1

2
(1−2α), the

α-method represents a family of implicit, unconditionally stable, and second-order accurate

direct integration methods which also provide effective artificial damping.

The α-method can be used to find the approximate solution of the linear second-order

dynamic ODEs of Eq. (4.133) when the ICs are given. This results in the dynamic solution

in terms of the approximate time history of the state variables evaluated at assemblage

nodes. As the method is unconditionally stable the time step should be selected to meet

just the accuracy requirements.

97



Table 4.1: Simple boundary conditions applicable to the nodal points of gyrobeams.

BCs Group/Name
Resultant Constraints in Resultant Constraints in

a Classical Gyrobeam a Micropolar Gyrobeam

Longitudinal BCs/

Free no constraint no constraint

Fixed ˆ̄u
〈j〉
1 = 0 ˆ̄u

〈j〉
1 = 0

Torsional BCs/

Free no constraint no constraint

(Classical) Fixed θ̄
〈j〉
1 = 0 θ̄

〈j〉
1 = 0

Micropolar Fixed not applicable θ̄
〈j〉
1 = ϑ̄

〈j〉
1 = 0

Bending BCs/

Free no constraint no constraint

Pinned ˆ̄u
〈j〉
2 = ˆ̄u

〈j〉
3 = 0 ˆ̄u

〈j〉
2 = ˆ̄u

〈j〉
3 = 0

(Classical) Sliding θ̄
〈j〉
2 = θ̄

〈j〉
3 = 0 θ̄

〈j〉
2 = θ̄

〈j〉
3 = 0

(Classical) Clamped
ˆ̄u
〈j〉
2 = ˆ̄u

〈j〉
3 = 0 ˆ̄u

〈j〉
2 = ˆ̄u

〈j〉
3 = 0

θ̄
〈j〉
2 = θ̄

〈j〉
3 = 0 θ̄

〈j〉
2 = θ̄

〈j〉
3 = 0

Micropolar Sliding not applicable
θ̄
〈j〉
2 = θ̄

〈j〉
3 = 0

ϑ̄
〈j〉
2 = ϑ̄

〈j〉
3 = 0

Micropolar Clamped not applicable

ˆ̄u
〈j〉
2 = ˆ̄u

〈j〉
3 = 0

θ̄
〈j〉
2 = θ̄

〈j〉
3 = 0

ϑ̄
〈j〉
2 = ϑ̄

〈j〉
3 = 0
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Chapter 5

Numerical Analysis of Classical

Gyroelastic Beams

5.1 Introduction

To illustrate the classical gyrobeam model developed in Chapter 4 a few numerical examples

are presented in this chapter where the main focus is on the study of the modal behavior

of the classical gyrobeams with uniform gyricity distribution (a few examples of classical

gyrobeams with different non-uniform gyricity distributions are given in Appendix E).

The classical gyrobeam model developed in Chapter 4 employs the simple longitudi-

nal deformation theory, Duleau torsion theory, and Timoshenko bending theory to model

the beam elasticity and in this chapter will be simply referred to as the “3D Timo-

shenko gyrobeam model”. On the other hand, the classical gyrobeam model suggested

by D’Eleuterio [2,16] and Zee [33], and reviewed in Appendix D, utilizes the simple longi-

tudinal deformation theory, Duleau torsion theory, and Euler-Bernoulli bending theory and

therefore in this chapter is simply called the “3D Euler-Bernoulli gyrobeam model”. The

more general term “classical gyrobeam model” will be used in this chapter whenever both

Timoshenko and Euler-Bernoulli gyrobeam models are meant. The modal comparison of

the 3D Timoshenko gyrobeam model against the 3D Euler-Bernoulli gyrobeam model will
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be pursued in this chapter through the provided numerical examples. Note that, to have an

even comparison, the unrestricted 3D Timoshenko gyrobeam model developed in Chapter 4

will be compared against the unrestricted 3D Euler-Bernoulli gyrobeam model presented

in Appendix D and not against the zero-order restricted Euler-Bernoulli gyrobeam models

developed by D’Eleuterio [2, 16] and Zee [33].

The 3D Euler-Bernoulli (EB) and Timoshenko (TM) gyrobeams selected for numerical

analyses are (classically) cantilevered uniform beams along the first axis of the inertial

reference frame (the principal axes of the beams’ cross section are assumed to be paral-

lel to the second and third coordinate axes of the inertial frame). The gyrobeams have

constant geometries, inertia densities, and elastic constants over the length and carry a

constant (time-invariant) uniform axial or transverse gyricity distribution as shown in Fig-

ure 5.1 or 5.16. The FEM-based numerical models of these gyrobeams are implemented in

MATLAB® [66] using the parameters summarized in Tables 5.1, 5.2, and 5.3.

Table 5.1: Summary of the main dimensionless parameters used in the numerical classical

gyrobeam models.

Parameter Value(s)

R̂3 = R̂2 =
√

2 R̂1 10, 50, and 250

µ̂ 3
8

kt 1

ks2
= ks3

1

%̂V 1
4

a

=̂
V %̂V

R̂
2
3

×
=
1 = %̂V Î3 × =

1

(ϕ1, ϕ2) (0, π
2
) (for axial gyricity)

(0, 0) (for transverse gyricity)

(
◦
ϕ1,

◦
ϕ2) (0, 0)

◦
ϕ3

1
2
T [0, 60]

In Table 5.1 the given value for the gyros’ rotational inertia density
↔̂
V is based on
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Table 5.2: Summary of the main FEM parameters used in the numerical Euler-Bernoulli

gyrobeam model.

Parameter Value

Element Type C0 two-node (for tension and torsion)

C1 two-node (for bending)

Basis Functions linear Lagrange polynomials (for tension and torsion)

cubic Hermitian polynomials (for bending)

Number of Elements 48

Number of Nodes 49 (distributed evenly)

DOFs per Node 6

Longitudinal BCs fixed-free

Torsional BCs classical fixed-free

Bending BCs classical clamped-free

Gyricity Distribution uniform axial/transverse

assuming a constant proportional relationship between the dimensions of the gyros and

the beam thickness. Also, the total gyricity spin rate
◦
ϕ3T is defined, analogous to the

D’Eleuterio’s total gyricity symbol ĥT [2, 16], in terms of the gyricity spin rate function
◦
ϕ3(cx̂1) as:

◦
ϕ3T =

∫
L̂

| ◦ϕ3(cx̂1)| dL̂ (5.1)

where |�| represents the absolute value of a parameter. Based on this definition the

function of
◦
ϕ3(cx̂1) associated with a given

◦
ϕ3T, for example, in a uniform or half sinusoidal

distribution, will respectively be:

◦
ϕ3(cx̂1) =

◦
ϕ3T (5.2)

or:
◦
ϕ3(cx̂1) =

◦
ϕ3T

π

2
sin(π cx̂1) (5.3)
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Table 5.3: Summary of the main FEM parameters used in the numerical Timoshenko

gyrobeam model.

Parameter Value

Element Type C0 four-node

Basis Functions cubic Lagrange polynomials

Number of Elements 16

Number of Nodes 49 (distributed evenly)

DOFs per Node 6

Longitudinal BCs fixed-free

Torsional BCs classical fixed-free

Bending BCs classical clamped-free

Gyricity Distribution uniform axial/transverse

Recall that both 3D Euler-Bernoulli and 3D Timoshenko gyrobeams have four modes of

deformation, i.e. longitudinal displacement along the cx̂1 axis, torsional rotation about the
cx̂1 axis, bending deformation in the cx̂1

cx̂2 plane, and bending deformation in the cx̂1
cx̂3

plane; in the presence of gyricity terms the torsional and bending deformation modes may

be coupled together. In the following numerical examples only those deformation modes

affected by the gyricity will be taken into account when comparing the natural frequencies

and mode shapes of Euler-Bernoulli and Timoshenko gyrobeams.

5.2 Uniform axial gyricity distribution

A uniform axial gyricity distribution (over the beam length), i.e. a constant gyricity parallel

to the beam’s neutral axis, couples the two bending deformation modes of the gyrobeam

in the cx̂1
cx̂2 and cx̂1

cx̂3 planes. These bending deformations, however, remain uncoupled

from the gyrobeam longitudinal deformations along the cx̂1 axis and torsional deformations

about the cx̂1 axis. Indeed, an axial gyricity distribution affects the bending modes while
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the longitudinal and torsional modes are left untouched. The schematic of a gyrobeam

with such a gyricity distribution, i.e. a uniform axial gyricity in the
→
c1 direction, is shown

in Figure 5.1.

o

3
ˆo x

1̂

o x

2
ˆo x

c

3
ˆc x

1̂

c x

2
ˆc x

Figure 5.1: A gyrobeam carrying a uniform axial gyricity distribution.

The variations of the first 25 (gyricity-affected) bending natural frequencies for three

different (thick, medium, and thin) Euler-Bernoulli and Timoshenko gyrobeams carrying a

uniform axial gyricity with the variation of the total gyricity (or more exactly the gyros total

spin rate
◦
ϕ3T) are shown in Figures 5.2–5.7. The depicted natural frequencies correspond to

the coupled bending-bending deformation modes (and therefore their mode shapes consist

of bending deformations in both the cx̂1
cx̂2 and cx̂1

cx̂3 planes).

Note that for a zero gyricity (zero spin rate) there is no coupling between the de-

formation modes and one can easily distinguish between the longitudinal, torsional, and

two bending natural frequencies (all the natural frequencies correspond to single deforma-

tion modes). To facilitate tracking of the gyricity effects on different natural frequencies,

different natural frequencies of the considered beams for the zero-gyricity case (i.e. the

longitudinal, torsional, and bending natural frequencies) are shown in the left side of the

plots in Figures 5.2–5.7. As noted in the legends (see the upper right corner of the plots)
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the zero-gyricity longitudinal, torsional, and bending natural frequencies, i.e. ω̂l , ω̂t , and

ω̂b , are respectively tagged by ���, o, and 444 symbols. The natural frequency curves are,

however, plotted only for gyricity-affected bending natural frequencies.

Whereas the natural frequency curves (or loci), given in Figures 5.2–5.7, seem to cross

over each other in different points, one should note that this may not happen everywhere

it seems to [2]. Indeed, at (some) points where they appear to cross smoothly, the curves

instead approach one another quite closely and then veer away suddenly, each taking

the path that the other would take was it permitted to cross. The curves may even

tangentially coincide (specially here for a beam with symmetry in the two bending planes)

without crossing. This phenomenon, referred to as “curve veering”, has been thoroughly

studied by different authors [67–70]. A detailed examination of the curve veering seen here

between the natural frequency loci of gyrobeams is, however, beyond the scope of this

work and is recommended as possible future work. Note that had the gyricity-unaffected

natural frequency curves been plotted in Figures 5.2–5.7 (they would have appeared as

horizontal lines) in addition to the gyricity-affected natural frequency curves, crossing over

(instead of veering away) was likely between a gyricity-affected natural frequency curve

and a gyricity-unaffected natural frequency curve.

In the natural frequency plots of this section, due to the beam symmetry in the two

bending planes, the bending natural frequencies for zero-gyricity case always appear as

pairs. By starting at zero and continuously increasing the gyricity one of the natural

frequencies in each pair rises while the other one drops. This continues smoothly until

the rising bending natural frequency of a lower mode comes close to the dropping bending

natural frequency of a higher mode, where the natural frequencies are likely to veer away.

For each natural frequency curve this veering away may occur multiple times and makes

the curve seem to weave through the others. However, all the considered bending natural

frequencies finally tend to zero for large enough gyricity (or large enough
◦
ϕ3T).

Now consider the Euler-Bernoulli gyrobeam model and its natural frequency loci de-

picted in Figures 5.2–5.4. As can be seen in these figures, in an Euler-Bernoulli gyrobeam

the veering of the natural frequency curves (if any) occurs more abruptly (compare them

to the natural frequency curves of an analogous Timoshenko gyrobeam in Figures 5.5–5.7).
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For an Euler-Bernoulli gyrobeam the apparent smooth curves of the rising bending

natural frequencies, i.e. the path they would take were they allowed to cross, tend to

infinity as the gyricity increases (a steep line asymptotic to each apparent curve can be

imagined).

Despite the natural frequency plots given in Section D.9 (i.e. Figures D.2 and D.6) which

are the same for any slenderness ratio, the natural frequency curves of Euler-Bernoulli

gyrobeams given in this section (i.e. in Figures 5.2–5.4) are different at different beam

slenderness ratios. This is partially due to scaling a different parameter on the horizontal

axis in the plots of Section D.9, i.e. ĥT , from that in the plots of this section, i.e.
◦
ϕ3T ,

and partially due to the fact that whereas the plots of Section D.9 are obtained using

a zero-order restricted Euler-Bernoulli gyrobeam model, an unrestricted Euler-Bernoulli

gyrobeam model, where the translational and rotational inertias of the gyricity (or gyros

distribution) are taken into account, is used to produce the plots of this section (refer to

Eq. (D.23) which can be compared against the equations derived by D’Eleuterio [2,16] and

Zee [33]). Note that, based on Eq. (D.44) the vertical axis of this section plots represents

the same quantity as the vertical axis of Section D.9 plots, i.e. the square root of product

of the natural frequency and the slenderness ratio or

√
R̂3 ω̂ .

Note in Figures 5.2–5.4 that for the Euler-Bernoulli gyrobeam model the effect of length-

ening (relative to the thickness) or thinning (relative to the length) the beam is to spread

out the range of the first 25 natural frequencies and to require larger values of gyricity to get

past the region where veering may occur. In other words, for Euler-Bernoulli gyrobeams

(with different slenderness ratios) in which there is a proportional relationship between the

gyros size (and equivalently the gyros rotational inertia
↔̂
V ) and the beam thickness (or

equivalently the beam cross sectional moment of inertia Î3), the gyricity effects on thinner

beams are slighter. This includes the slighter difference between the natural frequencies

of an elastic beam without gyricity and the natural frequencies of a gyrobeam with a zero

gyricity where
◦
ϕ3T = 0.
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Figure 5.2: Natural frequencies of a thick Euler-Bernoulli gyrobeam with a uniform axial

gyricity.
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Figure 5.3: Natural frequencies of a medium Euler-Bernoulli gyrobeam with a uniform

axial gyricity.
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Figure 5.4: Natural frequencies of a thin Euler-Bernoulli gyrobeam with a uniform axial

gyricity.
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The natural frequency loci of the Timoshenko gyrobeams are plotted in Figures 5.5–

5.7. In Figures 5.5–5.7 one can see, in comparison to Figures 5.2–5.4, that the addition of

transverse shear effects via the Timoshenko beam model has a very visible effect on the

frequency curves especially for the higher frequency modes. As expected, the differences

between Figures 5.4 and 5.7 (the thin gyrobeam case) are slight but those for the short

gyrobeam case (Figures 5.2 and 5.5) are very pronounced. In general, the natural frequen-

cies of a Timoshenko gyrobeam are lower than the corresponding natural frequencies of an

analogous Euler-Bernoulli gyrobeam.

In addition to the rapid curve veering observed earlier for an Euler-Benoulli gyrobeam,

one can see gradual curve veering in the natural frequency loci of a Timoshenko gyrobeam

which is due to the inclusion of shear deformations (note that the moment-like gyricity

effects can activate the shear deformation mode of a Timoshenko beam, as can a volume

body moment). The contribution of shear deformations is different in different vibration

modes and this may disturb the symmetry between the coupled bending deformation modes

to result in a slower curve veering. Accordingly, the gradual curve veering is more clear be-

tween the higher natural frequency curves where the contribution of the shear deformation

mode is more significant (this is more noticeable in Figure 5.6).

The veering in the Timoshenko gyrobeam results continues to be present (in the lower

frequency modes) at much higher values of gyricity than in the Euler-Bernoulli gyrobeam

case. This is most evident for the short gyrobeams (Figures 5.2 and 5.5). Clearly the shear

contribution to the model is very significant for anything but long slender gyrobeams.

Compared to the Euler-Bernoulli gyrobeams, the apparent smooth curves of the rising

bending natural frequencies in a Timoshenko gyrobeam, i.e. the path that rising natural

frequencies would take were they allowed to cross, tend to a constant value as the gyricity

increases (a horizontal line asymptotic to each apparent curve can be imagined).

Finally, analogous to the Euler-Bernoulli gyrobeams, one can see that the gyricity effects

become slighter in thinner Timoshenko gyrobeams (of course as the gyros rotational inertia

density is proportional to the beam thickness).
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Figure 5.5: Natural frequencies of a thick Timoshenko gyrobeam with a uniform axial

gyricity.

110



00.51
  

d a ta 1

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

ϕ̊3

1
2

T

(R̂3 ω̂)
1
2

Timoshenko Gyrobeam Model;
R̂3 = 50

 

 
ω̂l

ω̂t
ω̂b

Figure 5.6: Natural frequencies of a medium Timoshenko gyrobeam with a uniform axial

gyricity.
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Figure 5.7: Natural frequencies of a thin Timoshenko gyrobeam with a uniform axial

gyricity.
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To accomplish the modal analysis of the classical gyrobeams with uniform axial gyric-

ity, the first six gyricity-affected mode shapes of medium-thickness Euler-Bernoulli and

Timoshenko gyrobeams, considering three values for the gyricity distribution magnitude,

are plotted in Figures 5.8–5.13 where note that the mode shapes are numbered based on

their actual rank among all the gyrobeam mode shapes.

As shown in the figures, each mode shapes of a gyrobeam with an axial gyricity is a

combination of the two bending deformation modes in the cx̂1
cx̂2 and cx̂1

cx̂3 planes. When

vibrating in one of its mode shapes the gyrobeam undergoes “precessional movement”,

which is a result of the time-varying contribution of the two bending deformation modes

into the gyrobeam total deformation. Indeed, each mode shape illustrates the precessional

rotation of the gyrobeam around the beam rest position (on the cx̂1 axis) with an angular

velocity which is the same as the mode shape natural frequency.

The “modal precession” of gyrobeams with axial gyricity is either in the same direction

as the gyricity, called the “prograde precession” or in the opposite direction of the gyricity,

called the “retrograde precession” [2]. There might be also complex mode shapes in which

a portion of the mode has a prograde precession while the rest has a retrograde precession.

In Figures 5.8–5.13 each mode shape’s sense of precession is shown by two rotation arrows,

one describing the sense of precession in the middle of the mode shape and one indicating

the sense of precession at the end of the mode shape.

Comparing the mode shapes of the medium-thickness Euler-Bernoulli and Timoshenko

gyrobeams one may notice no significant differences between them. However, for both

gyrobeam models, it is worthy to note how the “single central nodes” (where the mode

shape passes zero while changing sign) of the mode shapes at small gyricity transform into

“double central nodes” (i.e. two very close central nodes) at medium gyricity and finally

become “tangential nodes” (where the mode shape approaches zero but does not cross or

change sign) at large gyricity. The tangential nodes are better shown in Figures 5.14 and

5.15 which correspond to a very large axial gyricity distribution. One may also observe

in Figures 5.10 and 5.13 how for the large gyricity value all the mode shapes exhibit

retrograde precession and the ends of the even gyricity-affected modes, shown in the right

column plots, move toward the cx̂1 axis for the large axial gyricity, i.e. appear to become

nodes.
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Figure 5.8: Mode shapes of a medium Euler-Bernoulli gyrobeam with a small uniform axial

gyricity.
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Figure 5.9: Mode shapes of a medium Euler-Bernoulli gyrobeam with a medium uniform

axial gyricity.
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Figure 5.10: Mode shapes of a medium Euler-Bernoulli gyrobeam with a large uniform

axial gyricity.
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Figure 5.11: Mode shapes of a medium Timoshenko gyrobeam with a small uniform axial

gyricity.
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Figure 5.12: Mode shapes of a medium Timoshenko gyrobeam with a medium uniform

axial gyricity.
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Figure 5.13: Mode shapes of a medium Timoshenko gyrobeam with a large uniform axial

gyricity.
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Figure 5.14: Mode shapes of a medium Euler-Bernoulli gyrobeam with a very large uniform

axial gyricity.
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Figure 5.15: Mode shapes of a medium Timoshenko gyrobeam with a very large uniform

axial gyricity.
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5.3 Uniform transverse gyricity distribution

In a gyrobeam with a transverse gyricity distribution (over the beam length), i.e. a constant

gyricity perpendicular to the beam’s neutral axis, the torsional deformations about the cx̂1

axis are coupled to the bending deformations in the plane spanned by the beam’s neutral

axis and the gyricity direction (gyros’ spin axis). Here, the gyricity distribution is assumed

to be in the
→
c3 direction and, therefore, the torsional deformation mode about the cx̂1

axis is coupled to the bending deformation mode in the cx̂1
cx̂3 plane. These deformation

modes, however, remain uncoupled from the gyrobeam longitudinal deformation mode,

along the cx̂1 axis, and the other bending deformation mode, in the cx̂1
cx̂2 plane. Indeed,

a transverse gyricity with the
→
c3 direction affects the torsional deformation mode around

the cx̂1 axis and the bending deformation mode in the cx̂1
cx̂3 plane while leaving the

longitudinal deformation mode, along the cx̂1 axis, and the second bending deformation

mode, in the cx̂1
cx̂2 plane, untouched. The schematic of a gyrobeam with such a gyricity

distribution, i.e. a uniform transverse gyricity in the
→
c3 direction, is shown in Figure 5.16.

o

3
ˆo x

1̂

o x

2
ˆo x

c

3
ˆc x

1̂

c x

2
ˆc x

Figure 5.16: A gyrobeam carrying a uniform transverse gyricity distribution.

The variations of the first 25 (gyricity-affected) natural frequencies of three different
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Timoshenko and Euler-Bernoulli gyrobeams carrying a uniform transverse gyricity (in the
cx̂3 direction) with the variation of the gyricity magnitude are shown in Figures 5.17–5.22.

The presented natural frequencies correspond to the coupled torsional-bending deformation

modes and, therefore, their mode shapes consist of torsional deformations about the cx̂1

axis and bending deformations in the cx̂1
cx̂3 plane.

The natural frequencies of the considered gyrobeams for the zero-gyricity case, when

there is no coupling between the deformation modes and the natural frequencies corre-

spond to the separate deformation modes, are shown in the left side of the plots in Fig-

ures 5.17–5.22 by single markers. To facilitate tracking of the gyricity effects on longitu-

dinal, torsional, and bending natural frequencies, i.e. ω̂l, ω̂t, and ω̂b, they are respectively

distinguished by ��� , o , and 444 symbols (see the legend of each plot in its upper right

corner). The gyricity-affected torsional-bending natural frequency curves are then plotted

to illustrate the variations of the natural frequencies with the transverse gyricity.

The curve veering phenomenon, though with a lower intensity (or slighter abruption),

can be observed again in the plots of Figures 5.17–5.22. Here, a less intense veering

means that the transition zones where the veering is happening are generally larger and

the changes in the natural frequency loci are mostly smoother and slower. A slower curve

veering can be due to a different coupling in gyrobeams with transverse gyricity than that in

gyrobeams with axial gyricity. In a gyrobeam with axial gyricity the coupling is between

the similar bending deformation modes and this similarity makes the transition, if any,

easier and faster. On the contrary, in a gyrobeam with transverse gyricity the coupling is

between the unalike torsional and bending deformation modes and this results in a more

difficult and slower transition and curve veering. This slower curve veering is much more

noticeable in the most slender Timoshenko gyrobeam (see Figure 5.22).

Overall, the veering phenomenon observed in the natural frequencies of a gyrobeam

with transverse gyricity (shown in Figures 5.17–5.22) is more unpredictable or irregular

compared to that, if any, in the natural frequencies of a gyrobeam with axial gyricity

(shown in Figures 5.2–5.7). Again, all the considered torsional-bending natural frequencies

finally tend to zero for large enough gyricity.

The slower and more irregular curve veering in Figures 5.17–5.22 make it more difficult
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to distinguish any apparent trends for the natural frequencies of the gyrobeams with a

transverse gyricity, in comparison to those observed earlier for the gyrobeams with an axial

gyricity. For example, although one can notice apparent smooth curves in Figures 5.17,

5.20, and 5.21, they are not as clear as those in Figures 5.2, 5.5, and 5.6, respectively. Also,

there is no apparent smooth curves or trends observable in Figures 5.18, 5.19, and 5.22.

Based on Figures 5.17–5.22, the gyricity effects decrease as the beam gets thinner,

evidently as the practical proportional relationship between the size of gyros and the beam

thickness is presumed.

Again, one can see that the addition of transverse shear effects via the Timoshenko beam

model has a very visible effect on the frequency curves especially for the higher frequency

modes. However, as expected the differences between the Timoshenko and Euler-Bernoulli

gyrobeam models is less apparent in the thinner beams.

The natural frequency loci of Euler-Bernoulli gyrobeams carrying a transverse gyricity

in the
→
c3 direction are shown in Figures 5.17–5.19. Compared to the natural frequencies of

Timoshenko gyrobeams illustrated in Figures 5.20–5.22, the natural frequency loci of Euler-

Bernoulli gyrobeams veer more rapidly (this is more clear when comparing the gyrobeams

with medium thickness). Also, like in the axial gyricity case, the veering in the Timoshenko

gyrobeam natural frequency loci continues to be present (in the lower frequency modes)

at much higher values of gyricity than in the Euler-Bernoulli gyrobeam case which is most

evident for the short gyrobeams (Figures 5.17 and 5.20).
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Figure 5.17: Natural frequencies of a thick Euler-Bernoulli gyrobeam with a uniform trans-

verse gyricity.
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Figure 5.18: Natural frequencies of a medium Euler-Bernoulli gyrobeam with a uniform

transverse gyricity.
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Figure 5.19: Natural frequencies of a thin Euler-Bernoulli gyrobeam with a uniform trans-

verse gyricity.
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Figure 5.20: Natural frequencies of a thick Timoshenko gyrobeam with a uniform transverse

gyricity.
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Figure 5.21: Natural frequencies of a medium Timoshenko gyrobeam with a uniform trans-

verse gyricity.
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Figure 5.22: Natural frequencies of a thin Timoshenko gyrobeam with a uniform transverse

gyricity.
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The first six gyricity-affected mode shapes of medium-thickness Euler-Bernoulli and

Timoshenko gyrobeams with small, medium, and large transverse gyricity distribution

magnitudes in the
→
c3 direction are plotted in Figures 5.23–5.28. Again, in these figures

the mode shapes are numbered based on their actual rank when considering all of the

gyricity-affected and gyricity-unaffected vibration modes.

In Figures 5.23–5.28, for gyrobeams with transverse gyricity in the
→
c3 direction, the

mode shapes consist of the torsional deformation mode about the cx̂1 axis and the bending

deformation mode in the cx̂1
cx̂3 plane. Note that in these figures the bending portion

of each mode shape is plotted in the horizontal plane and colored blue and the torsional

portion of each mode shape is plotted in the vertical plane and shown in green.

The vibration in each mode is, indeed, based on the time-variation of the contributions

of these torsional and bending deformation modes into the gyrobeam total deformation.

Though there is no modal precession (as those seen for axial-gyricity gyrobeams) associated

with the mode shapes of transverse-gyricity gyrobeams, there is a “modal transformation”

between different states of each mode shape, i.e. from a fully torsional mode into a fully

bending mode and vice versa, which is again done at a velocity which is the same as the

natural frequency of the mode shape.

In Figures 5.23–5.28, the direction of the modal transformation for each mode is shown

by two pairs of straight arrows; one pair in the middle of the mode shape and one pair at

the end of the mode shape. The arrows of each pair show the direction of the evolution (or

transformation) for the torsional and bending portions of the mode shape at that point.

In other words two pairs of straight arrows illustrate the relative phase of torsional and

bending portions in each mode shape.

For example, consider the pair of straight arrows at the end of the mode shape shown

in the first (top left) plot of Figure 5.23. The arrow parallel to the θ̄1 axis (vertical axis)

represents the direction of transformation for the torsional portion of the mode shape at

its end (from a positive θ̄1 toward zero in this case). The arrow parallel to the ˆ̄u3 axis

(horizontal axis) corresponds to the direction of transformation for the bending portion of

the mode shape at its end (from zero toward a positive ˆ̄u1 in this case). In other words,

the pair of arrows at the end of the mode shape illustrate that the transformation at the
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end of the mode shape, during a full cycle, is from a positive θ̄1 to a positive ˆ̄u3 , then

from a positive ˆ̄u3 to a negative θ̄1 , then from a negative θ̄1 to a negative ˆ̄u3 , and finally

from a negative ˆ̄u3 to a positive θ̄1 . The modal transformation in the middle of the mode

shape represented by the other pair of straight arrows is the same. Considering both pairs

of arrows in the first plot of Figure 5.23, they illustrate that starting from a positive fully

torsional mode (where the bending mode contribution is zero), the contribution of the

torsional mode to the total mode shape decreases while the contribution of the bending

mode increases, and finally, the mode shape transforms into a positive fully bending mode

(where the torsional mode contribution is zero).

Analogous to the sense of precession associated with the mode shapes of the axial-

gyricity gyrobeams, one can define a sense of transformation for the mode shapes of the

transverse-gyricity gyrobeams; e.g. a positive sense if the transformation is from a posi-

tive torsional rotation to a positive bending displacement (or equivalently from a positive

bending to a negative torsion, a negative torsion to a negative bending, and a negative

bending to a positive torsion) and a negative sense provided the transformation is from

a positive bending displacement to a positive torsional rotation (or equivalently from a

positive torsion to a negative bending, a negative bending to a negative torsion, and a neg-

ative torsion to a positive bending). Again there might be complex mode shapes for which

such a definition does not work well because of different modal transformation directions

at different portions of the mode shape (see for example the mode shapes shown in the

right column plots of Figure 5.23). Based on this convention the first mode shapes shown

in Figure 5.23 (i.e. in the top left plot), for example, has a positive modal transformation.

Again, except for the sixth gyricity-affected mode shapes (eighth mode shapes if count-

ing all the gyricity-affected and gyricity-unaffected modes) corresponding to a medium

transverse gyricity (shown in the bottom right plots of Figures 5.24 and 5.27), there is no

significant difference between the mode shapes of medium-thickness Euler-Bernoulli and

Timoshenko gyrobeams with the small, medium, and large transverse gyricity distribu-

tions as shown in Figures 5.23–5.28. Even the difference between the natural frequency

values is negligible for the large transverse gyricity. Regarding the aforementioned sixth

gyricity-affected mode, shown in the bottom right plots of Figures 5.24 and 5.27, their

variation is likely due to the more severe curve veering which the Euler-Bernoullli mode
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shape experience during its path (see the sixth natural frequency locus, counting from the

bottom, in Figure 5.18 and compare it against the corresponding locus in Figure 5.21).

Comparing the plots corresponding to the small, medium, and large transverse gyricity

distributions for both Euler-Bernoulli and Timoshenko gyrobeams, it is interesting how

the increase of transverse gyricity regulates the location of the nodes in the torsional and

bending portions of the mode shapes; the nodes are rearranged such that the torsional

portion nodes are placed where the bending portion has a node or a local maximum (see

Figures 5.23–5.28). One may also notice how the nature of nodes changes during this

relocation; whereas at small transverse gyricity the torsional and bending portions of mode

shapes may possess both tangential nodes and central nodes, at large transverse gyricity

the torsional portions own only central nodes and the bending portions have only tangential

nodes. The transition from central nodes to tangential nodes and vice verse is through

double central nodes.

Finally, it is worthy to note that, for both Euler-Bernoulli and Timoshenko gyrobeams,

the ends of the bending portion of even gyricity-affected modes (i.e. the second, fifth, and

seventh modes when considering all the modes), shown in the right column of Figures 5.25

and 5.28, move toward the cx̂1 axis for large transverse gyricity.
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Figure 5.23: Mode shapes of a medium Euler-Bernoulli gyrobeam with a small uniform

transverse gyricity.
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Figure 5.24: Mode shapes of a medium Euler-Bernoulli gyrobeam with a medium uniform

transverse gyricity.
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Figure 5.25: Mode shapes of a medium Euler-Bernoulli gyrobeam with a large uniform

transverse gyricity.
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Figure 5.26: Mode shapes of a medium Timoshenko gyrobeam with a small uniform trans-

verse gyricity.
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Figure 5.27: Mode shapes of a medium Timoshenko gyrobeam with a medium uniform

transverse gyricity.
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Figure 5.28: Mode shapes of a medium Timoshenko gyrobeam with a large uniform trans-

verse gyricity.
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5.4 Curve veering

As mentioned in the previous sections, the natural frequency loci of gyrobeams seem to

cross over each other. However, a closer look, at the points where the natural frequency

curves appear to simply cross, indicates that, indeed, a veering occurs between the natural

frequency loci in (some of) these points [2, 16]. This very strange and interesting curve

veering phenomenon is in conjunction with a strange drastic change of the mode shapes

corresponding to the veering natural frequencies. Indeed, in the regions where curve veer-

ing occurs the mode shapes undergo dramatic, albeit continuous, changes during which

the mode shapes (i.e. eigenvectors) associated with the veering natural frequencies (i.e.

eigenvalues) are interchanged by exchanging their characteristics. This is the reason why

the regions where the curve veering takes place are called “transition zones” [67–70]. The

continuous change of mode shapes in the transition zones where the mode shapes are in-

terchanged suggests that strange mode shapes can be seen near these zones. Whereas a

thorough examination of curve veering and its associated abrupt changes of mode shapes

is left for future work, this section provides a few examples for dramatic changes of mode

shapes in the vicinity of curve veering points (or zones).

Consider the natural frequency loci of the medium-thickness Timoshenko gyrobeam

with the uniform axial and transverse gyricity distributions which were previously plotted

in Figures 5.6 and 5.21 and are repeated in Figures 5.29 and 5.30. In the latter figures two

(arbitrarily selected) curve veering zones are also shown in which the drastic change of the

mode shapes will be investigated.
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Figure 5.29: Selected curve veering zones in natural frequency loci of a medium Timoshenko

gyrobeam with a uniform axial gyricity.
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Figure 5.30: Selected curve veering zones in natural frequency loci of a medium Timoshenko

gyrobeam with a uniform transverse gyricity.
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In the first zone in Figure 5.29 the veering occurs between the fourth and fifth natural

frequencies. The mode shapes associated with these frequencies for six different gyricity

values inside the veering zone are plotted in Figures 5.31 and 5.32. It can be seen in these

figures that the fourth and fifth mode shapes exchange their characteristic; the fourth

mode shape “acquires a node” and rotates with a retrograde precession while the fifth

mode shape “sheds a node” and rotates with a prograde precession.

The veering in the second zone is between the seventh and eighth natural frequencies.

The mode shape transition in this zone is shown in Figures 5.33 and 5.34. Whereas the

mode number changes just by one between these two, there are major differences between

these mode shapes right before the curve veering zone (this can be seen by comparing

the top left plots of Figures 5.33 and 5.34). Therefore, as one may guess, they undergo

very violent changes in the trnasition zone to interchange their characteristics (i.e. their

nodes and precession sense). As shown in Figures 5.33 and 5.34, in the transition zone

the seventh mode shape “acquires multiple nodes” while the eighth mode shape “sheds

multiple nodes”.

One may observe in Figures 5.31–5.34 how a very small change in the gyricity value

causes drastic changes in the mode shapes. Indeed, the very high sensitivity of the mode

shapes to the gyricity value in the transition zones raises questions about the nature of

abrupt mode shape changes in the transition zones; “Can they be a result of approximation

or numerical precision errors?” and “Can they happen in the actual system or they just

show up in the numerical simulations?”, one may ask. These questions necessitate a

through investigation of curve veering phenomenon in the gyroelastic systems as future

work.
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Figure 5.31: Abrupt transition of 4th mode shape in the 1st curve veering zone of Fig-

ure 5.29.
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Figure 5.32: Abrupt transition of 5th mode shape in the 1st curve veering zone of Fig-

ure 5.29.
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Figure 5.33: Abrupt transition of 7th mode shape in the 2nd curve veering zone of Fig-

ure 5.29.

146



00.51
  

d a ta 1

0

0.2

0.4

0.6

0.8

1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Timoshenko Gyrobeam;

R̂3 = 50, ϕ̊3

1
2

T = 57.8340337932, ω̂ (8) = 0.4930611428

ˆ̄u2

00.51
  

d a ta 1

0

0.2

0.4

0.6

0.8

1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Timoshenko Gyrobeam;

R̂3 = 50, ϕ̊3

1
2

T = 57.8340337944, ω̂ (8) = 0.4930611428

ˆ̄u2

00.51
  

d a ta 1

0

0.2

0.4

0.6

0.8

1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Timoshenko Gyrobeam;

R̂3 = 50, ϕ̊3

1
2

T = 57.8340337950, ω̂ (8) = 0.4930611428

ˆ̄u2

00.51
  

d a ta 1

0

0.2

0.4

0.6

0.8

1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Timoshenko Gyrobeam;

R̂3 = 50, ϕ̊3

1
2

T = 57.8340337961, ω̂ (8) = 0.4930611428

ˆ̄u2

00.51
  

d a ta 1

0

0.2

0.4

0.6

0.8

1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Timoshenko Gyrobeam;

R̂3 = 50, ϕ̊3

1
2

T = 57.8340337970, ω̂ (8) = 0.4930611428

ˆ̄u2

00.51
  

d a ta 1

0

0.2

0.4

0.6

0.8

1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Timoshenko Gyrobeam;

R̂3 = 50, ϕ̊3

1
2

T = 57.8340337982, ω̂ (8) = 0.4930611428

ˆ̄u2

Figure 5.34: Abrupt transition of 8th mode shape in the 2nd curve veering zone of Fig-

ure 5.29.
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The first selected zone in Figure 5.30 addresses the curve veering between the 13th and

14th natural frequencies. The mode shape transition in this zone is shown in Figures 5.35

and 5.36. It is interesting that the less abrupt or smoother curve veering in the first

selected zone correspond to less abrupt or gradual changes of the mode shapes. The

attribute interchange between the veering modes, if any, is not clear in Figures 5.35 and

5.36. However, it is certain that both torsional and bending potions of the mode shape

vary themselves in the transition zone by acquiring or shedding nodes.

In the second zone the focus is on the 17th and 18th natural frequencies and their

corresponding mode shapes. The variation of the mode shapes in this zone is shown in

Figures 5.37 and 5.38. Compared to the first transition zone, in the second transition zone

the curve veering takes place more abruptly (see Figure 5.30 again). As a result compared

to the plots of Figures 5.35 and 5.36, there are more abrupt changes observable in the mode

shape plots given in Figures 5.37 and 5.38. The exchange of characteristics (i.e. exchange

of nodes and transformation sense) is much more clear in the plots of these latter figures

corresponding to the second transition zone.

Overall, one may conclude that, as mentioned previously, the curve veering and mode

shape transition in a gyrobeam with a transverse gyricity are more gradual compared to

those in a gyrobeam with axial gyricity.
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Figure 5.35: Abrupt transition of 13th mode shape in the 1st curve veering zone of Fig-

ure 5.30.
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Figure 5.36: Abrupt transition of 14th mode shape in the 1st curve veering zone of Fig-

ure 5.30.
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Figure 5.37: Abrupt transition of 17th mode shape in the 2nd curve veering zone of Fig-

ure 5.30.
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Figure 5.38: Abrupt transition of 18th mode shape in the 2nd curve veering zone of Fig-

ure 5.30.
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Chapter 6

Numerical Analysis of Micropolar

Gyroelastic Beams

6.1 Introduction

This chapter provides the numerical analysis of the micropolar gyrobeam model developed

in Chapter 4 by investigating the natural frequencies and mode shapes of micropolar gy-

robeams carrying a uniform axial or transverse gyricity distribution (a few examples of mi-

cropolar gyrobeams with non-uniform gyricity distributions can be found in Appendix E).

In this chapter the “3D classical gyrobeam model” refers to the gyrobeam model that

employs the simple longitudinal deformation theory, Duleau torsion theory, and Timo-

shenko bending theory to model the beam elasticity (recall that in Chapter 5 this model

is referred to as the 3D Timoshenko gyrobeam model). The “3D micropolar gyrobeam

model” on the other hand represents the gyrobeam model in which the simple longitudi-

nal deformation theory along with the herein-developed micropolar torsion and bending

theories are used to model the beam elasticity. The numerical examples of this chapter

address the modal comparison of the 3D micropolar gyrobeam model against the 3D clas-

sical (i.e. Timoshenko) gyrobeam model. Those readers interested in numerical analysis of

micropolar elastic beams without gyricity (or equivalently numerical analysis of the newly

153



developed micropolar torsion and bending theories) and their comparison with classical

elastic beams carrying no gyricity (or equivalently the well-known classical Duleau torsion

and Timoshenko bending theories) are directed to Appendix C.

Table 6.1: Summary of the main dimensionless parameters used in the numerical microp-

olar gyrobeam model.

Parameter Value(s)

R̂3 = R̂2 =
√

2 R̂1 10, 50, and 250

µ̂ 3
8

kt 1

ks2
= ks3

1

log(κ̂) [−10, 2]

log(γ̂) = log(β̂) [−10, 2]

ξ 1
2

ı̂V (b
=̂
ıV = ı̂V

=
1) 1× 10−6

%̂V 1
4

a

=̂
V %̂V

R̂
2
3

×
=
1 = %̂V Î3 × =

1

(ϕ1, ϕ2) (0, π
2
) (for axial gyricity)

(0, 0) (for transverse gyricity)

(
◦
ϕ1,

◦
ϕ2) (0, 0)

◦
ϕ3

1
2
T [0, 60]

Analogous to Chapter 5, the 3D classical (CL) and micropolar (MP) gyrobeams con-

sidered for the numerical analyses of this chapter are classically cantilevered uniform gy-

robeams along the first axis of the inertial reference frame where the the principal axes

of the beams’ cross sections are assumed to be parallel to the second and third axes of

the inertial frame. The gyrobeams have constant geometries, inertia densities, and elastic

constants over the length and carry a constant (time-invariant) uniform axial or transverse

gyricity distribution as shown in Figure 5.1 or 5.16. The FEM-based numerical model of
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the micropolar gyrobeams is implemented in MATLAB® [66] using the parameters sum-

marized in Tables 6.1 and 6.2. The parameters utilized in the FEM-based numerical model

of the classical gyrobeams are those previously given in Tables 5.1 and 5.3.

Table 6.2: Summary of the main FEM parameters used in the numerical micropolar gy-

robeam model.

Parameter Value

Element Type C0 four-node

Basis Functions cubic Lagrange polynomials

Number of Elements 16

Number of Nodes 49 (distributed evenly)

DOFs per Node 9

Longitudinal BCs fixed-free

Torsional BCs classical fixed-free

Bending BCs classical clamped-free

Gyricity Distribution Function uniform axial/transverse

Again, the dimensions of gyros are assumed to be proportional to the beam thickness

and the value given in Table 6.1 as the rotational inertia density of gyros
↔̂
V is reflecting

this assumption. Also, the total gyricity spin rate
◦
ϕ3T is as previously defined by Eq. (5.1).

In the following a preliminary investigation of the micropolar gyrobeam model (with a

uniform axial or transverse gyricity distribution) is first presented by plotting its first three

gyricity-affected natural frequencies vs. the (nondimensional) micropolar elastic constants

κ̂ and γ̂ which vary in the range [10−10, 102] (as given in Table 6.1). Then, out of the

many (or indeed infinite) possible micropolar gyrobeam models which can be obtained

by varying the micropolar elastic constants, four specific micropolar gyrobeam models are

selected and considered for a more thorough examination of natural frequencies and mode

shapes. The four models are chosen to differ by the values assigned to κ̂ and γ̂ while, as

suggested in Table 6.1, in all of them it is assumed that β̂ = γ̂ and ξ = 1
2

. The pair of
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Table 6.3: The pair of micropolar elastic constants (κ̂, γ̂) in the four selected micropolar

gyrobeam models.

Gyrobeam Model Pair of Micropolar Constants (κ̂, γ̂)

Micropolar Gyrobeam Model 1 (MGM1) (102, 10−10)

Micropolar Gyrobeam Model 2 (MGM2) (102, 10−4)

Micropolar Gyrobeam Model 3 (MGM3) (10−4, 10−10)

Micropolar Gyrobeam Model 4 (MGM4) (10−1, 10−7)

micropolar elastic constants (κ̂, γ̂) for these specific micropolar beam models are given in

Table 6.3. The rest of the parameters in these models are as those given in Table 6.1 and

the FEM parameters of the models are as those given in Table 6.2.

Recall that 3D classical and micropolar gyrobeams have four modes of deformation, i.e.

longitudinal displacement along the cx̂1 axis, torsional rotation about the cx̂1 axis, bending

deformation in the cx̂1
cx̂2 plane, and bending deformation in the cx̂1

cx̂3 plane; in the

presence of gyricity terms the torsional and bending deformation modes may be coupled

together. Out of these four deformation modes only those affected by the gyricity will be

taken into account for analysis and comparison of the classical and micropolar gyrobeams.

The examples presented in this chapter are similar to those given in Chapter 5 and to

avoid unnecessary lengthening of this document the figures of Chapter 5, unless indispens-

able, will not be repeated here. Thus, to compare the results of the micropolar gyrobeam

model with those obtained from the classical (i.e. Timoshenko) gyrobeam model, the read-

ers may have to frequently return to Chapter 5 and revisit the figures provided in there.

6.2 Uniform axial gyricity

As the first attempt to compare the classical and micropolar gyrobeam models carrying

a uniform axial gyricity distribution, their first three gyricity-affected relative natural fre-

quencies are plotted in Figures 6.1–6.9. In these figures which are analogous to the natural
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frequency plots provided in Appendix C, three slenderness ratios or thicknesses (i.e. thick,

medium, and thin) and three axial gyricity values (i.e. small, medium, and large) are con-

sidered to illustrate the gyrobeams’ relative gyricity-affected natural frequencies (i.e. the

classical gyrobeam’s gyricity-affected natural frequency divided by the same-rank microp-

olar gyrobeam’s gyricity-affected natural frequency) vs. the micropolar elastic constants

κ̂ and γ̂ . The figures have log-log-percentage scales and for each slenderness ratio a 2D

contour plot and a 3D surface plot are provided; the 3D plot is obtained by looking at the

2D plot from a point over the 2D plot’s upper right corner.

In Figures 6.1–6.9, first of all note that the strange noisy behavior of the natural

frequency surface, observable in some plots in the region with very small κ̂ and very large

γ̂ (i.e. in the lower right corner of the 2D plots), is due to the ill-conditionedness of the

micropolar gyrobeam’s FEM stiffness matrix (see Figure C.21 and its related explanation

in Appendix C). Then, one may notice the singular behavior of the micropolar gyrobeam

model with small values of κ̂, appearing as abrupt jumps in the depicted natural frequency

surfaces, which compared to the singular behavior of the micropolar elastic beam model

(without gyricity) shown in Appendix C are more pronounced. Note that whereas for the

first natural frequency the singular behavior appears as a surface jump to a very large

value, for higher natural frequencies it shows up as a step to a (not very) larger or even

smaller value. As explained in Appendix C, the inclusion of the decoupled micropolar

vibration modes (with small natural frequencies) in the considered lower vibration modes

and subsequently comparing the (same-rank but) non-corresponding natural frequencies of

classical and micropolar gyrobeams is the source of these observed steps.

A comparison between the plots given in each of Figures 6.1–6.9 (i.e. a comparison

between the plots corresponding to different slenderness ratios) reveals that the flat plateau

of the natural frequency surfaces, corresponding to the upper right corner of 2D plots where

classical and micropolar gyrobeam models are expected to coincide, changes its shape (or

orientation) as the gyrobeam’s thickness varies. Indeed, as the micropolar gyrobeam gets

thinner the increasing size effects cause the plateau’s width in the 2D plots to become

smaller while the strengthening coupling effects and decreasing gyricity effects cause its

height to become larger. As a result the shape of the flat plateau, in the 2D plots, changes

from a horizontal rectangle for a thick gyrobeam to a vertical rectangle for a thin gyrobeam.
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This is more clear in the plots corresponding to a small gyricity value, i.e. Figures 6.1–6.3,

since the interfering singular behavior of the micropolar gyrobeam model with small κ̂ is

less significant at smaller gyricity values.

Comparing the corresponding plots of different natural frequencies (different vibration

modes) one can in general conclude that the gyricity effects are more significant on higher

natural frequencies. Consequently, the singular behavior of the micropolar gyrobeam mod-

els with small κ̂ is more apparent (as it occurs in a larger region) at higher vibration modes.

At the same time, the region where the classical and micropolar gyrobeam models are in

agreement, i.e. the flat plateau in the 3D plots or the rectangle in the upper right corner

of the 2D plots, reduces in size. As it is explained in Appendix C, whereas the size effects

(represented by γ ) are almost the same on different vibration modes, the coupling effects

(illustrated by κ̂) are slightly more evident at lower vibration modes. These behaviors are,

however, slightly influenced by the gyricity terms in a micropolar gyrobeam.

The effect of increasing the gyricity value in Figures 6.1–6.9 is to shrink or even com-

pletely remove the flat plateau of agreement between the classical and micropolar gyrobeam

models (in the upper left corner of the 2D plots). Overall, the addition of gyricity effects

results in more apparent differences between the classical and micropolar beam models.

At the end, for micropolar gyrobeams with a zero microinertia, one can obtain the

same results and behaviors as those shown in Figures 6.1–6.9. This holds true even when

comparing the results of very slender micropolar gyrobeams (with R̂3 = 250) in which

the ratio of body microinertia to gyros rotational inertia differs from 1
4

(corresponding to

ı̂V = 10−6 ) to zero (corresponding to ı̂V = 0). It is interesting that for small κ̂ the same

singularity behavior, as that observed in the nonzero-microinertia case, can be seen in the

zero-microinertia case; this is a result of the inclusion of gyricity terms. Note that for

micropolar elastic beams carrying no gyricity, due to the sorting of the natural frequencies,

the singularity of the model with small κ̂ is concealed in the zero-microinertia case (refer

to Appendix C for a detailed explanation).
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Figure 6.1: Relative 1st natural frequency (ω̂(1))cl/(ω̂
(1))mp of micropolar gyrobeams with a

small uniform axial gyricity vs. micropolar elastic constants.
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Figure 6.2: Relative 2nd natural frequency (ω̂(2))cl/(ω̂
(2))mp of micropolar gyrobeams with

a small uniform axial gyricity vs. micropolar elastic constants.
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Figure 6.3: Relative 3rd natural frequency (ω̂(3))cl/(ω̂
(3))mp of micropolar gyrobeams with a

small uniform axial gyricity vs. micropolar elastic constants.
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Figure 6.4: Relative 1st natural frequency (ω̂(1))cl/(ω̂
(1))mp of micropolar gyrobeams with a

medium uniform axial gyricity vs. micropolar elastic constants.
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Figure 6.5: Relative 2nd natural frequency (ω̂(2))cl/(ω̂
(2))mp of micropolar gyrobeams with

a medium uniform axial gyricity vs. micropolar elastic constants.

163



00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

30

30
50

50
70

70

90

90

110

110

110

ı̂V = 10−6, ϕ̊3

1
2

T = 30.00, R̂3 = 10

log(γ̂)

lo
g
(κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

ı̂V = 10−6, ϕ̊3

1
2

T = 30.00, R̂3 = 10

log(κ̂)

(ω̂
(3
) )
cl
/(
ω̂

(3
) )
m
p
×

10
0

00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

10

1030
3050
5070 70

90

90 90

110 110

110

ı̂V = 10−6, ϕ̊3

1
2

T = 30.00, R̂3 = 50

log(γ̂)

lo
g(
κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

ı̂V = 10−6, ϕ̊3

1
2

T = 30.00, R̂3 = 50

log(κ̂)

(ω̂
(3
) )
cl
/
(ω̂

(3
) )
m
p
×

1
00

00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2
10

10 10

30

30 30

50

50 50

70

70 70

90

90

90 90
110

110 110

ı̂V = 10−6, ϕ̊3

1
2

T = 30.00, R̂3 = 250

log(γ̂)

lo
g
(κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

ı̂V = 10−6, ϕ̊3

1
2

T = 30.00, R̂3 = 250

log(κ̂)

(ω̂
(3
) )
cl
/
(ω̂

(3
) )
m
p
×

1
00

Figure 6.6: Relative 3rd natural frequency (ω̂(3))cl/(ω̂
(3))mp of micropolar gyrobeams with a

medium uniform axial gyricity vs. micropolar elastic constants.
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Figure 6.7: Relative 1st natural frequency (ω̂(1))cl/(ω̂
(1))mp of micropolar gyrobeams with a

large uniform axial gyricity vs. micropolar elastic constants.
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Figure 6.8: Relative 2nd natural frequency (ω̂(2))cl/(ω̂
(2))mp of micropolar gyrobeams with

a large uniform axial gyricity vs. micropolar elastic constants.
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Figure 6.9: Relative 3rd natural frequency (ω̂(3))cl/(ω̂
(3))mp of micropolar gyrobeams with a

large uniform axial gyricity vs. micropolar elastic constants.

167



It is also interesting to observe how the natural frequency loci and mode shapes in

the micropolar gyrobeam model differ from those associated with the classical gyrobeam

model. However, carrying out such an examination for the whole considered range of

micropolar elastic constants κ̂ and γ̂ (i.e. continuous sweeping of the range [10−10, 102] for

each constant) is impractical. In this text, out of the infinite number of possible choices,

only four discrete combinations of micropolar elastic constants κ̂ and γ̂, as summarized in

Table 6.3, are selected and used to study the natural frequencies and mode shapes of the

general micropolar gyrobeam model.

The first specific micropolar gyrobeam model ((κ̂, γ̂) = (102, 10−10)) is selected as it is

the closest match with the classical gyrobeam model. Note that, as shown in Appendix C,

considering elastic beams with no gyricity the results of this model coincide with the classi-

cal model’s results. The second specific micropolar gyrobeam model ((κ̂, γ̂) = (102, 10−4))

can reflect the the effect of changing γ̂ on the natural frequency loci and mode shapes in the

micropolar gyrobeam model (through the comparison with the first selected micropolar gy-

robeam model). The third specific micropolar gyrobeam model ((κ̂, γ̂) = (10−4, 10−10)) can

be used to study how changing κ̂ affects the natural frequency loci and mode shapes in the

micropolar gyrobeam model (again if compared with the first selected micropolar gyrobeam

model). Finally, the fourth specific micropolar gyrobeam model ((κ̂, γ̂) = (10−1, 10−7)) can

be regarded as a transition model when transforming from the first specific model to either

the second or the third specific model. It is worth mentioning that insignificant differ-

ences can be seen between the results obtained from this fourth model and the results of

a micropolar gyrobeam model with (κ̂, γ̂) = (102, 10−7) or (κ̂, γ̂) = (10−1, 10−10).

Considering these four micropolar gyrobeam models (summarized in Table 6.3) the

variations of their first 25 gyricity-affected natural frequencies with the variation of the

total axial gyricity are depicted in the following figures. For each considered micropolar

gyrobeam model, the natural frequency loci are plotted at three different values of slender-

ness ratio giving rise to three natural frequency figures. These three figures are followed

by three mode shape figures, illustrating the first six gyricity-affected mode shapes of the

medium-thickness micropolar gyrobeam model at three gyriciy values (i.e. small, medium,

and large). An explanation of the results shown in the following figures, i.e. Figures 6.10–

6.36, is reserved for after each set of figures for a specific micropolar gyrobeam model.
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gyricity – Micropolar gyrobeam model 1.
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gyricity – Micropolar gyrobeam model 1.
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Figure 6.12: Natural frequencies of a thin micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 1.
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Figure 6.13: Mode shapes of a medium micropolar gyrobeam with a small uniform axial

gyricity – Micropolar gyrobeam model 1.
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Figure 6.14: Mode shapes of a medium micropolar gyrobeam with a medium uniform axial

gyricity – Micropolar gyrobeam model 1.
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Figure 6.15: Mode shapes of a medium micropolar gyrobeam with a large uniform axial

gyricity – Micropolar gyrobeam model 1.
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The natural frequency loci and mode shapes of the first specific micropolar gyrobeam

model are shown in Figures 6.10–6.15. Whereas the natural frequencies depicted in Fig-

ures 6.10, 6.11, and 6.12 are expected to be comparable to the corresponding results of the

classical gyrobeam model, respectively given in Figures 5.5, 5.6, and 5.7, one may observe

that this is only true for the very thin gyrobeams with R̂3 = 250. The natural frequency

loci of the classical and micropolar gyrobeams with large and medium thicknesses (i.e.

with R̂3 = 10 and R̂3 = 50), except for a few lower natural frequencies, have significant

differences in general.

This is not a surprise because, as mentioned previously, the rotational inertia of the

gyros is assumed to be proportional to the beam thickness and consequently thicker gy-

robeams carry a larger gyricity compared to the thinner gyrobeams. Recall that a larger

gyricity results in a bigger difference between the classical and micropolar gyrobeams spe-

cially when considering the higher natural frequencies. The weaker coupling effects in the

thicker micropolar gyrobeams is another reason why their natural frequency loci deviate

from the classical gyrobeams natural frequency loci.

It is interesting to observe that the natural frequencies of this micropolar gyrobeam

model drop more quickly as the gyricity increases. This is opposite of what one may

expect by just considering the size effects phenomenon (explained in Appendix A) which

predicts a higher stiffness in a micropolar continuum compared to a classical one.

Finally, one may notice no significant differences between the mode shapes of the first

micropolar gyrobeam model at medium thickness, shown in Figures 6.13, 6.14, and 6.15,

and the corresponding mode shapes of the classical gyrobeam model, given in Figures 5.11,

5.12, and 5.13. The only exception is the last mode shape shown in Figure 6.15 which

significantly deviates from the last mode shape in Figure 5.13. This disagreement is due

to a curve veering point on the sixth natural frequency locus at around
◦
ϕ3

1
2
T = 50 which is

located differently in the two models (whereas in the classical gyrobeam model it occurs

before
◦
ϕ3

1
2
T = 50, in the first micropolar gyrobeam model it occurs after

◦
ϕ3

1
2
T = 50).
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Figure 6.16: Natural frequencies of a thick micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 2.
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Figure 6.17: Natural frequencies of a medium micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 2.

177



00.51
  

d a ta 1

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

ϕ̊3

1
2

T

(R̂3 ω̂)
1
2

Micropolar Gyrobeam Model; ı̂ V = 10−6, κ̂ = 102, γ̂ = 10−4

R̂3 = 250

 

 
ω̂l

ω̂t
ω̂b

Figure 6.18: Natural frequencies of a thin micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 2.
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Figure 6.19: Mode shapes of a medium micropolar gyrobeam with a small uniform axial

gyricity – Micropolar gyrobeam model 2.
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Figure 6.20: Mode shapes of a medium micropolar gyrobeam with a medium uniform axial

gyricity – Micropolar gyrobeam model 2.
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Figure 6.21: Mode shapes of a medium micropolar gyrobeam with a large uniform axial

gyricity – Micropolar gyrobeam model 2.
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Comparing the natural frequency loci and mode shapes of the second specific micropolar

gyrobeam model, given in Figures 6.16–6.21, with those of the first micropolar gyrobeam

model reveals the effect of increasing the micropolar elastic constant γ̂ in the micropolar

gyrobeam model. By looking at the natural frequency loci in Figures 6.16, 6.17, and 6.18

and comparing them with Figures 6.10, 6.11, and 6.12, one may expectantly note that

in a micropolar gyrobeam model with a large enough value for κ̂ (which is the case in

here), a larger value for γ̂ results in a higher stiffness and consequently higher natural

frequencies. As suggested by the size effects phenomenon this is more pronounced in the

thinnest micropolar gyrobeam. Considering Figures 6.12 and 6.18, it is interesting how

the increase of γ̂ can eliminate, or move to very high values of gyricity, most of the curve

veering points.

For the gyrobeams with medium thickness, however, the differences between the mode

shapes of the second micropolar gyrobeam model, shown in Figures 6.19, 6.20, and 6.21,

and those of the first micropolar gyrobeam model are not significant. The only exception is

the last mode shape shown in Figure 6.21 which due to a different curve veering of the sixth

natural frequency locus is noticeably different than the last mode shape in Figure 6.15.
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Figure 6.22: Natural frequencies of a thick micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 3.
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Figure 6.23: Natural frequencies of a medium micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 3.
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Figure 6.24: Natural frequencies of a thin micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 3.
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Figure 6.25: Mode shapes of a medium micropolar gyrobeam with a small uniform axial

gyricity – Micropolar gyrobeam model 3.
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Figure 6.26: Mode shapes of a medium micropolar gyrobeam with a medium uniform axial

gyricity – Micropolar gyrobeam model 3.
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Figure 6.27: Mode shapes of a medium micropolar gyrobeam with a large uniform axial

gyricity – Micropolar gyrobeam model 3.
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Figure 6.28: Mode shapes of a medium micropolar gyrobeam with a small uniform axial

gyricity – Micropolar gyrobeam model 3.
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Figure 6.29: Mode shapes of a medium micropolar gyrobeam with a medium uniform axial

gyricity – Micropolar gyrobeam model 3.
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Figure 6.30: Mode shapes of a medium micropolar gyrobeam with a large uniform axial

gyricity – Micropolar gyrobeam model 3.
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The natural frequency loci and mode shapes of the third specific micropolar gyrobeam

model are shown in Figures 6.22–6.30. These figures can be used to study the effect of

decreasing the micropolar elastic constant κ̂ in the micropolar gyrobeam model. One may

notice from the natural frequency loci plots shown in Figures 6.22, 6.23, and 6.24 that

the third micropolar gorobeam model with κ̂ = 10−4 is close to being singular. Being

more precise, for the thick and medium gyrobeams all the (first 25) natural frequency

loci coincide and appear as a single curve (specially as the gyricity value increases) which

indicates very small natural frequencies for the third micropolar gyrobeam model compared

to the natural frequencies of the first gyrobeam model. This behavior is improved in the

thinnest gyrobeam since (as noted in Appendix C) the coupling effects in a micropolar

beam become stronger as the beam gets thinner.

In the natural frequency loci of the thinnest gyrobeam, given by Figure 6.24, it is

interesting how the natural frequencies of the third micropolar gyrobeam model, which are

initially equal to the natural frequencies of the first micropolar gyrobeam model, suddenly

drop and the initially nonsingular micropolar gyrobeam model shows a singularity at higher

gyricity values. Also note how the higher natural frequency curves gather as a single curve

as the gyricity increases.

For this third micropolar gyrobeam model, due to the decoupling between the micro-

rotations and the classical DOFs, in addition to the (classical) displacements it is essential

to include the (micropolar) microrotations in the mode shape plots. The classical or dis-

placement portions of the mode shapes for this micropolar gyrobeam model are depicted in

Figures 6.25, 6.26, and 6.27, and the micropolar or microrotation portions are illustrated

in Figures 6.28, 6.29, and 6.30.

Since the microrotations are decoupled from the displacements and the gyricity terms

are directly affecting the microrotations, it is not a surprise that the displacement portions

are mostly negligible compared to the micrortation portions and the mode shapes (except

the first one) are pure micropolar modes. The coupling between the classical and micropolar

DOFs is however strong enough to force these micrortation portions to follow the BCs of

the classically cantilevered gyrobeam. Finally, one may notice that, at all the three gyricity

values, all the mode shapes precess (or rotate) with a sense opposite to that of the gyricity.
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Figure 6.31: Natural frequencies of a thick micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 4.
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Figure 6.32: Natural frequencies of a medium micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 4.
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Figure 6.33: Natural frequencies of a thin micropolar gyrobeam with a uniform axial

gyricity – Micropolar gyrobeam model 4.
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Figure 6.34: Mode shapes of a medium micropolar gyrobeam with a small uniform axial

gyricity – Micropolar gyrobeam model 4.
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Figure 6.35: Mode shapes of a medium micropolar gyrobeam with a medium uniform axial

gyricity – Micropolar gyrobeam model 4.
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Figure 6.36: Mode shapes of a medium micropolar gyrobeam with a large uniform axial

gyricity – Micropolar gyrobeam model 4.
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The natural frequency loci and mode shapes shown in Figures 6.31–6.36 correspond

to the fourth specific micropolar gyrobeam model. As noted previously, these figures can

also qualitatively represent the results which one may obtain from a micropolar gyrobeam

model with (κ̂, γ̂) = (102, 10−7) or (κ̂, γ̂) = (10−1, 10−10). Overall, by comparing the natural

frequency loci of this fourth micropolar gyrobeam model, shown in Figures 6.31, 6.32, and

6.33, with those of the first three micropolar gyrobeam models one can conclude that the

effect of decreasing κ̂ (in general resulting in lower natural frequencies) is more dominant

than the effect of increasing γ̂ (in general resulting in higher natural frequencies). Specially

one may observe how the higher natural frequency curves of a thick gyrobeam are gathered

as shown in Figure 6.31 which indicate the closeness of this micropolar gyrobeam model

to being singular.

Finally, as shown in Figures 6.34, 6.35, and 6.36 for gyrobeams with medium thickness

one may notice no significant differences between the mode shapes of this micropolar

gyrobeam model and those corresponding to the first micropolar gyrobeam model.

6.3 Uniform transverse gyricity

Similar to the axial gyricity case, the comparison between classical and micropolar gy-

robeams with a uniform transverse gyricity starts with drawing the first three gyricity-

affected relative (classical to micropolar) gyrobeams’ natural frequencies which are shown

in Figures 6.37–6.45. Again, three slenderness ratios and three transverse gyricity values

are taken into account to draw the natural frequency surfaces vs. the micropolar elastic

constants κ̂ and γ̂. The scales in the figures are log-log-percentage and for each slenderness

ratio a 2D contour plot and a 3D surface plot are provided.

Unsurprisingly, the same behaviors as those observed in the previous section for the

axial gyricity case, can be seen in Figures 6.37–6.45 corresponding to the uniform transverse

gyricity case which are summarized as follows.

The source of the noisy behavior of the natural frequency surfaces for very small κ̂

and very large γ̂ , seen in some of the plots, is the ill-conditionedness of the micropolar

gyrobeam’s FEM stiffness matrix (see Figure C.21).
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The singularity of the micropolar gyrobeam model with small κ̂ is observable as abrupt

jumps of the natural frequency surfaces (to very large values) which are more severe when

compared to those corresponding to the natural frequency surfaces of micropolar elastic

beams with no gyricity illustrated in Appendix C.

In each of Figures 6.37–6.45, increasing the gyrobeam slenderness ratio changes the

shape of the plateau of agreement between the classical and micropolar gyrobeams, in the

upper right corner of the 2D plots, from a horizontal rectangle for a thick gyrobeam to a

vertical rectangle for a thin gyrobeam.

For different vibration modes, the gyricity effect on higher natural frequencies is more

noteworthy. Consequently, in higher vibration modes the region where the micropolar gy-

robeams show singular behaviors is larger and the region where the classical and micropolar

gyrobeam models are in agreement is smaller. As noted in Appendix C, for micropolar

elastic beams, the size effects are almost the same on different vibration modes and the

coupling effects are slightly more evident at lower vibration modes; the same behaviors

with minor influences from the gyricity terms can be observed for micropolar gyrobeams.

Again, the effect of increasing the gyricity value in Figures 6.37–6.45 is to embolden

the differences between the classical and micropolar beam models and accordingly shrink

or even completely remove the plateau of agreement between the classical and micropolar

gyrobeam models in the natural frequency surfaces.

Finally, the same results and behaviors (including the singularities of the micropolar

gyrobeam model with a small κ̂), as those shown in Figures 6.37–6.45 corresponding to

a small microinertia case, are expected to be seen for micropolar gyrobeams with a zero

microinertia (while the ratio of body microinertia to gyros rotational inertia may differ by

up to 25 percent).
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Figure 6.37: Relative 1st natural frequency (ω̂(1))cl/(ω̂
(1))mp of micropolar gyrobeams with

a small uniform transverse gyricity vs. micropolar elastic constants.
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Figure 6.38: Relative 2nd natural frequency (ω̂(2))cl/(ω̂
(2))mp of micropolar gyrobeams with

a small uniform transverse gyricity vs. micropolar elastic constants.
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Figure 6.39: Relative 3rd natural frequency (ω̂(3))cl/(ω̂
(3))mp of micropolar gyrobeams with

a small uniform transverse gyricity vs. micropolar elastic constants.
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Figure 6.40: Relative 1st natural frequency (ω̂(1))cl/(ω̂
(1))mp of micropolar gyrobeams with

a medium uniform transverse gyricity vs. micropolar elastic constants.
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Figure 6.41: Relative 2nd natural frequency (ω̂(2))cl/(ω̂
(2))mp of micropolar gyrobeams with

a medium uniform transverse gyricity vs. micropolar elastic constants.
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Figure 6.42: Relative 3rd natural frequency (ω̂(3))cl/(ω̂
(3))mp of micropolar gyrobeams with

a medium uniform transverse gyricity vs. micropolar elastic constants.
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Figure 6.43: Relative 1st natural frequency (ω̂(1))cl/(ω̂
(1))mp of micropolar gyrobeams with

a large uniform transverse gyricity vs. micropolar elastic constants.
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Figure 6.44: Relative 2nd natural frequency (ω̂(2))cl/(ω̂
(2))mp of micropolar gyrobeams with

a large uniform transverse gyricity vs. micropolar elastic constants.
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Figure 6.45: Relative 3rd natural frequency (ω̂(3))cl/(ω̂
(3))mp of micropolar gyrobeams with

a large uniform transverse gyricity vs. micropolar elastic constants.
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Analogous to the axial gyricity case, it is also appealing to observe how the natural

frequency loci and mode shapes in the micropolar gyrobeam model with a transverse

gyricity distribution differ from those associated with the classical gyrobeam model. Again

this is done by considering just the four specific micropolar gyrobeam model summarized

in Table 6.3. Recall that the first model is selected as a close match to the classical model,

the second and third models are selected to respectively study the effects of the micropolar

elastic constants γ̂ and κ̂ , and the fourth model can be regarded as a transition model

when toggling between the first three models.

For these four specific micropolar gyrobeam models, the variations of the first 25

gyricity-affected natural frequencies with the variation of the total transverse gyricity and

also the first six gyricity-affected mode shapes are shown in Figures 6.46–6.72. The nat-

ural frequency loci are plotted at three different values of slenderness ratio and the mode

shapes are drawn for the medium-thickness micropolar gyrobeam at three gyriciy values.

The results of each specific micropolar gyrobeam model are explained briefly before the

set of figures for that specific model.

From the results shown in Figures 6.46–6.51 one can conclude that the differences

between the first micropolar gyrobeam model and the classical gyrobeam model is more

significant when the gyricity is transverse.

In Figures 6.46, 6.47, and 6.48 it is interesting that the curve veering between the

natural frequency loci are eliminated or smoothed in the first micropolar gyrobeam model

(compared to the curve veering observed in the classical gyrobeam model).

In Figures 6.49, 6.50, and 6.51 one may notice that the differences between the mode

shapes of the first micropolar gyrobeam model and those of the classical gyrobeam model

are insignificant. There are only the last two mode shapes in Figure 6.50 which look

different than the classical ones. This is since their corresponding natural frequency curves

shown in Figure 6.47 experience a different curve veering before the
◦
ϕ3

1
2
T = 30 point than

do the corresponding classical curves shown in Figure 5.21.
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gyricity – Micropolar gyrobeam model 1.
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Figure 6.47: Natural frequencies of a medium micropolar gyrobeam with a uniform trans-

verse gyricity – Micropolar gyrobeam model 1.
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Figure 6.48: Natural frequencies of a thin micropolar gyrobeam with a uniform transverse

gyricity – Micropolar gyrobeam model 1.
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Figure 6.49: Mode shapes of a medium micropolar gyrobeam with a small uniform trans-

verse gyricity – Micropolar gyrobeam model 1.
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Figure 6.50: Mode shapes of a medium micropolar gyrobeam with a medium uniform

transverse gyricity – Micropolar gyrobeam model 1.
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Figure 6.51: Mode shapes of a medium micropolar gyrobeam with a large uniform trans-

verse gyricity – Micropolar gyrobeam model 1.

216



As expected the natural frequencies of the second specific micropolar gyrobeam model

shown in Figures 6.52, 6.53, and 6.54 are generally higher than those of the first micropolar

gyrobeam model and this is more pronounced in the thinnest gyrobeam. Specially, it is

interesting how all the curve veering points are eliminated in Figure 6.54.

Considering the mode shapes of the second micropolar gyrobeam model depicted in

Figures 6.55, 6.56, and 6.57 one may see no significant differences between them and those

of the first micropolar gyrobeam model. The only exception is the last mode shape shown in

Figure 6.56 which looks slightly different than the last mode shape in Figure 6.50. This can

be again due to different curve veering history of the corresponding natural frequency loci

in the two models (compare the sixth locus in Figure 6.53 to the sixth locus in Figure 6.47).
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Figure 6.52: Natural frequencies of a thick micropolar gyrobeam with a uniform transverse

gyricity – Micropolar gyrobeam model 2.
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Figure 6.53: Natural frequencies of a medium micropolar gyrobeam with a uniform trans-

verse gyricity – Micropolar gyrobeam model 2.
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Figure 6.54: Natural frequencies of a thin micropolar gyrobeam with a uniform transverse

gyricity – Micropolar gyrobeam model 2.
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Figure 6.55: Mode shapes of a medium micropolar gyrobeam with a small uniform trans-

verse gyricity – Micropolar gyrobeam model 2.
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Figure 6.56: Mode shapes of a medium micropolar gyrobeam with a medium uniform

transverse gyricity – Micropolar gyrobeam model 2.
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Figure 6.57: Mode shapes of a medium micropolar gyrobeam with a large uniform trans-

verse gyricity – Micropolar gyrobeam model 2.
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Again the singularity of the third specific micropolar gyrobeam model is obvious by

looking at its natural frequencies and mode shapes shown in Figures 6.58–6.66.

The natural frequencies of the third micropolar gyrobeam model are much lower than

those of the first micropolar gyrobeam model. In the natural frequency plots, i.e. in

Figures 6.58, 6.59, and 6.60, the natural frequency loci gather together as a single curve

which drops to lower values as the gyricity increases. Note that the singularity of this third

model in the thinnest gyrobeam is not however visible at very low gyricity values.

Again for this micropolar gyrobeam model it is essential to draw the micropolar portions

(i.e. the bending and torsional microrotations) of the mode shapes in addition to their

classical portions (i.e. the bending displacement and torsional plane rotation). The classical

and micropolar portions of the first six gyricity-affected mod shapes for a medium thickness

gyrobeam are illustrated in Figures 6.61, 6.62, and 6.63 and Figures 6.64, 6.65, and 6.66

respectively.

One may note that analogous to the axial gyricity case the classical portions are mostly

negligible compared to the micropolar portions and the mode shapes (except the first one)

are pure micropolar modes. However, this time the coupling between the classical and

micropolar DOFs is not strong enough to enforce the BCs of the classically cantilevered

gyrobeam to the micrortation portions of the mode shapes. Interestingly in Figures 6.64,

6.65, and 6.66 the microrotations at the clamped end of the beam (beam’s left end) are

nonzero and even may become larger than the microrotations at the clamped end.
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Figure 6.58: Natural frequencies of a thick micropolar gyrobeam with a uniform transverse

gyricity – Micropolar gyrobeam model 3.
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Figure 6.59: Natural frequencies of a medium micropolar gyrobeam with a uniform trans-

verse gyricity – Micropolar gyrobeam model 3.
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Figure 6.60: Natural frequencies of a thin micropolar gyrobeam with a uniform transverse

gyricity – Micropolar gyrobeam model 3.
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Figure 6.61: Mode shapes of a medium micropolar gyrobeam with a small uniform trans-

verse gyricity – Micropolar gyrobeam model 3.
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Figure 6.62: Mode shapes of a medium micropolar gyrobeam with a medium uniform

transverse gyricity – Micropolar gyrobeam model 3.
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Figure 6.63: Mode shapes of a medium micropolar gyrobeam with a large uniform trans-

verse gyricity – Micropolar gyrobeam model 3.
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Figure 6.64: Mode shapes of a medium micropolar gyrobeam with a small uniform trans-

verse gyricity – Micropolar gyrobeam model 3.

231



00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-3.2

0

3.2

-3.2

0

3.2

ϑ̄3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 10−4, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (1) = 0.00

ϑ̄1

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ϑ̄3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 10−4, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (2) = 0.00

ϑ̄1

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ϑ̄3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 10−4, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (3) = 0.00

ϑ̄1

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ϑ̄3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 10−4, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (4) = 0.00

ϑ̄1

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ϑ̄3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 10−4, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (5) = 0.00

ϑ̄1

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ϑ̄3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 10−4, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (6) = 0.00

ϑ̄1

Figure 6.65: Mode shapes of a medium micropolar gyrobeam with a medium uniform

transverse gyricity – Micropolar gyrobeam model 3.
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Figure 6.66: Mode shapes of a medium micropolar gyrobeam with a large uniform trans-

verse gyricity – Micropolar gyrobeam model 3.
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The natural frequency loci and mode shapes of the fourth specific micropolar gyrobeam

model are shown in Figures 6.67–6.72. Overall, one can conclude that the effect of decreas-

ing κ̂ (in general resulting in lower natural frequencies) overrides the effect of increasing γ̂

(in general resulting in higher natural frequencies).

It is interesting that in this model the curve veering between the natural frequency

loci are more evident compared to the first specific micropolar gyrobeam model (or even

the second and third ones). This can be seen more clearly in Figures 6.67 and 6.68 which

can be compared to Figures 6.46 and 6.47. This is probably the main reason why the

the last mode shapes shown in Figure 6.71 looks different than the last mode shape in

Figure 6.50. The rest of the depicted mode shapes of the fourth micropolar gyrobeam are

however analogous to the mode shapes of the first micropolar gyrobeam model.
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Figure 6.67: Natural frequencies of a thick micropolar gyrobeam with a uniform transverse

gyricity – Micropolar gyrobeam model 4.
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Figure 6.68: Natural frequencies of a medium micropolar gyrobeam with a uniform trans-

verse gyricity – Micropolar gyrobeam model 4.
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Figure 6.69: Natural frequencies of a thin micropolar gyrobeam with a uniform transverse

gyricity – Micropolar gyrobeam model 4.
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Figure 6.70: Mode shapes of a medium micropolar gyrobeam with a small uniform trans-

verse gyricity – Micropolar gyrobeam model 4.
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Figure 6.71: Mode shapes of a medium micropolar gyrobeam with a medium uniform

transverse gyricity – Micropolar gyrobeam model 4.
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Figure 6.72: Mode shapes of a medium micropolar gyrobeam with a large uniform trans-

verse gyricity – Micropolar gyrobeam model 4.
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Chapter 7

Summary and Recommendations

7.1 Introduction

As the final chapter, this chapter presents a summary and reviews the work done. The main

achievements and conclusions of the thesis are addressed. Finally, the recommendations

for future work are reviewed.

7.2 Summary

The equations of motion for classical gyrocontinua without/with damping and considering

small rotation angles for the gyros’ axes were previously derived in the literature. In

this work, the general (or unrestricted) equations of motion for undamped 3D classical

and micropolar gyrocontinua have been derived. The equations are general in the sense

that there has been no restriction on the rotational motion of the gyros. In addition, the

potential energy, kinetic energy, and virtual work expressions for both the classical and the

micropolar gyrocontinua have been obtained.

Gyroelastic beams or gyrobeams as a special case of general gyrocontinua have been

formulated based on the classical and micropolar elastic beam theories. Numerical analy-

sis and comparison of the micropolar and classical gyrobeams have been carried out using
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FEM-based numerical models built in MATLAB®. It has been shown through the nu-

merical examples that there are significant differences between the Timoshenko-based and

Euler-Bernoulli-based classical gyrobeam models specially when the gyrobeam is thicker

and the gyricity distribution is transverse. The numerical examples have also indicated

that the unrestricted classical and micropolar gyrobeam models behave very diversely in a

wide range of micropolar elastic constants even where the classical and micropolar elastic-

ity models (with no gyricity effects) are expected to coincide. A detailed discussion of the

results can be found in Chapters 5 and 6 and also Appendix C.

Overall, the micropolar gyroelastic continuum model with extra coefficients and degrees

of freedom has been proved to be beneficial first, for including the asymmetry of the stress

and strain tensors in the presence of a gyricity distribution and second, for describing the

actual gyroscopic system or structure more comprehensively compared to the previously

derived gyroelastic continuum models.

The thesis outlines as well as the reason(s) for and the outcome(s) of accomplishing

each outlined work are summarized in Tables 7.1 and 7.2.
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Table 7.1: The outlines of the main work done to date and the reason(s) for and the outcome(s) of each.

Main Work Done Reason(s) Outcome(s)

Allowing for unrestricted (non-small)

rotations of gyros’ axes with respect to

the gyrocontinua.

Generalizes the existing restricted

model of classical gyrocontinua where

gyros’ axis is allowed to rotate just

through small angles.

A mathematical continuous model of

unrestricted classical gyrocontinua.

Considering (asymmetric) micropolar

elasticity for modeling the elasticity of

gyrocontinua.

Asymmetric nature of the stress field

inside the continua due to the presence

of gyricity moments.

A mathematical continuous model of

unrestricted micropolar gyrocontinua.

Considering a full 3D Timoshenko

beam (with both torsional and bending

deformations) for modeling classical gy-

robeams.

Allow for the possibility of the occur-

rence of torsion, bending, and cou-

pled torsion-bending deformations in

the presence of a general gyricity dis-

tribution and therefore completing the

existing model of Euler-Bernoulli gy-

robeams with only bending deforma-

tions.

Mathematical model (Dynamic equa-

tions) of 3D classical (Timoshenko) un-

restricted gyrobeams.

Constructing simple micropolar beam

torsion and bending theories.

Lack of such simple theories which can

be used to model a micropolar gy-

robeam.

Mathematical model (Dynamic equa-

tions) of 3D micropolar unrestricted gy-

robeams.

Building an FEM-based numerical sim-

ulation tool capable of solving the dy-

namics of both classical and micropolar

gyrobeams.

Discretization of the continuous dy-

namic equations of gyrobeams (conver-

sion of the continuous dynamic PDEs

into a simpler-to-solve semi-discrete

system of ODEs).

Semi-discrete dynamic equations in

terms of FEM stiffness, mass, gyricity,

circulatory, generalized moment, and

generalized force matrices.

Continued on next page . . .
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Table 7.1: (continued)

Main Work Done Reason(s) Outcome(s)

Numerical examples.

Comparison between classical and mi-

cropolar beams (carrying no gyros) and

comparison between classical and mi-

cropolar gyrobeams.

Figures illustrating the differences be-

tween classical and micropolar gy-

robeams, importance of shear and tor-

sion deformations inclusion, and the

significant effect of the gyros mounting

system stiffness which can be modeled

as micropolar coupling constant κ in a

micropolar gyrobeam.

Table 7.2: The outlines of the side work done to date and the reason(s) for and the outcome(s) of each.

Side Work Done Reason(s) Outcome(s)

A correct step-by-step simplification of

micropolar elasticity to couple-stress

theory and classical elasticity theory.

Finding the correct range for microp-

olar elastic constants when comparing

with classical elasticity as there were

numerous flawed works on this subject.

Correct values of micropolar elastic

constants for reduction of micropolar

elasticity to classical elasticity.

Presenting the correct approximation of

microrotations in problems containing

small rotations.

To be used for modeling the elastic con-

tinua microrotations as there were a few

imperfect works with improper approx-

imation of microrotations.

A correct first-order approximation of

continua microrotations when deriving

the dynamic equations by applying the

calculus of variations on the system La-

grangian.

244



7.3 Future work

Whereas developing and analyzing more comprehensive gyrobeam models, as usual, come

out as the first emerging recommendation for future work, there are plenty of possibilities

which one can pursue using the herein developed micropolar gyrobeam models. These

possibilities can be summarized as:

� Derivation of modal identities in the same way as suggested in [2].

� Dynamic analysis, especially energy diversion from one mode into others.

� Dynamic comparison of different gyrobeams in the presence of gyricity-induced damp-

ing.

� Inclusion and study of damping effects (non-gyricity-based dampings).

� Mode shape and natural frequency analysis in vicinity of curve veering points (for

both symmetric and asymmetric beams when considering torsion, bending, and cou-

pled torsion-bending modes).

� Feasibility study of finding analytical solutions for the modal and dynamic analyses.

� Stability analysis.

� Building (i.e. defining, designing, and manufacturing) an experimental setup for real

examination of the gyrobeams behavior, e.g. natural frequencies and mode shapes,

stability, and curve veering.

� Derivation and examination of more advanced classical and micropolar models capa-

ble of undertaking large elastic deformations.

� Examination of gyrobeams with nonuniform gyricity distributions in different direc-

tions.

� Optimization of gyricity distribution shape to achieve desired natural frequency loci

and mode shapes.
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� Full analysis of unconstrained gyrobeams.

Also the more comprehensive gyrobeam models developed in the current thesis can be

used for undertaking studies on the following subjects:

� Equivalent continuum modeling of very large beam-like structures specially those

with regular repetitive lattices and stored angular momentum or gyros distribution.

� Modeling and study of beam-like structures with imperfect mounting mechanisms

for installing the gyros where the mounting mechanisms are non-rigid and have their

own inertia.

� Application of gyros for stabilization/control of very large beam-like structures.

� Optimized placement of gyro actuators in the sense of the best stabilization/shape

control with minimum number of actuators.

� Performance comparison of gyro actuation and piezo (piezoelectric) actuation for

stabilization/control purposes.

� Application feasibility and fabrication of gyrobeams at micro scales.

A very broad aspect of future work can be considered as repeating this thesis studies

(and of course the aforementioned possible future studies) for other simplified cases of

gyrocontinua (e.g. different classical and micropolar gyroplates) or even for the very general

3D gyrocontinua.

Finally, the materials covered in this thesis and those mentioned as future work can

be specialized and used in other fields where an angular momentum device (any rotating

inertia) as gyro is interacting with an elastic structure (a or some flexible bodies) as elastic

continuum. Examples of such systems are helicopters, airplanes (more specifically engine-

mounted airplane wings), and (high-precision) machining tools.
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Appendix A

Theory of Micropolar Elasticity

A.1 Introduction

The linear theory of micropolar elasticity is a generalized form of the couple-stress theory

which itself is an extended form of the classical theory of elasticity [71]. Indeed, Voigt

generalized the classical theory of (asymmetric) elasticity to take into account the effects

of couple stresses and introduced the couple-stress theory (of asymmetric elasticity) [42,43].

Then, the Cosserat brothers extended the Voigt couple-stress theory to their own theory,

i.e. the Cosserat elasticity model, by considering a microrotation field inside the elastic

body which is independent of the body displacement field [42]. The Cosserat theory was

further developed by Eringen via including the body microinertia and was renamed as the

micropolar theory of (asymmetric) elasticity [72]. An extensive description of the linear

theory of micropolar elasticity is presented by Nowacki [42].

In this appendix the linear theory of micropolar elasticity applied to a homogeneous,

isotropic, and centrally symmetric material will be considered. The kinematics (deforma-

tion tensors and compatibility conditions), kinetics (load tensors and balance of momenta),

constitutive relations, equations of motion, and internal energy will be formulated. Then

the inconsistencies in the micropolar theory of elasticity and the resolution of them will be

presented. Finally, the recovery of couple-stress theory and classical elasticity theory from

the micropolar elasticity theory will be addressed.
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A.2 Kinematics

In a micropolar continuum, the (classical) displacement field vector →u is complemented by

a microrotation field vector →ϑ (independent of the displacement field). Consequently, the

translational velocity and acceleration field vectors are →̇u and →̈u, and the angular velocity

and acceleration field vectors are →ϑ̇ and →ϑ̈ (see Appendix B).

The micropolar deformation is fully described by (asymmetric) strain and twist tensors,

↔ε and↔τ , which are defined as:

εij = uj , i − εijk ϑk
τij = ϑj , i

(A.1)

Based on these definitions the following relations can be derived:

ϑi =
1

2
εijk

(
uk,j − εjk

)
τij =

1

2
εjkl

(
ul,ki − εkl, i

)
τii = − 1

2
εijk εjk, i

(A.2)

It is also useful to define the (classical) macrorotation vector →θ and the (classical) macro-

rotation tensor ↔θ
× such that:

θi =
1

2
εijkuk,j

θ×ij = − εijk θk = − 1

2

(
uj , i − ui, j

) (A.3)

Then the strain and twist tensors can be decomposed into their symmetric and anti-

symmetric (skew-symmetric) parts as:

εij = εs

ij + εa

ij

εs

ij =
1

2

(
uj , i + ui, j

)
εa

ij =
1

2

(
uj , i − ui, j

)
− εijkϑk = εijk

(
θk − ϑk

) (A.4)
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and:
τij = τ s

ij + τ a

ij

τ s

ij =
1

2

(
ϑj , i + ϑi, j

)
τ a

ij =
1

2

(
ϑj , i − ϑi, j

) (A.5)

where note that↔ε
a is a representation of the difference between the (classical) macrorotation

and the (micropolar) microrotation.

Finally, the compatibility conditions (necessary conditions for continuity) that elements

of the strain and twist tensors in micropolar elasticity should satisfy are:

εij ,k − εkj , i + εijl τkl − εkjl τil = 0

τij ,k − τkj , i = 0
(A.6)

or equivalently:

εikl

(
εkj , l + εkjm τlm

)
= 0

εikl τkj , l = 0
(A.7)

A.3 Kinetics

In a micropolar continuum, the (classical force) stress field tensor ↔σ is completed by a

(micropolar) couple stress field tensor
↔
χ. For a micropolar elastic body under the action

of a general volume force
→
f V and a general volume moment →m

V the balance of linear and

angular momenta can be written in the following differential form:

σji, j + f Vi = ρV üi

χji, j + εijk σjk +mV

i = ıV ϑ̈i
(A.8)

where ρV is the material mass density (translational inertia per unit volume) and ıV is

the material microinertia density (microrotational inertia per unit volume). Note that a

more general case is when the material has a tensor of microinertia density ↔ı
V , however

this appendix is confined to the isotropic case where↔ı
V = ıV ↔1 [42].
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Analogous to the decomposition of strain and twist tensors, the force and couple stress

tensors can be decomposed into their symmetric and antisymmetric parts as:

σij = σ s

ij + σ a

ij

σ s

ij =
1

2

(
σij + σji

)
σ a

ij =
1

2

(
σij − σji

) (A.9)

and:
χij = χs

ij + χa

ij

χs

ij =
1

2

(
χij + χji

)
χa

ij =
1

2

(
χij − χji

) (A.10)

Utilizing Eq. (A.9) and the fact that for any symmetric second-order tensor ↔d:

εijkdjk = 0 (A.11)

the balance of momenta relations in Eq. (A.8) can be rewritten as:

σ s

ji, j + σ a

ji, j + f Vi = ρV üi

χji, j + εijk σ
a

jk +mV

i = ıV ϑ̈i
(A.12)

Solving the second relation of Eq. (A.12) for the antisymmetric force stress tensor ↔σ
a and

substituting into the first relation of Eq. (A.12) one can rewrite the balance relations as:

σ s

ji, j +
1

2
εijk

(
χlk, lj +mV

k ,j − ıV ϑ̈k,j
)

+ f Vi = ρV üi

εijk

(
χlk, l +mV

k − ıV ϑ̈k
)

= 2σ a

ji

(A.13)

As can be concluded from Eq. (A.12) the antisymmetric part of the force stress tensor, ↔σ
a,

couples the linear and angular momenta balance relations.

A.4 Constitutive relations

The linear theory of micropolar elasticity proposed by Eringen results in a set of two

constitutive relations with six elastic constants for a general homogeneous, isotropic, and
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centrally symmetric elastic body. These relations (relating the force and couple stress

tensors to the strain and twist tensors) have the following form:

σij =
(
µ+ κ

)
εij +

(
µ− κ

)
εji + λ εkk 1ij

χij =
(
γ + β

)
τij +

(
γ − β

)
τji + α τkk 1ij

(A.14)

Among the six elastic constants denoted in Eq. (A.14), µ and λ are the well-known classical

Lamé parameters (µ is also called Lamé shear modulus or briefly shear modulus). The

other four constants, i.e. κ, γ , β , and α, are the new elastic constants usually referred to

as the micropolar or Cosserat elastic constants. The micropolar constants represent the

contribution of the material microstructure to the elastic properties of the body.

By decomposing the strain and twist tensors, as given by Eqs. (A.4) and (A.5), the

constitutive relations in Eq. (A.14) can be rewritten as:

σij = 2µ εs

ij + λ εkk 1ij + 2κ εa

ij

χij = 2 γ τ s

ij + α τkk 1ij + 2 β τ a

ij

(A.15)

Now a similar decomposition for the force and couple stress tensors, as given by Eqs. (A.9)

and (A.10), gives rise to the following relations:

σ s

ij = 2µ εs

ij + λ εkk 1ij, σ a

ij = 2κ εa

ij

χs

ij = 2 γ τ s

ij + α τkk 1ij, χa

ij = 2 β τ a

ij

(A.16)

where the first relation is identical with the constitutive relation of classical elasticity.

Considering the original constitutive relations in Eq. (A.14) and applying the Einstein

summation convention on stress tensors, ↔σ and
↔
χ, it can be shown that:

σkk = 3B εkk, B = λ+
2

3
µ

χkk = 3B τkk, B = α +
2

3
γ

(A.17)

where B is known as the (classical) tensile bulk modulus, and B as dual of the tensile bulk

modulus can be called the (micropolar) tortile or torsional bulk modulus.
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Simplifying the first constitutive relation given by Eq. (A.14) for the simple force stress

state of uniform tension along axis ox1, where the only nonzero element of the force stress

tensor is σ11, results in definitions of the (classical) strain Poisson’s ratio ν and the (classical)

tensile or Young’s modulus E as:

ν = − ε22

ε11

= − ε33

ε11

=
λ

2
(
µ+ λ

)
E =

σ11

ε11

=
µ
(

2µ+ 3λ
)

µ+ λ
= 2µ

(
1 + ν

) (A.18)

Analogously, the second constitutive relation in Eq. (A.14) can be simplified to account

for the simple couple stress state of uniform torsion along axis ox1, where the only nonzero

element of the couple stress tensor is χ11 . Then the (micropolar) twist Poisson’s ratio ξ

and the (micropolar) tortile or torsional modulus E can be defined as:

ξ = − τ22

τ11

= − τ33

τ11

=
α

2
(
γ + α

)
E =

χ11

τ11

=
γ
(

2 γ + 3α
)

γ + α
= 2 γ

(
1 + ξ

) (A.19)

A.5 Equations of motion

Utilizing the constitutive relations in Eq. (A.14) and the definitions of the strain and twist

tensors in Eq. (A.1) to replace the force and couple stresses in the balance of momenta

relations given by Eq. (A.8), the system of PDEs representing the equations of motion for

a micropolar continuum are derived as:(
µ+ κ

)
ui, jj +

(
µ− κ+ λ

)
uj ,ji + 2κ εijk ϑk,j + f Vi = ρV üi(

γ + β
)
ϑi, jj +

(
γ − β + α

)
ϑj ,ji + 2κ

(
εijk uk,j − 2ϑi

)
+mV

i = ıV ϑ̈i
(A.20)

Considering Eqs. (A.12) and (A.13) and substituting from the associated constitutive

equations and the definitions of the strain and twist tensors into them, the following alter-
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native forms for the dynamic equations can be attained respectively:

µui, jj +
(
µ+ λ

)
uj ,ji − 2κ εijk

(
θk,j − ϑk,j

)
+ f Vi = ρV üi(

γ + β
)
ϑi, jj +

(
γ − β + α

)
ϑj ,ji + 4κ

(
θi − ϑi

)
+mV

i = ıV ϑ̈i
(A.21)

and:

µui, jj +
(
µ+ λ

)
uj ,ji +

1

2
εijk

((
γ + β

)
ϑk, llj +mV

k ,j − ıV ϑ̈k,j
)

+ f Vi = ρV üi(
γ + β

)
ϑi, jj +

(
γ − β + α

)
ϑj ,ji +mV

i − ıV ϑ̈i = − 4κ
(
θi − ϑi

) (A.22)

where the relation given by Eq. (A.11) is recalled.

Note that in theories of elasticity the equations of motion are usually written in the

vector form. The vector form of the motion equations given by Eqs. (A.20)–(A.22) are:(
µ+ κ

)(
→∇ · →∇

)
→u+

(
µ− κ+ λ

)
→∇
(
→∇ ·→u

)
+ 2κ ↔∇

× ·→ϑ+
→
f V = ρV →̈u(

γ + β
)(

→∇ · →∇
)
→ϑ+

(
γ − β + α

)
→∇
(
→∇ ·→ϑ

)
+ 2κ ↔∇

× ·→u− 4→ϑ+ →m
V = ıV →ϑ̈

(A.23)

µ
(
→∇ · →∇

)
→u+

(
µ+ λ

)
→∇
(
→∇ ·→u

)
− 2κ ↔∇

× ·
(
→θ −→ϑ

)
+
→
f V = ρV →̈u(

γ + β
)(

→∇ · →∇
)
→ϑ+

(
γ − β + α

)
→∇
(
→∇ ·→ϑ

)
+ 4κ

(
→θ −→ϑ

)
+ →m

V = ıV →ϑ̈
(A.24)

µ
(
→∇ · →∇

)
→u+

(
µ+ λ

)
→∇
(
→∇ ·→u

)
+

1

2 ↔
∇× ·

((
γ + β

)(
→∇ · →∇

)
→ϑ+ →m

V − ıV →ϑ̈
)

+
→
f V = ρV →̈u(

γ + β
)(

→∇ · →∇
)
→ϑ+

(
γ − β + α

)
→∇
(
→∇ ·→ϑ

)
+ →m

V − ıV →ϑ̈ = − 4κ
(
→θ −→ϑ

) (A.25)

where note that for any scalar z :

↔∇
× · →∇z =→0 (A.26)

A.6 Internal energy

In the linear micropolar elasticity theory the strain energy density U V

e is expressed as:

2U V

e = σij εij + χij τij (A.27)
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By decomposing the force stress, couple stress, strain, and twist tensors into their sym-

metric and antisymmetric parts this expression can be rewritten as:

2U V

e = σ s

ij ε
s

ij + σ a

ij ε
a

ij + χs

ij τ
s

ij + χa

ij τ
a

ij (A.28)

Correspondingly substitutions from the constitutive relations in Eqs. (A.14) and (A.16)

into Eqs. (A.27) and (A.28) result in the following strain energy density expressions:

2U V

e =
(
µ+ κ

)
εij εij +

(
µ− κ

)
εji εij + λ εii εjj

+
(
γ + β

)
τij τij +

(
γ − β

)
τji τij + α τii τjj

(A.29)

and:
2U V

e = 2µεs

ij ε
s

ij + λ εii εjj + 2κεa

ij ε
a

ij

+ 2 γ τ s

ij τ
s

ij + α τii τjj + 2 βτ a

ij τ
a

ij

(A.30)

The fact that the strain energy density expression should have a positive definite

quadratic form imposes the following restrictions on the material elastic constants [42]:

µ > 0, κ > 0, 2µ+ 3λ > 0

γ > 0, β > 0, 2 γ + 3α > 0
(A.31)

Note that from a purely physical point of view the strain energy is only non-negative (not

necessarily positive) and, allowing for the possibility of U V

e = 0, the restrictions given in

Eq. (A.31) can weaken to [73,74]:

µ ≥ 0, κ ≥ 0, 2µ+ 3λ ≥ 0

γ ≥ 0, β ≥ 0, 2 γ + 3α ≥ 0
(A.32)

The conditions given in Eq. (A.31) are also invoked to prove the uniqueness of the solution

in a static micropolar elasticity problem [74].

A.7 Experimental investigations

In the context of micropolar elasticity, a great deal of effort has been put into determining

the micropolar properties of materials which can be understood via micropolar elasticity,
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e.g. composite materials, cellular solids, and biological materials [54, 71, 75–78]. Most

of such effort is experimental in nature and is founded on the method of “size effects”

[71, 72, 78–82]. In the method of size effects the analytic solutions obtained for simple

3D micropolar boundary value problems are investigated against the experimental results

for specimens with different sizes to determine the micropolar parameters. Note that the

size effects, expressing that small samples behave more stiffly than would be expected

classically, are taken into account by the micropolar theory of elasticity in a natural way.

These effects are attracting attention in conjunction with micro and nano devices [73].

The classical and micropolar properties measured experimentally for a few materials

(i.e. human bone and three foams) are given in Table A.1 [72,81]. It is noteworthy that in

the literature on micropolar elastic constants the results are frequently illustrated in terms

of the shear modulus, strain Poisson’s ratio, Young’s modulus, and the following technical

constants [81]:

polar ratio: Ψ =
2 γ

2 γ + α

characteristic length for torsion: `2
t =

γ

µ

characteristic length for bending: `2
b =

γ + β

4µ

coupling number: N2 =
κ

µ+ κ

(A.33)

However, in Table A.1 they are translated into the more fundamental elastic constants

appearing in the constitutive relations given in Eq. (A.14) and the supplementary elastic

constants defined by Eqs. (A.17)–(A.19). This translation is done using the following

relations (the shear modulus, strain Poisson’s ratio, and Young’s modulus are retained):

λ =
2 ν

1− 2 ν
µ, κ =

N2

1−N2
µ, B = λ+

2

3
µ

γ = `2
t µ, β = 4 `2

b µ− γ, α = 2
( 1

Ψ
− 1
)
γ

ξ =
α

2
(
γ + α

) , E = 2
(

1 + ξ
)
γ, B = α +

2

3
γ

(A.34)
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Table A.1: Classical and micropolar properties of some materials [72,81].

Property Group/Name
Material

Human Polystyrene Polyurethane Syntactic

Bone Foam Foam Foam

Classical/

Lamé Shear Modulus µ (MPa) 4000 0.6 104 1033

Strain Poisson’s Ratio ν � 0.07 0.44 0.34

Lamé Coefficient λ (MPa) � 0.1 763 2195

Tensile Modulus E (MPa) 12 000 1.3 300 2758

Tensile Bulk Modulus B (MPa) � 0.5 832 2884

Mass Density ρV (kg/m3) 2000 37 340 585

Micropolar/

Cosserat Couple Modulus κ (MPa) 4000 0.06 4.33 115

Cosserat Twist Coefficient γ (N) 194 8.66 40.0 4.36

Cosserat Twist Coefficient β (N) 3046 51.3 5.30 −0.13

Cosserat Twist Coefficient α (N) −129 −5.77 −26.7 −2.91

Twist Poisson’s Ratio ξ −1 −1 −1 −1

Tortile Modulus E (N) 0 0 0 0

Tortile Bulk Modulus B (N) 0 0 0 0

Microinertia Density ıV (kg/m) � � � �

�: Not reported in the reference. �: Not calculable.
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A.8 Discrepancies

Through its development, the micropolar elasticity theory has been represented using dif-

ferent notations; one has to be very careful about the symbols used by different authors

to denote the material elastic constants. It is not too much to say “as often the case,

notation is a nightmare” [83]. Cowin, for example, compared the notations used by some

authors [84]. A similar comparison containing the equivalent notation used in the present

text can be found in Table A.2. In this table, the reader’s attention is directed to the

different representations of the material elastic constants.

Eringen is known as one of the main developers of the Cosserat (micropolar) theory

of elasticity and the person from whom the name “Micropolar Elasticity” has originated.

His derivation of the linear theory of micropolar elasticity [85] is probably one of the most

cited works in the field of linear micropolar elasticity. Therefore, it is not a surprise that

Eringen’s notation, summarized in Table A.2, is also the most popular one used by other

authors on micropolar elasticity.

Despite its popularity, Eringen’s notation, especially his representation of the microp-

olar elastic constants, is not the best one. In effect, it is a misleading notation as it may

result in mistaking Eringen’s symbol µ for the classical Lamé coefficient (shear modulus)

often denoted as µ in the classical theory of elasticity. Actually, this is a common mistake

appearing in many papers that follow Eringen’s notation; a mistake which gives rise to er-

roneous conclusions (to be addressed later in this text). The difference between Eringen’s

symbol µ and the Lamé coefficient µ which can be understood from a study of Eringen’s

preliminary work on linear micropolar elasticity [85] is clarified in Table A.2.

The first erroneous conclusion following Eringen’s notation appears in his own prelim-

inary work on the derivation of the linear micropolar elasticity [85]. As mentioned by

Cowin [86], mistaking his symbol µ for the Lamé shear modulus, Eringen has deduced an

incorrect thermodynamic inequality in [85]. This incorrect inequality further misled some

other authors to incorrectly compare the couple-stress theory and the micropolar elastic-

ity theory as two independent theories (without realizing that the couple-stress theory is

a special case of the micropolar elasticity theory) and also to wrongly remark that the

couple-stress theory contradicts thermodynamic restrictions [86].
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Table A.2: Comparison of notations used for representation of micropolar elasticity [84].

Notation Group/Description
Representative Symbol Used by

Present Nowacki Eringen Cowin Neff

Author [42] [85] [84] [73]

Kinematics and Kinetics/

Displacement Vector ui ui ui ui u

Microrotation Vector ϑi ϕi ϕi ψ̂i φ

Macrorotation Vector θi
1
2
εijk uk,j � ri − ω̂i 1

2
curlu �

Strain Tensor εij γij εji � εij + γij � ε̄

Force Stress Tensor σij σij tij τij + σij � σ

Twist Tensor τij κij ϕj,i κ̂ij ∇φ
Couple Stress Tensor χij µij mij µ̂ij m

Elastic Constants/

Lamé Shear Modulus µ µ µ+ 1
2
κ µ µ

Lamé Coefficient λ λ λ λ λ

Cosserat Couple Modulus κ α 1
2
κ τ µc

Cosserat Twist Coefficient γ γ 1
2

(γ + β) η + η′ 1
2

(γ + β)

Cosserat Twist Coefficient β ε 1
2

(γ − β) η − η′ 1
2

(γ − β)

Cosserat Twist Coefficient α β α 1
2
α α

�: No explicit symbol assigned. �: Note that subscript is ji and not ij .
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To facilitate addressing the problems related to Eringen’s notation, from now on,

Eringen’s symbols representing the elastic constants will be shown with a subscript E .

Cowin [86] has shown that the Lamé shear modulus µ and the micropolar couple modulus

κ are related to Eringen’s symbols µE and κE according to:

µ = µE +
1

2
κE, κ =

1

2
κE (A.35)

He also has shown that the incorrect inequalities presented by Eringen as [85]:

µE ≥ 0, κE ≥ 0

should be replaced with the following correct inequalities [86]:

µ = µE +
1

2
κE ≥ 0, κ =

1

2
κE ≥ 0 (A.36)

Whereas Eringen’s incorrect inequality has been replaced by the correct form as early as

its discovery by Cowin, the usage of Eringen’s notation, leading to this mistake, continued

in other works on micropolar elasticity. Unsurprisingly, erroneous statements regarding

the micropolar theory of elasticity continued to be addressed. In fact, to the best of this

author’s knowledge, no one has paid attention to the origin of the incorrect inequality, and

the confusing nature of Eringen’s notation has not been discussed.

The relationship between the Lamé shear modulus µ and Eringen’s symbols µE and

κE as given by Eq. (A.35) has deceived authors using Eringen’s notation to think of the

classical theory of elasticity as a special case of micropolar elasticity when Eringen’s elastic

constant κE tends to zero. This conclusion, however, is incorrect and results in (physical)

difficulties [87] and singularities which will be mentioned later in the present text.

Additionally, in Eringen’s notation the classical Lamé shear modulus µ is dependent

on both µE and κE as given by Eq. (A.35). Therefore, by varying κE both classical

and micropolar elastic properties are being changed simultaneously. This dependency of

the classical Lamé shear modulus µ on the symbol κE which is included to represent

the micropolar effects is equivalent to a dependency of the classical parameters on the

micropolar elastic constants which is not correct. In other words, a comparison between

an elastic body with nonzero κE and an elastic body where κE is set to zero cannot reveal the
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micropolar effects in the latter as the two elastic bodies are also different in terms of their

classical properties. This coupling between the classical and micropolar elastic constants in

Eringen’s notation causes a similar problem when one is comparing the micropolar theory

of elasticity with the couple-stress theory (of elasticity) by varying κE or more precisely

letting κE go to infinity. Note that the couple-stress theory is known to be a special case

of micropolar elasticity when κE tends to infinity.

In this regard notations utilizing single symbols for the classical Lamé parameters and

representing the extra micropolar elastic constants with completely separate (uncoupled)

symbols, such as the one used by Nowacki [42] as summarized in Table A.2, are superior

choices to characterize the elastic properties of a micropolar material. The notation used in

the present text is inspired by Nowacki’s notation (see Table A.2). However, relating their

notations with Eringen’s symbols, even authors using more appropriate notations (with

uncoupled classical and micropolar elastic constants) have been also misled to repeat the

incorrect statement that the classical elasticity is a special case of the micropolar elasticity

when the micropolar couple modulus κ is zero.

Indeed, making a literature survey, three groups of authors presenting flawed statements

on micropolar elasticity can be identified:

� Authors who used Eringen’s notation and did not realize the difference between

Eringen’s usage of the symbol µE and the conventional Lamé shear modulus µ. It is

not a surprise to see mistaken conclusions in the works by these authors [54, 57, 59,

61,71,75,82,88].

� Authors who, while using the Eringen’s notation, realized the difference between

Eringen’s usage of the symbol µE and the conventional Lamé parameter µ . These

authors were probably misled by the improper notation towards incorrect statements

in their works [49,60].

� Authors who used a different notation than Eringen’s. Unexpectedly, these authors

repeated the erroneous declarations of authors using Eringen’s notation in their works

[73,74,84,86,89–91].
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Also, in general there are six erroneous declarations or conclusions which have been

frequently addressed by the authors on micropolar elasticity. They are as follows:

1. The symbol µE in Eringen’s notation represents the Lamé shear modulus and is

therefore necessarily a positive number [54,57,61,71,75,82,88].

2. Corresponding to Young’s modulus, Poisson’s ratio, and the shear modulus of classi-

cal elasticity, in micropolar elasticity one can define a micropolar Young’s modulus,

micropolar Poisson’s ratio, and micropolar shear modulus as three unique elastic con-

stants of a micropolar material [54, 57, 59, 61, 71, 75, 78]. These micropolar constants

will be equal to the corresponding classical constants in the limit as κE tends to zero.

3. Classical elasticity as a special case of micropolar elasticity can be obtained from

micropolar elasticity by letting κE (and other micropolar elastic constants) go to

zero [49,54,55,57,59–61,71–75,78,80–83,87,89–93]. This is equivalent to mentioning

that the micropolar couple modulus κ or the coupling number N2 (defined by the last

relation of Eq. (A.33)) should vanish to recover the classical theory of elasticity. Note

that using Eringen’s notation the coupling number is defined as N2 =
κE

2(µE + κE)
.

4. In reality the value of κE (or κ) is very small compared to µE (or µ) for any elastic

continuum and one can use the assumption that κE � 1 or
κE

µE

� 1 (κ � 1 or

κ

µ
� 1) when solving a micropolar elasticity problem [55,61,75,93]. In other words,

a very small value for κE (or κ) is expected from experimental investigation of any

real elastic material.

5. Couple-stress theory is recovered from micropolar elasticity as just κE goes to infinity

(not mentioning that at the same time µE + 1
2
κE should remain limited and equal to

the Lamé shear modulus) [72,81].

6. Classical elasticity and couple-stress theory are two different (independent) special

cases of micropolar elasticity where N2 = 0 (κE → 0 or κ → 0 ) and N2 = 1

(κE →∞ or κ→∞), respectively [71–73,78,80,81,83,84,86,87,89–91]. This implies

that the classical elasticity theory and the couple-stress theory are two separate and

261



independent simplifications of the micropolar stress theory as shown in Figure A.1. In

other words, it covers the fact that the micropolar elasticity theory, the couple-stress

theory, and the classical elasticity theory can be arranged into a linear hierarchy

structure like the one depicted in Figure A.2.

Couple-Stress 

Theory

Classical 

Theory of 

Elasticity

0

0

0

0

Micropolar 

Theory of 

Elasticity

Figure A.1: The incorrect parallel structure for simplification of the micropolar theory of

elasticity to the couple-stress theory and the classical theory of elasticity.

Considering these incorrect statements one can conclude that the main problem is

how to simplify the micropolar elasticity model to recover the couple-stress theory and

the classical elasticity theory as two special cases. In particular, recovering the classical

theory of elasticity by letting κE or κ (and other micropolar elastic constants) go to zero is

wrong and results in (physical) difficulties [87] and singularities. Here, one should note that

Eringen’s elastic constant κE (or the micropolar couple modulus κ) determines the strength

of coupling between the displacement and local rotation fields [78]. Though, simplifying

the micropolar elasticity for the case κE = 0 (or κ = 0) is more straightforward, this

corresponds to a decoupling of the rotational and translational DOFs [72]. Therefore, a

micropolar elasticity model with κE = 0 (or κ = 0) corresponds to an elastic continuum in
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Micropolar 

Theory of 

Elasticity

Classical 

Theory of 

Elasticity

0

0
Couple-Stress 

Theory

Figure A.2: The correct sequential structure for simplification of the micropolar theory of

elasticity to the couple-stress theory and the classical theory of elasticity.

which the constitutive particles or cells are free to rotate and indeed in the presence of a

volume moment rotate infinitely (a singularity occurs in the presence of a volume moment).

The correct approach for simplifying the micropolar elasticity model will be addressed in

the next section. What follows in the next section will clarify why the aforementioned

statements are erroneous.

Here it is noteworthy that Neff [73, 74, 83, 90, 91] has addressed another physical in-

consistency for the linear micropolar elasticity which is not pursued here. He has shown

that, in the linear micropolar elasticity applied to continuous solids, the usually adopted

positive definiteness condition for the internal energy results in restrictions on material

elastic constants which (based on analytic solutions obtained for micropolar torsion and

bending problems) are not enough to avoid (unphysical) unbounded stiffening behavior of

very small samples (are not consistent with the physical expectation that small specimens

should still have bounded rigidity). However, to the best of this author’s knowledge, this

is an incorrect conclusion founded on first, the mistaken statement that classical elasticity

is recovered from micropolar elasticity as the micropolar couple modulus tends to zero (as
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discussed previously), and second, a flawed definition for boundedness of stiffness.

A.9 Simplification

Before addressing the simplification of micropolar elasticity to special cases, i.e. couple-

stress theory and classical elasticity, it is useful to recall the problem of recovering the

Euler-Bernoulli beam equations from the more general Timoshenko beam theory. Whereas

in the very beginning it was suggested that this can be done by setting the shear modulus

in the Timoshenko equations equal to zero, nowadays it is well-known that this causes

a singularity and a more sensible solution is to recover the Euler-Bernoulli equations in

the limit as the shear modulus goes to infinity. In fact, a more detailed study of the

Timoshenko beam theory reveals that Euler-Bernoulli beam equations can be recovered by

taking any of the following four different points of view:

Kinematic: by neglecting the shear strains,

Kinetic: by neglecting the shear stresses,

Geometric: by letting the beam slenderness ratio go to infinity (i.e. considering a very

thin long beam),

Mathematical: (as the most general and interesting approach) by letting the material

shear modulus tend to infinity.

Analogously, one can simplify the micropolar theory of elasticity to couple-stress theory

and then from couple-stress theory to classical theory of elasticity by taking a kinematic,

kinetic, geometric, or mathematical point of view:

Kinematic: one can assume that the body motion is constrained such that the antisym-

metric part of the strain tensor is negligible and consequently the microrotation field

is identical with the macrorotation field (resulting in only three DOFs for any body

particle). This implies a symmetric force stress tensor and simplifies the (asymmet-

ric) micropolar elasticity theory to the (symmetric) couple-stress theory. Further,
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by considering small deformations and neglecting the higher order differentials of

displacement field one will be left with the (symmetric) classical elasticity theory.

Kinetic: it can be assumed that the loads applied on the body are constrained to result

in a symmetric force stress tensor (the antisymmetric part is insignificant). This

entails a symmetric strain tensor and again reduces the (asymmetric) micropolar

elasticity theory to the (symmetric) couple-stress theory. Then, the (symmetric)

classical elasticity can be recovered by ignoring the effects of couple stresses.

Geometric: while it is not clear yet how one can reduce the micropolar elasticity theory

to the couple-stress theory, it is known that results of both micropolar elasticity and

couple-stress theory merge to the classical elasticity results in the limit when the

elastic body dimensions are order of magnitudes larger than (potentially definable

and probably problem-specific) material characteristic length(s) (which are physically

expected to be of the order of cell or grain size).

Mathematical: by letting the micropolar couple modulus κ go to infinity one can con-

strain the strain tensor without adding any restriction on the force stress tensor

[73, 86, 89–91]. More specifically, as the micropolar couple modulus tends to infinity

the strain tensor is constrained to be symmetric while the force stress tensor can

maintain its generality as an asymmetric tensor. This condition will imply coupling

between the displacement and microrotation fields and reduce the (asymmetric) mi-

cropolar elasticity to (asymmetric) couple-stress theory. To keep the generality of

the loading mechanism inside the body it is also essential to set the micropolar twist

coefficient α equal to infinity (to be shown later) [89]. By setting the remaining two

micropolar twist coefficients γ and β equal to zero, one can recover the (asymmetric)

classical elasticity as a special case of (asymmetric) couple-stress theory [94].

Since it has been frequently addressed in an erroneous way (see the references cited in

the aforementioned list of erroneous statements) and also due to its generality and inter-

esting nature, the mathematical approach will be studied in more detail in the following.

Consider a general homogeneous, isotropic, and centrally symmetric elastic body under

the action of (finite) body volume force
→
f V and moment →m

V . For such a body, utilizing
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the linear micropolar theory of elasticity results in the relations and definitions given by

Eqs. (A.1)–(A.32).

Now taking into account the constitutive relations, especially the first relation given in

Eq. (A.15), and letting the micropolar couple modulus κ tend to infinity while noting that

the force stress tensor ↔σ should remain finite, one can conclude that the antisymmetric

strain tensor ↔ε
a should vanish:

εa

ij = εijk

(
θk − ϑk

)
= 0

ϑi = θi =
1

2
εijk uk,j

(A.37)

Consequently, the kinematic relations given by Eqs. (A.1)–(A.5) can be simplified to:

εij = εs

ij + εa

ij =
1

2

(
uj , i + ui, j

)
εs

ij =
1

2

(
uj , i + ui, j

)
εa

ij = 0

τij = τ s

ij + τ a

ij =
1

2
εjkl ul,ki

τ s

ij =
1

4
εjkl ul,ki +

1

4
εikl ul,kj

τ a

ij =
1

4
εjkl ul,ki −

1

4
εikl ul,kj

τii = 0

(A.38)

Also, the compatibility conditions given by Eq. (A.7) can be modified to the following

form:
εikl

(
εkj , l + εkjm τlm

)
= 0

εikl τkj , l = 0

εijk εjk = 0

(A.39)

or equivalently:

εikm εjln εij ,kl = 0

εikl τkj , l = 0

τii = 0

(A.40)
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For such a case (i.e. when κ → ∞ and thus εa

ij = 0 and τii = 0), the constitutive

relations given by Eq. (A.16) take the form:

σ s

ij = 2µ εij + λ εkk 1ij

σ a

ij =∞× 0 = ¿

χs

ij = 2 γ τ s

ij

χa

ij = 2 β τ a

ij

where ¿ is a symbol that represents a numerical quantity whose magnitude cannot be deter-

mined (an indeterminate quantity). However, as τii = 0 this form impose an unnecessary

constraint on couple stress tensor, that is:

χii = 0

To remove this constraint it can be assumed that in the constitutive relations given by

Eq. (A.16) (in addition to the micropolar couple modulus κ) the micropolar twist coefficient

α also goes to infinity. Using the second relation of Eq. (A.17), this assumption gives rise

to the following form for the constitutive relations in Eq. (A.16):

σ s

ij = 2µ εij + λ εkk 1ij

σ a

ij =∞× 0 = ¿

χii =∞× 0 = ¿

χs

ij −
1

3
χkk 1ij = 2 γ τ s

ij

χa

ij = 2 β τ a

ij

(A.41)

or equivalently:

σij − σ a

ij = 2µ εij + λ εkk 1ij

χij −
1

3
χkk 1ij =

(
γ + β

)
τij +

(
γ − β

)
τij

σ a

ij =∞× 0 = ¿

χii =∞× 0 = ¿

(A.42)

It is worthwhile to note here that the indeterminacy of the asymmetric force stress tensor

↔σ
a and the summation of normal couple stresses χii means they cannot be obtained from
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the constitutive relations and (if possible) one should use the kinetic balance relations to

determine them.

Whereas the tensile bulk modulus B , strain Poisson’s ratio ν , and tensile modulus E

defined in Eqs. (A.17) and (A.18) remain unchanged as κ and α tend to infinity, by letting

α in Eqs. (A.17) and (A.19) go to infinity one can derive the tortile bulk modulus B, twist

Poisson’s ratio ξ , and tortile modulus E which correspond to the current case, that is:

B = λ+
2

3
µ

ν =
λ

2
(
µ+ λ

)
E =

µ
(

2µ+ 3λ
)

µ+ λ
= 2µ

(
1 + ν

)
B =∞

ξ =
1

2

E = 3 γ

(A.43)

By letting κ and α go to infinity, however, the kinetic relations will remain unchanged

as no restriction is imposed on the force and couple stress tensors and, therefore, one can

repeat, for example, the equilibrium relations given by Eq. (A.8):

σji, j + f Vi = ρV üi

χji, j + εijk σjk +mV

i = ıV εijk ük,j
(A.44)

or more properly the equilibrium relations in Eq. (A.13):

σ s

ji, j +
1

2
εijk

(
χlk, lj +mV

k ,j − ıV εklm üm,lj
)

+ f Vi = ρV üi

εijk

(
χlk, l +mV

k − ıV εklm üm,l
)

= 2σ a

ji

(A.45)

Substitution from the constitutive relations of Eq. (A.42) into the balance relations

given by Eq. (A.45) (or revision of the motion equations in Eq. (A.22) for the case when
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κ→∞ and α→∞) results in the corresponding equations of motion:

µui, jj +
(
µ+ λ

)
uj ,ji +

1

4
εijk

((
γ + β

)
εklm um,lnnj + 2mV

k ,j − ıV εklm üm,lj
)

+ f Vi = ρV üi

2σ a

ji −
1

3
εijk χll,k =

1

2
εijk

((
γ + β

)
εklm um,lnn + 2mV

k − ıV εklm üm,l
) (A.46)

Here the first relation of Eq. (A.46) corresponds to a set of three PDEs, enough for deter-

mination of the displacement field vector. However, the second relation of Eq. (A.46) also

corresponding to a set of three PDEs does not provide enough information to compute the

undetermined parts of the force and couple stress tensors, i.e. ↔σ
a and χii , from a known

displacement field vector. Indeed, there are only three equations that should be used to

determine four unknowns (three elements of ↔σ
a and the scalar χii).

Finally when κ → ∞ and α → ∞ , the strain energy density U V

e can be written as

(compare this to Eqs. (A.27) and (A.28) given previously for a general micropolar case):

2U V

e =
(
σij − σ a

ij

)
εij +

(
χij −

1

3
χkk 1ij

)
τij

= σ s

ij εij +
(
χs

ij −
1

3
χkk 1ij

)
τ s

ij + χa

ij τ
a

ij

(A.47)

Now substituting from Eq. (A.41) or (A.42) into Eq. (A.47) results in the following expres-

sion for strain energy density U V

e (in comparison with Eq. (A.29) or (A.30)):

2U V

e = 2µεij εij + λ εii εjj +
(
γ + β

)
τij τij +

(
γ − β

)
τji τij

= 2µεij εij + λ εii εjj + 2 γ τ s

ij τ
s

ij + 2 βτ a

ij τ
a

ij

(A.48)

which have a positive definite form provided (compared to the conditions in Eq. (A.31)):

µ > 0, 2µ+ 3λ > 0

γ > 0, β > 0
(A.49)

The relations given by Eqs. (A.37)–(A.49) (especially after ignoring the terms con-

taining the material microinertia density ıV ) are known as the relations of the indetermi-

nate couple-stress theory [43] (since, as mentioned previously, the number of equations in
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Eq. (A.46) are not enough for complete determination of engaged unknowns, the couple-

stress theory is also called the indeterminate couple-stress theory).

To sum up, one can conclude that the couple-stress theory with four material elastic

constants µ, λ, γ, and β is a special case of the more general micropolar theory of elasticity

requiring six material elastic constants µ , κ , λ , γ , β , and α which can be obtained

mathematically as κ→∞ and α→∞ (it is also usual to neglect the microinertia effects

by assuming ıV → 0).

Taking another step by letting the micropolar twist coefficients γ and β and the mi-

croinertia density ıV go to zero, the couple-stress theory relations, i.e. Eqs. (A.37)–(A.49),

will further simplify to a set of relations in which the effects of the couple stresses are

almost negligible. For such a case the constitutive relations will be:

σij − σ a

ij = 2µ εij + λ εkk 1ij

χij −
1

3
χkk 1ij = 0

σ a

ij = ¿

χii = ¿

Although one can continue while keeping the indeterminate portion of the couple stress,

i.e. χii, it is more frequent to neglect the couple stresses completely (by assuming χii → 0

or α→ 0) and consequently writing the constitutive relations as:

σij − σ a

ij = 2µ εij + λ εkk 1ij

σ a

ij = ¿

χij = 0

(A.50)

This implies that there is no need to define the twist tensor and derive the equations

related to it. One can accordingly obtain the following set of relations (corresponding to

Eqs. (A.37)–(A.49) as the relations of couple-stress theory):

εij =
1

2

(
uj , i + ui, j

)
ϑi = θi =

1

2
εijk uk,j

(A.51)
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εikm εjln εij ,kl = 0 (A.52)

σ s

ij = σij − σ a

ij = 2µ εij + λ εkk 1ij

σ a

ij = ¿
(A.53)

B = λ+
2

3
µ

ν =
λ

2
(
µ+ λ

)
E =

µ
(

2µ+ 3λ
)

µ+ λ
= 2µ

(
1 + ν

)
(A.54)

σji, j + f Vi = ρV üi

εijk σjk +mV

i = 0
(A.55)

σ s

ji, j + f Vi +
1

2
εijkm

V

k ,j = ρV üi

εijkm
V

k = 2σ a

ji

(A.56)

µui, jj +
(
µ+ λ

)
uj ,ji +

1

2
εijkm

V

k ,j + f Vi = ρV üi

2σ a

ji = εijkm
V

k

(A.57)

2U V

e =
(
σij − σ a

ij

)
εij = σ s

ij εij (A.58)

2U V

e = 2µεij εij + λ εii εjj (A.59)

µ > 0, 2µ+ 3λ > 0 (A.60)

The set of relations given by Eqs. (A.51)–(A.60) correspond to the asymmetric theory

of classical elasticity [38]. Compared to the (well-known) symmetric classical elasticity, in

the asymmetric theory of classical elasticity, although the strain tensor is symmetric, the

force stress tensor can be asymmetric in the presence of a volume moment distribution.
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There is no constitutive relation for the antisymmetric part of the stress tensor (as given

by Eq. (A.53)) and the antisymmetric stress tensor is instead determined by the angular

momentum balance equation (as given by Eq. (A.56) or (A.57)). Also, the volume moment

distribution appears as an equivalent force distribution in the linear momentum balance

equation (as in Eq. (A.56) or (A.57)).

Accordingly, one can conclude that the asymmetric classical theory of elasticity with

two material elastic constants µ and λ is a special case of the more general couple-stress

theory suggesting four material elastic constants µ , λ , γ , and β which can be obtained

mathematically as γ → 0, β → 0, and ıV → 0 [94]. Recalling that couple-stress theory

is a special case of micropolar theory of elasticity, one can obtain the classical theory

of elasticity directly from the micropolar theory of elasticity by letting κ, α → ∞ and

γ, β, ıV → 0 (or more easily by letting κ → ∞ and γ, β, α, ıV → 0). In other words, the

couple-stress theory is an intermediate theory derived through the process of recovering

the classical elasticity theory from the micropolar elasticity theory (see Figure A.2).
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Appendix B

Rotational Kinematics

B.1 Introduction

One of the most fundamental concepts, dealt with in this thesis, is the kinematics of

rotating frames and bodies. However, considering the fact that the rotation of a body is

usually defined as the rotation of a frame attached to it (known as the body fixed frame),

this appendix just addresses the kinematics of rotating frames. As the key parameter in a

general rotation problem, the rotation matrix is defined first. Then expressions for angular

velocity and virtual rotation vectors in terms of the rotation matrix are derived. Also, the

calculus of variations when applied to a general rotation problem is characterized. Finally,

the infinitesimal rotation as a special case is considered and approximate formulations

corresponding to this case are derived.

B.2 Rotation matrix

The first step for confronting rotational kinematics is to describe the rotation (or orienta-

tion) of a frame as an elementary concept. For a rotating frame Fb , its orientation with

respect to a fixed reference frame Fa can be described by specifying the direction cosines

between the basis vectors of this rotating frame, i.e.
→
bi , and the basis vectors of the fixed
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reference frame, i.e.
→
ai . These direction cosines are usually summarized in a rotation or

transformation matrix [95,96], from frame Fb to frame Fa, denoted by ab
∼C and defined as:

ab
∼C =

[
a

–
b1

a

–
b2

a

–
b3

]
=


abC11

abC12
abC13

abC21
abC22

abC23

abC31
abC32

abC33

 =
[
abCij

]
(B.1)

where abCij is the cosine of the angle between the unit vectors
→
ai and

→
bj . It is known that

the rotation matrix defined by Eq. (B.1) is orthogonal, that is:

ab
∼C

ab
∼C

T = ab
∼C

T ab
∼C =

=
1

ab
∼C

T = ab
∼C
−1 = ba

∼C
(B.2)

and that when dealing with more than two reference frames the following relation holds

true for any set of three reference frames, e.g. frames Fa , Fb , and Fc :

ac
∼C = ab

∼C
bc
∼C (B.3)

The 3× 3 rotation matrix is a very important component in a rotation problem (usu-

ally used for tensor transformations between different frames) and hence, for any set of

parameters used to identify the orientation, it is usually necessary to define the rotation

matrix in terms of those parameters too.

In addition to the direction cosines, one can also define the orientation based on Euler’s

theorem and through the axis/angle variables. Based on Euler’s theorem, the orientation

of a frame Fb with respect to another frame Fa can be expressed in terms of a rotation by

an angle ϑ around a screw axis (i.e. a unit vector) →s [95, 96]. In this representation, the

rotation matrix from frame Fb to frame Fa will be:

ab
∼C = ∼C(→s, ϑ) = cosϑ

=
1+

(
1− cosϑ

)
–
s

–
sT + sinϑ

=
s× (B.4)

where
–
s is the component matrix of the screw axis (or rotation axis) in either Fb or Fa :

–
s = b

–
s = a

–
s (B.5)

Euler’s theorem, representing that rotation is describable via a rotation angle (a magni-

tude) and a rotation axis (a direction), might tempt one to define the rotation as a vector.
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However, rotation is not a vector as it does not obey the parallelogram law of addition

and when dealing with successive rotations the order in which the rotations are applied is

important. Consequently, one may conclude that multiplication of rotation matrices is not

commutative in general, i.e. for general rotations (
→
s1, ϑ1) and (

→
s2, ϑ2):

∼C(
→
s1, ϑ1) ∼C(

→
s2, ϑ2) 6= ∼C(

→
s2, ϑ2) ∼C(

→
s1, ϑ1) (B.6)

By setting the screw axis →s in Eq. (B.4) to be the ith basis vector of either rotating

frame Fb or fixed frame Fa , that is:

–
s =

–
b1 =

–
a1 =

 1

0

0

 or
–
s =

–
b2 =

–
a2 =

 0

1

0

 or
–
s =

–
b3 =

–
a3 =

 0

0

1

 (B.7)

three particular single rotation matrices corresponding to the principal rotations ϑi about

the basis vectors
→
bi or

→
ai will be obtained as:

∼C(
→
b1, ϑ1) = ∼C(

→
a1, ϑ1) =

 1 0 0

0 cϑ1 − sϑ1
0 sϑ1 cϑ1

 =
∼
C1

∼C(
→
b2, ϑ2) = ∼C(

→
a2, ϑ2) =

 cϑ2 0 sϑ2
0 1 0

− sϑ2 0 cϑ2

 =
∼
C2

∼C(
→
b3, ϑ3) = ∼C(

→
a3, ϑ3) =

 cϑ3 − sϑ3 0

sϑ3 cϑ3 0

0 0 1

 =
∼
C3

(B.8)

Any number of these principal rotation matrices can be multiplied in any order to produce

a new rotation matrix. However, since a general rotation (angular displacement) has

three DOFs and each principal rotation corresponds to one DOF, a minimum of three

(independent) principal rotations about axes of either moving frame Fb or fixed frame Fa
should combined to represent a general rotation or orientation.

In the first case, i.e. an orientation described by combining the principal rotations

around axes of the moving frame, the corresponding rotation matrix will be a function
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of three principal rotation angles, known as Euler angles, which denote the successive

rotations of frame Fb about its rotating axes
→
bi . Due to the fact that different rotation

sequences result in different representations, in general there are 12 possible combinations

of Euler angles to define the rotation matrix. In such representations, each rotation occurs

about an axis whose location depends on the preceding rotation(s) and the rotation matrix

is obtained by postmultiplying the corresponding principal rotation matrices.

The other option for description of a general orientation based on the principal rotations

is to use a combination of principal rotations about axes of the fixed reference frame Fa
(instead of axes of the moving frame Fb) which results in a rotation matrix as a function of

three principal rotation angles, known as fixed angles [97] (called Euler angles as well [96]).

Again, there are 12 possible combinations of fixed angles to define the rotation matrix

which are dual of the 12 possible sequences of Euler angles (i.e. principal rotations around

axes of the moving frame Fb ). Indeed, each sequence of the principal rotations around

the axes of the fixed frame gives rise to the same rotation matrix as the opposite sequence

(same rotations occurring in opposite order) of the principal rotations around the axes of

moving frame does. In this case, each rotation occurs about an axis whose location will

change as the following rotation(s) occur(s) and the final rotation matrix will be obtained

by premultiplying the corresponding principal rotation matrices.

As an example, the rotation matrix associated with the sequence (
→
b1, ϑ1), (

→
b2, ϑ2), and

(
→
b3, ϑ3), shown in Figure B.1, is:

ab
∼C =

∼
C1 ∼
C2 ∼
C3 (B.9)

which based on Eq. (B.8) is the same as the rotation matrix of the sequence (
→
a3, ϑ3) ,

(
→
a2, ϑ2), and (

→
a1, ϑ1), shown in Figure B.2. Here, based on the first definition (i.e. three

rotations around the basis vectors of the moving frame), the second and third rotations

occur respectively around
→
b2 rotated by

∼
C1 and

→
b3 rotated by

∼
C1 ∼
C2 . However, based on

the second definition (i.e. three rotations around the basis vectors of the fixed reference

frame), the first and second rotation axes, i.e.
→
a3 and

→
a2 , will be rotated by

∼
C1 ∼
C2 and

∼
C1 , respectively, as the second and the third rotations (i.e. (

→
a2, ϑ2) and (

→
a1, ϑ1)) occur.

A general rotation can also be expressed as a combination of three nonprincipal rota-

tions. An example is the rotation matrix corresponding to the sequence (
→
s1, ϑ1), (

→
s2, ϑ2),
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2 2,b ax x

, ba

3 3,b ax x

1 1,b ax x

1

1

b x

2

b x
2

3

3

b x

2

b x

3

b x

1

b x

3

b x
2

b x

1

b x

Figure B.1: Rotation of Fb with respect to Fa through Euler angles (
→
b1, ϑ1), (

→
b2, ϑ2), and

(
→
b3, ϑ3).

2 2,b ax x

, ba

3 3,b ax x

1 1,b ax x

1

1

b x

2

b x

2

3
3

b x

2

b x3

b x

1

b x

3

b x
2

b x

1

b x

3

a x

2

a x

1

a x

Figure B.2: Rotation of Fb with respect to Fa through fixed angles (
→
a3, ϑ3), (

→
a2, ϑ2), and

(
→
a1, ϑ1).
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and (
→
s3, ϑ3) representing the rotation of a frame Fb with respect to another frame Fa

through arbitrary angles ϑ1 , ϑ2 , and ϑ3 , and around arbitrary axes
→
s1 ,

→
s2 , and

→
s3 which

are fixed in Fb . More precisely, there are three arbitrary axes
→
s1 ,

→
s2 , and

→
s3 affixed to Fb

and the rotation of Fb occurs as follows; starting with the frame Fb coinciding with Fa ,

frame Fb rotates by angle ϑ1 around axis
→
s1 , followed by a second rotation of ϑ2 about

→
s2 (which is already rotated by ϑ1), followed by a third rotation of ϑ3 about

→
s3 (which is

already rotated by ϑ1 and ϑ2). The rotation matrix associated with this general case is:

ab
∼C =

∼
C1 ∼
C2 ∼
C3 (B.10)

where this time:

∼
Ci = ∼C(

→
si, ϑi), i = 1, 2, 3 (B.11)

and ∼C(
→
si, ϑi) is calculated based on Eq. (B.4). The rotation angles ϑi can be considered

as generalized Euler angles and the rotation problem defined here can be considered as

a representative for a large group of rotation problems (including all those defined based

on different combinations of Euler angles). From now on the symbol
∼
Ci will be used to

represent the more general rotation matrix ∼C(
→
si, ϑi) instead of special rotation matrices

∼C(
→
ai, ϑi) and ∼C(

→
bi, ϑi).

Note that, in addition to the direction cosines, Euler axis/angle parameters, and Euler

angles mentioned in this section, there are other parameter sets for orientation represen-

tation which are not used in this text and therefore reviewing them is worthless. Finally,

having the rotation matrix between two reference frames Fa and Fb, the following relations

hold true for component matrices of a vector →v and a dyadic ↔d:

a
–
v = ab

∼C
b
–
v

a
=
d = ab

∼C
b
=
d ab

∼C
T = ab

∼C
b
=
d ba

∼C

a
=
v× =

(
ab
∼C

b
–
v
)×

= ab
∼C

b
=
v× ba ∼C

(B.12)

B.3 Angular velocity

To formulate the angular velocity of a frame, consider the case in which the angular dis-

placement of frame Fb evolves with time and thus the rotation matrix from frame Fb to
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frame Fa is time dependent, i.e.:

ab
∼C = ab

∼C(t) = ∼C(t) (B.13)

where for brevity, symbol ab
∼C is simplified to symbol ∼C . It can be shown that such a

rotation matrix obeys the following differential equation [95]:

∼Ċ −
a

=
w× ∼C = ∼0 (B.14)

or equivalently:
a

=
w× = ∼Ċ ∼C

T = − ∼C ∼Ċ
T

b
=
w× = ∼C

T

∼Ċ = − ∼Ċ
T

∼C
(B.15)

where →w is the angular velocity vector of frame Fb with respect to frame Fa . Note that

time differentiating from the first relation in Eq. (B.2) gives rise to:

∼Ċ ∼C
T + ∼C ∼Ċ

T

= ∼0

∼Ċ
T

∼C + ∼C
T

∼Ċ = ∼0
(B.16)

which means matrices ∼Ċ ∼C
T and ∼Ċ

T

∼C are antisymmetric and have the necessary form

to be associated with cross product dyadic of a vector. Also, keep in mind that generally

there is no rotation vector →ϑ such that its time derivative is an angular velocity vector →w .

Time differentiating from relations in Eq. (B.15) will result in expressions for the angular

acceleration of Fb relative to Fa . In fact, the relative angular acceleration vector →̇w is:

→̇w =
ad

dt

(
→w
)

=
bd

dt

(
→w
)

(B.17)

Before formulating the angular velocity in the general example mentioned in the pre-

vious section, it is beneficial to consider the specific rotation problem of a single rotation

ϑ about axis →s . For such a problem whose rotation matrix is given in terms of Euler

axis/angle parameters as Eq. (B.4), it can be shown that:

∼C(→s, ϑ)
–
s = ∼C

T(→s, ϑ)
–
s =

–
s (B.18)

and more importantly:

∼C
′(→s, ϑ) ∼C

T(→s, ϑ) =
=
s× (B.19)
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where:

∼C
′(→s, ϑ) =

∂ ∼C(→s, ϑ)

∂ϑ
= − sinϑ

=
1+ sinϑ

–
s

–
sT − cosϑ

=
s× (B.20)

One can use Eq. (B.19) to obtain the following relation between the time derivative of the

rotation matrix given in Eq. (B.4) and the time derivative of the rotation angle (assuming

that the angle ϑ is time dependent and the rotation axis →s is constant):

ab

∼Ċ(→s, ϑ) ab ∼C
T(→s, ϑ) = ab

∼C
′(→s, ϑ) ϑ̇ ab

∼C
T(→s, ϑ)

= ab
∼C
′(→s, ϑ) ab ∼C

T(→s, ϑ) ϑ̇

=
=
s× ϑ̇ =

(
–
s ϑ̇
)× (B.21)

Now, in the general example mentioned previously, i.e. successive rotations ϑi about

rotating axes
→
si , where the time derivative of the rotation matrix is:

∼Ċ =
∼
Ċ1 ∼
C2 ∼
C3 +

∼
C1 ∼
Ċ2 ∼
C3 +

∼
C1 ∼
C2 ∼
Ċ3 (B.22)

the angular velocity of Fb with respect to Fa will be derived as:

a
=
w× = ∼Ċ ∼C

T = ∼Ċ
(
∼
C3

T

∼
C2

T

∼
C1

T

)
=

∼
Ċ1 ∼
C1

T +
∼
C1 ∼
Ċ2 ∼
C2

T

∼
C1

T +
∼
C1 ∼
C2 ∼
Ċ3 ∼
C3

T

∼
C2

T

∼
C1

T

=
(

–
s1 ϑ̇1

)×
+
(
∼
C1

–
s2 ϑ̇2

)×
+
(
∼
C1 ∼
C2

–
s3 ϑ̇3

)× (B.23)

or more desirably:
a

–
w =

–
s1 ϑ̇1 +

∼
C1

–
s2 ϑ̇2 +

∼
C1 ∼
C2

–
s3 ϑ̇3 (B.24)

where matrices
–
si are descriptions of the rotation vectors

→
si in Fb or Fa before any rotation

occurs (i.e. when Fb coincides with Fa). Using Eqs. (B.10) and (B.24) one can get:

b
–
w = ∼C

T a
–
w =

∼
C3

T

∼
C2

T

–
s1 ϑ̇1 +

∼
C3

T

–
s2 ϑ̇2 +

–
s3 ϑ̇3 (B.25)

At the end of this section, having the angular velocity vector of frame Fb with respect

to frame Fa, i.e. having →w, the following relations hold true for time derivatives of a vector

→v and a dyadic ↔d:

ad

dt

(
→v
)

=
bd

dt

(
→v
)

+ →w ×→v =
bd

dt

(
→v
)

+ ↔w
× ·→v

ad

dt

(
↔d
)

=
bd

dt

(
↔d
)

+ ↔w
× ·↔d−↔d · ↔w

×

(B.26)
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B.4 Virtual rotation

Analogous to the derivation of the angular velocity from the time derivative of a rotation

matrix reviewed in the previous section it would be also pleasing if, in general, the virtual

rotation or virtual angular displacement can be related to the variation of the rotation

matrix. Similar to the Eq. (B.15), the relation can be defined as [98]:

a
=
δϑ× = ∆ ∼C ∼C

T = − ∼C ∆ ∼C
T

b
=
δϑ× = ∼C

T ∆ ∼C = −∆ ∼C
T

∼C
(B.27)

where →δϑ is the virtual rotation vector of frame Fb with respect to frame Fa . Note that

taking the variation from the first relation in Eq. (B.2) results in the following relations:

∆ ∼C ∼C
T + ∼C∆ ∼C

T = ∼0

∆ ∼C
T

∼C + ∼C
T ∆ ∼C = ∼0

(B.28)

which illustrate the antisymmetry of matrices ∆ ∼C ∼C
T and ∆ ∼C

T

∼C . In addition, it is

noteworthy that although talking about a rotation vector is not meaningful in general, the

infinitesimal virtual rotations can be always combined as a vector (this will be shown later

in this appendix). Thus, in general, there is no rotation vector →ϑ such that its variation is

a virtual rotation vector →δϑ [98].

For the case of a single rotation about a fixed axis, the relation between the variation

of the rotation matrix and the variation of the rotation angle or virtual rotation will be

obtained as (the variation of the rotation axis is assumed to vanish):

∆ab
∼C(→s, ϑ) ab ∼C

T(→s, ϑ) = ab
∼C
′(→s, ϑ) δϑ ab

∼C
T(→s, ϑ)

= ab
∼C
′(→s, ϑ) ab ∼C

T(→s, ϑ) δϑ

=
=
s× δϑ =

(
–
s δϑ

)× (B.29)

Therefore, in the general example of successive rotations ϑi about axes
→
si , by using

Eq. (B.29) the following relations will be derived for the variation of the rotation ma-

trix and the virtual rotation vector:

∆ ∼C = ∆
∼
C1 ∼
C2 ∼
C3 +

∼
C1 ∆

∼
C2 ∼
C3 +

∼
C1 ∼
C2 ∆

∼
C3 (B.30)
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a
=
δϑ× = ∆ ∼C ∼C

T = ∆ ∼C
(
∼
C3

T

∼
C2

T

∼
C1

T

)
= ∆

∼
C1 ∼
C1

T +
∼
C1 ∆

∼
C2 ∼
C2

T

∼
C1

T +
∼
C1 ∼
C2 ∆

∼
C3 ∼
C3

T

∼
C2

T

∼
C1

T

=
(

–
s1 δϑ1

)×
+
(
∼
C1

–
s2 δϑ2

)×
+
(
∼
C1 ∼
C2

–
s3 δϑ3

)× (B.31)

a
–
δϑ =

–
s1 δϑ1 +

∼
C1

–
s2 δϑ2 +

∼
C1 ∼
C2

–
s3 δϑ3 (B.32)

b
–
δϑ = ∼C

T a
–
δϑ =

∼
C3

T

∼
C2

T

–
s1 δϑ1 +

∼
C3

T

–
s2 δϑ2 +

–
s3 δϑ3 (B.33)

Note that in the above equations δϑi is the ith infinitesimal virtual rotation around axis
→
si

and not the ith element of the virtual rotation component matrix
–
δϑ.

At the end of this section, it is useful to define the variation of a variable with respect

to a frame as the variation of the variable description in that frame, i.e.:

a∆z = ∆
(
az
)

= ∆az

b∆z = ∆
(
bz
)

= ∆bz
(B.34)

In this way, having the virtual rotation vector of Fb with respect to Fa, i.e. having →δϑ, the

following relations can be obtained for variations of a vector →v and a dyadic ↔d:

a∆→v = b∆→v + →δϑ×→v = b∆→v + ↔δϑ
× ·→v

a∆↔d = b∆↔d+ ↔δϑ
× ·↔d−↔d · ↔δϑ

×
(B.35)

which are derived by considering the following relations:

∆
(
a
–
v
)

= ∆
(
∼C

b
–
v
)

= ∼C∆
(
b
–
v
)

+ ∆ ∼C
b
–
v

= ∼C∆
(
b
–
v
)

+ ∆ ∼C ∼C
T

∼C
b
–
v

= ∼C∆
(
b
–
v
)

+ a
=
δϑ× a

–
v

(B.36)

∆
(
a
=
d
)

= ∆
(
∼C

b
=
d ∼C

T

)
= ∼C∆

(
b
=
d
)
∼C

T + ∆ ∼C
b
=
d ∼C

T + ∼C
b
=
d∆ ∼C

T

= ∼C∆
(
b
=
d
)
∼C

T + ∆ ∼C ∼C
T

∼C
b
=
d ∼C

T + ∼C
b
=
d ∼C

T

∼C∆ ∼C
T

= ∼C∆
(
b
=
d
)
∼C

T + a
=
δϑ× a

=
d− a

=
d a

=
δϑ×

(B.37)
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B.5 Calculus of variations

As a field of mathematics, the calculus of variations is a very useful tool, or technique

of optimization, which deals with extremizing an integral involving unknown functions.

It forms the basis of Hamilton’s principle utilized in this thesis for dynamic modeling of

gyroelastic systems where rotational displacements play a central role.

Derivation of the virtual work expression is one of the steps when Hamilton’s principle

is employed for dynamic modeling. Assuming that, in a dynamic problem containing

rotational displacements, the rotational displacement at an arbitrary point is described as

a rotation matrix ∼C from a rotating frame Fb to a fixed frame Fa and the moment applied

at the point is →m, the virtual work δW done by the moment can be expressed as:

δW = →δϑ · →m = b
–
δϑT b

–
m = a

–
δϑT a

–
m (B.38)

where virtual rotation vector →δϑ is calculated using Eq. (B.27).

Also, when utilizing Hamilton’s principle in dynamic problems containing rotational

displacements, important variational terms of the following general forms may appear

during the procedure:

∆A =

∫
t

a∆→w ·→v dt =

∫
t

∆
(
a

–
wT

)
a
–
v dt

∆A =

∫
t

b∆→w ·→v dt =

∫
t

∆
(
b

–
wT

)
b
–
v dt

(B.39)

where →v is a general vector, and a∆→w and b∆→w are variations of the angular velocity

vector (not virtual angular velocity vectors). Such variational terms can be handled by

relating the variation of the angular velocity vector to the virtual rotation vector and its

time derivative.

The desired expressions for the variation of the angular velocity vector can be obtained

by taking the variation of the relations given by Eq. (B.15) which results in:

∆
(
a

=
w×
)

= ∆ ∼Ċ ∼C
T + ∼Ċ∆ ∼C

T =
d

dt

(
∆ ∼C ∼C

T

)
−∆ ∼C ∼Ċ

T

+ ∼Ċ∆ ∼C
T

∆
(
b
=
w×
)

= ∆ ∼C
T

∼Ċ + ∼C
T ∆ ∼Ċ =

d

dt

(
∼C

T ∆ ∼C
)
− ∼Ċ

T

∆ ∼C + ∆ ∼C
T

∼Ċ

(B.40)
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Recalling that the rotation matrix is orthogonal and using Eq. (B.27), the expressions can

be rewritten as:

∆
(
a

=
w×
)

=
d

dt

(
a

=
δϑ×

)
−∆ ∼C ∼C

T

∼C ∼Ċ
T

+ ∼Ċ ∼C
T

∼C∆ ∼C
T

=
d

dt

(
a

=
δϑ×

)
+ a

=
δϑ× a

=
w× − a

=
w× a

=
δϑ×

=
d

dt

(
a

=
δϑ×

)
−
(
a

=
w× a

–
δϑ
)×

∆
(
b
=
w×
)

=
d

dt

(
b

=
δϑ×

)
− ∼Ċ

T

∼C ∼C
T ∆ ∼C + ∆ ∼C

T

∼C ∼C
T

∼Ċ

=
d

dt

(
b

=
δϑ×

)
+ b

=
w× b

=
δϑ× − b

=
δϑ× b

=
w×

=
d

dt

(
b

=
δϑ×

)
+
(
b
=
w× b

–
δϑ
)×

(B.41)

or more simply:

∆
(
a

–
w
)

=
d

dt

(
a

–
δϑ
)
− a

=
w× a

–
δϑ

∆
(
b

–
w
)

=
d

dt

(
b

–
δϑ
)

+ b
=
w× b

–
δϑ

(B.42)

which can also be written in the vector form as:

a∆→w =
ad

dt

(
→δϑ
)
− ↔w

× · →δϑ =
bd

dt

(
→δϑ
)

b∆→w =
bd

dt

(
→δϑ
)

+ ↔w
× · →δϑ =

ad

dt

(
→δϑ
) (B.43)

In Eq. (B.43) the vectors
ad

dt

(
→δϑ
)

and
bd

dt

(
→δϑ
)

can be considered as the virtual angular

velocity vectors [47], which are different in the meaning from the variations of the angular

velocity vector a∆→w and b∆→w. In fact, whereas the virtual velocity vectors must obey the

problem BCs, the variations of the angular velocity vector can violate them.

Consequently, the variational terms of the general form given in Eq. (B.39) can be
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rewritten as:

∆A =

∫
t

a∆→w ·→v dt =

∫
t

(ad
dt

(
→δϑ
)
− ↔w

× · →δϑ
)
·→v dt =

∫
t

bd

dt

(
→δϑ
)
·→v dt

∆A =

∫
t

b∆→w ·→v dt =

∫
t

(bd
dt

(
→δϑ
)

+ ↔w
× · →δϑ

)
·→v dt =

∫
t

ad

dt

(
→δϑ
)
·→v dt

(B.44)

which utilizing the integration by parts, take the following form:

∆A =

∫
t

a∆→w ·→v dt = −
∫
t

→δϑ ·
(ad
dt

(
→v
)
− ↔w

× ·→v
)
dt+

[
→δϑ ·→v

]t2
t1

= −
∫
t

→δϑ ·
bd

dt

(
→v
)
dt+

[
→δϑ ·→v

]t2
t1

∆A =

∫
t

b∆→w ·→v dt = −
∫
t

→δϑ ·
(bd
dt

(
→v
)

+ ↔w
× ·→v

)
dt+

[
→δϑ ·→v

]t2
t1

= −
∫
t

→δϑ ·
ad

dt

(
→v
)
dt+

[
→δϑ ·→v

]t2
t1

(B.45)

In the end, it is noteworthy that for scalar terms of the form:

A =

∫
t

→w ·→v dt (B.46)

its variation can be derived by two approaches as:

∆A = a∆A =

∫
t

a∆→w ·→v dt+

∫
t

→w ·
a∆→v dt (B.47)

and:

∆A = b∆A =

∫
t

b∆→w ·→v dt+

∫
t

→w ·
b∆→v dt (B.48)

The first approach is specially desired for the case:

a∆→v = 0 (B.49)
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where it will reduce to:

∆A = a∆A =

∫
t

a∆→w ·→v dt (B.50)

Analogously, the second approach is more pleasing for the case:

b∆→v = 0 (B.51)

and will simplify to:

∆A = b∆A =

∫
t

b∆→w ·→v dt (B.52)

B.6 Infinitesimal rotation

Now consider rotation problems dealing with infinitesimal angular displacements (i.e. in-

finitesimal rotations or microrotations) where a first-order approximation is desired. For

such problems the rotation matrix, described in terms of Euler axis/angle parameters as

given by Eq. (B.4), can be approximated as:

ab
∼C = ∼C(→s, ϑ) =

=
1+ ϑ

=
s× (B.53)

to first order in ϑ. The orthogonality of this rotation matrix can be tested by computing:

ab
∼C

ab
∼C

T =
(

=
1+ ϑ

=
s×
)(

=
1− ϑ

=
s×
)

=
=
1− ϑ2

=
s×

=
s×

ab
∼C

T ab
∼C =

(
=
1− ϑ

=
s×
)(

=
1+ ϑ

=
s×
)

=
=
1− ϑ2

=
s×

=
s×

(B.54)

which differ from the identity matrix just by a (negligible) second-order term. Therefore,

to first order the infinitesimal rotation matrix is orthogonal.

In addition, for a rotation problem containing two infinitesimal rotations (
→
s1, ϑ1) and

(
→
s2, ϑ2), one can derive:

∼C(
→
s1, ϑ1) ∼C(

→
s2, ϑ2) =

(
=
1+ ϑ1

=
s1
×
)(

=
1+ ϑ2

=
s2
×
)

=
=
1+ ϑ1

=
s1
× + ϑ2

=
s2
× + ϑ1 ϑ2

=
s1
×

=
s2
×

∼C(
→
s2, ϑ2) ∼C(

→
s1, ϑ1) =

(
=
1+ ϑ2

=
s2
×
)(

=
1+ ϑ1

=
s1
×
)

=
=
1+ ϑ2

=
s2
× + ϑ1

=
s1
× + ϑ2 ϑ1

=
s2
×

=
s1
×

(B.55)
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which are equal to first order. Therefore, multiplication of infinitesimal rotation matrices

is commutative to first order, that is:

∼C(
→
s1, ϑ1) ∼C(

→
s2, ϑ2) = ∼C(

→
s2, ϑ2) ∼C(

→
s1, ϑ1) (B.56)

Equivalently, the order in which infinitesimal rotations occur is irrelevant and infinitesimal

rotations can be regarded as vectors (as they are describable by a rotation angle as a

magnitude and a rotation axis as a direction, and also obey the parallelogram addition

law). For such a case (when rotations are infinitesimal and a first-order approximation is

used) the distinction between different rotation parameter sets (e.g. Euler axis/angle and

Euler angles) tends to vanish [95].

Recalling the relation in Eq. (B.53), it is useful to define the infinitesimal rotation (or

microrotation) vector as:

→ϑ = ϑ→s

a
–
ϑ = b

–
ϑ = ϑ

–
s =

[
ϑ s1 ϑ s2 ϑ s3

]T

=
[
ϑ1 ϑ2 ϑ3

]T

=
–
ϑ

(B.57)

where ϑi represents the infinitesimal rotation of frame Fb with respect to Fa around axis

→
ai or

→
bi . Afterwards, for microrotation problems, the rotation matrix from Fb to Fa can

be written as:
ab
∼C =

=
1+

=
ϑ× (B.58)

and inversely:
ba
∼C =

=
1−

=
ϑ× (B.59)

Also, for a vector →v and a dyadic ↔d:

a
–
v = b

–
v +

=
ϑ× b

–
v

a
=
d = b

=
d+

=
ϑ× b

=
d− b

=
d

=
ϑ×

a
=
v× = b

=
v× +

=
ϑ× b

=
v× − b

=
v×

=
ϑ×

(B.60)

Utilizing Eqs. (B.15) and (B.17), it can be shown that for microrotation problems the

angular velocity and acceleration of frame Fb with respect to frame Fa are:

→w = →ϑ̇

a
–
w = b

–
w =

–
w =

–
ϑ̇

(B.61)
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where:

→ϑ̇ =
ad

dt

(
→ϑ
)

=
bd

dt

(
→ϑ
)

–
ϑ̇ =

d

dt

(
–
ϑ
)

=
[
ϑ̇1 ϑ̇2 ϑ̇3

]T
(B.62)

and:

→̇w = →ϑ̈

a
–̇
w = b

–̇
w =

–̇
w =

–
ϑ̈

(B.63)

where:

→ϑ̈ =
a
d2

dt2

(
→ϑ
)

=
b
d2

dt2

(
→ϑ
)

–
ϑ̈ =

d2

dt2

(
–
ϑ
)

=
[
ϑ̈1 ϑ̈2 ϑ̈3

]T
(B.64)

Note that here, the time integral of the angular velocity vector →w is meaningful and is the

same as the microrotation vector →ϑ. Additionally, for the time derivative of a vector→v and

a dyadic ↔d, one can get:

ad

dt

(
→v
)

=
bd

dt

(
→v
)

+↔ϑ̇
× ·→v

ad

dt

(
↔d
)

=
bd

dt

(
↔d
)

+↔ϑ̇
× ·↔d−↔d ·↔ϑ̇

×
(B.65)

The virtual rotation vector for the case of microrotations, i.e. →δϑ, can be derived from

Eq. (B.27) as:

→δϑ = ∆
(
→ϑ
)

a
–
δϑ = b

–
δϑ =

–
δϑ = ∆

(
–
ϑ
) (B.66)

where:
∆
(
→ϑ
)

= a∆→ϑ = b∆→ϑ

∆
(

–
ϑ
)

= ∆
( [

ϑ1 ϑ2 ϑ3

]T )
=
[
δϑ1 δϑ2 δϑ3

]T (B.67)

Besides, the following relations can be obtained from Eqs. (B.43) and (B.45) for the case

of microrotation problems (which might be useful when applying the calculus of variations
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to them):

a∆→w =
ad

dt

(
→δϑ
)
−↔ϑ̇

× · →δϑ =
bd

dt

(
→δϑ
)

b∆→w =
bd

dt

(
→δϑ
)

+↔ϑ̇
× · →δϑ =

ad

dt

(
→δϑ
) (B.68)

∆A =

∫
t

a∆→w ·→v dt = −
∫
t

→δϑ ·
(ad
dt

(
→v
)
−↔ϑ̇

× ·→v
)
dt+

[
→δϑ ·→v

]t2
t1

= −
∫
t

→δϑ ·
bd

dt

(
→v
)
dt+

[
→δϑ ·→v

]t2
t1

∆A =

∫
t

b∆→w ·→v dt = −
∫
t

→δϑ ·
(bd
dt

(
→v
)

+↔ϑ̇
× ·→v

)
dt+

[
→δϑ ·→v

]t2
t1

= −
∫
t

→δϑ ·
ad

dt

(
→v
)
dt+

[
→δϑ ·→v

]t2
t1

(B.69)

Considering Eq. (B.68), it is noteworthy that whereas Eqs. (B.61) and (B.66) hold true

for microrotation problems, i.e. a
–
w = b

–
w =

–
ϑ̇ and a

–
δϑ = b

–
δϑ =

–
δϑ, the variation of the

angular velocity in frame Fa is not the same as that in frame Fb, i.e. a∆→w 6=
b∆→w. In fact,

considering:

a∆→w = b∆→w =
ad

dt

(
→δϑ
)

=
bd

dt

(
→δϑ
)

= →δϑ̇

will result in missing some important terms through the variational calculus procedure.

Consequently, to prevent from any confusion when dealing with microrotations, where the

angular velocity vector →w is substituted with vector →ϑ̇ , the following important relations

are introduced and will be used:

a
∆→ϑ̇ =

ad

dt

(
→δϑ
)
−↔ϑ̇

× · →δϑ =
bd

dt

(
→δϑ
)
6=

ad

dt

(
→δϑ
)

b
∆→ϑ̇ =

bd

dt

(
→δϑ
)

+↔ϑ̇
× · →δϑ =

ad

dt

(
→δϑ
)
6=

bd

dt

(
→δϑ
) (B.70)

In the end, the results obtained in this section for microrotation problems are summa-

rized in Table B.1. The relations given in this table correspond to the infinitesimal angular

displacement of a frame Fb with respect to another frame Fa .
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Table B.1: A summary of the useful relations for microrotation problems.

Relation Vector Form Matrix Form (in Fa or Fb)

Rotation Vector →ϑ –
ϑ =

[
ϑ1 ϑ2 ϑ3

]T

Rotation Tensor

(Rotation Dyadic) ↔ϑ
×

=
ϑ× =

 0 −ϑ3 ϑ2

ϑ3 0 −ϑ1

−ϑ2 ϑ1 0


Rotation Matrix not applicable

ab
∼C =

=
1+

=
ϑ×

ba
∼C =

=
1−

=
ϑ×

Angular Velocity

Vector →w
→ϑ̇ =

ad

dt

(
→ϑ
)

=
bd

dt

(
→ϑ
)

–
ϑ̇ =

d

dt

(
–
ϑ
)

=
[
ϑ̇1 ϑ̇2 ϑ̇3

]T

Angular Acceleration

Vector →̇w
→ϑ̈ =

ad

dt

(
→ϑ̇
)

=
bd

dt

(
→ϑ̇
)

–
ϑ̈ =

d

dt

(
–
ϑ̇
)

=
[
ϑ̈1 ϑ̈2 ϑ̈3

]T

Virtual Rotation

Vector →δϑ = a∆→ϑ = b∆→ϑ –
δϑ = ∆

(
–
ϑ
)

=
[
δϑ1 δϑ2 δϑ3

]T

Variation of Angular

Velocity Vector

a
∆→ϑ̇ =

bd

dt

(
→δϑ
)

=
ad

dt

(
→δϑ
)
−↔ϑ̇

× · →δϑ
b
∆→ϑ̇ =

ad

dt

(
→δϑ
)

=
bd

dt

(
→δϑ
)

+↔ϑ̇
× · →δϑ

a
∆

–
ϑ̇ =

bd

dt

(
–
δϑ
)

=
ad

dt

(
–
δϑ
)
−

=
ϑ̇
×

–
δϑ

b
∆

–
ϑ̇ =

ad

dt

(
–
δϑ
)

=
bd

dt

(
–
δϑ
)

+
=
ϑ̇
×

–
δϑ

Miscellaneous
a
∆→ϑ̇ 6=

b
∆→ϑ̇,

ad

dt

(
→δϑ
)
6=

bd

dt

(
→δϑ
)

a
∆

–
ϑ̇ 6= b

∆
–
ϑ̇,

ad

dt

(
–
δϑ
)
6=

bd

dt

(
–
δϑ
)
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B.7 Discrepancies

When dealing with infinitesimal rotations some references suggested and used a second-

order approximation while regarding the infinitesimal rotations as vectors [2,23,26–28,30,

31,33,34,95,99]. However, it will be shown in this section that when using a second-order

approximation the infinitesimal rotations cannot be defined as vectors. More precisely,

infinitesimal rotations do not obey the parallelogram addition law if the second-order terms

are taken into account.

The rotation matrix given by Eq. (B.4) can be written to second order as:

ab
∼C = ∼C(→s, ϑ) =

=
1+ ϑ

=
s× +

1

2
ϑ2

=
s×

=
s× (B.71)

which is orthogonal to second order as matrices:

ab
∼C

ab
∼C

T =
(

=
1+ ϑ

=
s× +

1

2
ϑ2

=
s×

=
s×
)(

=
1− ϑ

=
s× +

1

2
ϑ2

=
s×

=
s×
)

=
=
1+

1

4
ϑ4

=
s×

=
s×

=
s×

=
s×

(B.72)

and:
ab
∼C

T ab
∼C =

(
=
1
ϑ =
s× +

1

2
ϑ2

=
s×

=
s×
)(

=
1+ ϑ

=
s× +

1

2
ϑ2

=
s×

=
s×
)

=
=
1+

1

4
ϑ4

=
s×

=
s×

=
s×

=
s×

(B.73)

differ from the identity matrix just by a (negligible) fourth order term.

However, for a rotation problem containing two infinitesimal rotations (
→
s1, ϑ1) and

(
→
s2, ϑ2), one can derive (to second order):

∼C(
→
s1, ϑ1) ∼C(

→
s2, ϑ2) =

=
1+ ϑ1

=
s1
× +

1

2
ϑ2

1 =
s1
×

=
s1
× + ϑ2

=
s2
× +

1

2
ϑ2

2 =
s2
×

=
s2
×

+ ϑ1 ϑ2
=
s1
×

=
s2
×

∼C(
→
s2, ϑ2) ∼C(

→
s1, ϑ1) =

=
1+ ϑ2

=
s2
× +

1

2
ϑ2

2 =
s2
×

=
s2
× + ϑ1

=
s1
× +

1

2
ϑ2

1 =
s1
×

=
s1
×

+ ϑ2 ϑ1
=
s2
×

=
s1
×

(B.74)

which are not equal to second order as in general:

=
s1
×

=
s2
× 6=

=
s2
×

=
s1
× (B.75)

291



Therefore, multiplication of infinitesimal rotation matrices is not commutative to second

order, that is:

∼C(
→
s1, ϑ1) ∼C(

→
s2, ϑ2) 6= ∼C(

→
s2, ϑ2) ∼C(

→
s1, ϑ1) (B.76)

Equivalently, the order in which infinitesimal rotations are applied is important and in-

finitesimal rotations cannot be considered as vectors (as they do not obey the parallelogram

addition law).

It is worthwhile to note that to the best of this author’s knowledge in the aforementioned

references a simple incomplete variational calculus was considered for derivation of the

dynamic equations from the system Lagrangian. However, by using this simple incomplete

variational formulation where:

a∆→w = b∆→w =
ad

dt

(
→δϑ
)

=
bd

dt

(
→δϑ
)

= →δϑ̇

some important terms will be missed from the dynamic equations provided a first-order

approximation in infinitesimal rotations is used. This fact induced the authors to, while

treating the infinitesimal rotations as vectors, utilize a second-order approximation in in-

finitesimal rotations (which is inconsistent). Recall that a more appropriate approach is

using a first-order approximation for the infinitesimal rotations, regarding them as vec-

tors, and using the complete variational formulation, derived in the previous section and

summarized in Table B.1, for handling the variational terms including the infinitesimal

rotations.

292



Appendix C

Numerical Analysis of Micropolar

Elastic Beams

C.1 Introduction

Despite the classical gyrobeams which are based on the well-known classical torsion and

bending theories (i.e. Duleau torsion theory [50] and Euler-Bernoulli or Timoshenko bend-

ing theory), the micropolar gyrobeams are founded on newly developed (unfamiliar) mi-

cropolar torsion and bending theories. Study of these new theories through examination of

micropolar elastic beams (carrying no gyricity) is accordingly worth a few pages of this text.

This examination, including a comparison of micropolar and classical elastic beams, lays

a groundwork for a better understanding of the more complicated micropolar gyrobeams

and their differences with the classical gyrobeams.

Due to the general lack of analytical solutions for static and dynamic problems of

micropolar elastic beams, the 3D micropolar elastic beams are examined numerically via

two sets of examples. The first set of numerical examples is aimed at focusing on the

static behavior of micropolar elastic beams where this behavior is compared to the static

behavior of classical elastic beams. The second set of examples compares the dynamic

behavior of micropolar and classical elastic beams in terms of their natural frequencies
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and mode shapes. The examples also reveal the effects of micropolar elastic constants on

different behaviors of micropolar beams.

In the designed numerical examples the micropolar beams will be examined only against

the classical beams which employ the Timoshenko theory to predict the bending deforma-

tions. The comparison of micropolar elastic beams with those classical elastic beams uti-

lizing the Euler-Bernoulli bending theory will be made easily as the relationships between

the Timoshenko and Euler-Bernoulli bending theories are extensively addressed in the lit-

erature. Henceforth, the term “classical beams” in this appendix will exclusively refer to

those beams which are modeled employing the Timoshenko bending theory in addition to

the simple longitudinal deformation theory (Hooke’s law) and the Duleau torsion theory.

The term “micropolar beams”, on the other hand, refer to those beams founded on the

micropolar torsion and bending theories (developed in this text) along with the simple

longitudinal deformation theory.

The 3D micropolar and classical elastic beams selected for numerical analyses are clas-

sically cantilevered uniform beams along the first axis of the inertial reference frame (the

principal axes of beams’ cross sections are assumed to be parallel to the second and third

coordinate axes of the inertial frame). The beams’ properties (geometries, inertia densities,

and elastic constants) are assumed constant over the beam length. The FEM-based nu-

merical models of these beams are implemented in MATLAB® [66] using the parameters

summarized in Tables C.1 and C.2.

The beams have four modes of deformation, i.e. longitudinal displacement along the
cx̂1 axis, torsional rotation around the cx̂1 axis, bending deformation in the cx̂1

cx̂2 plane,

and bending deformation in the cx̂1
cx̂3 plane; in the absence of gyricity terms these are

decoupled and a full comparison of the micropolar and classical elastic beam models can

be done in four stages, focusing only on one deformation mode at each stage. However,

since the two models predict the same longitudinal displacements (the governing equations

are identical) and the two bending modes in the cx̂1
cx̂2 and cx̂1

cx̂3 planes are similar, in

this appendix only the torsional rotation around the cx̂1 axis and bending deformations in

the cx̂1
cx̂2 plane are subjects of the analysis and comparison of micropolar and classical

elastic beams.
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Table C.1: Summary of the main dimensionless parameters used in the numerical microp-

olar and classical elastic beam models.

Parameter Value(s)

R̂3 = R̂2 =
√

2 R̂1 10, 50, and 250

µ̂ 3
8

kt 1

ks2
= ks3

1

log(κ̂) [−10, 2]

log(γ̂) = log(β̂) [−10, 2]

ξ 1
2

ı̂V (b
=̂
ıV = ı̂V

=
1) 0 and 1× 10−6

Table C.2: Summary of the main FEM parameters used in the numerical micropolar and

classical elastic beam models.

Parameter Value

Element Type C0 four-node

Basis Functions cubic Lagrange polynomials

Number of Elements 16

Number of Nodes 49 (distributed evenly)

DOFs per Node 6 (for classical beams)

9 (for micropolar beams)

Longitudinal BCs fixed-free

Torsional BCs classical fixed-free

Bending BCs classical clamped-free
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C.2 Static analysis

The static equations of micropolar and classical beams can be obtained by simplifying the

micropolar and classical gyrobeam dynamic equations given by Eqs. (4.100) and (4.101)

(i.e. by eliminating the inertia and gyricity related terms). In this section the static

torsional deformations about the cx̂1 axis and static bending deformations in the cx̂1
cx̂2

plane are subjects of the comparison between micropolar and classical beam models. This

means that the following set of micropolar beam static equations:

ˆ̄m
L

1 = − kt µ̂ Î1 θ̄1, 1̂1̂ − κ̂ Î1

(
θ̄1, 1̂1̂ − 2 ξ ϑ̄1, 1̂1̂

)
+ 4 κ̂

(
θ̄1 − ϑ̄1

)
ˆ̄m
V

1 = − Ê ϑ̄1, 1̂1̂ + 2 ξ κ̂ Î1

(
θ̄1, 1̂1̂ − 2 ξ ϑ̄1, 1̂1̂

)
− 4 κ̂

(
θ̄1 − ϑ̄1

)
ˆ̄f
V

2 = − ks2
µ̂
(

ˆ̄u2, 1̂1̂ − θ̄3, 1̂

)
− κ̂

(
ˆ̄u2, 1̂1̂ + θ̄3, 1̂ − 2 ϑ̄3, 1̂

)
ˆ̄m
L

3 = − Î3 θ̄3, 1̂1̂ − ks2
µ̂
(

ˆ̄u2, 1̂ − θ̄3

)
+ κ̂

(
ˆ̄u2, 1̂ + θ̄3 − 2 ϑ̄3

)
ˆ̄m
V

3 = −
(
γ̂ + β̂

)
ϑ̄3, 1̂1̂ − 2 κ̂

(
ˆ̄u2, 1̂ + θ̄3 − 2 ϑ̄3

)
(C.1)

will be compared to the following set of classical beam static equations:

ˆ̄m
L

1 + ˆ̄m
V

1 = − kt µ̂ Î1 θ̄1, 1̂1̂

ˆ̄f
V

2 = − ks2
µ̂
(

ˆ̄u2, 1̂1̂ − θ̄3, 1̂

)
ˆ̄m
L

3 + ˆ̄m
V

3 = − Î3 θ̄3, 1̂1̂ − ks2
µ̂
(

ˆ̄u2, 1̂ − θ̄3

) (C.2)

after imposing the classically cantilevered BCs (as described in Table C.2) on both.

The PDEs given by Eqs. (C.1) and (C.2), may be compared in terms of their homo-

geneous form characteristic equations and characteristic roots which exemplify the PDEs

general homogeneous solution (without accounting for the BCs). Here, by rewriting the

first two relations of Eq. (C.1), corresponding to the micropolar beam torsion, as:

∼
Q̂ = ∼K̂1̂1̂ ∼̂

q
, 1̂1̂

+ ∼K̂ ∼̂
q (C.3)

where:

∼
Q̂ =

[
ˆ̄m
L

1
ˆ̄m
V

1

]T

∼̂
q =

[
θ̄1 ϑ̄1

]T
(C.4)
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∼K̂1̂1̂
=

 − (kt µ̂+ κ̂
)
Î1 2 ξ κ̂ Î1

2 ξ κ̂ Î1 −
(
Ê + 4 ξ 2 κ̂ Î1

)  (C.5)

∼K̂ =

[
4 κ̂ − 4 κ̂

− 4 κ̂ 4 κ̂

]
(C.6)

the characteristic equation of the micropolar beam torsion will be obtained as:

Î1

(
kt µ̂ Ê + κ̂ Ê + 4 ξ 2 kt µ̂ κ̂ Î1

)
r̂4 − 4 κ̂

(
kt µ̂ Î1 +

(
2 ξ − 1

)2

κ̂ Î1 + Ê
)
r̂2 = 0 (C.7)

which has four roots:

r̂1 = r̂2 = 0

r̂3 = − r̂4 = + 2

√√√√√√ κ̂
(
kt µ̂ Î1 +

(
2 ξ − 1

)2

κ̂ Î1 + Ê
)

Î1

(
kt µ̂ Ê + κ̂ Ê + 4 ξ 2 kt µ̂ κ̂ Î1

) (C.8)

Noting that the characteristic equation corresponding to the homogeneous classical torsion

PDE, i.e. the first relation of Eq. (C.2), is:

kt µ̂ Î1 r̂
2 = 0 (C.9)

with two repeated roots:

r̂1 = r̂2 = 0 (C.10)

the absolute value of the nonzero roots of the micropolar torsion characteristic equation

(or equivalently the positive characteristic root), given by the second relation of Eq. (C.8),

can be considered as an index for analysis of torsional behaviors in micropolar beams. It is

worth mentioning that the general homogeneous solution corresponding to the micropolar

and classical beam torsion problems respectively are:

∼̂
q = z1 + z2

cx̂1 + z3 exp(r̂3) + z4 exp(r̂4) (C.11)

and:

∼̂
q = z1 + z2

cx̂1 (C.12)
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where the reader’s attention is directed to the two extra terms in Eq. (C.11) that the

general homogeneous solution of the micropolar beam torsion has.

Analogously, the last three relations of Eq. (C.1), representing the micropolar beam

bending, can be rewritten as:

∼
Q̂ = ∼K̂1̂1̂ ∼̂

q
, 1̂1̂

+ ∼K̂1̂ ∼̂
q
, 1̂

+ ∼K̂ ∼̂
q (C.13)

where:

∼
Q̂ =

[
ˆ̄f
V

2
ˆ̄m
L

3
ˆ̄m
V

3

]T

∼̂
q =

[
ˆ̄u2 θ̄3 ϑ̄3

]T
(C.14)

∼K̂1̂1̂
=


−
(
ks2

µ̂+ κ̂
)

0 0

0 − Î3 0

0 0 −
(
γ̂ + β̂

)
 (C.15)

∼K̂1̂
=


0

(
ks2

µ̂− κ̂
)

2 κ̂

−
(
ks2

µ̂− κ̂
)

0 0

− 2 κ̂ 0 0

 (C.16)

∼K̂ =


0 0 0

0
(
ks2

µ̂+ κ̂
)
− 2 κ̂

0 − 2 κ̂ 4 κ̂

 (C.17)

The characteristic equation corresponding to these PDEs is:

Î3

(
ks2

µ̂+ κ̂
)(

γ̂ + β̂
)
r̂6 − 4 ks2

µ̂ κ̂
(
Î3 + γ̂ + β̂

)
r̂4 = 0 (C.18)

which has six roots:

r̂1 = r̂2 = r̂3 = r̂4 = 0

r̂5 = − r̂6 = + 2

√√√√√ ks2
µ̂ κ̂
(
Î3 + γ̂ + β̂

)
Î3

(
ks2

µ̂+ κ̂
)(

γ̂ + β̂
) (C.19)
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Considering the characteristic equation corresponding to the classical bending PDEs (the

last two relations of Eq. (C.2)), i.e.:

ks2
µ̂ Î3 r̂

4 = 0 (C.20)

and its four repeated roots:

r̂1 = r̂2 = r̂3 = r̂4 = 0 (C.21)

the positive characteristic root of the micropolar bending equations, given by the second

relation of Eq. (C.19), can be regarded as an index to examine the bending behavior of mi-

cropolar elastic beams. Again, note that the general homogeneous solution corresponding

to the micropolar and classical beam bending problems respectively are:

∼̂
q = z1 + z2

cx̂1 + z3
cx̂2

1 + z4
cx̂3

1 + z5 exp(r̂5) + z6 exp(r̂6) (C.22)

and:

∼̂
q = z1 + z2

cx̂1 + z3
cx̂2

1 + z4
cx̂3

1 (C.23)

where one should notice the two extra terms of the micropolar beam bending general

homogeneous solution given in Eq. (C.22).

Other indices for comparison of the static micropolar and classical beams can be the

relative torsional and bending deformations defined as the micropolar beam deformation

(q̂i)mp divided by the corresponding classical beam deformation (q̂i)cl (at a specific point

and under a certain type of loading). Here, the micropolar torsional rotations (θ̄1)mp and

(ϑ̄1)mp are compared against the classical torsional rotation (θ̄1)cl , the micropolar bending

rotations (θ̄3)mp and (ϑ̄3)mp are weighed against the classical bending rotation (θ̄3)cl, and the

micropolar bending displacement (ˆ̄u2)mp is divided by the classical bending displacement

(ˆ̄u2)cl ; all measured at the free end of the beams.

The positive characteristic root of the micropolar torsion r̂3 (given by the second relation

of Eq. (C.19)) vs. the dimensionless micropolar elastic constants γ̂ and κ̂ for three different

beam slenderness ratios is depicted in Figure C.1. Similarly the positive characteristic root

of the micropolar bending r̂5 is illustrated in Figure C.2. Note that the scales in these

figures are log-log-log and for each slenderness ratio a 2D contour plot and a 3D surface
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plot are provided; the 3D plot is obtained by looking at the 2D plot from a point over the

2D plot’s upper right corner. A detailed discussion of Figures C.1 and C.2 follows.

The relative torsional deformations, i.e. the relative plane rotation (θ̄1)mp

(θ̄1)cl
and relative

microrotation (ϑ̄1)mp

(θ̄1)cl
, at the beam tip (the free end) and under the action of an external

volume moment ˆ̄m
V

1 vs. the micropolar elastic constants are plotted in Figures C.3 and

C.4. Similar graphs for the case when the beams are subject to an external line moment

ˆ̄m
L

1 are shown in Figures C.5 and C.6. The relative bending deformations, i.e. the relative

displacement (ˆ̄u2)mp

(ˆ̄u2)cl
, relative plane rotation (θ̄3)mp

(θ̄3)cl
, and relative microrotation (ϑ̄3)mp

(θ̄3)cl
, mea-

sured at the beam tip vs. the micropolar elastic constants for different types of loading (i.e.

volume force ˆ̄f
V

2 , volume moment ˆ̄m
V

3 , and line moment ˆ̄m
L

3) are shown in Figures C.7–C.15.

In Figures C.3–C.15 note that scales are log-log-percentage. Again, for each slenderness

ratio a 2D contour plot and a 3D surface plot are provided; the 3D plot is obtained by

looking at the 2D plot from a point over the 2D plot’s upper right corner. A more detailed

discussion of these figures is reserved for later in this appendix.

Considering the beam with medium thickness or slenderness ratio (i.e. R̂3 = 50), its

complete torsional and bending deformations under different types of loading are shown

in Figures C.16–C.20. The six graphs included in each figure are obtained considering

one classical beam model and five micropolar beam models. The micropolar beam models

differ in the values used for the micropolar elastic constants κ̂ and γ̂ (recall that based

on Table C.1 β̂ = γ̂ and ξ = 1
2

). The magnitude of the applied load in each figure (set

of six plots) is selected such that it results in a maximum torsional rotation or bending

(nondimensional) displacement of 0.3 in the classical beam model.

Noting the noisy behavior of the contours in the lower right corner of the 2D plots in

some of the figures, e.g. Figures C.3, C.9, and C.10, it is wise to check the finite element

stiffness matrices for any possible numerical singularity or ill-conditionedness in that area

(i.e. where κ̂� 1and γ̂ � 1). Here, the 1-norm condition number of the micropolar beams’

finite element stiffness matrix (K
∼K)mp against the micropolar elastic constants κ̂ and γ̂ is

plotted in Figure C.21 (alike the characteristic root figures scales are log-log-log and there

are two plots for each slenderness ratio). Based on the accuracy of the MATLAB® utilized

for numerical calculations of this thesis (εM = 2.22× 10−16 [66]), a condition number close
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to 1
εM
≈ 5×1015 implies that numerical errors may be included in the results corresponding

to that area and those results are unreliable.

While a detailed discussion of the figures is reserved for later (after each set of figures),

a general rule in all of these figures is that the dimensionless slenderness ratio R̂3 can be a

measure of the beam thickness assuming that the beam length does not change from one

plot to another. The dimensionless micropolar constant κ̂ represents the extent of coupling

between micropolar and classical deformation modes (or coupling between micropolar and

classical stiffnesses). Also the dimensionless micropolar constant γ̂ is a measure of the

significance of micropolar deformations relative to classical deformations (or a measure

of the micropolar stiffness relative to the classical stiffness as well as a measure of “size

effects” significance). See Eqs. (4.82) and (4.80) for definitions of R̂3 , κ̂, and γ̂ .

More precisely, in the upper left quarter of the 2D plots due to a relatively large κ̂ the

micropolar deformations are coupled to the classical deformations and due to a relatively

small γ̂ the classical modes are dominant and characterize the beam total deformations

(micropolar deformations follow the classical deformations). In the upper left quarter of

the 2D plots the coupling between micropolar and classical deformations is maintained due

to a relatively large κ̂, however a relatively large γ̂ makes the micropolar modes dominant

over the classical modes and the beam total deformation is characterized by the micropolar

modes (classical deformations follow the micropolar deformations). In the lower left and

right quarters of the 2D plots (or more exactly the whole lower half of the 2D plots) the

coupling between micropolar and classical modes weakens due to a relatively small κ̂ and

therefore the micropolar constant γ̂ loses its meaning as a measure of the micropolar to

classical relative stiffness. In this case, the contributions of the micropolar and classical

modes into the beam total deformations depend on the relative values of κ̂ and γ̂ and also

the type of external loads and boundary conditions (e.g. are they directly applied to the

micropolar or classical DOFs?). The micropolar beam models with small κ̂ can be called

(analytically) singular due to an ill-conditioned stiffness operator which cannot guarantee

the continuity of the beam as just one continuous system (this will be explained in more

detail later in this appendix). The values of κ̂ and γ̂ at which the transition between

these states occurs are dependent on the beam’s thickness or the beam’s slenderness ratio

represented by R̂3 .
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Figure C.1: Micropolar torsion positive characteristic root r̂3 vs. micropolar elastic con-

stants.
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Figure C.2: Micropolar bending positive characteristic root r̂5 vs. micropolar elastic con-

stants.
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The nonzero torsion and bending characteristic roots are the spirit of the micropolar

torsion and bending modes (they do not have a correspondent in the classical torsion and

bending modes) and characterize the micropolar modes. Moreover, the micropolar modes

are mainly related to the material microstructure and are expected to work similarly in tor-

sion and bending. Therefore, one can expect to see comparable behaviors when examining

the nonzero characteristic roots corresponding to the torsion and bending modes. However,

for large κ̂ and small γ̂ the non-dominant micropolar modes are coupled to the dominant

classical modes which have different natures in torsion and bending (the micropolar de-

formations will follow the classical torsional and bending deformations). Consequently,

the nonzero characteristic roots of torsion and bending modes have different trends in the

region where κ̂ is large and γ̂ is small. For other regions where κ̂ is small or γ̂ is large the

nonzero torsion and bending characteristic roots act analogously.

Comparing the corresponding plots of Figures C.1 and C.2, one can notice that except

for the upper left quarter of the 2D plots (i.e. where κ̂ > 1× 10−4 and γ̂ < 1× 10−4) the

micropolar torsion and bending deformation modes behave similarly, that is, the nonzero

characteristic roots of micropolar torsion and bending modes have analogous trends; this

is in agreement with the above-mentioned theoretical observation.
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Figure C.3: Relative torsional plane rotation (θ̄1)mp/(θ̄1)cl of micropolar beams under

volume moment ˆ̄m
V

1 vs. micropolar elastic constants.
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Figure C.4: Relative torsional microrotation (ϑ̄1)mp/(θ̄1)cl of micropolar beams under vol-

ume moment ˆ̄m
V

1 vs. micropolar elastic constants.
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Figure C.5: Relative torsional plane rotation (θ̄1)mp/(θ̄1)cl of micropolar beams under line

moment ˆ̄m
L

1 vs. micropolar elastic constants.
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Figure C.6: Relative torsional microrotation (ϑ̄1)mp/(θ̄1)cl of micropolar beams under line

moment ˆ̄m
L

1 vs. micropolar elastic constants.
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In Figures C.3–C.6 the torsional deformations of micropolar beams relative to the tor-

sional deformations of classical beams are shown. Since the beams are under the same

external load and the deformations are inversely proportional to the stiffness, they can

also represent the classical stiffness relative to the micropolar stiffness.

The first point in the figures is that in the region where κ̂ is very small and γ̂ is very large

(the lower right corner of the 2D plots) the results are not reliable; referring to Figure C.21,

in this region the FEM stiffness matrix of micropolar beams is ill-conditioned. Numerical

errors are sources of the noisy behavior seen in Figures C.3 and C.6.

As the next point one can notice that in the set of six plots in each figure, the region,

where the micropolar effects are observable (in the upper right quarter of the 2D plots),

becomes larger for thinner beams with larger slenderness ratios R̂3 (i.e. in the bottom

plots of each set of six). Also in each plot, a larger γ̂ which for constant slenderness ratio

and constant material properties will correspond to a smaller beam length (refer to the

definition of this dimensionless parameter in Eq. (4.80)) will result in a bigger difference

between the micropolar and classical beam models. These results are in agreement with

the size effects phenomenon known as a characteristic of the micropolar elasticity.

Also, as shown in Figure C.4, the micropolar beam torsion model predicts infinite

deformations when the micropolar beams are subject to an external volume moment and

the micropolar constant κ̂ is very small. Indeed, a very small micropolar constant κ̂

decouples the micropolar DOFs from the classical DOFs and if the micropolar constant

γ̂ , illustrating the micropolar stiffness or the connection between the micropolar DOFs,

is small or the micropolar DOFs are not constrained, an external volume moment which

is directly affecting the micropolar DOFs may result in infinite micropolar deformations.

The smaller singular region for the thinner beams implies that the coupling between the

classical and micropolar DOFs improves (i.e. becomes stronger) as the beam slenderness

ratio increases.

Finally, considering all the results obtained here, illustrating the relative torsional plane

rotation and microrotation under different types of loading, it can be concluded that the

results of micropolar and classical beam models will coincide in the region where κ̂ is large

and γ is small (i.e. in the upper left corner of the 2D plots).
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Figure C.7: Relative bending displacement (ˆ̄u2)mp/(ˆ̄u2)cl of micropolar beams under volume

force ˆ̄f
V

2 vs. micropolar elastic constants.

310



00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

3050

5070

70
90

90

R̂3 = 10

log(γ̂)

lo
g(
κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

R̂3 = 10

log(κ̂)

(θ̄
3
) m

p
/
(θ̄

3
) c

l
×

10
0

00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

10
10

30
30

50

50 50

70

70 70

90

90 90

R̂3 = 50

log(γ̂)

lo
g(
κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

R̂3 = 50

log(κ̂)

(θ̄
3
) m

p
/(
θ̄ 3
) c

l
×

10
0

00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

10

10 10

30

30 30

50

50 50

70

70 70

90

90

90 90

R̂3 = 250

log(γ̂)

lo
g
(κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

R̂3 = 250

log(κ̂)

(θ̄
3
) m

p
/(
θ̄ 3
) c

l
×

10
0

Figure C.8: Relative bending plane rotation (θ̄3)mp/(θ̄3)cl of micropolar beams under volume

force ˆ̄f
V

2 vs. micropolar elastic constants.
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Figure C.9: Relative bending microrotation (ϑ̄3)mp/(θ̄3)cl of micropolar beams under volume

force ˆ̄f
V

2 vs. micropolar elastic constants.
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Figure C.10: Relative bending displacement (ˆ̄u2)mp/(ˆ̄u2)cl of micropolar beams under vol-

ume moment ˆ̄m
V

3 vs. micropolar elastic constants.
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Figure C.11: Relative bending plane rotation (θ̄3)mp/(θ̄3)cl of micropolar beams under

volume moment ˆ̄m
V

3 vs. micropolar elastic constants.
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Figure C.12: Relative bending microrotation (ϑ̄3)mp/(θ̄3)cl of micropolar beams under vol-

ume moment ˆ̄m
V

3 vs. micropolar elastic constants.
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Figure C.13: Relative bending displacement (ˆ̄u2)mp/(ˆ̄u2)cl of micropolar beams under line

moment ˆ̄m
L

3 vs. micropolar elastic constants.
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Figure C.14: Relative bending plane rotation (θ̄3)mp/(θ̄3)cl of micropolar beams under line

moment ˆ̄m
L

3 vs. micropolar elastic constants.
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Figure C.15: Relative bending microrotation (ϑ̄3)mp/(θ̄3)cl of micropolar beams under line

moment ˆ̄m
L

3 vs. micropolar elastic constants.
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The micropolar to classical relative bending deformations under different types of load-

ing are shown in Figures C.7–C.15. Analogous to the torsion case, these figures also

illustrate the (classical to micropolar) relative stiffness of the beam models.

As expected, the figures corresponding to the bending deformations show the same

behaviors as those observed for torsional deformations. These behaviors are mentioned

briefly in the following.

The noisy behavior in the region where κ̂ is very small and γ̂ is very large, which can

be seen in Figures C.9–C.11 and Figure C.15, is due to an ill-conditioned FEM stiffness

matrix of micropolar beams and the presence of numerical precision errors in the results.

Keeping the material unchanged, for a larger slenderness ratio R̂3 or a larger dimension-

less micropolar constant γ̂, which correspond to a thinner or shorter beam, the micropolar

effects are more noticeable and the difference between micropolar and classical beam mod-

els is more evident. For very small κ̂ the micropolar bending model is singular and as

shown in Figure C.12 under the action of an external volume moment may result in an

infinite bending microrotation ϑ̄3 . However, the stronger coupling between the classical

and micropolar modes in thinner beams causes the singular region to become smaller as

the beam gets thinner.

Finally, one can conclude when considering all the figures of relative bending deforma-

tions that the micropolar and classical beam models predict the same deformations again

in the region where κ̂ is large and γ̂ is small (i.e. in the upper left corner of the 2D plots).
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Figure C.20: Bending deformations of beams with medium thickness under line moment

ˆ̄m
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The distribution of torsional and bending deformations along the beam length for a

classical beam model and five selected micropolar beam models are plotted in Figures C.16–

C.20. The five micropolar beam models which vary in the values assigned to the micropolar

constants κ̂and γ̂ correspond to the middle and corner points of the 2D plots in Figures C.3–

C.15. The previously mentioned static behaviors of the micropolar beam model (in both

torsion and bending), compared to the classical beam model, can be noticed more clearly

in these plots.

In each plot of Figures C.16–C.20 there are two scales, one on the left and one on

the right vertical axis. The vertical axes have their own legend, in the lower left and

right corners of the plots, which note the variables measured on each axis. In the torsional

deformation plots the left vertical axis quantifies the plane rotation θ̄1 and the right vertical

axis quantifies the microrotation ϑ̄1. In the plots illustrating the bending deformations, the

bending displacement ˆ̄u2 is measured on the left vertical axis and the plane rotation θ̄3 and

the microrotation ϑ̄3 are measured on the right vertical axis. Note that, as mentioned in

their legends (in the lower left and right corners), in the two bottom plots of Figures C.16

and C.19 the microrotations are scaled separately to be visible in the plotted frame.

In each figure (for both torsion and bending cases) the top left plot corresponds to the

classical beam model. This plot is a reference for examination of the selected micropolar

beam models. In the case of torsion it contains the torsional plane rotation θ̄1 and in the

case of bending it contains the bending displacement ˆ̄u2 and the bending plane rotation

θ̄3 . Note that in addition to these classical DOFs, the micropolar beam models include

the torsional and bending microrotations ϑ̄1 and ϑ̄3 in the torsion and bending cases,

correspondingly.

The top right plot of each figure is obtained from a micropolar beam model with medium

κ̂ and γ̂ which was represented as the middle point of the 2D plots in Figures C.3–C.15. As

can be seen in this micropolar beam model a medium κ̂ (i.e. κ̂ = 1× 10−4) is not enough

for complete coupling of the micropolar and classical DOFs. However, a medium γ̂ (i.e.

γ̂ = 1 × 10−4 ) is small enough to make the micropolar modes non-dominant and let the

classical deformations of this micropolar beam model be relatively comparable with those

obtained from the classical beam model.
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The middle left plot of each figure corresponds to a micropolar beam model with a large

κ̂ and a small γ̂ , shown in the upper left corner of the 2D plots in Figures C.3–C.15. As

noted previously, the results of this micropolar beam model match the classical beam model

results with an acceptable accuracy and the extra torsional and bending microrotations of

this model coincide (exactly) with the corresponding classical plane rotations.

The middle right plot in each figure, related to the upper right corner of the 2D plots in

Figures C.3–C.15, illustrates a micropolar beam model with large κ̂and γ̂. In this model the

large κ̂couples the micropolar and classical modes and the large γ̂ dominates the micropolar

mode. However, in Figures C.16–C.20 the external load is not large enough to generate

any significant micropolar deformations from this micropolar beam model (compared to

the classical deformations obtained from the classical beam model).

The bottom left plot in each figure corresponds to a micropolar beam model with

small κ̂ and γ̂ and was shown in the lower left corner of the 2D plots in Figures C.3–

C.15. This is the case which was wrongly expected by some authors to have micropolar

results coincide with the classical results (see Section A.8). However, as can be seen in

Figures C.16 and C.19 this micropolar beam model is singular (i.e. predicts torsional and

bending microrotations which are six to seven orders of magnitude larger than classical

deformations) in the presence of an external volume moment and cannot be considered

as the case where the micropolar and classical models are equivalent. In this micropolar

beam model there is not enough connection, or coupling, between the micropolar and

classical DOFs (due to a small κ̂) and whereas the model is able to reproduce the classical

deformations (due to a small γ̂ ), the micropolar deformations do not follow the classical

ones and may even tend to infinity. This model can correspond to a micropolar material

in which the grains or particles are free to rotate independent of the lattices or cells (or

the material structure as a whole).

Finally, in each figure the bottom right plot corresponds to a micropolar beam model

with a small κ̂ and a large γ̂ which was represented as the lower right corner of the 2D plots

in Figures C.3–C.15. As noted previously the results obtained from this model might be

erroneous due to an ill-conditioned FEM stiffness matrix. However, overall one can notice

the singular behavior of this model under the action of external volume moments which is

due to a loose connection between the micropolar and classical DOFs.
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Figure C.21: Condition number of FEM stiffness matrix (K
∼K)mp of micropolar beams vs.

micropolar elastic constants.
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The plots of Figure C.21 illustrate the variation of the 1-norm condition number of the

micropolar beams’ FEM stiffness matrix (including both torsional and bending stiffnesses)

vs. the variation of the micropolar elastic constants κ̂ and γ̂ . Note that the condition

number of the FEM stiffness matrix also depends on the number of nodes or elements and

these plots correspond to a FEM with 49 nodes or 16 elements.

For comparison, the 1-norm condition number of the classical beam FEM stiffness

matrix (using the same number of nodes) for different slenderness ratios is given in the

title of each plot. Here one should be careful not to expect the same condition number

from micropolar and classical beam models in the region where the models are supposed

to coincide. This is due to the fact that whereas the number of nodes is the same for both

micropolar and classical FEMs, their corresponding stiffness matrices have totally different

dimensions as they are based on different finite elements with different number of DOFs

per node (respectively nine and six DOFs per node in micropolar and classical FEM).

As mentioned previously, based on the plots shown in Figure C.21 and considering

the accuracy of numerical calculations in MATLAB®, all the results reported or plotted

previously for a micropolar beam model with roughly κ̂ < 1×10−8 and γ̂ > 1 are unreliable

as they might include numerical precision errors.

Whereas more study can be performed on the static behavior of micropolar elastic

beams (with different types of BCs and external loadings), this will not be pursued here and

this appendix will proceed with modal analysis and comparison of classically cantilevered

micropolar and classical elastic beams.

C.3 Dynamic analysis

To complement the static analysis addressed in the previous section, the dynamic analysis

of micropolar beams is presented in this section. This dynamic analysis is accomplished

through a natural frequencies and mode shapes comparison between the micropolar and

classical beam models.

Again, the comparison is done considering just the beam torsional deformations around

the cx̂1 axis and the beam bending deformations in the cx̂1
cx̂2 plane. In other words, the
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natural frequencies and mode shapes corresponding to the homogeneous micropolar beam

dynamic equations:

0 = Î1

◦◦

θ̄1 − kt µ̂ Î1 θ̄1, 1̂1̂ − κ̂ Î1

(
θ̄1, 1̂1̂ − 2 ξ ϑ̄1, 1̂1̂

)
+ 4 κ̂

(
θ̄1 − ϑ̄1

)
0 =

◦

Î
V

1 − Ê ϑ̄1, 1̂1̂ + 2 ξ κ̂ Î1

(
θ̄1, 1̂1̂ − 2 ξ ϑ̄1, 1̂1̂

)
− 4 κ̂

(
θ̄1 − ϑ̄1

)
0 =

◦◦
ˆ̄u2 − ks2

µ̂
(

ˆ̄u2, 1̂1̂ − θ̄3, 1̂

)
− κ̂

(
ˆ̄u2, 1̂1̂ + θ̄3, 1̂ − 2 ϑ̄3, 1̂

)
0 = Î3

◦◦

θ̄3 − Î3 θ̄3, 1̂1̂ − ks2
µ̂
(

ˆ̄u2, 1̂ − θ̄3

)
+ κ̂

(
ˆ̄u2, 1̂ + θ̄3 − 2 ϑ̄3

)
0 =

◦

Î
V

3 −
(
γ̂ + β̂

)
ϑ̄3, 1̂1̂ − 2 κ̂

(
ˆ̄u2, 1̂ + θ̄3 − 2 ϑ̄3

)
(C.24)

will be compared against the natural frequencies and mode shapes obtained from the

following homogeneous classical beam dynamic equations:

0 = Î1

◦◦

θ̄1 − kt µ̂ Î1 θ̄1, 1̂1̂

0 =
◦◦
ˆ̄u2 − ks2

µ̂
(

ˆ̄u2, 1̂1̂ − θ̄3, 1̂

)
0 = Î3

◦◦

θ̄3 − Î3 θ̄3, 1̂1̂ − ks2
µ̂
(

ˆ̄u2, 1̂ − θ̄3

) (C.25)

after considering the classically cantilevered BCs (as described in Table C.2) for both cases.

It is worth mentioning that analogous to the characteristic roots corresponding to the

homogeneous form of a set of PDEs (exemplifying the PDEs general homogeneous solution),

the natural frequencies and mode shapes obtained from the homogenized dynamic PDEs

(or dynamic equations) characterize the general dynamic solution of the PDEs exposed to

different I/BCs and external (time-varying) loadings. They also carry the BC information

with themselves (despite the characteristic roots which do not). Therefore, a comparison

of the natural frequencies and mode shapes would be enough for a fairly comprehensive

dynamic comparison between micropolar and classical beams.

Now recall that the static comparison of the previous section is based on the micropolar

to classical deformation ratios which also reveal the classical to micropolar beam stiffness

ratios as the static deformations are inversely related to the beam stiffness. To be consistent

with these static results and to have a measure of the classical to micropolar beam stiffness
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ratios once more, in this section the dynamic comparison will be carried out based on

the classical to micropolar natural frequency ratios as the natural frequencies are directly

related to the (square root of) beam stiffness.

Therefore, in this section the indices of dynamic comparison are considered to be the

relative torsional and bending natural frequencies identified as the classical beam natural

frequency (ω̂(i))cl divided by the micropolar beam natural frequency (ω̂(i))mp of the same

type and the same rank. To be more precise, the classical torsional natural frequencies

(ω̂(i)

t )cl are divided by the micropolar torsional natural frequencies (ω̂(i)

t )mp and the classical

bending natural frequencies (ω̂(i)

b )cl are weighted against the micropolar bending natural

frequencies (ω̂(i)

b )mp .

The natural frequencies comparison is complemented by a mode shape comparison

of the micropolar and classical beams. In the mode shape comparison five micropolar

beam models are selected (in the same way as in the previous section for plotting the

complete torsional and bending deformations) and their torsional and bending mode shapes

are plotted next to the same-type and same-rank classical torsional and bending mode

shapes. This reveals the nature of natural frequencies and the modal behavior of different

micropolar beam models.

The first three relative classical to micropolar torsional natural frequencies vs. the mi-

cropolar elastic constants are given in Figures C.22–C.27. Similar graphs for the first three

relative bending natural frequencies are shown in Figures C.28–C.33. These figures show

how the micropolar natural frequencies (ω̂(i))mp vary with the changes in the micropolar

elastic constants κ̂ and γ̂, as well as the changes in the beam slenderness ratio R̂3 and the

micropolar microinertia ı̂V .

In Figures C.22–C.33 note that scales are log-log-percentage. Also, for each slenderness

ratio a 2D contour plot and a 3D surface plot are provided; the 3D plot is obtained by

looking at the 2D plot from a point over the 2D plot’s upper right corner.

The first three torsional and bending mode shapes for the beam with medium thickness

(i.e. R̂3 = 50) are plotted in Figures C.34–C.45. All the torsional and bending mode

shapes corresponding to the classical beam model are normalized (or scaled) such that the

maximum torsional plane rotation or bending (nondimensional) displacement of the mode
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shape does not exceed 0.3 . The torsional and bending mode shapes of the micropolar

beam models are scaled accordingly except the pure micropolar modeshapes which are

scaled such that the the maximum microrotation (ϑ̄1 or ϑ̄3) does not exceed 0.3.

Whereas only the first three torsional and bending vibration modes are illustrated in

the figures of this section, the explanations and conclusions are based on considering the

first 10 torsional and bending vibration modes. A brief discussion of what the figures show

and mean will be given later, after each set of figures. However, as a general rule the

dimensionless (micropolar) microinertia density ı̂V is a measure of the material grain (or

particle) size relative to the beam length (refer to the definition of ı̂V in Eq. (4.83)). A

zero microinertia corresponds to a material with no grain or a zero grain size. Analogous

to the static case, the slenderness ratio R̂3 represents the beam thickness, the micropolar

constant κ̂ represents the extent of coupling between micropolar and classical deformations,

and the micropolar constant γ̂ is a measure of the significance of micropolar deformations

relative to classical deformations or a measure of size effects significance. Recall that the

micropolar beam model with small κ̂ are analytically singular due to an ill-conditioned

stiffness operator which cannot guarantee the continuity of the beam.

It is worth mentioning that, again, in the region where κ̂ is very small and γ̂ is very

large (i.e. in the lower right corner of the 2D plots) the plotted results are unreliable as the

FEM stiffness matrices of micropolar beams are numerically ill-conditioned in this region

(refer to Figure C.21).
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Figure C.22: Relative 1st natural frequency of torsion (ω̂(1)

t )cl/(ω̂
(1)

t )mp for micropolar beams

with a zero microinertia vs. micropolar elastic constants.

332



00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

10
30

30
50

5070
70

90
90

ı̂V = 0, R̂3 = 10

log(γ̂)

lo
g(
κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

ı̂V = 0, R̂3 = 10

log(κ̂)

(ω̂
(2
)

t
) c

l/
(ω̂

(2
)

t
) m

p
×

10
0

00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

10

10
30

30

50

50

70

70 70

90

90 90

ı̂V = 0, R̂3 = 50

log(γ̂)

lo
g(
κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

ı̂V = 0, R̂3 = 50

log(κ̂)

(ω̂
(2
)

t
) c

l/
(ω̂

(2
)

t
) m

p
×

1
00

00.51
  

d a ta 1

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

10
10

30

30 30

50

50 50

70

70 70

90

90

90 90

ı̂V = 0, R̂3 = 250

log(γ̂)

lo
g
(κ̂
)

00.51
  

d a ta 1

-10
-8

-6
-4

-2
0

2

-10
-8

-6
-4

-2
0

2

0

50

100

log(γ̂)

ı̂V = 0, R̂3 = 250

log(κ̂)

(ω̂
(2
)

t
) c

l/
(ω̂

(2
)

t
) m

p
×

1
00

Figure C.23: Relative 2nd natural frequency of torsion (ω̂(2)

t )cl/(ω̂
(2)

t )mp for micropolar beams

with a zero microinertia vs. micropolar elastic constants.
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Figure C.24: Relative 3rd natural frequency of torsion (ω̂(3)

t )cl/(ω̂
(3)

t )mp for micropolar beams

with a zero microinertia vs. micropolar elastic constants.
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The plots shown in Figures C.22–C.24 illustrate the variations of the first three torsional

natural frequencies of micropolar beams when the microinertia is zero (̂ıV = 0).

As the first point one can notice the size effects phenomenon in these figures, that is

the difference between micropolar and classical beam models is more apparent for larger

R̂3 and γ̂ (equivalent to a thinner and shorter beam, respectively).

Comparing the plots of different natural frequencies one can conclude that the effects

of the micropolar constant κ̂, representing the coupling between micropolar and classical

DOFs, are slightly more evident in lower vibration modes (i.e. the higher the mode the

larger the value of κ̂ at which the natural frequency surface drops). However, the effects of

the micropolar constant γ̂, representing the relative significance of micropolar deformations,

are almost the same in different vibration modes (i.e. for different modes the natural

frequency surface drops at the same value of γ̂).

In Figures C.22–C.24 the singularity of the micropolar beam model for small κ̂ where

the micropolar and classical DOFs are decoupled is not visible due to a zero microinertia.

Indeed, the singularity of the micropolar beam model with zero microinertia ı̂V and small κ̂

will be disclosed as infinite natural frequencies (corresponding to the decoupled micropolar

deformation modes) which sorting the natural frequencies will place them among the very

high vibration modes, outside the span of few lower vibration modes considered here. This

is analogous to the simple case of a zero mass attached to an ideal (massless) soft spring

which has an infinite natural frequency.

The unseen (or hidden) singularity of micropolar beam models with zero microinertia

and small κ̂ may deceive one to conclude that except the region where κ̂ and γ̂ are large

(i.e. the upper right quarter of the 2D plots), the micropolar and classical beam models

coincide in terms of vibration modes. However, as mentioned before this is not true and

the micropolar beams with small κ̂ have vibration modes which do not match any of the

vibration modes in a corresponding classical beam. Therefore, similar to the static case,

the micropolar and classical beam models coincide only when κ̂ is large and γ̂ is small. The

next three figures, illustrating the first three torsional natural frequencies of micropolar

beams with a small microinertia, will show this more clearly.
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Figure C.25: Relative 1st natural frequency of torsion (ω̂(1)

t )cl/(ω̂
(1)

t )mp for micropolar beams

with a small microinertia vs. micropolar elastic constants.
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Figure C.26: Relative 2nd natural frequency of torsion (ω̂(2)

t )cl/(ω̂
(2)

t )mp for micropolar beams

with a small microinertia vs. micropolar elastic constants.
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Figure C.27: Relative 3rd natural frequency of torsion (ω̂(3)

t )cl/(ω̂
(3)

t )mp for micropolar beams

with a small microinertia vs. micropolar elastic constants.
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The plots of Figures C.25–C.27 show the first three torsional natural frequencies of the

micropolar beams with a small microinertia (̂ıV = 1 × 10−6 ). Most of the behaviors seen

for the zero-microinertia case can be seen again in these plots. The difference between

micropolar and classical beam models is more apparent for larger R̂3 and γ̂ (equivalent to

a thinner and shorter beam, respectively). This confirms the size effects phenomenon. The

effects of the micropolar constant κ̂ is slightly more significant on lower natural frequencies.

The micropolar constant γ̂ has almost the same effects on different natural frequencies.

Here, in the region where κ̂ is small one can see a jump in the plots of natural frequencies

which is a representation of the singularity in the micropolar beam model with small κ̂ .

Indeed, the small (but nonzero) microinertia (̂ıV = 1 × 10−6 ) is enough to place the

decoupled micropolar deformation modes among the few lower vibration modes considered

in this section for the comparison between micropolar and classical beams. In other words,

despite the zero-microinertia micropolar beams which have infinite natural frequencies

corresponding to the decoupled micropolar vibration modes, the micropolar beams with a

small microinertia ı̂V may have small natural frequencies corresponding to the decoupled

micropolar vibration modes depending on the relative magnitude of ı̂V and κ̂ (as is the

case in here). One may interpret this as the case of a small mass attached to a massless

soft spring which can result in a small natural frequency as long as the mass to stiffness

ratio is large enough.

Note that the inclusion of the decoupled micropolar vibration modes (with small natural

frequencies) in the selected lower vibration modes causes the subsequent micropolar natural

frequencies to be compared against the (same-rank but) non-corresponding classical ones

and this is the source for the observed jumps in the plots. When comparing the plots of

different vibration modes (for the same slenderness ratio) one can notice that at higher

vibration modes these jumps happen at larger values of κ̂. However, comparing the plots

of one figure it can be concluded that the singular region does not change its size as the

beam thickness varies. The reason is that while the beam thickness decreases the increasing

microinertia effects work against the growing coupling effects and do not allow the singular

region to shrink.

Again, the micropolar and classical beam models coincide in terms of vibration modes

when κ̂ is large and γ̂ is small.
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Figure C.28: Relative 1st natural frequency of bending (ω̂(1)

b )cl/(ω̂
(1)

b )mp for micropolar beams

with a zero microinertia vs. micropolar elastic constants.
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Figure C.29: Relative 2nd natural frequency of bending (ω̂(2)

b )cl/(ω̂
(2)

b )mp for micropolar
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Figure C.30: Relative 3rd natural frequency of bending (ω̂(3)

b )cl/(ω̂
(3)

b )mp for micropolar beams
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Figure C.31: Relative 1st natural frequency of bending (ω̂(1)

b )cl/(ω̂
(1)

b )mp for micropolar beams

with a small microinertia vs. micropolar elastic constants.
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Figure C.32: Relative 2nd natural frequency of bending (ω̂(2)

b )cl/(ω̂
(2)

b )mp for micropolar

beams with a small microinertia vs. micropolar elastic constants.
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Figure C.33: Relative 3rd natural frequency of bending (ω̂(3)

b )cl/(ω̂
(3)

b )mp for micropolar beams

with a small microinertia vs. micropolar elastic constants.
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Figures C.28–C.33 show the first three bending natural frequencies of micropolar beams

with zero and small microinertia (̂ıV = 0 and ı̂V = 1× 10−6). Almost the same behaviors

as those observed for torsional natural frequencies can be seen in these plots.

For larger R̂3 and γ̂ the difference between the micropolar and classical beam models

is more apparent. In addition, whereas the effects of γ̂ on different vibration modes seems

to be the same, the effects of κ̂ is slightly more significant on lower vibration modes. This

latter conclusion is obtained by considering the first 10 bending natural frequencies and

may not hold true for every one of them. For example, comparing the first and the second

bending natural frequencies (respectively shown in plots of Figures C.28 and C.31 and

plots of Figures C.29 and C.32), κ̂ has a more significant effect on the latter.

Again, the singularity of micropolar beam models with small κ̂ is not clear in plots of

Figures C.28–C.30 for which the microinertia is zero (the natural frequencies corresponding

to the decoupled micropolar vibration modes are infinite and out of the scope when taking

into account just a few lower vibration modes). However, for the nonzero-microinertia case,

shown in Figures C.31–C.33, this singularity can be seen as the jumps which exist in the

region where κ̂ is small (the natural frequencies corresponding to the decoupled micropolar

vibration modes are now small enough to rest among the few considered lower vibration

modes). Recall that the placement of the decoupled micropolar vibration modes among

the selected lower vibration modes causes the subsequent micropolar natural frequencies to

be compared against the (same-rank but) non-corresponding classical natural frequencies.

When comparing the plots of different natural frequencies for the case of nonzero mi-

croinertia, one can notice that, keeping the slenderness ratio constant, the higher the

vibration mode the larger the value of κ̂ at which the natural frequency surfaces jump.

Also considering the plots of each figure for the case of nonzero microinertia, it can be

concluded that for thinner beams the jumps occur at lower values of κ̂ . Here, the in-

crease of microinertia effects is not as fast as the growth of coupling effects as the beam

becomes thinner and therefore the improvement of coupling is dominant resulting in a

smaller singular region for thinner beams.

Finally, for both cases of zero and small microinertia the micropolar and classical beam

models coincide when κ̂ is large and γ̂ is small.
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Figure C.34: 1st mode shape of torsion
∼̂
q(1)
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for beams with a zero microinertia and medium
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Figure C.35: 2nd mode shape of torsion
∼̂
q(2)
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for beams with a zero microinertia and medium

thickness.

348



00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Classical Model
R̂3 = 50, ω̂

(3)
t = 4.81

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

θ̄1 00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 0, κ̂ = 10−4, γ̂ = 10−4

R̂3 = 50, ω̂
(3)
t = 4.86

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 0, κ̂ = 102, γ̂ = 10−10

R̂3 = 50, ω̂
(3)
t = 4.81

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 0, κ̂ = 102, γ̂ = 102

R̂3 = 50, ω̂
(3)
t = 700.35

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 0, κ̂ = 10−10, γ̂ = 10−10

R̂3 = 50, ω̂
(3)
t = 4.81

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 0, κ̂ = 10−10, γ̂ = 102

R̂3 = 50, ω̂
(3)
t = 4.81

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

Figure C.36: 3rd mode shape of torsion
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q(3)
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for beams with a zero microinertia and medium

thickness.

349



00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Classical Model
R̂3 = 50, ω̂

(1)
t = 0.96

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

θ̄1 00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 10−6, κ̂ = 10−4, γ̂ = 10−4

R̂3 = 50, ω̂
(1)
t = 1.00

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 10−6, κ̂ = 102, γ̂ = 10−10

R̂3 = 50, ω̂
(1)
t = 0.96

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 10−6, κ̂ = 102, γ̂ = 102

R̂3 = 50, ω̂
(1)
t = 84.49

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 10−6, κ̂ = 10−10, γ̂ = 10−10

R̂3 = 50, ω̂
(1)
t = 0.02

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

00.51
  

d a ta 1

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

Micropolar Model; ı̂V = 10−6, κ̂ = 10−10, γ̂ = 102

R̂3 = 50, ω̂
(1)
t = 0.02

cx̂1

θ̄1

 

 

θ̄1
-0.4

-0.2

0

0.2

0.4

ϑ̄1

 

 

ϑ̄1

Figure C.37: 1st mode shape of torsion
∼̂
q(1)

t
for beams with a small microinertia and medium
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Figure C.38: 2nd mode shape of torsion
∼̂
q(2)
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for beams with a small microinertia and medium
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Figure C.39: 3rd mode shape of torsion
∼̂
q(3)
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for beams with a small microinertia and medium
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Figure C.40: 1st mode shape of bending
∼̂
q(1)
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for beams with a zero microinertia and medium

thickness.
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Figure C.41: 2nd mode shape of bending
∼̂
q(2)
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for beams with a zero microinertia and medium
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Figure C.42: 3rd mode shape of bending
∼̂
q(3)

b
for beams with a zero microinertia and medium

thickness.
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Figure C.43: 1st mode shape of bending
∼̂
q(1)

b
for beams with a small microinertia and

medium thickness.
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Figure C.44: 2nd mode shape of bending
∼̂
q(2)

b
for beams with a small microinertia and

medium thickness.
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Figure C.45: 3rd mode shape of bending
∼̂
q(3)

b
for beams with a small microinertia and

medium thickness.
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The first three torsional and bending mode shapes for a classical beam model and

five selected micropolar beam models with zero and small microinertia are plotted in Fig-

ures C.34–C.45. The five micropolar beam models are those previously selected for showing

the static torsional and bending deformations along the beam length and correspond to the

middle and corner points of the 2D plots in Figures C.22–C.33. These mode shape plots

complement the natural frequencies plots and more clearly illustrate most of the previously

mentioned modal behaviors of the micropolar beam models (in both torsion and bending).

Similar to the plots of static deformations, in each plot of Figures C.34–C.45 there are

two scales, one on the left and one on the right vertical axis and the vertical axes have their

own legend, in the lower left and right corners of the plots, noting the variables measured

on the axes.

In the torsional mode shape plots the left vertical axis measures the plane rotation θ̄1

and the right vertical axis measures the microrotation ϑ̄1 . In the plots illustrating the

bending mode shapes, the bending displacement ˆ̄u2 is scaled on the right vertical axis and

the plane rotation θ̄3 and the microrotation ϑ̄3 are scaled on the right vertical axis.

In each figure the top left plot corresponds to the classical beam model. This plot is a

reference for the examination of the selected micropolar beam models.

The top right plot of each figure is obtained from a micropolar beam model with medium

κ̂ and γ̂ . In this micropolar beam model a medium κ̂ is not enough for complete coupling

of the micropolar and classical DOFs, however, a medium γ̂ is small enough to make the

micropolar effects negligible.

The middle left plot of each figure corresponds to a micropolar beam model with a

large κ̂ and a small γ̂ . For both cases of zero and small microinertia the results of this

micropolar beam model match the classical beam model results. In each mode shape of this

model, the extra torsional and bending microrotations follow the corresponding classical

plane rotations.

The middle right plot in each figure illustrates a micropolar beam model with large κ̂

and γ̂ . In this model the large κ̂ couples the micropolar and classical DOFs and the large

γ̂ dominates the micropolar modes. However, as mentioned previously the coupling effects
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weaken in higher vibration modes and for κ̂ = 1× 102 it is just in the first vibration mode

that the classical plane rotations follow the micropolar microrotations.

The bottom left plot in each figure corresponds to a micropolar beam model with small

κ̂and γ̂. For a zero microinertia the results of this micropolar beam model match the results

of classical beam model if the decoupled microrotations are completely ignored (which is

not a correct approach). However, for a nonzero microinertia the lower mode shapes are

pure micropolar vibration modes which do not correspond to the lower mode shapes of the

classical beam model. This model was wrongly mentioned by some authors as the case

where the classical results can be reproduced.

Finally, in each figure the bottom right plot corresponds to a micropolar beam model

with a small κ̂ and a large γ̂ which as mentioned previously may be erroneous due to an

ill-conditioned FEM stiffness matrix. Overall in this model one can notice the existence of

pure micropolar mode shapes among the considered lower vibration modes which is due to

the decoupling between micropolar and classical DOFs.

A more detailed study on the dynamic behavior of micropolar elastic beams is reserved

as a possible future work.
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Appendix D

Euler-Bernoulli Gyroelastic Beams

D.1 Introduction

This appendix is devoted to a brief review of the 3D Euler-Bernoulli gyrobeam model

in which the simple longitudinal deformation theory, Duleau torsion theory [50], and

Euler-Bernoulli bending theory are combined for modeling the beam elasticity. The Euler-

Bernoulli gyrobeam model, mainly studied by D’Eleuterio [2,16] and Zee [33], can be con-

sidered as an elementary classical gyrobeam model due to the fact that in this model (in

comparison to the Timoshenko gyrobeam model) the less inclusive classical Euler-Bernoulli

bending theory is employed to characterize the elastic beam. As it is more studied, this

model of gyrobeams is however useful for comparison, verification, and examination of the

two (more advanced) models of gyrobeams developed in this text, i.e. the Timoshenko-

based classical gyrobeam model and the micropolar gyrobeam model.

Considering a 3D Euler-Bernoulli gyrobeam, in the following sections the system La-

grangian and virtual work expressions are obtained. Hamilton’s principle is then applied

to these expressions to derive the equations of motion along with the initial and bound-

ary conditions (I/BCs). The so-obtained dynamic equations are nondimensionalized and a

FEM-based discretization is presented. Finally, the derived 3D Euler-Bernoulli gyrobeam

model and its corresponding FEM formulation are verified.
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Note that whereas the Euler-Bernoulli gyrobeam model developed by D’Eleuterio [2,16]

and Zee [33] is based on assuming small attitude changes for the gyros and applying a

zero-order approximation, in this appendix the Euler-Bernoulli gyrobeam equations will

be derived by considering unrestricted (large) attitude changes for the axes of the gyros

without imposing any approximation.

D.2 Kinematics

Consider a linear elastic beam deformed in 3D space (as a result of longitudinal, axial

torsional, and lateral bending deformations), like the one shown in Figure 4.1 or 4.2. The

beam’s neutral axis with boundary points P1 and P2 is along the first coordinate axis of the

inertial reference frame ox1, and the principal axes of the beam’s cross section are parallel

to the other coordinate axes of the inertial reference frame ox2 and ox3 . A beam fixed

frame Fc (different than the body frames Fb attached to every infinitesimal element of the

beam) is located at the boundary point P1 . The beam’s length, cross sectional area, and

cross sectional area moments are L, A, and Ii (i = 1, 2, 3), respectively.

Assuming small deformations through which plane sections of the beam remain plane

and perpendicular to the beam’s neutral axis (i.e. neglecting torsional warping and shear

effects) the total deformation of an Euler-Bernoulli elastic beam can be characterized by a

displacement field of the form:

u1 = ū1(t, cx1)− cx2 θ̄3(t, cx1) + cx3 θ̄2(t, cx1)

u2 = ū2(t, cx1)− cx3 θ̄1(t, cx1)

u3 = ū3(t, cx1) + cx2 θ̄1(t, cx1)

(D.1)

where ūi and θ̄i (i = 1, 2, 3) are respectively displacements of the beam’s neutral axis and

rotations of the beam’s plane sections. However, from the perpendicularity of the beam

plane section to the beam’s neutral axis (due to assuming negligible shear deflections) one

can derive:
θ̄2(t, cx1) = − ū3,1(t, cx1)

θ̄3(t, cx1) = + ū2,1(t, cx1)
(D.2)
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Now by considering the beam deformation problem as a plane stress problem and recalling

the fact that:
d

dxi
=

c d

dxi
(D.3)

the elements of the strain tensor will be:

ε11 = ū1,1 − cx2 ū2,11 − cx3 ū3,11

ε22 = ε33 = − ν ε11

ε12 = ε21 = − 1

2
cx3 θ̄1,1

ε13 = ε31 =
1

2
cx2 θ̄1,1

ε23 = ε32 = 0

(D.4)

where:

ν =
λ

2
(
µ+ λ

) (D.5)

is the strain Poisson’s ratio.

In an Euler-Bernoulli beam the microrotations (being identical with the macrorotations)

can be obtained as:

ϑ1 =
1

2

(
u3,2 − u2,3

)
=

1

2

(
θ̄1 + θ̄1

)
= θ̄1(t, cx1)

ϑ2 =
1

2

(
u1,3 − u3,1

)
=

1

2

(
θ̄2 − ū3,1 − cx2 θ̄1,1

)
= θ̄2(t, cx1)− cx2

1

2
θ̄1,1(t, cx1)

ϑ3 =
1

2

(
u2,1 − u1,2

)
=

1

2

(
ū2,1 − cx3 θ̄1,1 + θ̄3

)
= θ̄3(t, cx1)− cx3

1

2
θ̄1,1(t, cx1)

(D.6)

where the relations of Eq. (D.2) are recalled. Consequently, a 3D Euler-Bernoulli beam has

four independent continuous generalized coordinates, i.e. three neutral axis displacements

ūi (i = 1, 2, 3) and one plane section torsional rotation θ̄1 .

Though the microrotation field is given by Eq. (D.6), it is more useful for derivation

of the kinetic energy and virtual work expressions to approximate the microrotation field

vector as:

→ϑ ≈→θ̄(t,
cx1),

–
ϑ ≈

–
θ̄(t, cx1) =

[
θ̄1 − ū3,1 ū2,1

]T

, ϑi ≈ θ̄i(t,
cx1) (D.7)
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This approximation results in the microrotational velocity and acceleration field vectors

as:

→ϑ̇ ≈→
˙̄θ(t, cx1),

–
ϑ̇ ≈

–

˙̄θ(t, cx1) =
[

˙̄θ1 − ˙̄u3,1 ˙̄u2,1

]T

, ϑ̇i ≈ ˙̄θi(t,
cx1)

→ϑ̈ ≈→
¨̄θ(t, cx1),

–
ϑ̈ ≈

–

¨̄θ(t, cx1) =
[

¨̄θ1 − ¨̄u3,1 ¨̄u2,1

]T

, ϑ̈i ≈ ¨̄θi(t,
cx1)

(D.8)

and the virtual microrotation filed vector as:

δ→ϑ ≈ δ→θ̄(t,
cx1), δ

–
ϑ ≈ δ

–
θ̄(t, cx1) =

[
δθ̄1 − δū3,1 δū2,1

]T

, δϑi ≈ δθ̄i(t,
cx1) (D.9)

D.3 Potential energy expression

Based on the results obtained in the previous section and by utilizing the classical consti-

tutive relations the elements of the force stress tensor will be derived as:

σ11 = E ε11

σ22 = σ33 = 0

σ12 = σ21 = 2µ ε12

σ13 = σ31 = 2µ ε13

σ23 = σ32 = 0

(D.10)

where E and µ are the tensile (Young’s) and shear moduli, respectively. Then, the potential

energy expression of an Euler-Bernoulli gyrobeam can be written as:

U =
1

2
E A

∫
L

ū1,1 ū1,1 dL+
1

2
E I3

∫
L

ū2,11 ū2,11 dL+
1

2
E I2

∫
L

ū3,11 ū3,11 dL

+
1

2
µ I1

∫
L

θ̄1,1 θ̄1,1 dL

=

∫
L

U L dL

(D.11)
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D.4 Kinetic energy expression

Recalling the relations of Eqs. (D.7) and (D.8), the kinetic energy expression for an Euler-

Bernoulli gyrobeam will be obtained as:

T =
1

2

(
ρV + %V

)
A

∫
L

(
˙̄u1 ˙̄u1 + ˙̄u2 ˙̄u2 + ˙̄u3 ˙̄u3

)
dL+

1

2

(
ρV + %V

)
I1

∫
L

˙̄θ1
˙̄θ1 dL

+
1

2
A

∫
L

Vij
˙̄θj

˙̄θi dL+ A

∫
L

Vij

(
φ̇j + ψ̇j

)
˙̄θi dL

+
1

2
A

∫
L

Vij

(
φ̇j φ̇i + ψ̇j ψ̇i + 2 φ̇j ψ̇i

)
dL

=

∫
L

T L dL

(D.12)

where
↔
V is the tensor of the gyros rotational inertia per unit volume of elastic body and

the tensor summation convention is used to summarize the expression.

D.5 Virtual work expression

Assuming that the gyrobeam is subjected to the action of external volume and boundary

surface forces and moments
→
f V , →m

V ,
→
f S , and →m

S (where boundary surface forces and

moments are applied only on the most left and right beam cross sections), the virtual work

expression for an Euler-Bernoulli gyrobeam can be written as:

δW =

∫
L

(
A f̄

V

i δūi + m̄L

i δθ̄i + Am̄V

i δθ̄i

)
dL

+ A f̄
S

i (P1) δūi(P1) + m̄P

i (P1) δθ̄i(P1) + Am̄S

i (P1) δθ̄i(P1)

+ A f̄
S

i (P2) δūi(P2) + m̄P

i (P2) δθ̄i(P2) + Am̄S

i (P2) δθ̄i(P2)

=

∫
L

δW L dL+ δW P

(D.13)
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where Eqs. (D.7) and (D.9) are recalled and:

A f̄
V

i =

∫
A

f Vi dA, A m̄V

i =

∫
A

mV

i dA

A f̄
S

i =

∫
A

f Si dA, A m̄S

i =

∫
A

mS

i dA

(D.14)

as well as:

m̄L

1 =

∫
A

(
cx2 f

V

3 − cx3 f
V

2

)
dA

m̄L

2 =

∫
A

cx3 f
V

1 dA

− m̄L

3 =

∫
A

cx2 f
V

1 dA

m̄P

1 =

∫
A

(
cx2 f

S

3 − cx3 f
S

2

)
dA

m̄P

2 =

∫
A

cx3 f
S

1 dA

− m̄P

3 =

∫
A

cx2 f
S

1 dA

(D.15)

D.6 Equations of motion

Having the potential and kinetic energy expressions along with the virtual work expression,

Hamilton’s principle can be used to derive the gyrobeam equations of motion and the

corresponding I/BCs.

Noting that for an Euler-Bernoulli gyrobeam the matrix of generalized coordinates is:

∼
q =

[
ū1 ū2 ū3 θ̄1

]T

(D.16)
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the motion equations and I/BCs will take the following matrix forms:

∼
QL −

∼
R1

L

,1
=
(∂T L

∂
∼̇
q

)
, t
−
(∂T L

∂
∼̇
q
,1

)
, t 1
−
(∂U L

∂
∼
q
,1

)
,1

+
( ∂U L

∂
∼
q
,11

)
,11

(D.17)

and:

at t = t1, t2 ; and P1, P2 : δ
∼
q = ∼0 or

∂T L

∂
∼̇
q
,1

= ∼0

at t = t1, t2 ; and over L : δ
∼
q = ∼0 or

∂T L

∂
∼̇
q
−
(∂T L

∂
∼̇
q
,1

)
,1

= ∼0

at P1 ; and during t : δ
∼
q = ∼0 or

∼
QP −

∼
R1

L +
∂U L

∂
∼
q
,1

+
(∂T L

∂
∼̇
q
,1

)
, t

−
( ∂U L

∂
∼
q
,11

)
,1

= ∼0

at P2 ; and during t : δ
∼
q = ∼0 or

∼
QP +

∼
R1

L − ∂U L

∂
∼
q
,1

−
(∂T L

∂
∼̇
q
,1

)
, t

+
( ∂U L

∂
∼
q
,11

)
,1

= ∼0

at P1 ; and during t : δ
∼
q
,1

= ∼0 or
∼
R1

P +
∂U L

∂
∼
q
,11

= ∼0

at P2 ; and during t : δ
∼
q
,1

= ∼0 or
∼
R1

P − ∂U L

∂
∼
q
,11

= ∼0

(D.18)

where:

∼
QL =

δW L

δ
∼
q
,

∼
QP =

δW P

δ
∼
q

∼
Ri

L =
δW L

δ
∼
q
, i

,
∼
Ri

P =
δW P

δ
∼
q
, i

(D.19)

However, it is common to simplify the I/BCs given in Eq. (D.18) by assuming zero (or

negligible)
∼
R1

L and ∂T L
∂
∼
q̇
,1

at boundary points P1 and P2 which results in the following form
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for the I/BCs:

at t = t1, t2 ; and over L : δ
∼
q = ∼0 or

∂T L

∂
∼̇
q
−
(∂T L

∂
∼̇
q
,1

)
,1

= ∼0

at P1 ; and during t : δ
∼
q = ∼0 or

∼
QP +

∂U L

∂
∼
q
,1

−
( ∂U L

∂
∼
q
,11

)
,1

= ∼0

at P2 ; and during t : δ
∼
q = ∼0 or

∼
QP − ∂U L

∂
∼
q
,1

+
( ∂U L

∂
∼
q
,11

)
,1

= ∼0

at P1 ; and during t : δ
∼
q
,1

= ∼0 or
∼
R1

P +
∂U L

∂
∼
q
,11

= ∼0

at P2 ; and during t : δ
∼
q
,1

= ∼0 or
∼
R1

P − ∂U L

∂
∼
q
,11

= ∼0

(D.20)

Now recalling the definitions given in Eqs. (D.7) and (D.8), it is useful to define the

vector of gyros angular momenta per unit volume
→
J V and its time derivative with respect

to the inertial frame
→
J̇ V

as:

→
J V =

↔
V ·

(
→
˙̄θ +

→
φ̇+

→
ψ̇
)

→
J̇ V

=
d

dt

(
→
J V

)
=
↔
V ·→

¨̄θ +↔
˙̄θ
×
·
↔
V ·→

˙̄θ +↔
˙̄θ
×
·
↔
V ·

(
→
φ̇+

→
ψ̇
)

+
(
↔
φ̇
× ·
↔
V −

↔
V ·

↔
φ̇
×
)
·→

˙̄θ +
↔
V ·

→
φ̈+

↔
V ·

→
ψ̈ +

↔
φ̇
× ·
↔
V ·

(
→
φ̇+

→
ψ̇
) (D.21)

whose component matrices expressed in the inertial frame (after imposing the required

first-order approximation on microrotations) are:

–
J V = b

=
V
(

–

˙̄θ +
b

–
φ̇+

b

–
ψ̇
)

–
J̇ V

= b

=
V

–

¨̄θ +
=

˙̄θ
×
b

=
V
(
b

–
φ̇+

b

–
ψ̇
)

+
(
b

=
φ̇
× b

=
V − b

=
V

b

=
φ̇
×
)

–

˙̄θ

+
(

=
1+

=
θ̄
×
)(

b

=
V

b

–
φ̈+ b

=
V

b

–
ψ̈ +

b

=
φ̇
× b

=
V
(
b

–
φ̇+

b

–
ψ̇
)) (D.22)
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Utilizing the aforementioned definitions and after adding the torsion correction factor

kt (to account for required adjustments in the case of beams with non-circular cross-

sections), the final equations of motion for an Euler-Bernoulli gyrobeam can be derived as

the following four equations:

f̄
V

1 =
(
ρV + %V

)
¨̄u1 − E ū1,11

f̄
V

2 − m̄L

3 ,1 − Am̄V

3 ,1 =
(
ρV + %V

)
¨̄u2 − A J̇

V

3 ,1 + E I3 ū2,1111

f̄
V

3 + m̄L

2 ,1 + Am̄V

2 ,1 =
(
ρV + %V

)
¨̄u3 + A J̇ V

2 ,1 + E I2 ū3,1111

m̄L

1 + Am̄V

1 =
(
ρV + %V

)
I1

¨̄θ1 + A J̇ V

1 − kt µ I1 θ̄1,11

(D.23)

which should be solved along with the following I/BCs:

at t = t1, t2 ; and over L :

δū1 = 0 or
(
ρV + %V

)
A ˙̄u1 = 0

δū2 = 0 or
(
ρV + %V

)
A ˙̄u2 − J V

3 ,1 = 0

δū3 = 0 or
(
ρV + %V

)
A ˙̄u3 + J V

2 ,1 = 0

δθ̄1 = 0 or
(
ρV + %V

)
I1

˙̄θ1 + AJ V
1 = 0

(D.24)

at P1 ; and during t :

δū1 = 0 or A f̄
S

1 + E A ū1,1 = 0

δū2 = 0 or A f̄
S

2 − E I3 ū2,111 = 0

δū3 = 0 or A f̄
S

3 − E I2 ū3,111 = 0

δθ̄1 = 0 or m̄P
1 + Am̄S

1 + kt µ I1 θ̄1,1 = 0

δū2,1 = 0 or m̄P
3 + Am̄S

3 + E I3 ū2,11 = 0

δū3,1 = 0 or − m̄P
2 − Am̄S

2 + E I2 ū3,11 = 0

(D.25)

369



at P2 ; and during t :

δū1 = 0 or A f̄
S

1 − E A ū1,1 = 0

δū2 = 0 or A f̄
S

2 + E I3 ū2,111 = 0

δū3 = 0 or A f̄
S

3 + E I2 ū3,111 = 0

δθ̄1 = 0 or m̄P
1 + Am̄S

1 − kt µ I1 θ̄1,1 = 0

δū2,1 = 0 or m̄P
3 + Am̄S

3 − E I3 ū2,11 = 0

δū3,1 = 0 or − m̄P
2 − Am̄S

2 − E I2 ū3,11 = 0

(D.26)

D.7 Nondimensionalization

Employing the dimensionless group parameters defined in Section 4.8 and noting that:

∼̂
q =

[
ˆ̄u1 ˆ̄u2 ˆ̄u3 θ̄1

]T

(D.27)

and:

–
θ̄ =

[
θ̄1 − ū3,1 ū2,1

]T

=
[
θ̄1 − ˆ̄u3, 1̂

ˆ̄u2, 1̂

]T

–

◦

θ̄ =
[ ◦

θ̄1 −
◦
ˆ̄u3, 1̂

◦
ˆ̄u2, 1̂

]T

–

◦◦

θ̄ =
[ ◦◦
θ̄1 −

◦◦
ˆ̄u3, 1̂

◦◦
ˆ̄u2, 1̂

]T

δ
–
θ̄ =

[
δθ̄1 − δˆ̄u3, 1̂ δˆ̄u2, 1̂

]T

(D.28)

the potential and kinetic energy and virtual work expressions of an Euler-Bernoulli gy-

robeam can be nondimensionalized as:

Û =

∫
L̂

Û
L

dL̂

=
1

2

∫
L̂

ˆ̄u1, 1̂
ˆ̄u1, 1̂ dL̂+

1

2
Î3

∫
L̂

ˆ̄u2, 1̂1̂
ˆ̄u2, 1̂1̂ dL̂+

1

2
Î2

∫
L̂

ˆ̄u3, 1̂1̂
ˆ̄u3, 1̂1̂ dL̂

+
1

2
kt µ̂ Î1

∫
L̂

θ̄1, 1̂ θ̄1, 1̂ dL̂

(D.29)
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T̂ =

∫
L̂

T̂
L

dL̂

=
1

2

(
1 + %̂V

) ∫
L̂

( ◦
ˆ̄u1

◦
ˆ̄u1 +

◦
ˆ̄u2

◦
ˆ̄u2 +

◦
ˆ̄u3

◦
ˆ̄u3

)
dL̂+

1

2

(
1 + %̂V

)
Î1

∫
L̂

◦

θ̄1

◦

θ̄1 dL̂

+
1

2

∫
L̂

̂Vij
◦

θ̄j
◦

θ̄i dL̂+

∫
L̂

̂Vij

( ◦
φj +

◦
ψj

) ◦
θ̄i dL̂

+
1

2

∫
L̂

̂Vij

( ◦
φj

◦
φi +

◦
ψj

◦
ψi + 2

◦
φj

◦
ψi

)
dL̂

(D.30)

and:

δŴ =

∫
L̂

δŴ
L

dL̂+
∑
P

δŴ
P

=

∫
L̂

(
ˆ̄f
V

i δˆ̄ui + ˆ̄m
V

i δθ̄i + ˆ̄m
L

i δθ̄i

)
dL̂+

∑
P

(
ˆ̄f
S

i δˆ̄ui + ˆ̄m
S

i δθ̄i + ˆ̄m
P

i δθ̄i

) (D.31)

Finally, the dimensionless equations of motion of an Euler-Bernoulli gyrobeam will be

obtained as:

ˆ̄f
V

1 =
(

1 + %̂V
) ◦◦

ˆ̄u1 − ˆ̄u1, 1̂1̂

ˆ̄f
V

2 − ˆ̄m
L

3 , 1̂ − ˆ̄m
V

3 , 1̂ =
(

1 + %̂V
) ◦◦

ˆ̄u2 −
◦

Ĵ
V

3 , 1̂ + Î3 ˆ̄u2, 1̂1̂1̂1̂

ˆ̄f
V

3 + ˆ̄m
L

2 , 1̂ + ˆ̄m
V

2 , 1̂ =
(

1 + %̂V
) ◦◦

ˆ̄u3 +
◦

Ĵ
V

2 , 1̂ + Î2 ˆ̄u3, 1̂1̂1̂1̂

ˆ̄m
L

1 + ˆ̄m
V

1 =
(

1 + %̂V
)
Î1

◦◦

θ̄1 +
◦

Ĵ
V

1 − kt µ̂ Î1 θ̄1, 1̂1̂

(D.32)

D.8 Finite element formulation

The dynamic equations of an Euler-Bernoulli gyrobeam, i.e. the set of well-posed linear

hyperbolic PDEs given in Eq. (D.32), can be transformed into a set of coupled ODEs
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through employing the FEM. The Euler-Bernoulli gyrobeam dynamic equations given by

Eq. (D.32) are derived from a combination of C0 and C1 variational problems. To be more

precise, the C0 longitudinal and torsional deformation problems and C1 bending deforma-

tion problems characterize the dynamics of a 3D Euler-Bernoulli gyrobeam. Consequently,

one may use different basis functions with C0 and C1 continuities to generate the consistent

displacement-based finite element matrices of an Euler-Bernoulli gyrobeam.

e

3

ex
1

ex

2

ex

1 2

1̂

ex

l̂

l

1 2

Figure D.1: The dimensional and dimensionless forms of the Euler-Bernoulli gyrobeam

two-node element.

A two-node element, as shown in Figure D.1, with C0 linear basis functions for expansion

of longitudinal and torsional deformations:

Ĥ
〈1〉

(ex̂1) = 1−
ex̂1

l̂

Ĥ
〈2〉

(ex̂1) =
ex̂1

l̂

(D.33)
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and C1 cubic Hermite basis functions [100] for expansion of bending deformations:

Ĥ
〈10〉

(ex̂1) = 1− 3
ex̂2

1

l̂
2 + 2

ex̂3
1

l̂
3

Ĥ
〈11〉

(ex̂1) = ex̂1 − 2
ex̂2

1

l̂
+

ex̂3
1

l̂
2

Ĥ
〈20〉

(ex̂1) = 3
ex̂2

1

l̂
2 − 2

ex̂3
1

l̂
3

Ĥ
〈21〉

(ex̂1) = −
ex̂2

1

l̂
+

ex̂3
1

l̂
2

(D.34)

will be used to generate the 3D Euler-Bernoulli gyrobeam FEM matrices. Note that l̂ and
ex̂1 are the dimensionless forms of the element length l and local frame coordinate ex1

defined as:

l̂ =
l

L
ex̂1 =

ex1

L
, 0 ≤ ex̂1 ≤ l̂

(D.35)

The two-node element has six DOFs at each node or 12 DOFs in total which can be

summarized into the matrix of nodal generalized coordinates
∼̂
q 〈j〉 :

∼̂
q 〈j〉 =

[
q̂ 〈j〉i
]

=
[

ˆ̄u
〈j〉
1

ˆ̄u
〈j〉
2

ˆ̄u
〈j〉
3 θ̄

〈j〉
1 θ̄

〈j〉
2 θ̄

〈j〉
3

]T

=
[

ˆ̄u
〈j〉
1

ˆ̄u
〈j〉
2

ˆ̄u
〈j〉
3 θ̄

〈j〉
1 − ˆ̄u

〈j〉
3 , 1̂

ˆ̄u
〈j〉
2 , 1̂

]T
(D.36)

and the matrix of element(al) generalized coordinates
∼̂
q 〈e〉 :

∼̂
q 〈e〉 =

[
∼̂
q 〈j〉
]

=
[
∼̂
q 〈1〉

T

∼̂
q 〈2〉

T
]T

(D.37)

where q̂ 〈j〉i denotes the single nodal generalized coordinates.

Using the element basis shape functions in Eqs. (D.33) and (D.34) the within-element

generalized coordinates q̂i can be interpolated in terms of the nodal generalized coordinates
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q̂ 〈j〉i as:

ˆ̄u1 = Ĥ
〈1〉

ˆ̄u
〈1〉
1 + Ĥ

〈2〉
ˆ̄u
〈2〉
1

ˆ̄u2 = Ĥ
〈10〉

ˆ̄u
〈1〉
2 + Ĥ

〈11〉
θ̄
〈1〉
3 + Ĥ

〈20〉
ˆ̄u
〈2〉
2 + Ĥ

〈21〉
θ̄
〈2〉
3

ˆ̄u3 = Ĥ
〈10〉

ˆ̄u
〈1〉
3 − Ĥ

〈11〉
θ̄
〈1〉
2 + Ĥ

〈20〉
ˆ̄u
〈2〉
3 − Ĥ

〈21〉
θ̄
〈2〉
2

θ̄1 = Ĥ
〈1〉
θ̄
〈1〉
1 + Ĥ

〈2〉
θ̄
〈2〉
1

θ̄2 = − ˆ̄u3, 1̂ = Ĥ
′ 〈11〉

θ̄
〈1〉
2 − Ĥ

′ 〈10〉
ˆ̄u
〈1〉
3 + Ĥ

′ 〈21〉
θ̄
〈2〉
2 − Ĥ

′ 〈20〉
ˆ̄u
〈2〉
3

θ̄3 = + ˆ̄u2, 1̂ = Ĥ
′ 〈11〉

θ̄
〈1〉
3 + Ĥ

′ 〈10〉
ˆ̄u
〈1〉
2 + Ĥ

′ 〈21〉
θ̄
〈2〉
3 + Ĥ

′ 〈20〉
ˆ̄u
〈2〉
2

(D.38)

where:
d

dx̂i
=

e d

dx̂i
(D.39)

and:

Ĥ
′ 〈j〉

= Ĥ
′ 〈j〉

(ex̂1) =
e d

dx̂i

(
Ĥ
〈j〉

(ex̂1)
)

=

e
dĤ

〈j〉

dx̂i
(D.40)

By using the expansions of the form given in Eq. (D.38) to substitute into the potential

and kinetic energy and virtual work expressions, while taking into account the essential

first-order approximation with respect to→ϑ̄, one can generate the variational or weak form of

the FEM formulation and derive the finite element matrices of the selected Euler-Bernoulli

gyrobeam two-node element. Then, the so-obtained element(al) stiffness matrix ∼K̂
〈e〉

, mass

matrix ∼M̂
〈e〉

, gyricity matrix
∼
Ĝ 〈e〉 , circulatory matrix ∼Ĉ

〈e〉
, generalized moment matrix

∼R̂
〈e〉

, and generalized force matrix
∼
Q̂〈e〉

are assembled to form the system’s global matrices

∼K̂
〈g〉

, ∼M̂
〈g〉

,
∼
Ĝ 〈g〉 , ∼Ĉ

〈g〉
, ∼R̂

〈g〉
, and

∼
Q̂〈g〉

.

The gyrobeam potential and kinetic energy variations and virtual work can be expressed

in terms of these global matrices as:

∆Û = δ
∼̂
q 〈g〉

T

∼K̂
〈g〉

∼̂
q 〈g〉

∆T̂ = − δ
∼̂
q 〈g〉

T

∼M̂
〈g〉

∼

◦◦
q̂
〈g〉
− δ

∼̂
q 〈g〉

T

∼
Ĝ 〈g〉

∼

◦
q̂
〈g〉
− δ

∼̂
q 〈g〉

T

∼Ĉ
〈g〉

∼̂
q 〈g〉 − δ

∼̂
q 〈g〉

T

∼R̂
〈g〉

δŴ = δ
∼̂
q 〈g〉

T

∼
Q̂〈g〉

(D.41)

and (based on Hamilton’s principle) the semi-discretized gyrobeam dynamic ODEs can be

derived as:

∼
Q̂〈g〉 − ∼R̂

〈g〉
= ∼M̂

〈g〉

∼

◦◦
q̂
〈g〉

+
∼
Ĝ 〈g〉

∼

◦
q̂
〈g〉

+ ∼Ĉ
〈g〉

∼̂
q 〈g〉 + ∼K̂

〈g〉

∼̂
q 〈g〉 (D.42)
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Finally, the imposition of EBCs will result in the final semi-discretized Euler-Bernoulli

gyrobeam dynamic ODEs:

∼
Q̂− ∼R̂ = ∼M̂ ∼

◦◦
q̂ +

∼
Ĝ
∼

◦
q̂ + ∼Ĉ ∼̂q + ∼K̂ ∼̂

q (D.43)

which can be integrated with an ODE integration technique provided the ICs are given or

can be used for modal vibration analysis even if the ICs are unknown.

D.9 Verification

As mentioned earlier, the 3D Euler-Bernoulli gyrobeam model is very useful for comparison,

verification, and examination of the more extended gyrobeam models developed in this text,

i.e. the 3D Timoshenko-based classical gyrobeam model and the 3D micropolar gyrobeam

model. However, a preliminary step before employment of the herein-developed 3D Euler-

Bernoulli gyrobeam model is to verify it (i.e. its corresponding dynamic equations and

FEM discretization).

Due to the lack of information about the Euler-Bernoulli gyrobeam model developed

by D’Eleuterio [2, 16] (the FEM formulation is not explained in detail) and the erroneous

nature of the dynamic equations derived by Zee [33] (based on his equations gyricity effects

may result in longitudinal deflections which cannot be correct), the best way of verifying

the 3D Euler-Bernoulli gyrobeam model developed in this text is to use the model for

reproduction of the results obtained by D’Eleuterio [2, 16].

However, one should note that, compared to the model developed by D’Eleuterio [2,16],

the Euler-Bernoulli gyrobeam model developed here is a more complete model as it does not

impose any constraint or approximation on the gyros’ attitude changes and is also capable

of modeling the beam’s longitudinal and torsional deformations. Therefore, to reproduce

the results obtained by D’Eleuterio, the herein-developed unrestricted 3D Euler-Bernoulli

gyrobeam model is firstly reduced to a zero-order restricted model, without the longitu-

dinal and torsional deformation modes, to match the zero-order restricted Euler-Bernoulli

gyrobeam model developed by D’Eleuterio [2, 16]. Then, this zero-order restricted Euler-

Bernoulli gyrobeam model is implemented in MATLAB® [66] as a FEM-based numeri-

cal model and is used to obtain the natural frequencies and mode shapes of the simple

375



Euler-Bernoulli gyrobeams addressed in [16] and [2]. Tables D.1 and D.2 summarize the

parameters which are used to implement the FEM-based numerical model in MATLAB®.

The Euler-Bernoulli gyrobeam selected in [16] for the numerical example is a slender

cantilevered rod carrying a linearly decreasing (or triangular) distribution of gyricity paral-

lel to the beam’s neutral axis. The gyrobeam has a constant mass density, constant bending

stiffnesses, and a bending stiffness ratio of 1.5. The modal results obtained for such a gy-

robeam using (the zero-order restricted version of) the herein-developed 3D Euler-Bernoulli

gyrobeam model are shown in Figures D.2–D.5. While knowing that 10 elements (or 11

nodes) does not guarantee the accuracy of all the natural frequencies and mode shapes

depicted in Figures D.2–D.5, a 10-element FEM is used to produce these results. This

provides the possibility of an even comparison with D’Eleuterio results in [16], copied in

Figures D.13 and D.14 for ease of access, which were also obtained using a 10-element FEM.

A comparison of the results obtained in this text with those obtained by D’Eleuterio [16],

while neglecting the small differences which might be due to taking different integration

approaches for derivation of the finite element matrices and especially the gyricity matrix,

verifies the Euler-Bernoulli gyrobeam model and the FEM formulation developed in this

appendix. Note that D’Eleuterio’s dimensionless symbols ω̂α and ĥT can be represented in

terms of the current text dimensionless parameters as:

ω̂α ≡
ω̂(α)

4
√
Î2 Î3

=

√
R̂2 R̂3 ω̂

(α)

ĥT ≡
1

4
√
Î2 Î3

∫
L̂

(
↔̂
V ·

→

◦
ψ
)
·
→
c1 dL̂ =

1
4
√
Î2 Î3

∫
L̂

a̂V33
◦
ϕ3 dL̂ =

√
R̂2 R̂3

∫
L̂

a̂V33
◦
ϕ3 dL̂

(D.44)

Based on the definition of ĥT in Eq. (D.44), the gyricity distribution corresponding to a

given ĥT is a triangular function as:

a̂V33
◦
ϕ3 = ĥT

4

√
Î2 Î3 2

(
1− cx̂1

)
= ĥT

1√
R̂2 R̂3

2
(

1− cx̂1

)
(D.45)

The Euler-Bernoulli gyrobeam considered in [2] is again a slender cantilevered rod with

a constant mass density, constant bending stiffnesses, and a bending stiffness ratio of 1.5,

carrying a gyricity distribution which is again parallel to the beam’s neutral axis. The only
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Table D.1: Summary of the main dimensionless parameters used in the numerical Euler-

Bernoulli gyrobeam model.

Parameter Value(s)

R̂3 =
√

3
2
R̂2 =

√
5
2
R̂1 50

µ̂ 3
8

kt 1

(ϕ1, ϕ2) (0, π
2
)

(
◦
ϕ1,

◦
ϕ2) (0, 0)

%̂V 0

ĥ
1
2
T [0, 12]

Table D.2: Summary of the main FEM parameters used in the numerical Euler-Bernoulli

gyrobeam model.

Parameter Value

Element Type C0 two-node (for tension and torsion)

C1 two-node (for bending)

Basis Functions linear Lagrange polynomials (for tension and torsion)

cubic Hermitian polynomials (for bending)

Number of Elements 10

Number of Nodes 11 (distributed evenly)

DOFs per Node 6

Longitudinal BCs fixed-free

Torsional BCs classical fixed-free

Bending BCs classical clamped-free

Gyricity Distribution Function triangular (to regenerate the results of [16])

sinusoidal (to regenerate the results of [2])
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difference is the gyricity distribution which has a sinusoidal shape this time (instead of a

triangular distribution). The modal results obtained for this gyrobeam using (the zero-

order restricted version of) the herein-developed 3D Euler-Bernoulli gyrobeam model are

shown in Figures D.6–D.12. Once more, a comparison of these results with those obtained

by D’Eleuterio [2], copied in Figures D.15–D.17, justifies the Euler-Bernoulli gyrobeam

model and the FEM formulation developed in this appendix. Note that in [2] D’Eleuterio

has replaced his symbol ω̂αby Ω̂αand this time the (sinusoidal-distributed) gyricity function

corresponding to a given ĥT is:

a̂V33
◦
ϕ3 = ĥT

4

√
Î2 Î3

π

2
sin(π cx̂1) = ĥT

1√
R̂2 R̂3

π

2
sin(π cx̂1) (D.46)

At the end of this appendix it is useful noting that the complete unrestricted 3D

Euler-Bernoulli gyrobeam model developed in this appendix (with no constraint on the

attitude changes of gyros and capable of modeling the beam’s longitudinal and torsional

deformations) is used for comparison and analysis presented in Chapter 5.

378



00.51
  

d a ta 1

0 2 4 6 8 10 12
0

4

8

12

16

20

24

28

32
Euler-Bernoulli Gyrobeam Model; Triangular-Distributed Gyricity

ĥ
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Figure D.2: Natural frequencies of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [16]

with a triangular-distributed gyricity parallel to the beam’s neutral axis.
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Figure D.3: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [16] with

a triangular-distributed gyricity parallel to the beam’s neutral axis – Set 1.
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Figure D.4: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [16] with

a triangular-distributed gyricity parallel to the beam’s neutral axis – Set 2.

381



00.51
  

d a ta 1

0

0.2

0.4

0.6

0.8

1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Euler-Bernoulli Gyrobeam; Triangular Gyricity
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Figure D.5: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [16] with

a triangular-distributed gyricity parallel to the beam’s neutral axis – Set 3.

382



00.51
  

d a ta 1

0 2 4 6 8 10 12
0

4

8

12

16

20

24

28

32
Euler-Bernoulli Gyrobeam Model; Sinusoidal-Distributed Gyricity

ĥ
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Figure D.6: Natural frequencies of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [2]
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ĥT = 1.50, Ω̂4 = 29.95

ˆ̄u2

Figure D.7: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [2] with a

sinusoidal-distributed gyricity parallel to the beam’s neutral axis – Set 1.
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Figure D.8: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [2] with a

sinusoidal-distributed gyricity parallel to the beam’s neutral axis – Set 2.
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ĥT = 2.40, Ω̂2 = 7.79

ˆ̄u2

00.51
  

d a ta 1

0

0.2

0.4

0.6

0.8

1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Euler-Bernoulli Gyrobeam; Sinusoidal Gyricity
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Figure D.9: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [2] with a

sinusoidal-distributed gyricity parallel to the beam’s neutral axis – Set 3.
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ĥT = 7.00, Ω̂4 = 17.39

ˆ̄u2

Figure D.10: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [2] with

a sinusoidal-distributed gyricity parallel to the beam’s neutral axis – Set 4.
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Figure D.11: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [2] with

a sinusoidal-distributed gyricity parallel to the beam’s neutral axis – Set 5.
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Figure D.12: Mode shapes of D’Eleuterio’s Euler-Bernoulli gyrobeam example in [2] with

a sinusoidal-distributed gyricity parallel to the beam’s neutral axis – Set 6.
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Figure D.13: Figure 5 of [16].
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Figure D.14: Figure 6 of [16].
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Figure D.15: Figure 5.3 of [2].
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Figure D.16: Figure 5.5 of [2].
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Figure D.17: Figure 5.7 of [2].
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Appendix E

Gyroelastic Beams with

Non-Uniform Gyricity

E.1 Introduction

This appendix shows how complicated and interesting the natural frequency loci (and their

associated curve veering) and the mode shapes of classical (Timoshenko) and micropolar

gyroelastic beams with non-uniform gyricity distributions are. Note that this is just a

preliminary investigation and the subject deserves more future work. The model and

the FEM parameters used to generate the results of this appendix are as those given in

Chapters 5 and 6 (see Tables 5.1 and 5.3 and Tables 6.1–6.3). The micropolar gyrobeam is

based on the first micropolar model addressed in Table 6.3 for which κ̂ = 102 and γ̂ = 10−10.

E.2 Half sinusoidal gyricity distribution

The main numerical results provided in Chapters 5 and 6 for the uniform gyricity dis-

tribution are expressly repeated in this section by considering half sinusoidal (instead of

uniform) axial and transverse gyricity distributions. Here, for a given total gyricity spin
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rate
◦
ϕ3T , the distribution of the gyricity spin rate over the beam length

◦
ϕ3(cx̂1) is:

◦
ϕ3(cx̂1) =

◦
ϕ3T

π

2
sin(π cx̂1) (E.1)

The natural frequency loci of a classical gyrobeam with a medium thickness (R̂3 = 50)

and half sinusoidal axial and trnasverse gyricity distributions are given in Figures E.1 and

E.3. Also the first six gyricity-affected mode shapes for the medium axial and transverse

gyricity cases (i.e.
◦
ϕ3T = 30) are plotted in Figures E.2 and E.4. Analogous plots for a

medium micropolar gyrobeam, with half sinusoidal axial and trnasverse gyricity distribu-

tions, are given in Figures E.5–E.8.

Whereas there are only slight differences between the natural loci plotted in this section

and those plotted in Chapters 5 and 6 (compare, for example, Figure E.1 with Figure 5.6),

the mode shapes given in this section for the half sinusoidal gyricity distribution differ

significantly from those plotted in Chapters 5 and 6 for the uniform gyricity distribution

(see, for example, Figure E.2 which can be compared with Figure 5.12).

E.3 Full sinusoidal gyricity distribution

This section will expressly repeat the key results of Chapters 5 and 6 by considering full

sinusoidal (instead of uniform) axial and transverse gyricity distributions in which the

distribution of gyricity spin rate over the beam length corresponding to a given total

gyricity spin rate is:
◦
ϕ3(cx̂1) =

◦
ϕ3T

π

2
sin(2π cx̂1) (E.2)

The natural frequency loci and the first six gyricity-affected mode shapes of a classical

gyrobeam with full sinusoidal axial and transverse gyricity distributions are given in Fig-

ures E.9–E.12. Analogous plots for a micropolar gyrobeam are given in Figures E.13–E.16.

For a gyrobeam carrying a full sinusoidal gyricity distribution (in either the axial or

the transverse direction) both natural frequency loci and mode shapes are significantly

different than those corresponding to a gyrobeam with a uniform gyricity distribution.

One may, for example, respectively compare the results shown in Figures E.13 and E.16

with the results given in Figures 6.11 and 6.50.

396



00.51
  

d a ta 1

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

ϕ̊3

1
2

T

(R̂3 ω̂)
1
2

Classical Gyrobeam Model;
R̂3 = 50

 

 
ω̂l

ω̂t
ω̂b

Figure E.1: Natural frequencies of a medium classical gyrobeam with a half sinusoidal

axial gyricity.
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Figure E.2: Mode shapes of a medium classical gyrobeam with a medium half sinusoidal

axial gyricity.
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Figure E.3: Natural frequencies of a medium classical gyrobeam with a half sinusoidal

transverse gyricity.
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Figure E.4: Mode shapes of a medium classical gyrobeam with a medium half sinusoidal

transverse gyricity.
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Figure E.5: Natural frequencies of a medium micropolar gyrobeam with a half sinusoidal

axial gyricity.

401



00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 102, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (1) = 0.01

ˆ̄u2

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 102, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (2) = 0.09

ˆ̄u2

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 102, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (3) = 0.26

ˆ̄u2

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 102, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (4) = 0.26

ˆ̄u2

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 102, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (5) = 0.49

ˆ̄u2

00.51
  

d a ta 1

0
0.2

0.4
0.6

0.8
1

-0.4

0

0.4

-0.4

0

0.4

ˆ̄u3
cx̂1

Micropolar Gyrobeam; ı̂V = 10−6, κ̂ = 102, γ̂ = 10−10

R̂3 = 50, ϕ̊3

1
2

T = 30.00, ω̂ (6) = 0.79

ˆ̄u2

Figure E.6: Mode shapes of a medium micropolar gyrobeam with a medium half sinusoidal

axial gyricity.
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Figure E.7: Natural frequencies of a medium micropolar gyrobeam with a half sinusoidal

transverse gyricity.
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Figure E.8: Mode shapes of a medium micropolar gyrobeam with a medium half sinusoidal

transverse gyricity.
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Figure E.9: Natural frequencies of a medium classical gyrobeam with a full sinusoidal axial

gyricity.
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Figure E.10: Mode shapes of a medium classical gyrobeam with a medium full sinusoidal

axial gyricity.
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Figure E.11: Natural frequencies of a medium classical gyrobeam with a full sinusoidal

transverse gyricity.
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Figure E.12: Mode shapes of a medium classical gyrobeam with a medium full sinusoidal

transverse gyricity.
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Figure E.13: Natural frequencies of a medium micropolar gyrobeam with a full sinusoidal

axial gyricity.
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Figure E.14: Mode shapes of a medium micropolar gyrobeam with a medium full sinusoidal

axial gyricity.
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Figure E.15: Natural frequencies of a medium micropolar gyrobeam with a full sinusoidal

transverse gyricity.
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Figure E.16: Mode shapes of a medium micropolar gyrobeam with a medium full sinusoidal

transverse gyricity.
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Appendix F

Nomenclature

F.1 Notational Conventions

In this text, Cartesian tensor concepts and accompanying index notations are used, where

it is meaningful. Generally, small Latin subscripts i , j , k , l , m , and n take the values

1, 2, and 3 (unless mentioned otherwise). For expressions with repeated Latin subscripts,

the Einstein summation convention over that subscript, from 1 to 3, is understood. Those

readers not familiar with these subjects or those wishing a review are referred to the books

on Continuum Mechanics, e.g. the book by Hodge [101] or the book by Irgens [41].

A frame, characterized by three orthonormal (i.e. mutually perpendicular and of unit

length) and dextral (i.e. right-handed) vectors and a reference origin, named a is referred

to as Fa , and its ith position coordinate (or coordinate axis) and unit basis vector are

represented by axi and
→
ai, respectively. The inertial reference frame is shown as Fo and is

the default reference frame for all descriptions and operations unless mentioned otherwise.

Hence, whenever the reference frame for an operation or a description is not mentioned,

that operation or description is done with respect to the inertial reference frame Fo . For

two arbitrary frames Fa and Fb , the transformation or rotation matrix from frame Fa to

frame Fb is shown as ba
∼C .

A vector (first-order tensor) is shown with a right-headed arrow under the name of that
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vector, e.g. →v , and a dyadic (second-order tensor) is denoted by the name of that dyadic

with a double-headed arrow underneath, e.g. ↔d. Consequently, →0 and ↔0 represent the zero

vector and zero dyadic, respectively. The component matrices of vector →v and dyadic ↔d ,

described in frame Fa, are shown as a
–
v and a

=
d. The elements of these component matrices

are represented by avi and adij , respectively. In general, a leading superscript denotes the

name of the frame in which a description or operation is done. This leading superscript is

omitted when the inertial frame Fo serves as the reference frame.

Note that any general (symmetric or asymmetric) dyadic ↔d can be decomposed into its

symmetric and antisymmetric (skew-symmetric) parts ↔d
s and ↔d

a where:

ads

ij =
1

2

(
adij + adji

)
ada

ij =
1

2

(
adij − adji

) (F.1)

The sine and cosine functions will often be shortened to s and c , respectively, i.e.

sz = sin z and cz = cos z .

Symbols 1ij and εijk denote the elements of the Kronecker dyadic (second-order Kro-

necker tensor or Kronecker delta) and the third-order Levi-Civita (permutation or alter-

nating) tensor, both being frame-independent. They are defined as:

1ij =

{
1 i = j

0 i 6= j
(F.2)

εijk =


+1 (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2)

−1 (i, j, k) = (3, 2, 1) or (2, 1, 3) or (1, 3, 2)

0 otherwise: i = j or j = k or k = i

(F.3)

Note that the identity matrix of size 3 (the 3 × 3 identity matrix) and the component

matrix of the second-order Kronecker delta, i.e.
=
1, are the same. In addition, keep in mind

the difference between εijk which refers to the elements of third-order Levi-Civita tensor,

and εij which denotes the elements of the second-order strain tensor ↔ε.

For a vector→v, symbol↔v
× denotes the antisymmetric dyadic, associated with the vector
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cross product, whose component matrix is defined as:

a
=
v× =

 0 −av3
av2

av3 0 −av1

−av2
av1 0

 =
[
av×ij
]
, av×ij = − εijk avk (F.4)

Considering this definition, for arbitrary vectors
→
v1 and

→
v2 the following useful identities

can be proved:

=
v1
×

=
v2
× =

–
v2

–
v1

T −
(

–
v1

T

–
v2

)
=
1(

=
v1
×

–
v2

)×
=

–
v2

–
v1

T −
–
v1

–
v2

T(
=
v1
×

–
v2

)×
=

=
v1
×

=
v2
× −

=
v2
×

=
v1
×

(F.5)

which hold true in any reference frame.

Time is denoted by t and the time derivative of a variable z (which can be a scalar,

vector, tensor, or any matrix function) with respect to frame Fa is represented by
adz
dt

,
az, t , or aż . Analogously,

ad2z
dt2

, az, tt , or az̈ will represent the second time derivative. It is

noteworthy that the time derivative of z with respect to Fa is defined as the time derivative

of its description in Fa , denoted by az :

adz

dt
=
daz

dt
(F.6)

Besides, the spatial derivative of variable z with respect to the ith coordinate of frame Fa
is denoted by dz

daxi
,
a dz
dxi

, or az, i . Consequently, the following relations will be concluded:

aż, i = az, t i =
ad

dt

(adz
dxi

)
(F.7)

az, ij...k =
a d

dxk

(
· · ·
(a d
dxj

(adz
dxi

)))
(F.8)

Also, symbol →∇ will stand for the gradient (del) vector operator whose component matrix

in frame Fa is defined as:

a
–
∇ =

[ a d

dx1

a d

dx2

a d

dx3

]T

, a∇i =
a d

dxi
(F.9)
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The small and capital form of the Greek letter delta are reserved for the calculus of

variations where the existence of a capital delta, i.e. ∆, before a function or variable means

the variation of that function or variable, and the existence of a small delta, i.e. δ , before

a variable of type displacement or work means a virtual displacement or a virtual work.

Analogous to the definition of the frame dependent time derivative, the variation of a

variable with respect to a frame is defined as the variation of the variable description in

that frame, that is:
a∆z = a∆

(
z
)

= ∆
(
az
)

= ∆az (F.10)

This is explained in more detail in Appendix B.

For an arbitrary matrix ∼m, its transpose and inverse (if it is square) are shown as ∼m
T

and ∼m
−1 , respectively, and its elements are represented by mij . The 1-norm condition

number of a matrix ∼m, illustrating how well-conditioned or ill-conditioned the matrix is,

is denoted as K
∼m

. The partial derivative of a scaler z with respect to a matrix ∼m is a

matrix of the same dimensions as ∼m defined by:

∂z

∂ ∼m
=

[
∂z

∂mij

]
(F.11)

More generally, the division of a scalar z by a matrix ∼m is equivalent to the division of the

scalar by each element of the matrix, that is:

z

∼m
=

[
z

mij

]
(F.12)

which is a matrix of the same dimensions as ∼m.

Symbols

∫
t

z dt ,

∫
L

z dL ,

∫
S

z dS , and

∫
V

z dV represent time, line (or path or curve),

surface, and volume integrals of z , respectively, and

[
z

]P2

P1

stands for the point integral of

z i.e. the value of z at P2 minus the value of z at P1 . The summation of an arbitrary

sequence, e.g. z(i), from i = 1 to i = N is represented by
N∑
i=1

z(i). Note that closed line

(or path or curve) and closed surface integrals are illustrated as

∮
L

z dL and

∮
S

z dS .
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Assuming z to be an arbitrary field variable, i.e. a scalar, vector, tensor, or matrix field

defined inside a volume domain V in 3D space R3 and on its boundary surface S , Gauss’

theorem in tensor notation can be written as:∫
V

z, i dV =

∮
S

z ni dS (F.13)

where ni is the ith element of →n, the unit vector (outward) normal to the boundary surface

S. Now, considering z to be the product of two other field variables z1 and z2, i.e. z = z1 z2,

one will get on substitution:∫
V

(
z1 z2

)
, i
dV =

∫
V

z1, i z2 dV +

∫
V

z1 z2, i dV =

∮
S

(
z1 z2

)
ni dS (F.14)

and hence: ∫
V

z1 z2, i dV =

∮
S

z1 z2 ni dS −
∫
V

z1, i z2 dV (F.15)

The corresponding formula for a surface domain S , in 2D space R2 and bounded by a

boundary line (or path or curve) L, will be:∫
S

z1 z2, i dS =

∮
L

z1 z2 ni dL−
∫
S

z1, i z2 dS, i = 1, 2 (F.16)

In 1D space R, Gauss’ theorem will reduce to the integration by parts formula, that is:∫
L

z1 z2, i dL =

[
z1 z2

]P2

P1

−
∫
L

z1, i z2 dL, i = 1 (F.17)

where P1 and P2 are the boundary points of the line domain L. The corresponding formula

in a time domain is: ∫
t

z1 ż2 dt =

[
z1 z2

]t2
t1

−
∫
t

ż1 z2 dt (F.18)

Symbols ∞ and ¿ represent an infinite and an indeterminate numerical quantity re-

spectively (or infinity and indeterminacy). Following are some indeterminate forms:

0×∞, ∞−∞, 0

0
,

∞
∞
, 00, ∞0, 1∞ (F.19)
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The absolute value and 2-norm of a parameter z are shown as |z| and ‖ z ‖ , respec-

tively. In dimensional analysis, the dimension of a parameter z is represented by [z] and

the symbols M , L , and T denote the mass, length, and time dimensions. A dimension-

less or dimension-reduced (group) parameter corresponding (and directly proportional) to

dimensional parameter z is referred to as ẑ .

F.2 Alphabetical list of abbreviations

The following list summarizes the abbreviations used in this text.

1D 1-dimensional

2D 2-dimensional

3D 3-dimensional

BC Boundary condition

CL Classical

DOF Degree of freedom

EB Euler-Bernoulli

EBC Essential boundary condition

FEM Finite element method

IC Initial condition

I/BCs Initial and boundary conditions

MGM1 Micropolar gyrobeam model 1

MGM2 Micropolar gyrobeam model 2

MGM3 Micropolar gyrobeam model 3

MGM4 Micropolar gyrobeam model 4

MP Micropolar

NBC Natural boundary condition
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ODE Ordinary differential equation

PDE Partial differential equation

TM Timoshenko

F.3 Alphabetical list of symbols

The following list summarizes the denotations of principal symbols used in this text. Every

attempt is made to use the standard symbols for a particular discipline and simultaneously

not to use the same symbol to denote more than one thing. Note that the symbols, z as a

general variable (can be a scalar, vector, tensor, or matrix), a and b as general frames, and

i and j as general sub/super scripts are used to define some other symbols and operations.

There are other (non-principal) symbols in the text which are defined in local context as

they occur.

F.3.1 Underneath/overhead symbols

→� Vector

↔� Dyadic

–
��� Vector component matrix

=
��� Dyadic component matrix

∼��� Matrix

�̄ Beam-related (neutral-axis-related)

�̂ Dimensionless or dimension-reduced

�̇ First time derivative

�̈ Second time derivative
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◦
� Nondimensional first time derivative
◦◦
� Nondimensional second time derivative

F.3.2 Leading sub/super scripts

a� With respect to (in) or belong to frame a

� With respect to (in) or belong to inertial frame

(leading superscript is omitted)

F.3.3 Post sub/super scripts

�b Corresponding to bending deformation mode

�cn Conservative

�i ith

�i Vector element

�ij Dyadic element

�ij Matrix element

�, i Spatial derivative

�, î Nondimensional spatial derivative

�l Corresponding to longitudinal deformation mode

�nc Non-conservative

�t Corresponding to torsional deformation mode

�T Total (obtained by integration or summation)

�−1 Inverse
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�′ Spatial derivative with respect to first coordinate of element frame

�× Cross product dyadic

�a Antisymmetric or skew-symmetric

�ang Angular or rotational

�〈e〉 Corresponding to element

�〈g〉 Corresponding to global assemblage

�〈i〉 Corresponding to ith node

�(i) Corresponding to ith vibration mode

� lin Linear or translational

�s Symmetric

�L Linear density (per unit length of elastic body)

�P Point density (at point of elastic body)

�S Surface density (per unit surface of elastic body)

�T Transpose

�V Volume density (per unit volume of elastic body)

F.3.4 Bracket delimiters

(
�
)

Multiplication parentheses

(�) Function parentheses

(�) Pair parentheses

[�] Range parentheses (square brackets)

[�] Dimension
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[
�

]
Point integral

|�| Absolute value

‖�‖ 2-norm

(�)cl Corresponding to classical elastic continuum

(�)mp Corresponding to micropolar elastic continuum

F.3.5 Non-letter characters

1 Kronecker delta

∂ Partial derivative

∇ Gradient (del)∑
Summation∫
Integral∮
Closed integral

∞ Infinity

¿ Indeterminate

F.3.6 Uppercase English letters

A Beam cross sectional area

B Tensile bulk modulus

C Transformation (rotation) matrix
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ba
∼C Transformation matrix from frame a to frame b

E Tensile (Young’s) modulus

H Finite element shape function

∼Hz
Shape function matrix corresponding to z

I Beam cross sectional second/polar moment of area

K 1-norm condition number

Kz 1-norm condition number of z

L General (boundary) line (path or curve)

L Length of beam

L Fundamental length dimension

M Fundamental mass dimension

N General number

N Number of generalized coordinates

P General (boundary) point

P1 Beam left boundary point

P2 Beam right boundary point

R Beam slenderness ratio

R General space

S General (boundary) surface

S Boundary surface of elastic body

T Fundamental time dimension

V General volume

V Volume of elastic body
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F.3.7 Lowercase English letters

a General frame and frame a basis vector

a Axis frame and axis frame basis vector

b General frame and frame b basis vector

b Body frame and body frame basis vector

c General frame and frame c basis vector

c Beam frame attached to left end of beam and beam frame basis vector

c Shortened cosine

cz Cosine of z

d General dyadic

d Differential and total derivative

d Damping coefficient

dM Coefficient of mass matrix (operator) in Rayleigh damping definition

dK Coefficient of stiffness matrix (operator) in Rayleigh damping definition

e Element frame attached to the first node of element and element frame

basis vector

f Force

f̄ Beam force

g Gravitational acceleration

h Gyros spin angular momentum magnitude

i General sub/super script

ı Microrotational inertia (microinertia) of elastic body
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j General sub/super script

 Rotational inertia of gyro

k Correction factor

ks2
Beam shear correction factor for bending parallel to second coordinate

of beam frame

ks3
Beam shear correction factor for bending parallel to third coordinate of

beam frame

kt Beam torsion correction factor

l Beam element length

m General matrix

m Moment

m̄ Beam moment

n Outward normal unit vector

o Inertial frame and inertial frame basis vector

p Position of elastic body element

q Generalized coordinate

r Characteristic root

s General rotation screw axis (rotation axis unit vector)

s Shortened sine

sz Sine of z

t Time

u Displacement

ū Beam displacement

v General vector

w General angular velocity
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ẇ General angular acceleration

x General coordinate (axis)

y General variable (can be scalar, vector, tensor, or matrix)

z General variable (can be scalar, vector, tensor, or matrix)

F.3.8 Uppercase calligraphic letters

A Action integral (action functional)

B Tortile (torsional) bulk modulus

C Circulatory (operator)

D Damping (operator)

E Tortile (torsional) modulus

F Frame

Fa Frame a

G Gyricity or gyroscopic (operator)

I Elastic body angular momentum

İ Time derivative of I with respect to inertial frame

J Gyro total angular momentum

J̇ Time derivative of J with respect to inertial frame

K Stiffness (operator)

L Lagrangian function

M Mass (operator)

Q Generalized force

R Generalized moment
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T Kinetic energy

U Potential energy

Ue Elastic energy (total strain energy)

W Work

F.3.9 Uppercase Greek letters

∆ Variation

F.3.10 Lowercase Greek letters

α Micropolar (Cosserat) twist elastic constants

β Micropolar (Cosserat) twist elastic constants

γ Micropolar (Cosserat) twist elastic constants

δ Virtual

ε Levi-Civita (alternating or permutation) tensor

εM MATLAB® epsilon (or machine precision)

ε Strain

θ Macrorotation (classical rotation)

θ̄ Beam plane (section) rotation

ϑ General rotation angle

ϑ Microrotation (micropolar rotation)

ϑ̄ Beam microrotation

ϑ̇ Angular microrotational velocity
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ϑ̈ Angular microrotational acceleration

κ Micropolar (Cosserat) coupling elastic constant (couple modulus)

λ Lamé second elastic constants

µ Lamé first elastic constants

µ Shear modulus

ν Strain Poisson’s ratio

ξ Twist Poisson’s ratio

ρ Translational inertia of elastic body

% Translational inertia of gyro

σ Force stress

τ Twist (wryness or torsion)

φ̇ Angular velocity of axis frame (gyro axis) with respect to body frame

φ̈ Time derivative of φ̇ with respect to axis frame

ϕ1 First rotation angle of gyro axis

ϕ2 Second rotation angle of gyro axis

ϕ3 Spin rotation angle of gyro wheel

◦
ϕ3T Total nondimensional gyricity spin rate

χ Couple stress

ψ̇ Angular velocity of gyro wheel with respect to axis frame

ψ̈ Time derivative of ψ̇ with respect to axis frame

ω Natural frequency
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