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Abstract

This work is concerned with the theoretical development of dynamic equations for gy-
roelastic systems which are dynamic systems with four basic types of continuous mechanical
influences, 7.e. inertia, elasticity, damping, and gyricity or stored angular momentum. As-
suming unrestricted or large attitude changes for the axes of the gyros and utilizing two
different theories of elasticity, i.e. the classical and micropolar theories of elasticity, the
energy expressions and equations of motion for the undamped classical and micropolar gy-
roelastic continua are derived. Whereas the micropolar gyroelastic continuum model with
extra coefficients and degrees of freedom is primarily developed to account for the asym-
metric elasticity, it also proves itself to be more comprehensive in describing the actual

gyroscopic system or structure.

The dynamic equations of the general three-dimensional gyroelastic continua are re-
duced to the case of a one-dimensional gyroelastic continua in the three-dimensional space,
i.e. three-dimensional gyrobeams. Two different gyrobeam models are developed, one
based on the classical beam torsion and bending theories and one based on the simplified
micropolar beam torsion and bending theories. Finite element models corresponding to
the classical and micropolar gyrobeams are built in MATLAB® and used for numerical

analysis.

The classical and micropolar gyrobeam models are analyzed and compared, against the
earlier gyrobeam models developed by other authors and also against each other, through
numerical examples. It is shown that there are significant differences between the developed
unrestricted classical gyrobeam model and the previously derived zero-order restricted
classical gyrobeam models. These differences are more pronounced in the shorter beams
and for the transverse gyricity case. The results also indicate that the unrestricted classical
and micropolar gyrobeam models behave very diversely in a wide range of micropolar elastic

constants even where the classical and micropolar elasticity models coincide.

As a foundation for development of the above-mentioned theories, the correct approach
for simplification of the micropolar elasticity to the classical elasticity, the simple torsion
and bending theories for micropolar beams, and the correct approximation of infinitesimal

rotations or microrotations are derived and presented.
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Chapter 1

Introduction

1.1 A historical overview of gyroelastic systems

With the general trend towards larger and lighter (and hence, more flexible) spacecraft,
of which some have been proposed that may extend up to a kilometer in length and
breadth, spacecraft shape and pose control problems have become increasingly important.
An example of such spacecraft (usually very large truss structures with regular repetitive
lattices) is shown in Figure 1.1. Generally, for such flexible spacecraft, three classes of
control problems can be characterized; motion control (path tracking), attitude control,

and shape control.

For stabilization (passive control) and attitude/shape control (active control) purposes,
using “angular momentum devices” or “stored angular momentum”, i.e. “momentum
wheels” (having an angular momentum vector with fixed direction and time-varying magni-
tude) and “control-moment gyros” or “gyroscopes” (having an angular momentum vector
with fixed magnitude and time-varying direction), mounted on rigid or flexible parts of
spacecraft has been an attractive strategy due to abundantly available solar energy for
actuator operation. Indeed, there are many advantages to using angular momentum de-
vices (momentum wheels or control moment gyros) instead of force devices (thrusters) for

controlling the spacecraft; they are efficient, light-weight, linear, and clean actuators which



Figure 1.1: Conceptual schematic of a Solar Power Satellite (SPS) [1].

can be operated with accessible solar energy, do not need to be refueled, need very low
power to apply considerable moment, and need relatively little maintenance. However, it
is worthwhile to note that moment actuators are not applicable for path tracking control of
spacecraft and force actuators are essential for this purpose. Generally, angular momentum

devices can provide moment actuation to complement the force actuation of thrusters.

In this document, angular momentum devices will be referred to by the more general
term “gyro” (an actively controlled device which has an angular momentum vector with
time-varying magnitude and direction) and this work will be concerned with the dynamics

of flexible space structures which use the gyros for stabilization and attitude/shape control.

Attempts to use spin-stabilizing of orbiting satellites began in 1958 with Explorer I
(the first satellite of the United States) [2,3]. Later, gyroscopic stabilization was extended
further by the appearance of dual-spin spacecraft (gyrostat) and three-axis stabilized satel-
lites [2]. Dynamics, control, and stability analysis of flexible spacecraft with spinning
parts, often called gyroscopes, using discrete-coordinate representations, can be found in
the works of Meirovitch et al. [4-7]. Likins, Gale, Cherchas, Hughes, and Sharpe [8-12]
have also made considerable advances in this field. The space structures containing a/some

gyro(s) as discrete stored angular momentum are referred to as “gyroscopic systems”.

Aubrun and Margulies [13] addressed the use of actively controlled distributed gyros,
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referred to as gyrodampers, for active vibration control of large structures. Considering the
achievable damping factors, they showed the superiority of using many small gyrodampers
to the use of one large gyrodamper. Hablani and Skelton [14, 15] investigated the effect of
stored angular momentum, labeled as “gyroscopicity”, on the characteristics of a flexible
vehicle. D’Eleuterio and Hughes [2, 16] proposed the term “gyricity” for stored angular
momentum in a flexible spacecraft and introduced the idea of flexible spacecraft with
four basic types of mechanical influences, i.e. inertia (mass), elasticity (stiffness), damping
(dissipation), and gyricity (gyroscope) influences. These factors can be modeled as both
lumped parameters and distributed parameters. The space structures ideally modeled
as systems with continuous distributions of inertia, elasticity, damping, and gyricity are

referred to as “gyroelastic systems”.

Figure 1.2: Schematic of a very large lattice structure [17] with the potential of housing a

gyro in each lattice.

For clarity of the (continuous) gyroelastic systems idea, consider a very large truss
structure with repetitive regular lattices. To avoid the complexity of working with a
huge number of (thousands of) ordinary differential equations such a structure is usually

idealized as an equivalent continuum with distributed parameters (continuous distributions
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of inertia, elasticity, and damping) which will result in a few partial differential equations
of motion [18]. Now assume that every lattice of this truss structure houses a small gyro
at its center, and therefore, the structure possesses many (thousands of) gyros or angular
momentum devices (see Figure 1.2). In the same way, to facilitate the dynamic analysis,
these many gyros can be ideally treated as a distributed parameter, i.e. a continuous
gyricity (stored angular momentum) distribution, and the real system can be modeled as an
ideal (continuous) gyroelastic body (gyroelastic continuum or more briefly gyrocontinuum).
In this way, it is assumed that every infinitesimal element of the equivalent continuum
houses its own gyro and the gyricity is treated as a time-varying field quantity (similar to

the commonly-time-invariant inertia, elasticity, and damping field quantities).

Figure 1.3: A gyroelastic beam.

An example of ideal gyroelastic systems, i.e. a gyroelastic beam or more briefly a gy-
robeam, is shown in Figure 1.3 where the depicted discrete gyros are symbolic and represent
the continuous gyricity distribution over the beam. It is noteworthy that the continuous
gyroelastic continua (which is indeed an idealization of the real discrete gyroscopic struc-
ture) can be analyzed using either a continuous technique (such as the Fourier method)

or a discrete technique (such as the finite element method). In addition, keep in mind
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that (like every new idea) whereas the gyroelastic systems seems not to be realistic at the
moment, there is the possibility that such systems become common as communication and
solar power satellites in future. Indeed, the idea of gyroelastic systems is one of those cases

when theory precedes the experiment.

The previous work on gyroelastic systems can be reviewed better by categorizing these
systems based on the approaches utilized for modeling them. Recalling that the two
essential parts of every gyroelastic system are elastic body and gyros (gyricity) distribution,
the key parameter for categorizing the models of gyroelastic systems will be the methods

and assumptions used for modeling the elasticity and gyricity.

The most popular theory for treating an elastic body (a continuum) is the linear “classi-
cal” (conventional) theory of elasticity, suitable for symmetric stress-strain analysis. How-
ever, a more complete theory is the linear “micropolar” (Cosserat) theory of elasticity,
useful for asymmetric stress-strain analysis. This asymmetric theory of elasticity is spe-
cially desirable for modeling the gyroelastic systems where an asymmetric stress tensor is
expected due to the presence of gyricity which results in a volume moment distribution
over the elastic body. Whereas there are other elasticity theories, the linear classical and
micropolar theories of elasticity will be used in this thesis for modeling the elastic body of

gyroelastic systems. These two theories will be explained in more detail in Chapter 2.

On the other hand, the gyros can be treated in two different ways. One way is to
assume that the axis of the gyros’ spinning wheel rotates (with respect to the elastic body)
just through very small angles; this results in the linear or “restricted” equations of motion
after neglecting the higher order terms (note that there is no limit on the spin rotation of
gyros’ wheels around their axes of rotation). The other way is to consider no restriction
on the rotation angles (i.e. rotation angles of the wheel axis and spin rotation of the wheel

around this axis); this gives rise to the general or “unrestricted” equations of motion.

Consequently, four categories can be characterized for gyroelastic systems; “restricted
classical gyroelastic systems”, “restricted micropolar gyroelastic systems”, “unrestricted
classical gyroelastic systems”, and “unrestricted micropolar gyroelastic systems”. As an
example, unrestricted micropolar gyroelastic systems or unrestricted micropolar gyrocon-

tinua are those in which linear micropolar theory of elasticity is utilized for modeling the



elasticity and the gyros’ rotation angles are considered to be unrestricted (large).

The work on “restricted classical gyroelastic systems” has been mostly done by Hughes,
D’Eleuterio, and Damaren. D’Eleuterio and Hughes [2, 16, 19] examined the dynamics of
gyroelastic systems (bodies with continuous distributions of inertia, elasticity, and gyricity)
with a time-invariant distribution of gyricity and no dissipation. Their analysis contained
two main classes; constrained dynamics and unconstrained dynamics. For each class, the
equations of motion were derived, modal analysis was carried out, and the gyricity effect on
vibrational frequencies and mode shapes was investigated. The modal parameters (modal
coefficients), i.e.integrals of the mode shapes, were attained and a series of modal identities,

which these modal parameters should satisfy, were proved.

D’Eleuterio and Hughes found that for a nonspinning unconstrained gyroelastic system
(gyroelastic vehicle) the unconstrained motion can be described in terms of constrained
modal parameters and such a vehicle can exhibit a scleromorphic mode (pseudorigid mode)
with zero frequency and nonzero strain energy. In this mode, the gyroelastic vehicle ro-
tates uniformly while having a deformed state [20,21]. It is worthwhile to note that for
unconstrained gyroelastic systems it was assumed that the orbital reference frame can be

taken as inertial.

A series of numerical examples (elastic structures containing a/some flexible rod(s)
with distributed gyricity) were presented by D’Eleuterio and Hughes to demonstrate the
theoretical results [2,16,19-21]. Usually in these examples, the Rayleigh-Ritz method was
utilized to obtain an approximate solution for the equations of motion (a set of partial
differential equations). Moreover, D’Eleuterio derived the equations of motion of a gyroe-
lastic vehicle from the force equilibrium (balance) equations of continuum mechanics and
verified the equations previously obtained from the Newtonian mechanics and Hamilton’s

principle [22].

Damaren and D’Eleuterio [23,24] extended the work to the case of lightly damped (lin-
ear viscous damping) gyroelastic continua and obtained the governing equations of motion.
They used a first-order perturbation approach to find the eigenvalues and eigenfunctions
of this system. In addition, using the results of the modal analysis and a modal expansion

of the Riccati operator, they found the controllability conditions of gyroelastic systems



and solved the optimal control problem of these systems. The theoretical results were
illustrated using a numerical example, i.e. a gyroelastic plate. They considered a gyricity
distribution with time-varying direction and constant magnitude, for the control problem.
The variation in direction of gyricity distribution was assumed to be small enough, that
the governing equations of motion were linearizable. In other words, a distribution of con-
trol moment gyros was considered in which angular displacements of the gyros’ axis were
small. Results showed the effectiveness of the gyricity distribution for active shape control

of flexible spacecraft in addition to passive shape control or shape stabilization.

Controllability and observability of the gyroelastic continua were studied further by
Damaren and D’Eleuterio [25] and the concept of gyroelastic nodes and its relation to
sensor locating were investigated. The modal parameters were used for expressing the con-
trollability and observability conditions and it was mentioned that the results can be used
for determination of the minimum number of required sensors and the optimal distribution
of actuators. The bending of a uniform free-free rod was presented as a numerical example.
Also, using a modal approximation method and considering a quadratic performance index,
optimal control of gyroelastic systems was examined by Damaren and D’Eleuterio [26]. The
optimization of actuators placement was addressed and simple examples, i.e. the classical

gyroelastic beam and plate, were used for illustration of the results.

The dynamics and stability of a special case of the gyroelastic systems, i.e. an Euler-
Bernoulli beam containing a single tip-rotor, was studied by Yamanaka et al. [27,28].
Using the Rayleigh-Ritz approximate solution for the equations of motion, stability, static
instability (divergence) and dynamic instability (flutter) regions were obtained and the
possibility of gyroscopic stabilization was examined. Analogous analyses for cantilevered

thin-walled beams with a tip-rotor were carried out by Song, Kwon, and Librescu [29-32].

Zee and Heppler [33] and Yamanaka et al. [34] examined the dynamics of a gyroelastic
beam in which both the magnitude and direction of the gyricity distribution may vary in
time and throughout the body. Again, the variation in direction of distributed gyricity was
assumed to be small. Numerical examples were focused on the vibrational response of a

gyroelastic beam to a gyricity distribution with ramped-up magnitude and fixed direction.

Peck and Cavender [35,36] proposed that embedded angular momentum could be used



for structural adaptation, e.g. frequency shifting, modal coupling/decoupling, damping
redistribution, steady-state deflection, and phase adjustment. They performed experiments
on a testbed (2003 MSC/LOS) for validation of their results.

Whereas there are numerous papers on restricted classical gyroelastic systems, there
is only one preliminary paper on “restricted micropolar gyroelastic systems”. The idea of
a micropolar gyroelastic system, i.e. a micropolar (Cosserat) continuum with lots of very
small gyros, called a gyrocontinuum, was proposed by Brocato and Capriz [37]. Considering
some simplifying assumptions and using an unusual notation (for solid mechanics), they
derived the kinetic energy and inertia expressions and balance laws (i.e. conservation of
mass and balance of momentum) for such a continuum. However, the examples provided
by them illustrated the simple case of the linear elastic classical material containing a time-
invariant gyricity distribution (i.e. gyros with fixed axis and constant spin rate), which was

previously addressed by D’Eleuterio and Hughes [2, 16].

Finally, it is noteworthy that to the best of the author’s knowledge there is no work on

“unrestricted classical and micropolar gyroelastic systems”.

1.2 Thesis objectives and scope

As can be concluded, in almost all of the previous works, despite the existence of a vol-
ume (body) moment distribution over the elastic body (due to the gyricity distribution)
which results in an asymmetric stress tensor, the linear theory of classical (conventional,
symmetric) elasticity has been used for modeling the elasticity in the gyroelastic systems.
In these works, the volume moment distribution has been substituted by an equivalent
volume force distribution producing the same displacement field. Therefore, there has not
been any source for generating the asymmetry in the stress tensor. There is one paper by
D’Eleuterio [22] which has briefly mentioned the asymmetry of the stress tensor, and there
is one paper by Brocato and Capriz [37] which has suggested the idea of the micropolar
gyrocontinua. However, in the former, due to considering a very simple theory of asym-
metric elasticity with the classical constitutive relation (relating the symmetric portion of

the stress tensor to the symmetric strain tensor), the effect of this asymmetry has been in-



cluded as an effective volume force and the results obtained previously (using the theory of
symmetric classical elasticity and the concept of equivalent volume force distribution) have
been repeated. The latter paper is unclear due to not using the usual notation of solid me-
chanics and not providing any example illustrating the attained results for the micropolar
gyrocontinua. Hence, the first goal of this thesis is to utilize the more advanced theory of
asymmetric elasticity, i.e. linear theory of micropolar (Cosserat) elasticity, for the deriva-
tion of the dynamic equations of gyroelastic continua, and to compare this formulation to

that obtained from the classical theory of elasticity.

In addition, the previous works in the field of gyroelasticity have been based on assump-
tions of small deformations for the elastic body and small attitude changes for the gyros’
axis which lead to restricted linearized equations of motion. In this thesis, while keeping
the assumption of small elastic deformations, formulating the general (unrestricted) equa-
tions of motion for gyroelastic systems, when the rotation angles of gyros’ axis are not

small, is taken as the second goal.

The final goal is to study and compare the behaviors of the so-obtained unrestricted
classical and micropolar gyroelastic continua which will be done via the numerical analysis

of gyroelastic beams as a case study.

To sum up, it can be said that the focus of this thesis is on the development and anal-
ysis of ideal continuous gyroelastic models (or gyrocontinuum models) without studying
the relationship between the practical or realistic discrete gyroscopic systems (structures)
and these idealized continuous models, which is the concern in an “equivalent continuum

modeling” or “equivalent continuous modeling”.

1.3 Thesis overview

The work is arranged into seven chapters. After this chapter (Chapter 1), containing the
introduction and the literature review, the background theories needed for the derivation
of the gyroelastic continua equations of motion, .e. the general classical and micropolar
elasticity theories, dynamics of a gyro, and Hamilton’s principle are reviewed in Chapter 2.

The energy expressions and dynamic equations of general three-dimensional classical and



micropolar gyroelastic continua are derived in Chapter 3. As a simple case of gyroelastic
continua, the three-dimensional classical and micropolar gyroelastic beams are addressed in
Chapter 4 where, in addition to the energy expressions and dynamic equations, the nondi-
mensionalization and finite element discretization of the dynamic equations are presented.
By implementing the finite element discretized models in MATLAB®), the classical and
micropolar gyroelastic beams are numerically analyzed and compared during Chapters 5
and 6. Finally, the summary of the work, conclusions, and future work recommendations

are given in Chapter 7.

Affixed to these chapters, there are six appendices which provide the extra information
to support the main chapters’ theories. A detailed review of the micropolar elasticity the-
ory, its associated apparent inconsistencies, and the correct approach for its simplification
to the classical elasticity theory are given in Appendix A. As one of the key subjects of this
work, the kinematics of rotating frames and bodies is reviewed in Appendix B where the
main focus is on the kinematics of infinitesimal rotations and the correct approximation of
them. A better understanding of the herein-developed micropolar beam torsion and bend-
ing theories is provided in Appendix C where the statics and dynamics of micropolar elastic
beams (without any gyricity distribution) are numerically analyzed. The Euler-Bernoulli
gyroelastic beam model, as a reference for investigation of current author’s classical and
micropolar gyroelastic beam models, is constructed and verified in Appendix D. As a
groundwork for future work on the effects of the gyricity distribution shape, a few gyroe-
lastic beams with non-uniform gyricity distributions are quickly presented in Appendix E.
Finally, Appendix F provides the conventions and definitions for the notations and symbols

used in this text.
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Chapter 2

Background Theories

2.1 Introduction

As mentioned before, the essential parts of a gyrocontinuum are the elastic body and
the gyricity distribution. Therefore, studying them is a preliminary step for derivation
of the gyrocontinuum dynamic equations. This chapter is devoted to the preparation of
this background study. More precisely, the theories of elasticity utilized in this thesis to
represent the elasticity of a gyrocontinuum are reviewed and useful equations are derived.
Then, dynamics of a gyro mounted in a body element as a representation for the gyricity
distribution is taken into account and the corresponding equations are developed. Finally,
application of Hamilton’s principle and the calculus of variations for dynamic formulation

of a general continuous mechanical system is studied.

2.2 Theories of elasticity

When dealing with an elastic system, one of the most important steps in the derivation
of the equations of motion is selection of the proper theory of elasticity. The theory of
elasticity is utilized to relate the stress field, external force/moment distributions, defor-

mation (strain) field, and displacement field to each other. It makes it possible to obtain
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dynamic partial differential equations (PDEs) in terms of just the displacement field vari-
ables and external force/moment distributions. Selection of the proper theory of elasticity
must be made based on the nature of deformation (small or large deformation, depen-
dent or independent rotation field), the material properties (linear or nonlinear, isotropic
or anisotropic), and the nature of the stress (symmetric or asymmetric, force stress or

force/couple stress).

The most popular elasticity theory is the classical theory of linear elasticity [38-41]
in which strain terms are small compared to unity, and the microrotation field vector
is dependent on the displacement field vector. In addition, it is assumed that internal
interactions between neighboring elements of an elastic body occur only by means of the
force stress (or simply stress) vector (elements of the stress tensor related to an interface
form the stress vector at any point). These assumptions lead to symmetric stress and

strain tensors and hence, this theory is also known as the symmetric theory of elasticity.

Actually, in the classical theory of elasticity, the presence of a volume moment distri-
bution over the elastic body will result in an asymmetric stress tensor. For such a case,
the conventional (or classical) constitutive law, relating the symmetric part of the stress
tensor to the symmetric strain tensor, can be utilized to determine the symmetric part
of the stress tensor. However, there will be no constitutive relation for determining the
antisymmetric (or skew-symmetric) part of the stress tensor. Instead, this antisymmet-
ric part can be determined from the angular momentum balance equation, relating the
antisymmetric part of the stress tensor to the volume moment distribution. Taking into
account the linear momentum balance equation, decomposing the stress tensor into its
symmetric and antisymmetric parts, and using the angular momentum balance equation
to substitute the antisymmetric part, the effect of the volume moment distribution will
appear as an effective (equivalent) force in the linear momentum balance equation. Hence,
the antisymmetric part of the stress tensor will not appear directly in the equations of
motion. This extended form of the classical theory of elasticity, in which a volume moment
distribution is used to determine the antisymmetric part of the stress tensor and is simply
included as an equivalent volume force distribution in the linear momentum balance equa-
tion, can be regarded as the simplest theory of asymmetric elasticity and can be referred

to as the classical theory of asymmetric elasticity. However, for simplicity and to avoid
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misunderstanding, in this text it is referred to as just classical theory of elasticity and in
fact this classical theory of asymmetric elasticity is meant whenever the phrase “classical

theory of elasticity” is used.

The classical theory of elasticity produces acceptable results in numerous engineering
problems with various structural materials. However, for the cases with large stress gradi-
ents (e.g. in the vicinity of holes and cracks) or materials with significant microstructure
contribution (e.g. composites, polymers, soil, and bone), the classical theory of elasticity
fails to produce acceptable results [42]. In addition, it is not an appropriate theory for
asymmetric stress-strain analysis (which is the case when dealing with an elastic body

under the action of a volume moment distribution).

To improve the results of the classical theory of elasticity, Voigt added an independent
couple stress vector to the previous force stress vector to describe the interactions between
neighboring elements of an elastic body [42,43]. Voigt’s theory (couple-stress elasticity) was
developed further by the brothers E. and F. Cosserat who made another step and suggested
independent displacement and microrotation field vectors for describing the deformations
of an elastic body [42]. These assumptions (existence of the couple stress tensor and
independency of the displacement and microrotation fields) lead to six degrees of freedom
(DOFs) for every element of the body and a description of stress and strain in terms of
asymmetric tensors. The (geometrically nonlinear) Cosserat theory of elasticity, formulated
in an unclear manner, was further developed in a restricted linearized setting by other
scholars later. Notably, Eringen extended the theory to include microinertia effects and
renamed that into the micropolar theory of elasticty [42,44]. Nowadays, the linear theory is
known as linear theory of micropolar, Cosserat, or asymmetric elasticity. A complementary

discussion on characteristics of the “micropolar theory of elasticity” is given in Appendix A.

To provide a brief overview of the three-dimensional (3D) linear theory of micropolar
elasticity, consider a general homogeneous, isotropic, and centrally symmetric elastic body
(which means the elastic properties of the body are independent of the position, direction,
and inversion of the coordinate system) occupying a volume domain V in R?, bounded by
surface S. A body frame F;, and a position vector J4 (described with respect to the inertial
frame F,) correspond to each representative infinitesimal element of the body. Frames F,

are body fixed frames which move and rotate with (are attached to) the elements of the

13



body (see Figure 2.1).

Figure 2.1: A general elastic body and its representative infinitesimal element.

Assume that the body undergoes a motion and deformation due to the action of external
volume, surface, line, and point forces/moments (_}f"7 js, jL, f)P, mY, m®, m", and m”,
respectively). As mentioned previously, the internal loading at each point of the body can
be represented by means of an asymmetric force stress tensor g and an asymmetric couple

stress tensor x of the forms (see Figure 2.2):

011 012 013 X11 X122 X13
o= | ou 0n op | =0y, X = X21 X222 X23 | = [Xij] (2.1)
031 032 033 X31 X32 X33

The motion and deformation of the body can be expressed by a displacement field vector
u(p,t) and an independent microrotation field vector ¥(p, t) (see Appendix B regarding the

characteristics of this microrotation vector), assuming that the elastic body has no (large)
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Figure 2.2: Free body diagram of a representative element in a micropolar elastic body.

rigid body rotation. This leads to the description of the asymmetric strain tensor g:

€11 €12 €13
T X
= €21 €22 £&23 = [é‘ij] =Vu + ’1:9 3 Eij = Uj 4 — €ijk 19k (22)

V)

€31 &32 £33

and the asymmetric twist (wryness or torsion) tensor 7:

T11 T12 T13
T = | Toa1 T22 723 :[Tij]:V’l?Ta Tij = Uy (2-3)

T31 T32 T33

In the linear theory of micropolar elasticity, the constitutive relations have the forms:
O35 = (,U, + :‘i) Eij -+ (M — H) €ji + )\éfkk ]lij

(2.4)

Xij = (V + 5) Tij + (7 - 5) Tji + 0 Tiy Ly

where p and A are the Lamé coefficients (u is also known as the shear modulus) as in the

classical theory of elasticity, and &, 7, 8, and « are referred to as the micropolar (Cosserat)
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elastic constants. A more detailed explanation of the micropolar elastic constants can be

found in Appendix A.

Considering the free-body diagram shown in Figure 2.2 the (first-order) differential
form of the micropolar equations of motion in terms of force stresses and couple stresses
are:

i+ J = pij Uy
. (2.5)

€ijk Ojk + Xji g +my =15 0;
where gv (EV = p" 1, and p¥ is the volume mass density of the body) is the tensor of
translational inertia per unit volume for the elastic body, 2" (usually 2" =" 1, and 2" is
the volume microinertia density [42]) is the tensor of body microrotational inertia per unit

volume, and 12 is the angular acceleration field vector defined as:

. g2 . 2
i=gm(?) P-m() (2:6)
It is worthwhile to mention that the body angular velocity vector is:
. d . d
I=2(0),  d=2(v) .7

Also, the second relation in Eq. (2.5) can be rewritten into the following form:
Uz’j — O'jz' + Gijk (Xlk,l -+ m,;/) = Gijk Zl‘c/l Q§l (28)

Using the constitutive relations of Eq. (2.4) and the definition of the strain and twist
tensors (given by Egs. (2.2) and (2.3)), the dynamic equations given by Eq. (2.5) can be

formulated in terms of the displacement and microrotation vectors as:
(4 8) (V-0)ust (n=r+2) T (Vo) + 267 g+ [ =p"
(v+8) V-V =ar)d+ (v=B+a)V(V-0) +26V utm” =" d

e

(2.9)

The system of governing dynamic equations of a micropolar elastic body in Eq. (2.9)
is a system of coupled linear PDEs with six unknowns; three displacements and three
independent microrotations. These linear governing equations can be written in tensor
form as:

MGy + K ug + Cit = fY

ang Q an an