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Abstract

For every positive, decreasing, summable sequence a = (a;), we can construct a Can-
tor set C, associated with a. These Cantor sets are not necessarily self-similar. Their
dimensional properties and measures have been studied in terms of the sequence a.

In this thesis, we extend these results to a more general collection of Cantor sets. We
study their Hausdorff and packing measures, and compare the size of Cantor sets with the
more refined notion of dimension partitions. The properties of these Cantor sets in relation
to the collection of cut-out sets are then considered. The multifractal spectrum of p-Cantor
measures on these Cantor sets are also computed. We then focus on the special case of
homogeneous Cantor sets and obtain a more accurate estimate of their exact measures.
Finally, we prove the LP-improving property of the p-Cantor measure on a homogeneous
Cantor set as a convolution operator.
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Chapter 1

Preliminaries

1.1 Introduction

In fractal geometry, self-similar sets are well-known to many people. A self-similar set is the
attractor of a family of contracting similarities. Their measures, dimensions, multifractal
spectrum and many other properties have been studied (See [24, 22, 7, 11]). Among them
the middle-third Cantor set is probably the most famous example.

A Cantor set is a perfect, totally disconnected, compact subset of the real line R. There
are different types of Cantor sets though, including the central Cantor sets and the Cantor
sets C, associated with a sequence a = (a;). They are not necessarily self-similar, so we
do not have the same machinery to study them. In this thesis, we study a collection of
Cantor sets which cover these examples and extend some results on them.

The Cantor set C,, associated with a decreasing summable sequence a = (a;) is a Cantor
set having gaps with lengths a;. We also call it a decreasing Cantor set in this thesis. Its
Hausdorff measure and dimension have already been studied in [2]. The dimension can be
calculated in terms of the tails of the sequence a.

However, even when « is the Hausdorff dimension of a set C', the Hausdorff measure,
H*(C), may still be 0 or co. We need a more general dimension function h and h-Hausdorff
measure, H"(C), to measure the size of C'. This gives us a more refined description of the
dimension of a set. The packing measure and packing dimension introduced by Tricot ([32],
see also [31]), as the dual concepts of the Hausdorff measure and Hausdorff dimension,
together with the more general h-packing measure, provide an even more complete picture
of the size of a set.



These h-measures of decreasing Cantor sets C, are estimated in [3], [L3] and [6]. The
partition of dimension functions were used to classify these Cantor sets in [0].

We generalize these results in Chapter 2 to a more extensive collection of Cantor sets
which we call balanced Cantor sets. They include both the decreasing Cantor sets and the
central Cantor sets. In Chapter 3, we consider the relative size of the balanced Cantor sets
within the collection of all cut-out sets.

The multifractal spectrum of p-Cantor measures defined on central Cantor sets [18] and
decreasing Cantor sets [19] have been studied. We extend these results to the p-Cantor
measures on the balanced Cantor sets with a fixed number of divisions in Chapter 4.

The homogeneous Cantor sets are generalizations of the central Cantor sets, and they
are balanced Cantor sets, as well. The exact Hausdorff measures of homogeneous Cantor
sets are calculated in [27, 28] and the exact packing measures of central Cantor sets are
obtained in [I1]. In Chapter 5, we improve an estimation in the former case and extend
the latter packing measure result to the homogeneous Cantor sets.

In the last chapter, we will prove that the p-Cantor measures on homogeneous Cantor
sets, acting as convolution operators, have the LP-improving property.

In the remainder of this chapter, we establish notations and definitions. We begin by
introducing certain collections of Cantor sets as our examples.

1.2 Cut-out Cantor sets

Any compact set E on the real line R, with zero Lebesgue measure m(F) = 0, is of the
form

E:I\GI‘L‘,
i=1

where [ is a closed and bounded interval and { A;} is a sequence of disjoint open subintervals
A; C Isothat |I| =377, |A;]. The set E is called a cut-out set and A,’s are the gaps of
E, following the terminology in [10].

Among these sets, which are totally disconnected, we are particularly interested in
those perfect compact sets. It is well-known that these sets are homeomorphic to the
middle-third Cantor set. We call them cut-out Cantor sets.

Every cut-out Cantor set can be associated with a binary tree structure, as is the
middle-third Cantor set. Indeed, let C' be a perfect, totally disconnected, compact set



with zero Lebesgue measure. Let I be the smallest closed and bounded interval containing
C, i.e. the convex hull of C. As above, the complement, I \ C, can be expressed as a
disjoint union of open subintervals. Each open subinterval is a connected component of
the complement of C'.

Let GG be the largest of these open intervals. Since C' is a perfect set, the endpoints
of G cannot coincide with either of the endpoints of I, otherwise I \ G will contain an
isolated point. The subset I \ G; will then be a union of two disjoint closed (non-trivial)
intervals, Iy and [;, on the left and on the right respectively.

Since C' is totally disconnected, there must be open subintervals in Iy \ C' and I; \ C.
Let Gy and G3 be the largest intervals in Iy \ C' and I; \ C respectively. By the same
reasoning as above, the endpoints of Gy and G5 must stay away from the endpoints of I
and I respectively. We then obtain closed subintervals Iy, Ip; from Iy \ Go and Iy, I
from I \ Gs.

We can continue this process and obtain a sequence of closed subintervals I,,, w € {0, 1}*
for each & > 1. Every gap G; in I \ C is eventually removed. If z € C, then for every
k > 1, the point z must be in I, for some w € {0, 1}*. Therefore, C' can be expressed in
a way similar to the usual construction of the middle-third Cantor set:

C:ﬁ U .

k=1we{0,1}+

We call this a binary representation of C'. Every cut-out Cantor set has such a descrip-
tion.

For other ways to describe cut-out Cantor sets, we introduce the symbol space W. For
each integer k > 1, let ny, > 2. Let Do :={e}, Dy :={w; - w, : 0 <w, <my—1for1 <
[ <k}. Let

W .= U Dk
k=0
be the set of all words with finite length. It is called a symbol space. If w = wy - - - w € W,
its length is denoted as |w| = k. (In some cases, the symbol wy may range over {1,--- ,ng}

instead.)

Let C' and I be defined as above. If we fix a symbol space W, we can obtain a
representation of C' corresponding to W. Let I, := [. For each £k > 1 and w € W of
length |w| = k — 1, we can find the nj, — 1 largest gaps G,,; in each I, \ C by the total
disconnectedness and perfectness of C'. Since C' is perfect, the endpoints of the gaps will
not coincide and I, \ |J; G, gives ny, closed subintervals I,,; of .

3



Inductively, we obtain a family of closed intervals F := {I,, : w € W} in I such that

i1, :=1,
ii I,; is a closed subinterval of I,, for any k > 1,w € Dj_1,0 < j < ny — 1,
iii f,(j—1) is to the left of I,,; for any 1 < j <mny — 1,

iv I, shares the same left endpoint with I,,, and I, 1) shares the same right endpoint
with I,.

In this case

C:ﬁ U L

k=1 weDy
We call this a WW-representation of C. If D, = {0, 1}*, we obtain a binary representation.

If |w| =k, I, is called a Cantor interval of level k. Denote the number of intervals at
level k by
Nk = |Dk" :nl-..nk

and the average length of Cantor intervals at level £ by

Sk = Nik > L.

wE Dy,
Since w € Dy, can be mapped bijectively to 1 < j < N, we also label I, as I]'-“, ] =
1,---, Ni. We will use both notations interchangeably.

Note that in general there can be many different representations for the same set, but
the flexibility here allows us to use a convenient one according to the situation.

1.3 Examples of Cantor sets

Now we define some classes of Cantor sets by specifying the symbol space W and the family
of intervals F := {I, : w € W}. Let I be a fixed closed and bounded interval. Since we
can always normalize the interval length, we often assume |I| = 1.



1.3.1 Central Cantor sets and homogeneous Cantor sets

Suppose ny = 2 for all k and r = {r;} is a sequence of numbers such that 0 < ry < % The
ri’s are called the ratios of dissection at step k. For each interval I, of level k — 1, let I,
and I, be the left and right intervals of level k obtained by removing an open interval G,
from I, so that |Iuo| = |Lu1] = |Lw|7k-

I

]wO le

Ifr, < % for infinitely many k, then K, = (-, Uwe p, Lw 18 perfect and totally discon-
nected. It is called a central Cantor set. The middle third Cantor set is an example
with rp = % The average length of the intervals of level k in this construction of K, is

Sp="1 T = | Ly

for any w with |w| = k.

More generally, let n; > 2 be the number of divisions and r; be the ratio of dissection
with ngry < 1 for each level k¥ > 1. Let W = Uzozo D;. be the symbol space where
Dy =A{wy- - wp:0<w <ny—1for 1 <1<k} and Dy ={e}.

Let I. = I be a closed and bounded interval. For each k¥ > 1 and interval [, of
level £k — 1, let I,;,0 < j < ni — 1, be ng subintervals of equal length in [, so that
|Iwo| = -+ = Lwme—1)| = [Lw|rr. Moreover, we require the subintervals to be equally
spaced, i.e. the gap lengths between adjacent subintervals I,,; and I,,;41) are all the same.
If nyr, < 1 for infinitely many k, then

¢=c(ndfr) = U L

k=1 wEDk

is a homogeneous Cantor set. Any central Cantor set is a homogeneous Cantor set
with n;, = 2 for all k.

The number of intervals at level k is N, = nq - - - ng, and the length of each subinterval
at level kis s, =1y 7.

Example. If K is the middle-fourth Cantor set (the central Cantor set where r, = % for
all k), then K + K is a homogeneous Cantor set with I = [0,2], n, = 3 and r; = % for all
k.



1.3.2 Cut-out sets and decreasing Cantor sets associated with a
sequence

Let a = (a;) be a non-increasing summable sequence of positive numbers, i.e.

a; > a;+1 >0 and Zai < Q.
i=1

Suppose |I| = "%, a; and A; C I is a sequence of disjoint open subintervals with |4;| = a;.
Then E =1\ ;2 A; is called a cut-out set associated with the sequence a = (a;).
The collection of all such E is denoted by %,. Every compact subset £ C R of measure 0
is of this form for a suitable sequence (a;).

Let us single out one particular set in 6,. Without loss of generality, assume » oo, a; =1
and start with I = [0,1]. Remove an open interval A; of length a; from I, leaving two
closed non-trivial intervals I} and I; with lengths

oo 20711

\Ill\:z Z Aoy = g +ag + a5 +ag+ - -
=1 p=0

and
oo  20—1

|]21|:Z Z Aglyp = a3 + g + a7 + ajp + -+

I=1 p=2l-1

Recursively, suppose we have constructed {/ f}lgjggk at step k, ordered from left to right.
Remove from each interval I jk an open interval of length agc ;_; and obtain two closed

intervals 137} I of step k + 1, where
oo (2j-1)2!-1 0o (25)2 -1
k41| _ Z Z k+1 Z Z
] 1| Aol+k+14p and |I 2j | = Agl+k+14p-
=0 p=(2j—2)2! =0 p=(2j-1)2!

The positions of the gaps A; removed and the intervals [ Jk are uniquely determined.

a1
a2

asz —



Define

co 2k

.=\ (1.1)

k=1 j=1

Since the complement of C, in [ is exactly the union of gaps with lengths (a;), the set
C, is in 6,. It is totally disconnected because m(I \ C,) = >, a; = |I|. Since C, is also
compact and perfect, it is a Cantor set. We call it the Cantor set associated with the
sequence a = (a;), or simply a decreasing Cantor set. Note that (1.1) is also a binary
representation of C,.

At level k, the first 25 —1 gaps of lengths (a;);<j<or_; are removed. The average interval
length is therefore

Example. Let K, be a central Cantor set associated with ratios of dissection r = (ry).
The gap length in a level k interval is si(1 — 2rg11) = Sg_17%(1 — 27441). One can check
that if r, < % for all £ > 1, then s;_1(1 — 2r) > sp(1 — 2rgy1), so the gap lengths are
decreasing. More generally, whenever the ratios of dissection satisfy 1 > 74(3 — 2rg41),
the gap lengths are decreasing. In these cases, the central Cantor set K, is a decreasing
Cantor set as well.

We can generalize the construction above. Let W = |J;_, Dy be a general symbol
space. At the first step, we remove n; — 1 open intervals A;,1 <17 < n; — 1 with length a;
from I, and obtain n; closed intervals [ ]1, 1 < j <ny. At step k, suppose we have already
constructed Ny, intervals {1 j’?}lg j<n, ordered from left to right in /. We then remove nj41—1
open intervals A; of length a; from each interval Jk and obtain N closed intervals [ j’?“
of step k£ + 1. Define

oo Ng

=AU

k=1 j=1

and we call it a general decreasing Cantor set. The set C' exists and is unique; it is
in %, as well. The average interval length is

Sk:NikZCLi.

i>Nj,

In fact, we have some more flexibility here. Let a = (a;)3°; and I be defined as
above. Let 0 : N — N be a permutation of natural numbers such that for all £ > 1, if
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Ni <@ < Niggq — 1, then N < 0(i) < Npy1 — 1. Define a sequence b = (b;) by b; 1= ag).
At the first step, we remove n; — 1 open intervals B; with length b;, 1 <1 < n; — 1, from
I, and obtain n; closed intervals I },1 < j <ny. Repeat as above and define

oo Ng

oY = m UIJk

k=1 j=1

Note that even though b may not be a decreasing sequence any more, the average interval
length remains the same:
1
S — Fk E Q;.

i>Nj,

1.3.3 Self-similar sets

We include the definition of self-similar sets for comparison.

For each 1 <7 <m, let f; : R — R be a similarity with ratio p;, i.e.

|fi(z) = fily)] = pilz — Y|

for z,y € R, where 0 < p; < 1. The non-empty compact set £ such that

is called a self-similar set (or the attractor of the set {f;}7, of similarities). If the union
is disjoint, we say that the strong separation condition (SSC) is satisfied. If there exists a
non-empty bounded open set V' such that f;(V) C V and f;(V) N f;(V) = 0 for all ¢ # j,
we say that the open set condition (OSC) is satisfied.

Example. Let I = [0,1] and K, be a central Cantor set associated with r = (ry). If
there is a fixed 0 < r < % such that rp = r for all k£, then K, is self-similar, where
{filx) = rz, fo(x) = 1 — r + ra} is the set of similarities. It satisfies the OSC taking

V =(0,1).

The Cantor sets we study in this thesis need not be self-similar. An example is given
in Section 1.5.



1.4 p-Cantor measures

We will make use of a class of measures on the Cantor sets when we study their dimensional
properties.

Let C = N, U‘w‘:k I, be a Cantor set associated with the symbol space W. Let
p={pk : k>1,0<j <ny,— 1} be probability weights with Eyialpkj =1for k > 1.
Define pup = pu$" on C' by

k
Np(]w) = lewl
=1

for w € W of length |w| = k and extend it to a measure. We call p1;, a p-Cantor measure.
It is a probability measure with C' as support. The measure pu, is singular if m(C) = 0.

If pro = -+ = Dr(n,—1) for all k, ie. pp; = %, then pp is called the uniform Cantor
measure. The classical Cantor measure is an example.

In this thesis we will impose some boundedness conditions on the probability weights
when needed. For instance, we typically assume inf py; > 0, which ensures pp is a contin-
uous measure.

1.5 Dimension functions and partitions

We are interested in the size of sets of Lebesgue measure 0 and we now define the dimen-
sional concepts we will study.

The diameter of any set A C R is denoted by |A|.

Definition 1 (Hausdorff and packing measures [20, 32]). Let @ > 0. The a-Hausdorff
measure of a set £ C R is defined to be

HY(E) := lim inf{z Ei*: EC|JE,|E| < 5} .

d—0+ - .
=1 =1

A J-packing of a set F is a countable, disjoint family of open balls {B;}; centred at points
in F with |B;| < 4. The a-packing pre-measure of E is

PS(E) = 51i>1(1)1+ sup {Z | B;|* : {B;}2, is a d-packing of E}

i=1



and the a-packing measure of F is
PY(E) := inf {Z Py(E;): E=|] E} .
i=1 i=1

The Hausdorff dimension, pre-packing dimension and packing dimension of
E are

dimy F = sup{a : HY(F) = oo} = inf{a: H*(E) = 0},

dimp, £ = sup{a: PJ'(F) = oo} = inf{a : PJ'(F) = 0},

dimp E = sup{a : PY(F) = oo} = inf{a : P*(E) =0}
respectively. It is well known that dimy £ < dimp £ < dimp, .

Example (Self-similar sets [11]). Let E be a self-similar set with similarity ratios 0 < p; <
1 for 1 <¢ < m. The root o of

S

i=1

is called the similarity dimension of E. If the open set condition is satisfied, then dimy F =
dimp F =« and 0 < H*(E) < P*(E) < 0.

Related results are known for Moran sets with a weaker similarity property. See [24, 7,
|-
Example (p-Cantor sets [1]). Let p > 1, a; = = for i > 1. Then for a = (a;),
. , 1
dimy C, = dimpC, = —
D
and ) )
0< H»(C,) < Pr(C,) < 0.
Example (Central Cantor sets [5, 12, 11]). Let K, be a central Cantor set with ratios of

dissection 7 = (ry). Its Hausdorff and packing dimensions are known to be

—log 2%
dimyg K, = liminf _—08%
n—oo log(ry -+ ry)

and

—log 2%
dimp K, = limsup o—g'
n—00 log(TI tet rk)

10



e Let p>1andr, = 2%, for £ > 1. The Hausdorff and packing dimensions of K, are

i log ok 1
= lim =-.
¢TI log 2Pk p

Moreover,
0 < H¥*(K,) < PYK,) < occ.
e Let p>1andr, = ; i +— for £ > 1. The dimensions of this central Cantor set K,
PTE
are still o = 11—), but H*(K,) = P*(K,) = 0. In particular, this implies K, is not
self-similar.

o Let p> 1 and ky > 1 be such that p—1 > ——. Let r}, = L for k > 1. The

ko+1° p—
2 ko+k
dimensions of this central Cantor set K, are again a = ]—17, but H*(K,) = P*(K,) =
o0o. This K, is also not self-similar.

These results can also be deduced from Theorem 1 in Chapter 2.

As we can see from the last example, even when o« = dimy ' = dimp E, the measures
H(E) and P*(FE) may not be finite and positive. Thus it is helpful to have a more precise
way to capture the size of a set. The more general concepts of dimension functions h and
h-measures (introduced by Hausdorff himself) do this.

Definition 2 (Dimension function [20, 30, 31]). A function h : [0,9) — [0, 00) is called a
dimension function (or a gauge function) if h is continuous, increasing, doubling (h(2z) <
Th(x) for some 7 > 0) and h(0) = 0. Let D be the set of dimension functions.

The power functions h(x) = %, a > 0, are typical examples of dimension functions.
The logarithmic perturbation of power functions, h(zx) = z*(log %)5 , a, B > 0, is another
type of examples.

Definition 3 (Equivalence of dimension functions and sequences). 1. Let g,h € D be
dimension functions. The function ¢ is said to be equivalent to h if and only if there
exist 6, A, B > 0 such that

Ah(x) < g(x) < Bh(x)

for all x € [0,0). In this case, we write g = h.

11



2. Let © = {z},y = {yr} be two sequences. The sequence {z} is said to be equivalent
to {yx} if and only if there exist A, B > 0 such that

Ay <z, < Byy
for all k. We also write {zx} = {yx}.

The h-Hausdorff and h-packing measures are natural generalizations of the a-Hausdorff
and a-packing measures.

Definition 4 (h-Hausdorff and h-packing measures |

, 30, 31]). Let h € D. The h-
Hausdorff measure of a set £ C R is defined to be

HWE):}gﬁnﬁ{zghQED:EQ;E{EJEAgé}.

The h-packing pre-measure of F is

=1

PME) = 51_i>%1+ sup {Z h(|B;|) : {B;}2, is a d-packing of E}

and the h-packing measure of F is

P"(E) := inf {i PME): E = G E} :

If h(x) = ho(z) = 2 for some o > 0, we get back the usual Hausdorff measure H*(E),
packing pre-measure P§(E) and packing measure P*(E).

Definition 5 (Dimension partition [0]). The dimension partition of a set £ C R is a
partition of I into six sets, Hf NPY, for § <y € {0,1, 00}, where

HEY ={heD:0< H"(E) < oo},

PP ={heD:0< P"E) < oo},
and for n = 0, oo,

E _ . 17h _
HE = {heD: HVE) =

n},
Pl ={heD: P*E)

=1}

12



The numerical Hausdorff dimension and packing dimension can be written as

dimy E = sup{a : h, € HE} = inf{a : h, € H},
dimp E = sup{a : h, € PL} =inf{a : h, € PF}

respectively.

When h € D, it is proved in [31] that

H"(E) < P"(E) < Fy(E)
for E C R since h is doubling. A set F is called h-regular if 0 < H"(E) < P"(E) < oo and
a-regular if 0 < H*(E) < PY(F) < oco. In such cases we also call E' an h-set or an a-set
respectively. We have seen that even when o« = dimpy F or dimp F, the measures H*(F)
or P*(E) can be 0 or oco. If there exists an h € D such that F is h-regular, it will give a
more precise description of the size of the set.

We will be studying a class of Cantor sets that are h-regular (for a suitable k). This
will be the content of the next chapter.

13



Chapter 2

Balanced Cantor sets

In Chapter 1, we have seen that a cut-out Cantor set has the form

00 oo Ng
c=UL=NUx
k=1weDy k=1j=1

corresponding to a symbol space W. In this thesis, we are interested in the dimensional
properties of certain of these cut-out Cantor sets and the associated measures. In order
to study these metric-related properties, we will start with a property of the intervals [,
in the representation above. The collection of Cantor sets under consideration will include
all the central Cantor sets and the decreasing Cantor sets introduced in the preliminary
chapter.

2.1 Cantor sets with a balanced property

Let us introduce the cut-out Cantor sets with a certain “balancing property” in its con-
struction. Let W = UZOZO Dy, be the symbol space where n; > 2 is the number of divisions
at level k. Assume

M :=supn < 0.
k

Suppose a Cantor set C' has the representation corresponding to W, as in Chapter 1, given
by

OONk

=AU

k=1j=1

14



where I, =1 ]k are the level £ Cantor intervals. Recall that the number of intervals at level
k is Ny = ny---ng and the average length of the Cantor intervals at level k is

1
Sk = — I

Note that s;, is decreasing. In fact, I* U---uUlk

k-1 : :
n(j—1)+1 nkJ < [j implies

L 1™
= If < — I =5, 4.
NkSk Ni_, ;| y| = N._, ; | J | = sk

Definition 6. A cut-out Cantor set C is said to be balanced (or W-balanced) if and only
if C' has a W-representation, with the associated Cantor intervals satisfying the property
that there exist some K and Lq, Lo € N such that

Serry < | < sp-r,

for any k > K and 1 < j < N,. Let % denote the collection of all balanced Cantor sets.

In particular, this condition implies that
k+L1+L k k—Li—L
IEr b < |18 < |1

for all K > Ly + Lo and any j,j', j".

We show below that the balanced Cantor sets include both the central Cantor sets and
the decreasing Cantor sets.

Example (Central and homogeneous Cantor sets). The interval length of a central Cantor
set or a homogeneous Cantor set at level k is

|I]k’ :Tl...rk g 8k7
so it satisfies the balanced property with L; = L, = 0.

Example (Binary decreasing Cantor sets). The average interval length of a decreasing
Cantor set C, at level k is .
Sk = ? Z Q;.

i>2k
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For 0 < j < 2F 1

jet=k—1 j2t—1
k
|15 = E E A2l4p = E E a2’+k+p
=k p=(j—1)2!—* 1=0 p=(

Since a = (a;) is decreasing, {|I}|}(,j) is lexicographically decreasing. In consequence,
s < [ITHY < ’[]'C‘ < |I§1;11’ < Sk-1
for all 7, thus the balanced property is satisfied with L; = Ly = 1.

Example (General decreasing Cantor sets). In the case of a general decreasing Cantor set

Ca's
Sk:NiZai.

k>N,

For 0 < j < Ny,
(Nl+1 Nl /Nk 1

|Ik’ = Z Z N +p-

I=k p=(3—1)(Ni41—N)/Ni
(Note that (N;11 — N;)/Ni = ngeq1---ny(ngq — 1) is the number of gaps to be removed
from I Jk at level [.) One can again see that

k1 k k-1
siv1 < | < I < Iy | < sk
so the Cantor set C' is also balanced.

Example. Let C' be the general decreasing Cantor set as above. Let 0 : N — N be
a permutation of natural numbers such that for all £ > 1, if Ny < ¢ < Ngyq — 1, then
Ni < 0(i) £ Ngg1 — 1. Recall that the sequence b = (b;), where b; := a,(;), defines a
Cantor set C}" as in Section 1.3.2. For each level k, let {I}'}1<j<n, be the Cantor intervals

of C}V, and {Ek}lgjg ~, be the Cantor intervals of the general decreasing Cantor set CIV.
Note that the average interval length

of C}V is the same as that of C}V. We can check that
sen S DT ST R < s

for all j, so C}V is balanced as well.

16



2.2 Hausdorff and packing measure of a balanced Can-
tor set

First, we estimate the Hausdorff measure and packing pre-measure of a balanced Cantor
set. This generalizes the results in [2] and [13]. Recall that M = sup, ny < oo.

Theorem 1. Let C' be a balanced Cantor set. For any h € D, we have:

1. liminfy_,o0 Nph(sy) < H'(C) < ME2liminfy_o Nph(sy),

ML1+2

2. = limsupy_, o, Nph(sp) < PH(C) < M2 limsup,_, Nph(sy).

Proof. 1. (a) With the balanced property, we have

Ny
> h(IF]) < Neh(sp-1,) < M™ Ni_p,h(sk—1,)

j=1

when £ is large enough. For any § > 0 we can take ks such that |I]k| < 0 for any
k > ks. Then the intervals of level k form a d-covering of C' and hence

H"(C) < M*™ lim inf Nih(sy).
—00

(b) Let A = liminfy_,o Nph(sg). If A =0, we trivially have

1
H"(C) > s hm 1nf Nih(sy),
so assume A > 0. Then, for any € > 0, there exists Ky such that for any £ > K
we have
(1 — E))\ < Nkh(sk)
and also

Sk+L,q S |I]k|

by the balanced property.

Let 0 < § < min; |IJ-K°\. Let {B;}; be a d-covering of C' by open intervals and
let R =J, B;. As C is compact we can assume the covering consists of finitely
many intervals, say {B;}M,. There exists K > 1 such that

Ng
Urckr

=1

17



for otherwise { Ujvzkl IF\ R}, would be a decreasing sequence of non-empty closed
set with empty intersection and this contradicts the finite intersection property
of a compact set.

We claim we can also assume the intervals B; in the covering are disjoint. This
is because if B; N B; # ( for some ¢ # j, the intersection being open must
contain some gap of the Cantor set. We can then shrink down the intervals to
make them disjoint and get a lower estimate of H"(C).

In order to obtain a further lower bound, let us replace each B; by the smallest
possible single closed interval V; containing B; N Uj\r:Kl I, Then Y h(|Vi]) <
ST h(|Bi]). If V; = (), we simply discard it.

Let 7; be the number of intervals of level K contained in V;. Then 7; > 1,

Ti

K

Vio U ]jz
=1

and
E Ti:NK:nl"'TLK.
i

For each i, let p; be the non-negative integer such that

N o Ne
NK—pi NK_pi_l
Let N
AT

If p; = 0, then 1 < 7; < n; and V; contains some ]jK. In this case |]JK| <|Vi|<éo
and hence K > K. Then

1
l—¢g)A <
NK—PH-LH-I( ) K+Ly

(1= )X < hlsksry) < MI]) < A(Vi)).-

If p; > 1, then 2 < Q(K —p;) <7 < Q(K — p; — 1). Note that V; contains at
least Q(K — p;) consecutive intervals of level K and

QK —pi) > 2Q(K —p; +1). (2.1)
Consider the level K — p; + 1. Each interval ]JK_p"H contains Q(K — p; + 1)

subintervals of level K. Let I JKZ , 1 <1< Q(K —p; +1), be these subintervals

ordered from left to right. For some j, V; contains at least one interval I JKZ .

18



e If Vi contains both I} K and IX QUK —ps+1)> then it must also contain all the
other intervals I in between and hence the whole interval [; K=pitl - This
implies |V;| > |I]K pitl)

e If V; does not contain [ j{i, then the number of intervals [ ]Kl contained in V;

is less than Q(K — p; + 1), and V; must contain more than QK —p;+1)
intervals / IfH , on the right because of (2.1). In this case, V; will contain the

whole interval ]jilp’ﬂ and |V;| > |]ﬁ1p1+1| Similarly if V; does not contain
IJKQ(K _pit1), Vi will contain the whole interval Ififpﬁl and |V;| > ][JILPZHL

In either case, the length of V; must be at least |} K=pit1) for some 7, so we have
TP < Vi < o,

In particular this forces K — p; +1 > K, and hence
1

Nk—pitr +1(1 —)A < h(Sk—pirr,41) < h(|[jl{_pi+1‘) < h(|Vi]).
—Pi 1

by the balanced property.
Finally, we have

<Zh Vi) _Zh Bi).

Since {B;}; is any d-covering of C' and e > 0 is arbitrary, we get

1
] hm mf Nih(sg) < H'(O).

Let d < limsupy,_,o, Ngh(sx). Then, there exists a subsequence {k,},>1 such

that d < Ny, h(si,) < Ni,h(]1 Jk »~M1|) where the second inequality follows from
the balanced property.
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For any ¢ > 0 take k, large enough such that |Ik"_L1| < ¢ for all j. Let us take

the family of intervals {B; := B(x;, rl)}NkP_Ll 1

left endpoint of Iirf Ll, n = ny,—r,. The point z; is the left endpoint of the right

most level k, — L; interval contained in the i-th interval of level k, — L; — 1,
Iikp_Ll_l. The balls {Bs(x;)}: are centred in C'. Since ]pr_L1| > sy, the right
endpoint, xz; 4+ r;, of each ball B; cannot exceed the right end of the interval
7M1 On the other hand, the left endpoint x; — r; cannot go below the

left end of the interval If”*Llfl. Hence, the balls B; C [fprlfl and they are
pairwise disjoint.

where r; = 55, /2 and w; is the

Since |B;| = sj, < 0, this is a J-packing and

Nip—11-1

d
Zh ’B ’ Z h Skp Nkp—Ll—lh(skp) > W

That means for any 0 > 0 we can find a d-packing satisfying the above inequality.
Therefore < PI(0O) for any d < limsup,_, ., Nyh(sy), which shows

) ML1+1

h
e h?iscgp Nih(sg) < Py(C).

Let ¢ > 0. There exists kg such that

sup Nih(sk) < limsup Nih(sk) + €.

k>ko k—00

Choose 9 small enough so that 26 < ]If°+L2+2| for all j.

Let {B;}; be a d-packing of C, and take k; := min{k : I]’-C C B; for some
1 <j < Ni}. Then k; > ko + Lo + 2 and B; is centred at a point of an interval
of level k; — 1 but does not contain the interval. Therefore, |B;|/2 < |I Jk71|

where [ ]]fi_"_l is the interval of level k; — 1 containing the center of B;. As ny > 2,
ki—1
|Bi| < 2|1 | < mgy—ro-18k-Lo-1 < Sky—Lr—2

from the balanced property and
D (B <Y h(skr,-0)-

Let [ < --- <, be the distinct k;’s and let 6, be the number of repetitions of
ly, i.e. 0, is the number of B;’s containing an interval of level /,, but none of those
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at level [, — 1. Each ball, B;, of the packing associated to [,, contains at least

J]V\;—l’: intervals of step l,,. Since {B;}; is a disjoint family, 2;:11 6, ]]V\;m intervals
of level [,,, are already covered by the B;’s corresponding to l1, -+ ,l,,_1. 0,, can

only be at most the number of the remaining intervals at level lm:

N — ¢
NVl P
O < N, — Ze =N, (1 Zﬁ).
p=1 P
This implies N’” <1- me:_ll ]3—7, ie.
i b
i N,
As a result,
D (B <Y h(skr,-2)
=) Oph(s,-1,-2) = Z N_Nlph(slp—Lg—Q)
p=1 p=1"lr
)
Lo+2 P
< M p;N_lelp—Lz—Qh(Slp—Lg—2)
< M*™2*2(lim sup Nih(sg) + €)
k—o0

since [, — Ly — 2 > ko. Hence,

P}C) < M*™"lim sup Nyh(sy).

k—o00

Only the packing pre-measure is estimated above. In general we only know that
P"E) < PME) and dimp E < dimp, E for E C R, and the strict inequality can hap-
pen. However, the packing measure P"*(C) and the packing pre-measure PJ(C) are finite
and positive simultaneously for a balanced Cantor set C', and its packing dimension is equal
to its pre-packing dimension. To prove this, we will make use of the following version of
the mass distribution principle. The proof given in [0] is included here for completeness.
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Lemma 2 ([0]). Let E C R. Let u be a finite reqular Borel measure and h € D be a
dimension function. If
(B(zo, 7))

for all zy € E, then
P"(E)

IV

Proof. For each § > 0, let

Pys(E) = sup{> _h(|Bi|) : {B:}: is a d-packing of E}.
Let Bs = {B(x,r) : x € E,r < § and pu(B(z,r)) < ch(r)}. The hypothesis (2.2) tells
us that, for any x € E, there are balls B(z,r) € Bs with r arbitrarily small. By the

Vitali covering theorem, there is a sequence of disjoint balls {B;}°, from Bs; such that
p(E\UB;) =0. Thus

Pis(B) = Y h(B) > =30 u(B) =~ B) = u(E)

and hence PJ(E) > 2u(E).
For any partition E = (J;°, E;,

SR E) = Y S = M)

C C

and therefore we have

Theorem 3. Let C be a balanced Cantor set and h € D. If PMC) = oo, then P"(C) = .
If P(C) > 0, then P"(C) > 0.

Proof. Let p be the uniform Cantor measure defined by p(I}) = Nik Let zp € C and r > 0.

The balanced property tells us that there exist L, Lo such that sp,p, < |I jk| < Sk_r, for
large enough k.

Suppose k is the minimal integer such that B(xg,r) contains an interval of level k.
The minimality of k ensures that B(xg,r) can only intersect at most 2n; intervals of level

22



k, which implies p(B(xg,7)) < anNik = ﬁ Let I¥ be a level k interval contained in

B(xo,7), so |I}| < 2r. Since h is doubling, there exists some 7 > 0 such that

h(sker,) < RG] < h(2r) < th(r).

Then
w(B(zo,7)) < 27 o 2rMH!
h(r) 7 Ne-1th(skrr,)  Nerrh(Sker,)
and B ML +1
1
lim inf (B (0, 7)) < — 2T )
r—0 h(r) lim sup,,_, ., Nph(sk)

By the inequalities in Theorem 1, PP(C) > 0 implies limsup Niyh(s;) > 0, while
PI(C) = oo implies limsup Nyh(s) = co. Let ¢y := liminf, %. If P(C) > 0,
then ¢y < oo and P"(C) > w0 g by the lemma. Correspondingly, if P'(C) = oo, then

o

co = 0. Hence P"(C) > @ > ( for every ¢ > 0 and P"(C) = oo. [
Corollary 4. Let C be a balanced Cantor set and h € D. Then
1. PMC) =0 if and only if P"(C) =0,
2. PMC) = oo if and only if P"(C) = oo, and
3. 0 < PMC) < oo if and only if 0 < PM(C) < oo,
In other words,
P ={heD:0< P"(C)<oo}={heD:0< P!C) < oo}

and

P ={heD: P"C)=p}={heD: F}C) =p}
for B =10, 00.

In particular, if we take h(z) = z%, we get the following corollary.

Corollary 5. If C' is a balanced Cantor set, then dimp C = dimp, C'.
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2.3 Dimension partition of a balanced Cantor set

For any balanced Cantor set C' € ¥ and any dimension function A € D, by Theorem 1 we
have

hm mf Nih(sg) < H'Y(C) < M*™ liminf Nyh(sy)

ML 1+2 - - k—ro0
1 .
and ——— SVizs! hmsup Nih(sg) < PHC) < M*P2+2 hzn_}soljp Nih(sg).
Define he(sg) = NLk and extend h¢ to a piecewise linear function on [0, s1] with ho(0) :=

lim,_,o+ he(x) = 0. Then he is continuous and increasing, and we can see that he € D by
the following proposition. From the above inequalities and Corollary 4, C' is hg-regular.
Let us call he the associated dimension function of C'. More generally, any continuous
increasing function h such that {h(sx)} = {N%g} will also make C' h-regular. Note that all
such h are doubling by the next proposition.

Proposition 6. Let C' be a balanced Cantor set with M = sup, ny < co. Suppose h is an
increasing function on [0,9). If {h(sg)} = {Nik}, then h is doubling. In particular, h¢e € D.

Proof. As {h(sg)} = {Nik}, there exist ¢, co > 0 such that

1 1
— < h(sy) < cog—
¢ N, = (sk) < co N,

for all k. If sp11 < x < si, then

h(2z) < h(2sk) < h(sg_1)

so h is doubling.
[ |

That means H{ NP{ is always non-empty for the balanced Cantor sets. Indeed we get
immediately from Theorem 1 and Corollary 4 the following description of the dimension
partition for the balanced Cantor sets.
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Theorem 7. Let C be a balanced Cantor set with the number of Cantor intervals Ny =
ny - --ny and the average length sy at level k. Then

HY ={heD:0< lim inf Nih(si) < oo},
—00
Hf = {h € D : liminf Nyh(s;) = 8},
k—o0
P¢ = {h €D:0 < limsup Nyh(s;) < oo},

k—o0

Pg = {h € D : limsup N,h(s) = 5}

k—o00
where f =0, c0.

Corollary 8. Let C' be a balanced Cantor set with the number of Cantor intervals Ny =
ny - --ny and the average length sy at level k. Then

“log N
dimy C' = lim inf ——2 %
k—o0 Og Sk

and log N
dimp C' = lim sup ﬂ.
k—oo log s,

Let N5(C) be the smallest number of sets of diameter at most ¢ which can cover C.
Recall that the lower and upper box dimensions are given by

log N, S— log N,
og—g(C’) and dimgC' = lim sup og—g(C)

dimzC' = lim inf .
s g log 6 50 —logd

Corollary 9. Let C' be a balanced Cantor set with the number of Cantor intervals Ny =
ny---ny and the average length s at level k. Then

log N
dim,C = lim inf —2*
k—oo  —log s

and

— log NN,
dimpC = limsup 08 Tk
k—oo —10g Sk

Proof. 1f s;41 < 0 < s, then ][]]“L2H| < spyr <O forall 1 <j < Niyp,41. It follows that

log N5(C) < 108 Nir 141 _ log M"2*! 4-log Ny
—logd — —logs, — log sy, '
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Therefore,

log Ns(C log N,
dlmBO—hmmfog—é()<lm1 f o8k
-0 —logd k—oo —log sy

The same is true for the upper box dimension.

Since dimy € < dimzC < liminfy, o 275 and dimp C < dimpC' < limsupy_,., 5%,
by Corollary 8, we get
N, S log N,
dim;C = liminf " and dimzC = lim sup ekl
k—oo — log sy koo — lOg Sk
[

2.4 Dimension partition in terms of h¢

In fact, we can further describe the dimension partition of a balanced Cantor set in terms
of its associated dimension function hc.

Proposition 10. Let C be a balanced Cantor set with an associated dimension function
he and g € D.

1. If liminf, o+ hgc(g(”;) > 0, then H9(C) > 0. In particular, if liminf, o+ hgc(g("’;) = 00,

then H(C') = oo.

2. If limsup, o+ 7 (()) < 00, then BJ(C) < co. In particular, if limsup,_,q+ h‘qc(g(i) =0,
then P (C) = 0.

3. If iminf,_,o+ (()) < 00, then HI(C') < oo. In particular, if liminf, .o+ hgc(f;) =0,
then HI(C') = O

4. If limsup,_,o+ hgcf?;) > 0, then BJ(C) > 0. In particular, if imsup,_,o+ hgc(g) = 00,

then PY(C) = oo.

Proof. 1. Let

Ay = lim inf 9(z)

0.
z—07t hc( ) -

26



For any 0 < a < A, there is a 6 > 0 such that g(z) > ahe(x) for all 0 < x < §. Then
HY(C) > aH" (C) >0

by the definition of Hausdorff measure.

If A\, = o0, then «a can be arbitrarily large and hence H9(C') = oc.

. Let

. g(z)
Ai=1
largrj)gp he(r)

For any A\* < a < oo there is a § > 0 such that g(z) < ahe(x) for all 0 < = < 4.
Then

< oQ.

PJ(C) < aPye(C) < oo
by the definition of packing premeasure.
If \* = 0, then PY(C) < aP¢(C) for any o > 0 and hence P¢(C) = 0.

. Let

A = lim inf 9(z)

xz—0+ hc(l’) =

For any a > A, there exists a positive decreasing sequence {4, },,, such that lim,, .. §,, =
0 and ¢(0,,) < ahc(dm). Let k be the integer such that s < 0, < sx_1. Then

|If+L2\ < s <o

and {1 ]’-”L? }; is a 0p,-covering of C'. Therefore

N+ L N+ 1,
HI (C)< Y g2 < Y g(om)
j=1 j=1

< Nk+L2Oéhc(5m) < OéML2+1Nk_1]’Lc(Sk_1).
Taking limits implies

HI(C) < A\ Mt lim inf Nyhe (sk) < 0.
—00

If A, =0, then H9(C) = 0.
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4. Let

g(x)
A* har;i%lip holx) > 0.
For any 0 < o < \*, there exists a positive decreasing sequence {d,,},, such that
lim,;, 00 0, = 0 and ¢(6,,) > ahe(0,,). Let k be the integer such that s < 0., < Sp_1.
Take the left endpoint of the interval If;Ll_l, n = ng_r,—1, at level k — Ly — 1 as
z; for 1 < j < Nj_p,_» and put r := d,,/2. The collection {B(z;,r)}; will then be
disjoint as 0,, < sp_1 < |I]’-“7L171| and hence a 0,,-packing. Therefore

Ni—p,-2 Ni—r,-2
PL(C)= > g6m)> > aho(dn)
j=1 Jj=1

> alNg_p,—2hc(sk) > ———=Niho(sk)

ML 1+2

and

*

RO 2 31w

hm sup Nyhe(sg).

If \* = oo, then Fy(C) = .
|

Corollary 11. Let C be a balanced Cantor set with an associated dimension function he.
Then

c g(x)
H ={geD: O<1;11_1}(1)1+1fhc( )<oo},

H = {g € D: lim inf hg(f<£) = B},

: 9()
PC ={geD:0< limsu < 00},
! {g m—>0+p hc($) }
IP’B ={g €D : limsup 9(z) = [}

z—0t hC ($)

where =0, 0.

Corollary 12. Let Cy and Cs be balanced Cantor sets with he, and he, as their respective
associated dimension functions. Then the following are equivalent.

((1) hCl = hCQ-

28



(b) HG' NP = HS* NP2 for all B < v € {0,1, 00}
(c) H NP = HS N PS2.
Note that €} and C5 can be balanced with respect to different symbol spaces.

Definition 7. Let C; and C5 be balanced Cantor sets. C and Cs are said to be equivalent
if and only if ho, = he,, and then we write Cy ~ Cy .

2.5 Equivalence of balanced Cantor sets

If two Cantor sets C and C5 are balanced with respect to the same symbol space W, we
can also characterize their equivalence in terms of the sequence s;.

Let us recall the definition of a p-Cantor measure ,ug’W on the Cantor set C' associated
with the symbol space W. For each £k > 1 and 0 < j < mny — 1, let py; > 0 be probability
weights such that » . py; = 1 and p = (pi;). The p-Cantor measure yp, = ps" on C'is
defined by

k
Mp(]w) = lewl
=1

for w € W of length |w| = k.

In the remaining part of this chapter, we assume the probability weights are uniformly
bounded away from 0, i.e. there exists b > 0 such that py; > b for all k,j. Then, also,
prj < 1 —>bforall k and j.

When pp, = ug,w is a p-Cantor measure on C, define
I, I,
Ag(w) = Ag’w(w) = {h eD:0 < liminf —MP( k) < lim sup —Mp( ) < oo}
k—o0 (k) k—oc0 (k)
for any infinite word w € W :=[[;2,{0,--- ,ny — 1}, where w|k = wy - - - wy.

Theorem 13. Let Cy and Cs be two Cantor sets which are balanced with respect to the
same symbol space W . Then the following are equivalent.

((1) h6’1 = hCQ-

(b) There exists an integer L such that SkCiL < s << forallk > L. (Here {sS'} are
the average interval lengths of C;.)
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(¢) ASH(w) = AS>(w) for all pp and all w € W™,
(d) ASH(w) = AS2(w) for some pp and some w € W™.

Proof. We will prove in the following order: (a) = (b) = (a), and then (d) = (b) = (¢).
The implication (c) = (d) is immediate.

(a) = (b) Let A, B > 0 be constants such that

1 1
Am < he, (s9Y) and he, (s52) < Bm

for all k. Suppose h¢, () < Khe,(z) for some K > 0. Then

1 Al A 1
hey(syt) > Ehcl(skcl) > KN, B m)m-

Choose an integer L (independent of k) such that

KB <9l < Nitr
A N
Then for all K,
th( )= B = hC2(8k+L)

k+L
. . . Cy Cs
Since h¢, is non-decreasing, we have s;* > 5.2 ;.

By similar reasoning it follows that, when h¢o, = h¢,, there is an integer L such that

(of
5k+L<5k <s

for all k£ > L.
(b) = (a) It follows from s{?, < s < s¢?, that for 8 = 0,00,

o liminfy . Nph(s$) = B if and only if lim infy . Nph(s5?) = 3,
e limsup,_,. Nph(s$") = B if and only if lim sup,_, . Nph(s5?) = 3.

Consequently ]H[g1 = H% and lP’Ig1 = ]P’g2 for § = 0 and co. In turn this forces
H" = HS> and P§" = P{2. Tt follows from Corollary 12 that he, = he,.
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(d) = (b) Define h(s") = s (Is|1k) and extend h to a piecewise linear function with
h(0) = 0. We first check that h is a dimension function. Since skc}rl < sgl and

c k+1 k c . : c c
h(sii1) = I121 Prwy < Tli—i Prw, = h(sy"), his increasing. If s;7 <z < s.*,

h(2x) < h(2s5Y)
k+1

k—1
1
< h(skci1> = lewl < ﬁ lewl
=1 =1
1 1
= ﬁh(sgh) < b—Qh(fﬁ),

so h is doubling and hence h € D. Since u§1(IS)) = Hle Diw, = ug?(_fc2 ), we also

c o p |k wlk

have h(s;') = MSQ(wak).
We can see from the definition that h € AS* (w). Since AS* (w) = AS>(w), h € AS? (w)
as well and therefore there exist A, B > 0 such that

Co [CQ

A< ch”““) <B

h(s;?)
for all k.
Let L be an integer such that (1 —b)* < £ and (1 —b)* < A. When k > L,

Co(7C2
h Co < ’up2( w\k> < Co ICQ (1_b)L < Cy ICQ —h C1
(sp°) < A < pp°( w‘k_L)—A < g ( w|k_L> = h(s;1p)
and
CQ 02
con — Ho” (L) Cs  7Co 1 Co( 7Cs o
h(sy?) B > Mp2(1w|k+L>m > Mp2(]w|k+L> = h<5k+ ).

Since h is increasing,

Cy Cy C
Sppr < 80 S Splp

(b) = (c) Fix pup and w € W, Recall ,ugl(lgl) = ,qu(IC2

ke w‘k). By assumption sger <
C! C
5% < st , thus

C1 Ch Co C1 1(7C1
bL'ugl([ch—L) Mgluwm) 'u§2<[w|k) < Mgl([w|k) < i“g (Lo r)

h(sitp) = h(sitp) © h(sg?) T h(sidn) T 0P h(siip)

31



If h € A (w), then

o ’ugl(Ilf‘lk—L) . MSI(I&HL)
0 < liminf & and lim sup &
koo h(silp) koo h(spir)

and hence h € AgQ (w). By a symmetric argument we get

Agl (w) = A§2 (w).
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Chapter 3

Cut-out sets and balanced Cantor
sets

Let a = (a;) be a decreasing summable positive sequence and I = [0, 7, a;]. Let 4, be
the collection of cut-out sets associated with a contained in /. It is known that among
all the sets in %,, the set C, (as defined in Section 1.3.2) has the maximal Hausdorff
dimension and maximal Hausdorff measure up to a constant [2, 17]. On the other hand,
the prepacking dimensions of all the sets in %, are the same and equal to the upper box
dimension [10]. Since the packing and prepacking dimensions of C, coincide [0], it follows
that dimp E < dimp, £ = dimp, C, = dimp C, for any E € 6,. However, it is shown in
[17] that C, has the least packing premeasure up to a constant among the sets in %,.

In the following we will prove similar results for the balanced Cantor sets in %,.

3.1 Balanced Cantor sets within %,

For any £ C R and r > 0, let

k
N(E,r)=min{k: E C UB(xi,r)},

P(E,r) = max{k : {B(z;,7) }1<i<k is an r-packing of E'}

and
E(r)={z eR: |z —y| <r for some y € E}.
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Geometric reasoning shows that

N(E,2r) < P(E,r) < N(E,r/2)
and

P(E,r)2r <m(E(r)) < N(E,r)4r
where m denotes the Lebesgue measure.

If Ey, By € 6, are cut-out sets associated with a = (a;), then m(E(r)) = m(Es(r))
[10], so

P(Ey,r)2r <m(E1(r)) = m(Ex(r)) < N(Ey,1)4r.

From these inequalities we have the following lemma.

Lemma 14. For any E, Ey € €, and r > 0,
P(EQ,T’) S 2N(E1,T’> S 2P(E1,T’/2) S 4N(E2,T/2)

Theorem 15. Let C' be a balanced Cantor set in €, for some a = (a;). If h € D and E is
any set in €,, then H"(E) < AH"C) and P}(C) < B PYME) for some constants A and
B, which depend only on h and C.

Proof. Recall that h € D is doubling, say, h(2z) < Th(x) for some 7. For any cut-out set
E € €, we have

N(E,r)h(2r) < 2r°N(C,7r/2)h(r/2)
and

H"(E) < lim inf N(E,7)h(2r) < 272 lim inf N(C,7)h(r).
r— r—

On the other hand, for a balanced Cantor set C,

H"(O) > lim inf Nyh(st)

1
MIi+2
by Theorem 1 from Chapter 2. If r > 0 is small, there exists k € N such that s, < r < s;,_1.

Consider the Cantor intervals {/; HLQ}NHLQ at level k + Lo. Take their left endpoints as
centres and form Ny, balls Wlth radlus r (which is at least the length of any Cantor
interval of level k 4+ Ly). This is a r-covering of C'. So N(C,r) < Npir, and

N(C,r)h(r) < Nppr,h(sg—1) < M2 Ny h(sg_1).
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Combining all these,
H"(E) < 27%lim iglf N(C,r)h(r)
>
< 272 ME2 1 lim inf Nyh(sy,)

k—o0

< 2P MPTRE ().
In other words, there exists a constant A := 2r2M ™1 +52+3 guch that
H"(E) < AH"(C)

for any E € %,.

Similarly, for the pre-packing measure, for any E € %,,

% P(C,r)h(r) < P(E,r/2)h(r) < PL(E)

by the lemma above. After taking the limit we get

limsup P(C,r)h(r) < 2P} E).

r—0

As above, let r > 0 be small and take k£ € N such that s;,; < r < s,. Take the
subset of Cantor intervals {Iﬁ;Ll jy:k{Lrl at level k — Ly, where n = ny_p,. Take their left
endpoints as centres and form Ny_p, ; balls with radii 7 (which is at most the length of

any level k — Ly Cantor interval). This forms a r-packing of C'. So Ny_r,-1 < P(C,r) and

1

iz Nesth(ses1) < Neepi-ih(sen) < P(Cr)h(r).

Again, applying Theorem 1 from Chapter 2, we deduce that

PIC) < M*™™21im sup Nyh(sy)

k—o0

< M*+L2t 4 im sup P(C, r)h(r)

r—0

< 2ML1+L2+4P5L(E),

i.e. for any E € €,,
PI(C) < BPME)

with B := 2MLitLle+4 |
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Corollary 16. Let C be a balanced Cantor set in €, for some a = (a;). If h € D and E
is any set in 6,, then dimy E < dimgy C.

Proof. This is because H*(E) < A H*(C) for any « > 0. |
Corollary 17. If Cy,Cy € 6, are both balanced Cantor sets, then

AV H"(Cy) < HM(CY) < AyHM(Cy)
and

B Py (Cy) < Py(Ch) < BoFy(Cy)

for some positive constants Ay, Ay, By, By. Hence Hgl = ]I-]Ig2 and Pgl = ng for B =0,1
and oo, i.e. C7 ~ Cy. In particular dimy C7 = dimyg Cy and dimp C = dimp Cs.

It follows that C' ~ C, for any balanced Cantor set C' in %,. Note that once the
sequence a = (a;) is fixed, we can construct many general decreasing Cantor sets C/V', with
respect to different symbol spaces W. As long as they are balanced Cantor sets, they all
have the maximal Hausdorff dimension within the collection %,, namely dimyg C,.

3.2 Central Cantor set and decreasing Cantor set in
each equivalence class

The central Cantor sets and the decreasing Cantor sets have served as our prototype of
the balanced Cantor sets. It turns out that for each balanced Cantor set C' there exists
at least one central Cantor set and one decreasing Cantor set having the same dimension
partition as C.

Proposition 18. For any balanced Cantor set C', there exists a central Cantor set K,,
with decreasing gap lengths, such that C ~ K,.

Proof. Each balanced Cantor set C'is a cut-out set, i.e. C' € 6, for some positive, summable
and decreasing sequence a = (a;). We know from Corollary 17 that C' ~ C,. Next, we will
show that C, ~ K, for some central Cantor set K.

As usual, let



be the average interval lengths of C,. We can construct a central Cantor set K, as follows.
Let ry = 51, 0 = z—f and inductively define r . = 8’;:1. Note that 2s;,1 < s; ensures that

The1 = S’;—“ < % As ryrg -1y = Sg, C'is h-regular if and only if h(s;) =~ 2% if and only if

K, is h-regular. Hence K, ~ C, ~ C.

Let g = (g,) be the sequence of gap lengths of K,:

gir = aq,
1
g2 = g3 = 51 — 259 = 5(2%—2%)
i>2 i>4
1
= §(a2 +az) <ar =g

In general, for 28 < n < 2k
go = 51— 2500 = = (S ai— 3 @)
2
i>2k i>2k+1
1
= ?(GQk + Cl2k+1 + .-+ a2k+1,1) S gnfl.
Hence, K, obtained here has decreasing gap lengths.

In particular,

. . In 2% .
dimyg K, = liminf = dimg C,
k—oo |1117”1--'T’k|
In 2%
and dimp K, = limsup - = dimp C,.

koo | INT1 Ty

However, note that K, is not necessarily in %, for the same sequence a = (a;).

3.3 Size of balanced Cantor sets in %,

Below, we try to explore how many balanced Cantor sets there are within the collection of
cut-out sets €,.
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3.3.1 Cardinality

In this section, we use |R| to denote the cardinality of the real line and |¢ N %,| to denote
the cardinality of the collection of balanced Cantor sets within the collection of cut-out
sets associated with a = (a;).

Theorem 19. Let € be the collection of balanced Cantor sets and 6, be the collection of
cut-out sets associated with a = (a;). Then |€ N%,| > |R|.

Proof. To estimate the cardinality |6 N%,|, let us start with C, € %,. We want to generate
|R| many balanced Cantor sets in %, from it. For each permutation p defined below, we
will construct a Cantor set C5 € €, with a permuted sequence of gaps @ := (a,(), in the
same manner as we construct a decreasing Cantor set.

Consider the gap lengths of C, at each level k: agr, agnyq, -+, age+1_1. There are two
cases.

1. Suppose there are infinitely many levels k,, such that agr, > agrn+1_;. Then we take
a subsequence (I,,) such that [, > 2, 2% <[, < 2k+1 — 1 and a;, > a;, ;1 for all n.

For each symbol w = wiwy---w, -+ € {0,1}Y, define a permutation p, on the
natural numbers by

l,+1, ifw,=1andl=1,,
pu(l) =< 1, ifw,=1and =1, +1,

[, otherwise.

The permutation works within each level, and there are |R| many of them in {p,, :
w e {0,1}}.

If py # pa, let n = min{i : w; # w;}. One of them will permute [,, and [,, + 1, while
the other will keep them fixed. Since the gaps a;, and a;,+, are at level k,, + 1 in the
binary tree structure, there must be some gap a; from a level k£ < k,, between them.
The set of gap lengths to the left and right of a; are different after the permutation;

the resulting Cantor sets, C',, ) and C(%~<i>)’ are therefore distinct.

Let |1 | be the interval lengths of the new Cantor set Cz, and 5, be the new average
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interval length of level k. For all k,

IR
Se=ar Dt

=2k

1 )
:?Zal:&g.

=2k

Next, we want to prove |]~j’“| >[I}, > spr for 1 < j < 25 Let AY := {a; : a; C I}'}
and flf = {a;:a; C 1 Jk} be the set of gaps contained in [ Jk and I j’“ respectively. Note
that the gaps in A} have greater lengths than the gaps in A¥ . Since the gaps a,,
are exchanged with the ones next to them and of the same level, after permutation,
flf may have some common gaps as A¥ ;. The gaps in /1? \ AP 11 are in one-one
correspondence with and have greater lengths than those in A;? 1\ A;?. Therefore,

]f]k| = Z a; > Z a; = |Ij”€+1‘ > Sk41-
a,-EA? a; €AY,
By similar reasoning we also have
ske1 > || > |17
for 1 < j < 2% If j = 1 or 2%, we can see that
|[I¥] > | I and | T3] > | I3
because the permutations always occur within a level. Hence, we still have
Set = Ser1 < |IF| < spo1 = 8pa
and the new Cantor set C; is balanced.

. The second possibility is that asx > aqge+1_; only occurs at finitely many levels. That
is, we have
Aok = a2k+1 = = Aok+1_1

except on finitely many levels. The decrease in gap lengths happen at age,_; > agkn
where k,, — co. Take l,, = 2 — 1 a subsequence such that a;, > a;,,, for all n.

Define p,, in a similar fashion to the first case. If p,, # pg and n = min{i : w; # w;},
one of them will permute [,, and [,, + 1. To the right of ay, the number of gap lengths
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equal to a;, will be different after the permutation. Again, the resulting Cantor sets
will be different.

For each k, either p,(2¥) = 2*, in which case (using the same notation again)

R (o] 1 [o.¢]
R SR P
=2k =2k
or py,(2%) = 28 — 1, in which case
I R 1 « 1
Sk = 27( Z a4 age_1) < oF Z a < 55k
1=2k4+1 |=2k-1

and

1 o 1 o N
sk:Q_kZGISQ_kZGP(Z):Sk'

1=2k 1=2F

As only the rightmost and leftmost gaps are swapped, only the rightmost and leftmost
interval lengths are affected. Hence for 1 < j < 2, we still have |IF| = |I}| and so

~ “k ~
Skt < Skp1 < || <spor < 8

For the remaining intervals, observe that a comparison of gap lengths contained in
the old and new intervals shows

IF| < |If] < |15
and )
[IFH < |15] < |15

Thus we have
~ ke ~
Skr1 < s < || < spm1 < Sk

and
~ ke ~
Shto < Spr1 < |Ig| < s < 5.

The balanced property is satisfied.

Therefore, in both cases, we have generated |R| many distinct balanced Cantor sets in

Ca- |

40



3.3.2 Denseness

Let I be a closed interval of length |/| = ) .a;. Let X be the collection of non-empty
compact subsets of I. Recall that the Hausdorff metric is defined by

d(E, F) := max{sup inf |z — y|,sup inf |z —
(. F) = mase{sup inf [z =] sup nf |z —

where F, I are two sets in X. It is known that X with the Hausdorff metric is a compact
metric space. As a subset of X, the collection of cut-out sets %, is also a compact metric

space [31]. We will see that the collection of balanced Cantor sets is dense within €.

Let E € €, for a = (a;). We label its gaps as follows. Let E = I\ J;2, AF where
|AF| = a;. If |AF| = |AE, | for some 4, then AF lies to the left of A%, i.e., z <y for any
xv € AF and y € AL .

For each fixed n > 1, consider the gaps AP --- AE. There is a permutation o €
Sym({1,---,n}) such that if z; € Al for 1 <i <, then 21 < -+ <, (ie. Aly, is
to the left of A% . ). Define

€'E):={F €%,: 0" =o"}.
In these sets, the relative positions of the first n gaps are the same. We can see that the
sets in €)"(FE) are close to E from the following lemma. Recall that the diameter of a
subset Y in a metric space X is defined as diamY :=sup{d(E,F) : E,F € Y}.

Lemma 20 ([34]). diam%7'(E) < 3ry11, where ry, := ) .o, a;.

Proof. Let A = (L;(F), R;(F)) be the gaps for each F' € €, and let

F, = U {Li(F), Ri(F)}.

1<i<n

For any F, I’ € €"(E), the relative position of A" among the first n gaps is the same as that
of AF". For each i, the leftmost possible position of the endpoint L;(F) and the rightmost
possible position of the endpoint L;(F’) can only differ by at most > 7% . a; = 741
This is also true for the right endpoints R;(F) and R;(F’). In consequence, we have
|L;(F) — L;(F")| < rpy1 and |R;y(F) — Ri(F')| < 1pyq for 1 <i < n, so

d(Fn, F’r,l) S Tn+1.
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On the other hand, d(F, F,,) < 141 and d(F', F))) < 1,41, since the distance between

any consecutive two of the first n gaps is at most Z;’;n 415 = Tnt1. Hence,

A(F,F') < 3rpp1.

Theorem 21. The collection of balanced Cantor sets € N6, is dense in 6,.

Proof. Let E € €, and € > 0. Assume F = I\ |J°, AF. We show that we can find a
balanced Cantor set C' € € N €, such that d(E,C) < e.

Let n = 2! — 1 be sufficiently large that diam €"(E) < 3r,41 < &. Remove the gaps
AF 1 <4 < n, from I in the same left to right order as they lie in I\ E. There will be
2! intervals left behind. We then remove gaps of lengths {|A”| = a; : i > 2!} from the
remaining intervals, from left to right in each level, as we do in constructing C,. In this
way we obtain a Cantor set C' € €)*(F) and thus d(E,C) < e.

Since the Cantor intervals I Jk and the average interval lengths s, are determined by
the remaining gap lengths {a; : i > 2'}, C satisfies the same balanced property as the
decreasing Cantor set C,. [ |
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Chapter 4

Multifractal box dimensions and
Multifractal analysis

Let p be a finite Borel regular measure on R. The local dimension of u at a point x € R,
given by

dimyee pu(x) == lim log u(B(z,7))
r—0+ log r

Y

describes the power law behaviour of u(B(z,r)) for small r. For a > 0 we consider the
level sets

E(a) = E(p, a) = {z € supp(u) : dimy,c p(z) = a}

of the support of the measure. If £(a) # () for a range of a, these sets can be viewed as a
decomposition of the support into a family of fractals.

More generally, if A € D is a dimension function, define

) = i inf 28 AB@)
En = Ep(p) = {:1: € supp(u) : hgégf ogh() lp,

EM=EMu) = {x € supp(p) : liniiljp % = 1}

and
E(h) =E(u, h) =& NEM

If h(t) = t, these sets will be correspondingly denoted as &, = E,(u) := En(pn) and
E* = E%(u) := EM(w). In this notation, £(a) := &, N E*.
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We are interested in the dimensions of these level sets £(«). The dimensions fy(a) :=
dimy £(a) and fp(a) := dimp E(a) are called the Hausdorff multifractal spectrum and the
packing multifractal spectrum respectively.

In the physics literature ([16]) it is suggested that these dimensions are often equal to
the Legendre transform of some other functions. This sometimes provides an alternate way
to calculate the dimensions.

The Legendre transform of a function 7 is defined as

7*(a) = inf (ga = 7(a)

The multifractal formalism is the following relationship: the multifractal spectrum f(«a) =
dimg(&,) or dimp(&,) is the Legendre transform

fla) =7"(a)
of some suitable auxiliary function 7. This statement is justified and the multifractal
spectrum is calculated in different cases, including self-similar measures ([10, 7, 26]), p-

Cantor measures on the central Cantor sets ([18]), decreasing Cantor sets ([19]), and many
other examples.

In this chapter we want to extend the calculations to the balanced Cantor sets. As
the most general case is complicated in notation and not substantially different, we will
restrict ourselves to the following assumptions.

Assumption 1. (a) We assume C' is a balanced Cantor set where M > 2 is a fixed integer
and n, = M for all k. Then N, = M*. This includes the homogeneous Cantor sets
with n, = M.

(b) We study the p-Cantor measure on C where py; = p; for each j =1,--- , M and for
all k. We assume p = ppin := min;<;j<ps p; > 0 throughout this chapter.

4.1 Multifractal box dimensions

In this section let us introduce the multifractal box dimension as our auxiliary function.
For ¢ € R let

Ss5(q) = sup {Z w(B(x;,0))? : {B(x;,0)}; are disjoint closed balls with z; € supp(,u)} :
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The lower and upper multifractal ¢-box dimensions of u are defined in [20] as

log S log S
C, = liminf log S5(q) and C7 = lim sup —2 5(Q)‘
s—0t  |logd| 5ot |logd|
It is denoted as C'(q) if limg_,o+ kﬁfg(sét'z) exists. The quantity 7(q) = —C¥ is also known as

the Li-spectrum.
Lemma 22. Let p be a p-Cantor measure on a balanced Cantor set C' satisfying Assump-
tion 1. Suppose ¢ € R and s, < 0 < sp_1. Then there exist A, B > 0 such that

k

A (Zp?) < Ss(q) < B (ZP§> : (4.1)

Proof. Let {B(z;,d)}; be a collection of disjoint closed balls with x; € supp(u). The
balanced property of the Cantor set tells us that |Ij’»“+L1] <5 <0 < 531 < \If_l_LQL

hence if IF717"2 = [*=17E2(g;), then

IF(z)nC C Bs(m)nC C (I »uri-"»uri - nc.

1. Let us first consider ¢ > 0. For the upper bound,

p(Bs(x:)* < (72 0 0) + p(I;7 2 0 C) + w7 0 0))”

<K, (I 0 )+ p(I7 2N O) 4 (I 0 C))

for some constant K,. This is due to Holder’s inequality when ¢ > 1 and concavity
of 29 when 0 < ¢ < 1. Note that each []]-‘3_1_]“2 can intersect at most Mtl2tl of
the balls Bs(z;) since the balls are disjoint and each of them contains an interval
I*11(z;). Thus

Mk—La—1
D u(Bs(a))t < MUK, N (L)
i j=1
k—Ly—1 q
e, ST ()
|w|=k—Lo—1 =1
M k—La—1
— ML1+L2+1Kq <2p3> 7
j=1
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u —Lo—1
so we can take B = M1l (ijl P?)

Now we consider the lower bound. Take z; to be the left endpoints of the intervals
I 27 for 1 < i < M* 272 The balls {Bs(z;)}; are centred in C' and pairwise
disjoint.

The interval I¥+L1(2;) is the leftmost subinterval of I*=1271(x;) at level k + Ly, so

k— L2 2 k— L2 2
M(Ik+L1 (xl) — ( H pwl) P pL1+L2+1 > pL1+L2+2 H Puy
=1 =1

where [F~1271(z;) = Ly oy, o0+ Since I (z)N C C Bs(x;) N C,

Mk Lo—2

Z“ B(S -sz q > Z [k+L1 )q
k—Lo—2 4
> (phrtery N ( 11 pwl)
I=1

|w|=k—Lo—2

k—Lo—2
L1+L2+2 E

The last equality holds because the sum is over all the Cantor intervals of level
k— Ly — 2.

. Consider ¢ < 0. For any d-packing { Bs(x;)};, the Cantor intervals I**11(z;) are con-
tained in Bs(x;) and hence are disjoint. As ¢ < 0, we have p(Bs(z;))? < p(I* 51 (x;))4.
Thus

Mk+L1

D n(Bslw)! < Y p(I @) < 3 I
()

For the lower bound, take x; to be the the left endpoints of ]Z\}Lrl for 1 <1 <
M*=L2=2 The choice of the left endpoint for z; gives the inclusion Bj(x;) C If_LQ_2
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and that implies pu(Bs(z;))? > p(IF727%)7 when ¢ < 0. Thus

S uBsa)y =Y u(ffL“>q=<sz> .

=1

From the above inequalities, we obtain the following theorem.

Theorem 23. Let pu be a p-Cantor measure on a balanced Cantor set satisfying Assumption
1. The multifractal g-box dimensions of . are given by

M M
log Zj:l pj a1 log Zj:l p;
————— and CY = limsup ————.
koo pllog syl koo 3| 108 skl

Hence, if the lower and upper limits exist and are equal, then

lo Af 4
Clg) = lim —2 2=t 2Py
oo I[log sl

Proof. Let ¢ € R and s, < 0 < s,_1. Taking the logarithm of (4.1), we get

M M
logA—i—klogZp? <log Ss(q) < logB—l—klogZp?. (4.2)
=1 =1
On the other hand,
|log sx| > |logd| > |log sk_1]- (4.3)
Note that limy_, \ig§i| =0 and limy_, ﬁgii' = 0. If we consider the division of (4.2) by
(4.3) and take the liminfs, then
S lo Mo
lim inf og %(4) lim inf gz]fl b
50 |logd| k—oo | log s
The same is true for the upper limits. [ |
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4.2 Separation conditions

In the multifractal analysis on self-similar sets or other Cantor-like sets, some separation
conditions, like the strong separation condition and the open set condition (see Section
1.3.3), are usually required. In our setting, the balanced Cantor sets may not be self-
similar. We need to formulate another version of the separation condition.

Let G;?,l < j < M*Y(M — 1), be the gaps between the k-th level intervals 1']’-€ of
the Cantor set C'. In this section, we suppose that C' satisfies the following separation
condition.

Assumption 2. There is an € > 0 such that for any k and 1 < j < M*Y(M — 1),

G| > esy.

For x € C and k > 1, let I*(x) be the Cantor interval containing x at level k. The
following lemma shows that the measures of balls and Cantor intervals are comparable
under the separation condition above.

Lemma 24. Let C be a balanced Cantor set satisfying Assumptions 1 and 2. There is an
N € N such that

for any x € C" and k > N.

Proof. We only need to prove the second inclusion. Choose N > Ly such that 2¥~12¢ > 1.
Fix k> Nandlet 1 <i<k— N,sayi=Fk— N with N' > N. Then
1

1 N ;
|]k(;p)| S Sk—Lo < N/——[/QS]C_N, S QN/—_L%|G§: N | < |G§|

Thus the radius of By, (x) is smaller than the gap lengths up to level £ — N, and so
Bpi(z(2) is contained in the union of I* ¥ (z) and its adjacent gaps. Therefore, we have
the second inclusion. [

Lemma 25. Let pu be a p-Cantor measure on C' satisfying Assumptions 1 and 2. Then
for any h € D and x € C,

k
o dogu(Bo(r) L Tog (T (x)
s—ot  logh(0) k—oo  log h(sy)
e log u(Bs()) log ju(I*(x))
) og 1(Bs(x . og [ x
1 DEMIRE)) 1ot S ST
ot logh(6)  hom logh(sy)
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Proof. Let [I*12] < 5, < § < s < |[I*117Y. Lemma 24 implies that for suitable N
and sufficiently large k,

Ik+L2(.I') nc g Bg(.fC) nc g B|Ik7L1—1(x)|(£C) nc g [kiLliliNCC) NncC.
Since there exists p > 0 such that p; > p>0forall 1 <j < M,

ap(I*H(x)) < p(I5 (@) < p(Bs(@)) < p(I*1 77V (@) < cop(I¥(2))

Li+1+N

where ¢; = p"**! and ¢, = () are independent of x and k. Thus

log(capu(I*(x))) _ log p(Bs(x)) _ log(erp(I*~(x)))
logh(sy) = logh(d) —  logh(spg_1)

Taking limits we get the conclusion. [

4.3 Multifractal formalism

In this section we will calculate the multifractal spectrum of a p-Cantor measure p on a
balanced Cantor set C' satisfying Assumptions 1 and 2. Our goal is to obtain a dimensional
description of the level sets £(a). We will first work with the more general £(h) for
dimension functions A as in [19] and obtain the dimensions of £(«) in the end.

Let
M -1 /v
- (zpz) (z)
i=1 j=1

log (Zj\il p?-)
b, '

and

0,=q—

Define an auxiliary measure v = v, as follows. For |w| = k, let

v(L) = (L)’ (Zpg) . (4.4)
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One can check that for each k,

S st (L) X wirr -

lw|=k lw|=k

It follows that v is a probability measure and we will see that it is concentrated on
En or EM with appropriate g and h. Moreover, v is a p-Cantor measure where p =

e Py
SRS vds
Lemma 26. 1. Ifliminf,_, %log h(sg) = by, then v, (&) = 1.
2. If limsupy_,, 3 log h(sy) = by, then v (E") = 1.
Proof. 1. Let 0 > 0 and

Ey, :={x € supp(p) : log u(I*(x)) > (1 — €) log h(sy)}
={z € supp(u) : p(I*(x)) > h(sp)" "}

Then
v(Ey) < / (1% () h(s) Vv ()
=3 b)) v(L,)

|w|=k
M —k
_ h<8k)6(e—1) Z q+6 (Z )
|w|=k =1
M q+6
= h<8k)5(e—1) (ZFM;I)J> = q>+(k)
Zj:l p?

Consider the Taylor expansion of g(t) := log Zj\il pz», centred at ¢,

9(qg+9) = Z <Z 3) (ij. logpj> 5+ 0(5%).

Jj=1

20



Thus

M M
log®* (k) = 0(e — 1) logh(sg) + k (log Zp§+5 - logZp?)
j=1

J=1

= ko | (e~ 1)%logh(sk) — (ij) <Zp? logpj> +0(9)

Jj=1

—1
When lim infkﬁooilog h(sk) = by = <Z]Ai1 p?) (Z]Nil o 1ogpj>, for any ¢y > 0
there exists a kg such that for all k¥ > ky we have

%log h(si) > by — €o.
Thus
log ®* (k) < kd ((e — 1)(by — €0) + b, + O(9))
= ko(eby + (1 — €)eo + O(0)).
Since b, < 0, we can take ¢ and ¢ small so that
d* (k) < exp(kdeb,/2)

for all k& > ko. It follows that {v(Ej\)} is summable. By the Borel-Cantelli lemma,
V(Mni—1 Uk, Br) = 0. In other words, for v-almost = € supp(u), there is a k; such
that -

log u(I*(2)) < (1 — ) log h(sy)
for all k > k.
Analogously, when
E* :={x € supp(u) : log p(I*(x)) < (14 €)log h(sk)}
={z € supp(p) : p(I*(x)) < h(sp) "}

we have

V(") < / (T () h(s) O+ d ()

M g5\ F
= h(s),)*0+9 <—Zj:1 b ) =:d (k)

M
> i1 P
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and
1 M -1 /M
log® (k) <kd | (1+ E)E log h(sy) — (Zpg) (Zp? 1ngj> + O(6)
j=1 j=1
This time lim infj_,o %log h(sy) = b, implies

log @ (k) < k6 (1 + €)(b, + €0) — by + O(6))
— k6 (eby + (1 + )eg + O())

along a subsequence. Again we can take ¢y and 0 to be small so that
O™ (k) < exp(kdeb,/2)
and hence v(E*) is summable in that subsequence. Then for v-almost x € supp ()
log 1(I*(2)) > (1 + ) log h(s)

for infinitely many k.

Therefore

1 I*
1—e§liminfw <1l+e
k—oo  log h(sy)

for v-almost x € supp(u). Consequently v(E)) = 1.

2. The proof is similar.

We also need a version of the mass distribution principle in terms of dimension functions.

Lemma 27. Let v be a measure and h € D be a dimension function.

1. If liminf,_ o+ % >0>0 for all z € E, then H"'(E) > v(E) for all A < 1.

2. If limsup,_,q+ % <0< oo forall x € E, then P (E) < v(E) for all A > 1.
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Proof. 1. Let A <1 and
1
F,={x € E:v(B,(z)) <h(r) for all r < E}

Then Fy, C Fj,1 and E = |J F), by the assumption.

Let {U;} be a d-covering of E with ¢ < % It is also a d-covering of F},. If U;NF}, # 0,
let z; € U; N Fy, and r; = |U;], so that U; C B, (x). By definition of Fy,

v(Us) < v(By,(2:)) < h(|U|)™

and hence

v(F) < ) V(Ui)SZh(IUiI)M-

1:U;NEFR#0

This is true for any J-covering of Fj, so
v(F,) < H"(E).

Letting k£ — o0, "
v(E) < H"(E).

2. Let A > 1 and € > 0. There exists an open set V O E such that v(V) < v(F) + €.
Let

1
Vi i={z €V :h(r)* <v(B.(z)) and B,(z) CV for all r < E}
Then V), C Viyq and E C |J Vi by the assumption.
Fix k and let {B; = B,,(z;)} be a d-packing of Vj, with § < 1+ . Then

S k() <3 v(B) = 3wV By =V 0 (JBy) < uV),

J J

This is true for any packing of V4, so
P (Vi) <v(V) < u(E) +e.

Letting k£ — o0,
P (B) < P (Vi) < v(B) +e
k

for any e.
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Recall the definition of b, and 6, on p.49.

Theorem 28. Let h € D and p be a p-Cantor measure on a balanced Cantor set C
satisfying Assumptions 1 and 2.

1. Ifliminfy o Llog h(sy) = by, then H" (£,) > 1 for all A < 6.
2. If limsup,_,, +log h(sy) = by, then PP (EM) <1 for all X > 6,.

3. Iflimy o0 Llog h(sk) = b, then HY (E(h)) > 1 for all A < 6, and P (E(h)) <1 for
all N > 6.

Proof. 1. Let v = v, be defined as in (4.4). Then

log (1)) logp(I*(x)) o8 (ZL7)

logh(si) | logh(sy) log /(s,)
As suitable balls and Cantor intervals have comparable measures by Lemma 25, if
x € &, then
M
.. logu(I*(x)) log (Zj:l P?)
liminf ———2* > ¢ — =0,.
k—oo  log h(sg) by

We note that 6, > 0. Indeed, if ¢ > 0, then

M -1
=1 (ng) (Zp? )
j=1 j=1

M
< qmjaxlogpj < log ;p‘}.
If ¢ < 0, then
M
qbg < g min logp; < log ]le?.
Another application of Lemma 25 gives
1 B 1 I*
liming 285D s los @) Sy g
50 logh(9) k—oo  log h(sy)
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Hence N
Hh (gh) Z V(Sh) =1

for all A < 6, by Lemma 26 and 27 .

2. The proof is similar to (1).

3. By Lemma 26, v(£, N E") = 1. For any = € &, N EN,

M
(@) loe(Sh)
k—oo log h(sy) — 1 bq T

which is finite and positive. The conclusion then follows from Lemma 27.

Corollary 29. Let G~ := liminfy_, %10g sk and G :=limsup,_, %log Sk.

1. If a = CZ%, then
log <Z]A11 p?)
= :

dimy &, > qa —

2. Ifa= Cb;—i, then
log (Z;‘il pj-)

dimp &Y < qa — o

Proof. 1. If h(z) = ¢, then liminf, o ;logh(sy) = oG~ = b,. By Theorem 28,
HE,) > 1 and dimy &, > a for all A < 6,. Hence

log (Zj\il p;’»)

dimy &, > ab, = qa — =

2. The proof is similar.

Note that
lim b, = log pmax and  lim b, = 10g Pin
q—00 q——00

where prax = maxi<j<y pj and prin = Minj<j<pr pj. The range of b, is (log Prin, logpmax).
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Corollary 30. Suppose

o1
G = kh_}r&%log Sk

exists. Let o € (log’%, log%) and q be such that o = %q Then

log (Zj\il pg)

limk_mo % 10g Sk ‘

dimy £(a) = dimp E(a) = qav —
Proof. When h(t) = t, by part (3) of Theorem 28, H**(E(a)) > 1 for all X < 6, and
PN (E(a)) < 1 for all N > 6,. Then
al < dimy (o) < dimp E(a) < aN
for all A < 6, and X' > 6,. Therefore

log (ZJN; P?)

limy,_,o0 7 log si;”

dimy £(a) = dimp E(a) = ab, = qa —

M
log(35%,05)
limg o0 %log se

ga + C(q) obtained above is indeed the Legendre transform of —C'(g), provided that

limy, o0 % log sy, exists, since g — g + C(q) is minimized at o« = —C’(q) = %

Remark. The Hausdorff and packing multifractal spectra f(a) = qa —
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Chapter 5

Exact measures of homogeneous
Cantor sets

In this chapter we focus on the special case of homogeneous Cantor sets C' = C({ny}, {rr}),
in which the interval and gap lengths at each level are all the same. The definition of the
homogeneous Cantor sets can be found in Section 1.3.1.

Recall that for each level kK > 1, n, > 2 is the number of divisions and 7y is the ratio
of dissection with
NETE < 1.

The number of intervals at level k is Ny = nq ---ny, and the length of each subinterval at
level k is s, = r1---7%. Let 3, be the length of a gap between two subintervals I* at level
k within the same parent interval 7%~

When M := sup, ny < oo, we already have bounds on the Hausdorff and pre-packing
measures from Theorem 1 :

L. . h -
Wll}ggglf Nih(sg) < H'(C) < hlgggjlf Nih(sg)

and
1
Mlimsup Nph(s) < PHC) < M?limsup Nyh(sp).

k—oo k—o0

In this chapter we try to obtain more precise estimates of the measures.
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5.1 Hausdorff measures

The Hausdorff dimension of a homogeneous Cantor set C' = C({ng}, {rr}) is given by [12]

.. . log Ny
a = liminf ,
k—oo — log sy

which can also be obtained from Corollary 8 in Chapter 2. It is known from [12] and [25]
that we have the following bound on its Hausdorff measure:

1
—liminf Nisp < H*(C) < liminf Ngsj. (5.1)
2 k—oo k—o0

Moreover, if the gap lengths are decreasing, i.e. yri1 < yp for all £ > 1, then the exact
Hausdorff measure is [27]
H*(C) = liminf Nisj}.
k—o00
In this section we will improve (5.1) in the case where the gap lengths are not necessarily

H*(C)
liminfg_y oo Ngsj

always % It turns out that the lower bound can be improved for different values of a.

decreasing. One question we ask is whether the lower bound of the ratio is
From now on, let C' be a fixed homogeneous Cantor set. Let
Fk:{jo-iO'EDk}

be the collection of Cantor intervals of level k defined as in Section 1.3.1. For &k > 1 and
0 € Dy_q, let

Gro ={I =|JLow, s wi €{0,-+ ,mp—1},1 <m < my}
=1

be the collection of all possible unions of level £ Cantor intervals in I,. Finally, let

G=J Gre G:=JG%
k=1

o€D)_4
and
H(C) := lim inf {Z U;|* - C C UU U] <6,U; € g}
for a > 0. The special collection G of sets is used as coverings here. We will estimate
H*(C) through this intermediate quantity Hg(C).
Let B := liminf;_, o Nis¢. For each o € Wy, let I, = [a(0),b(0)]. Let u be the uniform

Cantor measure on C' so that pu(l,) = Nik
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Lemma 31 ([238]). Let h(z) = x. Suppose 0 < B < oo for some a.. For any € > 0, there
exists ko such that if k > ko, 0,7 € Wy, 0|p—1 = T|p—1 and a(o) < b(7), then

1
B —«¢

p(la(o), b(T)]) < h(b(r) — a(0)).

Remark. This lemma is also true for concave function h € D, with B modified accordingly.

Proof. Let 0,7 € W), be as in the statement. The assumption o|x_1 = 7|1 and a(o) < b(7)
implies that I, and I, lie in the same interval of level kK — 1 and are separated by, say, ¢ > 1
intervals and i — 1 gaps of level k. As ngsg + (ng — Dyx = si—1,

nE — 1 1—1
S + Sk
nk—l nk—l

(1) —alo) =ispg+ (i — Dy, = 1.

By the concavity of h,

h(b(T)—a(a)):h(nk_i 4l 1>

nk—lsk nk—lsk_
N — i i—1
h h(sk—1).
> o hlse) + o h(ske)

For any € > 0, there exists kg such that for any 7 > ky — 1 we have

B —¢ < Njh(Sj),

i.e. B
—€
N] S h(s.?>
Therefore, for k > kg,
n,—1t 1 1—1 1
h(b(T) — —(B — B —
(b(1) —a(o)) > - 1Nk( - 1N;H< €)
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Proposition 32 ([23]). For a >0,

HG(C) = liminf Nysj;.

k—o0
Proof. Since F, = {1, : 0 € Wy} is a G-covering of C, the upper bound
Hg(C) < liminf Nysjg
k—o00

is easy to obtain. We now prove the lower bound.

If B =0, then HZ(C') = 0 by the inequality above. If B = oo, then H*(C') = oo by
(5.1). In the definition of H*(C), the infimum is taken over a larger collection of coverings
than for Hg(C'), so H*(C) < Hg(C) and hence Hg(C') = oo. The conclusion holds in both
cases. We can suppose 0 < B < o0.

For € > 0, there exists ky satisfying the previous lemma. Let § < si, and take any
d-covering {U;} C G of C'in G.

Each U is in Gy for some k(i) > ko, so
U=I1,yU---UlLunCJ

for some J € Fy;)—1. We may assume U; and I, have the same left endpoints, and U;

and I ) have the same right endpoints, so |U;| = b(7?) —a(c?). Since 0@ |44)-1 = 7'1524)71,

1
B —¢

ulla(@®),b(r)]) < (b(7) = a(a®))*

by the lemma. Taking summation over i, we get

. A 1
1= < N < (@) (%) < |
p(C) < EZ p(li) < E@ wlla(a™),b(r)]) < 5— EZ Uil
Hence, B — e < HG(C) for any € > 0, and therefore

B < HZ(C).

Next, our aim is to compare H*(C') with Hg(C). We will need the following lemmas
to replace a general open covering by a G-covering.
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Lemma 33. Let U be a half-open interval. Suppose UNC # 0 and U is in one of the two
forms:

o U =a,b) and a is the left endpoint of some Cantor interval, or
e U = (a,b] and b is the right endpoint of some Cantor interval.
Fiz an integer N > 2. Then there exists G1,--- ,Gn € G such that
uvnccaGain---NGy

and

1
|G|+ -+ |Gn| < <1+2N_1>|U|.

Proof. Without loss of generality, suppose U = [a,b) and a is the left endpoint of some
Cantor interval.

e Since UNC # (), there is a level k interval, Iy, such that a € Iy C U, i.e. the left
endpoints of U and [ coincide.

Let Gy :=U{l, € Fi: I, CU}.

unc

Gy

If UNC C Gy, then we can stop and let Gy, -+ ,Gn = () obtaining

Ghl < U< (14 )IUI-

2N —1

Otherwise, U \ G; will have non-empty intersection with precisely one level k interval
J1 € Fp. Let Uy :=UnNJy soUNC C Gy UU; and the left endpoints of U; and J;
coincide. Then there exists k; > k such that U; contains an interval of level k; and
the left endpoint [(Uy) of U; is also the left endpoint of this interval.
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Gl Jl

e Now take

Gy = | {1, € Fu, - I, C UL}
If UNC C G1 UG, then we stop and

|Gl +1Go| < |UT< (1+ )IUI-

2N —1

Otherwise, U \ G; U Gy will have non-empty intersection with a level k; interval
Jy € Fi,. Let Uy := U N Jy. Then there exists ko > ky such that Us contains an
interval of level ky and the left endpoint [(Us) of U, is also the left endpoint of J,
and this interval. We then take G5 := {1, € Fi, : I, C Us}.

In general, suppose we have obtained Gy, -G, € G where G, € G, _,, n < N, and
intervals Uy, --- ,U,_1 as above. f UNC C Gy UGy U---UG,, then we can stop and

|Gil 4+ |G < U< (1+ )IUI.

2N —1

Otherwise, U \ (G; U --- U G,) will have non-empty intersection with a level k,_;
interval J,, € Fy, ,. Let U,, := U,_1 N J,. Then there exists k,, > k,_; such that U,
contains an interval of level k,, and [(U,,) is the left endpoint of J,, and this interval.

Ifn+1<N,let Goyy :=U{I, € F, : I, C U,} and continue this process.

Ifn+1=N,let
Gy = U{[g S ka,l 1. NUN_4 75 @}

In this case

and

UnCCcGiU---UGN

GiU-- UGNy 1UUN_1 CU.
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At most one interval of level ky_; intersects Uy_; without being fully contained in it,
SO
|GN| < |UN—1| Tt Sky_y-

Since Uy_7 contains at least one interval of level ky_1,
Skn_1 < |Un-al.

On the other hand, for each 1 < j7 < N — 1, G; contains at least one interval of level k;_;.
Thus the number of interval at level ky_; contained in Gj is at least Ny, /Ny, _, > 2V7J
and hence

2N_jSk?NA < |GJ|

Therefore,

2N = Dspy, =@V 42V 4 4 24 D)spy, <Gl 4+ + |G| + [Un-a|

and
|G1| + -+ |Gn| < |Gy + -+ |Gya| + |Un-a] + Sky_y
< (4 gy )G + -+ Gyl + Uy )
1
< (1 U
as the sets G, Un_; are disjoint. [ |

Corollary 34. Let N > 2. If U is an open interval and U N C # 0, then there exist
G, -+ ,Gan € G such that
UnCc CcCGin---NGaoy

and
1 N
(- 50) D16 101
j=1

or, equivalently,

2N 1
SO IGH < (14 ) U
j=1

Proof. For any open interval U with U N C # (), there is a smallest k such that U contains
at least one interval of level k& but does not contain any interval of level £k — 1. Let G € F
be an interval such that G C U.
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e If U intersects only one level k£ interval, then it must be G and U N C' C G. Letting
Gi1 =G and Gy, -+ ,Gon = ) we have

1 2N
(1-59) ) lGil <l <|u].
j=1

e If U intersects more than one level k interval, let A € F; be the leftmost interval
such that U N A # () and V be the gap to the right of A. Let U; := U N A and
Uy=U\(AUV).

i

——

Uy Us

~—~—

U

Then Uy, U, satisfy the lemma above and we can find Gy, --- Goy € G so that

UlﬂCQGlﬂ---ﬂGN,UgﬂCQGN+1ﬂ---ﬂG2N,

1
Grl + o+ 1G] < (14 o)t
and
Gl +- -+ [Gon| < (1 + 57—
Hence
2N 1 1
j=1

or, equivalently,
12
(1= 50) 216G 101
j=1

and
UNC=({U;NC)UU,NC)CGyN---NGay.
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Theorem 35. Let C' be a homogeneous Cantor set and 0 < o < 1. Then

(1 - 50 B (o) < o0y < mg ()

forall N > 1.

Proof. In the definition of H*(C'), the infimum is taken over a larger collection of coverings
than for Hg(C), so the upper bound H*(C) < HG(C) is immediate. Let us look at the
lower bound.

We can apply Corollary 34 and the concavity of % to see that for any d-covering {U*}
of C, we can obtain a G-(1 + 55— )d-covering

of C such that
1 oz(2Na X e 1 X 7 : 1|«
(- L0 S g<<1—2—N>z|aj| <0
j=1 Jj=1

for all 7. Hence

o 2N
(1_2%)01(22]]\;) ZZI|G;|QSZ|U1‘Q
Jj= i

i

and therefore

1.,(2N)
T\ e < H“
(1 - o 2wy 0) < o)
|
Corollary 36. Let 0 < a < 1. Then

1 el (QN)a s «a @ LI o

<JSV11£(1 — 2—N) W) hlggloglf Nisy < HY(C) < hg(l)glf Nisi.
Proof. This follows from (5.1), Proposition 32 and Theorem 35. |

Remark. When N =1, (1 — =& aBN)® _ 1 The inequality (5.1) is improved.
2 2N 2
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Corollary 37. For all homogeneous Cantor sets C,

67

H*(C) > 3—limianks?.
4 k—oo

Proof. When N =2, (1 — QAN)a(QQJp“ _ %. =
Remark. If a > iggg, then 2- > 1.

Corollary 38. If a =1, then H*(C) = liminfy_,o Nisy.

Proof. When o = 1, supy~,(1 — 2%)@(22120‘ -1 -

5.2 Packing measures and lower densities

It follows from Corollary 8 in Chapter 2 that the packing dimension of a homogeneous
Cantor set C' = C({ng}, {rr}) is

, log Ny
a = limsup .
koo — 10g Sy

The exact packing measure of a central Cantor set is calculated to be

P*(C) = 2% lim sup 2% (s, + y)”

k—o0

under some separation condition in [I]. Here we extend the results to the case of homo-
geneous Cantor sets.

Throughout this subsection, C' will be a homogeneous Cantor set with M := sup, n, <
oo. In addition, we will require the following separation condition: There exists 0 < f < 1
and some K € N such that ngr, < g for all £ > K.

Recall that y; is the length of a gap between two subintervals at level k£ within the same
parent interval.

Lemma 39. Any homogeneous Cantor set satisfying the separation condition has the prop-
erty that there exists L € N such that

Skt + Ykt < Yk

foralll > L.
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Proof. First, note that

Sk—1 — NESk 1-— NET
ng — 1 ng — 1

and

1 —rpp
Skl T Ykt =T10 T | | -
Ny — 1
The inequality Sg4+; + yrr < yi is equivalent to

1—r 1 —ngr
Tk"~7’k+l1( k+l) < ( k k>
Mgy — 1 n, — 1

Since n; > 2 and the separation condition gives ngr, < 3,

1— Tkl 1 1
e < <
T et (nkJrl —1) 7 nge e T g2t

1— NeTk > 1-— 5
ng — 1 — ng
So it suffices to find [ such that 2!~/ < 1 — 8 and hence we may take

and

1
L> log2(1

)+ 1.

Lemma 40 ([11]). Let a;,b; >0 forje{1,---,L} and 0 < a < 1. Then

. | ay . a;+---+ag
L1 <i< Ly < .
mln{ba =J= }_<b1+"'+bL)a

J

Proof. Let m = min; {Z—;} Then mb?‘ <ajfor1<j<Land

m(by + -+ b)) <m(bS+---+b7) <ar+---+ag

by concavity of the function h(z) := x®.
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To obtain the packing measure, we will calculate the lower density of the uniform
Cantor measure p on C. The lower density of a measure v is defined as

B
O%(v,x) = liminf M
r—0 (27‘)0‘
When v = p is the uniform Cantor measure, we just write ©%(zx) = O%(u,x). We can

obtain the packing measure through the following proposition, obtained by [1] for central
Cantor sets. The following proof is almost the same as that for central Cantor sets.

Proposition 41. Let C = C({n},{rr}) be a homogeneous Cantor set such that 0 <
P*(C) < o0o. Then
0% (x) = (P*(C)) "

for w a.e. x e C.

Proof. For each £k > 1 and 0 € Dy, the set I, N C is a translation of Ijx N C. By
translation invariance of the packing measure, P*(C) = N*P*(C N 1I,). If we define
v = (P*(C))"" P%|¢, then v and the uniform Cantor measure p coincide on each I, with
measure Nik By regularity, the two measures are identical. Since ©%(P%|c,z) = 1 for P*

a.e. = € C by [23, Theorem 6.10], ©%(u, z) = (P*(C)) ™" for p a.e. z € C. |

We first consider the lower bound of the lower density.

Theorem 42. Let C' = C({ny}, {rr}) be a homogeneous Cantor set such that P*(C') < co.
Then

-1
0%(x) > (20‘ lim sup Ni (s + yk)“)

k—o0

for p ae xeC.

Proof. Let B, = limsup,_,., Nx(si + yx)®. Given & > 0, there exists kg € N such that for
all k& > ko,
Nk(Sk + yk)a < By +e.

Fix x € C'\ {0,1}. For each r > 0, choose k such that [*(z) C B(z,r) but I*'(z) ¢
B(xz,r). Let r > 0 be small enough so that x +r < 1 and k > ky. Assume I*(z) = I, for
lo| = k.
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B(z,r)

We remark that either = +r € I*!(x) or x — r € I*7(z), for otherwise the ball B(z,r)
will contain I*~1(z).

First, suppose = +r € I*71(z). Note that z +r ¢ I, since I, C B(z,r). As before, we
use the notation I, = [a(c),b(c)]. We start our estimation by observing that u(B(z,r)) >

p(la(o), x + 7).

Subcase 1. Suppose either z + 1 ¢ C or x + r is the endpoint of a basic interval. If a(o) 4+ r <
w+r < a(0) +s,+yx, then r < s +yg. Since I, C B(a,r), p(B(x,7)) > u(ly) = 5
Consequently

w(B(z, 1)) 1 1 1
Gre Gt Ne © B (Ba o)

If a(o) + s+ yr <z +1r < 1, then & + r must lie within the closure of a gap of the
following form: !

z+7 € [b(ok—1TuThs1 ThtL), A(O|g—1TkThr1 -+ (Thsr + 1))]

for some word 7 = T Tpy1 -+ Thar, where L >0, 1 € {0, -+ npi— 1}, T > o+ 1
(because I, C B(x,r)) and mpyp +1 € {1,-++ ,npyp — 1}

Let us relabel the indices as follows: let kg = k and
kj :min{i:kj,l <i<k+ L and 7'17&0}

This contruction will stop in finitely many steps, and if it stops at j = Lo — 1, then
let kr, = k+ L. (Here Lo < L.) Let

Ay = 11, — 0%, Aj = Tk;, ALO =Ty + 1

where 1 < j < Ly — 1. Thus, A, is the number of intervals at level k; contained in
la(o),x +r) and all A; > 0. This gives the following estimate:

Tt may be helpful for the reader to review the example given following the proof.
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We also need an upper bound of . For this we note that

CZ(O') +r<z+r< a/(O"k;flTk‘TkJrl s (TkJrL + 1))

Lo
< a<0) + Z Aj(skj + yk?j)?

§=0
which gives
Lo
r < ZAj<Skj + Uky)-
§=0
Therefore,
Lo Lo
p(B(z,r) _ 1 A;
—_ > — A:(Sk. + Y. —
(27a)a 9o J;O ]( kj yk‘]) ];0 ny--- nkj
1 Aj(nl---nk.)_l}
> — min . by Lemma 40
2> { A}l(skj +ykj)a (by )
> Lo ! (as A7 >1)
— min as A;
— 20 5 | Ny, (sk, + Uk,)® T
1
>
~ 2%(B, +¢)

Subcase 2. If x4+ r € C, but is not an endpoint of a basic interval, then there is an infinite word
w € W such that x +r € I, for all : > 1. Again we let

ko = k,
kj = IIlll’l{Z : k’j,1 < 1 and w; 7é 0}
and
AO = Wk — Ok, Aj :wkj

for j > 1. By similar reasoning, for any L we have

L
A.
B(z,r)) > u(la(o), x4+ 1)) > —
Bl ) > o)+ 1) 2 3o
Asx+r€]w|kL for all L,
L
a(a)+r§z+r§b(w|kL):a(a)+ZAj(skj+ykj)+skL,
=0
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and this gives

7=0 1 k]

by the same argument as in the previous subcase.

The other case, x —r € I¥71(z), can be done similarly. Therefore, we have shown that

liminf'u(B(x’r))Z 1 )
r—0 (2r)« 2°B,,

Example. Let us illustrate the proof above with an example, in the case where x +1r ¢ C
or x + r is the endpoint of a basic interval.

Let the number of divisions at level k, k+1 and k+2 be ny = 4, ng,1 = 2 and ny o = 3.
Suppose = € I, = [a(0),b(0)] where o, = 1 and

z+7r € [blo]r-1211), a(0|p-1212)],

ie. TpTri1Treo = 211 and L = 2.

]kfl(l.)
IO' = -[O' 11
( lk—1 } = 4
/‘i[f
a(o’) [o\k,120 T+
( ho Ngy1 = 2
( . --) Ngy2 = 3
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The numbers of intervals at level kg = k, ky = k+ 1 and ks = k 4+ 2 contained in
la(c),z+ 1) C B(z,r) are

AOZTk—O'kZQ—l:l,

A1:Tk+1:1,
A2:Tk+2+1:1+1:2.

(See the diagram.)

From ] 1 9
p(B(x,7)) = +
ny---MNig Ny N1 T Ngg2

and
r < (sk+yk) + (Skt1 + Ykr1) + 2(Sk+2 + Yrt2)

we can then estimate pu(B(x,r))(2r)~* as in the proof.

We consider the upper bound next.

Theorem 43. Let C be a homogeneous Cantor set such that P*(C') < oo and the separation
condition holds. Then

—1
0%(z) < (2“ lim sup Ny (sy, + yk)a)

k—o00

for w a.e. v e C.

Proof. Fix L as in Lemma 39. Take a subsequence (k;) such that

]lirglo Ni, (sk; + y,) = limsup Ny (s + ye)“,

k—00
k;j > L and kj11 —k; > j for all j € N. For each j > 1, choose ¢ such that M* < j < M*.
Define a sequence of sets
Aj={rcC:op_r(x) =1,04_141(x) = -+ = Op,—r4i(x) = 0}.
They will be used to construct a subset of y-measure 1 satisfying the bound in the state-

ment. Note that
1 1

>
> —
M, —L - Mgy—p4i M

1(Aj) =
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because A; consists of the union of one Cantor interval of level k; — L + ¢ in each Cantor
interval of level k; — L — 1, and

M 1 1
> Ay = MM~ Dy =13

j=Mi
This implies
> u(4;) = oo
j=1
Note that the levels defining A;’s are distinct for different j:
kjyi—(kj—L+i)>j+L—i>M+L—i>0,
so the events A;’s are independent with respect to the probability measure . Let
A=U4;
I>1j>1
By the Borel-Cantelli Lemma, pu(A) = 1.
We want to estimate the lower density at points x € A. If x € A, then x € A; for
infinitely many j. For such j, let
Tj = Skj + ykj - Skj*L+’L’
where 4 is the integer given by M* < j < M1,
Let 0 = o(x) € W be an infinite word such that « € I, for all k. Claim: B(z,r;) N
C C (Ig|kj NC)U{a(o|g,-11)} for large j.
When j is large enough, then 7 > L, hence k; — L + 1 > k; and a(o|x,—r+:) = a(oly,).
On one hand,
T+ :.Clﬁ—Skj_L+i+Skj +ykj
< a(0|g;—14i) + Sk, + Uk,
= a(a|kj) + Sk; + Yk,
= a(0|kj_11).
On the other hand, by Lemma 39,
T —Tj =T+ Sg;—L+i — Sk; — Uk,

> G(U’kj—L) — Ykj—L-
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I,

lkj—L-1

Yk, —L ]U|kj—L

( %ﬁx
a(olk;—r) = a(ol,)

Thus (x — rj, 2] is contained in the union of I, " and the gap of level k; — L immediately
to the left of o), . Therefore, B(z,r;)nC C (L,‘k]_ NC) U{a(o|g,-11)}.
It follows that

1
w(B(z,r;)) < ————
( ( J)) ng--- nkj
and
p(B,ry) _ 1 !
(2rj)® T ng--- Nk 2a(3k1 + Yk — Skﬂ'*LH)a
T oa - o Skj—L4ing
2%, nkj(skj + ykj) (1- sk;+y;)
Since
0< Skj—L+i < 1 ok,
Sky T Uk;  Mhy—Li " Thyt1 Sk T Uk,
1 Sk; 1

< — <———=0
Mi=L sy +yp, — ML

as J — 00, we deduce that for any x € A, and hence for p a.e. x € C,

lim inf pB(w, 1)) < . 1 )
j—oo (21"j)0‘ 2¢ lln’ljﬁoo Nkj (Skj -+ ykj)a

Corollary 44. If C' is a homogeneous Cantor set satisfying the separation condition, then

P(C) = 2% limsup N(sk + yx).

k—o0
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Proof. If P*(C) = 0 or oo, then by Theorem 1 and Corollary 4, limsup,,_, ., Nks§ = 0 or

oo respectively. Since
Nisp < Ni(sp +yip)® < MNjy_ys5_4,

the theorem holds in these two cases.

If 0 < P*(C) < oo, from Theorem 42 and 43 we know that the lower density is

~1
O%(z) = liminf M = (2“ lim sup Ny (s + yk)a)

=0 <2r)o¢ k—oo
for p a.e. x € C. Therefore, by Proposition 41,

P*(C) = 2° limsup Ni(sg + yr)*.

k—o0
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Chapter 6
LP-improving property

A measure p on [0,1] is said to be LP-improving ([29, 8]) if and only if there exist ¢ > p
and some constant B > 0 such that

e+ fllg < Bl flp

for all f € LP([0,1]), where by [0,1] we mean the group under addition mod 1. An
interpolation argument shows that if there exists one such pair, ¢y > pg, then for all
1 < p < oo there exists ¢ > p such that p acts as a bounded operator from LP to L9.
It was proved [20] that the uniform Cantor measure on the middle third Cantor set is
LP-improving. The result was later extended [3], with a different technique, to the uniform
Cantor measures on the central Cantor sets with ratios of dissection bounded away from
0. In this final chapter, we will prove that under certain assumptions, a p-Cantor measure
on a homogeneous Cantor set is also LP-improving. Our method is based on [%].

Let S, f := p* f be the convolution operator. Since §;‘ =1 f after taking Fourier
transform, we can study the convolution operator as a multiplier operator. In general, if
m : Z — C, the multiplier operator is defined by T}, f = mf We also write mf = T,,f.
Sometimes it is convenient to view m as a function defined on R. If 1 < p < g < o0, the
multiplier norm of m is defined as

[m]p,q = sup [|mfllq/[ f15-
J#0

We need some lemmas to estimate the norm.

Lemma 45 ([8]). Let m : Z — C. Let {I; : 1 < j < L} be disjoint intervals and
mj = mxy;. Suppose m =Y mj and 2 < q < oo. Then there exists A1 = Ay(q, L) such
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that
[ml2,q < Ay max [[m][2,4

If L is fixed, then Ay — 1 as g — 2.

Proof. Let 2 < g < oco. Fix anumber ¢ such that ¢ < t. By the Cauchy-Schwartz inequality,

L L t
mflt =1 myf|' < ((Z |mjf|2)1/2L”2> :
j=1 J=1

Integrating gives
1/2
I flle < 27211 (37 i f12) e

By Parseval’s identity, as the functions {m;f} are orthogonal,
1/2
I flls = (32 Imaf12) Il
By the vector-valued version of the Riesz-Thorin interpolation theorem [I, Theorem 4.1.2,

5.1.1,5.1.2],
1/2
I flly < L7200 (3 tmif12) g

where 6 is given by
1_9+1—6’
qg t 2

Let f; = x1,f. Since 2 < ¢, by Minkowski’s inequality,
1/2
Imflly < 22 (3 llmy 1)
1/2
< L max my 2 (D 1513)

— [9/2 m]aX ||ij2,q”fH2'

Therefore
Imllag < L2 mas s

Asq—2,0—0, thus 4, .= LY/? -1 . [ |
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Definition 8. Let o > 1. A strictly increasing sequence {n;}; of integers is said to be
o-lacunary if
(nj1 —n;) 2 o(n; —nj1)

for all j > 1.

Given a o-lacunary sequence define the multipliers A; by

— fn) ifn; <n <nj,
A =
( ]f)(n) {O otherwise.

Lemma 46 ([3]). Suppose 2 < q¢ < 0o and o > 1. Then there exists Ay = As(q,0) such
that for any o-lacunary sequence {n;}; and any m : Z — C with m(n) =0 for all n < ny,
we have
[z, < Azsup [|Ajmlla.
j

If o is fized, then Ay — 1 as ¢ — 2.

Proof. Let 1 < g < oo. By the Littlewood-Paley theory [J], there exists C; so that if
f(n) =0 for all n < ngy then

1l < Gl Y UAGF )2l

By using the vector-valued version of the Riesz-Thorin interpolation theorem, as in Lemma
45, we have Cy — 1 as ¢ — 2. Hence when 2 < g,

Imfllg < Cill Y (1Amf) 2],
<Oy (I1amf)Y?
< Cysup [|Amllag > (145 £113)"
= Crsup [|Ajmll2,q/ f]2

where the second inequality follows from Minkowski’s inequality. If Ay = Cf, then Ay — 1
as q — 2.
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Let C' = C({nk},{rx}) be a fixed homogeneous Cantor set. Recall that n; > 2 and
nire < 1. Let ¢ be the sum of the lengths of a level k£ Cantor interval and a gap, i.e.

(1 —
ck:$k+ykzwfork2 1,
ng — 1
where sp = 1 and ¢y = 1. In the following, we will focus on a p-Cantor measure with
p = {px;}, not necessarily uniform weights, on C.

Lemma 47. The p-Cantor measure p is the weak x limit of the discrete measures

nk—l
N =411 D Pridiey:
j=0
Remark. We write )
ng—
p=21 > Db, (6.1)
=0

Proof. The measure uy can be written in the form of

N

ueW k=1

|u|=N
where x, = Z]kvzl ugcy is the left endpoint of the Cantor interval I,,. Let v be a weak * limit
of iy, which exists by Banach-Alaoglu theorem. It suffices to check that v(1,,) = Hffil Diw,
for w € W of length |w| = Ny and v is 0 on the complement of C. It then follows from
Caratheodory extension theorem that v is equal to the p-Cantor measure pu.

Let I, = [a,b]. Let ¢y > 1 be such that [a — %, b+ %] does not intersect any Cantor
interval at level Ny other than [,. For ¢ > 1, define g,(z) := 1 on [a,b], g,(x) = 0 on

(—o0,a — L+1L0] Ulb+ L+1L0 ,00) and extend it to a piecewise linear function.
If N > N,

N
/ng,uN - Z Hpkukézu(lw)

ueW k=1
|lu|=N

No N No
lu=N k=1 k=No-+1 k=1
u|ND:w
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because I, contains all those left endpoints z, with u|y, = w. Since g, is continuous, by
weak * convergence of puy,

No
/ngV = ]\}l_f}(l)o/ngﬂN = kli[lpkwk-

for all «.

On the other hand, notice that |g,| < 1 and g, — x;, pointwise as ¢ — co. By the
dominated convergence theorem,

No
v(ly,) = /X]wdl/ = liLrn/ngy = Hpkwk-
k=1

We can check that v = 0 on C° by applying a similar approximation process on the
open intervals in the complement of C. |

From here on, p will be the p-Cantor measure as in (6.1). We make the following two
assumptions:

1. r =infyr, > 0.

2. p = infkyj Pkj > 0.

The Fourier-Stieltjes transform of y is given by
ng—1 A K ne—1 A
() = lim (*kKl z; pkj5jCk> (&) = [}lglook 1 ( 0 ij%k) (&)
]: =

o) nE—1 .
()

k=1 \ j=0

For £ € R, let fi,(§) = Z?iglpkje_%isckj. Note that fi(€ + i) = fi(§). If a is the
period of fi, then

ng—1

L= fi(0) = ful@) = Y puye 7.
j=0

30



By the strict convexity of the unit ball, e 2J = 1 for 1 < j < nj — 1 and hence o = -
for some integer z. Thus fj is indeed a—penodlc. In particular, |fx(§)] = 1 if and only if
£:éforsomez€Z.

First, we want to see how the function f; stays away from 1.
Lemma 48. Let 0 < § < p?. Then there exists n = n(p,d) > 0 (independent of k) such that
if d(cxé,Z) > n, then |fr(§)] < 1—0. (Here d(x,Z) = min{|z — n| : n € Z}.) Moreover,
n—0asd—0.

Remark. The assumption inf, r;, > 0 is not required in this lemma, but it is needed in
everything afterwards.

Proof. Choose n > 0 such that if d(z,Z) > 7, then 1 — cos27mx > % Certainly, n — 0 as
0 —0.

Assume zq € Z is such that d(cx&,Z) = |c€ — 20| > 1. Put 0 = —(cx€ — z0). One can
see that

neg—1
(&) = |i( f— — ! = ZP ke
nE—1
< ki€ | + o + prae”™|
=2

2pkoPi
=1 — (pro + pr1) + (Pro +pk1)\/1 — m(l — cos 270).

As p < prospr1 <1 —p,
+pm)? 1 1— 1
(Pro + Pr1) :_(@+Zﬂ)+1< +1_
2PkoDk1 2 P11 Dro p P

Since d(0,Z) > n, it follows that
2 J J

1 — PR () cos2m) < 1—p-—= < (1— )2

(Pro + Pr1)

Therefore,

| fe(&)] <1 = (Pro + pr1) + (Pro + Prr) (1 — _p) =1— (pro +pk1)—p <1-0.
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Let [p =1 and
1 1 1
N >

Sk_l(l —-Tk) - (nk —-1)Ck - (A47—-1)Ck

lp—1
I °

Iy =

for £k > 1. We will be concerned with the ratio

Lemma 49. The ratio l’“l—;l 15 uniformly bounded away from O and 1.

Proof. If k=1, % =1 —ry is strictly between 0 and 1. If £ > 1, as sp_orp_1 = Sg_1,

lp—1 _ sg—1(1 —ry) _ rh—1(1 — 1)
i Sp—2(1 —7T-1) I —rg
SinceO<r§rk§%,
1 r lk,1
0< = < —<(1- <l-r<l
1=y S, s slor<d,
i.e. the ratio l’“l—;l is bounded away from 0 and 1. [ |

Lemma 50. There exists 6 > 0 such that for all k > 1 and for any interval I with length
|| < %lk, we can find a subinterval J C I satisfying the following:

1
< —l_
|J| =9 k—1,
1
I\ J| < §(lk — k1),
np—1
(O = | Y prye W <14
j=0

for any & € I'\ J. Moreover, each endpoint of J either coincides with an endpoint of I or
stays away from the endpoints of I at a distance greater than 6ly.

Proof. Let ey := (M — 1)nly = = where = 7(p,d) is obtained from Lemma 48. By

Lemma 49, l’“l; is uniformly bounded away from 0 and 1, thus we can choose 6 > 0 small

enough that for all &,

I
er < min{zk, % — 2611}
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and

.
Egl_%,
I

or, equivalently, dl; < %(lk — lp—1). We note that e, > 0 implies ;1 > 8l.

Fix k. Recall that |fi(&)| = 1 if only if £ = = = zly for some integer z. Suppose o is
the point closest to I such that |f(&)| = 1.

If |11 < %lk,l, simply take J = I. Then I\ J = () and the conclusion holds.

Now suppose || > %lk_l. Let [ = %lk_l.
Case 1: Suppose & is outside I, say to the left of I.

(i) Ifa+l < b < a+1+0l, take J = [a, b—6lx]. Note that b—dly—a > %lk,l—élk >0,

SO
1
|I\J|:b—(b—5lk):5lk§i(lk—lk,l).
(ii) If a4+ 1+ 60lx < b, take J = [a,a + [] and then
A = 1= Sl < 50— )
= g1 = 5k = le)-

In either of these situations, let & be the closest point to the right of b so that
| fr(€1)] = 1. Note that & — & = . Since b—a < 31, and & is closer to a than & is
to b, we have [b—&| > 1l > ej. Thusif £ € I\ J, then

€ = &i| > e

At the same time, if £ € I'\ J, then |£ — &| > |J|, so either
(i) l
1§ =&l > b — 6l — & > |[I] =61y, > %—&k > ey,
or
(i)
€ =&l > 1= %lk—l > €.

Furthermore, | — & | > [b—&| > ex. It follows that |£ — é| > e > % for all z € Z.
Hence |fr(€)] <1 —06 by Lemma 48.
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Case 2: Suppose & € I. Without loss of generality, assume a is closer to & than b.
If & # & is any other point such that |fx(&1)| = 1, then |§ — &| > I;. Since
b—a < %lk, a and b will be at least %lk(z ex) away from & . In consequence, if £ € I,
then € — & | > ex.

(i) Ifa <& — é — 0l , then b > & + % + 0l since b is further away from &,. Take
J =% — L &+ %]. Then

1
|[\J|:|]|_l§§(lkz_lk—l)~

If¢erl\J,then [ —&| > %l > e, and consequently an application of Lemma
48 shows |fr(§)] <1 -14.

(ii) Ifﬁo—%—élkgagf‘o, thenb—&):b—a—l—a—f’oZl—(%—i—dlk):é—élk.
Ifa+1l<b<a-+l+dl, take J = [a,b— dl;] and then

I\ J|=b— (b—6l) = dly < ~(lx — ls_1).

DO | —

Asb—fozé—dlkzélk, & € J. Hence, if € € I'\ J, then

|§—§0|Zb—5lk—§02a+l—5lk—§oz%—25lk26k

and therefore |f;(£)] <1 — 0 by Lemma 48.
If a4 1+ 8l <b, take J = [a,a + 1] and then

1
|[\J|:|I|_l§§(lkz_lk—l)'

One can again see that & € J, thus, if £ € T\ J, then

l
|§—50’Za+l—§oz§—5lk26k

and hence |fx(§)| <1 — ¢ by Lemma 48.
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Lemma 51. Let my, : Z — C be the multiplier given by

k np—1

mi(€) = [ 1D prje ™).

j=1 j=0

Fiz B > 1. There ezists ¢ > 2 such that for all K > 1, if I is any interval with |I| < %ZK,
then
lmrxillz2q < B-

Remark. my, is the multiplier T}, , where py is the finitely supported, discrete measure given

o>
in Lemma 47.

Proof. First, we fix a few constants which we will use later. Let D be such that

1 1 r < lk—l
D+l -21—r— 1,
for all k. The consequence %(lk — ) < %lk,l will be used.

Choose 6 > 0 as in the previous lemma. Notice that

Tk

=Tgp1 Than-1(1 — 7"k+N)ﬁ
— Tk

U _ Sken—1(1 — i)
iy sp—1(1 — 1)

S g1 Than-1(1 — 1) < SN T’
thus we can take N independent of k such that
bk < Oliyn (6.2)

for all k.

Applying Lemma 45 with the L of that lemma equal to max{D, N, 3}, we get A; =
A1(q, L). The numbers D and N are independent of k, so A; is also independent of k.

Recall that in Lemmas 45 and 46, the constants A; and Ay = As(q,2) tend to 1 as
q — 2. Choose q > 2 such that A; < B and (1 — §)AsAT < 1. Then

max{A;, (1 — §)A;A{B} < B.

We will prove our conclusion for this q.
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We proceed by induction on K. When K =1 and |I| < 3l = 2(1;41) < 1, the interval
I contains at most one integer, say ng. Then
Imaxzfllg = [lma(no) f (no)e*™ % |lg = [m(no)l| f (no)]

< [lmaflscl[fll2 < [.fll2-

Hence
HleIHZq < 1 < B.

Assume the statement is true for all K < k—1. When K = k, given an interval I with
|| < %lk, we can obtain by Lemma 50 a sequence of subintervals

JoChC---C 1 C1
such that |J;| < £1;, with the conclusion of the lemma.

Partition I\ Jx_1 into D + 2 subintervals, {I;}4, so that each I; has length at most

1 1 1
E|I\Jk—1’ < E(lk —lp1) < §lk—1-

By Lemma 45 and the induction hypothesis,

lme—1xng s ll2q < Avmax{my—ix,llzq

< AB.

On I'\ Ji—1, [mexni._,| < (1 —=0)mr_1Xxns,_,| and this implies
Imux g ll2g < (1= ) [mu—1xns ., ll2q
<(1-9)AB. (6.3)
Similarly,
[mexsnsiill2g < (1—06)AB (6.4)
for 1 <i <k —1. On the other hand,

HkaJoHZq <1

by the same proof as in the base case since |Jy| < 1. The next step is to piece them
together.

Let R and L be the right and left part of I\ Jy respectively. (See diagram for an
example of what this might look like.) Let {n;}; be the finite sequence of distinct right
endpoints of the intervals J; in ascending order. We want to pick a lacunary subsequence
as follows.
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Example

Jo

—
—
—

R -

A -

J1
J>

Consider {n; : j =0 mod N}, i.e. {ny;};. There will be distinct ¢ such that ny; —
nNG-1) < %li. By the construction of Lemma 50 and (6.2),

nNG+1) — Nj 2 O(liw, + - + lijey) = 0livn > 1.
Thus I
NN@G+1) — NNy i
paw—— v
nNj = NNG-1) gl
so {ny;}; is 2-lacunary.
On each [nyj, nng1)), since ||[MaXiny,wmnjiesilllzg = MrXss_; 2,4 for suitable 4,
(6.4) and Lemma 45 implies

||ka[”vanN(j+1)]”27q < A 0<z<N -1

max ||ka[an+z,an+z+1]||27q < (1 - 6)‘4%3
We can then apply Lemma 46 and get

I \aonrllzg < A2 8up M Xy g o0]
J

2,9

< Ay(1—9)AlB.
By (6.3) and Lemma 45 again,

[ xR

2.9 < Avmax{|[mrxr\s,_, 2.4 [MaX (0 \7)nR|l2,0}
S Al max{(l — 5)A1B, Ag(l — 6)/4%3}

< (1-0)AASB.
Similarly,

Imixcllzg < (1—0)A2ATB.
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Finally, combining the three pieces,

Imaxilleg < Avmax{[|mex g ll2.q [meXRl2.q [MRxLl20
< Aymax{l, (1 — 0)A,A3B}

<B.

We can now obtain the main theorem of this chapter.

Theorem 52. Let C = C({ni},{rr}) be a homogeneous Cantor set with infr, > 0.
Assume 1 is a p-Cantor measure on C' with p = infy ; pr; > 0. If B > 1, then there exists
q > 2 such that

HSM”ZQ < B.

Proof. Fix B > 1. Assume r = infr,. With our usual notation, the Fourier-Stieltjes

transform of the Cantor measure p = *32 Eyiglpkﬂjck is
[e.e] nkfl

(&) = [1( pre 7).
k=1 j=0

Let mg (&) = H?zl(zyialpkje*%i&kj). Obtain ¢ > 2 from Lemma 51 and let ¢’ be the

conjugate of ¢, i.e. & + % =1.

For any trigonometric polynomial f, supp f C I for some interval I, with |I| < %lk
for some k. A duality argument shows ||mgxsll2, = |muxilly 2. Thus by Lemma 51,
[muxillq2 < B for any interval I with |I] < 1l ie.,

lmuefll2 = Imexifll2 < B fllq-

Since [A(§)] < |my(§)] for all k,

[l fll2 < lmifll2 < Bl fllq-

Therefore,
[Sull2q = [1Spllg2 < B.
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If i is the uniform Cantor measure on a homogeneous Cantor set with n; < M for all

k, then each py; = L> ﬁ, so u satisfies the hypothesis of the theorem. Thus we obtain

the following corollz;?y.

Corollary 53. Let C' be a homogeneous Cantor set with infry > 0. If p is the uniform
Cantor measure on C, then p is LP-improving.

Another special case is a p-Cantor measure on a central Cantor set.

Corollary 54. Let 0 <p <1 and p = {p,1 —p}. If p is a p-Cantor measure on a central
Cantor set with ratios of dissection bounded away from 0, then p is LP-improving.
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