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Abstract

Time-frequency analysis is a powerful tool for signal analysis and processing. The
Fourier transform and wavelet transforms are used extensively as is the Short-Time Fourier
Transform (or Gabor transform). In 1996 the Stockwell transform was introduced to
maintain the phase of the Fourier transform, while also providing the progressive resolution
of the wavelet transform. The discrete orthonormal Stockwell transform is a more efficient,
less redundant transform with the same properties.

There has been little work on mathematical properties of the Stockwell transform,
particularly how it behaves under operations such as translation and modulation. Previ-
ous results do discuss a resolution of the identity, as well as some of the function spaces
that may be associated with it [2]. We extend the resolution of the identity results, and
behaviour under translation, modulation, convolution and differentiation. Boundedness
and continuity properties are also developed, but the function spaces associated with the
transform are unrelated to the focus of this thesis.

There has been some work on image processing using the Stockwell transform and
discrete orthonormal Stockwell transform. The tests were quite preliminary.

In this thesis, we explore some of the mathematics of the Stockwell transform, examin-
ing properties, and applying it to various continuous examples. The discrete orthonormal
Stockwell transform is compared directly with Newland’s harmonic wavelet transform, and
we extend the definition to include varitions, as well as develop the discrete cosine based
Stockwell transform. All of these discrete transforms are tested against current methods
for image compression.
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Chapter 1

Introduction

Time-frequency analysis is a significant tool in signal processing. Using tools like the
Fourier transform, short-time Fourier transform, and wavelets, it is possible to break a
signal into simple components for analysis. Often, a signal represents some quantity varying
in time, such as sound or mechanical vibrations, in which time and frequency are clear.
These methods have also been used much for image processing, because an image can be
represented as a two-dimensional signal.

The Fourier transform (FT) is the most established of these transforms. Its compo-
nents are well understood as vibrations, and have a clear physical meaning. However, the
vibrations are throughout all time, so transient behaviour such as a sequence of musical
notes or edges in a picture are not well represented under this transform.

In order to capture transient behaviour, often the short-time Fourier transform (STFT)
or a wavelet transform is used. The STFT involves performing the FT on smaller sections
of a signal to get the spectrum locally. This has a clear relation to the concepts from
the FT, but the range of frequencies that can be resolved this way is limited. Wavelet
transforms measure local details in a signal at a wide range of scales. This progressive
resolution catches more behaviour than the STFT, but the detail that is measured is not
directly analogous to the frequency and phase of the FT.

The Stockwell transform (ST) was first introduced in 1996 as a bridge between STFT
and continuous wavelet transform [24]. By adopting the progressive resolution of wavelets
(using larger windows for lower frequencies), it is able to resolve a wider range of frequencies
and changes in frequencies than the STFT. By using a Fourier-like basis and maintaining
a phase of zero at t = 0 as in the STFT, Fourier based analysis could be performed locally.
Since that time, the ST has been used in many applications in signal analysis [9].
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A drawback of the ST is that it is highly redundant. For the discrete Stockwell trans-
form (DST), an input of length N will return an output of size N2. This quadratic growth
in size is very restrictive, and prevents use of the DST on large signals.

Stockwell later introduced, in 2006, an orthogonal transform with the same character-
istic progressive resolution and absolutely referenced phase as the ST [23]. This transform
is referred to as the discrete orthonormal Stockwell transform (DOST). Because the DOST
is an orthogonal transform, its output is the same size as the input, permitting it to be
used on larger signals.

The DOST has been applied to texture analysis [7], medical imaging [3], and many of
the same fields as the ST. More recently, Y. Wang worked with Prof. J. Orchard to apply
the DOST to image processing applications [25]. The fast version of the transform they
developed [28] improves computation time (the same algorithm was used elsewhere [7], but
was not explicitly written). They also developed a conjugate-symmetric version [26] and
tested the DOST for image compression [29] and restoration [27].

The preliminary results of Y. Wang were quite favourable, showing that the DOST
might perform well compared to wavelet transforms and FT. With my supervisor, E.R.
Vrscay, I performed more extensive tests for image compression. These tests are summa-
rized in Chapter 7

Chapter 2 covers the Stockwell transform. A more general version of the ST along with
inversion formulas are presented. We test the ST on some functions and invert them to
test it. Properties of the ST are summarized and proven in Section 2.3. The proofs are
mostly simple calculations and provided for details, but may be skipped on first reading.

The DST is defined in Chapter 3. My work has focused on ensuring higher-dimensional
implementations are well-defined and invertible. Some frame properties are discussed, and
a fast-synthesis operator, which I developed, is defined.

The bulk of my work was with the DOST. Chapter 4 introduces the DOST, and covers
previous work, including variations of the transform. I offer a new interpretation of the
DOST, which allows easy modification to obtain fast transforms for all of its variations.
This interpretation is used to develop the discrete cosine Stockwell transform (DCST) in
Chapter 5, which is my own work.

The DOST is quite similar to Shannon wavelets, and nearly identical to the harmonic
wavelet transform (HWT) introduced by Newland [16] in the early 1990’s. The primary
application was ridge and phase identification [18] in transient signals, like in beam vibra-
tion and acoustic duct measurements. In Chapter 6, I compare the DOST to HWT, and
show that they are identical up to a phase correction. There are more differences in the
2D versions, particularly in the DCT-based adaptations of the DOST and HWT.
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The primary application I investigated was image compression. This is covered in
Chapter 7, which includes my results from [13], but goes into more detail. Compression
artifacts, and additional results with the HWT are also examined in that chapter.

1.1 Signals and Images

A signal is represented as a function from Rd to C (usually the signal is real-valued, but the
theory works for general complex signals), where d is the dimension of the signal. An audio
signal is an example of a one-dimensional signal, where the function value is the amplitude
at that point in time. A greyscale image can be represented as a two-dimensional signal
where the value of the function represents the greyscale level at a point.

To make calculations with multi-dimensional signals easier, we will adopt some specific
notation. Given two vectors x, y ∈ Rd with components xi, yi for i = 1, . . . , d, define the
following operations:

x · y =
d∑
i=1

xiyi , x2 = x · x

(x ◦ y)i = xiyi , and |x| =
d∏
i=1

|xi| .

In analysis of signals, it is often assumed that the signal is over a continuous variable
(t ∈ Rd), however in practice a signal is sampled at discrete points. This sampling typically
has a constant sample-rate T . For a continuous signal, we will use round brackets for
evaluation (i.e. f(t)), and for discrete signals, we use square brackets, f [n]. As an example,
if the continuous signal f(t) is sampled with a sampling period T , then the discrete signal
is

f [n] = f(Tn), t ∈ Z.

The sampled signals discussed in this thesis are also sampled on a finite number of points,
so f [·] behaves as an N -dimensional vector over C. Furthermore, it is typically assumed
that signals are elements of an inner product space, with inner products,
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〈h, g〉 =

∫
Rd
h(x)g(x) dx (continuous)

〈x, y〉 =
N∑
k=1

x[k]y[k] (discrete).

1.2 Fourier Transform

The Fourier transform (FT) is a transform that decomposes a function into frequencies.
We will use the following definition of the FT,

ĥ(ω) = Fh(ω) =

∫
Rd
h(t)e−i2πω·t dt. (1.1)

This definition is convenient because the inverse transform has the same form, but with a
positive exponent instead of a negative. It is also normalized, so there are fewer factors in
the calculations. Furthermore, there is the benefit that this definition is used by Stockwell
in his papers [24], and used by Gröchenig [12].

As in (1.1), we will denote the FT of a function with a hat. When it is convenient to
treat the transform as an operator, F is used. Often the FT will only be applied to one
variable. This partial FT will be subscripted with the index of the variable it transforms.
For example,

F2h(x, ω) =

∫
Rd
h(x, t)e−i2πωt dt.

Parseval’s identity will be important in the following material. It states that the FT is
a unitary form, so the inner product is preserved 〈h, g〉 = 〈Fh,Fg〉. The shift, modulation
and convolution theorems will also be used. These can be found in the introductory
material in [12] or any other introductory material to the FT.

A weakness (for analysis of transient signals) of the FT is that it is a global transform,
and measures the frequency response over the entire domain, i.e. Rd. For functions with
time-varying frequencies, time-frequency transforms are needed.
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1.3 Time-Frequency Transforms

Time-frequency analysis is concerned with how the frequency of a function (or signal)
behaves in time. Whereas the FT only provides global information, a time-frequency
representation provides local frequency information, so that transient behaviour can be
examined.

The most notable example of a time-frequency transform is the short-time Fourier
transform (STFT), also known as the windowed Fourier transform or Gabor transform.
The STFT is calculated by applying a window to the function at various times, before
performing the FT [12],

Vgh(x, ω) =

∫
Rd
h(t)g(t− x)e−i2πω·t dt. (1.2)

where g(t) is the window function. Any window g 6= 0 can be used, but it is usually real-
valued, positive and even-symmetric. Because the window has a fixed width, the STFT
can only resolve a small range of times frequencies. Wider windows can identify lower
frequencies, but narrower windows provide better time resolution.

Another transform that examines local behaviour of a function is the continuous wavelet
transform. Wavelet transforms start with a mother wavelet which is scaled and translated
before comparing it to the signal. Mathematically, this is

Wgh(x, s) =

∫
Rd
h(t)s−d/2g(s−1(t− x)) dt, (1.3)

where g is the mother wavelet, and s represents the scale or level of detail. The changing
width of the wavelet improves resolution over a wide range of scales.

Technically, the continuous wavelet transform is a time-scale transform. If the mother
wavelet has a modulation (e−i2πω0t), then the scale is directly related to frequency by
ω = ω0

s
. For example in Morlet wavelets, the mother wavelet is a modulated Gaussian,

g(x) = π−1/4e−
x2

2 (e−iω0x−e−
ω20
2 ). As the wavelet is shifted, the phase of the wavelet changes

with respect to the origin.

1.3.1 Common Operations

In time-frequency analysis there are some common operations of interest:
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• Translation: Tx : h(t) 7→ h(t− x)

• Modulation: Mω : h(t) 7→ ei2πω·th(t)

• Dilation: Da : h(t) 7→ h(at)

These operations can be composed to define the continuous transforms above. Each
transform can be understood as a correlation to a set of functions, {φx,ωg : x, ω ∈ Rd}
using an inner product. As an example, the STFT can be defined as,

Vgh(x, ω) = 〈h,MωTxg〉 . (1.4)

Each function that is correlated with the signal is often called an atom, though some
will restrict that name to elements of a countable set of functions. The continuous wavelet
transform atom is s−1/2TxD1/sg, the FT simply uses a modulation ei2πω·t, and the STFT
is uses the atom in 1.4.

1.4 Discrete Transforms

The derivation of discrete analogues to these transforms can be rather complicated. For the
purposes of this thesis, we can “cheat” by simply replacing integration over a continuous
domain with summation over the discrete sampling. The discrete Fourier transform (DFT)
is then

f̂ [k] =
N∑
n=0

f [n]e−i
2π
N
kn, (1.5)

with inverse

f [n] =
1

N

N∑
k=0

f̂ [k]ei
2π
N
kn.

All of the discrete transforms can also be understood as correlating the signal with
atoms from a dictionary. In this case, the set of atoms is finite.

It is preferable if a dictionary can perfectly reconstruct a signal, much like a basis for
a vector space. However, in order to adequately discuss redundant transforms like the ST
and STFT, the linear independence condition must be abandoned. Instead, the concept
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of a frame is used. A dictionary {ej : j ∈ J} is called a frame if the following condition is
satisfied:

A‖f‖22 ≤
∑
j∈J

| 〈f, ej〉 |2 ≤ B‖f‖22,

for some constants A and B [12].

Frames are a way of generalizing the concept of a basis. A special case of a frame is
an orthonormal basis, in which A = B = 1. The DFT has the basis {ek[n] = exp(i2π

N
kn)},

and the discrete cosine transform (DCT) has a similar basis of cosines. There are special
cases of the wavelet transform which have an orthonormal basis [5].

Every frame has a dual frame, which provides an inverse. Given a frame {φj} and its
dual frame {φ̃j}, then

∑
j∈J

〈f, φj〉 φ̃j = f =
∑
j∈J

〈
f, φ̃j

〉
φj.

The dual frame gives rise to a class of wavelets called biorthogonal wavelets. For details,
see [5]. Biorthogonal wavelets are the family of wavelets used in the JPEG2000 standard.
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Chapter 2

Stockwell Transform

The original definition of the ST comes from Stockwell’s paper [24]. It is based on the
continuous wavelet transform, and the STFT. Combining these two transforms, the ST
was first defined for one-dimensional signals as

Sh(τ, ω) =

∫
R
h(t)

|ω|√
2π
e

(t−τ)2ω2
2 e−i2πωt dt, (2.1)

with t, τ, ω ∈ R.

This ST is very similar to Morlet wavelets [10], which are shifted and modulated Gaus-
sians [5]. However, because the modulation is not shifted in time, the phase of the atom
does not change with respect to the origin as it does for the wavelet transform. Stockwell
calls this phase “absolutely referenced”, because at t = 0, the phase of the time-frequency
atom is zero.

There have been several generalizations of the ST, extending to multiple dimensions,
and using different window functions, g. The generalized definition of the ST we will use
is,

Sgh(x, ω) =

∫
Rd
h(t)|ω|g(ω ◦ (t− x))e−i2πω·t dt. (2.2)

The changing window width is achieved with coordinate-wise multiplication. That is,
(ω ◦x)k = ωkxk. The original ST can be obtained from (2.2) by using g(x) = 1√

2π
exp(−x·x

2
)

as the window. This works in the one-dimensional case, as well as the multi-dimensional
case.

8



2.1 Alternative Definitions

Some alternative definitions of the ST are useful for calculations, and examining the prop-
erties of the ST. The ST can also be described as an inner product with an atom [8], where
the Stockwell atom is defined as

|ω|MωTxDωg,

using the operators as defined in Section 1.3.1. This is different from the wavelet transform,
because modulation is not translated (see Section 1.3.1). It is also different from the STFT
atom, because there is a dilation of the window.

The inner product definition of the ST is

Sgh(x, ω) = 〈h, |ω|MωTxDωg〉 .

The shift by x is reminiscent of a convolution. This may be more apparent by looking
at the integral definition (2.2). The convolution form of the ST is

Sgh(·, ω) = |ω|M−ωh ∗Dωg. (2.3)

By the convolution theorem for the FT, this is equivalent to

(F1Sgh)(α, ω) = ĥ(α− ω)ĝ
(α
ω

)
. (2.4)

This last definition for the ST is particularly useful for defining an efficient DST (O(N2 logN)),
but can also been used to examine various mathematical properties of the ST [2], compare
it to wavelet transforms, and to calculate the ST of some functions as in Section 2.4.4.

The ST can also be related to the continuous wavelet transform through this definition.
Recall from Section 1.3 that some wavelets are essentially a modulated window, Mω0g. In
this case, the modulation is on the right side of the convolution, so it is ĝ that is shifted
in (2.4) instead. This means that the two transforms are related by a factor of ei2πωx,
provided the wavelet is of that form.
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2.2 Inverses of the Stockwell Transform

There have been multiple inversion formulas proposed for the ST. Stockwell originally
introduced a rather simple one, which translates well to a fast discrete inverse [24]. Later,
Shimmel and Gallart defined an inverse which should have better time locality for filtering
applications [21]. There were also various forms based on the resolution of the identity [8,
4, 2].

For completeness, they are all presented here. In Section 2.2.3, I develop the resolution
of the identity for the ST with more generality by considering a second window for the
inverse, as is done for STFT and wavelets in [12]. By allowing a second window in the
resolution of the identity, Stockwell’s inverse can be seen as a special case.

2.2.1 Original Inverse

The first inversion formula was proposed by Stockwell when he introduced the ST [24].
Using the integral definition (2.2), integrating in x, and applying Fubini’s theorem, the FT
of the original signal is retrieved.

Sgh(x, ω) =

∫
Rd
h(t)|ω|g(ω ◦ (t− x))e−i2πω·t dt∫

Rd
Sgh(x, ω) dx =

∫
Rd

∫
Rd
h(t)|ω|g(ω ◦ (t− x))e−i2πω·t dt dx

=

∫
Rd
h(t)e−i2πω·t

∫
Rd
|ω|g(ω ◦ (t− x)) dx dt

= ‖g‖1ĥ(ω).

The inversion formula is then

h(t) =
1

‖g‖1
F−1

(∫
R
Sgh(x, ω) dx

)
. (2.5)

2.2.2 Alternate Inversion Formula

Another method is proposed by Schimmel et al. [21]. They consider a “time-time” repre-
sentation of the time-series multiplied by the window,
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H(τ, t) = h(t)
g(ω(t− τ))

g(0)
.

Note that the original signal is the slice along t = τ , h(t) = H(t, t). The ST is equal to the
FT of H on the second variable, with appropriate scaling of the window. Thus,

F2H(τ, ω) =
1

|ω|g(0)
Sgh(τ, ω),

and

h(t) =
1

g(0)
F−12

(
Sgh(t, ω)

|ω|

)
(t, t). (2.6)

That gives another inversion formula. The authors argue that this inversion formula
has better time-locality of filters, however the demonstration they give fails for continuous
variables. For Stockwell’s inversion formula, they used a Dirac-delta filter, and for this
formula, they used F (0, ω) = 1, F (τ, ω) = 0 otherwise. However, the discrete version of
this transform, as tested by the authors, did have time-locality under filtering.

2.2.3 Resolution of Identity

A common formulation for inverses of the STFT and continuous wavelet transform is the
resolution of the identity. The resolution of the identity is similar to Parseval’s theorem [12],
in that it relates the inner products of the functions and windows/wavelets to the inner
product of the transforms. In this section, the theory is developed in 1D for consistency
with the sources, but it can be extended into Rd. For the STFT, the relation is [12],

〈Vg1f1, Vg2f2〉L2(R2d) = 〈f1, f2〉 〈g1, g2〉. (2.7)

For the continuous wavelet transform (1.3), the relation is quite similar, but with different
inner products [5, 12],

〈Wg1f1,Wg2f2〉X2
= 〈g1, g2〉H−1,0

〈f1, f2〉 , (2.8)

where the inner products are defined (using parameters a and b) as
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〈F,G〉Xa =

∫
R

∫
R
F (x, s)G(x, s)

dx ds

sa
, and

〈f, g〉Ha,b =

∫
R
f̂(ω)ĝ(ω)|ω + b|a dω.

The orthogonality relation for the ST (2.9) uses the same inner products, but with different
parameters. It is worth noting that if a = 0, the inner product for H0,b is equivalent to
that of L2.

For the resolution of identity formulas to hold, it is necessary that all the functions are
in the correct spaces. In (2.7), it is sufficient that the functions are all in L2, but for (2.8) it
is also necessary that 〈g1, g2〉 <∞. For wavelets, the orthogonality relation and inversion
formula are often presented with g1 = g2 = ψ, forcing the condition ψ̂(0) =

∫
R ψ(t) dt = 0.

These inner product relations lead to inversion formulas (in the weak sense). For
example, the continuous wavelet transform inversion is,

h(t) =
1

〈g, γ〉Y

∫
R

∫
R
Wgh(x, s)s1/2TxD 1

s
γ(t)

dx ds

s2

There have been several definitions for the resolution of the identity for the ST, in one
dimension [8], multiple dimensions [4], and using more generalized function spaces [2]. The
more general treatment using different function spaces overcomes some problems associated
with permissible windows. We use the same inner product definitions, but do not worry
about the associated function spaces for now. In one dimension, the resolution of the
identity of the ST is [2]

〈Sg1f1, Sg2f2〉Xa = 〈g1, g2〉Ha−2,1
〈f1, f2〉Ha−1,0

, (2.9)

using the same inner product definitions as before. The results in [8] correspond to a = 1.
For the remainder of this thesis, we will restrict ourselves to this case, and define X = X1

and H = H−1,1.

The corresponding inversion formula to (2.9) is

h(t) =
1

〈g, γ〉H

∫
R

∫
R
Sgh(x, ω)MωTxDωγ(t) dx dω, (2.10)
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with the condition that 〈g, γ〉H = K for a finite K 6= 0. The division by |ω| is cancelled
out by the normalization factor of the Stockwell atom.

In all sources, the inversion formula (2.10) was presented using the same window/wavelet
(g = γ) [8, 4, 2]. With one window, the standard Gaussian window is inadmissible, be-
cause ĝ(−1) 6= 0. If the parameter a = 2 is used, then any g ∈ L2 can be used [2], but
weak-equality of the inverse is with respect to 〈·, ·〉H−1,0

instead of L2.

Defining the inversion formula using two windows is more consistent with the definitions
in [12], and makes the transform more flexible. The weaker condition on g and γ is that
either ĝ(−1) = 0 or γ̂(−1) = 0.

With two windows, it can be observed that the original inversion formula (2.5) is
actually (2.10) with γ(t) = 1. In that case, the FT of γ is γ̂(ω) = δ(ω), so

h(t) =
1

〈g, γ〉H

∫
R

∫
R
Sgh(x, ω)M−ωT−xDωγ(t) dx dω

=
1∫

R ĝ(ω)δ(ω) dω
|ω+1|

∫
R

∫
R
Sgh(x, ω)ei2πωt dx dω

=
1

ĝ(0)
F−1

∫
R

Sgh(x, ω) dx,

which is identical to (2.5).

2.3 Properties of the Stockwell Transform

There are many mathematical properties that may be of interest. We begin with the
behaviour of the ST under the various operators introduced in Section 1.3.1. The results
are summarized in Table 2.1.

The reflection property means the ST preserves odd/even symmetries of a function. If
h is even (odd), then Sgh is even (odd) about τ = 0 and ω = 0.

The complex conjugate and reflection properties can be combined, so that if h is real-
valued, then Sg(h) is conjugate symmetric in ω about ω = 0. That is, Sgh(ξ, ω) =

Sgh(ξ,−ω).

If h is real and even, then Sgh is conjugate symmetric about ω = 0 and τ = 0. This is
different from the FT, for which it would be real-valued and symmetric.
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Name Form Relation

Shift Sg(Tt0h)(x, ω) e−i2πω·t0Sg(h)(x− x0, ω)

Dilation Sg(Dah)(x, ω) Sg(h)
(
ax, ω

a

)
Reflection Sg(h(−t))(x, ω) Sg(h)(−x,−ω)

Complex Conjugate Sg(h̄)(x, ω) Sg(h)(x,−ω)

Derivative Sg(∂th)(x, ω)
[
i2πωSg(h) + ∂xSg(h)

]
(x, ω)

Table 2.1: Summary of ST properties

A significant theorem for the FT is the modulation theorem. For the ST, the modulating
the function would shift the signal in frequency without re-scaling the window. This results
in quite complicated behaviour, preventing a simple modulation theorem.

The convolution theorem is also lacking, because the time shift interferes with the
window. The effect of convolution is complicated, and presented in Section 2.3.2.

2.3.1 Proofs

This section is dense with calculations, and can be skipped if the reader is not interested
in the details. Each property can be proven with the integral definition, and the inner
product definition. Only the integral derivation is shown, because using inner products
would require deriving the adjoints and commutation of all of the operators as well.

Shift

Sg
(
h(t− t0)

)
(x, ω) = |ω|

∫
Rd
h(t− t0)g(ω ◦ (t− x))e−i2πωt dt

=

∫
Rd
h(s)g(ω(s− x+ t0))e

−i2πω(s+t0) dt

= ei2πωt0Sg(h)(x− t0, ω)
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Dilation

Sg
(
h(at)

)
(x, ω) = |ω|

∫
Rd
h(at)g(ω ◦ (t− x))e−i2πωt dt

=

∫
Rd
h(s)

∣∣∣ω
a

∣∣∣ g (ω (s
a
− x
))

e−i2πω
s
a ds

=

∫
Rd
h(s)

∣∣∣ω
a

∣∣∣ g (ω
a

(s− ax)
)
e−i2π

ω
a
s ds

= Sg(h)
(
ax,

ω

a

)
Evenness and Oddness Properties

The proof of preservation of the even/odd is dependent on the window being an even
function. We present the proof of an even function here,

Sg
(
h(t)

)
(x, ω) =

∫
Rd
h(−t)|ω|g(ω(t− x))e−i2πωt dt

=

∫
Rd
h(s)|ω|g(−ω(s+ x))e−i2π(−ω)s dt

= Sg(h)(−x,−ω).

For odd functions h, the proof is the same except that h(t) = −h(−t) in the first step.

Complex Conjugate

Complex conjugacy requires the window function to be both real-valued and even.
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Sg(h)(x, ω) = |ω|
∫
Rd
h(t)g(ω ◦ (t− x))e−i2πωt dt

= |ω|
∫
Rd
h(t)g(ω ◦ (t− x))e−i2πωt dt

= |ω|
∫
Rd
h(t)g(−ω ◦ (t− x))ei2πωt dt

= Sg(h̄)(x,−ω)

Conjugate symmetry follows from this property as a corollary: if h is a real-valued
function, then

Sg(h)(x, ω) = Sg(h)(x,−ω).

Because the conjugate symmetry is only in the ω direction, it does not combine with the
reflection property to make the transform of a real-valued even function real.

Differentiation

The differentiation property can be shown most easily using an integration by parts,

∂

∂x

[
Sg(h)

]
=

∂

∂x

∫
Rd
h(t)|ω|g(ω(t− x))e−i2πωt dt

= −
∫
Rd
h(t)|ω|ωg′(ω(t− x))e−i2πωt dt

=

∫
Rd

[
h′(t)− i2πωh(t)

]
|ω|g(ω(t− x))e−i2πωt dt

= Sg(h
′)− i2πωSg(h)

Moving the last term to the other side provides the derivative property as stated.

Rotation

It has been claimed that the ST is rotationally invariant [25], but the proof was not shown.
In general, the ST is not rotationally invariant, because of the dilation of the window with
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respect to frequency.

Consider a multi-variable function h : Rn → C. We examine its behaviour under a
rotation R : Rn → Rn of its argument. Because R is a rotation, R−1 = RT and it is
unitary, so 〈Rx,Ry〉 = 〈x, y〉 and det(R) = 1.

Sg(h(Rt))(x, ω) =

∫
Rd
h(Rt)|ω|g

(
ω ◦ (t− x)

)
ei2πω·t dt

=

∫
Rd
h(s)|ω|g

(
ω ◦ (RT s− x)

)
ei2πω·R

T s ds

=

∫
Rd
h(s)|ω|g

(
ω ◦ (RT s− x)

)
ei2πRω·s ds

Some rotation property might exist if the window’s argument is equivalent to (Rω ◦
(s − x) or Rω ◦ (s − Rx), but this is not the case, even when the window is a Gaussian.
The Hadamard product is not rotationally invariant, nor is it associative or distributive
with matrix-vector multiplication, so

‖ω ◦ (RT s− x)‖22 = ‖R
(
ω ◦ (RT s− x)

)
‖22 6= ‖(Rω) ◦ (s−Rx)‖22,

in general. An issue also arises in the scaling factor |ω| = |ω1ω2 · · ·ωd|, because |Rω| 6= |ω|
in general.

2.3.2 Convolution

The convolution property is developed in [20]. It is not as immediately useful as convo-
lution theorems for the Fourier transform or short time Fourier transform. The ST of a
convolution behaves as,

Sg(u ∗ v) = (Sgu) ~ v, (2.11)

where ~ is defined as:
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~ : L2(R2)× L2(R)→ L2(R2)(u~ v)(x, k) 7→
∫
u(x− s, k)v(s)e−iks ds ,

which is quite similar to a twisted convolution [12]. The proof follows:

Sg(u ∗ v) = |ω|
∫ ∫

u(t− s)v(s) ds g(ω(t− x))e−iωt dt

= |ω|
∫
v(s)

∫
u(t− s)g(ω(t− x))e−i2πωt dt ds

= |ω|
∫
v(s)

∫
u(z)g(ω(z − (x− s)))e−i2πω(z+s) dz ds

=

∫
v(s)Sgu(x− s, ω)e−i2πωs ds

= (Sgu) ~ v

2.3.3 Continuity at ω = 0

From the definition of the ST (2.2), it is clear that

Sgh(x, 0) =

∫
h(t)|0|g(0)e0 dt = 0,

for any function h. However, the continuity of the ST at ω = 0 is dependent on the function
it is applied to. For example if h(x) = 1, then its transform is ĝ(1)ei2πωξ for any ω 6= 0.

For a large class of functions, the ST is guaranteed to be continuous as ω = 0. This is
shown in the following theorem.

Theorem. If f ∈ Lp and g ∈ Lq with 1
p

+ 1
q

= 1, and 1 < p, q <∞, then the ST Sgf(τ, ω)
is continuous as ω → 0.

Proof. First, consider
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‖|ω|g(ω(t− x))‖q =

[∫
|ω|g(ω(t− x)|q dt

] 1
q

=

[∫
|ω|q−1|g(u)|q du

] 1
q

= |ω|
q−1
q ‖g‖q .

Now using Hölder’s inequality,

|Sgh(x, ω)| ≤ ‖h‖p‖ωg(ω(t− x))‖q
= |ω|

q−1
q ‖h‖p‖g‖q .

This approaches 0 as ω → 0, because q−1
q
> 0.

The above theorem also applies for the case p = 1 and q = ∞, that is h ∈ L1 and
g ∈ L∞, but not when h ∈ L∞ and g ∈ L1.

In practice, a Gaussian function is used for the window. The Gaussian is in all Lp

spaces, so as long as the signal h is also in an Lp space, it will be continuous at ω = 0.

2.3.4 Limit as ω →∞

Consider the ST as defined in (2.2). As ω → ∞, the window becomes arbitrarily narrow,
while maintaining the same area. This should be familiar as one definition of the Dirac
delta distribution. Thus

lim
ω→∞

Sgh(x, ω) = lim
ω→∞

h(x)ei2πωx.

While this limit does not converge, it is bounded, thus

lim sup
ω→∞

|Sgh(x, ω)| = h(x).
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2.4 The ST of Certain Functions

We were unable to find examples of the ST applied to functions in any papers. In this
section, we apply the ST to a few simple functions, then apply the inverse formula. Apart
from the Gaussian, none of these functions are in the spaces shown to work for the ST, but
they are easy to work with. In the case of the constant function, when the ST is applied
and inverted, there is a problematic factor of ĝ(−1) . This factor is not present for any of
the other functions.

For full generality, the following transforms use a window normalized so ‖g‖1 = 1. To
be safe, the window is scaled by ω̄ to separate it from the Fourier frequency.

2.4.1 Constant Function

First, consider the constant function h(t) = 1. Then for ω 6= 0,

Sgh(x, ω) =

∫
R
|ω̄|g

(
ω̄(t− x)

)
e−i2πωt dt

=
|ω̄|
|ω̄|

e−i2πωxĝ
(ω
ω̄

)
= e−i2πωxĝ

(ω
ω̄

)
.

Now, substitute ω̄ = ω. When using a Gaussian window, g(t) = exp(−πt2), there is
a factor of e−π

2
. If the condition on g due to the resolution of the identity from [8] is

considered, ĝ(1) = 0, so the ST is identically zero!

Now, applying the inverse transform as defined in (2.5),

F−1
∫
R
ĝ(1)e−i2πωx dx

=ĝ(1)F−1
(
δ(ω)

)
=ĝ(1).

The factor of ĝ(1) is a problem which we have not been able to solve. It is unclear why
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it appears here, and not elsewhere. It may be due to the fact that h is not in Lp, or that
its FT is a distribution.

2.4.2 Modulation Function

The problematic factor does not appear for h(t) = ei2πω0t. The extra care of separating
the scaling factor of ω̄ from the Fourier frequency ω is repeated,

Sgh(x, ω) =

∫
R
ei2πω0t|ω̄|g

(
ω̄(t− x)

)
e−i2πωt dt

= ĝ

(
ω − ω0

ω̄

)
e−i2π(ω−ω0)x (by Fourier scaling and shift theorems)

= ĝ
(

1− ω0

ω

)
e−i2π(ω−ω0)x.

When compared against the ST of the constant function, the shift in the argument of ĝ
demonstrates the trouble in finding a modulation theorem for the ST. The behaviour of
the window itself is affected by modulation. Applying the inverse,

F−1
∫
R

ĝ

(
ω − ω0

ω̄

)
e−i2π(ω−ω0)x dx

=F−1ĝ
(
ω − ω0

ω̄

)
δ(ω − ω0)

=ĝ(0)ei2πω0t.

This result is consistent with our inversion formulas.

2.4.3 Dirac Delta

The factor of ĝ(1) also does not appear in the case of δ(t). Applying the ST,
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Sgδ(x, ω) =

∫
R
δ(t)|ω|g(ω(t− x))e−i2πωt dt

= |ω|g(−ωx).

The inverse, using (2.5) is,

F−1
∫
R
|ω|g(−ωx) dx

=F−1‖g‖1
=‖g‖1δ(t)

This is again consistent with the theory.

2.4.4 Gaussian

For the Gaussian function, a Gaussian window makes the calculation possible. Specifically,
h(t) = g(t) = e−πt

2
is used, because Fg = g. This time, an alternate formulation of the

ST is used,

F1

(
Sh
)
(α, ω) =

(
FM−ωh(α)

)(
|ω|FDωg(α)

)
= e−π(α+ω)

2

e−π(
α
ω )

2

Sh(x, ω) =

∫
R
e−π(α+ω)

2

e−π(
α
ω )

2

ei2παt.

Integrals involving quadratics in exponents can be performed with (3.323.2) in [11]. The
result, after further simplification is,

Sh(x, ω) =
|ω|√

1 + ω2
exp

(
−π ω2

1 + ω2
(1− x2 − i2πωx)

)
.

The modulus of this function is plotted in Figure 2.1. The function can be compared
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Figure 2.1: The modulus of the ST of the Gaussian e−πt
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against some of the ST properties from Section 2.3. Note that it is indeed continuous as
ω → 0, and bounded by eπh(t) as ω → 0.

Applying the inverse (2.5), let s = ω2

1+ω2 and substitute τ = sx in the integral,

F−1
[√

se−πs
∫
R
e−

π
s
τ2e−i2πωτ

dτ

s

]
=F−1

[
1√
s
e−

π
s
τ2
√
se−πsω

2

]
=F−1

[
e
−π ω2

1+ω2
(1+ω2)

]
=e−πt

2

.
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Chapter 3

Discrete Stockwell Transform

To actually compute transforms and analyze data, we need a discrete version of the Stock-
well transform (ST). The discrete Stockwell transform (DST) is formulated the same way
as the ST, but on a finite-dimensional vector space, with a finite number of atoms. If it
is calculated as a matrix-vector product, the DST takes on the order of N3 operations.
However, the ST can also be defined using the FT (2.4). This form suggests a ‘fast’ DST

DST (h)[n, k] =
N−1∑
t=0

ĝk[t]ĥ[t+ k]ei
2π
N
nt

DST (h)[n, 0] =
1

N

N−1∑
t=0

h[t]

(3.1)

where ĝk is the DFT of the window, scaled in width according to frequency k, and ĥ is the
DFT of the signal. By refactoring the transform using the DFT, the fast Fourier transform
can be used. With the FFT, this calculation is O(N2 log n).

Defining the k = 0 components as the mean of the signal can be justified by considering
the limit k → 0. For k = 0, the window becomes infinitely wide, so it can be treated as a
constant and the DST becomes a mean. For filtering purposes, this choice works best with
the inverse seen in Section 3.3.
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3.1 Two-Dimensional DST

The two-dimensional DST is defined from the continuous ST in much the same way as the
DST. For the most part, it is as simple as increasing the dimension of the window and
DFT. However, the zero-frequency components must be defined separately in order to get
an accurate inverse. This was not specified in existing work.

Starting with the Gaussian definition of the window,

gp,k[n] =
|n|√
2πN

exp

(
(p− n)2k2

2N2

)
gp,0[n] =

1

N
,

the two-dimensional window is a product of two windows, gp,q,k1,k2 [n,m] = gp,k1 [n]◦gq,k2 [m].
The DST on an N ×M signal is defined as,

H[p, q, k1, k2] =

N
2
−1∑

n=−N
2

M
2
−1∑

m=−M
2

h[n,m]gp,q,k1,k2 [n,m]e−i2π(
nk1
N

+
mk2
M ). (3.2)

Now, substituting k2 = 0,

H[p, q, k1, 0] =

N
2
−1∑

n=−N
2

 1

M

M
2
−1∑

m=−M
2

h[n,m]

 gp,k1 [n]e−i
2π
N
nk1

H[p, q, k1, 0] = DST

 1

M

M
2
−1∑

m=−M
2

h[n,m]

 [p, k1].

The same steps can be performed with k2 = 0, to complete the 2D-DST.

3.2 Implementation Details

When using this inverse and the DST for analysis and filtering applications, there are some
important aspects to keep in mind.
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First, the frequencies follow the same rules as for the DFT. They actually run from
−N/2 to N/2− 1, and H(n, k) = H(n,N − k). This implies that the window function gk
in (3.1) is actually gN−k for values of k above N/2.

The window function ĝk is traditionally a Gaussian in shape. For the DST to be
invertible, it is necessary that

∑
t gk[t] = N , but a Gaussian extends past the interval, so

it’s sum is too low when truncated.

The solution is to perform an N -periodic sampling of a Gaussian [1],

gp,k[n] =
|n|√
2πN

∞∑
r=−∞

e−
(p−k+rN)2k2

2N2 .

This Poisson summation form of the window can be approximated through a “folded win-
dow” [19]. The window is typically folded over once, which does grant good accuracy for
the inverse (3.3). My tests found a root mean square error of about 10−15 when the DST
was applied to a signal followed by this inverse. The signals tested were a variety of linear
and hyperbolic chirps with a maximum amplitude of 1, and Gaussian white noise.

3.3 Inverse DST

The inverse DST can be determined using the same formula as for the continuous case (2.5).
Integration is replaced with summation, and the FT becomes the DFT.

IDST (H) = IFT (
N−1∑
n=0

H(n, k)) (3.3)

Other inverses can be implemented which correspond to the continuous inverse formulas
in Section 2.2. The discrete analogue of (2.6) did not work well in my own tests. While (3.3)
had a root mean square error on the order of 10−15, the time-time based inverse had an
error on the order of 10−2.

The resolution of the identity form (2.10) is quite flexible and corresponds to the frame
interpretation of the DST. Given a window, g, and a dual window γ,

h =
∑
n,k

〈h, gn,k〉
γn,k
|k|

=
∑
n,k

S[n, k]
γn,k
k
, (3.4)
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where gn,k[t] = |k|g[k(t− n)]ei
2π
N
kt, and likewise for γ.

3.4 Example: DST of a signal

To show how the DST analyzes the time-frequency plane, it was applied to the signal with
length N = 512,

h[t] =


sin
[π

8
t
]

0 ≤ t < 256

sin
[π

2
t
]

256 ≤ t < 512 .
(3.5)

The DST of the signal is shown in Figure 3.1. Time is in the horizontal direction, and
frequency is in the vertical with the zero-frequency in the centre. The two frequencies are
identified at the ridges of the transform. Notice that the frequency resolution is better
for lower frequencies, but the time resolution is better for high frequencies. There is also
a significant spike across all frequencies when the frequency of the signal changes, even
though the signal is continuous.

3.5 DST Frame

The DST was analyzed as a frame in [1]. The authors proved that it is indeed a frame,
and has the inverse (3.4). The highly redundant frame of N2 atoms was shown to be
reducible to about 2N atoms using a dyadic sampling of frequencies as in [14], rather than
the linear sampling used up to this point. A reduction in redundancy was also tested using
a Matching Pursuit technique.
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Figure 3.1: The modulus of the DST of a signal composed of two non-overlapping sine
waves. Time is in the horizontal direction, and frequency is in the vertical with the zero-
frequency in the centre.The two frequencies are identified at the ridges of the transform.
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Chapter 4

Discrete Orthonormal Stockwell
Transform

The discrete orthonormal Stockwell transform (DOST) was created to provide many of
the same features as the DST, but with a non-redundant, orthonormal basis. With an
orthonormal basis, the DOST transforms a signal of length N into N coefficients.

In [23], Stockwell defines the DOST with a set of basis functions,

Dνβτ [k] =
N−1∑
k=0

h[k]
eiπτ√
β

ν+β/2−1∑
f=ν−β/2

exp(−i2π
N
kf) exp(+i

2π

β
τf).

The parameters ν, β, and τ represent the centre frequency, bandwidth, and centre time of
the basis function, respectively. If the parameters are chosen so that the different values of
ν and β do not overlap in frequency, and τ = 0, . . . , β − 1, then the basis is orthonormal.

This definition of the DOST does not provide much insight into what it represents, and
it does not immediately present a fast version of the algorithm. Instead, we will derive the
DOST as a special case of the DST in a similar way to [3].
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ĝ

Figure 4.1: Fourier transform of DST window functions. The windows drawn correspond
to the centre frequencies ν used in the DOST

4.1 Definition

To define the DOST, recall that the DST can be calculated as,

DST [n, k] = IFT (ĝk[t]f̂ [t+ k]), (4.1)

so the DST applies a window to the FT of the signal for each frequency. These windows
have overlapping support, and vary in width depending on the centre frequency of the
window. Typically, the window is a Gaussian, which has non-compact support. Because
the windows overlap, as seen in Figure 4.1, it is impossible to make an orthonormal basis
from them.

For an orthonormal DST basis, a rectangular window in frequency-space can be used
instead. By only using non-overlapping windows, the windows are orthogonal and effec-
tively partition the frequency space. The centres and widths of these windows are the ν
and β in Stockwell’s definition [23], respectively.

Using the inverse FT on this whole space to complete the DST would still be redundant,
because when the signal is bandlimited, at most β frequencies can be orthogonal on the
smaller band. These frequencies correspond to the β-dimensional FT on that band. When
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a local inverse FT is applied on the band, it will be out of phase of the global inverse FT,
so there will need to be a correction. The process is illustrated in Figure 4.2.

This interpretation can be confirmed by working with the sums in Stockwell’s definition
of the Stockwell transform ,

< h,Dνβτ > =
N−1∑
k=0

h[k]
eiπτ√
β

ν+β/2−1∑
f=ν−β/2

exp(−i2π
N
kf) exp(+i

2π

β
τf)

=
eiπτ√
β

ν+β/2−1∑
f=ν−β/2

exp(+i
2π

β
τf)

N−1∑
k=0

h[k] exp(−i2π
N
kf)

=
eiπτ√
β

ν+β/2−1∑
f=ν−β/2

F(h)[f ] exp(+i
2π

β
τf) .

The final sum is the definition of the inverse DFT on the sub-band centred at ν with width
β. Performing the calculation, the phase-correcting factor comes out as e−iπτ , and since
τ ∈ {0, ..., β − 1}, it is just the alternating sequence (−1)τ . In Figure 4.3, a basis function
is shown at two adjacent time steps, and the effect of phase correction should be clear.

4.2 Details of Implementation

To ensure an orthonormal basis, the window has to be scaled by the square root of the
width. When using an existing implementation of the DFT this scaling has to take into
account the normalization used by the implementation. In MATLAB, the forward DFT is
not scaled, but the inverse is divided by N . For the basis to be normalized, each partition
must be divided by

√
β.

The order of the coefficients in the DOST can be chosen to get conjugate symmetry.
For the negative frequency bands, the order of the coefficients should be reversed after the
inverse FT.

The algorithm for the DOST is therefore,

H = FFT(h)

for each band
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Figure 4.2: An illustration of the DOST Algorithm. Starting with the original signal (a),
the DFT is applied to get (b) , then on each sub-band, an IFT (with phase correction)
is applied. The final result is the DOST (c). Absolute values of the DFT and DOST are
shown for clarity.
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Figure 4.3: DOST basis function with parameters ν = 16, β = 8. The phase correction of
±1 can be seen by comparing the functions with τ = 3 and τ = 4

S(band) = sqrt(band_width) * IFT(band) .* [1,-1,...]

if the frequency is negative,

S(band) = reverse( S(band) )

end for

The DOST in higher dimensions can be performed the same way, except with N -
dimensional bands and DFT’s. Another way is to perform the one-dimensional transform
in each direction. Because the basis functions are made entirely of exponents, it can be
separated into factors of the DOST in each dimension.

4.3 Variations on the DOST

There are a few variations of the DOST that have been introduced. For a real-valued signal,
the original is conjugate symmetric about k = 0, which prevents k = 0 and k = −N/2− 1
from being in conjugate symmetric pairs. Y. Wang [26] proposed making it conjugate
symmetric about k = −1/2, so that each coefficient has a conjugate. The symmetry is
done by first modulating the signal (shifting it in frequency by 1/2), and then partitioning
the frequency space symmetrically about zero.

As an example, the dyadic partitions of a signal of length 32 are,
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DOST : [1, 8, 4, 2, 1, 1, 1, 2, 4, 8]

symDOST : [8, 4, 2, 1, 1, 1, 1, 2, 4, 8]

starting from the frequency k = −N/2.

The “generalized Fourier family transform” described by Brown [3] is an attempt to
concentrate the support of the basis functions. They use the same Gaussian windows as in
the DST, but cut the tails of so that the windows do not overlap. Truncating the Gaussian
window allows the basis functions to be orthonormal, but inverting the transform requires
dividing by this Gaussian window again. We call it the windowed DOST, because the only
difference applying a window to each sub-band.

In Section 7.3, the windowed DOST is shown to have very poor performance com-
pared to other methods for compression. We think this is because of the extra windowing
operations, putting more significance on smaller values.

The basis functions for these variations are presented in Figure 4.4. The symmetric
DOST is nearly identical to the original, but is at a slightly different frequency, which is
visible when the two are shown on the same axes. The windowed DOST has a very different
profile, because the window is smoother in the time-domain, causing fewer ripples.

4.4 Example: DOST of a Signal

To show how the DOST analyzes the time-frequency plane, it was applied to the signal
defined in (3.5). Using the values of ν, β and τ for each component, the Heisenberg boxes
can be determined. Colouring each box by the value of the coefficient gives the time-
frequency plot in Figure 4.5. Because the DST is normalized differently, each coefficient in
the DOST was also multiplied by

√
β so that the two plots would look similar.

The two frequencies are still identified, but not as precisely, because there are no ridges.
The frequency resolution is still better for lower frequencies, and the time resolution is
better for high frequencies. There is also a significant spike across all frequencies when the
frequency of the signal changes.
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Figure 4.4: Basis functions for the DOST variations using the parameters ν = 16, β =
8, τ = 3. The corresponding transforms are (a) DOST, (b) Conjugate-Symmetric DOST,
and (c) Windowed DOST.
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Figure 4.5: The time-frequency representation of the signal (3.5) as calculated with the
DOST. The Heisenberg box of each basis function coloured by the value of its coefficient.
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4.5 DOST of an Image

All variations of the DOST look very similar when applied to an image. There are slight
differences in the partitioning and actual coefficient values, but the large-scale features are
the same. The DOST of an image is shown in figure 4.6. The zero-frequency components
are in the center of the figure, with frequency increasing to the right and down.

A miniature copy of the image is seen in each sub-band. This is due to the stronger
correlation of the basis functions to edges, particularly for higher frequencies. A similar
effect is seen in quad-tree representations of wavelet transforms. The image in bands with
negative frequencies is reflected, because the order of coefficients is reversed to maintain
conjugate-symmetry.
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Figure 4.6: The DCST transform of the test image Lena. Intensities are absolute values
on a logarithmic scale.
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Chapter 5

Discrete Cosine Based DOST

The factoring of the DOST into a FT followed by a local inverse FT on each partition leads
to the question: can this same process be used for any unitary transform? Yes, it can be
done, because the construction is based entirely on the unitary nature of the transforms.

In the general version, a unitary transform is applied to a signal. The transformed
signal is partitioned, and the inverse transform is applied on each sub-band. Because the
Fourier basis functions are complex exponentials and the DFT has modulation-translation
and scaling relations, this has the effect of scaling and translating a set of basis functions,
much like a wavelet transform (see Section 6.1).

Because of the success that the DCT has seen in image compression (notably JPEG), as
well as its real-valued nature and close relation to the FT, we applied it to this algorithm.

5.1 Details of Implementation

First, a DCT is applied to the signal. There are a few different DCT definitions depending
on what symmetries are assumed for the signal [14]. We tested the DCT-I, which is most
closely related to the DFT (even symmetric about k = 0), as well as the DCT-II used in
JPEG compression, which is even-symmetric about k = −1/2,

X[k] =
N−1∑
n=0

x[n] cos

(
π

N

(
n+

1

2

)
k

)
. (5.1)
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Unlike the DOST, the DCST is not a separable transform. For 2-dimensional images,
it is necessary to use the 2D versions of the underlying transforms. The final version we
settled on uses the JPEG DCT. The MATLAB signal processing toolbox implementation
was used.

Because there are no negative frequencies for the DCT, a dyadic partitioning is used
with β0 = 1, β + n = 2n−1. The algorithm is then a straightforward adaptation of the
DOST,

H = dct2(h)

x = y = 0

for bx in [1,1,2,4,8,...]

for by in [1,1,2,4,8,...]

H(x:x+bx-1, y:y+by-1) = idct2(H(x:x+bx-1, y:y+by-1))

end for

end for

return H

5.2 Basis Elements

A typical basis element for the DCST is shown in figure 5.1 alongside a DOST basis
element. The DCST has the same grating style as the DCT, but is somewhat localized in
space. Because of the sharp cut-off in the window, the basis function oscillates out from
its centre. This causes ringing around edges, and reduces the time-locality, but to a lesser
extent than for the DOST.

5.3 Transform of an Image

The DCST of an image looks quite similar to that of the DOST, except that it is real-valued,
and does not have the negative frequencies, so there is no symmetry in the coefficients.
The lowest frequencies are in the upper left corner, and increase to the right and down.
The same repetition of the edges of the image in each block is seen as for the DOST in
figure 5.2.

41



(a) (b)

Figure 5.1: Basis elements of the (a) DOST and (b) DCST. Both are for band-widths
32x16 and positions 8x8.
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Figure 5.2: The DCST transform of the test image Lena. Intensities are absolute values
on a logarithmic scale.
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Chapter 6

Harmonic Wavelet Transform

The HWT was a transform introduced by Newland for vibration analysis [16]. The DOST
is nearly identical to the HWT, only differing in the complex phase, but they have not
been compared before. In this chapter, the similarities of the two transforms are shown by
constructing them both side by side.

Due to their similarities, both the DOST and HWT would have the same applications.
Harmonic wavelets have been used primarily used for ridge and phase identification of
signals [17, 18].

Ridge identification is a method of finding the highest energy in time-frequency (or
time-scale). The phase does not matter, so results would be largely the same. Various
other wavelets (like Morlet wavelets) are also used for this application.

Phase extraction uses the complex phase of the transformed signal to determine the
frequency and additional information of the signal. The frequency is approximately equal
to the time-derivative of the phase. Using HWT there are other correcting terms that need
to be included to deal with the phase change introduced by shifting the wavelet in time.
The phase correction in the Stockwell transform eliminates this step.

A sharp change in phase also indicates a reflection. In [18], phase extraction was used
on the data from bending waves generated by an impulse in a beam. The ridges indicated
when the energy at a particular frequency was located at the measurement device, while
the abrupt phase changes indicated when the wave was reflected at one end.

Apart from compression and denoising, there have not been many applications of HWT
for two-dimensional signals. The tests that have been done for images are also less extensive
than the tests we have performed.
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A generalized HWT was also developed [18]. This version approaches the ST, because
it allows different window conditions and widths, but does not require orthogonality. Be-
cause filtering and signal reconstruction was not an interest in [18], the invertibility of the
generalized HWT was ignored.

6.1 Derivation of Basis Functions

There are a few differences in how the HWT and DOST were derived, but the result is
almost identical. The DOST was developed strictly as a transform on a discrete space [23],
while Newland [16] developed harmonic wavelets on a continuous domain, then adapted
it to a discrete domain. To make the construction simpler and cleaner, we will follow the
same path as Newland.

In the two developments, a different Fourier transform is used, along with slightly
different notation. Stockwell uses the basis functions ei2πfx, while Newland uses eiωx. This
affects how the frequency bands are defined as well. Here, the same Fourier basis as
Stockwell will be used in order to be consistent with the rest of the thesis.

Both transforms define their basis functions from the same concept. We desire a par-
titioning of the frequency domain, so that the basis functions are as tight as possible in
frequency. Box-car functions (or indicator functions on an interval) are used.

Stockwell defines the interval using two parameters: ν, the centre of the interval; and
β the width of the interval. Because Newland is immediately interested in a wavelet
transform, he simply chooses a primary interval of ωN ∈ [2π, 4π). This is equivalent to
ν = 3/2, β = 1, so that the FT of the mother wavelet is

ψ̂(ω) =
1√
β

boxcar

(
ω − ν
β

)
,

where

boxcar(ω) =

 1 ω ∈
[
−1

2
,
1

2

)
0 otherwise

.
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It then follows that

ψ(x) = ei2πνx
√
β sinc(βx)

=
√
β
eiπ(2ν+β)x − eiπ(2ν−β)x

i2πβx
.

The last line follows from an expansion of sinc(·) into exponential terms, and is the
form used by Newland in his construction. We will continue with the definition using the
sinc function, because the modulation is explicit. The factor of

√
β normalizes the basis

functions in L2.

At this point, Newland uses this function (with the particular ν and β) as a mother
wavelet and forms a basis through shifts and scaling. Stockwell keeps it a bit less structured,
and just shifts this form. If it was the original Stockwell transform, then we should shift
by τ , but it will prove more convenient to shift by τ/β, i.e.,

ψ(x) = e−i2πν
τ
β ei2πνx

√
β sinc(βx− τ) (6.1)

The standard dyadic partitioning used by Stockwell [23] is now applied. We set β = 2j,
ν = 3 · 2j−1 and τ = k, so

ψj,k(x) = e−i3πk2j/2 sinc(2jx− k)eiπ2
jx .

This exact result can be obtained by scaling and shifting the mother wavelet,

ψj,k(x) = 2j/2ψ(2jx− k)

= 2j/2 exp(i3π(2jx− k)) sinc(2jx− k)

= e−i3πk2j/2 sinc(2jx− k) exp(i3π(2jx)) .

Up to this point, the two transforms are identical. The Stockwell transform takes an
additional step: a multiplication by eiπτ “corrects” the phase of the basis function, which
has been skewed by the translation in space. The final result is
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ψν,β,τ (x) =
√
β sinc(βx− τ)ei2πνx , or

ψj,k(x) = 2j/2 sinc(2jx− k) exp(i3π(2jx)) .

This looks very similar to a short-time Fourier transform atom, which does have an
absolutely referenced phase. The difference is that the window size changes with frequency,
and the frequencies are chosen non-redundantly.

Note that the “phase correction” term of eiπτ is actually simpler, because τ is always
an integer. Hence, the difference between the HWT and the DOST is a factor of −1 for
odd values of τ (or k).

6.2 Algorithms

The fast algorithm for Harmonic wavelets [16] is nearly identical to the fast algorithm
presented in [28] and used elsewhere, even in the order of coefficients. The only difference
is the phase correction term in the DOST, which is simply a change of sign of alternating
coefficients.

6.3 DCST vs. DCTWT

A couple of papers introduced the “DCTWT” or discrete cosine transform harmonic
wavelet transform [15, 22]. This transform is very similar to the DCST which I proposed.
In fact, for the one-dimensional version, the only difference is the type of DCT used.

6.4 Two-Dimensional Transforms

All of these transforms are treated differently when it comes to two-dimensional data.
The main difference is the structure of the output data (i.e. how the frequency-space is
partitioned). The partitioning, and hierarchical structure are shown in Figure 6.1. The
original DOST is treated as a separable transform, as is the HWT. The result is the directed
graph structure as I have shown before [13], where the horizontal and vertical frequencies
are partitioned independently.
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(a) (b)

Figure 6.1: Hierarchical structure of (a) wavelets, (b) DCST

The discrete cosine harmonic wavelet transform (DCHWT) is approached as wavelets,
and given a quad-tree structure. Each refinement is treated as a separate filtering stage
as in the analysis algorithm for orthogonal wavelets. For the DCST, the same structure
as the DOST is used, but the two-dimensional transform is not separable, so each block is
treated as a vector with the 2D-DCT being performed on it.
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Chapter 7

Image Compression

We are interested in applications to image processing. A simple application is compression
of images. Some preliminary tests were performed by Y. Wang [29], which showed that the
DOST might perform well. I expanded on the tests comparing the DOST against more
linear transforms and the DCST [13]. Most of this chapter covers these findings.

Most natural images are compressed using either the JPEG standard or the JPEG2000
standard. These standards follow the same process: linear transform compression.

1. Transform the colour space (to luminance and chroma YUV)

2. Perform a linear transform on each channel

3. Quantize the transformed signal

4. Entropy encode the quantized signal

The second step is the primary concern of this paper. The goal of the transform is to
put the most significant information in a small number of components. If the majority
of components in the transformed image are near zero, then the quantization step rounds
them down to zero. A signal comprised mostly of zeros has low entropy.

We approximate the quantization step with hard thresholding, in which all coefficients
below a threshold are set to zero. This effectively quantizes the smallest values, but none
of the others, giving an idea of what the image would look like after this compression.
As the threshold increases, more coefficients are removed and the degradation is more
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severe. Unfortunately, without fully implementing some quantization scheme, measures of
information content like entropy cannot be applied.

Thresholding is also effective for signal denoising [6]. If the noise is white noise, or the
spectrum of the clean image is sparse, then much of the noise can be removed by thresh-
olding the smaller components of the transformed signal. The tests for image compression,
therefore provide evidence for how well the linear transforms work for image denoising.
For denoising, a soft-threshold, which subtracts the threshold value from each coefficient,
works a little better.

Another view of compression is the sparse representation of a signal. Minimizing the
number of coefficients needed to faithfully reconstruct an image also works to compress
the image. There are many different algorithms and choices of heuristic functions which
approximate this optimization problem, with many parameters that require tuning. With
all the complexity, a good comparison of two dictionaries would be nigh impossible. The
results would also be quite similar to the tests performed here.

7.1 Measures of Image Quality

The most commonly used metric for image/signal quality to date is the peak signal to
noise ration (PSNR). It is essentially equivalent to the L2 metric of a signal, because it is
simply the log of the root mean square. However, it has the advantage of being normalized
by the maximum possible value. The PSNR is defined as,

PSNR(x, y) = 20 log10(MAX)− 10 log10(
‖x− y‖2

N
), (7.1)

and is measured in decibels (dB), hence the logarithmic scale and factors of 10. In (7.1),
MAX refers to the maximum signal value. For an 8-bit channel, that would be MAX =
255, and for an image normalized to [0, 1], MAX = 1.

The PSNR is actually a rather poor metric for image quality. Many different types of
deformations result in the same PSNR, even though their visual quality is vastly differ-
ent [30]. For example, adding a noise of ±1 with mean zero would give the same PSNR as
adding 1 to every pixel (a slight increase in brightness).

Another measure of image quality that better represents human perception is the struc-
tural similarity (SSIM) [30]. The idea of SSIM is that after normalizing for luminance and
contrast, the correlation of two patches measures similarity in structure. If the same pixels
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are bright (or dark) in both patches, then they should look quite similar, and will have a
high correlation. The SSIM between two image patches, x and y, is calculated as follows,

SSIM(x, y) =

[
2x̄ȳ + ε1

x̄2 + ȳ2 + ε1

] [
2sxy + ε2
s2x + s2y + ε2

]
, (7.2)

where

x̄ =
1

N

N∑
i=1

xi , sxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) (7.3)

and s2x is sxy taken with x = y. The two parameters, εi � 1 are small constants relative to
the maximum intensities, which provide numerical stability and accommodate the human
visual system (Weber’s Law).

SSIM provides a good measure of image quality on a small patch, but is not well suited
to a large image. For large images, the mean-SSIM is used: the SSIM is calculated on a
local patch around each pixel of the images, and the average of all these values is taken.

The SSIM and mean-SSIM are bounded between −1 and 1. If two images, X and Y ,
are identical, then SSIM(X, Y ) = 1. A value of −1 essentially means that one image is
the negative of the other. For all of our tests, we would expect a value in the range (0, 1).

7.2 Method

To test the quality of each transform under compression, a degradation curve is computed.
This measures the quality of the image after the least significant coefficients are set to
zero through hard thresholding. The operation of thresholding approximates the effect of
quantization, which rounds coefficients to a set of discrete values. Thresholding does not
quantize any higher coefficients, so this is an approximation to the effect and compression
rate. The result is similar to a rate-distortion curve.

By Parseval’s equality, we know that the L2 norm of a vector is preserved when trans-
formed with an orthogonal basis. Therefore the image quality (particularly PSNR) mono-
tonically decreases as more coefficients are set to zero. In addition, the rate of degradation
increases, so more data points are required to track quality as compression increases.

The test images used were the well-known 512 × 512, 8 bits per pixel greyscale test
images Lena, Boat and Mandrill. Each image was compressed at many levels using each
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transform. The compressed images were compared against the originals to measure image
quality. The quality of each image and the average quality across all images was then
plotted with respect to the fraction of coefficients retained using PSNR and mean-SSIM.
The PSNR is included for convention, while the mean-SSIM is used because it is a better
measure of image quality.

All tests were performed in MATLAB. The DOST and its variations as well as the
DCST were computed using my own code, and the wavelet transforms were calculated
using MATLAB’s Wavelet Toolbox. The mean-SSIM is calculated using the ssim index

function for MATLAB [31]. This implementation uses a window size, and regularization
parameters that should work well for the test images.

The transforms used in the first test were the DOST (original, conjugate-symmetric
DOST, and windowed DOST), DCST, 8x8 block DCT (JPEG), Daubechies 15 wavelets
and biorthogonal 4.4 wavelets (JPEG2000).

In Section 6.1, we showed the main difference between DCT-based harmonic wavelets
(DC-HWT) and the DCT is how the frequency-space is partitioned. In order to examine
the effect of different partitionings of frequency, the DCT based harmonic wavelet trans-
forms were tested separately and compared against the DCST. These transforms were each
implemented using the both the DCT-I and DCT-II as defined in Chapter 5, with both
the wavelet-style quad-tree frequency space partitioning and the DOST-style partitioning.
The same tests were performed with these transforms.

Most image compression techniques perform the transformation on sub-blocks of an
image. I also implemented the transforms on sub-blocks to see how well they perform.
The best block size was about 64x64 pixels. The measured quality was better, but the
results did not change significantly. The Boat and Mandrill test images were compressed
this way and can be seen in Figures 7.7 and 7.4.

7.3 Compression Results

The average degradation curves for the transforms are shown in figure 7.1. The PSNR
and SSIM both give the same ordering on quality. The biorthogonal wavelets used for
lossy JPEG2000 compression perform best, followed closely by the 8x8-block DCT and the
DCST.

The DOST and conjugate-symmetric DOST performed nearly identically, with the
conjugate-symmetric just slightly better, so on the plots, only the DOST is shown. The
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Figure 7.1: Averaged degradation curves for various transforms as more coefficients are
retained. The PSNR (a), and mean-SSIM (b) have similar results.
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(a) (b)

Figure 7.2: The Boat test image under compression. The original is shown in (a), and
a compressed version using DCST in (b). The compressed version has lost 95% of its
components, and has a mean-SSIM of 0.784 compared against the original

windowed DOST (or generalized Fourier family transform) is not well suited to image
compression.

These results do not actually contradict the work by Y.Wang in [29]. His tests compared
the DOST against Daubechies wavelets, which do not perform as well as the biorthogonal
wavelets for compression of images. When compared against the better linear transforms,
the DOST performs slightly worse.

There are some differences between the SSIM and PSNR for image quality in our
graphs. For higher quality images, the PSNR shows more difference in quality between the
transforms, but as we get above 90% of coefficients removed, the SSIM provides a larger
spread, and the PSNR values become closer together. However, the overall behaviour is
the same. That is, the order of transforms from best to worst does not change between
mean-SSIM and PSNR. For this reason, only the mean-SSIM is shown for the rest of the
analysis.

It should be noted that the image quality is quite poor at this level of compression as
seen in figure 7.2. This is also the region in which the DCST starts to perform better than
the others, which suggests that it is not more practical for compression.
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Figure 7.3: Mean-SSIM degradation curves for the Mandrill test image. The DCST does
perform well in this case.

The Mandrill test image warrants closer inspection. The degradation curve for this
image is shown in Figure 7.3. The DCST has higher mean-SSIM over a much wider range
of compression rates than for the other images.

The reason might be seen by looking at the compressed images. Figure 7.4 shows the
original Mandrill image and highly compressed copies. Compression using wavelets seems
to remove much of the detail that describes texture in the image, while the DCST at least
approximates that texture. These differences can even be seen when 20% of the coefficients
are retained.

The Lena image by comparison is much smoother with less highly-textured area. For
the Lena image, biorthogonal wavelets performed much better according to the mean-SSIM
and PSNR. The corresponding degradation curve is shown in Figure 7.5. The Boat image
had less difference between the transforms, but the degradation curves were still quite
similar to those of the Lena image.

Figure 7.6 shows the results comparing the DCST with DC-HWT. The primary purpose
was to compare the two different partitioning methods.

The quad-tree partitioning worked better than the DOST partitioning. However, when
the more effective DCT (from JPEG) is used, this difference is quite small.
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(a) (b)

(c) (d)

Figure 7.4: The Mandrill image compressed with 5% of its coefficients remaining. The
original (a) is compressed using (b) DCST (m-SSIM=0.644), (c) biorthogonal wavelets
(m-SSIM=0.612), and (d) DCST on 64x64 blocks (m-SSIM=0.655).
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Figure 7.5: Mean-SSIM degradation curves for the Lena test image. The DCST does not
perform as well as biorthogonal wavelets.
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Figure 7.6: Averaged Mean-SSIM degradation curves of DCST, and DC-HWT using two
types of DCT
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7.4 Compression Artifacts

More examples of compressed images are in figure 7.7. The different effects of the trans-
forms can be seen in these highly compressed images. The DCST has a slight blurring ef-
fect, but an interesting noise pattern which comes from ringing around edges. The wavelet
transforms result in more blurriness as detail is removed. Some of the rigging is actually
removed completely in in the wavelet version, while the DCST is better at retaining that
kind of detail.

The transforms can also be performed on sub-blocks of the image. On these block-
wise transforms the edges between blocks become apparent. This is more evident in the
block-DCT transform than the block-DCST. In our testing, we found that the block-DCST
performs best with larger (64x64) blocks. This prevents the ringing edges from propagating
throughout the entire image.

The ringing around edges in the DOST methods is clearer in the Lena test image
(figure 7.8), because there are fewer sharp edges interfering. The ringing from DOST
artifacts is a very smooth wave coming from edges, but the DCST has a bit of checker-
boarding because of the DCT basis. These patterns can also be seen in the basis functions
for these transforms (figure 5.1).

The Mandrill image is useful to show how highly-detailed texture is affected by com-
pression. In Figure 7.4 the blurring effect of wavelets is quite apparent. Compression using
wavelets seems to remove much of the detail that describes texture in the image, while the
DCST at least approximates that texture.

The 64x64 block DCST compressed image has a better mean-SSIM than the other
images, but the edges between the blocks are very apparent on the nose of the Mandrill.
The discontinuity in the ridges, and the sharp change of texture around the nostril are two
harsh artifacts that are not picked up by the mean-SSIM.
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(a) (b)

(c) (d)

Figure 7.7: The Boat image compressed with (a) DCST 5% coefficients, (b) biorthogonal
wavelets 4.25% coefficients, (c) DCST on 64x64 blocks 4% coefficients, and (d) DCT on
8x8 blocks 4.9% coefficients. All have the mean-SSIM at 0.784.
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(a) (b)

(c) (d)

Figure 7.8: The Lena test image under severe compression. The original is shown in (a),
and a compressed version using (b) Biorthogonal wavelets, (c) DOST, (d) DCST. The
compressed versions retain only 1% of the original image’s coefficients, and have mean-
SSIM’s of (b) 0.765, (c) 0.734, (d) 0.759.
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Chapter 8

Conclusion

This thesis summarizes most of the analysis of the Stockwell transform, discrete orthonor-
mal Stockwell transform, and directly related transforms. The resolution of the identity
of the ST was extended to work with two windows, and Stockwell’s original inverse was
shown to be a special case of this. The transform and its inverse were tested on several
continuous functions for the first time to see how they behaved.

Mathematical properties of the ST were proven including behaviour under various oper-
ators, and boundedness and continuity. It was shown that the transform is not rotationally
invariant, contrary to past claims.

The discrete versions, the DOST and DST, were defined in relation to each other, and
variations of the DOST were reinterpreted in this way. This led to the creation of the
DCST. Unfortunately, the DOST and DCST are nearly identical to harmonic wavelets.
We were the first to outline the similarities.

More extensive tests for image compression were performed to compare the various
orthonormal Stockwell transforms with current standards. These tests show that the DOST
and its variations are not better than current standards.

Because the Stockwell transforms are the same as wavelet transforms up to a phase
correction, the behaviour of the two should be similar for algorithms that ignore the phase
of the components. Future research in this area may include analysis associated with the
phase of the transform, rather than the magnitude. The quality of the ST as a dictionary
for sparse representation may also be interesting, but our compression tests indicate that
it likely will not perform better than other dictionaries in use.
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