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Abstract

In this thesis, we experimentally test fundamental properties of quantum mechanics, namely

non-locality (in the form of three new families of Bell’s inequalities) and the symmetry of

envariance. To accomplish these we use a Sagnac source of polarization entangled photon

pairs.

In chapters one and two we discuss the relevant background information in quantum

information theory, nonlinear optics, experimental realization of polarization entangled

photons and a trouble-shooting and maintenance guide for a Saganc source.

In chapter three we experiment with a set of three newly derived families of Bell’s

inequalities. These three families are predicted to yield the largest volume of violation of

the local hidden variable models (LHVM). Our experimental results are in good agreement

with those predictions and therefore, represent the largest volume of experimental violation

of LHVM to date. We showed a violation of up to 30σ from what is predicted by LHVM,

and our results followed closely to the predictions of quantum mechanics.

In chapter four we experimentally test envariance, an assisted-symmetry exhibited by

specific quantum systems. Envariance is a fundamental property in the quantum world that

has lacked, until now, extensive experimental study. The symmetry has ramifications in the

foundations of quantum mechanics, and plays an integral role in a proof of Born’s rule [1].

Our results serve as a benchmark the property of envariance. We show that experimental

quantum states can be (99.66± 0.04)% envariant over a wide range of transformations, as

measured using the average quantum fidelity [2], and (99.963± 0.005)% as measured using

a modified average Bhattacharya Coefficient [3], a measure of the overlap of two probability

distributions.
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Chapter 1

Background Material

1.1 Introduction

The subject of this thesis is to explore and test fundamental properties of quantum me-

chanics. These properties are relevant to the ideas of non-locality, local hidden variable

models, and derivations of Born’s rule. We use a source of polarization entangled photon

pairs based on a Sagnac interferometer to create the necessary quantum states. Chapter

one will cover relevant background in quantum information and non-linear optics; chapter

two will discuss the mechanics and techniques associated with the entangled photon source

used in all the experiments; chapters three and four will describe the experiments which

implemented the source to test the fundamental properties of quantum mechanics (three

parameterized families of Bell’s inequalities, and the assisted-symmetry of envariance);

chapter five will be the conclusion.

1.2 Defining the Qubit

A quantum bit, or qubit, is a two-level quantum system and represents the fundamental

unit of information used in quantum information technologies. It differs from the classical

bit, which takes the values of “zero” or “one”, in that it can be either a zero, a one, or
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a superposition of both. Some physical examples of qubits are nuclear spin [4], supercon-

ductors [5], and single photons [6]. Physically, a qubit can be encoded in several different

degrees of freedom for a photonic system: path encoding, time bins and polarization, are

all examples of two-level systems in single photon states [7]. Here we represent a qubit

with its general form:

|ψ〉 = α|0〉+ β|1〉
where, |α|2 + |β|2 = 1.

(1.1)

We can represent the basis states |0〉 and |1〉 (called the computational basis) with vec-

tors

(
1

0

)
and

(
0

1

)
. These are unit vectors and form an orthonormal basis in the two-

dimensional Hilbert space [8].

An important way to visualize a two-level quantum state (qubit) is as a vector on the

“unit sphere” or Bloch sphere [8], see Fig. 1.1. The states |0〉 and |1〉 lie on the opposite

poles of the sphere, the positive and negative Z-axis respectively. The positive and nega-

tive superpositions of these states, 1√
2
(|0〉 ± |1〉) lie along the X axis, and the equivalent

imaginary superpositions, 1√
2
(|0〉 ± i|1〉) lie along the Y axis. Unitary operations on the

qubit are equivalent to rotations about the Bloch sphere

In this thesis we will be using single photons encoded in their polarization degree of

freedom, where |0〉 corresponds to |H〉 or horizontally polarized, and |1〉 corresponds to |V 〉,
or vertically polarized. This is shown in Table 1.1 along with the other mutually unbiased

polarization states. The association between polarization and the Bloch sphere comes from

the Poincaré sphere [9], the original association between polarization and sphere geometry.

A pure quantum state can be described by its density matrix ρ:

ρ = |ψ〉〈ψ|. (1.2)

The density matrix can be used when applying unitaries and quantum operations. All

states introduced thus far have been pure states, and as such, the representative vector on

2



Figure 1.1: Bloch sphere representation of pure and mixed quantum states. The orange

and blue vectors represent pure states which lie on the surface of the Bloch sphere, while

the green and red vectors represent mixed states which lie in the interior.
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Polarization Computational Basis Axis on the Bloch Sphere

|H〉 |0〉 +ẑ

|V 〉 |1〉 −ẑ
|D〉 1√

2
(|0〉+ |1〉) +x̂

|A〉 1√
2
(|0〉 − |1〉) −x̂

|R〉 1√
2
(|0〉+ i|1〉) +ŷ

|L〉 1√
2
(|0〉 − i|1〉) −ŷ

Table 1.1: Definitions for the polarization basis states and their relation to the Bloch

sphere.

the Bloch sphere lies on the surface of the sphere as seen in Fig. 1.1 by the orange and

blue vectors. Mixed states are a probabilistic sum of pure states. Their density matrices

are described as a sum:

ρmixed =
∑
i

pi|ψi〉〈ψi|

where
∑
i

pi = 1.
(1.3)

The Bloch sphere vector representing a mixed state lies on the inside of the sphere, as seen

in Fig. 1.1 by the green and red vectors. Density matrices can be used when measuring

observables:

〈Ô〉 = tr(ρ̂Ô) (1.4)

here 〈Ô〉 is the expectation value for some observable Ô. Some important observables of

two-level systems are the Pauli operators:

X =

(
0 1

1 0

)
= σx, Y =

(
0 −i
i 0

)
= σy, Z =

(
1 0

0 −1

)
= σz. (1.5)

Measuring these Pauli observables is equivalent to measuring the projection on the

respective axis on the Bloch sphere. In general, we can parameterize any density matrix

in terms of the identity and the Pauli matrices [8]:

ρ =
1

2
+
cxσx + cyσy + czσz

2
. (1.6)

4



Where cx, cy,and cz are the elements of the Bloch vector, ~r:

~r =

cxcy
cz

 . (1.7)

In this way, any quantum state of two dimensions can be represented in terms of its Bloch

vector, or as a linear combinations of the identity and the Pauli matrices.

1.3 Two-Qubit Entanglement

Maximally entangled particles have a relationship unique to quantum mechanics in that

they are so strongly correlated that they can only be described in terms of a pair of particles,

not as individuals. This relationship persists regardless of spatial separation and results

in complete knowledge of the state of the pair of particles, but no knowledge of the state

of the individuals. Mathematically we can define a divide between entangled states and

separable (non-entangled) states:

ρseparable =
∑
k

pkρ
k
1 ⊗ ρk2

pk ≥ 0,

(1.8)

where ⊗ represents the tensor product. An entangled state cannot be written in this form,

as a product of states. For pure states this reduces to:

|ψseparable〉 = |ψ1〉 ⊗ |ψ2〉. (1.9)

Products of pure states are strictly separable.

Some examples of pure maximally entangled two-qubit states are conventional Bell

5



states [8]:

|Ψ+〉 =
1√
2

(|H〉 ⊗ |V 〉+ |V 〉 ⊗ |H〉)

|Ψ−〉 =
1√
2

(|H〉 ⊗ |V 〉 − |V 〉 ⊗ |H〉)

|Φ+〉 =
1√
2

(|H〉 ⊗ |H〉+ |V 〉 ⊗ |V 〉)

|Φ−〉 =
1√
2

(|H〉 ⊗ |H〉 − |V 〉 ⊗ |V 〉).

(1.10)

States can also posses degrees of entanglement. If we consider a parametrization of one of

the conventional Bell states:

|ψ〉 =
1√
2

(cosα|H〉 ⊗ |H〉+ sinα|V 〉 ⊗ |V 〉), (1.11)

then we can vary the amount of entanglement in the state by varying α. The state is

maximally entangled for α = π
4

and separable for α = nπ
2

where n is an integer.

1.4 Bell’s Inequalities

1.4.1 CHSH Inequality

The Bell scenario, depicted in Fig. 1.2, has a source of entangled pairs of particles and

two parties, Alice and Bob, who each get a particle from the entangled pair. The scenario

is such that they each have two measurement settings to choose from independently of

each other, and the result of the measurement they perform can be ±1. We can define

a parameter Ea,b which is a measure of how correlated the measurement outcomes from

Alice and Bob are based on the settings they chose (a or a′ for Alice, b or b′ for Bob):

Ea,b =
N++ +N−− −N−+ −N+−

N++ +N−− +N−+ +N+−
. (1.12)

Where “ + ” corresponds to a +1 measurement outcome, “− ” corresponds to a −1 mea-

surement outcome and “N” refers to the number of coincidence counts for the specified

6



Figure 1.2: Representation of the Bell scenario depicted by the entangled photon source

sending entangled photons to the two parties: Alice and Bob. The parties then have a

choice of two measurement settings, and the result of their measurement will be ±1.

7



measurement outcome. Clauser, Horne, Shimony and Holt (CHSH) published in their

paper an inequality using these correlations, now called the CHSH inequality [11]:

|Ea,b + Ea′,b|+ |Ea,b′ − Ea′,b′ | ≤ 2. (1.13)

This inequality holds for any Local Hidden Variable Model (LHVM) of physics. LHVMs

were introduced to help explain quantum correlations in nature. It was thought that

local hidden variables governed measurement results and that distant events could have no

instant effects on, or correlation with, local events. This assumption lead to the CHSH

inequality, which states that for LHVM to be true the maximum value of equation 1.14

must be 2. Entanglement is a quantum property that is nonlocal (it persists regardless of

spatial separation) and therefore cannot be described by the LHVM, so violation of these

inequalities that assume LHVM is often used to test for the presence of nonlocal properties

such as the aforementioned entanglement.

1.4.2 The Generalized Bell Inequality

We can define a more general equation involving these correlations and equate it to the

expectation value of the Bell parameter, 〈Z〉.

c1Ea + c2Ea′ + c3Eb + c4Eb′ + c5Ea,b + c6Ea′,b + c7Ea,b′ + c8Ea′,b′ ≡ 〈Z〉. (1.14)

The coefficients ci are real constants. This equation also incorporates single particle or

“marginal” correlations, which are defined as:

Ea =
N++ −N−− −N−+ +N+−

N++ +N−− +N−+ +N+−
. (1.15)

These single particle correlations sum the incidences where the measurement outcome for

that particular setting was positive, regardless of what the measurement outcome from the

other party in the experiment was.

Wolf and Yelin [12] postulated the existence of three new families of Bell inequalities

by varying and parameterizing the values of the ci coefficients. The upper bounds for the

8



three families are provided for both the LHVM and the quantum mechanical model. In

order to recover the quantum mechanical bounds first we must define a set of operators:

A0, A1, B0, B1, where A0 and A1 refer to the measurement operator on Alice’s particle

using setting a and a′ respectively. Similarly, B0 and B1 correspond to the measurement

operators for settings b and b′ respectively on Bob’s particle. With this in mind, Wolf and

Yelin propose that we can parameterize these operators, considering only the difference in

angle between each party’s measurement settings. This causes no loss of generality, and

by imposing a reflection symmetry, results in the following definitions [12]:

A0 ≡ [cos(θA)σx + sin(θA)σy]⊗ 1⊗ 1...

A1 ≡ [cos(θA)σx − sin(θA)σy]⊗ 1⊗ 1...

B0 ≡ 1⊗ [cos(θB)σx + sin(θB)σy]⊗ 1...

B1 ≡ 1⊗ [cos(θB)σx − sin(θB)σy]⊗ 1....

(1.16)

We can define Z in the operator notation as:

Z ≡ c1A0 + c2A1 + c3B0 + c4B1 + c5A0 ·B0 + c6A1 ·B0 + c7A0 ·B1 + c8A1 ·B1, (1.17)

where the coefficients ci are real constants. Finding the maximum value of 〈Z〉 given the

above definitions can be rewritten as an eigenvalue problem in variables θA, θB. By solving

for the characteristic equation of the eigenvalue problem and taking the largest root, we

recover the maximum bounds for 〈Z〉 in the quantum limit given a set of {ci} [12].

1.4.3 Reducing to Three Families

If the values for {ci} are constrained to be: ci = −1, 0, 1, then there are 38 = 6561 possible

combinations. In order to narrow this down to three families, some physical symmetries

were utilized. First one could consider relabeling Alice and Bob: Ai � Bi. There can be

equivalent permutations of the measurement indices for each party: A0 � A1, B0 � B1.

The last symmetry would be the definition of a “positive” and “negative” measurement:

Ai � −Ai, Bi � −Bi. These symmetries reduce the collection to a set of 98 unique

combinations. If this is then confined to only those combinations that exhibit a gap between

the local hidden variable model and the no-signaling faster than light model, then this can

be reduced to three families, each with a parameterized unique set of {ci} [12].

9



1.4.4 Volume Analysis

Wolfe and Yelin use volume analysis to quantify the size of the particle correlations in

the various models they explore. This analysis sets the dimension of the correlation by

considering the number of parties, measurement settings (or inputs) and possible outcomes.

Combined with constraints imposed by the model being used (the CHSH inequality is a

constraint example for the LHVM) this maps out the correlation volume for that model.

For a complete description of this method see Ref. [13].

1.5 Envariance

Envariance is a quantum symmetry of nature present in entangled quantum states. The

term “envariance” was first coined by W. Zurek to mean “environment assisted invariance”

[14]. This symmetry of envariance has been used in a proof of Born’s rule, operating under

the ideas of decoherence [15].

1.5.1 Definition and Properties

The property of envariance can be defined in the following way:

US|ψSE〉 = (uS ⊗ 1E)|ψSE〉 = |ηSE〉 (1.18)

UE|ηSE〉 = (1S ⊗ uE)|ηSE〉 = |ψSE〉. (1.19)

Where |ψSE〉 is a pure entangled two-qubit quantum state where one qubit is represented

by the environment “E” and the other is represented by the system “S”. US is a unitary

applied only to the system qubit and UE is a unitary applied only to the environment qubit.

The state |ψSE〉 is envariant under the transformation US if Eqns. 1.19 and 1.20 hold, or if

there exists a unitary UE such that after the system unitary is applied, the original state

can be recovered while only acting on the environment qubit with UE. Envariance for a

general US is a uniquely quantum property, always requiring entanglement [15].
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1.6 Comparing Quantum States

In order to effectively measure and compare experimental quantum states, the state must

be reconstructed from the results of projective measurements. In particular in order to

calculate the fidelity of an experimental state with a theoretical one, the density matrix

of the experimental state must be reconstructed. When performing the reconstruction

process, it is assumed we have a large, but finite, number of identical quantum states

to perform measurements on. The process of reconstructing a quantum state from these

measurement results is called quantum state tomography [16].

1.6.1 Quantum State Tomography

One of the earliest methods of optical quantum state tomography was single qubit to-

mography, which measured the Stokes parameters to characterize polarization states [17].

There has been significant growth and development in this area in terms of methods and

applicability to other physical systems [18, 19, 20]. The majority of these methods rely on

directly inverting the linear equations developed from the experimental data. Using this

linear inversion, we can write the reconstructed density matrix as [21]:

hatρ =
16∑
ν=1

[
16∑
µ=1

(B−1)ν,µΓ̂µ]nν , (1.20)

where nν refer to the measurement outcomes (number of coincidence counts when using

the platform of single-photons) for the state |ψν〉, and Bν,µ = 〈ψν |Γ̂µ|ψν〉. Some benefits to

this approach are that it is conceptually simple and easy to implement. Some drawbacks

are that this can lead to an un-physical reconstructed state (recovering a density matrix

with negative eigenvalues, or Tr(ρ) 6= 1). Another method, called the maximum likelihood

method, applies the constraint that the state be physical and then recovers the most likely

state that has been measured [16].
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Maximum Likelihood Quantum State Tomography

Maximum likelihood, as previously stated, is a form of quantum state tomography which

overcomes some of the issues present in the linear inversion method. Its mechanism is to

constrain the reconstructed density matrix to be physical and recover the most likely state

from the experimental data [16, 21]. In order to do this there must first be constraints

placed on ρ̂ such that it is guaranteed to be physical. First, parameterize ρ̂ in terms of

another square matrix T̂ :

ρ̂ =
T̂ †T̂

T r[T̂ †T̂ ]
. (1.21)

Because T̂ is a square matrix and T̂ † is the Hermitian conjugate of T̂ , ρ̂ is guaranteed to

be Hermitian and positive, and by dividing by the trace of T̂ †T̂ it is also guaranteed to

be normalized (Tr[ρ̂] = 1). T̂ now needs to be parameterized in such a way to reflect the

parameters required by ρ̂. For the two qubit case:

T̂ =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4


. Here the ti are the 16 parameters specifying ρ̂ and {ti} ∈ R. In order to choose the

most likely state there must be some measure of how close the agreement is between the

experimental data and the reconstructed state. This can be defined using a probability

measure [21]:

P (n1, n2...nl) =
1

Ñ

l∏
ν=1

exp

(
−(ñν − nν)2

2ñν

)
, (1.22)

where ñν = N〈ψν |ρ̂|ψν〉 refers to a prediction of the average counts for a given measurement

(the N comes from known parameters such as the flux in the experiment). This allows

the presentation of the probability above, which is a Gaussian distribution centred about

ñν . (We choose a Gaussian distribution as it is a good approximation for a Poissonian

distribution with a large mean, and our errors model a Poissonian distribution.) The set

{nl} refers to the set of l actual count measurements, and Ñ is a normalization constant.
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To find the most likely state, the function must be maximized over all the parameters from

T̂ , {ti}. In practice it is simpler to work with the logarithm of the function, rewriting the

problem as a minimization of this function over the {ti} parameters[21]:

L(t1, t2...ti) =
l∑

ν=1

(
(N〈ψν |ρ̂|ψν〉 − nν)2

2N〈ψν |ρ̂|ψν〉

)
. (1.23)

It should be noted that there are no constraints on the maximum value of l with regards to

the dimension of the state (unlike linear inversion which results in an over-constrained den-

sity matrix if the number of measurements exceed the square of the state dimension). This

allows for there to be an over-complete set of experimental measurements (for two-qubits

this is a set greater than the 16 required measurements). So in conclusion, this method

guarantees a physical state is reconstructed and allows for a larger set of measurements to

be used in determining that state [16, 21]. All the experiments described in this thesis used

an over-complete set of 36 measurements corresponding to the eigenstates σi ⊗ σj where

i, j are x, y, z. The maximum likelihood method was used for state reconstruction.

1.6.2 Quantum Fidelity

Quantum fidelity is a distance measure between quantum states, used as a way of deter-

mining how close the two states are. In density matrix format its is defined as [2]:

F (ρ, σ) = {Tr[(
√
ρσ
√
ρ)1/2]}2

, (1.24)

where ρ and σ represent the density matrices of the states being compared. For a set of

pure states where ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| we have:

F (ρ, σ) = |〈φ|ψ〉|2. (1.25)

From this definition we have if ρ = σ then F (ρ, σ) = 1, and if ρ is orthogonal to σ then

F (ρ, σ) = 0.
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1.7 Creating Entangled Photon States

Experimental quantum optics is a platform for quantum computing that relies on the in-

teraction and detection of single-photons. The implementation for strictly linear quantum

optics in quantum computing was presented as a viable scheme in 2001 [6] and the first

high intensity polarization entangled sources were developed by Paul Kwiat and colleagues

in the 1990’s [22, 23]. For the purposes of this thesis we will be restricted to working

with the polarization degree of freedom of the photons, and creation of our entangled pairs

will be achieved through an optical nonlinear process called spontaneous parametric down-

conversion.

1.7.1 Spontaneous Parametric Down-Conversion

Spontaneous parametric down-conversion (SPDC) is currently the most commonly used

way to produce pairs of entangled photons. It occurs through laser pumping a nonlinear

crystal. Pairs of correlated photons (the “signal” and the “idler”) of higher wavelength

than the pump are released. This is a strictly quantum effect and does not occur in the

regime of classical nonlinear optics.

To derive this effect, first consider the electric fields involved:

ˆ
E

(+)
p = E0 exp[i(kpz − ωpt)]. (1.26)

This is a monochromatic classical wave traveling in the ẑ direction which describes the

electric field of the pump laser. This is an acceptable approximation for our laser as the

pump is assumed to be intense and undergoes negligible depletion. The fields for the

signal and idler must follow the convention for the quantized electromagnetic field as they

represent the electric field of single-photons:

ˆ
E

(−)
n = −i

√
~ωn
2ε0V

ˆ
a†n exp[−i(knz − ωnt)], (1.27)
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where n = s, i for the signal and the idler,
ˆ
a†n is the creation operator, and again we have

assumed linear propagation in the ẑ direction. Additionally, we are only considering one

output mode, otherwise there would be a sum over the output modes. For a more general

description of the SPDC process see Ref. [24].

To find the Hamiltonian for this process we start with the electric field density for a

classical field in a nonlinear medium and then quantize the electromagnetic field [24, 25]:

Ĥ = ε0

∫
V

d3rχ(2) ˆ
E

(+)
p

ˆ
E

(−)
s

ˆ
E

(−)
i + h.c.. (1.28)

To determine the state resulting from applying this Hamiltonian we need to consider the

time evolution of a quantum state starting from vacuum, where |ψ(0)〉 is the vacuum state:

|ψ(t)〉 = exp

[
1

i~

∫ t

0

dt′ ˆH(t′)

]
|ψ(0)〉 (1.29)

If we consider only first order perturbative terms after expanding the exponential in a

Taylor series the result is:

|ψ(t)〉 = |ψ(0)〉+
1

i~

∫ t

0

dt′ ˆH(t′)|ψ(0)〉. (1.30)

Now combining our definitions for the Hamiltonian and the electric fields and neglecting

the quantum output of the pump we recover:

|ψ(t)〉 ∼ −1

i~
ε0E0

∫ t

0

dt′
∫
V

d3rχ(2)

√
~ωs

2ε0V

√
~ωi

2ε0V
ˆ
a†s

ˆ
a†i

exp[i(kp − ks − ki)z] exp[i(ωs + ωi − ωp)t]|ψ(0)〉.
(1.31)

Because of the plane wave assumption the only nontrivial part of the volume integral is over

the ẑ direction. For simplicity we assume that the second order nonlinear susceptibility

(χ(2)) is independent of z. This is not true for periodically poled materials, the type of

which were used in the two experiments in this thesis, but this correction to the final

output state will be dealt with in the next section on quasi-phase matching. After a few
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simplifications, including a sufficiently lengthy interaction time t, and ignoring the output

in the vacuum state we recover:

|ψ(t)〉 ∼ iE0

2

√
ωsωiχ

(2)δ(
∆ω

2
)sinc(

∆kLz
2

) exp[
−i
2

(∆ωt−∆kLz)]|1〉s|1〉i. (1.32)

Where ∆ω = ωp−ωs−ωi, ∆k = kp−ks−ki and Lz is the length of the crystal. This result

indicates that the output from this nonlinear process is always a pair of signal and idler

photons, and because of the delta function, only occurs when ωp = ωs + ωi (when δ 6= 0).

This is a statement of energy conservation and is also why sometimes SPDC is referred to

as “photon splitting”. In order to maximize the efficiency of the process the sinc(∆kLz

2
)

term needs to be maximized. This is done through the process of phase matching which

will be discussed in the next section.

There are three types of SPDC and the main differences are the polarizations of the

output pair of photons. The crystal used in both experiments was a type II crystal which

gives a horizontally polarized signal and a vertically polarized idler. This relation of per-

pendicular polarizations, guaranteed in each pair of photons produced by SPDC, is part

of what makes entanglement in a Sagnac source possible.

1.7.2 Phase Matching and Quasi-Phase Matching

As stated previously, in order to facilitate the most efficient SPDC process the sinc(∆kLz

2
)

term needs to be maximized. The phase matching condition for this situation is kp = ks+ki.

Meeting this condition means that the signal and idler photons are created in phase with

the pump, giving the best efficiency for the process. For bulk crystals tuning the angle of

the input beam in relation to the crystal axis will complete the phase matching condition,

but will hurt the efficiency of the process as this causes issues with walk-off, limiting the

length of the crystal. For ferromagnetic materials such as potassium titanyl phosphate

(KTP) and lithium niobate (LN) there is an alternative approach to this technique called

quasi-phase matching.
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Quasi-phase matching was first proposed along with several other phase matching

schemes in 1962 [26]. A more recent and thorough review of the subject can be found

in Ref. [27]. Quasi-phase matching is a fabrication technique usable on ferromagnetic

crystals which causes the birefringent layers in the crystal to be inverted over a specified

length known as the poling period. These oppositely oriented birefringent layers can be

thought of as defining the nonlinear permittivity as a square wave in the ẑ direction (recall

earlier we made the assumption that the electric permittivity χ(2) was independent of z,

this will now be corrected):

χ(2)(z) = χ
(2)
0 sign[cos(

2πz

Λ
)], (1.33)

where χ
(2)
0 is the nonlinear permittivity of the material, z is the position in the crystal, and

Λ is the poling period. Because of the nature of the Sign function we can rewrite χ(2)(z)

as a Fourier series:

χ(2)(z) =
∞∑

n=−∞

Am exp(iknz). (1.34)

By integrating and solving for the Am coefficients we recover:

χ(2)(z) ≈
∞∑

n=−∞

2χ
(2)
0

πn
sin(

πn

2
) exp(

i2πnz

Λ
). (1.35)

We only need one of the terms in this series to be large in order to meet the phase matching

condition, and the choice that will provide the largest term is n = ±1. Then we are left

with:

χ(2)(z) =
2

π
χ

(2)
0 exp(

±i2πz
Λ

). (1.36)

If we insert this z dependent nonlinear permittivity into our integral for the final output

state we get:

|ψt〉 ∼ −1

i~
ε0E0

∫ t

0

dt′
∫
V

d3r
2

π
χ

(2)
0 exp(

±i2πz
Λ

)

√
~ωs

2ε0V

√
~ωi

2ε0V
ˆ
a†s

ˆ
a†i

exp[i(kp − ks − ki)z] exp[i(ωs + ωi − ωp)t]|ψ(0)〉.
(1.37)

Completing the integrals as before and simplifying, the final output state can be written

as:

|ψ(t)〉 ∼ iE0

2

√
ωsωi

2

π
χ

(2)
0 δ(

∆ω

2
)sinc[

(∆k ± 2π
Λ

)Lz

2
) exp[

−i
2

(∆ωt−∆kLz)]|1〉s|1〉i. (1.38)
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This means that our phase matching condition changes to:

kp = ks + ki ∓
2π

Λ
. (1.39)

By tuning the poling period Λ, the extra term in the phase matching equation changes,

effectively meeting the phase matching condition.

It is often desirable to have the signal and idler degenerate (have the same wavelength)

as this makes them indistinguishable and enhances the efficiency of the down-conversion

process. It is essential in the Sagnac geometry to have degenerate pairs to create entan-

glement. Consequently, it is usually required to tune the output photons to the desired

wavelength and still meet the phase matching conditions. It can be difficult to do this solely

with quasi-phase matching as fabrication techniques limit the accuracy and tolerance of

Λ. There is a technique called temperature tuning which can fine tune the phase matching

condition. The index of refraction of the nonlinear material is temperature dependent and

thus ∆k is also temperature dependant based on our earlier definition. This works very

well in conjunction with quasi-phase matching as it is not able to make large changes to

the phase matching, but can fine tune the wavelengths of the output photons if the basic

phase matching condition is already met. This is done by placing the crystal in a oven,

and changing the temperature.

1.7.3 Implementing Unitaries on Single-Photons

Unitary transformations can be described as rotations about a chosen axis. In optics the

chosen method for rotating the polarization of a beam of light, or in our case a photon, is

to use wave plates. A zero-order wave plate (the type used in our experiments) consists

of a thin crystal plate with a very specific thickness, designed to perform a very specific

phase shift on incoming light. A half wave plate (HWP) rotates the light polarization by

180◦ about an axis set at an angle θ from the horizontal axis, in the real plane [28]:

UHWP (θ) = exp

[
iπ

2

](
cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)
. (1.40)
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It is worth noting that the angle θ, which is changed by rotating the wave plate, is a

physical angle and must encode the fact that horizontal and vertical polarizations are only

90◦ apart, as they represent the orthogonal plane waves of the electromagnetic field. For

example, to take a beam from being horizontally polarized to vertically polarized the HWP

must be set at 45◦. This puts the axis of rotation at diagonal, halfway between horizontal

and vertical, which is 90◦ on the Bloch sphere. Quarter wave plates (QWP) operate in

much the same way, but their rotation about the chosen axis is 90◦ instead of the 180◦ for

the HWP:

UQWP (θ) =
1√
2

(
1 + i cos(2θ) i sin(2θ)

i sin(2θ) 1− i cos(2θ)

)
. (1.41)

See Table 4.1 for the wave plate settings used in the envariance experiment.
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Chapter 2

The Entangled Photon Source

2.1 Introduction

A Sagnac source of polarization entangled photon pairs was central to both experiments

reported in this thesis. The present chapter includes more details on the experimental

setup of the source and a discussion of alignment methods and troubleshooting techniques.

2.2 Experimental Setup

The name for the Sagnac source comes from the Sagnac interferometer, which is an interfer-

ometer with counter-prorogating paths on a closed loop. There have been several examples

of different configurations for the Sagnac source over the last few years [29, 30, 31, 32, 33].

The design for the Sagnac used in our experiments (see Fig. 2.1) is based on the designs

shown in Refs. [31, 32] and it follows closely to the setup outlined in [34]. This set-up

configuration was used in both experiments save for the placement of the quarter wave

plate, which will be discussed later. For the set-up in Fig. 2.1, the laser is a Toptica iWave

continuous wave diode laser at 404.5 nm. First the laser passes through an optical isolator

to prevent reflected light from passing back into the laser, and is directed via mirrors to

the first half wave plate (HWP). This wave plate sets the incoming polarization for the
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Figure 2.1: Sagnac source setup. Diagonally polarized 404.5 nm light is pumped through

the lens, traveling in superposition through the two paths created by the polarizing beam

splitter (PBS). The horizontal photons follow the transmitted (counterclockwise) path,

generating pairs of horizontal idler and vertical signal photons (through type II SPDC).

The vertical photons follow the reflected (clockwise) path also generating pairs of horizontal

idler and vertical signal photons (the vertical pump photons are transformed to horizontal

by the HWP in the triangle to satisfy the phase matching in the crystal). As the two

paths are indistinguishable, pumping with an equal coherent superposition of horizontal

and vertical will create an entangled state.
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source. The light passes through a lens (focal length 200 mm) to focus it onto the crystal,

and a dichroic mirror which at 45◦ transmits blue light and reflects red. The beam then

reaches the polarizing beam splitter (PBS). The PBS creates two indistinguishable paths

around the Sagnac triangle. This consists of two mirrors (which form the corners of the

triangle) and a nonlinear crystal (which sits in the centre of the hypotenuse of the Sagnac

triangle). The crystal is a periodically poled potassium-titanyl-phosphate (PPKTP) crys-

tal, 10 mm long and heated at 75◦ to complete the phase matching. Through the process

of spontaneous parametric down-conversion (SPDC) two photons at 808 nm, the signal

and the idler, are emitted from the pump photons. The crystal is set for type II phase

matching so the signal photon is horizontally polarized and the idler photon is vertically

polarized. In this geometry, incoming horizontal light will pass through the PBS and be

reflected counterclockwise around the triangle, creating the pair of 808 nm signal and idler

photons. The two photons pass through the HWP inside the Sagnac triangle which is set

at 45◦, switching their polarizations to a vertical signal and a horizontal idler. At the PBS

the vertical signal photon is reflected to the dichroic mirror, and again reflected. It passes

through a low pass filter to coupler “B”. The horizontal idler photon passes through a

QWP (this is tilted to set the phase of the state) and a low pass filter to coupler “A”. In-

coming vertically polarized light will be reflected clockwise on the PBS around the Sagnac

triangle. It will pass through the triangle HWP before the crystal, changing its polarization

to horizontal. It then down-converts in the crystal producing a horizontal signal photon,

which travels through the PBS to be reflected by the dichroic mirror to coupler “B”, and

a vertical idler photon which is reflected at the PBS through the phase setting QWP and

the filters to coupler “A”. Thus the state produced is:

|ψ〉 = |Hi〉|Vs〉+ eiφ|Vi〉|Hs〉. (2.1)

The phase can be adjusted by tilting the quarter wave plate to give two of the four Bell

states. The other two can be attained by the use of polarization controls in the fibre after

the source.
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2.2.1 QWP Placement

The set-up for this source was done according to the instructions for the setup of a Sagnac

source outlined in Ref. [34]. The only deviation from this in the setup itself was the

placement of the QWP. In Ref. [34] the QWP is placed directly after the HWP that sets

the pump polarization, whereas in the setup for the second experiment in this thesis, the

QWP is placed directly in front of the filter for coupler “A”. This alteration was made

because the original placement caused the beam heading into the Sagnac triangle to be

translated slightly when significant tilt changes were made to the QWP. As the Sagnac

triangle is significantly more challenging to align than the couplers, the QWP was moved

so only the coupler would have to be adjusted when significant tilt changes were made to

the QWP. This becomes particularly useful when switching between different Bell states,

and more easily facilitates creating high fidelity states.

2.2.2 Notes on Back-Reflection

As stated in Ref. [34], every element in the source should be back-reflected as far back to

the pump laser as possible when first aligned. So the reflection off the element in question

should be aligned to the path of the laser beam, using an iris as far back along the laser

path as possible. Certain key elements such as the lens, the crystal and the beam splitter

require very precise back-reflection, or the source will not produce a high quality entangled

state. Another advantage to careful back-reflection is it can be used to replace single

elements in the source without complete realignment. Methods for this are outlined in the

appendix.

2.3 Alignment Methods

Choosing an alignment method is a bit like choosing appropriate footwear, context is

everything. In this section two different methods of alignment will be discussed within

their appropriate contexts. The first is outlined in Ref. [34], and the other is a newly

developed method. These methods target the Sagnac triangle as shown in Fig. 2.2
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Figure 2.2: Sagnac source triangle. The two black rectangles denote the triangle mirrors

referred to later in the alignment methods.
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2.3.1 The “Hiking Boot” Method

This method is outlined in detail in Ref. [34], and a step-by-step procedure is also provided

in this section. The main attribute of this method is that, provided the key elements are

correctly placed, it will always be successful in aligning the Sagnac. For very unaligned

triangle mirrors several iterations may be required, but with each iteration it will move

closer and closer to alignment (there is a caveat to this when approaching perfect alignment.

One of the main drawbacks is it is slow. One iteration can take from 15 min to an hour

to perform and often multiple iterations are required. Another issue is that if the starting

alignment is very good, this method can make it a little worse, making it very difficult to

use it to maintain a very precise alignment. This method however, is very straightforward

and effective, particularly when the setup is very misaligned. This method is designed to

align the Sagnac triangle [34]:

• Set the first HWP so that the pump polarization is horizontal. Adjust the translations

and tilts of the couplers to maximize the singles (or single counts, as opposed to

coincident pairs) for each arm. Record the micrometer readings for all the translation

stages.

• Set the first HWP so that the pump polarization is vertical. Adjust the TRANS-

LATIONS ONLY of the couplers to maximize the singles for each arm. Record the

micrometer readings for all the translation stages.

• Calculate the midpoint between the two positions and set all the translation stages

to this point.

• Set the first HWP so that the pump polarization is diagonal. Adjust the the tilts of

the triangle mirrors such that the total coincidences are maximized.

If the triangle mirrors are significantly misaligned then this process may need to be iterated

several times to achieve the best results (so in other words: rinse and repeat). Significant

improvement should be noticed with each iteration to the point of maximum alignment.
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2.3.2 The “Stiletto” Method

The main attributes for this method are that it is fast and can produce very good results.

One can usually perform multiple iterations in under 15 min, and it can take an already

very well aligned setup and improve it. So when this method works, it works very well.

The only problem with this comes if the starting setup is not already somewhat aligned.

In this case successive iterations of this method can actually take the setup towards even

greater misalignment. This makes it undesirable for first time alignment especially. Ad-

ditionally, although being faster to implement it can also be more difficult to implement

well. That being said it is a great candidate for regular maintenance when the technique is

perfected, and usually produces a higher fidelity result than the other alignment method.

Requirements for effective use of this method are that the triangle mirrors are already

aligned to a certain degree. A good rule of thumb is if it has been aligned in the last few

weeks, the stiletto method will probably work just fine. If it has been months since the

last alignment, it is being realigned after being significantly disturbed, or it is the first fine

alignment, it is best to use the hiking boot. The procedure for the stiletto method is as

follows:

• Set the first HWP so that the pump polarization is horizontal. Note the number of

coincidences between the vertical signal and the horizontal idler.

• Set the first HWP so that the pump polarization is vertical. Note the number of

coincidences between the vertical idler and the horizontal signal.

• Whichever pump polarization resulted in the lower number of coincidences, set the

pump to that polarization. Adjusting the translations only, attempt to bring the

coincidences of this direction to the number of coincidences in the other direction.

• Set the pump polarization to the opposite. One of two things will have happened:

either the previous step will have caused coincidences from both paths to increase,

or the previous step will have increased the coincidences in one direction but not the

other. If the former is true, then it is safe to attempt maximizing coincidences in this

pump polarization using translations. Frequently return to the opposite polarization
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to check that coincidences are increasing together. If this continues to be the case it

is safe to adjust the tilts as well, still switching back and forth between the two pump

polarizations. If increasing the coincidences in one path decreased them in the other,

then the two paths are not perfectly superimposed. Using translation only, attempt

to equate the coincidences in both paths. A good rule of thumb is to always work

from the path with the lower coincidences and bring it halfway between its current

number and the number that the other path currently has. Usually this will manifest

itself in one degree of freedom more so than the other (i.e. vertical translation or

horizontal translation). It is good to note which direction shows the most problems

with path overlap as that direction will need more significant adjustments from the

mirrors.

• Once the couplers are set, adjust the first HWP so that the pump polarization is

diagonal. This should allow for a superposition of both paths. Adjust the triangle

mirrors starting with the tilt direction that caused the most problems in the previous

steps. Adjust the mirror tilts such that it maximizes the total number of coincidences.

For the horizontal tilts do this by walking the two mirrors in the same direction; for

the vertical tilts do this by walking the two mirrors in the opposite direction.

• If in the previous steps the coincidences for each path did not increase together

repeat the procedure until this is the case. There should be progress made with each

iteration to this point. If that is not the case the setup may not be aligned well

enough to effectively implement this method, or there may be other problems with

the source. we expect coupling efficiency of ∼ 20% (ratio of singles to coincidences)

when the source is optimally coupled.

2.4 General techniques for achieving high fidelity Bell

states

Producing a high fidelity (∼ 99%) Bell state from a Sagnac source depends first on the

alignment and second on the various parameters of the measurement process. For the
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alignment, what is most important is how it was originally set up, and what procedure is

being used to maintain it. The setting of the parameters strongly depends on the goals of

the individual experiment. Some general guidelines are included here for how to optimize

the three main parameters under various scenarios: laser power, coincidence window and

counting time.

2.4.1 Set-up and Maintenance

Step-by-step instructions for correct setup of a Sagnac source are outlined in Ref. [34].

In order to achieve the best quality states with the highest count rates, it is strongly rec-

ommended to follow the instructions in Ref. [34] to the letter. The only exception being

the placement of the QWP which controls the phase of the output state. This should be

placed in one of the outgoing arms, as recommended earlier for the best possible results.

Maintaining a high fidelity Bell state can be difficult if this is not done, and also switching

to a different Bell state will wreck the alignment. This is because if large changes are made

to the tilt in the QWP (required for some state changes) then the beam will be translated.

Once the setup is initially aligned it will need to be fine tuned and maintained. After

reaching a lower threshold alignment using the hiking boot method (recommended fidelity

of at least 85%), the Stiletto method can be used to fine tune and maintain the alignment.

This method can be used on a daily basis to produce the best possible results. Other

components that should be checked and adjusted daily are the polarization controllers and

the phase setting QWP. In our case the tilt of the QWP was the most unstable component

and had to be set moments before taking data to achieve the best results. If the remaining

components are securely mounted they shouldn’t require adjustment for months at a time.

2.4.2 Laser Settings

Laser power settings are usually set to meet the required count rates of the experiment, with

the consideration that if the power gets too high double pair emissions start to take place.

Double pair emission is an effect of SPDC whereby instead of emitting one correlated pair of
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Figure 2.3: Measured visibility as a function of laser power. Here we compare the percent

visibility of the state in the horizontal/vertical basis measured at different laser power

levels to track the detrimental effects of double pair emissions..
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photons, two pairs of correlated photons are emitted simultaneously. The effects of double

pair emission can be seen in the visibility of a maximally entangled state. By comparing

the visibility of the state over a range of powers we found that the optimal visibility given

the performance of the laser at low power, was at 3 mW as is shown in Fig. 2.3; however,

we opted for a power level of 6 mW to satisfy other experimental considerations. In

general,aside from laser issues, reducing power will increase the visibility until accidental

coincidences start to dominate, then the visibility will drop. The difference in visibility

between 3 and 6 mW was 0.06%, so the effect on the final results was acceptably small. If

the primary goal is the highest fidelity possible, then lower power is better.

2.4.3 Coincidence Window

The coincidence window is a (variable) parameter which limits the time lapse between

two detection events for them to be considered as ”coincident”, i.e., ”detected at the

same time”. This is important because photon pairs are created at the same time, and

should therefore be measured coincidentally after they are spatially separated. A tighter

coincidence window cuts down on the background, but if it is too tight many counts can be

lost. One method to optimize it is to tighten the window until the measured coincidences

start to drop. A very tight coincidence window can be problematic because once it goes

below the detector jitter than there is no benefit for signal-to-noise and it just decreases

coincidences. The best results were obtained when the alignment and phase setting were

performed with a 3 ns window, and measuring and taking data was done with a 1 ns

window. Changing this setting from 3 to 1 ns was enough to boost the state fidelity from

98% to 99%. This improvement is apparent when comparing the visibility of the two cases

as shown in Table 2.1.

2.4.4 Counting Time

The counting time for each measurement is one of the parameters most affected by experiment-

specific requirements. In our envariance experiment (chapter four) we limited our count

time to 5 s to limit the effects of phase and polarization fluctuations in our experimental
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Figure 2.4: State fidelity and uncertainty as a function of measurement count time.

For three different trials we show the fidelity of adjacent state measurements and the

uncertainty in that fidelity for different measurement count times. Trial 1 tested the

widest range of count times and subsequent trials tested increasingly narrower ranges of

count times. Trial 1 shows a nonlinear relationship between uncertainty in the fidelity and

count time (this is to be expected as this uncertainty was calculated using a Poissonian

distribution). Trials 1 and 2 show that although increasing the count time continues to

decrease the uncertainty it doesn’t necessarily increase the fidelity (we believe this is due

to drift in the source during the measurement process). Trials 2 and 3 indicate that the

count range between 15 and 25 seconds produces the most consistent results in the fidelity.
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Basis 3 ns Coinc. Window 1 ns Coinc. Window

H, V 98.4% 99.5%

D, A 98.2% 99.1%

R, L 98.8% 99.1%

Table 2.1: Percent visibility for different coincidence windows. Here we show the percent

visibility for three different basis measurements with two different coincidence windows.

setup over time. However, we did several tests of how to achieve the highest fidelity be-

tween adjacent measurements by adjusting the count time of the measurements. Fig. 2.4

shows the results of three different trials comparing adjacent fidelity measurements and

their uncertainty with measurement count time. We found the most consistent results at

a measurement count time of ∼ 20 s. This length provided consistent fidelities and good

statistics (low uncertainty) for the state. Significantly longer times led to stability issues,

and significantly shorter times led to higher uncertainty, and therefore impacted the fideli-

ties between adjacent states. Unfortunately, although we made extensive attempts to run

the experiment for longer count times (15 − 20 s), our best results overall came from a

shorter count time (5 s) because of the dominating issues with source drift over the length

of the experiment.

2.5 Trouble-shooting a Sagnac Source

Even following the previously suggested procedure for maintenance sometimes optics can

be knocked or bumped. When its unclear which component is misaligned there is definitely

a preferred order to try to fix things. This often happens at the least opportune times and

can mean the entire setup requires realignment. There is a way to do a lot of replacement

fixes without complete realignment, and it involves making use of the other back-reflected

components. This procedure is outlined in the appendix and can save tremendous amounts

of time, but only works as well as the other elements are back-reflected. It also becomes

more and more challenging depending on how many elements are tampered with while

trying to find the problem. This is why a preferred order to adjusting optics is important.
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The safest order for trouble-shooting is a bit like medical procedure: start with the least

invasive options.

2.5.1 Initial Inspection

A good cursory look at the setup before trying any alignment options is always a good

idea. If one of the mounting elements has been broken or displaced it is usually visually

apparent just from following the line of the laser path. If there is something broken or out

of place that goes unnoticed, subsequent attempts to align the source will result in further

misalignment and make it very difficult to realign the broken or out of place element (see

the appendix for details on procedures for replacing broken items). So after taking a very

close look at all the elements to see if anything is obviously misaligned then try one of

the alignment methods (if “stiletto” doesn’t provide results try the “hiking boot”). If it

is clear that the problem still lies in the source and not in whatever analyzer or setup is

connected to the source, then follow the sections bellow checking items depending on what

the symptoms of the problem are. Most of the items listed aim to trouble-shoot low counts

and/or low fidelity.

2.5.2 Spectral Filters

The filters are almost at the very end of the path so adjusting them only affects the coupler

alignment. If they are not properly back-reflected this can really hurt the measured count

rates. The reason for this is that filters are usually designed to operate with the incoming

beam at normal incidence on their surface. If the incoming beam is not at normal incidence,

the filter will have a lower transmission for the desired wavelength resulting in lower counts.

Checking the back-reflection of the filters and re-coupling can fix this problem without

disturbing the rest of the source. If there are a lot of problems with noise in the state

that alignment isn’t solving the filters may be letting too much of the pump through.

Another less dominant source of noise is higher order effects from down-converting in a

periodically poled material. As described in section 1.7, the Fourier series representation
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of the nonlinear permittivity is:

χ(2)(z) ≈
∞∑

n=−∞

2χ
(2)
0

πn
sin(

πn

2
) exp(

i2πnz

Λ
). (2.2)

We can pick out one term, or value of n to phase match and it will be dominant; however,

the other terms can cause the creation of photons at other wavelengths, creating noise

in the state. Both this and the pump leakage can by checked by looking at the output

through a spectrometer with single-photon sensitivity. Getting a higher-quality low-pass

filter, or multiple filters will solve the pump problem, and putting in a band-pass filter at

the appropriate wavelength will get rid of higher order effects from the down-conversion.

2.5.3 Wave Plates

All three of the wave plates should be calibrated with respect to the PBS in the Sagnac

triangle. This can be checked with minimal disturbance to the rest of the source. The first

HWP (this sets the polarization of the pump) can be calibrated by blocking the horiztonal

port of the PBS and placing a power meter in the vertical exit port. Rotate the wave plate

to minimize the power and this will give the zero for the wave plate and the horizonal pump

setting. For the second HWP (inside the Sagnac triangle) set the pump horizontal and

place the power meter in front of the QWP by coupler “A” . Turn the HWP to minimize

the power, this is a setting of 45◦ for the HWP. Also check to make sure the beam is going

through the centre of the wave plates, and the HWPs should be back-reflected.

2.5.4 Crystal

There are two main things to consider when trying to fix the crystal alignment: linear

translation and tilt. Try the linear translation first. If the crystal is back-reflected properly

there should be minimal coupling changes so the singles shouldn’t decrease much with

translation. This is a good check to see if the crystal is indeed tilted properly. If the

singles remain high, and low coincidences are the issue it could be the crystal isn’t quite

equidistant along the two paths and should be translated along the beam until maximum

coincidences are found.
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2.5.5 Dichroic Mirror

First check to see that the beam is indeed going through the centre of the dichroic mirror.

Next it should have been aligned to reflect the beam coming out of the Sagnac triangle

by 90◦. Assuming the beam was originally lined up along the holes in the optical table

(which it should have been) the reflected beam should also line up along the holes. Placing

two irises in, one close to the dichroic and one as far away as possible, will reveal if this is

indeed the case.

2.5.6 Lens

First check to make sure the beam is in the exact centre of the lens and that the lens

is back-reflected. Ideally the lens should be on a translation stage along the line of the

incoming beam, which will allow for fine tuning the distance from the crystal. If the beam

is not focused properly on the centre of the crystal, this can seriously hurt the efficiency

of the down-conversion process. It is important to do the appropriate calculations first

to ensure the lens choice and approximate distance from the crystal are correct. The

lens translation will have to be fine tuned from this point to maximize coincidences, and

can always be put back in the approximate same place (if it gets bumped or needs to be

replaced) and fine tuned to maximize coincidences.

2.5.7 Polarizing Beam Splitter

The beam splitter is one of the most difficult elements to trouble-shoot as it is very difficult

to realign if moved. It is recommended to start with some visible cues before doing anything

drastic. If you are working with a cube beam splitter, and the clamp that is holding it to

the mount is pressing on the diagonal joint holding the two faces together, then the beam

splitter will not behave optimally and will hurt the quality of the state. Space is often very

tight in a Sagnac, so be sure to check that none of the beams exiting or entering the beam

splitter are being clipped, and that they are all well-centred on the beam splitter face. If

there are concerns about the quality of the beam splitter you can easily characterize it with
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a polarizer in the incoming beam, and check the output power in the two output ports.

If the beam splitter leaks too much horizontal light into the vertical port, or too much

vertical light into the horizontal port, this will hurt the visibility of the output state. If

the beam splitter angle or placement needs to be adjusted it is best to use irises and not

touch any other elements until you have confirmed it has been correctly placed (See the

appendix for more detailed instructions on how to replace this element).
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Chapter 3

An Experimental Test of Three

Families of Bell’s Inequalities

3.1 Notes and Acknowledgements

In this chapter we successfully test three new families of Bell inequalities using the entan-

gled photon Sagnac source, showing close agreement to the theoretical predictions of Wolfe

and Yelin [12].
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Bonsma, C. Noel, J. M. Donohue, E. Wolfe. and K. J. Resch, Phys Rev. A 87, 2105

(2013).
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formed the experiment and analyzed the data. CN contributed to the initial assembly of

the experiment. JD wrote the necessary Labview code. LV and MB jointly produced the

first draft. All authors contributed to editing the final version.
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3.2 Introduction

Quantum mechanics is one of the most well-tested and precise predictive theories in physics.

Many of the features predicted by the quantum mechanical formalism are strange, yet the

rapidly growing field of quantum information science is finding application for them in pow-

erful new technologies [8]. One of the strangest and most important features of quantum

mechanics was discovered by John Bell in that quantum predictions cannot be explained

by local realistic descriptions of nature [36]. This discovery was expressed in the form of

mathematical inequalities that were refined by subsequent work [11]. Bell’s inequalities

can place bounds on correlations imposed by local and nonlocal realistic theories [37, 38]

and can be used as witnesses to detect entanglement [39]. They are applied in emerging

technologies such as quantum key distribution [40, 41], quantum communication complex-

ity results [42], certification of random number generation [43], and lowering error rate in

classical communication schemes [44].

Bell’s inequalities have been the subject of a wide variety of experiments, from early

experiments using polarization-entangled photon sources from atomic cascades [45, 46] to

later experiments using bright sources from parametric down-conversion [47, 48, 49, 50, 51]

and other physical systems [52, 53]. The inequalities have also been extended theoretically

to include larger numbers of particles [38, 54, 55, 56, 57, 58, 59, 60, 61], more measure-

ment settings [62] and higher dimensional quantum systems [63]. Three families of Bell

inequalities were recently investigated in Ref. [12] which have important consequences for

comparing quantum correlations to those governed by local hidden variable models. The

most well-known examples of Bell inequalities and tests of nonlocality [36, 11, 38, 54, 55]

achieve maximal violation using maximally entangled states, such as Bell states or GHZ

states [54], which have unpolarized subsystems and hence zero marginal expectation values.

In contrast, two of new families of inequalities include contributions from marginal expec-

tation values which in general require non-maximally entangled states to achieve maximal

violations; they are furthermore able to explore a larger volume of correlation, as quantified

by the analysis in Ref. [35], providing new insights into the limits quantum correlations.

In the present work, we subject these new families of Bell inequalities to experimental test
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Family c1 c2 c3 c4 c5 c6 c7 c8

LHVMMax

QMMax

x+ 3 ∀x ≥ −1
3

QB1 0 0 0 0 1 1 1 x |x+ 1|+ 2 √
(x−1)3

x ∀x < −1
3

|x|+ 2 ∀|x| ≥ 2
QB2 x 0 0 0 1 1 1 −1 |x|+ 2 √

2x2 + 8 ∀|x| < 2

3|x| − 2 ∀x ≥ 2

QB3 x x −x 0 1 1 1 −1

3|x| − 2 ∀x ≥ 2

|x|+ 2 ∀1 ≤ |x| < 2

|x|+ 2 ∀|x| < 2√
(2−x2)(4−3x2)−x2

1−x2 ∀x < 1

Table 3.1: Three new families of Bell inequalities: QB1, QB2, and QB3. The coefficients

defining the Bell operators are shown. Also shown are the maximum bounds for the

Bell parameter, 〈Z〉, using the local hidden variable model (LHVM) and the quantum

mechanical model (QM) [12].
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over a wide range of parameters using entangled photons.

Consider a bipartite system with measurement settings Ai and Bj for particles 1 and 2,

respectively, with outcomes ai = ±1 and bj = ±1, respectively. Expectation values of joint,

or two-particle, measurements can be expressed as 〈AiBj〉 = P (ai = bj) − P (ai = −bj),
i.e., the difference between the probability that the two outcomes are the same and the

probability that they are different. Expectation values of marginal measurements can be

expressed as 〈Ai〉 = P (ai = 1)−P (ai = −1), which is the difference between the probability

of measuring +1 and the probability of measuring −1. Ref. [12] introduced a two-particle

Bell operator Z,

Z ≡ c1A0 + c2A1 + c3B0 + c4B1 + c5A0B0

+c6A1B0 + c7A0B1 + c8A1B1, (3.1)

where the ci are real constants. Note that Z contains both two-particle and single-particle

operators. Three families of Bell’s inequalities, QB1, QB2, and QB3, were derived from

the operator Z using parameterized sets of the coefficients, ci, as shown in Table 3.1. In

each family, the ci are either constant or depend on a single adjustable parameter x. Local

hidden-variable models (LHVM) result in upper limits for the Bell parameter, 〈Z〉, which

were shown to be functions of x. These Bell’s inequalities are violated by quantum me-

chanics (QM) over specific ranges of x in each family. The bounds derived in Ref. [12] for

LHVM and QM are shown in Table 3.1. The CHSH inequality [11] is perhaps the most

well-known Bell inequality. Each new family of Bell inequalities considered here includes

the CHSH inequality as a special case; specifically QB1, QB2, and QB3 reduce to the

CHSH inequality for parameter values x = 1, x = 0, and x = 0, respectively. Maximal

violation of the CHSH inequality can be achieved with a two-qubit maximally entangled

state, such as a Bell state. However, maximally entangled states have completely unpo-

larized subsystems, and thus any single-particle, or marginal, expectation value 〈Ai〉, 〈Bj〉
for a maximally entangled state is 0.

The inequalities QB2 and QB3 contain single-particle expectation values. For these

marginals to have an impact on the Bell parameter 〈Z〉, the particles must have partially-
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Figure 3.1: Optimal tangle [10] required to achieve the maximum Bell parameter. These

plots show the numerically calculated tangle, τ , of a state of the form of Eq. 3.2 which

achieves the maximum Bell parameter as a function of x for QB1 (solid red), QB2 (dashed

blue), and QB3 (dotted green). (A state with τ = 1 is maximally entangled while τ = 0

indicates no entanglement; non-maximally entangled states have a value 0 < τ < 1.)

QB2 and QB3 in general require non-maximally entangled states to achieve the largest

Bell parameter. For QB1 the optimal tangle is τ = 1 until x < −1/3. For x ≥ −1/3

the maximum value of 〈Z〉 can be reached with any amount of entanglement, which we

represent by a shaded region, but there can be no Bell inequality violation since QM and

LHVM models predict the same bound. The tangle can be expressed in terms of the angle

α in Eq. 3.2 by the relation τ = sin2 (2α). [10].41



polarized subsystems which arise in non-maximally-entangled states. It is also unclear a

priori if the unequal magnitude coefficients of the joint expectation values in QB1 would

require non-maximally entangled states to optimize the Bell inequality violations. To

investigate this, we consider entangled states of the form

|ψ(α)〉 = cosα|HH〉+ sinα|V V 〉, (3.2)

where the angle α is an adjustable parameter that determines the amount of entangle-

ment. We represent each measurement setting, Ai and Bj, with an operator ~σ·n̂, where ~σ =

(σx, σy, σz) is a vector of Pauli matrices and the unit vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ)

where choice of the angles determines the setting. Using the mathematica function

nmaximize, we find the state and measurement settings which maximize the Bell param-

eter 〈Z〉 for each Bell inequality for each value of the parameter x.

In Fig. 4.2 we plot the amount of entanglement, as characterized by the tangle (τ =

sin2 (2α) given our parametrization of the state) [10], required to maximize 〈Z〉 as a function

of the parameter, x, for QB1 (solid red line), QB2 (dashed blue line), and QB3 (dotted

green line). For the Bell inequality QB1, a maximally entangled state is needed to reach

the maximum violation when x < −1/3; for x ≥ 1/3 there exist states with any amount

of entanglement which can achieve the maximum expectation value of Z, which we depict

as the red region, but no violation of Bell’s inequality is possible in this regime since

the LHVM and QM maxima coincide. For QB2 and QB3, Bell inequality violations are

possible when |x| < 2 and |x| < 1, respectively. In these regions non-maximally entangled

states are required to achieve the maximum Bell inequality violation. The only exceptions

are the cases where x = 0, reducing these inequalities to the CHSH inequality which

requires a maximally entangled state for maximum violation. To effectively test these

new inequalities over the largest possible parameter space requires a source of entangled

photons with variable entanglement.
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Figure 3.2: Experimental setup. Pairs of polarization-entangled photons were generated

via spontaneous-parametric down-conversion and measured using two polarization analyz-

ers. The pump beam was rotated using a half-wave plate (HWP) and quarter-wave plate

(QWP), then focused on a periodically-poled KTP (PPKTP) crystal. The down-converted

photons traveled though long-pass (LP) and band-pass interference (IF) filters to remove

any remaining pump signal before coupling into single-mode fibres. Projective measure-

ments were taken, and photons were detected with silicon avalanche photo-diodes (APDs)

and analyzed with coincidence logic.
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3.3 Experiment

Our experimental setup is shown in Fig. 4.1. In the state-preparation part of the experi-

ment, polarization-entangled photon pairs are generated using parametric down-conversion

in a polarization-based Sagnac interferometer [64, 65, 66]. A 5mW CW diode pump laser

with centre wavelength 404.8nm is focused on a 20mm PPKTP crystal, phase-matched

to produce photon pairs at 809.8nm and 809.3nm from type-II nearly degenerate down-

conversion. The polarizing beamsplitter (PBS) in the source splits the pump beam into two

components, one circulating in a clockwise direction and the other in a counter-clockwise

direction. HWP2 inside the interferometer ensures that the pump beam enters the crystal

with horizontal polarization in both directions. The photon pairs are thus created in a su-

perposition of propagation direction (clockwise or counter-clockwise) in the interferometer

and are converted into polarization entanglement upon recombination at the PBS. After

emerging from the PBS, the light is coupled into single-mode fibres containing polarization

controllers to direct the light to the polarization analyzers. The polarization of the pump

laser is controlled using HWP1 and a quarter-wave plate (QWP) oriented at 0◦ and tilted.

In conjunction with the polarization controllers, these waveplates enable production of the

non-maximally entangled states of the form shown in Eq. 3.2.

The photon pairs emerge from fibres in the measurement part of the experiment. We

used the angles of first two wave plates, a HWP followed by a QWP, to determine the basis

for the measurement. The final HWP was set to either 0◦ or 45◦ to measure the +1 and −1

outcomes, respectively, for a given measurement setting. After the analyzer wave plates,

the photons in the transmitted ports of the PBSs were coupled into single-mode fibres and

directed to single-photon counting detectors (Perkin-Elmer SPCM-AQ4C), labelled Alice

and Bob, from which coincidence events were recorded with an 3 ns window. Typical rates

were about 25 kCps for singles counts and 1.4 kCps for coincidence counts.

We begin by characterizing the states produced by our source. We use |H〉 and |V 〉
to describe the horizontal and vertical polarization states; we use the notation |D〉 =

1√
2
(|H〉 + |V 〉), |A〉 = 1√

2
(|H〉 − |V 〉), |R〉 = 1√

2
(|H〉 − i|V 〉), and |L〉 = 1√

2
(|H〉 + i|V 〉).

We performed quantum state tomography on the coincidence counts from an overcomplete
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Figure 3.3: Reconstructed density matrices. Quantum state tomography was per-

formed on two sample states, a) where the target was the maximally entangled state

|ψ(45◦)〉 = 1√
2

(|HH〉+ |V V 〉) and b) where the target was the non-maximally entangled

state |ψ(22◦)〉 = cos 22◦|HH〉+sin 22◦|V V 〉. The density matrices were reconstructed from

our experimental data using the maximum likelihood method in Ref. [16]. Fidelities with

the target states were a) 0.982 and b) 0.978.
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set of polarization measurements |H〉, |V 〉, |D〉, |A〉, |R〉, and |L〉 for each photon and a

measurement time of 3 s per setting. The experimental density matrix was reconstructed

using the maximum likelihood iterative method from Ref. [16]. Sample reconstructed

density matrices are shown in Figs. 4.3a) and b) for the maximally entangled target states

|ψ(45◦)〉 and the non-maximally entangled state |ψ(22◦)〉. The fidelity [67] of these states

with their target states are 0.982 and 0.978 for a) and b) respectively. These fidelities were

representative of those states measured for other values of α.

To experimentally test the Bell inequalities, we chose the state and measurement set-

tings at the analyzer to obtain the maximum theoretical value of the Bell parameter as

predicted by our numerical optimization. To extract each joint expectation value, we con-

figured the measurement settings using the first HWP and QWP in each analyzer, then

measured 4 coincidence counts corresponding to the four combinations of ±1 outcomes

on each side using the final HWPs. The inequalities QB2 and QB3 require marginal ex-

pectation values and these were extracted from coincidence measurements by averaging

results from those cases where the relevant operator appeared in a joint expecation value.

For example, our measurement of the marginal 〈A0〉 was extracted from the coincidence

counts taken when measuring 〈A0B0〉 and 〈A0B1〉. We collected Bell measurements with

a measurement time of 1 s for each waveplate setting.

3.4 Results and Discussion

Our experimental results can be found in Fig. 3.4. The measured Bell parameter is plot-

ted as a function of the parameter, x, for a) QB1, b) QB2, and c) QB3. The maximum

theoretical values (see Table 3.1) possible according to quantum mechanics are shown as

a solid line while the maximum value from a local hidden variable model are shown as a

dotted line. Any experimental data points with a value greater than the LHVM dotted

line violate the corresponding Bell inequality. It is clear from these plots that our data

indeed violate these families of inequalities over a large range of parameters.

To explore the range of parameters where we observe a violation, we plotted the value
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Figure 3.4: Experimentally measured Bell parameters for three families of Bell inequalities.

The measured values for the Bell inequalities a) QB1, b) QB2, and c) QB3 are shown as a

function of the parameter x. The experimentally measured values are shown as circles, and

the solid line shows the theoretical quantum limit. The theoretical bounds imposed by local

hidden variable models (LHVM) are shown as a dotted line. Error bars were not included

for parts a)–c) because they were smaller than the size of the data points. In panels d)–

e), we plot a function N , which, when positive, is the number of standard deviations of

violation of the Bell inequality versus x. The shaded areas in panels a)–e) indicate regions

where a Bell inequality violation is possible, and the vertical lines inside this region show

the range over which our experiment achieved a 3σ or greater violation. For QB1, we found

a 3σ or greater violation between x = −3 (largest negative value tested) and x = −0.6.

For QB2, we found a 3σ or greater Bell violation between x = −0.9 and x = 0.9, which

represents 49% of the total possible range according to quantum mechanics. For QB3, the

range of 3σ violation or greater was between x = −0.6 and x = 0.7, representing 74% of

the range possible according to quantum theory.
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of the function N = (〈Z〉Expt − 〈Z〉LHVM) /∆〈Z〉 versus x, where 〈Z〉Expt is the experimen-

tally measured Bell parameter, ∆〈Z〉 is the standard deviation in that result, and 〈Z〉LHVM
is the maximum value allowed by LHVM. If the value of the function N is positive, then it

quantifies the size of the violation in terms of number of standard deviations over the max-

imum local hidden variable prediction. If N is negative, then no violation was observed.

The results of these measurements are shown in Fig. 3.4d)–f). The maximum violation, in

terms of number of σ, occurred for QB2 and QB3 at x = 0, and for QB1 at x = −1. In

these three particular cases each inequality reduces to the familiar CHSH inequality. Theo-

retically it is possible to observe a violation over a specific range of parameters; these ranges

are depicted as the shaded grey regions in each plot. However, comparing these regions to

the theoretical lines in Fig. 3.4a)–c), we see that near the borders the maximum QM and

LHVM values converge making Bell violation experimentally very challenging. Using Pois-

sonian errors for the experimentally measured counts, we calculated N as a function of x

in Figs. 3.4d)–f). We estimated the range of x over which significant, > 3σ, violation of the

inequalities was achieved. We found x ≤ 0.6, |x| ≤ 0.9, and −0.6 ≤ x ≤ 0.7 for QB1, QB2,

and QB3 respectively. For QB2 and QB3 this corresponds to a range which is 49% and

74%, respectively, of the theoretically possible range. (We do not include such a measure

for QB1 since the range of x over which theory predicts a violation is semi-infinite.)

3.5 Conclusion

We have experimentally tested the three families of Bell inequalities derived in Ref. [12].

We identified the specific relationship between maximal violation of each Bell inequality

and the entanglement of the associated quantum state. We have measured very good

agreement with theory and shown strong violations of the inequalities, up to 29σ, over a

wide range of the parameters. We have demonstrated significant violation of the inequal-

ities QB2, and QB3 over 49% and 74% respectively of the theoretically possible range of

parameters. Our results serve as a benchmark for these Bell inequalities, as extending the

range violations significantly will require substantive improvements in source fidelity and

photon pair production rates.
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Chapter 4

An Experimental Test of Envariance

4.1 Notes and Acknowledgements

This chapter is being incorporated into a paper for publication with the following authors:

L. Vermeyden, J. Lavoie, M. Bonsma, X. Ma, U. Sinha, R. Laflamme and K. J. Resch.

Author Contributions RL and KJR conceived the idea for the experiment. KJR,

JL and LV designed the experimental setup. LV performed the experiments, analyzed the

data and wrote the first paper draft. MB and JL contributed to building the experimental

setup. XM, US, and RL provided theoretical support. All authors contributed to writing

the final manuscript.

4.2 Introduction

Symmetries play a central role in physics with wide-reaching implications in fields as diverse

as spectroscopy and particle physics. It is therefore of fundamental importance to identify

and understand new symmetries of nature. One recently identified symmetry in quantum

mechanics has been named environment-assisted invariance, or envariance [14]. It applies
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in certain cases where a composite quantum object consists of a system part, labelled S,

and an environment part, labelled E. If some action is applied to the system part only,

described by some unitary transformation, US, then the state is said to be envariant under

US if another unitary applied to the environment, UE, can restore the initial state. For

pure quantum states, this can be expressed,

US|ψSE〉 = (uS ⊗ 1E)|ψSE〉 = |ηSE〉 (4.1)

UE|ηSE〉 = (1S ⊗ uE)|ηSE〉 = |ψSE〉. (4.2)

Envariance is an example of an assisted symmetry [15] where once the system is transformed

under some unitary US, it can be restored to its original state by another operation on a

physically distinct system: the environment.

Envariance is a uniquely quantum symmetry in the following sense. A pure quantum

state represents complete knowledge of the quantum system. In an entangled quantum

state, however, complete knowledge of the whole system does not imply complete knowledge

of its parts. It is therefore possible that an operation on one part of a quantum state can

alter the global state, but its local effects are masked by incomplete knowledge of that

part; the effect on the global state can then be undone by an action on a different part. In

contrast, complete knowledge of a composite classical system implies complete knowledge

of each of its parts. Thus transforming one part of a classical system cannot be masked by

incomplete knowledge and cannot be undone by a change on another part.

Envariance plays a prominent role in work related to fundamental issues of decoher-

ence and quantum measurement [14, 69, 15]. Decoherence converts amplitudes in coherent

superposition states to probabilities in mixtures and is central to the emergence of the

classical world from quantum mechanics [70, 71]. Mathematically the mixture appears in

the reduced density operator of the system which is extracted from the global wavefunction

by a partial trace [72, 8]. This partial trace limits the approach for deriving, as opposed to

separately postulating, the connection between the wavefunction and measurement proba-

bilities known as Born’s rule [1], since the partial trace assumes Born’s rule is valid [14, 73].

Envariance was employed in a derivation of Born’s rule which sought to avoid circularity

inherent to approaches which rely on partial trace [14]. For comments on this derivation,

see for example [73, 75, 74].
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4.3 Experiment

In the present work, we subject envariance to experimental test in an optical system. We

use the polarization of a single photon to encode the system, S, and the polarization of

a second single-photon to encode the environment, E. A single-photon is not as complex

as most natural environments; however we require precision control over the environment

component, necessitating a relatively simple quantum system. We subject the system

photon to a wide range of polarization rotations with the goal of bench-marking the de-

gree to which we can restore the initial state by applying a second transformation on the

environment photon.

Our test requires a source of high-quality two-photon polarization entanglement, an

optical set-up to perform unitary operations on zero, one, or both of the photons, and

polarization analyzers to characterize the final state of the light. Our experimental setup

is shown in Fig. 4.1. We produce pairs of polarization-entangled photons using spontaneous

parametric down-conversion (SPDC) in a Sagnac interferometer [64, 65, 66]. In the ideal

case, this source produces pairs of photons in the singlet state,

|ψSE〉 =
1√
2

(|H〉S|V 〉E − |V 〉S|H〉E) , (4.3)

where |H〉 (|V 〉) represents horizontal (vertical) polarization, and S and E label the pho-

tons. This state is envariant under all unitary transformations and has the convenient

symmetry that US = UE for all US. We pump a 20 mm periodically-poled KTP crys-

tal (PPKTP), phase-matched to produce photon pairs at 809.8 nm and 809.3 nm from

type-II down-conversion using 6 mW from a CW diode pump laser with centre wave-

length 404.8 nm. The output from the source is coupled into single-mode fibres, where

polarization controllers correct unwanted polarization rotations in the fibre. The light is

coupled out of the fibres and directed to two independent polarization analyzers. Each

analyzer consists of a half-wave plate (HWP), quarter-wave plate (QWP), and a polarizing

beam-splitter (PBS). Between the fibre and the analyzers are two sets of wave plates—a

QWP, a HWP, then another QWP—which can be inserted as a group into the beam paths

to implement controlled polarization transformations. Photons from both ports of each

PBS are detected using single-photon counting modules (Perkin-Elmer SPCM-AQ4C) and
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Figure 4.1: Experimental setup. The entangled photon pairs are created using type-II

spontaneous parametric down-conversion. The pump laser is focused on a periodically-

poled KTP crystal and pairs of entangled photons with anti-correlated polarizations are

emitted. The pump is filtered using a band-pass filter, and polarization controls adjust

for the alterations due to the coupling fibres. The entangled photon pairs are set so one

photon is considered the system, and the other is considered the environment. After the

source the unitary transformations are applied. A three wave plate combination is required

to apply an arbitrary unitary transformation: quarter wave-plate (QWP), half wave-plate

(HWP), QWP. A set of this combination of wave plates is mounted on each translation

stage which can slide the wave plates in and out of the path of the incoming photons. The

photons are then detected using polarizing beam splitters (PBS) and two wave plates to

take projective measurements. The counts are then analyzed using coincidence logic.
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Rotation Axis α(θ) β(θ) γ(θ)

x̂ π/2 −θ/4 π/2

ŷ π/2 + θ/2 θ/4 π/2

ẑ π/4 −π/4− θ/4 π/4

Table 4.1: Wave plate settings used to implement polarization rotations. The angles α,

β and γ are the wave plate angles for the first QWP, the HWP and the second QWP

respectively. The angle θ is the rotation angle of the polarization about the specified axis

on the Bloch sphere.

Figure 4.2: Experimental measurement procedure. We investigated the impact of each

unitary transformation by performing quantum state tomography at three different stages:

directly on the initial state with no unitary transformations (I), on the state with a trans-

formation applied to the system photon (II), and on a state with the same transformation

applied to both the system and environment photon (III).

analyzed using coincidence logic with a 1 ns coincidence window, counting for 5 s. We

typically measured total coincidence rates of 5.4 kHz across the four detection possibilities

for photons S and E.

For our experiment, we implemented rotations about the standard x̂, ŷ, and ẑ axes of

the Bloch sphere; in addition we implemented rotations about an axis m̂ = (x̂+ ŷ+ ẑ)/
√

3.

The wave plate angles used to implement rotations by an angle θ about the x̂, ŷ, and ẑ

axes are shown in Table 4.1; the angles to implement rotations about m̂ were determined

numerically using Mathematica.
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Our experiment proceeds in three stages as depicted in Fig. 4.2: first characterizing

the initial state (I), then characterizing the state after a transformation is applied to the

system photon (II), and finally characterizing the state after that same transformation is

applied to both system and environment (III). We record a tomographically-overcomplete

set of measurements at each stage, performing the 36 combinations of the polarization

measurements, |H〉, |V 〉, |D〉 = 1√
2
(|H〉+ |V 〉), |A〉 = 1√

2
(|H〉−|V 〉), |R〉 = 1√

2
(|H〉+ i|V 〉),

and |L〉 = 1√
2
(|H〉− i|V 〉) on each photon and counting for 5 s for each setting. The states

were then reconstructed using the maximum likelihood method from Ref. [16].
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Figure 4.3: a) Is the real and imaginary parts of the reconstructed density matrix of

the initial state from the source (stage I of the procedure). It has 0.987 fidelity [67] with

the ideal. b) The system photon is transformed using wave plates set to implement the

rotation of 90◦ about the x̂ axis, stage II. The resulting density matrix shown has 0.488

fidelity with the ideal initial state, 0.501 with the initial reconstructed state and 0.995

with the expected state, calculated by transforming the density matrix from a). c) The

reconstructed density matrix after the same unitary from b) is applied to both photons,

stage III. This state has a 0.987 fidelity with the ideal, 0.995 with the reconstructed state

from a), and 0.997 with the expected state calculated by transforming the state from part

a).
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This procedure was repeated for a diverse range of transformations. We configured our

setup to implement unitary rotations in multiples of 30◦ from 0◦ to 360◦ about each of

the x̂, ŷ, ẑ, and m̂ axes. The data acquisition time for this procedure over the set of 13

rotation angles about each axis was approximately six hours. The source was realigned

before each run to achieve maximum fidelity with the singlet state from 0.985 to 0.990.

Figure 4.3a)–c) show the real and imaginary parts of the reconstructed density matrix

of the quantum state at the three stages in the experiment, I, II, and III respectively. The

fidelity [67] of the state during these samples of two of the stages are 0.987 for both I a),

and III c), respectively, and is defined as [67]:

F (ρ, σ) = {Tr[(
√
ρσ
√
ρ)1/2]}2

. (4.4)

We can use this definition to calculate the fidelity between the state at stages I and III.

Comparing between the states shown in Fig. 4.3 panels a) and c) the resulting fidelity is

0.995.
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Figure 4.4: Analysis of the experimental results. Panels a)–d) show the fidelity analysis

results for unitary rotations about x̂, ŷ, ẑ, and m̂ axes as functions of rotation angle. The

coloured data points are the comparison between stage I and stage III (comparing the

source state and the state after the unitary has been applied to both qubits). The open

circles show a theoretical comparison. Panels e)–h) show the quantum Bhattacharyya

results comparing stage I and stage III in the coloured data points for each of the four

axis, with the open circles being the theoretical comparison. For plots which include a

comparison of stage I and II (applying the unitary to one qubit only) and theoretical

comparisons, see the appendix. The error bar for each graph is the standard deviation of

comparisons of source state measurements during the experiment.
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4.4 Results and Discussion

The summary of the results from our experiment is shown in Fig. 4.4. The coloured data

points in Fig. 4.4a)–d) show the fidelity of the experimentally reconstructed state at stage

III with the reconstructed state from the initial stage I, i.e., F (ρIexpt, ρ
III
expt), as a function

of the rotation angle for rotations about the x̂, ŷ, ẑ, and m̂, respectively. The open circles

show the theoretical expectation for the fidelity between the measured state at stage I with

the expected state in stage III, calculated by acting the unitaries on the measured state

from stage I, i.e., F (ρIexpt, ρ
III
th ). The fidelities are very high, close to the limit of 1, in all

cases and we see reasonable agreement with expectation.

We considered the effects of Poissonian noise and waveplate calibration on our results

and found that these effects were too small to explain the deviation between F (ρIexpt, ρ
III
expt)

and F (ρIexpt, ρ
III
th ). To account for this, we characterized the fluctuations in the state pro-

duced by the source itself by comparing the state produced in subsequent stage I sates

in the data collection; recall that stage I for each choice of unitary is always the same

(no additional waveplates inserted) and thus provides a good measure of the source stabil-

ity. Specifically, we calculated the standard deviation in the fidelity of the state produce

at a stage I in the ith round of the experiment to that produced in the next, (i + 1)th,

stage I, F (ρI,iexpt, ρ
I,i+1
expt ). The standard deviation in these fidelities calculated from the data

taken within each set of rotation axes are shown as representative error bars on the plots in

Figs. 4.4a)–d). The standard deviation of this quantity over all the experiments was 0.0008.

We characterize the difference between the measured and expected fidelities by calculating

the standard deviation in the quantity, F (ρIexpt, ρ
III
expt)−F (ρIexpt, ρ

III
th ), for each experiment.

(This is the difference between the coloured and open data points in Figs. 4.4a)–d).) over

all experiments to be 0.002. This value is comparable to the error in the fidelity due to

source fluctuations. Refer to the appendix to see the comparison between stage I and stage

II, which would not fit on the scale of Fig. 4.4.

From our data, we extract the average fidelity F (ρIexpt, ρ
III
expt) for the set of measurements

made for each unitary axis and show the results in Table II. As measured by the average

fidelity, our experiment benchmarks envariance to 0.9966± 0.0004,((99.66± 0.04)% of the

ideal) averaged over all rotations.

58



Rotation Axis Average Fidelity Average BC

x̂ 0.997± 0.001 0.9997± 0.0001

ŷ 0.9973± 0.0007 0.99966± 0.00008

ẑ 0.9984± 0.0006 0.99975± 0.00007

m̂ 0.9941± 0.0007 0.9994± 0.0001

Overall average: 0.9966± 0.0004 0.99963± 0.00005

Table 4.2: Summary of the results for comparing stages I and III using fidelity and Bhat-

tacharyya Coefficient (BC) analysis and averaging over each unitary rotation. The overall

average is representative of the overall envariance of our state.

Fidelity has conceptual problems as a measure for testing quantum mechanics, since

tomography assumes quantum mechanics to reconstruct the density matrices required to

compute the value. The Bhattacharyya Coefficient (BC) is a measure of the overlap of

the probability distributions for discrete distributions where pi and qi are the probability

of the ith element for each distribution, the BC is defined [3],

BC =
∑
i

√
piqi. (4.5)

If we normalize the measured tomographic data by dividing by the sum of the counts,

we can treat this as a probability distribution. The BC then can be calculated using the

distribution of measurements at each stage in the experiment, directly analogous to the

approach used with fidelity. It should be noted that the BC has some limitations when

applied in this case. If two quantum states produce identical measurement outcomes, its

value is 1. Unlike fidelity though, it is not the case that the BC goes to 0 for orthogonal

quantum states. For example, the BC for two orthogonal Bell states measured with an

overcomplete set of polarization measurements is 7/9. Furthermore, the value of the BC

is dependent on the particular choice of measurements taken. While we are employing a

commonly-used measurement set for characterizing two qubits, other choices would pro-

duce different BCs. Nevertheless, this metric can be employed to quantify the envariance

in our experiment without quantum assumptions, making it appropriate for testing quan-
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tum mechanics.

Our experiment procedure included three stages, I measurements of the source, II

measurements after we apply the unitary to only one qubit, and III measurements after

applying the same unitary to both qubits. The fidelities and Bhattacharyya Coefficients

between stages I and II, and stages I and III as a function of the rotation angle are shown

in Fig. 4.5 for rotation axes, x̂, ŷ, ẑ, and m̂. Panels a)–d) show the fidelity, and panels

e)–h) show the Bhattacharyya Coefficient (BC). The open circles show the theoretical

expectation for various unitaries. For the fidelity comparison the theoretical model applies

perfect unitaries to the imperfect measured state. For the BC comparison the theoretical

model applies perfect unitaries to the reconstructed state from stage I. We observe very

good agreement between the measured and predicted results.

The Bhattacharyya Coefficients from our measured data are shown in Fig. 4.4e)–h). We

normalize the measured counts from stages I and III to give us probability distributions

pIexpt and pIIIexpt. The coloured data points in Figs. 4.4e)–h) show the BC between these

distributions, BC(pIexpt, p
III
expt). The open circles are a theoretical expectation of the BC

given the tomographic measurements from stage I; for these theoretical values we used state

tomography, and thus assumed quantum mechanics, to obtain the expected distribution

pIIIth and calculate the expected BC, BC(pIexpt, p
III
th ).

Using an analogous procedure to that employed with the fidelity, we estimate the un-

certainty in the BC by comparing subsequent measured distributions in stage I throughout

the experiment, i.e., BC(pI,iexpt, p
I,i+1
expt ). A representative error bar calculated from the data

for a set of unitaries around the same axis are shown in Fig. 4.4e)–h). The standard

deviation in this quantity over all the data is 0.00005. As before we characterize the dif-

ference between the measured and expected BCs as the standard deviation of the quantity

BC(pIexpt, p
III
expt) − BC(pIexpt, p

III
th ) which is 0.00009 over all experiments. As before, this

value is comparable to the error due to source fluctuations. Data showing the BC between

stage I and II are shown in the appendix along with analogous theoretical comparison.

A summary of the BC analysis results are in Table 4.2. The average measured BC is

0.99963± 0.00005 ((99.963± 0.005)% of the ideal) across all tested unitaries.
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Figure 4.5: Summary of of the experimentally measured fidelity and the Bhattacharyya

Coefficient for a wide range of unitaries. Panels a)–d) show the fidelity analysis results for

unitary rotations about x̂, ŷ, ẑ, and m̂ axes as functions of rotation angle. The coloured

data points are the comparison between stage I and stage III, and stage I and stage II.

The open circles show the theoretical comparison which takes the state from stage I and

applies theoretical unitaries. Panels e)–h) show the Bhattacharyya results comparing stage

I and stage III, and stage I and stage II, in the coloured data points for each of the four

axis, with the open circles being the theoretical comparison.
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4.5 Conclusion

We have experimentally tested the property of envariance on an entangled two-qubit quan-

tum state. Over a wide range of unitary transformations, we experimentally showed envari-

ance at (99.66± 0.04)% when measured using the fidelity and (99.963± 0.005)% using the

Bhattacharyya Coefficient. Deviations from perfect envariance are in good agreement with

theory and can be explained by our initial state fidelity and fluctuations in the properties

of our state. Our results serve as a benchmark for the property of envariance, as improv-

ing the envariance of the state significantly would require substantive improvements in

source fidelity and stability. It would be interesting to extend tests of envariance to higher

dimensional quantum states and specifically to more complex environments.
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Chapter 5

Conclusion

We successfully tested two fundamental properties of quantum mechanics, experimentally

verifying their characteristics to a high precision and in close agreement with theoretical

predictions. This was made possible through improvements to state preparation, includ-

ing a new alignment method for the Sagnac source and careful optimization of laser and

measurement parameters as outlined in chapter two.

In chapter three, we experimentally tested the three families of Bell inequalities recently

derived by Wolfe and Yelin [12], following closely to their theoretical predictions. We used

the Sagnac source as the quantum platform, and mapped out the largest area of violation

of the LHVM to date. This result serves as a benchmark for this area of violation and for

general testing of these new inequalities. A next step may be to experiment with other

parameterizations of the generalized Bell inequality that were not included in the three

families presented by Wolf and Yelin [12].

In chapter four we demonstrated with high precision the property of envariance as

described by Zurek in Ref. [15]. The results for this test of envariance are the highest

precision to date and therefore serve as a benchmark for this property, which is related

to a proof of Born’s rule [15]. A next step for this experiment would be a four-qubit

experiment that demonstrates a property of envariance used in the proof of Born’s rule
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called “fine-graining” [1]. It involves the envariance of a two-qubit entangled state under

swap in the case of unequal coefficients. Because of the unequal coefficients in the state, in

order to test it experimentally it must be rewritten as a three-qutrit, or for experimental

convenience, a four-qubit state with equal coefficients. This four qubit state could be

tested experimentally under a swap operation. This would effectively test the property of

“fine-graining” used in Zurek’s proof.
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Appendix A

Replacement Techniques for an

Entangled Photon Sagnac Source

A.1 Replacing Elements

In this section tips and procedures for replacing key elements of the Sagnac source without

having to perform a complete realignment are included. This is particularly relevant for

replacing elements that are damaged or knocked out of place. For some elements this is

quite trivial, but for other elements it can be quite challenging.

A.1.1 Replacing the Lens

The ease of replacing the lens greatly depends on whether the thickness of the lens is

changing. Before removing anything, place irises in the line of the beam, one directly after

the lens and one much further down the beam line. If the replacement lens has the same

focal length as the original, then place it in the same spot; align it so it is back-reflected

and the beam goes through the exact centre. Some fine tuning on the translation along the

beam will be required to find the optimum focus for the light. If the lens is a significantly

different thickness, then the beam will be displaced by a different amount than it was
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originally, and the rest of the setup after the lens will be misaligned. Depending on the

severity of the displacement difference, it may be fastest to realign the entire setup after

the lens as outlined in Ref. [34]. To determine this, check to see if there are still coincidence

counts coming through. If so, small alignment adjustments may be enough. In this case,

adjust the dichroic mirror (if required) such that the beam goes through the centre, then

use the hiking boot method to realign the triangle. If there are few to no coincidences,

then perform a complete realignment.

A.1.2 Replacing the Dichroic Mirror

Similarly to the lens, changing a dichroic is only a major problem if the displacement of the

beam changes. If the new dichroic has caused a different beam shift from the last one, then

follow a similar procedure as with the lens. To achieve the proper angle for the dichroic,

make use of the grid on the optical table. Otherwise use a rotating mount; back-reflect the

dichroic then turn it 45◦ on a rotation stage.

A.1.3 Replacing the Last HWP

Since the second HWP is after the beam splitter on the optical path, replacing it is relatively

simple. Put the new wave plate in roughly the same place as the old one. Ensure the beam

goes through the centre of the wave plate and that it is back-reflected. Zero the wave plate

to the polarizing beam splitter as discussed in the trouble-shooting section in chapter two.

A.1.4 Replacing the Crystal

The process of replacing a crystal is simplified if it does not involve changing the oven. In

this case put the crystal in the oven as close to where the other crystal was and check the

back reflection. It will probably need some adjustment, but it should be very close. The

oven will also probably need to be translated to maximize coincidences, ensuring that it is

equidistant between the two paths. There should be enough coupling to accomplish this
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easily, then a fine tuning alignment is typically required for the best results.

If the oven has to be replaced, try to mark out where it was as clearly as possible. Place

the new oven there in such a way so that the new crystal is as close as possible to where

the old crystal was, i.e., the beam is going straight through the length of the crystal when

being pumped from either direction (back-reflect in both directions). Once the crystal is

correctly placed, follow the instructions above for alignment. Note: if the triangle mirrors

have been altered from alignment, they must be fixed FIRST before replacing the crystal.

See Ref. [34] for aligning the mirrors. The section for replacing the mirrors included in

this appendix requires the crystal be already correctly in place and back-reflected.

A.1.5 Replacing the Triangle Mirrors

If only one mirror needs replacing, this makes the process easier, and if the mounts for the

mirrors are not moved from the original location this also becomes easier. Starting with

the best case scenario:

• Only one mirror is being replaced and the mount doesn’t need to be moved:

In this case, assuming the other mirror is aligned properly, remove the mirror that

needs to be replaced and put the new mirror in. Making sure the pump is only

traveling such that it hits the replaced mirror first, tilt the mirror until the crystal

is back-reflected. If this is not possible, it means the mount for the replaced mirror

has been disturbed. If back-reflection is possible, the paths should be overlapping,

and walking the mirrors as described in the alignment methods should be sufficient.

• Only one mirror is being replaced and the mount must be moved or has been dis-

turbed:

Level the mirror being replaced (i.e., put an iris in aligned to the incoming beam,

place the mirror as far from the iris as possible, and tilt until the beam is reflected

perfectly back through the iris). Now place the mirror (don’t tilt) such that the

crystal is back-reflected (pump in one direction, hitting the replaced mirror first).

Now walk the mirrors according to the alignment methods.

68



• Both mirrors need to be replaced, but the mounts don’t need to be moved:

Place the new mirrors in, trying not to disturb the mounts. Tilt the mirrors one at

a time (pumping in different polarizations for each), to back-reflect the crystal. If

you are successful, proceed to walk the mirrors according to the alignment method.

If not, the mounts have been disturbed.

• Both mirrors need to be replaced and both mounts need to be moved (or have been

disturbed):

Level one mirror and place so as to back-reflect the crystal (again pumping with the

appropriate polarization). Do the same for the other mirror, then walk the mirrors

as described by the alignment methods.

A.1.6 Replacing the Polarizing Beam Splitter

This is the most difficult element to replace, and this is due to the number of degrees of

freedom that have to be accounted for to achieve alignment. This procedure is easiest if the

triangle mirrors haven’t been touched. Assuming the mirrors haven’t been touched, start

with placement: place so that the incoming beam is approximately in the centre of the PBS

and the reflected port goes through the centre of the HWP in the triangle. Check to make

sure that the reflected beam going into the coupler goes through the centre of the filter.

Now back-reflect along the line of the incoming beam. The last degree of back-reflection

is in the direction of the reflected beam going into the triangle. Use the back-reflection of

the crystal to align this direction. If the mirrors have been moved then placing becomes

a little trickier as the only reference is the incoming beam and the HWP in the triangle,

but it is still possible. For back-reflecting the last degree of freedom use the HWP in the

triangle’s back-reflection. This is all much easier with reference irises placed along all the

different PBS ports to help with placement.

69



References

[1] M. Born, Z. Phys. 38, 803 (1926).

[2] R. Jozsa, J. Mod. Opt. 41, 2315 (1994).

[3] A. Bhattacharyya , Bulletin of the Calcutta Mathematical Society 35, 99 (1943).

[4] B. E. Kane, Nature 393, 133 (1998)

[5] J. Majer J. M. Chow, J. M. Gambetta, Jens Koch, B. R. Johnson, J. A. Schreier, L.

Frunzio, D. I. Schuster, A. A. Houck1, A. Wallraff, A. Blais, M. H. Devoret, S. M.

Girvin and R. J. Schoelkop, Nature 449, 443 (2007)

[6] E. Knill, R. Laflamme and G. J. Milburn, Nature 409, 46 (2001).

[7] J. L. O’Brien, Science 318, 1567 (2007)

[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information

(Cambridge University Press, 2010).
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