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Abstract 

Previous studies have examined stress-induced heme oxygenase-1 (HO-1) 

expression primarily in mammalian systems. The present study examines, for the first 

time in amphibians, the effect of heat shock, sodium arsenite, cadmium chloride, and the 

proteasomal inhibitor MG132 on HO-1 accumulation in Xenopus laevis A6 kidney 

epithelial cells. Western blot analysis revealed that exposure of A6 cells to a range of heat 

shock temperatures (30-35 °C), which induced HSP30 accumulation, did not induce HO-

1 accumulation. In contrast, cells treated with sodium arsenite (5-50 µM), cadmium 

chloride (50-200 µM) or MG132 (5-30 µM) exhibited a dose- and time-dependent 

accumulation of HO-1. Additionally, immunocytochemical analysis revealed that HO-1 

and HSP30 accumulation occurred in a granular pattern primarily in the cytoplasm in 

cells treated with sodium arsenite, cadmium chloride, or MG132. In cells recovering from 

sodium arsenite or cadmium chloride treatment, HO-1 and HSP30 accumulation initially 

increased to a maximum at 12 h and 24 h recovery, respectively, followed by a 50% 

reduction at 48 h. This initial increase in the relative levels of stress proteins was likely 

the result of new synthesis as it was inhibited by cycloheximide. In comparison, cells 

recovering from MG132 treatment displayed reduced but prolonged accumulation of HO-

1 and HSP30. Interestingly, cells treated with low concentrations (10 µM) of sodium 

arsenite or MG132 but not cadmium chloride in combination with a mild 30 °C heat 

shock had enhanced accumulation of HO-1 and HSP30 accumulation compared to either 

of the stressors individually. This study has shown for the first time in amphibians that 

HO-1 accumulation is induced in response to metals and proteasomal inhibitors, 

suggesting that it may play a role in mediating the cellular stress response in X. laevis.  
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1. Introduction 

Organisms routinely face stressful stimuli that pose a threat to their survival. The 

effects that these stressors have on cells at the molecular level can disrupt the structure of 

protein, resulting in unfolded proteins that form aggregates (Morimoto, 1998). Damaged 

proteins and protein aggregates are detrimental to cell survival. As proteostasis is essential to 

proper cellular functioning, two protective mechanisms have evolved: the heat shock 

response and the ubiquitin-proteasome protein degradation pathway. Furthermore, stressful 

stimuli may result in the formation of reactive oxygen species (ROS), resulting in oxidative 

stress, another cytotoxic condition (Fauconneau et al., 2002). Oxidative stress is combated by 

an array of antioxidant enzymes, and heme oxygenase-1 (HO-1) is recognized as an 

antioxidant defence protein (Uppu et al., 2010). 

 

1.1. Heat Shock Proteins (HSPs) 

Heat shock proteins (HSPs), also known as stress proteins, are molecular chaperones, 

some of which are expressed under stress conditions, while others may be constitutively 

expressed (Morimoto, 1998; 2008; Mymrikov et al., 2011).  They are grouped into at least 

six families based on size including HSP110, HSP90, HSP70, HSP60, HSP40, and the small 

HSPs (sHSPs; Katschinski, 2004). HSPs are generally highly conserved, and have been 

found in organisms ranging from bacteria to humans (Kregel, 2002). Under stressful 

conditions, stress-inducible HSPs prevent the aggregation of unfolded proteins. Additionally, 

they contribute to protein refolding once the stress is alleviated, and are involved in the 

degradation of proteins damaged beyond repair (Morimoto, 1998; 2008). In addition to their 

activities under stress conditions, they also play a role in both development and normal cell 
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function. HSPs that are constitutively expressed are involved in protein synthesis and folding 

(Hendrick and Hartl, 1993). Some HSPs prevent aggregation of unfolded proteins by binding 

to their hydrophobic regions and maintaining their solubility in the cell (Becker and Craig, 

1994). 

 

1.2. Small HSPs 

There is documentation of the existence of small heat shock proteins (sHSPs) in 

bacteria, plants, nematodes, insects, crustaceans, amphibians and mammals (Allen et al., 

1992; Wotton et al., 1996; Boston et al., 1996; Waters et al., 1996; Linder et al., 1996; 

Michaud et al., 1997; Liang et al., 1997; Ohan et al., 1998a; MacRae, 2000; Sun and 

MacRae, 2005; Heikkila, 2010). SHSPs bind improperly folded proteins and transfer them to 

ATP-dependent chaperones such as HSP70, for refolding or for degradation by the 

proteasome (Mymrikov et al., 2011). SHSPs range from 12 to 43 kDa in size and are not 

highly conserved except for an 80-100 amino acid long α-crystallin domain (MacRae, 2000; 

Van Montfort et al., 2001; Acunzo et al., 2012; Garrido et al., 2012). This domain, which is 

made up of 6-8 β-strands, is found in the lens proteins αA-crystallin and αB-crystallin 

(Katschinski, 2004).  

SHSPs can form multimeric complexes up to 1 MDa, which appear to be essential for 

their chaperone activity (Ohan et al., 1998, Heikkila, 2003; Sun & MacRae, 2005). Research 

suggests that sHSPs may be involved in actin capping and decapping, apoptosis prevention, 

modulation of redox parameters, cellular differentiation and the acquisition of 

thermotolerance (Arrigo et al., 1998; MacRae, 2000; Van Montfort et al., 2001; Heikkila et 

al., 2004; Garrido et al., 2012). They are induced in cells by a range of stresses including 
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heavy metals, sodium arsenite, proteasomal inhibitors and heat shock (MacRae, 2000; 

Gellalchew & Heikkila, 2005; Akerfelt et al., 2007). Once expression is induced, the 

multimeric sHSP complexes prevent detrimental protein aggregation by binding to unfolded 

proteins and keeping them in a soluble state (Heikkila, 2004; Garrido et al., 2012). Protein 

aggregation, which can be lethal to a cell, has been implicated in many diseases including 

Alzheimer’s and Parkinson’s, in which protein aggregates are associated with the pathology 

of the disease (Calabrese et al., 2003; 2008; Garrido et al., 2012). Furthermore, they have 

also been implicated in other conditions including cataracts and muscular dystrophy (Sun and 

MacRae, 2005; Mymrikov et al., 2011).  

 

1.3. Heat shock response 

 The heat shock response (HSR) was discovered in 1962 in Drosophila and has been 

extensively studied in both prokaryotes and eukaryotes (Ritossa, 1962; Parsell and Lindquist, 

2003). The HSR leads to the upregulation of HSP accumulation to protect cells from 

proteotoxic stress (Morimoto, 2008). The HSR is activated when unfolded proteins 

accumulate in response to heat, heavy metals, oxidants, and other stressors (Akerfelt et al., 

2007; Morimoto, 2008).  

 

1.4. Stress-induced regulation of hsp gene expression 

 Stress-induced regulation of hsp gene expression is mainly regulated at the 

transcriptional level, although there is also evidence for regulation of the level of mRNA 

stability and translation (Kim and Jang, 2002; Heikkila et al., 2007). Constitutive or stress-

inducible transcription of hsp genes involves the binding of heat shock factor (HSF) to the 
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heat shock element (HSE) found in their promoters (Voellmy, 2004). Four HSFs have been 

discovered to date, including HSF1, HSF2, and HSF4 in mammals, and the avian-specific 

HSF3 (Voellmy, 2004; Yamamoto et al., 2009). HSF2 is activated during animal 

development, while HSF3 is involved in stress-induced hsp gene expression in birds (Rallu et 

al., 1997; Voellmy, 2004). HSF4 expression has been observed in the human heart, brain, 

skeletal muscle, and pancreas (Nakai et al., 1996).  

HSF1, the HSF family member responsible for activating the HSR in higher 

organisms, is activated by a variety of stressors including thermal shock, proteasomal 

inhibitors, and heavy metals (Morimoto, 1998; Voellmy, 2004; Tonkiss and Calderwood, 

2005).  Under non-stress conditions, HSF1 persists as a cytosolic monomer that is bound to 

HSP90 (Fig. 1). When a cell is subjected to proteotoxic stress such that there is an increase in 

unfolded protein, HSP90 is recruited to inhibit their aggregation. This permits HSF1 to form 

trimers (Voellmy, 2004). The HSF1 trimer is hyperphosphorylated at serine and threonine 

residues, and subsequently translocated to the nucleus, where it binds to the heat shock 

element (HSE) in the 5’ promoter region of the hsp genes to initiate transcription by RNA 

polymerase II (Voellmy, 2004; Tonkiss and Calderwood, 2005). These stress-inducible HSPs 

prevent unfolded proteins from forming damaging aggregates, and also assist in refolding 

once cellular conditions return to normal.  

 

1.5. Heme oxygenase 

Heme oxygenase (HO) catalyzes the degradation of pro-oxidant heme to iron, carbon 

monoxide, and bilirverdin by cleaving the α-methene carbon bridge of heme (Fig. 2; Uppu et 

al., 2010).  Biliverdin is subsequently reduced to bilirubin by biliverdin reductase. There are 
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Figure 1. Stress-induced activation of the heat shock response (HSR). External stress 

(indicated by the lightning bolt) can cause native proteins within the cell to unfold. HSP90, 

which is bound to HSF1 under normal conditions, is recruited to prevent the aggregation of 

unfolded proteins. The unbound HSF1 monomers trimerize and translocate to the nucleus. 

The phosphorylated HSF1 trimer binds to the heat shock element within the 5’ promoter of 

hsp genes, which initiates transcription by RNA polymerase II. Newly translated stress-

induced HSPs bind to unfolded protein to assist in the prevention of protein aggregation.  
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Figure 2. Enzymatic activity of heme oxygenase. Heme oxygenase catalyzes the 

breakdown of heme into equimolar amounts of iron, carbon monoxide, and biliverdin. 

Biliverdin is then converted to bilirubin through the action of biliverdin reductase. 

Additionally, two molecules of NADPH and three oxygen molecules are required, and two 

NADP+ and three water molecules are released (adapted from Kirkby and Adin, 2006). 
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three HO isoforms that have been discovered, which are named HO-1, HO-2, and HO-3. The  

HO-1 and HO-2 proteins that had already been sequenced were found to share an amino acid 

percent identity of 43% (Maines, 1997). HO-2 and HO-3 are much more similar, sharing 

90% of the same amino acids.  

HO-1, the focus of this research, is the inducible isozyme (Ryter et al., 1999). It is a 

32 kDa protein which is expressed in kidney, liver, and is found in greatest amounts in the 

spleen as this is where senescent erythrocytes are sequestered and hemoglobin is degraded 

(Raju et al., 1997). HO-2 is a constitutive 36 kDa protein that is not stress-inducible (Lee et 

al, 1996). It is generally found in the brain, endothelium, and testes. Unlike HO-1, which is 

induced by a wide array of stressors, HO-2 was induced only by adrenal glucocorticoids 

(Maines, 1997). The 33 kDa HO-3 isoform, which is similar to HO-2, has low enzyme 

activity although its mRNA was detected in many organs (McCoubrey et al., 1997). It is 

thought to play a role in heme sensing and binding (Immenschuh and Ramadori, 2000). It 

was detected in the brain, heart, testes, liver, kidney, and spleen (Siow et al., 1999). 

 

1.6. Heme oxygenase-1 

1.6.1. Ho-1 gene regulation 

Ho-1 gene expression is controlled mainly at the transcriptional level (Shibahara et 

al., 1978; Ryter et al., 2006). The ho-1 gene has a wide variety of inducer-responsive 

elements such as the stress response element (StRE; also called antioxidant response element 

[ARE]), cadmium response element (CdRE) and heat shock element (HSE; Choi and Alam, 

1996; Lee et al., 1996). These elements are found in the 5’ region, where there are two 

inducible enhancers, E1 and E2, as well as a promoter (Choi and Alam, 1996; Alam et al., 
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2000). Several protein families were implicated in ho-1 gene activation including nuclear 

factor-κB (NF-κB), nuclear factor-erythroid 2 (NF-E2), activator protein-1 (AP-1) and heat 

shock factor (HSF; Alam & Cook, 2007). Consensus sequences to which AP-1, NF- κB, and 

HSF1 bind were identified in the promoter region of ho-1 genes (Choi and Alam, 1996; 

Maines, 1997; Hartsfield et al., 1998; Hartsfield et al., 1999).  

In mammalian systems, a variety of inducers were shown to induce HO-1 

accumulation via Nrf2, including curcumin, MG132, sodium arsenite, and cadmium (Alam et 

al., 2000; Wu et al., 2004; Yamamoto et al., 2010; Wang et al., 2013). Nrf2, a NF-E2 family 

member, is a transcription factor that is inactivated when bound to Kelch-like erythroid-cell-

derived protein with cap’n’collar homology-associated protein 1 (Keap1). In response to 

redox-dependent stimuli, Cys273 and Cys288 of Keap1 are modified. This causes the 

dissociation of Nrf2, which then translocates to the nucleus. Nrf2 forms a heterodimer with 

Maf protein and they bind to Maf recognition elements (MARE) to induce the expression of 

antioxidant genes (Fig. 3; Balogun et al., 2003; Li et al., 2008b). Additionally, inactivation of 

bric-a-brac and cap’n’collar homology (Bach1) protein, a thiol-rich transcriptional repressor, 

is required for Nrf2 to induce HO-1. Bach1 forms a heterodimer with a small Maf protein 

and binds to DNA at ARE-like enhancers until it is inactivated by pro-oxidants (Reichard et 

al., 2007). Additionally, Bach1 can be inactivated through direct binding with heme (Ogawa 

et al., 2001). Another protein implicated in HO-1 induction is p38 MAPK, which was found 

to induce Nrf2 translocation (Balogun et al., 2003; Gong et al., 2004). Curcumin was 

determined to activate the HO-1 gene through regulation of transcription factor Nrf2 and the 

NF- κB pathway, while MG132 and cadmium act through the p38 MAPK pathway (Alam et 
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Figure 3. Regulation of HO-1 gene by Nuclear factor-erythroid 2-related factor 2 

(Nrf2). Nrf2 is the transcription factor that is responsible for the induction of the HO-1 gene. 

When there is a lack of external stressors, Nrf2 is bound to Kelch-like erythroid-cell-derived 

protein with CNC homology (ECH)-associated protein 1 (Keap1), which sequesters it in the 

cytoplasm. Bach1, a repressor, forms a heterodimer with a Maf transcription factor, and the 

complex binds to Maf recognition elements (MARE; an antioxidant response element or 

ARE) to prevent transcription of the gene. When cells are exposed to stress, Bach1 is 

exported from the nucleus, the Nrf2-Keap1 heterodimer dissociates, Nrf2 is imported into the 

nucleus. It binds to MAREs within the HO-1 gene and activates transcription (adapted from 

Naito et al., 2011).  
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al., 2000; Hill-Kapturczak et al., 2001; Balogun et al., 2003; Wu et al., 2004; Gonzalez-

Reyes et al., 2013). Cadmium and MG132 induction of HO-1 also involves MARE/Nrf2 

(Alam et al., 2000; Cui et al., 2013). Arsenite also induces HO-1 through Nrf2 and the p38 

pathway (Elbirt et al., 1998; Lau et al., 2012). 

 

1.6.2 HO-1 function 

Heme oxygenase-1 (HO-1; also known as HSP32) was first identified in 1968 by 

Tenhunen et al. HO-1 catalyzes the catabolism of heme to iron, carbon monoxide, and 

biliverdin, which is then converted to bilirubin. This requires NADPH molecules, which are 

provided by NADPH-cytochrome P450 reductase. Heme, when it is not bound to 

hemoproteins, is able to promote deleterious iron-dependent reactions, which can generate 

ROS and lead to membrane lipid peroxidation (Ewing and Maines, 1997; Ryter and Tyrell, 

2000).  

Studies with HO-1 null or deficient organisms demonstrate that HO-1 is critical for 

organisms. HO-1-/- mice that were exposed to endotoxin exhibited higher mortality rates than 

wild type mice (Poss and Tonegawa, 1997). The only known case of HO-1 deficiency in 

humans was characterized by growth retardation, hemolytic anemia, endothelial damage, iron 

deposition, as well as increased vulnerability to oxidative stress-related injury (Yachie et al., 

1999).  

HO-1 plays a protective role against diverse stressors, likely through the effects of its 

catalytic by-products, which are free iron, carbon monoxide, and bilirubin via the action of 

biliverdin reductase on biliverdin (Fig. 4). Free iron leads to the expression of ferritin, the 

protein that sequesters Fe2+. This protects the cells from the adverse effects of free iron. In  
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Figure 4. Heme degradation pathway and the effects of its degradative products. 

Through the action of stress-inducible HO-1 and constitutive HO-2, heme is degraded to 

biliverdin (BV), iron, and carbon monoxide (CO). Biliverdin reductase (BVR) catalyses the 

conversion of biliverdin to bilirubin (BR). Bilirubin, a potent free radical scavenger, 

contributes to a decrease in reactive oxygen species (ROS) and nitric oxide (NO). Iron 

induces the expression of ferritin, which sequesters it to reduce the toxic effects of free iron, 

although iron may still contribute to an increase in ROS. CO inhibits apoptosis, proliferation, 

and is anti-inflammatory. CO also increases levels of sGC, which causes protective vascular 

relaxation through its effect on cGMP (adapted from Kim et al., 2011).  
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addition to the action of ferritin, intracellular iron is also removed by an ATPase pump 

(Ferris et al., 1999). Bilirubin is a potent antioxidant through its scavenging of reactive 

oxygen species (ROS; Morita et al., 1997). Carbon monoxide, although most often thought of 

as toxic, confers a protective effect in lower doses than that which lead to carbon monoxide 

poisoning. On an organismal level, carbon monoxide is a second messenger that also 

contributes to vascular function through its regulating action on vascular tone (Morita et al., 

1997). It also suppresses production of tumour necrosis factor alpha (TNFα), as part of its 

anti-inflammatory effect. Carbon monoxide may also inhibit the release of mitochondrial 

cytochrome c, which is an apoptosis signal. This may explain why HO-1 was reported to 

protect endothelial cells from apoptosis (Siow et al., 1999). Additionally, HO-1 was induced 

by agents that cause oxidative stress including sodium arsenite, UV radiation, hyperoxia, and 

glutathione depletion. This suggests that HO-1 is important in the cellular defense 

mechanism against oxidative and inflammatory damage (Keyse and Tyrrell, 1989; Elbirt et 

al., 1998; Oguro et al., 1998, Otterbein et al., 1999). 

 

1.6.3. Stressed-induced HO-1 accumulation 

HO-1, the enzyme that breaks down heme, is induced by its substrate (Yoshida et al., 

1988). HO-1 is also induced by oxidative stress in rat, cow, and fish cells (Turner et al., 

1999; Motterlini et al., 2000; Wang et al., 2008). Hyperthermia or heat shock as an inducer of 

HO-1 was demonstrated in vivo in a variety of rat organs, European sea bass liver, mouse 

Sertoli cells, human fibroblasts, and in certain rat and human hepatoma cells (Taketani et al., 

1988; Keyse and Tyrrell, 1989; Mitani et al., 1990; Raju and Maines, 1994; Lee et al., 1996; 

Hachfi et al., 2012; Li et al., 2014). Conversely, HO-1 was not induced by heat shock in 
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human alveolar macrophages, an erythroblastic cell line, fibroblasts, two hepatoma cell lines, 

glioma, HeLa, or HL60 cells (Yoshida et al., 1988; Keyse and Tyrrell, 1989; Taketani et al., 

1989; Mitani et al., 1990; Okinaga et al., 1996). Interestingly, HO-1 expression in spleen and 

kidney of European sea bass decreased after heat shock (Hachfi et al., 2012). The 

mechanisms involved in the responses of different cells or tissues to heat shock with respect 

to HO-1 accumulation is not known at present. 

Many disease states have been observed to involve the induction of HO-1. These 

include neurological diseases such as Alzheimer’s, Huntington’s, and Parkinson’s (Smith et 

al., 1994; Schipper et al., 1998; Pappolla et al., 1998). Additionally, HO-1 is associated with 

the pathogenesis of diverse pulmonary diseases such as emphysema and adult respiratory 

distress syndrome (Lee et al., 1996). Furthermore, it was detected in high levels in prostate 

and brain cancer tumours, where HO-1 appears to have a cytoprotective effect (Maines and 

Abrahamsson, 1996; Hara et al., 1996; Fang et al., 2004). Interestingly, in the presence of an 

oxidative chemotherapeutic agent, tumour cells with blocked HO-1 expression exhibited a 

high rate of cell death (Fang et al., 2004). This may have been due to the prevention of the 

antioxidant effect that HO-1 activity confers in cells. Finally, inhibition of HO-1 may be 

beneficial in treating cancer as HO-1 catalytic by-products were found to have an anti-

apoptotic and angiogenic effect, contributing to better vascularisation of tumours (Brouard et 

al., 2000; Deshane et al., 2007).  

Diseases such as Alzheimer’s disease and Parkinson’s disease have been linked to 

impaired proteasome function (Ross and Pickart, 2004; Morimoto, 2008). The proteasomal 

inhibitors MG132 and lactacystin were found to induce HO-1 protein and mRNA, 

respectively, in astrocytes of mesencephalic cell cultures (Yamamoto et al., 2010). MG132 
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also induced HO-1 accumulation in murine macrophages (Wu et al., 2004). Curcumin, a 

component of the spice turmeric and a demonstrated proteasomal inhibitor, induced HO-1 

accumulation in rat endothelial cells (Khan and Heikkila, 2011; Wang et al., 2013). 

Cadmium and arsenite have been established as inducers of HO-1 in avian and mammalian 

systems, and cadmium-induced HO-1 accumulation has also been demonstrated in fish and 

soybean plants (Taketani et al., 1989; Elbirt et al., 1998; Alam et al., 2000; Balestrasse et al., 

2006; Søfteland et al., 2010; Williams and Gallagher, 2013). 

 

1.7. Chemical stressors 

1.7.1. Sodium arsenite  

Sodium arsenite is a toxic compound found in ground water that comes from natural 

sources such as mineral leaching from weathered rocks and soils (Del Razo et al., 2001). 

Additionally, industrial sources contribute to the presence of sodium arsenite in water. At the 

organismal level, this chemical was shown to be associated with an increased risk of renal, 

hepatic and cardiovascular cancers (Del Razo et al., 2001). At the cellular level, it can cause 

metabolic abnormalities, apoptosis, cell cycle arrest and cytoskeletal damage, inhibition of 

the production of cytoskeleton proteins as well as the production of free radicals and reactive 

oxygen species (ROS; Chou, 1989; Liu et al., 2001; Bode and Dong, 2002; Del Razo et al., 

2001; Li & Chou, 1992). Furthermore, arsenite was reported to increase caspase-3 activity, 

the enzyme associated with the apoptotic pathway (Liu et al., 2001). Other research found 

that arsenite induced DNA-damage/repair-related gene expression, which contributed to its 

action as a toxicant (Liu et al., 2001). Finally, arsenite was reported to induce the 

accumulation of HO-1, HSP70, and HSP90 in cultured cells including human skin fibroblasts 
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and rat hepatocytes (Keyse & Tyrrell, 1989; Bauman et al., 1993). In our laboratory, it was 

demonstrated that sodium arsenite induces hsp gene expression (Ohan et al., 1998; Gauley 

and Heikkila, 2006; Young et al., 2009). Sodium arsenite’s effect on the ubiquitin-

proteasome system (UPS) has been studied mainly in mammalian systems, where it was 

determined to inhibit proteasomal activity due to an increase in ubiquitinated protein, and a 

decrease in the chymotrypsin-like activity of the 20S core (Kirkpatrick, 2003; Tsou et al., 

2005; Medina-Diaz et al., 2009). Studies have demonstrated that HSF1 trimerization was not 

directly caused by arsenite, suggesting an indirect activation mechanism that has not yet been 

elucidated (Zhong et al., 1998). 

The toxicity of arsenic depends on its oxidation state and composition. Inorganic 

arsenicals, especially trivalent inorganic arsenic species like sodium arsenite, have been 

demonstrated to be the most toxic forms (Del Razo et al., 2001). Uptake of trivalent arsenic 

into the cell involves the phosphate transport system and aquaglyceroporins (Bhattacharjee et 

al., 2009). X. laevis oocytes microinjected with the aquaporins AQP7 or AQP9 cDNA 

demonstrated that both transport trivalent arsenite (Liu et al., 2002). Arsenic’s toxicity is 

thought to arise partially from its ability to substitute for phosphate, as this would affect vital 

processes including DNA and ATP synthesis (Del Razo et al, 2001). Furthermore, arsenite 

has a high affinity for sulfhydryl groups within proteins, which is reported to be one 

mechanism of its toxicity (Chen et al., 1998; Liu et al., 2001; Del Razo et al., 2001). 

 

1.7.2. Cadmium chloride 

Cadmium is a toxic heavy metal, which has been labeled a category one human 

carcinogen due to its implication in various cancers including kidney, lung, pancreas, and 
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prostate (Waisberg et al., 2003). It accumulates mainly within the liver, kidney, and 

reproductive tissues (Bonham et al., 2003; Barbier et al., 2004; Loumbourdis, 2005; Mendez- 

Mouchet et al., 2006; Armenta and Rios, 2007). Its accumulation in water from 

anthropogenic sources leads to the accumulation of cadmium in humans and other organisms. 

Sources of cadmium include tobacco smoke, contaminated food, air pollution, and certain 

fertilizers (Waisberg et al., 2003). Cadmium enters cells through divalent metal transport 1 

(DMT1) and also enhances the expression of the transporter (Gu et al., 2009). For aquatic 

organisms, cadmium can enter through the skin and gills. Exposure has been noted to result 

in developmental abnormalities, and protein denaturation or damage (Pedersen and 

Bjerregaard, 2000; Fort et al., 2001; Waisberg et al., 2003).  

Cadmium toxicity has been associated with a number of damaging mechanisms at the 

cellular level, including the ability to cause the dysregulation of gene expression, damage 

DNA and inhibit its repair. In addition, it can cause apoptosis and induce oxidative stress 

(Waisberg et al., 2003; Mouchet et al., 2007; Mendez-Arementa and Rios, 2007; Blechinger 

et al., 2007). Heavy metals can induce oxidative stress through the production of toxic 

hydroxyl radicals created by Fenton reactions after interactions with cysteine thiol groups 

(Jozefczak et al., 2012). Cadmium leads to the formation of denatured proteins by reacting 

with thiol groups or substituting for zinc in zinc proteins (Waisberg et al., 2003; Galazyn-

Sidorczuk et al., 2009). Cadmium disrupts E-cadherin mediated cell adhesion, cellular 

calcium pathways, and proteasomal activity (Joseph et al., 2001; Waisberg et al., 2003; Yu et 

al., 2008). Additionally, cadmium induces the activation of protein kinases, which leads to 

increased protein phosphorylation and expression of proto-oncogene transcription factors. 



	
   	
  21	
  

Through these mechanisms, cadmium causes abnormal levels of cell growth and proliferation 

(Waisberg et al., 2003).  

Previously, cadmium chloride was demonstrated to induce the accumulation of both 

HSP30 and HSP70 in Xenopus laevis A6 cells (Woolfson and Heikkila, 2009). Cadmium 

chloride has additionally been reported to affect proteasome activity in a wide variety of 

systems including bivalves and human, rat, and mouse cell lines (Thevenod and Friedmann, 

1999; Figueiredo-Pereira and Cohen, 1999; Othumpangat et al., 2005; McDonagh and 

Sheehan, 2006; Chora et al., 2008; Li et al., 2008a, Yu et al., 2008; McDonagh, 2009; Yu et 

al., 2011).  

 

1.8. Protein degradation 

1.8.1. Ubiquitin proteasome system 

Proteins are degraded through two main pathways in eukaryotes. The lysosomal 

degradation pathway hydrolyses extracellular proteins, and is less involved in the degradation 

of cellular protein (Lee and Goldberg, 1998; Morimoto, 2008). The other pathway is the 

ubiquitin-proteasome system (UPS), which plays a major role in the degradation of cellular 

protein through ATP-dependent hydrolysis. The UPS has been studied for several decades 

(Hershko et al., 1980; Ciechanover et al., 1980; Wilkinson et al, 1980; Hough et al., 1987). 

This system is found in both the cytoplasm and nucleus, and is responsible for the removal of 

the majority of damaged proteins, up to 90% of all cellular proteins (Lee and Goldberg, 

1998; Awasthi and Wagner, 2005). Figure 5 shows the two-step process involved in the 

pathway. Initially, proteins are targeted for degradation by ubiquitination, after which they 

are degraded by the 26S proteasome (Yang et al., 2008). Ubiquitin is a small protein that  
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Figure 5. Mechanism of protein degradation by the ubiquitin-proteasome system (UPS). 

Proteins are targeted for degradation through the addition of ubiquitin molecules by 

ubiquitinating enzymes in an ATP-dependent process. Polyubiquitinated proteins are 

recognized by the 26S proteasome’s 19S regulatory particle. Proteins are degraded by 

chymotrypsin-like, trypsin-like and peptidyl-glutamyl peptide-hydrolyzing enzymes, to small 

peptides within the 20S core. Some peptides may be further degraded into individual amino 

acids, or else transported to the cell surface for antigen presentation (adapted from Lee and 

Goldberg, 1998).  

  



	
   	
  23	
  

 

 

 

 

 

 

 

 

 
 

  



	
   	
  24	
  

forms an isopeptide bond between its carboxy terminus and a lysine residue on the target 

protein. The process of ubiquitination involves several enzymes, which are named E1, E2, 

E3, and E4. Ubiquitination is activated by E1 through the ATP-dependent process of 

adenylation, and the creation of a thiol-ester bond at the carboxy terminus. Ubiquitin is 

transferred to a lysine residue on the target protein by E2 and E3, which is a ubiquitin ligase. 

E4 assists in the polyubiquitination of these lysine residues (Hershko and Ciechanover, 1998; 

Koegl et al., 1999). Finally, the polyubiquitinated protein is delivered to the proteasome. The 

26S proteasome includes the 20S proteolytic core flanked by two 19S regulatory regions. The 

20S core is comprised of two non-catalytic α rings and two catalytic β rings. The α subunit 

structure allows for the entry of polypeptides, and the β subunits include several proteolytic 

sites which work to degrade protein (Lee and Goldberg, 1998). These proteolytic sites have 

chymotrypsin-like, trypsin-like, and caspase-like activity (Lee and Goldberg, 1998). Peptides 

may be broken down further into amino acids by exopeptidases, while other peptides are 

used in antigen presentation after being transported to the endoplasmic reticulum lumen. 

 

1.8.2. Proteasomal inhibition and effect on HSPs 

The rate of protein breakdown in the cell decreases upon inhibition of the proteasome. 

This leads to the accumulation of proteins. Damaged proteins that accumulate can form 

aggregates, and apoptosis may be induced (Yang et al., 2008). A plethora of illnesses have 

been linked to the impairment of the UPS, including Alzheimer’s, Parkinson’s, and 

Huntington’s diseases (Masliah et al., 2000; Ross and Pickart, 2004). Proteasomal inhibition 

has also been demonstrated to increase hsp gene expression in Xenopus laevis and other 

eukaryotic organisms (Bush et al., 1997; Stangl et al., 2002; Pritts et al., 2002; Le Goff et al., 
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2004; Awasthi and Wagner, 2005; Lundgren et al., 2005; Noonan et al., 2007; Young and 

Heikkila, 2010; Walcott and Heikkila, 2010; Khan and Heikkila, 2011). Researchers studying 

this system can employ any of several known chemical inhibitors of proteasome activity, 

including carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), lactacystin, curcumin, 

celastrol, and withaferin A (Wu et al., 2004; Yamamoto et al., 2010; Young and Heikkila, 

2010; Walcott and Heikkila, 2010; Khan and Heikkila, 2011; Khan et al., 2012; Park and 

Kim, 2012). MG132, lactacystin and curcumin have all been demonstrated to induce HO-1 

accumulation (Yamamoto et al., 2010; Wang et al., 2013). 

 

1.9. Xenopus laevis as a model organism 

Xenopus laevis, which is known as the South African clawed frog, has been used as a 

model research organism for decades. The oocytes, eggs and embryos of this aquatic frog are 

large and thus are ideal for microinjection studies (Guille, 1999; Heikkila et al., 2006). There 

is an extensive amount of information available about Xenopus at both the cellular and 

molecular level. Cellular and molecular data from Xenopus are often applicable to human 

cells. The specific cell line used for the research presented in this thesis is the A6 kidney 

epithelial cell line, for which there is an ever-increasing collection of data. This cell line was 

isolated from the renal proximal tubules of adult male Xenopus over 4 decades ago (Rafferty 

& Sherwin, 1969). A6 cells are hardy, have a doubling time of about 22 hours, and can 

exceed 100 generations in vitro (Rafferty, 1975). It has been used as a model system for the 

study of constitutive and stress-inducible hsp gene expression and function for more than 

three decades (Heikkila, 2010). 
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1.10. Hsp30 gene expression and function in Xenopus laevis 

The regulation of stress-induced HSP30 accumulation has been extensively studied in 

Xenopus A6 cells (Heikkila, 2010). Multiple hsp30 genes were isolated from Xenopus laevis 

including hsp30A, which has an insertional mutation, and hsp30B, which is a pseudogene 

(Bienz, 1984). However, our laboratory isolated another gene cluster that included the 

hsp30C and D genes, which encode two functional 24 kDa proteins (Krone et al., 1992). 

Both hsp30C and D genes have a functional HSE in their 5' promoter region.  Studies with 

recombinant HSP30C and D demonstrated that they can act as molecular chaperones by 

inhibiting heat-induced aggregation of client proteins as well as maintaining them in a 

folding-competent state (Fernando and Heikkila, 2000; Abdulle et al., 2002; Fernando et al., 

2003; Heikkila, 2010). During Xenopus development, the hsp30 gene family is not heat-

inducible until the late neurula/early tailbud stage, while hsp110, hsp90, hsp70 and hsp47 

genes were stress-inducible at the midblastula stage. HSP30 was detected constitutively in 

the cement gland where it has been hypothesized to function in the prevention of apoptosis 

(Lang et al., 1999; Heikkila, 2004).  

In Xenopus A6 kidney epithelial cells, various chemical stressors induced HSP30 

accumulation including sodium arsenite, cadmium chloride, and heat shock (Gellalchew and 

Heikkila, 2005; Voyer & Heikkila, 2008; Woolfson and Heikkila, 2009). Recently, it was 

reported that proteasomal inhibitors such as lactacystin, MG132, and curcumin also induced 

HSP30 accumulation (Young and Heikkila, 2010; Khan and Heikkila, 2011).  
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1.11. Ho-1 gene expression in Xenopus laevis 

Information about the expression and function of the ho-1 gene in Xenopus is limited to a 

single report (Shi et al., 2008). In this study, cDNA data were obtained from GenBank, and it 

was determined that the percent identity of Xenopus with human and mouse amino acid 

sequences was 61% and 58%, respectively. Ho-1 mRNA was detected in oocytes and during 

early embryogenesis from the 1-cell stage to tadpole. Ho-1 mRNA was found to accumulate 

in the dorsal region once embryos reached the neurula stage, an expression pattern that was 

similar to heme synthases. However, this study did not examine HO-1 protein levels or the 

effect of various stressors.  

 

1.12. Objectives 

Most of the knowledge regarding HO-1 accumulation and function has been derived 

from mammalian research systems. There is a general lack of information on stressor-

induced HO-1 accumulation in poikilothermic vertebrates. The present study will examine 

stress-induced HO-1 accumulation for the first time in an amphibian cell line. The cell line 

used throughout this research is Xenopus laevis A6 kidney epithelial cells. The accumulation 

of HO-1 has been implicated in a variety of diseases associated with oxidative stress 

including but not limited to Alzheimer’s disease, diabetes, atherosclerosis, cancer, and 

myocardial infarction (Takahashi et al., 2000; Juan et al., 2001; Turkseven et al., 2005; Liu et 

al., 2005; Was et al., 2006). Furthermore, some neurological disorders are associated with 

inhibition of the proteasome, which was found to induce HO-1 accumulation. To better 

elucidate HO-1’s role in cellular and organismal health, studies with agents that induce 

oxidative stress and/or proteasomal inhibition will be carried out.  Furthermore, the use of a 
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mild heat shock in conjunction with these chemicals stressors parallels the current issue of 

climate change faced by aquatic organisms such as amphibians. Aquatic amphibians are quite 

susceptible to the deleterious effects of toxicants such as sodium arsenite and cadmium 

chloride. Given that there is a global rise in temperature in recent history, it is worth 

examining whether higher temperatures in conjunction with these toxicants may exacerbate 

living organisms further. Finally, if HO-1 is induced by these chemicals in amphibians, then 

the relative levels of this stress-induced protein could act as a biomarker for environmental 

contamination by cadmium chloride, sodium arsenite or other chemicals.  

The objectives of this research are as follows: 

• To examine the effect of different heat shock temperatures and selected heavy 

metals on HO-1 accumulation 

• To determine the effect of various concentrations of sodium arsenite, cadmium 

chloride, and MG132 on HO-1 and HSP30 protein accumulation 

• To monitor the temporal pattern of HO-1 and HSP30 accumulation in cells treated 

with sodium arsenite, cadmium chloride, and MG132 

• To compare the intracellular localization of HO-1 and HSP30 in cells subjected to 

heat shock, sodium arsenite, cadmium chloride, and MG132 treatment 

• To investigate the pattern of HO-1 and HSP30 accumulation during recovery 

from sodium arsenite, cadmium chloride, and MG132 stress 

• To examine the effect of mild thermal stress on sodium arsenite-, cadmium 

chloride-, and MG132-induced HO-1 and HSP30 accumulation 
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2. Materials and Methods  

2.1. Maintenance and treatment of Xenopus laevis A6 kidney epithelial cells 

  Xenopus laevis A6 kidney epithelial cells were obtained from the American Type 

Culture Collection (CCL-102; Rockville, MD). Cells were cultured in 70% Leibovitz (L)-15 

media (Sigma-Aldrich, Oakville, ON) and supplemented with 10% fetal bovine serum (FBS; 

Sigma-Aldrich) and 100 units/mL penicillin (Sigma-Aldrich), 100 µg/mL streptomycin 

(Sigma-Aldrich) at 22 °C in T75 cm2 BD Falcon tissue culture flasks (VWR International, 

Mississauga, ON). Cells that became confluent were passaged by aspirating old media and 

rinsing with 1 mL versene (0.02% (w/v) KCl, 0.8% (w/v) NaCl, 0.02% (w/v) KH2PO4, 

0.115% (w/v) Na2HPO4, 0.02% (w/v) Na2EDTA), succeeded by a 1 min treatment with 2 mL 

versene to chelate metal ions. Following aspiration of versene, 1 mL of 1X trypsin (Sigma-

Aldrich) dissolved in 100% Hank’s balanced salt solution (HBSS; Sigma-Aldrich) was added 

to the flask for 1 min to promote detachment of cells from the flask surface. Trypsin was 

partially removed, and cells were then resuspended in fresh media and divided evenly into 

new culture flasks at a ratio of 1:3 or 1:4, depending on the initial state of confluency. 

Flasks of cells that had achieved 80-90% confluency were used for experiments. 

Initial heat shock treatments were carried out for 2 h in water baths set to different 

temperatures, namely, 30, 33 and 35 °C, followed by a 2 h recovery at 22 °C. A 100 mM 

stock solution of sodium arsenite (As; Sigma-Alrich) was used to create a working solution 

of 1 mM. Cadmium chloride (Sigma-Aldrich) treatments were carried out with 1 mM or 100 

mM solutions as deemed appropriate for dispensing accurate volumes. MG132 (Sigma-

Aldrich) was dissolved in dimethylsulphoxide (Sigma-Aldrich) to create a 5 mg/mL stock 

solution. Lead(II) nitrate, copper(II) sulphate, zinc sulphate, and iron sulphate (all Sigma-
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Aldrich) were dissolved in sterile water, to working concentrations of 1, 10, 10, and 100 mM, 

respectively. Cells were incubated in 10 mL of complete media and treated with 5-50 µM 

preparations of sodium arsenite, 10-200 µM cadmium chloride, or 5-30 µM MG132 at 22 °C. 

These treatments ranged in time from 0 to 24 h. Lead nitrate, copper sulphate, zinc nitrate, 

and iron sulphate were used to treat cells at concentrations of 100, 200, and 500 µM. 

Recovery treatments involved 24 h of treatment with sodium arsenite or MG132, or 12 h 

treatment with cadmium chloride, followed by removal of media, rinsing of the flasks and 

incubation in fresh media for 0 to 48 h. Some cells recovering from sodium arsenite 

treatment were also incubated with 100 µM cycloheximide (CHX) for the duration of the 

recovery period at 22 °C. In experiments that combined a mild heat shock with chemical 

treatment, sodium arsenite, cadmium chloride, or MG132 were added to flasks of cells at the 

indicated concentrations and then incubated in a heated water bath at 30 °C for 12 h. 

Following treatment, media was removed, and cells were rinsed with 2 mL of 65% HBSS, 

followed by the addition of 1 mL 100% HBSS. Cells were removed from the flask by use of 

a cell scraper, and subsequently transferred to a 1.5 mL microcentrifuge tube. Cells were then 

pelleted by means of centrifugation for 1 min at 14000 rpm, after which the supernatant was 

removed. The pelleted cells were stored at -80 °C prior to protein isolation and 

quantification.  

 

2.2. Protein isolation and quantification 

Frozen cells were thawed on ice and then suspended in 250-350 µL lysis buffer (200 

mM sucrose, 2 mM EGTA, 1 mM EDTA, 40 mM NaCl, 30 mM HEPES, pH 7.4) with 1% 

(w/v) SDS and 1% (w/v) protease inhibitor cocktail (Roche, Laval, QC) added. Samples were 
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then sonicated on ice using a sonic dismembranator (Model 100, Fisher Scientific, Waltham, 

MA) to deliver approximately 15 bursts followed by centrifugation at 14000 rpm for 30 min 

at 4 °C. After centrifugation, supernatant containing protein was transferred to 1.5 mL 

microcentrifuge tubes and stored at -20 °C until required. 

Protein quantification was performed utilizing the bicinchoninic acid (BCA) method 

following the manufacturer’s protocol (Pierce, Rockford, IL). Bovine serum albumin (BSA; 

Bioshop, Burlington, ON) was utilized to create a protein standard. BSA was diluted in 

distilled water, creating a range of concentrations from 0-2 mg/mL. Distilled water was 

likewise employed to dilute protein samples 1:2; 20 µL of sample and water were used. The 

BSA standards and protein samples were loaded in 10 µL volumes in triplicate into 

individual wells of a 96 well polystyrene plate.  Subsequently, 80 µL of combined BCA 

reagent A and B (Pierce, 50:1) was added to each standard and protein sample well. The plate 

was incubated at 37 °C for 30 min. After incubation, the plate was allowed to cool at room 

temperature for 10 min prior to being monitored at 562 nm using a Versamax Tunable 

microplate reader (Molecular Devices, Sunnyvale, California) and Softmax Pro software. 

The BSA standards were used to create a standard curve that was then used to calculate 

sample concentrations. Samples containing 40 µg of protein were mixed with loading buffer 

[0.065 M Tris pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) β-mercaptoethanol, 

0.00125% (w/v) bromophenol blue]. If not used immediately, samples were maintained at -

80 °C.  
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2.3. Immunoblot analysis 

Protein separation employed sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) as previously conducted in Khamis and Heikkila, 2013. Twelve 

percent polyacrylamide gels were used throughout this study. The vertical separating gel 

[12% (w/v) acrylamide, 0.32% (v/v) n’n’-bis methyl acrylamide, 0.375 M Tris pH 8.8, 1% 

(w/v) SDS, 0.2% (w/v) ammonium persulfate (APS), 0.14% (v/v) 

tetramethylethylenediamine (TEMED)] was prepared and allowed to polymerize for 25 min 

with 100% ethanol layered on top of it. Ethanol was subsequently poured off and the stacking 

gel [4% (v/v) acrylamide, 0.11% (v/v) n’n’-bis methylene acrylamide, 0.125 M Tris pH 6.8, 

1% (w/v) SDS, 0.4% (w/v) APS, 0.21% (v/v) TEMED] was poured on top of the separating 

gel. Combs were then inserted and the gel was allowed to polymerize for 25 min. Protein 

samples in loading buffer were thawed on ice, boiled for 10 min, briefly centrifuged and then 

loaded onto the gels. Gels were electrophoresed with 1X running buffer (25 mM Tris, 0.2 M 

glycine, 1 mM SDS) at 90 V for approximately 20 min, after which time the voltage was 

increased to 160 V until the samples reached the bottom of the gel.  

Transfer of electrophoresed protein from the gel to a nitrocellulose membrane 

employed a Trans Blot Semi-dry transfer system (BioRad). Nitrocellulose membranes and 

filter paper (both BioRad, Mississauga, ON) were cut into 5 x 8.5 cm pieces. The membranes 

were soaked in 20% transfer buffer (25 mM Tris, 192 mM glycine, 20% (v/v) methanol) for 

30 min, and the gels were soaked in the same buffer for 15 minu. After electrophoresis, 

protein transfer from gel to nitrocellulose membrane was accomplished using a Trans Blot 

Semi-dry transfer system for 25 min at 20 V. Ponceau-S [0.19% (w/v) Ponceau-S, 5% (v/v) 

acetic acid; Sigma-Aldrich] staining of the membrane was performed for 5 min to determine 
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efficient transfer of all samples. The blot was then incubated with 5% blocking [20 mM Tris 

pH 7.5, 0.1% Tween 20 (Sigma), 300 mM NaCl, 5% (w/v) Carnation Instant Skim Milk 

Powder (Markham, ON)] for 1 h to prevent non-specific binding. Blocking solution was then 

poured off and membranes were subsequently incubated with rabbit anti-HO-1 antibody 

(1:500, Enzo Life Sciences, Farmingdale, NY), rabbit anti-Xenopus HSP30 antibody 

(1:1000), or rabbit anti-actin polyclonal antibody (1:200, Sigma-Aldrich) in blocking 

solution. Primary antibody was then removed and the membrane was briefly rinsed twice and 

subsequently immersed once for 15 min and twice for 10 min with Tris buffered saline 

solution with Tween-20 [TBS-T; 2 mM Tris pH 7.5, 0.1% Tween-20 (Sigma-Aldrich), 30 

mM NaCl]. Membranes were incubated for 1 h with AP-conjugated goat anti-rabbit 

secondary antibody (1:3000, BioRad) in blocking solution. After washing with TBS-T for 15 

min once and 5 min twice, blots were incubated in an alkaline phosphatase detection buffer 

(50 mM Tris base, 50 mM NaCl, 25 mM MgCl2, pH 9.5) with 0.3% 4-nitro blue tetrazolium 

(NBT; Roche) and 0.17% 5-bromo-4-chloro-3-indolyl phosphate, toluidine salt (BCIP; 

Roche) until bands were visible. The detection buffer was then poured off, and blots were 

rinsed with distilled water and scanned when dry. 

 

2.4. Densitometry and statistical analysis 

 Image J software (Version 1.44; National Institute of Health; 

http://rsb.info.nih.gov/ij/) was used to perform densitometric analysis within the range of 

linearity on all blots, with experiments performed at least in triplicate. The average values 

obtained were graphed as a percentage of the maximum value of either HO-1 or HSP30 

bands. Vertical error bars display the standard error of the mean. Statistical analysis was 
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performed on normalized data using a one-way analysis of variance (ANOVA) with a 

Tukey’s post-test (p<0.05; indicated by *) to determine if statistically significant differences 

existed between samples.  

2.5. Immunocytochemistry and laser scanning confocal microscopy (LSCM) 

A6 cells were grown on flame-sterilized glass coverslips previously washed with a base 

solution [49.5% (v/v) ethanol, 0.22 M NaOH] in small jars (Thomas Scientific Apparatus, 

Philadelphia, PA) for 30 min and rinsed with distilled water for 3 h. Cells were cultured on 

coverslips in Petri dishes, which were kept at 22 °C for 24-48 h. The cells were then treated 

with heat shock and/or heavy metals followed by removal of L-15 media and two rinses with 

phosphate buffered saline (PBS; 11.37 M NaCl, 67 mM Na2HPO4, 26 mM KCl, 14.7 mM 

H2PO4, 1 mM CaCl2, 0.5 mM MgCl2, pH 7.4). Fixation was carried out with 3.7% 

paraformaldehyde in PBS (BDH Inc., Toronto, ON) for 15 min. Cells were rinsed three times 

for 5 min with PBS and then with 0.3% Triton X-100 (Sigma-Aldrich) for 10 min to 

permeabilize cells followed by three washes with PBS. A6 cells were incubated 1 h or at 4 °C 

overnight with 3.7% (w/v) filtered bovine serum albumin (BSA) fraction V in PBS (Fischer 

Scientific). Cells were then incubated with either affinity-purified rabbit anti-Xenopus HSP30 

(1:500) or anti-HO-1 (1:200) antibody in 3.7% BSA for 1 h. Cells were washed with PBS 

three times for 2 min. The remainder of the steps were done in the dark. Indirect labeling was 

carried out for 30 minutes with fluorescent-conjugated goat anti-rabbit Alexa Fluor 488 

(Invitrogen Molecular Probes, Carlsbad, CA) in BSA at a 1:2000 dilution. After washing 

with PBS three times for 3 min, cells were incubated with rhodamine-tetramethylrhodamine-

5-isothiocyanate phalloidin (TRITC; 1:100; Invitrogen Molecular Probes) for 15 min to 

visualize the actin cytoskeleton. After washing three times with PBS, coverslips were dried 
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and mounted on a microscope slide with Vectashield mounting medium (Vector Laboratories 

Inc., Burlingame, CA), which contained 4,6-diamidino-2-phenylindole (DAPI; Vector 

Laboratories Inc.) for the staining of nuclei. The slides were blotted dry and clear nail polish 

was used as an adhesive to bind coverslips to glass microscope slides. Slides were stored at 4 

°C for a minimum of 1 h or until required. Cells were visualized using a Zeiss Axiovert 200 

confocal microscope with Zen 2009 software (Carl Zeiss Canada Ltd., Mississauga, ON). 

Images were viewed with Zen 2009 Light Edition software.  
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3. Results 

3.1. Characterization of heme oxygenase-1 (HO-1) protein in Xenopus laevis 

 Stress-inducible HO-1 protein accumulation and function has been documented 

primarily in mammalian experimental systems including human, pig, mouse, and rat (Alam 

et al., 2000; Balogun et al, 2003; Chen et al., 2011; Gonzales-Reyes et al., 2013). However, 

to the best of our knowledge, there have been no studies examining stress-induced HO-1 

protein accumulation and function in Xenopus or other amphibians. The present study has 

compared the effect of heat shock, sodium arsenite, cadmium chloride, and MG132 on HO-1 

accumulation in X. laevis A6 kidney epithelial cells by means of immunoblot and 

immunocytochemical analysis. HSP30, a small heat shock protein, was chosen as a 

comparison protein given the abundance of information on its accumulation in response to 

heat shock and chemical stressors (Heikkila, 2010).  

 The Xenopus laevis HO-1 amino acid (aa) sequence (Genbank accession number: 

NP_001089909) was originally derived from the nucleotide sequence of a HO-1 cDNA 

(NM_001096440.1) isolated from an oocyte cDNA library. Xenopus HO-1 is 291 aa in 

length and includes 8 heme binding pocket residues (Fig. 6). The heme ligand binding site is 

histidine in position 28. A comparison of the percent identity of the Xenopus laevis HO-1 aa 

sequence with the HO-1 aa sequence from other selected organisms and the constitutive HO-

2 from Xenopus laevis is shown in Table 1. Xenopus laevis HO-1 shares 91% identity with 

Xenopus tropicalis HO-1. However, the percent identity with other organisms including 

chicken, duck, human, rat, mouse, alligator and zebrafish HO-1 ranged from 63 to 45%. 

However, when percent identity was determined for a particularly conserved region (P129-  
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Figure 6. Amino acid sequence of Xenopus laevis HO-1. The Xenopus laevis HO-1 protein 

(Genbank accession number: NP_001089909) is 291 amino acids long. The heme ligand 

binding site, a conserved histidine (H) residue, is indicated by an asterisk below the letter. 

The heme binding pocket residues are shown in a bold font and underlined. The HO-1 

antibody (Enzo Life Sciences, BML-HC3001) used in this research was produced against a 

synthetic human HO-1 peptide. The corresponding Xenopus HO-1 amino acids (D15-H28) 

share 100% sequence identity with this peptide and are indicated by the horizontal bracket. 

The conserved region that was compared with other organisms for shared identity in Table 1 

is indicated with a dashed bracket, spanning P129 to R186. 
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1   MDPSASQQYK STHEDLSEAL KEATKEVHVQ AENTEFMRNF 

          *  

41  QKGQVSLEEF KLVMSSLYFI YEALEEEINR NKDNPVFSPV  

 

81  YFPLELHRKN ALEVDLEYFY GPQWRKKIIC PHSTKNYVDR  

 

121 LHHVGQKEPE LLVSHAYTRY LGDLSGGQVL KKIAQKALQL  

 

161 PASGEGLAFF TFDNVTNATK FKQLYRSRMN SIETDAYAKK  

 

201 RILEEAKTAF LLNIKLFEEL QTLSLATSQN GNTRTEATEL  

 

241 RSRGPKTENG RPTKTDNREN NSSSEEQPTT FLRWFLIAGC  

 

281 ALITLMGLYI F 
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Table 1. A comparison of Xenopus laevis HO-1, HO-2, and selected HO-1 homologues 
from other organisms. 
 

Protein / Species % identity  
(complete amino acid 

sequence) 

% identity  
(conserved 

region) 
HO-1 / Xenopus tropicalis 91 100 
HO-1 / Gallus gallus 63 91 
HO-1 / Anas platyrhynchos 63 91 
HO-1 / Homo sapiens 61 88 

HO-1 / Rattus norvegicus 
59 84 

HO-1 / Mus musculus 59 84 
HO-1 / Alligator mississipiensis 58 88 
HO-2 / Xenopus laevis 53 74 
HO-1 / Danio rerio 45 69 

 

The sequences were obtained from the GenBank database (www.ncbi.nlm.nih.gov). The 
NCBI reference sequences of the proteins are: Xenopus laevis HO-1, NP_001089909; 
Xenopus tropicalis HO-1, XP_002934766; Gallus gallus HO-1, ADK26061; Anas 
platyrhynchos HO-1, XP_005015402; Homo sapiens HO-1, ADZ76424; Rattus norvegicus 
HO-1, NP_036712; Mus musculus HO-1, EDL10826; Alligator mississipiensis HO-1, 
XP_006261961; Xenopus laevis HO-2, NP_001085675, and Danio rerio HO-1, 
NP_001120988. The percent identity of a highly conserved region (residues P129 – R186 in 
Xenopus laevis HO-1) was also determined using these data. This domain is indicated with a 
dashed bracket in the previous figure. 
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R186), similarity to Xenopus laevis HO-1 was higher in all cases ranging from 69% identity 

with zebrafish HO-1 to 100% identity with Xenopus tropicalis HO-1. This region contains 4 

of the 8 heme binding pocket residues and is indicated in Fig. 6 with a dashed bracket. 

Xenopus laevis constitutive HO-2 shared only 53% identity overall with HO-1 and 74% in 

the conserved region. Additionally, the size and theoretical pI of Xenopus laevis HO-1 were 

determined by the Compute pI/Mw tool (http://web.expasy.org/compute_pi/) to be 33.5 kDa 

and 6.7, respectively. This differs from human HO-1, which has a predicted pI of 7.9 and a 

size of 32.8 kDa. 

Following the in silico analysis of Xenopus HO-1 and its analogues in other species, 

an effective antibody was required to perform immunoblot and immunocytochemistry 

analyses. No Xenopus anti-HO-1 antibody was available, but an antibody (Enzo Life 

Sciences, BML-HC3001) that was made against a synthetic peptide (DLSEALKEATKEVH) 

derived from a human HO-1 conserved sequence shared 100% identity with Xenopus laevis 

HO-1 (Figure 6). This region includes 3 of 8 heme binding pocket residues, as well as the 

heme ligand binding site. Previous studies employed this anti-HO-1 antibody in both 

Western blotting and immunocytochemistry in human cells (Hock et al., 2004; Hanneken et 

al., 2006). Thus, the anti-human HO-1 antibody was employed in our analyses of stress-

induced HO-1 accumulation in Xenopus laevis A6 kidney epithelial cells.  

 

3.2. Stress-induced accumulation of heme oxygenase-1 (HO-1) and HSP30 

Initially, the effect of heat shock on HO-1 accumulation in A6 cells was examined by 

immunoblot analysis. Arsenite was employed as a positive control since previous studies 
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demonstrated that HO-1 accumulation was induced by sodium arsenite in rat, murine, and 

human cells (Li et al., 2001; Fauconneau et al., 2002; Gong et al., 2002). As shown in Figure 

7A, arsenite treatment enhanced the relative level of HO-1 accumulation. However, at all 

heat shock temperatures (30, 33, and 35 °C) employed, enhanced HO-1 accumulation was 

not detected although HSP30 accumulation was induced. Densitometric analysis determined 

that at 30 °C and 35 °C, the relative levels of HSP30 were approximately 20% and 70% of 

the maximal value, which was observed at 33°C (Fig. 7B). 

In preliminary studies, we examined the effect of different heavy metals such as 

cadmium chloride, copper sulphate, zinc sulphate, lead nitrate and iron sulphate for 24 h on 

HO-1 and HSP30 accumulation. In these studies, 20 µM sodium arsenite was used as a 

positive control (Fauconneau et al., 2002). Occasionally, a faint HO-1 band was observed in 

A6 cells maintained at 22 °C in the absence of metals. Concentrations of 100 and 200 µM 

cadmium chloride for 24 h induced both HO-1 and HSP30 accumulation, although a greater 

accumulation of HO-1 was observed at 100 µM (Fig. 8A). Copper sulphate and zinc sulphate 

did not induce either HO-1 or HSP30 accumulation at either of the two concentrations 

employed. However, an enhanced accumulation of HO-1 was observed with 200 µM iron 

sulphate treatment, while no HSP30 accumulation was observed (Fig. 8B). The effect of a 

higher 500 µM concentration of copper sulphate, iron sulphate, lead nitrate and zinc sulphate 

on HO-1 and HSP30 accumulation is shown in Figure 8C.  At this concentration, iron 

induced a detectable level of HO-1 with lead nitrate exposure producing a slight HO-1 

accumulation. None of these metals induced detectable HSP30 accumulation. 
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Figure 7. Heat shock-induced HSP30 accumulation. A) Cells were incubated at 30°C, 

33°C, or 35°C for 2 h with a recovery time of 2 h at 22 °C. Some cells were also treated with 

20 µM sodium arsenite (As) at 22 °C for 24 h. Cells were harvested and total protein was 

isolated and subjected to immunoblot analysis using anti-HO-1, anti-HSP30, and anti-actin 

antibodies as described in Materials and methods. These results are representative of 2 

separate experiments.  



	
   	
  43	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   	
  44	
  

 

 

 

 

 

 

Figure 8. Effect of different concentrations of various metals on HO-1 and HSP30 

accumulation. A) Cells were incubated with or without 100 or 200 µM of Cd, Cu or Zn or 

20 µM As at 22 °C for 24 h. After treatment, total protein was isolated and subjected to 

immunoblot analysis as detailed in Materials and methods. B) Cells were incubated with or 

without 100 or 200 µM of Fe or Pb or 20 µM As at 22 °C for 24 h. After treatment, total 

protein was isolated and subjected to immunoblot analysis as detailed in Materials and 

methods. These results are representative of 2 separate experiments. C) Cells were incubated 

with or without 100 or 500 µM of Cu, Fe, Pb or Zn or 20 µM As at 22 °C for 24 h. After 

treatment, total protein was isolated and subjected to immunoblot analysis as detailed in 

Materials and methods. These results are representative of 2 separate experiments. 
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3.3. HO-1 and HSP30 accumulation is induced by sodium arsenite and cadmium 

chloride in a concentration- and time-dependent manner 

After this initial survey of metal-induced HO-1 accumulation, further characterization 

employed sodium arsenite and cadmium chloride as both were found to strongly induce both 

HO-1 and HSP30. In an examination of the effect of different concentrations of sodium 

arsenite for 24 h on HO-1 accumulation in A6 cells, HO-1 was detectable at 5 µM sodium 

arsenite, peaked at 10 µM and then declined to slightly lower relative levels at 20, 30 and 50 

µM (Fig. 9A). Densitometric analysis revealed that at 5 µM sodium arsenite HO-1 

accumulation was 79% of maximal value (10 µM) and a reduction to 69, 69 and 56% at 20, 

30 and 50 µM, respectively (Fig. 9B). Pretreatment of cells with cycloheximide, an inhibitor 

of protein synthesis prevented sodium arsenite-induced HO-1 and HSP30 accumulation 

indicating that the accumulations were the result of de novo synthesis (Fig. 10). Likewise, the 

transcriptional inhibitor actinomycin D inhibited the accumulation of HO-1 and HSP30 in 

response to sodium arsenite and cadmium chloride treatment (data not shown). In sodium 

arsenite-treated A6 cells, enhanced HSP30 accumulation was first observed at 10 µM with 

peak levels at 20 or 30 µM and a slight reduction at 50 µM. In time course studies with 30 

µM sodium arsenite, HO-1 and HSP30 accumulation was first detectable at 8 h and increased 

in a time-dependent manner until the final time point, 48 h (Fig. 11A). Densitometric 

analysis revealed that at 8, 12, and 24 h, HO-1 signal intensities were approximately 12, 30, 

and 85% of maximum, respectively. A similar pattern was observed for HSP30, as the 

relative intensities at 8, 12, and 24 h were approximately 33, 40 and 79% of maximum (Fig. 

11B). 
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Figure 9. Effect of different concentrations of sodium arsenite on HO-1 and HSP30 

accumulation. A) Cells were incubated with 0, 5, 10, 20, 30, or 50 µM sodium arsenite (As) 

at 22 °C for 24 h. After treatment, total protein was isolated and subjected to immunoblot 

analysis as detailed in Materials and methods. B) Densitometric analysis of the band intensity 

for HO-1 (black; panel B) and HSP30 (grey; panel B) employed Image J software. The 

results were expressed as a percentage of the maximum band intensity acquired for each 

protein in each trial (10 µM for HO-1 and 30 µM for HSP30). Vertical error bars denote the 

standard error. A one-way ANOVA with a Tukey’s Multiple Comparisons post-test was used 

to determine significance. Significant differences between the control cells and treated cells 

are indicated as * (p < 0.05). These results are representative of 3 separate experiments. 
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Figure 10. Effect of cycloheximide on HO-1 and HSP30 accumulation in cells treated 

with sodium arsenite and cadmium chloride. A) Cells were incubated at 22 °C (C) or 

treated with 30 µM As for 24 h or 100 µM Cd for 12 h at 22 °C, with or without 6 h pre-

treatment with 100 µM cycloheximide (CHX). After treatment, total protein was isolated and 

subjected to immunoblot analysis as detailed in Materials and methods.   
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Figure 11. Time course of sodium arsenite-induced HO-1 and HSP30 accumulation. A) 

Cells were incubated with 30 µM As at 22 °C for 0, 4, 8, 12, 24 or 48 h. After treatment, total 

protein was isolated and subjected to immunoblot analysis as detailed in Materials and 

methods. B) Densitometric analysis of the band intensity for HO-1 (black; panel B) and 

HSP30 (grey; panel B) utilized Image J software. The results were expressed as a percentage 

of the maximum band intensity acquired for each protein in each trial (48 h for both HO-1 

and HSP30). Vertical error bars denote the standard error. A one-way ANOVA with a 

Tukey’s Multiple Comparisons post-test was used to determine significance. Significant 

differences between the control cells and treated cells are indicated as * (p < 0.05). These 

results are representative of 3 separate experiments. 
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In a comparable analysis with cadmium chloride, both HO-1 and HSP30 

accumulation was detectable at 50 µM cadmium chloride, peaked at 100 µM and then 

declined to slightly lower relative levels at 200 µM (Fig. 12A). Densitometric analysis 

determined that the relative level of HO-1 accumulation at 50 and 200 µM were 81 and 32%  

of maximal values, respectively, whereas HSP30 values at the same concentrations were 54 

and 73%, respectively, of the maximum density (Fig. 12B). The cadmium chloride-induced 

accumulation of HO-1 and HSP30 was also inhibited by cycloheximide indicating that the 

enhanced accumulation was the result of de novo synthesis (Fig. 10). Additionally, in 

temporal studies with 100 µM cadmium chloride minimal relative levels of HO-1 and HSP30 

accumulation were first detected at 8 h and then increased in a time dependent manner up to 

48 h (Fig. 13A). Densitometric analysis revealed that the relative values of HO-1 

accumulation at 8, 12, and 24 h were 7, 44 and 49%, respectively, of the maximum value. 

Treatments of 8, 12, and 24 h induced relative HSP30 accumulation of 25, 43, and 92%, 

respectively, compared to the 48 h treatment (Fig. 13B). 

 

3.4. Localization of sodium arsenite- and cadmium chloride-induced HO-1 and HSP30 

Immunocytochemistry and laser scanning confocal microscopy was used to examine 

the effect of heat shock, sodium arsenite, and cadmium chloride on HO-1 and HSP30 

localization in Xenopus A6 cells. HO-1 was not detected under heat shock conditions (Fig. 

14), whereas HSP30 was detected in approximately 85% of cells (Fig. 15). Of the cells 

treated with 10 µM sodium arsenite for 24 h, approximately 80% exhibited detectable HO-1 

and HSP30 accumulation. Interestingly, in response to sodium arsenite stress, 20% of the 

cells displayed HO-1 accumulation in larger structures (yellow arrows). Cadmium chloride  
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Figure 12. Effect of different concentrations of cadmium chloride on HO-1 and HSP30 

accumulation. A) Cells were incubated at 22 °C (C) or treated with 25, 50, 100, or 200 µM 

cadmium chloride (Cd) at 22 °C for 24 h. After treatment, total protein was isolated and 

subjected to immunoblot analysis as detailed in Materials and methods. B) Densitometric 

analysis of the band intensity for HO-1 (black; panel B) and HSP30 (grey; panel B) 

employed Image J software. The results were expressed as a percentage of the maximum 

band intensity acquired for each protein in each trial (100 µM for both HO-1 and HSP30). 

Vertical error bars denote the standard error. A one-way ANOVA with a Tukey’s Multiple 

Comparisons post-test was used to determine significance. Significant differences between 

the control cells and treated cells are indicated as * (p < 0.05). The data are representative of 

3 separate experiments. 
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Figure 13. Time course of cadmium chloride-induced HO-1 and HSP30 accumulation. 

A) Cells were incubated with 30 µM of cadmium chloride (Cd) at 22 °C for 0, 4, 8, 12, 24, or 

48 h. After treatment, total protein was isolated and subjected to immunoblot analysis as 

detailed in Materials and methods. B) Densitometric analysis of the band intensity for HO-1 

(black; panel B) and HSP30 (grey; panel B) was performed using Image J software. The 

results were expressed as a percentage of the maximum band intensity acquired for each 

protein in each trial (48 h for both HO-1 and HSP30). Vertical error bars denote the standard 

error. A one-way ANOVA with a Tukey’s Multiple Comparisons post-test was used to 

determine significance. Significant differences between the control cells and treated cells are 

indicated as * (p < 0.05). The data are representative of 3 separate experiments. 
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Figure 14. Effect of heat shock, sodium arsenite and cadmium chloride on the 

localization of HO-1 in A6 cells. Cells were cultured on base-washed glass coverslips, and 

then either maintained at 22 °C (C), heat shocked at 33 °C (HS) for 2 h with 2 h recovery, or 

treated with 10 µM sodium arsenite or 100 µM cadmium chloride for 24 h. Actin and nuclei 

staining were done directly with phalloidin conjugated to TRITC (red) and DAPI (blue), 

respectively. HO-1 was detected with rabbit anti-HO-1 antibody, and a secondary antibody 

conjugated to Alexa-488 (green). The columns, from left to right, show the fluorescence 

detection channels for actin, HO-1, and combined actin, nuclei (DAPI), and HO-1, 

respectively. The LSCM procedure was followed as outlined in the Materials and methods. 

White arrows indicate ruffling of F-actin cytoskeleton, observed in stressed cells. Yellow 

arrows indicate larger anti-HO-1 antibody staining structures. The 20 µm scale bars are 

indicated at the bottom right corner of each panel. 
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Figure 15. Effect of heat shock, sodium arsenite and cadmium chloride on the 

localization of HSP30 in A6 cells. Cells were cultured on base-washed glass coverslips, and 

then either maintained at 22 °C (C), heat shocked at 33 °C (HS) for 2 h with 2 h recovery, or 

treated with 10 µM sodium arsenite or 100 µM cadmium chloride for 24 h. Actin and nuclei 

staining were done directly with phalloidin conjugated to TRITC (red) and DAPI (blue), 

respectively. HSP30 was detected with the polyclonal rabbit anti-HSP30 antibody, and a 

secondary antibody conjugated to Alexa-488 (green). The columns, from left to right, show 

the fluorescence detection channels for actin, HSP30, and combined actin, nuclei (DAPI), 

and HSP30, respectively. The LSCM procedure was followed as outlined in the Materials 

and methods. White arrows indicate ruffling of F-actin cytoskeleton, observed in stressed 

cells. The 20 µm scale bars are indicated at the bottom right corner of each panel. 



	
   	
  61	
  

 

 

 

 



	
   	
  62	
  

induced HO-1 and HSP30 accumulation was detected in approximately 80% of cells. The 

stressed A6 cells displayed stress fibers and an intact F-actin cytoskeleton, similar to control 

cell morphology. However, membrane ruffling (white arrows) was observed 

in cells that were heat shocked or treated with sodium arsenite or cadmium chloride.  

 

3.5. HO-1 and HSP30 accumulation in cells recovering from sodium arsenite and 

cadmium chloride 

The next phase of this study examined the relative levels of HO-1 and HSP30 

accumulation during recovery from chemical treatments. A6 cells were subjected to a 24 h 30 

µM sodium arsenite treatment followed by recovery in fresh media. Interestingly, the relative 

levels of HO-1 increased during recovery up to 12 h followed by a decrease at 24 h and a 4-

fold reduction at 48 h (Fig. 16A). Similar results were observed for the relative levels of 

HSP30, with an increase in accumulation from 0 to 12 h recovery, followed by a decrease in 

HSP30 accumulation after 24 h of recovery, and a two-fold reduction at 48 h recovery 

compared to maximal values (Fig. 16B). In order to monitor the decay pattern of HO-1 

during recovery after a 24 h sodium arsenite pretreatment in the absence of translation, 

cycloheximide (CHX), a protein synthesis inhibitor, was employed. As shown in Figure 17, 

preincubation of cells with 100 µM CHX for 6 h completely inhibited the sodium arsenite-

induced transient accumulation of both HO-1 and HSP30 after 12 h of recovery such that the 

relative levels of these proteins decreased gradually over 48 h. Additionally, following 

recovery from 12 h of 100 µM cadmium chloride treatment, a transient increase in the 

relative levels of HO-1 and HSP30 was observed at 24 h recovery before decreasing to lower 

levels (Fig. 18). While it is likely that de novo synthesis is responsible for this transient  
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Figure 16. HO-1 and HSP30 accumulation during recovery from sodium arsenite 

treatment. A) Cells were maintained at 22 °C (C) or subjected to a 24 h 30 µM As treatment 

and then allowed to recover for 0 to 48 h in fresh media at 22 °C. After treatment, total 

protein was isolated and subjected to immunoblot analysis as detailed in Materials and 

methods. B) Densitometric analysis of the band intensity for HO-1 (black; panel B) and 

HSP30 (grey; panel B) employed Image J software. The results were expressed as a 

percentage of the maximum band intensity acquired with each protein in each trial (12 h 

recovery time point for HO-1 and HSP30). Vertical error bars denote the standard error. A 

one-way ANOVA with a Tukey’s Multiple Comparisons post-test was used to determine 

significance. Significant differences between the control cells and treated cells are indicated 

as * (p < 0.05). The data are representative of 3 separate experiments. 
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Figure 17. Effect of cycloheximide on HO-1 and HSP30 accumulation during recovery 

from sodium arsenite. A) Cells were incubated at 22 °C (C) or treated with 30 µM As at 22 

°C for 24 h. Media was then removed and flasks were rinsed once, and 100 µM 

cycloheximide (CHX) was added to the fresh media and cells were given 0 to 48 h recovery 

time. After treatment, total protein was isolated and subjected to immunoblot analysis as 

detailed in Materials and methods. B) Densitometric analysis of the band intensity for HO-1 

(black; panel B) and HSP30 (grey; panel B) utilized Image J software. The results were 

expressed as a percentage of the maximum band intensity acquired for each protein in each 

trial (no recovery for HO-1 and 4 h recovery for HSP30). Vertical error bars denote the 

standard error. A one-way ANOVA with a Tukey’s Multiple Comparisons post-test was used 

to determine significance. Significant differences between the control cells and treated cells 

are indicated as * (p < 0.05). The data are representative of 3 separate experiments. 
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Figure 18.  HO-1 and HSP30 accumulation during recovery from cadmium chloride 

treatment. A) Cells were maintained at 22 °C (C) or subjected to a 12 h 100 µM Cd 

treatment and then allowed to recover for 0 to 48 h in fresh media at 22 °C. After treatment, 

total protein was isolated and subjected to immunoblot analysis as detailed in Materials and 

methods. Results are representative of two experiments. 
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increase during recovery from cadmium chloride, CHX experiments should be carried out to 

verify this possibility. 

 

3.6. Mild heat shock combined with chemical stressors increases accumulation of HO-1 

and HSP30 

In the next phase of this study, experiments were carried out to determine the effect of 

a mild heat shock in conjunction with either sodium arsenite or cadmium chloride treatment 

on HO-1 and HSP30 accumulation in A6 cells. Treatment of cells with a mild heat shock of 

30 °C for 12 h did not result in detectable levels of HO-1 or HSP30 accumulation (Fig. 19A). 

Exposure of cells to 10 µM cadmium chloride or 10 µM sodium arsenite for 12 h, 

individually, resulted in HO-1 accumulation that was 3% and 30%, respectively, compared to 

maximum levels (Fig. 19B). HSP30 accumulation for these treatments was 0 and 10% 

compared to the maximum value, although occasionally HSP30 was weakly detected in 

response to cadmium treatment. The highest relative levels of HO-1 and HSP30 

accumulation were detected when cells were subjected to a mild heat shock plus arsenite, 

which exhibited three-fold and 11-fold increases, respectively, compared to 10 µM sodium 

arsenite alone. Cadmium and arsenite were also applied concurrently. When the two 

chemicals were combined HO-1 and HSP30 accumulation were 56% and 16% of the 

maximum values, respectively. 

 

3.7. MG132 induces HO-1 and HSP30 in a concentration- and time-dependent manner, 

and HO-1 and HSP30 accumulation in cells recovering from MG132 stress 

An examination of the effect of MG132 on HO-1 and HSP30 accumulation revealed  
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Figure 19.  Effect of sodium arsenite or cadmium chloride on HO-1 and HSP30 

accumulation with or without a mild heat shock. A) Cells were maintained at 22 °C (C), 

or incubated with 10 µM As or 10 µM Cd at either 22 or 30 °C. After treatment, total protein 

was isolated and subjected to immunoblot analysis as detailed in Materials and methods. B) 

Densitometric analysis of the band intensity for HO-1 (black; panel B) and HSP30 (grey; 

panel B) utilized Image J software. The results were expressed as a percentage of the 

maximum band intensity acquired for each protein in each trial (10 µM As plus 30 °C for 

both HO-1 and HSP30). Vertical error bars denote the standard error. A one-way ANOVA 

with a Tukey’s Multiple Comparisons post-test was used to determine significance. 

Significant differences between the control cells and treated cells are indicated as * (p < 

0.05). The data are representative of 3 separate experiments. 
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that HO-1 and HSP30 were detectable at 5 µM MG132, peaked at 20 µM with reduced levels 

at 30 µM (Fig. 20A). Densitometric analysis indicated that HO-1 reduced levels at 30 µM. 

Densitometric analysis indicated that HO-1 accumulation at 5 µM was 33% of the maximal 

density, while 10 and 30 µM were 65 and 53%, respectively. Accumulation of HSP30 

induced by 5 µM MG132 was 59% of the maximum value, while the relative densities for 10 

and 30 µM MG132 treatments were 87 and 68%, respectively (Fig 20B). In time course 

studies employing 30 µM MG132, minimal HO-1 and HSP30 accumulation was detected at 

8 h followed by increasing relative levels in a time-dependent manner up to 48 h (Fig. 21A). 

Densitometric analysis determined the relative levels of HO-1 accumulation at 8, 12, and 24 

h to be 29, 66 and 87%, respectively, of the maximum density. For HSP30, the same time 

points exhibited relative densities of 16, 45, 76%, respectively, compared to maximal values 

(Fig. 21B). In cells recovering from MG132 treatment, HO-1 and HSP30 accumulation 

decayed gradually over 48 h (Fig. 22). 

 

3.8. Localization of MG132-induced HO-1 and HSP30 accumulation, and the effect of a 

concurrent mild shock shock on MG132-induced accumulation of HO-1 and HSP30 

Subsequently, immunocytochemistry and laser scanning confocal microscopy were 

employed to examine the effect of MG132 on HO-1 and HSP30 localization. HO-1 and 

HSP30 were detected in approximately 65 and 75% of cells, respectively (Fig. 23). The 

MG132-treated A6 cells generally displayed an intact F-actin cytoskeleton although 

membrane ruffling (white arrows) was observed occasionally.  

Finally, the effect of a mild heat shock in combination with MG132 on HO-1 and 

HSP30 accumulation was determined. HO-1 accumulation was induced by 10 µM MG132  
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Figure 20. Effect of different concentrations of MG132 on HO-1 and HSP30 

accumulation. A) Cells were incubated with 0, 5, 10, 20, or 30 µM MG132 at 22 °C for 24 

h. Following the different treatments, total protein was isolated and subjected to immunoblot 

analysis using anti-HO-1, anti-HSP30, and anti-actin antibodies. B) Densitometric analysis of 

the band intensity for HO-1 (black; panel B) and HSP30 (grey; panel B) employed Image J 

software. The results were expressed as a percentage of the maximum band intensity 

acquired for each protein in each trial (20 µM MG132 for both HO-1 and HSP30). Vertical 

error bars denote the standard error. A one-way ANOVA with a Tukey’s Multiple 

Comparisons post-test was used to determine significance. Significant differences between 

the control cells and treated cells are indicated as * (p < 0.05). The data are representative of 

3 separate experiments. 
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Figure 21. Time course of MG132-induced HO-1 and HSP30 accumulation. A) Cells 

were incubated with 30 µM of MG132 at 22°C for 0, 4, 8, 12, 24, or 48 h. After treatment, 

total protein was isolated, quantified and subjected to immunoblot analysis as detailed in 

Materials and methods. B) Densitometric analysis of the band intensity for HO-1 (black; 

panel B) and HSP30 (grey; panel B) employed Image J software. The results were expressed 

as a percentage of the maximum band intensity acquired for each protein in each trial (48 h 

for both HO-1 and HSP30). Vertical error bars denote the standard error. A one-way 

ANOVA with a Tukey’s Multiple Comparisons post-test was used to determine significance. 

Significant differences between the control cells and treated cells are indicated as * (p < 

0.05). The data are representative of 3 separate experiments.
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Figure 22. HO-1 and HSP30 accumulation during recovery from MG132 treatment. A6 

cells were maintained at 22 °C (C) or subjected to a 24 h 30 µM MG132 (MG) treatment, 

then allowed to recover for 0 to 48 h in fresh media at 22 °C. Following treatment, total 

protein was isolated and subjected to immunoblot analysis as detailed in Materials and 

methods. Results are representative of two experiments. 
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Figure 23. Effect of MG132 on the localization of HO-1 and HSP30 in A6 cells. Cells 

were cultured on base-washed glass coverslips, and then either maintained at 22 °C (Control) 

or treated with 20 µM MG132 at 22 °C for 24 h. Actin and nuclei staining were done directly 

with phalloidin conjugated to TRITC (red) and DAPI (blue), respectively. HO-1 was detected 

with rabbit anti-HO-1 antibody, and a secondary antibody conjugated to Alexa-488 (green). 

HSP30 was detected with rabbit anti-HSP30 antibody, and a secondary antibody conjugated 

to Alexa-488 (green). The columns, from left to right, show the fluorescence detection 

channels for actin, HO-1 or HSP30, and combined actin, nuclei (DAPI), and HO-1 or HSP30, 

respectively, as indicated. The LSCM procedure was followed as outlined in the Materials 

and methods. White arrows indicate ruffling of F-actin cytoskeleton in MG132 treated cells. 

The 20 µm scale bars are indicated at the bottom right corner of each panel. 
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alone while HSP30 accumulation was not detected at this concentration (Fig. 24). However, 

when cells were treated concurrently with MG132 and a mild heat shock of 30 °C, an 

increase in the relative levels of both HO-1 and HSP30 accumulation was observed. 
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Figure 24.  Effect of MG132 on HO-1 and HSP30 accumulation with or without a mild 

heat shock. A) Cells were maintained at 22 °C (C), or incubated with 10 µM MG132 at 

either 22 or 30 °C. After treatment, total protein was isolated and subjected to immunoblot 

analysis as detailed in Materials and methods. B) Densitometric analysis of the band intensity 

for HO-1 (black; panel B) and HSP30 (grey; panel B) utilized Image J software. The results 

were expressed as a percentage of the maximum band intensity acquired for each protein in 

each trial (MG132 plus 30 °C for both HO-1 and HSP30). Vertical error bars denote the 

standard error. A one-way ANOVA with a Tukey’s Multiple Comparisons post-test was used 

to determine significance. Significant differences between the control cells and treated cells 

are indicated as * (p < 0.05). The data are representative of 3 separate experiments. 
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4. Discussion 

The present study has demonstrated, for the first time in Xenopus laevis, that 

treatment with cadmium chloride, sodium arsenite or the proteasomal inhibitor, MG132, 

induced the accumulation of heme oxygenase-1 (HO-1).  Furthermore, the pattern of HO-1 

accumulation was compared to HSP30, a member of the small heat shock protein family that 

has been studied extensively in our laboratory (Young et al., 2009; Heikkila, 2010; Young 

and Heikkila, 2010; Khan et al., 2012; Khamis and Heikkila, 2013; Khan and Heikkila, 

2014).  

DNA sequence analysis indicated that the putative Xenopus laevis HO-1 cDNA 

encoded a bona fide HO-1 protein. Amino acid sequence comparison determined that 

Xenopus HO-1 shared identity with HO-1 from other organisms including Xenopus 

tropicalis, chicken, human, alligator and zebrafish. For example, the coding region of HO-1 

shared identities of 91% with X. tropicalis, 63% with chicken, 59% with human and 45% 

with zebrafish. However, when a conserved region corresponding to residues P129-R186 of 

X. laevis HO-1 was compared, the percent identity ranged from 100 to 69% in the 

aforementioned organisms. This region included 4 of the 8 heme binding pocket residues 

integral for HO-1 function. X. laevis HO-1 was compared to the X. laevis HO-2 amino acid 

sequence and determined to share less identity (53%) than with HO-1 from all of the selected 

species examined except zebrafish. This phenomenon was also reported with rat HO-1 and 

HO-2, which shared only 43% sequence identity (Rotenberg and Maines, 1990).  

Initial immunoblot studies determined that HO-1 accumulation in X. laevis A6 cells was not 

enhanced in response to a 30, 33 or 35 °C heat shock. This finding was in contrast to HSP30, 

which was strongly induced in the present and previous studies from our laboratory (Krone et 
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al., 1992; Heikkila, 2010; Khamis and Heikkila, 2013).  A lack of heat-inducibility with 

respect to HO-1 accumulation was also reported in a variety of cell lines, including human 

alveolar macrophages, hepatoma, glioma, HeLa, fibroblast, erythroblast, and HL60 leukemia 

(Yoshida et al., 1988; Keyse and Tyrrell, 1989; Taketani et al., 1989; Mitani et al., 1990; 

Okinaga et al., 1996). Additionally, heat shock induced a decrease in ho-1 gene expression in 

spleen and kidney tissue of European sea bass (Hachfi et al., 2012). In contrast to the 

aforementioned studies, thermal stress enhanced HO-1 accumulation in vivo in rat liver, 

kidney and heart and in European sea bass liver, as well as in murine Sertoli cells, human 

fibroblasts, and in rat and human hepatoma cell lines (Taketani et al., 1988; Keyse and 

Tyrrell, 1989; Mitani et al., 1990; Raju and Maines, 1994; Lee et al., 1996; Hachfi et al., 

2012; Li et al., 2014). The mechanism(s) responsible for the differences in the heat 

inducibility of HO-1 accumulation in different cells is not known. Interestingly, studies with 

a human erythroid cell line revealed that the HSE of the ho-1 gene was repressed, possibly by 

transcription factors interacting with a downstream purine-rich region (Okinaga et al., 2006). 

Unfortunately, the regulatory regions of the Xenopus laevis ho-1 gene have not been isolated 

and sequenced. However, the Xenopus tropicalis sequence is available (Genbank gene ID: 

100488303). By comparing the Xenopus tropicalis gene with the available human homolog, 

it was determined that there is a HSE present in the X. tropicalis gene. Given that X. laevis 

and X. tropicalis share a 91% amino acid identity, it is possible that the genes are also highly 

conserved and that the X. laevis HO-1 promoter also has a HSE. Thus, it would be of interest 

to determine if a similar repression mechanism, as described above, occurs during heat 

shock.  
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In the present study, treatment of A6 cells with sodium arsenite or cadmium chloride 

induced both HO-1 and HSP30 accumulation. Previously, sodium arsenite was reported to 

induce HO-1 in a chicken hepatoma cell line, as well as in the human cell lines, HeLa and 

HL60 (Taketani et al., 1989; Elbirt et al., 1998; Ryter et al., 2006). Additionally, cadmium 

chloride induced HO-1 accumulation in soybean plants, fish, and mammalian systems 

(Taketani et al., 1989; Alam et al., 2000; Balestrasse et al., 2006; Ryter et al., 2006; Søfteland 

et al., 2010; Williams and Gallagher, 2013). Treatment of Xenopus A6 cells with iron 

sulphate or lead nitrate weakly induced HO-1 but not HSP30 accumulation while zinc 

sulphate and copper sulphate had no detectable effect on either protein compared to control. 

An examination of the scientific literature revealed variation in the extent of HO-1 

accumulation in a particular tissue/cell type to various metals. For example, in human colon 

adenocarcinoma cells, it was reported that zinc, but not copper or iron, induced HO-1 

accumulation (Smith and Loo, 2012). However, copper and iron were reported to induce HO-

1 accumulation in rat liver while copper induced HO-1 in human liver cell lines (Song and 

Freedman, 2005; Hait-Darshan et al., 2009; Mizukami et al., 2010). Additionally, lead 

induced HO-1 accumulation in rat kidney, and in rat astrocytes by causing oxidative stress 

(Vargas et al., 2003; Cabell et al., 2004). The reasons for these differential effects on HO-1 

accumulation by these different heavy metals are not known. 

In A6 cells treated with sodium arsenite, cadmium chloride or MG132, concentration- 

and time-dependent increases in HO-1 levels were observed. For example, peak HO-1 

accumulation occurred at 10 µM sodium arsenite with slightly decreased levels at higher 

concentrations of 20 to 50 µM. In time course studies using 30 µM sodium arsenite, the 

relative levels of HO-1 increased with time from 8 h to 48 h. Concentration- and time-
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dependent increases in the relative levels of HO-1 were also observed in avian and 

mammalian cells. For example, in chick embryo liver cells, treatment with 10 µM sodium 

arsenite for 24 h induced the highest relative amount of HO-1 (Sardana et al., 1982). In rat 

astrocytes, peak HO-1 levels occurred with 50 µM sodium arsenite although high relative 

levels of HO-1 were detected with 20 µM (Fauconneau et al., 2002). Finally, in human 

epidermal keratinocytes treated with 30 µM arsenite, HO-1 accumulation was detected at 4 h 

while maximum accumulation was observed at 8 h (Cooper et al., 2007). 

  In Xenopus A6 cells treated with cadmium chloride, enhanced HO-1 levels were 

detected at 50 µM with maximal amounts at 100 µM. In time course experiments, cadmium 

chloride-induced HO-1 accumulation was first detected at 8 h and continued to increase up to 

48 h. In primary Atlantic cod hepatic cells, enhanced ho-1 gene expression was detected at 1 

and 10 µM with peak levels at 100 µM cadmium chloride (Søfteland et al., 2010). However, 

in chick embryo liver cells the highest relative level of HO-1 accumulation was observed 

with only 2 µM cadmium chloride (Sardana et al., 1982). In time course studies with rat 

hepatocytes, enhanced HO-1 levels were detected after 4 h of cadmium chloride treatment 

and continued to increase up to the longest time point, 24 h (Badisa et al., 2008). 

The induction of HO-1 accumulation in A6 cells in response to the proteasomal 

inhibitor, MG132, was detectable at 5 µM and peaked at 20 µM. In time course studies using 

30 µM MG132, enhanced HO-1 accumulation was detected at 8 h and increased up to 48 h. 

In mammalian tissue culture systems, high relative levels of HO-1 were induced by relatively 

lower concentrations of MG132 and shorter time points compared to Xenopus A6 cells. For 

example, high levels of HO-1 accumulation were observed in mouse astrocytes with only 1 
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µM MG132 for 2 h (Chen and Regan, 2005; Cui et al., 2013). Also, 3 µM MG132 induced 

HO-1 accumulation in murine macrophages within 3 h and peaked at 12 h (Wu et al., 2004).  

Sodium arsenite-, cadmium chloride- or proteasomal inhibitor-induced accumulation of HO-

1 was reported to act through the MARE/Nrf2 system (Fig. 25A, 25B; Alam et al., 2000; Wu 

et al., 2004; Yamamoto et al., 2010; Wang et al., 2013). While the Xenopus laevis ho-1 gene 

promoter has not been isolated, a Nrf2-binding MARE sequence as well as NF-κB and AP-1 

binding elements were detected in the promoter region of the Xenopus tropicalis ho-1 gene 

(Genbank gene ID: 100488303). As mentioned previously, Nrf2 is a transcription factor 

bound to Keap1 in the cytosol under non-stress conditions. In response to redox-dependent 

stimuli, cysteine residues of Keap1 are modified, leading to the dissociation of Keap1 from 

Nrf2, which can then translocate to the nucleus and induce the expression of HO-1 (Li et al., 

2008; Balogun et al., 2003). Additionally, the thiol-rich transcriptional repressor of the ho-1 

gene, Bach1, is inactivated by pro-oxidants when cysteine residues in its DNA binding 

domain are oxidized (Ishikawa et al., 2005; Reichard et al., 2007). At least three of these 

cysteine residues are conserved among human, mouse, and Xenopus Bach1 (Ogawa et al., 

2001). The ho-1 gene can be activated by Nrf2 once Bach1 is no longer bound to the 

promoter and translocates out of the nucleus (Reichard et al., 2007; Paine et al., 2010). In 

mammalian cells, the Bach1 repressor was inactivated by arsenite, which attacks sulfhydryl 

groups of cellular components including cysteine residues (Del Razo et al., 2001; Samuel et 

al., 2005; Reichard et al., 2008). In addition, cadmium was found to induce nuclear export of 

Bach1, the repressor of the ho-1 gene (Suzuki et al., 2003). Additionally, both sodium 

arsenite and cadmium chloride were reported to cause oxidative damage to cellular proteins 

as cadmium was found to react with vicinal thiol groups (Waisberg et al., 2003; Galazyn-  
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Figure 25. Potential mechanisms of stress-induced HO-1 accumulation in Xenopus cells. 

A) Sodium arsenite and cadmium chloride have been reported to cause oxidative damage to 

cellular components including proteins. Arsenite and cadmium may induce HO-1 

accumulation through the MARE/Nrf2 and p38 MAPK pathways. Furthermore, cadmium 

chloride-induced HO-1 may involve the cadmium response element (CdRE), as well as the 

transcription factors HSF1 and pescadillo. B) MG132 has been reported to induce HO-1 

accumulation through the MARE/Nrf2 and p38 MAPK pathways. Additionally, proteasomal 

inhibition may increase the stability of Nrf2, allowing it to bind and activate the ho-1 gene. 

C) Increased temperatures may induce higher HO-1 accumulation by allowing increased 

uptake of chemicals and by inducing further protein damage.   
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Sidorczuk et al., 2009). Furthermore, cadmium chloride induced a 6- and 9-fold increase in 

H2O2 and O2
�-, respectively, in soybean plants (Balestrasse et al., 2006). This oxidative stress 

likely contributes to cadmium chloride-induced HO-1 accumulation. A previous study with 

mouse hepatoma cells suggested that cadmium-induced HO-1 accumulation might occur 

through stabilization of Nrf2, a ho-1 gene transcription factor, by increasing the half-life of 

Nrf2 from 13 min to 100 min (Stewart et al., 2003).  

Another possibility for the upregulation of HO-1 accumulation by cadmium chloride, which 

was first described in HeLa cells, involves the binding of transcription factors to the cis-

acting cadmium-responsive element (CdRE) found in the regulatory region of ho-1 genes 

(Fig. 25A; Takeda et al., 1995). As the Xenopus laevis ho-1 gene sequence was not available, 

the Xenopus tropicalis ho-1 gene promoter was searched for the potential CdRE 

sequence, TGCTAGAT (Sikorski et al., 2006; Koizumi et al., 2007). The sequence, 

AGCTAGAA, was found, which has a 6-nucleotide core that was identical to human CdRE. 

This core sequence was essential for metal-induced binding of transcription factor complexes 

in HeLa cells (Koizumi et al., 2007). Given the finding of a putative CdRE in X. tropicalis, it 

is possible that a comparable enhancer is also present in the promoter of the Xenopus laevis 

ho-1 gene. In human renal epithelial cells, the transcription factor pescadillo was found to 

interact specifically with the CdRE (Sikorski et al., 2006). Overexpression of pescadillo 

increased the transcriptional activity of the human ho-1 gene promoter. Interestingly, in HeLa 

cells it was determined that HSF1 may participate in mediating the transcriptional activation 

of the ho-1 gene (Koizumi et al., 2007). In this latter study, it was suggested that in 

cadmium-treated HeLa cells, pescadillo binding to CdRE or the presence of other 

transcription factors binding to adjacent regulatory elements may interact with HSF1 
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resulting in an enhanced expression of the ho-1 gene. It is not known whether these possible 

mechanism(s) for cadmium-induced ho-1 gene activation extend to Xenopus. However, the 

involvement of pescadillo should be examined in the future due to the existence of a 

homolog in Xenopus laevis (Gessert et al., 2007). 

It is possible that upregulation of HO-1 by MG132 may also be regulated at the level 

of protein stability as it is a proteasomal inhibitor (Fig. 25B). Proteasomal inhibitors 

enhanced the expression of Nrf2, likely due to the prevention of its on-going degradation 

under non-stress conditions (Stewart et al., 2003). Specifically, MG132 elevated the relative 

levels of Nrf2 in PC12 rat adrenal pheochromocytoma cells (Martin et al., 2004). Given the 

above-mentioned findings in mammalian cells, it is possible that Xenopus laevis HO-1 

accumulation induced by sodium arsenite, cadmium chloride or MG132 may occur by means 

of similar mechanisms.  

In general, treatment of A6 cells with sodium arsenite, cadmium chloride or MG132 

in dose response and time course studies produced a pattern of HSP30 accumulation that was 

similar to HO-1 as well as previous studies of stress-induced HSP30 accumulation in our 

laboratory (Voyer and Heikkila, 2008; Woolfson and Heikkila, 2009; Young and Heikkila, 

2010; Brunt et al., 2012). Also, in these previous studies, induction of hsp30 gene expression 

by sodium arsenite, cadmium chloride and MG132 was regulated at least in part at the level 

of transcription since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and 

HSP70. HSF1 is triggered by the accumulation of non-native or misfolded proteins within the 

cell, and all of the stressors employed in this study lead to the accumulation of unfolded or 

damaged protein as mentioned previously (Morimoto, 1998; Pirkkala et al., 2001; Voellmy, 

2004; Morimoto, 2008; Heikkila, 2010). In the current study, the effect of these stressors on 
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the relative levels of the cytoskeletal protein actin was examined and found to remain 

relatively constant. These findings agree with previous analyses in our laboratory detailing 

the effect of various stressors on relative actin levels (Woolfson and Heikkila, 2009; Young 

and Heikkila, 2010; Brunt et al., 2012; Khamis and Heikkila, 2013). 

In A6 cells recovering from sodium arsenite treatment, the relative levels of HO-1 

and HSP30 increased up to 12 h before gradually declining to 40-50% of peak levels at 48 h. 

This enhanced accumulation of HO-1 and HSP30 at 12 h of recovery was inhibited by 

cycloheximide, a translational inhibitor, suggesting that this transient increase was due to de 

novo protein synthesis. Persistence of enhanced HO-1 accumulation during recovery from 

sodium arsenite was also observed in human and murine skin cells  (Caltabiano et al., 1986). 

A6 cells recovering from cadmium chloride exhibited an increase in HO-1 and HSP30 

accumulation up to 24 h recovery, followed by a decrease. In previous studies, A6 cells that 

were allowed to recover from a 200 µM cadmium chloride treatment displayed an increase in 

HSP30 accumulation from 12 to 48 h after stressor removal, with decreased levels at 72 h 

recovery (Woolfson and Heikkila, 2009). Additionally, an increase in HSP accumulation 

during recovery from cadmium stress was demonstrated in rat hepatoma cells and rat liver 

tissue (Goering et al, 1993; Ovelgönne et al., 1995). The persistence of enhanced HO-1 and 

HSP30 accumulation may be due to the continued actions of the metals on the Nrf-2 and 

HSF1 pathways within the A6 cell. In contrast, MG132-induced HO-1 and HSP30 

accumulation remained relatively constant after fresh media was added until 48 h. Similar 

findings were made in a previous study examining the effect of MG132-induced HSP30 

accumulation in A6 cells after removal of MG132 from the media (Young and Heikkila, 

2010). Extended accumulation of HSPs during recovery from the effects of a proteasomal 
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inhibitor was demonstrated in rat neonatal cardiomyocytes and Chinese hamster ovary cells 

(Stangl et al., 2002; Kovacs et al., 2006). This prolonged accumulation of HO-1 and HSP30 

during recovery may be due to MG132’s long half-life, allowing it to continue to inhibit the 

proteasome (Lee and Goldberg, 1998). Cells may also require additional time to degrade the 

accumulated ubiquitinated protein by means of the ubiquitin proteasome system, which was 

inhibited by MG132.  

Additionally, the present study determined that incubation of A6 cells with relatively 

low concentrations (10 µM) of sodium arsenite or cadmium chloride plus a concurrent mild 

heat shock (30 °C) enhanced the relative levels of HO-1 accumulation compared to the 

different stressors individually. These results were in contrast to other studies, which 

demonstrated a heat shock-induced reduction in HO-1 accumulation. For example, in human 

Hep3B hepatoma cells, in which HO-1 was heat-inducible, the simultaneous treatment of 

cells with sodium arsenite and a relatively high heat shock temperature (42.5 °C) induced 

lower levels of HO-1 than observed with sodium arsenite alone (Chou et al., 2005). Also, in a 

human erythroblastic cell line, it was determined that a 42 °C heat shock inhibited the 

cadmium-induced activation of the heme oxygenase-1 promoter (Okinaga et al., 1996). 

Unfortunately, the effect of mild heat shock temperatures plus sodium arsenite or cadmium 

chloride was not tested in these studies, and heat shock treatment of A6 cells beyond 35 °C 

leads to cell death. Previously, it was reported that cellular uptake of both sodium arsenite 

and cadmium chloride increased with elevated temperatures in mammals and fish 

(McGeachy and Dixon, 1989; Souza et al., 1997; Saydam et al., 2003). Thus, it is possible 

that the mild heat shock may enhance the uptake of sodium arsenite or cadmium chloride into 
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A6 cells which may in turn increase their ability to activate the Nrf2 pathway leading ho-1 

gene expression as previously discussed (Fig. 25C).  

Mild heat shock also enhanced the MG132-induced accumulation of HO-1 

accumulation in A6 cells. At this time, it is not known whether the uptake of MG132, which 

is dissolved in DMSO, increases with temperature. If this did occur then the enhanced 

inhibitory action of MG132 on proteasomal degradation may have enhanced the stability of 

Nrf2 ultimately leading to increased HO-1 accumulation compared to control temperatures. It 

is also tenable that the mild heat shock may have increased the amount of oxidative stress in 

A6 cells, which could further activate the Nrf2 pathway. 

In the previous sets of experiments, treatment of A6 cells with mild heat shock plus 

sodium arsenite or MG132 enhanced the accumulation of HSP30. These findings agree with 

previous studies in our laboratory (Young et al., 2009; Young and Heikkila, 2010; Brunt et 

al., 2012; Khamis and Heikkila, 2013). Also, treatment of A6 cells with 10 µM cadmium 

chloride plus a mild heat shock occasionally resulted in enhanced HSP30 accumulation. A 

low relative level of HSP30 accumulation in A6 cells induced by these stress conditions was 

reported previously in our laboratory (Khamis and Heikkila, 2013). However, higher 

concentrations of cadmium chloride plus mild heat were found to produce a high relative 

level of HSP30 accumulation (Woolfson and Heikkila, 2009). As suggested in these earlier 

studies, heat shock plus sodium arsenite, cadmium chloride or MG132 may have augmented 

the extent of protein denaturation, misfolding and ubiquitinated protein leading to HSF1 

activation.  

Immunocytochemical analysis confirmed the lack of HO-1 accumulation in response 

to heat shock treatment, whereas HO-1 was detected in response to sodium arsenite, 
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cadmium chloride and MG132 treatment primarily in the perinuclear region in a punctate 

pattern. Interestingly, larger HO-1 antibody staining structures were detected in about 20% of 

cells treated with sodium arsenite treatment. This finding was of interest given that, although 

it lacks an ER-targeting sequence, HO-1 is anchored to the endoplasmic reticulum by a single 

C-terminal transmembrane region, and it faces the cytosol in macrophages in vivo (Gottlieb 

et al., 2012; Ryter et al., 2006). However, previous studies reported that stress-induced 

immunoglobulin-binding protein (BiP), another ER protein, formed larger BiP antibody 

staining structures with a similar localization pattern (Khan et al., 2012). While HO-1 is 

primarily an ER protein, it was shown in various mammalian systems to translocate to the 

nucleus and/or mitochondria in response to hypoxia stress or in tumours (Converso et al., 

2006; Slebos et al., 2007; Lin et al., 2007; Gandini et al., 2012; Namba et al., 2014). 

Interestingly, a recent study determined that NADPH cytochrome P450 reductase can inhibit 

the translocation of HO-1 to the nucleus and promote oligomerization of HO-1 into higher 

ordered complexes also containing biliverdin reductase (Huber et al., 2009; Linnenbaum et 

al., 2012). It is possible that a similar phenomenon may occur with Xenopus HO-1 in A6 

cells. Treatment of Xenopus A6 cells with sodium arsenite, cadmium chloride or MG132 also 

induced the accumulation of HSP30 primarily in the cytoplasm in a punctate pattern as 

observed previously in our laboratory (Gellalchew and Heikkila, 2005; Voyer and Heikkila, 

2008; Woolfson and Heikkila, 2009; Young and Heikkila, 2010). The HSP30 granular 

pattern was most likely due to stress-induced multimeric complexes that may be required for 

the binding of HSP30 to unfolded protein (Ohan et al., 1998; MacRae, 2000; Fernando and 

Heikkila, 2000; Van Montfort et al., 2001; Fernando et al., 2003). In some cells treated with 

heat shock, sodium arsenite, cadmium chloride, or MG132 there was observed membrane 
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ruffling and F-actin cytoskeletal disorganization. This phenomenon has previously been 

reported in A6 cells and mammalian cultured cells (Mills and Ferm, 1989; Li and Chou, 

1992; Wang et al., 1996, Gellalchew and Heikkila, 2005; Woolfson and Heikkila, 2009, 

Templeton and Liu, 2013).  

In summary, the present study determined for the first time in an amphibian cell line 

that HO-1 accumulation was induced by sodium arsenite, cadmium chloride and the 

proteasomal inhibitor, MG132, but not heat shock. Additional basic information regarding 

stress-induced HO-1 accumulation is of importance given that it has been implicated in a 

variety of diseases and conditions that are associated with oxidative stress, including 

Alzheimer’s disease, diabetes, atherosclerosis, and myocardial infarction (Takahashi et al., 

2000; Juan et al., 2001; Turkseven et al., 2005; Liu et al., 2005). Furthermore, some of these 

diseases are also associated with proteasomal inhibition. Additionally, aquatic organisms, 

such as amphibians, are quite susceptible to the deleterious effects of toxicants such as 

sodium arsenite and cadmium chloride. Thus, HO-1 may be of value as a biomarker for 

studies involving environmental contamination by cadmium chloride, sodium arsenite or 

other agents. The present study has also shown that HO-1 accumulation by these metals was 

enhanced by mild heat shock. This last finding is of importance given the global rise in 

temperature over the last number of decades and its potential effect on aquatic organisms, 

especially those in contaminated lakes or rivers.  

Given the findings of the present study, future studies could examine in more detail 

the mechanism(s) involved in sodium arsenite-, cadmium chloride-, and MG132-induced 

accumulation of HO-1 in Xenopus A6 cells. There are various pathways that have been 

implicated in the induction of HO-1 in response to different stressors. Sodium arsenite, 
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cadmium chloride, and proteasomal inhibitors were reported to induce HO-1 through the 

Keap1/Nrf2 system in a variety of mammalian systems (Alam et al., 2000; Wu et al., 2004; 

Yamamoto et al., 2010; Wang et al., 2013). Additionally, the p38 MAPK inhibitor SB203580 

was found to greatly reduce HO-1 accumulation in murine macrophages in response to 

MG132, suggesting a role in HO-1 accumulation (Wu et al., 2004). Additionally, SB203580 

was reported to block Nrf-2 translocation to nuclei, thereby inhibiting Ginkgo biloba extract-

induced HO-1 accumulation in human aortic endothelial cells, and implicating p38 in ho-1 

induction (Chen et al., 2011). Thus, SB203580 could be employed to determine if sodium 

arsenite, cadmium chloride and MG132 likewise induce HO-1 accumulation as a result of 

p38 phosphorylation and the p38 MAPK pathway in X. laevis A6 cells. Future studies could 

also examine the pattern of stress-induced HO-1 accumulation in Xenopus embryos. 

Previously, constitutive levels of HO-1 mRNA were detected in Xenopus laevis egg with 

increasingly higher amounts after the midblastula stage of development (Shi et al., 2008). 

However, there is no information available on the effect of various stressors, like sodium 

arsenite or cadmium chloride on ho-1 gene expression during Xenopus embryogenesis.  

  



	
   	
  99	
  

References 
 
Abdulle, R., Mohindra, A., Fernando, P., and Heikkila, J.J. 2002. Xenopus small heat shock 

proteins, Hsp30C and Hsp30D, maintain heat- and chemically denatured luciferase in a 

folding-competent state. Cell Stress Chaperones. 7, 6-16. 

Acunzo, J., Katsogiannoum, M., and Rocchi, P. 2012. Small heat shock proteins HSP27 

(BspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int. J. 

Biochem. Cell. Biol. 44, 1622-1631. 

Akerfelt, M., Troullet, D., Mezger, V., and Sistonen, L. 2007. Heat shock factors at a crossroad 

between stress and development. Ann. N. Y. Acad. Sci. 1113, 15-27. 

Alam, J. and Cook, J. 2007. How many transcription factors does it take to turn on the heme 

oxygenase-1 gene? Am. J. Respir. Cell. Mol. Biol. 36, 166-174. 

Alam, J., Wicks, C., Stewart, D., Gong, P., Touchard, C., Otterbein, S., Choi, A.M.K., Burow, 

M.E., and Tou, J. 2000. Mechanism of heme oxygenase-1 gene activation by cadmium in 

MCF-7 mammary epithelial cells: role of p38 kinase and Nrf2 transcription factor. J. Biol. 

Chem. 275, 27694-27702.  

Allen, S.P., Polazzi, J.O., Gierse, J.K., and Easton, A.M. 1992. Two novel heat shock genes 

encoding proteins produced in response to heterologous protein expression in Escherichia 

coli. J. Bacteriol. 174, 6938-6947. 

Arrigo, A.P., Garrido, C., Fromentin, A., Bonnotte, B., Favre, N., Moutet, M., Mehlen, P., and 

Solary, E. 1998. Heat shock protein 27 enhances the tumorgenicity of immunogenic rat 

colon carcinoma cell clones. Cancer Res. 58, 5495-5499. 

 



	
   	
  100	
  

Awasthi, N. and Wagner, B.J. 2005. Upregulation of heat shock protein expression by 

proteasome inhibition: an antiapoptotic mechanism in the lens. Invest. Ophthalmol. Vis. 

Sci. 46, 2082-2091. 

Badisa, V.L., Latinwo, L.M., Odewumi, C.O., Ikediobi, C.O., Badisa, R.B., Brooks-Walter, A., 

Lambert, A.T., and Nwoga, J. Cytotoxicity and stress gene microarray analysis in 

cadmium-exposed CRL-1439 normal rat liver cells. Int. J. Mol. Med. 22, 213-219. 

Barbier, O., Jacquillet, G., Tauc, M., Poujeol, P., Cougnon, M. 2004. Acute study of interaction 

among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am. J. 

Physiol. Renal. Physiol. 287, 1067-1075. 

Balestrasse, K.B., Noriega, G.O., Batlle, A., and Tomaro, M.L. 2006. Heme oxygenase activity 

and oxidative stress signalling in soybean leaves. Plant Sci. 170, 339-346. 

Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C.J. Foresti, R., Alam, J., and Motterlini, 

R. 2003. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the 

antioxidant-responsive element. Biochem. J. 371, 887-895. 

Bauman, J.B. Liu, J., and Klassen, C.D. 1993. Production of metallothionein and heat-shock 

proteins in response to metals. Fundam. Appl. Toxicol. 21, 15-22.  

Becker, J. and Craig, E.A. 1994. Heat-shock proteins as molecular chaperones. Eur. J. Biochem. 

219, 11-23. 

Bhattacharjee, H., Rosen, B.P, and Mukhopadhyay, R. 2009. Aquaglyceroporins and metalloid 

transport: implications in human disease. Handb. Exp. Pharmacol. 190, 309-325.  

Bienz, M. 1984. Developmental control of the heat shock response in Xenopus. Proc. Natl. 

Acad. Sci. USA 81, 3138-3142.  



	
   	
  101	
  

Bode, A.M., and Dong, Z. 2002. The paradox of arsenic: molecular mechanisms of cell 

transformation and chemotherapeutic effects. Crit. Rev. Oncol. Hematol. 42, 5-24. 

Bonham, R.T, Fine, M.R., Pollock, F.M., and Shelden, E.A. 2003. Hsp27, Hsp70, and 

metallothionein in MDCK and LLC-PK1 renal epithelial cells: effects of prolonged 

exposure to cadmium. Toxicol. Appl. Pharmacol. 191, 63-73. 

Boston, R.S., Viitanen, P.V., and Vierling, E. 1996. Molecular chaperones and protein folding 

in plants. Plant Mol. Biol. 32, 191-222. 

Brouard, S., Otterbein, L.E., Anrather, J., Tobiasch, E., Bach, F.H., Choi, A.M., and Soares, 

M.P. 2000. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell 

apoptosis. J. Exp. Med. 192, 1015-1026. 

Browne, S., Ferrante, R., and Beal, M.F. 1999. Oxidative stress in Huntington’s disease. Brain 

Pathol. 9, 147–163. 

Brunt, J., Khan, S., and Heikkila, J.J. 2012. Sodium arsenite and cadmium chloride induction of 

proteasomal inhibition and HSP accumulation in Xenopus laevis A6 kidney epithelial 

cells. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 55, 307-317.  

Bush, K.T., Goldberg, A.L., and Nigam, S.K. 1997. Proteasome inhibition leads to a heat shock 

response, induction of endoplasmic reticulum chaperones, and thermotolerance. J. Biol. 

Chem. 272, 9086-9092. 

Cabell, L., Ferguson, C., Luginbill, D., Kern, M., Weingart, A., and Audesirk, G. 2004. 

Differential induction of heme oxygenase and other stress proteins in cultured 

hippocampal astrocytes and neurons by inorganic lead. Toxicol. Appl. Pharmacol. 198, 

49-60. 



	
   	
  102	
  

Calabrese, V., Scapagnini, C., Colimbrita. C., Ravagna, A., Pennisi, G., and Stella, A. M. G. 

2003. Redox regulation of heat shock protein expression in aging and neurodegenerative 

disorders associated with oxidative stress: a nutritional approach. Amino Acids. 25, 437-

444. 

Calabrese, V., Bates, T.E., Mancuso, C., Cornelius, C., Ventimiglia, B., Cambria, M.T., Di 

Renzo, L., De Lorenzo, A., and Dinkova-Kostova, A.T. 2008. Curcumin and the cellular 

stress response in free radical-related diseases. Mol. Nutr. Food. Res. 52, 1062-1073.  

Caltabiano, M.M., Koestler, T.P., Poste, G., and Greig, R.G. 1986. Induction of 32- and 34-kDa 

stress proteins by sodium arsenite, heavy metals, and thiol-reactive agents. J. Biol. Chem. 

261, 13381-13386. 

Chen, Y.C., Lin-Shiau, S.Y., and Lin, J.K. 1998. Involvement of reactive oxygen species and 

caspase 3 activation in arsenite-induced apoptosis. J. Cell Physiol. 177, 324-333. 

Chen, J. and Regan, R.F. 2005. Increasing expression of heme oxygenase-1 by proteasome 

inhibition protects astrocytes from heme-mediated oxidative injury. Curr. Neurovasc. Res. 

2, 189-196. 

Chen, J.S., Huang, P.H., Wang, C.H., Lin, F.Y., Tsai, H.Y., Wu, T.C., Lin, S.J., and Chen, J.W. 

2011. Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent 

mechanism, contributes to anti-atherogenesis and vascular protective effects of Ginkgo 

biloba extract. Atherosclerosis. 214, 301-309. 

Choi, A.M. and Alam, J. 1996. Heme oxygenase-1: function, regulation, and implication of a 

novel stress-inducible protein in oxidant-induced lung injury. Am. J. Respir. Cell Mol. 

Biol. 15, 9-19. 



	
   	
  103	
  

Chora, S., McDonagh B., Sheehan, D., Starita-Geribaldi, M., Romeo, M., and Bebianno, M.J. 

2008. Ubiquitination and carbonylation as markers of oxidative-stress in Ruditapes 

decussates. Mar. Environ. Res. 66, 95-97. 

Chou, Y.H., Ho, F.M., Liu, D.Z., Lin, S.Y., Tsai, L.H., Chen, C.H., Ho, Y.S., Hung, L.F., and 

Liang, Y.C. 2005. The possible role of heat shock factor-1 in the negative regulation of 

heme oxygenase-1. Int. J. Biochem. Cell Biol. 37, 604-615.  

Chou, I.N. 1989. Distinct cytoskeletal injuries induced by As, Cd, Co, Cr and Ni compounds. 

Biomed. Environ. Sci. 2, 358-365. 

Ciechanover, A., Heller, H., Elias, S., Haas, A.L., and Hershko, A. 1980. ATP-dependent 

conjugation of reticulocyte proteins with the polypeptide required for protein degradation. 

Proc. Natl. Acad. Sci. USA 77, 1365–1368. 

Cui, W., Bai, Y., Luo, P., Miao, L., and Cai, L. 2013. Preventive and therapeutic effects of 

MG132 by activating Nrf2-ARE signalling pathway on oxidative stress-induced 

cardiovascular and renal injury. Oxid. Med. Cell Longev. doi: 10.1155/2013/306073. 

Collino, M., Pini, A., Mugelli, N., Mastroianni, R., Bani, D., Fantozzi, R., Papucci, L., Fazi, M., 

and Masini, E. 2013. Beneficial effect of prolonged heme oxygenase-1 activation in a rat 

model of chronic heart failure. Dis. Model Mech. 6, 1012-1020. 

Converso, D.P., Taillé, C., Carreras, M.C., Jaitovich, A. Poderoso, J.J., and Boczkowski, J. 

2006. HO-1 is located in liver mitochondria and modulates mitochondrial heme content 

and metabolism. FASEB J. 20, 1236-1238. 



	
   	
  104	
  

Cooper, K.L., Liu, K.J., and Hudson, L.G. 2007. Contributions of reactive oxygen species and 

mitogen-activated protein kinase signalling in arsenite-stimulated hemeoxygenase-1 

production. Toxicol. Appl. Pharmacol. 218, 119-127. 

Darasch, S., Mosser, D.D., Bols, N.C., and Heikkila, J.J. 1988. Heat shock gene expression in 

Xenopus laevis A6 cells in response to heat shock and sodium arsenite treatments. 

Biochem. Cell Biol. 66, 862-870. 

Del Razo, L.M., Quintanilla-Vega, B., Brambila-Colombres, E., Calderon-Aranda, E.S., Manno 

M., and Albores, A. 2001. Stress proteins induced by arsenic. Toxicol. Appl. Pharmacol. 

177, 132-148.  

Deshane, J., Chen, S., Caballero, S., Grochot-Przeczek, A., Was, H., Li Calzi, S., Lach, R., 

Hock, T.D., Chen, B., Hill-Kapturczak, N., Siegal, G.P., Dulak, J., Jozkowicz, A., Grant, 

M.B., and Agarwal, A. 2007. Stromal cell-derived factor 1 promotes angiogenesis via a 

heme oxygenase 1-dependent mechanism. J. Exp. Med. 204, 605-618. 

Elbirt K.K., Whitmarsh A.J., Davis R.J., and Bonkovsky H.L. 1998. Mechanism of sodium 

arsenite mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-

activated protein kinases. J. Biol. Chem. 273, 8922-8931. 

Endo, T. 2002. Transport of cadmium across the apical membrane of epithelial cell lines. Comp. 

Biochem. Physiol. C Toxicol. Pharmacol. 131, 223-229. 

Ewing, J.F. and Maines, M.D. 1997. Histochemical localization of heme oxygenase-2 protein 

and mRNA expression in rat brain. Brain Res. Brain Res. Protoc. 1, 165-174. 



	
   	
  105	
  

Fang, J., Sawa, T., Akaike, T., Akuta, T., Sahoo, S.K., Khaled, G., Hamada, A., and Maeda, H.  

2004. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of 

heme oxygenase in solid tumor. Cancer Res. 63, 3567-3574. 

Fauconneau, B., Petegnief, V., Sanfeliu, C., Piriou, A., and Planas, A. M. 2002. Induction of 

heat shock proteins (HSPs) by sodium arsenite in cultured astrocytes and reduction of 

hydrogen peroxide-induced cell death. J. Neurochem. 83, 1338-1348. 

Fernando, P., and Heikkila, J.J. 2000. Functional characterization of Xenopus small heat shock 

protein, Hsp30C : the carboxyl end is required for stability and chaperone activity. Cell 

Stress Chaperones 5, 148-159. 

Fernando, P., Megeney, L.A. and Heikkila, J.J. 2003. Phosphorylation-dependent structural 

alterations in the small hsp30 chaperone are associated with cellular recovery. Exp. Cell 

Res. 286, 175-185. 

Ferris, C.D., Jaffrey, S.R., Sawa, A., Takahashi, M., Brady, S.D., Barrow, R.K., Tysoe, S.A., 

Wolosker, H., Baranano, D.E., Dore, S., Poss, K.D., and Snyder, S.H. 1999. Haem 

oxygenase-1 prevents cell death by regulating cellular iron. Nat. Cell. Biol. 1, 152-157. 

Figueiredo-Pereira, M.E., and Cohen, G. 1999. The ubiquitin/proteasome pathway: friend or foe 

in zinc-, cadmium-, and H2O2-induced neuronal oxidative stress. Mol. Biol. Rep. 26, 65-

69. 

Fort, D.J., Stover, E.L., Bantle, J.A., Dumont, J.N., and Finch, R.A. 2001. Evaluation of 

reproductive toxicity assay using Xenopus laevis: boric acid, cadmium and ethylene glycol 

monomethyl ether. J. Appl. Toxicol. 21, 41-52. 

Galazyn-Sidorczuk, M., Brzoska, M.M., Jurczuk, M., and Moniuszko-Jakoniuk, J. 2009. 



	
   	
  106	
  

Oxidative damage to proteins and DNA in rats exposed to cadmium and/or ethanol. Chem. 

Biol. Interac. 180, 31-38. 

Gandini, N.A., Fermento, M.E., Salomón, D.G., Blasco, J., Patel, V., Gutkind, J.S., Molinolo, 

A.A., Facchinetti, and M.M., and Curino, A.C. 2012. Nuclear localization of heme 

oxygenase-1 is associated with tumor progression of head and neck squamous cell 

carcinomas. Exp. Mol. Pathol. 93, 237-245. 

Garrido, C., Paul, C., Seigneuric, R., and Kampinga, H.H. 2012. The small heat shock proteins 

family: the long forgotten chaperones. Int. J. Biochem. Cell Biol. Review. 44, 1588-1592. 

Gauley, J., and Heikkila, J.J. 2006. Examination of the expression of the heat shock protein 

gene, hsp110, in Xenopus laevis cultured cells and embryos. Comp. Biochem. Physiol. A 

Mol. Integr. Physiol. 145, 225-234. 

Gellalchew, M and Heikkila, J.J.  2005. Intracellular localization of Xenopus small heat shock 

protein, hsp30, in A6 kidney epithelial cells. Cell. Biol. Int. 29, 221-227. 

Gessert, S., Maurus, D., Rössner, A., and Kühl, M. Pescadillo is required for Xenopus laevis eye 

development and neural crest migration. Dev. Biol. 310, 99-112. 

Goering, P.L., Fisher, B.R., and Kish, C.L. 1993. Stress protein synthesis induced in rat liver by 

cadmium precedes hepatotoxicity. Toxicol. Appl. Pharmacol. 122, 139-148. 

Gong, P., Hu, B., and Cederbaum, A.I. 2004. Diallyl sulfide induces heme oxygenase-1 through 

MAPK pathway. Arch. Biochem. Biophys. 432, 252–260. 

González-Reyes, S., Guzmán-Beltrán, S., Medina-Campos, O.N., and Pedraza-Chaverri, J. 

2013. Curcumin pretreatment induces Nrf2 and an antioxidant response and prevents 



	
   	
  107	
  

hemin-induced toxicity in primary cultures of cerebellar granule neurons of rats. Oxid. 

Med. Cell Longev. doi: 10.1155/2013/801418. 

Gottlieb, Y., Truman, M., Cohen, L.A., Leichtmann-Bardoogo, Y., and Meyron-Holtz, E.G. 

2012. Endoplasmic reticulum anchored heme-oxygenase 1 faces the cytosol. 

Haematologica 97, 1489-1493. 

Guille, M. 1999. Microinjection into Xenopus oocytes and embryos. Methods Mol. Biol. 127, 

111-123. 

Hachfi, L., Simide, R., Richard, S., Couvray, S., Coupe, S., Gaillard, S., Pierre, S., Grillasca, 

J.P., and Prevot-D’Alvise, N. 2012. Effect of water temperature increase on HO-1 

expression in European sea bass (Dicentrarchus labrax L.) tissues. Cell. Mol. Biol. 

(Noisy-le-grand). Suppl. 58, OL1752-1756.   

Hait-Darshan, R., Babushkin, T., and Malik, Z. Regulation of heme synthesis and proteasomal 

activity by copper: possible implications for Wilson’s disease. J. Environ. Pathol. Toxicol. 

Oncol. 28, 209-221.  

Hanneken, A., Lin, F.F., Johnson, J., and Maher, P. 2006. Flavonoids protect human retinal 

pigment epithelial cells from oxidative-stress-induced death. Invest. Opthalmol. Vis. Sci. 

47, 3164-3177. 

Hara, E., Takahashi, K., Tominaga, T., Kumabe, T., Kayama, T., Suzuki, H., Fujita, H., 

Yoshimoto, T., Shirato, K., and Shibahara, S. 1996. Expression of heme oxygenase and 

inducible nitric oxide synthase mRNA in human brain tumors. Biochem. Biophys. Res. 

Commun. 224, 153–158. 



	
   	
  108	
  

Hartsfield, C.L., Alam, J. and Choi, A.M. 1998. Transcriptional regulation of the heme 

oxygenase 1 gene by pyrrolidine dithiocarbamate. FASEB J. 12, 1675-1682. 

Hartsfield, C.L., Alam, J., and Choi, A.M. 1999. Differential signaling pathways of HO-1 gene 

expression in pulmonary and systemic vascular cells. Am. J. Physiol. 277, L1133-L1141. 

Heikkila, J.J. 2004. Regulation and function of small heat shock protein genes during amphibian 

development. J. Cell. Biochem. 93, 672-680. 

Heikkila, J.J. 2010. Heat shock protein gene expression and function in amphibian model 

systems. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 156, 19-33. 

Heikkila, J.J., Kaldis, A., and Abdulle, R. 2006. Analysis of molecular chaperones using a 

Xenopus oocyte protein refolding assay. Methods Mol. Biol. 322, 213-222. 

Hendrick, J.P. and Hartl, F.U. 1993. Molecular chaperone functions of heat-shock proteins. 

Annu. Rev. Biochem. 62, 349-384. 

Hirai, K., Sasahira, T., Ohmori, H., Fujii, K., and Kuniyasu, H. 2007. Inhibition of heme 

oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in 

C57BL mice. Int. J. Cancer. 120, 500-505. 

Hill-Kapturczak, N., Thamilselvan, V., Liu, F., Nick, H.S., and Agarwal, A. 2001. Mechanism 

of heme oxygenase-1 gene induction by curcumin in human renal proximal tubule cells. 

Am. J. Physiol. Renal Physiol. 281, 851-859. 

Hershko, A., Ciechanover, A., Heller, H., Haas, A.L., and Rose, I.A. 1980. Proposed role of 

ATP in protein breakdown: conjugation of proteins with multiple chains of the 

polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. USA 77, 1783–1786.   



	
   	
  109	
  

Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67, 425-

479. 

Hock, T.D., Nick, H.S., and Agarwal, A. 2004. Upstream stimulatory factors, USF1 and USF2, 

bind to the human haem oxygenase-1 proximal promoter in vivo and regulate its 

transcription. Biochem. J. 383(Pt 2), 209-218. 

Hough, R., Pratt, G., and Rechsteiner, M. 1987. Purification of two high molecular weight 

proteases from rabbit reticulocyte lysate. J. Biol. Chem. 262, 8303–8313. 

Huber, III, W.J. Scruggs, B.A., and Backes, W.L. 2009. C-terminal membrane spanning region 

of human heme oxygenase-1 mediates a time-dependent complex formation with 

cytochrome P450 reductase. Biochemistry 48, 190-197. 

Immenschuh, S. and Ramadori, G. 2000. Gene regulation of heme oxygenase-1 as a therapeutic 

target. Biochem. Pharmacol. 60, 1121-1128. 

Ishikawa, M., Numazawa, S., and Yoshida, T. 2005. Redox regulation of the transcriptional 

repressor Bach1. Free Radic. Biol. Med. 38, 1344-1352. 

Iyer. J.K., Shi, L., Shankar, A.H., and Sullivan, D.J. Jr. 2003. Zinc protoporphyrin IX binds 

heme crystals to inhibit the process of crystallization in Plasmodium falciparum. Mol. 

Med. 9, 175-182. 

Joseph, P., Muchnok, T.K., Klishis, M.L., Roberts, J.R., Antonini, J.M., Whong, W.Z., and Ong, 

T. 2001. Cadmium-induced cell transformation and tumourigenesis are associated with 

transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular 

calcium and reactive oxygen species. Toxicol. Sci. 61, 295-303. 



	
   	
  110	
  

Jozefczak, M., Remans, T., Vangronsveld, J., and Cuypers, A. 2012. Glutathione is a key player 

in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 13, 3145-3175. 

Juan, S.H., Lee, T.S., Tseng, K.W., Liou, J.Y., Shyue, S.K., Wu, K.K., and Chau, L.Y. 2001. 

Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of 

atherosclerosis in apolipoprotein E-deficient mice. Circulation 104, 1519-1525. 

Katschinski, D.M. 2004. On heat and cells and proteins. News Physiol. Sci. 19, 11-15. 

Keyse, S.M. and Tyrrell, R. M. 1989. Heme oxygenase is the major 32-kDa stress protein 

induced in human skin fibroblasts by UVA radiation, hydrogen peroxide and sodium 

arsenite. Proc. Natl. Acad. Sci. USA 86, 99-103. 

Khamis, I. and Heikkila, J.J. 2013. Enhanced HSP30 and HSP70 accumulation in Xenopus cells 

subjected to concurrent sodium arsenite and cadmium chloride stress. Comp. Biochem. 

Physiol. C Toxicol. Pharmacol. 158, 165-172. 

Khan, S., Rammeloo, A.W., and Heikkila, J.J. 2012. Withaferin A induces proteasome 

inhibition, endoplasmic reticulum stress, the heat shock response and acquisition of 

thermotolerance. PLOS ONE. 7, e50547. doi: 10.1371/journal/pone.0050547.  

Khan, S. and Heikkila, J.J. 2014. Distinct patterns of HSP30 and HSP70 degradation in Xenopus 

laevis A6 cells recovering from thermal stress. Comp. Biochem. Physiol. A. Molec. 

Integr. Biol. 168, 1-10. 

Khan, S. and Heikkila, J.J. 2011. Curcumin-induced inhibition of proteasomal activity, 

enhanced HSP accumulation and the acquisition of thermotolerance in Xenopus laevis A6 

cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 158, 566-576. 



	
   	
  111	
  

Kim, Y.K., and Jang, S.K. 2002. Continuous heat shock enhances translational initiation 

directed by internal ribosomal entry site. Biochem. Biophys. Res. Commun. 297, 224-231. 

Kim, Y.M., Pae, H.O., Park, J.E., Lee, Y.C, Woo, J.M., Kim, N.H., Choi, Y.K., Lee, B.S., Kim, 

S.R., and Chung, H.T. 2011. Heme oxygenase in the regulation of vascular biology: from 

molecular mechanisms to therapeutic opportunities. Antioxid. Redox. Signal. 1, 137-167. 

Kirkby, K.A. and Adin, C.A. 2006. Products of heme oxygenase and their potential therapeutic 

applications. Am. J. Physiol. Renal Physiol. 290, 563-571.  

Kirkpatrick, D.S., Dale, K.V., Catania, J.M., and Gandolfi, A.J. 2003. Low-level arsenite causes 

accumulation of ubiquitinated proteins in rabbit renal cortical slices and HEK293 cells. 

Toxicol. Appl. Pharmacol. 186, 101-109. 

Koegl, M., Hoppe, T., Schlenker S., Ulrich, H.D, Mayer, T.U., and Jentsch, S. 1999. A novel 

ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635- 644. 

Koizumi, S., Gong, P., Suzuki, K., and Murata, M. 2007. Cadmium-responsive element of the 

human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional 

activation. J. Biol. Chem. 282, 8715-8723. 

Kovacs, I., Lentini, K.M., Ingano, L.M., and Kovacs, D.M. 2006. Presenilin 1 forms aggresomal 

deposits in response to heat shock. J. Mol. Neurosci. 29, 9–19. 

Krasny, H.C. and Holbrook, D.J. Jr. 1978. Effects of cadmium on heme oxygenase and 

hemoproteins in smooth and rough endoplasmic reticulum of rat liver. Biochem. 

Pharmacol. 27, 364-366. 



	
   	
  112	
  

Krone, P.H., Snow, A., Ali, A., Pasternak, J.J., and Heikkila, J.J. 1992. Comparison of the 

regulatory and structural regions of the Xenopus laevis small heat shock protein encoding 

gene family. Gene 110, 159-166.  

Kwok, S.C. 2013. Zinc protoporphyrin up-regulates heme oxygenase-1 in PC-3 cells via the 

stress response pathway. Int. J. Cell Biol. 2013, 162094. 

Le Goff, P., Le Drean, Y., Le Person, C., Le Jossic-Corcos, C., Ainouche, A., and Michel, D. 

2004. Intracellular trafficking of heat shock factor 2. Exp. Cell Res. 294, 480-493. 

Lang, L., Miskovic, D., Fernando, P., and Heikkila, J.J. 1999. Spatial pattern of constitutive and 

heat shock-induced expression of the small heat shock protein gene family, Hsp30, in 

Xenopus laevis tailbud embryos. Dev. Genet. 25, 365-374. 

Lau, A., Whitman, S.A., Jaramillo, M.C., and Zhang, D.D. 2012. Arsenic-mediated activation of 

the Nrf2-Keap1 antioxidant pathway. J. Biochem. Molecular Toxicology. 27, 99-105.  

Lee, D.H., and Goldberg, A.L. 1998. Proteasome inhibitors: valuable new tools for cell 

biologists. Trends Cell Biol. 8, 397-403. 

Lee, P.J., Alam, J., Wiegand, G.W., and Choi, A.M.K. 1996. Overexpression of heme oygenase-

1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance 

to hyperoxia. Proc. Natl. Acad. Sci. USA 93, 10393-10398.  

Li, W., and Chou, I.N. 1992. Effects of sodium arsenite on the cytoskeleton and cellular 

glutathione levels in cultured cells. Toxicol. Appl. Pharmacol. 114, 132-139.  

Li, L., Yang, H., Chen, D., Cui, C., and Dou, Q.P. 2008a. Disulfiram promotes the conversion 

of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human 

cancer cells. Toxicol. Appl. Pharmacol. 229, 206-214. 



	
   	
  113	
  

Li, W., Yu, S., Liu, T., Kim, J., Blank, V., Li, H., and Kong, A.N.T. 2008b. Heterodimerization 

with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif. 

Biochim. Biophys. Acta. 1783, 1847-1856. 

Liang, P., Amons, R., Clegg, J.S., and MacRae, T.H. 1997. Molecular characterization of a 

small heat shock/α-crystallin protein in encysted Artemia embryos. J. Biol. Chem. 272, 

19051- 19058. 

Lin, Q., Weis, S., Yang, G., Weng, Y.H., Helston, R., Rish, K., Smith, A., Bordner, J., Polte, T., 

Gaunitz, F., and Dennery, P.A. Heme oxygenase-1 protein localizes to the nucleus and 

activates transcription factors important in oxidative stress. J. Biol. Chem. 282, 20621-

20633. 

Linder, B., Jin, Z., Freeman, J.H., and Rubin, C.S. 1996. Molecular characterization of a novel, 

developmentally regulated small embryonic chaperone from Caenorhabditis elegans. J. 

Biol. Chem. 271, 30158-30166. 

Linnenbaum, M., Busker, M., Kraehling, J.R., Behrends, S. 2012. Heme oxygenase isoforms 

differ in their subcellular trafficking during hypoxia and are differentially modulated by 

cytochrome P450 reductase. PLOS ONE. 7, e35483. doi: 10.1371/journal.pone.0035483. 

Liu, X., Wei, J., Peng, D.H., Layne, M.D., and Yet, S.F. 2005. Absence of heme oxygenase-1 

exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes. 54, 778-

784. 

Liu, J., Kadiiska, M.B., Liu, Y., Lu, T., Qu, W., and Waalkes, M.P. 2001. Stress-related gene 

expression in mice treated with inorganic arsenicals. Toxicol. Sci. 61, 314-320. 



	
   	
  114	
  

Loumbourdis, N.S. 2005. Hepatoxic and nephrotoxic effects of cadmium in the frog Rana 

ridibunda. Arch. Toxicol. 79, 434-440. 

Lundgren, J., Masson, P., Mirzaei, Z., and Young, P. 2005. Identification and characterization of 

a Drosophila proteasome regulatory network. Mol. Cell. Biol. 25, 4662-4675. 

MacRae, T.H. 2000. Structure and function of small heat shock/α-crystallin proteins: 

Established concepts and emerging ideas. Cell Mol. Life Sci. 57, 899-913. 

Maines. M.D. 1988. Heme oxygenase: function, multiplicity, regulatory mechanisms, and 

clinical applications. FASEB J. 2, 2557-2568. 

Maines, M.D. 1997. The heme oxygenase system: a regulator of second messenger gases. Annu. 

Rev. Pharmacol. Toxicol. 37, 517-554.  

Maines M.D. and Abrahamsson, P.A. 1996. Expression of heme oxygenase-1 (HSP32) in 

human prostate: normal, hyperplastic, and tumor tissue distribution. Urology 47, 727–733. 

Martin, D., Rojo, A.I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., Ruiz de Galarreta, C.M., 

and Cuadrado, A. 2004. Regulation of heme oxygenase-1 expression through the 

phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to 

the antioxidant phytochemical carnosol. J. Biol. Chem. 279, 8919-8929. 

Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, 

Y., Sisk, A., and Mucke, L. 2000. Dopaminergic loss and inclusion body formation in 

alpha-synuclein mice: implications for neurodegenerative disorders. Science. 287, 1265–

1269. 



	
   	
  115	
  

McCoubrey, W.K. Jr., Huang, T.J., and Maines, M.D. 1997. Isolation and characterization of a 

cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 

247, 725-732. 

McDonagh, B. and Sheehan, D. 2006. Redox proteomics in the blue mussel Mytilus edulis: 

Carbonylation is not a pre-requisite for ubiquitination in acute free radical mediated 

oxidative stress. Aquat. Toxicol. 79, 325-333. 

McGeachy, S.M. and Dixon, D.G. 1989. The impact of temperature on the acute toxicity of 

arsenate and arsenite to rainbow trout (Salmo gairdneri). Exotoxicol. Environ. Saf. 17, 86-

93. 

Medina-Diaz, I.M., Estrada-Muniz, E., Reyes-Hernandez, O.D., Ramirez, P., Vega, L., and 

Elizondo, G. 2009. Arsenite and its metabolites, MMAIII and DMA III, modify CYP3A4, 

PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. 

Toxicol. Appl. Pharmacol. 239, 162-168. 

Mendez-Armenta, M. and Rios, C. 2007. Cadmium neurotoxicity. Environ. Toxicol. Pharmacol. 

23, 350-358. 

Michaud, S., Marin, R., and Tanguay, R.M. 1997. Regulation of heat shock gene induction and 

expression during Drosophila development. Cell. Mol. Life Sci. 53, 104-113. 

Mills, J.W. and Ferm, V.H. 1989. Effect of cadmium on F-actin and microtubules of Madin-

Darby canine kidney cells. Toxicol. Appl. Pharmacol. 101, 245-254. 

Mitani, K., Fujita, H., Sassa, S., and Kappas, A. 1990. Activation of heme oxygenase and heat 

shock protein 70 genes by stress in human hepatoma cells. Biochem. Biophys. Res. 

Commun. 166, 1429-1434. 



	
   	
  116	
  

Mizukami, S., Ichimura, R., Kemmochi, S., Wang, L., Taniai, E., Mitsumori, K., and Shibutani, 

M. 2010. Tumor promotion by copper-overloading and its enhancement by excess iron 

accumulation involving oxidative stress responses in the early stage of a rat two-stage 

hepatocarcinogenesis model. Chem. Biol. Interact. 185, 189-201. 

Morimoto, R.I. 1998. Regulation of the heat shock transcriptional response: Cross talk between 

a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 

12, 3788-3796.  

Morimoto, R.I. 2008. Proteotoxic stress and inducible chaperone networks in neurodegenerative 

diseases and aging. Genes Dev. 22, 1427-1438.  

Morita, T., Mitsialis, S.A., Koike, H., Liu, Y.. and Kourembanas, S. 1997. Carbon monoxide 

controls the proliferation of hypoxic smooth muscle cells. J. Biol. Chem. 272, 32804-

32809. 

Motterlini, R., Forestry, R., Bassi, R., Calabrese, V., Clark, J.F., and Green, C.J. 2000. 

Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-

oxide synthase and S-nitrosothiols. J. Biol. Chem. 275, 13613-13620. 

Mouchet, F., Baudrimont, M., Gonzalez, P., Cuenot, Y., Bourdineaud, J.P., Boudou, A., and 

Gauthier, L. 2006. Genotoxic and stress inductive potential of cadmium in Xenopus laevis 

larvae. Aquat. Toxicol. 78, 157-166. 

Mymrikov, E., Seit-Nebi, A.S., and Gusev, N.B.  2011. Large potentials of small heat shock 

proteins. Physiol. Rev. 91, 1123-1159. 

Naito, Y., Takagi, T., Uchiyama, K., and Yoshikawa, T. 2011. Heme oxygenase-1: a novel 

therapeutic target for gastrointestinal diseases. J. Clin. Biochem. Nutr. 48, 126-133. 



	
   	
  117	
  

Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R.I., and Nagata, K. 1997. HSF4, a 

new member of the human heat shock factor family which lacks properties of a 

transcriptional activator. Mol Cell Biol. 17, 469-481. 

Namba, F., Go, H., Murphy, J.A., La, P., Yang, G., Sengupta, S., Fernando, A.P., Yohannes, M., 

Biswas, C., Wehrli, S.L. and Dennery, P.A. 2014. Expression level and subcellular 

localization of heme oxygenase-1 modulates its cytoprotective properties in response to 

lung injury: a mouse model. PLOS ONE. 9, e90936. doi: 10.1371/journal.pone.0090936. 

Noonan, E.J., Place, R.F., Giardina, C., and Hightower, L.E. 2007. Hsp70B' regulation and 

function. Cell Stress Chaperones 12, 242-253. 

Ohan, N.W., Tam, Y., Fernando, P., and Heikkila, J.J. 1998. Characterization of a novel group 

of basic small heat shock proteins in Xenopus laevis A6 kidney epithelial cells. Biochem. 

Cell Biol. 76, 665-671. 

Okinaga, S., Takahashi, K., Takeda, K., Yoshizawa, M., Fujita, H., Sasaki, H., and Shibahara, S. 

1996. Regulation of human heme oxygenase-1 gene expression under thermal stress. 

Blood. 87, 5074-5084.  

Othumpangat, S. Kashon, M., and Joseph, P. 2005. Eukaryotic translation initiation factor 4E is 

a cellular target for toxicity and death due to exposure to cadmium chloride. J. Biol. 

Chem. 280, 25162-25169.  

Otterbein, L.E., Kolls, J.K., Mantell, L.L., Cook, J.L., Alam, J., and Choi, A.M. 1999. 

Exogenous administration of heme oxygenase-1 by gene transfer provides protection 

against hyperoxia induced lung injury. J. Clin. Invest. 103, 1047-1054. 

Ogawa, K., Sun, J., Taketani, S., Nakajima, O., Nishitani, C., Sassa, S., Hayashi, N., 



	
   	
  118	
  

Yamamoto, M., Shibahara, S., Fujita, H., and Igarashi, K. 2001. Heme mediates 

derepression of Maf recognition element through direct binding to transcription repressor 

Bach1. EMBO J. 20, 2835-43. 

Oguro T., Hayashi, M, Nakajo, S., Numazawa, S., and Yoshida, T. 1998. The expression of 

hemeoxygenase-1 gene responded to oxidative stress produced by phorone, a glutathione 

depletor, in the rat liver; the relevance to activation of c-jun n-terminal kinase. J. 

Pharmacol. Exp. Ther. 287, 773-778. 

Ovelgönne, J.H., Bitorina, M., and Van Wijk, R. 1995. Stressor-specific activation of heat shock 

genes in H35 rat hepatoma cells. Toxicol. Appl. Pharmacol. 135, 100-109. 

Ovsenek, N., Heikkila, J.J. 1990. DNA sequence-specific binding activity of the heat shock 

transcription factor is heat-inducible before midblastula transition of early Xenopus 

development. Development. 110, 427-433. 

Paine, A., Eiz-Vesper, B., Blasczyk, R., and Immenschuh, S. 2010. Signaling to heme 

oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 80, 

1895-1903. 

Panahian, N., Yoshiura, M., and Maines, M.D. 1999. Overexpression of heme oxygenase-1 is 

neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic 

mice. J. Neurochem. 72, 1187-1203. 

Pappolla, M.A., Chyan, Y.J., Omar, R.A., Hsiao, K., Perry, G., Smith, M.A. and Bozner, P. 

1998. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a 

transgenic mouse model of Alzheimer's disease: a chronic oxidative paradigm for testing 

antioxidant therapies in vivo. Am. J. Pathol. 152, 871-877. 



	
   	
  119	
  

Park, W.H. and Kim, S.H. 2012. MG132, a proteasome inhibitor, induces human pulmonary 

fibroblast cell death via increasing ROS levels and GSH depletion. Oncol. Rep. 27, 1284-

1291. 

Parsell, D.A., and Lindquist, S. 1993. The function of heat-shock proteins in stress tolerance: 

degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437-496. 

Pedersen, T.V. and Bjerregaard, P. 2000. Cadmium influx and efflux across perfused gills of the 

shore crab, Carcinus maenas. Aquat. Toxicol. 48, 223-231. 

Pirkkila, L., Nykanen, P., and Sistonen, L. 2001. Roles of the heat shock transcription factors in 

regulation of the heat shock response and beyond. FASEB J. 15, 1118-1131.  

Poss, K.D. and Tonegawa, S. 1997. Reduced stress defense in heme oxygenase 1-deficient cells. 

Proc. Natl. Acad. Sci. USA 94, 10925-10930. 

Pritts, T.A., Hungness, E.S., Hershko, D.D., Robb, B.W., Sun, X., Luo, G.J., Fischer, J.E., 

Wong, H.R., and Hasselgren, P.O. 2002. Proteasome inhibitors induce heat shock 

response and increase IL-6 expression in human intestinal epithelial cells. Am. J. Physiol. 

Regul. Integr. Comp. Physiol. 282, 1016-1026. 

Rafferty, K.A. Jr. 1975. Epithelial cells: growth in culture of normal and neoplastic forms. Adv. 

Can. Res. 21, 249-272.  

Rafferty, K.A. Jr. and Sherwin, R.W. 1969. The length of secondary chromosomal constrictions 

in normal individuals and in a nucleolar mutant of Xenopus laevis. Cytogenetics 8, 427-

438. 



	
   	
  120	
  

Raju, V.S., and Maines, M.D. 1994. Coordinated expression and mechanism of induction of 

HSP32 (heme oxygenase-1) mRNA by hyperthermia in rat organs. Biochim. Biophys. 

Acta. 1217, 273-280. 

Raju, V.S., McCoubrey, W.K, and Maines, M.D. 1997. Regulation of heme oxygenase-2 by 

glucocorticoids in neonatal rat brain: characterization of a functional glucocorticoid 

response element. Biochim. Biophys. Acta. 1351, 89–104. 

Rallu, M., Loones, M., Lallemand, Y., Morimoto, R., Morange, M., and Mezger, V. 1997. 

Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc. Natl. 

Acad. Sci. USA 94, 2392-2397. 

Rea, M.A., Gregg, J.P., Qin, Q., Phillips, M.A., and Rice, R.H. 2003. Global alteration of gene 

expression in human keratinocytes by inorganic arsenic. Carcinogenesis 24, 747-756. 

Reichard, J.F., Motz, G.T., and Puga, A. 2007. Heme oxygenase-1 induction by Nrf2 requires 

inactivation of the transcriptional repressor Bach1. Nucleic Acids Res. 35, 7074-7086. 

Reichard, J.F., Sartor, M.A., and Puga, A. 2008. BACH1 is a specific repressor of HMOX1 that 

is inactivated by arsenite. J. Biol. Chem. 283, 22363-22370. 

Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DNP in 

Drosophila. Experientia 18, 571–573. 

Ross, C.A., and Pickart, C.M. 2004. The ubiquitin-proteasome pathway in Parkinson's disease 

and other neurodegenerative diseases. Trends Cell Biol. 14, 703-711. 

Rotenberg, M.O. and Maines, M.D. 1990. Isolation, characterization, and expression in 

Escherichia coli of a cDNA encoding rat heme oxygenase-2. J. Biol. Chem. 265, 7501-

7506. 



	
   	
  121	
  

Ryter, S., Kvam, E., and Tyrrell, R.M. 1999. Heme oxygenase activity determination by high 

performance liquid chromatography. Methods Enzymol. 300, 322-336. 

Ryter, S.W. and Tyrrell, R.M. 2000. The heme synthesis and degradation pathways: role in 

oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. 

Biol. Med. 28, 289-309. 

Ryter, S.W., Alam, J., and Choi, A.M. 2006. Heme oxygenase-1/carbon monoxide: from basic 

science to therapeutic applications. Physiol. Rev. 86, 583-650. 

Sahoo, S.K., Sawa, T., Fang, J., Tanaka, S., Miyamoto, Y., Akaike, T., and Maeda, H. 2002. 

Pegylated zinc protoporphyrin: A water-soluble heme oxygenase inhibitor with tumor-

targeting capacity. Bioconjugate Chem. 13, 1031-1038. 

Samuel, S. Kathirvel, R., Jayavelu, T., and Chinnakkannu, P. 2005. Protein oxidative damage in 

arsenic induced rat brain: influence of DL-alpha-lipoic acid. Toxicol. Lett. 15, 27-34. 

Sardana, M.K., Sassa, S., and Kappas, A. 1982. Metal ion-mediated regulation of heme 

oxygenase induction in cultured avian liver cells. J. Biol. Chem. 257, 4806-4811. 

Saydam, N., Steiner, F., Georgiev, O., and Schaffner, W. 2003. Heat and heavy metal stress 

synergize to mediate transcriptional hyperactivation by metal-responsive transcription 

factor MTF-1. J. Biol. Chem. 278, 31879-31883. 

Schipper, H.M., Liberman, A., and Stopa, E.G. 1998. Neural heme oxygenase-1 expression in 

idiopathic Parkinson’s disease. Exp. Neurol. 150, 60–68. 

Shi, J., Mei, W., and Yang, J. 2008. Heme metabolism enzymes are dynamically expressed 

during Xenopus embryonic development. Bio. Cell. 32, 259-263.  



	
   	
  122	
  

Shibahara, S., Yoshida, T., and Kikuchi, G. 1978. Induction of heme oxygenase by hemin in 

cultured pig alveolar macrophages. Arch. Biochem. Biophys. 188, 243-250. 

Sikorski, E.M., Uo, T., Morrison, R.S., and Agarwal, A. 2006. Pescadillo interacts with the 

cadmium response element of the human heme oxygenase-1 promoter in renal epithelial 

cells. J. Biol. Chem. 281, 24423-30. 

Siow, R.C., Sato, H., and Mann, G.E. 1999. Heme oxygenase-carbon monoxide signalling 

pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? 

Cardiovasc. Res. 41, 385-394. 

Slebos, D.J., Ryter, S.W., van der Toorn, M., Liu, F., Guo, F., Baty, C.J., Karlsson, J.M., 

Watkins, S.C., Kim, H.P., Wang, X., Lee. J.S., Postma, D.S., Kauffman, H.F., and Choi, 

A.M. 2007. Mitochondrial localization and function of heme oxygenase-1 in cigarette 

smoke-induced cell death. Am. J. Respir. Cell. Mol. Biol. 36, 409-417. 

Smith, M.A., Kutty, R.K., Richey, P.L., Yan, S.D., Stern, D., Chader, G.J., Wiggert, B., 

Petersen, R.B., and Perry, G. 1994. Heme oxygenase-1 is associated with the 

neurofibrillary pathology of Alzheimer’s disease. Am. J. Pathol. 145, 42–47. 

Smith, A.F., and Loo, G. Upregulation of haeme oxygenase-1 by zinc in HCT-116 cells. 2012. 

Free Radic. Res. 46, 1099-1107. 

Søfteland, L., Holen, E., and Olsvik, P.A. 2010. Toxicological application of primary 

hepatocyte cell cultures of Atlantic cod (Gadus morhua)—effects of BNF, PCDD and Cd. 

Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151, 401-411.  

Song, M.O. and Freedman, J.H. 2005. Expression of copper-responsive genes in HepG2 cells. 

Mol. Cell. Biochem. 279, 141-147. 



	
   	
  123	
  

Souza, V., Bucio, L., and Gutierrez-Ruiz, M.C. 1997. Cadmium uptake by a human hepatic cell 

line (WRL-68 cells). Toxicology 120, 215-220. 

Stangl, K., Gunter, C., Frank, T., Lorenz, M., Meiners, S., Ropke, T., Stelter, L., Moobed, M., 

Baumann, G., Kloetzel, P.M., and Stangl, V. 2002. Inhibition of the ubiquitin-proteasome 

pathway induces differential heat-shock protein response in cardiomyocytes and renders 

early cardiac protection. Biochem. Biophys. Res. Commun. 291, 542-549. 

Stewart, D., Killeen, E., Naquin, R., Alam, S., and Alam, J. 2003. Degradation of transcription 

factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J. Biol. 

Chem. 278, 2396-2302. 

Su, P.F., Hu, Y.J., Ho, I.C., Cheng, Y.M. and Lee, T.C. 2006. Distinct gene expression profiles 

in immortalized human urothelial cells exposed to inorganic arsenite and its methylated 

trivalent metabolites. Environ. Health Perspect. 114, 394-403. 

Sun, Y. and MacRae, T. H. 2005. Small heat shock proteins: molecular structure and chaperone 

function. Cell. Mol. Life Sci. 62, 2460-2476.  

Suzuki, H., Tashiro, S., Sun, J., Doi, H., Satomi, S., and Igarashi, K. 2003. Cadmium induces 

nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. J. Biol. 

Chem. 278, 49246-49253. 

Takahashi, M., Dore, S., Ferris, C.D., Tomita, T., Sawa, A., Wolosker, S.S., and Snyder, S.H. 

2000. Amyloid precursor proteins inhibit heme oxygenase activity and augment 

neurotoxicity in Alzheimer’s disease. Neuron 28, 461-473. 



	
   	
  124	
  

Takeda, K., Fujita, H., and Shibahara, S. 1995. Differential control of the metal-mediated 

activation of the human heme oxygenase-1 and metallothionein IIA genes. Biochem. 

Boiphys. Res. Commun. 207, 160-167. 

Taketani, S., Kohno, H., Yoshinaga, T., and Tokunaga, R. 1988. Induction of heme oxygenase 

in rat hepatoma cells by exposure to heavy metals and hyperthermia. Biochem. Int. 17, 

665-672. 

Taketani, S., Kohno, H., Yoshinaga, T., and Tokunaga, R. 1989. The human 32-kDa stress 

protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett. 

245, 173-176. 

Tanaka, S., Akaike, T., Fang, J., Beppu, T., Ogawa, M., Tamura, F., Miyamoto, Y., and Maeda, 

H. 2003. Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in 

experimental solid tumour. Br. J. Cancer 88, 902-909. 

Templeton, D.M. and Liu, Y. 2013. Effects of cadmium on the actin cytoskeleton in renal 

mesangial cells. Can. J. Physiol. Pharmacol. 91, 1-7. 

Tenhunen, R., Marver, H.S., and Schmid, R. 1968. The enzymatic conversion of heme to 

bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA 61, 748-755.  

Thevenod, F. and Friedmann, J.M. 1999. Cadmium-mediated oxidative stress in kidney 

proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and 

endo-/lysosomal proteolytic pathways. FASEB J. 13, 1751-1761. 

Trakshel, G.M., Ewing, J.F., and Maines, M.D. 1991. Heterogeneity of haem oxygenase 1 and 2 

isoenzymes. Rat and primate transcripts for isoenzyme 2 differ in number and size. 

Biochem. J. 275 (Pt 1), 159-164. 



	
   	
  125	
  

Tonkiss, J., and Calderwood, S.K. 2005. Regulation of heat shock gene transcription in neuronal 

cells. Int. J. Hyperthermia. 21, 433-444. 

Tsou, T.C., Tsai, F.Y., Hseih, Y.W., Li, L.A., Yeh, S.C., and Chang, L.W. 2005. Arsenite 

induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide 

synthase. Toxicol. Appl. Pharmacol. 208, 277-284. 

Turkseven, S., Kruger, A., Mingone, C.J., Kaminski, P., Inaba, M., Rodella, L.F., Ikehara, S., 

Wolin, M.S., and Abraham, N.G. 2005. Antioxidant mechanism of heme oxygenase-1 

involves an increase in superoxide dismutase and catalase in experimental diabetes. Am. J. 

Physiol. Heart Circ. Physiol. 289, H701-707. 

Turner, C.P., Panter, S.S., and Sharp, F.R. 1999. Anti-oxidants prevent focal rat brain injury as 

assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following 

subarachnoid injections of lysed blood. Brain Res. Mol. Brain. Res. 65, 87-102.  

Uppu, R.M., Murthy, S., Pryor, W., and Narasimham, P.L. 2010. Free Radicals and Antioxidant 

Protocols, Methods in Molecular Biology. Humana Press Chapter 17, 285-307. 

Van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C., and Vierling, E. 2001. Crystal 

structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8, 1025-

1030. 

Vargas, H., Castillo, C., Posadas, F., and Escalante, B. 2003. Acute lead exposure induces renal 

haeme oxygenase-1 and decreases urinary Na+ excretion. Hum. Exp. Toxicol. 22, 237-44.  

Voellmy, R. 2004. On mechanisms that control heat shock transcription factor activity in 

metazoan cells. Cell Stress Chaperones. 9, 122-133.  



	
   	
  126	
  

Voyer, J. and Heikkila, J.J. 2008. Comparison of the effect of heat shock factor inhibitor, 

KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus 

laevis A6 cells. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 151, 253-261. 

Waisberg, M., Pius, J., Hale, B., and Beyersmann, D. 2003. Molecular and cellular mechanisms 

of cadmium carcinogenesis. Toxicology 192, 95-117. 

Walcott, S.E. and Heikkila, J.J. 2010. Celastrol can inhibit proteasome activity and upregulate 

the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells. 

Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 156, 285-293. 

Wang, Z., Chin, T.A., and Templeton, D.M. 1996. Calcium-independent effects of cadmium on 

actin assembly in mesangial and vascular smooth muscle cells. Cell Motil. Cytoskeleton 

33, 208-222. 

Wang, Y., Gu, Y., Qin, G., Zhong, L., and Meng, Y. 2013. Curcumin ameliorates the 

permability of the blood-brain barrier during hypoxia by upregulating heme oxygenase-1 

expression in brain microvascular endothelial cells. J. Mol. Neurosci. 51, 344-351. 

Was, H., Cichon, T., Smolarczyk, R., Rudnicka, D., Stopa, M., Chevalier, C., Leger, J.J., 

Lackowska, B., Grochot, A., Bojkowska, K., Ratajska, A., Kieda, C., Szala, S., Dulak, J., 

and Jozkowicz, A. 2006. Overexpression of heme oxygenase-1 in murine melanoma: 

increased proliferation and viability of tumor cells, decreased survival of mice. Am. J. 

Pathol. 169, 2181-2198. 

Waters, E.R., Lee, G.J., Vierling, E. 1996. Evolution, structure and function of the small heat 

shock proteins in plants. J. Exp. Bot. 47, 325-338. 



	
   	
  127	
  

Wilkinson, K.D., Urban, M.K., and Haas, A.L. 1980. Ubiquitin is the ATP-dependent 

proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532.  

Williams, C.R, and Gallagher, E.P. 2013. Effects of cadmium on olfactory mediated behaviors 

and molecular biomarkers in coho salmon (Oncorhynchus kisutch). Aquat. Toxicol. 140-

141, 295-302.  

Wotton, D., Freeman, K., and Shore, D. 1996. Multimerization of Hsp42p, a novel heat shock 

protein of Saccharomyces cerevisiae, is dependent on a conserved carboxyl- terminal 

sequence. J. Biol. Chem. 271, 2717-2723. 

Woolfson, J.P. and Heikkila, J.J. 2009. Examination of cadmium-induced expression of the 

small heat shock protein gene, hsp30, in Xenopus laevis A6 kidney epithelial cells. Comp. 

Biochem. Physiol. A Mol. Integr. Physiol. 152, 91-99.  

Wu, W.T., Chi, K.H., Ho, F.M., Tsao, W.C., and Lin, W.W. 2004. Proteasome inhibitors up-

regulate haem oxygenase-1 gene expression: requirement of p38 MAPK (mitogen-

activated protein kinase) activation but not of NF-kappaB (nuclear factor kappaB) 

inhibition. Biochem. J. 379, 587-593. 

Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., and 

Koizumi, S. 1999. Oxidative stress causes enhanced endothelial cell injury in human heme 

oxygenase-1 deficiency. J. Clin. Invest. 103, 129-135. 

Yamamoto, N., Izumi, Y., Matsuo, T., Wakita, S., Kume, T., Takada-Takatori, Y., Sawada, H., 

and Akaike, A. 2010. Elevation of heme oxygenase-1 by proteasome inhibition afforbs 

dopaminergic neuroprotection. J. Neurosci. Res. 88, 1934-1942.  



	
   	
  128	
  

Yang, G., Nguyen, X., Ou, J., Rekulapelli, P., Stevenson, D.K., and Dennery, P.A. 2001. 

Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis. Blood 97, 1306-

1313. 

Yang, H., Landis-Piwowar, K.R., Chen, D., Milacic, V., and Dou, Q.P. 2008. Natural 

compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr. 

Protein Pept. Sci. 9, 227 - 239. 

Yang, Y., Kitagaki, J., Wang, H., Hou, D., and Perantoni, A.O. 2009. Targeting the ubiquitin-

proteasome system for cancer therapy. Cancer Sci. 100, 24-28. 

Yoshida, T., Biro, P., Cohen, T., Muller, R.M., and Shibahara, S. 1988. Human heme oxygenase 

cDNA and induction of its mRNA by hemin. Eur. J. Biochem. 171, 457-461.  

Young, J.T.F. and Heikkila, J.J. 2010. Proteasome inhibition induces hsp30 and hsp70 gene 

expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells. Cell 

Stress and Chaperones 15, 323-334. 

Young, J.T.F., Gauley, J., and Heikkila, J.J. 2009. Simultaneous exposure of Xenopus A6 

kidney epithelial cells to concurrent mild sodium arsenite and heat stress results in 

enhanced hsp30 and hsp70 gene expression and the acquisition of thermotolerance. Comp. 

Biochem. Physiol. A. Mol. Int. Physiol. 153, 417-424. 

Yu, X., Hong, S., and Faustman, E.M. 2008. Cadmium-induced activation of stress signaling 

pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary 

rat Sertoli cell-gonocyte cocultures. Toxicol. Sci. 104, 385-396. 

Yu, X., Robinson, J.F., Sidhu, J.S., Hong, S., and Faustman, E.M. 2010. A system-based 

comparison of gene expression reveals alterations in oxidative stress, disruption of 



	
   	
  129	
  

ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium 

and methylmercury in mouse embryonic fibroblast. Toxicol. Sci. 114, 356-377. 

Yu, X., Robinson, J.F., Sidhu, J.S., Hong, S., and Faustman, E.M. 2010. A system-based 

comparison of gene expression reveals alterations in oxidative stress, disruption of 

ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium 

and methylmercury in mouse embryonic fibroblast. Toxicol. Sci. 114, 356-377. 

Yu, X., Sidhu, J.S., Hong, S., Robinson, J.F., Ponce, R.A., and Faustman, E.M. 2011. Cadmium 

induced p53-dependent activation of stress signaling, accumulation of ubiquitinated 

proteins, and apoptosis in mouse embryonic fibroblast cells. Toxicol. Sci. 120, 403-412. 

Zhong, M., Orosz, A., and Wu, C. 1998. Direct sensing of heat and oxidation by Drosophila 

heat shock transcription factor. Mol. Cell. 1, 101-108. 

 


