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Abstract

Tone mapping operators aim to compress high dynamic range (HDR) images to low

dynamic range ones so as to visualize HDR images on standard displays. Most existing

works were demonstrated on specific examples without being thoroughly tested on well-

established and subject-validated image quality assessment models. A recent tone mapped

image quality index (TMQI) made the first attempt on objective quality assessment of

tone mapped images. TMQI consists of two fundamental building blocks: structural fi-

delity and statistical naturalness. In this thesis, we propose an enhanced tone mapped

image quality index (eTMQI) by 1) constructing an improved nonlinear mapping function

to better account for the local contrast visibility of HDR images and 2) developing an im-

age dependent statistical naturalness model to quantify the unnaturalness of tone mapped

images based on a subjective study. Experiments show that the modified structural fidelity

and statistical naturalness terms in eTMQI better correlate with subjective quality eval-

uations. Furthermore, we propose an iterative optimization algorithm for tone mapping.

The advantages of this algorithm are twofold: 1) eTMQI and TMQI can be compared in

a more straightforward way; 2) better quality tone mapped images can be automatically

generated by using eTMQI as the optimization goal. Numerical and subjective experi-

ments demonstrate that eTMQI is a superior objective quality assessment metric for tone

mapped images and consistently outperforms TMQI.
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Chapter 1

Introduction

1.1 Motivation

The luminance of a natural scene often has a high dynamic range (HDR), varying between

10−3 to 105 cd/m2. However, a normal digital display only has a low dynamic range (LDR)

about 102 cd/m2 [1]. Tone mapping operators (TMO) fill in the gap between HDR imaging

and visualizing HDR images on standard displays by compressing the dynamic range of

HDR images [2]. TMOs provide a nice surrogate for HDR display technology, which is

currently immature and expensive. Fig. 1.1 gives some examples, where the same scene is

shot multiple times with slightly different exposure settings, which may be subsequently

merged to an HDR image. The left image shows the best exposure shots that are chosen

from corresponding successive shots. Due to the existence of both light and dark areas in

the same scene, even the best exposure shots fail to capture the detail and color appearance

of the sky in the background and the bricks in the foreground. By contrast, the exposure of

both the indoor and the outdoor areas has been greatly improved in tone mapped images.

On the other hand, printed media are typically not HDR. Regardless of how fast HDR

display technologies penetrate, there will be a strong need to prepare HDR imagery for

display on LDR devices [2]. In addition, compressing the dynamic range of an HDR image

while preserving its structural detail and natural appearance is by itself an interesting
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Figure 1.1: Optimally exposed images (left) versus HDR tone mapped images (right).
(Image courtesy of Reinhard’s book [2])
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problem for human and computer vision study.

In recent years, many TMOs have been proposed [3–9]. Most of them were demonstrat-

ed on specific examples without being thoroughly tested on well-established and subject-

validated image quality assessment (IQA) models. Subjective evaluation is a straightfor-

ward and useful quality measure [10–13], because the human visual system is the ultimate

receiver in most applications. However it is expensive, time consuming, and perhaps most

importantly, can hardly guide automatic optimization algorithms [14]. In the context of

subjective quality assessment of tone mapped images, subjects usually directly compare

several different tone mapped images without referencing the corresponding HDR images.

Therefore, they may be unaware of certain structure detail loss in tone mapped images that

may convey important information in HDR images. For this reason, subjective evaluation

may not be a golden evaluation criterion. Objective quality assessment of tone mapped

images is a challenging problem due to the different dynamic ranges between the reference

HDR image and the tone mapped LDR image. Traditional objective IQA metrics such

as peak signal-to-noise ratio and the structural similarity index [14, 15] assume that the

reference and compared images have the same dynamic range; thus they are not applicable

in this scenario. Some attempts have been made for objectively assessing the quality of H-

DR images. The HDR visible difference predictor [16] tries to predict the visible difference

between two HDR images with the same range. A dynamic range independent quality mea-

sure [17] focuses on detecting the loss of visible contrast, amplification of invisible contrast

and reversal of visible contrast, and produces three corresponding quality maps. However

it does not integrate these three components into an overall quality score. Recently, a tone

mapped image quality index (TMQI) was proposed in [18], which consists of two funda-

mental building blocks: structural fidelity and statistical naturalness. The fundamental

idea behind TMQI is that a high quality tone mapped image should not only preserve all

the structural detail in the HDR image but also look natural. During structural fidelity

computation in TMQI [18], one single nonlinear mapping is used to measure the local con-

trast visibility in both HDR images and tone mapped images. Because the dynamic range

of the HDR images is much higher than that of the tone mapped images, the soft thresh-

olds of contrast visibility of HDR images and tone mapped images should be different and
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adapted to local luminance levels. More specifically, if the nonlinear mapping in TMQI

correctly captures the contrast visibility of tone mapped images, it inevitably treats all

local regions in HDR images as contrast visible. In this case, the structural fidelity term

will always penalize homogenous regions in tone mapped images, which may cause major

problems in the subsequent optimization process. Another drawback of TMQI lies in its

image independent statistical naturalness model, which suggests that all statistical natural

tone mapped images have the same overall luminance and global contrast. This oversim-

plifies the reality where different images should have different natural overall luminance

and global contrast based on their image contents and lighting conditions. For example,

an outdoor scene at noon time may have much higher overall luminance and lower global

contrast while an indoor scene containing different objects is exactly the opposite.

1.2 Objectives

The objectives of this thesis are to develop advanced IQA models to accurately predict the

perceptual quality of tone mapped images and also to improve their quality based on such

IQA models.

1.3 Contributions

The major contributions of this thesis are summarized as follows.

• We propose an enhanced tone mapped image quality index (eTMQI) based on the

existing TMQI. We first construct an improved nonlinear mapping function particu-

larly for HDR images to better distinguish the visible and invisible contrast regions.

Instead of using standard deviation, we choose standard deviation divided by the

mean as an estimate of contrast in HDR images. This estimate adapts to local lu-

minance levels and is thus qualitatively consistent with Weber’s law. We then build

an image dependent statistical naturalness model and quantify the unnaturalness of
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LDR images based on a subjective study. Experiments show that the structural fi-

delity and statistical naturalness terms in eTMQI better correlate with the subjective

data than those in TMQI.

• We propose an iterative optimization algorithm for tone mapping. In each iteration,

we move the image towards the direction that optimizes eTMQI in the space of all

images. We alternately improve the structural fidelity and statistical naturalness of

the image until some stopping criteria are activated. The advantages of this algorithm

are twofold: first, eTMQI and TMQI can be compared in a more straightforward way

because the test images are sampled from the space of all images that the optimization

algorithm navigates; second, better quality tone mapped images can be automatically

generated if eTMQI is chosen as the optimization goal. Numerical and subjective

experiments show that the iterative algorithm under the guidance of eTMQI faithfully

creates better quality tone mapped images compared with those using TMQI as the

optimization goal.

1.4 Thesis Outline

Following the introductory chapter, the remainder of this thesis is organized as follows.

Chapter 2 reviews several TMOs, the structural similarity index and TMQI that prepare

the necessary background knowledge for later chapters. Chapter 3 elaborates on the con-

struction of eTMQI with an emphasis on the differences and improvement over TMQI.

Validations from our subjective study indicate that the modified structural fidelity and

statistical naturalness terms in eTMQI outperform those in TMQI. Chapter 4 details the

iterative optimization algorithm using eTMQI and TMQI as optimization goals followed

by extensive numerical and subjective experiments to verify the superiority of eTMQI over

TMQI. Chapter 5 concludes the thesis and discusses future work.
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Chapter 2

Background

This chapter starts with a literature review of tone mapping operators (TMO). Then it

presents the well-known full-reference IQA model, the structural similarity index, followed

by the construction of tone mapped image quality index (TMQI) whose fundamental ideas

are inspired by the structural similarity index.

2.1 HDR-to-LDR Tone Mapping Operators

High dynamic range (HDR) images1 represent higher precision of luminance levels in nat-

ural scenes than standard low dynamic range (LDR) images [3]. They can be directly

acquired with HDR imaging devices [2] or created by fusing differently exposed images of

the same real scene, as illustrated in Fig. 2.1. HDR-to-LDR TMOs [5–9] facilitate display

of HDR images on viewing devices with lower dynamic range. The goal of TMOs is to

compress the dynamic range of HDR images while preserving their structural detail and

natural appearance. Tone mapping is a nontrivial problem since simple linear scaling of-

ten produces images with severe detail loss as exemplified in Fig. 2.2. Generally, TMOs

1 The term “dynamic range” for images is defined as the ratio between the lightest and darkest pixel-
s [19].
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Figure 2.1: HDR image (top) made out of 3 LDR images (bottom) with different exposures.
(Image courtesy of Wikipedia)
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Figure 2.2: Linear scaling (shown on the top) fails to preserve the structural detail of a
natural scene containing both indoors and outdoors areas. As a comparison, a state-of-the-
art TMO [3] (shown on the bottom) does a better job. (Image courtesy of the MathWorks,
Inc)
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can be classified into global and local ones. Global TMOs are essentially point-wise lumi-

nance transformations. They are simple, fast and often produce spatially consistent LDR

images. However, they often suffer from fine detail loss in local areas especially in HDR

images that contain both light and dark areas. Sigmoid function and histogram-based algo-

rithms [20–22] are two main categories of global operators. Typical sigmoid function-based

algorithms involve Gamma mapping and log-normal mapping. Gamma mapping takes the

following formula

Y = X
1
γ , (2.1)

where X and Y represent HDR and tone mapped LDR images, respectively. The parameter

γ is typically set to 2.2. Assuming the intensity values of LDR images lie in [0, 1], Y

should be further clamped to [0, 1] for display. Log-normal mapping adopts the logarithmic

function to boost lower luminance levels and to compress higher luminance levels. The tone

mapped image is computed by

Y =
log2 (X)− xmin

xmax − xmin

, (2.2)

where xmin and xmax are the minimum and maximum pixel values of log2 (X), respectively.

Gamma mapping often creates dark images with missing detail similar to linear scaling

while log-normal mapping often produces blanched images with fuzzy detail and unnatural

appearance. A visual example is shown in Fig. 2.3. In 1993, Tumblin and Rushmeier [23]

proposed a global TMO based on Stevens’ law [24]. Larson et al. developed a histogram

adjustment technique to perform tone mapping; they accounted for human contrast sen-

sitivity, veiling luminance, color sensitivity and visual acuity all in the context of a local

adaptation model [20]. Fattal et al. proposed a gradient-based TMO [25]. They first atten-

uated large gradients and then constructed an LDR image by solving a Poisson equation

on the modified gradient field. In [5], Shan et al. proposed a globally nonlinear method

with overlapping window-based linear functions to reconstruct the image radiance. Other

well-known global TMOs are Reinhard’s method [3] and Drago’s method [4]. They are

considered to be among the best TMOs on several independent subjective tests [12, 18].
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Figure 2.3: Gamma mapping (shown on the top left) fails to preserve the structural detail
of a natural scene. Log-normal mapping (shown on the top right) produces extremely
fuzzy detail which looks unnatural. Reinhard’s method [3] (shown on the bottom left) and
Drago’s method [4] (shown on the bottom right) faithfully reproduce the visual appearance.
(Image courtesy of Gred Ward)
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In [3], Reinhard et al. first approximated the key of a scene2 as the log average luminance

and scaled the luminance according to the key. They further compressed high luminance

by the function f(x) = x/(1 + x). Finally this resulting tone mapped LDR image was

modified locally to further enhance the detail. In [4], Drago et al. proposed an adap-

tive logarithmic mapping technique with the logarithmic bases varying according to a bias

power function. The resulting image further undergoes a Gamma correction mapping to

improve contrast in dark areas. A visual example is also shown in Fig. 2.3, where we

observe that Reinhard’s method [3] and Drago’s method [4] faithfully reproduce the visual

appearance without significant noticeable artifacts.

Local TMOs are primarily inspired by how the human visual system (HVS) adapts

and responds to local scene luminance and contrast. In [26], the edges of an HDR image

were first extracted using a bilateral filter [27]. Compression of the dynamic range was

performed using linear scaling in the logarithm domain. The final LDR tone mapped

image was obtained by adding back the edges. A similar local edge-preserving multiscale

decomposition scheme for HDR image tone mapping was proposed in [7]. Chen et al.

addressed the tone mapping problem by integrating the local adaptation effect with the

consistency in global contrast impression [28]. They decomposed the luminance into a small

number of regions that represent the overall impression of an HDR image and constructed

a piecewise tone mapping to compress the dynamic range constrained by the estimated

global perception. In [29], Li et al. adopted subband architectures for tone mapping with

local gain control. Their algorithm can also be used for inverse tone mapping3.

With so many existing TMOs at hand, a natural question should be asked: which

TMO produces the best perceptual tone mapped LDR image? This question could be

possibly answered by subjective evaluations. However, it is expensive and extremely time-

consuming because whenever new TMOs come up, new subjective experiments need to be

done to test their performance. Furthermore, we obtain little clue as to whether there is

still room for further improvement. A promising way to solve this problem is to develop ob-

2A scene’s key is an indicator of how light or dark the overall impression of a scene is [2].
3Inverse tone mapping is the inverse process of tone mapping. It upscales LDR images in a perceptually

plausible manner to obtain HDR images [2].
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jective IQA models that can automatically evaluate the performance of TMOs. Designing

objective quality measures for TMOs is the main focus of this thesis.

2.2 The Structural Similarity Index

During their lifetime, digital images may undergo many transformations including acqui-

sition, processing, compression, storage, transmission and reproduction. These transfor-

mations may introduce a variety of distortions to images and therefore result in changes

in visual quality. The goal of image fidelity measures is to compare two images quantita-

tively with the assumption that one of the images has pristine quality. Mean square error

(MSE) is the most widely used image fidelity measure because it is simple, easy to opti-

mize and has a clear physical meaning [14]. However, it is also widely criticized for its poor

correlation with human perception of image fidelity and quality [14, 30]. Fig. 2.4 shows

an example [14], where an original “Einstein” image is contaminated by different types

of distortion: a contrast stretch, mean luminance shift, contamination by additive white

Gaussian noise, impulsive noise distortion, JPEG compression, blur, spatial scaling, spatial

shift, and rotation. It can be observed that the MSE values of images (b)-(g) relative to

the original image (a) are almost the same; however the visual quality of the images are

dramatically different. In addition, small geometrical changes (images (h)-(i)) that barely

tamper the perceptual quality of the images lead to very large MSE values. One surrogate

of MSE that has been widely recognized is the structural similarity (SSIM) index. Despite

different forms of SSIM—whether it is implemented at single scale [15, 31], over multiple

scales (MS-SSIM) [32], in the complex wavelet domain [33] (CW-SSIM) or information

weighted (IW-SSIM) [34]—it is based on the assumption that the HVS is highly adapted

to extract structural information from the viewing field [35] and thus changes in structural

information should be penalized for image quality degradation. Suppose x and y are two

local image patches taken from the same location of two images, the local SSIM index

computes three components: the luminance similarity l(x,y), contrast similarity c(x,y)

13



Figure 2.4: Comparison of image fidelity measures for “Einstein” image altered with dif-
ferent types of distortions. (a) Reference image. (b) Mean contrast stretch. (c) Luminance
shift. (d) Gaussian noise contamination. (e) Impulsive noise contamination. (f) JPEG
compression. (g) Blurring. (h) Spatial scaling (zooming out). (i) Spatial shift (to the
right). (j) Spatial shift (to the left). (k) Rotation (counter-clockwise). (l) Rotation (clock-
wise). (Example taken from Wang et al.’s paper [14])
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and structure similarity s(x,y)

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

, (2.3)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (2.4)

s(x,y) =
σxy + C3

2σxσy + C3

. (2.5)

µ, σ and σxy denote the mean, standard deviation (std) and covariance of the image

patches, respectively. C1, C2 and C3 are small positive constants to avoid instability. By

multiplying these three components and setting C3 = C2/2 [15], we obtain a simplified

version of the SSIM index that is typically used in practice

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (2.6)

The overall SSIM index of the image is computed by averaging all local SSIM indices using

a sliding window. Revisiting the example in Fig. 2.4, it can be seen that the SSIM values are

much more consistent with the HVS than the MSE values. Image enhancement operations

such as luminance shifting and contrast stretching generally preserve image structure and

thus lead to very high SSIM values, while noise contamination and JPEG-compression lead

to low SSIM values [14]. Fig. 2.5 shows a stronger example, where maximum and minimum

SSIM images were automatically generated on the same equal-MSE hypersphere using the

method proposed in [36]. This example fails the MSE dramatically.

2.3 The Tone Mapped Image Quality Index

This section provides a brief background description of TMQI proposed in [18]. This is

necessary in explaining the enhanced TMQI metric, which is one of the main contributions

of this thesis. Detailed descriptions of TMQI can be found in [18].
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Figure 2.5: Finding the maximum/minimum SSIM images along the equal-MSE hyper-
sphere in image space. (Example taken from Wang et al.’s paper [14])
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Let X and Y be the HDR image and the tone mapped LDR image, respectively. The

fundamental idea behind TMQI is that a good quality tone mapped image should achieve a

good compromise between two key factors—structural fidelity and statistical naturalness.

The TMQI computation is given by [18]

TMQI(X,Y) = a[S(X,Y)]α + (1− a)[N(Y)]β , (2.7)

where S and N denote the structural fidelity and statistical naturalness terms, respectively.

The parameters α and β determine the sensitivities of the two factors, and 0 ≤ a ≤ 1

adjusts the relative importance between them. Both S and N are upper-bounded by 1 and

thus TMQI is also upper-bounded by 1.

The computation of the structural fidelity S is patch-based. Let x and y be two image

patches extracted from X and Y, respectively. An SSIM-motivated local structural fidelity

measure is defined as

Slocal(x,y) =
2σ̃xσ̃y + C1

σ̃2
x + σ̃2

y + C1

· σxy + C2

σxσy + C2

, (2.8)

The first term is a modification of the local contrast comparison component in SSIM [15],

and the second term is the same as the structure comparison component in SSIM [15].

The local contrast comparison term is based on two considerations. First, as along as

the contrast in the HDR and LDR patches are both significant or both insignificant, the

contrast differences should not be penalized. Second, the measure should penalize the

cases in which the contrast is significant in one of the patches but not in the other. In

TMQI [18], to assess the significance of local contrast, the local standard deviation σ is

passed through a contrast sensitivity model-based nonlinear mapping function given by

σ̃ =
1√

2πθσ

∫ σ

−∞
exp

[
−(t− τσ)2

2θ2σ

]
dt , (2.9)

where τσ is a contrast threshold and θσ = τσ/3 [18]. The local structural fidelity measure

Slocal is applied using a sliding window that runs across the image, resulting in a map that
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reflects the variation of structural fidelity across space. Finally, the quality map is averaged

to provide a single overall structural fidelity measure of the image

S(X,Y) =
1

M

M∑
i=1

Slocal(xi,yi) , (2.10)

where xi and yi are the i-th patches in X and Y, respectively, and M is the total number

of patches. To account for the sampling density of the image and the distance between the

image and the observer, the structural fidelity in TMQI is implemented in a multi-scale

fashion [18, 32]. Fig. 2.7 shows such structural fidelity maps at five scales. Here, brighter

means better structure preservation.

Figure 2.6: Histograms of means fitted by Gaussian PDF (left) and std fitted by Beta PDF
(right) of natural images. (Example taken from Yeganeh’s paper [18])

The statistical naturalness model N is derived from the statistics of about 3,000 gray-

scale images representing many different types of natural scenes [18]. It was found that the

histograms of the mean and std can be well fitted by a Gaussian density function Pm and

a Beta density function Pd, as shown in Fig. 2.6, respectively [18]. Based on recent vision

science studies on the independence of image brightness and contrast [37], the statistical
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Figure 2.7: Tone mapped LDR images and their structural fidelity maps in five scales.
Top: S = 0.9152 (S1 = 0.8940; S2 = 0.9341; S3 = 0.9428; S4 = 0.9143; S5 = 0.8277).
Bottom: S = 0.8614 (S1 = 0.9161; S2 = 0.9181; S3 = 0.8958; S4 = 0.8405; S5 = 0.7041).
(Example taken from Yeganeh’s paper [18])
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naturalness is modeled as the product of the two density functions [18]

N(Y) =
1

K
Pm Pd , (2.11)

where K is a normalization factor given by K = max{PmPd}. This constrains the N

measure to be bounded between 0 and 1.

2.4 Summary

This chapter gives the background information that is highly relavent to our study in later

chapters. From the next chapter, we will focus on constructing our new objective IQA

model for tone mapped images upon TMQI.
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Chapter 3

Enhanced Tone Mapped Image

Quality Index

In this chapter, we construct an enhanced tone mapped image quality index (eTMQI) with

an emphasis on the differences and improvement over TMQI. Validations on subjective data

indicate that the modified structural fidelity and statistical naturalness terms in eTMQI

outperform those in TMQI.

3.1 Enhanced Tone Mapped Image Quality Index

Both the structural fidelity and statistical naturalness terms in TMQI [18] have several

significant problems. In the following subsections, we will point them out and propose

solutions to fix them.
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3.1.1 Enhanced Structural Fidelity

Recall that to assess the visibility of local contrast of HDR and tone mapped images, the

local std σ undergoes a contrast sensitivity motivated nonlinear mapping function:

σ̃ =
1√

2πθσ

∫ σ

−∞
exp

[
−(t− τσ)2

2θ2σ

]
dt . (3.1)

where τσ is a contrast threshold and θσ = τσ/3 [18]. The above nonlinear mapping is limited

in accurately assessing the contrast visibility of HDR image patches. First, even a small

change in the local patch of the HDR image (usually due to HDR camera noise) may result

in a significant σ. While Equation (3.1) effectively distinguishes the visible and invisible

local contrast in the tone mapped image, it tends to label most patches, either visible

or invisible, in the HDR image as contrast visible. Fig. 3.1 illustrates this phenomenon.

The homogeneous areas such as the walls and the wood board in the lower middle part of

the image are supposed to be considered as contrast invisible in both the HDR and tone

mapped images. Equation (3.1) correctly predicts those areas as contrast invisible in the

tone mapped image but incorrectly considers them as contrast visible in the HDR image.

This explains the corresponding dark areas of the structural fidelity map in the middle of

Fig. 3.11 (brighter indicates higher structural fidelity). Second, different local patches in

the HDR image may also have substantially different dynamic ranges, which corresponds

to different soft thresholds τσ. In summary, a single τσ is insufficient to assess the local

contrast visibility of the HDR image.

The above analysis suggests that another nonlinear mapping that is adapted to local

luminance levels is desired for the HDR image. Therefore, we keep Equation (3.1) for

the tone mapped image and construct another nonlinear mapping that takes the same

formula with a different local contrast estimate input and a different soft threshold τσ.

In particular, we choose the std divided by the mean, or σ/µ, as an estimate of local

contrast in the HDR image. This estimate is adapted to local luminance levels and thus is

qualitatively consistent with Weber’s law, which has been widely used to model luminance

1Here, only the structural fidelity map of the finest scale in TMQI is shown. The structural fidelity
maps of other scales also exhibit the same problem.
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Figure 3.1: Tone mapped “Belgium house” image and its structural fidelity maps. Left:
Initial image created by Reinhard’s algorithm [3]. Middle and Right: Structural fidelity
maps of the left image using TMQI and eTMQI respectively, where brighter indicates
higher structural fidelity. We observer that eTMQI gives a more reasonable structural
fidelity map which better reflects the contrast visibility of HDR and tone mapped images,
respectively.

masking in the HVS. According to Weber’s law, the ratio of the just noticeable luminance

change ∆I to the background luminance I is approximately a constant for a wide range

of luminance values. In the case of complex images, a simple assumption is that µ and

σ play the roles of I and ∆I, respectively. The just noticeable ratio corresponds to the

soft threshold τσ. An additional benefit of this estimate is that it is invariant to linear

contrast stretch, which is considered as a standard preprocessing step of the HDR image.

The reason follows directly from the local luminance adaptation that cancels out the scale

factors in the numerator and the denominator. The right image of Fig. 3.1 shows one

example of the structural fidelity map resulting from eTMQI, which better captures the

contrast visibility of the HDR and the tone mapped images, respectively.

3.1.2 Enhanced Statistical Naturalness

The statistical naturalness N in TMQI is constructed by modeling the histograms of µ

and σ of about 3000 natural images by a Gaussian density function Pm and a Beta density

function Pd, respectively [18]. Due to the independence assumption of image brightness
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and contrast [37], the two density functions are multiplied together to obtain the overall

statistical naturalness measure [18]

N(Y) =
1

K
Pm Pd , (3.2)

where K is a normalization factor.

The above statistical naturalness model has two drawbacks. First, the image inde-

pendent assumption is an over simplification. The model suggests that to be perfectly

statistically natural, the tone mapped image should have µ around 116 and σ around 652.

However each image may have a different µ and σ to look perfectly natural. In other words,

the statistical naturalness model may poorly correlate with the natural appearance of an

image. Second, the model is derived from high quality images, with no information about

what an unnatural image should look like. Therefore, using this model to penalize the

unnaturalness of a tone mapped image is problematic.

Here we propose an image dependent statistical naturalness model based on a subjective

experiment to better quantify the unnaturalness of tone mapped images. First of all,

we estimate the overall luminance and global contrast of a good quality tone mapped

image directly from the HDR image, denoted by µe and σe, respectively. To do that, we

approximate the overall luminance level of the HDR image to its log-mean luminance,

which has been successfully used for many TMOs [3, 4, 38, 39]. The use of logarithmic

function assumes that most structural detail in the HDR image lives in a low dynamic

range and thus it is reasonable to boost lower luminance levels while compressing higher

luminance levels. The quantity is computed by

Lx = exp

(
1

|X|
∑
i,j

log (ε+ X(i, j))

)
, (3.3)

where X(i, j) is the luminance of the HDR image at location (i, j), |X| is the cardinality

and ε is a small positive constant to avoid instability. After that, we scale the luminance

2µ = 116 and σ = 65 are values that correspond to the peaks in Pm and Pd, respectively.
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by

Xs(i, j) =
k

Lx
X(i, j) , (3.4)

where k is a luminance level related quantity. For an HDR image with normal luminance

level, k is typically set from 0.09 to 0.36 [3]. Now we are able to estimate µe and σe using

µe =
L

|X|

(∑
i,j

Xs(i, j)

1 + Xs(i, j)

)
, (3.5)

and

σe =
1

|X| − 1

∑
i,j

(
Xs(i, j)

1 + Xs(i, j)
L− µe

) 1
2

, (3.6)

where L is the dynamic range of the tone mapped image. In the above two equations, we

further compress high luminance by a factor of Xs. This may cause detail loss in high

luminance regions. Nevertheless, our goal here is to roughly estimate µe and σe that are

relevant to a natural appearance of the tone mapped image. As for the detail loss, it can

typically be well captured by our structural fidelity term. This estimation of the initial

luminance level of the LDR image is closely related to previous works [3, 28, 40].

After obtaining µe and σe, we consider them as the most desirable values that a perfect

quality tone mapped image should have. On the other hand, we also assume that for each

LDR tone mapped image, there should be a certain range of µ and σ, within which the

quality degradation of the image by adjusting its µ and σ is negligible. To verify this,

we conduct a subjective experiment, in which subjects were asked to first decrease and

then increase µ of test LDR images until they saw significant quality degradation. A lower

bound µl and a upper bound µr for each LDR image were recorded. The same procedure

is used to obtain a lower std bound σl and a upper std bound σr for each LDR image3. We

have selected 60 natural LDR images from the LIVE Database [41] with different µ and σ

that cover diverse natural contents. A total of 25 naive observers, including 15 males and

3To change µ with σ fixed, we use the formula Î = I + ∆I, where ∆I is the relative luminance level
added to the image globally. To change σ with µ fixed, we use the formula Î = s · (I − µI) + µI , where s
is the scale factor and µI is the mean of the image.
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10 females aged between 22 and 30, participated in the experiment. The four bounds for

each LDR image are averaged over all 25 subjects. Fig. 3.2 summarizes the experiment,

where we observe that the relationships between µ of test LDR images and their µl and µr

are approximately linear. This motivates us to fit two linear models to predict µl and µr

on the basis of µ. The fitted models have slopes k1 = 0.6043, k2 = 0.6993 and intercepts
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Figure 3.2: Summary of subjective experiment data on acceptable µ and σ values. The
blue and red circles in (a) represent the lower and upper bounds of the mean of test LDR
images, respectively. The corresponding blue and red solid lines are least square fitted
lines. The blue and red circles in (b) represent the lower and upper bounds of the std of
test LDR images, respectively. The corresponding blue and red solid lines are lease square
fitted lines. The dashed lines in two plots are reference lines that correspond to the original
mean and std.

b1 = −0.1402, b2 = 83.6128 for ul and ur, respectively. The R2 statistics of the two linear

models are 0.8008 and 0.8465, which indicate that the linear models explain most variances

in the subjective data. Interestingly, when µ of an image is relatively small, µr−µ is much

large than µ − µl. The situation is reversed when µ of an image is large. In other words,

the acceptable luminance changes without significantly tampering its visual naturalness

saturate at both small and large luminance levels. On the other hand, σl and σr of a

test LDR image can also be well fitted by two linear models using σ as the predictor. The
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fitted lines for σl and σr have slopes k3 = 0.6504, k4 = 0.9386 and intercepts b3 = −0.0759,

b4 = 51.3951, respectively.

Based on the method described above, given an HDR image, we can estimate µe and

σe of its desired tone mapped image. We can also further predict µl, µr, σl and σr of the

tone mapped image from µe and σe with four linear models. Our observation is that µ

and σ of a high quality tone mapped image should at least lie in [µl, µr] and [σl, σr], and

if possible, close to µe and σe. Therefore, we complete our statistical naturalness model

by quantifying the quality drop from µe and σe to their lower and upper bounds with four

Gaussian cumulative distribution functions (CDF). Specifically, the probability of the tone

mapped image to be high quality with mean µ is computed by

Pm =


1√
2πθ1

∫ µ
−∞exp

[
− (t−τ1)2

2θ21

]
dt µ ≤ µe

1√
2πθ2

∫ 2µr−µ
−∞ exp

[
− (t−τ2)2

2θ22

]
dt µ > µe

, (3.7)

where τ1 and θ1 can be uniquely determined by two points (µl, 0.01) and (µe, 0.99) on the

Gaussian CDF curve. Correspondingly, τ2 and θ2 are uniquely determined by two points

(µr, 0.01) and (µe, 0.99) on the Gaussian CDF curve. Similarly, the probability of the tone

mapped image to be high quality with std σ is computed by

Pd =


1√
2πθ3

∫ σ
−∞exp

[
− (t−τ3)2

2θ23

]
dt σ ≤ σe

1√
2πθ4

∫ 2σr−σ
−∞ exp

[
− (t−τ4)2

2θ24

]
dt σ > σe

, (3.8)

where τ3 and θ3 can be uniquely determined by two points (σl, 0.01) and (σe, 0.99) on the

Gaussian CDF curve. And, τ4 and θ4 can be uniquely determined by two points (σr, 0.01)

and (σe, 0.99) on the Gaussian CDF curve.

The surfaces of Pm and Pd are 3-D plotted in Fig. 3.3. It can be observed that µ and

σ of the best quality tone mapped image should match the estimated µe and σe, which

correspond to the peaks around the diagonal lines. The models apply a heavy penalty

when |µ− µe| or |σ − σe| is large.

Similar to Equation (2.11), we multiply these two probabilities to evaluate the overall
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Figure 3.3: The Surfaces of Pm and Pd. It suggests that µ and σ of the best quality tone
mapped image should match estimated µe and σe, which corresponds to the peaks around
diagonal lines. The models give heavy penalty when |µ− µe| or |σ − σe| is large.

statistical naturalness model

N(X,Y) = Pm Pd . (3.9)

Since 0 ≤ Pm, Pd ≤ 1, N also lies in [0, 1].

We complete this section by renewing Equation (2.7) to

eTMQI(X,Y) = a[S(X,Y)]α + (1− a)[N(X,Y)]β . (3.10)

Although the formulae of original TMQI and eTMQI look similar, the foundations

behind them are substantially different.

3.2 Validation of eTMQI

In this section, we compare the eTMQI with TMQI on the well known tone mapped image

database [18] using the following criteria:
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• Spearman’s rank-order correlation coefficient (SRCC) is defined as

SRCC = 1−
6
∑i=1

NI
d2i

NI(N2
I − 1)

, (3.11)

where di is the difference between the ranks of i-th image in subjective and objective

test, NI is the number of considered images.

• Kendall’s rank-order correlation coefficient (KRCC) is another rank-order based non-

parametric correlation metric, defined as

KRCC =
Nc −Nd

1
2
NI(NI − 1)

, (3.12)

where Nc and Nd are the number of concordant and discordant pairs in the data set,

respectively.

The better tone mapped IQA model needs to have larger SRCC and KRCC values with

subjective evaluations. To construct the subjective database in [18], 20 subjects were asked

to rank 8 images in one set from the best to the worst for a total of 15 sets of tone mapped

images [18]. The subjective rankings for each image is then averaged, resulting in its mean

ranking score within the set [18]. The tone mapped images are generated by 8 TMOs:

Reinhard et al. [3], Drago et al. [4], Durand and Dorsey [26], Mantiuk et al. [42], Pattanaik

et al. [43], “Exposure and Gamma”, “Equalize Histogram” and “Local Adaptation”, re-

spectively4. Although there are some other subjective databases such as [45, 46], they are

not publicly available. A number of parameters are inherited from the original TMQI.

These include C1 = 0.01, C2 = 10 and the soft threshold of contrast visibility for tone

mapped images τσ = 2.6303. Throughout our study, we set the soft threshold of contrast

visibility for HDR images τσ = 0.06 and the luminance level related quantity k = 0.12. As

for the model parameters in eTMQI, we set a = 0.5, α = 1 and β = 1, which emphasize

the equal importance between structural fidelity and statistical naturalness terms.

4The first five TMOs are implemented by the publicly available software Qtpfsgui [44] and the last
three are built in Adobe Photoshop [18].
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Table 3.1: Performance evaluation of eTMQI and TMQI on the database [18] using SRCC
as the criterion

Image set
eTMQI TMQI

S N eTMQI S N TMQI
1 0.7381 0.9048 0.9048 0.6667 0.9048 0.9048
2 0.5714 0.5952 0.5000 0.8095 0.7619 0.7857
3 0.5714 0.7143 0.6905 0.2619 0.7381 0.8095
4 0.7619 0.7857 0.6905 0.8571 0.8571 0.8810
5 0.8810 0.5714 0.6667 0.1429 0.7381 0.7381
6 0.7143 0.9524 0.9762 0.7381 0.9524 0.9762
7 0.9286 0.7381 0.8333 0.8810 0.6429 0.6905
8 0.7619 0.7381 0.6667 0.3333 0.7143 0.7143
9 0.3095 0.7381 0.8095 0.8571 0.3571 0.6905
10 0.8095 0.8810 0.9048 0.6667 0.9048 0.9286
11 0.8095 0.7857 0.8333 0.6429 0.5476 0.8810
12 0.9524 0.5476 0.5952 0.7143 0.5714 0.7143
13 0.5629 0.7066 0.7904 0.9461 0.4311 0.6826
14 0.8333 0.7619 0.7619 0.9524 0.7381 0.7381
15 0.8810 0.7857 0.9048 0.9286 0.9048 0.9524

Average 0.7391 0.7471 0.7686 0.6932 0.7176 0.8058

We first compare structural fidelity and statistical naturalness terms in TMQI and

eTMQI, individually. Table 3.1 and Table 3.2 summarize the results. We observe that

the structural fidelity and statistical naturalness terms in eTMQI consistently outperform

those in TMQI. This is due to more accurate modeling of the contrast visibility of HDR

images in a locally adaptive fashion and image dependent qualification of the unnaturalness

of tone mapped images.

We then investigate the overall performance of eTMQI. The results are also listed in

Tables 3.1 and 3.2, from which we observe that eTMQI outperforms its structural fideli-

ty and statistical naturalness components separately. This supports our assumption that

the structural fidelity and statistical naturalness are two relatively independent terms that

characterize two different aspects of tone mapped images. However, the overall perfor-

mance of TMQI is better than eTMQI. It is not surprising since TMQI trains the model
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parameters on the same database [18] while eTMQI does not involve any training process.

We may expect better performance of eTMQI if its parameters are also trained on the

database, but it may be unnecessary because of the potential of overfitting. Furthermore,

we will compare eTMQI with TMQI in the space of images using an iterative optimization

algorithm described in the next chapter.

3.3 Summary

Systematic comparison of different TMOs are important not only for finding the one with

the best average performance but also for pointing out directions for further improvement.

TMQI made the first move towards objective IQA of tone mapped LDR images using

corresponding HDR images as reference. In this chapter, we proposed eTMQI that breaks

the limitations underlying the structural fidelity and statistical naturalness terms in TMQI.

As expected, the structural fidelity and statistical naturalness terms in eTMQI better

correlate with the subjective database [18] than those in TMQI.
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Table 3.2: Performance evaluation of eTMQI and TMQI on the database [18] using KRCC
as the criterion

Image set
eTMQI TMQI

S N eTMQI S N TMQI
1 0.6429 0.7857 0.7857 0.5000 0.7857 0.7857
2 0.3571 0.4286 0.2857 0.7143 0.5714 0.6429
3 0.3571 0.5714 0.5714 0.1429 0.5714 0.6429
4 0.5714 0.5714 0.5000 0.7143 0.6429 0.7143
5 0.7143 0.4286 0.5000 0.1429 0.6429 0.6429
6 0.5714 0.8571 0.9286 0.6429 0.8571 0.9286
7 0.8571 0.6429 0.7143 0.7857 0.5000 0.5714
8 0.5714 0.6429 0.5000 0.2857 0.5714 0.5714
9 0.3571 0.6429 0.7143 0.7143 0.3571 0.5714
10 0.7143 0.7143 0.7857 0.5000 0.7857 0.8571
11 0.6429 0.6429 0.7143 0.4286 0.4286 0.7143
12 0.8571 0.3571 0.4286 0.5714 0.4286 0.5714
13 0.4001 0.5455 0.6183 0.8365 0.3273 0.5455
14 0.6429 0.5714 0.5714 0.8571 0.6429 0.6429
15 0.7143 0.6429 0.7857 0.8571 0.7857 0.8571

Average 0.5981 0.6030 0.6269 0.5796 0.5933 0.6840
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Chapter 4

Iterative Tone Mapping for eTMQI

Optimization

Assuming eTMQI to be the quality criterion of tone mapped images, the problem of optimal

tone mapping can be formulated as

Yopt = arg max
Y

eTMQI(X,Y) . (4.1)

Solving (4.1) for Yopt is a challenging problem due to the complexity of eTMQI and the

high dimensionality (the same as the number of pixels in the image). Therefore, we resort

to numerical optimization and propose an iterative algorithm. Starting from any initial

image Y0, the proposed algorithm searches for the best solution in the space of all images.

Specifically, in each iteration, we first adopt a gradient ascent algorithm to improve the

structural fidelity S. After that we solve a constrained optimization problem to improve

the statistical naturalness N . These two steps are applied alternately until convergence.

Details of the algorithm are elaborated as follows.
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4.1 Proposed Iterative Tone Mapping Algorithm

In the k-th iteration, given the result image Yk from the last iteration, a gradient ascent

algorithm is first applied to improve the structural fidelity:

Ŷk = Yk + λ∇YS(X,Y)|Y=Yk
, (4.2)

where∇YS(X,Y) is the gradient of S(X,Y) with respect to Y and λ controls the updating

speed. To compute the gradient ∇YS(X,Y), we start from the local structural fidelity

and rewrite (2.8) as

Slocal(x,y) =
A1A2

B1B2

, (4.3)

where

A1 = 2σ̃xσ̃y + C1 (4.4)

B1 = σ̃2
x + σ̃2

y + C1 (4.5)

A2 = σxy + C2 (4.6)

B2 = σxσy + C2 . (4.7)

By treating both image patches as as column vectors of length Nw, we can represent

µy =
1

Nw

1T y (4.8)

σ2
y =

1

Nw − 1
(y − µy)T (y − µy) (4.9)

σxy =
1

Nw − 1
(x− µx)T (y − µy) . (4.10)
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The gradient of local structural fidelity measure with respect to y can then be expressed

as

∇ySlocal(x,y) =
(A′1A2 + A1A

′
2)

B1B2

− (B′1B2 +B1B
′
2)A1A2

(B1B2)2
, (4.11)

where

A′1 = ∇yA1 , B
′
1 = ∇yB1 , A

′
2 = ∇yA2 , B

′
2 = ∇yB2 . (4.12)

Noting that

∇yσy =
1

Nwσy
(y − µy) (4.13)

∇yσxy =
1

Nw

(x− µx) , (4.14)

we have

A′1 = 2σ̃x∇yσ̃y

=
2σ̃x√
2πθσ

exp

[
−(σy − τσ)2

2θ2σ

]
· ∇yσy

=

√
2

π

σ̃x
Nwθσσy

exp

[
−(σy − τσ)2

2θ2σ

]
(y − µy) , (4.15)

B′1 = 2σ̃y∇yσ̃y

=

√
2

π

σ̃y
Nwθσσy

exp

[
−(σy − τσ)2

2θ2σ

]
(y − µy) , (4.16)

A′2 =
1

Nw

(x− µx) , (4.17)

B′2 = σx∇yσy =
σx

Nwσy
(y − µy) . (4.18)
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Plugging (4.4), (4.5), (4.6), (4.7), (4.15), (4.16), (4.17) and (4.18) into (4.11), we obtain

the gradient of local structural fidelity. Finally, we can compute the gradient of the overall

structural fidelity measure with respect to the tone mapped image Y by summing over all

the local gradients

∇YS(X,Y) =
1

M

M∑
i=1

RT
i ∇ySlocal(x,y)|x=xi,y=yi , (4.19)

where xi = Ri(X) and yi = Ri(Y) are the i-th image patches, Ri is the operator that takes

the i-th local patch from the image, and RT
i places the patch back into the corresponding

location in the image.

Upon finishing the structural fidelity update, we obtain an intermediate image Ŷk.

Next, we improve the statistical naturalness to obtain Yk+1 through a three-segment e-

quipartition monotonic piecewise linear function

yik+1 =


(3/L)aŷik 0 ≤ ŷik ≤ L/3

(3/L)(b− a)ŷik + (2a− b) L/3 < ŷik ≤ 2L/3

(3/L)(L− b)ŷik + (3b− 2L) 2L/3 < ŷik ≤ L

. (4.20)

This is essentially a point-wise intensity transformation with its parameters a and b (0 ≤
a ≤ b ≤ L) chosen so that µ and σ of Yk+1 = {yik+1 for all i} better matches µe and σe of

the desired tone mapped image. Recall that µe and σe are estimated from the corresponding

HDR image using Equation (3.5) and Equation (3.6), respectively.

To solve for a and b, we first estimate the mean and std values of Yk+1 by

µek+1 = µ̂k + λm(µe − µ̂k)

σek+1 = σ̂k + λd(σe − σ̂k) , (4.21)

where µ̂k and σ̂k are the mean and std of Ŷk, respectively. λm and λd are step sizes that

control the updating speed. We then compute the parameters a and b by solving the
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following constrained optimization problem

{a, b}opt = arg min
{a,b}

||µk+1 − µek+1||2 + η||σk+1 − σek+1||2

subject to 0 ≤ a ≤ b ≤ L , (4.22)

where η adjusts the weights between the mean and std terms. We adopt a standard interior-

point algorithm [47] with a maximum 10 iterations to solve this problem. Once the optimal

values of a and b are obtained, they are plugged into (4.20) to create the resulting image

Yk+1, which is subsequently fed into the (k + 1)-th iteration.

These two steps alternate until ||Yk+1−Yk||2 is smaller than a threshold ε. Technically,

the above iterative algorithm works as well if TMQI is chosen as the optimization metric [9].

The only difference lies in Equation (4.21), where µe and σe are replaced with two constants

corresponding to the peaks in its Pm and Pd models1. We have five free parameters in the

proposed algorithm. For fair comparison between eTMQI and TMQI, we use the same set

of parameter values in all experiments, which are ε = 0.1, λ = 0.3, λm = λd = 0.03 and

η = 1.

4.2 Experimental Results

We first examine the roles of the structural fidelity and statistical naturalness components

in eTMQI separately. In Fig. 4.1, we start with an initial “desk” image created by Rein-

hard’s TMO [3] and apply the proposed iterative algorithm but using structural fidelity

updates only. It can be observed that the structural fidelity map is very effective at de-

tecting the missing structures (e.g., text in the book region, and fine textures on the desk),

and the proposed algorithm successfully recovers such structures after a sufficient number

of iterations. The improvement of structure details is also well reflected by the structural

fidelity maps, which eventually evolve to a nearly uniform white image. By contrast, in

Fig. 4.2, the initial “building” image is created by a Gamma correction mapping (γ = 2.2),

1In order to optimize TMQI, we have to work only on its finest scale.
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(a) initial image (b) after 10 iterations (c) after 50 iterations (d) after 100 iterations (e) after 200 iterations

(f) initial image, S = 0.689 (g) 10 iterations, S = 0.921 (h) 50 iterations, S = 0.954 (i) 100 iterations, S = 0.961 (j) 200 iterations, S = 0.966

Figure 4.1: Tone mapped “desk” images and their structural fidelity maps. (a) Initial
image created by Reinhard’s algorithm [3]. (b)-(e) Images created using iterative structural
fidelity update only. (f)-(j) Corresponding structural fidelity maps of (a)-(e), where brighter
indicates higher structural fidelity. All images are cropped for better visulization.

(a) initial image, N = 0.000 (b) 10 iterations, N = 0.001 (c) 50 iterations, N = 0.428 (d) 100 iterations, N = 0.868 (e) 200 iterations, N = 0.971

Figure 4.2: Tone mapped “building” images. (a) Initial image created by Gamma mapping
(γ = 2.2). (b)-(e) Images created using iterative statistical naturalness update only.
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and we apply the proposed iterative algorithm but using statistical naturalness updates

only. With the iterations, the overall brightness and contrast of the image are significantly

improved, leading to a more visually appealing and natural-looking image.

To fully compare the performance of eTMQI and TMQI using this iterative optimization

algorithm, we select a wide range of HDR images, containing both indoor and outdoor

scenes, human and static objects, as well as day and night scenes. The initial images

for this algorithm are also generated by many different TMOs, ranging from simple ones

such as Gamma mapping (γ = 2.2) and log-normal mapping to sophisticated ones such as

Reinhard’s method [3] and Drago’s method [4], both of which are considered as one of the

best TMOs on several independent subjective tests [12,18].

(c)(b)(a)

Figure 4.3: Tone mapped “Woman” images. (a) Initial image created by Gamma mapping.
(b) eTMQI-optimized image with S = 0.9860, N = 0.9998 and eTMQI = 0.9929. (c)
TMQI-optimized image with S = 0.9674, N = 0.9995 and TMQI = 0.9919.

Fig. 4.3 shows the comparison of eTMQI with TMQI on the “Woman” image initial-

ized by Gamma mapping, which creates dark background with missing structures. Both
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eTMQI- and TMQI-optimized images recover the structures of the background such as the

white door, the yellow board and the photo frame, and present a better overall brightness.

However, the TMQI-optimized image suffers from heavy noise in homogenous regions such

as in the wall and on the floor. The boosted noise artifact boils down to its structural fideli-

ty term, which treats all local regions in the HDR image as contrast visible. In comparison,

the eTMQI-optimized image is much cleaner and sharper.

(b) (c)(a)

Figure 4.4: Tone mapped “Clock building” images. (a) Initial image created by log-normal
mapping. (b) eTMQI-optimized image with S = 0.9763, N = 0.9998 and eTMQI = 0.9881.
(c) TMQI-optimized image with S = 0.9380, N = 1.0000 and TMQI = 0.9845.

Fig. 4.4 shows the comparison of eTMQI with TMQI on the “Clock building” image.

The initial image created by log-normal mapping preservers most structures but looks

unrealistic due to its blanched appearance. This problem is largely alleviated in the eTMQI-

optimized image, where the overall brightness and contrast of the image are significantly

improved, leading to a more visually appealing and natural-looking image. By contrast, the

TMQI-optimized image suffers from excessive contrast between the lights and the bricks

on the wall. This problem stems from its statistical naturalness term, which drags µ and σ

of all tone mapped images towards 116 and 65 regardless of their contents and luminance
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(a) (b) (c)

Figure 4.5: Tone mapped “Bristol bridge” images. (a) Initial image created by Reinhard’s
method [3]. (b) eTMQI-optimized image with S = 0.9938, N = 0.9998 and eTMQI =
0.9968. (c) TMQI-optimized image with S = 0.9408, N = 0.9999 and TMQI = 0.9852.

(a) (b) (c)

Figure 4.6: Tone mapped “Grove” images. (a) Initial image by Drago’s method [4]. (b)
eTMQI-optimized image with S = 0.9782, N = 0.9998 and eTMQI = 0.9890. (c) TMQI-
optimized image with S = 0.9614, N = 0.9998 and TMQI = 0.9904.
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levels, respectively [18]. This is in appropriate for a night scene like “Clock building”

which should have the desired values to be µe < 116 and σe < 65 (In eTMQI, µe = 101

and σe = 48). Moreover, annoying noise appears in the sky region of the TMQI-optimized

image.

Fig. 4.5 shows the comparison of eTMQI with TMQI on the “Bristol bridge” image with

initial image created by Reinhard’s method [3]. Although the initial image of Fig. 4.5(a)

has a seemingly reasonable visual appearance, the fine details of the woods and the brick

textures of the tower are fuzzy or invisible. In Fig. 4.5(b), the proposed iterative algorithm

using eTMQI recovers these fine details and makes them much sharper. Moreover, the

overall appearance is softer and thus more pleasant. In Fig. 4.5(c), we can see that the

iterative algorithm using TMQI heavily boosts noise in the sky and cloud regions, which

may lead to quality degradation when compared with the initial image. This reveals the

problem of TMQI in quality assessment of tone mapped images.

Fig. 4.6 shows the comparison of eTMQI with TMQI on the “Grove” image with initial

image created by Drago’s method [4]. Again, in the eTMQI-optimized image of Fig. 4.6(b),

fine details such as leafs between the two big trees and the tree barks are faithfully recovered

and sharpened. The overall appearance is also more vivid. However, in Fig. 4.6(c), the

iterative algorithm using TMQI over stretches the global contrast, which darkens the tree

trunks and whitens the leafs and the sky. This inevitably damages the naturalness of the

initial image and leads to quality degradation.

Table 4.1 lists eTMQI values of the initial and converged images. It can be seen that the

proposed algorithm consistently converges to images with both high structural fidelity and

high statistical naturalness, and thus produces high eTMQI values even when the initial

images are created by the most competitive state-of-the-art TMOs.

We also conduct another extensive subjective experiment to compare eTMQI with

TMQI using the iterative optimization algorithm. In particular, we select 15 HDR images

which contain various natural scenes shown in Fig. 4.7 and adopt gamma mapping, log-

normal algorithm and Reinhard’s method [3] to tone map them to 15 × 3 LDR images.

We then consider them as initial images of the iterative optimization algorithm and obtain
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Table 4.1: eTMQI comparison between initial and converged images

Image Gamma Reinhard [3] Drago [4] Log-normal

Bridge
initial image 0.8093 0.9232 0.8848 0.7439

converged image 0.9928 0.9929 0.9938 0.9944

Lamp
initial image 0.5006 0.9387 0.8717 0.7371

converged image 0.9906 0.9925 0.9910 0.9894

Memorial
initial image 0.4482 0.9138 0.8685 0.7815

converged image 0.9895 0.9894 0.9868 0.9867

Woman
initial image 0.6764 0.8891 0.8918 0.8026

converged image 0.9941 0.9947 0.9943 0.9937

Figure 4.7: 15 HDR test images to compare eTMQI with TMQI using the iterative op-
timization algorithm. The tone mapped images shown here are eTMQI-optimized with
initial images created by Reinhard’s method [3].
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15 × 3 eTMQI-optimized images and 15 × 3 TMQI-optimized images, respectively. In

summary, we have 15 sets of tone mapped images, each of which contains 9 images.

A desktop PC with Intel(R) Core(TM) i7-2600 dual 3.40GHz CPU was used in the

subjective user study. The test environment in the lab was setup as a normal indoor office

workspace with ordinary illumination level. All images are displayed on an LCD monitor

at a resolution of 2560 × 1600 pixels with Truecolor (32bit) at 60Hz. The monitor was

calibrated in accordance with the recommendations of ITU-T BT.500 [48]. A customized

MATLAB figure window was used to render the images on the screen. During the test,

all 9 tone mapped images in the same set were shown to the subject at the same time in

random spatial order on one computer screen at actual pixel resolution. The study adopted

a multi-stimulus quality scoring strategy without showing the reference HDR image2. A

total of 24 näıve observers, including 9 males and 15 females aged between 22 and 30,

mostly graduate students at the University of Waterloo, participated in the subjective

experiment. The subjects had the freedom to move their positions to get closer or further

from the screen for better observation. All subject ratings were recorded with pen and

paper during the study. To minimize the influence of fatigue effect, the length of a session

was limited to 30 minutes. For each image set, the subject was asked to give an individual

integer score for the perceptual quality of each tone mapped image. The score ranges from

0 to 10, where 0 denotes the worst quality and 10 denotes the best. Compared with pair-

comparison and ranking strategies, the advantages of the adopted method are (1) more

efficient, as multiple scores are collected at one time; (2) instead of ranking order, absolute

quality scores are collected to facilitate overall performance evaluation across image sets;

(3) cross-content quality comparison can be conducted to develop more generalized quality

models. The final quality score for each individual image is computed as the average of

subjective scores, named mean opinion score (MOS), from all valid subjects. The results

are listed in Tables 4.2, 4.3 and 4.4, from which we have several interesting observations.

First, using eTMQI as the optimization metric, the iterative optimization algorithm leads

to consistent perceptual gain for all three different types of initial images. By contrast, the

perceptual gain obtained by optimizing TMQI is much less compared with that obtained by

2In the absence of HDR displays, we actually are unable to show HDR images directly.
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optimizing eTMQI, when initial images are created by Gamma and log-normal mapping.

Even worse, the quality of TMQI-optimized images decreased dramatically compared with

initial images created by Reinhard’s method [3]. Second, the best quality image on average

is eTMQI-optimized with the initial image created by Reinhard’s method [3]. It is not

surprising because the proposed optimization algorithm can only guarantee to find a local

optimum due to the complexity of the search space; thus better initial images often lead

to better local optima, which correspondingly have better perceptual quality.

Table 4.2: Mean opinion scores of test tone mapped images with initial images created by
Gamma mapping

Images
Mean opinion scores (MOS)

Initial
TMQI-

optimized
eTMQI-

optimized
1 1.00 4.71 7.46
2 1.54 4.92 8.25
3 0.25 4.50 6.71
4 3.33 4.63 6.54
5 0.54 3.88 7.67
6 0.58 3.29 7.38
7 1.29 5.67 7.38
8 1.54 3.79 6.75
9 0.96 4.38 7.25
10 6.50 5.21 6.42
11 0.46 4.83 7.13
12 3.63 5.21 7.17
13 5.33 3.04 6.00
14 2.17 2.75 6.29
15 4.67 5.13 5.83

Average 2.25 4.39 6.95

To ascertain the differences in average MOSs are statistically significant, we test a

hypothesis using t-statistics. Since the number of samples in each column of Tables 4.2, 4.3

and 4.4 is 15× 24 = 360, which exceeds 40 [49], the Gaussian assumption of the subjective

score is approximately verified by the central limit theorem. The test statistic is the
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Table 4.3: Mean opinion scores of test tone mapped images with initial images created by
log-normal mapping

Images
Mean opinion scores (MOS)

Initial
TMQI-

optimized
eTMQI-

optimized
1 5.58 4.13 7.29
2 2.13 4.33 7.83
3 1.88 3.79 6.25
4 3.33 4.96 7.17
5 4.58 4.25 7.13
6 5.21 3.17 6.58
7 2.38 5.33 7.17
8 3.29 3.83 6.54
9 2.67 3.79 7.29
10 2.54 5.13 7.75
11 4.00 2.79 5.50
12 3.46 3.00 7.08
13 2.67 3.29 6.83
14 3.58 2.83 5.75
15 1.92 3.88 6.17

Average 3.28 3.90 6.82
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Table 4.4: Mean opinion scores of test tone mapped images with initial images created by
Reinhard’s method [3]

Images
Mean opinion scores (MOS)

Initial
TMQI-

optimized
eTMQI-

optimized
1 7.29 4.71 7.92
2 8.17 5.25 8.38
3 8.25 4.83 8.33
4 6.96 5.63 7.79
5 7.79 4.46 8.58
6 7.92 3.33 7.50
7 8.00 5.67 8.33
8 8.00 4.08 8.46
9 8.21 4.33 8.50
10 8.04 6.50 8.50
11 7.83 3.63 8.13
12 7.38 3.79 7.63
13 7.79 3.04 8.04
14 8.47 3.04 7.67
15 6.33 6.08 6.79

Average 7.76 4.56 8.04

47



difference of means divided by the pool estimator of the standard deviation [49]. The null

hypothesis is that the average MOS of one image category (there are 9 categories which

correspond to 9 columns in Tables 4.2, 4.3 and 4.4) is statistically indistinguishable (with

95% confidence) from the average MOS of another image category. The results are listed

in Table 4.5, from which we conclude that the eTMQI-optimized images have statistically

higher average MOS, which lead to better perceptual quality.

Table 4.5: Statistical significance matrix based on average MOS. 1 means that the average
MOS for the row is statistically higher than that of the column. 0 means that it is statis-
tically lower, and “-” means that it is statistically indistinguishable. GI: Gamma mapping
initialized; LI: log-normal mapping initialized; RI: Reinhard’s method [3] initialized; TO:
TMQI-optimized and EO: eTMQI-optimized

GI GITO GIEO LI LITO LIEO RI RITO RIEO
GI - 0 0 0 0 0 0 0 0

GITO 1 - 0 1 1 0 0 - 0
GIEO 1 1 - 1 1 - 0 1 0

LI 1 0 0 - 0 0 0 0 0
LITO 1 0 0 1 - 0 0 0 0
LIEO 1 1 - 1 1 - 0 1 0

RI 1 1 1 1 1 1 - 1 0
RITO 1 - 0 1 1 0 0 - 0
RIEO 1 1 1 1 1 1 1 1 -

In summary, we believe that this iterative optimization procedure provides a strong test

that not only verifies the superiority of eTMQI over TMQI in predicting the perceptual

quality of tone mapped images but also shows the robustness and usefulness of eTMQI to

guide the optimization process with a variety of initial images.

4.3 Convergence Analysis

Because of the complexity of initial TMOs, eTMQI, and the dimension and complexity

of the search space, analytical performance assessment of the proposed algorithm is not

possible. Therefore, we observe the convergence performance empirically. Figs. 4.8 and 4.9

48



show the structural fidelity and statistical naturalness measures as functions of iteration

using different initial images as starting points. There are several useful observations.

First, both measures increase monotonically with the number of iterations. Second, the

proposed algorithm converges in all cases whether using simple or sophisticated TMO

results as initial images. Third, different initial images may result in different converged

images. From these observations, we conclude that the proposed iterative algorithm is

well behaved, but the high-dimensional search space is complex and contains many local

optima, and the proposed algorithm may be trapped in one of the local optima.

The computation complexity of the proposed algorithm increases linearly with the

number of pixels in the image. Our unoptimized MATLAB implementation takes around

4 seconds per iteration for a 341× 512 image on an Intel Quad-Core 2.67 GHz computer.
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Figure 4.8: Structural fidelity as a function of iteration with initial “woods” images created
by different TMOs.

4.4 Summary

We propose a substantially different approach to design TMO, where instead of using

any pre-defined systematic computational structure (such as image transformation or con-
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Figure 4.9: Statistical naturalness as a function of iteration with initial “woods” images
created by different TMOs.

trast/edge enhancement) for tone mapping, we navigate in the space of all images, searching

for the image that optimizes eTMQI. The navigation involves an iterative process that al-

ternately improves the structural fidelity and statistical naturalness of the resulting image.

The current work opens the door to a new class of TMO approaches. In the future, if other

and better IQA models for tone mapped images are available, their performance may also

be tested or improved using our optimization framework.
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Chapter 5

Conclusions and Future Work

This thesis presents an objective IQA model, namely eTMQI, to predict the perceptual

quality of tone mapped images. On the basis of the original TMQI, we first construct

an improved contrast sensitivity model-based nonlinear mapping to better capture the

local contrast visibility of HDR images. The modified structural fidelity term results in a

more meaningful and useful structural fidelity map and guides the proposed optimization

algorithm to recover fine detail with more robustness to noise artifact. We then build

an image dependent statistical naturalness model and quantify the unnaturalness of tone

mapped LDR images based on a subjective experiment. Validations on an independent

subjective database indicate that eTMQI outperforms TMQI on structural fidelity and

statistical naturalness terms separately. Furthermore, we propose an iterative optimization

algorithm not only to compare eTMQI and TMQI in the space of all images but also to

produce better quality tone mapped images when eTMQI is chosen as the optimization

goal. Numerical and subjective experiments suggest that eTMQI is a robust objective

quality metric for quality prediction of tone mapped images and consistently outperforms

TMQI.

The quality assessment and enhancement of tone mapped images are still at an early

state. Many topics are worth further exploring. First, there is still room for improving

the accuracy of objective IQA models in predicting the perceived quality of tone mapped
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images. In other words, better objective IQA models are desired. In the case of improving

eTMQI, the current statistical naturalness model is still crude and global; finding local

patch-based models has great potentials in creating more natural-looking tone mapped

images by generating a local statistical naturalness quality map. What’s more, eTMQI

works with luminance only; to better predict the perceptual quality of tone mapped im-

ages, color information needs to be taken into consideration for designing better quality

models. Second, when performing tone mapping, existing TMOs also introduce a variety

of distortions such as color saturation, blanched appearances and artificial edges; simple

and efficient algorithms are desired to classify and quantify these distortions, which may in

return contribute to tone mapped IQA. Third, the current eTMQI-based optimization al-

gorithm can only find local optima. Deeper understanding of the search space is necessary

to find better initial guesses and to avoid being easily trapped to local optima.
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