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Abstract

We compute the exact partition function of two dimensionalN = (2, 2) supersymmetric

gauge theories on S2. For theories with SU(2|1)A invariance, the partition function admits

two equivalent representations corresponding to localization on the Coulomb branch or

the Higgs branch, which includes vortex and anti-vortex excitations at the poles. For

SU(2|1)B invariant gauge theories, the partition function is localized to the Higgs branch

which is generically a Kähler quotient manifold. The resulting partition functions are

invariant under the renormalization group flow. For gauge theories that flow in the infrared

to Calabi-Yau nonlinear sigma models, the partition functions for the SU(2|1)A (resp.

SU(2|1)B) invariant theories compute the Kähler potential on the Kähler moduli (resp.

complex structure moduli) of the Calabi-Yau manifold. We also compute the elliptic genus

of such theories in the presence of Stückelberg fields and show that they are modular

completions of mock Jacobi forms.
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Chapter 1

Introduction

Mankind’s greatest achievements in the quest to understand and wield nature is in the

makeup of the standard model of particle physics. Its stunning accuracy in describing a

wide range of physical phenomena we observe in nature cannot be overemphasized and its

predictive and explanatory power has led us to believe that all physical phenomena stem

from a small number of fundamental constituents with the non-trivial dynamics captured

– in the experimentally accessible regimes – by the standard model of particle physics.

The picture portrayed by the standard model as a quantum field theory (QFT) however

is far from complete. First, our conventional methods for quantitatively or qualitatively

describing physical phenomena in the quantum regime break down when gravitational

interaction is included forcing us to treat gravity on a different footing from the electroweak

and the strong interactions. This is the infamous problem of quantum gravity which has

been the subject of or a motivation for the majority of the programs in theoretical high

energy physics.

In addition to lacking a quantum mechanical description of the gravitational interaction,

the standard model of particle physics suffers from conceptual issues such as the hierarchy

problem – the order of magnitude discrepancy in the strength of different interactions –

and naturalness, or fine-tuning of the free parameters, costing the standard model some of

its predictive power.

Most apparent in the shortcomings of the standard model, however, is that a quan-

titative description of the dynamics is only possible in a small corner of the parameter

space where the effective coupling constants controlling the strength of the interactions
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are small and the perturbative approach using Feynman diagrams is valid. This severely

limits our understanding of the physics of non-perturbative phenomena and the dynamics

of strongly coupled systems such as quantum chromodynamics (QCD), the theory under-

lying the strong interactions. At low energies, QCD is strongly coupled and exhibits a

number of non-perturbative phenomena such as instantons – solutions to the (Euclidean)

classical equations of motion with non-trivial topology – and confinement. Furthermore,

quantum gravity is considered to be inherently non-perturbative. A systematic study of

non-perturbative aspects of quantum field theories and strongly coupled systems seems

therefore a crucial step in completing the picture portrayed by the standard model.

In the past few decades, many approaches have been devised and many tools have

been developed to facilitate a better understanding of quantum field theories beyond the

perturbative regime. The study of scattering amplitudes in Yang-Mills gauge theories has,

for instance, shed light on the large contrast in the complexity of the method of Feynman

diagrams and the simplicity of the quantities they compute [1]. Additionally, applying the

methods developed for integrable systems to (specific sectors of) these theories has led to

many insightful results about the physics at strong coupling. [2]. Some of the most fruitful

developments though have come from the study of extended objects and in connection with

string theory [3, 4].

The study of extended objects is closely tied with the study of non-local observables

in QFT and quantum gravity. Such observables correspond to gauge-invariant operators

supported on submanifolds of the spacetime manifold. The simplest example of such

operators is the Wilson loop operator in quantum electrodynamics associated to a closed

curve C in space

WC = Pexp

(
iq

∮
C

A

)
.

This operator measures the physical phase picked up by a particle of charge q when trans-

ported around the curve C. This phase is proportional to the net magnetic flux through

the loop C. Such operators detect the presence of topological defects in the QFT and can

therefore be used to probe the topological structure of the theory as well as the physics of

topological defects.

Such defects are rarely rigid, i.e. unaffected by the dynamics of the ambient QFT.

In fact, generically, defects behave like extended objects in the theory and have a set of

collective coordinates, or moduli, along which they can fluctuate or be deformed such as
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their position and shape in space [5]. There is a rich interplay between the physics of

extended objects and the physics of the field theory in which they are embedded. This

facilitates a mutual study of the dynamics of extended objects and the ambient QFT.

Extended objects support non-local operators of the ambient quantum field theory and

can probe both local and non-local structure of the QFT which may not be visible to local

observables. Likewise, the low-energy effective dynamics of the extended object can be

inferred from the ambient QFT. This effective description is in general only valid below a

natural scale associated with the object and the ambient quantum field theory.

Starting from the low-energy effective description of an extended object, it is natural

to ask what class of ambient QFTs can give rise to such effective dynamics. That is, what

are the possible UV completions of the low-energy description? Indeed a possible UV

completion is provided by introducing more degrees of freedom via embedding the object

in a UV complete QFT. In some cases there is a much more interesting alternative which is

to view the extended object as a fundamental entity with a UV complete QFT description.

Indeed such QFTs arise in string theory [6–10].

Consider the case of a 1 + 1 dimensional object, i.e. a string, embedded in a d + 1

dimensional spacetime M with the metric g. Let {σa}a=0,1 be the coordinates on the

string and let {Xµ(σ)}µ=0,...,d be the embedding functions. The embedding functions are

therefore maps from the string worldsheet to the target space M . Most string-like objects

that arise in nature, such as flux tubes in superconductors, have a low-energy worldsheet

description captured by the Nambu-Goto action

S = −T
∫

d2σ
√
− det γ ,

where T is the string tension and γ is the metric on the worldsheet induced by the embed-

ding X, that is

γab = gµν
∂Xµ

∂σa
∂Xν

∂σb
.

The Nambu-Goto action has a very intuitive interpretation: it evaluates the area that the

string sweeps as it evolves in spacetime.1 This description of the strings observed in nature

is only valid well below an energy scale typically associated with the width of the string.

1This is the direct two dimensional analogue of the worldline formulation of quantum field theory where

the action evaluates the proper time along the worldline of the particle.
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Introducing an auxiliary worldsheet metric h the Nambu-Goto action can be rewritten as

S = −T
2

∫
d2σ
√
−h gµνhab ∂aXµ∂bX

ν .

From the point of view of the worldsheet the embedding functions Xµ are simply scalar

fields and the worldsheet theory is just a two dimensional scalar field theory or non-

linear sigma model (NLSM).2 Furthermore, analyzing the symmetries of this action reveals

that this NLSM exhibits conformal symmetry. We may expect then that this NLSM is a

consistent conformal quantum field theory (CFT) and does not require extra degrees of

freedom to be included in the UV. This is only true if the symmetries of the classical theory

are not anomalous at the quantum level. This can be accommodated and the corresponding

NLSM is bosonic string theory.

Following the logic we just outlined, we can search for a QFT living in the target space

that corresponds to string theory. To this end, we quantize the worldsheet string theory

and look for the spectrum of states. Studying the spectrum of bosonic string theory leads

to a remarkable surprise: the spectrum of closed string excitations contains a massless spin

two state i.e. the spacetime theory is a quantum theory of gravity [11, 12]. Unfortunately

however, the spectrum also contains a tachyon hinting that the näıve vacuum of the theory

is unstable. Additionally, Weyl anomaly cancellation condition for theories that admit

spacetime Poincaré invariance is only satisfied in the critical spacetime dimension d = 26.

Lastly, the spectrum of this theory is devoid of fermionic states rendering the theory

phenomenologically unappealing.

The issues mentioned above can all be remedied by considering supersymmetric ex-

tensions of the bosonic string theory [13–15]. Combined with the conformal symmetry of

the worldsheet, the resulting theory is a superconformal field theory (SCFT) of strings or

superstring theory. Supersymmetry removes the tachyon state from the spectrum3 and

reduces the critical dimension down to 10 spacetime dimensions. Furthermore, worldsheet

supersymmetry transcends into spacetime supersymmetry introducing fermionic states in

the spectrum. The amount of supersymmetry in the spacetime theory depends on the

choice of boundary conditions. There are five sets of consistent boundary conditions corre-

sponding to distinct superstring theories. These are the type I superstring theory arising

2Note that the target metric is in general a function g = g(X). The special class of sigma models whose

target space is flat g = η are called linear sigma models.
3We restrict our discussion to superstring theories with (local) spacetime supersymmetry. The tachyon

state in these theories is rendered unphysical by the GSO projection operator [16].
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from the study of open strings, the heterotic superstring theories corresponding to the two

possible choices of gauge groups, namely SO(32) and E8 × E8, and type IIA (non-chiral)

and type IIB (chiral) theories arising from the study of closed strings. There are various

dualities among these theories such as the S, T and U dualities and they are believed to

arise as different vacua of a unique theory known as M-theory [17–19]. The massless sector

of the type I and the heterotic superstring theories is described by the type I supergravity

theories with 16 supercharges while the massless sectors of type IIA and type IIB super-

string theories reduce to the corresponding supergravity theories with 32 supercharges.

To arrive at a phenomenologically viable theory, we need to dimensionally reduce su-

perstring theory down to four spacetime dimensions. As such we consider superstring

theory with a target manifold M10 = R4 × X6, where X6 is a six dimensional compact

manifold. For phenomenological reasons, we would like the four dimensional theory to

exhibit N = 1 supersymmetry (preserving 4 supercharges). This restricts us to manifolds

X6 of SU(3) holonomy. Such manifolds are Calabi-Yau 3-folds which are equivalently

defined as complex Kähler manifolds with vanishing first Chern class. Hence, type I or

heterotic superstring theories, when compactified on a Calabi-Yau 3-fold, reduce to four

dimensional N = 1 supersymmetric gauge theories with SO(32) or E8 ×E8 gauge groups.

Most notably, the heterotic superstring theory with E8 ×E8 gauge group compactified on

a Calabi-Yau leads to a chiral quantum field theory with gauge interactions and with the

gauge group E6. The corresponding worldsheet SCFT exhibits N = (2, 2) superconformal

symmetry. The supersymmetry enhancement stems from embedding the SU(3) holonomy

group of the Calabi-Yau 3-fold into the gauge group. The resulting theory also includes

gravitational interactions making it an excellent candidate for the unified quantum theory

of gravity and gauge interactions.

On the other hand, type IIA or type IIB superstring theories compactified of Calabi-Yau

3-folds reduce to four dimensional QFTs with N = 2 supersymmetry or 8 supercharges.

Such theories are too symmetric to be of phenomenological interest. Furthermore, the

massless spectrum of these theories is devoid of vector bosons mediating non-abelian gauge

interactions. The resolution of these shortcomings is provided by D-branes. These are

dynamical extended objects characterized by the property that strings can end on them.

Supergravity backgrounds including D-branes preserve less supersymmetry. Furthermore,

D-branes host gauge degrees of freedom thereby introducing non-abelian gauge interactions

into type II superstring theories.
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The study of D-branes [20–22] has proved to be one of the most successful avenues

leading to a better understanding of quantum field theories. The effective QFT on D-

branes is typically a supersymmetric Yang-Mills theory enabling us to study such QFTs as

embedded in string theory. This approach has provided a bird’s-eye view of (a large portion

of) the parameter space of quantum field theories revealing a lot of geometric structure

on this space and has been central in unveiling many dualities – symmetries on the QFT

parameter space. Such dualities can often be understood as a consequence or a special

case of various string dualities that map different superstring theories into one another.

A large class of the dualities that have thus been uncovered are strong/weak coupling

dualities of which the infamous holographic gauge/gravity duality [23–25] is an example.

This is believed to be an exact duality between a quantum theory of gravity and a gauge

theory on a fixed background. In particular in the regime where quantum gravity effects

can be neglected, the classical theory of gravity on a space with a boundary and prescribed

asymptotics (often asymptotically anti-de Sitter) captures the physics of a gauge theory

living on the boundary at strong coupling (in the planar limit). Such dualities provide a

probe of non-perturbative phenomena and physics of QFTs at strong coupling.

Almost all methods developed so far for studying QFT beyond perturbation theory

rely heavily on the symmetries of the physical systems considered and are only applicable

when the system exhibits powerful symmetries such as supersymmetry. In particular,

supersymmetry imposes strong constraints resulting in a much more controlled dynamics

in supersymmetric QFTs. One might worry that theories exhibiting supersymmetry are

somewhat idealistic. Nonetheless it has been found that many non-perturbative aspects of

gauge theories persist in the presence of such symmetries and are shared across dimensions.

The recurrence of non-perturbative phenomena in idealized models affirms their fun-

damental importance and offers a window through which they can be studied using the

non-perturbative approaches mentioned earlier. In particular, the powerful technique of

supersymmetric localization [26–29] has enabled us to perform many exact computations

in supersymmetric gauge theories in various dimensions probing the dynamics of these the-

ories deep in the quantum regime and at all values of the coupling constants. The study of

supersymmetric observables using localization has led to many remarkable results such as

the computation of the Witten index, or a generalization thereof, for various models. This

enables us to study the spectrum of these models and their phases in different regions of

the parameter space.
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Exact computations in supersymmetric gauge theories have also provided strong checks

of various dualities such as the gauge/gravity duality, Seiberg duality and mirror symmetry.

Seiberg duality [30, 31] relates two supersymmetric gauge theories on the same manifold

whose gauge symmetries are related in a non-trivial way. Mirror symmetry [32, 33] is a

pairwise correspondence between Calabi-Yau n-folds and was first discovered in the context

of string theory [34,35] where it was discovered that the worldsheet theories describing the

dynamics of strings compactified on mirror Calabi-Yau three-folds are identical. These

dualities are all strong/weak dualities offering a window to the non-perturbative dynamics

of quantum field theories in various dimensions.

The case of two dimensional supersymmetric gauge theories or gauged linear sigma

models (GLSM) which is the subject of this text is exceptionally rich. The space of these

theories exhibits many dualities including the aforementioned Seiberg duality and mirror

symmetry. In addition to exhibiting such phenomena as dimensional transmutation, chiral

symmetry breaking and non-perturbative corrections due to vortices, under the renormal-

ization group (RG) flow these theories flow in the infrared to non-linear sigma models

(NLSM). Furthermore, for a subset of these GLSMs the infrared non-linear sigma model

is a superconformal field theory (SCFT). In particular, one can engineer GLSMs whose

infrared fixed-point corresponds to non-linear sigma models with a compact Calabi-Yau

n-fold target manifold. Of special interest is the case n = 3. The resulting SCFTs corre-

spond to Calabi-Yau compactification of heterotic or type II superstring theories and have

N = (2, 2) superconformal symmetry. At low energies, these theories have an effective de-

scription as four dimensional field theories. Exactly marginal operators in the worldsheet

SCFT correspond to massless scalar fields in the effective 4 dimensional field theory. The

dynamics of these fields are dictated by worldsheet correlation functions in the SCFT.

In the worldsheet SCFT of a string theory compactified on a Calabi-Yau 3-fold (CY3),

exactly marginal operators stem from the moduli of the CY3. Most notable among these are

the moduli of metric deformations, that is, the moduli of complex structure deformations

and the moduli of Kähler structure deformations. These can be thought of as deformations

in the shape and the size of the manifold respectively. The dimension of these moduli are

given by the Betti numbers h1,2 and h1,1 for the complex moduli and the Kähler moduli

respectively. The set of operators corresponding to each moduli form a ring in the CFT.
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These are the so called chiral and twisted chiral ring

complex moduli ←→ chiral ring = {Oa | a = 1, . . . , h1,2} ,
Kähler moduli ←→ twisted chiral ring = {Oi | i = 1, . . . , h1,1} .

Furthermore, the (complexified) Kähler moduli and complex moduli each carry Kähler

structure. The Kähler metric on these moduli can be identified [36] with the corresponding

Zamolodchikov metric

GK
ij̄ = ∂i∂̄j̄KK = 〈i|j̄〉CFT , (1.1)

GC
ab̄ = ∂a∂̄b̄KC = 〈a|b̄〉CFT , (1.2)

where KK and KC are the corresponding Kähler potentials. The metrics GK and GC have

straightforward interpretation in the four dimensional effective field theory: together they

define a metric on the field space for the massless scalar fields arising from the CY3 metric

moduli.

While the complex structure moduli metric does not receive quantum corrections, the

Kähler moduli metric is corrected by the worldsheet instantons. These are holomorphic

maps from the worldsheet to the target CY3. Summing over instanton corrections is

of interest to mathematicians and physicists alike as they define a class of topological

invariants known as the integral Gromov-Witten invariants, and they enable us to compute

exact Yukawa couplings of the corresponding heterotic string compactification. Instanton

corrections, however, are non-perturbative and very hard to compute in general. For an

N = (2, 2) superconformal non-linear sigma model that admits a GLSM description, we

may avoid this issue by reintroducing the ultraviolet degrees of freedom back into the path

integrals (1.1) and (1.2). As we shall see in chapter 2 and chapter 3, the Kähler and complex

structure moduli metrics are guaranteed to be invariant under the RG flow. Moreover,

invoking the superconformal symmetry of the non-linear sigma models we conclude that the

two sets of marginal operators, the chiral ring and the twisted chiral ring, decouple. This

is due to the invariance of these operators under different supercharges and R-symmetries.

While the operators in the chiral ring are invariant under the “B-type” supersymmetry

generated by QB and the axial U(1) R-symmetry, the operators in the twisted chiral ring

are invariant under the “A-type” supersymmetry generated by QA and the vector U(1)
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R-symmetry,

[QA,Oi] = [R, Oi] = 0 , (1.3)

[QB,Oa] = [A,Oa] = 0 . (1.4)

Exploiting the decoupling of the two sectors, we construct N = (2, 2) supersymmetric

GLSMs realizing the SU(2|1)A (resp. SU(2|1)B) supersymmetry to compute the Kähler

moduli (resp. complex moduli) metric.

As was speculated in [37], formed into a sharp conjecture in [38] and proved in [39],

the metric on the Kähler moduli space is given by the sphere two-point function of exactly

marginal operators in the twisted chiral and twisted anti-chiral rings inserted at polar

opposite points on the sphere,

GK
ij̄ = 〈Oi(N)Oj̄(S)〉S2 , (1.5)

while the metric on the complex moduli is given by the sphere two-point function of exactly

marginal operators in the chiral and anti-chiral rings

GC
ab̄ = 〈Oa(N)Ob̄(S)〉S2 . (1.6)

As we remarked above, the Kähler (resp. complex) moduli carries a Kähler structure and

the metric GK (resp. GC) is a Kähler metric arising from the Kähler potential KK (resp.

KC). As a matter of fact we can push the field theory/CY3 correspondence further and

give a direct field theory interpretation to the Kähler potential: the Kähler potential is the

logarithm of the partition function. As was conjectured in [38] – and established in [39] –

for the SU(2|1)A supersymmetric theory we have

ZAS2 = e−KK , (1.7)

and for the SU(2|1)B invariant theory

ZBS2 = e−KC . (1.8)

In collaboration with Jaume Gomis, Bruno Le Floch and Sungjay Lee in [37] (see

also [40]) and in collaboration with Jaume Gomis in [41] we have constructed gauged

linear sigma models with SU(2|1)A and SU(2|1)B supersymmetry on a sphere. We have

9



MCoulomb

MHiggs

a+m = 0

Figure 1.1: Supersymmetric vacua of the SU(2|1)A invariant theory.

shown that the supersymmetric vacua of the SU(2|1)A invariant theory consists of both

Coulomb and Higgs branches as depicted in figure 1. Through direct computation using

different supersymmetric localization schemes, we have shown that the exact partition

function for the A-type theory admits two equivalent representations: first as an integral

over the Coulomb branch

ZAS2(τ, τ̄) =
∑
B

∫
dσZcl(σ,B, τ, τ̄)Zone-loop(σ,B) , (1.9)

where B is the total flux on the sphere and the Coulomb parameter σ is the background

value for a real scalar in the vector multiplet. The second representation of the partition

function is as a sum over the Higgs vacua with vortex and anti-vortex configurations

supported at the poles

ZAS2(τ, τ̄) =
∑

v∈Higgs vacua

Zcl(v, τ, τ̄)Zone-loop(v)Zvortex(v, τ)Zanti-vortex(v, τ̄) . (1.10)

The partition function depends on the twisted superpotential couplings parameterizing

the Kähler moduli.4 The ZAS2 of a CY3 GLSM computes the exact Kähler potential,

including all worldsheet instanton corrections, for the Kähler moduli of the CY3 without

using mirror symmetry. With the Jockers et. al. prescription, this enables us to extract

the quantum corrected Gromov-Witten invariants without invoking mirror symmetry. We

can also extract the coefficients of three point functions of the four dimensional effective

field theory involving the massless scalars arising from the Kähler moduli. For heterotic

string compactifications, these correspond to the Yukawa couplings.

4One can also turn on twisted mass parameters in a supersymmetric way.
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For GLSMs with B-type supersymmetry, we have shown, by localizing the path integral

to the supersymmetric Higgs vacua, that the exact sphere partition function for a Kähler

quotient Calabi-Yau M takes the form

ZBS2(W,W ) = idimM

∫
M

Ω(W ) ∧ Ω(W ) , (1.11)

where Ω is the nowhere vanishing top holomorphic form. This is indeed the Kähler potential

for the complex structure moduli of the Calabi-Yau manifold M in the form proposed

in [42,43].

Another interesting observable of two dimensional N = (2, 2) gauge theories which is

invariant under the renormalization group flow is the elliptic genus [44–48]. This observ-

able has recently been computed for a large class of theories using the powerful technique

of supersymmetric localization [49–51]. The resulting elliptic genera are holomorphic Ja-

cobi forms with weight zero and index determined by the central charge. More generally,

when there is a continuous spectrum in the IR fixed point, non-holomorphicity of the el-

liptic genus is a measure of the difference in spectral densities for bosonic and fermionic

right-moving primaries [52, 53].5 This difference is determined in terms of the asymptotic

supercharge [52, 54] and the continuum contribution is dictated by the asymptotic geom-

etry. This yields a real Jacobi form [53, 55–58]. A known example of this phenomenon is

the cigar coset CFT whose gauged linear sigma model description includes a Stückelberg

field linearly transforming under gauge transformations, and rendering the two-dimensional

gauge field massive [59,60].

The results of [49–51] can be generalized by considering abelian two-dimensional gauge

theories including Stückelberg fields. As was shown in [61], the elliptic genus of these

theories are real Jacobi forms.

5This is the analogue of the temperature dependence of the Witten index in sypersymmetric quantum

mechanics.
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The dissertation is organized as follows:

Chapter 2 is devoted to the construction of gauge theories with with SU(2|1)A super-

symmetry on the sphere. To this end, we present the realization of the SU(2|1)A algebra on

various multiplets and construct the corresponding supersymmetric actions. By studying

the cohomology of different supercharges, we establish that the sphere partition function is

independent of the superpotential terms and prove that it is invariant under the renormal-

ization group flow. We then compute the sphere partition function using supersymmetric

localization on the Coulomb branch and demonstrate that it can be factorized into north

and south pole contributions. Following a different route, we localize the partition function

to Higgs branch of the supersymmetric vacua which consists of vortex and anti-vortex con-

figurations at the poles of the sphere. This yields a direct derivation of the factorized form

of the partition function. We end this chapter by a discussion on some of the applications

of the results. The contents of this chapter were first presented in6 [37] by N.D., Jaume

Gomis, Bruno Le Floch and Sungjay Lee.

In Chapter 3 we focus on gauge theories with SU(2|1)B supersymmetry on the sphere.

We present the realization of the SU(2|1)B algebra on vector and chiral multiplets and

construct the supersymmetric actions. We then prove that the sphere partition function

for an SU(2|1)B invariant GLSM is independent of the Kähler structure parameters and

that it is invariant under the renormalization group flow. We present a direct evaluation

of the path integral via localization and we close this chapter by studying a large class of

examples. This Chapter is based on [41] by N.D. and Jaume Gomis.

Chapter 4 focuses on elliptic genera in (2, 2) supersymmetric GLSMs. Here we present

the results that first appeared in [61] by Sujay Ashok, N.D. and Jan Troost, including

the GLSM derivation of a real Jacobi form as the elliptic genus of an NLSM with a non-

compact Calabi-Yau target space with an asymptotically linear Dilaton direction. The

GLSM derivation has obvious generalizations which we present at end of this chapter.

We conclude this dissertation with a summary of the results followed by a discussion

on applications and future directions.

6See also [40].
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Chapter 2

SU(2|1)A Invariant Gauge Theories

In this chapter we focus on two dimensional gauge theories with SU(2|1)A supersymmetry.

First we explicitly construct the Lagrangian of such N = (2, 2) supersymmetric gauge

theories on S2. We then compute the sphere partition function of these theories exactly

using supersymmetric localization.

The basic multiplets of two dimensional N = (2, 2) supersymmetry are the vector

multiplet, the chiral multiplet, the twisted vector multiplet and the twisted chiral multiplet.

In this chapter we focus on gauge theories with vector and chiral multiplets. Gauge theories

with twisted vector and twisted chiral multiplets are studied in chapter 3.

2.1 Vector and Chiral Multiplets

The vector and chiral multiplets of N = (2, 2) supersymmetry in two dimensions arise by

dimensional reduction of the familiar four dimensional N = 1 supersymmetry multiplets.

The field content is therefore

vector multiplet: (Aµ, σ1, σ2, λ, λ̄,D)

chiral multiplet: (φ, φ̄, ψ, ψ̄, F, F̄ ) .
(2.1)

The fields (λ, λ̄, ψ, ψ̄) are two component complex Dirac spinors,1 (φ, φ̄, F, F̄ ) are complex

scalar fields while (σ1, σ2,D) are real scalar fields.2 The fields in the vector multiplet

1Our conventions for spinors are listed in appendix B.
2The reality of the auxiliary field D is altered when coupled with matter fields.
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transform in the adjoint representation of the gauge group G while the chiral multiplet

fields transform in a representation R of G. The field content of an arbitrary N = (2, 2)

supersymmetric gauge theory admitting a Lagrangian description is captured by these

multiplets by letting G be a product gauge group and R a reducible representation.

While it is well known how to construct the Lagrangian of N = (2, 2) supersymmetric

gauge theories in R2 (i.e. flat space), constructing supersymmetric theories on S2 requires

some thought, as S2 does not admit covariantly constant spinors. Indeed, we must first

characterize the N = (2, 2) supersymmetry algebra on S2. This is the subalgebra of the

two dimensional N = (2, 2) superconformal algebra on S2 that generates the isometries

of S2, but none of the conformal transformations of S2. There are two such algebras

corresponding to the U(1)V and U(1)A R-symmetries. In this chapter we restrict our

discussion to theories with vectorial R-symmetry. The N = (2, 2) supersymmetry algebra

on S2 thus defined obeys the (anti)commutation relations of the SU(2|1)A superalgebra3

[Jm, Jn] = iεmnpJp [Jm, Qα] = −1

2
γ β
m αQβ [Jm, Sα] = −1

2
γ β
m αSβ

{Sα, Qβ} = γmαβJm −
1

2
CαβR [R,Qα] = −Qα [R, Sα] = Sα .

(2.2)

The supercharges Qα and Sα are two dimensional Dirac spinors generating the supersym-

metry transformations, Jm are the SU(2) charges generating the isometries of S2 while R

is a U(1) R-symmetry charge. This supersymmetry algebra is the S2 counterpart of the

N = (2, 2) super-Poincaré algebra in flat space.

Constructing a supersymmetric Lagrangian on S2 requires finding supersymmetry trans-

formations on the vector and chiral multiplet fields that represent the SU(2|1)A algebra. We

construct these by restricting the N = (2, 2) superconformal transformations to those cor-

responding to the SU(2|1)A subalgebra. The N = (2, 2) superconformal transformations

on the fields are easily obtained by combining the N = (2, 2) super-Poincaré transforma-

tions in flat space (with the flat metric replaced by an arbitrary metric), with additional

terms that are uniquely fixed by demanding that the supersymmetry transformations are

covariant under Weyl transformations.7 Given the SU(2|1)A supersymmetry transforma-

tions on the vector and chiral multiplet fields constructed this way and shown below, it

is straightforward to construct the corresponding SU(2|1)A invariant Lagrangian. The

3See appendix C for details.

14



supersymmetry transformations and action may equivalently be obtained by “twisted” di-

mensional reduction from three dimensional N = 2 gauge theories on S1 × S2, considered

in [62].

Without further ado, we write down the renormalizable SU(2|1)A invariant action of

an arbitrary gauge theory on S2

S = Sv.m. + Stop + SFI + Sc.m. + Smass + SW . (2.3)

The vector multiplet action is given by

Sv.m. =
1

2g2

∫
d2x
√
h Tr

{
VµV

µ + V3V
3 + D2 + iλ

(
/Dλ̄−

[
σ1, λ̄

]
− i
[
σ2, γ

3̂λ̄
])}

, (2.4)

where
V µ = εµνDνσ2 +Dµσ1 ,

V 3 =
1

2
εµνFµν + i [σ1, σ2] +

1

r
σ1 .

(2.5)

The bosonic part of the action can also be written as

1

2g2

∫
d2x
√
h Tr

{(
F1̂2̂ +

1

r
σ1

)2

+ (Dµσ1)2 + (Dµσ2)2 − [σ1, σ2]2 + D2

}
. (2.6)

In the vector multiplet action g denotes the super-renormalizable gauge coupling4, h is the

round metric on S2 and r is its radius.

For each U(1) factor in G, the gauge field action in two dimensions can be enriched by

the addition of the topological term

Stop = −i ϑ
2π

∫
TrF , (2.7)

and of a supersymmetric Fayet-Iliopoulos (FI) D-term on S2

SFI = −iξ
∫

d2x
√
h Tr

(
D− σ2

r

)
. (2.8)

The couplings ϑ and ξ are classically marginal, and can be combined into a complex gauge

coupling

τ =
ϑ

2π
+ iξ (2.9)

4For a product gauge group, there is an independent gauge coupling for each factor in the gauge group.
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for each U(1) factor in the gauge group. Quantum mechanically, the coupling τ depends

on the energy scale, and can be traded with the dynamically generated, renormalization

group invariant scale Λ.5 We will return to this dynamical transmutation in section 2.3.

The action for the chiral multiplet coupled to the vector multiplet is6

Sc.m. =

∫
d2x
√
h

{
φ̄

(
−D2

µ + σ2
1 + σ2

2 + iD + i
q − 1

r
σ2 −

q2 − 2q

4r2

)
φ+ F̄F

− iψ̄
(
/D − σ1 − iσ2γ

3̂ +
q

2r
γ 3̂
)
ψ + iψ̄λφ− iφ̄λ̄ψ

}
.

(2.10)

Here q denotes the U(1) R-charge of the chiral multiplet, which takes the value q = 0 for

the canonical chiral multiplet.7 In a theory with flavour symmetry GF , the U(1) R-charges

take values in the Cartan subalgebra of GF (see discussion below).

In two dimensions, it is possible to turn on in a supersymmetric way twisted masses

for the chiral multiplet. These supersymmetric mass terms are obtained by first weakly

gauging the flavour symmetry group GF acting on the theory, coupling the matter fields to

a vector multiplet for GF , and then turning on a supersymmetric background expectation

value for the fields in that vector multiplet. For N = (2, 2) gauge theories on S2, unbroken

SU(2|1) supersymmetry (see equations (2.17) and (2.18)) implies that the mass parameters

are given by a constant background expectation value for the scalar field σ2 in the vector

multiplet for GF . This can be taken in the Cartan subalgebra of the flavour symmetry

group GF . Therefore, the supersymmetric twisted mass terms on S2 are obtained by

substituting

σ2 → σ2 +m (2.11)

in (2.10), with m in the Cartan subalgebra of GF

Smass =

∫
d2x
√
h

{
φ̄

(
m2 + 2mσ2 + i

q − 1

r
m

)
φ− ψ̄mγ 3̂ψ

}
. (2.12)

Likewise, the U(1) R-charge parameters q introduced in (2.10) can be obtained by turning

on an imaginary expectation value for the scalar field σ2 in the vector multiplet for GF .

5The dynamical scale is given by Λb0 = µb0e2πiτ(µ), where β(ξ) ≡ b0
2π and µ is the floating scale.

6The representation matrices of G in the representation R, which we do not write explicitly to avoid

clutter, intertwine the vector multiplet and chiral multiplet fields in the usual way.
7q also determines the Weyl weight of the fields in the chiral multiplet. The Weyl weight of a field can

be read from the commutator of two superconformal transformations (see appendix C), which represents

the two dimensional N = (2, 2) superconformal algebra on the fields.
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The corresponding supersymmetric terms in the action are obtained by shifting the action

in (2.10) for q = 0 by

σ2 → σ2 +
i

2r
q . (2.13)

The flavour symmetry GF is determined by the representation R under which the chiral

multiplet transforms and by the choice of superpotential, as this can break the group of

transformations rotating the chiral multiplets down to the actual GF symmetry of the

theory. If R contains NF copies of an irreducible representation r and the theory has a

trivial superpotential, then the theory has U(NF ) as part of its flavour symmetry group

and gives rise to NF twisted mass parameters m = (m1, . . . ,mNF ) and NF U(1) R-charges

q = (q1, . . . , qNF ). Occasionally, we will find it convenient to combine these parameters

into the holomorphic combination

MI = mI +
i

2r
qI . (2.14)

Finally, we can add in a supersymmetric way a superpotential for the chiral multiplet

SW =

∫
d2x
√
h

{
FW + F̄W̄

}
, (2.15)

whenever the total U(1) R-charge of the superpotential is −qW = −2. FW is the gauge

invariant auxiliary component of the superpotential chiral multiplet.8 Under these con-

ditions, the Lagrangian in (2.15) transforms into a total derivative under the SU(2|1)

supersymmetry transformations below.

A few brief remarks about the N = (2, 2) gauge theories in S2 thus constructed are in

order. The action (and supersymmetry transformations) can be organized in a power series

expansion in 1/r, starting with the covariantized N = (2, 2) gauge theory action in flat

space. The action is deformed by terms of order 1/r and 1/r2, with terms proportional to

1/r not being reflection positive. These features are consistent with the general arguments

in [63]. The theory on S2 breaks the classical9 U(1)A R-symmetry of the corresponding

N = (2, 2) gauge theory in flat space. This can be observed in the asymmetry between

the scalar fields σ1 and σ2 in the action on S2, which are otherwise rotated into each other

8In terms of the φ chiral multiplet, FW = ∂W
∂φ F − 1

2
∂2W
∂φ2 ψψ. Invariance of (2.15) under supersymmetry

when qW = 2 follows from equations (2.28) and (2.29).
9This classical symmetry of the flat space theory, being chiral, can be anomalous.
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by the U(1)A symmetry of the flat space theory. This asymmetry is also manifested in

the twisted masses m being real on S2, while they are complex in flat space.10 The real

twisted masses m on S2, however, combine with the U(1) R-charges q into the holomorphic

parameters M = m+ i
2r
q introduced in (2.14).

The gauge theory action we have written down is invariant under the SU(2|1) super-

symmetry algebra. The supersymmetry transformations are parametrized by conformal

Killing spinors11 ε and ε̄ on S2. These can be taken to obey

∇µε = +
1

2r
γµγ

3̂ε

∇µε̄ = − 1

2r
γµγ

3̂ε̄ ,
(2.16)

where ε and ε̄ are complex Dirac spinors in two dimensions and r is the radius of the S2.

The spinors εα and ε̄α are the supersymmetry parameters associated to the supercharges

Qα and Sα respectively. More details about the supersymmetry transformations can be

found in appendix C.

As mentioned earlier, the explicit supersymmetry transformations can be found by

restricting the N = (2, 2) superconformal transformations to the SU(2|1)A subalgebra.

The SU(2|1)A supersymmetry transformations of the vector multiplet fields are

δλ = (iVmγ
m −D) ε (2.17)

δλ̄ =
(
iV̄mγ

m + D
)
ε̄ (2.18)

δAµ = − i
2

(
ε̄γµλ+ εγµλ̄

)
(2.19)

δσ1 =
1

2

(
ε̄λ− ελ̄

)
(2.20)

δσ2 = − i
2

(
ε̄γ3̂λ+ εγ3̂λ̄

)
(2.21)

δD = − i
2
ε̄
(
/Dλ+ [σ1, λ]− i

[
σ2, γ

3̂λ
])

+
i

2
ε
(
/Dλ̄−

[
σ1, λ̄

]
− i
[
σ2, γ

3̂λ̄
])

,
(2.22)

10Where twisted masses correspond to background values of σ1, σ2 in the vector multiplet for GF .
11Thus named since the defining equation ∇µε = γµε̃ is conformally invariant.
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with Vm and V̄m defined by

V µ = εµνDνσ2 +Dµσ1 , V 3 =
1

2
εµνFµν + i [σ1, σ2] +

1

r
σ1

V̄ µ = εµνDνσ2 −Dµσ1 , V̄ 3 =
1

2
εµνFµν − i [σ1, σ2] +

1

r
σ1 .

(2.23)

The transformations of the massless chiral multiplet fields are

δφ = ε̄ψ (2.24)

δφ̄ = εψ̄ (2.25)

δψ = i
(
/Dφ+ σ1φ− iσ2φγ

3̂ +
q

2r
φγ 3̂
)
ε+ ε̄F (2.26)

δψ̄ = i
(
/Dφ̄+ φ̄σ1 + iφ̄σ2γ

3̂ − q

2r
φ̄γ 3̂
)
ε̄+ εF̄ (2.27)

δF = −i
(
Dµψγ

µ + σ1ψ − iσ2ψγ
3̂ + λφ+

q

2r
ψγ 3̂

)
ε (2.28)

δF̄ = −i
(
Dµψ̄γ

µ + ψ̄σ1 + iψ̄σ2γ
3̂ − φ̄λ̄− q

2r
ψ̄γ 3̂

)
ε̄ . (2.29)

The supersymmetry transformations of the theory with twisted masses are obtained from

equations (2.24–2.29) by shifting σ2 → σ2 +m as in (2.11).

With these transformations, the SU(2|1)A supersymmetry algebra (2.2) is realized off-

shell on the vector multiplet and chiral multiplets fields. Splitting δ ≡ δε + δε̄, we find that

this representation of SU(2|1)A on the fields obeys

[δε, δε] = 0 [δε̄, δε̄] = 0 , (2.30)

and12

[δε, δε̄] = δSU(2)(v) + δR(α) + δG(Λ) + δGF (Λm) , (2.31)

thus generating an infinitesimal SU(2)×R×G×GF transformation. When localizing the

path integral of N = (2, 2) gauge theories on S2, we will choose a particular supercharge Q
in SU(2|1)A. The SU(2)×R×G×GF transformation it generates will play an important

role in our computation of the partition function.

12The explicit form of the commutator of supersymmetry transformations on the vector multiplet and

chiral multiplet fields can be found in appendix C.
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The SU(2) isometry transformation induced by the commutator of supersymmetry

transformations is parametrized by the Killing vector field13

vµ = iε̄γµε . (2.32)

It acts on the bosonic fields via the usual Lie derivative and on the fermions via the

Lie-Lorentz derivative

Lv ≡ vµ∇µ +
1

4
∇µ vν γ

µν . (2.33)

The U(1) R-symmetry transformation generated by the commutator of the supersym-

metry transformations is parametrized by

α = − 1

2r
ε̄γ 3̂ε . (2.34)

It acts on the fields by multiplication by the corresponding charge. The U(1) R-symmetry

charges of the various fields, supercharges and parameters are given by:

supersymmetry vector multiplet chiral multiplet

ε ε̄ Q S Aµ σ1 σ2 λ λ̄ D φ ψ F φ̄ ψ̄ F̄

1 −1 −1 1 0 0 0 1 −1 0 −q −(q − 1) −(q − 2) q q − 1 q − 2

Since the action of R on the fields is non-chiral, this classical symmetry is not spoiled by

quantum anomalies and is an exact symmetry of the N = (2, 2) gauge theories we have

constructed.

The commutator of two supersymmetry transformations generates a field dependent

gauge transformation, taking values in the Lie algebra of the gauge group G. The induced

gauge transformation is labeled by the gauge parameter

Λ = (ε̄ε)σ1 − i(ε̄γ 3̂ε)σ2 − vµAµ , (2.35)

which acts on the various fields by the standard gauge redundancy transformation laws.

On the gauge field it acts by

δΛAµ = DµΛ (2.36)

13The fact that v is a Killing vector, that it obeys ∇µvν +∇νvµ = 0, is a consequence of the choice of

conformal Killing spinors in (2.16). As desired, it does not generate conformal transformations of S2.

20



while on a field ϕ it acts by

δΛϕ = iΛ · ϕ , (2.37)

where Λ acts on ϕ in the corresponding representation of G.

Finally, in the presence of twisted masses m, a GF flavour symmetry rotation on the

chiral multiplet fields is generated by [δε, δε̄]. The induced flavour symmetry transforma-

tion acts on the chiral multiplet fields in the fundamental representation of GF , and is

parametrized by

Λm = −i(ε̄γ 3̂ε)m, (2.38)

with m taking values in the Cartan subalgebra of GF . It acts trivially on the vector

multiplet fields.

2.2 Localization of the Path Integral

In this section our goal is to perform the exact computation of the partition function of

N = (2, 2) gauge theories on S2. The powerful tool that allow us to achieve this goal is

supersymmetric localization.

The central idea of supersymmetric localization [64] is that the path integral – possibly

decorated with the insertion of observables or boundary conditions invariant under a super-

charge Q – localizes to the Q-invariant field configurations. If the orbit of Q in the space of

fields is non-trivial,14 then the path integral vanishes upon integrating over the associated

Grassmann collective coordinate. Therefore, the non-vanishing contributions to the path

integral can only arise from the trivial orbits, i.e. the fixed points of supersymmetry. These

fixed point field configurations are the solutions to the supersymmetry variation equations

generated by the supercharge Q, which we denote by

δQ fermions = 0 . (2.39)

In the path integral we must integrate over the moduli space of solutions of the partial

differential equations implied by supersymmetry fixed point equations (2.39).

Under favorable asymptotic behavior, integration by parts implies that the result of

the path integral does not depend on the deformation of the original supersymmetric

14By definition of Q-invariance of the path integral, the space of fields admits the action of Q.
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Lagrangian by a Q-exact term15

L → L+ tQ · V , (2.40)

as long as V is invariant under the bosonic transformations generated by Q2. Obtaining a

sensible path integral requires that the action is nondegenerate and that the path integral

is convergent in the presence of the deformation term Q · V .

In the t → ∞ limit, the semiclassical approximation with respect to ~eff ≡ 1/t is

exact. In this limit, only the saddle points of Q · V can contribute and, moreover, the

path integral is dominated by the saddle points with vanishing action. However, of all the

saddle points of Q·V , only the Q-supersymmetric field configurations give a non-vanishing

contribution. Therefore, we must integrate over the intersection of the supersymmetric field

configurations and the saddle points of Q · V . We denote this intersection by F .

Using the saddle point approximation, the path integral in the t → ∞ limit can be

calculated by restricting the original Lagrangian L to F ,16 integrating out the quadratic

fluctuations of all the fields in the deformation Q · V expanded around a point in F , and

integrating the combined expression over F .17 Of course, even though the path integral is

one-loop exact with respect to t, it yields exact results with respect to the original coupling

constants and parameters of the theory.

The final result of the localization computation does not depend on the choice of de-

formation Q · V . One may add to Q · V another Q-exact term, and the result of the path

integral will not change as long as the new Q-exact term is non-degenerate, and no new

supersymmetric saddle points are introduced that can flow from infinity. This can be ac-

complished by choosing the deformation term such that it does not change the asymptotic

behavior of the potential in the space of fields. We will take advantage of this freedom and

choose a deformation term Q · V that makes computations most tractable.

Since our aim is to localize the path integral of gauge theories, some care has to be

taken to localize the gauge fixed theory. This requires combining in a suitable way the

deformed action Q·V and gauge fixing terms Lg.f. into a Q̂ = Q+QBRST exact term Q̂ · V̂ ,

where V̂ = V + Vghost. This refinement, while technically important, does not modify the

15Q · V denotes the supersymmetry transformation of V generated by Q (see also (2.67)).
16The deformation term Q · V vanishes on F since it is a linear combination of the supersymmetry

equations.
17The original Lagrangian L is irrelevant for the localization one-loop analysis.
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fact that the gauge fixed path integral localizes to F . The inclusion of the gauge fixing

term, however, plays an important role in the evaluation of the one-loop determinants in

the directions normal to F .

2.2.1 Choice of Supercharge

In this section we choose a particular supersymmetry generator Q in the SU(2|1)A super-

symmetry algebra with which to localize the path integral of N = (2, 2) gauge theories on

S2. We consider18

Q = S1 +Q2 . (2.41)

This supercharge generates an SU(1|1) subalgebra of SU(2|1)A, given by

Q2 = J +
R

2

[
J +

R

2
,Q
]

= 0 , (2.42)

where J is the charge corresponding to a U(1) subgroup of the SU(2) isometry group of the

S2 while R is the R-symmetry generator in SU(2|1). In terms of embedding coordinates

where S2 is parametrized by

X2
1 +X2

2 +X2
3 = r2 , (2.43)

J acts under an infinitesimal transformation, as follows

X1 →X1 − εX2

X2 →X2 + εX1 .
(2.44)

Geometrically, the action of J has two antipodal fixed points on S2, which can be used to

define the north and south poles of S2. These are located at (0, 0, r) and (0, 0,−r) in the

embedding coordinates (2.43). In terms of the coordinates of the round metric on S2

ds2 = r2
(
dθ2 + sin2 θdϕ2

)
(2.45)

the corresponding Killing vector is

i
∂

∂ϕ
, (2.46)

18In section 2.3 we also analyze localization of the path integral with respect to both Q1 and Q2. The

analysis leads directly to the Coulomb branch representation of the partition function. On the other hand,

this other choice does not allow non-trivial field configurations in the Higgs branch, and therefore cannot

give rise to the Higgs branch representation of the partition function.
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with the north and south poles corresponding to θ = 0 and θ = π respectively. The

supersymmetry algebra (2.42) is the same used in [29] in the computation of the partition

function of four dimensional N = 2 gauge theories on S4.

In order to derive the supersymmetry fixed point equations (2.39) generated by the

supercharge Q, first we need to construct the conformal Killing spinors associated to it,

which we denote by εQ and ε̄Q. The conformal Killing spinors on S2 obeying (2.16) are

explicitly given by19

ε = exp

(
−iθ

2
γ 2̂

)
exp

(
iϕ

2
γ 3̂

)
ε◦

ε̄ = exp

(
+
iθ

2
γ 2̂

)
exp

(
iϕ

2
γ 3̂

)
ε̄◦ ,

(2.47)

where ε◦ and ε̄◦ are constant, complex Dirac spinors. The conformal Killing spinors εQ and

ε̄Q are given by (2.47), with ε◦ and ε̄◦ being chiral spinors of opposite chirality, that is

γ 3̂ε◦ = +ε◦

γ 3̂ε̄◦ = −ε̄◦ .
(2.48)

Therefore, explicitly

εQ = eiϕ/2 exp

(
−iθ

2
γ 2̂

)
ε◦

ε̄Q = e−iϕ/2 exp

(
+
iθ

2
γ 2̂

)
ε̄◦ .

(2.49)

We note that at the north and the south poles of the S2 the conformal Killing spinors εQ
and ε̄Q have definite chirality, and that the chirality at the north pole is opposite to that

at the south pole

γ 3̂εQ(N) = εQ(N) γ 3̂εQ(S) = −εQ(S)

γ 3̂ε̄Q(N) = −ε̄Q(N) γ 3̂ε̄Q(S) = ε̄Q(S) .
(2.50)

As we shall see, the fact that Q is chiral at the poles implies that the corresponding chiral

field configurations – vortices localized at the north pole and anti-vortices at the south

pole – may contribute to the partition function of N = (2, 2) gauge theories on S2.

19In the vielbein basis e1̂ = rdθ and e2̂ = r sin θdϕ. For details, please refer to appendix C.
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We note that the circular Wilson loop operator supported on a latitude angle θ0

Wθ◦ = Tr Pexp

∮
θ◦

[−iAµdxµ + ir(σ1 cos θ◦ − iσ2)dϕ] (2.51)

is invariant under the action of Q. Therefore the expectation value of these operators can

be computed when localizing with respect to the supercharge Q.

Given our choice of supercharge Q, we can explicitly determine the infinitesimal J×R×
G×GF transformation that Q2 generates when acting on the fields. The spinor bilinears

constructed from εQ and ε̄Q in section 2.1 evaluate to20

ε̄QεQ = i cos θ

ε̄Qγ
3̂εQ = i

v =
i

r
∂ϕ

α = − i

2r
.

(2.52)

Therefore, in view of (2.44), Q2 generates J+R/2, i.e. a simultaneous infinitesimal rotation

and R-symmetry transformation with parameter

ε =
1

r
, (2.53)

and a gauge transformation with gauge parameter

Λ = i cos θσ1 + σ2 −
i

r
A2 . (2.54)

On the chiral multiplet fields, Q2 also induces aGF flavour symmetry rotation parametrized

by the twisted masses m.

2.2.2 Localization Equations

Here we present the key steps in the derivation of the set of partial differential equations

that characterize the vector multiplet and chiral multiplet field configurations that are

invariant under the action of Q. The details of the derivation are omitted here and can be

found in appendix 2.A.

20By fixing the overall normalization ε̄◦ε◦ = i.
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We must identify the partial differential equations implied by (2.39)

δQλ = δQλ̄ = 0 (2.55)

δQψ = δQψ̄ = 0 , (2.56)

where δQ ≡ δεQ+ δε̄Q , from the explicit supersymmetry transformations given in equations

(2.17, 2.18) and (2.26, 2.27) for the choice of conformal Killing spinors εQ and ε̄Q in (2.49).

The moduli space of solutions to these equations, once intersected with the saddle points of

our choice of Q-exact deformation term, determines the space of field configurations that

need to be integrated over in the path integral.

Given a choice of deformation term, in order for the path integral to converge we need

to impose reality conditions on the fields. These reality conditions restrict the contour

of path integration so that the integrand falls of sufficiently fast in the asymptotic region

in the space of field configurations. The residual freedom in the choice of contour i.e.

deformations of the contour which do not change the asymptotic behavior of the integrand,

is then used to make sure that the contour of integration includes the saddle points of the

deformed action.

We are interested in deformation terms that do not alter the asymptotic behavior of

the original action (2.3). We may therefore extract the reality conditions by requiring the

original path integral for some effective couplings to be convergent.

From the kinetic terms in the bosonic part of the action (2.3) we conclude that the

scalar fields σ1, σ2 and the connection Ai in the vector multiplet are hermitian while the

chiral multiplet complex scalars φ and φ̄ satisfy φ̄ = φ†. Next we note that the path

integration over the chiral multiplet auxiliary fields F, F̄ is just a Gaussian integral and

we simply require F̄ = F †. For the convergence of the path integral, one should choose the

contour of integration for the auxiliary field D such that D + ig2
eff(φφ̄− ξeff1) is hermitian.

In other words

Im D + g2
eff(φφ̄− ξeff1) = 0 , (2.57)

where the explicit form of the coupling constants g2
eff and ξeff are determined by choice of

Q-exact deformation terms.

The supersymmetry fixed point equations for the vector multiplet fields (2.55) are given
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by

D2̂σ1 = D îσ2 = 0 D1̂σ1 + g2
eff(φφ̄− ξeff1) sin θ = 0 (2.58)

Re D = [σ1, σ2] = 0 F1̂2̂ +
σ1

r
+ g2

eff(φφ̄− ξeff1) cos θ = 0 , (2.59)

while the supersymmetry equations for the chiral multiplet fields (2.56) reduce to

cos
θ

2
(D1̂ + iD2̂)φ+ sin

θ

2

(
σ1 −

q

2r

)
φ = 0 F = 0 (2.60)

sin
θ

2
(D1̂ − iD2̂)φ+ cos

θ

2

(
σ1 +

q

2r

)
φ = 0 (σ2 +m)φ = 0 . (2.61)

These differential equations on S2 are a supersymmetric extension of classic differential

equations in physics. Our equations interpolate between BPS vortex equations at the

north pole (θ = 0)

(D1̂ + iD2̂)φ = 0 Dî (σ1 + iσ2) = 0

F1̂2̂ +
σ1

r
+ g2

eff(φφ̄− ξeff1) = 0 Re D = [σ1, σ2] = 0(
σ1 +

q

2r

)
φ = 0 (σ2 +m)φ = 0 ,

(2.62)

and BPS anti-vortex equations at the south pole (θ = π)

(D1̂ − iD2̂)φ = 0 Dî (σ1 + iσ2) = 0

F1̂2̂ +
σ1

r
− g2

eff(φφ̄− ξeff1) = 0 Re D = [σ1, σ2] = 0(
σ1 −

q

2r

)
φ = 0 (σ2 +m)φ = 0 .

(2.63)

This system of differential equations is akin to the one found in [65] in the localization

computation of four dimensional N = 2 gauge theories on S4. We return later to the

study of the supersymmetry equations at the poles, which play a crucial role in our analysis,

yielding the Higgs branch representation of the gauge theory partition function on S2.

2.2.3 Vanishing Theorem

As explained previously, the path integral localizes to the space F of supersymmetric

field configurations which are also saddle points of the localizing deformation term. In this
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section, we consider the supersymmetry equations in the absence of effective FI parameters

and we write down the most general smooth solutions to the supersymmetry equations for

generic values of the R-charges. These solutions are parametrized by the expectation value

of fields in the vector multiplet, thus, we denote this space of solutions by FCoul. In section

2.3 we localize the path integral to FCoul and derive the Coulomb branch representation of

the partition function.

With ξeff = 0 and for generic R-charges, the most general smooth solution to the

equations (2.58),(2.59),(2.60) and (2.61) is given by21

A =
B

2
(κ− cos θ) dϕ σ1 = −B

2r
φ = 0

D = 0 σ2 = a F = 0 ,
(2.64)

where a and B are constant commuting matrices which live in the gauge Lie algebra and

its Cartan subalgebra respectively. The matrix B is further restricted by the first Chern

class quantization to have integer eigenvalues. The constant κ parametrizes a pure gauge

background which is necessary in any coordinate patch which includes one of the poles and

can be gauged away in the coordinate patch which excludes the poles.

It is interesting to note that if the R-charge is tuned to be a negative integer or zero,

then there are nontrivial solutions of the form

φ = e
i
2

(κB−q)ϕ (sin θ
2
)
B−q

2

(cos θ
2
)
B+q

2

φ◦ (2.65)

with φ◦ being a constant in the kernel of a+m. Imposing regularity at the poles restricts

the allowed value of q and B as follows: q + |B| must be even and non-positive integers.

In such a case, the above field configuration can be written in terms of the magnetic flux

B monopole scalar harmonics Y
B
2
j,m as

φ = Y
B
2

− q
2
,− q

2
φ◦ . (2.66)

It is worth mentioning that these field configurations are also supersymmetric configura-

tions in the localization computation of the partition function of three dimensional N = 2

gauge theories on S1×S2 [62], which computes the superconformal index of these theories.

21A detailed derivation of this result is presented in appendix 2.A.
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In our computations, we can ignore these discrete, tuned solutions to the supersymmetry

equations: for theories flowing to superconformal theories in the infrared, unitarity con-

strains the R-charges to be non-negative. Furthermore, as will be explained in section 2.3,

these solutions are not saddle points of the localized path integral.

We note that even though our choice of Q breaks the SU(2) symmetry of S2, the Q-

invariant field configurations (2.64) are SU(2) invariant. Later on, we take an alternative

approach in which the Coulomb branch is lifted and the saddle point equations admit

singular solutions at the poles thereby breaking the SU(2) symmetry. We will consider the

physics behind singular solutions localized at the north and south poles of S2 in section 2.4.

2.3 Coulomb Branch

In order to evaluate the path integral of an N = (2, 2) gauge theory on S2 using su-

persymmetric localization, we must choose a deformation of the original supersymmetric

Lagrangian by a Q-exact term (2.40)

L → L+ t δQV . (2.67)

The deformation term δQV defines the measure of integration through the associated one-

loop determinant. In this section we calculate the contribution to the path integral due to

the smooth field configurations (2.64). This yields the Coulomb branch representation of

the path integral, as an integral over the Coulomb branch saddle points FCoul.

A calculation shows that the vector multiplet action (2.4) and the chiral multiplet

action (2.10) are Q-exact with respect to our choice of supercharge (2.41). Specifically,

(ε̄Qγ
3̂εQ) g2 Lv.m. = δQδε̄Q Tr

(
1

2
λ̄γ 3̂λ− 2iDσ2 +

i

r
σ2

2

)
, (2.68)

and

− (ε̄Qγ
3̂εQ) (Lc.m. + Lmass) = δQδε̄Q Tr

(
ψ̄γ 3̂ψ − 2φ̄

(
σ2 +m+ i

q

2r

)
φ+

i

r
φ̄φ

)
, (2.69)

where δQ ≡ δεQ + δε̄Q . This implies that correlation functions of Q-closed observables in

an N = (2, 2) gauge theory on S2 are independent of g, the Yang-Mills coupling constant.
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Despite being g independent, these correlators are nontrivial functions of the renormalized

FI parameter ξren for each U(1) factor in the gauge group, and of the twisted masses m.

We now turn to the choice of deformation term δQV . The most canonical choice would

be to take

Vcan = (δQλ)† λ+
(
δQλ̄

)†
λ̄+ (δQψ)† ψ +

(
δQψ̄

)†
ψ̄ . (2.70)

For this choice, the bosonic part of the deformation term δQVcan is manifestly non-negative.

It is therefore guaranteed that all Q-invariant field configurations are the saddle points of

δQVcan with minimal (zero) action. The disadvantage of such a deformation term is that

the resulting action δQVcan does not necessarily preserve the SU(2) symmetries of S2, thus

technically complicating the computation of the one-loop determinants in the directions

transverse to the Q-invariant field configurations. But as we argued in section 2.2, the

result is largely insensitive to the choice of deformation, as long as it is non-degenerate

and does not change the asymptotics of the potential in the space of fields. Therefore,

we will instead use as the deformation term the technically simpler, SU(2) symmetric,

vector multiplet and chiral multiplet actions δQV = Lv.m. +Lc.m. +Lmass. Contrarily to the

canonical choice δQVcan, the saddle points of δQV do not coincide with the supersymmetric

configurations and thus fully localize the path integral to the intersection.

It is straightforward to show that all Coulomb branch field configurations in FCoul are

saddle points of δQV and must be integrated over. However, the solutions to the vortex

and anti-vortex equations we found at the poles are not saddle points of δQV . This can be

demonstrated using both the supersymmetry and the saddle point equations at the poles

as follows.22 Since we are taking the masses to be non-degenerate, it follows from the

equations

(σ2 +mI)φI = 0 (2.71)

that any pair of distinct non-vanishing vectors φI and φJ have to be independent. In

addition, the above equation combined with the covariant constancy of σ2 and its equation

of motion imply ∑
I

(qI − 1)φI φ̄I = 0 , (2.72)

22With some more effort it is possible to prove using only the equation of motion for D that the vortex

and anti-vortex configurations are not saddle points of the action in the limit in which the coefficient of

the deformation term δQV goes to infinity.
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while the equation of motion for D yields

iD−
∑
I

φI φ̄I = 0 . (2.73)

However, since all non-vanishing φI are independent, we can conclude23 from (2.72) that

φI φ̄I vanishes for each I. It therefore excludes the aforementioned supersymmetric solutions

(2.66) with fine-tuned values of q from the set of saddle points. Combined with (2.73), it

also sets D = 0. Plugging this result in the supersymmetry equations fixes F = −σ1/r =

B/2r2 and σ2 = a and we recover the Coulomb branch field configurations spanning FCoul,

thus eliminating the vortex and anti-vortex configurations.

The conclusion that the path integral can be written as a integral over just FCoul can

also be derived as follows. As we remarked earlier, the path integral does not depend

on the choice of supercharge Q used in the localization computation. Therefore, we may

instead try to localize the partition function with respect to the supercharges Q1 and Q2.

This, however, requires finding a deformation term which is Q1 and Q2 exact. Such a

deformation term is provided by the following terms in the action

Lv.m. + Lc.m. + Lmass = δε1δε2V
′ , (2.74)

with V ′ = 1/2 Tr(λλ + φ̄F ), which are exact with respect to both supercharges since

[δε1 , δε2 ] = 0. In this approach the path integral localizes to the Q1 and Q2 invariant field

configurations, which are the solutions to the equations

δε1λ = δε2λ = 0

δε1ψ = δε2ψ = 0

δε1ψ̄ = δε2ψ̄ = 0 .

(2.75)

These equations directly lead24 to the Coulomb branch field configurations (2.64) parametriz-

ing FCoul while immediately rendering the vortex and anti-vortex configurations non-super-

symmetric. Note that this conclusion is reached by considering the supersymmetry equa-

tions alone, contrary to localization with respect to Q, where the saddle point equations

23This step requires us to assume that none of the R-charges is 1.
24Supersymmetry implies that V1 = V2 = V3 = D = 0. The fact that the solutions to these equa-

tions are the Coulomb branch field configurations (2.64) follows by using the equality of actions in (2.4)

and (2.6), derived by integrating by parts. Non-trivial chiral multiplet configuration are manifestly non-

supersymmetric.
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of δQV also need to be invoked to show that vortex and anti-vortex configurations do not

contribute. Since the saddle points and deformation term (2.74) are precisely the same as

the one for Q, this guarantees that we obtain the same Coulomb branch representation of

the path integral. A drawback of localizing with respect to Q1 and Q2 is that we cannot

study the expectation value of the circular Wilson loop (2.51) since it is not Q1 and Q2

invariant.

In section 2.4 we will obtain the payoff of using the supercharge Q. As we have shown

in section 2.2, supersymmetry leads to the vortex and anti-vortex equations at the poles.

In that section, we will argue that localizing the path integral Q in a different limit yields

the Higgs branch representation of the partition function.

2.3.1 Integral Representation of the Partition Function

We now can write down the expression of the partition as an integral over the Coulomb

branch field configurations FCoul. The Coulomb branch representation of the partition

function is thus given by25

ZCoulomb(m, τ) =
∑
B

∫
t

daZcl(a,B, τ)Zone-loop(a,B,m) , (2.76)

where the integral over a has been reduced to the Cartan subalgebra t of G. The first factor

arises from evaluating the renormalized gauge theory action on the smooth supersymmetric

field configurations (2.64)

Zcl(a,B, τ) = e−4πirξren Tr a+iϑTrB , (2.77)

and the one-loop determinant Zone-loop(a,B,m) specifies the measure of integration over a,

which is determined by the deformation term δQV .

Some care has been taken to ensure that the computation, including the regularization

of the one-loop determinants Zone-loop(a,B,m), isQ-invariant. Even though the FI parame-

ter ξ is classically marginal, it runs quantum mechanically according to the renormalization

25The partition function has an anomalous dependence on the radius r of the S2 due to the conformal

anomaly in two dimensions. We do not retain this factor throughout our formulae, which can be extracted

from our one-loop determinants.
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group equation

ξ(µ) = ξ +
1

2π

∑
j

Qj ln

(
µ

MUV

)
=

1

2π

∑
j

Qj ln
(µ

Λ

)
, (2.78)

where Qj is the charge of the j-th chiral multiplet under the U(1) gauge group correspond-

ing to ξ, MUV is the ultraviolet cutoff, µ is the floating scale and Λ is the renormalization

group invariant scale. A simple way of performing this renormalization in a Q-invariant

way, is to enrich the theory one is interested in with an “expectator” chiral multiplet of

mass M and charge −Q = −∑j Qj, so that in the enriched theory the FI parameter does

not run. Now, to extract the result for the theory of interest, we take the answer of the

finite theory in the limit where M is very large, thereby decoupling the expectator chiral

multiplet. This procedure results in a Q-invariant ultraviolet cutoff M for the theory under

study. As shown in appendix 2.C, taking M large in the one-loop determinant (2.82) for

the expectator chiral multiplet precisely reproduces the running of the FI parameter (2.78)

with MUV = M and µ = ε = 1/r. That is, the renormalized coupling obtained in this way

is evaluated at the inverse radius of the S2, which is the infrared scale of S2

ξren ≡ ξ (µ = 1/r)|MUV=M = ξ +
1

2π

∑
i

Qi ln
( ε

M

)
. (2.79)

The one-loop factor in the localization computation Zone-loop(a,B,m) takes the form

Zone-loop(a,B,m) = Zv.m.
one-loop(a,B) · Zc.m.

one-loop(a,B,m) · J (a,B) , (2.80)

where the Jacobian factor J (a,B) accounts for the reduction of the integral over all a such

that [a,B] = 0 to an integral over the Cartan subalgebra t. The magnetic flux B over

the S2 breaks the gauge symmetry G down to a subgroup HB = {g ∈ G | gBg−1 = B}.
Therefore, the associated Jacobian factor is

J (a,B) =
1

|W(HB)|
∏
α∈∆+

α·B=0

(α · a)2 , (2.81)

where α ∈ ∆+ are positive roots of the Lie algebra of G and |W (HB)| is the order of the

Weyl group of HB.
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The one-loop determinants for our choice of deformation term δQV , which is the sum

of (2.68) and (2.69), are computed in appendix 2.B. For a chiral multiplet in a reducible

representation R = ⊕IrI we obtain

Zc.m.
one-loop(a,B,m) =

∏
I

∏
wI∈rI

(−i)wI ·B(−1)|wI ·B|/2
Γ
(
qI
2
− ir(wI · a+mI) + |wI ·B|

2

)
Γ
(

1− qI
2

+ ir(wI · a+mI) + |wI ·B|
2

) ,
(2.82)

where wI are the weights of the representation rI and Γ(x) is the Euler gamma function.

The twisted masses and R-charges mI and qI of the chiral multiplets, which take values

in the Cartan subalgebra of the flavour symmetry GF , combine into the holomorphic

combination M = m+ i
2r
q introduced in (2.14).

For the vector multiplet contribution we obtain

Zv.m.
one-loop(a,B) =

∏
α∈∆+

α·B 6=0

[(
α ·B

2r

)2

+ (α · a)2

]
. (2.83)

We note that the Jacobian factor and the vector multiplet determinant combine nicely into

an unconstrained product over the positive roots of the Lie algebra

Zv.m.
one-loop(a,B) · J(a,B) =

1

|W(HB)|
∏
α∈∆+

[(
α ·B

2r

)2

+ (α · a)2

]
. (2.84)

The Coulomb branch representation of the partition function of an N = (2, 2) gauge

theory on S2 is thus given by

ZCoulomb(m, τ) =
∑
B

1

|W(HB)|

∫
t

da e−4πiξrenrTr a+iϑTrB
∏
α∈∆+

[(
α ·B

2r

)2

+ (α · a)2

]

×
∏
I,wI

(−i)wI ·B(−1)|wI ·B|/2
Γ
(
−ir(wI · a+ MI) + |wI ·B|

2

)
Γ
(

1 + ir(wI · a+ MI) + |wI ·B|
2

)
 .

(2.85)

The expectation value of the circular Wilson loop (2.51) is obtained enriching the integrand

in (2.85) with the insertion of

Tr e2πa−iπB . (2.86)
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2.3.2 Factorization of the Partition Function

We show in this subsection that the Coulomb branch representation of the partition func-

tion (2.85) can be written as a discrete sum, whose summand factorizes into the product

of two functions. A related factorization was found previously by Pasquetti [66] when

evaluating the partition function of three dimensional N = 2 abelian gauge theories on the

squashed S3.26

We recognize the expression we obtain as the sum over Higgs vacua of the product of the

vortex partition function due to vortices at the north pole with the anti-vortex partition

function due to the anti-vortices at the south pole. This result is interpreted in section

2.4 as a direct path integral evaluation of the partition function, where the path integral

is argued to localize on vortices and anti-vortices in the Higgs branch.

Let us consider for definiteness the case of two dimensional N = (2, 2) SQCD. This

theory has G = U(N) gauge group and NF fundamental chiral multiplets and ÑF anti-

fundamental chiral multiplets. The partition function (2.85) of this theory is27

Z
U(N)
SQCD =

1

N !

∑
B1,...,BN∈Z

∫
da1 · · · daN

{
e−4πiξTr aeiϑTrB

∏
i<j

[
(ai − aj)2 +

(
Bi −Bj

2

)2
]

·
NF∏
s=1

N∏
i=1

(−1)
|Bi|+Bi

2 Γ(−iai − iMs + |Bi|/2)

Γ(1 + iai + iMs + |Bi|/2)

ÑF∏
s=1

N∏
i=1

(−1)
|Bi|−Bi

2 Γ(iai − iM̃s + |Bi|/2)

Γ(1− iai + iM̃s + |Bi|/2)

}
.

(2.87)

In the large a limit, the integrand is of order |a|N(N−1)+N
∑
I(qI−1), hence this N -dimensional

integral is convergent as long as

NF∑
s=1

qs +

ÑF∑
s=1

q̃s < NF + ÑF −N . (2.88)

In the cases where NF > ÑF , or NF = ÑF and ξ > 0, the contour can be closed to-

wards iai → +∞, enclosing poles of the fundamental multiplets’ one-loop determinants;

the contour must be chosen to enclose poles of the anti-fundamental multiplets’ one-loop

26The partition function of three dimensional gauge theories on S2 × S1 can also be factorized [67].
27Without loss of generality we set r = 1 to unclutter formulas. It can easily be restored by dimensional

analysis.
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determinants in cases where NF < ÑF , or NF = ÑF and ξ < 0. Assuming that all R-

charges are positive, or deforming the integration contour to ensure that we enclose the

same set of poles, this expresses the Coulomb branch integral as a sum of the residues at

combined poles

iai = −iMpi + ni +
|Bi|

2
for all 1 ≤ i ≤ N , (2.89)

with 1 ≤ p1, . . . , pN ≤ NF and n1, . . . , nN ≥ 0 labelling the poles. The resulting ratios of

Gamma functions in the integrand can be recast in terms of Pochhammer raising factorials

(x)n = x(x+ 1) · · · (x+ n− 1) as

Γ(iMpi − iMs − ni)
Γ(1 + iMs − iMpi + |Bi|+ ni)

=
γ(iMpi − iMs)(−1)ni

(1 + iMs − iMpi)ni(1 + iMs − iMpi)ni+|Bi|
, (2.90)

where

γ(x) =
Γ(x)

Γ(1− x)
, (2.91)

and similarly for the ratios of Gamma functions coming from the anti-fundamental chiral

multiplets.

The symmetry between ni and ni + |Bi| in (2.90) leads us to introduce new coordinates

k±i = ni + [Bi]
± = ni + |Bi|/2±Bi/2 ≥ 0 (2.92)

on the summation lattice, such that {ni, ni + |Bi|} = {k±i }. In section 2.4, the N integers

k+
i will be interpreted as labelling vortices located at the north pole, and k−i anti-vortices at

the south pole. More precisely, k±i measures the amount of vortex and anti-vortex charge

carried by the i-th Cartan generator in U(N): note that the flux Bi = k+
i − k−i .

This change of coordinates decouples the sums over k+ ≥ 0 and k− ≥ 0 and yields the

following expression after converting signs to a shift in the theta angle

Z
U(N)
SQCD =

(2π)N

N !

NF∑
p1,...,pN=1

[
e4πξ

∑
j iMpj

N∏
i=1

∏ÑF
s=1 γ(−iM̃s − iMpi)∏NF

s 6=pi γ(1 + iMs − iMpi)

·
∑
k+
i ≥0

[
e(2πiτ+iπNF )

∑
i k

+
i

N∏
i<j

(
Mpj −Mpi + ik+

j − ik+
i

) N∏
i=1

∏ÑF
s=1(−iM̃s − iMpi)k+

i∏NF
s=1(1 + iMs − iMpi)k+

i

]

·
∑
k−i ≥0

[
e(−2πiτ̄+iπÑF )

∑
i k
−
i

N∏
i<j

(
Mpj −Mpi + ik−j − ik−i

) N∏
i=1

∏ÑF
s=1(−iM̃s − iMpi)k−i∏NF
s=1(1 + iMs − iMpi)k−i

]]
.

(2.93)
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Terms with pa = pb for some a 6= b ≤ N vanish, because the sum over k+ is then antisym-

metric under the exchange of k+
a and k+

b . We can thus normalize the series as

f({pi},M, z) =
∑
ki≥0

[
z
∑
i ki

N∏
i<j

iMpj − iMpi + ki − kj
iMpj − iMpi

∏ÑF
s=1

∏N
i=1(−iM̃s − iMpi)ki∏NF

s=1

∏N
i=1(1 + iMs − iMpi)ki

]

=
∑
ki≥0

[
z
∑
i ki∏
i ki!

∏ÑF
s=1

∏N
i=1(−iMpi − iM̃s)ki∏N

i 6=j(iMpj − iMpi − kj)ki
∏NF

s 6∈{p}
∏N

i=1(1 + iMs − iMpi)ki

]
,

(2.94)

which as we will see in the next section, corresponds to the vortex partition function studied

in [68], with z = exp (2πiτ) playing the role of the vortex fugacity. Note that this series

converges for all z (all ξ) if NF > ÑF , and for |z| < 1 (that is, ξ > 0) if NF = ÑF ,

consistent with the constraints required by our choice of contour. All in all, the partition

function factorizes as

Z
U(N)
SQCD =

∑
vi=−Mpi

1≤p1<...<pN≤NF

Zcl(v, 0, τ) res
a=v

Zone-loop(a, 0,M) f({pi},M, (−1)NF z) f({pi},M, (−1)ÑF z̄)

(2.95)

with

res
ai=−Mpi

Zone-loop(a, 0,M) =
N∏
i=1

∏ÑF
s=1 γ(−iM̃s − iMpi)∏NF

s 6∈{p} γ(1 + iMs − iMpi)
(2.96)

up to a constant factor. In the next section we obtain this result directly by localizing

the path integral to Higgs branch configurations with vortices and anti-vortices. In the

matching, some care must be taken when comparing the mass parameters of the gauge

theory on the sphere with the parameters describing the theory in the Ω-background used

to evaluate the vortex partition function.

The final expression we find is reminiscent of the discrete sums of the product of holo-

morphic and anti-holomorphic conformal blocks that appear in correlators of the ANF−1

Toda CFT in the presence of completely degenerate fields. A precise matching between the

partition function of N = (2, 2) gauge theories on S2 and correlators in Toda is provided

in the abelian case in [37], and in the case of U(N) in [69].

Note that this factorization result applies to any gauge group G with an abelian factor

and matter representation R.28 This yields a representation of the path integral that can

28See [37] for details.
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be interpreted as a sum over Higgs vacua of terms factorized into holomorphic and anti-

holomorphic contributions, corresponding to vortices and anti-vortices respectively. These

formulas motivate natural conjectures for the vortex partition functions corresponding to

gauge theories with gauge group G. In the absence of U(1) factors in the gauge group, the

factorization can be carried out formally, but the two factors may be divergent series.

Note that this factorization result applies to any group of the form U(1)×G. This yields

a representation of the path integral that can be interpreted as a sum over Higgs vacua

of terms factorized into holomorphic and anti-holomorphic contributions, corresponding

to vortices and anti-vortices respectively. These formulas motivate natural conjectures for

the vortex partition functions corresponding to gauge theories with gauge group U(1)×G.

In the absence of U(1) factors in the gauge group, the factorization can be carried out

formally, and the two factors collapse into two identical, possibly divergent series.

2.4 Higgs Branch Representation

The localization principle, under mild conditions, guarantees that the path integral does

not depend either on the choice of supercharge Q or on the choice of V in the deformation

term. But different choices can lead to different representations of the same path integral

and therefore to non-trivial identities.

In section 2.3 we have derived a representation of the partition function as an integral

over Coulomb branch vacua. In section 2.3.2, by explicitly evaluating the integral, we have

demonstrated that the partition function also has an alternative representation as a sum –

in the Higgs phase – over vortex and anti-vortex field configurations localized at the poles.

This section aims to derive from path integral localization arguments the Higgs branch

representation of the partition function. This representation should have a direct derivation

using localization. The appropriate choice of supercharge to use to obtain this represen-

tation is the same supercharge Q introduced in (2.41), since it has the elegant feature of

giving rise to the vortex equations at the north pole

(D1̂ + iD2̂)φ = 0 Dî (σ1 + iσ2) = 0

F1̂2̂ + σ1 + g2
eff(φφ̄− ξeff1) = 0 Re D = [σ1, σ2] = 0(

σ1 +
q

2

)
φ = 0 (σ2 +m)φ = 0 ,

(2.97)
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and anti-vortex equations at the south pole

(D1̂ − iD2̂)φ = 0 Dî (σ1 + iσ2) = 0

F1̂2̂ + σ1 − g2
eff(φφ̄− ξeff1) = 0 Re D = [σ1, σ2] = 0(

σ1 −
q

2

)
φ = 0 (σ2 +m)φ = 0 .

(2.98)

We remark that when the effective Fayet-Iliopoulos parameters are non-vanishing, these

equations admit solutions with non-vanishing φ. These solutions then restrict σ2 to be

a diagonal matrix with the masses of the excited chiral fields on the diagonal and the

Coulomb branch configurations (2.64) parametrizing FCoul are lifted. The Q-invariant field

configurations admitted by (2.97) and (2.98) are vortex and anti-vortex configurations at

the north and south pole of the S2. Since vortices and anti-vortices exist in the Higgs

phase, we denote this space of supersymmetric field configurations that must be integrated

over by FHiggs.

2.4.1 Localizing onto the Higgs Branch

In this subsection we present a heuristic argument to introduce non-zero FI parameters in

the localization computation, which as explained above yields to a representation of the

path integral as a sum over vortex and anti-vortex configurations. For the purpose of this

argument, we take all the R-charges to be zero.

Recall that our choice of deformation term δQV = Lv.m. + Lc.m. + Lmass does not

include a FI term. In section 2.3, we performed the saddle point approximation after

taking the t → ∞ limit. In this limit, the effective FI parameter vanishes and the saddle

point equations forbid vortices, hence the path integral localizes to FCoul. Instead, we

assume here that there is another choice of Q-exact deformation terms V ′ leading to a

non-vanishing effective FI parameter ξeff 6= 0 in the t→∞ limit.

The equation of motion for the D field arising from the deformed action S + tδQV
′ is

ig−2
eff D + ξeff −

∑
I

φI φ̄I = 0. (2.99)

On the space of Q-supersymmetric field configurations (see section 2.2.3), D vanishes in

the bulk and we conclude that ∑
I

φI φ̄I = ξeff1N , (2.100)
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which, together with (a + mI)φI = 0 imply that the Coulomb branch is lifted, localizing

instead to the Higgs branch. Moreover the supersymmetry equations at the poles yield

σ1φI φ̄I = −B
2
φI φ̄I = 0 (2.101)

which by virtue of (2.100) imply B = σ1 = 0. This leads us directly to the vortex and

anti-vortex equations at the north and the south poles.

The contribution of vortices and anti-vortices to the partition function of an N = (2, 2)

gauge theory on S2 can be obtained as follows. Since the vortices and anti-vortices are

localized at the poles, these can be studied by restricting theN = (2, 2) gauge theory to the

local R2 flat space near the north and south poles of S2. Asymptotic infinity of each R2 is

identified with a small latitude circle on S2 close to the north and south pole respectively.

Therefore, the contribution of vortices and anti-vortices is captured by the vortex/anti-

vortex partition function of the gauge theory obtained by restricting our N = (2, 2) gauge

theory at the poles. As we will see in section 2.4.2, integrating over vortex and anti-

vortex configurations for all Higgs branch vacua exactly reproduces the partition function

computed by integrating over the Coulomb branch found in section 2.3.2.

A more precise and complete approach to obtain a finite FI parameter is to choose V ′

such that δQV
′ reintroduces a linear D-term into the new deformation action δQ(V +V ′).29

In the t→∞ limit, saddle points of this deformation action would lead directly to vortex

and anti-vortex equations. It would be interesting to find this alternative and more rigorous

way to localize to the Higgs branch.

2.4.2 Vortex Partition Function

Following the discussion in the last subsection, in the planes glued to the poles and in the

presence of the FI parameter, the supersymmetry equations reduce to

(D1 + iD2)φI = 0 , (σ2 +mI)φI = 0 , F12 +
∑
I

φI φ̄I − ξeff = 0 , (2.102)

in the plane attached to the north pole, and

(D1 − iD2)φI = 0 , (σ2 +mI)φI = 0 , F12 −
∑
I

φI φ̄I + ξeff = 0 , (2.103)

29See [40] for a choice of V ′.
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in the copy of R2 attached to the south pole. These equations can be recognized as

the differential equations describing supersymmetric vortices and anti-vortices in N =

(2, 2) supersymmetric gauge theories. Therefore, in our localization computation we must

integrate over the moduli space of solutions of vortices at the north pole and anti-vortices

at the south pole. For simplicity, we discuss their contribution to the partition function

for N = (2, 2) SQCD with U(N) gauge group and NF fundamental chiral multiplets and

ÑF anti-fundamental chiral multiplets.

Since the vortices and anti-vortices exist only in the Higgs phase, let us first work out

the vacuum structure in the Higgs phase. We first note that vortices can only exist in vacua

in which the anti-fundamental fields vanish. This follows from the known mathematical

result that the vortex equations for an anti-fundamental field have no non-zero smooth

solution when the background field is a connection of a bundle with positive first Chern

class c1 = k > 0. The vortex equations (2.102) and (2.103) then imply that exactly N chiral

multiplets take non-zero values, and diagonalizing σ2 = diag(a1, · · · , aN), one obtains that

each Higgs branch of solutions to these equations is labelled by a set of distinct integers

1 ≤ p1 < · · · < pN ≤ NF , with

ai +mpi = 0 i = 1, . . . , N , (2.104)

up to permutations of integers pi. The contribution from vortices and anti-vortices depends

on the choice of Higgs branch components. In each of these components, the U(N) ×
S[U(NF )× U(ÑF )] symmetry of the theory is broken to

S[U(N)diag × U(NF −N)]× U(1)× SU(ÑF ) , (2.105)

where U(1) rotates fundamental and anti-fundamental chiral multiplets equally.

For a given Higgs branch component labeled by {pi}, the familiar vortex equations

(2.102) admit a multidimensional moduli space of solutions which we denote by M{pi}
vortex.

Since the vorticity

k =
1

2π

∫
R2

TrF (2.106)

is quantized, this moduli space splits into disconnected componentsM{pi},k
vortex, each of which

is a Kähler manifold, of dimension 2kNF . Taking into account the south pole anti-vortex

contributions, we find that the solutions of the localization equations on S2 span the moduli
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space

FHiggs =
⊔
{pi}

[
∪∞k=0M{pi},k

vortex

]
⊕
[
∪∞l=0M{pi},l

anti-vortex

]
. (2.107)

We now argue that the vortex partition function at the poles is captured by the partition

function of the N = (2, 2) gauge theory in the Ω-background, which is a supersymmetric

deformation of the N = (2, 2) gauge theory in R2 by a U(1)ε equivariant rotation parame-

ter ε. Let us recall that the supercharge with which we localize an N = (2, 2) gauge theory

on S2 obeys

Q2 = J +
1

2
R . (2.108)

The key observation is to note that (2.108) is precisely the supersymmetry preserved by an

N = (2, 2) gauge theory in R2 when placed in the Ω-background. The rotation generator in

the Ω-background corresponds to J + 1
2
R, thus giving rise to the scalar supercharge under

U(1)ε preserved by an N = (2, 2) theory in the Ω-background. Therefore, the contribution

to the partition function of an N = (2, 2) gauge theory on S2 due to vortices and anti-

vortices localized at the poles is captured by the vortex/anti-vortex partition function of

the same gauge theory placed in the Ω-background originally studied by Shadchin [68] (see

also [70–74]).

The vortex partition function in the Higgs branch component {pi} of an N = (2, 2)

gauge theory in the Ω-background is obtained by performing the functional integral of that

theory around the background field configuration of k vortices, and summing over all k. It

admits an expansion

Zvortex({pi},MΩ, M̃Ω, zΩ) =
∞∑
k=0

zkΩZk({pi},MΩ, M̃Ω) , (2.109)

where zΩ = exp(2πiτΩ) is the vortex fugacity and Zk({pi},MΩ, M̃Ω) is the equivariant

volume of the moduli space of k vortices. The volume is given by

Zk({pi},MΩ, M̃Ω) =

∫
M{pi},kvortex

eω̂ , (2.110)

where ω̂ is the U(1)ε equivariant closed Kähler form30 onM{pi},k
vortex. Our computations of the

supersymmetry transformations on S2 in section 2.2.1 imply that the equivariant rotation

30The form ω̂ is also equivariant under the action of the residual symmetry of the vacuum over which

vortices are considered. See (2.112).
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parameter ε for the Ω-background theory induced at the poles is given in terms of the

radius of the S2 by

ε =
1

r
. (2.111)

It is pleasing that the N = (2, 2) theory near the poles yields the Ω-deformed theory, since

the integral (2.110) for the N = (2, 2) theory in flat space suffers from ambiguities, such

as infrared divergences. Fortunately, a closer inspection of the N = (2, 2) gauge theory

on S2 near the poles cures this problem, yielding finite, unambiguous results. In fact,

the Ω-deformation was first introduced to regularize otherwise infrared divergent volume

integrals such as (2.110).

The vortex partition function of anN = (2, 2) gauge theory in the Ω-background can be

computed from the knowledge of the symplectic quotient construction of the vortex moduli

spaceM{pi},k
vortex given in [75,76]. Some details of this construction are presented in appendix

2.D. The volume (2.110) is then given by the matrix integral of a supersymmetric matrix

theory action with U(k) gauge group. This matrix theory can be obtained by dimensionally

reducing a certain two dimensional N = (0, 2) U(k) gauge theory to zero dimensions. This

supersymmetric matrix theory inherits the supercharge Q of the N = (2, 2) theory in the

Ω-background as well as an equivariant

U(1)ε × S[U(N)diag × U(NF −N)]× U(1)× SU(ÑF ) (2.112)

symmetry. The first factor U(1)ε is the rotational symmetry of the Ω-background while the

rest is the residual symmetry of the vacuum over which vortices are studied. The integral

(2.110) receives contributions from isolated points in the vortex moduli space M{pi},k
vortex,

corresponding to the Q-invariant configurations. These are labeled by a partition of k into

N non-negative integers

k =
N∑
i=1

ki . (2.113)

To each such partition we associate an N -component vector ~k = (k1, . . . , kN), describing

how the total vortex number k is distributed among the N Cartan generators in U(N) at

this point.

For the choice of Higgs branch component of the N = (2, 2) gauge theory labelled

by integers {pi} ⊆ {1, . . . , NF}, the partition function of k-vortices admits the following
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contour integral representation [68,77] (see appendix 2.D for details),

Zk({pi},MΩ, M̃Ω) =

∮
Γ{pi},k

k∏
I=1

dϕI
2πi
Zvec(ϕ) · Zfund(MΩ, ϕ) · Zanti-fund(M̃Ω, ϕ) (2.114)

with

Zvec(ϕ) =
1

k! εk

k∏
I 6=J

ϕI − ϕJ
ϕI − ϕJ − ε

(2.115)

Zfund(MΩ, ϕ) =
k∏
I=1

NF∏
s=1

1

ϕI −MΩ
s

(2.116)

Zanti-fund(M̃Ω, ϕ) =
k∏
I=1

ÑF∏
t=1

(
ϕI + M̃Ω

t

)
. (2.117)

For each Higgs vacuum {pi} and vorticity ~k, the integrand in (2.114) admits a pole at

ϕ(i,l) = MΩ
pi

+ (l − 1)ε l = 1, 2, .., ki i = 1, . . . , N , (2.118)

and the contour of integration Γ{pi},k is carefully chosen to enclose all such poles for∑N
i=1 ki = k, and no other. The poles of (2.114) can be understood as the location of

the fixed points under the action of Q. Each factor in (2.114) reflects the contribution of

the vortex collective coordinates associated to each of the N = (2, 2) multiplets: the vec-

tor multiplet and fundamental and anti-fundamental chiral multiplets. Note here that the

mass parameters in the Ω-background theory can be identified with the mass parameters

of the theory on S2,

MΩ
pi

= −impi , MΩ
s = −ε− ims (s 6∈ {pi}) , M̃Ω

s = −im̃s . (2.119)

We observe the same shift in masses as for N = 2 gauge theories on S4 found in [78].

Performing the contour integral and summing over all vortex charges ~k, the vortex partition

function for SQCD takes the following form

Zvortex({pi},m, m̃, z) =
∑

k1+···+kN=k

z|
~k|Z~k({pi},m, m̃) , (2.120)

with

Z~k({pi},m, m̃) =
1∏
i ki!

∏ÑF
s=1

∏N
i=1(−irmpi − irm̃s)ki∏

i 6=j(irmpj − irmpi − kj)ki
∏NF

s 6∈{p}
∏N

i=1(1 + irms − irmpi)ki
.

(2.121)
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This expression exactly agrees31 with the expression (2.94) arising from factorization of

the Coulomb branch representation of the partition function on S2. Anti-vortices localized

at the south pole provide an identical contribution, expanded in terms of the anti-vortex

fugacity z̄. The one loop determinant must be evaluated at the location of the Higgs

branches, where there is a zero mode. Removing the zero mode amounts to taking the

residue of the one-loop determinant. Summing over Higgs branch components finally leads

to the Higgs branch representation of the partition function of N = (2, 2) gauge theories

on S2

ZHiggs(m, τ) =
∑

vi=−mpi
{pi}⊆{1,...,NF }

Zcl(v, 0, τ) res
a=v

[Zone-loop(a, 0,m)]
∣∣Zvortex({pi},m, (−1)NF z)

∣∣2
∗ , (2.122)

where∣∣Zvortex({pi},m, (−1)NF z)
∣∣2
∗ = Zvortex({pi},m, (−1)NF z)Zvortex({pi},m, (−1)ÑF z̄) .

(2.123)

This matches with the Coulomb branch representation of the partition function computed

earlier.

31One must analytically continue the twisted masses m→ M and m̃→ M̃ to restore non-zero R-charges.
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Appendix

2.A Supersymmetric Configurations

In this appendix we present the derivation of the choice of SUSY parameters and the

corresponding supersymmetric configurations.

2.A.1 Choice of Supercharge

The conformal Killing spinor equations on S2 are

∇µε = +
1

2r
γµγ

3̂ε , (2.124)

∇µε̄ = − 1

2r
γµγ

3̂ε̄ , (2.125)

with the general solutions of the form

ε = exp

(
−iθ

2
γ2̂

)
exp

(
iϕ

2
γ 3̂

)
ε◦ , (2.126)

ε̄ = exp

(
+
iθ

2
γ2̂

)
exp

(
iϕ

2
γ 3̂

)
ε̄◦ . (2.127)

Here, the hatted γ indices denote the tangent space (flat) indices32. The corresponding

bilinear vµ = iε̄γµε is given by

v1 = cosϕ
(
iε̄◦γ̂

1ε◦
)

+ sinϕ
(
iε̄◦γ̂

2ε◦
)
, (2.128)

v2 = ε̄◦ε◦ − cot θ sinϕ
(
iε̄◦γ̂

1ε◦
)

+ cot θ cosϕ
(
iε̄◦γ̂

2ε◦
)
. (2.129)

32See appendix A.
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We wish to find spinors such that v1 vanishes while v2 is a non-zero constant. The vanishing

on v1 for all angles ϕ requires ε̄◦γ
1ε◦ = ε̄◦γ

2ε◦ = 0. This can be achieved by choosing ε◦
and ε̄◦ to be chiral spinors with opposite chirality. We choose the constant spinors such

that

γ 3̂ε◦ = +ε◦ , (2.130)

γ 3̂ε̄◦ = −ε̄◦ , (2.131)

and the conformal Killing spinors reduce to

ε = exp

(
−iθ

2
γ2̂ +

iϕ

2

)
ε◦ , (2.132)

ε̄ = exp

(
+
iθ

2
γ2̂ −

iϕ

2

)
ε̄◦ . (2.133)

The spinor bilinears constructed out of these spinors take the form

ε̄ε = ε̄◦ε◦ cos θ , (2.134)

v =
1

r
ε̄◦ε◦

∂

∂ϕ
, (2.135)

α = − 1

2r
ε̄◦ε◦ . (2.136)

2.A.2 SUSY Saddle Point Equations

Since after localization, only supersymmetric configurations can contribute, we write Qf =

0 for all fermionic fields, with Q parametrized by the particular choice of ε and ε̄ we just

derived. Let us fix the relative normalization of ε◦ and ε̄◦ such that

ε̄◦ = −iγ 2̂ε◦ (2.137)
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We thus obtain the explicit expressions

ε = eiϕ/2
(

cos
θ

2
− i sin

θ

2
γ 2̂

)
ε◦ ε̄ = e−iϕ/2

(
sin

θ

2
− i cos

θ

2
γ 2̂

)
ε◦ (2.138)

γ 1̂ε = eiϕ/2
(

sin
θ

2
− i cos

θ

2
γ 2̂

)
ε◦ γ 1̂ε̄ = e−iϕ/2

(
cos

θ

2
− i sin

θ

2
γ 2̂

)
ε◦ (2.139)

γ 2̂ε = eiϕ/2
(
−i sin

θ

2
+ cos

θ

2
γ 2̂

)
ε◦ γ 2̂ε̄ = e−iϕ/2

(
−i cos

θ

2
+ sin

θ

2
γ 2̂

)
ε◦ (2.140)

γ 3̂ε = eiϕ/2
(

cos
θ

2
+ i sin

θ

2
γ 2̂

)
ε◦ γ 3̂ε̄ = e−iϕ/2

(
sin

θ

2
+ i cos

θ

2
γ 2̂

)
ε◦ (2.141)

Thanks to those expressions for various gamma matrices acting on our conformal Killing

spinors, δλ = 0 and δλ̄ = 0 may be written as

0 = δλ =

[
sin

θ

2
(iV1̂ + V2̂) + i cos

θ

2
(V3̂ + iD)

]
ei
ϕ
2 ε0

+

[
cos

θ

2
(V1̂ + iV2̂)− sin

θ

2
(V3̂ − iD)

]
ei
ϕ
2 γ 2̂ε0

(2.142)

0 = δλ̄ =

[
cos

θ

2

(
iV̄1̂ + V̄2̂

)
+ i sin

θ

2

(
V̄3̂ − iD

)]
e−i

ϕ
2 ε0

+

[
sin

θ

2

(
V̄1̂ + iV̄2̂

)
− cos

θ

2

(
V̄3̂ + iD

)]
e−i

ϕ
2 γ 2̂ε0.

(2.143)

while δψ = 0 and δψ̄ = 0 yields

0 = δψ = i

[
sin

θ

2

(
D−φ− ie−iϕF

)
+ cos

θ

2

(
σ1 − iσ2 +

q

2r

)
φ

]
ei
ϕ
2 ε◦

+

[
cos

θ

2

(
D+φ− ie−iϕF

)
+ sin

θ

2

(
σ1 + iσ2 −

q

2r

)
φ

]
ei
ϕ
2 γ 2̂ε◦,

(2.144)

0 = δψ̄ = i

[
cos

θ

2

(
D−φ̄− ieiϕF̄

)
+ sin

θ

2
φ̄
(
σ1 + iσ2 +

q

2r

)]
e−i

ϕ
2 ε◦

+

[
sin

θ

2

(
D+φ̄− ieiϕF̄

)
+ cos

θ

2
φ̄
(
σ1 − iσ2 +

q

2r

)]
e−i

ϕ
2 γ 2̂ε◦ .

(2.145)

Here D± = D1̂ ± iD2̂ and for future reference, we define σ± = σ1 ± iσ2. Since ε◦ and γ 2̂ε◦
are linearly independent, each square bracket must vanish separately. Using the reality
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conditions
A†µ = Aµ φ̄† = φ

σ†± = σ∓ F̄ † = F
(2.146)

we can write the equations as

sin
θ

2
D±σ+ + cos

θ

2

(
F1̂2̂ +

σ1

r
+ iD∓ i [σ1, σ2]

)
= 0

cos
θ

2
D±σ− − sin

θ

2

(
F1̂2̂ +

σ1

r
− iD± i [σ1, σ2]

)
= 0

(2.147)

sin
θ

2

(
D−φ± ie−iϕF

)
+ cos

θ

2

(
σ∓ +

q

2r

)
φ = 0

cos
θ

2

(
D+φ± ie−iϕF

)
+ sin

θ

2

(
σ± −

q

2r

)
φ = 0 .

(2.148)

Taking linear combinations of each set of these equations and using the reality conditions,

we obtain the desired SUSY equations

D2̂σ1 = D2̂σ2 = D1̂σ2 = 0 Re D = [σ1, σ2] = 0

D1̂σ1 − Im D sin θ = 0 F1̂2̂ +
σ1

r
− Im D cos θ = 0 ,

(2.149)

cos
θ

2
D+φ+ sin

θ

2

(
σ1 −

q

2r

)
φ = 0 σ2φ = 0

sin
θ

2
D−φ+ cos

θ

2

(
σ1 +

q

2r

)
φ = 0 F = 0 .

(2.150)

2.A.3 Q-Supersymmetric Field Configurations

To compute the path integral using localization on supersymmetric configurations, we need

to find the space of solutions of equations (2.149) and (2.150).

Let us first analyze the vector multiplet field equations.

For concreteness, we choose the coordinate patch 0 < θ < π, where we can gauge away

the dθ-component of the gauge field33. The general solution to (2.149) takes the form

A = rσ1 cos θ dϕ, σ1 = σ1(θ), σ2 = σ2(ϕ) . (2.151)

33Every 1-form w = wθdθ on S2 is, up to dϕ terms, closed and therefore exact – since the H1(S2) = 0.
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Imposing the chiral multiplet supersymmetry equations (2.150) and plugging in the above

form for the vector multiplet fields we obtain(
sin θ ∂θ +

q

2
cos θ + σ1

)
φ = 0(

∂ϕ + i
q

2

)
φ = 0

F = 0

(σ2 +m)φ = 0
(2.152)

where we have also included the mass term which, as explained in section 2.1 is just a

shift in σ2 by a diagonal matrix valued in the flavor symmetry group. For generic values

of R-charges q, the only solution of the above equations which is periodic in ϕ is

φ = 0 . (2.153)

Consequently, in the absence of effective Fayet-Iliopoulos parameters34, the reality condi-

tions necessary for having a convergent path integral constrain the vector multiplet auxil-

iary field to vanish, i.e.

=D = −g2φφ̄ = 0 . (2.154)

The vanishing of the auxiliary field in turn forces σ1 to be a constant and the general

solution to the supersymmetry equations (2.149) and (2.150) takes the form

A =
B

2
(κ− cos θ)dϕ σ1 = −B

2r

σ2 = a D = 0

φ = φ̄† = 0 F = F̄ † = 0

(2.155)

where δA = κB
2

dϕ is the appropriate gauge transformation to extend the solution to the

coordinate patches including the north pole (with κ = 1) or the south pole (where κ = −1).

We conclude that for general R-charge assignments, F0 – the space of smooth solutions

to the supersymmetry fixed point equations – is parametrized by two constant matrices, a

& B, where B is further constrained by the first Chern class quantization to take integer

values.

34To localize the path integral, we need to add to the action a Q-exact deformation term with an

arbitrary parameter t which we then take to ∞. The effective FI parameters are then ξ/t which vanish in

the t→∞ limit.
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We note in passing that for special values of the R-charges, there exist non-trivial

solutions to the chiral multiplet supersymmetry equations which take the form

φ = e
i
2

(κB−q)ϕ (sin θ
2
)
B−q

2

(cos θ
2
)
B+q

2

φ◦, subject to (a+m)φ◦ = 0 . (2.156)

2.B One-Loop Determinants

Here we present the computation of the one-loop determinants in the localization compu-

tation of the partition function. Our starting point is the quadratic part of the vector and

chiral multiplet actions (2.4) and (2.10) in the background (2.64) with the addition of the

gauge fixing ghosts c̄, c and the Lagrange multiplier b. The various terms are

Sv.m.
b =

∫
d2x
√
hTr

{
Aµ
(

M2 +
1

r2

)
Aµ +

i

2r2
εµνA

µ
[
B,Aν

]
+

2

r
σ1ε

µνDµAν

+ σ1

(
M2 +

1

r2

)
σ1 + σ2M2σ2 + D2 − G2

}
, (2.157)

Sv.m.
f =

∫
d2x
√
hTr

{
λ̄

(
i /D − i

2r

[
B, ·

]
+ γ 3̂

[
a, ·
])

λ

}
, (2.158)

Sghost =

∫
d2x
√
hTr

{
c̄M2c− b G(Ai, σ1, σ2)

}
, (2.159)

Sc.m.
b =

∫
d2x
√
h

{
φ̄

(
M2 + i

q − 1

r
a− q2 − 2q

4r2

)
φ+ F̄F

}
, (2.160)

Sc.m.
f =

∫
d2x
√
h

{
ψ̄

(
−i /D − i

2r
B −

(
a+

iq

2r

)
γ 3̂

)
ψ

}
, (2.161)

where G is the gauge fixing condition corresponding to the choice of gauge

G(Ai, σ1, σ2) = DµA
µ +

i

2r

[
B, σ1

]
− i
[
a, σ2

]
= 0, (2.162)

and M2 is given by

M2 = −D2
µ +

1

4r2
B2 + a2 , (2.163)
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where a and B act in the appropriate representations. We note that (2.162) is the back-

ground gauge field choice DMA
M = 0 in four dimensions dimensionally reduced to two

dimensions. This choice simplifies computations considerably.

The integral over b imposes the background field gauge (2.162) while integrating out

the auxiliary fields D and F yields a trivial factor. We now analyze the rest.

2.B.1 Dirac Operator in Monopole Background

Before computing the one-loop determinant contribution of fermionic fields, let us first

derive the spectrum of the Dirac operator in the background (2.64). Since the index of the

Dirac operator, acting in the representation R of the gauge algebra, is given by

ind( /D) =
1

2π

∫
S2

TrF = TrB , (2.164)

we anticipate |TrB| zero-modes. Excluding these modes, we may diagonalize the Dirac

operator using spinor monopole harmonics. For each weight w of the representation R and

each mode (J,m) such that J > |Bw|/2 and −J ≤ m ≤ J we have

(i /D)J,m =

(
λJ,m 0

0 −λJ,m

)
(2.165)

since i /D is traceless. The spectrum of i /D can easily be derived from the spectrum of − /D2

when expressed in terms of the scalar Laplacian

(i /D)2 =

( −(D−µ )2 + 1−Bw
2r2 0

0 −(D+
µ )2 + 1+Bw

2r2

)
. (2.166)

Here (D±µ )2 ≡ (∂µ − iBw±1
2
ωµ)2 denotes the scalar Laplacian in the monopole background

with monopole charge Bw±1
2

. The connection ωi is expressed in terms of the spin connection

(B.5) as ωµ = ω1̂2̂
µ . In the rest of this subsection, we drop the subscript in Bw to avoid

cluttering the notation.

The eigen-value of the scalar Laplacian in the (J,m) mode is given by

− (D±µ )2
J,m =

J(J + 1)

r2
− (B ± 1)2

4r2
, (2.167)
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where J runs from |B±1|
2

to ∞ in integer steps and the multiplicity in each mode is 2J + 1.

Using this expression for the eigenvalues and the relation between the eigenvalues of the

scalar Laplacian, which can be easily read off from (2.165) and (2.166), we conclude that

the spectrum of the Dirac operator consists of

0, with multiplicity |B|, (2.168)

+

√
(J + 1

2
)2 − (B

2
)2

r2
, J =

|B|+ 1

2
, . . . with multiplicity 2J + 1, (2.169)

−

√
(J + 1

2
)2 − (B

2
)2

r2
, J =

|B|+ 1

2
, . . . with multiplicity 2J + 1. (2.170)

We also note that the fermonic zero-modes are spinors of a definite chirality, which depends

on the sign of B.

2.B.2 Chiral Multiplet Determinant

Using the spectrum of the Dirac operator we just derived, we can easily compute the

fermionic determinant of the chiral multiplet. First, note that γ 3̂ anticommutes with /D,

hence, a shift in /D by γ 3̂ results in a shift in the square of the eigenvalues. Therefore, we

have

det ∆c.m.
f = det

[
− i /D − iB

2r
−
(
a+

iq

2r

)
γ 3̂

]
=
∏
w

(−i)Bw
(
q + |Bw|

2r
− iaw

)|Bw|

×
∞∏

J=
|Bw|+1

2

[
−
(
Bw

2r

)2

−
(

(J + 1
2
)2 − (Bw

2
)2

r2
+

(
aw +

iq

2r

)2
)]2J+1

(2.171)

=
∏
w

(−i)Bw
∞∏
J=0

[(
J

r
+
|Bw|+ q

2r
− iaw

)2J+|Bw|

× (−1)|Bw|
(
J + 1

r
+
|Bw| − q

2r
+ iaw

)2J+|Bw|+2
]
.
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Here we have used the notation xw ≡ x · w, where w are the weights of the representation

R under which the chiral multiplet transforms.

The bosonic determinant may be written as

(det ∆c.m.
b )

1
2 =

∏
w

∞∏
J=
|Bw|

2

[(
J + 1

2

r

)2

+

(
aw + i

q − 1

2r

)2
]2J+1

=
∏
w

∞∏
J=0

[(
J

r
+
|Bw|+ q

2r
− iaw

)
·
(
J + 1

r
+
|Bw| − q

2r
+ iaw

)]2J+|Bw|+1

.

(2.172)

Putting the two together we have the one-loop contribution from the chiral multiplet fields:

Zc.m.
one-loop(a,B,m) =

∏
w∈R

(−i)Bw
∞∏
J=0

(−1)|Bw|

[
J + 1 + |Bw|−q

2
+ iraw

J + |Bw|+q
2
− iraw

]
(2.173)

These infinite products can be regularized using Euler’s gamma function

1

Γ(z)
=

[
∞∏
J=0

(z + J)

]
reg

(2.174)

to yield, in the presence of a twisted mass m introduced by shifting a→ a+m

Zc.m.
one-loop(a,B,m) =

∏
w∈R

(−i)Bw(−1)|Bw|/2
Γ
(
q
2
− ir(aw +m) + |Bw|

2

)
Γ
(

1− q
2

+ ir(aw +m) + |Bw|
2

) . (2.175)

The chiral multiplet determinant has a pole when a+m has a zero and q is a non-positive

integer. More precisely, there is a pole whenever |B| ≤ −q with B − q even when acting

on φ. These poles are due to the zero modes found in (2.66), which exist precisely under

these conditions. In evaluating the determinant for these tuned values of q, the zero modes

must be excluded, thus yielding a finite result.
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2.B.3 Vector Multiplet Determinant

The fermion contribution to the vector multiplet one-loop determinant is the same as that

of a chiral multiplet in the adjoint representation with R-charge q = 0. It is given by

det∆v.m.
f =

∏
α∈∆

(−i)Bα
∞∏
J=0

(−1)|Bα|

[(
J

r
+
|Bα|
2r
− iaα

)2J+|Bα|(J + 1

r
+
|Bα|
2r

+ iaα

)2J+|Bα|+2
]

=
∏
α∈∆+

∞∏
J=0

{[(
J

r
+
|Bα|
2r

)2

+ a2
α

]2J+|Bα| [(
J + 1

r
+
|Bα|
2r

)2

+ a2
α

]2J+|Bα|+2}
.

(2.176)

where α ∈ ∆+ are the positive roots of the Lie algebra of G.

In order to compute the contribution from the bosonic fields, we need to write down the

mode expansion of the fields. For the scalars fields σ1 and σ2, we may use the expansion

in the standard scalar monopole harmonics

σαs =
∞∑

J=
|Bα|

2

J∑
m=−J

1

r
σαs,J,mY

|B.α|
2

J,m (2.177)

where we have introduced a factor of 1
r

for normalization and s = 1, 2. As for the gauge

field, the mode expansion is much more subtle. A basis of monopole vector spherical

harmonics is given in [79]. Expanding the gauge field in this basis we find

Aαµ =
∑
λ=±

∞∑
J=Jλ0

J∑
m=−J

Aα,λJ,m

(
C
λ,Bα

2
J,m

)
µ
, (2.178)

where J±0 = |Bα|
2
∓ 1 for |Bα|

2
≥ 1 and J±0 = |Bα|+1

2
∓ 1

2
otherwise. The reality condition on

the gauge field then implies A−α = A∗α and for scalars σs,−α = σ∗s,α. The explicit form of(
C
λ,Bα

2
J,m

)
µ

is not necessary for our computation and will be omitted here. All we need are
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some basic properties of the basis elements which are

δλ
′

λ δ
J ′

J δ
m′

m =

∫
d2x
√
h
(
C
λ′,Bα

2

J ′,m′

)∗
µ

(
C
λ,Bα

2
J,m

)µ
, (2.179)

−D2
ν

(
C
λ,Bα

2
J,m

)µ
=

1

r2

[
J(J + 1)−

( |Bα|
2
− λ
)2
](

C
λ,Bα

2
J,m

)µ
, (2.180)

Dµ

(
C
λ,Bα

2
J,m

)µ
= − 1√

2r2

√
J(J + 1)− |Bα|

2

( |Bα|
2
− λ
)
Y
|Bα|

2
J,m , (2.181)

iεµν

(
C
λ,Bα

2
J,m

)ν
= −λ

(
C
λ,Bα

2
J,m

)
µ
. (2.182)

Using the above expansion for the gauge field and the scalars and performing the integral

over S2, the bosonic part of the vector multiplet action in (2.157) can be written as

Sv.m.
b '

∑
λ=±

∞∑
J=Jλ0

J∑
m=−J

A−α,λJ,m

[
J(J + 1)

r2
+ a2

α + λ
Bα

2r2

]
Aα,λJ,m

−
∑
λ=±

∞∑
J=
|Bα|

2

J∑
m=−J

σ−α1,J,miλ
√

2

√
J(J + 1)− |Bα|

2

(
|Bα|

2
− λ
)

r2
Aα,λJ,m

+
∑
s=1,2

∞∑
J=
|Bα|

2

J∑
m=−J

σ−αs,J,m

[
J(J + 1)

r2
+ a2

α +
2− s
r2

]
σαs,J,m ,

where there is an implicit summation over all roots α ∈ ∆.

In order to compute the determinant, it is best to break it down into three factors. The

first one isolates the J = |Bα|
2
− 1 contribution, which is only non-trivial when |Bα|

2
− 1 is

non-negative. In this case we have

det(∆v.m.
b,1 ) =

∏
α∈∆,|Bα|≥2

[(
Bα

2r

)2

+ a2
α

]|Bα|−1

. (2.183)

The second factor is

det(∆v.m.
b,2 ) =

det(M2)∏
α∈∆

[(
Bα
2r

)2
+ a2

α

]|Bα|+1
(2.184)
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where the numerator is just the contribution of σ2 and the denominator is a factor that we

have included to shift the lowest mode of A− (which has J = |Bα|/2 + 1). With this shift,

the rest of the determinant is given by

det(∆v.m.
b,3 )

=
∏
α

∞∏
J=
|Bα|

2

∣∣∣∣∣∣∣∣∣∣∣∣

J(J+1)− |Bα|
2

r2 + a2
α 0 − i

r2

√
J(J+1)− |Bα|

2

[
|Bα|

2
+1
]

2

0
J(J+1)+

|Bα|
2

r2 + a2
α

i
r2

√
J(J+1)− |Bα|

2

[
|Bα|

2
−1
]

2

i
r2

√
J(J+1)− |Bα|

2

[
|Bα|

2
+1
]

2
− i
r2

√
J(J+1)− |Bα|

2

[
|Bα|

2
−1
]

2
J(J+1)+1

r2 + a2
α

∣∣∣∣∣∣∣∣∣∣∣∣

2J+1

=
∏
α∈∆

∞∏
J=
|Bα|

2

[(
J(J + 1)

r2
+ a2

α

)(
J2

r2
+ a2

α

)((
J + 1

r

)2

+ a2
α

)]2J+1

= det(M2)
∏
α∈∆

∞∏
J=0

[((
J

r
+
|Bα|
2r

)2

+ a2
α

)((
J + 1

r
+
|Bα|
2r

)2

+ a2
α

)]2J+|Bα|+1

,

where

det(M2) =
∏
α∈∆

∞∏
J=
|Bα|

2

[
J(J + 1)

r2
+ a2

α

]2J+1

. (2.185)

Note the shift in the lowest mode of A− at the top left component in the matrix. As we

mentioned earlier, this a factor that we multiply and divide by hand to avoid isolating the

J = |Bα|
2

mode. Note also that in this case the off-diagonal terms (1, 3) and (3, 1) vanish.

Including the contribution from the ghosts – which is det(M2) – the one-loop partition

function of the vector-multiplet becomes

det(∆v.m.
b )

1
2

det(M2)
=

∏
α∈∆+

∏∞
J=0

[((
J
r

+ |Bα|
2r

)2

+ a2
α

)((
J+1
r

+ |Bα|
2r

)2

+ a2
α

)]2J+|Bα|+1

∏
α∈∆+

[(
Bα
2r

)2
+ a2

α

]|Bα|+1∏
α∈∆+,|Bα|≥2

[(
Bα
2r

)2
+ a2

α

]−|Bα|+1

= det(∆v.m.
f ) ·

∏
α∈∆+

[
1(

Bα
2r

)2
+ a2

α

]|Bα| ∏
α∈∆+,|Bα|≥2

[
1(

Bα
2r

)2
+ a2

α

]1−|Bα|

.

(2.186)
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Therefore, we find that

Zv.m.
one-loop(a,B) =

∏
α∈∆+

Bα 6=0

[(
Bα

2r

)2

+ a2
α

]
. (2.187)

2.C One-Loop Running of FI Parameter

Consider a two dimensional N = (2, 2) gauge theory with a U(1) gauge group factor in the

presence of an FI parameter ξ. When the sum of the U(1) charges of the chiral multiplets

Q =
∑

iQi is non-vanishing, the FI parameter gets renormalized according to

ξ(µ) = ξ +
1

2π

∑
j

Qj ln

(
µ

MUV

)
. (2.188)

In our localization computation, some care has been taken to regularize the theory in

a Q-invariant way. We accomplish this by introducing an “expectator” chiral multiplet

of charge −Q, mass M , and R-charge q = 0. In this enriched theory the FI parameter

does not run. However, we recover the original theory by decoupling the expectator chiral

multiplet by taking its mass M to be large. We now demonstrate by analyzing the one-

loop determinant of the expectator chiral multiplet that this yields the running of the FI

parameter with MUV = M and µ = 1/r.

The relevant one-loop determinant of the expectator chiral multiplet is

lnZc.m.
one-loop(a,B,M) = ln

[
Γ
(
QB+q

2
+ irQa− irM

)
Γ
(
1 + QB−q

2
− irQa+ irM

)]+O(1) . (2.189)

The asymptotic expansion of Γ(z) with large imaginary argument is given by

ln Γ(z) =

(
z − 1

2

)
ln z − z +O(1) (2.190)

where the terms of order 1 depend on the sign of =z but are irrelevant for renormalization

of ξ. Using this asymptotic form for large mass M in (2.189) yields

lnZc.m.
one-loop(a,B,M) '

rM�1
2irM (1− ln rM) + (q − 1) ln rM + 2irQa ln rM

= 2irM (1− ln rM) + (q − 1) ln rM + 4πira
1

2π
Q ln

(
M

ε

)
,

(2.191)
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where ε = 1
r
. Note that the first two terms do not have any physical effect since they

just rescale the partition function by an a-independent factor. The last term, however,

combines with the on-shell classical piece of the action

lnZ0 ' −4πiraξ (2.192)

to account for the running of the FI parameter

lnZ0 · Zc.m.
one-loop(a,B,M) ' −4πiraξren , (2.193)

with

ξren = ξ +
1

2π

∑
i

Qi ln
( ε

M

)
. (2.194)

2.D Vortex Partition Function

We describe in this appendix the procedure used to evaluate the contribution from vortex

(and anti-vortex) configurations. For simplicity, we only consider the case of SQCD, the

two-dimensionalN = (2, 2) U(N) supersymmetric gauge theory with NF ≥ N fundamental

chiral multiplets of masses (M1, . . . ,MNF ) and ÑF ≤ NF anti-fundamental chiral multiplets

of masses (M̃1, . . . , M̃NF ). The flavour group is U(1)anti-diag × SU(NF ) × SU(ÑF ), hence∑NF
s=1Ms =

∑ÑF
s=1 M̃s.

As we show in section 2.4, the presence of vortex/anti-vortex solutions requires the

scalar field σ2 to take specific values, labelled by a choice of N masses Mp1 , . . . ,MpN . For

such a choice of Higgs vacuum, the moduli space of solutions to the vortex equations (2.97)

splits into discrete components M{pi},k
vortex, where the vorticity k is defined by

k =
1

2π

∫
R2

TrF . (2.195)

The equivariant volume of the moduli spaceMvortex can be expressed as a finite dimensional

integral [68]. We denote by M̂ the diagonal N × N matrix with eigenvalues Mpi , by M̌

the diagonal matrix whose eigenvalues are masses of the other NF − N (non-excited)

fundamental chiral multiplets, and by M̃ the matrix of anti-fundamental masses.
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2.D.1 Vortex Matrix Model

The moduli spaceM{pi},k
vortex of configurations with k vortices admits an ADHM-like construc-

tion, which can be understood as the supersymmetric vacua of a certain gauged matrix

model preserving two supercharges [70, 74, 75]. The relevant representations of the super-

symmetry algebra can be obtained from the dimensional reduction of N = (2, 0) supersym-

metry in two dimensions. This gauged matrix model involves one U(k) vector multiplet

Φ = (ϕ, l, l̄, D), and is coupled to one adjoint chiral multiplet X = (X,χ), N fundamental

chiral multiplets I = (I, µ), NF − N anti-fundamental chiral multiplet J = (J, ν) and

ÑF fundamental fermi multiplets Ξ = (ξ,G). The matrix model preserves three global

symmetry groups U(1)R, U(1)J and U(1)A, which can be identified as the R-symmetry

group, the rotational symmetry group J and the axial R-symmetry group of the given

two-dimensional theory, respectively. As mentioned before, U(1)A may suffers from an

axial anomaly. Under these three U(1) symmetry groups, the supercharges Q and Q̄ have

charges (−1,+1,−1) and (+1,−1,−1). For later convenience, we summarize global and

gauge charges of the matrix model variables in the table below.

X χ I µ J ν ξ ϕ̄ l l̄

U(1)R 0 −1 0 −1 0 −1 −1 0 −1 +1

U(1)2J −2 −1 0 +1 0 +1 +1 0 +1 −1

U(1)A 0 −1 0 −1 0 −1 +1 +2 +1 +1

U(1)ε −2 −2 0 0 0 0 0 0 0 0

U(k) adj k k̄ k adj

Here the U(1)ε symmetry group can be identified as a twisted rotational symmetry group

J+R/2 of the two-dimensional theory. Note that the complex scalar field X represents the

position of the k vortices while I and J represent orientation modes. The supersymmetric

vacuum equation with a positive FI parameter r ∼ 1/g2 > 0 is given by

[X,X†] + II† − J†J = r1k

ϕI − IM̂ = 0 [ϕ, ϕ̄] = 0

Jϕ− M̌J = 0 [ϕ,X] = 0 ,

(2.196)

where X, I and J denote k × k, k ×N and (NF −N) × k matrices. The choice of Higgs

vacuum in the original two-dimensional gauge theory is encoded in the matrices M̂ and M̌.
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The solutions of (2.196) describe the moduli space M{pi},k
vortex of k vortices, and the volume

of the moduli space can be identified as the partition function of this matrix model.

2.D.2 Vortex Partition Function

Since the matrix model describing moduli space of vortices in R2 has an infinite volume, it

must be modified by turning on a chemical potential associated to the twisted rotational

symmetry group U(1)ε. The chemical potential ε can be understood as the Omega defor-

mation parameter in the given two-dimensional theory, which is the inverse radius of the

sphere S2.

In the context of the matrix model, the chemical potential can be introduced by weakly

gauging U(1)ε, hence modifying (2.196) to the deformed supersymmetry vacuum equation

[X,X†] + II† − J†J = r1k

ϕI − IM̂ = 0 [ϕ, ϕ̄] = 0

Jϕ− M̌J = 0 [ϕ,X] = εX ,

(2.197)

and adding a new (deformed) fermion equation

ϕξ + ξM̃ = 0 . (2.198)

Due to the chemical potential ε, the space of vacua is reduced to isolated points, fixed

points of supersymmetry.

We explain how to characterize such fixed points. Suppose without loss of generality

that ε is positive definite. One can show from the deformed supersymmetry vacuum

equations that J = 0 and the N chiral multiplets I are each an eigenvector of the operator

ϕ. More specifically, denoting by |α〉 an eigenvector of the operator ϕ with eigenvalue α,

I = |Mp1〉 ⊕ · · · ⊕ |MpN 〉 . (2.199)

Then, the vector space of dimension k on which ϕ acts can be spanned by generators

constructed by successive actions of X on |Mpi〉

|Mpi + lε〉 def∝X l|Mpi〉 (l = 0, 1, .., ki − 1) , (2.200)
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with
∑N

i=1 ki = k. As a consequence, the fixed points are characterized by N one-

dimensional Young diagrams. The number of boxes ki of the i-th 1-d Young diagram

determines the vorticity of the i-th U(1) factor in the Cartan subalgebra of U(N). The

matrix components of X are then determined using the first relation of (2.197).

The partition function of the matrix model can be reduced to a Gaussian integral

around such fixed points. The results are nicely expressed as the following contour-integral

expression [68,77]

Z~k({pi},M, M̃) =

∮
Γ{pi},k

k∏
I=1

dϕI
2πi
Zvec(ϕ) · Zfund(M,ϕ) · Zanti-fund(M̃, ϕ) (2.201)

with

Zvec(ϕ) =
1

k! εk

k∏
I 6=J

ϕI − ϕJ
ϕI − ϕJ − ε

(2.202)

Zfund(M,ϕ) =
k∏
I=1

NF∏
s=1

1

ϕI −Ms

(2.203)

Zanti-fund(M̃, ϕ) =
k∏
I=1

ÑF∏
s=1

(
ϕI + M̃s

)
, (2.204)

where the contour Γ{pi},k is chosen such that it encircles poles at

ϕI = ϕ(i,l) = Mpi + (l − 1)ε (l = 1, 2, .., ki) , (2.205)

which can be understood as the fixed points (2.200). The vortex partition function of the

two-dimensional gauge theory in a specific choice of Higgs branch component {pi} thus

takes the form

Zvortex({pi},M, M̃, z) =
∑

k1+···+kN=k

z|
~k|Z~k({pi},M, M̃) . (2.206)

The residues of (2.201) can be expressed as Pochhammer raising factorials (x)n =

x(x+1) · · · (x+n−1) and the full vortex partition function of SQCD in the Higgs vacuum

labelled by {pi} is

ZSQCD
vortex =

∑
~k

z|
~k|

~k!

∏N
i=1

∏ÑF
s=1

(
1
ε
(Mpi + M̃s)

)
ki∏N

i 6=j
(

1
ε
(Mpi −Mpj)− kj

)
kj

∏N
i=1

∏NF
s 6∈{pj}

(
1
ε
(Mpi −Ms)

)
ki

, (2.207)
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where ~k! = k1! · · · kN !.
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Chapter 3

SU(2|1)B Invariant Gauge Theories

The goal of this chapter is to construct SU(2|1)B invariant two-dimensional N = (2, 2)

gauge theories. By definition, the SU(2|1)B invariant GLSMs with vector and chiral multi-

plets are equivalent – up to field redefinitions – to SU(2|1)A invariant GLSMs with twisted

chiral and twisted vector multiplets. In flat space the Lagrangian of a vector coupled to a

chiral multiplet is identical to the Lagrangian of a twisted vector coupled to a twisted chiral

multiplet. This is no longer the case when the theory is placed on the two-sphere. The

background fields [63] and curvature couplings needed to place the theory on a two-sphere

in a supersymmetric way are different, and thus the resulting Lagrangians are different.

We now proceed to construct the supersymmetry transformations and invariant couplings

for the twisted vector and twisted chiral multiplets.

3.1 Twisted Vector Multiplet

An N = (2, 2) twisted vector multiplet consists of a real vector, two complex scalars related

by complex conjugation, two complex spinors and a real auxiliary scalar (Aµ, σ, σ̄, η, η̄,D),

all of which are valued in the Lie algebra of the gauge group G. While a twisted vector

multiplet and a vector multiplet with the same gauge group G have exactly the same field

content, the supersymmetry transformations on the two multiplets are realized differently.

The SU(2|1)A supersymmetry transformations on the twisted vector multiplet fields
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are

δη = i /D(σε) + ε̄(D + iF )− i

2
γ 3̂ε̄[σ, σ̄]

δη̄ = i /D(σ̄ε̄) + ε(D− iF )− i

2
γ 3̂ε[σ, σ̄]

δAµ =
i

2
(εγ 3̂γµη − ε̄γ 3̂γµη̄)

δσ = ε̄η

δσ̄ = εη̄

δD =
i

2

{
Dµ(εγµη)− [σ, εγ 3̂η̄]

}
+
i

2

{
Dµ(ε̄γµη̄) + [σ̄, ε̄γ 3̂η]

}
.

(3.1)

They are parametrized by conformal Killing spinors ε and ε̄ obeying

∇µε =
1

2r
γµγ

3̂ε ∇µε̄ = − 1

2r
γµγ

3̂ε̄ , (3.2)

where r is the radius of the two-sphere. These transformations realize the SU(2|1)A algebra

off-shell up to gauge transformations. Concretely, the resulting algebra is

[δε1 , δε2 ] = δG(Λ)

[δε̄1 , δε̄2 ] = δG(Λ̄)

[ δε, δε̄ ] = δSU(2)(v) + δR(α) + δG(Ω)

(3.3)

where the SU(2) isometry transformation is constructed from the S2 Killing vector

v = iε̄γµε ∂µ , (3.4)

and the U(1)R transformation is parametrized by the scalar

α = − 1

2r
ε̄γ 3̂ε . (3.5)

The R-charges of the various fields are:1

σ η+ η− Aµ D η̄+ η̄− σ̄

−2 −1 −1 0 0 +1 +1 +2

1These are the U(1)A charges of the vector multiplet fields for a vector multiplet of vanishing U(1)A
charge.
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Finally, the field dependent gauge transformation parameters generated in the closure of

the algebra are

Λ = −ε2γ 3̂ε1σ Λ̄ = ε̄2γ
3̂ε̄1σ̄ Ω = −vµAµ . (3.6)

3.2 Twisted Chiral Multiplet

The field content of a twisted chiral multiplet is the same as the standard chiral multiplet

but also has different supersymmetry transformations. A twisted chiral multiplet can be

minimally coupled in a supersymmetric way to a twisted vector multiplet. It transforms

in a representation R of the gauge group G. The SU(2|1)A supersymmetry transforma-

tions, invariant action and partition function of uncharged twisted chiral multiplets on S2

appeared in [39].

The SU(2|1)A supersymmetry transformations of charged twisted chiral multiplet fields

(Y, Ȳ , ζ, ζ̄, G, Ḡ) are

δY = (ε̄γ− − εγ+)ζ

δȲ = (ε̄γ+ − εγ−)ζ̄

δζ+ = −γ+(i /DY −G)ε̄+ iγ+εσY

δζ− = +γ−(i /DY −G)ε− iγ−ε̄σ̄Y

δζ̄+ = +γ+(i /DȲ − Ḡ)ε− iγ+ε̄ Ȳ σ̄

δζ̄− = −γ−(i /DȲ − Ḡ)ε̄+ iγ−ε Ȳ σ

δG = +iεγ−
(
/Dζ − ηY − σζ

)
− iε̄γ+

(
/Dζ + η̄Y − σ̄ζ

)
δḠ = +iεγ+

(
/Dζ̄ − Ȳ η − ζ̄σ

)
− iε̄γ−

(
/Dζ̄ + Ȳ η̄ − ζ̄ σ̄

)
.

(3.7)

These supersymmetry transformations realize the off-shell SU(2|1)A algebra (3.3) with the

same parameters and with the following R-charge assignments:2

2These are the same as the U(1)A charges of the components of a chiral superfield with vanishing U(1)A
charge.
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Ḡ Ȳ ζ̄− ζ̄+ ζ− ζ+ Y G

0 0 −1 +1 +1 −1 0 0

The supersymmetry transformations of a twisted chiral multiplet of U(1)A charge ∆ can

be obtained from (3.7) by the field redefinition [39]

G→ G+
∆

2r
Y . (3.8)

Since correlators do not depend on ∆, we take it to vanish.

The U(1)R transformation acts chirally on the twisted chiral multiplet fermions ζ and

ζ̄. Since the U(1) R-symmetry charge R appears explicitly in the anticommutator of

supercharges in SU(2|1)A, anomaly cancellation of R is required to write down an SU(2|1)A
supersymmetric theory of twisted vectors and twisted chirals on the two-sphere. The R-

current is quantum mechanically conserved whenever the sum of the gauge charges of all

charged twisted chiral multiplets vanish for each abelian gauge group factor in G. This

guarantees that if the flat space gauge theory is also invariant under the R-symmetry

A, that the gauge theory flows in the infrared to an N = (2, 2) SCFT, and if it has a

geometrical phase, to a Calabi-Yau NLSM.

3.3 Supersymmetric Lagrangian

We now write down the SU(2|1)A-invariant action for a twisted vector multiplet coupled

to a charged twisted chiral multiplet. The action has several couplings that are separately

supersymmetric

S = St.v.m. + SFI + Stop + St.c.m. + SW + SW . (3.9)

The supersymmetrized kinetic terms for the twisted vector multiplets fields are

Lt.v.m. =
1

2g2
YM

Tr

{
F 2 +Dµσ̄Dµσ +

1

4
[σ, σ̄]2 + D2 − iη̄

(
/D +

1

r
γ 3̂

)
η

+ iσ̄(ηγ 3̂η)− iσ(η̄γ 3̂η̄)

}
,

(3.10)
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where F ≡ 1
2
εµνFµν . The supersymmetric Lagrangian for the charged twisted chiral mul-

tiplet fields is

Lt.c.m. = Ȳ

(
−D2

µ + iD +
{σ, σ̄}

2

)
Y + ḠG+ iȲ (η̄− − η+)ζ + iζ̄(η̄+ − η−)Y

+ iζ̄( /D − σ̄γ+ − σγ−)ζ .

(3.11)

Twisted chiral multiplets couple via a twisted superpotential3 W

LW =
i

4π

(
W ′′(Y )ζ+ζ− −W ′(Y )G+

i

r
W (Y )

)
. (3.12)

Each U(1) factor in the gauge group admits a supersymmetric Fayet-Iliopoulos (FI) and

topological term

Ltop + LFI = −iTr

(
ϑ

2π
F + ξD

)
. (3.13)

For each abelian factor, the associated field strength multiplet Σ is a chiral superfield, and

the FI and topological term can be encoded in a linear superpotential W

W =
iτ

2
Σ , (3.14)

where

LW =
∂W
∂Σ

FΣ −
∂2W
∂Σ2

η+η− . (3.15)

Superpotential couplings are SU(2|1)A invariant if the superpotential W carries R-charge

−2, which is the charge of Σ. For twisted vector multiplets on S2, SU(2|1)A-invariance

implies that the complexified FI parameter

τ =
ϑ

2π
+ iξ (3.16)

is an exactly marginal coupling.

The action in flat space, obtained by sending r → ∞ in our expressions, has an ad-

ditional U(1)A R-symmetry if the charge of the twisted superpotential W is −2. On the

3We use here a convenient normalization.
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two-sphere, however, the non-minimal 1/r couplings in the action required by supersym-

metry break this U(1)A R-symmetry. This breaking can be understood as arising due to

the non-trivial background fields in the supergravity multiplet required to couple the gauge

theory to a supersymmetric supergravity background [63].

The parameters of the ultraviolet GLSM are the gauge couplings for each gauge group

factor, the complex parameters appearing in the twisted superpotential and the complexi-

fied FI parameters appearing in the superpotential. We note that unlike SU(2|1)A-invariant

GLSM’s based on vector and chiral multiplets, the twisted chiral multiplets have vanishing

twisted masses, since the scalars in the twisted vector multiplet are charged under the

U(1)R symmetry. For a Calabi-Yau GLSM, the complexified FI parameters are the Kähler

moduli of the Calabi-Yau while the complex parameters in the twisted superpotential cor-

respond to the complex structure moduli.

3.4 Localization of the Path Integral

In this section we perform the exact computation of the partition function of the gauge

theories constructed in the previous section. This requires choosing a supercharge Q in

SU(2|1)A and a suitable deformation of the Lagrangian

L → L+ tQV . (3.17)

By the familiar t-independence of the path integral (in favorable situations), the path

integral reduces to a one-loop integral over the space of saddle points M of QV . The

measure of integration is determined by classical action evaluated on the saddle points

and by the one-loop determinants Z1-loop of twisted vector and twisted chiral produced by

the deformation term QV . The contribution of the gauge fixing multiplet must also be

included.

In formulas, for a collection of Q-invariant operators collectively denoted by O, we have

that

〈O〉 =

∫
M
e−S|M O|M Z1-loop . (3.18)

In this chapter, O is the two point function of a chiral operator Oa at the north pole and

an anti-chiral operator operator Oā at the south pole of the two-sphere.
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3.4.1 Choice of Supercharge and Decoupling Theorems

We choose the following supercharge4 Q in SU(2|1)A

Q = S1 +Q2 . (3.19)

This is the same supercharge (2.41) that we used in our localization computation in chapter

2. The SU(1|1) subalgebra that Q generates is

Q2 = J3 +
R

2

[
J3 +

R

2
,Q
]

= 0 , (3.20)

where J3 is a U(1) isometry generator of S2, and has two antipodal fixed points which we

call the north and south poles of the two-sphere. R is the U(1) R-symmetry generator in

SU(2|1)A.

The (Grassmann even) Killing spinors (3.2) parameterizing the transformations gener-

ated by Q are

ε = exp

(
− i

2
θγ 2̂ +

i

2
ϕ

)
ε◦, γ 3̂ε◦ = ε◦

ε̄ = exp

(
+
i

2
θγ 2̂ − i

2
ϕ

)
ε̄◦, γ 1̂ε̄◦ = ε◦ ,

(3.21)

where (θ, ϕ) are the canonical coordinates on S2.

At the north pole of the two-sphere, gauge invariant operators Oa(Y ) constructed from

the lowest component of twisted chiral multiplets are Q-invariant. Likewise, at the south

pole, operators constructed from the lowest component of twisted anti-chiral multiplets

Oā(Ȳ ) are also Q-invariant. This follows from the supersymmetry transformation (3.7)

generated by the spinors (3.21). Therefore the two-point function

〈Oa(Y )Ob̄(Ȳ )〉 (3.22)

is Q-invariant and can be computed by supersymmetric localization.

We now prove that the two-sphere partition function and two-point functions (3.22) are

independent of some of the parameters of the Lagrangian. First, we note that the twisted

4We drop the index A, to avoid cluttering.
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vector multiplet Lagrangian (3.10) as well as the FI and topological terms (3.13) are all

Q-exact. Explicitly

Lt.v.m. =
1

4g2
YM

QQ̃Tr

(
ηγ 3̂η̄ +

i

r
σσ̄

)
−∇µJ

µ
t.v.m. , (3.23)

where Q̃ = S1 −Q2, a supercharge in SU(2|1)A parametrized by Killing spinors (3.21) −ε
and ε̄.5 Likewise

LFI =
ξ

2i
QTr

(
ε̄γ 3̂η̄ + εγ 3̂η

)
−∇µJ

µ
FI

Ltop =
ϑ

4π
QTr

(
ε̄γ 3̂η̄ − εγ 3̂η

)
−∇µJ

µ
top .

(3.24)

By virtue of equation (3.14), this follows from the more general result that the superpo-

tential W couplings (3.15) are Q-exact [37, 40]. The twisted chiral Lagrangian (3.11) is

also Q-exact

Lt.c.m. =
1

2
QQ̃

(
ḠY − Ȳ G+

i

r
Ȳ Y

)
−∇µJ

µ
t.c.m. . (3.25)

We note, however, that twisted superpotential couplings (3.12) are not Q-exact.

This shows that the gauge theory two-sphere partition function and two-point functions

(3.22) are independent of the gauge couplings g2
YM and of the complexified FI parameters

τ , but depend on the complex parameters in the twisted superpotential. Gauge cou-

pling independence implies that the two-sphere partition function of a gauge theory is a

renormalization group invariant observable. In particular, it coincides with the partition

function of a SCFT theory in the extreme infrared, where g2
YM → ∞. This is none other

than the sought-after Calabi-Yau NLSM when the gauge theory has a geometric phase.

Moreover, the Zamolodchikov metric (1.2) of operators in the chiral ring of the N = (2, 2)

SCFT can be exactly computed in the ultraviolet GLSM, as these correlators have images

in the ultraviolet GLSM through (3.22).6 In conclusion, a gauge theory on the two-sphere

computes the Kähler potential and associated Zamolodchikov metric of the infrared SCFT.

When the GLSM has a geometric phase, the gauge theory computes these quantities for

the complex structure moduli space of the Calabi-Yau.

5The total derivative terms are written down in appendix 3.B.
6In our choice of coordinates, where the infrared NLSM is described by twisted chiral multiplets, a

chiral ring element in the infrared SCFT is the lowest component of a twisted chiral superfield while an

operator in the conjugate ring is the lowest component of a twisted anti-chiral superfield.
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3.4.2 Q-Exact Deformation Term

We proceed by deforming the gauge theory action by a Q-exact term

L → L+ tQV . (3.26)

Following our discussion in the previous subsection, we can take

V =
1

4g2
Q̃Tr

(
η̄γ 3̂η +

i

r
σσ̄

)
− i

2
χTr(ε̄γ 3̂η̄ + εγ 3̂η) +

1

2
Q̃
(
ḠY − Ȳ G+

i

r
Ȳ Y

)
. (3.27)

The bosonic part of QV can be recast into the positive definite form

1

2g2
Tr

(
|Dµσ|2 +

1

4
[σ, σ̄]2 + F 2 + D̃2

)
+|DµY |2+|G|2+

1

2

(
|σY |2 + |σ̄Y |2

)
+
g2

2

(
Y Ȳ − χ

)2
,

(3.28)

where D̃ = D + ig2(Y Ȳ − χ). Positive definiteness follows from the reality conditions

σ† = σ̄

Y † = Ȳ

D̃† = D̃

G† = Ḡ

F † = F

A†µ = Aµ .
(3.29)

By adding this deformation term to the action and taking the limit t → ∞, we are

able to apply the saddle point method, which is exact, and localize the path integral to

the extrema of QV . Since the bosonic part of the deformation term is positive definite, all

the paths that contribute to the path integral lie at the global minimum surface QV = 0

in the space of fields. The space of saddle points that we must integrate over in the path

integral is therefore7

M =
{
Y |Y = Y◦, Ȳ◦TaY◦ − χa = 0

}
/Gglobal , (3.30)

where Ta are the U(1) generators of the gauge group, with all the other fields vanishing.

Y = Y◦ is constant on the two-sphere.8 Field configurations related by the residual gauge

transformation Gglobal (the global part of the gauge group G) must be identified

Y◦ ' eiαY◦ , (3.31)

7For χ = 0, σ can be non-zero, but then at least one Y must vanish. The fermionic superpartner of

this field, however, has a fermionic zero mode, and this saddle point does not contribute.
8Even though the parameter χ enters in the definition ofM, we shall prove that the partition function

is independent of χ, as it should, since it is the coefficient of a Q-exact term in (3.27).
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where α acts on Y in the corresponding representation R of the gauge group. M is

therefore the Kähler quotient space

M = C|R|//Gglobal . (3.32)

Localization has to be performed for the gauge fixed functional integral (see appendix

3.A for details). For the background field configurations (3.30), we fix the Lorenz gauge

which is compatible with Aµ = 0. For the field fluctuations in the computation of the one-

loop determinant however, it is much more convenient to fix an Rξ-like gauge adapted to

the Higgs phase of the theory. This requires introducing gauge fixing terms and a fermionic

generator QBRST. We localize the path integral with respect to the BRST deformed su-

percharge Q̂ = (Q + QBRST) using as the deformation term Q̂V ′, where V ′ = V + VG.F..

The space of saddle points of the gauge fixed theory remains unaffected by the inclusion

of the gauge fixing terms, however, the gauge fixing terms play an important role in the

computation of the measure factor Z1-loop.

3.4.3 Partition Function and Zamolodchikov Metric

Calculation of the measure of integration in the space of saddle pointsM requires comput-

ing the one-loop determinant Z1-loop of twisted vector, twisted chiral and ghost multiplets

around the saddle point configurationsM. This is achieved by integrating out to quadratic

order in the fluctuations the deformation and gauge fixing terms Q̂V ′.
Consider a gauge theory with gauge group G = U(1)Nc coupled to Nf twisted chiral

multiplets with charges Qa
I under U(1)Nc , where a = 1, . . . , Nc and I = 1, . . . , Nf . Su-

persymmetry on the two-sphere requires anomaly cancelation for the U(1)R R-symmetry,

which yields the constraints ∑
I

Qa
I = 0 a = 1, . . . , Nc . (3.33)

The one-loop determinant around the saddle points (3.30) is given by the determinant of

an Nc ×Nc matrix (see appendix 3.C for details)

Z1-loop = det(M †M) . (3.34)
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Here M is an the Nf ×Nc mass matrix and M † is its hermitian conjugate. They are given

by9

M a
I = Qa

IYI , M † I
a = Qa

I ȲI . (3.35)

We note that Nf ≥ Nc is a necessary condition for the matrix M †M to be non-degenerate.

For Nf < Nc, there is a linear combination of the U(1) generators under which all the

twisted chiral fields are neutral, and the associated gaugino has a fermionic zero mode,10

and therefore the path integral vanishes.

Evaluating the classical action and operator insertions on the saddle points we obtain11

〈Oa(N)Ob̄(S)〉 =

∫
volMOa(Y )Ob̄(Ȳ )Z1-loop e

rW (Y )−rW (Ȳ ) , (3.36)

where volM is the volume form on the space of saddle points M (3.30). The volume form

on M, which is the quotient space (3.32), can be written in terms of the volume form of

the ambient flat space CNf by inserting appropriately normalized Dirac delta distributions

and dividing by the volume of the U(1)Nc gauge orbits:

volM =
dNfY ∧ dNf Ȳ

vol(Gglobal)
det

[
∂Fa
∂Yb

]∏
a

δ (Fa) , (3.37)

where

Fa =
∑
I

Qa
I |Y I |2 − χa . (3.38)

On the ambient space CNf , we can define the Hamiltonian action of the complexification

U(1)NcC of the gauge group. The vector fields that generate the real gauge transformations

are

ρa = i
∑
I

Qa
I

(
YI∂I − ȲI ∂̄I

)
a = 1, . . . , Nc , (3.39)

while

va = −
∑
I

Qa
I

(
YI∂I + ȲI ∂̄I

)
a = 1, . . . , Nc , (3.40)

9We drop the subindex of Y◦ in order to avoid cluttering.
10Given by λ = ε̄, where ε̄ is the conformal Killing spinor (3.21).
11As explained in [37], the partition function is also proportional to rc/3, due to the usual conformal

anomaly, where c is the central charge.
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generate imaginary gauge transformations. They act, respectively, as

YI → ei
∑
aQ

a
I τ
a
1 YI , YI → e−

∑
aQ

a
I τ
a
2 YI τ1, τ2 ∈ R . (3.41)

The moment map associated with the imaginary transformation generated by the a-th

U(1) factor in the gauge group is given by

µa = −1

2

∑
I

Qa
I |Y I |2 a = 1, . . . , Nc , (3.42)

as it obeys

dµa = ıvaω , (3.43)

where ω is the Kähler form in CNf . Therefore, the D-term equations entering in the

definition of M in (3.30){∑
I

Qa
I |Y I |2 = χ←→ Fa = 0 ; a = 1, . . . , Nc

}
, (3.44)

can be interpreted as the moments maps for the imaginary gauge transformations

2µa + χ = 0 a = 1, . . . , Nc . (3.45)

We note that these moment maps obey the equations

dµa · dµb =
(
M †M

)
ab
, (3.46)

where d denotes the exterior derivative and the inner product dµa · dµb is the CNf in-

ner product. As a direct consequence of the anomaly cancellation conditions (3.33), the

holomorphic and anti-holomorphic factors in the the measure

dNfY ∧ dNf Ȳ (3.47)

are each invariant under the complexified gauge transformations U(1)NcC . Furthermore, the

twisted superpotential W (Y ) and W (Ȳ ) are also invariant under complex gauge transfor-

mations, whereas Z1-loop is only invariant under real gauge transformations. This observa-

tion suggests a change of coordinates {Y } → {X, τ}, to some gauge invariant coordinates

X and the (complex) gauge orbit coordinates τ , where the integration over the complex
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gauge orbits is localized to the real gauge orbits due to the δ-distributions arising from the

D-term equations.

In computing the volume form volM we must quotient by the volume of the orbit of

U(1)Nc real gauge transformations. It follows from (3.39) that it is given by

vol(Gglobal) = (2π)Nc det (ρa · ρb)1/2 . (3.48)

By virtue of (3.39) we have that

ρa · ρb = 4
(
M †M

)
ab
, (3.49)

which combined with (3.46) implies12 that the Jacobian appearing with the delta functions

in (3.37) precisely cancels with the volume of the gauge orbit.

Altogether, the correlator (3.36) can be written as

〈Oa(N)Ob̄(S)〉 =

∫
dNfY ∧ dNf Ȳ

(2π)Nc
Oa(Y )Ob̄(Ȳ ) det

(
M †M

)∏
a

δ (2µa + χa) e
rW (Y )−rW (Ȳ ) ,

(3.50)

with M and M † defined in (3.35) and µa in (3.42). The partition function is obtained by

placing the identity operator at the north and south poles of the two-sphere, yielding

ZB =

∫
dNfY ∧ dNf Ȳ

(2π)Nc
det
(
M †M

)∏
a

δ (2µa + χa) e
rW (Y )−rW (Ȳ ) . (3.51)

3.5 Calabi-Yau Geometries

The two-sphere partition function (3.51) of a Calabi-Yau GLSM is expected to compute

the Kähler potential KC for the complex structure moduli of the corresponding Calabi-Yau

manifold. Concretely, we expect

ZB = e−KC = i dimM

∫
M

Ω ∧ Ω , (3.52)

where Ω is the nowhere vanishing holomorphic top form of the corresponding Calabi-Yau.

We now turn to explicitly demonstrating this for various families of Calabi-Yau geometries.

12The Jacobian factor J{b} = det (∂Fa/∂Yb) in (3.37) assumes that one carries out the integration

over the Y{b} planes first, treating YI as constant for I 6= b. More covariantly, one may write J =√
det (dFa · dFb) which takes the order of integration into account.
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3.5.1 Quintic Hypersurfaces in CP4
[Q1,...,Q5]

Consider the partition function (3.51) in the case of a U(1) gauge theory coupled to five

twisted chiral multiplets YI with charges QI and a twisted chiral multiplet P with charge

−q. The anomaly cancellation condition requires the sum of the charges of all of the twisted

chiral multiplets vanish, i.e.

q =
∑
I

QI . (3.53)

The twisted superpotential for GLSMs corresponding quintic hypersurfaces in CP4
[Q1,...,Q5]

has the general form

W = PG5(Y ) , (3.54)

where G5(Y ) is a transverse polynomial satisfying

G5(λQIYI) = λqG5(Y ) λ ∈ C∗ . (3.55)

The two-sphere partition function takes the form13

Z =
1

2π

∫
d5Y ∧ d5Ȳ ∧ dP ∧ dP̄ M †M δ (2µ+ χ) eW−W , (3.56)

where the moment map and the mass matrix are given by

−2µ =
∑
I

QI |YI |2 − q|P |2 ,

M †M =
∑
I

Q2
I |YI |2 + q2|P |2 .

(3.57)

We remark the the anomaly cancellation condition (3.53) guarantees that the flat measure

and the twisted superpotential factor in (3.56) are invariant under global complex gauge

transformation. It is therefore natural to consider the change of variables

YI = eiQIτxI ,

P = e−iqτp ,
(3.58)

with x5 = constant. In these coordinates, complex gauge transformations act only as a shift

of the τ coordinate and therefore τ is the (complex) gauge orbit coordinate. The invariance

13We set r = 1 from now on.
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of the ambient space volume form and the twisted superpotential under complex gauge

transformations generated by ∂τ becomes manifest in the new coordinates. The volume

form of C6 in the new coordinates is

d5Y ∧ d5Ȳ ∧ dP ∧ dP̄ = Q2
5 |x5|2 d4x ∧ d4x̄ ∧ dp ∧ dp̄ ∧ dτ ∧ dτ̄ . (3.59)

while the twisted superpotential retains its original form

W = PG5(Y ) = pG5(x) . (3.60)

The moment map and the mass matrix (3.57), however, depend explicitly of the imaginary

τ direction, denoted by τ2, as they are only invariant under real gauge transformations,

and may be rewritten as

−2µ =
5∑
I=1

QI e
−2QIτ2|xI |2 − q e2qτ2|p|2 ,

M †M =
5∑
I=1

Q2
I e
−2QIτ2|xI |2 + q2e2qτ2|p|2 .

(3.61)

The partition function (3.56) in the new coordinates is

Z = −2iQ2
5 |x5|2

∫
d4x ∧ d4x̄ ∧ dp ∧ dp̄

(
epG5(x)−p̄ Ḡ5(x̄)

∫
dτ2 M

†M δ (2µ+ χ)

)
, (3.62)

where we have carried out the integration over τ1 which only contributes a factor of 2π. It

is clear from (3.61) that M †M is the Jacobian ∂τ2µ, that is

dτ2M
†M = dτ2

∂µ

∂τ2

=̇ dµ (3.63)

keeping xI and p constant. This implies that the integration over τ2 can be readily carried

out yielding14 ∫
dτ2M

†Mδ(2µ+ χ) =̇

∫
dµ δ(2µ+ χ) = 1/2 . (3.64)

The partition function (3.62) can be put into the proposed form in terms of an integral

over the holomorphic three-form by performing the integration over the complex variables

14In general, the equations 2µ+χ = 0 have multiple solutions for τ2; this only introduces a multiplicative

factor which we ignore.
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p and p̄ as well as the integration over one of the x planes, say x4. Integrating over p

imposes the embedding equation G5 = 0 in CP4
[Q1,...,Q5] via δ distributions∫

dp ∧ dp̄ epG5−p̄ Ḡ5 = − 1

4π2
δ(G5)δ(Ḡ5) (3.65)

and finally, integrating over x4 and x̄4 yields

Z = i
Q2

5 |x5|2
4π2

∑
{x4|G5=0}
{x̄4|Ḡ5=0}

∫
dx1 ∧ dx2 ∧ dx3

∂4G5(x)
∧ dx̄1 ∧ dx̄2 ∧ dx̄3

∂̄4Ḡ5(x̄)
. (3.66)

From (3.66) we can read off the holomorphic three-form to be

Ω =
Q5

2π

x5 dx1 ∧ dx2 ∧ dx3

∂4G5(x)
, (3.67)

which matches the well known formulae for the holomorphic three-form presented in [80,81]

of quintic hypersurfaces in CP4
[Q1,...,Q5]. We remark that although (3.67) appears to have

singularities whenever ∂4G5 = 0, via a simple change of coordinates, corresponding to

integrating (3.65) with respect to x1 instead of x4, it may be written as

Ω = −Q5

2π

x5 dx2 ∧ dx3 ∧ dx4

∂1G5(x)
. (3.68)

Since the polynomial G5(x) is transversal and x5 6= 0, it follows that the holomorphic

three-form Ω is non-singular and nowhere vanishing.

Mirror Quintic Complex Structure Kähler Potential

In [39] the SU(2|1)A-invariant partition function for the familiar quintic three-fold in

CP4 was shown to coincide with the SU(2|1)A-invariant partition function of the Hori and

Vafa mirror theory [32]. This is a U(1) vector multiplet coupled to twisted chiral multiplets

(Y1, . . . , Y5, YP ) with a twisted superpotential

W =

[
iΣ

(
5∑

a=1

Y a − 5YP + 2πiτ

)
−
( 5∑
a=1

e−Y
a

+ e−YP
)]

, (3.69)
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where Σ is the field strength multiplet. As shown in [39], the relation to the Mellin-Barnes

like formula for SU(2|1)A invariant gauge theories derived in [37,40] follows by integrating

out the twisted chiral multiplet fields. Explicitly, decomposing the integral into contours15∫
Y ∗=Ȳ

dY dȲ e−e
−Y +iQΣY ee

−Ȳ +iQΣ̄Ȳ =

∫ ∞
0

dt e−t t−iQΣ−1

∫
C

dt et̄ t̄−iQΣ̄−1 , (3.70)

and with the identities∫ ∞
0

dt e−t t−iQΣ−1 = Γ(−iQΣ) ,

∫
C

dt et̄ t̄−iQΣ̄−1 =
2πi

rΓ(1 + iQΣ̄)
, (3.71)

one arrives at the gauge theory result [39].16

The two-sphere partition function of the mirror theory can be reduced to an orbifold

Landau-Ginzburg model by integrating out Σ. This yields [39]

ZL.G. =

∫ 5∏
a=1

dX̃adX̃a e
−Weff+W eff , (3.72)

where the effective twisted superpotential is

Weff =
∑
a

X̃5
a + e−2πiτ/5

∏
a

X̃a . (3.73)

The canonical variables X̃a are given by

X̃a = e−
1
5
Ya , (3.74)

and therefore we must orbifold by

X̃a ' e2πi/5X̃a . (3.75)

This orbifold Landau-Ginzburg model realizes the mirror Calabi-Yau geometry: the mirror

quintic W . Indeed, it is easy to show that the orbifold Landau-Ginzburg model partition

function also computes the Kähler potential on the complex structure moduli space of the

mirror quintic W

ZL.G. = i

∫
W

Ω ∧ Ω . (3.76)

15C is the Hankel contour, which starts at −∞− iε, then goes around the branch cut along the negative

real t axis, and ends up at ∞+ iε.
16This is a streamlined version of the identity derived in [39].
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3.5.2 Complete Intersection Surfaces in CPn[Q1,...,Qn+1]

The analysis of the last section can be easily generalized to intersection of multiple hyper-

surfaces in CPn[Q1,...,Qn+1]. As the analysis is quite parallel to that of the last section, some

details are omitted here.

Consider the partition function (3.51) in the case of a U(1) gauge theory, this time

coupled to n+1 twisted chiral multiplets YI with charges QI and m twisted chiral multiplet

Pα with charges −qα. Imposing the anomaly cancellation condition restricts the charges

to satisfy ∑
α

qα =
∑
I

QI . (3.77)

The partition function takes the form

Z =
in+m+1

2π

∫
dn+1Y ∧ dn+1Ȳ ∧ dmP ∧ dmP̄ M †M δ (2µ+ χ) eW−W (3.78)

where the twisted superpotential is linear in Pα and is a polynomial in YI ,

W =
∑
α

PαGα(Y ) , (3.79)

with the polynomials Gα satisfying

Gα(λQIYI) = λqαGα(Y ) . (3.80)

We emphasize again that both the twisted superpotential term and the volume form for

the ambient space Cn+1+m are invariant under complex gauge transformations. The change

of variables
YI = eiQIτxI ,

Pα = e−iqατpα ,
(3.81)

with xn+1 = constant, makes this invariance manifest as the gauge transformations in

the new coordinates act simply as a shift in τ . The twisted superpotential in the new

coordinates assumes the τ -independent form

W =
∑
α

pαGα(x) (3.82)

and the volume form is

2in+mQ2
n+1 |xn+1|2dnx ∧ dnx̄ ∧ dmp ∧ dmp̄ ∧ dτ1 ∧ dτ2 . (3.83)
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Here τ1 and τ2 are the real and imaginary parts of the τ coordinate parameterizing the

compact and non-compact directions of the gauge orbit surface. The moment map, which

has an explicit τ2 dependence takes the form

− 2µ =
∑
I

e−2QIτ2QI |xI |2 −
∑
α

qαe
2qατ2pα , (3.84)

while M †M can be related to the moment map, as in the case of quintic hypersurfaces, by

τ2 differentiation of the latter,

M †M =
∂µ

∂τ2

. (3.85)

The integration over τ1 and τ2 may then be carried out as was done for quintic hypersurfaces

(3.62), yielding

Z =
in+m

π
Q2
n+1 |xn+1|2

∫
dnx ∧ dnx̄ ∧ dmp ∧ dmp̄

(
e
∑
α(pαGα−p̄αḠα)

∫
d2τ

∂µ

∂τ2

δ (2µ+ χ)

)
= in+mQ2

n+1 |xn+1|2
∫

dnx ∧ dnx̄ ∧ dmp ∧ dmp̄ e
∑
α(pαGα−p̄αḠα) .

(3.86)

This is a simple generalization of the case of a hypersurface defined by a single embed-

ding equation studied in the last section, with multiple p fields, one for each constraint.

Integration over the p planes then imposes all the constraints leading to

Z =
in−mQ2

n+1 |xn+1|2
(2π)2m

∫
dnx ∧ dnx̄

∏
α

δ(Gα)δ(Ḡα) . (3.87)

Carrying out the integration over the m dimensional space {xI |I = n −m + 1, . . . , n} we

arrive at the desired expression

Z = in−m
Q2
n+1 |xn+1|2
(2π)2m

∑
{xn−m+β |Gα=0}
{x̄n−m+β |Ḡα=0}

∫
dx1 ∧ · · · ∧ dxn−m
det (∂n−m+βGα(x))

∧ dx̄1 ∧ · · · ∧ dx̄n−m

det
(
∂̄n−m+βḠα(x̄)

) , (3.88)

where each determinant in the denominator is computed over the α and β indices. This

yields the holomorphic n−m form

Ω =
Qn+1

(2π)m
xn+1 dx1 ∧ · · · ∧ dxn−m

det (∂n−m+βGα(x))
(3.89)
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for the intersection of m hypersurfaces in CPn[Q1,...,Qn+1] [80, 81]. That Ω appears to be

singular whenever det (∂n−m+βGα(x)) = 0 is an artifact of the choice of coordinates. For

these points on the manifold, there is a different choice {xσ(α), α = 1, . . . ,m} of coordinates

to integrate the δ-distributions in (3.87), such that (3.89) is non-singular.

3.5.3 Complete Intersection of Hypersurfaces in Product of Weighted

Projective Spaces

As a much more general class of complete intersections with abelian GLSM realization, we

now consider consider the partition function (3.51) in the case of U(1)Nc gauge theory with

Nf = n + m + Nc twisted chiral multiplets YI with charge matrix {Qa
I |a = 1, . . . , Nc; I =

1, . . . , Nf}. The anomaly cancellation conditions restricts the charge matrix to obey∑
I

Qa
I = 0 for all a . (3.90)

The partition function has the general form (3.51) where the superpotential is a polynomial

in {XI = YI |I = 1, . . . , Nf −m} and is linear in {Pα = Yα|α = Nf −m+ 1, . . . , Nf},

W =
∑
α

PαGα(X) . (3.91)

The polynomials Gα satisfy

Gα(λQ
a
IXI) = λ−Q

a
αGα(X) , (3.92)

which guarantees the invariance of the twisted superpotential under U(1)NcC gauge trans-

formations. As before, we introduce the complex τa coordinates, one for each U(1) factor

in the gauge group, via
XI = ei

∑
aQ

a
I τ
a

xI ,

Pα = ei
∑
aQ

a
ατ

a

pα ,
(3.93)

and with17 xn+1 = · · · = xn+Nc = 1. This isolates the action of each U(1)a factor in the

gauge group to a shift in τa and highlights the gauge invariance of the twisted superpotential

W =
∑
α

pαGα(x) . (3.94)

17This amounts to choosing inhomogeneous coordinates on the Calabi-Yau.
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To write the volume form of CNf in the new coordinates, first consider the volume form

of the subspace CNc of constant xI . The holomorphic part of this volume form may be

written as

dXn+1 ∧ · · · ∧ dXn+Nc = iNc
∑

a1,...,aNc

Qa1
n+1 . . . Q

aNc
n+Nc

dτa1 ∧ · · · ∧ τaNc = det
(
iQa

n+b

)
dNcτ ,

(3.95)

where the determinant is over the a and b indices. The partition function may then be

written as

Z = iNf
det(Qa

n+b)
2

(2π)Nc

∫
dnx∧dnx̄∧dmp∧dmp̄ eW−W

∫
dNcτ∧dNc τ̄ det(M †M)

∏
a

δ(2µa+χa)

(3.96)

where the moment map depends on the imaginary part of τa according to

−2µa =
n∑
I=1

e−2
∑
bQ

b
Iτ
b
2Qa

I |xI |2 +
n+Nc∑
I=n+1

Qa
Ie
−2

∑
bQ

b
Iτ
b
2 +

Nf∑
α=Nf−m+1

Qa
αe
−2

∑
bQ

b
ατ

b
2 |pα|2 , (3.97)

and the mass matrix M †M can be expressed in terms of the moment maps via

(M †M)ab =
∂µa
∂τ b2

. (3.98)

This last relation implies that det(M †M) is precisely the inverse of the Jacobian factor

produced by the coordinate transformation {τa2 } → {µa}. Consequently, the integration

over the space of complex gauge orbits can be carried out leading to the numerical factor∫
dNcτ ∧ dNc τ̄ det(M †M)

∏
a

δ(2µa + χa) = (−2iπ)Nc . (3.99)

With the space of gauge orbits integrated out, the partition function (3.96) assumes the

simple form

Z = in+m det(Qa
n+b)

2

∫
dnx ∧ dnx̄ ∧ dmp ∧ dmp̄ e

∑
α(pαGα−p̄αḠα) . (3.100)

As in the last two examples, the p integrals impose the embedding equation constraints

Gα = 0 which can be used to solve for m of the coordinates xI . This leads to the partition
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function

Z = in−m
det(Qa

n+b)
2

(2π)2m

∑
{xn−m+β |Gα=0}
{x̄n−m+β |Ḡα=0}

∫
dx1 ∧ · · · ∧ dxn−m
det (∂n−m+βGα(x))

∧ dx̄1 ∧ · · · ∧ dx̄n−m

det
(
∂̄n−m+βḠα(x̄)

) . (3.101)

The resulting nowhere vanishing holomorphic n−m form Ω is given by

Ω =
det(Qa

n+b)

(2π)m
dx1 ∧ · · · ∧ dxn−m
det (∂n−m+βGα(x))

, (3.102)

where the determinant in the denominator is over the α and β indices, thus realizing from

gauge theory the formulae for the holomorphic form on a Calabi-Yau in [80–82].
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Appendix

3.A BRST Supercharge and Gauge Fixing

As in any gauge theory, the formalism we have used has built in it a large redundancy which

we need to remove in order to proceed with our computation of the partition function. This

is achieved by introducing the supercharge QBRST and the ghost and anti-ghost multiplets

{c, a◦} and {c̄, b}, where c and c̄ are Grassmann odd and a◦ and b are Grassmann even

scalars and they all have vanishing R-charge.

In terms of the ghost multiplet fields, the BRST operator is defined as

QBRST = δG(c), Q2
BRST = δG(a◦) , (3.103)

where a◦ is assumed to be supersymmetric i.e. Qa◦ = 0. By construction, adding the

BRST supercharge to the supersymmetry algebra (3.20) leaves the algebra invariant up to

gauge transformations. We therefore define the supercharge Q̂ = Q +QBRST and require

that it realizes the su(1|1) algebra (3.20) as

Q̂2 = Lv −
i

2r
R + δG(a◦) (3.104)

where Lv denotes the Lie(-Lorenz) derivative along v = 1/r∂ϕ and R is the generator of

the U(1)R symmetry. This fixes the supersymmetry transformation rule for the ghost and

anti-ghost multiplet fields completely. The action of Q̂ on the ghost multiplet fields is

found to be

Q̂c = a+ i cc+ vµAµ +
1

2
sin θ

(
σe+iϕ − σ̄e−iϕ

)
, Q̂a◦ = i[c, a◦] , (3.105)

87



while the anti-ghost multiplet fields transform as

Q̂c̄ = ib, Q̂b = −i(Lv + i[a, · ])c̄ . (3.106)

We remark that by construction the action of Q̂ and Q coincide on all gauge invariant

objects. In particular the deformation term (3.27) satisfies Q̂V = QV .

For a choice of gauge fixing functional G[A,Φ], the gauge fixing condition, G = 0, can

be imposed on the path integral in a supersymmetric way by adding the deformation term

Q̂VG.F. to the action where

VG.F. =
1

2

∫
d2x
√
h Tr

{
c̄

(
G − i

4
b

)}
. (3.107)

Being exact in Q̂, this choice of deformation term guarantees the independence of the path

integral from the choice of gauge fixing functional G, provided that the ghost kinetic term,

c̄QBRSTG, is non-degenerate.

In the presence of a Higgs branch, such as the saddle points (3.30), a particularly

convenient choice for the gauge fixing functional G is the so called Rξ gauge (with ξ = 1)

G = ∇µA
µ + i

(
Y Ȳ◦ − Y◦Ȳ

)
(3.108)

We remark that the gauge fixing condition on the saddle points reduces to the usual Lorenz

gauge ∇µA
µ = 0 which is compatible with the choice Aµ = 0 in (3.30).

3.B Q̂-Exact Deformation Term

Here we spell out the precise deformation term Q̂V ′, including all the total derivative terms,

which we use for the localization computation. We break V ′ into four pieces corresponding

to the twisted vector, twisted chiral, Fayet-Iliopoulos and gauge fixing terms

V ′ = Vt.v.m. + VG.F. + VF.I. +
∑
I

VIt.c.m. . (3.109)

For concreteness, let {Ta, a = 1, . . . , dim g} be the set of normalized generators of the

gauge algebra g. The twisted vector multiplet as well as the ghost fields are valued in the
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adjoint representation of g while the twisted chiral multiplet fields live in a representation

r of g. Suppressing the integration over the sphere, the various terms in V ′ are given by

Vt.v.m. =
1

4
Tr

{
ε̄γ 3̂η̄ (D + iF ) + εγ 3̂η (D− iF ) +

i

2
(ε̄η + εη̄) [σ, σ̄]− iε̄γ 3̂ /Dσ̄ η − iεγ 3̂ /Dσ η̄

}
,

VG.F. =
1

2
Tr

{
c̄

(
∇µA

µ + ig2
(
Y Ȳ◦ − Y◦Ȳ

)
− i

4
b

)}
,

VF.I. =
χ

2i
Tr
(
ε̄γ 3̂η̄ + εγ 3̂η

)
,

Vt.c.m. =
1

2

[
Ḡ (ε̄ζ− + εζ+)−

(
ε̄ζ̄+ + εζ̄−

)
G+ iȲ Dµ (ε̄γµζ− + εγµζ+)− iȲ (σ̄ε̄ζ+ + σεζ−)

− iDµ

(
ε̄γµζ̄+ + εγµζ̄−

)
Y + i

(
ε̄ζ̄−σ̄ + εζ̄+σ

)
Y + iȲ

(
ε̄γ 3̂η̄ + εγ 3̂η

)
Y
]
.

(3.110)

where there is an independent Fayet-Iliopoulos parameter χa for each U(1) factor in the

gauge group.18 As we alluded to in section 3.4, the twisted vector and twisted chiral terms

may be written in a more compact form as

Vt.v.m. =
1

4
Q̃Tr

(
ηγ 3̂η̄ +

i

r
σσ̄

)
,

Vt.c.m. =
1

2
Q̃
(
ḠY − Ȳ G+

i

r
Ȳ Y

)
,

(3.111)

where Q̃ = S1 − Q2. Using (3.110), the deformation term may be split into bosonic and

fermionic pieces, up to a total derivative term, i.e.

Q̂V = Q̂V
∣∣
bos.

+ Q̂V
∣∣
fer.

+∇µJ
µ (3.112)

where the bosonic part is given by

tQ̂V
∣∣
bos.

=
t

2

∑
a

{
F 2
a + (Dµσ)a(Dµσ̄)a +

1

4
[σ, σ̄]2a + D̃2

a + b̃2
a + G2

a +
(
Ȳ TaY − χ

)2
}

+ t

(
ḠG+DµȲ DµY +

1

2
Ȳ {σ, σ̄}Y

)
(3.113)

18Without loss of generality, we have not chosen an independent parameter for all the different Q̂-exact

pieces in the deformation term since Q̂-exactness guarantees that the final result will be independent of

such parameters.
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with D̃a = Da + i(Ȳ TaY − χ) and b̃ = b/2 + iG. The fermionic part of Q̂V is given by

tQ̂V
∣∣
fer.

= −it
2

Tr

{
η̄

(
/D +

1

r
γ 3̂

)
η + σ η̄γ 3̂η̄ − σ̄ ηγ 3̂η − ic̄Q̂G +

i

4
c̄ (vµ∂µ + i[a◦, · ]) c̄

}
+ it

(
Ȳ (η̄− − η+)ζ + ζ̄(η̄+ − η−)Y + ζ̄

(
/D − σγ− − σ̄γ+

)
ζ
)

(3.114)

and the total derivative term may be written as

Jµ =
i

2
Tr

{
(ε̄ε)εµν σ̄Dνσ +

1

2r
vµσ̄σ +

1

2
(ε̄γµη̄)

(
εγ 3̂η

)
− 1

2
(εη̄)

(
ε̄γ 3̂γµη

)}
+
∑
I

(
(ε̄γ−ε)D

µȲIYI − (ε̄γ+ε)ȲID
µYI −

i

2

(
ε̄γ 3̂γµε

) (
ḠIYI + ȲIGI

)
+ i(ε̄γ−ε)

(
ζ̄Iγ

µζI
))

+
χ

2
Tr
{(
ε̄γ 3̂γµε̄

)
σ̄ +

(
εγ 3̂γµε

)
σ
}
.

(3.115)

3.C One-Loop Determinant

Consider the Abelian gauge theory with gauge group U(1)Nc , minimally coupled to Nf

twisted chiral multiplets with generic charges {Qa
I |a = 1, . . . , Nc; I = 1, . . . , Nf}. We

assume Nf ≥ Nc since, as will become clear, the one-loop determinant vanishes for Nc > Nf

due to fermionic zero modes.

Deforming the path integral by adding the deformation term tQ̂V to the action and

taking the large t limit, the path integral localizes to the saddlepoints which are constant

maps subject to the D-term constraints{
Y = constant

∣∣∣ ∑
I

Qa
I |YI |2 = χa

}
. (3.116)

The measure of integration is defined by the one-loop – with respect to t – fluctuations of

the fields around these saddle points. To extract this measure, we expand Q̂V to quadratic

order around the saddle points (3.116), we therefore redefine the fields as

Φ→ 1√
t
Φ (3.117)
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for twisted vector fields and

YI → YI +
1√
t
yI , GI →

1√
t
GI , ζI →

1√
t
ζ (3.118)

for twisted chiral fields. Imposing the Rξ gauge on the gauge field fluctuations

Ga =
1√
t

(
∇µA

µ
a − i

∑
I

Qa
I

(
ȳIYI − ȲIyI

))
(3.119)

the quadratic part of the deformation term can be cast into the following form

tQ̂V
∣∣
quad

=
1

2r2

∑
a,b

[
Aµa
(
2M2

ab + δab − r2δab∇2
)
Abµ + (σ̄a , c̄a)

(
2M2

ab − r2δab∇2
)

(σb , cb)
T
]

+
1

r2

∑
I,J

ȳI
(
2M2

IJ − r2δIJ∇2
)
yJ + i

∑
a,I

Qa
I

[
η̄a
(
ȲIζ

I
+ + ζ̄I−YI

)
− ηa

(
ȲIζ

I
− + ζ̄I+YI

)]
− i

2r

∑
a

η̄a

(
r /∇+ γ 3̂

)
ηa + i

∑
I

ζ̄I /∇ζI +
∑
I

ḠIGI +
1

2

∑
a

(
D̃2 + b̃2

)
+
∑
a

c̄aKa

(3.120)

where c̄K summerizes the fermionic terms that do not contribute to the one-loop determi-

nant. Explicitly, Ka is given by

Ka =
1

8
vµ∂µc̄a −

i

4
∇µ

(
εγ 3̂γµηa − ε̄γ 3̂γµη̄a

)
+
i

2

∑
I

Qa
I

(
(ε̄ζ̄I+ − εζ̄I−)Y I

◦ − Ȳ I
◦ (ε̄ζI− − εζI+)

)
.

We define the Nf ×Nc matrix M and it’s hermitian conjugate M † as

M a
I = rQa

IYI , M † I
a = rQa

I ȲI . (3.121)

The mass matrices M2
ab and M2

IJ appearing in (3.120) are then given by

M2
ab = (M †M)ab , M2

IJ = (MM †)IJ . (3.122)

For generic charges Qa
I and with Nf ≥ Nc, both of these matrices are of rank Nc. Further-

more, one can easily check that they have the same eigenvalues since for any eigenvector

u of MM †, the vector M †u is an eigenvector of M †M with the same eigenvalue.

From (3.120), it is evident that the path integral over the auxiliary fields D̃a, b̃a and

GI is Gaussian and yields a trivial factor. It is also clear that the path integration over
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the twisted vector scalars {σ, σ̄} and the ghost and anti-ghost fields {c, c̄} yield canceling

contributions.

As for the rest of the field, we begin our analysis by diagonalizing the Laplacian on the

gauge field. Using the spectrum of the Laplacian operator on T ∗S2,

spectrum(−r2∇2
∣∣
T ∗S2) = {(J2 + J − 1)

×(4J+2)
; J = 1, 2, . . . } , (3.123)

we may compute the contribution of the gauge fields to the one-loop determinant to be

∆−1
A =

∞∏
J=1

det

(
J(J + 1)

2
1 + 2M †M

)2J+1

. (3.124)

In order to compute the contribution to the one-loop determinant arising from the fluctu-

ations of the twisted chiral scalar fields, we first need to isolate the zero modes satisfying

∇µyI = 0 and
∑
J

M2
IJ yJ = 0 . (3.125)

These are the longitudinal fluctuations that lie in the space of saddle points (3.116) and

need to be excluded from the one-loop analysis. This amounts to removing the vanishing

eigen values of MM † from the J = 0 mode contribution. The contribution from the twisted

chiral scalars is then

∆−1
y = det ′(2MM †)

∞∏
J=1

det
(
J(J + 1) + 2MM †)2J+1

= det(2M †M)
∞∏
J=1

[
J4J(Nf−Nc) det

(
J(J + 1) + 2M †M

)2J+1
]
.

(3.126)

Putting (3.124) and (3.126) together, the boson and ghost contributions to the one-loop

determinant takes the form

∆−1
b = det(2M †M)

∞∏
J=1

(
1

2

)(2J+1)Nc ∞∏
J=1

[
J4J(Nf−Nc) det

(
J(J + 1) + 2M †M

)4J+2
]
.

(3.127)

To compute the contribution to the one-loop determinant due to fermionic fields, con-

sider the field redefinition

ψ = ζ̄+ + ζ− , ψ̄ = ζ̄− + ζ+ . (3.128)
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In terms of ψ and ψ̄, we may rewrite the quadratic fermion part of tQ̂V as

f̄Dff =

( ⊕aη̄a
⊕IψI

)T (
1⊗

(
− ir

2
/∇− i

2
γ 3̂
)

+i(M † ⊗ γ+ +MT ⊗ γ−)

−i(M ⊗ γ− +M∗ ⊗ γ+) 1⊗ ir /∇

)( ⊕aηa
⊕Iψ̄I

)
,

(3.129)

where the operator Df is block diagonal, i.e. it does not mix the eigenmodes of the Dirac

operator. Exploiting this fact we may consider each block separately. In the Jth mode, the

Dirac operator is diagonal while the chirality operator γ 3̂ has only non-zero off-diagonal

elements. Explicitly, we have

ir /∇
∣∣
J

= (J + 1/2)

(
1 0

0 −1

)
, γ 3̂

∣∣
J

=

(
0 1

1 0

)
, (3.130)

in the basis of eigenspinors of the Dirac operator. In this basis, the Jth block of the

operator Df in (3.129) takes the form

Df [J ] =


1⊗

(
−J+1/2

2
− i

2

− i
2

J+1/2
2

)
i
2

(
M † +MT M † −MT

M † −MT M † +MT

)
− i

2

(
M∗ +M M∗ −M
M∗ −M M∗ +M

)
1⊗

(
J + 1

2
0

0 −J − 1
2

)
 , (3.131)

and the fermion contribution to the one-loop determinant takes the form

∆f =
∞∏

J=1/2

∣∣Df [J ]
∣∣2J+1

=
∞∏
J=1

∣∣Df [J − 1/2]
∣∣2J . (3.132)

The finite dimensional determinant
∣∣Df [J−1/2]

∣∣ can easily be computed since the bottom

right Nf × Nf block of (3.131) is diagonal which allows us to put the matrix Df [J ] in a

lower triangular form. This is achieved via the non-degenerate matrix

U [J − 1/2] =

 1 − i
2

(
M † +MT M † −MT

M † −MT M † +MT

)
0 1

  1 0

0 1⊗
(
J−1 0

0 −J−1

) 
(3.133)

whose determinant is given by∣∣U [J − 1/2]
∣∣ = (−1)NfJ−2Nf . (3.134)
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Using this matrix, |Df [J ]| in (3.132) decomposes as

∣∣Df [J − 1/2]
∣∣ =

1

|U |
∣∣UDf

∣∣ =
1

|U |

∣∣∣∣ D′f 0

U ′ 1

∣∣∣∣ = (−1)NfJ2Nf |D′f [J − 1/2]| (3.135)

where D′f [J − 1/2] is given by

D′f [J − 1/2] = 1⊗
( −J

2
− i

2

− i
2

J
2

)
− 1

4J

(
M † +MT M † −MT

M † −MT M † +MT

)(
M∗ +M M∗ −M
M −M∗ −M∗ −M

)

=

(
−J

2
1− r2M†M

J
− i

2
1

− i
2
1

J
2
1 + r2M†M

J

)
(3.136)

and it’s determinant is given by

∣∣D′f [J − 1/2]
∣∣ =

( −1

(2J)2

)Nc
det
[(
J(J + 1) + 2M †M

) (
J(J − 1) + 2M †M

)]
. (3.137)

Using this result, substituting (3.135) in (3.132) yields

∆f =
∞∏
J=1

2−4JNc

∞∏
J=1

J4J(Nf−Nc)
∞∏
J=0

det
(
J(J + 1) + 2M †M

)4J+2
. (3.138)

Combining (3.127) and (3.138), the one-loop determinant is given by

∆ = det(M †M) (3.139)

up to an irrelevant divergent factor which may be regularized via zeta function regulariza-

tion to 22Nc/3.
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Chapter 4

Elliptic Genera

In this chapter we compute the elliptic genus of N = (2, 2) supersymmetric gauge theories

with Stückelberg fields. We compute the elliptic genus, first for the case of GLSMs with a

single Stückelberg field with one or many chiral multiplets. We then generalize the results

to GLSMs with multiple Stückelberg fields.

4.1 Gauge Theories with Stückelberg Fields

In this section we review a class of gauged linear sigma models with one Stückelberg

field [59,60], and its relation to non-linear sigma models [83]. Next, we recall gauged linear

sigma models with multiple Stückelberg fields.

4.1.1 The Stückelberg Field

The superspace action for the gauged linear sigma model of interest is given by [59]

S =
1

2π

∫
d2xd4θ

[
N∑
i=1

Φ̄ie
V Φi +

k

4
(P + P̄ + V )2 − 1

2e2
Σ̄Σ

]
. (4.1)

The chiral multiplets Φi have unit charge under the U(1) gauge group, and the superfield

Σ is a twisted chiral superfield derived from the vector superfield V [28]. The superfield
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P is also a chiral multiplet with the complex scalar p = p1 + ip2 as its lowest component.

While the field p1 is a real uncharged non-compact bosonic field, the field p2 is compact

with period 2π
√
α′ and we set α′ = 1 as in [59]. The field P is charged under the gauge

group additively. It is a Stückelberg field.

With suitable linear dilaton boundary conditions [59], the theory flows in the infrared

to a conformal field theory which has N = (2, 2) supersymmetry and central charge

c = 3N

(
1 +

2N

k

)
. (4.2)

To lowest order in α′ these conformal field theories are described by a non-linear sigma

model on a 2N -dimensional Kähler manifold which has U(N) isometry and a linear dilaton

along a non-compact direction:

ds2 =
gN(Y )

2
dY 2 +

2

N2gN(Y )
(dψ +NAFS)2 + 2Y ds2

FS ,

Φ = −NY
k

.

(4.3)

The explicit form of gN(Y ) was found in [83].

4.1.2 Multiple Stückelberg Fields

More general gauged linear sigma models exist [59] in which one considers a (U(1))M

gauge theory with N chiral fields Φi with charge Ria under the ath gauge group, and M

Stückelberg fields Pa. The superspace action is a simple generalization of the action in

(4.1):

S =
1

2π

∫
d2xd4θ

[
N∑
i=1

Φ̄ie
∑
aRiaVaΦi +

M∑
a=1

ka
4

(Pa + P̄a + Va)
2 −

M∑
a=1

1

2e2
a

|Σa|2
]
. (4.4)

The gauge transformations under the U(1)M are given by

Φi → ei
∑M
a=1 RiaΛaΦi and Pa → Pa + iΛa . (4.5)

The central charge of the conformal field theory to which this theory flows is given by

c = 3

(
N +

M∑
a=1

2b2
a

ka

)
. (4.6)
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Here, ba is given by the sum over the charges of the chiral multiplets:

ba =
N∑
i=1

Ria . (4.7)

4.2 Elliptic Genus Through Localization

In this section, we compute the elliptic genera of the class of models reviewed in section

4.1. In the Hamiltonian formalism the elliptic genus is given by

χ = TrHR(−1)F qL0− c
24 q̄L̄0− c

24 zJ0 , (4.8)

where L0 and L̄0 are the right-moving and left-moving conformal dimensions in the CFT

respectively and J0 is the zero mode of the right-moving R-charge.

We will evaluate the trace (4.8) in the path integral formalism where the insertion of

(−1)F amounts to imposing periodic boundary conditions for bosonic as well as fermionic

fields. Furthermore, the insertion of zJ0 twists the periodic boundary conditions in a

manner that depends explicitly on the R-charge of the fields.

Exploiting the invariance of the elliptic genus under the renormalization group flow, the

computation can be carried out in the ultraviolet using the super-renormalizable gauged

linear sigma model description [28,50]. The R-charges of the fields in the GLSM can be read

off from the explicit expression for the right-moving R-current in the GLSM realization of

the N = (2, 2) superconformal algebra constructed in [59]. Consequently, we can compute

the elliptic genus by evaluating the partition function of the ultraviolet gauged linear sigma

model with twisted boundary conditions using supersymmetric localization, as has been

done for various compact models in [49–51].

4.2.1 Preliminaries

In what follows we carry out the path integration of the GLSM described by the action

(4.1) with twisted boundary conditions using supersymmetric localization. To avoid clut-

ter, we present the computation for a single chiral multiplet Φ minimally coupled, with

gauge charge qΦ = 1, to a U(1) vector multiplet V which is rendered massive by a single
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Stückelberg superfield P . The generalization to multiple chiral multiplets and multiple

massive vector multiplets is straightforward.

After integrating over the Grassmann odd superspace coordinates, the action (4.1) takes

the form1

S =
i

4π

∫
d2w

(
Lc.m. +

1

2e2
Lv.m. +

k

2
LSt.

)
, (4.9)

where the chiral multiplet, vector multiplet and Stückelberg multiplet Lagrangians are

given by

Lc.m. = φ̄
(
−D2

µ + σσ̄ + iD
)
φ+ F̄F − iψ̄

(
/D − σγ− − σ̄γ+

)
ψ + iψ̄λφ− iφ̄λ̄ψ , (4.10)

Lv.m. = F2 + ∂µσ∂
µσ̄ + D2 + iλ̄/∂λ , (4.11)

LSt. = ḠG+ σ̄σ +Dµp̄D
µp+ iD(p+ p̄)− iχ̄/∂χ− iλ̄χ+ iχ̄λ . (4.12)

By Dµ we denote the gauge covariant derivative which acts canonically on the chiral mul-

tiplet fields while its action on the on the Stückelberg scalar is given by

Dµp = ∂µp− iAµ . (4.13)

The action (4.9) is invariant under N = (2, 2) super-Poincaré transformations generated

by the Dirac spinor supercharges Q and Q̄. The explicit realization of the supersymmetry

algebra on the fields can be found in appendix 4.A.

Localization supercharge

To compute the elliptic genus via supersymmetric localization we choose the supercharge

Q = −Q1 − Q̄1 , (4.14)

whose action on the fields is parametrized by the Grassmann even spinors

ε = ε̄ =

(
1

0

)
. (4.15)

This supercharge satisfies the algebra

Q2 = −2i∂w̄ + 2iδG(Aw̄) (4.16)

1Note that the volume form in the complex coordinates {w, w̄} takes the form d2x = i
2d2w.
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where δG denotes a gauge transformation. One can easily show that the vector multiplet

and chiral multiplet Lagrangians are, up to total derivatives, Q-exact, i.e.

Lv.m. = QVv.m. + ∂µJ
µ
v.m. ,

Lc.m. = QVc.m. + ∂µJ
µ
c.m. .

(4.17)

The explicit form of Vv.m. and Vc.m. can be found in appendix 4.B.

In contrast to the vector and chiral multiplets, the action governing the dynamics of the

Stückelberg field P is not globally Q-exact2 [59]. This must be the case since the coefficient

of the P -field action, k, appears explicitly in the expression for the central charge (4.2).

Therefore to obtain the contribution from the Stückelberg multiplet to the path integral

via supersymmetric localization, a non-degenerate and globally Q-exact deformation term

would need to be constructed. This, however, is not necessary since the Stückelberg La-

grangian (4.12) is quadratic, leading to a Gaussian path integral which can be explicitly

carried out.

Consequently, exploiting the Q-exactness of the vector multiplet and chiral multiplet

Lagrangians, we may rescale them independently by positive real numbers leaving the

path integral invariant. While rescaling the chiral multiplet amounts to the replacement

Lc.m. → tLc.m., rescaling the vector multiplet Lagrangian is equivalent to rescaling of the

Yang-Mills coupling e. In particular, we may compute the path integral in the large t

and 1/e2 limit, keeping the product te2 finite. The saddle-point approximation is one-loop

exact.

R-charges and twisted boundary conditions

In order to compute the path integral corresponding to the elliptic genus (4.8), we need to

identify the charge assignments of the GLSM fields under the right moving R-symmetry.

Using the explicit expression [59] for the corresponding current

jRw = −i
[
ψ̄1ψ1 +

k

2
χ̄1χ1 +

i

e2
σ̄∂σ − iDw(p− p̄)

]
,

jRw̄ = −i
[

1

2e2
λ̄2λ2 +

i

e2
σ̄∂̄σ − iDw̄(p− p̄)

]
,

(4.18)

2Locally, one can write the Stückelberg action as QΛ, however, one can check that Λ does not fall off

fast enough near infinity to be in the Hilbert space of the theory.
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yields the charge assignments

qRσ = qRλ2
= qRψ1

= qRχ1
= 1 , (4.19)

and the opposite charge for the barred fields. The zero mode of p2 also carries R-charge,

equal to − 1
k
. In addition to the dynamical fields, supersymmetry also fixes the R-charges

of the auxiliary fields to be qF = qG = 1.

The R-charges above determine the boundary conditions that need to be imposed on

the GLSM path integral3. Equivalently, the boundary conditions can be implemented via

weakly gauging the right moving R-symmetry. This amounts to turning on a background

gauge-field

aR =
v

2iτ2

(dw − dw̄) , (4.20)

for the R-symmetry with the constant parameter v satisfying z = e2πiv. Note that only

the boundary condition along one cycle of the torus is affected; this will also ensure a

holomorphic dependence on the variable z. The background gauge field is incorporated

into the theory via gauge covariantization

∂µ → ∂µ − δR(aR) . (4.21)

Gauge fixing and supersymmetric Faddeev-Popov ghosts

To impose the Lorentz gauge ∂µA
µ = 0 in the path integral in a supersymmetric way,

we introduce the Grassmann odd BRST operator QBRST, the gauge fixed localization

supercharge Q̂ = Q + QBRST and the ghost and anti-ghost doublets {c, a◦} and {c̄, b}
such that

QBRST = δG(c) ,

Q2
BRST = δG(a◦) ,

Q̂2 = −2i∂̄ + 2iδR(aR) + 2iδG(a◦) .

(4.22)

This fixes the supersymmetry transformations of the ghost and anti-ghost fields up to field

redefinitions4. Note that the vector and chiral multiplet Lagrangians are also Q̂ exact by

3This is the method followed in [53] for the gauged Wess-Zumino-Witten model that describes the cigar

conformal field theory.
4See appendix 4.B for details.
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virtue of the gauge invariance of Vv.m. and Vc.m.. We further add to the action the Q̂-exact

gauge fixing term

1

2e2
Q̂VG.F. =

1

2e2

[
(∂µA

µ)2 + (i∂µA
µ + b/2)2 − c̄∂2

µc− ic̄∂̄
(
c̄+ 2λ1 + 2λ̄1

)
− ib◦b− ic̄◦c+ ic̄c◦ − b̄◦ (a◦ − 2iAw̄)

]
,

(4.23)

where we have introduced the constant ghost doublets {b◦, c◦} and {b̄◦, c̄◦} in order to

remove the ghost zero-mode4.

4.2.2 Evaluation of the Path Integral

The path integral that we are interested in takes the form

χ =

∫
D[Φ, V, C, P ]e−SSt.− i

4π

∫
d2wQ̂V (4.24)

where

V = tVc.m. +
1

2e2
(Vv.m. + VG.F.) ≡ tVc.m. +

1

2e2
VG.F.

v.m. . (4.25)

As explained in section 4.2.1, the Q̂-exactness of Q̂V ensures that the path integral is

independent of the couplings t and e. We may therefore carry out the path integration in

large t and 1/e2 limit, while keeping te2 finite, where the saddle-point approximation is

valid.

Consequently, we first have to extract the space of saddle points of Q̂V which we denote

by M. Explicitly, the chiral multiplet and the gauge fixed vector multiplet terms in Q̂V
are given by

Q̂Vc.m. = F̄F +Dµφ̄Dµφ+ φ̄(σ̄σ + iD)φ− 2iψ̄2Dwψ2 + 2iψ̄1(Dw̄ − iaRw̄)ψ1

+ iψ̄2σ̄ψ1 − iψ̄1σψ2 + iφ̄(λ̄1ψ2 − λ̄2ψ1)− i(ψ̄1λ2 − ψ̄2λ1)φ ,

Q̂VG.F
v.m. = ∂µAν∂µAν + D2 + b̃2 + (∂µ + iaµR)σ̄(∂µ − iaRµ )σ − ib◦b− b̄◦ (a◦ − 2iAw̄)

− 2iλ̄1∂̄λ1 + 2iλ̄2(∂ − iaRw)λ2 + ∂µc̄∂µc− ic̄∂̄
(
c̄+ 2λ1 + 2λ̄1

)
− ic̄◦c+ ic̄c◦ ,

(4.26)

where b̃ = b/2 + i∂µA
µ. Before we look for the space of saddle points M, note that the

constant ghost multiplet fields {c◦, c̄◦, b◦, b̄◦} appear as Lagrange multipliers and can be
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integrated out. This yields a delta function for the ghost zero-modes effectively removing

them from the spectrum. The only remaining fermionic zero-mode is λ1 = λ0, whereas the

space of bosonic zero modes can be identified with the first De Rham cohomology of the

torus and can be parametrized by a constant parameter u as

A =
ū

2iτ2

dw − u

2iτ2

dw̄ . (4.27)

We remark that the bosonic superpartner of the fermionic zero-mode λ0 is the constant

mode of the vector multiplet auxiliary field, D0, and has to be treated separately. The space

of saddle-points is therefore parametrized by {D0, u, ū, λ0, λ̄0}. We normalize all bosonic

and fermionic zero modes to have unit norm when Gaussian wavefunctions are integrated

over the torus worldsheet. With this in mind, the partition function (4.24) reduces to the

Gaussian path integral

χ =

∫
d2u

2iτ2

∫
dD0

∫
d2λ0

∫
D[P ]

∫
D̂[eV, eC, t−1/2Φ]e−SSt.|M− i

4π

∫
d2wQ̂V|quad M (4.28)

where D̂[eV, eC, t−1/2Φ] denotes the path integral measure with the zero-modes removed.

Here Q̂V|quad M is the quadratic action for the fluctuations of order e and order t−1/2 for the

vector multiplet and chiral multiplet fields respectively. The integral over u is performed

over the whole of the complex plane. The origin of this plane is on the one hand the torus

of holonomies of the gauge field, and on the other hand the winding modes of the compact

boson p2 (the imaginary part of the Stückelberg field) on the toroidal worldsheet. The

latter can be soaked up into the holonomy variable u such that the integral indeed covers

the complex plane once.

The Stückelberg Lagrangian evaluated on the saddle points M is given by

LSt.

∣∣∣
M

= |G|2 + 4|∂p1|2 + 4

(
∂p2 −

ū− v/k
2iτ2

)(
∂̄p2 −

u− v/k
2iτ2

)
+ 2iχ̄1(∂̄ +

v

2τ2

)χ1 − 2iχ̄2∂χ2 + 2iDp1 + iχ̄2λ0 + iλ̄0χ2 .

(4.29)

Note that the kinetic term for the Stückelberg multiplet is not canonically normalized due

to the factor of k out front in equation (4.9). To this end we rescale each field in the

Stückelberg multiplet by
√
k. This allows us to define a canonical measure in the path

integral. With this rescaling, a few things have to be kept in mind: firstly, the periodicity
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of the imaginary part of the Stückelberg field, p2, becomes 2π
√
k. Secondly, the quadratic

terms involving the zero-modes of the vector multiplet fields acquire an overall factor
√
k.

The first integral to carry out is over the fermionic zero modes. To perform this integral,

we isolate all the terms that depend on λ0:∫
d2λ0e

1
4π

∫
d2w(φ̄λ̄0ψ2+ψ̄2λ0φ+

√
kχ̄2λ0+

√
kλ̄0χ2) . (4.30)

We pause here to point out an important difference with earlier calculations of the elliptic

genera of gauged linear sigma models [49–51]. This involves the coupling of the gaugino

zero modes with the fermionic partners χ2 of the Stückelberg field p. In the path integral

over the P multiplet, we also have to soak up the fermionic zero modes of χ2, as can be

seen from the Lagrangian in (4.29). Therefore, on expanding the zero mode part of the

Lagrangian, the only term that contributes is the quartic term in the fermions and that

leads to a factor of k.

In the models with only chiral and vector multiplets [51], one obtains rather a four-point

correlator involving the chiral multiplet fields. The further coupling to the P -multiplet

determines the fact that another correlator is to be evaluated in the chiral multiplet sector,

which turns out to be just 〈1〉. The only coupling between the Stückelberg multiplet and

the vector multiplet that remains is the coupling to the zero mode of the auxiliary field

D. Separating out this integral, the result of doing the λ0 and χ0 zero mode integrals we

obtain

χ = k

∫
d2u

2iτ2

∫
dD0

∫
D̂[P ]e−

∫
d2wLSt.|λ0=λ̄0=0 〈1〉free , (4.31)

where the expectation value is in the chiral and vector multiplet sector and the hat indicates

that the fermionic zero mode of the P -multiplet is excluded in the path integral. The free

partition function is well known and is given by [50]

〈1〉free = χv.m. χc.m., (4.32)

where these are given by5

χv.m. =
d̂et(∂̄)

det(∂̄ + v
2τ2

)
and χc.m. =

det(∂̄ + u+v
2τ2

)

det(∂̄ + v
2τ2

)
. (4.33)

5Strictly speaking we should write Pfaffians for the fermionic path integrals.
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See Appendix 4.C for the explicit evaluation of the chiral multiplet contribution. The

vector multiplet contribution will naturally combine with the Stückelberg fields. Turning

to the latter, we have a product of functional determinants ∆i for each of the component

fields. For the field χ2, it is given by

∆̂χ2 = d̂et(∂) . (4.34)

The hat over the χ2 determinant denotes that the zero mode has been removed. The χ1

fermion is charged under the R-current and leads to

∆χ1 = det(∂̄ +
v

2τ2

) . (4.35)

Let us consider the field p1, the real part of p. It has a bosonic zero mode and has to be

treated carefully. Taking care of the coupling of p1 to the auxiliary field D0, we find that∫
dD0 ∆p1 =

∫
dD0

∫
D[p1]e

∫
d2w[−D2

0+4p1(∂∂̄)p1−2i
√
kD0p1]

=
1

(d̂et(∂∂̄))
1
2

∫
dD0

∫
dp1,0e

−
∫
d2w(D2

0+2i
√
kD0p1,0)

=
1√
k

1

(d̂et(∂∂̄))
1
2

(4.36)

Therefore, up to constant factors up front we obtain just the square root of the inverse

determinant. The last component field left is the imaginary part p2 of the Stückelberg

field. This is a periodic variable with period 2π
√
k, on account of the earlier rescaling. It

is only the zero mode of this field that is charged under the gauge field and the R-current

while the non-zero modes are uncharged. The partition function for such a field has been

reviewed in [53] and is given by

∆p2 =

√
k

(d̂et(∂∂̄))
1
2

× e−
πk
τ2

(u− v
k

)(ū− v
k

)
. (4.37)

The factor of
√
k arises from the radius of the compact direction [84]. Note that this

contribution is not holomorphic. The non-holomorphicity arises from the momentum and

winding modes along the compact direction. The Stückelberg field therefore contributes a

factor

χSt. =
det(∂̄ + v

2τ2
)

d̂et(∂̄)
e
−πk
τ2

(u− v
k

)(ū− v
k

)
. (4.38)
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A crucial point to note is that non-zero modes of the P multiplet have combined to produce

exactly the inverse of the contribution from the vector multiplet. This is as expected from

the supersymmetric Higgs mechanism. Combining all of the above factors, we find that

the path integral takes the form

χ(τ, v) = k

∫
d2u

2iτ2

χc.m.(τ, u, v) e
− kπ
τ2

(u− v
k

)(ū− v
k

)
. (4.39)

Using the results in Appendix 4.C, one can write this as

χ(τ, v) = k

∫
d2u

2iτ2

θ11(τ, u+ v)

θ11(τ, u)
e
− kπ
τ2

(u− v
k

)(ū− v
k

)
. (4.40)

Shifting the holonomy variable u by v
k

and using the rewriting the u-integral in terms of

the variables (s1, s2) and momentum and winding numbers6 (m,w), we obtain

χ(τ, v) = k

∫ 1

0

ds1

∫ 1

0

ds2
θ11(τ, s1τ + s2 + v)

θ11(τ, s1τ + s2)

∑
n,m

e2πinve
− kπ
τ2
|(n+s1)τ+s2+m+ v

k
|2
e2πiv2(m+s2+ v

k
+τ(n+s1)) .

(4.41)

This is the elliptic genus of the cigar conformal field theory [53], here exhibited in the form

valid for complexified chemical potentials [85].

4.2.3 Elliptic Genera for GLSMs with Multiple Chiral Fields

From the discussion in the preceding section, and especially equation (4.39), it is clear how

to obtain the elliptic genera of the models with more chiral multiplets. The interaction

Lagrangian that couples the Stückelberg field to the vector multiplet remains the same;

therefore the discussion regarding the fermionic zero modes also remains the same. Con-

sequently the correlator to be calculated in the chiral multiplet path integral continues to

be the identity. Therefore, we include the free partition function of a chiral multiplet in

equation (4.70) for each of the N chiral multiplets. The only difference is in the R-charge

of the Stückelberg field; from the discussion in [59], it is clear that the R-charge is given

by −N
k

.

6A note about ranges: in [53], the conventions are such that the gauge holonomy variables (s1, s2) take

values between 0 and 1. It is possible to combine them along with the winding and momentum quantum

numbers (n,m) to obtain a complex holonomy variable u which takes values on the complex plane.
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Putting all this together the path integral therefore is given by

χ(τ, v) = k

∫
d2u

2iτ2

[
θ11(τ, u+ v)

θ11(τ, u)

]N
e
− kπ
τ2

(u−Nv
k

)(ū−Nv
k

)
. (4.42)

This is precisely the elliptic genus that was proposed in [86], on the basis of its modular

and elliptic properties as well as its coding of wound bound states [54] in the background

spacetime in (4.3). All properties are consistent with it being the elliptic genus of a

conformal field theory with central charge c = 3N(1+2N/k). Indeed, we have now derived

this fact from first principles, through localization. As shown in [53,86], it is also possible

to define a twisted elliptic genus by including chemical potentials for global symmetries;

in this case these are the U(1)N phase rotations of each of the chiral multiplet fields Φi.

The resulting twisted genera take the form

χ(τ, v, βi) = k

∫
d2u

2iτ2

N∏
i=1

[
θ11(τ, u+ v + βi)

θ11(τ, u+ βi)

]
e
− kπ
τ2

(u−Nv
k

)(ū−Nv
k

)
. (4.43)

These twisted genera were decomposed in holomorphic and remainder contributions in [86].

We refer to [86] for the calculation of the shadow and an interpretation of the remainder

term in terms of the asymptotic geometry.

4.2.4 Elliptic Genera for GLSMs with Multiple Stückelberg Fields

In subsection 4.1.2 we discussed gauged linear sigma models with gauge groups U(1)M and

M Stückelberg fields. We specified the gauge charges Ria of all the chiral fields. In order

to write the formula for the elliptic genus, we need the R-charges of the component fields

as well. These can be read off from the R-current recorded in [59]. The fermions have unit

R-charge while the zero mode of the Pa field has charge − ba
ka

, where ba is given in equation

(4.7). Using the same logic as before, one can write down the elliptic genus of such a theory

as an integral over the M holonomies of the U(1)M gauge theory:

χ(τ, v) =

∫ M∏
a=1

ka
d2ua
2iτ2

N∏
i=1

[
θ11(τ,

∑M
a=1 Riaua + v)

θ11(τ,
∑M

a=1Riaua)

]
e
−

∑M
a=1

kaπ
τ2

(ua− baka v)(ūa− baka v)
. (4.44)

One can further generalize this result by including chemical potentials for global sym-

metries of the model. It would also be interesting to analyze the decomposition of this

formula in terms of holomorphic contributions and non-holomorphic terms that modularly

covariantize the contributions of right-moving ground states, following [53,57,58,86]
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Appendix

4.A Supersymmetry variations and Lagrangians

In this appendix we record Lagrangians and supersymmetry variations of the fields. We

follow the notations and conventions of [37] regarding spinors and gamma matrices. We

choose a basis such that the two-dimensional γµ matrices coincide with the Pauli matrices

σ1,2. The chirality matrix is given by

γ3 = −iγ1γ2 = σ3 . (4.45)

This allows to define projection operators

γ± =
1

2
(1± γ3) , (4.46)

which we will use in the supersymmetry variations below. With this choice, if we consider

a two component Dirac spinor λ, with

λ =

(
λ1

λ2

)
, (4.47)

then the components λ1 and λ2 have definite chirality ±1 respectively.
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4.A.1 Vector Multiplet

The vector multiplet supersymmetry transformations are given by

δσ = ε̄γ−λ− εγ+λ̄

δσ̄ = ε̄γ+λ− εγ−λ̄
δλ = i

(
/∂σγ+ + /∂σ̄γ− + γ3F + iD

)
ε

δλ̄ = −i
(
/∂σγ− + /∂σ̄γ+ − γ3F + iD

)
ε̄

δAµ = − i
2

(
ε̄γµλ+ εγµλ̄

)
δD = − i

2

(
ε̄/∂λ− ε/∂λ̄

)
.

(4.48)

The Lagrangian governing the dynamics of the vector multiplet fields may be written as

Lv.m. =
1

2e2

(
F2 + ∂µσ∂

µσ̄ + D2 + iλ/∂λ̄
)
. (4.49)

4.A.2 Chiral Multiplet with Minimal Coupling

The supersymmetry transformations for a chiral multiplet with minimal coupling to the

vector multiplet are

δφ = ε̄ψ

δφ̄ = εψ̄

δψ = i
(
/Dφ+ σφγ+ + σ̄φγ−

)
ε+ ε̄F

δψ̄ = i
(
/Dφ̄+ φ̄σγ− + φ̄σ̄γ+

)
ε̄+ εF̄

δF = i (Dµψγ
µ + σψγ+ + σ̄ψγ− + λφ) ε

δF̄ = i
(
Dµψ̄γ

µ + ψ̄σγ− + ψ̄σ̄γ+ − φ̄λ̄
)
ε̄ ,

(4.50)

and the corresponding Lagrangian is given by

Lc.m. = φ̄
(
−D2

µ + σσ̄ + iD
)
φ+ F̄F − iψ̄

(
/D − σγ− − σ̄γ+

)
ψ + iψ̄λφ− iφ̄λ̄ψ . (4.51)
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4.A.3 Chiral Multiplet with Stückelberg Coupling

The Stückelberg field is coupled to the gauge field via the covariant differentiation

Dµp = ∂µp− iAµ . (4.52)

The supersymmetry transformations then take the form

δp = ε̄χ

δp̄ = εχ̄

δχ = i
(
/Dp+ σγ+ + σ̄γ−

)
ε+ ε̄G

δχ̄ = i
(
/Dp̄+ σγ− + σ̄γ+

)
ε̄+ εḠ

δG = −i (∂µψγ
µ + λ) ε

δḠ = −i
(
∂µψ̄γ

µ − λ̄
)
ε̄ ,

(4.53)

and the Lagrangian is given by

LSt. = k
(
ḠG+ σ̄σ +Dµp̄D

µp− iχ̄/∂χ− iλ̄χ+ iχ̄λ+ iD(p+ p̄)
)
. (4.54)

4.B Deformation Lagrangian

In this appendix, we discuss the supersymmetry variations of the fields under the localiza-

tion supercharge, the exactness of various Lagrangians, as well as the technical subtleties

in the localization scheme due to the gauge invariance of the model.

4.B.1 Vector Multiplets and Chiral Multiplets

The supersymmetry transformation of the vector and chiral multiplet fields, including the

background R-current, take the form

Qσ = −λ2

Qσ̄ = λ̄2

QAw = i(λ1 + λ̄1)/2

QAw̄ = 0

QD = i∂̄(λ1 − λ̄1)

Qλ2 = 2i(∂̄ − iaRw̄)σ

Qλ̄2 = −2i(∂̄ + iaRw̄)σ̄

Qλ1 = iF −D

Qλ̄1 = iF + D

QF = −∂̄(λ1 + λ̄1)

(4.55)
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and

Qφ = −ψ2

Qφ̄ = −ψ̄2

Qψ1 = F + iσφ

Qψ̄1 = F̄ + iφ̄σ̄

Qψ2 = 2iDw̄φ

Qψ̄2 = 2iDw̄φ̄

QF = −2i(Dw̄ − iaRw̄)ψ1 + iσψ2 + iλ2φ

QF̄ = −2i(Dw̄ + iaRw̄)ψ̄1 + iψ̄2σ̄ − iφ̄λ̄2 .

(4.56)

It is straightforward to check that the Lagrangian of the vector and chiral multiplets,

including the background R-current couplings, is Q-exact: if L̃ = Lv.m. + Lc.m., then

L̃ = QV where

V = Vv.m. + Vc.m. , (4.57)

and

Vv.m. =
1

4g2

[
λ̄1(D− iF)− λ1(D + iF) + 2iλ̄2 (∂ − iaRw)σ − 2iλ2 (∂ + iaRw)σ̄

]
, (4.58)

Vc.m. =
1

2

[
ψ̄1(F − iσφ) + (F̄ − iφ̄σ̄)ψ1 − 2iψ̄2Dwφ− 2iDwφ̄ ψ2 − iφ̄(λ1 − λ̄1)φ

]
. (4.59)

4.B.2 Gauge Fixing and Ghosts

To implement the gauge fixing condition we define the (Grassmann odd) BRST operator

QBRST and the ghost multiplet {c, a} such that

QBRST = iqGc

Q2
BRST = iqGa .

(4.60)

To fix the supersymmetry transformation rules for the ghost multiplet, we require that the

supercharge Q̂ = Q+QBRST satisfy the algebra

Q̂2 = −2i∂̄ − 2qRa
R
w̄ − 2qGa . (4.61)

This requires the ghost field c to transform as

Q̂c = a− 2iAw̄ , (4.62)

while the bosonic superpartner of the ghost field, a, must be supersymmetric, i.e. Q̂a = 0.

We next define the anti-ghost multiplet {c̄, b} and the constant (zero-mode) multiplets
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{a◦, c◦} and {c̄◦, b◦} and add to our deformation term the gauge fixing terms

Q̂VG.F. =
1

2
Q̂
(
c̄G − i

4
c̄b− c̄a◦ + b◦c

)
=

1

2

(
G2 + (iG + b/2)2 − c̄Q̂G − i

2
c̄∂̄c̄+ iba◦ − ic̄c◦ + ic̄◦c+ b◦(a− 2iAw̄)

)
,

(4.63)

where we have used the supersymmetry transformations

Q̂c̄ = ib

Q̂b = −2∂̄c̄

Q̂c◦ = 0

Q̂a◦ = ic◦

Q̂c̄◦ = 0

Q̂b◦ = ic̄◦ .
(4.64)

In Lorentz gauge, the ghost deformation term therefore has the form

Q̂VG.F. =
1

2

(
(∂µA

µ)2 + (b/2 + i∂µA
µ)2 − 4c̄∂∂̄c− ic̄∂̄

(
c̄+ 2λ1 + 2λ̄1

)
+ iba◦ − ic̄c◦ + ic̄◦c+ b◦(a− 2iAw̄)

)
.

(4.65)

4.C Product representation of theta functions

In this appendix, we record some formulas for calculating functional determinants of free

fields with twisted boundary conditions on the torus, and their representation in terms of

θ functions. The free (twisted) path integral of the chiral multiplets which we encountered

in the main text can be put in the form

χc.m. =
det(∂̄ + u+v

2τ2
)

det(∂̄ + u
2τ2

)
(4.66)

We will diagonalize these differential operators on the torus by using the following infinite

set of functions:

fr,s(w, w̄) =
1

2iτ2

((r + sτ)w̄ − (r + sτ̄)w) , (4.67)

where r, s ∈ Z. One can check that Ψr,s = eifr,s is single valued under the transformations

w → w + 2π w → w + 2πτ . (4.68)
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Using this basis, it is clear that the ratio of determinants takes form of an infinite product

χc.m. =
u+ v

v

∏
{r,s}6={0,0}

((r + sτ) + u+ v)

((r + sτ) + u)
. (4.69)

The factor out front can be absorbed by including the (r, s) = (0, 0) in the infinite product.

One can check explicitly that this is a Jacobi form with a given weight and index. Using

this knowledge, one can rewrite the expression as

χc.m. =
∏
{r,s}

((r + sτ) + u+ v)

((r + sτ) + u)
=
θ11(τ, u+ v)

θ11(τ, u)
. (4.70)

Similar formulae are also used in [50].
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Chapter 5

Conclusion and Future Directions

In this dissertation we have performed exact computations in two dimensional N = (2, 2)

supersymmetric gauge theories. We have computed the exact sphere partition function

for GLSMs with SU(2|1)A symmetry and demonstrated that the partition function admits

two equivalent representations. In the Coulomb branch of the sphere partition function for

these theories, we integrate over the Cartan subgroup of the gauge group and sum over the

overall Dirac monopole configurations. The integration may be carried out by closing the

contour in a suitable way leading to a double sum representation of the partition function.

Moreover, this expression can be shown to factorize into product of vortex and anti-vortex

partition functions obtained by Shadchin [68]. We have shown that this expression can

be obtained directly via localizing the path integral to the Higgs branch which consists

of vortex and anti-vortex configurations localized at the north and the south poles of

the sphere. We have also computed the exact sphere partition function for GLSMs with

SU(2|1)B symmetry. The partition function localizes to the Higgs branch of the theory

which is generically a Kähler quotient manifold.

In the light of the conjecture by Jockers et. al. [38] which was later proved by Gomis and

Lee [39], our results provide a purely gauge theoretic derivation of the Kähler potentials

on the Kähler moduli and the complex structure moduli of Calabi-Yau 3-folds. This

derivation does not rely on mirror symmetry and was used in [38] to compute the exact

Kähler potential for the Kähler moduli of Calabi-Yau manifolds which do not have known

mirrors. Using the prescription in [38] one can extract the Gromov-Witten invariants

from the Kähler potential on the Kähler moduli of any Calabi-Yau 3-fold whose GLSM
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description is known. These invariants encode all worldsheet instanton corrections in the

infrared CFT. Our results also pave the road to search for new mirror manifolds. Mirror

symmetry maps the Kähler potential on the Kähler moduli of a Calabi-YauM to the Kähler

potential on the complex structure moduli of the mirror Calabi-Yau W . The corresponding

SU(2|1)A and SU(2|1)B invariant GLSM sphere partition functions obey

ZA(M) = ZB(W ) , ZA(W ) = ZB(M) . (5.1)

Our results have many applications to dualities among GLSMs including Seiberg duality,

and correspondence with Toda CFTs. Some early results in these directions were presented

in1 [37] and are developed further in [69].

An interesting application of our results has been in [87] where the hemisphere parti-

tion function of the SU(2|1)A invariant GLSMs are computed. The hemisphere partition

function is shown to compute the central charge of a D-brane. It would be quite interesting

to extend this result to SU(2|1)B invariant GLSMs.

Another interesting direction to pursue is to study spherical surface defects of gauge

theories in higher dimensions. It is then possible to couple the gauge theories constructed

here in a supersymmetric fashion to supersymmetric gauge theories in the ambient space.

For instance, inserting such surface defects in N = 2 gauge theories on a four dimensional

sphere may help developing the gauge theory/Toda CFT correspondence further.

In the last chapter, we have shown that in the presence of Stückelberg superfields, we

can still fruitfully apply the technique of localization. The dynamics determines the ob-

servable to be calculated by localization in the chiral and vector multiplet sectors. We have

demonstrated that the appearance of extra fermionic zero modes simplifies the observable

to be calculated. After applying localization to the chiral and vector multiplet sectors, we

are left with a Gaussian integration in the Stückelberg sector. Performing this path inte-

gral, one finds that the non-zero modes of the Stückelberg multiplet cancel the contribution

from the vector multiplet, as one would expect from the supersymmetric Higgs mechanism.

We thereby have a derivation of the elliptic genera of gauged linear sigma models from first

principles. The associated models are non-compact and the elliptic genera are real Jacobi

forms.

We were thus able to prove, from first principles, a formula for elliptic genera of asymp-

totic linear dilaton spaces conjectured in [86]. Moreover, we have generalized this formula

1Some results on Seiberg duality were also presented in [40].
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to abelian gauge theories in two dimensions with multiple Stückelberg fields.

These models appear in the context of mirror symmetry in two dimensions [27,32] and

in the worldsheet description of wrapped NS5 branes [60]. It will be interesting to verify

mirror symmetry at the level of the elliptic genera. Verifications of mirror symmetry in

tensor products and orbifolds of the cigar conformal field theory and minimal models were

performed in [88]. In order to check the mirror duality for the genera computed in this

here, one has to calculate elliptic genera of non-compact Landau-Ginzburg models and

their orbifolds more generally then has been done hitherto.

Applying the calculation of these worldsheet indices to space-time string theory BPS

state counting, along the lines of [89–92], would be a further worthwhile endeavour. It

would also be interesting to find examples of non-holomorphic elliptic genera in higher

dimensions, perhaps by the addition of Stückelberg fields. Since the phenomenon of non-

holomorphic contributions to indices is generic for theories with continuous spectra, higher

dimensional manifestations are likely to be found.

It would also be quite interesting to generalize the work on sphere partition functions

to GLSMs with Stückelberg fields.
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Appendix B

Notations and Conventions

We use the following conventions for indices:

µ, ν, · · · = 1, 2 coordinate indices on S2

µ̂, ν̂, · · · = 1̂, 2̂ tangent space indices

α, β, γ, · · · = 1, 2 Dirac spinor indices

m,n, p = 1, 2, 3 indices for SU(2) generators

B.1 S2 Conventions

We work in polar coordinates (x1, x2) = (θ, ϕ) where the metric on S2 can be written as

ds2 = r2
(
dθ2 + sin2 θdφ2

)
. (B.1)

The canonical choice of orientation is

ε12 =
√
h ε1̂2̂ = r2 sin θ , (B.2)

with the corresponding volume-form

d2x
√
h = r2 sin θ dθ ∧ dϕ . (B.3)

The simplest choice of zweibein is

e1̂ = rdθ and e2̂ = r sin θ dϕ , (B.4)
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with the spin connection given by

ωµ̂ν̂ = −εµ̂ν̂ cos θ dϕ . (B.5)

By Di we denote the gauge-covariant derivative

Dµ = ∇µ − iAµ , (B.6)

where ∇i is the usual covariant derivative and Ai is the gauge field. The corresponding

curvature is given by

Fµν = εµνFµ̂ν̂ = ∇µAν −∇νAµ − i[Aµ, Aν ] . (B.7)

B.2 Spinors and the Clifford Algebra

Our conventions for spinors are the same as in [93] and are listed below. Let τm denote

the standard Pauli matrices given by

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
. (B.8)

We take our spinors to be anti-commuting Dirac spinors εα. These spinors are acted

on by the γ-matrices defined by

(γm̂) β
α : γm̂ = τm̂ . (B.9)

Evidently, the matrices γµ̂ satisfy the two dimensional Clifford algebra{
γµ̂, γ ν̂

}
= 2δµ̂ν̂ , (B.10)

and γ 3̂ = −iγ 1̂γ 2̂ is the two dimensional chirality matrix.1

The spinor indices are raised and lowered by the (anti-symmetric) charge conjugation

matrix as

εα = Cαβεβ and εα = Cαβε
β , (B.11)

1In terms of the σ and σ̄ matrices introduced in [93], the γ-matrices are given by γmβ
α = i

2ε
mnpσnαα̇σ̄

α̇β
p .
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with the consistency condition

CαγC
γβ = δβα . (B.12)

More explicitly, we take C12 = C21 = 1 and C21 = C12 = −1.

We adapt the Northwest-Southeast convention for the implicit contraction of the spinor

indices, i.e. for two spinors ε and λ we define

ελ ≡ εαλα = λε and εγm̂λ ≡ εα(γm̂) β
α λβ = −λγm̂ε . (B.13)

Note that the γ-matrices with both spinor indices lowered

(γm̂)αβ ≡ Cβδγ
m̂ δ
α , (B.14)

are symmetric and are numerically equal to (−τ3,−i, τ1) for m̂ = (1, 2, 3) respectively.

B.3 Fierz Identities

Let ε̄, λ and ε be anticommuting spinors. The following Fierz identities are used extensively

in our calculations

(ε̄λ)ε+ (λε)ε̄+ (ε̄ε)λ = 0 , (B.15)

(ε̄γm̂λ)γm̂ε+ (ε̄λ)ε+ 2(ε̄ε)λ = 0 . (B.16)
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Appendix C

N = (2, 2) Supersymmetry on S2

C.1 The Superconformal Algebra in the Standard Ba-

sis

The globally defined N = (2, 2) superconformal group in two dimensions is generated

by the bosonic symmetries {J0, L0, L±; J̄0, L̄0, L̄±} and the fermionic generators {G±±; Ḡ±±}
satisfying the (anti-)commutation relations [9][

L0, G
s
±
]

= ∓1

2
Gs
±[

L±, G
s
∓
]

= ±Gs
±[

J0, G
±
s

]
= ±G±s

[Lm, Ln] = (m− n)Lm+n{
G+
±, G

−
±
}

= 2L±{
G+
±, G

−
∓
}

= 2L0 ± J0

[
L̄0, Ḡ

s
±
]

= ∓1

2
Ḡs
±[

L̄±, Ḡ
s
∓
]

= ±Ḡs
±[

J̄0, Ḡ
±
s

]
= ±Ḡ±s[

L̄m, L̄n
]

= (m− n)L̄m+n{
Ḡ+
±, Ḡ

−
±
}

= 2L̄±{
Ḡ+
±, Ḡ

−
∓
}

= 2L̄0 ± J̄0

(C.1)

with all the other (anti-)commutations vanishing. This algebra admits an automorphism

σ whose action on the generators is given by

σ
(
G±±
)

= G∓±, σ(J0) = −J0, σ = 1 otherwise. (C.2)

We shall see below that this is precisely the map between the su(2|1)A and the su(2|1)B
subalgebras.
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C.2 The Superconformal Algebra in the S2 Basis

TheN = (2, 2) superconformal algebra in the S2 basis is spanned by the bosonic generators

Jm, Km, R,A , (C.3)

and the supercharges

Qα, Sα, Q̄α, S̄α . (C.4)

Jm generate the SU(2) isometries of S2 while Km generate the conformal symmetries of

S2. R and A are each a U(1) R-symmetry generator, the first being non-chiral and the

latter being chiral. These generators are related to the standard generators introduced

above via

J1 =
i

2

(
L− + L+ + L̄− + L̄+

)
J2 =

1

2

(
L− − L+ − L̄− + L̄+

)
J3 = L0 − L̄0

R = J0 + J̄0

S =
1√
2

(
G+

+ + iḠ+
−

iG+
− + Ḡ+

+

)
Q =

1√
2

( −iG−+ − Ḡ−−
G−− + iḠ−+

)

K1 = −1

2

(
L− + L+ − L̄− − L̄+

)
K2 =

i

2

(
L− − L+ + L̄− − L̄+

)
K3 = i

(
L0 + L̄0

)
A = −J0 + J̄0

S̄ =
1√
2

(
G−+ + iḠ−−
iG−− + Ḡ−+

)
Q̄ =

1√
2

(
iG+

+ + Ḡ+
−

−G+
− − iḠ+

+

)
(C.5)
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and satisfy the algebra1

{Sα, Qβ} = γmαβJm −
1

2
CαβR [Jm, S

α] = −1

2
γ αβ
m Sβ [R, Sα] = +Sα

{S̄α, Q̄β} = −γmαβJm −
1

2
CαβR [Jm, Q

α] = −1

2
γ αβ
m Qβ [R,Qα] = −Qα

{Qα, Q̄β} = γmαβKm −
i

2
CαβA [Jm, Q̄

α] = −1

2
γ αβ
m Q̄β [R, Q̄α] = +Q̄α

{Sα, S̄β} = γmαβKm +
i

2
CαβA [Jm, S̄

α] = −1

2
γ αβ
m S̄β [R, S̄α] = −S̄α

[Jm, Jn] = iεmnpJ
p [Km, S

α] = −1

2
γ αβ
m Q̄β [A, Sα] = iQ̄α

[Km, Kn] = −iεmnpJp [Km, Q
α] = −1

2
γ αβ
m S̄β [A, Qα] = −iS̄α

[Jm, Kn] = iεmnpK
p [Km, Q̄

α] = −1

2
γ αβ
m Sβ [A, Q̄α] = −iSα

[Km, S̄
α] = −1

2
γ αβ
m Qβ [A, S̄α] = iQα .

(C.6)

This algebra admits a Z2 automorphism, under which

Jm, R,Qα, Sα → Jm, R,Qα, Sα

Km,A, Q̄α, S̄α → −Km,−A,−Q̄α,−S̄α .
(C.7)

The generators {Jm, R, S,Q} form a subalgebra which is the SU(2|1)A algebra

[Jm, Jn] = iεmnpJp [Jm, Qα] = −1

2
γ β
m αQβ [Jm, Sα] = −1

2
γ β
m αSβ

{Sα, Qβ} = γmαβJm −
1

2
CαβR [R,Qα] = −Qα [R, Sα] = Sα ,

(C.8)

which was used in [37]. In addition to this automorphism, the algebra (C.6) inherits the

automorphism σ defined in (C.2). This implies that {σ(Jm), σ(R), σ(S), σ(Q)} given by

σ(Jm) = Jm

σ(R) = A

σ(S) =
S + S̄

2
+ i

Q+ Q̄

2

σ(Q) = −iS − S̄
2

+
Q− Q̄

2

(C.9)

1The generator of the U(1) axial symmetry A used here defers from the one used in [37] by a factor of

i.
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also form the SU(2|1)B subalgebra with the (anti-)commutation relations

[Jm, Jn] = iεmnpJp [Jm, σ(Q)] = −1

2
γmσ(Q) [Jm, σ(S)] = −1

2
γmσ(S)

{σ(S)α, σ(Q)β} = γmαβJm −
1

2
CαβA [A, σ(Q)] = −σ(Q) [A, σ(S)] = σ(S) ,

(C.10)

which is precisely the SU(2|1)B algebra used in [41].

C.3 Weyl Covariantization

The superconformal transformations are easily obtained from the Poincaré supersymmetry

transformations in flat space by demanding that once the flat metric is replaced by a curved

metric, that the supersymmetry transformations are covariant under Weyl transformations.

In this process, the constant supersymmetry parameters of flat space are replaced by

conformal Killing spinors, which obey

∇µε = γµε̃ ∇µε̄ = γµ˜̄ε . (C.11)

Using that the fields and conformal Killing spinors transform with definite weight under a

Weyl transformation

gµν → e2Ω(x)gµν (C.12)

we obtain the required superconformal transformations by imposing Weyl covariance. The

terms that need to be modified in the vector and chiral multiplet flat space supersymmetry

transformations (which can be obtained by dimensionally reducing the four dimensional

N = 1 supersymmetry transformations in [93] to two dimensions) to make them Weyl
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covariant are2

ε̄ /Dλ −→ ε̄ /Dλ− λ /∇ε̄
ε /Dλ̄ −→ ε /Dλ̄− λ̄ /∇ε

/Dσ1,2ε −→ /Dσ1,2ε+ σ1,2 /∇ε
/Dσ1,2ε̄ −→ /Dσ1,2ε̄+ σ1,2 /∇ε̄
/Dφε −→ /Dφε+

q

2
φ /∇ε

/Dφ̄ε̄ −→ /Dφ̄ε̄+
q

2
φ /∇ε̄

/Dψε −→ /Dψε− q

2
ψ /∇ε

/Dψ̄ε̄ −→ /Dψ̄ε̄− q

2
ψ̄ /∇ε̄ ,

(C.13)

where we have used the following Weyl weights w

SUSY vector multiplet chiral multiplet

ε ε̄ Aµ σ1 σ2 λ λ̄ D φ ψ F φ̄ ψ̄ F̄

−1
2
−1

2
0 1 1 3

2
3
2

2 q
2

q+1
2

q+2
2

q
2

q+1
2

q+2
2

where ω is the charge ϕ→ e−wΩ(x)ϕ under the Weyl transformation (C.12).

2The coefficients of the extra terms are fixed by demanding that the combination transforms covariantly

under Weyl transformations and, in general, depend on the Weyl weight of the fields as well as the dimension

of space.

127



In this way, we obtain the two dimensional N = (2, 2) superconformal transformations

for the vector multiplet

δAµ = − i
2

(
ε̄γµλ+ εγµλ̄

)
,

δσ1 =
1

2

(
ε̄λ− ελ̄

)
,

δσ2 = − i
2

(
ε̄γ3̂λ+ εγ3̂λ̄

)
,

δD = − i
2
ε̄
(
/Dλ+ [σ1, λ]− i

[
σ2, γ

3̂λ
])

+
i

2
λ /∇ε̄+

i

2
ε
(
/Dλ̄−

[
σ1, λ̄

]
− i
[
σ2, γ

3̂λ̄
])
− i

2
λ̄ /∇ε,

δλ =
(
iγ 3̂F1̂2̂ − γ 3̂ /Dσ2 + i /Dσ1 − γ 3̂[σ1, σ2]−D

)
ε+ iσ1 /∇ε− σ2γ

3̂ /∇ε,

δλ̄ =
(
iγ 3̂F1̂2̂ − γ 3̂ /Dσ2 − i /Dσ1 + γ 3̂[σ1, σ2] + D

)
ε̄− iσ1 /∇ε̄− σ2γ

3̂ /∇ε̄ ,

(C.14)

and chiral multiplet

δφ = ε̄ψ

δφ̄ = εψ̄

δψ = i
(
/Dφ+ σ1φ− iσ2φγ

3̂ +
q

2
φ /∇
)
ε+ ε̄F

δψ̄ = i
(
/Dφ̄+ φ̄σ1 + iφ̄σ2γ

3̂ +
q

2
φ̄ /∇
)
ε̄+ εF̄

δF = −i
(
Dµψγ

µ + σ1ψ − iσ2ψγ
3̂ + λφ+

q

2
ψ /∇
)
ε

δF̄ = −i
(
Dµψ̄γ

µ + ψ̄σ1 + iψ̄σ2γ
3̂ − φ̄λ̄+

q

2
ψ̄ /∇
)
ε̄ .

(C.15)

The spinors ε and ε̄ serve as the parameters of the superconformal transformations, such

that each independent conformal Killing spinor is associated with one of the supercharges

in the superconformal algebra. On S2, we can take the conformal Killing spinors to satisfy

∇µεs =
s

2r
γµγ

3̂εs and ∇µε̄s̄ =
s̄

2r
γµγ

3̂ε̄s̄ (C.16)
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with s, s̄ = ±. There are four independent solutions to these equations

εs = exp

(
−siθ

2
γ2̂

)
exp

(
iϕ

2
γ 3̂

)
εs◦ , (C.17)

ε̄s̄ = exp

(
−s̄ iθ

2
γ2̂

)
exp

(
iϕ

2
γ 3̂

)
ε̄s̄◦ . (C.18)

parametrized by four independent constant spinors ε±◦ and ε̄±◦ . A general superconformal

transformation is then generated by a linear combination of the supercharges parametrized

as follows

δε+ = ε+◦ γ̃+Q, δε− = ε−◦ γ̃−S̄, δ̄ε̄+ = ε̄+◦ γ̃+Q̄, δ̄ε̄− = −ε̄−◦ γ̃−S (C.19)

where γ̃± satisfy

γ̃± =
1√
2

(
1± iγ3

)
= ±iγ3γ̃∓

γ̃2
+ = −γ̃2

− = iγ3, γ̃+γ̃− = 1 .

(C.20)

Using the conformal Killing spinor equations above, the superconformal algebra is realized

on the vector multiplet fields as

[δε, δε̄]λ = Lvλ+ i [Λ, λ] + i
s− s̄

2
αλ+ i

s+ s̄

2
Θγ 3̂λ− 3i

s+ s̄

2
αλ ,

[δε, δε̄] λ̄ = Lvλ̄+ i
[
Λ, λ̄

]
− is− s̄

2
αλ̄− is+ s̄

2
Θγ 3̂λ̄− 3i

s+ s̄

2
αλ̄ ,

[δε, δε̄]Aµ = (LvA)µ +DµΛ ,

[δε, δε̄]σ1 = Lvσ1 + i [Λ, σ1]− (s+ s̄)Θσ2 − i(s+ s̄)ασ1 ,

[δε, δε̄]σ2 = Lvσ2 + i [Λ, σ2] + (s+ s̄)Θσ1 − i(s+ s̄)ασ2 ,

[δε, δε̄] D = LvD + i [Λ,D]− 2i(s+ s̄)αD ,

(C.21)

and [δε, δε] = [δε̄, δε̄] = 0 on all the fields. Therefore [δε, δε̄] generates a space-time transfor-

mation as well as a gauge transformation, an R and A R-symmetry transformation and a

Weyl transformation. The parameters of these transformations are given by

vµ = iε̄γµε ,

Λ = (ε̄ε)σ1 − i(ε̄γ 3̂ε)σ2 − vµAµ ,

Θ =
1

2r
ε̄ε ,

α = − 1

2r
ε̄γ 3̂ε ,

(C.22)
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where we have omitted the subscript s and s̄ on the spinors. Note that the spacetime

transformation is realized by the Lie derivative on bosonic fields and by the Lie-Lorentz

derivative on the fermions. More explicitly, the Lie-Lorentz derivative along the vector

field ξ is given by

Lv ≡ vµ∇µ +
1

4
∇µ vν γ

µν . (C.23)

The superconformal algebra is realized on the chiral multiplet fields as

[δε, δε̄]ψ = Lvψ + iΛψ + i
s− s̄

2
(1− q)αψ − is+ s̄

2
Θγ 3̂ψ − is+ s̄

2
(q + 1)αψ ,

[δε, δε̄] ψ̄ = Lvψ̄ − iψ̄Λ + i
s− s̄

2
(q − 1)αψ̄ + i

s+ s̄

2
Θγ 3̂ψ̄ − is+ s̄

2
(q + 1)αψ̄ ,

[δε, δε̄]φ = Lvφ+ iΛφ− is− s̄
2

qαφ− is+ s̄

2
qαφ ,

[δε, δε̄] φ̄ = Lvφ̄− iφ̄Λ + i
s− s̄

2
qαφ̄− is+ s̄

2
qαφ̄ ,

[δε, δε̄]F = LvF + iΛF + i
s− s̄

2
(2− q)αF − is+ s̄

2
(q + 2)αF ,

[δε, δε̄] F̄ = LvF̄ − iF̄Λ + i
s− s̄

2
(q − 2)αF̄ − is+ s̄

2
(q + 2)αF̄ ,

(C.24)

where the parameters of the transformations are the same as those for the vector multiplet

fields (C.22).

To obtain the su(2|1)A supersymmetry transformations, we restrict the superconformal

transformations (C.14) and (C.15) we have constructed to those associated with Qα and

Sα, which are parametrized by ε+ and ε̄−. The corresponding realization of the algebra on

the fields is given by (C.21) and (C.24) with s = 1 and s̄ = −1.

On the other hand, in order to obtain the su(2|1)B supersymmetry transformations we

need to restrict the superconformal transformations (C.14) and (C.15) to those associated

with σ(Q) and σ(S). This is equivalent – up to field redefinitions – to realizing the su(2|1)A
algebra on the twisted chiral and twisted vector multiplets. The resulting transformations

are presented in chapter 3.

In the rest of this dissertation, we find it convenient to perform the field redefinition

D → D + σ2/r, after which we obtain the supersymmetry transformations presented in

chapter 2.
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