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Abstract

Motion control for bipedal robots is an active research area because bipedal robots can
perform tasks and work in terrain where wheeled robots cannot. Researchers have devel-
oped bipedal robots that are able to walk, run and perform predefined tasks such as stair
climbing. Mimicking human motion is one of the potential benefits of bipedal robots. In
the robotics and control literature, many controllers have been presented that achieve dy-
namically stable gait motions (i.e. stable walking). This thesis studies virtual holonomic
constraint (VHC) based control laws that generate stable gaits for 2-DOF bipedal robots.

The planar 2-DOF robot under study is modelled as a hybrid automaton and consists
of three physical components: a stance leg, a swing leg and a hip mass. The robot is
actuated by a hip torque and an ankle torque. For the continuous phase, the dynamics
of the robot are similar to a rigid double pendulum except that the robot has an “extra”
mass attached to its hip position. At ground impact events, the system’s configuration
variables are redefined and the associated velocities change instantaneously. The ground
is modelled as an inclined surface with no curvature.

Due to the hybrid nature of 2-DOF bipedal robots, this thesis extends the notion of
VHC to hybrid VHC for a general Euler-Lagrange system with impacts and applies it
to a 2-DOF bipedal robot. For any desired gait of the 2-DOF robot, the motion of the
swing leg can be expressed as a function of the stance leg. Using this function, a hybrid
VHC is generated and the control objective becomes enforcing the hybrid VHC. A design
procedure is developed that returns a feasible hybrid VHC for the 2-DOF bipedal robot.

The concept of VHC motivates the design of feedback linearizing controllers that drive
the states of the robot to a constraint manifold. Feedback linearizing controllers are de-
signed that enforce the hybrid VHC. In this framework, two possible control laws are
presented. The first control law generates a fully actuated robot in closed-loop configura-
tion. Sufficient conditions for stability are given and proven. The second control law yields
an under-actuated system in closed-loop configuration. This control design is shown to
consume no energy as long as the hybrid VHC that models a passive gait is enforced. The
stability of this controller is studied numerically through the method of Poincaré sections.
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Chapter 1

Introduction

Imagine you want to draw a circle on a sheet of paper. You can either do so by using a
guide like, for example, a coin. Otherwise, you can do a free-hand drawing of the circle.
In the former case, you have a physical object that “enforces” the motion of your hand. In
other words, the object constrains the movement of your hand. In the latter, your hand is
physically free to move in any direction on the plane of the paper since there is no physical
constraint acting on the motion. It is still possible to draw the circle in this case because
your brain and motor control system “enforce” your hand to follow the desired shape.
The enforcement by your brain and motor control system can be viewed “as if” a physical
constraint is present. This type of constraint is what we call a “virtual constraint”. Virtual
constraints, unlike physical constraints, can be easily and quickly changed depending on
the application.

In this thesis, the “virtual holonomic constraint” (VHC) approach is taken to dynam-
ically stabilize a 2-degrees of freedom (2-D.O.F.) walking bipedal robot. In simple words,
dynamic stability of walking robots means “stable-while-walking”. The word “holonomic”
simply means that the constraint depends only on the coordinates (i.e. positions) and not
on the velocities.

Following the framework of Teel et al. [1], the 2-DOF bipedal robot under study is
modelled as a “hybrid system”. A hybrid model captures the continuous-time behaviour
of a system as well as its discrete-time behaviour, which makes it a powerful modelling tool
for many real-life systems. Further discussion on hybrid systems is presented in Chapter 2.

This thesis extends the notion of VHC of [2] to “hybrid VHC” for an Euler-Lagrange
system with impacts. Due to the flexibility that virtual constraints based controllers offer,
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a large family of gait “shapes” can be easily achieved. In addition, invariance of these gait
shapes is guaranteed by properly designing a hybrid VHC (Chapter 4).

1.1 Motivation and problem statement

This work is motivated by the idea of passive walkers pioneered by McGeer in early
1990s [3]. The gravitational field is the only source of energy in passive walkers, thus,
generating “free” gaits. These gaits can be viewed as hybrid limit cycles in the state-space
of these systems. However, being an open-loop system, the limit cycles in free gaits have
relatively small regions of attraction. Furthermore, there is no ability to change the stable
motion induced by the gravitational field. This naturally suggests the use of feedback
control to increase the region of attraction and stabilize alternate, non-free, gaits.

The approach taken in this thesis is to view a hybrid limit cycle in the state-space of
a 2-DOF bipedal robot as a constraint imposed between the two legs: stance and swing.
The constraint is modelled as a functional relationship between the configuration variables
of the robot. In general, the functional constraint can be any sufficiently smooth function,
but in practice it is convenient to use constant coefficient polynomials. The functional
constraint defines a subset of the robot’s state space which we call the constraint manifold.
When the system is restricted to evolve on the constraint manifold, the robot follows the
desired gait. The control design problem then reduces to the problem of stabilizing the
constraint manifold. We achieve this objective by using feedback linearization.

Recently, the notion of VHC has been formalized in the literature [2] for continuous-
time Euler-Lagrange systems. Our work differs from [2] on virtual constraints because the
systems we consider are naturally modelled as hybrid systems. Hence we call our con-
straints hybrid virtual holonomic constraints. In this thesis, we define the idea of feasible
hybrid virtual holonomic constraints and introduce a design procedure that systematically
creates feasible constraints that produce desired gaits for a 2-DOF bipedal robots. Finally,
we use feedback linearizing controllers in order to enforce our hybrid VHC yielding two
possible close loop configuration: fully actuated and under-actuated configurations.
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1.1.1 Problem statement

Consider an Euler-Lagrange system with an N -dimensional configuration space1 Q and m
control inputs τ ∈ Rm. The model is given by

d

dt

∂L

∂q̇
− ∂L

∂q
= B(q)τ (1.1)

where L(θ, θ̇) is the Lagrangian function. We assume that L is smooth and has the form
L(q, q̇) = K(q, q̇)−P (q) where K(q, q̇) = (1/2)q̇>M(q)q̇ is the system’s kinetic energy and
P : Q → R is the system’s potential energy. The inertia matrix M(q) is positive definite
for all q ∈ Q. Furthermore, B : Q → RN×m is assumed to be smooth and full rank for all
q ∈ Q. The system can be rewritten in the standard vector form

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ (1.2)

where C(q, q̇) ∈ RN×N represents the centripetal and Coriolis terms and G(q) = ∇P (q) ∈
RN represents the gravitation effects [6]. In this thesis, we assume that Q ' RN . Sys-
tem (1.2) models a very large class of physical systems including the bipedal robots studied
in this thesis.

When a bipedal robot’s feet hit the ground, the dynamical model (1.2) undergoes an
instantaneous change in its states (q, q̇) ∈ Q × RN . We assume single support at impact
instants, i.e. only one leg touches the ground at impacts. This observation motivates us to
define an “impact surface” S ⊂ Q× RN . The impact surface has the property that when
(q, q̇) ∈ S, the states instantaneously change to (q+, q̇+) = J(q, q̇) where J : Q × RN →
Q× RN is smooth. The “+” superscript refers to states just after impact.

These observations motivate us to define special class of hybrid Euler-Lagrange system,
denoted ELH, given by

ELH :

{
M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ, (q, q̇) 6∈ S
(q+, q̇+) = J(q, q̇), (q, q̇) ∈ S.

(1.3)

The topic of virtual holonomic constraints for Euler-Lagrange systems was investigated
in [2]. We recall the definition below.

1 In mechanics, a configuration of an arbitrary object is the specification of the position of every point
in this object relative to a fixed reference frame [4]. A configuration space of a robot is the space of all
configurations of the robot [5].
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Definition 1.1.1 ([2]). A virtual holonomic constraint (VHC) of order k for System (1.2)
is a relation h(q) = 0 where h : Q → Rk is smooth, rank (dhq) = k for all q ∈ h−1(0),
and the set

Γ := {(q, q̇) : h(q) = dhq q̇ = 0} (1.4)

is controlled invariant. That is, there exists a smooth feedback τ(q, q̇) such that Γ
is positively invariant for the closed-loop system. The set Γ is called the constraint
manifold associated with the VHC h(q) = 0. A VHC is stabilizable if there exists a
smooth feedback τ(q, q̇) that asymptotically stabilizes Γ. In this case τ(q, q̇) is said to
enforce the VHC h(q) = 0.

It is convenient to adopt a parametric description of the VHC in which the first k con-
figuration variables are expressed as smooth functions of the remaining N−k configuration
variables

q1 = φ1(qk+1, . . . , qN)

q2 = φ2(qk+1, . . . , qN)

...

qk = φk(qk+1, . . . , qN).

(1.5)

Here, h(q) = col (q1 − φ1(q), . . . , qk − φk(q)). If qk+1, . . . , qN are angular variables, then the
set h−1(0) is an (N −k)-dimensional torus. We are now ready to state the general problem
considered in this thesis.

Hybrid VHC enforcement problem : Given a hybrid Euler-Lagrange system (1.3)
and a virtual holonomic constraint of order k, find if possible, a feedback control law τ(q, q̇)
such that.

(i) The feedback enforces the VHC for the continuous-time dynamics in (1.3) in the
sense of Definition 1.1.1.

(ii) The constraint manifold is invariant under the discrete-time dynamics in (1.3), i.e.,

J (S ∩ Γ) ⊆ Γ. (1.6)

(iii) The dynamics (1.3) restricted to Γ satisfy application specific constraints such as
boundedness, no finite-escape time, trajectory tracking, etc.
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The above problem is quite general. In this thesis we study a specialized version of
the problem applied to a simple bipedal walker. As we show in Chapter 2, the bipedal
walker is a system of the form (1.3) with N = 2, m = 2 and where the impact surface S is
determined by the terrain on which the bipedal robot is walking on. We will consider VHC
of order 1 parameterized as in (1.5). In this case, the function φ1 : R → R that defines
the VHC h(q) = q1 − φ1(q2) will be chosen so that the robot walks with a desired gait.
By changing the function φ1 we can stabilize different “gait shapes” including the shape
associated with passive motion.

1.2 Literature review

Planar 2-DOF bipedal robots have been extensively studied in the literature in both open-
loop and closed-loop configurations. For open-loop configurations, also known as compass-
gaits, the idea of 2-DOF planar passive walking was introduced by McGeer [3]. A passive
2-DOF walker consists of two rigid links connected by a revolute joint at the hip posi-
tion. On gentle slopes, the walker can achieve stable dynamic walking provided its inertial
parameters are designed carefully and it has been given the right “push” initially.

A 2-DOF bipedal robot can be modelled as a hybrid system. This thesis utilizes the
framework of Goebel et al. [1] to model hybrid systems (Chapter 2). In [1], hybrid dynam-
ical systems are generally written as differential and difference inclusions. Reference [7]
also models mechanical Lagrangian systems with frictionless impacts using differential in-
clusions, where the dynamics belong to some admissible set. In their work, they design an
observer for estimating velocities using position measurement for mechanical Lagrangian
systems with frictionless impacts.

As an extension to the idea of passive 2-DOF bipedal robots, kneed passive walkers
were analyzed and built [8]. Using a linear spring at each leg and a torsional spring at
the hip joint, the 2-DOF bipedal robot can accomplish passive running [9]. Figure 1.1
roughly illustrates passive running stages. Stage (a) shows when the walker has landed on
the ground. The compression of the linear spring in the green leg causes the robot to jump
off-ground and enter stage (b). At stage (b), the torsional spring at the hip “corrects” the
position of the legs making the red leg ready to land. Once the red leg lands in stage (c), the
stages (a) − (c) are repeated. Subsequently, further studies on open-loop passive walkers
were carried out by Goswami et al. [10], [11] and [12]. Reference [10] presents detailed
modelling of a compass-gait assuming point-mass model for the two legs. However, our
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(a) (b) (c)

Figure 1.1: Passive runner.

model (Chapter 2) accounts for geometry of the two legs. Bifurcation of hybrid limit cycles
is numerically studied in [12] using the ideas of a Poincaré map and chaos was reported.

Several control methodologies have been developed and applied to bipedal robots. Zero
moment point (ZMP) is one of the earliest attempts in achieving stable gaits. The notion
of ZMP was first explicitly introduced in 1972 [13] and appeared in practice in Japan in
1984. The idea of ZMP requires a robot to have a foot for each leg and can be described as
follows. Consider Figure 1.2, which shows only a foot in equilibrium during single-support
phase. The applied load from the rest of the mechanism reduces to a force and moment
about the center of mass (CoM) acting on the foot, denoted by ~FA and ~MA. The weight

of the foot, ~W , acts at CoM and the reaction (~R and ~M) is applied at P . Physically, the
ground is able to support the foot due to the presence of pressure by the ground on the
foot and the presence of static friction.

The pressure always acts along the vertical direction towards the positive z axis. As
known in mechanics, pressure is a distributed force that acts at all contact points between
the foot and ground. Therefore, the effect of the pressure can be described by a single
vertical force applied at point P , where P being the center of pressure (CoP). Also, the
effect of the friction can described by a force and moment at point P . The combined effect
of pressure and friction is reaction force ~R and reaction moment ~M (Figure 1.2). In static

equilibrium, the pressure balances (i) the vertical component of ~FA (FAz) (ii) horizontal

components of ~MA (MAx and MAy) (iii) the horizontal components of moments induced

by ~FA about CoM. It is noted that an increase in the magnitude of (i), (ii) or (iii) results
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Figure 1.2: All forces and moments acting on foot.

in increasing the distance between CoM and P , i.e. P shifts further. The static friction is
acting on the foot at all ground contact points and lies in the horizontal plane. Its effect
can described by

• the horizontal components of ~R, namely, Rx and Ry, and

• the vertical component of ~M ,namely, Mz.

In static equilibrium, these components balance horizontal components of the applied
forces ~FA, applied moments ~MA and the induced moments by ~FA.
Now, since all the applied forces on the foot are balanced by the reaction components
Rx, Ry, Rz and Mz, static equilibrium implies that

Mx = My = 0 (1.7)

Therefore, the necessary and sufficient condition for the static equilibrium is that the point
P (or called ZMP) must remain inside the foot contact surface. In this case, ZMP ≡ CoP.

ZMP can be viewed as the point where the normal “pressure force” should act in order
to balance all applied vertical forces and horizontal moments. As the normal applied force
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and/or applied horizontal moment on the foot increase, ZMP shifts further from CoM
to balance the effect of the additional load in order to keep the foot statically balanced.
Obviously, the foot contact area may not be large enough to accommodate this point. As
a result, the point P may exist outside the foot contact area and is referred to as fictitious
zero moment point (FZMP) [14]. It becomes clear that if FZMP exists, the foot can no
more support the total applied vertical moments causing a net overturning moment on the
foot. As a final note, FZMP is not equivalent to CoP.

ZMP based controllers ensure that the point P remains within the foot contact area
by calculating pre-defined trajectories for the whole mechanism. Among the drawbacks of
ZMP based controllers is that the calculation of pre-defined trajectories may be compu-
tationally expensive. Adding to that, the larger load on the foot requires larger foot area
in contact with ground. The control approach taken in this thesis assumes point contact
with the ground and does not need any pre-computed trajectories in order to achieve stable
walking (Chapter 4). However, the bipedal robot model in this thesis assumes the presence
of ankle torque and, hence, requires feet (Chapter 2). For all closed-loop configurations
presented in this thesis, the ZMP is shown through simulation to stay within a reasonable
range.

Several control designs have been developed that do not rely on pre-computed trajec-
tories. Asano et al. proposed “virtual passive” walking on level ground [15]. The idea is
as follows. Consider a 2-DOF passive bipedal robot. Although no applied torque is acting,
the force by gravity (which is conservative) applies “virtual” torques at the joints, denoted
by τg. The expression of τg is straightforward to evaluate and is explicitly shown in [15],
which depends on the current states of the robot. Now, to make this robot walk actively
on level-ground, τg is applied at the ankle and hip positions mimicking the effect of a vir-
tual gravity field. This approach avoids computation of pre-defined trajectories since the
control law depends on the actual states. The drawback is that only passive gait patterns
are possible.

As an extension to this work, Asano et al. constrain the total mechanical energy E of
the robot in order to generate a wider range of gait patterns [16]. Their fundamental idea
is based on two observations:

• In a passive gait cycle, E is monotonically increasing in the single-support phase.

• At ground impact, E drops instantly. This drop in the value of E is restored again
at the end of the single-support phase.
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As another approach to control design of bipedal robots, virtual holonomic constraint
(VHC) is one of the most recent and popular approaches in the field. This approach for
bipedal robots control was pioneered by Grizzle et al. [17]. The theory is well developed and
established in [17]. Among the advantages of VHC approach is that it dose not require a
pre-computed trajectory and allows for a large variety of gait “shapes” to be accomplished.

Aside to bipedal robots, Shiriaev et al. used the notion of VHC to find an integral
of motion of the “reduced system” (or “zero dynamics” as called by others) of a class of
n-DOF mechanical systems subject to n− 1 VHC [19]. The idea is summarized as follows.
Consider an under-actuated Euler-Lagrange system with configuration variables q ∈ Rn

and input u ∈ Rn−1. Define the relations which relates n− 1 configuration variables to the
remaining one as

q1 = φ1(θ), q2 = φ2(θ), · · · , qn−1 = φn−1(θ), qn = θ (1.8)

These relations (1.8) constitute the VHC. Now, suppose that there exists some control
input that enforces the given Euler-Lagrange system to (1.8). Then, the dynamics of the
Euler-Lagrange system restricted to the surface defined by (1.8) are second order and are
given by [18]

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0. (1.9)

It is worth noting that the dynamics (1.9) have several names in the bipedal robot literature
such as “virtual limit system” as in [18], “zero dynamics” as in [17] and “reduced dynamics”
as in [2].

System (1.9) has an integral of motion (also called a first integral of the system) of the
form I(θ, θ̇, θ0, θ̇0) that preserves its initial value. An explicit expresstion for I(θ, θ̇, θ0, θ̇0) is
given in [19], [20] and [18]. Reference [21] further studies the properties of Equation (1.9).
A similar integral of motion is independently developed by Maggiore et al. in [2].

The integral of motion is useful to study qualitative behaviour of the zero dynamics of
a given system. However, the expression of the zero dynamics of the system studied in this
thesis is quite complicated making it difficult to evaluate and use an analytical expression
of the integral of motion. In the bipedal robots literature, the integral of motion is used to
analyze the closed-loop stability of under-actuated Euler-Lagrange systems. References [22]
and [23] introduce a procedure to find the “correct” initial conditions that converge to a
hybrid limit cycle of a compass-gait. Their procedure is based on the calculation of integral
motion and a solution to a minimization problem for the system parameters.

For closed-loop configurations, the integral of motion is used to come up with transverse
coordinates of a three-link bipedal robot (with the third link being the torso) [24]. The
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work of [24] is described and summarized as follows. Let q = col(q1, q2, q3) be the configu-
ration variable vector of the three-link bipedal robot where q1, q2, q3 represent the angular
positions of the stance leg, the swing leg and the torso, receptively. Also, let y1 : R → R
and y2 : R→ R be two output functions such as

y1 = q2 − φ1(q1)
y2 = q3 − φ2(q1)

(1.10)

where φ1 and φ2 represent a VHC that defines a desired periodic hybrid trajectory q? =
col(q1?, q2?, q3?). On the desired periodic hybrid trajectory, we have

y1 = 0
y2 = 0

I (q1?(t), q̇1?(t), q1?(0), q̇1?(0)) = 0
(1.11)

Furthermore, if a trajectory stays on the desired periodic hybrid orbit then (1.11) holds
with ẏ1 = ẏ2 ≡ 0. This discussion motivates the following transformed states

z := col(q1, y1, ẏ1, y2, ẏ2, I) ∈ R6 (1.12)

The last 5 states in (1.12) are transversal to the desired orbit whereas the first state
in (1.12) is tangential to desired orbit. Since a periodic hybrid trajectory is assumed to
exist, the stability of this periodic trajectory is equivalent to the stability of the origin of the
transversal coordinates ζ := col(y1, ẏ1, y2, ẏ2, I) ∈ R5. Stability is studied by calculation of
the eigenvalues of the linearized transversal system.

Reference [25] designs controllers based on VHC for a three-link bipedal robot with the
third link being the torso as follows. Let θ1(t), θ2(t) and θ3(t) represent the stance leg
angle, swing leg angle and torso angle, respectively. The VHC is formed by writing θ2 and
θ3 as smooth functions of θ1 (i.e. θ2 = φ1 (θ1(1)) and θ3 = (θ1(t))). Table 1.1 describes the
choices made for φ1 and φ2. Then, two output functions h1 : R → R and h2 : R → R are

Table 1.1: The choices made for φ1 and φ2 in [25].

Constraint Description

φ1(t) := −θ1(t)
Motion of stance leg is
a mirror image of swing leg.

φ2(t) := θd3
θd3 is constant meaning that the torso
is desired to be at a fixed hight.

defined yielding a well defined relative degree of 2 for each output function. This allows
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for feedback-linearizing controllers to be designed. In this thesis, this approach is taken
for control design (Chapter 4). In [25], gait stability in closed-loop configuration is studied
numerically using the method of Poincaré sections. We adapt similar Poincaré analysis for
an open-loop 2-DOF bipedal robot (Chapter 3). In addition to that, reference [26] proposes
and proves the following result. Given a n-DOF bipedal robot and a VHC of order k, let
P be a Poincaré map for the full-order robot model and ρ be the associated Poincaré map
of the dynamics restricted to the constrain manifold. Then the following two statements
are equivalent:

• x∗ ∈ Rn is an exponentially stable fixed point of P ,

• x∗ ∈ Rn is an exponentially stable fixed point of ρ.

This result is used in Section 4.6.1 to discuss stability of the proposed controller.

It is left to note that a formal explicit definition of VHC was missing in the literature
until Maggiore et al. formalized the definition of VHC of order k [2] in 2013. They further
introduced the notion of regular VHC, which yields an input-output linearizable system [2].
This thesis extends the notion of regular VHC presented in [2] to hybrid regular VHC for
hybrid Euler-Lagrange systems of form (1.3). Hybrid regular VHC are then applied to a
2-DOF bipedal robot.

Among the recent experimental bipedal robot platforms is MABEL [27]. MABEL is a
2D five-link bipedal robot that consists of two kneed legs and a torso. The robot has no
feet and its legs encounter point contact with ground. MABEL is an under-actuated robot
with one degree of under-actuation. For each leg, the two actuated degrees of freedom are
the angular position of the virtual line connecting the hip to the toe and the length of this
virtual line [27]. It has been shown in [28] that using virtual constraints, MABEL is able
to walk and to reject disturbances when ground steps down for upto 5.08 cm. A down-step
more than 5.08 cm caused the swing leg of MABEL to be destroyed. Video available at [29].
The main reason for breaking the swing leg after stepping down was the rapid oscillations
of the torso [30]. On the other hand, stepping-up caused lots of oscillations in the vertical
ground reaction, which caused the robot to fall after the step-up [30].

To tackle the problem of MABEL passing through uneven terrain, reference [30] char-
acterises different ground disturbance scenarios and uses a finite-state machine to switch to
the appropriate controller for each type of ground disturbance. The characterised ground
disturbances are: step-up, step-down and tripping. Tripping can occur if the swing leg hits
an upfront obstacle or it encounters an early ground impact event. The depth of a step-up
or a step-down at ground impacts is detected by knowing the current joint angles and the
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length of each leg. Tripping is detected by using contact switches located at robot’s shins
and bottom of toes, and the knowledge of the current configuration of the robot. Video of
MABEL going through a down-step of ≈ 20 cm is found at [31].

Recently, researchers have been concerned about building robots that mimic human
gaits. Reference [32] presents the so-called human-inspired control, which is applied to
a bipedal robot model of 5-degrees-of-freedom. The model consists of a stance leg, a
stance thigh, a non-stance leg, a non-stance thigh and a torso link, see Figure 1.3a. The
coordinates of the configuration space, Q, are denoted by θ := col(θsf , θsk, θsh, θnsh, θnsk).
Fundamentally, the author defines a set of human-inspired output functions that represent
certain human walking behaviours. These behaviours are experimentally verified to have
a form of either a linear function of time or a second-order system response as,

y(t) = vt (1.13)

or,
y(t) = e−ζωnt (c0 cos(ωdt) + c1 sin(ωdt)) + g (1.14)

The human behaviours studied in [32] are δphip(θ), δmnsl(θ), θsk, θnsk and θtor(θ), see
Figure 1.3b and Table 1.2. For mathematical expressions of these behaviours, the reader
is referred to [32].

Table 1.2: The human-behaviours studied in [32].

Behaviour Description
δphip(θ) Linearization of the x-position of the hip.
δmnsl(θ) Linearization of the line connecting the hip to the ankle of the non-stance leg.
θtor(θ) The angle of the torso with reference taken to be the vertical line.

Based on experimental data, it turns out that δphip(θ) is of form (1.13) and the rest
of the behaviours are of form (1.14). Given certain human gait behaviour, the associated
constants of (1.13) or (1.14) are evaluated by least square fit using data from a real human
gait.

The above discussion motivates the following output functions y1 : Q → R and y2 :
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(a) A model of a 5-degrees-of-freedom bipedal
robot.

(b) Human behaviours for a 5-degrees-of-freedom
bipedal robot.

Figure 1.3: The 5-degrees-of-freedom bipedal robot studied in [32].
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Q → R4 such that,
y1(θ) = δphip(θ)

y2(θ) =


δmnsl

θsk
θnsk
θtor(θ)

 (1.15)

The control objective becomes to derive the human behaviour functions (1.15) to zero
and arrive at the hybrid zero dynamics of the system. However, reference [32] claims that it
is difficult to maintain y1(θ) = 0 under impact events. As a result, controllers are designed
such that, under certain conditions, y2(θ) = 0 is maintained invariant even under impact
events. This gives rise to the term partial hybrid zero dynamics, which is introduced in [32].

In order to fulfil the control objective, feedback linearizing controllers were used result-
ing in two different closed-loop scenarios: full and under actuation. Those controllers were
tested in simulation and on two physical robotic platforms, AMBER and NAO [32].

1.3 Organization and contributions

Chapter 2 introduces the model of the 2-DOF bipedal robot under study. A hybrid-system
framework is followed. The continuous-time dynamics are modelled using an energy based
approach, namely, Euler-Lagrange, whereas, under certain assumptions, the discrete-time
dynamics are modelled by redefining coordinates at impact events and using the principle
of conservation of angular momentum to model instantaneous change in velocities just after
impact events.

Chapter 3 analyzes open-loop gaits, i.e. passive gaits, using the method of Poincaré
sections. A numerical argument is made to show stability of the passive gait. Also,
Chapter 3 views the passive gait as a functional relationship between stance and swing
legs. This relation is approximated by a real-valued constant-coefficient polynomial.

Moving to controlled systems, Chapter 4 starts the discussion on VHC and extends it to
hybrid VHC. Then, hybrid VHCs that define gait shapes are designed and used in closed-
loop configurations. Chapter 4 presents two closed-loop configurations: fully actuated
and underactuated configurations. Chapter 4 also discusses optimal control effort for the
underactuated case.

The following are the main contributions of this work.
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• Necessary and sufficient conditions for VHC that guarantee hybrid VHC, Section 4.3.

• As an extension to the result of Section 4.3, a design procedure is developed, which
returns a feasible hybrid VHC.

• Section 4.5 presents sufficient conditions for dynamic stability of the fully actuated
system in closed-loop configuration, which leads to the stability proof.

• Finally, Section 4.6 shows that if a hybrid VHC perfectly models the shape of a
passive gait then, on the constraint manifold, the control torque can be designed
such that it is identically zero.
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Chapter 2

Modelling

The 2-DOF robot under study evolves according to both continuous-time and discrete-time
dynamics. This means that the bipedal robot is an example of a hybrid system. In this
chapter we review the hybrid systems formalism and show that the bipedal robot belongs
to this class of systems.

2.1 Hybrid dynamical systems

A hybrid system (sometimes called a “hybrid automaton”) is a dynamical system with both
continuous and discrete states. Many equivalent definitions of a hybrid automaton exist in
systems and control literature. The interested reader is referred to [1], [33],[34] and [35].
In this thesis we adopt the definitions presented in [1].

The first order differential equation ẋ = f(x), x ∈ Rn is common and widely used to
model continuous-time dynamical systems. For hybrid systems, this model can further be
expanded. First, the state vector x can be restricted to a subset C ⊆ Rn. In a slider-crank
mechanism, for example, this restriction might represent a slider moving along a line in
space. Second, the function f(x) in the right-hand-side of the differential equation can be
replaced by a general set that depends on the state vector x. This observation leads to a
differential inclusion ẋ ∈ F (x), where the map F (x) is set-valued. For more information on
differential inclusions the reader is referred to [36]. We adopt the notation F : Rm ⇒ Rn

for a set-valued map from Rm to Rn. Combining these two generalizations leads to the
constrained differential inclusion ẋ ∈ F (x), x ∈ C.

16



For discrete dynamical systems, the first order difference equation x+ = g(x), x ∈ Rn is
a typical model. The notation x+ indicates that the next value of the state vector is given as
a function of the current value x through the mapping g(x). In hybrid dynamical systems
we extend the first order difference equation to allow constrained difference equations and
difference inclusions. This leads to the model x+ ∈ G(x), x ∈ D, where G is a set-valued
map and D ⊆ Rn.

Using the above ideas, a general hybrid system is modelled with the following data

• The flow set C ⊆ Rn.

• The set-valued flow map F : C ⇒ Rn.

• The jump set D ⊆ Rn.

• The set-valued jump map G : D ⇒ Rn.

A shorthand notation for a hybrid system with this data is H = (F,C,G,D). Such systems
can be written in the suggestive form

H :

{
ẋ ∈ F (x), x ∈ C
x+ ∈ G(x), x ∈ D.

(2.1)

The model (2.1) captures a wide variety of dynamical behaviour. The generality afforded
by (2.1) is often not needed. It is often the case that the set-valued maps and the corre-
sponding inclusions can be replaced with equations.

The advantage of using the very general model (2.1) for a hybrid dynamical system is
that it can be used to model hybrid automaton, switched systems, sampled-data control
systems, and networked control systems. To make this advantage clear, we now introduce
the notion of a hybrid automaton, based on the definition from [1], and then show how it
can be modelled as a system of the form (2.1).

Definition 2.1.1. A hybrid automaton H is a 6-tuple H =
(Q,Domain, f,Edges,Guard,Reset), where

• Q = {q1, q2, · · · } is a set of modes which, in most situations, can be identified with a
subset of the integers Z.
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• A domain map Domain : Q⇒ Rn, which gives, for each q ∈ Q, the set Domain (q) ⊆
Rn in which the continuous-time state ξ evolves.

• A flow map f : Q×Rn → Rn which describes a differential equation that defines the
continuous-time evolution of the continuous state variable ξ.

• A set of edges Edges ⊂ Q × Q which identifies pairs (q, q′) such that a transition
from mode q to mode q′ is possible.

• A guard map Guard : Edges ⇒ Rn which identifies, for each edge (q, q′) ∈ Edges,
the set Guard (q, q′) ⊂ Rn to which the continuous state ξ must belong so that a
transition from q to q′ can occur.

• A reset map Reset : Edges×Rn → Rn which describes, for each edge (q, q′) ∈ Edges,
the value to which the continuous state ξ ∈ Rn is assigned during the transition from
q to q′.

The pair (q, ξ) ∈ Q× Rn is referred to as the state of H.

The following example helps clarify the meaning of the objects in Definition 2.1.1.

Example 2.1.1. The bouncing ball system is a prototypical example of a hybrid system.
The continuous-time dynamics of a bouncing ball can be written as

ξ̇1 = ξ2

ξ̇2 = −g (2.2)

where ξ1 represents the ball’s height measured from the ground, ξ2 is ball’s velocity and g
is the gravitational acceleration constant. At the moment in time T ∈ R when the ball hits
the ground (i.e. ξ1(T ) = 0, ξ2(T ) < 0), the ball loses a fraction of its velocity and its new
velocity, just after impact, equals −εξ2(T ), ε ∈ (0, 1) where ε is constant and represents the
coefficient of restitution. As a result, the ball starts moving upwards, evolving according
to the differential Equation (2.2), with initial condition ξ1(T+) = 0 and ξ2(T+) = −εx2(T ).

In view of Definition 2.1.1, the bouncing ball system can be modelled as a hybrid
automaton H = (Q,Domain, f,Edges,Guard,Reset) where

• Q = {q1}.
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• The domain map is Domain (q1) = R2.

• The flow map is f(q1, ξ) = col (ξ2,−g).

• Edges = (q1, q1).

• Guard (q1, q1) = {ξ ∈ R2 : ξ1 = 0, ξ2 < 0}.

• Reset (q1, q1, ξ) = col (ξ+
1 , ξ

+
2 ) = col (0,−εξ2).

Figure 2.1 presents a common pictorial representation of the bouncing ball hybrid
system.

Figure 2.1: Graphical representation of the bouncing ball hybrid system.

4
The next example shows a hybrid system with two discrete states (modes).

Example 2.1.2. Consider Figure 2.2 which shows a bucket of water being cooled by a
fan. The fan is operated by a relay-type controller. The objective is to keep the water
temperature, ξ ∈ R, below a given value T . The controller starts the fan when ξ ≥ T + ε
and stops the fan when ξ ≤ T − ε where ε > 0 is a small positive constant.

19



Due to the switching in the controller, it is natural to model this system as a hybrid
automaton as follows:

Figure 2.2: Water cooling system using a bang-bang controller.

• Q = {q1, q2} where q1 and q2 represent, respectively, the “ON” and “OFF” fan states.

• The associated domain map is

Domain (qi) =

{
{ξ ∈ R : ξ ≥ T − ε} if i = 1,

{ξ ∈ R : ξ ≤ T + ε} if i = 2.

• Using Newton’s law of cooling, the flow map can be written as f(q1, ξ) = −k1(ξ−Ta)
and f(q2, ξ) = −k2(ξ − Ta), where Ta is the ambient temperature, k1 is the cooling
constant and k2 is the heating constant. This tells us that if the fan is “ON” (i.e. q1

is active), the water temperature drops. And if the fan is “OFF” (i.e. q2 is active),
the water temperature rises.

• Since the controller can switch from ON to OFF and from OFF to ON, the set of
edges becomes Edges = {(q1, q2), (q2, q1)}.

• There are two guard conditions since there are two edges. The first guard condition
Guard(q1, q2) = {ξ ∈ R : ξ < T − ε} has the following meaning. The system is at
mode q1 is and, hence, ξ ≥ T−ε. To switch the system to mode q2, ξ must be less than
T − ε. Similarly, the second guard condition is Guard(q2, q1) = {ξ ∈ R : ξ > T + ε},
which has a similar interpretation.

• The reset map is simple in this case, Reset(q1, q2, ξ) = Reset(q2, q1, ξ) = identity.

Figure 2.3 shows a pictorial representation of the system.
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Figure 2.3: Graphical representation of water cooling hybrid system.

4
We now show how a hybrid automaton can be modelled as hybrid system of the

form (2.1). For each q, q′ ∈ Q we let

Cq := Domain (q), Dq :=
⋃

(q,q′)∈Edges

Guard (q, q′)

Fq(ξ) := f(q, ξ), (for all ξ ∈ Cq),

Gq(ξ) :=
⋃

{q′:ξ∈Guard (q,q′)}

(Reset (q, q′, ξ), q′) , (for all ξ ∈ Dq).

When ξ is an element of two different guard sets Guard (q, q′) and Guard (q, q′′), Gq(ξ) is
a set consisting of at least two points. Hence, Gq can be set-valued. With Cq, Fq, Gq and
Dq defined as above, we consider the hybrid system with state (q, ξ) ∈ Q×Rn and model

H :

{
ξ̇ ∈ Fq(ξ), q ∈ Q, ξ ∈ Cq
(ξ+, x+) ∈ Gq(x), q ∈ Q, ξ ∈ Dq.

(2.3)

2.2 Hybrid model of 2-D.O.F. bipedal robot

The model of the 2-DOF bipedal robot consists of two legs with identical mass and geometry
connected by a revolute joint at the hip position. The hip is modelled as a point mass.
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The following subsections present the continuous-time and discrete-time dynamics of the
bipedal robot.

2.2.1 Continuous-time dynamics

In mechanics, one can obtain the equations of motion for a rigid multi-body system using
the Newton-Euler balance laws. This approach requires the knowledge of reaction (or
constraint) forces between bodies.

As another approach, one can think of the generalized coordinates1 of a given mechanical
multi-body system. Due to the presence of kinematic constraints, i.e. joints, the generalized
coordinates can be categorized as constrained and unconstrained. The applied forces on
the system associated along the direction of the unconstrained generalized coordinates
are referred to as generalized forces. These generalized forces are directly responsible for
the motion of the system and, therefore, it becomes natural to study the effect of the
generalized forces on the motion of the system. The method of Euler-Lagrange presents
another approach to write the equations of motion of a multi-body system. The Euler-
Lagrange method forms one equation of motion per degree of freedom2 resulting in as
many equations as degrees of freedom. In addition, the Euler-Lagrange method can be
formulated to avoid the computation of reaction forces of a multi-body system.

For a 2-DOF bipedal robot, two choices of unconstrained generalized coordinates are
shown in Figure 2.5. The coordinates shown in Figures 2.5a are common in inverted double-
pendulum control problems. In this thesis, we choose to use the model in Figure 2.5b
because it is the most common in bipedal robot literature. In this model, the coordinates
θst and θsw refer to the angular positions of the stance leg and swing leg, respectively,
relative to the vertical line. Other two possible and common coordinates are presented in
Appendix A.

The robot is actuated using an ankle torque, τ1, and a hip torque, τ2. Figure 2.4
pictures the actuation scenario. This model requires that the ZMP remains within the
foot polygon (simply a line in our case) in order to maintain dynamic stability while
walking. Assuming the foot has negligible mass and the origin of x′-y′ system coincides
with the ankle (Figure 2.4a), then in the x′-y′ coordinates, the general equation of [14] that
calculates the location of the ZMP reduces to

ZMP =
τ1

Rn

(2.4)

1Generalized coordinates are any set of coordinates on the configuration space Q.
2The number of degrees of freedom is equal to the minimum number of unconstrained generalized

coordinates [37].
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(a) τ1. (b) τ2.

Figure 2.4: The actuation torques, τ1 and τ2, of the 2-DOF bipedal robot. In Figure 2.4a,
the x′-axis is parallel to the walking surface.

where Rn is the reaction force normal to the walking surface. This normal reaction is
evaluated using static equilibrium for the foot along y′-axis as

Rn =
(
(m1 +m2 +mH)g +m1a1y +m2a2y +mHaHy

)
cos(γ). (2.5)

The terms a1y , a2y , aHy in the above equation are the y-components of the time derivatives
of equations (2.11), (2.12) and (2.13), respectively. Throughout the thesis, it is assumed
that the foot is large enough to accommodate the ZMP of the 2-DOF bipedal robot. It is
shown through simulation in Chapter 4 that our proposed controllers fluctuate the ZMP
within a reasonable range.

The continuous-time model of the 2-DOF bipedal robot is derived as follows. First,
model (a) in Figure 2.5a is derived using an Euler-Lagrange formulation. Then, a simple
coordinate change is applied in order to get model (b) in Figure 2.5b, which is the model
used in this thesis.

Consider the schematic representation of the bipedal walker shown in Figure 2.5a.
Throughout this thesis, the leg that touches the ground is referred to as the stance leg
whereas the other leg is called the swing leg. The coordinate vector in Figure 2.5a is
q = col (q1, q2) ∈ R× R.

The total kinetic energy of the system is calculated as:

K(q, q̇) =
1

2
m1v

2
1 +

1

2
m2v

2
2︸ ︷︷ ︸

Trans. Term for legs1,2

+
1

2
I1q̇

2
1 +

1

2
I2q̇

2
2︸ ︷︷ ︸

Rot. Term for legs1,2

+
1

2
mHv

2
H︸ ︷︷ ︸

Trans. K for Hip

(2.6)
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(a) This model is used to derive
the model used in this thesis.

(b) The model used in this the-
sis.

Figure 2.5: Two models for the continuous dynamics of the 2-DOF bipedal robot.

where I1, I2 are moments of inertia about the center of mass for legs 1, 2. It is noted
in Equation (2.6) that the hip mass is modelled as a point mass and, hence, has only
translational kinetic energy. The mass distribution and geometry of legs 1,2 are captured
by I1,2. The potential energy is calculated as

P (q) = m1g `1 sin(q1) +mHg ` sin(q1) +m2g (` sin(q1) + `3 sin(q2)) (2.7)

where ` := `1 + `2 = `3 + `4. To evaluate the expression for K(q, q̇) in terms of the
coordinates and their derivatives, we need to solve a forward kinematics problem.

• Position level. Let ~r1, ~r2 and ~rH be the position vectors of the center of mass
(CoM) of leg1, leg2 and the hip, respectively. Then,

~r1 = `1 cos(q1) î + `1 sin(q1) ĵ (2.8)

~r2 = (` cos(q1) + `3 cos(q2))̂i + (` sin(q1) + `3 sin(q2))̂j (2.9)

~rH = ` cos(q1) î + ` sin(q1) ĵ (2.10)

where î and ĵ are unit vectors along the x-axis and y-axis, respectively.

• Velocity level. Differentiating Equations (2.8)-(2.10) we arrive at velocity expres-
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sions

~v1 = −`1 sin(q1)q̇1 î + `1 cos(q1)q̇1 ĵ (2.11)

~v2 = (−` sin(q1)q̇1 − `3 sin(q2)q̇2)̂i + (` cos(q1)q̇1 + `3 cos(q2)q̇2)̂j (2.12)

~vH = −` sin(q1)q̇1 î + ` cos(q1)q̇1 ĵ (2.13)

Given the kinematic equations (2.8)-(2.13), the Lagrangian becomes:

L(q, q̇) = 1
2
m1`

2
1q̇1 + 1

2
m2`

2q̇2
1 + 1

2
m2`

2
3q̇

2
2 +m2``3 cos(q1 − q2)q̇1q̇2

+ 1
2
mH`

2q̇2
1 + 1

2
I1q̇

2
1 + 1

2
I2q̇

2
2 −m1g`1 sin(q1)−mHg` sin(q1)

− m2g (` sin(q1) + `3 sin(q2))
(2.14)

The generalized forces for each coordinate are evaluated as follows. The torque τ1 does

Table 2.1: Input torque vector components.

Action Reaction
τ1 Stance leg Ground

τ2 Swing leg Stance leg

work on the coordinate q1 whereas the torque τ2 does work on q2−q1 (Table 2.1). Therefore,
the virtual work [37] of the system is

δW = τ1δq1 + τ2(δq2 − δq1)
= (τ1 − τ2)δq1 + τ2δq2

(2.15)

where δqi, i ∈ {1, 2}, are virtual displacements. As a result,

B(q)τ =

[
1 −1

0 1

][
τ1

τ2

]
. (2.16)

Now, let’s substitute Equations (2.14) and (2.16) in (1.1). Then, we arrive at the
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equations of motion and write it in matrix form as[
m1`

2
1 +m2`

2 +mH`
2 + I1 m2``3 cos(q1 − q2)

m2``3 cos(q1 − q2) m2`
2
3 + I2

][
q̈1

q̈2

]

+

[
0 m2``3 sin(q1 − q2)q̇2

−m2``3 sin(q1 − q2)q̇1 0

][
q̇1

q̇2

]

+

[[
m1g`1 +mHg`+m2g`

]
cos(q1)

m2g`3 cos(q2)

]
=

[
1 −1

0 1

][
τ1

τ2

]
.

(2.17)

Model (b) (Figure 2.5b) is obtained from (2.17) via the global coordinate change[
θst
θsw

]
=

[
q1

q2

]
−
[
π
2

3π
2

]
. (2.18)

In (θst, θsw)-coordinates, model (2.17) reads[
m1`

2
1 +m2`

2 +mH`
2 + I1 −m2``3 cos(θst − θsw)

−m2``3 cos(θst − θsw) m2`
2
3 + I2

][
θ̈st

θ̈sw

]

+

[
0 −m2``3 sin(θst − θsw)θ̇sw

m2``3 sin(θst − θsw)θ̇st 0

][
θ̇st

θ̇sw

]

+

[
− (m1g`1 +mHg`+m2g`) sin(θst)

m2g`3 sin(θsw)

]
=

[
1 −1

0 1

][
τ1

τ2

]
.

(2.19)

In summary, the 2-DOF bipedal robot studied in this thesis has continuous-time dy-
namics modelled by (2.19). This is the model used throughout the rest of this thesis. The
model (2.19) can be compactly written as

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Bτ (2.20)
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where θ := col (θst, θsw) ∈ R2 and

M(θ) :=

[
m1`

2
1 +m2`

2 +mH`
2 + I1 −m2``3 cos(θst − θsw)

−m2``3 cos(θst − θsw) m2`
2
3 + I2

]
(2.21)

C(θ, θ̇) :=

[
0 −m2``3 sin(θst − θsw)θ̇sw

m2``3 sin(θst − θsw)θ̇st 0

]
(2.22)

G(θ) :=

[
− (m1g`1 +mHg`+m2g`) sin(θst)

m2g`3 sin(θsw)

]
(2.23)

B :=

[
1 −1

0 1

]
. (2.24)

2.2.2 Discrete-time dynamics

The discrete-time dynamics consists of two entities:

i. The guard condition, which in the case of the 2-DOF bipedal robot is the set where
the swing foot reaches the ground surface from above followed by an impact event.

ii. The reset map, which represents the instantaneous change in positions and velocities.
The reset map is derived by swapping the role of the swing and stance legs and using
the principle of conservation of angular momentum.

Assumption 1. The terrain on which the 2-DOF bipedal robot traverses is an inclined
plane with angle of inclination γ ∈ (0, π/2), see Figure 2.6.

To model impact with the ground surface, a local Cartesian coordinate system is intro-
duced. The origin of this coordinate system is at the foot of the stance leg (Figure 2.6).
In this local coordinate system, the ground can be expressed as a line,{

(y1, y2) ∈ R2 : y2 = tan(−γ)y1

}
. (2.25)

The vector ~r (see Figure 2.6) and the vector ~̇r are given by

~r = (−` sin(θst) + ` sin(θsw)) î + (` cos(θst)− ` cos(θsw)) ĵ =: ry1 î + ry2 ĵ, and

~̇r =
(
−` cos(θst)θ̇st + ` cos(θsw)θ̇sw

)
î +
(
−` sin(θst)θ̇st + ` sin(θsw)θ̇sw

)
ĵ =: ṙy1 î + ṙy2 ĵ.
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Figure 2.6: Ground modelled in local coordinate system.

The instant at which the swing foot hits the ground, we have that ry2 = tan(−γ)ry1 .
Define a height function H : R→ R as

H(θ) := ry2(θ)− tan(−γ)ry1(θ). (2.26)

We have that
H(θ) = 0⇐⇒ cos(θst + γ) = cos(θsw + γ)

which implies that
θsw = −θst − 2γ (2.27)

or
θst = θsw. (2.28)

Physically, Equation (2.28) captures a mid-stance point where |~r| = 0. The robot is
assumed not to collide with ground at the mid-stance point. Equation (2.27) defines a
jump line on which the swing leg is on the ground.

In order to capture the fact that the swing leg is approaching the ground from above,
we use the time derivative of the height function

dH(θ(t))

dt
= dHθθ̇ = ṙy2(θ, θ̇)− tan(−γ)ṙy1(θ,

˙(θ)). (2.29)
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As the swing foot approaches the ground from above, H(θ) is positive and decreases towards
zero. Since H(θ) is decreasing, dHθθ̇ < 0 as the swing foot approaches the ground from
above. This discussion motivates the following guard condition (impact surface) for the
2-DOF bipedal robot,

S =
{

(θ, θ̇) ∈ R4 : H(θ) = 0 ∧ dHθθ̇ < 0
}
\
{

(θ, θ̇) ∈ R4 : θst = θsw

}
. (2.30)

In order to derive the reset map, we impose the following standing assumption.

Assumption 2. When the 2-DOF bipedal robot’s swing leg collides with the ground, the
collision is

i. impulsive (i.e. all non-impulsive forces are negligible at collision),

ii. inelastic,

iii. instantaneous and only one leg touches the ground at every instant, and

iv. does not cause slipping.

When the swing leg hits the impact surface, the roles of the configuration variables swap.
Angular velocities are also instantaneously affected by collisions. Under Assumption 2, the
angular velocities just after collision are evaluated using conservation of angular momentum
at the impact instant. Consider Figure 2.7 which shows the robot just before and just after
a collision event. Let the superscript “−” denote variables just before collision and the
superscript “+” denote variables just before collision.

The configuration variables are redefined just after collision according to

θ+
st = θ−sw, and

θ+
sw = θ−st.

(2.31)

The angular momentum about a point on the robot is conserved during impact [38].

i. Angular momentum about the contact point P , denoted LP , is conserved and there-
fore

L̇P = 0⇒ L−P = L+
P . (2.32)
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(a) Just before collision. (b) Just after collision.

Figure 2.7: Collision event.

ii. Angular momentum about the hip mass point H, denoted LH , is conserved and
therefore

L̇H = 0⇒ L−H = L+
H . (2.33)

Evaluating the expression of L−P for the whole mechanism yields [39]

L−P = I1θ̇
−
st +m1~r1

− × ~v1
− + I2θ̇

−
sw +m2~r2

− × ~v2
− +mH ~rH

− × ~vH
− (2.34)

where,

~r1
− =

(
`2 sin(θ−st)− ` sin(θ−sw)

)
î +
(
−`2 cos(θ−st) + ` cos(θ−sw)

)
ĵ,

~v1
− =

d

dt

(
−`1 sin(θ−st)̂i + `1 cos(θ−st)̂j

)
,

=
(
−`1 cos(θ−st)θ̇

−
st

)
î−
(
`1 sin(θ−st)θ̇

−
st

)
ĵ,

~r2
− =

(
−`4 sin(θ−sw)

)
î +
(
`4 cos(θ−sw)

)
ĵ,

~v2
− =

d

dt

((
−` sin(θ−st) + `3 sin(θ)−sw

)
î +
(
` cos(θ−st)− `3 cos(θ−sw)

)
ĵ
)

=
(
−` cos(θ−st)θ̇

−
st + `3 cos(θ−sw)θ̇−sw

)
î +
(
−` sin(θ−st)θ̇

−
st + `3 sin(θ−sw)θ̇−sw

)
ĵ,

~rH
− =

(
−` sin(θ−sw)

)
î +
(
` cos(θ−sw)

)
ĵ, and

~vH
− =

(
−` cos(θ−st)θ̇st−

)
î−
(
` sin(θ−st)θ̇st−

)
ĵ.
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Substituting the above expressions in (2.34) and simplifying, we arrive at

L−P = I1θ̇
−
st +m1

(
``1 cos(θ−st − θ−sw)θ̇−st − `1`2θ̇

−
st

)
+ I2θ̇

−
sw +m2

(
``4 cos(θ−st − θ−sw)θ̇−st − `3`4θ̇

−
st

)
+ mH`

2 cos(θ−st − θ−sw)θ̇−st.

(2.35)

L−H is the momentum of the stance leg as it is about to leave the ground. Therefore, we
evaluate it as

L−H = I1θ̇
−
st +m1

(
`2 sin(θ−st)̂i− `2 cos(θ−st)̂j

)
× d

dt

(
−`1 sin(θ−st)̂i + `1 cos(θ−st)̂j

)
= I1θ̇

−
st −m1`1`2θ̇

−
st.

(2.36)

Now, we evaluate the angular momenta just after collision event

L+
P = I1θ̇

+
sw +m1~r1

+ × ~v1
+ + I2θ̇

+
st +m2~r2

+ × ~v2
+ +mH ~rH

+ × ~vH
+ (2.37)

where,

~r1
+ =

(
−` sin(θ+

st) + `2 sin(θ+
sw)
)
î +
(
` cos(θ+

st)− `2 cos(θ+
sw)
)

ĵ,

~v1
+ =

(
−` cos(θ+

st)θ̇
+
st + `2 cos(θ+

sw)θ̇+
sw

)
î +
(
−` sin(θ+

st)θ̇
+
st + `2 sin(θsw+)θ̇+

sw

)
ĵ,

~r2
+ =

(
−`4 sin(θ+

st)
)
î +
(
`4 cos(θ+

st)
)

ĵ, and

~v2
+ =

(
`4 cos(θ+

st)θ̇
+
st

)
î−
(
`4 sin(θ+

st)θ̇
+
st

)
ĵ.

Substituting the above expressions in (2.37) and simplifying we obtain

L+
P = I1θ̇

+
sw +m1

(
`2θ̇+

st − ``2 cos(θ+
st − θ+

sw)θ̇+
sw − ``2 cos(θ+

st − θ+
sw)θ̇+

st + `2
2θ̇

+
sw

)
+ I2θ̇

+
st +m2`

2
4θ̇

+
st +mH`

2θ̇+
st.

(2.38)

Since L+
H is the momentum about point H of the “new” swing leg as it just was standing,

we evaluate it as

L+
H = m1

(
`2 sin(θ+

sw )̂i− `2 cos(θ+
sw )̂j

)
× ~v1

+ + I1θ̇
+
sw

= m1

(
−``2 cos(θ+

st − θ+
sw)θ̇+

st + `2
2θ̇

+
sw

)
+ I1θ̇

+
sw.

(2.39)

Substituting Equations (2.35) and (2.38) into (2.32), and (2.36) and (2.39) into (2.33) the
instantanous change of velocities due to collision can be written in matrix form as[

J b11 J b12

J b21 J b22

]
︸ ︷︷ ︸

:=Jb(θ)

[
θ̇+
st

θ̇+
sw

]
=

[
Ja11 Ja12

Ja21 Ja22

]
︸ ︷︷ ︸

:=Ja(θ)

[
θ̇−st
θ̇−sw

]
.

(2.40)
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where,
Ja11 := I1 −m1`1`2 + (m1``1 +m2``4 +mH`

2) cos(2α),
Ja12 := I2 −m2`3`4,
Ja21 := I1 −m1`1`2,
Ja22 := 0,
J b11 := I2 +m1`

2 +m2`
2
4 +mH`

2 −m1``2 cos(2α),
J b12 := I1 +m1`

2
2 −m1``2 cos(2α),

J b21 := −m1``2 cos(2α),
J b22 := m1`

2
2 + I1,

and

α :=
θ−st − θ−sw

2
.

The matrix J b is invertible. Its determinant can be shown to be always positive as follows.

det(J b) = J b11J
b
22 − J b12J

b
21

=
(
I2 +m1`

2 +m2`
2
4 +mH`

2 −m1``2 cos(2α)
) (
m1`

2
2 + I1

)
+m1``2 cos(2α)

(
I1 +m1`

2
2 −m1``2 cos(2α)

)
= m1`

2
2I2 +m2

1`
2
2`

2 +m2m1`
2
2`

2
4 +mHm1`

2
2`

2

+ I1I2 +m1`
2I1 +m2`

2
4I1 +mH`

2I1 −m2
1`

2`2
2 cos2(2α).

All the terms in the above expression are positive except the last one. The extreme case
of cos2(2α) = 1 makes the last term the most negative. In this case,we have

det(J b) = m1`
2
2I2 +m2m1`

2
2`

2
4 +mHm1`

2
2`

2

+ I1I2 +m1`
2I1 +m2`

2
4I1 +mH`

2I1

> 0.

As a result, the expression of det(J b) remains positive at the extreme case and, therefore,
is positive always. This result implies that J b is invertible and Equation (2.40) can be
compactly written as [

θ̇+
st

θ̇+
sw

]
=

(
J b
)−1

Ja(θ)

[
θ̇−st
θ̇−sw

]
(2.41)
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Combining the effects of collision on angular positions and velocities and eliminating
the “−” superscript, the reset map becomes

θ+
st

θ+
sw

θ̇+
st

θ̇+
sw

 = J(θ, θ̇) := J (θ)


θst
θsw
θ̇st
θ̇sw

 (2.42)

where,

J (θ) :=


0 1
1 0

0 0
0 0

0 0
0 0

j

 and j :=
(
J b
)−1

Ja(θ). (2.43)

2.2.3 The hybrid model

The aim of this subsection is to consolidate the ideas in this chapter and show that the 2-
DOF bipedal robots can be modelled as a hyrbid automatonH = (Q,Domain, F,Edges,Guard,Reset)
as in Definition 2.1.1.

• The 2-DOF only has one mode and therefore the set of discrete states, Q = {q1}, is
a singleton.

• The domain map Domain : Q⇒ R4 is defined as Domain(q1) = R4.

• The flow map F : Q × R4 → R4 describes a differential equation that defines the
continuous-time evolution of the continuous state variable. Let x = col (x1, x2, x3, x4) :=
col (θst, θsw, θ̇st, θ̇sw) ∈ R4 be continuous-time state vector of the robot. Then, Equa-
tion (2.19) can be written in state-space form as a control-affine system

ẋ = f(x) + g(x)τ (2.44)

where, f : R4 → R4 and g : R→ R4×2 are smooth and τ ∈ R2 is the input. Therefore,
the flow map is defined as F (q1, x) = f(x) + g(x)τ .

• Since there is only one mode, there is only one edge and therefore Edges = {(q1, q1)}.

• The guard map Guard : Edges⇒ R4 is defined as Guard(q1, q1) = S where S is given
by (2.30).
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Figure 2.8: Graphical representation of the 2-DOF bipedal robot hybrid system.

• The reset map Reset : Edges×R4 → R4 equals Reset(q1, q1, x) = J(x).

Figure 2.8 represents the bipedal robot graphically.

Equivalently, in summary and with respect to the class of system (1.3), the 2-DOF
bipedal robot model is given by

ELH :

{
M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Bτ, (θ, θ̇) 6∈ S
(θ+, θ̇+) = J(θ, θ̇), (θ, θ̇) ∈ S.

(2.45)

where the matrices M(θ), C(θ, θ̇), G(θ), B are given by (2.21), (2.22), (2.23), and (2.24)
respectively. The set S is given by (2.30) and map J(θ) is given by (2.42) (2.43). In
state-space, (2.45) has the form

ELH :

{
ẋ = f(x) +

∑2
i=1 gi(x)τi, x 6∈ S

x = J(x), x ∈ S.
(2.46)
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where,

f(x) =


x3

x4
1

det(M)
(−C12M22x4 −M22G1 +M12C21x3 +M12G2)

1
det(M)

(C12M21x4 +M21G1 − C21M11x3 −M11G2)

 ,

g1(x) =
1

det(M)


0
0
M22

−M21

 and g2(x) =
1

det(M)


0
0

−M12 −M22

M11 +M21

 .
In summary, the 2-DOF bipedal robot under study belongs to the class of hybrid

systems. The next chapter studies and analyzes the open-loop behaviour of the robot
and motivates the concept of “hybrid virtual holonomic constraints” (hVHC). Chapter 4
formalizes hVHCs for systems of form (1.3) and utilizes this concept in order to facilitate
closed-loop walking for the 2-DOF bipedal robot.
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Chapter 3

Open-loop gaits

This chapter discusses the open-loop (or passive) behaviour of a 2-DOF bipedal robot.
The idea of passive walking was motivated and studied by T. McGeer in the early 1990s [3],
[8]. His idea was to convert the rolling of a rimless wheel along an inclined surface into
walking be means of a clever mechanical design. A passive walker is an unactuated 2-DOF
bipedal robot that can be viewed as a rimless wheel with only two spokes (Figure 3.1) with
the massless spokes replaced by legs that possess mass and inertia. These two legs are
connected by a revolute joint at the hip position making one leg standing on ground and
the other leg swinging freely as a pendulum. In order for a 2-DOF bipedal robot to walk
passively, the swing leg should land on the position where the next spoke in the rimless
wheel is to land [3].

This chapter studies orbital stability of a 2-DOF passive bipedal robot. Due to the
complexity of the analytical model, a numerical study is carried out based on the method
of Poincaré sections. The stability problem of the hybrid gait is converted to stability of a
non-linear discrete map. Stability is concluded by the calculation of the eigenvalues of the
Jacobian of this non-linear discrete map. During a passive gait cycle, the functional relation
between the configuration variables is viewed as a virtual constraint which motivates the
idea of virtual constraints for hybrid systems. This idea is further developed in Chapter 4.
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γ

(a) Rimless wheel with massless
spokes.

γ

(b) Passive 2-DOF bipedal
robot.

Figure 3.1: From rimless wheel to passive 2-DOF bipedal robot.

3.1 Orbital stability

This section reviews basic stability analysis for closed orbits in the state space of continuous-
time systems. The following definition is due to Julés Henri Poincaré.

Definition 3.1.1. A limit cycle is a non-trivial, closed, isolated phase curve.

In Definition 3.1.1, non-trivial and closed means that the corresponding integral curve
is non-constant and periodic. Isolated means that in a neighbourhood of the closed phase
curve, there are no other closed phase curves. For general non-linear systems, there are
no checkable conditions for there to exist a limit cycle. For systems on the plane there are
results, including Bendixson’s criterion, that can be used to find closed-orbits. For more
about Bendixson’s criterion, the reader is referred to [40].

Consider a continuous-time system

ẋ = f(x), x ∈ X ⊆ Rn (3.1)

where f is continuously differentiable and X is a domain, i.e., an open and connected set.
Given an initial condition x(0) = x0 ∈ X , let φ(t, x0) denote the corresponding solution
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of (3.1). Suppose that (3.1) has a non-trivial closed phase curve γ passing through the point
p ∈ X . Let T > 0 be the minimum period of φ(t, p). Then φ(T, p) = p and γ = φ([0, T ], p).

Definition 3.1.2. Given a set S ⊆ Rn and a point x ∈ Rn, the point-to-set distance is

‖x‖S := inf
y∈S
‖x− y‖.

Definition 3.1.3. The closed orbit γ is orbitally asymptotically stable if

(∀ ε > 0) (∃ δ > 0) (∀ x0 ∈ X ) ‖x0‖γ < δ ⇒ (∀ t ≥ 0) ‖φ(t, x0)‖γ < ε

and ‖φ(t, x0)‖γ → 0 as t→∞.

In other words, if the initial condition x0 is sufficiently close to γ, then the corresponding
phase curve remains close to γ for all future time and approaches γ as t→∞.

In this section we present sufficient conditions for the asymptotic stability of γ. Unfortu-
nately, the conditions are difficult to check in practice because they rely on the knowledge
of the solution to (3.1). However, they can be checked approximately using numerical
methods. Most importantly, they are very important in understanding the nature of the
stability problem.

Poincaré’s idea for studying orbital stability is illustrated in Figure 3.2. Let S be an
open subset of an (n−1)−dimensional hyperplane1 passing through p and transverse to f .
That is, for each x ∈ S, the vector f(x) is not tangent to S and is not zero either. Such a
hyperplane is called a local section of γ. Picking an initial condition x0 in S sufficiently close
to p, the phase curve through x0 intersects S again at another point x1. If x1 is sufficiently
close to p, then the same phase curve will intersect S at another point x2. If the sequence
of points obtained xi converges to p, it is clear that the phase curve through x0 approaches
the closed orbit γ. If the same is true for any initial x0 in a small neighbourhood of p,
then γ is orbitally asymptotically stable. In this way, the stability problem is reduced to
the study of the properties of a discrete-time system xk+1 = g(xk).

More precisely, for any x0 in a sufficiently small neighbourhood Wof p, there is a time
τ(x0) > 0 such that the phase curve intersects S, i.e., φ(τ(x0), x0) ∈ S. In fact [41],

1By an open subset of a hyperplane is meant the intersection of the hyperplane with an open subset of
Rn.
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γ

Figure 3.2: An illustration of Poincaré’s method for determining orbital stability of a
closed-orbit γ.

there exists a unique continuously differential map x0 7→ τ(x0) such that τ(p) = T . Let
S0 = S ∩W and define g : S0 → S as

g(x) := φ(τ(x), x). (3.2)

Given x ∈ S0, g(x) represents the next intersection of the phase curve through x with
the section S. The function g is called a Poincaré map. The map g is C1 because τ and φ
are C1. Now consider the non-linear discrete-time system

xk+1 = g(xk), xk ∈ S0, k ∈ Z+ (3.3)

with initial condition x0. The state-space of the system is S0 which is an open subset of
an (n− 1)−dimensional vector space. Note that

g(p) = φ(τ(p), p) = φ(T, p) = p.

Therefore p is an equilibrium of (3.3).

Definition 3.1.4. The equilibrium p of (3.3) is asymptotically stable if

(∀ ε > 0) (∃ δ > 0) (∀ x0 ∈ S0) ‖x0 − p‖ < δ ⇒ (∀ k ∈ Z+) ‖xk − p‖ < ε

and xk → p as k →∞.
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The next theorem reduces the stability study of the limit cycle, γ, to the study of the
equilibrium point of (3.2).

Theorem 3.1.5 ([40]). The closed-orbit, γ, is orbitally asymptotically stable if and only if
the equilibrium point of (3.3) is asymptotically stable.

Based on Theorem 3.1.5, if all eigenvalues of dgp are inside the unit disk, then the
closed-orbit γ of (3.1) is orbitally asymptotically stable.

3.2 Passive 2-D.O.F. bipedal robot

Consider the 2-DOF bipedal robot model (2.45) with τ = 0. When the system is properly
initialized, the robot performs a successful gait using only the force of gravity to provide
energy [3]. The corresponding gait is called passive because there is no active control of
the motion. Without loss of generality, assign numbers to each of the legs on the robot.
Let the angular position of leg 1 be θ1 ∈ R and the angular position of leg 2 be θ2 ∈ R.
The coordinates col(θ1, θ2) are referred to as leg coordinates. During a successful gait, leg 1
plays the role of the stance leg for some time (i.e. θ1 = θst) and, when the states of (2.45)
hit the guard condition, leg 1 becomes the swing leg (i.e. θ1 = θsw). The sequence of leg 1
acting as the stance leg followed leg 1 acting as the swing leg continues indefinitely during
a successful gait. This “periodic” motion can be visualized by graphing the phase curves
on the (θ1, θ̇1) and (θ2, θ̇2) planes. The periodicity of this motion is captured by the closed
orbits in the (θ1, θ̇1), (θ2, θ̇2) planes. Figure 3.3 shows a typical closed orbit corresponding
to leg 2 undergoing a passive gait. In addition, Table 3.1 summarizes the parameters used
in our simulations.

Table 3.1: Parameters used in simulations.

m1 m2 mH I1 I2 `1 `2 `3 `4 γ

5 kg 5 kg 10 kg 0.333 kg·m2 0.333 kg·m2 0.5 m 0.5 m 0.5 m 0.5 m 2.5o

The closed-orbit is divided into four stages and described as follows. Stage 1 is where
the leg undergoes swinging and is called the swing leg, i.e., θ2 = θsw. Stage 2 indicates that
the leg hits the ground and is ready to transfer its role from being swinging and become
pinned to ground, i.e., standing. Also, as discussed in the previous chapter, leg 2 loses a
fraction of its angular velocity as a result of impact. Once the leg enters stage 3, it becomes
the stance leg, i.e., θ2 = θst. At the end of stage 3, the leg gains velocity as compared to
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Figure 3.3: A typical closed-orbit for the the 2-DOF bipedal robot.

the start of stage 3. Then, at stage 4, leg 2 returns to being the swing leg, where impact
causes the leg to lose some of its gained velocity in such a way that makes its lost velocity
equal to the velocity at the beginning of stage 1. Since this closed-orbit is found to be
isolated, it is referred to as hybrid limit cycle (HLC).
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(a) Angular position versus time.
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(b) Angular velocity versus time.

Figure 3.4: Angular position and angular velocity of leg 2 as functions of time.
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Figure 3.4 shows the angular quantities of leg 2 undergoing a passive gait in steady-state
as functions of time. Note the instantaneous jumps in angular velocity values at impact
points.

One drawback of a passive gait is its sensitivity to system parameters and initial con-
ditions. Figure 3.5 shows a set of initial conditions that converge to the closed orbit.
A small perturbation to the initial conditions results in divergence from the closed orbit
(Figure 3.5b).

(a) Set of initial conditions that converge to the
HLC.

(b) Set of initial conditions that diverge from the
HLC.

Figure 3.5: The passive gait is sensitive to initial conditions.

3.2.1 Numerical stability test using Poincaré’s method

The stability of the passive gait is studied numerically (through the method of Poincaré)
since the analytical model of continuous-time dynamics of the 2-DOF bipedal robot are
complex. The detailed unforced continuous-time dynamics in state-space form are

ẋ1 = x3

ẋ2 = x4

ẋ3 = 1
det(M)

(−C12M22x4 −M22G1 +M12C21x3 +M12G2)

ẋ4 = 1
det(M)

(C12M21x4 +M21G1 − C21M11x3 −M11G2)

(3.4)

The quantitiesMij, Cij andGi are the (i, j)th entries of, respectively, the mass matrix (2.21),
centripetal force matrix (2.22) and gravity vector (2.23) in (2.20).
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Proposition 3.2.1. For all x ∈ R4, det(M) 6= 0.

Proof. The expression for det(M) is

det(M) := M11M22 −M12(x)M21(x).

Suppose that det(M) = 0. Then,

det(M) = 0⇔M11M22 = M12(x)M21(x)

⇔M11M22

(m2``3)2
= cos2(x1 − x2).

Since cos2(x1 − x2) ≤ 1, we necessarily have that

M11M22

(m2``3)2
≤ 1.

But,

M11M22 = (m2``3)2+m1m2(`1`3)2 +mHm2(``3)2 + I1m2`
2
3 + I2

(
m1`

2
1 +m2`

2 +mH`
2 + I1

)︸ ︷︷ ︸
:=w

.

with all terms being positive. Therefore,

M11M22

(m2``3)2
= 1 +

w

(m2``3)2
> 1.

This shows that M is non-singular.

We will implement a näıve numerical method to compute the Jacobian of the Poincaré
map for the 2-DOF bipedal robot. We will apply this numerical procedure on one leg, say,
leg 2. The obtained results also apply to the other leg due to mechanical symmetry of the
system. Define a subspace in R4

R := span




0
1
0
0

 ,


0
0
0
1


 . (3.5)

From Figure 3.3 we suspect that the projection of the solution of (3.4) onto R generates
closed orbits. Let π : R4 → R denote the natural projection. Then, a Poincaré section, S,
to the two-dimensional projected vector field, π◦f(x), is a one-dimensional affine subspace,
i.e. a line.

Our numerical procedure proceeds as follows.
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(a) Pick an initial condition x(0) = x0 ∈ R4. Simulate the unforced system (3.4) for a suffi-
ciently long time so that the solution x(t) at the end of the simulation is approximately
on the hybrid limit cycles. Let xf denote the final state of this simulation.

(b) Project xf on R as π(xf ). Then, project the vector field of (3.4) on R and evaluate it
at π(xf ). This results in a vector π ◦ f(x) that is tangent to the hybrid limit cycle at
π(xf ). Rotate this vector by 90◦ in order to generate a transverse set, S.

(c) Solve the differential Equation (3.4) with initial condition xf until π(x(t)) crosses S for
the first time. The crossing point, being on S and also approximately on the hybrid
limit cycle, can be considered the equilibrium p of the Poincaré map.

(d) We now write a function that approximately implements the Poincaré maps g : S → S.

(e) Using the functions from part (d), we use finite difference approximation of the deriva-
tive to compute dg near p. We numerically verify that |dg| < 1.

The above numerical procedure was carried out as follows.

(a) A vector of initial states x0 that converged to the hybrid limit cycle was found to
be x0 = col(−0.226, 0.272,−1.01,−0.732). This vector is a result of many simulation
iterations. The solution was carried out for a sufficiently large time until it approached
a hybrid limit cycle. At the end of the simulation, the final point was reported to be
xf = col(−0.142, 0.353,−0.759,−1.55× 10−11).

(b) The projection of xf onto R becomes π(xf ) = col(0, 0.353, 0,−1.55 × 10−11). Then,
π ◦ f (xf ) = col(0,−1.55× 10−11, 0,−8.53), which is tangent to the hybrid limit cycle
at π(xf ). On R, rotating this vector by ≈ 90◦ results in the line x4 = 0. Therefore,
the section

S := {x ∈ R : x4 = 0} (3.6)

is transverse to the hybrid limit cycle.

(c) The differential equations (3.4) were solved with initial condition xf until π (x(t))
crossed S for the first time resulting in an equilibrium point p = col(−0.142, 0.353,
−0.759, 0). Then, the point π(p) becomes π(p) = col(0, 0.353, 0, 0) ∈ S.

(d) The discrete map g : S → S was generated as follows. The system was initialized such
that π (x(0)) ∈ S. Then, solution was carried out until the event π(x) ∈ S occurred,
at which the simulation was halted. The event corresponds to the projected states

44



belonging to S. Then, the point x(t)|S was recorded. The system was re-initialized
at x0 = x(t)|S and solved until the event π(x) ∈ S occurred again. This process was
repeated until π ◦ x(t)|S converged to p resulting in a non-linear discrete maps g. This
map is shown in Figure 3.6 near its equilibrium, p.
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Simulated until t = 174.0842 s

Figure 3.6: Poincaré map of the passive 2-DOF bipedal robot (leg 2).

(e) The derivative dg near the equilibrium p is found using finite difference approximation
as dg = −0.902, showing that p is a stable equilibrium for g.

It is left to note that all numerical solutions above were performed in MATLABTM using
the built-in solver ode23.

Figures 3.7 illustrates the above discussion.

Proposition 3.2.2. The set S (3.6) is a local section of the projection of the vector
field (3.4) onto R.
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Poincaré map g

(a) The local section S with solutions projected
onto R.

0.346 0.348 0.35 0.352 0.354 0.356 0.358 0.36
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

p

x2(rad)

x
4
(r
a
d
/
s)

Simulated until t = 174.0842 s

 

 

π(x) ∈ S
Start point
End point

(b) Enlarged view of the local section S with
projected solutions onto R evaluated S.

Figure 3.7: Poicaré sections.

Proof. To show that S is local section to π ◦ f(x), i.e. not tangent to π ◦ f(x)|S, we
will show that π ◦ f(x)|S is not normal to the Jacobian of the equation defining S. The
projection of the vector field of (3.4) on R is

π ◦ f(x) =


0
x4

0
1

det(M)
(C12M21x4 +M21G1 − C21M11x3 −M11G2)

 .
Then, when π ◦ f(x) is evaluated at S we have

π ◦ f(x)|S =


0
0
0

1
det(M)|S

(−M11G2)

 .
The Jacobian of the equation defining S is n :=

[
0 0 0 1

]
. Then, we have

n · π ◦ f(x)|S =
[
0 0 0 1

] 
0
0
0

1
det(M)|S

(−M11G2)


= 1

det(M)|S
(−M11G2)

= − 1
det(M)|S

(m1`
2
1 +m2`

2 +mH`
2 + I1)m2g`3 sin(x2)
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As a result, n is not tangent to π ◦ f(x)|S as long as x2 6= 0. Therefore, S is a local section
to π ◦ f(x) by definition.

3.2.2 Modelling passive gaits as hybrid virtual holonomic con-
straints

We conclude this chapter by making an observation that will lead us to the control design
studied in the subsequent chapter. The stable gait for the unforced system we identified in
Section 3.2.1 can be viewed as a holonomic constraint between the stance and the swing
legs. More precisely, the holonomic constraint defines the “shape” of the gait. Figure 3.8
plots the functional relation between the swing and the stance leg over a gait cycle. The
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Figure 3.8: Functional relation between the swing and stance legs over a gait cycle.

constraint depicted in Figure 3.8 can be viewed as a function h : R4 → R, (x1, x2) 7→
h(x1, x2). This constraint defines the shape of the gait in the sense that the functional
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relationship does not provide any information about the time parameterization of the
motion along the gait. It is clear that the set

Γ :=
{
x ∈ R4 : h(x1, x2) = dhx1,x2 col (x3, x3) = 0

}
is attractive and invariant for the unforced system. Our objectives in the next chapter are
to, through feedback control, enlarge the region of attraction of Γ and to design other stable
gaits that do not necessarily have the shape of the passive gait depicted in Figure 3.8.
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Chapter 4

Hybrid virtual holonomic constrains

In this chapter, the idea of virtual holonomic constraints (VHC) is extended to hybrid
VHC of a hybrid Euler-Lagrange system of the form (1.3). The concept of hybrid VHC is
utilized to design two distinct feedback-linearizing control laws for a 2-DOF bipedal robot.
The first control law (Section 4.5) yields a fully actuated closed-loop system whereas the
second control law (Section 4.6) generates an under-actuated closed-loop system.

4.1 Virtual holonomic constraints

As its name suggests, a virtual holonomic constraint (VHC) is a non-physical constraint
that depends on configuration variables (i.e. positions). For a continuous-time Euler-
Lagrange control system, the control input must enforce invariance of the constraint man-
ifold in the sense of Definition 1.1.1.

Example 4.1.1. Consider a particle of mass m falling under the effect of gravity with a
horizontal force applied on it. Let the gravitational constant be gr. The particle can be
restricted to a vertical plane while falling by means of the applied horizontal force. On the
other hand, the same applied horizontal force can not restrict the particle to a horizontal
plane due to the presence of the gravity force. Figure 4.1 illustrates this concept. The
vertical plane of Figure 4.1a is a feasible VHC and the horizontal plane of Figure 4.1b is
not a feasible VHC.

4
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(a) Feasible VHC. (b) Non-feasible VHC.

Figure 4.1: Feasible versus non-feasible VHCs.

In the control systems literature, a formal definition of continuous-time VHC exploiting
feasibility was given in [2], see also Definition 1.1.1. The next definition characterizes those
virtual holonomic constraints for which invariance of the set constraint manifold Γ can be
achieved through partial state feedback linearization.

Definition 4.1.1 (Regular VHC). A virtual holonomic constraint (VHC) of order k for
System (1.2) is called a regular VHC if the function y = h(q) yields a well-defined relative
degree of {2, · · · , 2} everywhere on the set Γ.

Example 4.1.2. Let the state vector of the particle in Example 4.1.1 be ξ := col(x, y, z, ẋ, ẏ, ż) ∈
R6. Then, the particle’s evolution is described by a system of the form

ξ̇ = f(ξ) + g(ξ)u (4.1)

where f(ξ) = col(ξ4, ξ5, ξ6, 0,−gr, 0), g(ξ) = col(0, 0, 0, 1
m
, 0, 0) and u = ux.

Define a candidate virtual holonomic constraint

h : R6 → R
ξ 7→ ξ1 − 5.

(4.2)
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In this case, the constraint manifold is

Γ = {ξ ∈ R6 : ξ1 − 5 = ξ4 = 0}. (4.3)

Equations (4.1) and (4.2) can be viewed as a single-input single-output system. The relative
degree of the system is computed by differentiating (4.2) with respect to time as

ḣ(t) = dhξ ξ̇ = ξ4

ḧ(t) = d
(

dhξ ξ̇
)
ξ
ξ̇ =

ux
m
.

Therefore, for all m ∈ R, system (4.1) with output (4.2) has a relative degree of 2 at every
ξ ∈ R6 and, in particular, on the constraint manifold Γ. Therefore, the relation (4.2) is a
regular VHC.

Now, consider the following candidate virtual holonomic constraint

h(ξ) = ξ2 − 5. (4.4)

Then,
ḣ(t) = dhξ ξ̇ = ξ̇2

ḧ(t) = d
(

dhξ ξ̇
)
ξ
ξ̇ = −gr

h(3)(t) = 0.

Therefore, system (4.1) with output (4.4) does not have a well defined relative degree and,
thus, relation (4.4) is not a regular VHC.

4

4.2 Hybrid virtual holonomic contraints

In the previous section, we reviewed the notion of regular VHC for continuous-time Euler-
Lagrange systems. In this section, we extend the notion of regularity of VHCs to hybrid
systems of the form (1.3) and introduce hybrid regular VHC. We begin with the following
definitions.
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Definition 4.2.1 (Hybrid VHC of order k). A hybrid virtual holonomic constraint of order
k (hVHC) for system (1.3) is a continuous-time VHC of order k such that the constraint
manifold is invariant under the discrete-time dynamics

J(S ∩ Γ) ⊆ Γ.

Based on Definition 4.2.1, a hVHC can be satisfied even if the states “jump” instanta-
neously due to discrete-time dynamics. This feature is not captured in Definition 1.1.1.

Definition 4.2.2 (Regular Hybrid VHC). A hVHC of order k for system (1.3) is called
a regular hybrid virtual holonomic constraint if the output function y = h(q) yields a well-
defined vector relative degree {2, . . . , 2} everywhere on the constraint manifold Γ.

In Section 3.2, we showed that the passive gait of the 2-DOF bipedal robot can be
modelled as a functional relationship between the swing and stance legs (i.e. configuration
variables). This functional relationship can be viewed as a hVHC of degree 1 to be enforced.
This motivates us to study the following class of constraint functions.

Assumption 3. The VHCs for system (1.3) considered in this Chapter have order N − 1
and the form

h(x1, · · · , xN) = col (x2 − p1 (x1) , · · · , xN − pN−1 (x1)) (4.5)

where pi : R 7→ R are C1, i ∈ {1, 2, · · · , N − 1}.

The next result gives conditions on a VHC under Assumption 3 resulting in a hVHC
of order N − 1 for the entire hybrid system (1.3).

Proposition 4.2.3. Let h : RN → RN−1 be a VHC of the form (4.5) for the continuous
dynamics of the hybrid Euler-Lagrange system (1.3). Then, h is hVHC for (1.3) if and
only if, for all x ∈ S ∩ Γ,

p1 (J1(x)) = J2(x) , · · · , pN−1 (JN−1(x)) = JN(x) (4.6)

and,
∂p1

∂x1

∣∣∣∣
x+1

=
JN+2(x)

JN+1(x)
, · · · , ∂pN−1

∂x1

∣∣∣∣
x+1

=
J2N(x)

JN+1(x)
(4.7)
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where Ji is the ith row of the function J in (1.3).

Proof. We will show that conditions (4.6) and (4.7) are necessary and sufficient for a VHC,
h, of the form (4.5) to be a hVHC in the sense of Definition 4.2.1. Since h is assumed to be
a VHC, then if the system is initialized on the constraint manifold, it remains on it until
the system reaches x ∈ S ∩ Γ. Throughout this proof and the rest of the thesis, let the
“−” superscript denotes variables when the state vector belongs to the guard condition.

Necessity. We will show that if h is hVHC in the sense of Definition 4.2.1, then the
function p must satisfy the conditions (4.6) and (4.7). In other words, we will show that
if the constraint manifold is invariant under discrete dynamics, then the function p must
satisfy the conditions (4.6) and (4.7). Suppose x ∈ S ∩ Γ, then

h1(x−) = x−2 − p1(x−1 )

= 0

But since h is a hVHC in the sense of Definition 4.2.1 (by hypothesis), we have

h1(x+) = x+
2 − p1(x+

1 )

= 0

⇒J2(x−)− p1

(
J1(x−)

)
= 0 (By definition of J)

⇒ p1

(
J1(x−)

)
= J2(x−)

Similarly,
p2

(
J2(x−)

)
= J3(x−) , · · · , pN−1

(
JN−1(x−)

)
= JN(x−)

where, x− = col
(
x−1 , p1(x−1 ), · · · , pN−1(x−1 )

)
since x ∈ S ∩ Γ implies h1(x−) = h2(x−) =

· · · = hN−1(x−) = 0.

Now for x ∈ S ∩ Γ we have,

ḣ1(x−) = x−N+2 −
∂p1

∂x1

∣∣∣∣
x−1

(x−N+1)

= 0.
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But,

ḣ1(x+) = x+
N+2 −

∂p1

∂x1

∣∣∣∣
x+1

(x+
N+1)

= 0 (By hypothesis and Definition 4.2.1)

⇒ ∂p1

∂x1

∣∣∣∣
x+1

=
x+
N+2

x+
N+1

⇒ ∂p1

∂x1

∣∣∣∣
x+1

=
JN+2(x−)

JN+1(x−)
(By definition of J)

Similarly,
∂p2

∂x1

∣∣∣∣
x+1

=
JN+3(x−)

JN+1(x−)
, · · · , ∂pN−1

∂x1

∣∣∣∣
x+1

=
J2N(x−)

JN+1(x−)

where
x− = col

(
x−1 , p1(x−1 ), · · · , pN−1(x−1 )

)
.

Sufficiency. Here we will show that if h satisfies (4.6) and (4.7), then h is a hVHC in
the sense of Definition (4.2.1). Suppose x ∈ S ∩ Γ, then

h1(x−) = x−2 − p1(x−1 )

= 0.

Since h satisfies (4.6), we have

p1

(
J1(x−)

)
= J2(x−)

⇒ J2(x−)− p1

(
J1(x−)

)
= 0

⇒ x+
2 − p1(x+

1 ) = 0 (by definition of J)

⇒ h1(x+) = 0

Similarly,
h2(x+) = h3(x+) = · · · = hN−1(x+) = 0.

Now for x ∈ S ∩ Γ we have,

ḣ1(x−) = x−N+1 −
∂p1

∂x1

∣∣∣∣
x−1

x−N+1

= 0.
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Since h satisfies (4.7), we have

∂p1

∂x1

∣∣∣∣
x+1

=
JN+2(x−)

JN+1(x−)

⇒ JN+2(x−)− ∂p1

∂x1

∣∣∣∣
x+1

JN+1(x−) = 0

⇒ x+
N+2 −

∂p1

∂x1

∣∣∣∣
x+1

x+
N+1 = 0 (by definition of J)

⇒ ḣ1(x+) = 0

Similarly,
ḣ2(x+) = ḣ3(x+) = · · · = ḣN−1(x+) = 0.

This completes the proof.

The above result allows us to design hVHCs for Euler-Lagrange systems with im-
pacts (1.3). We will use this result in the next section in order to design a hVHC for
the 2-DOF bipedal robot.

4.3 Virtual holonomic constraints applied to the 2-

D.O.F bipedal robot

Consider the 2-DOF bipedal robot whose model was derived in Chapter 2 and can be
compactly written in state-space form as

ELH :

{
ẋ = f(x) +

∑2
i=1 gi(x)τi, x 6∈ S

x = J(x), x ∈ S.
(4.8)

Let the desired motion of the robot be defined such that the swing leg is expressed as a
function of the stance leg (i.e. x2 = p(x1)). Then , the objective is to enforce the following
virtual holonomic constraint,

h(x) = x2 − p(x1), (4.9)

which satisfies Assumption 3. Now, Equations (4.8) with output function (4.9) constitute
a multi-input single-output system. For (4.9) to be a regular VHC of (4.8), the relative
degree must be 2 on the constraint manifold.
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Proposition 4.3.1. Any VHC that satisfies Assumption 3 is a regular VHC for the con-
tinuous dynamics of (4.8).

Proof. Define the output y = h(x) for the continuous-time dynamics of (4.8). The system
has 2 inputs and 1 output. Then,

Lg1h(x) = 0

Lg1Lfh(x) = − 1

det(M)

(
∂p

∂x1

M22 +M21(x)

)
and,

Lg2h(x) = 0

Lg2Lfh(x) =
1

det(M)

(
∂p

∂x1

(M12(x) +M22) +M11 +M21(x)

)
where Mij, i, j = 1, 2 are the entries of the mass matrix M(x) in (2.19) and det(M) 6= 0
for all x ∈ R4 (see Proposition 3.2.1).

Now, define
A1(x) =

[
Lg1Lfh(x) Lg2Lfh(x)

]
(4.10)

Assume there exists x ∈ R4 such that A1(x) is not full rank. This implies that,

− ∂p

∂x1

M22 −M21(x) = 0,(
∂p

∂x1

(M12(x) +M22) +M11 +M21(x)

)
= 0.

Noting that M12(x) ≡M21(x), the above two equations lead to,

∂p

∂x1

= −M21(x)

M22

and,

∂p

∂x1

=
−M11 −M21(x)

M21(x) +M22
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For the above two equations to hold simultaneously,

−M21(x)

M22

= −M11 +M21(x)

M21(x) +M22

,

⇒M2
21(x) +M21(x)M22 = M11M22 +M21(x)M22,

⇒M2
21(x) = M11M22,

⇒ (m2``3)2 cos2(x1 − x2) = M11M22,

⇒ cos2(x1 − x2) =
M11M22

(m2``3)2 .

But from the proof of Proposition 3.2.1 we have,

M11M22

(m2``3)2 > 1 ∀x ∈ R4

Therefore, there does not exist x ∈ R4 such that A1(x) is not full rank which implies that,
for all x ∈ R4, A1(x) is full rank. As a result, the continuous dynamics of (4.8) with
output function y = h(x) have a relative degree of r = 2 for all x ∈ R4, and hence, have a
relative degree of 2 on the constraint manifold. This implies that h(x) is a regular VHC
by definition.

So far we have shown that (4.9) is a regular VHC, and hence, a feasible VHC for the
continuous-time dynamics of the 2-DOF bipedal robot. Next we extend the VHC (4.9) to
hVHC to the whole hybrid system (4.8).

Proposition 4.3.2. Let h : RN → RN−1 be a VHC of the form (4.5) for the continuous
dynamics of the 2-DOF bipedal robot (4.8). Then, h is hVHC for (4.8) if and only if, for
all x ∈ S ∩ Γ,

i) p ◦ p(x1) = x1,

ii)
∂p

∂x1

∣∣∣∣
x+1

=

(
j11 + j12

∂p
∂x1

)∣∣∣
x
x3(

j21 + j22
∂p
∂x1

)∣∣∣
x
x3

.
(4.11)

Proof. This proof utilizes the result of Proposition 4.2.3. Simply, the conditions (4.6)
and (4.7) are applied to the 2-DOF bipedal robot model (4.8) and written as in (4.11).

For a 2 DOF-bipedal robot, condition (4.6) reads

p
(
J1(x−)

)
= J2(x−).
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Using the definition of the reset map, J , of the 2-DOF bipedal robot, the above equation
becomes

p
(
x−2
)

= x−1
⇒ p

(
p
(
x−1
))

= x−1 (since h is enforced by assumption)

In other words, for a 2-DOF bipedal robot with x ∈ S ∩ Γ, condition (4.6) reduces to

p ◦ p(x1) = x1.

Similarly, condition (4.7) reads
∂p

∂x1

∣∣∣∣
x+1

=
J4(x−)

J3(x−)
.

Using the definition of the reset map, J , of the 2-DOF bipedal robot, the above equation
becomes

∂p

∂x1

∣∣∣∣
x+1

=
j21x

−
3 + j22x

−
4

j11x
−
3 + j12x

−
4

=

j21x
−
3 + j22

∂p
∂x1

∣∣∣
x−1

x−3

j11x
−
3 + j12

∂p
∂x1

∣∣∣
x−1

x−3

(since h is enforced by assumption)

In other words, for a 2-DOF bipedal robot with x ∈ S ∩ Γ, condition (4.7) reduces to

∂p

∂x1

∣∣∣∣
x+1

=

(
j11 + j12

∂p
∂x1

)∣∣∣
x
x3(

j21 + j22
∂p
∂x1

)∣∣∣
x
x3

.

Proposition 4.3.3. Any hVHC that satisfies Assumption 3 is regular hVHC for sys-
tem (4.8).

Proof. Any hVHC is, by definition, also a VHC. Also, any VHC under Assumption 3 is
a regular VHC, by Proposition 4.3.1. In addition, for x 6∈ S, any regular VHC of (4.8)
implies that the relative degree on the constraint manifold is {2, · · · , 2}, by definition. As
a result, any hVHC for (4.8) under Assumption 3 has a relative degree {2, · · · , 2} on the
constraint manifold for x 6∈ S. Therefore, any hVHC under Assumption 3 is regular hVHC
for system (4.8), by definition.

A convenient choice for the function p in (4.9) is polynomials. The next subsection
proposes a design procedure that generates a polynomial p satisfying (4.11).
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4.3.1 Polynomial design generating a hybrid V.H.C.

This section introduces a design procedure that returns a “shape” polynomial p in (4.9)
satisfying conditions in (4.11). Let the polynomial be written as

p(x1) = αmx
m
1 + αm−1x

m−1
1 + · · ·+ α0

where m ≥ 3.

1) Given a slope γ, pick a value for the angle of the stance leg just before impact, i.e.
x−1 . Since the impact results in a new stance angle, x+

1 , we need to set x+
1 accordingly.

Then, x−2 = x+
1 (by definition of J (2.42)) and x−2 = −x−1 − 2γ (by definition of the

impact surface S (2.30)). Therefore, set x+
1 = −x−1 − 2γ.

2) We need x ∈ S ∩ Γ just before an impact event. This means that

h(x−) = 0

⇒ x−2 − p
(
x−1
)

= 0

⇒ p
(
x−1
)

= x−2

⇒ p
(
x−1
)

= x+
1 (by definition of J)

Therefore, set p(x−1 ) = x+
1 . This implies

αm
(
x−1
)m

+ αm−1

(
x−1
)m−1

+ · · ·+ α0 = x+
1 . (4.12)

Steps (1) and (2) imply condition (i) in (4.11) since p(x+
1 ) = p

(
p(x−1 )

)
= x−1 ⇒

p ◦ p(x−1 ) = x−1 .

3) We also need that the states remin in Γ just after impact, i.e. x+ ∈ Γ. This means that

h(x+) = 0

⇒ x+
2 − p

(
x+

1

)
= 0

⇒ p
(
x+

1

)
= x+

2

⇒ p
(
x+

1

)
= x−1 (by definition of J)

Therfore, set p(x+
1 ) = x−1 . This implies

αm
(
x+

1

)m
+ αm−1

(
x+

1

)m−1
+ · · ·+ α0 = x−1 . (4.13)
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4) Set
∂p

∂x1

∣∣∣∣
x−1

= k1, where k1 is a design parameter that determines the change in x1

relative to x2 just before the impact point. This implies

αm
(
x−1
)m−1

+ · · ·+ α1 = k1. (4.14)

The condition k1 > k2, where k2 is defined in Step 6, turns out to be a sufficient condition
for stability of the origin of the ξ-subsystem presented in Sections 4.5 and 4.6. In order
to fulfil k1 > k2, the following must hold true assuming the two legs are rigid rods with
identical geometry and inertial properties with `1 = `2 = `3 = `4 (see Appendix B)

b− c+
√

(c− b)2 + 4ad

2d
< k1 <

b− c−
√

(c− b)2 + 4ad

2d
(4.15)

where the constants a, b, c and d are defined in Appendix B.

5) Using the result from Step 5, condition (ii) in (4.11) implies that
∂p

∂x1

∣∣∣∣
x+1

=
j21 + j22k1

j11 + j12k1

=: k2 where j defined in (2.43).

Therefore, we have

mαm
(
x+

1

)m−1
+ · · ·+ α1 = k2. (4.16)

6) Solve

X


αm
αm−1

...
α0

 =


x+

1

x−1
k1

k2

 (4.17)

for αm, . . . , α0, where,

X :=


x−

m

1 x−
m−1

1 . . . x−1 1

x+m

1 x+m−1

1 . . . x+
1 1

mx−
m−1

1 (m− 1)x−
m−2

1 . . . 1 0

mx+m−1

1 (m− 1)x+m−2

1 . . . 1 0

 ∈ R4×(m+1)

It is noted that the above design procedure is valid for polynomials of degree m > 3.

Proposition 4.3.4. When m ≥ 3, system (4.17) is solvable if and only if X is full row
rank.
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Proof. Case m = 3. In this case, the X matrix is square and written as,

X :=


x−

3

1 x−
2

1 x−1 1

x+3

1 x+2

1 x+
1 1

3x−
2

1 2x−1 1 0

3x+2

1 2x+
1 1 0

 . (4.18)

The determinant of X is det(X) = −
(
x−1 − x+

1

)4
and, clearly, X is non-singular if and

only if x−1 6= x+
1 . Therefore, system (4.17) is solvable if and only if x−1 6= x+

1 .

Case m > 3. Based on the above argument, if x−1 6= x+
1 , then X is full row-rank and a

right-inverse exists for X. As a result, system (4.17) is solvable if and only if x−1 6= x+
1 .

It is noted that for m > 3 there exist infinitely many polynomials p that satisfy condi-
tions (4.11) since right inverse of X is not unique. Next, we discuss more cases where the
proposed design procedure is not applicable.

Case m = 2. In this case, the above design procedure is not applicable since there are
3 unknowns and 4 equations. Therefore, the designer cannot choose k1. Instead, Equations
(4.14) and (4.16) combine into one non-linear equation in the parameters, which needs to
be solved simultaneously with (4.12) and (4.13).

Case m = 1. Finally, the conditions (4.11) cannot be fulfilled since m = 1 would imply
that k1 = k2 = α1, which conflicts the reset map, J , of the system.

Example 4.3.1. This example uses the above design procedure in order to come up with
a polynomial of degree 3, p(x1) = α3x

3
1 + α2x

2
1 + α1x1 + α0, that satisfies (4.11). The goal

is to find the correct coefficients α3, · · · , α0. The slope of the ground is taken to be 2.5◦.

1) Pick x−1 = −0.400 rad, which represents the angular position of the stance leg at which
the stance leg hits the ground. Then, x−2 = 0.400− (2)(2.5)(π/180) = 0.313 rad. Now,
using the definition of the reset map J , we have x+

1 = x−2 = 0.313 rad.

2) We now form Equation (4.12): (−0.400)3α3 + (−0.400)2α2 − 0.400α1 + α0 = 0.313

3) We now form Equation (4.13): 0.3133α3 + 0.3132α2 + 0.313α1 + α0 = −0.400
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4) Choose k1 = 1. The constants a = 5.22, b = −1.86, c = 16.0 and d = −1.56 imply that

b− c+
√

(c− b)2 + 4ad

2d
= 0.300

b− c−
√

(c− b)2 + 4ad

2d
= 11.2

and, therefore
b−c+
√

(c−b)2+4ad

2d
< k1 <

b−c−
√

(c−b)2+4ad

2d
. As a result, we form Equa-

tion (4.14) as (3)(−0.400)2α3 + (2)(−0.400)α2 + α1 = 1.

5) Given the values of x−1 and x−2 , calculation the entries of the j matrix results in j11 =
0.715, j12 = −0.0694, j21 = 0.233 and j22 = −0.0829. Then, k2 = 0.232 resulting in
Equation (4.16) (3)(0.313)2α3 + (2)(0.313)α2 + α1 = 0.232

6) The coefficients α3, · · · , α0 are computed using
(−0.400)3 (−0.400)2 −0.400 1

0.3133 0.3132 0.313 1
(3)(−0.400)2 (2)(−0.400) 1 0
(3)(0.313)2 (2)(0.313) 1 0



α3

α2

α1

α0

 =


0.313
−0.400

1
0.232

 .
Also, det(X) = −0.258 implies that X is invertible. Solving the above expression for
the parameters, we get 

α3

α2

α1

α0

 =


6.36
0.294
−1.82
−0.0546

 .
Finally, the polynomial becomes

p(x1) = 6.36x3
1 + 0.294x2

1 − 1.82x1 − 0.0546,

which satisfies (4.11).

4

4.4 State transformation

So far we have developed the notion of hybrid VHCs. The ultimate goal is to enforce a
given hVHC. For the 2-DOF bipedal robot, we introduce a new set of states that when
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nulled, enforce a given hVHC. We arrive at these new states by applying an appropriate
state transformation map, T : R4 → R4, as follows.

Consider the following output functions to the continuous dynamics of (4.8) h1 : R4 →
R and h2 : R4 → R such that,

h1(x) := x2 − p(x1)
h2(x) := x1

(4.19)

where h1 is hVHC.

Proposition 4.4.1. The continuous-time dynamics of the 2-DOF bipedal robot (4.8) with
output (4.19) yields a well-defined vector relative degree of {2, 2} for all x ∈ R4.

Proof. The system has 2 inputs and 2 outputs. Simple calculations reveal

Lg1h1(x) =
∂h1

∂x
g1

= 0

Lg1Lfh1(x) = − 1

det(M)

(
∂p

x1

M22 +M21(x)

)
and,

Lg2h1(x) =
∂h1

∂x
g2

= 0

Lg2Lfh1(x) =
1

det(M)

(
∂p

∂x1

(M12(x) +M22) +M11 +M21(x)

)
Similarly for h2(x),

Lg1h2(x) = 0

Lg1Lfh2(x) =
1

det(M)
M22

and,

Lg2h2(x) = 0

Lg2Lfh2(x) = − 1

det(M)
(M12(x) +M22)
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Now, define

A2(x) :=

[
Lg1Lfh1(x) Lg2Lfh1(x)
Lg1Lfh2(x) Lg2Lfh2(x)

]
∈ R2×2 (4.20)

The determinant of A2(x) is evaluated as, det(A2) := M2
12(x) −M11M22. To show that

A2(x) is non-singular, its determinant is shown not to equal zero for all x ∈ R4. Assume
there exists x ∈ R4 such that det(A2) = 0. This implies that,

M2
12(x) = M11M22 (by setting det(A2) = 0 and simplifying)

⇒ cos2(x2 − x1) =
M11M22

(m2``3)2
.

From the proof of Propositions 3.2.1 and 4.3.1 we have,

M11M22

(m2``3)2
> 1 ∀x ∈ R4.

Therefore,

det(A2) 6= 0 ∀x ∈ R4

This implies that, for all x ∈ R4, A2(x) is full rank. Therefore, the relative degree of the
systems is {r1, r2} = {2, 2}.

Since the continuous dynamics of (4.8) with output functions (4.19) have a vector
relative degree such that r1 + r2 = 4, then for every x0 ∈ R4 the transformation (4.21) is a
diffeomorphism of a neighbourhood of x0 onto its image.

T (x) =


h1(x)
Lfh1(x)
h2(x)
Lfh2(x)

 =


x2 − p(x1)

x4 − ∂p(x1)
∂x1

x3

x1

x3

 (4.21)

The next theorem imposes necessary and sufficient conditions that result in a transforma-
tion T (x) to be a global diffeomorphism. The proof of the theorem is given in [42] and [43].

Theorem 4.4.2 ([40]). A transformation T (x) is a global diffeomorphism if and only if

(i)
∂T

∂x
is non-singular for all x ∈ Rn, and

64



(ii) lim||x||→∞ ||T (x)|| =∞.

Proposition 4.4.3. Given relations (4.19), transformation (4.21) is a global diffeomor-
phism.

Proof. We show that (4.21) satisfies the conditions in Theorem 4.4.2.

∂T

∂x
=


− ∂p

∂x1

1 0 0

− ∂2

∂x1
2p(x1)x3 0 − ∂p

∂x1

1

1 0 0 0
0 0 1 0

 and det

(
∂T

∂x

)
= −1.

Therefore, ∂T
∂x

is non-singular for all x ∈ R4. Also the 2-norm of T (x) is,

||T (x)||2 =

√
x2

1 + x2
3 + (x2 − p(x1))2 +

(
x4 −

∂p

∂x1

x3

)2

.

Since p is a polynomial, then |x1| < ∞ implies |p(x1)| < ∞ and dp(x1) < ∞. Then, we
necessarily have,

lim
||x||2→∞

||T (x)||2 = lim
||x||2→∞

√√√√(x2
1 + x2

3 + (x2 − p(x1))2 +

(
x4 −

∂p

∂x1

x3

)2
)

=∞

As a result, the conditions of Theorem 4.4.2 are met and, hence, relation (4.21) is a global
diffeomorphism.

In order to come up with the new states, let

(ξ, η) := T (x) =


x2 − p(x1)

x4 − ∂p(x1)
x1

x3

x1

x3

 (4.22)

where (ξ, η) = col(ξ1, ξ2, η1, η2) ∈ R4 is the new state vector. Throughout the thesis, the
term “ξ-dynamics” refers to the dynamics of ξ1 and ξ2, and the term “η-dynamics” refers

65



to the dynamics of η1 and η2. In addition, the inverse mapping of (4.22) is given by

x = T−1(ξ, η) =


η1

ξ1 + p(η1)
η2

ξ2 + ∂p(η1)
η1

η2

 (4.23)

In the (ξ, η)-coordinates , the 2-DOF robot reads

ELH :

{
(ξ̇, η̇) = f̂ (ξ, η) + ĝ(ξ, η)τ if (ξ, η) 6∈ Ŝ
(ξ+, η+) = Ĵ (ξ, η) if (ξ, η) ∈ Ŝ

(4.24)

where,

• f̂ : R4 → R4 such that f̂ = ∂T
∂x
f(x)

∣∣
x=T−1(ξ,η)

,

• ĝ : R4 → R4×2 such that ĝ = [ĝ1, ĝ2] with ĝ1 = ∂T
∂x
g1(x)

∣∣
x=T−1(ξ,η)

and

ĝ2 = ∂T
∂x
g2(x)

∣∣
x=T−1(ξ,η)

,

• Ĵ(ξ, η) := T (J(x))|x=T−1(ξ,η), and

• Ŝ = T (S)|x=T−1(ξ,η) = {(ξ, η) ∈ R4 : ξ1 = −p(η1)− η1 − 2γ}

Note that

Ĵ(ξ, η) =


η1 − p (ξ1 + p(η1))

η2ĵ21 +
(
ξ2 + ∂p(η1)

∂η1
η2

)
ĵ22 − ∂p(η1)

∂η1

(
η2ĵ11 +

(
ξ2 + ∂p(η1)

∂η1
η2

)
ĵ12

)
ξ1 + p (η1)

η2ĵ11 +
(
ξ2 + ∂p(η1)

∂η1
η2

)
ĵ12

 (4.25)

where ĵij = jij|(ξ,η)=T−1(x) , i, j ∈ {1, 2} with jij are entries of j defined in (2.43).

In these new coordinates, the hVHC h1 is enforced by nulling ξ1 and ξ2, which serves
as the main control objective. In other words, the hVHC to be enforced in the (ξ, η)-
coordinates reads,

ĥ = ξ1 (4.26)

Then, the constrain manifold in (ξ, η)-coordinates become,

Γ̂ := {(ξ, η) ∈ R4 : ξ1 = 0 and ξ2 = 0} (4.27)

The next objective is to enforce (4.27) through feedback linearization (Sections 4.5
and 4.6).
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4.5 Feedback linearization yielding a fully actuated

closed-loop configuration

In this section, the 2-DOF bipedal robot is feedback linearized resulting in fully actuated
closed-loop configuration where the continuous dynamics of system (4.8) are decoupled.
This generates two decoupled linear double-integrators each with an auxiliary control input.
The resulting ξ-dynamics are regulated by an auxiliary linear control law. For the η-
dynamics, the auxiliary control input is used to let η1(t) track a desired trajectory ηref

1 (t).
In other words, by regulating the ξ-dynamics we enforce the hVHC h1, and by letting
η1(t) track a reference trajectory we essentially let θst to track a desired trajectory. The
discrete dynamics of (4.29) remain coupled. Finally, sufficient conditions are proposed that
guarantee stability for the hybrid ξ-dynamics. In this context, it is worth pointing that
some attempts have been made to linearize the discrete-time dynamics of a walking robot
using feedback [24].

Consider the following feedback linearizing control input

τ = A−1
2 (x)

∣∣
x=T−1(ξ,η)

[
−L2

fh1(x)
∣∣
x=T−1(ξ,η)

+ v1

−L2
fh2(x)

∣∣
x=T−1(ξ,η)

+ v2

]
(4.28)

where v1,2 ∈ R are the two auxiliary inputs. With (4.28), system (4.24) becomes

(ξ̇, η̇) =


ξ1

v1

η1

v2

 if (ξ, η) 6∈ Ŝ,

(ξ+, η+) = Ĵ (ξ, η) if (ξ, η) ∈ Ŝ.

(4.29)

It is noted that there always exists a τ that satisfies (4.28) since output functions (4.19)
yield vector relative degree of col(2, 2) (see Proposition 4.4.1), which implies that A2(x) is
always invertible by definition.

4.5.1 Simulation results

The controller (4.28) was tested through numerical simulation on the system (4.8) with
v1,2 being two auxiliary controllers of the form,

v1 = −KD1ξ1 −KP1ξ2

v2 = −KD2eη −KP2 ėη + η̈d1
(4.30)
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where eη(t) := η1(t)−ηref
1 (t). The desired trajectory, ηref

1 (t), is selected to be the trajectory
of the stance leg performing a passive gait.

The gains KP1 and KD1 are designed to generate an over-damped subsystem (damping
ratio = 1.11) with a relatively fast settling time (≈ 0.25 sec) for the ξ-dynamics. In
addition, KP2 and KD2 are designed such that the η1 quickly tracks ηref

1 . Table 4.1 shows
the values of the gains used in simulations.

Table 4.1: Values of gains in Equation (4.30).

KP1 KD1 KP2 KD2

200 31.3 30 9

VHC and hVHC were generated separately and used in simulations. Figures 4.2, 4.3 and
4.5 illustrate the results. Figure 4.2a shows a degree-3 polynomial that satisfies (4.11). This
polynomial was carefully designed using the procedure of Section 4.3.1. The gait generated
using this polynomial is shown in leg coordinates (Figure 4.2b).

Figure 4.3 shows the regulation of the ξ-dynamics based on three distinct controllers.
Figure 4.3a shows the regulation result based on a controller that utilizes a VHC. At
impact events, the controller is not able to maintain invariance of the constraint manifold.
In Figure 4.3b, ξ1 is regulated during the continuous phase but gently jumps off-zero at
ground collision points. In this case, p was generated by approximating a passive gait shape
and, hence, generating a VHC; not a hVHC. A virtual constraint that perfectly models
the shape of a passive gait is a hVHC since passive gaits are naturally invariant. Finally,
Figure 4.3c shows that these jumps in ξ1 at ground collisions are vanished. In this case, a
hVHC is carefully designed by using the polynomial of Figure 4.2a.

It is noted that a hVHC defined in the sense of Definition 4.2.1 under Assumption 3 with
p satisfying (4.11) does not necessarily imply closed-loop invariance under the η-dynamics.
Figure 4.5 illustrates this fact. Figure 4.5 shows the tracking of η1 with a VHC-based
(approximating a passive gait shape) controller and a hVHC-based controller. This figure
reveals the fact that η1 is almost able to track ηref

1 in the case of a controller utilizing
a polynomial p that approximates the passive gait. Tracking is slightly lost at impact
events. On the other hand, tracking is lost at impact points when using polynomial p that
satisfies (4.11). The invariance of the η-dynamics under hVHC-based controllers presented
in this thesis still remain an open question and needs further investigation.

Since the 2-DOF bipedal robot under study has feet, its important to ensure the ZMP
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Figure 4.2: A p polynomial satisfying (4.11) results in a gait pattern not necessarily the
same as the passive gait pattern.
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Figure 4.3: The regulation of ξ1 using a VHC based controller, VHC approximating passive-
gait based controller and a hVHC based controller.
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to stay within the area of the foot in contact with ground. Figure 4.4 shows the location
of the ZMP for different closed-loop configurations.
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Figure 4.4: Location of the ZMP for the fully actuated closed-loop configuration utilizing
different constraints.

Finally, the increased region of attraction (of the passive gait) due to control effort can
be seen in Figure 4.6. In this simulation, p approximates a passive gait shape.

4.5.2 Stability analysis

Consider the following definition.

Definition 4.5.1 (Open ball in Rn). Let x̃ be a point that belongs to Rn. Then, the set
Br(x̃) := {x ∈ Rn : ||x− x̃|| < r} is called an open ball of radius r centred at x̃.

The stability of the ξ-dynamics for system (4.29) under the control law (4.28) is studied
through the following proposition.

Proposition 4.5.2. Consider system (4.29). Define the point (ξ−? , η
−
? ) ∈ R4 such that

(ξ−? , η
−
? ) ∈ Ŝ and (ξ−? , η

−
? ) ∈ Γ̂. Assume that the polynomial p satisfy (4.11). Assume the

auxiliary control input v1 in (4.29) yields an exponentially stable linear second order closed-
loop system for the continuous ξ-dynamics with damping ratio > 1. Then, system (4.29)
is asymptotically stable if

∂p(η1)

∂η1

∣∣∣∣
η−1?

>
∂p(η1)

∂η1

∣∣∣∣
η+1?

(4.31)
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fies (4.11), which is shown in Figure 4.2a.
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Figure 4.5: This figure shows the tracking of η1 to ηref
1 , which approximates a passive gait.
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Figure 4.6: The controller increases the region of attraction of the passive HLC.

Proof. The discrete map Ĵ is continuous since p is continuous. The continuity of Ĵ implies
that for all ε > 0, there exists δ > 0, for all (ξ̃, η̃) ∈ R4 such that (ξ, η) ∈ Bδ(ξ̃, η̃) ⇒
J(ξ, η) ∈ Bε(ξ̃, η̃). Then, we can write

η−1 ∈ Bδ(η
−
1?) ⇒ Ĵ(η−1 ) ∈ Bε

(
Ĵ(η−1?)

)
(by continuity of Ĵ)

⇒ η+
1 ∈ Bε(η

+
1?) (by definition of Ĵ)

(4.32)

where ε is an arbitrarily small quantity. Similarly,

ξ−1 ∈ Bδ(0)⇒ ξ+
1 ∈ Bε(0).

Now,
ξ−1 = −η−1 − p(η−1 )− 2γ (since (ξ−, η−) ∈ Ŝ).

Since η−1 ∈ Bδ(η
−
1?) with δ arbitrarily small, we can linearize p(η−1 ) about η−1? as p(η−1 ) ≈

p(η−1?) + ∂p(η1)
∂η1

∣∣∣
η−1?

(η−1 − η−1?). This implies,

ξ−1 ≈ −η−1

(
1 +

∂p(η1)

∂η1

∣∣∣∣
η−1?

)
− p(η−1?) +

∂p(η1)

∂η1

∣∣∣∣
η−1?

η−1? − 2γ.

But,

p
(
η−1?
)

= −η−1? − 2γ (since (ξ−? , η
−
? ) ∈ Ŝ and (ξ−? , η

−
? ) ∈ Γ̂).
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Therefore,

ξ−1 ≈ −η−1

(
1 +

∂p(η1)

∂η1

∣∣∣∣
η−1?

)
+ η−1?

(
1 +

∂p(η1)

∂η1

∣∣∣∣
η−1?

)
(I)

Now we have,

ξ+
1 = η−1 − p

(
ξ−1 + p(η−1 )

)
(by definition of Ĵ)

= η−1 − p
(
η+

1

)
(by definition of Ĵ)

= −p
(
η−1
)
− ξ−1 − 2γ − p

(
η+

1

)
(since (ξ−, η−) ∈ Ŝ)

= −η+
1 − 2γ − p

(
η+

1

)
(by definition of Ĵ)

∴ ξ+
1 = −η+

1 − p
(
η+

1

)
− 2γ (i)

Since continuity implies η+
1 ∈ Bε(η

+
1?), we can similarly linearize p(η+

1 ) about η+
1? and write

ξ+
1 ≈ −η+

1

(
1 +

∂p(η1)

∂η1

∣∣∣∣
η+1?

)
− p(η+

1?) +
∂p(η1)

∂η1

∣∣∣∣
η+1?

η+
1? − 2γ (ii)

Noting that since p satisfies (4.11) and (ξ−? , η
−
? ) ∈ Γ̂ by assumption , then

ξ+
1? = η−1? − p

(
ξ−1? + p(η−1?)

)
(by definition of Ĵ)

= η−1? − p
(
p(η−1?)

)
(since (ξ−? , η

−
? ) ∈ Γ̂)

= η−1? − η−1? (since p satisfies (4.11) by assumption)
≡ 0

Then, Equation (i) implies

p
(
η+

1?

)
= −η+

1? − 2γ (iii)

Substituting Equation (iii) into (ii), we arrive at

ξ+
1 ≈ −η+

1

(
1 +

∂p(η1)

∂η1

∣∣∣∣
η+1?

)
+ η+

1?

(
1 +

∂p(η1)

∂η1

∣∣∣∣
η+1?

)

But,
η+

1? = p
(
η−2?
)

(by definition of Ĵ with (ξ−? , η
−
? ) ∈ Γ̂)

= −η−1? − 2γ (by definition of Ŝ)
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and,
η+

1 = −ξ+
1 − p

(
η+

1

)
− 2γ (by Equation (i))

= −η−1 + p
(
ξ−1 + p

(
η−1
))
− p

(
η+

1

)
− 2γ (by definition of Ĵ )

= −η−1 + p
(
η+

1

)
− p

(
η+

1

)
− 2γ (by definition of Ĵ )

= −η−1 − 2γ

Therefore,

ξ+
1 ≈ −

(
−η−1

(
1 +

∂p(η1)

∂η1

∣∣∣∣
η+1?

)
+ η−1?

(
1 +

∂p(η1)

∂η1

∣∣∣∣
η+1?

))
(II)

Since ∂p(η1)
∂η1

∣∣∣
η−1?

> ∂p(η1)
∂η1

∣∣∣
η+1?

by hypothesis, then (I) and (II) imply∣∣ξ+
1

∣∣ < ∣∣ξ−1 ∣∣ (III)

Inequality (III) with the assumption made on v1 imply asymptotic stability of (4.29)

4.6 Feedback linearization yielding an under-actuated

closed-loop configuration

This section discusses under-actuation of the 2-DOF bipedal robot represented by the
(ξ, η)-coordinates. Consider the feedback-linearizing input

τ =
[
A+

1 (x)
(
v − L2

fh1(x)
)]
x=T−1(ξ,η)

(4.33)

where v is the auxiliary control input and A+
1 is a pseudo-inverse of A1. Then, system (4.8)

becomes

(ξ̇, η̇) =


ξ1

v
η1

ν(ξ, η)

 if (ξ, η) 6∈ Ŝ,

(ξ+, η+) = Ĵ (ξ, η) if (ξ, η) ∈ Ŝ

(4.34)

where ν(ξ, η) = L2
fh2(x)x=T−1(ξ,η) + [Lg1Lfh2(x), Lg2Lfh2(x)]

(
A+

1 (v − L2
fh1(x))

)∣∣
x=T−1(ξ,η)

.

Clearly, the ξ-dynamics can be regulated by a PD auxiliary controller,

v = −KDξ1 −KP ξ2 (4.35)
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The settling time is chosen to be ≈ 0.400 (sec) and the damping ratio is chosen to be
≈ 0.707 yielding an under-damped system. Those requirements need the gains to have
values shown in Table 4.2.

Table 4.2: Values of gains in Equation (4.35).

KP KD

200 20

Once ξ-dynamics are regulated, η-dynamics are left uncontrolled. It is noted that there
always exists a τ that satisfies (4.33) since the VHC (4.9) is shown to be regular everywhere
and, hence, the matrix A+

1 is always full rank (see Proposition 4.3.1).

This controller was tested numerically using VHCs and hVHCs separately. Figure 4.8
illustrates regulation of the state ξ1 using a hVHC (i.e. polynomial p satisfying (4.11)) and
a VHC (i.e. polynomial p not satisfying (4.11)). Figure 4.7 shows a polynomial of degree
6 generated by the design procedure of Section 4.3.1.
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Figure 4.7: The polynomial p satisfying (4.11).

It is clear from Figure 4.8 that the control input (4.33) enforces the hVHC whereas the
same input (4.33) is unable to enforce the VHC at impact events. Although the ξ-dynamics
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(a) The state ξ1 regulated using a VHC.
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(b) The state ξ1 regulated using a hVHC.

Figure 4.8: The regulation of ξ1 using a VHC-based controller and a hVHC-based controller.

are regulated, the 2-DOF bipedal robot might not perform a gait since the the η-dynamics
are left uncontrolled. This motivates the study of stability properties of the η-dynamics
on the set Γ̂ (4.27), which is the subject of the next subsection. Finally, Figure 4.9 shows
the corresponding location of the ZMP of the simulations depicted in Figure 4.8.

4.6.1 Stability study

This subsection presents a numerical argument to study stability properties on the set Γ̂.
Once (ξ, η) ∈ Γ̂, i.e. ξ-dynamics are regulated, the following hold true.

1. (ξ, η) ∈ Γ̂ (≡ x ∈ Γ),

2. v = 0, and

3. the 1-DOF η-dynamics are left uncontrolled.

Given an initial condition (ξ0, η0) ∈ R4 which does not belong to Γ̂, Figure 4.10 shows
all possible behaviours of the η-dynamics once solutions approach Γ̂. The phase portrait
of the zero dynamics on Γ̂ is divided into three regions. Region 1 is where the robot starts
by walking downhill with relatively high negative velocity. The robot keeps losing fraction
of its velocity after every impact until the solution approaches the stable hybrid limit cycle
(shown in thick black curve). Region 2 is where the robot starts with a relatively low speed
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(a) The ZMP of the simulation of Figure 4.8a.
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(b) The ZMP of the simulation of Figure 4.8b.

Figure 4.9: The regulation of ξ1 using a VHC-based controller and a hVHC-based controller.

Figure 4.10: The dynamics on Γ̂ are divided into three regions. Region 1 yield stable
solutions whereas Region 2 yields marginally stable solutions. Region 3 could lead to
stable or marginally stable solutions.
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and keeps going back and forth until it looses all its energy due to impacts and eventually
stops still. Region 3 is where the robot starts with a relatively high positive velocity causing
it to go in reverse direction. Solutions in Region 3 have two possible behaviours. Energy
loses due to impacts may derive a solution to the hybrid limit cycle (Region 3(a)). Else,
impacts may cause a solution to approach the same fixed point of Region 2 (Region 3(b)).
Figures 4.11 and 4.12 illustrate all possible behaviours given a solution that belongs to Γ̂.

To study stability of the η-dynamics on Γ̂, we follow the context of Section 3.2.1. Let
the gait be designed such that the points η1 = a and η1 = b, with b > a, be the two points
where ground impact event occurs (Figure 4.10). Then, consider the following section,

Ŝ = {(ξ, η) ∈ Γ̂ : η1 − b = 0} (4.36)

Proposition 4.6.1. The section (4.36) is a local section for the vector field of (4.34)
restricted to Γ̂.

Proof. The vector field of (4.34) restricted to Γ̂ is

fΓ̂ := col(0, 0, η1, ν(ξ, η))

Also, the Jacobian of the equation defining (4.36) is

n̂ := [0, 0, 1, 0]

Therefore,
n̂ · fΓ̂ = η1

As a result, the section Ŝ is not tangent to the vector field fΓ̂ as long as η1 6= 0. Then, Ŝ
is a local section by definition.

The Poincaré map on Ŝ, denoted g : Ŝ → Ŝ, is found numerically for solutions belonging
to regions 1, 2 and 3 separately. Figure 4.13 shows g and its fixed point p̂ for all regions. It
is noted that the fixed-point of g in region 1 corresponds to a hybrid limit cycle. Similarly,
the fixed-point of g in region 3(a) correspond to a stable gait. In region 2, the origin of g
is a marginally stable fixed-point. The same is true for g of region 3(b). Table 4.3 shows
the fixed points, their corresponding eigenvalue and their physical significance.
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(a) Region 1: convergence to a stable hybrid
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Figure 4.11: Regions 1 and 2 on Γ̂.
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(a) Region 3(a): convergence to a stable hybrid
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Figure 4.12: Region 3 on Γ̂.
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Figure 4.13: Poincaré map g restricted to Γ̂ for all three regions.

Table 4.3: Eigenvalues of the linearized Poincaré map near fixed points.

Region 1 Region 2 Region 3(a) Region 3(b)

Reported fixed-point −1.01 −3.78× 10−7 −1.01 −3.79× 10−7

Reported eigenvalue 0.663 −1.00 0.661 −1.00
Physical significance HLC stand still HLC stand still
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Analogy to the rimless wheel

It is of interest to note that the phase-portrait of dynamics of the 2-DOF bipedal robot re-
stricted to Γ̂ is qualitatively similar to the phase-portrait of the rimless wheel (Figure 4.14).
For a rimless wheel, an analytical expression for the Poincaré map can be found in robotics
literature [44] and [45].

However, it is difficult to evaluate an analytic expression for the Poincaré map of
dynamics on Γ̂ of a 2-DOF bipedal robot with controller (4.33) since the continuous flow is
relatively complicated. This similarity may potentially lead to an analytic stability study
for the dynamics on Γ̂ of a 2-DOF bipedal robot with controller (4.33).
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Figure 4.14: Phase-portrait of rimless wheel with solutions.
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4.6.2 Optimal control effort

Equation (4.33) suggests that there exist infinitely many τ ’s that result in (4.34) due to
the fact that A+

1 ∈ R2×1 is a right inverse of A1 := [A11 , A12 ]. Dropping arguments, define
A+

1 := 1
A2

11
+A2

12

col(A11 , A12) to be a right inverse of A1. Then, a general torque that results

in system (4.34) is written as

τ = (A+
1 + N̂)

(
v − L2

fh1

)
(4.37)

where N̂ ∈ ker(A1). This subsection is purposed to obtain an expression for the optimal
τ .

In this context, the method of Lagrange multipliers is used [46]. Let B := v − L2
fh1

and consider the minimization problem

min
τ, A1τ=B

τ>Pτ with P ∈ R2×2 (4.38)

The Lagrangian is formed as

L(τ, λ) = τ>Pτ + λ>(A1τ −B) (4.39)

where λ is the Lagrange multiplier. Necessary conditions for optimality are

∂L

∂τ
= 0

∂L

∂λ
= 0

(4.40)

This leads to,

2τ>P + λ>A1 = 0

A1τ −B = 0

⇒
[
2P A>1
A1 0

] [
τ
λ

]
=

[
02×1

B

]
Solving for τ , we get

τ = A+
1 B (4.41)

Therefore, regardless of the weighting matrix P ,the optimal torque is

τ = A+
1

(
v − L2

fh1

)
(4.42)
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Hybrid VHC mimicking a passive gait

This section shows the fact that if the polynomial p is designed such that it perfectly models
a passive gait, the input τ (4.33) becomes identically zero once the dynamics belong to the
passive constraint manifold. Let p = p? be a perfect model of a passive gait. Then, the
continuous dynamics of the robot undergoing a passive gait in (ξ, η) coordinates become

ξ̇1 = ξ2

ξ̇2 = L2
fh

?
1

η̇1 = η2

η̇2 = L2
fh2

(4.43)

where h?1 = x2 − p?(x1). When the robot performs a passive gait, we have

ξ2 = L2
fh

?
1 = 0 (4.44)

since passive gaits are invariant.

Now, consider the optimal control law τ = A+
1 (v − L2

fh
?
1). If the robot configuration

variables, (x1, x2), belong to the set

Γ? := {x ∈ R4 : h?1(x1, x2) = 0 and dh?1x1,x2 col(x3, x4) = 0} (4.45)

then v = 0. Also, L2
fh

?
1 = 0 (Equation (4.44)). Therefore, τ ≡ 0. In other words, as long as

the hVHC mimicking a passive gait is satisfied, the controller (4.33) consumes no energy.

However, in this work, the shape of the passive gait of the 2-DOF bipedal robot was ap-
proximated numerically. Figure 4.15 shows numerical results of the input torque controller
τ = A+

1 (v−L2
fh

?
1). It is noted that the input torque is initially relatively high because the

point-to-set distance of x(0) from Γ? is relatively high. Once the states approach Γ?, then
τ drops significantly and gently fluctuates around zero.
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Figure 4.15: Optimal controller utilizing an approximation of the passive gait shape.
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Chapter 5

Conclusions and future work

This thesis extended the notion of VHC to hybrid VHC of an Euler-Lagrange system with
impacts. Hybrid VHC can be made invariant through feedback control. This work also
presented a design procedure that returns a feasible hybrid VHC.

The ideas presented were applied to a 2-DOF bipedal robot, which was modelled as a
hybrid system. The robot undergoes a continuous flow governed by a set of differential
equations followed by an instantaneous change in states due to ground impact events.
This instantaneous change and the ground surface constitutes the discrete dynamics of the
robot, which are governed by a set of non-linear algebraic equations. The goal was to,
through feedback, increase the region of attraction of a passive gait and to achieve a large
family of gait shapes not necessarily mimicking a passive gait.

In the context of VHCs, the main control objective is to enforce a given hybrid VHC. To
help achieving this objective, the state vector of the 2-DOF bipedal robot was transformed
into a new state vector. The new state vector had the property that when two of its states
are nulled, the given hybrid VHC becomes enforced.

To null those states, two feedback-linearizing closed-loop configurations were explored.
The first closed-loop configuration resulted in a fully actuated system. Stability analysis
was carried out which led to sufficient conditions that guarantee stability for the hybrid
dynamics on the constraint manifold. The second closed-loop configuration yielded an
under-actuated system. Stability analysis were carried out numerically using the method of
Poincaré maps. The numerical calculation of Poicaré maps revealed two possible behaviours
of the dynamics on the constraint manifold. The first behaviour resulted in convergence to
a stable gait. The other behaviour showed that the robot might eventually stand still due
to lose of energy caused by impact events. Finally, it was shown that if the robot states
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stay in the passive constraint manifold, Γ?, then the controller consumes no energy. Once
the robot deviates from Γ?, the controller consumes energy to “correct” it back to Γ?.

Future work

The notion of hybrid regular VHC should be extended to the most general hybrid au-
tomaton with arbitrary number of modes, guard conditions and reset maps.

The presented hybrid VHC were unable to make the η-dynamics invariant of the fully
actuated closed-loop configuration. In fact, the author believes that the desired trajec-
tory, ηref

1 , should satisfy certain conditions in order to guarantee invariance under con-
troller (4.28).

Also, it is worth to extend the stability analysis for the under-actuated closed loop
system (4.34) beyond numerical analysis. In the view of [19] and [2], the integral of
motion for the zero dynamics of (4.34) could potentially be solved for the state η2. This
could lead to an expression of η2 in terms of η−1 and η−2 . Together with the discrete
dynamics constrained to Γ̂, the expression of η+

2 on Γ̂ could be utilized to show that
|η+

2k+1
| < |η+

2k
|, k ∈ Z+, which could potentially lead to a stability proof. In addition, the

analogy of the phase-portrait of the rimless wheel and the constraint manifold of the under-
actuated closed-loop configuration of the 2-DOF bipedal robot can also be potentially
utilized to analytically study stability of (4.34) on the constraint manifold Γ̂.

The proposed controllers do not influence the ZMP. The author believes that these
controllers should be modified so that they also force the ZMP to remain within a desired
range.

Another aspect to extend this work is to remove the ankle torque from the robot
resulting in an under-actuated model with only hip torque. In this case, there becomes no
need to keep track of the ZMP.

Robustness and disturbance rejection of the proposed controller are worth investigation.
Finally, experimental validation of this work should be conducted.
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Appendix A

Other continuous-time models found
in robotics literature

(a) (b)

Figure A.1: Alternative models found in literature.

Figure A.1 shows a pair of models that are also commonly found in the literature.
For the sake of completeness, we now show how these models are derived in relation to
model (2.17).

• (φst, φsw)-coordinates (Figure A.1a)
The model in Figure A.1a can be obtained directly from (2.17) using the following

88



global coordinate change [
φst
φsw

]
=

[
q1

q2

]
−
[
π
2
π
2

]
. (A.1)

Expressing (2.17) in (φst, φsw)-coordinates we obtain[
m1`

2
1 +m2`

2 +mH`
2 + I1 m2``3 cos(φst − φsw)

m2``3 cos(φst − φsw) m2`
2
3 + I2

][
φ̈st

φ̈sw

]

+

[
0 m2``3 sin(φst − φsw)φ̇sw

−m2``3 sin(φst − φsw)φ̇st 0

][
φ̇st

φ̇sw

]

+

[
−
[
m1g`1 +mHg`+m2g`

]
sin(φst)

−m2g`3 sin(φsw)

]
=

[
1 −1

0 1

][
τ1

τ2

]
(A.2)

• (θ1, θ2)-coordinates (Figure A.1b)
Finally, this model is derived using the relation[

q1

q2

]
=

[
1 0
1 1

] [
θ1

θ2

]
. (A.3)

Substituting (A.3) in (2.17), we getm1`1 +m2`
2 +m2`

2
3 +mH`

2

+2m2``3 cos(θ2) + I1 + I2 m2`
2
3 +m2``3 cos(θ2) + I2

m2`
2
3 +m2``3 cos(θ2) + I2 m2`

2
3 + I2

[θ̈1

θ̈2

]

+

[
−2m2``3 sin(θ2)θ̇2 −m2``3 sin(θ)2θ̇2

m2``3 sin(θ2)θ̇1 0

][
θ̇1

θ̇2

]

+

[
(m1g`1 +mHg`+m2g`) cos(θ1) +m2g`3 cos(θ1 + θ2)

m2g`3 cos(θ1 + θ2)

]
=

[
τ1

τ2

]
(A.4)

Setting mH = I1,2 = 0 and rotating the reference of θ1 by −π/2 in Equation (A.4),
we obtain the double pendulum equation of [47].

The coordinates of the bipedal robot of Figure A.1a are found in [2]. Also, it is noted
that the (θ1, θ2)-coordinates in Figure A.1b are very common in robotics literature [6].
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Appendix B

Necessary and sufficient conditions
on k1 resulting in k1 > k2

This appendix presents an argument that explains the statement: Equation (4.15) is a
necessary and sufficient condition for k1 > k2.
Define the constants a = j21∆b, b = j22∆b, c = j11∆b and d = j12∆b where the matrix j
defined in (2.43).

Sufficiency

Consider the quadratic equation

m̂(k1) := dk2
1 + (c− b)k1 − a (B.1)

The constant d is always negative since

d = j12∆b

= J b22J
a
12∆b

=
(
m1`

2
2 + I1

)
(I2 −m2`3`4)

=

(
m1`

2
2 +

1

12
m1`

2

)(
1

12
m2`

2 −m2`3`4

)
(since legs are assumed to be rigid rods)

=

(
m1`

2
2 +

4

12
m1`

2
2

)(
4

12
m1`

2
2 −m1`

2
2

)
(since m1 = m2 and `1 = `2 = `3 = `4 = `/2

by assumption)

= −8

9
m2

1`
4
1 < 0
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d < 0 ⇒ Equation (B.1) is concaved down. Since
b−c+
√

(c−b)2+4ad

2d
< k1 <

b−c−
√

(c−b)2+4ad

2d

(by hypothesis) and m̂(k1) is concaved down, then m̂(k1) > 0. Now, we have

dk2
1 + (c− b)k1 − a > 0

⇒ a+ bk1

c+ dk1

< k1

⇒ j21 + j22k1

j11 + j12k1

< k1 (since ∆b 6= 0, look page 32)

⇒ k2 < k1 (by definition of k2)

Necessity

We have,

k1 > k2 (by hypothesis)

⇒ j21 + j22k1

j11 + j12k1

< k1 (by definition of k2)

⇒ a+ bk1

c+ dk1

< k1

⇒ dk2
1 + (c− b)k1 − a > 0

⇒ m̂(k1) > 0

The roots of m̂(k1) are k1 =
b−c±
√

(c−b)2+4ad

2d
. The roots exist since (c−b)2 + 4ad > 0.

Since roots of m̂(k1) exist, m̂(k1) > 0, m̂′′(k1) < 0 and d < 0, then
b−c+
√

(c−b)2+4ad

2d
< k1 <

b−c−
√

(c−b)2+4ad

2d
.
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