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Abstract

New high-order finite-volume numerical schemes for the magnetohydrodynamics equa-
tions are proposed in two and three dimensions. Two different sets of magnetohydrody-
namics equations are considered. The first set is the ideal magnetohydrodynamics system,
which assumes that the fluid can be treated as a perfect conductor. The second set is
resistive MHD, which involves non-zero resistivity. A high-order central essentially non-
oscillatory (CENO) approach is employed, which combines unlimited k-exact polynomial
reconstruction with a monotonicity preserving scheme. The CENO schemes, which were
originally developed for compressible fluid flow, are applied to the MHD equations, along
with two possible control mechanisms for divergence error of the magnetic field. The hy-
perbolic fluxes are calculated by solving a Riemann problem at each cell interface, and
elliptic fluxes are computed through k-exact gradient interpolation where point-wise val-
ues of the gradients are required. Smooth test problems and test cases with discontinuities
(weak or strong) are considered, and convergence studies are presented for both the ideal
and resistive MHD systems. Several potential space physics applications are explored. For
these simulations, cubed-sphere grids are used to model the interaction of the solar wind
with planetary bodies or their satellites. The basic cubed-sphere grid discretizes a simula-
tion domain between two concentric spheres using six root blocks (corresponding to the six
faces of a cube). Conditions describing the atmosphere of the inner body can be applied
at the boundary of the inner sphere. For some problems we also need to solve equations
within the inner sphere, for which we develop a seven-block cubed-sphere grid where the
empty space inside the interior sphere is discretized as a seventh root block. We consider
lunar flow problems for which we employ the seven-block cubed-sphere mesh. Ideal MHD
is solved between the inner and outer spheres of the grid, and the magnetic diffusion equa-
tions are solved within the inner sphere, which represents the lunar interior. Two cases are
considered: one is without intrinsic magnetic field, where only a wake is expected without
any bow shock forming ahead of the Moon, and the second is with a small dipole moment
to model a lunar crustal magnetic anomaly, in which case a small-scale magnetosphere is
expected ahead of the region with the magnetic anomaly.
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Chapter 1

Introduction

1.1 Background and Motivation

The magnetohydrodynamic (MHD) equations combine the Euler equations of gas dynamics
and the Maxwell’s equations of electrodynamics. These equations describe electrically
conducting fluids, which include space physics plasmas. Due to the highly nonlinear nature
of these equations, it is usually impossible to find analytical solutions to the MHD system
of equations. Numerical simulation, however, has in recent time become a popular means
by which the magnetohydrodynamic equations are solved. Numerical simulations of these
phenomena are often expensive, even with the help of supercomputers. One possible way
to reduce this cost is to employ advanced simulation methods, in particular, methods with
order of accuracy greater than two. The contribution of this thesis is in the development
of high-order methods for MHD which are relevant for space physics simulations, and in
illustrating how the resulting methods can be used to simulate space physics flows such as
the interaction of the solar wind with the Moon.

1.1.1 Magnetohydrodynamics Models for Space Physics

The magnetohydrodynamic (MHD) equations describe electrically conducting fluids, which
include plasmas and liquid metal. In particular, the ideal MHD equations are applicable
for fluids which are highly collisional, with particle distributions that are Maxwellian, have
low resistivity and have much larger length scales than the ion skin depth and Larmor
radius perpendicular to the magnetic field [5]. Despite the fact that any MHD model
ignores most of the kinetic effects, hence, is a low-order approximation of plasma behaviour,
MHD models have become popular within the computational scientist and astrophysicist
communities, e.g. to simulate space physics phenomena, and have proven to be extremely
valuable and insightful in furthering our understanding of such processes [6].
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1.1.2 High-Order Finite-Volume Method to Improve Accuracy

of MHD Simulations

Consider, for example, simulations of space weather, which are an important class of MHD
space physics simulations. For space weather forecasting models to be of practical use, it
is imperative that the model is capable of running simulations faster than real-time (about
three to four days), which necessitates high-performance computing. But simulations are
often computationally very expensive, owing to the large variations in temporal and spatial
scales of the system. It is mentioned in [7] that the coronal mass ejection, CME, phenomena
can easily span over nine orders of magnitude in scale, which leads to a need for extremely
fine grid resolutions. Coupled with small time steps, which are required to keep consistency
in temporal accuracy, and also due to stability limitations, space-physics simulations can
be prohibitively expensive, even for supercomputers.

The MHD equations can be written as a system of conservation laws with source term,
which, in divergence form, is given as

∂ ~U

∂t
+∇ · ~F = ~S. (1.1)

Consequently, we can then apply numerical schemes developed for such systems (for exam-
ple, finite-volume methods). In particular, a high-order central essentially non-oscillatory
(CENO) finite-volume scheme proposed in [4], which is suitable for solving systems of con-
servation laws, is applied to MHD systems. A preliminary study of the CENO method
as applied to a simple convection problem produced very encouraging results. In [4], the
authors compared the errors of a periodic linear advection of density variation for the
Euler equations of gas dynamics, solved using the second- and the fourth-order CENO
schemes. The density variation of the problem is given as ρ(x, y) = 1.0 + 0.5 cos(πT (x))
sin(5πT (X)), where T is the linear mapping function of the domain [−100, 100] to [−1, 1]
(see Fig. 1.1). Table 1.1 shows that the second-order method requires about 80, 000 grid
cells to match the level of accuracy of the fourth-order scheme using only 4, 000 grid cells.
The time saving is quite significant, with the second-order method requiring more than
twelve hours to finish the simulation, whereas the fourth-order method requires less than
twenty minutes. At least for this particular test case (smooth, periodic, Euler equations),
the benefit is clear, and it is hoped that one can gain a similar benefit for MHD, hence
space physics applications, as well.

1.1.3 Cubed-Sphere Meshes to Represent Conditions Around a

Planetary Body

In this, we are mostly interested in performing numerical simulations of space physics
phenomena, in particular, the interaction between the solar wind, and planetary or lunar

2



Table 1.1: L2-norm error, time and memory requirement comparison of the periodic Euler
advection problem (results from [4])

# Cells O(∆x2) Limited O(∆x4) CENO

4,000 L2: 3.33×10−2 2.19×10−4

(200×20) T ime(h): 0:01:48 0:18:05

Mem(kB): 20,336 31,232

80,000 L2: 2.25×10−4 -

(4000×20) T ime(h): 12:27:14 -

Mem(kB): 203,680 -

Figure 1.1: Density variation for periodic linear advection (Euler equations), with ρ(x, y)
= 1.0 + 0.5 cos(πT (x)) sin(5πT (X)). T (x), here, is the linear mapping function from
the [-100,100] domain to the [-1,1] domain. The velocity for this problem is constant, and
one-directional, so the solution will just advect. Because the boundaries are periodic, it is
expected to recover the initial conditions exactly after 1 period (Figure from [4]).

bodies. Since most planetary bodies possess a spherical shape, it may be appropriate to
consider spherical shell domains for many of these simulations. In particular, numerical
domains which are defined as the space between two concentric spheres are often of interest
and have recently become very popular in the field of computational physics [8]. While it
may seem natural to consider meshes based on the spherical coordinate system, the fact
that the grid would be generated using lines of constant longitude and latitude may lead
to difficulties in dealing with polar singularities.

Phillips, in [9], provides desirable criteria for coordinate mapping of a spherical geom-
etry, and one of the features put forward is that the mesh should be free of singularities.
A grid based on generating lines of constant latitude and longitude would not satisfy this
requirement. This pole problem was also briefly discussed in [10] and [11]. Ronchi [12]
proposed a grid based on transforming a cube onto a spherical surface through six differ-
ent coordinate transformations, where each face of the cube gets mapped to a face of the
sphere. This transformation is illustrated more clearly in Fig. 1.2. The cubed-sphere mesh
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is attractive, because not only does it satisfy the four criteria set forth in [9], but is also
very competitive in terms of accuracy and scalability. While meshes based on the spherical
coordinate system suffer from what is commonly referred to as the pole problem, where
grid cell sizes around the poles are much smaller than those closer to the equator, the issue
is much more manageable on a cubed sphere, where the smallest and the largest of cells
differ in size by just around a factor of 2 [12]. The cubed-sphere mesh has gained immense
popularity in recent years, with fields ranging from climate modeling and atmospheric
science [13, 14, 15, 16, 17, 18, 19, 20, 21], to MHD [3, 8, 22] and astrophysics [23, 24].

The cubed-sphere grid is defined on a volumetric domain between two concentric
spheres. The mesh is defined by two spherical radii: Ri, or the inner radius, which may rep-
resent the atmosphere of the planetary body in question, and Ro, or the outer radius, which
denotes the outer extent of the simulation domain, usually where the incoming solar-wind
conditions are defined. The space in between these two spheres is filled with concentric
spheres with radii in between Ri and Ro. Keep in mind that this arrangement leads to
a hollow sphere geometry, with an empty space in the middle the size of a sphere with a
radius Ri. This arrangement of a cubed sphere is also called the regular cubed sphere, or
the “6-block” cubed-sphere grid, and has been useful in simulating several space physics
application [2, 3, 8]. Boundary conditions can then be readily applied on the inner sphere,
which usually represent the atmospheric conditions of the inner body. While the 6-block
cubed-sphere grid is suitable in cases with simple boundary conditions, some problems
may also require solving equations inside the inner sphere. An example of such problem is
the interaction between the solarwind and the lunar surface, where magnetic field lines are
expected to diffuse away within the inner body, in which case a diffusion equation needs
to be solved therein.

1.2 Thesis Structure

The main theme of the work presented in this thesis is numerical methods for space physics
simulation. The work done for the purpose of this thesis can be categorized into several
encompassing main ideas:

1. Formulation and implementation of a high-order CENO finite-volume scheme in two
and three dimensions for MHD;

2. Utilization and implementation of cubed-sphere meshes to model conditions sur-
rounding a planetary body or satellite;

3. Convergence studies of simulations conducted with high-order schemes and their
comparisons with lower-order solutions;

4. Preliminary exploration of space physics applications
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(a) Cross-section of the cubed-sphere grid (b) Illustration of unstructured connectivity
among root blocks

Figure 1.2: Three-dimensional cubed-sphere grid with six root blocks (corresponding to
the six sectors of the grid) and depiction of inter-block connectivity. In panel (b), the block
faces are denoted with the initials of the cardinal directions: North (N), East (E), South
(S) and West (W). (Figures from [8].)

In accordance with the aforementioned main ideas, this thesis is broken down as fol-
lows. We describe the ideal and the resistive MHD equations in Chapter 2, with detailed
discussions of divergence control techniques presented in Sec. 2.2. Chapter 3 and Chapter
4 deal with the formulation and implementation of the CENO finite-volume schemes for
the ideal MHD equations in two and three dimensions respectively. These chapters present
convergence studies of test cases in 2D and in 3D, which compare the accuracy of the
high-order scheme with those of a second-order scheme. Problems with discontinuities are
also presented. We also propose MHD extension to the Shu-Osher problem [25] in Sec.
3.2.2.2 and Sec. 4.2.2.2, which demonstrates the capability of the high-order scheme to
handle highly oscillatory flow features in the presence of shocks. Chapter 5 extends the
CENO scheme to the resistive MHD system. Since it is hard to analytically solve the
resistive MHD system of equations, we propose a manufactured test case where some form
of solutions has been assumed, and manufactured source terms are added to the system.
Comparison of the errors between solutions produced by the second-order and high-order
schemes are provided in the form of a convergence study. Finally, some preliminary space
physics applications are presented in Chapter 6. Conclusions of the work are then presented
in Chapter 7, with some directions for potential future work proposed in Sec. 7.1.
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Chapter 2

Magnetohydrodynamics Equations

The equations that are of interest for this work are the magnetohydrodynamic equations,
which will be covered in this chapter. We first describe two forms of the magnetohy-
drodynamics system in Sec. 2.1. Sec. 2.2 will briefly discuss the issues with numerically
preserving the solenoidality constraint of the magnetic field [26], and will describe several
techniques to control the divergence error of the magnetic field.

2.1 Magnetohydrodynamics Equations

In this section, magnetohydrodynamics equations are described. For space physics applica-
tions, diffusion times over any length scale of interest usually are on the order of hundreds
of thousands of years. Since numerical simulations involve a physical time-scale that is
much smaller than this diffusion time scale, it is usually reasonable to ignore the resistivity
altogether. The class of MHD equations with no resistivity is called the ideal MHD system,
and this system is described in Sec. 2.1.1. For slightly resistive fluids (such as when the
interaction of the solarwind with the lunar atmosphere is considered), and for cases where
kinetic effects are still not deemed significant, a resistivity term can be added directly to
Ohm’s law. This model is called the resistive MHD model, which is described in Sec. 2.1.2.

2.1.1 Ideal MHD Equations

The dimensionless ideal MHD system is described by the following equations in conserva-
tion form (refer to Appendix A for more details on the normalization procedure):

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.1)
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∂(ρ~v)

∂t
+∇ ·

(
ρ~v~v + ~I(p+

~B · ~B
2

)− ~B ~B

)
= 0, (2.2)

∂ ~B

∂t
+∇ · (~v ~B − ~B~v) = 0, (2.3)

∂e

∂t
+∇ ·

(
(e+ p+

~B · ~B
2

)~v − (~v · ~B) ~B

)
= 0. (2.4)

Equations 2.1 to 2.4 are supplemented with a solenoidality condition for the magnetic field,

∇ · ~B = 0. (2.5)

The conserved quantities of the ideal MHD equation system are the density, ρ, the mo-
mentum, ρ~v (with ~v being the velocity), the magnetic field, ~B, and the energy, e. The
plasma pressure, p, is given by the equation of state for a perfect gas

p = (γ − 1)

(
e− 1

2
ρ|~v|2 − 1

2
| ~B|2

)
, (2.6)

where γ is the adiabatic index. We use γ = 5/3 in our numerical tests except where noted.

2.1.1.1 MHD Wavespeeds and Eigenvalues

The ideal MHD system features three different waves, which are the Alfvén wave, the slow
magnetosonic wave, and the fast magnetosonic wave. The speeds of these waves are given
as

c2fx =
1

2

(
γp+B2

ρ
+

√
(
γp+B2

ρ
)2 − 4

γpB2
x

ρ2

)
, (2.7)

c2sx =
1

2

(
γp+B2

ρ
−
√

(
γp+B2

ρ
)2 − 4

γpB2
x

ρ2

)
, (2.8)

c2Ax
=
B2
x

ρ
, (2.9)

where cfx is the fast magnetosonic wavespeed, csx is the slow magnetosonic wavespeed, and
cAx is the Alfvén wavespeed. The MHD eigenvalues can then be computed as functions of
the aforementioned wavespeeds, as given by

λ1,2 = vx ± cfx , (2.10)

λ3,4 = vx ± cAx , (2.11)

λ5,6 = vx ± csx, (2.12)
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λ7 = vx, (2.13)

λ8 = 0. (2.14)

The presence of the zero eigenvalue (Eq. 2.14) is significant, since this breaks the Galilean
invariance of the ideal MHD system (because the zero eigenvalue would stay zero in all
frames of reference).

2.1.2 Resistive MHD Equations

The resistive MHD system consists of a similar set of equations as the ideal MHD system,
which are, in dimensionless form, given by the following (refer to Appendix A for more
details on the normalization procedure)

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.15)

∂(ρ~v)

∂t
+∇ ·

(
ρ~v~v + ~I(p+

~B · ~B
2

)− ~B ~B

)
= 0, (2.16)

∂ ~B

∂t
+∇ · (~v ~B − ~B~v) +∇× (η ~J) = 0, (2.17)

∂e

∂t
+∇ ·

(
(e+ p+

~B · ~B
2

)~v − (~v · ~B) ~B + η ~J × ~B

)
= 0. (2.18)

The solenoidality constraint of the Maxwell’s equations, ∇ · ~B = 0, also applies. Applying
Ampere’s law, and ignoring displacement current, we can express the current density, ~J ,
as the curl of the magnetic field

~J = ∇× ~B. (2.19)

Unlike ideal MHD, Eq. 2.17, and the energy equation, Eq. 2.18, contain terms involving
derivatives of ~J , where ~J itself is already a derivative of the flow variable, ~B.

2.1.2.1 Second-Order Flux Terms of the Induction Equation

We have noted that the induction equation of resistive MHD contains an elliptic flux term
involving the derivative of the current density (an elliptic term is a term with second-order
derivatives). In this work, resistivity, η, is assumed to be constant, so the resistivity can
be safely taken out from the curl term

∇× (η ~J) = η∇× J, (2.20)
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where, as previously mentioned, the current density, ~J , can be expressed as the curl of the
magnetic field, ~B

~J = ∇× ~B =



∂Bz
∂y

− ∂By

∂z
∂Bx
∂z

− ∂Bz
∂x

∂By

∂x
− ∂Bx

∂y


 . (2.21)

Rewriting the ∇× ~J term in divergence form, we define a tensor, ∇ · ~~T , where

∇× ~J = ∇ · ~~T = ~∇ ·




0 ∂By

∂x
− ∂Bx

∂y
∂Bz

∂x
− ∂Bx

∂z
∂Bx

∂y
− ∂By

∂x
0 ∂Bz

∂y
− ∂By

∂z
∂Bx

∂z
− ∂Bz

∂x

∂By

∂z
− ∂Bz

∂y
0


 . (2.22)

Here, ∇ · ~~T can be interpreted as a divergence of a flux that involves the gradient of the
magnetic field, similar in concept with the notion of elliptic flux, ~FE(~U,∇~U), in Sec. 3.5

in [27], where a flux term depends not only on the variables, ~U, but also on their gradients,

∇~U.

Assuming constant resistivity, the induction equation, Eq. 2.17, can then be rewritten
in the following divergence form

∂ ~B

∂t
+∇ · (~v ~B − ~B~v + η

~~T ) = 0, (2.23)

which fits nicely within the finite-volume framework, taking into account the fact that the

tensor,
~~T , depends on the derivatives of ~B as well (see Eq. 2.22).

2.1.2.2 Second-Order Flux Terms of the Energy Equation

Aside from the induction equation, the energy equation, Eq. 2.18, depends also on ~J , which
is a derivative of ~B. Expanding the ∇ · ( ~J × ~B) term of the energy equation, we get

∇ · ( ~J × ~B) = ∇ ·
[
(BzJy − ByJz) (BxJz −BzJx) (ByJx − BxJy)

]

=
∂

∂x
(BzJy −ByJz) +

∂

∂y
(BxJz − BzJx) +

∂

∂z
(ByJx −BxJy).

(2.24)

Each component of ~J can be expressed in terms of the derivatives of the magnetic field
components (see Eq. 2.21).

2.2 Control Schemes of the ∇ · ~B constraint

The ideal MHD system consists of time-dependent equations governing the evolution of
density, momentum, magnetic field and energy. As mentioned in Sec. 2.1.1, these equations
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are supplemented by the divergence-free condition, which acts on the magnetic field, Eq.
2.5. At the PDE level, this condition is automatically satisfied, provided that the magnetic
field is also initially divergence-free [28, 29, 30]. Starting from the curl form of the induction
equation

∂ ~B

∂t
+∇× ~E = 0, (2.25)

we can take the divergence of both sides

∂∇ · ~B
∂t

+∇ · (∇× ~E) = 0, (2.26)

to obtain
∂

∂t
(∇ · ~B) = 0, (2.27)

which implies that ∇· ~B is constant in time, so the solenoidality condition acts as an initial
condition for ∇ · ~B.

It is, however, imperative to note that, while analytically the divergence of the magnetic
field remains constant in time (by the virtue of the vector identity that the divergence of a
curl is identically zero), numerically, how accurately the solenoidality condition is satisfied
depends on how accurately the div-curl operator, ∇ · (∇×), numerically approximates
zero. While one can expect that the divergence error would reduce with grid size, large
divergence errors would give rise to a Lorentz force, ~J × ~B, with a significant component
that is parallel to the magnetic field. Isolating the component of Lorentz force that is
parallel to the magnetic field illustrates this

( ~J × ~B) · ~B = ( ~B · ~B)∇ · ~B. (2.28)

It can be seen from Eq. 2.28 that the parallel force is analytically zero due to the solenoidal-
ity condition, ∇ · ~B = 0. However, numerically, the divergence error is not exactly zero,
and the spurious parallel force may lead to numerical instabilities and incorrect solutions
[26]. Thus, using the conservative form of the momentum equation (see Eq. 2.2) may not

be appropriate when there is no guarantee that ∇ · ~B is numerically zero [26].

There are several mechanisms that can be considered to control divergence errors, most
of which fall under either of the two larger schools of thoughts for divergence correction
mechanisms [29]:

1. To ensure that the solenoidality constraint is maintained down to machine accuracy
in some discretization (projection schemes [26], constrained transport methods [31,
32, 33, 34, 35] and central differencing [29]),

2. To maintain the solenoidality condition to the accuracy of the truncation error (Pow-
ell’s 8-wave MHD formulation [30] and GLM-MHD [28]).
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Only schemes that fall under the second category will be discussed in this Section.
Schemes under the first category will not be considered in this work for the following
reasons

1. Schemes such as constrained transport methods rely on staggered placements of the
different components of the magnetic field, which could be challenging from an im-
plementation perspective when non-uniform non-Cartesian meshes are considered,

2. Constrained transport method preserve the divergence constraint only for a specific
discretization,

3. The projection scheme relies on the efficiency and accuracy of the Poisson’s solver,
due to the elliptic system to be solved at the end of every time-step. For problems
involving non-periodic boundary conditions, the extra step associated with solving
the elliptic problems can be computationally costly.

Therefore, only Powell’s 8-wave MHD formulation [30] and the GLM-MHD system [28] are
described in subsequent sections (Sec. 2.2.1 and Sec. 2.2.2, respectively), and are utilized
for simulations within this treatise.

2.2.1 Powell’s 8-Wave MHD Formulation

In [30], the 8-wave MHD formulation was proposed to deal with the divergence constraint
of the magnetic field. Following the symmetric form of ideal MHD proposed by Godunov
[36], the ideal MHD equations in ’physical form’ are rewritten in divergence form without
making any assumption on the solenoidality of the magnetic field, as given by

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.29)

∂(ρ~v)

∂t
+∇ ·

(
ρ~v~v + ~I(p+

~B · ~B
2

)− ~B ~B

)
= − ~B∇ · ~B, (2.30)

∂ ~B

∂t
+∇ · (~v ~B − ~B~v) = −~v∇ · ~B, (2.31)

∂e

∂t
+∇ ·

(
(e + p+

~B · ~B
2

)~v − (~v · ~B) ~B

)
= −(~v · ~B)∇ · ~B. (2.32)

Note that Eq. 2.29 to Eq. 2.32 are exactly equivalent to the ideal MHD equations (Eq. 2.1

to Eq. 2.4) except for the source term that is proportional to ∇ · ~B. From Eq. 2.29 to Eq.

2.32, we can then derive the evolution equation for ∇ · ~B
∂

∂t
(∇ · ~B) +∇ · (~u∇ · ~B) = 0, (2.33)
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which implies that ∇ · ~B is constant in the direction of the flow. This also suggests that
divergence error would get advected out of the domain by the velocity ~u, providing a
correction mechanism for non-zero divergence.

By rewriting the ideal MHD system without any assumption of solenoidality, we have
arrived at a system of equations that is symmetrizable, and has an in-built correction
mechanism to deal with non-zero divergence of the magnetic field [30]. The presence of
the source term also leads to a Galilean invariant system, with the following replacing the
zero eighth eigenvalue of the ideal MHD system (Eq. 2.14)

λ8 = vx. (2.34)

Conservation, however, is no longer preserved, due to the presence of the source term.
Tóth [29] briefly discussed the consequence of the loss of conservation in that, for some
of his test cases, jump conditions are not calculated correctly, resulting in erroneous solu-
tion containing error that is not convergent to zero with grid resolution, even away from
discontinuities. In spite of this deficiency, Powell method continues to be the divergence
correction technique of choice, and has in general worked rather well to keep the divergence
error in check.

2.2.2 GLM Control of the ∇ · ~B constraint

The GLM-MHD formulation can be described as follows. Following a similar approach as
for the Maxwell equations [37], the divergence constraint (Eq. 2.5) can be coupled with
the induction equation through the introduction of a new potential variable, ψ [28]. The
equations describing the evolution of the magnetic field, Eq. 2.3 and Eq. 2.5, are then
replaced with the following equations

∂ ~B

∂t
+∇ · (~v ~B − ~B~v) +∇ψ = 0, (2.35)

∂ψ

∂t
+ c2h∇ · ~B = −c

2
h

c2p
ψ. (2.36)

As can be seen from these equations, the system is still conservative except for the
evolution equation of ψ, which is not a physical variable. This preservation of conservation
for physical variables is the main advantage of the GLM method over the Powell method
that was proposed earlier to approximately satisfy the divergence constraint [30]. Replacing
the zero eigenvalue (Eq. 2.14), two new eigenvalues arise in the GLM-MHD formulation,
which are ±ch. The coefficients cp and ch control the amount of diffusion in ψ and the
advection speed, respectively. The ‘purely hyperbolic’ correction can be obtained by taking
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cp to infinity (no diffusion). Following [28], we choose these two coefficients to be related
in our numerical simulations through the following expression

cr =
c2p
ch
, (2.37)

with cr chosen to be 0.18. The coefficient ch, then, determines how fast the divergence
of the magnetic field is advected out of the domain, whereas cp controls its dissipation.
Therefore, to ensure that the error is advected as fast as possible, it is desirable to set ch
as high as possible. However, because the two new eigenvalues have magnitude ch, it is
also important to set ch small enough so that it will not affect the time-step criterion of
the simulation. Thus, ch is often chosen to be the largest of all MHD eigenvalues in the
whole domain over all cell interfaces (i, j) in 2D, which can be written as

ch = max
i,j

(|vn|+ cfn) , (2.38)

where vn and cfn are the plasma velocity and the fast magnetosonic wave speed (Eq. 2.7)
in the direction normal to the interfaces (i, j). In [28] it is recommended to choose cp by
setting the parameter cr = c2p/ch to a constant value of 0.18. In [38, 39], it is instead
suggested to choose cp by setting the parameter ᾱ = ∆x ch/c

2
p to a constant value in

[0, 1], where ∆x is a measure of the grid spacing. Note that ᾱ is a dimensionless quantity
reflecting the ratio of the diffusive and advective time scales.

2.2.2.1 Boundary Condition Treatment of ψ at Inflow and Outflow Boundaries

The choice of ch as given by Eq. 2.38 ensures that no eigenvalue will exceed the largest
physical eigenvalue in the domain, while at the same time, it guarantees that the diver-
gence error will be advected out of the simulation domain with the fastest physical wave
speed in the flow solution. Since the two additional eigenvalues are ±ch regardless of the
actual plasma velocities and wave speeds, eigenvalues of both signs will always exist at all
cell interfaces. This means that treatment similar to subsonic inlet and outlet boundary
conditions (see [40]) is always required for inflow and outflow boundary conditions. Since
the waves with eigenvalues ±ch only carry changes in the normal magnetic field and ψ [28],
only these two variables need to be taken into account at boundaries to accommodate these
waves. For example, consider superfast inflow boundary conditions and assume without
loss of generality that vn > 0. Since the inflow velocity is faster than the fast magnetosonic
wave, all the MHD eigenvalues are positive (information travels into the computational
domain). However, for GLM-MHD one cannot just prescribe all variables, because one of
the eigenvalues, −ch, is necessarily negative, even when the flow is superfast at the inflow
boundary. One of either ψ or the normal magnetic field has to be extrapolated from the
interior solution, and because the inflow magnetic field is prescribed at the boundary, it
is ψ that has to be extrapolated from the interior. The same logic applies to superfast
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outflow. Assume again that vn > 0. Without GLM, all of the variables would just be
extrapolated from the inside of the domain, since all eigenvalues are positive, hence no
information is propagating into the domain. However, due to the negative eigenvalue −ch,
ψ needs to be prescribed at the outflow boundary. A suitable choice for ψ is to set it to
zero at superfast outflow boundaries. (This is consistent with Yalim et al. [41], who set ψ
to a constant at the superfast outlet boundaries.)
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Chapter 3

High-Order Finite-Volume Scheme

for 2D Ideal MHD

In this chapter, a high-order accurate finite-volume scheme is proposed for the 2D ideal
magnetohydrodynamics equations. Many recent developments employ discontinuous Galerkin
(DG) finite element methods [42, 43, 44, 45], and others are based on essentially non-
oscillatory (ENO) FV schemes and on weighted ENO (WENO) FV schemes [38, 39, 46,
47, 48, 49, 50]. Most of these high-order approaches were only described and implemented
for regular Cartesian grids. Our high-order MHD scheme uses a different approach. It
is based on Barth’s k-exact reconstruction procedure [51], which uses a least-squares ap-
proach on overdetermined stencils to compute polynomial reconstruction coefficients, in
a multi-dimensional way that can handle general polygonal grids. In order to control
spurious oscillations at shocks, we use the CENO monotonicity procedure that was intro-
duced by Ivan and Groth [4] for the Euler equations, and has since been extended to the
Navier-Stokes equations [3, 52]. Our implementation of this CENO monotonicity proce-
dure switches between an unlimited piecewise cubic reconstruction (fourth-order accurate)
and a limited piecewise-linear reconstruction (second-order accurate), with the switching
based on the smoothness indicator introduced in [4]. Note that the scheme we describe can
in principle be implemented with arbitrary order, but fourth-order accuracy is a suitable
practical choice for the numerical results to be presented in this paper. The smoothness
indicator is computed in each cell to determine whether the flow is locally smooth and
well-resolved. For cells containing non-smooth or under-resolved solution content, the un-
limited k-exact reconstruction is switched to limited piecewise linear reconstruction. The
smoothness indicator can also be used directly to formulate a criterion for AMR. The
CENO scheme is called central because both the high-order and the low-order stencils are
central with respect to the cell. The method is an ENO method, thus, not necessarily
monotonicity preserving in the strict sense (such as TVD or TVB [52]), but rather, it is
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monotone in the ENO sense [53]:

TV (un+1) = TV (un) +O(∆xk+1), (3.1)

where un denotes a solution variable u at time level n, ∆x is the grid spacing, k is the
order of polynomial reconstruction, and TV stands for total variation. The ENO property
allows the presence of small spurious oscillations that have a magnitude on the order of
the truncation error, but it does not allow O(1) Gibbs-like oscillations at discontinuities
[53]. It is important to note that the CENO method proposed by Ivan and Groth [4] does
not choose between asymmetric stencils as most other methods do that try to enforce the
ENO property, but instead uses a hybrid approach that chooses between high-order and
limited low-order central reconstructions. Note that Harten and Chakravarthy [54] also
proposed a technique on Cartesian grids to obtain an ENO reconstruction using central
stencils by hybridizing a high-order reconstruction with a first-order formulation, and this
served as an inspiration for the CENO approach of [4, 52]. The fixed stencil used during
the CENO reconstruction procedure avoids the complexity of considering multiple non-
central stencil configurations that characterizes traditional ENO schemes. Note also that
the CENO method of Ivan and Groth is not a central ENO method in the sense of Nessyahu
and Tadmor’s staggered mesh philosophy [55], but it uses non-staggered central stencils
of different order. We note that our limited low-order least-squares scheme for MHD with
GLM divergence cleaning is similar to the second-order discretization proposed by Yalim
et al. in [41] (implemented on unstructured grids), and our high-order method is a high-
order extension of this approach that combines least-squares reconstruction with GLM.
Our CENO-GLM high-order MHD scheme thus provides an alternative to high-order DG
and ENO/WENO methods for MHD, and is attractive because it can naturally be applied
on general grids.

The organization of this chapter is as follows. The high-order CENO scheme is described
in Sec. 3.1 for two-dimensional space, combined with GLM-MHD to control divergence
error of the magnetic field, which is described in Sec. 2.2.2. Numerical results will be
presented in Sec. 3.2 to illustrate the accuracy of the scheme in handling smooth problems
(Sec. 3.2.1) and also problems with discontinuities (Sec. 3.2.2). Lastly, the dynamic mesh
adaptation capabilities of the approach (described in detail in [52]) are demonstrated using
adaptive time-dependent simulations of the Orszag-Tang vortex problem [56] with high-
order accuracy and unprecedented effective resolution (Sec. 3.2.3).

3.1 High-Order CENO Scheme for Ideal MHD in 2D

In this section we give a detailed description of the proposed high-order CENO scheme
for MHD, which is obtained by combining Ivan and Groth’s CENO approach for com-
pressible gas dynamics [4] with GLM divergence cleaning. We first describe the high-order
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FV framework, followed by discussions on Barth’s k-exact reconstruction and the CENO
reconstruction selection process using the CENO smoothness indicator. While the CENO
method applies to general mesh topologies, the discussion here is restricted to the applica-
tion to 2D, multi-block, body-fitted (logically Cartesian) AMR grids having quadrilateral
computational elements of the type considered by Groth and co-researchers [57, 58, 59, 60].
Numerical flux calculation and source term integration for our high-order MHD CENO
method are described next, followed by a discussion on how our MHD CENO implemen-
tation obtains high-order accuracy at curved boundaries.

3.1.1 High-Order Finite-Volume Formulation

Consider hyperbolic conservation law

∂U

∂t
+∇ · ~F = S, (3.2)

where U is the vector of conserved variables, ~F consists of the flux terms of the system,
and S is a source term vector. For a quadrilateral cell (i, j), the semi-discrete FV form of
Eq. 3.2 is given as

dUi,j

dt
= − 1

Ai,j

4∑

l=1

Ng∑

m=1

(ω ~Fnum · ~n∆l)i,j,l,m + Si,j, (3.3)

whereUi,j is the numerical approximation of the average value ofU in cell (i, j), ~Fnum is the
numerical flux function, Ai,j is the area of the computational cell (i, j), Ng is the number of
Gauss quadrature points on each cell face and ω is the associated Gauss quadrature weight
to each of the Gauss points. The actual number of flux quadrature points, Ng, depends
on the order of solution reconstruction, with two Gauss quadrature points per face for
third- and fourth-order accurate schemes, but only one Gauss quadrature point per face
for second-order or lower [4]. The order of the polynomial reconstruction then determines
the spatial accuracy of the solution by providing more accurate approximations of the
solution values at the Gauss quadrature points for flux calculation. In general, an order-
k polynomial reconstruction provides an order-(k + 1) accurate spatial discretization for
smooth problems. We use standard explicit second-order and fourth-order Runge-Kutta
methods [40] to integrate Eq. 3.3 in time for the second-order and fourth-order accurate
spatial discretizations to be compared in our time-dependent numerical test problems. For
steady-state simulations, we use a five-stage optimally smoothing method regardless of the
solution accuracy [61].

17



3.1.2 k-Exact Piecewise Polynomial Reconstruction

Following Barth [51], the variation of a solution variable, u, at any location within the
quadrilateral computational cell (i, j), assumes the form

uki,j(
~X) =

k∑

p1=0

k∑

p2=0

(p1+p2≤k)

(
x− xi,j

)p1(y − yi,j
)p2Dk

p1p2
, (3.4)

where k is the order of the polynomial function, ~X = (x, y) are the coordinates at which
the solution is sought, (xi,j, yi,j) are the coordinates of the centroid of cell (i, j), and Dk

p1p2

are high-order polynomial coefficients that will need to be determined for each of the
primitive variables for every cell, based on a set of cell averages, uγ,δ, in the neighbour-
hood of cell (i, j). For the test cases presented in this chapter, linear (k = 1) and cubic
(k = 3) reconstructions are chosen to obtain second- and fourth-order accurate schemes.
The monotonicity-preserving procedure, which is discussed in Sect. 3.1.3, reduces k to 1
and applies limiters in regions of the flow that are deemed under-resolved or to contain
discontinuities.

The coefficients Dk
p1p2

are determined by solving an overdetermined system of linear
equations in a least-squares sense, fitting the reconstruction polynomial to the solution
averages for cell (i, j) and for its neighbouring cells in the reconstruction stencil of cell (i, j).

For a polynomial of degree k, the number of coefficients Dk
p1p2

is given by ND = (k+1)(k+2)
2

[4, 27, 52]. Thus, there are 3 coefficients to be determined for k = 1 or linear reconstruction
and 10 coefficients for k = 3 or cubic reconstruction. Following the requirements imposed
by Barth [51], it is important that these coefficients are determined in such a way that the
following conditions are satisfied:

• Conservation of the mean. The average of the reconstructed polynomial function
over cell (i, j) should recover exactly the cell-averaged value ui,j:

ui,j =
1

Ai,j

¨

Ai,j

uki,j(
~X) dA. (3.5)

• k-exactness. The reconstructed polynomial function should be able to reconstruct
polynomials of degree up to k exactly [51]:

uki,j(
~X)− uexact( ~X) = O(∆xk+1). (3.6)

• Compact support. The reconstructed polynomial function should depend only on
average values within a relatively small neighbourhood [51]. Only the cell-averaged
data within the supporting stencil is used for reconstruction purposes.
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In theory, ND determines the minimum size of the supporting stencil, but in practice
more neighbours are included to make the reconstruction more robust for complicated
and stretched meshes [4, 27, 52]. On our 2D body-fitted structured grid blocks, first-
degree neighbours are included for k = 0 and k = 1 reconstruction stencils (a total of 8
neighbours), and first- and second-degree neighbours are included for k = 2 and k = 3
reconstruction stencils (a total of 24 neighbours).

Consider reconstruction for cell (i, j). In the reconstruction step an overdetermined
system AD−B = 0 is solved in the least-squares sense, together with the constraint of
Eq. 4.10, which is imposed exactly. Here, D is the array of polynomial coefficients, Dk

p1p2
,

and the equations AD−B = 0 are given by

(AD−B)γ,δ =

(
1

Aγ,δ

¨

Aγ,δ

uki,j(
~X) dA

)
− uγ,δ = 0. (3.7)

There is one equation for each cell (γ, δ) in the stencil of cell (i, j). Each equation matches
the actual cell average uγ,δ in cell (γ, δ) with the average over cell (γ, δ) of the reconstructed

polynomial uki,j(
~X) for cell (i, j). Equation 4.10 is enforced analytically by replacing uki,j

with Eq. 3.4 and expressing the first coefficient, Dk
00, as a function of the otherM = ND−1

polynomial unknowns as

Dk
00 = ui,j −

k∑

p1=0

k∑

p2=0

(p1+p2 6=0)

Dk
p1p2

(xp1yp2)i,j , (3.8)

where the geometric moment (xp1yp2)i,j of powers (p1, p2) is given by

(xp1yp2)i,j =
1

Ai,j

¨

Ai,j

(x− x̄i,j)
p1 (y − ȳi,j)

p2 dA . (3.9)

Substituting uki,j from Eq. 3.4 in Eq. 4.11 and using Eq. 3.8 for Dk
00 the following

overdetermined linear system for the M unknowns is obtained




L1

L2
...
LJ
...

LNn




Nn×M




Dk
01

Dk
02
...

Dp1p2
...

Dk
k0




M×1

−




w1(u1 − uI)
w2(u2 − uI)

...
wJ(uJ − uI)

...
wNn(uNn − uI)




Nn×1

=




0
0
...
0
...
0




Nn×1

(3.10)

where a unique index J = (γ, δ) has been assigned to each of the Nn neighbours in the
supporting reconstruction stencil and the index I = (i, j) denotes the cell having the
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solution reconstructed. The generic row LJ of the matrix A for a neighbouring cell J is
given by

LJ =
(
wJ

(
x̂0y1

)
IJ

wJ

(
x̂0y2

)
IJ

. . . wJ

(
x̂p1yp2

)
IJ

. . . wJ

(
x̂ky0

)
IJ

)
, (3.11)

in which wJ is a geometric weight specific to each neighbour J which serves the purpose of
improving the locality of the reconstruction, becoming especially important for stretched
meshes with boundary curvature [62]. (In essence, equations corresponding to close-by
neighbour cells in the reconstruction stencil get larger weights in the least-squares solution

than neighbour cells that are further away.) The matrix coefficients
(
x̂p1yp2

)
IJ

for the pair

of I and J cells have the expression

(
x̂p1yp2

)
IJ

=

(
1

Aγ,δ

¨

Aγ,δ

(x− x̄i,j)
p1 (y − ȳi,j)

p2 dA

)
− (xp1yp2)i,j , (3.12)

where the quantities
(
x̂p1yp2

)
IJ

depend only on the geometry of I and J cells, and involve

a monomial integration that can be computed by applying quadrature rules. An efficient

way to calculate the geometric moments
(
x̂p1yp2

)
IJ

using only the (xp1yp2) moments is

described in [52].

QR factorization or multiplication with the pseudo-inverse of A can be used to de-
termine the solution of Eq. 4.14, as described in more detail in [4, 27, 52]. The complete
solution of the constrained least-squares problems is then obtained by calculating D00 using
Eq. 3.8. In each time step, the constrained least-squares reconstruction problem is solved
for each cell and for each primitive variable. Matrix A depends completely on the geometry
and is the same for all least-squares problems in a given cell (i, j) (i.e., for each solution
variable) and for all time steps, so it can be precomputed and stored for computational
efficiency (see [4, 27, 52] for details). As explained in Sect. 3.1.5, one-sided stencils and
additional constraints on the least-squares solution are used to handle boundary conditions
with high-order accuracy at curved boundaries.

3.1.3 CENO Smoothness Indicator to Enforce Monotonicity

The CENO method controls monotonicity throughout the computational domain by se-
lecting a limited linear reconstruction in cells where the flow is deemed to be non-smooth
or under-resolved, and a high-order k-exact reconstruction elsewhere. The limited linear
reconstruction is based on k-exact reconstruction with k = 1 combined with the stan-
dard Venkatakrishnan limiter, see [52, 63]. To estimate whether the flow in cell (i, j) is
under-resolved or non-smooth, a variable S, the smoothness indicator, is computed [4]:

S =
α cs

max(1− α, ǫ)
, (3.13)
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where α is given by

α = 1−

∑

γ

∑

δ

(
ukγ,δ( ~Xγ,δ)− uki,j( ~Xγ,δ)

)2

∑

γ

∑

δ

(
ukγ,δ(

~Xγ,δ)− ui,j

)2 (3.14)

and cs = (NSOS − ND)/(ND − 1) is a positive constant. Here, NSOS stands for ‘size of
stencil’ used for reconstruction, ND stands for ‘degrees of freedom’ and denotes the number
of unknown polynomial coefficients, and ǫ is introduced to avoid division by zero (we use
ǫ = 10−8). Further, γ and δ denote the indices of the neighbouring cells to the cell (i, j)

that are part of its reconstruction stencil, and ~Xγ,δ is the centroid of cell (γ, δ). (Note that
the stencil used for computing the smoothness indicator can also be chosen smaller than
the reconstruction stencil. In our numerical results, we compute the smoothness indicator
associated with each primitive solution variable in cell (i, j) using a stencil with nine cells,
i.e., the cell (i, j) and its eight first-degree neighbours.) The parameter α basically measures
how accurately centroidal solution values of neighbouring cells can be reproduced using
the reconstruction for cell (i, j). The range of α is −∞ < α ≤ 1: for smooth variation,
the second term of the right-hand side of Eq. 3.14 tends to be close to zero and α is
very close to one; for cells close to a discontinuity or with an under-resolved feature, the
magnitude of α tends away from one and it can also become negative. The range of the
smoothness indicator S is −cs < S < cs/ǫ: for smooth variation (α very close to one), S
is large; for non-smooth or under-resolved features (α away from one), S is small. The
smoothness indicator S is then compared with a cutoff value SC: when S > SC the solution
is deemed locally smooth and the high-order reconstruction is used, and for S ≤ SC the
solution is locally non-smooth or under-resolved, and the limited low-order reconstruction
is used. We also use S in our adaptive procedure to refine regions where the solution is
non-smooth or under-resolved. A potential disadvantage of this approach is that it is not
fully parameter-free. However, we have found it easy to pick suitable values of SC based
on the range recommended in [52] for the numerical tests shown in Sect. 3.2. The selection
of an appropriate cutoff value is also made easier by the use of the transition function
α/(1− α), which rapidly magnifies small variations in α very close to one. Additionally, it
is worth emphasizing that a single value SC is selected and applied to all solution variables
and all mesh resolutions used for solving a particular problem. Note also that the use
of the adjustment coefficient, cs, in the expression of S helps making the selection of SC

relatively independent of the order of the scheme and making the smoothness indicators
comparable for different stencil sizes that may occur at domain boundaries. Robustness
of the scheme then depends on carefully choosing a user-defined parameter, namely, the
smoothness indicator.

The form of the smoothness indicator is inspired by the definition of multiple-correlation
coefficients and least-squares goodness-of-fit testing; see [52] for a more detailed discussion
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with further motivation for the approach. As is shown by extensive testing for the Euler
and Navier-Stokes equations in [4, 27, 52, 64] and is further confirmed by the numerical
MHD tests presented below, the CENO approach with smoothness indicator S is a useful
scheme in terms of providing high-order accurate numerical approximations while avoiding
spurious oscillations at discontinuities.

3.1.4 Numerical Flux Function and Source Term Integration

In this subsection we discuss numerical flux computation and treatment of the GLM source
term (in Eq. 2.36) for the high-order MHD CENO scheme.

We use the Lax-Friedrichs numerical flux function for the implementation of the pro-
posed high-order MHD CENO scheme. As a function of the left and the right reconstructed
states (UL andUR respectively) at each of the Gauss quadrature points, the Lax-Friedrichs
flux function is given as

F(UL,UR) =
~F(UR) + ~F(UL)

2
− λmax

UR −UL

2
, (3.15)

where λmax is the maximum of the absolute values of the normal eigenvalues of the states
in the two cells. Following Dedner et al. [28], the equations for Bx and ψ are decoupled
from the rest of the system, so the Lax-Friedrichs numerical fluxes are applied only to the
other seven variables. The fluxes at the interfaces for Bx and ψ are calculated by setting
these variables to the following values at the cell interfaces [28]:

Bx,m =
1

2
(Bx,r +Bx,l)−

1

2 ch
(ψr − ψl), (3.16)

ψm =
1

2
(ψr + ψl)−

ch
2
(Bx,r −Bx,l), (3.17)

where the subscripts l and r denote the left and right reconstructed states at cell interfaces
and ch is the global maximum of |vx|+ cfx at cell interfaces. These values are substituted
directly into the exact flux formulas for the Bx and ψ equations. In a multi-dimensional
setting, Bx is effectively Bn, which is the magnetic field component normal to the interface.
These ψm and Bn,m values are also used for flux calculation of the other seven variables,
which uses the Lax-Friedrichs numerical flux with local values of |vx| + cfx as the largest
wave speed that determines the size of the numerical dissipation.

As an alternative, one can also apply the standard Lax-Friedrichs flux (Eq. 3.15) directly
to the full system with nine variables, without decoupling the 2×2 system. One can expect
this to be more diffusive since in this case ch (the global maximum of |vx|+ cfx) determines
the numerical diffusion, but we have not found much difference with the decoupled approach
when trying this for our numerical tests. Nevertheless, in the numerical results presented
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below we use the decoupled approach. Other flux functions such as Roe [65] and HLLE
[66] can also be considered. Wheatley et al. [67] compared flux functions for high-order DG
methods, and found that using more accurate Riemann solvers improves results in some
cases (e.g., at shocks), but does often not make much difference in smooth regions of the
flow. This is also expected for CENO since the intercellular solution jumps diminish in size
as the reconstruction order increases, but a detailed investigation of this for the CENO
MHD scheme is beyond the scope of this work.

The ideal (non-modified) MHD system (Eq. 2.1 - Eq. 2.4) is a hyperbolic system of
equations, so it easily fits within the CENO framework. The GLM-MHD formulation adds
a source term to the ψ-update equation (Eq. 2.36), which can be treated in two different
ways in our implementation.

The first option, as proposed in Dedner et al. [28], is to incorporate the source term
using an operator splitting approach, where Eq. 2.36 is split into two parts:

• a homogenous conservation law, corresponding to the hyperbolic part of Eq. 2.36:

∂ψ

∂t
+ c2h∇ · ~B = 0, (3.18)

• an ODE, which represents only the source term of Eq. 2.36:

dψi,j
dt

= −c
2
h

c2p
ψi,j, (3.19)

which is solved for each cell in each time step.

Eq. 3.18 is a homogeneous conservation law, which is a part of the GLM-MHD system
of equations. Eq. 3.19 is an ODE, which can be analytically determined. The idea is to
solve these two parts separately in an alternating manner for each time step, where the
GLM-MHD equations are solved separately (without including the source term, Eq. 3.19)
[68]. This step produces the intermediate value for ψ, which we will call ψ∗. To complete
the process and update the value of ψ from t = tn to t = tn+1, Eq. 3.19 is analytically
solved with ψ = ψ∗ as the initial condition

ψn+1 = e
−∆tn

C2
h

C2
p ψ∗, (3.20)

where ∆tn = tn+1− tn. The operator splitting is only formally first-order accurate in time,
and it is possible to increase the order of accuracy to second order by using Strang splitting
[69], though LeVeque [68] found that in practice, the splitting error between the operator
spliting technique described above and the Strang splitting technique is not significant,
where in most cases both splitting methods produce solutions which are second-order
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accurate [68]. In fact, for Eq. 2.36 in particular, it is found that operator splitting does
not degrade the accuracy of the solution in any way (please refer to Sec. 3.1.4.1).

The second option is to integrate the source term as part of the hyperbolic system
update. Note that this can be done automatically with high-order accuracy: integrating
Eq. 2.36 over cell (i, j) gives

d

dt

(
¨

Ai,j

ψ dA

)
= −c2h

(
¨

Ai,j

∇ · ~B dA

)
− c2h
c2p

(
¨

Ai,j

ψ dA

)
, (3.21)

which directly leads to the discrete equation

dψi,j
dt

= − 1

Ai,j

4∑

l=1

Ng∑

m=1

(ω~fnum · ~n∆l)i,j,l,m − c2h
c2p
ψi,j, (3.22)

where ~fnum is the numerical flux function for Eq. 2.36. This is a high-order discretization of
Eq. 2.36 as long as the fluxes are computed with high-order accuracy, relying on high-order
polynomial reconstruction.

An advantage of the operator splitting approach is that exact analytical integration of
Eq. 3.19 does not impose an additional stability constraint on the time step. In contrast,
integrating the source term numerically in a coupled fashion as part of the hyperbolic
update may incur an additional source term time step constraint of the type ∆t ≤ CS ∆tS,
with ∆tS = 2 c2p/c

2
h and CS a constant of O(1) related to the time integration scheme. (For

example, CS would be one for Forward Euler time integration.) This should be compared
with the hyperbolic time step constraint of the type ∆t ≤ CH ∆tH , with CH the CFL
number of the scheme and ∆tH = ∆x/ch, where ∆x is a measure of the grid spacing.
Recalling the ratio of the diffusive and advective time scales, ᾱ = ∆x ch/c

2
p [38, 39], and

assuming that CS ≈ CH , it can be seen that the ratio of the hyperbolic and source term
time step limits is approximately given by ∆tH/∆tS = ᾱ/2. It follows that, for example,
for the choices of ᾱ advocated in [38, 39], namely, ᾱ ∈ [0, 1], the source term time step
constraint would normally be less stringent than the hyperbolic time step constraint. Also,
for constant ch and cp, the hyperbolic time step constraint becomes increasingly dominant
as the grid is refined. It also follows that setting ᾱ to a constant for a sequence of grid sizes
implies that the ratio between the hyperbolic and source term time step limits remains the
same on those grids, which may be an advantage if the source term is integrated numerically
as part of the hyperbolic step and one wants to make sure that the hyperbolic time step
restriction dominates the source term time step restriction on all grids in the sequence.

While an operator splitting approach may in principle reduce the order of accuracy,
depending on the type of the equation, it is often observed that it does not reduce accuracy
in practice even if the formal order of accuracy is reduced [68]. We have done extensive
numerical comparisons of the two mechanisms for integrating the GLM source term in our

24



code and have not found any sign of reduced accuracy or reduced convergence order for the
operator splitting approach. Further investigation revealed that, in the case of GLM-MHD
with mixed hyperbolic-parabolic correction, it can be shown formally that the splitting
error vanishes, see Sec. 3.1.4.1.

On a related note, we have also confirmed in numerical tests for smooth flows that
employing low-order (e.g., linear) reconstruction for ψ while using reconstruction with
degree-three polynomials for the physical variables does not lead to convergence degrada-
tion: fourth-order accuracy is maintained. This can be explained by relying on similar
arguments as those used in Sec. 3.1.4.1 to show that the operator splitting error vanishes:
due to the fact that the exact solution of ψ(x, t) is the zero function for smooth flow, all con-
stants in the Taylor series expansion of the exact solution for ψ vanish, which implies that
discretization of ψ does not introduce truncation errors and high-order reconstruction is
not required for accurately approximating ψ (which converges to the zero function). Note,
however, that during the convergence process the error in ψ is nonzero: it is generated by
the truncation error in the components of the magnetic field, and is of the same order of
magnitude. Low-order reconstruction of ψ may in principle lead to some computational
savings, but it may make implementation somewhat more complex since the reconstruction
process for ψ is then different from the other variables.

In our implementation we have several options for integrating the GLM source term,
and for choosing the order of reconstruction for ψ and the value of cp. In the numerical
tests presented in Sec. 3.2 section we choose the following options. We reconstruct ψ with
the same polynomial order as the physical variables, and we integrate the source term
numerically as part of the hyperbolic update. For setting cp, we followed [28] and set cp by
fixing the constant cr = c2p/ch to a value of 0.18. We have verified that, for this choice, the
hyperbolic time step restriction was dominant for all problems and grids we considered.

3.1.4.1 GLM-MHD Splitting Error Analysis

Consider the conservation-form equations of ideal MHD with mixed hyperbolic-parabolic
GLM correction, given by Eqs. 2.1, 2.2, 2.4, 2.35 and 2.36. For simplicity, we consider
planar 2D MHD.

Let U = [ρ, ρvx, ρvy, Bx, By, e, ψ]
T be the vector of conserved variables, and let V =

[ρ, vx, vy, Bx, By, p, ψ]
T be the vector of primitive variables. Consider smooth solutions of

the conservation law. The quasi-linear form of the equations in conservative variables is
given by

∂U

∂t
+ Ac

∂U

∂x
+ Bc

∂U

∂y
+ CcU = 0, (3.23)

and in primitive variables by

∂V

∂t
+ Ap

∂V

∂x
+ Bp

∂V

∂y
+ CpV = 0. (3.24)
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Here, the flux Jacobian matrices Ac and Bc are related to the coefficient matrices Ap and
Bp as follows:

Ac =
∂U

∂V
Ap

∂V

∂U
, Bc =

∂U

∂V
Bp

∂V

∂U
. (3.25)

These expressions can be used to compute Ac and Bc from

Ap =




vx ρ 0 0 0 0 0
0 vx 0 −Bx/ρ By/ρ 1/ρ 0
0 0 vx By/ρ −Bx/ρ 0 0
0 0 0 0 0 0 1
0 By −Bx −vy vx 0 0

0 γp 0 (γ − 1)~v · ~B 0 vx −(γ − 1)Bx

0 0 0 c2h 0 0 0




, (3.26)

Bp =




vy 0 ρ 0 0 0 0
0 vy 0 −By/ρ −Bx/ρ 0 0
0 0 vy Bx/ρ −By/ρ 1/ρ 0
0 −By Bx vy −vx 0 0
0 0 0 0 0 0 1

0 0 γp 0 (γ − 1)~v · ~B vy −(γ − 1)By

0 0 0 0 c2h 0 0




, (3.27)

(see [28]), and from

∂U

∂V
=




1 0 0 0 0 0 0
vx ρ 0 0 0 0 0
vy 0 ρ 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

~v · ~v/2 ρvx ρvy Bx By 1/(γ − 1) 0
0 0 0 0 0 0 1




, (3.28)

∂V

∂U
=




1 0 0 0 0 0 0
−vx/ρ 1/ρ 0 0 0 0 0
−vy/ρ 0 1/ρ 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0

γ~v · ~v/2 −γvx −γvy −γBx −γBy γ 0
0 0 0 0 0 0 1




. (3.29)
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It is easily seen from Eq. 2.36 that

Cc = Cp =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 c2h/c

2
p




. (3.30)

Further, for Eq. 3.23, define the differential operator

Dc = Ac

∂

∂x
+ Bc

∂

∂y
. (3.31)

Following Section 17.3 of [68], the splitting error E arising from operator splitting on the
time integration of Eq. 3.23 at some time t is given by

E =
1

2
∆t2(DcCc − CcDc)U+O(∆t3), (3.32)

where U is the exact solution of Eq. 3.23 at that time t. Simple multiplication of the
operators Cc and Dc shows that

(DcCc − CcDc)U =
c2h
c2p




0
0
0
∂ψ

∂x
∂ψ

∂y

0
0




− c4h
c2p




0
0
0
0
0
0

∂Bx

∂x
+ ∂By

∂y




. (3.33)

This vanishes because the exact solution of Eq. 3.23 satisfies ψ(x, y, t) = 0 and ∇ ·
~B(x, y, t) = 0 for all x, y and t, showing that operator splitting is at least third-order
accurate locally in time (and second-order accurate globally). Again following [68], all
higher-order error terms also vanish when (DcCc − CcDc)U = 0. This shows that no ex-
tra error arises from performing the time integration using operator splitting: the result
is accurate up to the order of accuracy of the methods used to compute the solution in
the separate steps of the operator splitting. Note that this result is obtained essentially
because all quantities in the equation for ψ converge to zero for smooth flows, and because
there is a source term in the equation for ψ only. The same result can be obtained for the
case of 3D MHD in an analogous fashion.
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3.1.5 High-Order Accuracy at Curved Boundaries

In our CENO MHD implementation, two general mechanisms are available to prescribe
boundary conditions. The first mechanism uses ghost cells. Every grid block in our hier-
archical block-adaptive body-fitted quadrilateral grid framework is equipped with three or
four layers of ghost cells. In the numerical results to be presented in Sect. 3.2, we compare
second-order results with fourth-order results. The second-order simulations employ three
layers of ghost cells for each block, and the fourth-order results employ four layers of ghost
cells for each block. All blocks have the same size, and the parallelization strategy dis-
tributes blocks over parallel message passing interface (MPI) processes [70, 71] as uniformly
as possible (with typically multiple blocks per MPI process and one MPI process per CPU
core), resulting in adequate load balancing. The ghost cells enable the message passing
that parallelizes the code. They are also used in the adaptivity mechanism to transfer
information between coarse and fine blocks, as is explained in Sec. 3.2.3. Note that the
number of ghost cell layers is one greater than the number required to enable reconstruc-
tion in the first ghost cell layer; this additional ghost cell layer is necessary for computing
the smoothness indicator in the first layer of ghost cells (which determines whether the
high-order or low-order reconstruction is used there) [52]. The ghost cells can also be used
to impose boundary conditions at the domain boundaries in standard ways. All second-
order simulations use ghost cells to impose boundary conditions. Ghost cells are also used
to impose boundary conditions for our fourth-order tests in certain cases, for example in
the case of periodic boundary conditions. However, for high-order accuracy near curved
boundaries, a more accurate second mechanism for boundary conditions is needed.

The second boundary condition mechanism relies on accurate representation of the
curved boundaries with high-order piecewise polynomial splines. It uses one-sided stencils
near boundaries that only contain cells within the computational domain, and it imposes
additional constraints on the least-squares reconstruction problem at the Gauss points [72].
It is also important to compute the geometric data such as cell areas, centroid locations,
etc. to the same order of accuracy as that of the interior scheme [27, 52]. We represent
curved boundaries with piecewise polynomial splines of an order consistent with that of the
FV numerical scheme, which allows us to locate Gauss quadrature points and compute flux
integrals with high accuracy. One-sided reconstruction stencils are used for the first and
second layer of cells in the computational domain at the boundaries, and constraints are
added to the least-squares reconstruction of the cells in the first layer to accurately impose
certain types of boundary conditions on the curved boundaries at the Gauss points. When
ghost cells are not used, the one-sided reconstructed values at the Gauss points are directly
plugged into the exact MHD flux functions to obtain the numerical flux. For variables to be
left free at the boundaries (extrapolation from the computational domain), no additional
constraints are necessary. For variables to be imposed at the boundaries, the appropriate
constraints are added at the Gauss points used in the flux integration.

More generally, our framework accepts Robin boundary conditions (which consist of
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linear combinations of Dirichlet and Neumann conditions), and it also accepts linear rela-
tions among variables which form a coupling constraint for a set of reconstructed variables
[52]. These coupling constraints can be used to impose wall conditions at curved bound-
aries with high accuracy. This has been explained for Euler flows in [4, 52], and we extend
it here to perfectly conducting walls in MHD problems. For perfectly conducting walls, we
impose that ~B · ~n = 0 and ~v · ~n = 0 in each Gauss quadrature point. Let (ngx, n

g
y) be the

normal vector in Gauss quadrature point g of cell (i, j), and let (xg, yg) be its coordinates.

Then, using the polynomial expansion of Eq. 3.4, the conditions ~B · ~n = 0 and ~v · ~n = 0 at
the Gauss point can be expressed as

k∑

p1=0

k∑

p2=0

(p1+p2≤k)

(
xg−xi,j

)p1(yg−yi,j
)p2ngx (Dk

p1p2
)Bx+

k∑

p1=0

k∑

p2=0

(p1+p2≤k)

(
xg−xi,j

)p1(yg−yi,j
)p2ngy (Dk

p1p2
)By = 0,

(3.34)
and

k∑

p1=0

k∑

p2=0

(p1+p2≤k)

(
xg−xi,j

)p1(yg−yi,j
)p2ngx (Dk

p1p2
)u+

k∑

p1=0

k∑

p2=0

(p1+p2≤k)

(
xg−xi,j

)p1(yg−yi,j
)p2ngy (Dk

p1p2
)v = 0

(3.35)
with (Dk

p1p2
)Bx the polynomial coefficients for the Bx magnetic field component, and similar

for the By, u and v vector components. To impose ~B ·~n = 0 in the reconstruction, we solve
the least-squares reconstruction problems for the Bx and By polynomials together, with
the additional constraints of Eq. 3.34 for each Gauss point. Similarly, the least-squares
reconstruction problems for u and v are solved together to impose ~v · ~n = 0, with the
additional constraints of Eq. 3.35. For full implementation details, see [52].

3.2 Numerical Results

In this section we present numerical results that demonstrate high-order convergence for
smooth flows and robustness against oscillations for flows with shocks. We present four
continuous test problems followed by two problems with discontinuities, including a new
MHD extension of the well-known Shu-Osher test problem [25]. Finally, we demonstrate
the dynamic AMR capabilities of our implementation using adaptive time-dependent simu-
lations of the Orszag-Tang vortex problem [56] with high-order accuracy and unprecedented
effective resolution.

Note that the proposed finite-volume method has been implemented in parallel using
the the C++ programming language and MPI [70, 71] and closely follows the techniques
and implementations described by Groth and co-workers [57, 58, 59, 60], with the necessary
extensions to high-order accuracy as described by Ivan and Groth [27]. All of the numerical

29



results presented below were obtained using a parallel computing cluster. In particular, the
computations were performed on a cluster consisting of 3,780 Intel Xeon E5540 (2.53GHz)
nodes with 16GB RAM per node. The cluster nodes were interconnected with a high-speed,
low-latency, InfiniBand switched network. We used from 16 up to 512 cores, depending on
the problem. Please refer [52] for an assessment of the parallel performance of the high-
order finite-volume scheme with AMR, demonstrating the near-ideal parallel efficiency and
scalability of the parallel implementation.

3.2.1 Continuous Problems

We first present two smooth test problems on Cartesian grids, which are the rotated Alfvén
problem from [29], and the magnetostatic problem from [42]. We then present two con-
tinuous test problems on body-fitted multi-block structured grids with non-rectangular
cells and curved boundaries: the rotating radial outflow problem and the expanding tube
problem from [73].

To quantify the accuracy of the numerical solution, the errors are measured in the L1,
L2, and L∞ norms:

L1 = |E|1 =
1

AT

∑

i,j

¨

Ai,j

∣∣uki,j(x, y)− uexact(x, y)
∣∣ dA, (3.36)

L2 = |E|2 =
√

1

AT

∑

i,j

¨

Ai,j

[
uki,j(x, y)− uexact(x, y)

]2
dA, (3.37)

L∞ = |E|∞ = max
i,j

(
1

Ai,j

¨

Ai,j

∣∣uki,j(x, y)− uexact(x, y)
∣∣ dA

)
, (3.38)

where AT is the total area of the computational domain. The integrals are evaluated with
high-order accurate Gaussian quadrature, see [52] for details. In most of our numerical
tests, we compare convergence for four numerical methods: fourth-order CENO, fourth-
order unlimited k-exact reconstruction, second-order CENO, and second-order unlimited
k-exact reconstruction. The CENO methods switch between the k-exact reconstruction
and the limited piecewise linear reconstruction based on the smoothness indicator. We use
a smoothness indicator cut-off value SC = 800 except where noted.

3.2.1.1 Rotated Alfvén Travelling Wave Propagation

The circularized Alfvén wave problem from [29] represents analytical solutions of the
MHD equations for arbitrary amplitudes. The wave propagates with an angle of α = 30◦

with respect to a Cartesian grid, and assumes the initial conditions (as in [29]): ρ = 1,
v‖ = 0, p = 0.1, B‖ = 1, v⊥ = B⊥ = 0.1 sin(2π(x cos(α) + y sin(α)), and vz = Bz =
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0.1 cos(2π(x cos(α) + y sin(α)]. The parallel velocity, v‖, is set to zero, which corresponds
to the travelling wave test case. The perpendicular and parallel directions are defined with
respect to the direction of wave propagation. These initial conditions give an Alfvén speed
of 1, which corresponds to a transit period of 1. The computational domain is set to be
periodic (using ghost cells), with ranges [0,1/cos(α)] for x, and [0,1/sin(α)] for y. As in
[29], the number of cells in the x-direction is equal to the number of cells in the y-direction,
which corresponds to a ratio of 1/

√
3 between ∆x and ∆y. The simulations are run for

5 transit periods (or up to t = 5). Density and other scalar variables are expected to be
constant throughout the simulation since they are not perturbed by the Alfvén wave, and
the errors for these variables are much smaller than for ~v and ~B, which is consistent with
the finding of Toth [29]. Thus, only the accuracy of the ~v and ~B fields were assessed for
convergence studies.

As can be seen from Fig. 3.1, the expected order of convergence is achieved for the
x-direction magnetic field, at least in the asymptotic limit. For the sake of brevity, only
the results of the x-direction magnetic field are shown, but the other variables behave in a
similar manner. The effect of the CENO monotonicity-preserving reconstruction switching
procedure (SC = 800) can be seen: a “transition” regime occurs where the mesh is not fine
enough and the smooth flow features are not sufficiently resolved. This transition regime
does not occur for the fourth-order method because it sufficiently resolves the flow already
with low resolution, see also [27]. The high-order scheme represents significant savings in
the number of computational cells required for some specific level of accuracy: a 64-by-64
grid resolution was sufficient for the fourth-order scheme to obtain a smaller error than the
limited second-order scheme on a 384-by-384 grid.

3.2.1.2 Two-Dimensional Magnetostatic Problem

We next consider the magnetostatic problem from [42]. The exact solution of this sta-
tionary problem is known: ρ = 1, vx = 0, vy = 0, vz = 0, Bx = − cos (πx)e−πy, By =
sin (πx)e−πy, Bz = 0, p = 19.84 (γ − 1), ψ = 0. Following Warburton et al. [42], this exact
solution is used as the initial condition for the simulation, and the error at steady-state is
a measure of the deviation of the numerical solution from the exact solution. The second-
order methods use ghost cells to impose boundary conditions: ~v and ~B are imposed in the
ghost cells (accurate average values of the exact solution, obtained by numerical quadra-
ture), and ρ, p and ψ are extrapolated to the ghost cells (the average values are linearly
extrapolated). The fourth-order methods use one-sided reconstruction, with the exact val-

ues of ~v and ~B imposed at the Gauss points using constraints, and ρ, p and ψ are left
free at the Gauss points. Figure 3.2 shows how the error norm of Bx converges to zero as
a function of grid size with the expected order. The fourth-order scheme requires much
fewer computational cells to achieve a specified level of error (in this case, the error can
differ by as much as 4 orders of magnitude for the same number of cells).
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Figure 3.1: The L1-, L2-, and L∞-norm errors for the magnetic field in the x-direction for
the rotated Alfvén wave problem, calculated at t = 5 (five transit periods). N is the total
number of grid cells. The solution is compared with the initial conditions to compute the
error. The error converges to zero with the expected order of accuracy in the asymptotic
limit. A transition region is observed for the second-order CENO scheme, consistent with
the findings of Ivan and Groth [27, 52].

3.2.1.3 Superfast Rotating Outflow From a Cylinder

We next consider the rotated outflow problem from [73] on a body-fitted structured grid
with non-rectangular cells and curved boundaries. While the exact analytical solution is not
available, several theoretical flow invariants are available [73], with which the corresponding
computed quantities can be compared. We measure error in the entropy, s, and the radial
magnetic field, Br.

The problem is defined on a domain between two concentric circles, and superfast inflow
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Figure 3.2: The L1-, L2-, and L∞-norm errors for the magnetic field in the x-direction
for the magnetostatic problem. The steady-state solution is compared with the initial
conditions to compute the error. The error converges to zero with the expected order of
accuracy in the asymptotic limit.

conditions (normal velocity faster than the fast magnetosonic wave speed as given in Eq.
2.7) are imposed at the inner circle. The domain goes from r = 1 to r = 6, and the inflow
conditions imposed at the r = 1 boundary are ρ = 1, p = 1, vr = 3, vθ = 1, and Br = 1.
The second-order methods use ghost cells to impose boundary conditions. At the inner
boundary (inflow), ρ, p, ~v and ~B are imposed in the ghost cells using linear interpolation
(to impose the desired values exactly at the domain boundary), and ψ is extrapolated
linearly from the interior of the domain. At the outer boundary (outflow), ρ, p, ~v and
~B are extrapolated linearly, and ψ is set to zero using linear interpolation (to impose the
desired value exactly at the domain boundary). The fourth-order methods use high-order
piecewise polynomial spline representation of the curved boundaries, combined with one-

33



sided reconstruction and constraints. At the inner boundary (inflow), ρ, p, ~v and ~B are
imposed by constraints at the Gauss points, and ψ is left free. At the outer boundary
(outflow), ψ is set to zero by constraints at the Gauss points, and ρ, p, ~v and ~B are left
free.

The steady-state solution of the rotated outflow problem obtained with the fourth-
order CENO scheme on a mesh with 80-by-80 cells can be seen in Fig. 3.3. The magnetic
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Figure 3.3: Density contour lines, magnetic field lines, and streamlines for the rotated
outflow problem, obtained on a mesh with 80-by-80 cells. The magnetic field lines and
the streamlines are not aligned. The flow is smooth throughout the entire domain, which
enables high-order convergence rates. The density contour lines are equally spaced in the
range (0.17,0.97).
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field lines are not aligned with the streamlines. The solutions obtained with second- and
fourth-order CENO schemes are compared in Fig. 3.4.
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(b) The L1-, L2-, and L∞-norm errors for
the radial magnetic flux. While there is no
analytical solution for the full magnetic field,
the radial component of the magnetic field
can be determined, due to the conservation
of the radial magnetic flux.

Figure 3.4: Convergence study for the rotated outflow problem using both unlimited k-
exact reconstruction (black lines) and CENO with SC = 800 (red lines).

It can be seen that the errors converge to zero with the expected order of accuracy.
For this problem, the second-order scheme has not reached the asymptotic regime beyond
the transition region yet for the resolutions we tested, and the second-order CENO error
remains above the unlimited second-order error due to ongoing switching from unlimited
k-exact reconstruction to limited second-order reconstruction, especially for the error in
the radial magnetic field as seen in Fig. 3.4b. This is possibly due to the inability of
the piecewise linear function to capture the curvature of the boundaries properly, so the
switching procedure continues to see some cells close to the boundaries as under-resolved,
thus limiting the reconstruction functions at these places and affecting the magnitude of the
error. In contrast, for fourth-order CENO and the unlimited k-exact schemes produce the
same error for resolutions above 80-by-80. It is clear that our approach can handle curved
boundaries with high-order accuracy, and the fourth-order method requires significantly
fewer cells than the second-order method to obtain a given error level.

In Fig. 3.5 we illustrate that the high-order CENO-GLM approach can naturally han-
dle resolution changes on block-adaptive grids and the errors introduced by AMR restric-
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(b) The grid with resolution change used for
the convergence study in the left panel. This
grid has 8 coarse blocks and 32 fine blocks,
each with 8× 8 cells. In each successive point
of the convergence study, all blocks in the
grid are refined by dividing them into four
blocks. The magnetic field lines of the so-
lution on this grid are plotted in blue. The
smoothness of the magnetic field lines is not
adversely affected by the jump in grid reso-
lution.

Figure 3.5: Convergence study for the rotated outflow problem on a grid with change
in grid resolution between blocks, illustrating that the high-order CENO-GLM approach
naturally handles resolution changes on block-adaptive grids.

tion/interpolation. We have performed a grid convergence study on a series of grids where
there is a change in resolution between some blocks (corresponding to one level of refine-
ment). In each successive point of the convergence study, all blocks in the grid of Fig. 3.5b
are refined by dividing them into four blocks. The convergence plot of Fig. 3.5a shows that
fourth-order convergence is automatically maintained by the CENO-GLM approach, and
magnetic field lines remain smooth at the jump in grid resolution.

3.2.1.4 Expanding Tube Problem

The expanding tube problem from [73] is another continuous problem that uses a body-
fitted structured grid with curved boundaries. It models plasma flow in an expanding
tube, which gives rise to an MHD solution that contains a rarefaction wave with a weak
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discontinuity at the edge of the rarefaction (see Fig. 3.6). Across the weak discontinuity,
the first spatial derivative of the flow variables is discontinuous. Therefore, even if fourth-
order reconstruction accuracy is targeted (by employing degree-3 polynomial functions to
reconstruct the solution), the solution accuracy is still limited to second-order near the
weak discontinuity.

The flow is simulated on a domain with x ∈ [0, 1], and y ∈ [y0(x), 1], where y0(x) =
cos (π

4
(x− 0.3)) − 1 for x ∈ [0.3, 1], and zero elsewhere in the domain. The lower wall

starts to curve at x = 0.3, giving rise to a rarefaction wave downstream of the weak
discontinuity. The boundary curve follows a cosine function rather than a straight line to
avoid a geometrical singularity in the boundary, which results in the rarefaction wave not
converging to a single point, as can be seen from Fig. 3.6a [73]. At the x = 0 boundary, a
uniform inflow with the following conditions is imposed: ρ = 1, p = 1, vx = 8, and Bx =
4. These initial conditions correspond to superfast horizontal inflow conditions, with an
acoustic Mach number vx/c = 8

√
3/5, and Alfvénic Mach number vx/cAx = 2. The second-

order methods use ghost cells to impose boundary conditions. The superfast inflow and
outflow boundary conditions at the left and right boundaries, respectively, are implemented
as for the rotating outflow test problem of Sect. 3.2.1.3. For the top and bottom boundaries,
standard wall boundary conditions are implemented that symmetrically copy ρ, p and ψ
to the ghost cells, and mirror ~v and ~B with respect to the wall. The fourth-order methods
use high-order piecewise polynomial spline representation of the wall boundaries, combined
with one-sided reconstruction and constraints. For the top and bottom wall boundaries, ρ,
p, ψ and the tangential components of ~v and ~B are left free, while the normal components
of ~v and ~B are set to zero at the Gauss points using constraints. The high-order outflow
boundary condition is handled as in the rotating outflow test problem of Sect. 3.2.1.3. We
simply use ghost cells for the high-order inflow boundary condition, since the flow remains
uniform close to the inflow boundary and ρ, p, ~v and ~B can just be imposed in all ghost
cell layers, while ψ can be extrapolated linearly.

To assess the accuracy of the solution, entropy, which is one of the invariants for this
flow, is measured. Figure 3.6b shows convergence analysis of the entropy error. As can
be seen in this figure, second-order accuracy is achieved for the L1-norm error of the
entropy for both the second-order and the fourth-order accurate methods. While Fig. 3.6b
illustrates how the weak discontinuity in the solution limits the order of accuracy, reduction
in the total error is still observed when higher-order polynomial functions (the fourth-order
method) are used to represent the solution. It is interesting to note that the log error of
the CENO solution decreases linearly, whereas some zigzagging is present in the unlimited
k-exact error plot. This can be explained by the fact that the flow is not fully smooth,
and the weak discontinuity that exists can potentially generate spurious oscillations when
monotonicity is not enforced, though the level at which these oscillations occur is apparently
much smaller than the solution variation. Note also that, even at the highest attempted
resolution, the convergence plots of the CENO error do not converge to those of unlimited
k-exact reconstruction (as was the case for the other test cases), implying that, due to the
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(a) The expanding tube flow, solved on a
160-by-160 grid with the fourth-order CENO
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in the range (0.45,0.95) (21 contours).
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(b) Convergence study for the expanding
tube problem. The entropy is compared with
the entropy at the inflow to compute the
error,and nearly second-order accuracy for
the L1-norm error is observed for both the
second- and fourth-order methods.

Figure 3.6: Expanding tube flow: density contour lines and entropy convergence study. The
error converges with at most second-order accuracy, due to the non-existence of higher-
order derivatives across the weak discontinuity. Convergence study is performed for entropy
using both unlimited k-exact reconstruction (black lines) and CENO with SC = 800 (red
lines).

weak discontinuity, reconstruction switching is always performed for at least a few cells.

3.2.2 Problems with Discontinuities

It is clear from Sec. 3.2.1 that the high-order scheme is indeed advantageous. It is also
important to assess how well the scheme handles problems with discontinuity, as many
realistic flows involve some forms of discontinuities. A continuous problem with a weak
discontinuity has already been considered in Sec. 3.2.1.4, in the form of the expanding
tube problem (as proposed in [73]). From this test case, we can see how the high-order
scheme improves the accuracy of the solution, but is limited to second-order accuracy in
the asymptotic limit. In this section, we consider two discontinuous problems: the classic
MHD Brio-Wu shock tube test case (Sec. 3.2.2.1) and a new MHD extension of the Shu-
Osher problem (Sec. 3.2.2.2), to illustrate the capability of the proposed high-order scheme
in handling discontinuities in the solution.
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Figure 3.7: Setup for the rotated one-dimensional problems with discontinuities. The
discontinuity is rotated 45◦ counterclockwise with respect to the x-axis. The solution thus
exhibits a translational symmetry in the y1-direction.

3.2.2.1 Rotated Brio-Wu Shock Tube Problem

The Brio-Wu shock tube problem [74] is a standard test case to demonstrate the capability
of a numerical MHD scheme to handle discontinuities.

The initial conditions are given by

(ρ, v⊥, v‖, vz, B⊥, B‖, Bz, p, ψ) =

{
(1, 0, 0, 0, 0.75, 1, 0, 1, 0) for x1 < 0,

(0.125, 0, 0, 0, 0.75,−1, 0, 0.1, 0) for x1 > 0,
(3.39)

with γ = 2. Here, x1 is the coordinate variable perpendicular to the shock, given by
x1 = x cosα + y sinα with α the angle at which the shock frame of reference is rotated
with respect to the x-axis (we choose α =45◦). This setup is illustrated in Fig. 3.7.

Ghost cells are used and constant extrapolation boundary conditions are applied to
all boundaries, though the top and the bottom boundaries require that the cells not only
be copied to the ghost cells, but also shifted to the left or the right by one cell (similar
to Fig. 10 from [29]). It is important to note that, for this boundary condition to work,
the ratio between the spacing in the x-direction and the spacing in the y-direction needs
to be 1, because otherwise the 45◦ symmetry would not translate to a (1,1) translational
symmetry, see also [29, 39, 75].

The Brio-Wu problem gives rise to several types of waves and shocks: fast rarefaction
waves, a contact discontinuity, a slow compound wave, and a slow shock [74]. Simulations
were performed for the rotated cases using 600 cells in the x-direction, and 4 cells in the
y-direction. The density plot is shown in Fig. 3.8, and illustrates that our method is robust
with respect to spurious oscillations. The fourth-order solution has slightly sharper features
than the second-order solution. All of the important wave features are captured well
without spurious oscillations, except for a slight undershoot between the fast rarefaction
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(FR) and the slow compound wave (SM) (which is also observed in other work on high-
order MHD schemes [39, 45]).
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Reference Solution (2 nd-order 6,000 Cells, not rotated)
45 Degree-Rotated 2 nd-order 600 Cells
45 Degree-Rotated 4 th-order 600 Cells

FR
SM

C

SS FR

Figure 3.8: Comparison of the density solution of the Brio-Wu Shock Tube Problem at t
= 0.1414, rotated at 45◦. Here, FR denotes fast rarefaction, SM slow compound wave, C
contact discontinuity, and SS slow shock. A cutoff value of SC = 8, 000, is chosen for these
simulations.

3.2.2.2 MHD Extension to Shu-Osher Shock Tube Problem

The shock tube problem proposed by Shu and Osher [25] is commonly used to test the
ability of high-order numerical schemes to resolve small-scale flow features in the presence
of shocks. A sinusoidal density perturbation is added downstream of a purely advecting
supersonic shock wave. The interaction of the shock wave with the sinusoidal part of the
density field gives rise to fast oscillations and complex flow features downstream to the
shock. The Shu-Osher shock tube problem provides an excellent testbed to highlight the
benefits of the improved accuracy of high-order numerical schemes, while at the same time
the presence of the shock puts the robustness and stability of the schemes to test. In what
follows, we develop a new MHD version of the Shu-Osher shock tube problem.

First consider a fast travelling shock wave without the sinusoidal density perturbation.
The fast shock wave advects with shock speed s, satisfying the Rankine-Hugoniot condition:

s(Ur −Ul) = F(Ur)− F(Ul) (3.40)
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where Ur and Ul denote the state vectors of the right and left state, respectively, and
F(Ui) denotes the flux evaluated at state i. The stable purely advecting fast shock that is
desired for the MHD equivalent of the Shu-Osher shock tube problem needs to satisfy the
following conditions in addition to the Rankine-Hugoniot condition:

1. In the shock frame, the flow should move in the direction from low pressure to high
pressure to ensure that entropy increases across the shock;

2. In the shock frame, velocities normal to the shock need to be faster than the fast
magnetosonic wave speed (Eq. 2.7) upstream, and faster than the Alfvén wave speed
(Eq. 2.9) but slower than the fast magnetosonic wave speed downstream;

3. In the simulation frame of reference, the normal velocity downstream of the shock
should be zero so the density perturbation stays intact until the shock goes through
it;

4. The magnetic field normal to the shock should be continuous to ensure zero magnetic
field divergence.

In the shock frame, the shock is stationary (s = 0), so the Rankine-Hugoniot condition
(Eq. 3.40) simplifies to

F(Ul) = F(Ur). (3.41)

We choose the following initial conditions that satisfy conditions 1-4 and the Rankine-
Hugoniot condition:

(ρ, u⊥, u‖, uz, B⊥, B‖, Bz, p, ψ) =

{
(1, 0, 0, 0, 1, 1, 0, 1, 0) for x < 4,

(3.5, 5.8846, 1.1198, 0, 1, 3.6359, 0, 42.0267, 0) for x > 4.

(3.42)
The numbers in Eq. 4.43 were obtained by numerically solving the MHD Rankine-Hugoniot
condition, and were rounded to four decimal digits (which is sufficiently accurate for the
numerical tests). These initial conditions lead to a shock that travels unperturbed to the
left with a speed of 8.2385 (rounded).

Equation 4.43 represents the unperturbed portion of our newly proposed MHD ver-
sion of the Shu-Osher shock tube problem. Similar to the Shu-Osher problem, sinusoidal
perturbation is added to the downstream part of the density field (because the shock and
the flow travel to the left, the sinusoidal perturbation is added to ρl). The initial density
function is then chosen as

ρl = 1 + 0.2 sin(5x), ρr = 3.5 (3.43)

and all the other variables are kept as given in Eq. 4.43.
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Figure 3.9: Comparison of the density solution of the MHD Shu-Osher problem at t =
0.6906, rotated at 45◦. As can be observed from the figure, the fourth-order method
produces results that are much closer to the non-rotated reference result in the highly
oscillatory region, illustrating the benefits of high-order accuracy. A cutoff value of SC = 80
is used for these simulations.

As in the case of the rotated Brio-Wu problem, the initial condition given by Eq. 4.43
and 4.44 has been applied in the rotated frame of reference x1−y1 (see Fig. 3.7). The
boundary conditions for our simulation of this problem are as explained in Sect. 3.2.2.1.
The left and right boundaries are taken sufficiently far from the initial discontinuity, such
that they do not influence the solution. The comparison of the density profiles between the
different methods is shown in Fig. 3.9. The benefit of the high-order method is clear: using
the same number of cells, the fourth-order method captures the small-scale flow features
much better than the second-order method. For all simulations performed for this section,
no stability or overshoot problem were observed, which indicates that the monotonicity-
preserving mechanism is doing its job properly to ensure that the method is stable in the
presence of discontinuities.
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3.2.3 Application of CENO with Dynamic Adaptive Mesh Re-

finement: Orszag-Tang Vortex Problem

In this section we demonstrate the pre-existing dynamic AMR capabilities of our framework
using adaptive time-dependent simulations of the Orszag-Tang vortex problem [45, 49, 56]
with high-order accuracy and unprecedented effective resolution. The problem is challeng-
ing because it is time-dependent and contains multiple complex and interacting disconti-
nuities. The Orszag-Tang vortex problem is a good test for our dynamic adaptive mesh
refinement and coarsening procedure. We include this problem in this thesis because it il-
lustrates convincingly how the high-order CENO-GLM approach we developed fits directly
into the pre-existing AMR framework and how our approach can be used with high-order
accuracy on grids with dynamically adaptive resolution changes between blocks.

We have implemented our new high-order MHD scheme that combines CENO and GLM
into a hierarchical quadtree block-based AMR procedure for multi-block body-fitted quadri-
lateral mesh that is based on the previous work of Groth and co-workers [57, 58, 59, 60]
and is extended to high-order accuracy as in [27]. We give a brief summary of the ap-
proach, and details are described in [27, 52, 58]. In our hierarchical quadtree block-based
AMR algorithm, mesh adaptation is accomplished by dividing and coarsening appropriate
solution blocks. In regions requiring increased cell resolution, a ‘parent’ block is refined
by dividing it into four ‘children’. Each of the four quadrants or sectors of a parent block
becomes a new block having the same number of cells as the parent, thereby doubling the
cell resolution in the region of interest. This process can be reversed in regions that are
deemed over-resolved and four children can be coarsened into a single parent block. The
mesh refinement is constrained such that the grid resolution changes by at most a factor of
two between adjacent blocks, and the minimum resolution is not less than that of the ini-
tial mesh. A hierarchical quadtree data structure and additional interconnects between the
‘leaves’ of the trees are used to keep track of mesh refinement and the connectivity between
solution blocks. The hybrid CENO solution reconstruction procedure is used in conjunc-
tion with standard multigrid-type restriction and interpolation operators to evaluate the
solution on all blocks created by the coarsening and division processes. Interpolation is
performed with high-order accuracy by computing reconstructed polynomials for solution
variables in each coarse-grid cell and integrating them over the fine-grid children cells to
determine the fine-grid cell averages with high-order accuracy (see [27] for details). Re-
striction and interpolation are performed in such a way that conservation is maintained,
but in our CENO-GLM MHD approach no special treatment is required for restricting or
interpolating the cell-centred magnetic fields: restriction or interpolation may introduce
errors of the order of the discretization error, and they are handled properly by the GLM
mechanism for controlling ∇ · ~B.

Grid refinement and coarsening are based on the maximum value of the CENO smooth-
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ness indicator over each block for the density variable. For each cell, the variable

Rc = e−
max(0,S)

Sc (3.44)

is calculated, where S is the value of the smoothness indicator and Sc is the cutoff value
for the smoothness indicator. The range of Rc is (0,1]. The maximum RB

c of all Rc

values within a block is computed. In blocks with RB
c close to 0, all cells are smooth and

resolved, and blocks with RB
c close to 1 have cells that are nonsmooth or under-resolved.

The block-based RB
c values are compared with refinement and coarsening thresholds to

determine if a block should undergo refinement, or if a group of blocks should be combined
for coarsening. Full details on the algorithm followed for coarsening and refinement are
given in [58] and [52]. The refinement/coarsening algorithm is invoked at regular intervals
during the simulation to obtain dynamic AMR.

For the Orszag-Tang vortex problem, the same initial conditions and domain as in [45]
are used, with ρ = γ2, vx = − sin(y), vy = sin(x), Bx = − sin(y), By = sin(2x), and
p = γ. The remaining variables (vz, Bz, and ψ) are initialized to zero. The computational
domain is a square with x and y values between 0 and 2π, and periodic boundary conditions
(ghost cells are used). The simulation is performed with CENO cutoff tolerance SC = 500.
The mesh is refined every 0.025 seconds up to t = 1. For later times, AMR is performed
every 50 time steps because ∆t decreases rapidly. The contour lines of the density for
the Orszag-Tang vortex problem are shown at t = 0.5, t = 1.0, t = 2.0, and t = 3.0 in
Fig. 3.10. The results show agreement with results shown in other papers [29, 45, 49, 76].
Figure 3.11 shows the sequence of adaptive meshes. Comparing the density contour lines
shown in Fig. 3.10 with the way the grid is refined as shown in Fig. 3.11, it can be seen
that the refinement closely follows the parts of the solution where interesting flow features
and discontinuities occur, illustrating the effectiveness of the smoothness indicator-based
refinement criterion.

Following [45] and [49], pressure distribution cuts at t = 2.0 and t = 3.0 along the line
y = 1.9635 are shown in Fig. 3.12. The AMR results are compared to results on a uniform
1,024-by-1,024 mesh. The uniform mesh corresponds to the smallest cell resolution at 7
levels of refinement, while 8 levels of refinement are used in the AMR results, so that the
smallest cell in the adaptive mesh (Fig. 3.11) corresponds to a resolution of 2,048-by-2,048
if done uniformly. From Fig. 3.12, it can be seen that the AMR results in general agree
well with the uniform reference results. The AMR solution (as shown in Fig. 3.10) agrees
well with the uniform reference solution (which is not shown) and with solutions shown
in the literature, but our results have a much higher effective resolution than previously
shown results (and they are fourth-order accurate). It is also interesting to note that,
while the uniform mesh has 1,048,576 computational cells, the AMR mesh has 865,408
cells at t = 3.0, which is smaller than the uniform mesh, despite having twice the effective
resolution at the highest level of refinement. Note also that, before t = 3.0, much fewer
cells are used by the adaptive simulation (see Fig. 3.11). Numerical experiments show that,
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for the adaptive simulation of Fig. 3.11, the speedup compared to a uniform simulation
with the same maximal resolution (on a 2048-by-2048 mesh) is 2.066. This illustrates the
effectiveness of the CENO scheme in combination with the block-based AMR algorithm to
reduce the number of required computational cells.
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(a) Density solution at t = 0.5. The con-
tour lines are equally spaced in the range
(2.11,5.82) (15 contours).

(b) Density solution at t = 1.0. The contour
lines are equally spaced in the range (1.25,6.9)
(15 contours).

(c) Density solution at t = 2.0. The con-
tour lines are equally spaced in the range
(0.62,6.41) (15 contours).

(d) Density solution at t = 3.0. The con-
tour lines are equally spaced in the range
(1.16,6.42) (15 contours).

Figure 3.10: The evolution of density for the Orszag-Tang vortex problem at different
times: t = 0.5, t = 1.0, t = 2.0, and t = 3.0. The ranges for the contour lines shown
here are as in [45]. These fourth-order accurate results were obtained using dynamic grid
adaption with the meshes shown in Fig. 3.11.
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(a) AMR as applied to the Orszag-Tang vor-
tex problem at t = 0.5. At this point, the
mesh consists of 118 8-by-8 blocks, or 7,552
cells in total.

(b) AMR as applied to the Orszag-Tang vor-
tex problem at t = 1.0. At this point, the
mesh consists of 1,474 8-by-8 blocks, ’ or
95,810 cells in total.

(c) AMR as applied to the Orszag-Tang vor-
tex problem at t = 2.0. At this point,
the mesh consists of 8,428 8-by-8 blocks, or
539,136 cells in total.

(d) AMR as applied to the Orszag-Tang vor-
tex problem at t = 3.0. At this point,
the mesh consists of 13,522 8-by-8 blocks, or
865,408 cells in total.

Figure 3.11: The evolution of the mesh for the simulation of Fig. 3.10 with adaptive
refinement. Up to t = 1.0, the mesh is refined every 0.025 seconds, after which it is refined
every 50 time steps. The lines in the figure represent the boundaries of the 8-by-8 Cartesian
blocks.
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Figure 3.12: Pressure cuts at y = 1.9635 at two different times (t = 2.0 [left], and t =
3.0 [right]). High-order results obtained in combination with adaptive mesh refinement are
compared with uniform high-order high-resolution results on a 1024-by-1024 mesh, and
found to be similar. Our results agree with the results from [45] and [49].

48



Chapter 4

High-Order Finite-Volume Scheme

for 3D Ideal MHD on Cartesian and

Cubed-Sphere Grids

In this chapter, a high-order accurate finite-volume scheme is proposed for ideal magne-
tohydrodynamics equations in three dimensions. The development of high-order accurate
and robust discretizations for hyperbolic conservation laws in 3D remains a challenging and
active area of research. In recent years, significant advances have been made in proposing
new discretization schemes of various types for 3D hyperbolic conservation laws, including
finite difference methods (e.g., [39]), discontinuous Galerkin methods (e.g., [42, 77, 78]),
finite-volume methods (e.g. [48, 79, 80, 81]), and combinations of these approaches (e.g.,
[82]). The 3D CENO method proposed in this chapter offers a different approach on
general hexahedral grids that combines high-order accuracy with robustness at discon-
tinuities, and it is attractive because it is inherently multi-dimensional by employing a
K-exact overdetermined reconstruction scheme, and it avoids the complexity of consider-
ing multiple non-central stencil configurations that characterizes traditional ENO schemes.
This approach is general and can be extended to unstructured grids [83]. For 3D MHD
flows, the 2D fourth-order accurate CENO MHD solver from Chapter 3 is extended to
3D, using the generalized Lagrange multiplier (GLM) approach from [28] to control errors
in the divergence of the magnetic field for the high-order accurate simulation (as also in
[39]). Most MHD frameworks for parallel space physics simulations are only second-order
accurate [84, 85, 86], and the parallel 3D fourth-order MHD method on general hexahe-
dral grids proposed in this chapter significantly advances the state-of-the-art of large-scale
simulation frameworks.

This chapter is structured as follows. We describe the three-dimensional implementa-
tion (which is a conceptually trivial extension of the two-dimensional implementation) in
Sec. 4.1. The cubed-sphere mesh acts as a domain for a significant number of simulations
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performed in this chapter. Due to the presence of degenerated edges on domains of this
type, we present a rotation mechanism to generate stencils close to these edges in Sec.
4.1.5. Numerical results are presented in Sec. 4.2, which illustrate the effectiveness of the
proposed high-order scheme to resolve smooth and non-smooth flows in three dimensions.

4.1 Fourth-Order CENO Method for 3D Hyperbolic

Conservation Laws

The CENO method in 3D is an extension of the two-dimensional version, which is described
in Sec. 3.1. It is important to note, however, that the choice of stencils will be much more
varied in 3D than in 2D, and a brief discussion on stencil choice is presented in Sec.
4.1.2. Also specific to three-dimensional implementation, cell faces may not necessarily be
planar, so a trilinear representation of a non-planar face is used, to map a reference unit
cube onto a hexahedral cell (see Sec. 4.1.4). The nonplanar representation was developed
and implemented by Dr. Ivan, but a summary of these developments is included in this
thesis for completeness in describing the high-order simulation framework I co-developed
and used in further work.

4.1.1 Finite-Volume Formulation

We consider nonlinear conservation laws of the form

∂tU + ~∇ · ~F = S+Q , (4.1)

where U is the vector of conserved variables, ~F is the flux dyad, and S and Q are numerical
and physical source terms that may arise for certain equation sets and application problems.
While our fourth-order method is developed for general conservation laws, we consider in
this the particular cases of the MHD and Euler equations. For MHD (with GLM approach
to control divergence errors as in [1, 28]) U is given by

U =
[
ρ, ρ~V , ~B, ρe, ψ

]T
, (4.2)

where ρ is the gas density, ~V = (Vx, Vy, Vz) is the velocity, ~B = (Bx, By, Bz) is the magnetic
field, ρe is the total energy and ψ is the generalized Lagrange multiplier employed to
control errors in the divergence of the magnetic field. Here, the total energy is given by
ρe = p/(γ − 1) + ρV 2/2 + B2/2, where V and B are the magnitudes of the velocity and

magnetic field vectors, respectively, and γ is the ratio of specific heats. The flux dyad, ~F,
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is given by

~F =




ρ~V

ρ~V ~V +

(
p+

~B · ~B
2

)
I− ~B ~B

~V ~B − ~B~V + ψ I(
ρe + p+

~B · ~B
2

)
~V − (~V · ~B) ~B

c2h
~B




, (4.3)

where I is the 3×3 identity matrix. The numerical source term employed to control mag-
netic field divergence (refer to Sec. 2.2.2), S, is given by

S =
[
0, ~0, ~0, 0, − c2h

c2p
ψ
]T
. (4.4)

The parameters ch and cp are chosen as in Chapter 3, following [28]. When ~B and ψ are
set to zero, the equations reduce to the Euler equations of gas dynamics.

We formulate the finite-volume method in terms of hexahedral cells in a 3D structured
grid block with indices ijk. The semi-discretization for the temporal evolution of the cell
average Uijk in cell ijk is derived from

dUijk

dt
=

1

Vijk


−
‹

∂Vijk

~F · ~n da +
ˆˆˆ

Vijk

(S+Q) dv


 , (4.5)

where Vijk is the volume of cell Vijk, ~n is the unit outward normal of the cell surface ∂Vijk,
and da and dv are surface and volume elements, respectively. Approximating the surface
and volume integrals numerically we obtain

dUijk

dt
=− 1

Vijk

6∑

f=1

Ng∑

m=1

(
ω̃~Fnum · ~n

)
i,j,k,f,m

+ Sijk +Qijk=Rijk(U), (4.6)

where f is used to indicate the six interfaces of the hexahedral cell, and m indicates the
Gauss quadrature points over each interface. Here, ~Fnum is the numerical flux function,
Sijk and Qijk are cell-averaged source terms (obtained using Gaussian quadrature), and

Rijk denotes the residual vector in cell ijk, which depends on the set of cell averages U.

4.1.2 K-Exact Reconstruction and Stencil Choice

The 2D high-order CENO method of [1, 4, 27, 52, 87, 88] achieves high-order accuracy by
employing K-exact polynomial reconstruction [51] of the solution field in each cell using
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(a) 27 first-ring cells plus 6
extra second-ring cells for a
total of 33 cells

(b) 27 first-ring cells plus 6 ×
5 extra second-ring cells for a
total of 57 cells

81 Cells

X

Y

Z

(c) 27 first-ring cells plus 6 ×
9 extra second-ring cells for a
total of 81 cells

Figure 4.1: Examples of several central reconstruction stencils for a cell ijk ranging in
size from 33 to 81 cells that can be used to determine the 20 polynomial coefficients of
a cubic reconstruction (K = 3). The first-degree neighbours of the cell ijk are shown in
green whereas dark red is used for the second-degree neighbours.

the cell average and the cell averages of neighboring cells in a reconstruction stencil. In our
3D extension, we compute a K-exact polynomial reconstruction for each solution variable
in cell ijk of the form

uKijk( ~X) =

K∑

p1=0

K∑

p2=0

K∑

p3=0

(p1+p2+p3≤K)

(x− x̄ijk)
p1 (y − ȳijk)

p2 (z − z̄ijk)
p3 DK

p1p2p3
, (4.7)

whereK is the degree of the polynomial, ~X = (x, y, z) is the coordinate vector, (x̄ijk, ȳijk, z̄ijk)
are the coordinates of the centroid of cell ijk, and the DK

p1p2p3
are the polynomial coeffi-

cients that are determined such that uKijk(
~X) matches cell averages in the reconstruction

stencil with high accuracy. There are

ND =
(K + 1)(K + 2)(K + 3)

6
(4.8)

polynomial coefficients DK
p1p2p3

, and they can be computed such that a function uexact( ~X)
is represented with accuracy

uKijk(
~X)− uexact( ~X) = O(∆xK+1), (4.9)

while a polynomial with degree K can be reconstructed exactly [51]. We use cubic re-
construction (K = 3) to obtain a fourth-order accurate numerical scheme. In this case,
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ND = 20. We choose the coefficients such that the cell average of the reconstruction exactly
equals the cell average of variable u in cell ijk,

ūijk=
1

Vijk

ˆˆˆ

Vijk

uKijk(
~X) dv, (4.10)

and for all cells γδζ in the reconstruction stencil of cell ijk we also desire that the cell
averages of the reconstruction equal the c ell averages ūγδζ :


 1

Vγδζ

ˆˆˆ

Vγδζ

uKijk(
~X) dv


− ūγδζ = 0. (4.11)

As in [1, 4, 27, 51, 52, 64] we use overdetermined reconstruction stencils, and impose Eqs.
(4.11) in the least-squares sense, while Eq. (4.10) is imposed exactly. Note that the use
of overdetermined stencils is especially attractive in the case of cubed-sphere grids (refer
to Fig. 1.2), where the grid topology is unstructured near root-block edges and smaller
numbers of neighbour cells are available than in regular Cartesian topology. Our approach
naturally allows for reconstruction stencils of reduced size, without reducing the order of
accuracy. The reconstruction stencils we consider in this paper are depicted in Fig. 4.1.

Equation (4.10) can be enforced analytically by replacing uKijk with Eq. (4.7) and ex-
pressing the first coefficient, DK

000, as a function of the other M = ND − 1 polynomial
unknowns as

DK
000 = ūijk −

K∑

p1=0

K∑

p2=0

K∑

p3=0

(1≤p1+p2+p3≤K)

DK
p1p2p3

(xp1yp2zp3)ijk , (4.12)

where the geometric moment (xp1yp2zp3)ijk of powers (p1, p2, p3) is given by

(xp1yp2zp3)ijk =
1

Vijk

ˆˆˆ

Vijk

(x− x̄ijk)
p1 (y − ȳijk)

p2 (z − z̄ijk)
p3 dv . (4.13)

Substituting uKijk from Eq. (4.7) in Eq. (4.11) and using Eq. (4.12) for DK
000 the following

overdetermined linear system for the M unknowns is obtained:

LD−B =




L1

L2
...
LJ
...

LNn




Nn×M




DK
001

DK
002
...

DK
p1p2p3
...

DK
K00




M×1

−




w1(ū1 − ūI)
w2(ū2 − ūI)

...
wJ(ūJ − ūI)

...
wNn(ūNn − ūI)




Nn×1

=




0
0
...
0
...
0




Nn×1

,

(4.14)
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where Nn is the number of neighbours in the reconstruction stencil. Here we have used
the shorthand notation I to refer to cell ijk about which we do the reconstruction, and we
have used indices 1, 2, . . . , J, . . . , Nn to refer to the other cells in the stencil of cell ijk. The
wJ are geometric weights for each control volume J which serve the purpose of improving
the locality of the reconstruction, becoming especially important for stretched meshes with
surface curvature [62]. We use

wJ =
1∣∣∣

∣∣∣∆ ~XIJ

∣∣∣
∣∣∣
θ
, (4.15)

with ∆ ~XIJ = (∆xIJ ,∆yIJ ,∆zIJ) = ~XJ − ~XI and θ = 1, 2. We use θ = 2 except where
noted otherwise. Row LJ of matrix L for a neighbouring cell J is given by

LJ =
(
wJ

(
x̂0y0z1

)
IJ

wJ

(
x̂0y0z2

)
IJ

. . . wJ

(
̂xp1yp2zp3

)
IJ

. . . wJ

(
x̂Ky0z0

)
IJ

)
.

(4.16)

The matrix coefficients
(

̂xp1yp2zp3
)
IJ

can be computed efficiently using only the (xp1yp2zp3)

moments:

(
̂xp1yp2zp3

)
IJ

=


 1

VJ

ˆˆˆ

VJ

(x− xI)
p1 (y − yI)

p2 (z − zI)
p3 dv


− (xp1yp2zp3)I

=

p1∑

ℓ=0

p2∑

q=0

p3∑

m=0

[
Cℓ
p1
Cq
p2
Cm
p3
∆xℓIJ∆y

q
IJ∆z

m
IJ

(
x (p1−ℓ) y (p2−q) z (p3−m)

)
J

]
− (xp1yp2zp3)I ,

(4.17)

where the binomial coefficients Cβ
α can be computed efficiently by recursion as

Cβ
α =

α− β + 1

β
Cβ−1
α , C0

α = 1 . (4.18)

See [52] for the equivalent expressions in 2D.

The solution of the overdetermined linear system Eq. 4.14 can be obtained using QR
factorization or by multiplication with the pseudo-inverse of L [52, 89]. In each time step,
the constrained least-squares reconstruction problem is solved for each cell and for each
primitive variable. Matrix L depends completely on geometry and is the same for all least-
squares problems in a given cell ijk and for all time steps, so its inverse can be precomputed
and reused to provide computational speedup (see [4, 27, 52] for details in the 2D case).

A specific technical difficulty in extending the 2D high-order CENO finite-volume
method to 3D grids composed of general hexahedral cells with nonplanar surfaces, namely,
the high-order accurate computation of the surface and volume integrals that were intro-
duced in this and the previous subsection, is discussed in Section 4.1.4.
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4.1.3 CENO Monotonicity Enforcement

In order to control spurious oscillations at discontinuities, we use the CENO monotonicity
procedure that was introduced by Ivan and Groth [4, 27] for the 2D Euler equations,
and has since been extended to the Navier-Stokes equations [52, 64, 87] and MHD in 2D
(Chapter 3). The CENO procedure switches between an unlimited high-order accurate
reconstruction (piecewise cubic in this paper, leading to a fourth-order accurate scheme)
and a limited piecewise-linear reconstruction (second-order accurate), with the switching
based on the smoothness indicator introduced in [4]. The smoothness indicator is computed
in each cell for every reconstructed variable to determine whether the flow is locally smooth
and well-resolved. For cells containing non-smooth or under-resolved solution content, the
unlimited K-exact reconstruction is switched to limited piecewise linear reconstruction.
It should be emphasized that local switching to lower order is only performed for those
reconstructed variables that are deemed non-smooth or under-resolved. Note that the
CENO scheme is called central because both the high-order and the low-order stencils
are central with respect to the cell. The method is called an ENO method because it is
monotone in the ENO sense, as defined in [53], which allows the presence of small spurious
oscillations that have a magnitude on the order of the truncation error, but it does not
allow O(1) Gibbs-like oscillations at discontinuities. The fixed stencil used during the
CENO reconstruction procedure avoids the complexity of considering multiple non-central
stencil configurations that characterizes traditional ENO schemes.

Full details on the CENO smoothness indicator and switching mechanism are described
in the 2D context in [4, 27, 52, 87, 88] and Chapter 3, and here we briefly present the
generalization of the relevant formulas to 3D. For every cell ijk and primitive solution
variable we compute a variable S, the smoothness indicator, by

S =
α cs

max(1− α, ǫ)
, (4.19)

where α is given by

α = 1−

∑

γ

∑

δ

∑

ζ

(
uKγδζ(

~Xγδζ)− uKijk(
~Xγδζ)

)2

∑

γ

∑

δ

∑

ζ

(
uKγδζ(

~Xγδζ)− ūijk

)2 . (4.20)

and cs is given by

cs =
NSOS −ND

ND − 1
. (4.21)

Here, NSOS indicates the size of the stencil used for reconstruction, ND (number of degrees
of freedom) denotes the number of unknown polynomial coefficients (e.g., 20 for K = 3),

ǫ = 10−8 is introduced to avoid division by zero, and ~Xγδζ is the centroid of cell γδζ in
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the stencil of cell ijk. (The stencil used for computing the smoothness indicator can be
chosen smaller than the reconstruction stencil. In particular, we compute the smoothness
indicator using a stencil with 27 cells.)

The parameter α, with range−∞ < α ≤ 1, measures how accurately centroidal solution
values of neighbouring cells can be reproduced using the reconstruction for cell ijk: in
smooth flow α is close to one, while at cells with a discontinuity or an under-resolved
feature, α tends away from one. The smoothness indicator S has range −cs < S < cs/ǫ:
for smooth variation S is large, and for nonsmooth or under-resolved features S is small.
We then choose a cutoff value, SC , and when S > SC the high-order reconstruction is used,
while the limited low-order reconstruction is used otherwise. The form of the smoothness
indicator is inspired by the definition of multiple-correlation coefficients and least-squares
goodness-of-fit testing; see [52] for a more detailed discussion with further motivation for
the approach. Thus, the robustness of the CENO scheme depends on carefully choosing
a user-defined parameter, namely, the smoothness indicator, SC. As such, it is not a
parameter-free scheme as is often pursued in CFD, but it is a useful alternative to other
high-order numerical techniques.

As discussed in [87], using standard Taylor approximation theory and assuming u is
a continuous and differentiable function and the mesh is Cartesian with uniform spacing
∆x, it is rather straightforward to show that

uKγδζ(
~Xγδζ)− uKijk(

~Xγδζ) ≈ O
(
∆xK+1

)
. (4.22)

Similarly, it can be shown that

uKγδζ(
~Xγδζ)− ūijk ≈ O (∆x) . (4.23)

This implies that
α ≈ 1−O

(
∆x2K

)
, (4.24)

for smooth resolved solution content. In this case, it is evident that α→ 1 and S → ∞ as
∆x→ 0 and this occurs at a rate that is significantly more rapid than the formal order of
accuracy of the scheme. In this way, the asymptotic accuracy of theK-exact reconstruction
is recovered as ∆x→ 0. Conversely, for non-smooth solutions it is expected that

uKγδζ(
~Xγδζ)− uKijk(

~Xγδζ) ≈ O (1) , uKγδζ(
~Xγδζ)− ūijk ≈ O (1) , (4.25)

and therefore α will generally not be close to one.

As explained in [1], it is beneficial for stability to detect nearly-uniform regions by
considering

ξijk =

√√√√√√
1

ND − 1

K∑

p1=0

K∑

p2=0

K∑

p3=0

(1≤p1+p2+p3≤K)

(
DK
p1p2p3

)2
ξV (p1, p2, p3) , (4.26a)
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ξV (p1, p2, p3) =
(
V

2
3
ijk

)p1+p2+p3
, (4.26b)

which measures the variability of solution variable u in cell ijk. (It takes into account
derivatives at the centroid of cell ijk.) When ξijk is smaller than a threshold value (low
variability), high-order reconstruction is always used, and only when ξijk is greater than
the threshold the smoothness indicator is computed and the CENO switching mechanism
is activated. In particular, the smoothness indicator for the solution variable u is evaluated
in cell ijk when

ξijk > ǫA + ǫRuijk, (4.27)

where ǫA and ǫR represent absolute and relative variability thresholds, chosen to be 10−5

for the simulations performed in this paper, except where noted otherwise. Notice that
the ξV term provides an appropriate length scaling for each derivative based on the cell
volume, and it has only K distinct values due to the common variation range for p1, p2 and
p3. Moreover, using only the first order derivatives to measure the variability of solution
variable u is less expensive and has been found to perform equally well in our numerical
studies. This simplification is obtained in Eq. (4.26a) by taking ND=4 and computing the
summation terms with K=1. This simplification is used in our numerical tests.

4.1.4 High-Order Integration for Hexahedral Cells with Nonpla-

nar Cell Faces

A specific technical difficulty in obtaining high-order accuracy on 3D cubed-sphere grids
is to properly handle the nonplanar cell faces of the cubed-sphere grid cells. We use
a trilinear representation for the nonplanar cell faces which can be exploited to obtain
sufficiently accurate volume and surface integrals [90, 91, 92], as we now briefly explain.

Given a hexahedral cell in physical space with vertices defined by position vectors ~X000,
~X100, ~X010, ~X001, ~X110, ~X101, ~X011, ~X111, a trilinear mapping from a reference unit cube
can be defined as

~X(p, q, s) = ~A+ ~Bp+ ~Cq + ~Ds+ ~Epq + ~Fps+ ~Gqs+ ~Hpqs , (4.28)

where, p, q, s are the coordinates in the reference domain, and ~A = ~X000, ~B = ~X100 − ~A,
~C = ~X010 − ~A, ~D = ~X001 − ~A, ~E = ~X110 − ~A − ~B − ~C, ~F = ~X101 − ~A − ~B − ~D,
~G = ~X011 − ~A − ~C − ~D, ~H = ~X111 − ~A − ~B − ~C − ~D − ~E − ~F − ~G (see, e.g., [90] for
details). Note that the vertices of the hexahedral cell in physical space are obtained for

(p, q, s) ∈ {0, 1} × {0, 1} × {0, 1}. Thus, ~X000 = ~X(0, 0, 0), ~X100 = ~X(1, 0, 0), ~X010 =
~X(0, 1, 0), ~X001 = ~X(0, 0, 1), ~X110 = ~X(1, 1, 0), ~X101 = ~X(1, 0, 1), ~X011 = ~X(0, 1, 1),
~X111 = ~X(1, 1, 1), and the six trilinear surfaces are described by fixing one of p, q and s to
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Figure 4.2: A general hexahedral cell in physical space having faces with nonplanar vertices
(left) to which a reference unit cube (right) is mapped by defining a trilinear transforma-

tion ~X(p, q, s). The position vectors for the hexahedral cell vertices, ~X000, ~X100, ~X010, ~X001,
~X110, ~X101, ~X011 and ~X111, are mapped one-to-one to the vertices of the reference cube,
where the Cartesian coordinates in the unit cube, (p, q, s), take binary values. Addition-
ally, the unit normals at four points located on the hexahedral face defined by constant
coordinate p = 0 are shown. Figure from [3].

0 or 1. The tangent vectors to the coordinate lines are defined by

∂ ~X

∂p
≡ ~Xp(q, s) = ~B + ~Eq + ~Fs + ~Hqs , (4.29a)

∂ ~X

∂q
≡ ~Xq(p, s) = ~C + ~Ep+ ~Gs+ ~Hps , (4.29b)

∂ ~X

∂s
≡ ~Xs(p, q) = ~D + ~Fp+ ~Gq + ~Hpq . (4.29c)
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The determinants of the Jacobians for volume and surface integration are given by

detJ(p, q, s) ≡
∣∣∣∣
∂(x, y, z)

∂(p, q, s)

∣∣∣∣ = ~Xp · ( ~Xq × ~Xs) , (4.30a)

detJp(q, s) ≡
∣∣∣
∣∣∣ ~Xq × ~Xs

∣∣∣
∣∣∣
∣∣∣∣
p=ct

, (4.30b)

detJq(p, s) ≡
∣∣∣
∣∣∣ ~Xs × ~Xp

∣∣∣
∣∣∣
∣∣∣∣
q=ct

, (4.30c)

detJs(p, q) ≡
∣∣∣
∣∣∣ ~Xp × ~Xq

∣∣∣
∣∣∣
∣∣∣∣
s=ct

, (4.30d)

and the normal vectors to the coordinate planes by

~np(q, s) ≡−
~Xq × ~Xs

detJp

∣∣∣∣∣
p=ct

, (4.31a)

~nq(p, s) ≡−
~Xs × ~Xp

detJq

∣∣∣∣∣
q=ct

, (4.31b)

~ns(p, q) ≡−
~Xp × ~Xq

detJs

∣∣∣∣∣
s=ct

. (4.31c)

4.1.4.1 Volumetric Integrals

The volume of hexahedral cell I = ijk is defined by

VI=

ˆˆˆ

Vijk

dv, (4.32)

where dv=dx dy dz is the volume element. The cell centroid is

~XI=
1

VI

ˆˆˆ

Vijk

~g( ~X) dv, (4.33)

where the vector-valued function ~g( ~X) = [x, y, z]T, which is the position vector in the
physical space, Thus, the more general procedure of evaluating a volumetric integral of
a continuous smooth function, g( ~X), over a control volume Vijk is discussed here, which

recovers the volume calculation for g( ~X)=1 and, for example, the x-coordinate of the cell

centroid for g( ~X)=x.

To evaluate the volumetric integral,

I=
ˆˆˆ

Vijk

g( ~X) dv, (4.34)
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Figure 4.3: Volumetric (green) and surface (red) Gauss quadrature points used in the
evaluation of volumetric and surface integrals over a hexahedral control volume to achieve
fourth-order accuracy. Note that there are 27 volumetric points, and 4 surface points for
each hexahedral face.

the variables and integration domain are changed to those of the reference unit cube by
making use of the trilinear transformation, ~X= ~X(p, q, s), and its transformation Jacobian
determinant, detJ, [90]. Thus, the volumetric integral, I, is calculated in the canonical
space (p, q, r) as

I =

1
ˆ

0

1
ˆ

0

1
ˆ

0

g( ~X(p, q, s)) detJ dpdq dr (4.35a)

≃
Nv∑

m=1

g
(
~X(pm, qm, rm)

)
(detJ)m ωm =

Nv∑

m=1

g( ~Xm) ω̃m , (4.35b)

where Nv is the number of volumetric Gauss points (see Fig. 4.3). Note that the Gaussian

abscissas ~Xm and weights ω̃m=(detJ)m ωm are needed for initial computation of volumet-
ric integrals of various quantities (see Table 4.1) but need not be stored during the actual
simulation, unless required for integration of time-dependent volumetric source terms. Ta-
ble 4.1 summarizes the different volumetric integrals that need to be computed in the 3D
CENO scheme.
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Symbol Description Definition Section

VI volume of control volume I Eq.(4.32) 4.1.4.1

~XI centroid of control volume I Eq.(4.33) 4.1.4.1

(xp1yp2zp3)I geometric moment of powers (p1, p2, p3) of control
volume I about its own centroid

Eq.(4.13) 4.1.2

ūI mean value of u in control volume I Eq.(4.10) 4.1.2
(
Q
)
I

average source term in control volume I Eq.(4.5) 4.1.1

Table 4.1: Summary of volumetric integrals used in the formulation of the CENO finite-
volume scheme.

4.1.4.2 Surface Integrals

Surface integrals are evaluated in a similar fashion. For example, to evaluate a surface
integral along a surface with constant p-coordinate, Ap, the following expression is used:

Ip =
ˆˆ

Ap

g( ~X) da =

1
ˆ

0

1
ˆ

0

g( ~X(p, q, s)) detJp dq ds (4.36a)

≃
Ng∑

m=1

g
(
~X(pm, qm, rm)

)
(detJp)m ωm =

Ng∑

m=1

g( ~Xm) ω̃m , (4.36b)

and the expressions for integrals along surfaces Aq and As follow by cyclic permutation.

Here, Ng is the number of Gauss points on the surfaces (see Fig. 4.3). The ~Xm and
ω̃m=(detJp)m ωm are stored in our framework to increase the computational performance.
Table 4.2 indicates that surface integrals are used to compute the fluxes through cell faces
in the 3D CENO scheme.

Symbol Description Definition Section
‚

∂VI

~F · ~n da flux through the boundaries of control volume I Eq.(4.5) 4.1.1

Table 4.2: Surface integrals used in the formulation of the CENO finite-volume scheme.
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4.1.5 Rotation Mechanism for Generating Consistent Stencils

Near Degenerate Block Edges

In a multiblock grid with regular Cartesian topology throughout the grid, four grid blocks
are incident to any edge of a grid block. In the cubed-sphere grid of Fig. 1.2, however, the
connectivity of the six root blocks is unstructured (i.e., the topology is non-Cartesian), and
any grid block edge along one of the eight radial lines that go through the eight corners of
the cubed-sphere grid have only three incident grid blocks (as depicted in a 2D projection
in Fig. 4.4c). We call grid block edges along which the number of incident grid blocks is less
than four degenerate edges. In our implementation, blocks along these edges have missing
ghost cells in the opposite corner along the degenerate edge (see Figs. 4.4a and 4.4b) (we
say that the ghost cells in the corner are collapsed or inactive, see also [8]). This means that
the CENO reconstruction stencils we use (Fig. 4.1) need to be adjusted since the topology
is different and not all cells used in the original stencils are available. In this section we
propose a general rotation-based mechanism to automatically derive modified stencils near
degenerate edges. The mechanism is sufficiently general that it can also be used to derive
modified stencils for grid blocks that have three degenerate edges intersecting in a corner.
This occurs, for example, when considering a cubed-sphere grid in which the interior of the
inner sphere is filled by a seventh root block with Cartesian topology, see Fig. 4.5. This
seventh block may, for example, represent the interior of a lunar or planetary object, in
which a magnetic diffusion equation may be solved when modelling interaction with the
solar wind [93]. The grid inside the interior sphere is generated as in [94], which will be
briefly discussed in Appendix B. In this type of grid, grid blocks that contain one of the
eight corners of the interior root block, have three degenerate edges emanating from that
corner, see Figs. 4.5 and 4.6. (In fact, four degenerate block edges emanate from the corner
(including one in the radial direction).) We will apply the proposed rotation mechanism
about each of the three degenerate edges to obtain modified stencils in three-way degenerate
blocks in a systematic way.

The rotation mechanism we propose functions as follows. We explain the mechanism
for the case depicted in Fig. 4.4, where we want to use the 33-cell base reconstruction
stencil of Fig. 4.1 for computing the reconstruction in a ghost cell of a grid block that lies
next to the corner of the block. The grid block is one-way degenerate with the degenerate
edge in the z direction (indicated by the dash-dotted line ‘Edge of Collapsed Corner’ in
Fig. 4.4a). Since the corner ghost cells are missing (light brown/transparent cells), the
stencil needs to be adjusted. Consider, for simplicity, the central xy plane of the stencil.
By folding the two remaining layers of active ghost cells toward each other (as in Fig. 4.4c),
it can be seen that the two green cells now become distance-two neighbors of the pink cell
(where the reconstruction is computed), and can be included in the modified stencil (since
distance-two cells are included in the original stencil). More generally, the non-Cartesian
topology makes the collapsed (inactive) ghost cells unavailable to the stencil, but equivalent
cells (in terms of distance) in the remaining ghost cell layers are available to complete the
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stencil. A general mechanism that works for all stencils of Fig. 4.1 can be formulated in
terms of a rotation mechanism: in Figs. 4.4b and 4.4d, we rotate the collapsed ghost cells
that were part of the original stencil (light brown) by 90 degrees about the degenerate
edge away from the reconstruction cell (pink). A rotated cell may land on a cell that does
not form part of the existing stencil cells, in which case those new cells (the green cells in
Figs. 4.4b and 4.4c) are added to the modified stencil. In case a rotated cell lands on an
existing stencil cell (e.g., the brown cell next to the two green cells), no new cell is added
to the stencil. The same mechanism is applied to the stencil planes above and below the
central plane in Fig. 4.4, resulting in two more green cells added to the modified stencil.
As a result, the 33-cell stencil, which was missing seven collapsed ghost cells, is modified
by including four new rotated collapsed ghost cells, resulting in a final 30-cell stencil. This
rotation mechanism provides modified stencils that are consistent with the original stencils
from Fig. 4.1 in a double sense: first, the number of cells dropped in the degenerate stencil
is minimized by incorporating new cells taking into account the new neighbor configuration
and distances in the non-Cartesian topology; and second, degenerate stencils generated for
ghost cells are identical to the degenerate stencils generated for the corresponding physical
cells in neighbouring blocks (which is required for consistency of flux calculation, which we
rely on for conservation in the implementation of our finite-volume methods).

In terms of implementation, we obtain the coordinates of rotated collapsed ghost cells
by the following matrix rotation mechanism. For simplicity, we formulate the equations
in the 2D setting corresponding to Fig. 4.4d. We choose the origin of the ij coordinate
system for the block in the center of the lower left cell of Fig. 4.4d (which is located
in the collapsed ghost cell region). Since there are four layers of ghost cells for the block
depicted in the figure, the rotation axis (the degenerate block edge) is located at coordinate
~I0 = (3 + 1/2, 3 + 1/2). Let ~I be the coordinate of a collapsed ghost cell that is rotated

towards the active ghost cell layer about the degenerate block edge (e.g., ~I = (2, 3) for

the brown cell in Fig. 4.4d), and let ~IR be the coordinate of its image under the rotation

(~IR = (4, 2) for the green cell). The cell coordinate after rotation, ~IR, is obtained by

~IR = ~I0 + R

(
~I − ~I0

)
, (4.37)

where the rotation matrix for the case of Fig. 4.4d is given by

R =


 0 −1

1 0


 . (4.38)

Note that the 27-cell stencil we use for our second-order scheme is also reduced at
degenerate edges, and we use the same rotation mechanism to determine the degenerate
stencil. On the other hand, the 27-cell stencil cannot be used for cubic reconstruction
(fourth-order scheme), since distance-two neighbours need to be added at least in the
directions of the grid lines to have a well-posed reconstruction problem.
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We emphasize the value of a systematic automatic procedure for determining these
degenerate stencils. While in principle these special stencils could be hand-derived and
hard-coded, this would be a formidable task and would be error-prone due to the multitude
of cases that occur for the different stencils of Fig. 4.1 and for the many different geometrical
configurations of degenerate blocks in 3D space and their ghost cells and physical cells
located at different positions in the block. Hard-coding these special cases would also
lead to unmaneagable additional complexity of the block-parallel 3D computer code. For
this reason, our automatic procedure to select appropriate smaller stencils using a general
rotation-based mechanism is an important ingredient of our approach. Furthermore, the
mechanism is attractive because it is sufficiently flexible to handle three-way degenerate
blocks that occur, for example, when a seventh root block is incorporated into the cubed-
sphere grid to discretize the interior of the inner sphere of the grid.

4.1.6 Summary of Further Implementation Aspects

We use standard explicit second-order and fourth-order Runge-Kutta time integration
methods for the second-order and fourth-order accurate spatial discretizations to be com-
pared in our time-dependent numerical test problems (see [1, 52] and references therein).
For steady-state simulations, we use a five-stage optimally smoothing method regardless
of the solution accuracy. We use an MPI-parallel multiblock method with octree data
structures as described in [8], and boundary conditions are imposed using ghost cells.

4.2 Numerical Results

In grid convergence studies based on an exact solution, the L1, L2, and L∞ norms of the
numerical solution error are computed as follows:

L1 = |E|1 =
1

VT

∑

i,j,k

˚

Vijk

∣∣∣uKijk( ~X)− f( ~X)
∣∣∣ dv , (4.39)

L2 = |E|2 =
√√√√ 1

VT

∑

i,j,k

˚

Vijk

[
uKijk(

~X)− f( ~X)
]2

dv , (4.40)

L∞ = |E|∞ = max
i,j,k

(
1

Vijk

˚

Vijk

∣∣∣uKijk( ~X)− f( ~X)
∣∣∣ dv

)
, (4.41)

where VT is the total volume of the computational domain, f( ~X) is the exact solution

evaluated at point ~X , and the summation is taken over all the grid cells.
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4.2.1 Three-Dimensional CENO Reconstruction

We describe two examples of smooth function reconstructions to demonstrate the accuracy
of the CENO reconstruction that lies at the core of the proposed high-order finite-volume
scheme. These reconstruction tests proceed by first computing highly accurate cell averages
for a given function, then using these cell averages to compute high-order polynomial
reconstructions in the cells, and finally computing the error between the original function
and the polynomial reconstruction by high-accuracy numerical integration over each cell.
The order of convergence of this error as grids are refined measures the order of accuracy
of the CENO reconstruction, which determines the order of accuracy of the numerical
simulation method. The discrete initial data in these cases is generated by accurately
integrating the exact solution over cells to obtain the required cell averages using the
integration procedure outlined in [3] in combination with an adaptive approach [52, 95],
and this adaptive approach is also used to compute the error with high accuracy.

4.2.1.1 Reconstruction of a Smooth Function in a box with Distorted Grid

To assess the accuracy of the 3D high-order CENO procedure on meshes containing hex-
ahedral cells with nonplanar faces, reconstructions of the smooth function f(x, y, z) =
(cos(π(y + 1))− cos(πz))e−π(x+1) are compared to the exact solution on distorted meshes
for a rectangular box domain. The meshes are distorted in such a way that cell faces are
nonplanar. The computational domain is the rectangular box defined by 0 < x < 1 and
−1 < y, z < 1. Fig. 4.7a illustrates how the interior nodal points have been perturbed
randomly, and depicts the high-order solution reconstruction obtained on a structured 3D
mesh with eight blocks of 4× 8× 8 cells and 2,048 total computational cells.

Fig. 4.7b shows grid convergence reconstruction studies with the 4th-order CENO
method on a series of meshes. The initial mesh has one block with 8 × 16 × 16 cells
and 2,048 total cells and the final mesh has 4,096 blocks and N = 8, 388, 608 total com-
putational cells. The expected theoretical asymptotic convergence rate of the 4th-order
accurate method is achieved in all error norms. As the mesh is refined, the slopes of the
L1-, L2-, and L∞-error norms approach -4.087, -4.075 and -3.836, respectively, thereby
providing validation for the proposed trilinear-based CENO reconstruction procedure to
general hexahedral cells with nonplanar faces.

4.2.1.2 Reconstruction of a Spherically Symmetric Function on the Cubed

Sphere

The distribution of errors on cubed-sphere grids is not expected to be uniform at any given
radius, for several reasons: grid lines have kinks at the boundaries of the six cubed-sphere
grid sectors, cells are smaller and more deformed near sector boundaries and corners,
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and the grid topology is unstructured (with varying stencil size) at the sector corners.
It is therefore of interest to investigate the error distribution in reconstructions obtained
by the proposed fourth-order CENO procedure. In the previous two test problems we
have established that fourth-order convergence is obtained overall (including near sector
corners where CENO stencil sizes are reduced), but it is also desirable that the magnitude
of the error for any grid resolution is not excessively larger near sector boundaries and
corners than in other grid regions, which we investigate in this section. We do this for the
function f(R)=R−2.5, which is spherically symmetric, such that any non-uniformity in the
reconstruction error can only be attributed to non-symmetric variations in the grid and to
the differences in the selection of the reconstruction stencil at sector corners of the cubed-
sphere grid. We reconstruct the function f(R)=R−2.5 on a spherical shell with inner and
outer radii Ri=2 and Ro=3.5. The cubed-sphere grid used consists of six 16×16×16 blocks
and the error distribution is plotted in Fig. 4.8 on a sphere of radius R=2.6 in the interior
of the domain to avoid effects from the boundary condition implementation. Note that
local L1 and L2 errors are plotted according to Eqs. (4.39) and (4.40), where the integrals
are taken over one cell and are normalized by the cell volume. We find a fairly symmetric
error distribution, indicating that the least-squares based K-exact reconstruction succeeds
in providing almost uniform accuracy, including in irregular cells near sector boundaries
and corners.

It is interesting to note in Fig. 4.8a that, on the gnomonic cubed-sphere grid we use,
the error is actually the smallest near the sector boundaries (away from the corners), and
this is likely due to the smaller size of the cells there (and the slope discontinuities in
the grid lines are small at those locations). The cells near the centre of the sectors are
somewhat larger and the error is somewhat larger there. Not unexpectedly the error is
largest near the sector corners, where grid lines have significant slope discontinuities and
cells are deformed, and reconstruction stencils have reduced size. Nevertheless, the overall
difference in error is within a factor of about two.

Comparing stencils with 33, 57 and 81 cells, it is interesting to note that the smaller
stencil (33 cells) features a maximum L1 error that is about 50% smaller than for the larger
stencils. This may seem counter-intuitive at first, but can be explained by observing that
we use each stencil with a fourth-order accurate reconstruction, so the accuracy of the
numerical results depends on the accuracy of the polynomial coefficients that are obtained
by the least-squares fitting process. Figure 4.8 indicates that polynomial reconstruction is
more accurate for the smaller-size stencils, which can be expected since they use information
that is more local to the cell for which the reconstruction is computed, whereas the larger
stencils also use more distant information. We conclude that the size-33 stencil is the
best choice when using fourth-order reconstruction, while larger stencils may be used when
polynomials of degree higher than four are used for reconstruction (in which case 33 cells
do not provide enough conditions to constrain the polynomial coefficients).
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4.2.2 Three-Dimensional Flow Problems in a Rectangular Box

4.2.2.1 Magnetostatic MHD Problem

We consider the 3D magnetohydrostatic test case proposed by Warburton and Karniadakis
[42]. In this problem the fluid is static (i.e., has zero velocity) and the magnetic field is
irrotational. The domain of the problem is the rectangular box defined by 0 < x < 1 and
−1 < y, z < 1. The 3D analytical solution is given by

ρ =1 ,

~V =~0 ,

Bx =(cos(π(y + 1))− cos(πz))f(x) ,

By =cos(πz)f(y) + sin(π(y + 1))f(x) ,

Bz = sin(πz)(f(y)− f(x)) ,

p =5(γ − 1) ,

ψ =0 , (4.42)

where f(u) = e−π(u+1) and γ = 5/3. Following [42], this test has been performed as an
initial value problem with the exact solution used to provide the initial condition and
the values for the Dirichlet boundary conditions for all domain boundaries. Numerical
simulations for this problem have been performed with the fourth-order CENO scheme on a
series of Cartesian meshes ranging in size from 4×8×8 = 256 to 128×256×256 = 8, 388, 608
cells, until the solution reached the steady state. We use SC = 500 for the smoothness
indicator cut-off value, and use the local Lax-Friedrichs (LF) flux function.

Fig. 4.9a shows the magnitude of the magnetic field vector obtained using the fourth-
order (K=3) CENO-GLM scheme on a Cartesian mesh with one 8×16×16 block. The L1,
L2, and L∞ norms of the error in the x-component of the magnetic field, Bx, are given in
Fig. 4.9b. Error measurements in the other components of the magnetic field, By and Bz,
behave similarly. The results of the convergence study in Fig. 4.9b clearly show that the
fourth-order theoretical accuracy is achieved by the numerical scheme in all error norms
in the asymptotic limit, thereby demonstrating the high-order accuracy of the proposed
CENO-GLM formulation for ideal MHD simulations.

4.2.2.2 3D Rotated MHD Shu-Osher Problem

To demonstrate the advantages of our fourth-order scheme in regions of rapid smooth
variation near a discontinuity, we consider a 3D rotated version of the shock tube problem
which was proposed by Shu and Osher [25], and extended to MHD for 2D in Chapter 3. As
depicted in Fig. 4.10a, a sinusoidal density perturbation is added downstream of a purely
advecting superfast shock wave. The interaction of the shock wave with the sinusoidal part
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of the density field gives rise to fast oscillations and complex flow features downstream of
the shock. The Shu-Osher shock tube problem provides an excellent testbed to highlight
the benefits of the improved accuracy of high-order numerical schemes, while at the same
time the presence of the shock puts the robustness and stability of the schemes to test.

The unperturbed initial conditions (in terms of vector field components along and
perpendicular to the x1 direction of the unrotated shock tube problem) are given in Chapter
3:

(ρ, v⊥, v‖, vz, B⊥, B‖, Bz, p, ψ) =

{
(1, 0, 0, 0, 1, 1, 0, 1, 0) for x1 < 4,

(3.5, 5.8846, 1.1198, 0, 1, 3.6359, 0, 42.0267, 0) for x1 > 4,

(4.43)
and a sinusoidal density perturbation is added to the downstream part of the density field:

ρl = 1 + 0.2 sin(5x1), ρr = 3.5. (4.44)

The one-dimensional shock tube problem (along the x1-axis) is rotated to the (1, 1, 1)
diagonal direction in the x, y, z coordinate system, resulting in angles of ϕ =45◦ in the xy
plane and β =35.2644◦ in the xz plane. The comparison of the density profiles between
the fourth-order and second-order methods is shown in Fig. 4.10b. We use SC = 180 for
the smoothness indicator cut-off value, use the local Lax-Friedrichs (LF) flux function, and
choose γ = 5/3 and ǫA = ǫR = 2 10−5. It is clear that, for the same number of points, the
fourth-order CENO method captures the small-scale flow features much better than the
second-order method. At the same time, the high-order CENO approach is stable at the
shock and does not produce spurious oscillations.

4.2.3 MHD Iso-Density Vortex on a 7-Block Cubed Sphere

As our final test problem, we discuss the 3D iso-density MHD vortex advection problem
from [39]. This is a smooth time-dependent 3D test problem with an exact solution,
consisting of a magnetized vortex structure in force equilibrium that is advected by a
uniform flow field. This test was performed by Dr. Ivan, but it is included in this thesis
because it demonstrates high-order accuracy with the rotation mechanism at degenerate
block boundaries that I co-developed.

The stationary 3D iso-density MHD vortex flow from [39] is given by

ρ = 1,
~V = (−y, x, 0) κ exp

(
q(1−R2)

)
,

~B = (−y, x, 0) µ exp
(
q(1− R2)

)
,

p = 1 +
1

4q

(
µ2
(
1− 2q(R2 − z2)

)
− κ2ρ

)
exp

(
q(1− R2)

)
,
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where µ = κ = 1/(2π), and q = 1. This solution is translated with background velocity
(1, 1, 2).

Simulations are performed on the 7-block cubed-sphere grid, with an inner radius,
Ri = 1, and an outer radius, Ro = 9. In this problem the 3D vortex is initially located
outside the inner sphere (centred at (-2, -2.5, -3)), and is then translated with velocity
(1,1,2) over the cubed-sphere grid, passing through the inner sphere. The simulation is
performed until t = 3, when the centre of the vortex is located at (1, 0.5, 3). Figure
4.11a shows the flow solution on the cubed-sphere grid at t = 1.57812, when the vortex
passes through a corner of the seventh root block. The initial grid consists of 7 blocks
with 16×16×16 cells, corresponding to a total of 28,672 cells The final grid uses 3,584
blocks of 32×32×32 cells corresponding to a total of 117,440,512 cells on 1,792 CPU
cores. Figure 4.11b demonstrates that this simulation achieves fourth-order accuracy for
a time-dependent flow on the cubed-sphere grid, and as such confirms the validity of the
adopted approaches for achieving high-order accuracy on grids with nonplanar cell surfaces
and using a rotation mechanism to determine degenerate stencils at block boundaries and
corners with unstructured grid topology [3].
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(a) 3D diagram of the stencil. (b) 2D diagram showing the stencil in
the symmetry plane and active and inactive
ghost cells.
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X

Active Ghost
       Cells

Active Ghost
       Cells

(c) Compact representation of the stencil
in the symmetry plane.

(d) Illustration of the index vectors used in
Eq. 4.37 to map cell (2,3) into (4,2).

Figure 4.4: Example of a degenerate stencil with 33 cells for a reconstructed ghost cell
touching a degenerate edge. The cells of the original 33-cell central stencil remaining
active in the final stencil are coloured dark brown. The cells coloured in green are re-
placing the cells identified as “missing” in the original stencil, which are coloured light
brown/transparent. The final stencil has 30 cells, with three cells being “lost” due to the
degeneracy of the grid block edge and the collapsing of the ghost cells in the corner opposite
to the interior cells of the grid block.
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(a) 3D Representation. (b) Cross Section.

Figure 4.5: Nested spherical grid comprising one spherical root block filling the interior
of a cubed-sphere grid with six root blocks.
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Ghost Cells
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Figure 4.6: Grid block with three degenerate edges. The green dots indicate the degenerate
stencil obtained using the proposed rotation mechanism for a base stencil with 81 cells
centred about the reconstruction cell (purple). All ghost cells lying in the non-coloured
blocks are collapsed. The resulting degenerate stencil has 66 cells.
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Figure 4.7: Solution reconstruction obtained using the 4th-order CENO scheme on a mesh
with 8 blocks of 4×8×8 and 2,048 cells (left) and error norms (right).
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(c) L1 error norm for the stencil with 57 cells.
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(d) L1 error norm for the stencil with 81 cells.

Figure 4.8: Error norms of cubic reconstruction at R = 2.6 for f(R) = R−2.5.
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(a) Depiction of the magnetic vector field
and its magnitude. The top-front corner has
been removed for allowing the visualization
of the interior solution.

(b) Convergence of L1-, L2-, and L∞-error
norms.

Figure 4.9: (a) Fourth-order (K=3) CENO-GLM results for the total magnetic field, Bt,
for the magnetohydrostatic test case on a Cartesian grid with 2,048 cells; and (b) L1, L2,
and L∞ norms of the error in the x-component of the magnetic field, Bx, as a function of
mesh density for the 4th-order CENO-GLM scheme.
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(a) Initial density profile as a function of
the rotated coordinate x1 and as a three-
dimensional representation in the rotated
frame
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(b) Final density along the x1 axis.

Figure 4.10: (a) Initial density profile in the MHD Shu-Osher problem, rotated with
ψ = 45◦ in the xy plane and β = 35.2644◦ in the xz plane; and (b) comparison of the
density solution at t = 0.6906. As can be observed from the figure, the fourth-order
method produces results that are much closer to the non-rotated reference result in the
highly oscillatory region, illustrating the benefits of high-order accuracy.
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(a) Flow solution on cubed-sphere grid (selected grid blocks
shown) at simulation time t=1.57812. (Total magnetic field
contours, streamlines, and magnetic field lines coloured by pres-
sure values.)
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Figure 4.11: Iso-density vortex problem solved on a 7-block cubed-sphere grid.

76



Chapter 5

High-Order CENO Finite-Volume

Scheme for Resistive MHD

In this chapter, a high-order accurate finite-volume CENO scheme is proposed for the
resistive MHD equations. The presence of second-order derivative terms creates an extra
numerical challenge to solve the resistive MHD system. To handle these second-order
terms, similar calculation mechanisms as those that were previously applied to the elliptic
fluxes of the Navier-Stokes equations are adopted (see Sec. 3.5 in [27]), as presented in Sec.
5.1.

5.1 Numerical Treatment of Second-Derivative Flux

Terms

As discussed in Sec. 2.1.2.1 and Sec. 2.1.2.2, the resistive MHD system requires also numer-
ical values of fluxes that are elliptical in nature. While hyperbolic fluxes depend only on
flow variables, ~U, the elliptic fluxes depend on their gradients, ∇~U, as well. In particular,
the induction and the energy equations contain terms that include the second derivatives
of the magnetic field.

The resistive MHD equations, as given by Eq. 2.15 - Eq. 2.18, can be written in a
general conservation form with hyperbolic and elliptic fluxes as

∂ ~U

∂t
+∇ · ~F =

∂ ~U

∂t
+∇ · ~FH(~U) +∇ · ~FE(~U,∇~U) = ~S. (5.1)

Through applications of the divergence theorem, we can reformulate the above equation
into a flux integral form (see Eq. 4.5). This necessitates finding the values of flow variables
and their gradients at each Gauss quadrature point (refer to Fig. 4.3 for approximate
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locations of these Gauss quadrature points). A k-exact piecewise polynomial reconstruction
[51] is used to interpolate the values of the flow variables and their gradients at every Gauss
quadrature point, the formulae of which are given as

uki,j,k(~r) =

k∑

p1=0

k∑

p2=0

k∑

p3=0

(p1+p2+p3≤k)

(
x− x̄i,j

)p1(y − ȳi,j
)p2(z − z̄i,j

)p3Dk
p1p2p3

(5.2)

for polynomial reconstruction of any of the flow variables. Eq. 5.2 provides a (k + 1)th-
order approximation to the solution, u. Likewise, the derivatives of a flow variable, u, can
be approximated to the kth order by differentiating Eq. 5.2, which is just a polynomial
function. In the x-, y-, and z-directions, we can express the derivatives as follows

∂uk

∂x

∣∣∣∣
~r

=

k∑

p1=0

k∑

p2=0

k∑

p3=0

(p1+p2+p3≤k)

p1
(
x− x̄i,j

)p1−1(
y − ȳi,j

)p2(
z − z̄i,j

)p3
Dk
p1p2p3

, (5.3)

∂uk

∂y

∣∣∣∣
~r

=
k∑

p1=0

k∑

p2=0

k∑

p3=0

(p1+p2+p3≤k)

p2
(
x− x̄i,j

)p1(y − ȳi,j
)p2−1(

z − z̄i,j
)p3Dk

p1p2p3
, (5.4)

∂uk

∂z

∣∣∣∣
~r

=
k∑

p1=0

k∑

p2=0

k∑

p3=0

(p1+p2+p3≤k)

p3
(
x− x̄i,j

)p1(y − ȳi,j
)p2(z − z̄i,j

)p3−1
Dk
p1p2p3

. (5.5)

The reconstructed gradient can then be calculated as a vector addition of the above deriva-
tives, with each being a vector component of the gradient. So to compute a kth-order ac-
curate reconstruction of the gradient of u at the Gauss quadrature point, ~rGQP , we apply
the following

∇uk(~rGQP ) =
∂uk

∂x

∣∣∣∣
~rGQP

î+
∂uk

∂y

∣∣∣∣
~rGQP

ĵ +
∂uk

∂z

∣∣∣∣
~rGQP

k̂. (5.6)

It is reemphasized that in order to achieve a kth-degree accuracy, the gradient will need
to be reconstructed using kth-order piecewise polynomial, which is (k+1)th-order accurate
for reconstruction of the flow variable.

Similar to Navier-Stokes, resistive MHD fluxes are composed of both hyperbolic and
elliptic fluxes

~F · ~n = ~FH · ~n + ~FE · ~n. (5.7)

Treating hyperbolic and elliptic fluxes within the context of the CENO scheme has been
discussed in detail in [27]. We will only briefly discuss elliptic flux evaluation in this section,
and interested readers are referred to Sec. 3.4 and 3.5 of [27] for more detailed explanations
on CENO (hyperbolic and elliptic) flux evaluations.
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For elliptic flux evaluation, arithmetic means of the left and the right states are taken
for both the flow variables, ~U, and their gradients, ∇~U,

~FE · ~n = ~FE(U,∇U) · ~n, (5.8)

U =
1

2
[Uk

l +Uk
r ], (5.9)

∇U =
1

2
[∇Uk

l +∇Uk
r ]. (5.10)

The left and the right states are calculated using the formulae given by Eq. 5.2 to Eq. 5.5
in the Gauss quadrature points at cell faces (two reconstructed values [left and right] are
possible at every Gauss quadrature point on a cell face since each cell face is shared by two
adjacent cells).

The evaluation of elliptic fluxes in terms of simple arithmetic averages has been im-
plemented successfully within the context of CENO [27], and it is certainly more simple
and straightforward, and holds computational advantage over more complicated elliptic
flux evaluation techniques such as the generalized Riemann problem formulation for diffu-
sion problems [96, 97], or the elliptic flux evaluation as found in the direct discontinuous
Galerkin method for diffusion problems [98].

5.2 Convergence Studies

To demonstrate the capability of the proposed high-order method to resolve resistive MHD
flows, we consider two test cases in 3D, for which analytical solutions are known. Con-
vergence studies are performed by comparing the computed solutions and the analytical
solutions using the formulae given by Eq. 4.39 - Eq. 4.41 to calculate the error norms.
Similar as in Chapter 4, unless specified otherwise, the values of inviscid fluxes are cal-
culated using the local Lax-Friedrichs function. We use the standard second-order and
fourth-order Runge-Kutta time integration techniques.

5.2.1 One-Dimensional Kinematics Diffusion Equation

A one-dimensional resistive MHD test case is considered. Rather than the whole resistive
MHD system, we consider only the induction equation. To further restrict the scope of the
simulation, velocity is set to zero, and the solution is set to vary only in the x-direction,
with the magnetic field having a component only in the y-direction. Ignoring the back
reaction of the Lorentz force on the fluid (which would change the velocity), the induction
equation reduces to

∂By

∂t
− η

∂2By

∂x2
= 0. (5.11)
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This practice of ignoring the fluid and field interaction to focus only on the induction
equation is called ’kinematics of MHD’ [5].

Supplying a sinusoidal initial condition for By (as proposed by problem 4.6 of [99]),

By(x, t = 0) = B0 + sin(
πx

L
) + sin(

2πx

L
), (5.12)

and setting By(0, t) and By(L, t) to B0 as boundary conditions, the time-dependent exact
solution for By can be obtained, which is given by

By(x, t) = B0 + sin(
πx

L
)e−η(

π
L
)2t + sin(

2πx

L
)e−η(

2π
L
)2t. (5.13)

The simulations were run until t = 0.01, with B0, η, and L set to 1. Initial, and final,
solutions are illustrated in Fig. 5.1. Even though this is a one-dimensional problem, the
simulation is run using the 3D code, with only the number of cells in the x-direction varied
for the purpose of convergence studies. The error norms of the exact solution are computed
at the end of the simulation (at t = 0.01), using the same formulae as given by Eq. 4.39
to Eq. 4.41. We consider resolutions of 40 cells to 640 cells. Fig. 5.2 illustrates how the
error norms converge to zero with the expected order of accuracy, with a difference of as
much as five orders of magnitude between second- and fourth-order schemes for the same
grid resolution.
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5.2.2 Manufactured 3D Heat-Kernel Resistive MHD

To assess the accuracy of the proposed scheme in handling fully resistive MHD flow, conver-
gence studies for a 3D manufactured solution on a 7-block cubed-sphere grid are considered.
We construct the solution by prescribing a solution to the magnetic diffusion equation, Eq.
2.17

Bx(y, z, t) =
1

4η(t+ δt)
e

−(y2+z2)
4η(t+δt) , (5.14)

By(x, z, t) =
1

4η(t+ δt)
e

−(x2+z2)
4η(t+δt) , (5.15)

Bz(x, y, t) =
1

4η(t+ δt)
e

−(x2+y2)
4η(t+δt) . (5.16)

Note that each component of the magnetic field depends only on the two orthogonal di-
rections other than the direction of the vector component itself. The decision to choose
such form of the magnetic field is not only to ensure that the magnetic diffusion equation,
Eq. 2.17 is satisfied, but also to make sure that, analytically, the magnetic field remains
divergence-free at all times (∇ · ~B = 0).

Unlike the test case of Sec. 5.2.1, where we kinematically isolate the induction equation
from the rest of the system by ignoring the fluid-field interaction through the Lorentz
force (see Chapter 4 of [5]), we now consider the full resistive MHD system. As exact
solutions, velocity is chosen to be zero at all times, whereas pressure and density are set
to be constant in both time and space. While these exact solutions satisfy continuity (Eq.
2.15), and induction (Eq. 2.17) equations, they do not satisfy the momentum (Eq. 2.16)
and the energy (Eq. 2.18) equations. Similar to Problem 6 in Sec. 3.3.1 of [3], manufactured
source terms, Sm and Se, are added to the momentum and energy equations

Sm = ∇ ·
(
~I(p+

~B · ~B
2

)− ~B ~B

)
, (5.17)

Se =
∂e

∂t
+∇ ·

(
η ~J × ~B

)
. (5.18)

For the ∂e
∂t

term in Se (Eq. 5.18), the exact solution for energy (hence, its time-derivative
as well) can be obtained by making use of the relationship between energy and all other
variables, i. e. the equation of state as given by Eq. 2.6. Likewise, all the other terms
contained within the source terms, Sm and Se, can be analytically obtained. Thus, the
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solution given by

W(x, y, z, t) =




ρ0,

0,

0,

0,

1
4η(t+δt)

e
−(y2+z2)
4η(t+δt) ,

1
4η(t+δt)

e
−(x2+z2)
4η(t+δt) ,

1
4η(t+δt)

e
−(x2+y2)
4η(t+δt) ,

p0




, (5.19)

is an exact solution to the resistive MHD equations with additional manufactured source
terms, given as follows

∂ρ

∂t
+∇ · (ρ~v) = 0, (5.20)

∂(ρ~v)

∂t
+∇ ·

(
ρ~v~v + ~I(p+

~B · ~B
2

)− ~B ~B

)
= Sm, (5.21)

∂ ~B

∂t
+∇ · (~v ~B − ~B~v) +∇× (η ~J) = 0, (5.22)

∂e

∂t
+∇ ·

(
(e+ p+

~B · ~B
2

)~v − (~v · ~B) ~B + η ~J × ~B

)
= Se, (5.23)

with Sm keeping the velocity zero at all times by zeroing the residual of the momentum
equations, and Se making sure that the energy is consistent with the temporal and spatial
evolution of the magnetic field, ~B, and the fact that ρ, p and ~v are constant in both space
and time. The mechanism of adding source terms into an equation system is called the
method of manufactured solution, or MMS [100], and has also been used to verify the
CENO method as applied to the ideal MHD system and cubed-sphere grid [3, 8].

The simulation is performed up to t = 0.01, the solution of which can be seen in Fig.
5.3a and Fig. 5.3b. For the purpose of this simulation, the 7-block cubed-sphere grid is
used as the computational domain. The inner and outer radii are given as Ri = 1.1 and
Ro = 2.2, respectively. Fig. 5.4 gives error norms at t = 0.01 in the x-direction magnetic
field as a function of grid size. It can be seen that the fourth-order method converges
with approximately fourth-order accuracy for all error norms, and produces much higher
accuracy when compared with the second-order method for a given grid resolution. These
results were obtained on a series of grids ranging in size from seven 16×16×16 initial blocks
to 3,584 16×16×16 cubed-sphere blocks, which corresponds to 28, 672 and 14, 680, 064 total
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cells, respectively. As the mesh is refined, the slopes of the L1, L2, and L∞ norms approach,
in the asymptotic limit, -1.871, -1.856, and -1.733 respectively, for the 2nd-order scheme,
and -3.911, -3.885 and -3.792 for the 4th-order (K=4) scheme. These results clearly show
that the expected orders of accuracy have been achieved, demonstrating the validity of the
numerical treatment for elliptic flux evaluation (as discussed in Sec. 5.1). The resistive
MHD terms will be used in the next chapter to simulate space physics flows.
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(a) Contour plot of the total magnetic field, 3D view.
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(b) Contour plot of the total magnetic field, 2D cross-section at z = 0.

Figure 5.3: Total magnetic field solution at t = 0.01 of the 3D manufactured heat kernel
problem.
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Figure 5.4: L1, L2, and L∞ norms of the error in the x-component of the magnetic field,
Bx, as a function of mesh resolution for the 3D manufactured heat kernel problem
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Chapter 6

Preliminary Exploration of Space

Physics Applications

This chapter serves as a culmination of implementations and applications of numerical
tools developed in the previous chapters: finite-volume method and formulation as applied
to resistive MHD, numerical treatment of second-order derivative flux terms, and develop-
ment and utilization of 7-block cubed-sphere mesh to simulate a planetary object and its
surrounding. At present, we have only conducted space physics simulations presented in
this chapter with the second-order scheme. High-order simulations of space physics flows
considered in this chapter are currently work in progress and subject for future work, and
several issues have arised related to the implementation of such:

• High-Order accuracy would require implementation of high-order curved boundaries
in three dimensions, especially at the interface between the interior and the exterior
of the body, which is a significant effort beyond the scope of this thesis;

• We found that Powell source terms are preferable to GLM for the problems consid-
ered, and Powell’s method has not been pursued for high-order accuracy.

We therefore delegate performing these space physics applications with a high-order scheme
as a potential project for future work.

6.1 Parameters of Space Physics Simulations

Several space physics applications are considered. In particular, simulations pertaining to
the conditions around the moon are performed, which assume the following solar wind
parameters

n = 106 particles /m3, (6.1)
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Vsw = 400
km

s
, (6.2)

Bz = −5 nT, (6.3)

T = 140, 000 K, (6.4)

where the velocity is in the x-direction, and the other components of the magnetic field are
zero. Note that these solar wind conditions are the same conditions as used in [93, 101, 102]
for Lunar simulations. These parameters are then normalized, following the procedures
outlined in A.5, which result in the following unit-less initial conditions

ρ̂ = 7.0, (6.5)

v̂ = 9.94464, (6.6)

B̂z = −7.17372, (6.7)

p̂ = 5.0, (6.8)

where v̂ is the velocity in the x-direction. Unless specified otherwise, the simulations
considered in this chapter are performed on the 7-block cubed-sphere grid, with Powell’s
source terms to control divergence error (see Sec. 2.2.1). Ideal MHD equations are solved
for the outer shell (by setting η = 0), or blocks 1 - 6 from Fig. 6.1a, which represent
the flow domain outside the moon, whereas only magnetic diffusion equation is solved in
the inner sphere (to let the magnetic field lines diffuse through the Moon). Thus, these
simulations are effectively a hybrid combination of kinematics of MHD in the inner sphere,
and dynamics of MHD on the outer shells.

6.2 Boundary Conditions

Boundary conditions describing the atmosphere of the inner body are set at the surface
of the inner sphere. For this purpose, the surface of the inner sphere is divided into two
parts: dayside, and nightside (see Fig. 6.1b). Following [93], a number density of 105 m−3

is imposed on the dayside. For the nightside, a number density of 104 m−3 is imposed.
The temperature of the lunar atmosphere is chosen to be 400 K ([93, 103]).

With temperature and density imposed on the surface of the inner sphere, we can apply
the ideal gas law to compute the dayside and nightside values of the pressure. Following
the normalization procedures set out in Sec. A.5, the following boundary conditions for
density and pressure can be obtained

ρ̂dayside = 0.7, (6.9)

ρ̂nightside = 0.07, (6.10)
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p̂dayside = 0.00142857142857, (6.11)

p̂nightside = 0.000142857142857. (6.12)

To imitate particle absorption on the dayside, an extrapolation boundary condition is
applied to velocity for the simulation domain exterior to the planet (the outer shell of the
nested cubed-sphere mesh). More specifically, the plasma velocity near the boundary of
the outer 6 blocks is extrapolated to the ghost cells of those blocks, to mimic the fact that
the plasma is absorbed on the Moon’s surface and does not see an obstacle due to its low
density. On the nightside, reflection boundary conditions are implemented for the velocity
vector by setting the normal component to zero. This is done to replicate the behavior of a
solid impenetrable wall. Note that a similar boundary condition implementation can also
be found in [104], which simulates solar-wind interaction with the Moon without modelling
the Lunar interior, and without considering the presence of an intrinsic magnetic field, as
we will do.

The magnetic field within the inner sphere is advanced in time by solving only the
magnetic diffusion equation (by setting ~v = 0 in Eq. 2.17). On the outer shells, the full
ideal MHD system of equations is considered. In both the dayside and nightside cases,
the values of the magnetic field at the surface of the inner sphere (or the bottom part of
the outer shell) are imposed through communication between adjacent blocks by means
of ghost cells. Effectively, the interior (inner sphere) magnetic field acts as a boundary
condition for the exterior field (outer shell), and vice versa.
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Inner Sphere, only magnetic diffusion
equation is solved here, with η=104Ω-m

Block 1

Block 2

Block 5

Block 6

Block 3

Blocks 1 - 6 form the outer shell,
which are just regular 6-block
cubed-sphere grid
Ideal MHD is solved here

The inner sphere represents
the atmosphere around a
planetary body, or the Moon.

Block 4

X Y

Z

Solar wind travels in
the +x direction

(a) A three-dimensional view of the seven-
block cubed-sphere grid. The inner sphere
here represents the interior of a planetary ob-
ject (with a thin atmosphere on its surface),
a planet, or, in this case, the Moon, where a
resistivity of 104 Ω − m is assumed (as given
in [105]). Only the magnetic diffusion equa-
tion is solved in the inner sphere. The outer
shell discretizes the domain around the object
in question. In this shell, the full ideal MHD
system is solved (setting the resistivity, η, to
zero).

Block 1

Block 2

Block 5

Block 4

Block 6

Block 3

Dayside (n=10 5 m-3)
Solar wind plasma getting
absorbed by the surface on
dayside

Nightside (n=10 4 m-3)
Solar wind plasma going
around the body (obstacle)

Incoming Solar
Wind (+x direction)Inner sphere temperature is set at 400 K

X Y

Z

(b) The blown-up view of the 7-block cubed
sphere mesh for the purpose of the lunar atmo-
sphere simulation. The part of the inner sphere
that faces the solar-wind directly (x < 0) is
the dayside, whereas that opposite of the solar
wind is the nightside. Boundary conditions are
applied accordingly.

Figure 6.1: Three-dimensional views of the 7-block cubed-sphere grid.

6.3 Simulations Without Intrinsic Magnetic Field

6.3.1 Seven-Block Cubed-Sphere Simulation of Lunar Wake

The intrinsic magnetic field of the Moon is very weak in comparison to that of Earth
[106]. In particular, it is almost entirely crustal rather than dipolar in nature (hence,
the term “magnetic anomalies”). In this section, simulations of the interaction between
the solar wind and the lunar atmosphere are considered and performed, and we assume
that the Moon lacks any intrinsic magnetic field. As mentioned in the previous section,
the simulations are performed on a 7-block cubed-sphere grid. Since the Interplanetary
Magnetic Field (IMF) has to diffuse through the Moon, a resistivity of 104 Ω−m is chosen
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inside the inner sphere. Only the magnetic diffusion equation is solved inside the inner
sphere (since solar-wind particles cannot penetrate the body). Ideal MHD is solved in the
outer shell.

For these simulations, we once again use the local Lax-Friedrichs function to calculate
the values of inviscid fluxes, whereas the values of elliptic fluxes are obtained through
arithmetic averaging of the left and the right states at each of the Gauss quadrature points
(see Sec. 5.1). The second-order scheme employed for these simulations is based on k-
exact reconstruction with k = 1 combined with the Venkatakrishnan limiter. Unless noted
otherwise, the simulations are done on a nested-sphere grid with seven root blocks. Each
of the six outer shell root blocks (see Fig. B.1) is further divided into 16 blocks in the radial
direction. There are, in total, 96 blocks forming the outer shell, and 1 block to discretize
the inner sphere. Each of these blocks consists of 64×64×64 cells, which corresponds to
25, 427, 968 total cells. To integrate in time, a five-stage optimally smoothing technique is
used. Fig. 6.2 shows the solution of the lunar wake simulation when the GLM-MHD system
(2.2.2) is employed to control divergence error. Neither bow-shock formation, nor a pile-up
of the magnetic field lines, is observed ahead of the body, which is as expected from the
interaction between the solar wind, and a body without any intrinsic magnetic field [99].
However, contrary to the physical fact that the incoming solar-wind possesses a super-fast
speed (v > cf ), hence, no information should propagate in the negative direction, we can
already see perturbation of the magnetic field lines upstream to the solar wind. We have
briefly discussed the existence of both negative and positive eigenvalues in Sec. 2.2.2.1, and
the solution as shown by Fig. 6.2 confirms the existence of the propagation of information
in both direction (the magnetic field lines upstream of the Moon getting perturbed, even
though the flow is faster than the fast magnetosonic wave).

The same simulation using Powell source terms was conducted, and the results are
presented on Fig. 6.3. From the figure, it can be seen that the solution now looks more
physically valid (qualitatively very similar to Fig. 7.24 from [99]), with magnetic field lines
upstream of the Moon no longer perturbed. We can see the lunar wake, and a near-
vacuum region just downstream of the Moon, which is also called the “evacuated region”
[99], resulting from the solar wind plasma that travels along the flanks of the Moon. It
can also be seen that the magnetic field lines seem to bend inward into the wake, which
is the result of some magnetic flux getting carried into the wake by the solar wind plasma
flow around the flanks [99]). Once again, a bow shock does not form ahead of the Moon,
due to the lack of ionosphere, or lunar intrinsic magnetic field in the simulation. Unlike
with GLM, the magnetic field lines are not perturbed upstream of the solar wind, which
makes sense since the solar wind is faster than the fast magnetosonic wave, and no physical
information should travel upstream of the direction of the solar wind. It is at this point
that we realized that Powell’s scheme to control divergence error would be the better
choice for solar-wind related simulations, since our observation has pointed to the Powell
scheme producing a more physically relevant solution when the flow is super-fast, and all
the physical wave speeds are all positive. Thus, for the rest of this chapter, only the Powell
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Figure 6.2: Solution of the lunar wake simulation. GLM-MHD is used to control diver-
gence error. Perturbation of the magnetic field lines is apparent upstream of the Moon,
despite the fact that the solar wind possesses a super-fast velocity, which should imply no
propagation of information upstream into the solar wind. Here, the yellow lines represent
the streamlines, and the black lines represent the magnetic field lines.

source term scheme (rather than GLM-MHD) is used to correct divergence error.
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(a) Density contours of the lunar wake simulation. Black lines represent magnetic field lines, and
yellow lines represent stream lines.

(b) Pressure contours of the lunar wake simulation.

Figure 6.3: Lunar wake simulation results using Powell source terms, cross section taken
at y = 0.
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6.4 Simulations With Intrinsic Magnetic Field

While the previous simulations show the lack of bow shock formation ahead of the Moon
(see Sec. 6.3), Lunar Prospector data shows disappearance and reappearance of an increase
in the magnetic field at the satellite altitude over regions with significant anomalous mag-
netic field [93, 107, 108, 109]. While it is true that the Moon indeed lacks a significant
intrinsic magnetic field, the data from Lunar Prospector, which also reported an increase
in dynamic pressure to coincide with the disappearance of the increase of the magnetic
field, seems to suggest the presence of small-scale magnetospheres over regions with large
magnetic anomalies.

To model the intrinsic magnetic field of the Moon, a small dipole is buried just under-
neath the surface, given by the following expressions

B0x = 3(x− x0)(z − z0)
Mz

r5
, (6.13)

B0y = 3(y − y0)(z − z0)
Mz

r5
, (6.14)

B0z = (3(z − z0))
2 − r2)

Mz

r5
, (6.15)

where x0, y0, and z0 denote the x, y, and z coordinates of the dipole center. The radius,
r, is calculated from the center of the dipole, and can be written as

r =
√
(x− x0)2 + (y − y0)2 + (z − z0)2. (6.16)

The singularity, which occurs when r = 0, is regularized by making sure that the magnitude
of the x, y, and z coordinates to be used to compute the dipole are not smaller than 10−6

xi =

{
xi, if |xi| > 10−6

sign(xi)10
−6, if |xi| <= 10−6,

(6.17)

where xi can be either x, y or z.

The intrinsic magnetic field is included in the inviscid flux calculations for the induction
equation, but excluded from the elliptic flux calculation. The induction equation can then
be written as

∂ ~B

∂t
+∇ · (~v ~Bt − ~Bt~v) +∇× (η ~J) = 0, (6.18)

where
~Bt = ~B0 + ~B1, (6.19)

and
~J = ∇× ~B1. (6.20)
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Here, ~B0 is the intrinsic field, ~B1 is the perturbation field, and ~Bt is the total field. Note
that the total magnetic field, ~Bt = ~B0 + ~B1, is included in the calculation of the inviscid
flux, whereas only the perturbative magnetic field, ~B1, is included in the calculation of
the elliptic flux. This practice preserves the intrinsic magnetic field, ~B0, throughout the
course of the simulation, rather than letting it diffuse (as it would if the intrinsic magnetic
field too were included as part of the elliptic flux), since the crustal magnetic of the Moon
is embedded in the lunar rocks, and does not diffuse away within the considered short
timescales of our simulations.

To enhance the robustness of the scheme, and to avoid negative pressure error, the
absolute values of the pressure and density are taken when evaluating some of the wave
speeds. This measure usually has worked when solving steady state solutions, and negative
pressure is encountered during transient periods.

6.4.1 Simulation of Earth’s Magnetosphere Solution on Regular

Cubed-Sphere Grid

As a baseline case, we consider in this section a simulation of the interaction between the
solar wind and the Earth’s magnetosphere. For the purpose of this reference simulation,
the same parameters as in [30] are used, and a 6-block cubed-sphere mesh (a hollow sphere,
rather than the 7-block cubed solid nested sphere) is used to conduct the simulation. The
mesh is defined by the inner and outer sphere surfaces with radii Ri = 3.0 and Ro = 60.0 (in
normalized units), with r = 1.0 representing the radius of Earth. Similar grid resolutions
are used as in Sec. 6.3, where each block consists of 64×64×64 cells, and each outer
shell block is divided into sixteen blocks in the radial direction, corresponding to a total
of 96 blocks, or 25, 165, 824 cells. The Lax-Friedrichs flux function is used to calculate the
values of the fluxes. The second-order scheme employed for these simulations is based on
k-exact reconstruction with k = 1 combined with the Venkatakrishnan limiter. Because
this simulation is steady state, a five-stage optimally smoothing time-integration method
is used.

The incoming solar wind is modelled as having a velocity of 400 km/s in the negative
x-direction. Number density is set to 5 /cm3, or 5, 000, 000 /m3. The IMF is chosen to be
8 nT . After normalization, we have the following unit-less values ρ = 1.0, p = 0.6, v = −8.0
and Bz = −1.950311. A dipole, buried at the origin (x0 = 0.0, y0 = 0.0, and z0 = 0.0), and
intrinsic magnetic field, given by Eq. 6.13 to Eq. 6.15 is considered, with Mz = 0.3. These
parameters correspond to the same solar wind test case as considered in Sec. 6 of [30],
where two possible directions for the IMF are considered. Here, only the Southward IMF
case is considered, where the IMF is set to be parallel with the terrestrial dipole moment,
since this test case leads to more significant magnetic reconnection (also known as the
“open magnetosphere” case) compared with the Northward IMF case, which represents
the “closed magnetosphere” case. As boundary conditions, we follow the implementation
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of [30] as well: ρ = 1.0, v = 0.0, B1r = 0.0, and p = 8.0. The other two components of the
perturbative magnetic field are extrapolated from the interior cells. The intrinsic magnetic
field is calculated by applying Eq. 6.13 to Eq. 6.15 at the boundary. These conditions
are applied on the inner part of the 6-block cubed sphere to represent the atmospheric
conditions about 3 times the Earth’s radius away from the origin.

Fig. 6.4 illustrates the steady-state density solution for the case where the IMF is
parallel to the direction of the earth’s dipole moment (in this case, southward). This
compares reasonably well, at least qualitatively, with Fig. 9 and Fig. 10 from [30]. Magnetic
reconnection occurs between the intrinsic magnetic field lines of the planet and those of
the IMF. The usual features of the magnetosphere are observed: a bow shock can be seen
ahead of the body, with the magnetosphere shielding the dayside surface of the planet
from the solar wind particles. A pile-up of magnetic field lines is observed between the
magnetosphere and the bow shock, a region more commonly known as “magnetosheath”.
At the Nightside, an ”x-like” structure can be observed, where the IMF and the intrinsic
magnetic field lines are observed to “disconnect”. Once again, this result is consistent, at
least qualitatively, with that of [30].
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(a) Cross section of the steady state solution at y = 0. We
can here observe magnetic reconnection between the intrin-
sic dipole magnetic field lines of the planet and those of the
IMF. An “x-like” structure is observed nightside, indicat-
ing the location where the magnetic field lines are recon-
necting. Here, the yellow lines represent the streamlines,
and the purple lines represent the magnetic field lines.

(b) View of the Atmosphere around the Northern
hemisphere of the earth (z > 0). Pressure contours
are presented here. The white lines represent the
magnetic field lines. This figure compares favourably
with Fig. 10 of [30].

Figure 6.4: Steady State Solution of Terrestrial magnetic field and solar wind interaction.
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6.4.2 Mini-Magnetosphere Simulation on Seven-Block Cubed

Sphere

Several simulations of the interaction between solar wind and the lunar atmosphere have
already been conducted in Sec. 6.3.1. It is, however, important to emphasize that the
presence of mini magnetosphere has been observed over the region with large magnetic
anomalies [93, 108, 110, 111]. Both numerical [93, 102, 112] and laboratory simulations
[112, 113] have confirmed this observation. Test cases with two different values for the
dipole moment, Mz , are considered. The intrinsic magnetic field of the moon is modelled
as a dipole, given by Eq. 6.13 to Eq. 6.15. Rather than located at the origin, the dipole
is buried about 25◦ below the xz plane, at y = 0. The dipole center is located 0.95 radius
away from the origin, which in turns gives: x0 = −0.86099, y0 = 0.0, and z0 = −0.401487
(in normalized units where r = 1 represents the radius of the Moon).

For the first case, the dipole moment is chosen to beMz = 10−6, parallel to the incoming
solar-wind magnetic field (the IMF). This choice of dipole moment is much smaller than
the one used in Sec. 6.4.1. Also, unlike in Sec. 6.4.1, we use the nested solid sphere mesh
(7-block cubed-sphere grid), generated as explained in Appendix B. We use the exact same
grid resolutions as in Sec. 6.3.1, which gives a total of 97 blocks and 25, 427, 968 total cells.
Also similar as in the previous sections, a five-stage optimally smoothing time-integration
technique is used, due to the steady-state nature of the mini-magnetosphere simulations.

A small-scale magnetosphere is clearly apparent, as shown by Fig. 6.5, producing a
small bow shock, denoted by an increase in density just before the flow gets deflected.
Density then decreases rapidly after the shock, effectively shielding the surface with high
concentration of magnetic anomalies from the solar wind particles. To further analyze the
so-called mini magnetosphere, a cut is taken across the bow-shock in the radial direction
(see Fig. 6.6a). Because of the way the outer shells of the nested sphere are constructed,
this cut (denoted by the straight line shown on Fig. 6.6a), is aligned with the grid, allowing
for plotting several cell relevant quantities without interpolation. See Fig. 6.6b, Fig. 6.6c,
and Fig. 6.6d for plots of density, pressure and total magnetic field (respectively) against
the radial distance from the origin. The mini-magnetosphere shares a lot of similarities
with the usual magnetosphere as observed in Sec. 6.4.1, albeit at a much smaller scale. The
shielding of the lunar surface from the solar-wind particles denotes the area where the mini-
magnetosphere is dominant. The boundary of this shielding denotes the magnetopause.
Between the magnetopause and the bow shock, a very narrow magnetosheath region can
be observed, where the density increases, and then reduces to the level observed inside the
magnetosphere (as seen from Fig. 6.6b, the magnetosheath region spreads from roughly
r = 1.1 to r = 1.35).

Keep in mind that the radial distance of 1.0 corresponds to the location of the surface
of the Moon. From Fig. 6.6d, it can be gathered that the total magnetic field around the
surface is around 1, 300 in normalized units, or about 900 nT , whereas at about 100 km of
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altitude, the magnitude is about 325 in normalized units, or 225 nT . It is acknowledged that
the fall-off of the dipole is much smaller than what was observed from Lunar Prospector,
where a magnetic anomaly of 290 nT was observed on the lunar surface, which falls off to
around 2 nT at 100 km altitude.

Several other cases have been attempted to increase the fall-off of the intrinsic magnetic
field to better reflect the values provided by the Lunar Prospector. But unfortunately, the
smallest value for which we have been able to reproduce the mini-magnetosphere was when
we set the dipole moment to be Mz = 5(10−7). When a value a little smaller than the
aforementioned is chosen (Mz = 10−7), the mini-magnetosphere fails to appear, and the
solution produces only the wake without any small-scale bow-shock forming ahead of the
flow. For the case of Mz = 5(10−7), a cut in the radial direction was taken, and we can
see from Fig. 6.7 that the size of the magnetosheath region slightly reduces (the first case
has this region from r = 1.1 to r = 1.35, whereas this region reduces so that it goes from
r = 1.1 to around r = 1.25), implying the expected direct correlation between the size of
the magnetosheath and that of the dipole moment. From Fig. 6.6d, it can be gathered that
the total magnetic field around the surface is around 640 in normalized units, or about
440 nT , whereas at about 100 km of altitude, the magnitude is about 160 in normalized
units, or 110 nT .

Clearly, the fall-off of a factor of four within 100 km is not nearly as fast as what
was observed from experiments [108], and this issue too was reported in [93] and [102],
where choosing too small of a dipole moment would also lead to the disappearance of the
mini-magnetosphere. The authors of [102] then attempted to mitigate the over-estimation
for the magnetic field 100 km above the surface by using multiple dipoles to model the
magnetic anomalies, even though they ended up concluding that the magnetic field at
100 km required to form a mini-magnetosphere is still larger than what was observed by
the Lunar Prospector. It is then important to keep in mind that these dipolar magnetic
field models are but low-order approximations of the actual magnetic anomalies, and more
realistic models (using spherical harmonics [114], the crustal magnetic field data from
Lunar Prospector [115] or a multiple dipole model [102]) for the magnetic anomalies would
then be necessary. Such study is beyond the scope of this work, and may be considered
for future work (see Sec. 7.1.2).
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Figure 6.5: Simulation of mini-magnetosphere of the lunar atmosphere. A small dipole
moment is buried, which is angled 25◦ from the x-axis in the xz plane. The dipole center is
located at (in normalized units) x = −0.86099, y = 0, and z = −0.401487, with the radius
of the Moon being the reference length for normalization. Here, yellow lines represent the
magnetic field lines and black lines represent the streamlines.
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(a) Direction of the cut across the mini-
magnetosphere. Note that the cut is in the ra-
dial direction, which is aligned with the grid.
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(b) Density, ρ, as a function of radial distance
from the centre of the sphere along the cut as
described in (a). Every dot corresponds to a
cell centre value.
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(c) Pressure, p, as a function of radial dis-
tance from the centre of the sphere along the
cut described in (a).
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(d) Total magnetic field, Bt, as a function of
radial distance from the centre of the sphere
along the cut described in (a).

Figure 6.6: Radial Cuts across the mini-magnetosphere. A dipole moment of 10−6 is
chosen to define the intrinsic magnetic field. In normalized units, the dipole center is
located at x = −0.86099, y = 0, and z = −0.401487.
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(a) Direction of the cut across the mini-
magnetosphere. Note that the cut is in the ra-
dial direction, which is aligned with the grid.
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(b) Density, ρ, as a function of radial distance
from the centre of the sphere along the cut
described in (a).
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cut described in (a).
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(d) Total magnetic field, Bt, as a function of
radial distance from the centre of the sphere
along the cut described in (a).

Figure 6.7: Radial cuts across the mini-magnetosphere. A dipole moment of 5(10−7) is
chosen to define the intrinsic magnetic field. On normalized unit, the dipole centre is
located at x = −0.86099, y = 0, and z = −0.401487.
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Chapter 7

Future Work and Concluding

Remarks

High-order finite-volume schemes for MHD systems have been proposed, and results pre-
sented and analyzed. We have considered the ideal MHD system in both two and three
dimensions (Chapter 3 and Chapter 4 respectively), resistive MHD (Chapter 5), and also a
multiphysics context where ideal MHD is solved on some part of the domain, and magnetic
diffusion on the rest (Chapter 6).

This study has found that, in many situations, simulations performed with high-order
schemes produce much better solution when compared to the results of the second-order
schemes for the same cost. This is apparent in both two dimensions and three dimensions.
In particular, where analytical solutions are available, convergence studies have been per-
formed to demonstrate the effectiveness of high-order methods in resolving the flows. As
evident from the results of Sec. 3.2.1.1, Sec. 3.2.1.2, Sec. 3.2.1.3, Sec. 4.2.2, Sec. 5.2.1,
and Sec. 5.2.2, fourth-order accuracy is observed as expected from the numerical method,
and a very significant improvement over second-order methods is demonstrated. We also
observed significant improvements on problems with shocks, such as the Shu-Osher test
case, in both 2D and 3D, on rotated coordinate systems (Sec. 3.2.2.2 and Sec. 4.2.2.2 re-
spectively), despite the method only being formally first-order accurate. Even with the
presence of the shock, the Shu-Osher flow was resolved better by the high-order scheme,
capturing the small-scale features more accurately than second-order scheme. Likewise,
we see how convergence study of the expanding tube problem, Sec. 3.2.1.4, shows second-
order convergence when using a high-order method, which is to be expected due to the
presence of a weak discontinuity in the solution. Nevertheless, the errors are still lower
than when using a second-order scheme. We also see that fourth-order of accuracy is
achieved for problems involving resistive MHD, proving the capability of the schemes to
handle second-order derivative terms with high spatial accuracy.

Lastly, several space physics applications have been considered. We first found that
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using the Powell source term technique to control divergence error leads to better results
for the Moon-solar wind interaction we considered. This outcome could have been foreseen
judging from the analysis of the eigenvalues of the GLM-MHD system in Sec. 2.2.2.1, where
it is noted that eigenvalues of both signs will always be present in the flow, regardless of
the actual plasma velocities and wave speeds. The fact that solar-wind flows are usually
super-fast (faster than the fastest wave-speed in the system) means that information should
only propagate in the same direction as the flow, and all the physical eigenvalues are pos-
itive. However, it is clear from Sec. 6.3.1 that this creates a problem in the lunar-wake
simulations with GLM-MHD, with perturbed magnetic field lines upstream of the body.
This issue is not observed when the Powell technique is used, which produces physically
correct solutions, leading to the decision to employ the Powell divergence control technique
for all the other space-physics related applications. We also perform simulations which in-
volve intrinsic magnetic field, which is used to approximately represent the Lunar magnetic
anomalies. These simulations show the appearance of a mini-magnetosphere around the
area with significant magnetic anomalies, which is consistent with the observational finding
of the Lunar Prospector [108]. We also find that the total magnetic field strength does
not fall off in magnitude as fast as what was observed from the Lunar Prospector data.
Further study of this issue is beyond the scope of this thesis, and will be discussed further
as a potential future work in Sec. 7.1.2.

The space physics applications represent the culmination of the development of nu-
merical tools for magnetohydrodynamic systems. These space physics simulations made
use of the hybrid system of ideal MHD and the magnetic diffusion equations, a nested
solid cubed-sphere mesh, and also the rotation mechanisms developed to deal with stencil
generation near degenerate edges. We have yet to perform these simulations in high-order,
however, and implementation of this will be subject of future work.

7.1 Potential Future Work

“Dissertations are not finished; they are abandoned.”

– Dr. Fred Brooks

7.1.1 High-Order Discretization of the Powell’s Source Terms

Chapter 6 has preliminarily presented potential space physics applications. While we have
been able to make use of the majority of the tools developed for the purpose of this work, all
simulations conducted in Chapter 6 are performed using a second-order spatially accurate
method. A task for the future is then to re-run these simulations with high-order, to see
if any significant improvements can be achieved. While it is true that these space physics
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simulations contain shocks or other forms of discontinuities, it may still be worthwhile to
use high-order methods since significant improvements have been observed on, for example,
some test cases with discontinuities such as the Shu-Osher problems, (Sec. 3.2.2.2 and Sec.
4.2.2.2), and the expanding tube problem (Sec. 3.2.1.4).

This brings us to the discussion of the Powell source terms (Sec. 2.2.1). While it is

true that adding source terms that are proportional to the ∇ · ~B breaks conservation,
the problem with having both signs of eigenvalues at all times in GLM-MHD (which is
discussed in Sec. 2.2.2.1) is a concern for simulations of super-fast flows, which physically
should only have positive eigenvalues. These issues manifest themselves when we tried
using GLM-MHD to resolve the lunar wake test case (Sec. 6.3.1), where perturbations
of the magnetic field lines were observed even upstream to the solar-wind. Using Powell
source terms, we can see how the magnetic field lines are straight on the dayside, and
get bent only due to the diffusion of the inner sphere on the nightside. Fig. 6.2 and Fig.
6.3 clearly demonstrate this difference. It is therefore very important to ensure that the
Powell source terms be computed with high-order accuracy, when high-order methods are
requested. To discretize the source terms in high-order, the product rule is used before the
divergence theorem can be used. The integral involves a multiplication of a scalar, φ, and
the divergence of the magnetic field, ∇ · ~B

ˆ

φ∇ · ~B dv =

˛

φ ~B · n̂ dS −
ˆ

∇φ · ~B dv. (7.1)

Within the context of the Powell source terms, φ takes on the values of the components of ~B
for the momentum equation (Eq. 2.30), the components of ~v for the induction equation (Eq.

2.31), and ~v · ~B for the energy equation (Eq. 2.32). For first- and second-order accuracy,
there is no issue since the integral of the left hand side of Eq. 7.1 can be approximated
accurately enough (second-order accurate) using the midpoint rule for both φ and ∇ · ~B

ˆ

φ∇ · ~B dv ≈ (φ)midpoint(∇ · ~B)midpoint∆V . (7.2)

However, for high-order schemes, to achieve higher than second-order accuracy, the full
form of Eq. 7.1 may need to be approximated accurately enough to the desired order of
accuracy.

7.1.2 Better Numerical Models for Lunar Magnetic Anomalies

Another possibility for future research projects would be to consider different numerical
models to approximate lunar magnetic anomalies. As reported in Sec. 6.4.2, the total mag-
netic field fall-off obtained at 100 km altitude is not nearly as fast as observed from Lunar
Prospector data [108]. Several potential ways to deal with this issue may be considered.
Harnett and Winglee [102] considered using multiple dipoles to model the lunar magnetic
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anomalies. They found that using multiple dipoles to model the anomalies resulted in
the reduction of the magnitude of the magnetic field at 100 km altitude, though the fall-
off is still not as rapid as observed by the Lunar Prospector. Another way would be to
consider a global spherical harmonics model to more realistically approximate the crustal
magnetic field of the Moon [114], or to take advantage of experimental data provided by
Lunar Prospector as already done by [115]. These projects would make good candidates
for future work.

7.1.3 Non-Ideal MHD Simulations of Solar-Wind Interaction with

the Atmosphere of Mars or the Moon on Nested Cubed-

Sphere Grid

Similar as in the case of the Moon, Mars too lacks a significant magnetosphere, and most
of Mars’ intrinsic magnetic is crustal in nature [116], resembling the magnetic anomalies of
the Moon. Several observational measurements resulting from the various instruments and
stages of the MGS (Mars Global Surveyor) program [117, 118, 119, 120] are available, and
have given rise to several spherical harmonic numerical models [121, 122] to approximate
the Martian crustal magnetic anomalies. Numerical non-ideal MHD simulations have been
conducted in three-dimensions, where a 90th-degree spherical harmonic model [122] to
model the Martian crustal magnetic anomalies was used. To more accurately approximate
the behaviour of plasmas, kinetic effects such as Hall and anisotropic pressure gradient
terms may be included. It would be interesting to try to reproduce this work as a proof
of concept of our code, our schemes and the other numerical tools we have developed,
and also as a stepping stone towards simulating more physical and realistic space physics
applications.
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Appendix A

Resistive MHD Normalization

A.1 Dimensional Resistive MHD Equations

The dimensional resistive MHD equations are given by

∂ρ

∂t
+∇ · (ρ~v) = 0, (A.1)

∂(ρ~v)

∂t
+∇ ·

(
ρ~v~v + ~I(p+

~B · ~B
2µ0

)−
~B ~B

µ0

)
= 0, (A.2)

∂ ~B

∂t
+∇ · (~v ~B − ~B~v) +∇× (η ~J) = 0, (A.3)

∂e

∂t
+∇ ·

(
(e+ p+

~B · ~B
2µ0

)~v − (~v · ~B) ~B

µ0
+
η ~J × ~B

µ0

)
= 0, (A.4)

where the current, ~J , is obtained by applying Ampere’s circuital law (assuming a non-
relativistic situation)

~J =
∇× ~B

µ0

. (A.5)

The vacuum permeability constant, µ0, assumes the value 4π(10−7)T m
A

as written in SI
units.

Pressure, p, and total energy, e, are related through the equation of state for a perfect
gas [28]

e =
p

γ − 1
− ρ~u2

2
−

~B2

2µ0

, (A.6)

where γ is the ratio of specific heats, and is dimensionless, which means that both e and
p are of the same units.
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A.2 Normalization Parameters

To non-dimensionalize Eq. A.1 to Eq. A.4, we first need to non-dimensionalize all quantities
that have units. Let us start with the four primitive quantities of the MHD equations: ρ,
~v, p, and ~B.

To accomplish that, we pick (or derive from physical values) the following reference
quantities

• ρ0: reference density,

• C0: reference speed of sound,

• l0: characteristic length,

from which we can derive other normalizing quantities as follows

p0 = ρ0C
2
0 , (A.7)

B0 =
√
ρ0C2

0µ0, (A.8)

which are then used to normalize the primitive variables

ρ̂ =
ρ

ρ0
, (A.9)

~̂v =
~v

C0
, (A.10)

p̂ =
p

p0
, (A.11)

~̂B =
~B

B0

. (A.12)

These normalization techniques are consistent with the procedure outlined in [6].

Alternatively, we can choose C0 to be the reference speed of sound by determining the
reference temperature T0, and applying the ideal gas law

C0 =

√
γp0
ρ0

=

√
γρ0R0T0

ρ0
=
√
γR0T0, (A.13)

with R0 being the specific gas constant, and T0 the reference temperature. From first
principles, we have the following expression to determine R0

R0 =
kB
fmp

, (A.14)
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where kB is the Boltzmann constant (1.3806488(10−23) J
K
), mp is the molecular mass of a

proton, and f is the mass fraction, used to account for the presence of electrons and other
species in the gas mixture. The value of f for gas mixture is chosen to either be 0.6, or
0.5 (the latter was the same as in [123]). A proton’s mass, mp is 1.67262(10−27)kg, so R0

works out to be either 16, 508.816 J
K−kg

for f = 0.5, or 13, 757.347 J
K−kg

for f = 0.6. If we

assume that there are only ions present, then f = 1, and R0 = 8, 254.399 J
K−kg

.

Thus, to complete normalization of the primitive variables, as mentioned, we pick ρ0,
C0, and l0. And also as mentioned, in some cases, picking the reference temperature, T0,
can be more convenient. After these three quantities are chosen, the normalization factors
for pressure, which is p0, and magnetic field, which is B0, can be conveniently derived.

We use l0 to non-dimensionalize the ∇ operator as follows

∇̂ = l0∇. (A.15)

And to normalize time, we define t0, which is related to the characteristic length, l0,
and the reference speed, C0, through the following relationship

t0 =
l0
C0
. (A.16)

The normalized time quantity, t̂, can then be defined as

t̂ =
t

t0
. (A.17)

Also, to non-dimensionalize current, we need to define ~̂J , such that

~̂J = ∇̂ × ~̂B, (A.18)

and this requires that we normalize ~J by some J0, which we now derive. We rewrite Eq.
A.5 in terms of non-dimensional variables and operators as follows

~J =

√
µ0C2

0ρ0
l0µ0

∇̂ × ~̂B, (A.19)

which suggests we need to take

J0 =

√
µ0C2

0ρ0
l0µ0

, (A.20)

to arrive at Eq. A.18, where

~̂J =
~J

J0
. (A.21)
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Lastly, the resistivity, η too, needs to be non-dimensionalized. Performing dimensional
analysis, the appropriate normalizing quantity for η can be defined as

η0 = C0l0µ0, (A.22)

where we can define non-dimensional resistivity, η̂, as

η̂ =
η

η0
. (A.23)

A.3 Normalization of the Resistive MHD Equations

A.3.1 Normalization of the Continuity Equation

To normalize the continuity equation, we first rewrite all of the dimensional quantities in
terms of the normalized quantities,

ρ0
t0

∂ρ̂

∂t̂
+
ρC0

l0
∇̂ · (ρ̂~̂v) = 0. (A.24)

Here, we can write l0
C0

= t0, to obtain

ρ0
t0

(
∂ρ̂

∂t̂
+ ∇̂ · (ρ̂~̂v)

)
= 0, (A.25)

which, after further simplification, leads to the normalized continuity equation as follows

∂ρ̂

∂t̂
+ ∇̂ · (ρ̂~̂v) = 0, (A.26)

which has exactly the same form as the dimensional continuity equation (Eq. A.1).

A.3.2 Normalization of the Momentum Equation

Beginning with Eq. A.2, we can rewrite dimensional quantities in terms of their normalized
quantities,

ρ0C0

t0

∂(ρ̂~̂v)

∂t̂
+
ρ0C

2
0

l0
∇̂ ·
(
ρ̂~v~v + ~I(p̂+

~̂B · ~̂B
2

)−
~̂B ~̂B

2

)
= 0, (A.27)

which, after setting l0
C0

= t0, can be simplified further into

ρ0C0

t0

[
∂(ρ̂~̂v)

∂t̂
+ ∇̂ ·

(
ρ̂~v~v + ~I(p̂+

~̂B · ~̂B
2

)−
~̂B ~̂B

2

)]
= 0. (A.28)
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Finally, we arrive at the following normalized momentum equation for resistive MHD

∂(ρ̂~̂v)

∂t̂
+ ∇̂ ·

(
ρ̂~v~v + ~I(p̂+

~̂B · ~̂B
2

)−
~̂B ~̂B

2

)
= 0. (A.29)

Note that the normalized momentum equation for resistive MHD is exactly the same as
that of the ideal MHD (Eq. 2.2), as there is not any dependence on the resistive term.

A.3.3 Normalization of the Energy Equation

To non-dimensionalize the energy equation, we begin with the dimensional form of the
equation, Eq. A.4. To normalize the total energy, e, we use the same quantity as we would
for p, which is p0 = ρ0C

2
0 .

By substituting the non-dimensional quantities, and simplifying algebraically, we derive
the following expressions

ρ0C
2
0

t0

(
∂ê

∂t̂
+ ∇̂ ·

(
(ê+ p̂ +

~̂B · ~̂B
2

)~̂v − (~̂v · ~̂B) ~̂B + η̂ ~̂J × ~̂B

))
= 0, (A.30)

which, after further simplification, leads to the normalized energy equation as follows

∂ê

∂t̂
+ ∇̂ ·

(
(ê+ p̂+

~̂B · ~̂B
2

)~̂v − (~̂v · ~̂B) ~̂B + η̂ ~̂J × ~̂B

)
= 0. (A.31)

Note the similarity between the two forms (dimensional and non-dimensional), and the
fact that Eq. A.31 no longer contains any dependence on µ0.

A.3.4 Normalization of the Magnetic Field Equation

We start from Eq. A.3, which is just the induction equation for resistive MHD. Substitut-
ing non-dimensional quantities for the corresponding dimensional quantities gives us the
following expression

√
ρ0C2

0µ0

t0

∂ ~̂B

∂t̂
+

1

l0
C0

√
ρ0C

2
0µ0∇̂ · (~̂v ~̂B − ~̂B~̂v) +

1

l0
C0l0µ0

√
ρ0C2

0µ0

l0µ0
∇̂ × (η̂ ~̂J) = 0. (A.32)

After some algebraic manipulations, we can show that
√
ρ0C

2
0µ0

t0
=

1

l0
C0

√
ρ0C

2
0µ0 =

1

l0
C0l0µ0

√
ρ0C

2
0µ0

l0µ0
, (A.33)
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which allows for significant simplification of the non-dimensionalized induction equation
equation

∂ ~̂B

∂t̂
+ ∇̂ · (~̂v ~̂B − ~̂B~̂v) + ∇̂ × (η̂ ~̂J) = 0. (A.34)

Note that Eq. A.34 follows the exact same form as the non-dimensionalized version,
Eq. A.3, except that we now no longer need to deal with µ0 to convert the magnetic field

to current. The normalized current, ~̂J , is exactly just the curl of the normalized magnetic

field, ~̂B.

A.4 Non-Dimensional Resistive MHD Equations

We can summarize the non-dimensional resistive MHD equations as follows

∂ρ̂

∂t̂
+ ∇̂ · (ρ̂~̂v) = 0, (A.35)

∂(ρ̂~̂v)

∂t̂
+ ∇̂ ·

(
ρ̂~̂v~̂v + ~I(p̂+

~̂B · ~̂B
2

)− ~̂B ~̂B

)
= 0, (A.36)

∂ ~̂B

∂t̂
+ ∇̂ · (~̂v ~̂B − ~̂B~̂v) + ∇̂ × (η̂ ~̂J) = 0, (A.37)

∂ê

∂t̂
+ ∇̂ ·

(
(ê+ p̂+

~̂B · ~̂B
2

)~̂v − (~̂v · ~̂B) ~̂B + η̂ ~̂J × ~̂B

)
= 0, (A.38)

and the non-dimensional Ampere’s circuital law to make the connection between the nor-

malized current, ~̂J , and the non-dimensional magnetic field, ~̂B, is given by

~̂J = ∇̂ × ~̂B. (A.39)

These equations look very similar to their dimensional counterparts shown in Sec. A.1,
except for the obvious absences of µ0.

A.5 Normalization of Solar Wind Parameters

Solar wind parameters for simulations done in this paper are given by Eq. 6.1 to Eq. 6.4.
Keep in mind that we will need to convert these values to ones that are normalized (ρ̂, ~̂v,

p̂, ~̂B), following the normalization mechanism given by Eq. A.9 to Eq. A.12.
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To complete normalization, we choose reference number density, n0, the reference tem-
perature, T0, and the reference length, l0. Because the solar wind simulations are conducted
within the context of the Moon, we choose the following reference parameters

n0 = 142, 857.14286 /m3, (A.40)

T0 = 140, 000 K, (A.41)

l0 = 1, 737.10 km, (A.42)

where the reference density, ρ0, can be obtained by the following relation

ρ0 = n0 mp. (A.43)

Here, mp is the mass of a proton, which is 1.67262(10−27)kg.

Using the above reference values, and following Eq. A.7 - Eq. A.13, we obtain with the
following normalized (unitless) solar wind parameters

ρ̂ = 7.0, (A.44)

~̂v = 9.94464, (A.45)

B̂z = 7.17372, (A.46)

p̂ = 5.0. (A.47)

And as mentioned in Sec. 6, the resistivity of the moon is chosen to be η = 10, 000 Ω m.
Using Eq. A.23 to normalize η, we have η̂ = 0.11389.

As for boundary conditions, as mentioned in Sec. 6.2, the dayside part of the Lunar
surface is set to a density of 105 /m3 and the nightside to 104 /m3. In normalized terms,
they work out to be

ρ̂dayside = 0.7, (A.48)

ρ̂nightside = 0.07. (A.49)

Likewise, given that the surface temperature is set at 400 K, the normalized dayside
and nightside pressures are given as

p̂dayside = 0.00142857142857, (A.50)

p̂nightside = 0.000142857142857. (A.51)
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Appendix B

Generation of the Inner Cubed

Sphere

The regular cubed-sphere mesh consists of six outer shell blocks, each of which can be
obtained through mapping from a Cartesian computational mesh. The outer shell is a
collection of concentric spheres with radii ranging from r = Ri to r = Ro, each value of
grid index k corresponding to a discretized concentrically spherical layer. We can see how
this arrangement would, by construction, leave the mesh with a core that is hollow (unless
we set Ri = 0, which would lead to a very skewed grid). Fig. B.1a illustrates how a cubed-
sphere sector forms a collection of concentric spheres, and six of these sectors would then
form the complete cubed-sphere mesh (see Fig. 1.2), which represents a hollow sphere.

As mentioned in Sec. 4.1.5, a nested sphere configuration may be required in some cases
where it is required to model the diffusion of the magnetic field as it passes through a lunar
or a planetary object. In fact, several of such problems have been considered in Chapter
6, where simulations of conditions around the lunar atmosphere have been conducted. As
the regular cubed-sphere mesh produces only a hollow sphere, then to also volumetrically
fill the middle, a mechanism is considered, which gradually transforms radial spherical
projection for the outer sphere to a more Cartesian-like projection as it gets closer to the
center (see Fig. B.2). This technique has been adapted from the ball generation radial
projection method from Sec. 5.2 of [94], which is itself an extension of the radial projection
mapping scheme (Sec. 3.1- 3.3 from [94]). The idea in 2D is to transform a Cartesian
square grid into a circle through radial projection. With this mapping, a concentric square
in the computational domain maps onto a concentric circle in the physical domain (see
Fig. 3.1 of [94]).

A solid sphere (or a ball) can now be created by extending the aforementioned radial
projection mapping scheme to three dimensions. An equi-angular gnomonic projection is
employed to create a spherical surface. The equi-angular projection is based on the uniform
discretization of the two angular parameters (denoted by ξ and η in [12]). Based on ξ and
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η, values of the xc, yc, and zc coordinates of the computational domain can be determined,
which are then transformed to the physical xp, yp, and zp coordinates. Eq. 1 − 14 of
[12] provides the mappings from the computational Cartesian domain to the cubed-sphere
physical domain, and Sec. 5.2 of [94] provides interpolation and weighting mechanisms to
transition from purely equi-angular gnomonic cubed-sphere projection for the outer part
of the sphere onto more Cartersian-like close to the center. So we can write the mapping
from computational coordinates, xc, yc, and zc to physical coordinates, xp, yp, and zp as
[94]

xp = R
d3

r
xc +

1− d2√
3
xc, (B.1)

yp = R
d3

r
yc +

1− d2√
3
yc, (B.2)

zp = R
d3

r
zc +

1− d2√
3
zc, (B.3)

where r =
√
x2c + y2c + z2c , d = max(xc, yc, zc), and R is the radius of the sphere. The

mapping as defined by Eq. B.1 to Eq. B.3 is then effectively a mapping from a cubic
computational domain, with a domain of [−1, 1]× [−1, 1]× [−1, 1], to a solid sphere with
a radius of R. This transition is illustrated by Fig. B.2.

The outer part of this solid sphere has coordinates that exactly match those of the
concentric spheres that constitute our regular cubed sphere. We can now “encapsulate”
the inner sphere with a regular cubed-sphere grid to produce a nested solid sphere, which
consists of the six regular cubed-sphere sectors and a solid sphere to fill in the void in
the middle (see Fig. B.3). The advantage of the 7-root-block nested sphere arrangement
over just a single completely solid sphere (Fig. B.2), comes from the point of view of the
implementation of the boundary conditions, where interior boundary conditions may be
applied directly at the interface connecting the outer shell and the inner sphere, which is
relevant especially to the space physics applications considered in Chapter 6. It allows for
clear differentiation of the moon or a planetary body (which is represented by the inner
sphere), and the domain surrounding the body (represented by the outer shells). This
set-up is illustrated in Fig. 6.1, which is the set-up used for all the simulations related to
the interaction between the lunar atmosphere and the solar wind.
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Y
X

Zr

1.96154
1.88462
1.80769
1.73077
1.65385
1.57692
1.5
1.42308
1.34615
1.26923
1.19231
1.11538
1.03846

(a) A sector of the regular cubed-sphere grid. Note that the
sector is comprised of several discretized concentric spheres with
radii ranging from Ri to Ro.

Y
X

Z

+k-direction,
each value of
k corresponds
to a radius
value of a
discretized
concentric
sphere

each ’layer’ by itself
forms a discretized
concentric spherical
surface

(b) A blow-up view of a sector of a regular cubed-sphere grid.
Each radial layer represents a discretized concentric sphere.

Figure B.1: Three-dimensional view of a sector of the cubed-sphere grid.
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X Y

Z

Cube -to-Solid Sphere Mapping

Solid Sphere Generated
through mapping from
a cube and weighting function

The mesh gradually becomes more Cartesian-like
as it approaches the center

Outermost layer follows
the exact same mapping
as a normal cubed sphere

Figure B.2: A cut-away view of the inner sphere, to illustrate how the grid transitions from
purely spherical (based on equi-angular gnomonic projection) on the outer edge to purely
Cartesian as it gets closer to the center. The mapping here too is illustrated where each
colored layer on the computational domain (left) maps onto the same colored layer on the
physical domain (right).
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Figure B.3: Three-dimensional view of the cross section of the nested sphere for x <= 0.
By construction, the outer shells would necessarily leave empty space in the middle (since
they are just layers of concentric spheres, the only way one can have a complete sphere
if a sphere with a zero radius is defined), so an inner sphere needs to be constructed in a
way that will fill this void. The outer shells would then encapsulate the inner sphere, and
it would then produce a solid nested sphere (Figure adapted from [3])
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M. H. Acun̄a, and N. F. Ness. Probing mars’ crustal magnetic field and ionosphere
with the MGS electron reflectometer. J. Geophys. Res., 106(E10):23419–23427, 2001.

[121] J. Arkani-Ahmed. A 50-degree spherical harmonic model of the magnetic field of
mars. J. Geophys. Res., 106(E10):23197–23208, 2001.

130



[122] J. C. Cain, B. B. Ferguson, and D. Mozzoni. An n = 90 internal potential
function of the martian crustal magnetic field. J. Geophys. Res., 108(E2), 2003.
http://www.dx.doi.org/10.1029/2000JE001487.

[123] C. Jacobs, B. van der Holst, and S. Poedts. Comparison between 2.5D and 3D
simulations of coronal mass ejections. Astron. Astrophys.

131


	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Magnetohydrodynamics Models for Space Physics
	High-Order Finite-Volume Method to Improve Accuracy of MHD Simulations
	Cubed-Sphere Meshes to Represent Conditions Around a Planetary Body

	Thesis Structure

	Magnetohydrodynamics Equations
	Magnetohydrodynamics Equations
	Ideal MHD Equations
	Resistive MHD Equations

	Control Schemes of the  constraint
	Powell's 8-Wave MHD Formulation
	GLM Control of the  constraint


	High-Order Finite-Volume Scheme for 2D Ideal MHD
	High-Order CENO Scheme for Ideal MHD in 2D
	High-Order Finite-Volume Formulation
	k-Exact Piecewise Polynomial Reconstruction
	CENO Smoothness Indicator to Enforce Monotonicity
	Numerical Flux Function and Source Term Integration
	High-Order Accuracy at Curved Boundaries

	Numerical Results
	Continuous Problems
	Problems with Discontinuities
	Application of CENO with Dynamic Adaptive Mesh Refinement: Orszag-Tang Vortex Problem


	High-Order Finite-Volume Scheme for 3D Ideal MHD on Cartesian and Cubed-Sphere Grids
	Fourth-Order CENO Method for 3D Hyperbolic Conservation Laws
	Finite-Volume Formulation
	K-Exact Reconstruction and Stencil Choice
	CENO Monotonicity Enforcement
	High-Order Integration for Hexahedral Cells with Nonplanar Cell Faces
	Rotation Mechanism for Generating Consistent Stencils Near Degenerate Block Edges
	Summary of Further Implementation Aspects

	Numerical Results
	Three-Dimensional CENO Reconstruction
	Three-Dimensional Flow Problems in a Rectangular Box
	MHD Iso-Density Vortex on a 7-Block Cubed Sphere


	High-Order CENO Finite-Volume Scheme for Resistive MHD
	Numerical Treatment of Second-Derivative Flux Terms
	Convergence Studies
	One-Dimensional Kinematics Diffusion Equation
	Manufactured 3D Heat-Kernel Resistive MHD


	Preliminary Exploration of Space Physics Applications
	Parameters of Space Physics Simulations
	Boundary Conditions
	Simulations Without Intrinsic Magnetic Field
	Seven-Block Cubed-Sphere Simulation of Lunar Wake

	Simulations With Intrinsic Magnetic Field
	Simulation of Earth's Magnetosphere Solution on Regular Cubed-Sphere Grid
	Mini-Magnetosphere Simulation on Seven-Block Cubed Sphere


	Future Work and Concluding Remarks
	Potential Future Work
	High-Order Discretization of the Powell's Source Terms
	Better Numerical Models for Lunar Magnetic Anomalies
	Non-Ideal MHD Simulations of Solar-Wind Interaction with the Atmosphere of Mars or the Moon on Nested Cubed-Sphere Grid


	APPENDICES
	Normalization
	Dimensional Resistive MHD Equations
	Normalization Parameters
	Normalization of the Resistive MHD Equations
	Normalization of the Continuity Equation
	Normalization of the Momentum Equation
	Normalization of the Energy Equation
	Normalization of the Magnetic Field Equation

	Non-Dimensional Resistive MHD Equations
	Normalization of Solar Wind Parameters

	Inner Cubed Sphere Generation
	References

