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Abstract

In this thesis, we study generalized complex structures on Kodaira surfaces, which are
non-Kähler surfaces that admit holomorphic symplectic structures. We show, in particular,
that the moduli space of even-type generalized complex structures on a Kodaira surface
is smooth of complex dimension four. Furthermore, we give an explicit description of
this moduli space using deformation theory. We also obtain a Global Torelli Theorem for
Kodaira surfaces in the generalized setting, which is an analogue of Huybrechts' result for
generalized K3 surfaces. Finally, we study generalized holomorphic bundles with respect
to the even-type generalized complex structures previously obtained.
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Chapter 1

Introduction

Generalized complex geometry is a relatively new branch of mathematics �rst introduced
by Hitchin in [17] (2001) and further developed by Gualtieri in his PhD thesis [11] and
subsequent papers ([15], [12], [5], and [14] to name a few). In the generalized setting,
instead of studying structures on the tangent and cotangent bundles of a manifold, one
instead examines structures on their direct sum T ⊕ T ∗. This theory contains symplectic
geometry and complex geometry as special cases, and it provides the proper framework
for many questions arising in geometry and physics; it has become a very active research
area. The goal of this thesis is to examine generalized complex structures and generalized
holomorphic bundles on Kodaira surfaces, which are non-Kähler compact complex surfaces
with trivial canonical bundle. By the Enriques-Kodaira classi�cation, the only compact
complex surfaces with trivial canonical bundle are K3 surfaces, complex 2-tori, and Kodaira
surfaces. We also consider these structures and bundles on complex 2-tori.

In Chapter 2, we present general results pertaining to generalized complex geometry.
We start with an examination of generalized complex structures in the linear setting and
then extend them to manifolds; throughout Sections 2.1, 2.2, and 2.3, we follow Gualtieri's
thesis [11]. Additionally, in Section 2.4, we introduce a special class of generalized complex
structures, namely generalized Calabi-Yau structures, and prove that on a complex surface
every generalized Calabi-Yau structure of even-type is the B-�eld transform of a complex
structure or a symplectic structure (Theorem 2.51). We end the chapter by discussing
generalized Kähler structures and note, in particular, that Kodaira surfaces do not admit
them (Corollary 2.54), by invoking a result of Apostolov on biHermitian structures [1].

In Chapter 3, we present generalized versions of the classical Global Torelli Theorems
for K3 surfaces, complex 2-tori, and Kodaira surfaces. The classical theorems state that
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cohomologous complex structures are isomorphic. One can, however, prove that cohomol-
ogous generalized Calabi-Yau structures are isomorphic in certain cases. For K3 surfaces
and complex 2-tori, one requires a hyperKählerity assumption. The result was �rst ob-
tained by Huybrechts in [21] for K3 surfaces, but extends naturally to complex 2-tori (see
Theorem 3.14). Although Kodaira surfaces do not admit hyperKähler-type structures, we
nonetheless obtain an analogue of the Global Torelli Theorem in Section 3.2 (Theorem
3.17). In the last section, we discover that while Kodaira surfaces are non-Kähler they do
admit so called Kähler-type generalized Calabi-Yau structures. We construct an explicit
family of such structures.

In Chapter 4, we present some general results about deformations of generalized com-
plex structures and compute explicit deformations over Kodaira surfaces and complex
2-tori. We begin by outlining the deformation theory for generalized complex structures
developed in [11] and [15], and prove that the deformation spaces of symplectic-type struc-
tures are always smooth (Theorem 4.15). We also prove that B-�eld transforms preserve
the smoothness of deformation spaces (Theorem 4.17). Next, we compute explicit defor-
mations of even-type structures on Kodaira surfaces and complex 2-tori in Sections 4.2 and
4.3, respectively. We, in particular, show that starting at a complex structure or a symplec-
tic structure yields a smooth family of deformations (Theorems 4.21 and 4.30). We then
use these results to give an explicit description of moduli spaces of even-type generalized
complex structures on Kodaira surfaces and complex 2-tori in Section 4.4. In Section 4.5,
we prove directly that generalized complex structures fail to give rise to positive de�nite
metrics and hence generalized Kähler structures, in many cases. Finally, in Section 4.6, we
construct an odd-type generalized complex structure on a Kodaira surface.

In Chapter 5, we study generalized holomorphic bundles, which are analogues of holo-
morphic vector bundles on complex manifolds in the generalized setting. More precisely,
generalized holomorphic bundles are �at Lie algebroid connections for which the Lie alge-
broid is a generalized complex structure. In Section 5.1, we examine Lie algebroid con-
nections and prove that �at connections are preserved under Lie algebroid isomorphisms
(Proposition 5.2). We then restrict ourselves to generalized holomorphic bundles. If the
base generalized complex structure comes from a complex structure, then generalized holo-
morphic bundles are co-Higgs bundles (see Section 5.1.1). Hitchin studies co-Higgs bundles
in [19] and Rayan describes their moduli spaces over CP1 in [26] and over CP2 in [27]. We
introduce the notion of twisted co-Higgs bundles in Section 5.1.2 and show that �atness is
preserved by B-�eld transforms (Proposition 5.11). In Sections 5.1.3 and 5.1.4 we we study
two special classes of generalized holomorphic bundles that correspond to Poisson modules
and �at bundles, respectively. We end the chapter by giving an explicit description of
generalized holomorphic bundles over Kodaira surfaces and complex 2-tori with respect to
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the families of generalized complex structures obtained in Sections 4.2 and 4.3.

Finally, in Chapter 6, we outline some (as of yet) unanswered questions regarding
the above topics. This includes plans for future research as well as some classical open
problems.
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Chapter 2

Generalized Complex Structures

In this chapter, we introduce generalized complex geometry by �rst examining general-
ized complex structures in the linear setting (Section 2.1) and then extending our study
to general manifolds (Section 2.3). We also summarize the necessary results concerning
spinors and how they can be used to represent generalized complex structures in Section
2.2. In addition, we provide an exposition on generalized Calabi-Yau structures in Section
2.4. Lastly, generalized Kähler structures are presented in Section 2.5 and we consider the
trivial example. This chapter follows Marco Gualtieri's PhD thesis [11] closely in the treat-
ment of the subject. We focus on results that are important for the remainder of the thesis
but the reader is encouraged to reference [11] and [15] for a more thorough examination of
the subject and [17] and [21] for generalized Calabi-Yau structures.

2.1 Linear Algebra

Throughout this section we will use V to denote a real, �nite dimensional vector space
and X +α to denote a typical element of V ⊕V ∗. We can de�ne a non-degenerate bilinear
form on V ⊕ V ∗; let X, Y ∈ V and α, β ∈ V ∗ then for X + α, Y + β ∈ V ⊕ V ∗ we de�ne

〈X + α, Y + β〉 =
1

2
(α(Y ) + β(X))

which is symmetric. We call it the inner product on V ⊕ V ∗, and denote it by 〈·, ·〉.

If we �x a basis {e1, . . . , en} of V and consider the dual basis {e1, . . . , en} for V ∗, then
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with respect to the basis {ei, ej}1≤i,j≤n of V ⊕ V ∗ the matrix corresponding to 〈·, ·〉 is

1

2

[
0 I
I 0

]
and so 〈·, ·〉 has n positive and n negative eigenvalues, that is, has signature (n, n).

Definition 2.1. We call a subspace L ≤ V ⊕ V ∗ isotropic if 〈X + α, Y + β〉 = 0 for
any X + α, Y + β ∈ L.

We wish to discuss isotropic subspaces with the largest possible dimension, and so we
make use of the following claim:

Claim 2.2. The maximal dimension of an isotropic subspace is 1
2

dim(V ⊕ V ∗).

Proof. Let L be an isotropic subspace. First we de�ne the orthogonal space for L:

L⊥ := {v ∈ V ⊕ V ∗ : 〈v, w〉 = 0 for all w ∈ L}.

Then since L is isotropic, it is clear that L ⊆ L⊥.

Next, we show that dim(L) + dim(L⊥) = dim(V ⊕V ∗). De�ne a map h : V ⊕V ∗ → L∗

by v 7→ 〈v,−〉 |L. It is clear that the kernel of this map is L⊥. Then, the non-degeneracy of
〈·, ·〉 implies the map X 7→ 〈X,−〉 : V ⊕V ∗ → V ⊕V ∗ is a linear isomorphism. Hence, h is
surjective because the restriction map is the dual of the inclusion map (which is injective).
In other words, im(h) = L∗. Therefore, by the rank-nullity theorem,

dim(V ⊕ V ∗) = dim(im(h)) + dim(ker(h)) = dim(L∗) + dim(L⊥) = dim(L) + dim(L⊥).

Finally, we note that if dim(L) > 1
2

dim(V ⊕V ∗) then since L ⊆ L⊥, we obtain dim(V ⊕
V ∗) = dim(L) + dim(L⊥) > dim(V ⊕ V ∗), which is a contradiction. Hence the dimension
of such a subspace can be no larger than 1

2
dim(V ⊕ V ∗). But V is clearly an isotropic

subspace of V ⊕ V ∗, with dimension 1
2

dim(V ⊕ V ∗). Therefore the maximal dimension of
an isotropic subspace is precisely 1

2
dim(V ⊕ V ∗).

Definition 2.3. A maximal isotropic subspace L ≤ V ⊕ V ∗ is an isotropic subspace
of maximal dimension.

Maximal isotropic subspaces will be of particular importance when we begin our dis-
cussion of generalized complex geometry. Let us examine some examples.
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Example 2.4. The spaces V and V ∗ are both maximal isotropics.

Example 2.5. Let E ≤ V be a subspace, and de�ne Ann(E) to be the annihilator of E
in V ∗. Then the subspace

E ⊕ Ann(E) ≤ V ⊕ V ∗

is isotropic. It is also maximal since dim(Ann(E)) = dim(V ) − dim(E), and so dim(E ⊕
Ann(E)) = dim(E) + dim(Ann(E)) = dim(V ) = 1

2
dim(V ⊕ V ∗) as desired.

Example 2.6. Again, let E ≤ V be any subspace. Let ε ∈ ∧2E∗ be a 2-form. We can
think of ε as a skew-symmetric map from V to V ∗ (ε : V → V ∗) via ε : X 7→ ε(X,−). Now
de�ne a subspace L(E, ε) ≤ V ⊕ V ∗:

L(E, ε) = {X + α ∈ E ⊕ V ∗ : α|E = ε(X,−)}

which satis�es

dim(L(E, ε)) =
1

2
dim(V ⊕ V ∗).

So we only need to check that L(E, ε) is isotropic. For this, �x X + α, Y + β ∈ L(E, ε).
Then,

〈X + α, Y + β〉 =
1

2
(β(X) + α(Y ))

=
1

2
(ε(Y,X) + ε(X, Y ))

=
1

2
(ε(Y,X)− ε(Y,X)) = 0,

which shows that L(E, ε) is isotropic.

It turns out that every maximal isotropic subspace of V ⊕ V ∗ is of this form as is
illustrated in the following proposition.

Proposition 2.7 (Gualtieri, [11], Proposition 2.6). Every maximal isotropic of V ⊕ V ∗
is of the form L(E, ε).

To relate this to Examples 2.4 and 2.5, we can see that: V = L(V, 0), E ⊕ Ann(E) =
L(E, 0), and V ∗ = L({0}, 0).

We are now ready to de�ne a generalized almost complex structure on V , which is an
extension of both a complex structure and a symplectic structure. Recall that a complex
structure on V is an endomorphism J : V → V such that J2 = −1. Moreover, a symplectic
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structure ω on V is a nondegenerate 2-form ω ∈ ∧2V ∗ which we can view as a map ω : V →
V ∗ via ω(X) = ιXω. Using this interpretation of ω, we can see ω∗ = −ω : (V ∗)∗ = V → V ∗,
or in other words that ω is skew.

When we extend this notion to V ⊕ V ∗, we make a natural identi�cation between
(V ⊕ V ∗)∗ and V ⊕ V ∗ via the inner product by de�ning the action

(X + α)(Y + β) =< X + α, Y + β > .

Definition 2.8. A generalized complex structure on V is an endomorphism J :
V ⊕ V ∗ → V ⊕ V ∗ that is both complex (J2 = −1) and orthogonal with respect to < ·, · >
(that is, J∗J = 1).

Another way to de�ne a generalized complex structure on V is to de�ne it as a complex
structure on V ⊕ V ∗ that is "symplectic": J∗ = −J. These de�nitions are equivalent, as
demonstrated in the next proposition.

Proposition 2.9 (Gualtieri, [11], Proposition 4.2). A complex structure J on V ⊕ V ∗
satis�es J∗J = 1 if and only if J∗ = −J.

Proof. Using the fact that J2 = −1, we can see that J−1 = −J. Therefore, if J∗ = −J,
then J∗ = J−1, which means J∗J = 1. Conversely, if J∗J = 1 then J∗ = J−1, which implies
J∗ = −J.

To illustrate why such a structure is called generalized, we note that if we start with a
complex or symplectic structure, then we get a generalized complex structure.

Example 2.10. (The Complex Case) Suppose we have a complex structure J on V ,
then we de�ne

JJ :=

[
−J 0
0 J∗

]
.

It is straightforward to verify J2
J = −1, and J∗JJJ = 1.

Example 2.11. (The Symplectic Case) If we have a symplectic structure ω on V ,
then we can de�ne

Jω :=

[
0 −ω−1

ω 0

]
.

Once again, the conditions for Jω to be a generalized complex structure are easily veri�ed.
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In order to understand all generalized complex structures on V , we simply need to
understand maximal isotropic subspaces as the next proposition illustrates.

Proposition 2.12 (Gualtieri, [11], Proposition 4.3). A generalized complex structure on
V is equivalent to the speci�cation of a complex maximal isotropic subspace L ≤ (V⊕V ∗)⊗C
such that L ∩ L = {0} (L has real index zero). Here, we extend the inner product to the
complexi�cation by complex linearity in each argument.

Proof. First suppose J is a generalized complex structure on V . De�ne L to be the +i-
eigenspace of J in (V ⊕ V ∗)⊗ C. Then if X, Y ∈ L we get

〈X, Y 〉 = 〈J(X), J(Y )〉
= 〈iX, iY 〉
= −〈X, Y 〉

which implies 〈X, Y 〉 = 0. Therefore L is isotropic and half-dimensional, which implies L
is a maximal isotropic subspace. Furthermore, L is the −i-eigenspace, so L ∩ L = {0}.

Converesely, suppose L is a maximal isotropic subspace such that L ∩ L = {0}. This
implies that (V ⊕ V ∗)⊗C = L⊕ L. Hence we can de�ne J by specifying its action on the
spaces L and L. So de�ne J to be multiplication by i on L and multiplication by −i on L.
Then J is a generalized complex structure on V .

Definition 2.13. The type of a generalized complex structure is the (complex) codi-
mension of πVCL in VC where πVC is the projection map.

Example 2.14. For the complex example above, JJ has corresponding maximal isotropic
LJ = V0,1 + V ∗1,0 and has type n = dim(VC). For the symplectic example let us compute
Lω, the maximal isotropic corresponding to Jω. If X + α ∈ Lω, then[

0 −ω−1

ω 0

] [
X
α

]
=

[
iX
iα

]
.

Therefore, we can see that −ω−1α = iX, or α = −iω(X). Thus, we have shown that the
+i-eigenspace has the form Lω = {X − iω(X) : X ∈ V ⊗ C} and clearly has type zero.

The following proposition provides an easy way to determine if a vector space admits
a generalized complex structure.

Proposition 2.15 (Gualtieri, [11], Proposition 4.5). A vector space V admits a gener-
alized complex structure if and only if it is even-dimensional.
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Proof. First we note that if V is even dimensional, then it admits an actual complex
structure, which we have proven induces a generalized complex structure.

For the converse, �x a generalized complex structure J on V . Then since 〈·, ·〉 is
inde�nite, there must exist a vector γ ∈ V ⊕ V ∗ such that 〈γ, γ〉 = 0. But since J is
orthogonal with respect to the inner product, Jγ is orthogonal to γ. Indeed,

〈Jγ, γ〉 =
〈
J2γ, Jγ

〉
= −〈γ, Jγ〉 = −〈Jγ, γ〉

which implies 〈Jγ, γ〉 = 0. Similarly we may check 〈Jγ, Jγ〉 = 0. Therefore, {γ, Jγ} spans
an isotropic subspace of V ⊕ V ∗, say P .

If P is not maximal then we can �nd another vector γ′ 6∈ P such that 〈γ′, γ′〉 = 0, and
enlarge P by adding in γ′ and Jγ′. The new subspace P is still isotropic. Continue in
this manner (of adding in a vector η orthogonal to P satisfying 〈η, η〉 = 0 together with
Jη to the spanning set) until a maximally isotropic subspace is obtained. By de�nition,
a maximally isotropic subspace has dimension dim(V ), but by construction this space is
even dimensional, as we increase its dimension by two each step. It follows that V must
be even dimensional.

There are two operations we can perform on elements of V ⊕ V ∗ that will be useful to
us throughout the thesis: B- and β-transforms.

Definition 2.16. (B-transform) Let B ∈ ∧2V ∗. We de�ne an action, eB, on V ⊕ V ∗
as follows for X + α ∈ V ⊕ V ∗,

X + α 7→ X + α + ιXB.

It follows directly from the de�nition of a B-transform that they do not a�ect pro-
jections onto V and therefore preserve type. So we may transform a complex-type or
symplectic-type structure by a B-�eld and obtain another complex-type or symplectic-
type structure respectively. This action can also translate maximal isotropic subspaces of
the form L(E, ε) from Example 2.6:

eBL(E, ε) = L(E, ε+ ι∗B),

where ι : E → V is the inclusion. Note that we can obtain any maximal isotropic L(E, ε)
as a B-transform of L(E, 0) by choosing a 2-form B such that ι∗(B) = ε.

Definition 2.17. (β-transform) Let β ∈ ∧2V and de�ne an action on V ⊕ V ∗, eβ, by

eβ(X + α) := X + ιαβ + α

for X + α ∈ V ⊕ V ∗.
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2.2 Spinors on V ⊕ V ∗

Before we discuss these structures on manifolds we introduce one more way of de�ning
them via spinors. Recall that V is an n-dimensional real vector space. For V ⊕ V ∗, we the
exterior algebra of V ∗, namely, ∧∗V ∗; these are the spinors. For any non-zero spinor φ, its
null space is de�ned as

Lφ := {X + α ∈ V ⊕ V ∗ : X y φ+ α ∧ φ = 0}.

It is straightforward to check that Lφ is isotropic. We consider spinors of even-type and
odd-type where even-type spinors are elements of ∧2kV ∗ and odd-type spinors are elements
of ∧2k+1V ∗. We now de�ne a pairing on even- or odd-type spinors.

Definition 2.18. The Mukai pairing on spinors is de�ned di�erently if the arguments
are even or odd. For two even spinors φ and ψ,

< φ,ψ >=
∑
m

(−1)mφ2m ∧ ψn−2m,

and for two odd spinors

< φ,ψ >=
∑
m

(−1)mφ2m+1 ∧ ψn−2m−1.

Definition 2.19. A spinor φ is called pure if the corresponding null space, Lφ, is
maximally isotropic.

There is a simple expression for the purity condition on 4-dimensional vector spaces
using the Mukai pairing from [17].

Proposition 2.20 (Hitchin, [17], Section 4.4). A spinor φ on a 4-dimensional vector
space is pure if and only if < φ, φ >= 0.

We now summarize some important results regarding pure spinors. See [11] or [7] for
more details on spinors. Firstly, we note that all maximally isotropic subspaces of V ⊕ V ∗
are represented by a unique spinor (up to multiplication by a scalar) in ∧∗V ∗. Secondly,
we must consider which maximal isotropics have real index zero (L ∩ L = 0) and for that
we require the following proposition.

Proposition 2.21 (Chevalley, [7], Proposition III.2.4). Two maximal isotropic spaces L
and L′ satisfy L∩L′ = {0} if and only if their respective pure spinor representatives φ and
φ′ satisfy < φ, φ′ >6= 0.
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Lastly, we wish to the identify the spinor line corresponding to the maximal isotropic
subspace L(E, ε).

Proposition 2.22 (Gualtieri, [11], Proposition 2.24). Let L(E, ε) be any maximal isotropic.
Then the pure spinor de�ning it is given by

ceBθ1 ∧ . . . ∧ θk

for any c 6= 0, where B ∈ ∧2V ∗ is a 2-form that satis�es ι∗B = ε and (θ1, . . . , θk) is a basis
for Ann(E).

The above proposition shows that the spinor corresponding to L(E, ε) is unique up to
multiplication by a non-zero constant. Therefore it is natural to speak of the spinor line
corresponding to a maximal isotropic. Also, the next proposition shows that all of the
above results carry over if we consider the complexi�ed space (V ⊕ V ∗)⊗ C.

Proposition 2.23 (Gualtieri, [11], Proposition 2.25). Any maximal isotropic subspace
L ≤ (V ⊕ V ∗)⊗ C of type k corresponds to a pure spinor line generated by

φL = eB+iωΩ,

where B and ω are real 2-forms and Ω = θ1∧ . . .∧θk for some linearly independent complex
1-forms θi. The integer k is the type of the generalized complex structure. This corresponds
to the de�nition of type we gave in the previous section. Furthermore, L is of real index
zero if and only if

ωn−k ∧ Ω ∧ Ω 6= 0.

Again, our two main examples stem from a complex structure and a symplectic struc-
ture, see [11].

Example 2.24. (The Complex Case) For JJ (from Example 2.10), the spinor line is
generated by φ = Ωn,0, where Ωn,0 is a generator of the (n, 0)-forms on V with respect to
the complex structure J .

Example 2.25. (The Symplectic Case) For Jω (from Example 2.11), the spinor line
is generated by φ = eiω where ω is the given symplectic structure.
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2.3 Generalized Complex Structures

We wish to translate the ideas presented in the previous sections to manifolds. The two
main ideas are to replace the tangent bundle T with the direct sum of the tangent and
cotangent bundles T ⊕ T ∗ and the Lie bracket with the Courant bracket, which we de�ne
in De�nition 2.32. Recall that an almost complex structure on a manifold M with tangent
bundle T is a linear endomorphism J : T → T such that J2 = −1. Such a structure is
integrable if and only if its i-eigenbundle, L ⊆ T ⊗ C, is closed under the Lie bracket.

Given Proposition 2.15, we restrict our attention to even-dimensional manifolds. We
begin with a discussion of generalized almost complex structures and then proceed to an
integrability condition, which is the same process that is used when transporting the notion
of complex structures on vector spaces to manifolds.

Definition 2.26. A generalized almost complex structure on a real 2n-dimensional
manifold M is given by any of the following three equivalent sets of data:

1. An almost complex structure on T ⊕ T ∗ which is orthogonal with respect to 〈·, ·〉,

2. A maximal isotropic subbundle L ≤ (T ⊕ T ∗)⊗ C such that L ∩ L = {0}.

3. A pure spinor line bundle U ≤ ∧∗T ∗ ⊗ C such that, for any generator φ of U ,

< φ, φ >6= 0

at each point x ∈M .

Definition 2.27. The type of a generalized complex structure is the (complex) codi-
mension of the projection of L onto T ⊗ C = TC. Equivalently, if φ is a generator for
the corresponding pure spinor line bundle, say locally that φ = eB+iωΩ where Ω ∈ ∧kT ∗,
then the integer k is the type of the structure. If k is even then we say the generalized
complex structure is of even-type and if it is odd the structure is of odd-type. On a real
2n-dimensional manifold, a structure of type zero is called a symplectic-type structure
while a structure of type n is called a complex-type structure. The type may not be the
same at each point on the manifold, it is an integer-valued function on the manifold.

Both Examples 2.10 and 2.11 give examples of generalized almost complex structures.
We examine these more closely after we understand the integrability condition. As in the
linear setting, one can obtain an analogue of Proposition 2.20 in the manifold setting which
we exhibit next.
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Proposition 2.28 (Hitchin, [17], Section 4.4). A spinor φ on a 4-dimensional manifold
is pure if and only if < φ, φ >= 0.

The �rst step is to discuss when a generalized almost complex structure exists on an
even-dimensional manifold. Ideally we would like to relate it to the existence of almost
complex structures which are well understood. We have already shown in the previous
section how to obtain a generalized almost complex structure from an almost complex
structure. Thus, any manifold admitting an almost complex structure also admits a gen-
eralized complex structure. The converse is also true: given a generalized almost complex
structure on a manifold, we can construct an almost complex structure on the manifold.

Proposition 2.29 (Gualtieri, [11], Proposition 4.15). For an even dimensional manifold
M , the obstruction to the existence of a generalized almost complex structure is the same
as the obstruction to the existence of an almost complex structure.

Proof. Let J be a generalized almost complex structure. We can choose a positive de�nite
subbundle, say C+ ≤ T ⊕ T ∗, that is complex with respect to J (that is, J(C+) ⊆ C+).
In fact, all we need is a subbundle of maximal (half) dimension for, if 〈X,X〉 > 0, then
〈JX, JX〉 = 〈X,X〉 > 0. An example of such a subbundle is the the set of diagonal
elements span{ ∂

∂xi
+ dxi}. Therefore, the orthogonal complement C− := C⊥+ is negative

de�nite as well as complex with respect to J.

Since C± are both de�nite subbundles, while T ∗ is null (〈X,X〉 = 0 for all X ∈ T ), the
projection π : C± → T is an isomorphism. Indeed, if x ∈ C+ and π(x) = 0 then x only
has a cotangent component which means 〈x, x〉 = 0, which forces x = 0. Therefore, since
J|C± are almost complex structures on C± and C± ∼= T , the two almost complex structures
J|C± induce two almost complex structures J± on T . Hence, a generalized almost complex
structure gives rise to an almost complex structure as desired.

Remark 2.30. We should remark that su�cient conditions for an almost complex struc-
ture to exist are not entirely known. In fact, they are only known in dimension ≤ 10. One
necessary condition for the existence of an almost complex structure (and hence general-
ized almost complex structure) on an even-dimensional manifold is for all its odd Stiefel-
Whitney classes to be zero, but there are others. For a discussion and more references, see
[11].

We now extend the de�nition of a B-�eld transform (from De�nition 2.16) to the
manifold setting. The additional property we will require is that B is closed.
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Definition 2.31. (B-Field Transforms) For a generalized almost complex structure
L and a real closed 2-form B, de�ne the B-�eld transform of L as LB := eB(L) where
eB(X+α) = X+α+ ιXB. De�ne complex B-�eld transforms analogously for complex
closed 2-forms B.

Next, we proceed to the question of integrability, and for this we will need an extension
of the Lie bracket, namely the Courant bracket.

Definition 2.32. The Courant Bracket is de�ned as

[X + α, Y + β]C = [X, Y ] + LX(β)− LY (α)− 1

2
d(ιXβ − ιY α),

for X + α, Y + β smooth sections of T ⊕ T ∗.

Note that this bracket is skew. It is not, however, a Lie bracket since it does not satisfy
the Jacobi identity. However, if the bracket is restricted to an isotropic subbundle L, then
the Jacobi identity is satis�ed (so [·, ·]C is a Lie bracket on L).

By de�nition B-�eld transforms do not alter projections onto the tangent bundle and
therefore preserve type. The reason we want B to be closed is because we want the B-
transform eB to preserve the Courant bracket. This is illustrated in the next proposition.

Proposition 2.33 (Gualtieri, [11], Proposition 3.23). Let B be a 2-form, then for x, y ∈
C∞(T ⊕ T ∗), we have [eB(x), eB(y)]C = eB([x, y]C) if and only if B is closed.

Proof. Fix X + α, Y + β ∈ C∞(T ⊕ T ∗). A direct computation shows that

[eB(X + α), eB(Y + β)]C = eB([X + α, Y + β]C) + ιXιY dB.

Therefore, [eB(X + α), eB(Y + β)]C = eB([X + α, Y + β]C) if and only if ιXιY dB = 0 for
all X, Y , which is true only when dB = 0.

Definition 2.34. A generalized almost complex structure J is said to be integrable
(to a generalized complex structure) when its +i-eigenbundle L ≤ (T ⊕ T ∗)⊗ C is closed
under the Courant bracket.

In the next two examples we will show that classical complex and symplectic structures
give rise to generalized complex structures and discuss some properties of these generalized
complex structures.
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Example 2.35. (The Complex Case) In this example we prove that a complex struc-
ture gives rise to a generalized complex structure. Let us begin with a complex structure
J on T . Then, as we did in Example 2.10, we de�ne

JJ :=

[
−J 0
0 J∗

]
,

which is a generalized almost complex structure. All that remains is to identify the +i-
eigenbundle and show it is closed under the Courant bracket.

From the de�nition of JJ , it is clear that its +i-eigenbundle is LJ = T0,1 ⊕ T ∗1,0. Then,
if J is an integrable complex structure, we know that T0,1 is closed under the Lie bracket.
Moreover, another consequence of integrability is that the derivative of a (1, 0)-form is the
sum of a (2, 0)-form and a (1, 1)-form. Now, we compute for X + α, Y + β ∈ C∞(LJ),

[X + α, Y + β]C = [X, Y ] + LX(β)− LY (α)− 1

2
d(ιXβ − ιY α)

= [X, Y ] + ιXdβ + d(ιXβ)− ιY dα− d(ιY α)− 1

2
d(ιXβ − ιY α).

But since X, Y ∈ C∞(T0,1) and α, β ∈ C∞(T ∗1,0), we get that α(Y ) = β(X) = 0. Thus, we
obtain

[X + α, Y + β]C = [X, Y ] + ιXdβ − ιY dα.

However, since dα and dβ have only (2, 0) and (1, 1) components we get that both ιXdβ
and ιY dα are of type (1, 0) for all X, Y ∈ C∞T0,1. Hence,

[X + α, Y + β]C = ([X, Y ] + ιXdβ − ιY dα) ∈ C∞(LJ),

as desired. Therefore, JJ is an (integrable) generalized complex structure.

The converse is also true, the integrability of JJ implies the integrability of J since, if
JJ is integrable, then

([X, Y ] + LX(β)− LY (α)− 1

2
d(ιXβ − ιY α)) ∈ C∞(LJ),

which gives us that [X, Y ] ∈ C∞T0,1 for any X, Y ∈ C∞T0,1. Therefore, JJ is integrable if
and only if J is.

Recall that the pure spinor line corresponding to a structure of this type is generated
by Ωn,0, where Ωn,0 is a generator for the (n, 0)-forms. Since Ωn,0 is an n-form the type of
these structures is n, so this structure is of even- or odd-type depending on the parity of
n.
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Example 2.36. (The Symplectic Case)We show that the generalized almost complex
structure associated to a symplectic structure is integrable. A symplectic structure on M
is a real closed non-degenerate 2-form ω. Recall from Example 2.11 that we de�ned

Jω =

[
0 −ω−1

ω 0

]
,

which is a generalized almost complex structure. Recall from Example 2.14 that the +i-
eigenbundle for this structure is Lω = {X − iω(X) : X ∈ T ⊗ C}.

Let us prove that this bundle is closed under the Courant bracket. Fix X, Y ∈ C∞(T ⊗
C) and compute

[X − iω(X), Y − iω(Y )]C = [X, Y ] + LX(−iω(Y ))− LY (−iω(X))

−1

2
d(ιX(−iω(Y ))− ιY (−iω(X))).

As as aside let us compute [X, Y ]− iω([X, Y ]), note that ι[X,Y ] = [LX , ιY ].

[X, Y ]− iω([X, Y ]) = [X, Y ] + LX(−iω(Y ))− ιYLX(−iω)

= [X, Y ] + LX(−iω(Y ))− ιY (d(−iω(X)) + ιXd(−iω))

= [X, Y ] + LX(−iω(Y ))− ιY d(−iω(X)) + i(ιY (ιXd(ω))).

Now, we return to our original computation,

[X − iω(X), Y − iω(Y )]C = [X, Y ] + LX(−iω(Y ))− ιY d(−iω(X)) + d(iω(X, Y ))

−1

2
d(2iω(X, Y ))

= [X, Y ] + LX(−iω(Y ))− ιY d(−iω(X))

= [X, Y ]− iω[X, Y ]− i(ιY (ιXd(ω)))

from the aside above. Hence, we obtain that, if ω is a symplectic structure, then the
+i-eigenbundle is closed under the Courant bracket since dω = 0.

Once again, we can see that the converse is true as well. If the generalized almost
complex structure Jω is integrable, then dω = 0. Hence, Jω is integrable if and only if ω is
closed. Since Lω = {X − iω(X) : X ∈ T ⊗C} we can see that Lω has full-rank projection
onto T ⊗ C. Therefore, the type of these generalized complex structures is 0 so these are
always even-type structures. The pure spinor line is generated by φ = eiω in this case.

These two examples will be of special importance for the remainder of the thesis. The
following proposition fully classi�es generalized complex structures of type 0 and type n.
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Proposition 2.37 (Gualtieri, [11], Proposition 4.22). On a 2n-dimensional manifold,
a generalized complex structure of type zero (symplectic-type) is B-symplectic, that is, a
B-�eld transform of a symplectic structure. On the other hand, any generalized complex
structure of type n (complex-type) has the form eεJJ where ε is a ∂-closed (2, 0)-form.

Remark 2.38. Since ε is not necessarily closed nor real, the above proposition shows
that not all type n structures are B-�eld transforms of complex structures (by de�nition,
a B-�eld transform is a closed, real 2-form). However, in section 2.4 we will see that on
a Kodaira surface or complex 2-torus that every constant type n structure is a B-�eld
transform of a complex structure.

Definition 2.39. The Schouten-Nijenhuis bracket (or Schouten bracket) is a natural
extension of the Lie bracket and the Courant bracket. In this thesis, we will only need it
for sections of ∧2(T ) or ∧2(L). For x, y, w, z ∈ C∞(T ) (respectively C∞(L)):

[x ∧ y, w ∧ z]S = [x,w] ∧ y ∧ z − [x, z] ∧ y ∧ w − [y, w] ∧ x ∧ z + [y, z] ∧ x ∧ w

where [·, ·] is the Lie bracket (respectively Courant bracket).

A special class of type zero generalized complex structures consists of structures that
come from holomorphic Poisson structures as illustrated in the following example.

Example 2.40. Let β ∈ C∞(∧2T1,0) be a holomorphic Poisson bivector, so that [β, β]S =
0 where [·, ·]S is the Schouten-Nijenhuis bracket. Write β = P + iQ where P and Q are
the real and imaginary parts of β, respectively. Since β is a (2, 0)-bivector, it follows that
P and Q are of type (2, 0) and (0, 2) (neither P nor Q can have a (1, 1)-component or else
β will also have one). If we write Q = Q2,0 +Q0,2, then

QJ∗ = iQ2,0 − iQ0,2,

where QJ∗(α) = Q(J∗α) for any 1-form α.

We may also write P = 1
2
(β + β̄) and Q = − i

2
(β − β̄), which means Q2,0 = − i

2
β and

Q0,2 = i
2
β̄, and

QJ∗ =
1

2
β +

1

2
β̄ = P.

The resulting deformed generalized complex structure has the form

Jβ =

[
−J Q
0 J∗

]
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and, using P = QJ∗, one can readily compute that this structure has +i-eigenbundle

Lβ = T0,1 ⊕ Γβ,

where Γβ = {η + β(η) : η ∈ T ∗1,0}. Note that integrability of this structure is equivalent to
β being a Poisson structure. Indeed, one may show that [β, β]S = 0 if and only if Lβ is
closed under the Courant bracket.

2.4 Generalized Calabi-Yau Structures

A generalized Calabi-Yau structure is a special kind of generalized complex structure.
Instead of looking at a generalized complex structure as a map J : T ⊕ T ∗ → T ⊕ T ∗,
we may consider its associated spinor line bundle, which is generated by a pure spinor
φ ∈ C∞(∧∗T ∗ ⊗ C) as described in Section 2.2. It will be clear when we use < ·, · > on
spinors that we are referring to the Mukai pairing.

Definition 2.41. A generalized Calabi-Yau structure of even-type on a smooth
manifoldM of dimension 2m is a complex spinor φ ∈ C∞(∧evenT ∗⊗C) on T⊕T ∗ satisfying:

� φ is pure,

� < φ, φ >6= 0,

� dφ = 0.

Two generalized Calabi-Yau structures φ and φ′ are isomorphic if there exists an exact
B-�eld B and a di�eomorphism f of M such that

φ = eBf ∗φ′.

The third condition is the only di�erence between a generalized Calabi-Yau structure
and a generalized complex structure. Indeed, the �rst condition guarantees the annihilator

Lφ = {X + η ∈ T ⊕ T ∗|(X + η) · φ := ιXφ+ η ∧ φ = 0}

is maximally isotropic. The second condition together with proposition 2.21 gives us that
Lφ ∩ Lφ = {0}, because Lφ = Lφ. All that remains is to show that Lφ is closed under the
Courant bracket. A proof of this can be found in [17].
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Proposition 2.42 (Hitchin, [17], Proposition 1). If (M,φ) is a generalized Calabi-Yau
manifold then the annihilator Lφ de�nes a generalized complex structure on M .

Let us summarize the relationships between generalized complex structures and gener-
alized Calabi-Yau structures:

φ is pure ⇐⇒ Lφ is maximal isotropic (De�nition 2.19),

< φ, φ >6= 0 ⇐⇒ Lφ ∩ Lφ = {0} (Proposition 2.21),

dφ = 0 =⇒ Lφ is closed under the Courant bracket (Proposition 2.42).

Remark 2.43. In general, the third condition is not an equivalence because some gen-
eralized complex structures correspond to pure spinor line bundles that are generated by
a non-closed φ. In other words, generalized Calabi-Yau structures are a special class of
generalized complex structures. Nonetheless, on some manifolds, generalized Calabi-Yau
structures are equivalent to generalized complex structures as we will see in Theorem 2.46.

Let us look at two important examples of generalized Calabi-Yau structures. For more
details regarding these examples, see [17], Section 4.1.

Example 2.44. (The Complex Case) Let J be a complex structure on M (a real 2m-
dimensional manifold) with trivial canonical bundle. Let Ω be a non-vanishing (m, 0)-form
on M with respect to J . Then, Ω is a generalized Calabi-Yau structure.

Example 2.45. (The Symplectic Case) If ω is any real symplectic form on M , then
φω := eiω = (1 + iω − ω∧ω

2
+ · · · ) is a generalized Calabi-Yau structure.

Our goal in this thesis is to study left-invariant generalized complex structures on Ko-
daira surfaces and complex 2-tori, that is, generalized complex structures that descend from
left-invariant generalized complex structures on C2. Both of these surfaces are complex
nilmanifolds and the next theorem tells us that, on a complex nilmanifold, left-invariant
generalized complex structures are in one-to-one correspondence with generalized Calabi-
Yau structures.

Theorem 2.46 (Cavalcanti-Gualtieri, [6], Theorem 3.1). Any left-invariant generalized
complex structure on a nilmanifold must be generalized Calabi-Yau.

This means that studying left-invariant generalized complex structures on a Kodaira surface
or complex torus is the same as studying generalized Calabi-Yau structures. If we are
dealing with a nilmanifold we will use the term generalized complex structure to always
mean a left-invariant generalized complex structure. The results for generalized Calabi-
Yau structures we obtain in Sections 3.1 and 3.2 will be applied to better understand the
moduli space of generalized complex structures in Section 4.4.
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Remark 2.47. We will only focus on even-type generalized Calabi-Yau structures in this
thesis but one can analogously de�ne generalized Calabi-Yau structures of odd-type.

In De�nition 2.31 we saw how to transform generalized complex structures by B-�elds.
The following lemma shows that we may transform a generalized Calabi-Yau structure φ
by a B-�eld,

eBφ =

(
1 +B +

B ∧B
2

+ · · ·
)
∧ φ,

which is itself a generalized Calabi-Yau structure.

Lemma 2.48 (Hitchin, [17], Section 4.2). For a generalized Calabi-Yau structures φ and
a B-�eld B, eBφ is again generalized Calabi-Yau structure.

We end this section with some results about even-type generalized Calabi-Yau struc-
tures on complex surfaces. We start with an important result regarding B-�elds and the
complex structures from Example 2.44.

Lemma 2.49. LetM be a complex surface and σ a non-vanishing holomorphic (2, 0)-form.
Then, if τ is any 4-form, there exists a real closed 2-form B (that is, a B-�eld) such that
τ = B ∧ σ. Moreover, if τ is exact, then so is B.

Proof. First, we note that, by consideration of type, we have dσ = 0, σ ∧ σ = 0 and
σ ∧ σ 6= 0. Before proceeding with the proof, we will show

H2,2

∂
(M,C) ∼= H4

DR(M,C).

We note, by the Dolbeault theorem,

H2,2

∂
(M,C) ∼= H2(M,Ω2

M)

where Ω2
M is the sheaf of holomorphic 2-forms on M . But we are on a surface, so Ω2

M is
the canonical bundle KM . Hence, using Serre duality, we obtain

H2,2

∂
(M,C) ∼= H2(M,KM) ∼= H0(M,KM ⊗K∗M)∗ ∼= H0(M,O)∗ ∼= C.

Also,
H4
DR(M,C) ∼= C,

so these two spaces have the same dimension. Let us de�ne a map

Ψ : H2,2

∂
(M,C)→ H4

DR(M,C)
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as
Ψ([α]∂) = [α]d.

This map is well-de�ned. Indeed, if [α]∂ ∈ H
2,2

∂
(M,C), then α is a closed 4-form and so

it makes sense to say [α]d. Further, if [α1]∂ = [α2]∂, then α1 − α2 = ∂γ = (∂ + ∂)γ = dγ
since γ is a (2, 1)-form. So [α1]d = [α2]d, which means Ψ([α1]∂) = Ψ([α2]∂). Lastly, we
verify this map is surjective. Then, since the dimensions agree, we will be done. So let
[β] ∈ H4

DR(M,C) be given. Therefore, β is a closed 4-form, which means ∂β = 0, and so

Ψ([β]∂) = [β]d,

which says that Ψ is surjective. Hence,

H2,2

∂
(M,C) ∼= H4

DR(M,C).

Now, we proceed with proof of the lemma. Let us �rst assume that τ is exact. Then,
by our above argument,

[τ ]d = 0 = [τ ]∂,

which means we can write τ = ∂γ for some (2, 1)-form γ. Furthermore, σ is non-vanishing
and thus a global generator for the (2, 0)-forms, we may �nd a (0, 1)-form δ such that
σ ∧ δ = γ. Then, δ is a (1, 0)-form, which means σ ∧ δ = 0. De�ne B := d(δ + δ), which is
a real exact 2-form and we have

B ∧ σ = d(δ + δ) ∧ σ = d(δ ∧ σ) + d(δ ∧ σ) = dγ + 0 = τ,

where the second equality follows from the fact that σ is closed.

Next, if τ is not exact, then we may write

τ = (τ − cσ ∧ σ) + cσ ∧ σ,

where τ − cσ ∧ σ is exact (c ∈ C). This is because σ ∧ σ is a generator for H4
DR(M,C)

which is a 1-dimensional complex vector space. So by our above argument we may �nd a
real exact 2-form B′ such that B′ ∧ σ = τ − cσ ∧ σ. So de�ne B := B′ + cσ + cσ, a closed
real 2-form. Thus,

B ∧ σ = (B′ + cσ + cσ) ∧ σ
= B′ ∧ σ + cσ ∧ σ + 0

= τ − cσ ∧ σ + cσ ∧ σ
= τ.
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Remark 2.50. We remark that Hitchin discussed a more general version of the above
lemma in [17] (Section 4.4). Moreover, Huybrechts has a version of it in [21] for Kähler
surfaces (Proposition 1.5). But we have proven that it holds in general for any compact
complex surface with trivial canonical bundle. This will be of fundamental importance for
the remainder of this thesis.

Let us examine the general form of a generalized Calabi-Yau structure of even-type,
say

φ = φ0 + φ2 + φ4,

where φ0 is a constant, φ2 is a closed 2-form and φ4 is a 4-form. The class of generalized
Calabi-Yau structures is quite rigid, as the next theorem illustrates.

Theorem 2.51. Let φ = φ0 +φ2 +φ4 (where φi is an i-form) be a generalized Calabi-Yau
structure of even-type on a compact complex surface with trivial canonical bundle X. Then:

� If φ0 = 0, we get φ = eBφ2 where B is a real closed 2-form and φ2 is a generator for
the space of holomorphic 2-forms corresponding to some complex structure on X, and
is therefore of complex-type. Hence, complex-type generalized Calabi-Yau structures
are B-�eld transforms of complex structures.

� If φ0 6= 0, then φ = eB+iω where B is a real closed 2-form and ω is a real symplectic
form, which implies φ has type zero. Hence, symplectic-type generalized complex
structures are B-�eld transforms of symplectic structures.

Proof. Let φ = φ0 + φ2 + φ4 be a generalized Calabi-Yau structure of even-type on a
complex surface. The purity condition on a complex surface is equivalent to < φ, φ >= 0
by Proposition 2.28. This gives

2φ0φ4 − φ2 ∧ φ2 = 0, (2.1)

and < φ, φ >6= 0 gives

φ0φ4 − φ2 ∧ φ2 + φ0φ4 6= 0. (2.2)

Now let us consider some cases:

If φ0 6= 0, we may solve equation (2.1) to give φ4 = φ2∧φ2
2φ0

and, substituting this into

(2.2), we get

φ0φ0

2

(
(φ2)

(φ0)
− φ2

φ0

)2

6= 0.
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Let us de�ne φ2
φ0

:= B + iω. Then, the above equation implies that ω is non-degenerate.
By de�nition, ω is closed and therefore ω is a real symplectic form. One can check that

φ = eB+iω

(up to scale) where B is a real closed 2-form, that is, a B-�eld transform. Therefore,
in this case, we obtain B-�eld transforms of generalized Calabi-Yau structures that come
from symplectic structures.

On the other hand, if φ0 = 0, then the three conditions give us dφ2 = 0, φ2 ∧ φ2 = 0,
and φ2 ∧ φ2 6= 0. Hence, we may view φ2 as a non-vanishing holomorphic (2, 0)-form,
implying that it corresponds to a unique complex structure. Then, by Lemma 2.49, we get
φ4 = B ∧ φ2 for a real closed 2-form B. Therefore, φ = eBφ2.

2.5 Generalized Kähler Structures

On a complex manifold, one often considers extra structures such as Hermitian metrics.
A special class of such structures is given by the Kähler metrics. Recall that a Hermitian
metric g on a complex manifold (M,J) is said to be Kähler if its fundamental form ω is
d-closed; the choice of a Kähler metric g on (M,J) is called a Kähler structure on (M,J).
Examples of manifolds that admit Kähler metrics are K3 surfaces and complex tori. Note,
however, that not every complex manifold admits Kähler metrics, in which case we say
they are non-Kähler ; for example, Kodaira and Hopf surfaces are non-Kähler (because
their �rst Betti numbers are odd). There also exists a notion of Kähler structure in the
generalized setting.

Definition 2.52. A generalized Kähler structure is a pair of commuting generalized
complex structures (J1, J2) such that G := −J1J2 induces a positive de�nite metric G̃ on

T ⊕ T ∗ (where G̃(x, x) := 〈Gx, x〉 = 〈J1x, J2x〉 for all x ∈ C∞(T ⊕ T ∗)).

A trivial example of such a structure arises from an actual Kähler structure.

Example 2.53. (The Trivial Generalized Kähler Structure) If we start with a
Kähler structure on M , say (g, J, ω), then we may consider g : T → T ∗ via X 7→ g(X,−).
The properties of a Kähler structure give us that the diagram

T
g−→ T ∗

J ↑ ↑ ω
T

id−→ T
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commutes. Then we can show J∗ωJ = ω by computing for X, Y ∈ C∞(T ):

(J∗ωJ(X))(Y ) = ω(J(X))(J(Y ))

= ω(J(X), J(Y ))

= g(J2(X), J(Y ))

= g(J(X), Y )

= ω(X, Y ),

so in particular
J∗ω = ωJ−1 = −ωJ.

We will use the natural generalized complex structures, namely,

JJ :=

[
J 0
0 −J∗

]
and Jω :=

[
0 −ω−1

ω 0

]
.

We are using the negative version of Example 2.10 for JJ , but this is still a generalized
complex structure. To check they de�ne a generalized Kähler structure we must show that
they commute and that G = −JJJω induces a positive de�nite metric.

Notice that

JJJω =

[
0 −Jω−1

−J∗ω 0

]
and

JωJJ =

[
0 ω−1J∗

ωJ 0

]
.

Then we notice that J∗ω = −ωJ from the above computations, and inverting both sides
of this gives ω−1(J∗)−1 = −J−1ω−1 and hence −ω−1J∗ = Jω−1. Therefore, JJJω = JωJJ .

Next, observe that

G = −JJJω = −
[

0 −Jω−1

−J∗ω 0

]
=

[
0 g−1

g 0

]
.

Then, a direct computation with the identi�cation (T ⊕ T ∗)∗ = T ⊕ T ∗ yields

〈G(X + α), X + α〉 = g(X,X) + g(g−1(α), g−1(α)) > 0,

which implies that G induces a positive de�nite metric. Hence, we have shown that a
Kähler structure gives rise to a generalized Kähler structure.
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We have seen in Example 2.53, that any Kähler manifold admits a trivial generalized
Kähler structure. For example, K3 surfaces and complex tori both admit trivial generalized
Kähler structures. Nevertheless, Kähler manifolds may admit generalized Kähler structures
other than the trivial ones; generalized Kähler structures and their deformations have been
extensively studied by Goto in [10]. Non-Kähler manifolds can also admit generalized
Kähler structures; for example, Hopf surfaces admit many (twisted) generalized Kähler
structures (see [11] and [14] and references therein). Nonetheless, not every manifold
admits generalized Kähler structures, as is the case for Kodaira surfaces.

In [11], it was proven that a generalized Kähler structure gives rise to a biHermitian
structure. However, Apostolov proved the following in [1].

Proposition 2.54 (Apostolov, [1], Corollary 2). Any compact biHermitian surface with
odd �rst Betti number has Kodaira dimension −∞.

Corollary 2.55. Kodaira surfaces do not admit generalized Kähler structures.

Proof. This follows from the fact that Kodaira surfaces have Kodaira dimension 0.

While Apostolov's result gives us the answer via biHermitian geometry, we may check
directly why certain pairs (J1, J2) of generalized complex structures fail to form a gener-
alized Kähler pair. We will see, in particular, that G = −J1J2 is not positive de�nite for
those pairs. This will be done in Section 4.5.

Remark 2.56. Although the structures are not positive de�nite they are still non-
degenerate and so give rise to generalized pseudo-Kähler structures.
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Chapter 3

Global Torelli Theorems

In this chapter, we examine some generalizations of classical global Torelli theorems for
complex surfaces. We work on compact holomorphic symplectic surfaces, which are K3
surfaces, complex 2-tori, and Kodaira surfaces. While K3 surfaces and complex tori are
Kähler and, in fact, hyperKähler, Kodaira surfaces are non-Kähler. Sawon and Glover
examine families of generalized complex structures on hyperKähler manifolds in [30] and
construct a generalized twistor space. In [21] Huybrechts examines the moduli space of
generalized Calabi-Yau structures on K3 surfaces. A generalized Global Torelli Theorem
for K3 surfaces was presented by Huybrechts ([21], Proposition 2.11) by using the notions
of Kähler and hyperKähler generalized Calabi-Yau structures. We will focus on extending
this Global Torelli Theorem to complex 2-tori and Kodaira surfaces. In fact, the results
he obtained can be extended directly to complex 2-tori for even-type generalized complex
structures. We present a summary of these results in Section 3.1. Then, in Section 3.2, we
use a similar technique to prove a global Torelli theorem for Kodaira surfaces. However,
the assumptions required on a Kodaira surface are di�erent than those for a Kähler surface.
Finally, in Section 3.3, we explicitly construct a family of generalized Calabi-Yau structures
of Kähler-type on a Kodaira surface, despite such surfaces being non-Kähler.

For reference, let us provide statements of the classical global Torelli theorems for K3
surfaces, complex 2-tori, and Kodaira surfaces. The versions we discuss give conditions
for when two complex structures are isomorphic. Recall every complex structure J on a
compact complex surface with trivial canonical bundle gives rise to a holomorphic non-
vanishing (2, 0)-form. On the other hand, a 2-form σ satisfying dσ = 0, σ ∧ σ = 0 and
σ ∧ σ 6= 0 de�nes a unique complex structure.

Theorem 3.1. (Global Torelli for K3 and 2-Tori) Let M be a K3 surface or a
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complex 2-torus. Then, the complex structure de�ned by a 2-form σ depends (up to iso-
morphism) exclusively on the cohomology class [σ] ∈ H2

DR(M,C).

Theorem 3.2 (Borcea, [2], Theorem 3). (Global Torelli for Kodaira Surfaces) Let
N be a Kodaira surface. Then, the complex structure de�ned by a 2-form σ depends (up
to isomorphism) exclusively on the cohomology class [σ] ∈ H2

DR(N,C).

Theorem 3.1 is not the usual statement of the Global Torelli Theorem but rather an
implication that we will use in the thesis. For more information see Huybrechts' paper on
di�erent versions of the Global Torelli Theorem in [20] (Remark 1.6, in particular). In what
follows we will focus on only even-type generalized Calabi-Yau structures. An odd-type
global Torelli theorem is a possible direction of future research.

3.1 Global Torelli on K3 Surfaces and Complex Tori

We now specialize to a K3 surface or a complex torus M . We only be considering gen-
eralized Calabi-Yau structures of even-type here. Although even-type structures are the
theme of most of this thesis, odd-type structures cannot exist on a K3 surface because their
�rst Betti number is zero (see [21]). We also note that given any complex structure J on
M there exists a Kähler form corresponding to J . In fact, since we have the Calabi-Yau
theorem on K3 surfaces and complex 2-tori, we can say that any complex structure on M
admits a unique Ricci-�at Kähler structure in any Kähler class. However, on a K3 sur-
face or complex 2-torus, Ricci-�at Kähler structures are precisely hyperKähler structures.
Therefore we have established the following result.

Theorem 3.3 (Calabi-Yau). A complex structure and Kähler class on a K3 surface or
complex 2-torus determine a unique hyperKähler metric.

Associate to any generalized Calabi-Yau structure φ a real vector space Pφ ⊆ A∗(M)
which is spanned by the real and imaginary parts of φ. Similarly, P[φ] ⊆ H∗(M,R) is
generated by the real and imaginary parts of [φ] ∈ H∗(M,C). To motivate our de�nitions,
consider a symplectic form ω. Then, it is of type (1, 1) with respect to a complex structure
σ (a (2, 0)-form) if and only if σ ∧ ω = 0. In this case, ω (or −ω) is a Kähler form for
J . This implies that the vector spaces Pσ and Peiω de�ned above are pointwise orthogonal
with respect to the Mukai pairing. Mimicking this, we make the following de�nition.

Definition 3.4. Let φ be a generalized Calabi-Yau structure on M . Then φ is Kähler
(or of Kähler-type) if there exists another generalized Calabi-Yau structure φ′ such that
Pφ and Pφ′ are pointwise orthogonal. We then say that φ′ is a Kähler structure for φ.
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Remark 3.5. One can check that if φ′ is a Kähler structure for φ and B is a B-�eld,
then eBφ′ is a Kähler structure for eBφ.

Let us look at our two main examples.

Example 3.6. Let φ = σ be a complex structure. It can then be shown that any Kähler
structure φ′ for φ must be of symplectic-type, that is, φ′0 6= 0 (see [21], Example 2.2).
Theorem 2.51 says that there exists a B-�eld B and a symplectic structure ω such that
φ′ = eB+iω. A direct computation then shows that the orthogonality condition is equivalent
to

σ ∧ ω = 0 = σ ∧B.

As we mentioned above, this means that ω (or −ω) is a Kähler structure for σ; moreover,
B is a closed real (1, 1)-form with respect to σ. In particular, this implies that a complex
structure σ is Kähler in the classical sense if and only if it is Kähler in the generalized
Calabi-Yau sense. For this reason we will not be considering these structures when we
move onto Kodaira surfaces.

Example 3.7. Suppose φ = eiω is a generalized Calabi-Yau structure coming from a
symplectic structure ω. If φ′ is a Kähler structure for φ, then there are two cases: φ′0 = 0
or φ′0 6= 0. If φ′0 = 0, then Theorem 2.51 tells us that φ′ = eBσ for a B-�eld B and
a complex structure σ. By Remark 3.5, σ is a Kähler structure for e−Bφ = e−B+iω and
therefore we are in the situation of example 3.6. On the other hand, if φ′0 6= 0, we may
write φ′ = eB

′+iω′ , and the orthogonality conditions are

B′ ∧ ω = B′ ∧ ω′ = ω ∧ ω′ = 0

and
B′ ∧B′ = ω ∧ ω + ω′ ∧ ω′.

The last condition implies that B′ is also symplectic because B′2 = ω2 + ω′2 6= 0.

Remark 3.8. It is interesting to note that generalized Calabi-Yau structures of Kähler-
type do, in fact, exist on Kodaira surfaces, despite those surfaces being non-Kähler. We
will see this in Section 3.3.

Next, we wish to discuss an analogue for hyperKählerity for generalized Calabi-Yau
structures. Classically, a symplectic form ω is hyperKähler with respect to the complex
structure σ if σ ∧ σ = λω ∧ ω for some scalar λ ∈ C.
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Definition 3.9. A generalized Calabi-Yau structure φ is of hyperKähler-type if there
exists another generalized Calabi-Yau structure φ′ such that φ′ is a Kähler structure for φ
and < φ, φ >=< φ′, φ′ > In this case, we call φ′ a hyperKahler structure for φ.

Remark 3.10. As was the case for Kähler-type structures, hyperKähler structures are
also preserved under B-transforms. That is, if φ′ is a (hyper)Kähler structure for φ then
eBφ′ is a (hyper)Kähler structure for eBφ.

Let us look again at our two examples.

Example 3.11. If φ = σ is a complex structure, then a Kähler structure for φ is φ′ =
λeB+iω where B is a closed real (1, 1)-form and ±ω is a Kähler form for σ. Then, φ′ is a
hyperKähler structure for φ if

2|λ|2ω ∧ ω = σ ∧ σ,

which is equivalent to the condition < φ, φ >=< φ′, φ′ >. In other words, ±ω is a
hyperKähler form.

Example 3.12. If φ = eiω, then once again we have two cases. If the corresponding
hyperKähler structure φ′ is of complex-type, then φ′ = eBσ for a B-�eld B and a complex
structure σ. Remark 3.10 tells us that σ is a hyperKähler structure for e−Bφ = e−B+iω, so
we are in the same situation as Example 3.11.

On the other hand, if φ′ = e(B′+iω′) then we have the same conditions we had from
example 3.7 with the additional condition

ω ∧ ω = ω′ ∧ ω′.

Consider the 2-form

σ :=
1√
2
B′ + iω′.

One readily checks that σ de�nes a complex structure for which ±ω is a hyperKähler form.

Remark 3.13. In both of the above examples, we can see generalized Calabi-Yau struc-
tures of hyperKähler-type give rise to classical Kähler structures. So it is impossible to
construct such structures on non-Kähler surfaces such as Kodaira surfaces.

We are now in a position to discuss the Global Torelli Theorem for a K3 surface or a
complex 2-torus. This extends the result of Huybrechts, [21], Proposition 2.11.
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Theorem 3.14. (Global Torelli) Let φ and ψ be two generalized Calabi-Yau structures
on a K3 surface or complex 2-torus M and suppose φ and ψ are both of hyperKähler-type.
If P[φ] = P[ψ] then there exists a real exact B-�eld B and a di�eomorphism f such that,
up to rescaling, φ = eBf ∗ψ. That is, φ and ψ are isomorphic generalized Calabi-Yau
structures.

Proof. Suppose that φ and ψ are of complex-type, that is, φ = φ2 + φ4 and ψ = ψ2 + ψ4,
where φ2 and ψ2 correspond to complex structures on M . Since P[φ] = P[ψ], we get
[φ2] = [ψ2] and the classical Torelli Theorem (3.1) provides a di�eomorphism f of M such
that f ∗ψ2 = φ2. Thus, without loss of generality, let us then assume ψ2 = φ2. So we have
φ = φ2 + φ4 and ψ = φ2 + ψ4. We also know [φ4] = [ψ4] implying that φ4 − ψ4 is exact.
By Lemma 2.49, we can �nd an exact B-�eld B such that φ4 − ψ4 = B ∧ φ2. Therefore,
φ = φ2 + ψ4 + B ∧ φ2 = eBψ. Hence, φ and ψ are isomorphic as generalized Calabi-Yau
structures.

On the other hand, if φ0 6= 0, then ψ0 6= 0 as well since [φ0] = [ψ0]. Let us rescale
to make φ0 = ψ0 = 1. Then, φ = eB+iω and ψ = eB

′+iω′ , for cohomologous symplectic
structures ω and ω′ and cohomologous real closed 2-forms B and B′. So B and B′ di�er
by an exact 2-form. Without loss of generality, we may assume φ = eiω and ψ = eiω

′
with

[ω] = [ω′]. Our goal is to �nd an isomorphism f such that f ∗ω = ω′.

This is the point of the proof where we require the hyperKähler assumption. By Ex-
ample 3.12, we can �nd complex structures σ and σ′ such that ω and ω′ are hyperKähler
with respect to σ and σ′, respectively. The fact that [ω] = [ω′] allows us to choose σ and
σ′ such that [σ] = [σ′] (see [21], Proposition 2.11). Once again, we invoke the classical
Global Torelli Theorem (3.1) to obtain an isomorphism f such that f ∗σ = σ′. This implies
that both f ∗ω and ω′ are hyperKähler with respect to f ∗σ; but the Calabi-Yau theorem
(Theorem 3.3) tells us that hyperKähler forms are unique, so f ∗ω = ω′.

We have shown that generalized Calabi-Yau structures of hyperKähler-type depend, up
to isomorphism, only on their cohomology class. Proving an analogous result on Kodaira
surfaces is our next goal.

Remark 3.15. An important remark before we proceed to Kodaira surfaces is that the
hyperKählerity assumption in the Global Torelli Theorem was only required when both
structures were of symplectic-type. We cannot make the same assumption on Kodaira
surfaces as they are non-Kähler. In that case we will need a di�erent assumption to provide
enough structure to prove the theorem. It should be stressed that it is not known whether
or not the hyperKählerity assumption is required. On a K3 surface, Kodaira surface, and
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complex 2-torus it is unknown if [ω] = [ω′] implies the existence of a di�eomorphism f of
M such that f ∗ω = ω′. Counterexamples to the existence of such f are known for smooth
manifolds of dimension 6, for example see [24] and [23].

3.2 Global Torelli on Kodaira Surfaces

As in the case of K3 surfaces and complex 2-tori, one has a classical Global Torelli Theorem
for complex structures on Kodaira surfaces, Theorem 3.2. We will apply this theorem to
obtain a global Torelli theorem for generalized complex structures. Denote by N a Kodaira
surface, which is a complex nilmanifold. Proposition 2.46 says that generalized Calabi-Yau
structures are equivalent to generalized complex structures on nilmanifolds. So let us work
with generalized Calabi-Yau structures in this section and use these results to comment on
the moduli space of generalized complex structures in Chapter 4.

Before we state the main theorem of this section, we recall a useful version of Moser's
theorem (see [8]).

Proposition 3.16 (Moser). Let Sc denote the set of symplectic forms ω on a manifold
M such that [ω] = c for some �xed c ∈ H2

DR(M,R). If M is compact, all symplectic forms
in the same path connected component of Sc are symplectomorphic.

We know that a Kodaira surface N is non-Kähler, which means hyperKähler-type
generalized complex structures do not exist on N (see remark 3.15). Instead, for the
symplectic-type setting, we make su�cient assumptions to apply Moser's result.

Theorem 3.17. (Global Torelli) Let φ be a generalized Calabi-Yau structure of even-
type on a Kodaira surface N , then:

1. If φ is a generalized Calabi-Yau structure of complex-type, then φ depends, up to
isomorphism, exclusively on its cohomology class

[φ] ∈ H∗DR(N,C).

2. If φ is a generalized Calabi-Yau structure of symplectic-type (say φ = eB+iω), then
up to isomorphism φ depends on its cohomology class

[φ] ∈ H∗DR(N,C)

and the path connected component of

S[ω] ⊆ H2
DR(N,R).
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Proof. Let φ = φ0 +φ2 +φ4 and φ
′ = φ′0 +φ′2 +φ′4 be two generalized Calabi-Yau structures

of even-type on N and suppose [φ] = [φ′]. Then, [φ0] = [φ′0], so either both φ0 and φ′0 are
zero or both are non-zero.

First, suppose φ0 = φ′0 = 0. Then, φ = φ2 + φ4 and φ′ = φ′2 + φ′4, where φ2 and φ′2
correspond to complex structures on N . Moreover, [φ] = [φ′] implies [φ2] = [φ′2]. Theorem
3.2 guarantees the existence of a di�eomorphism f of N such that f ∗φ′2 = φ2. Therefore,
without loss of generality, we may assume φ2 = φ′2. So we have φ = φ2+φ4 and φ

′ = φ2+φ′4
where [φ4] = [φ′4], that is, φ4−φ′4 is exact. Lemma 2.49 gives an exact B-�eld B such that
φ4− φ′4 = B ∧ φ2. Hence, φ = φ2 + φ′4 +B ∧ φ2 = eBφ′. Therefore φ and φ′ are isomorphic
generalized complex structures.

Next, suppose φ0 and φ′0 are non-zero. Then we may write φ = eB+iω and φ′ = eB
′+iω′ .

Furthermore, suppose there is a path from ω′ to ω in S[ω]. In this case, [φ] = [φ′] implies
B and B′ are cohomologous, which means B − B′ is an exact B-�eld. Without loss of
generality, we may reduce to the case where φ = eiω and φ′ = eiω

′
. Then, we are in a

situation where [ω] = [ω′] and, by assumption, there is a path from ω′ to ω in S[ω]. Moser's
result, Proposition 3.16, gives us a di�eomorphism f of M such that f ∗ω = ω′. Then,
f ∗φ = φ′, as desired.

Remark 3.18. Note that it is not clear that we require the path-connected assumption
in the second part of Theorem 3.17. However, omitting it would require us to prove that
any two symplectic forms ω and ω′ satisfying [ω] = [ω′] are symplectomorphic. This is
generally not known on complex surfaces.

3.3 Generalized Calabi-Yau Structures of Kähler-Type

on Kodaira Surfaces

In this section, we construct a family of pairs (φ, φ′) of generalized Calabi-Yau structures
of Kähler-type such that φ and φ′ are both of symplectic-type (as examined in Example
3.7). Recall that a generalized Calabi-Yau structure φ is of Kähler-type if there exists
another generalized Calabi-Yau structure φ′ with an orthogonality condition (see De�nition
3.4). In the complex-type setting, the orthogonality condition implies that φ gives rise
to a usual Kähler structure, which do not exist on Kodaira surfaces. However, in the
symplectic-type setting, φ = eiω, one can explicitly �nd a second generalized Calabi-Yau
structure φ′ = eB

′+iω′ of symplectic-type that makes (φ, φ′) into a Kähler-type pair. The
orthogonality condition is now equivalent to the four conditions (see Example 3.7):
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1. B′ ∧ ω = 0,

2. B′ ∧ ω′ = 0,

3. ω ∧ ω′ = 0,

4. B ∧B = ω ∧ ω + ω′ ∧ ω′.

Note that ω, ω′, and B are real closed 2-forms. Moreover, the fourth condition implies that
B is also a symplectic 2-form (since B2 6= 0). In [25], a family of symplectic structures
is constructed as follows. Note that Kodaira surfaces are parallelizable and so T ∗N admits
at least four linearly independent global sections. One can choose four global sections
α, β, γ, δ such that α∧γ−β∧δ, α∧δ+β∧γ, α∧γ+β∧δ, and α∧δ−β∧γ are generators
of H2

DR(N,R). Then

u1(α ∧ γ − β ∧ δ) + v1(α ∧ δ + β ∧ γ) + u2(α ∧ γ + β ∧ δ) + v2(α ∧ δ − β ∧ γ)

is symplectic if u2
1 + v2

1 − u2
2 − v2

2 6= 0.

Therefore, let us write

ω = u1(α ∧ γ − β ∧ δ) + v1(α ∧ δ + β ∧ γ) + u2(α ∧ γ + β ∧ δ) + v2(α ∧ δ − β ∧ γ),

ω′ = u′1(α ∧ γ − β ∧ δ) + v′1(α ∧ δ + β ∧ γ) + u′2(α ∧ γ + β ∧ δ) + v′2(α ∧ δ − β ∧ γ), and

B′ = B1(α ∧ γ − β ∧ δ) + C1(α ∧ δ + β ∧ γ) +B2(α ∧ γ + β ∧ δ) + C2(α ∧ δ − β ∧ γ).

Then, the above four Kähler conditions respectively give us:

1. B1u1 + C1v1 −B2u2 − C2v2 = 0,

2. B1u
′
1 + C1v

′
1 −B2u

′
2 − C2v

′
2 = 0,

3. u1u
′
1 + v1v

′
1 − u2u

′
2 − v2v

′
2 = 0,

4. B2
1 + C2

1 −B2
2 − C2

2 = u2
1 + v2

1 − u2
2 − v2

2 + (u′1)2 + (v′1)2 − (u′2)2 − (v′2)2.

Therefore, any collection of twelve real numbers u1, v1, u2, v2, u
′
1, v
′
1, u
′
2, v
′
2, B1, C1, B2, C2

that satisfy the above four equations as well as the symplectic conditions (u2
1+v2

1−u2
2−v2

2 6=
0, (u′1)2 +(v′1)2−(u′2)2−(v′2)2 6= 0, and B2

1 +C2
1−B2

2−C2
2 6= 0) will give rise to a generalized
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Calabi-Yau structure on a Kodaira surface that is of Kähler-type. To see that the conditions
are not inconsistent, observe that

u1 = 1, v1 = 1, u2 = 0, v2 = 0,
u′1 = 1, v′1 = −1, u′2 = 2, v′2 = 2,

B1 = 0, C1 = 0, B2 = −
√

2, C2 =
√

2,

is one solution. Note that this solution gives ω2 > 0, (ω′)2 < 0, and (B′)2 < 0, so the
orientations are di�erent. However, this was not a condition in the de�nition and this is a
valid Kähler-type generalized Calabi-Yau structure.
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Chapter 4

Deformations of Generalized Complex

Structures

In this chapter, we �rst introduce the notion of generalized complex deformations in Section
4.1 (as presented by Gualtieri in [11]) and examine some general facts regarding generalized
complex deformations for symplectic-type structures and B-�eld transforms. Then, in Sec-
tions 4.2 and 4.3, we compute some explicit deformation spaces for even-type generalized
complex structures on Kodaira surfaces and a speci�c family of complex 2-tori. In Section
4.4, we collect the deformation results together as well as our new Global Torelli theo-
rems from Chapter 3 to comment on the moduli space of even-type generalized complex
structures on Kodaira surfaces and complex 2-tori. Section 4.5 exhibits some explicit com-
putations that show that certain pairs of generalized complex structures do not give rise
to a generalized Kähler structure on Kodaira surfaces. Finally, in Section 4.6 we present
an example of an odd-type generalized complex structure on a Kodaira surface.

4.1 Deformation Theory

We begin with a preliminary look at generalized deformation theory in the sense of
Kuranishi. See [11] for a complete picture of generalized complex deformations. In general,
to deform a generalized complex structure J one may instead deform its +i-eigenbundle L.
Say L(t) is a continuous family of generalized almost complex structures with L(0) = L.
That means that L(t) is maximal isotropic and that (T ⊕ T ∗) ⊗ C = L(t) ⊕ L(t) (that
is, L(t) ∩ L(t) = {0}) for any t. We may encode such small deformations by a smooth
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homomorphism ε(t) : L → L and consider L(t) = (1 + ε(t))L, that is, ν 7→ ν + ε(t)ν for
ν ∈ L. Also, L(t) = (1 + ε(t))L = (1 + ε(t))L. The conditions we place on L(t) are that
it must be isotropic, have zero intersection with L(t), and be closed under the Courant
bracket.

First, for the deformed structure to be isotropic, it must satisfy, for all a, b ∈ C∞(L),
< a+ ε(t)a, b+ ε(t)b >= 0. But then we get

0 = < a+ ε(t)a, b+ ε(t)b >

= < a, b > + < a, ε(t)b > + < ε(t)a, b > + < ε(t)a, ε(t)b >

= < a, ε(t)b > + < ε(t)a, b > .

The last step follows becuse both L and L are isotropic. Thus, ε(t) must satisfy

< a, ε(t)b > + < ε(t)a, b >= 0

for all a, b ∈ C∞(L), or equivalently, ε(t) ∈ C∞(∧2L∗) after identifying L with L∗ via 〈·, ·〉.
Next, L(t) has zero intersection with L(t) if and only if the endomorphism on L⊕ L

A(t) :=

[
1 ε(t)
ε(t) 1

]
is invertible (see [11]). In this case, J(t) = A(t)JA(t)−1 is a new generalized almost complex
structure.

Before we can discuss integrability of the deformed structures, we need to introduce
the concepts Lie algebroids and Lie algebroid di�erentials.

Definition 4.1. A Lie algebroid over a manifold M is a triple (E, ρ, [·, ·]E) where E
is a vector bundle on M , ρ : E → T is a bundle map called the anchor map and [·, ·]E is a
Lie algebra structure on sections of E such that

[x, fy]E = ρ(x)f · y + f [x, y]E,

where x, y are sections of E and f ∈ C∞(M). Moreover, Lie algebroids (E, ρ, [·, ·]E) and
(E ′, ρ′, [·, ·]E′) are isomorphic if there is a vector bundle isomorphism φ : E → E ′ such
that ρ′ ◦ φ = ρ and [φ(a), φ(b)]E′ = φ([a, b]E).

Example 4.2. (The Tangent Bundle) The basic example of a Lie algebroid is (T, 1, [·, ·])
or (TC, 1, [·, ·]), where the anchor map is the identity map and [·, ·] is the standard Lie
bracket.
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Example 4.3. (Generalized Complex Structures) If L is a generalized complex
structure, then (L, πT , [·, ·]C) is a Lie algebroid. Here πT is projection onto TC and [·, ·]C is
the Courant bracket.

For more information on general Lie algebroids see [9]. We wish to examine the exterior
di�erential algebra of a Lie algebroid (E, ρ, [·, ·]E). Consider the exterior algebra ∧∗E∗ of
E∗.

Definition 4.4. A section of ∧kE∗ is called a (homogeneous) form of degree k. or
simply a k-form when the context is clear.

Definition 4.5. De�ne a di�erential operator that takes sections of ∧kE∗ to ∧k+1E∗ as
follows: for γ ∈ C∞(∧kE∗) and v1, v2, . . . , vk+1 ∈ C∞(E):

dEγ(v1, . . . , vk+1) =
∑
i

(−1)i+1ρ(vi) · γ(v1, . . . , v̂i, . . . , vk+1)

+
∑
i<j

(−1)i+jγ([vi, vj]E, v1, . . . , v̂i, . . . , v̂j, . . . , vk+1).

Here, v̂i means remove index i. This is the analogue of the invariant de�nition of the usual
exterior derivative d.

One can show that d2
E = 0. Then, using this di�erential operator, we can also de�ne

analogues of the deRham cohomology groups.

Definition 4.6. For a Lie algebroid (E, ρ, [·, ·]E), the di�erential cohomology groups are
de�ned as

Hk
E(M) =

{dE-closed k-forms}
{dE-exact k-forms}

.

Example 4.7. In the base case, (E, ρ, [·, ·]E) = (TC, 1, [·, ·]), the cohomology groups are
the complex deRham groups, that is, Hk

E(M) = Hk
DR(M,C).

We will shortly be restricting ourselves to the generalized complex setting, (L, πT , [·, ·]C),
but let us �rst prove a general result regarding isomorphic Lie algebroids, their di�erentials,
and their cohomology groups.

Lemma 4.8. Let (E, ρ, [·, ·]E) and (E ′, ρ′, [·, ·]E′) be two isomorphic Lie algebroids over a
manifold M and let φ : E → E ′ be the isomorphism. Then the following diagram commutes

∧k(E ′)∗ dE′−→ ∧k+1(E ′)∗

φ∗ ↓ ↓ φ∗

∧kE∗ dE−→ ∧k+1E∗.
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Equivalently, φ∗ ◦ dE′ = dE ◦ φ∗.

Proof. For a smooth function f and a ∈ C∞(E), we obtain

dE(f)(a) = ρ(a)(f) = ρ′(φ(a))(f) = dE′(f)(φ(a)).

We now establish a similar relation for any section of ∧k(E∗). Let us explicitly compute
this when k = 1. First note that, since φ : E → E ′ is an isomorphism, so is φ∗ : (E ′)∗ →
E∗. Then, for a, b ∈ C∞(E) and α ∈ C∞(E∗), we may �nd unique x, y ∈ C∞(E ′) and
γ ∈ C∞((E ′)∗) such that a = φ−1(x), b = φ−1(y), and α = φ∗(γ). Therefore, we obtain

dE(α)(a, b) = ρ(a)(α(b))− ρ(b)(α(a))− α([a, b]E)

= ρ(φ−1(x))(φ∗(γ)(φ−1(y)))

−ρ(φ−1(y))(φ∗(γ)(φ−1(x)))− φ∗(γ)([φ−1(x), φ−1(y)]E)

= ρ′(x)(γ(y))− ρ′(y)(γ(x))− γ([x, y]E′)

= dE′(γ)(x, y).

We can extend this argument via induction to C∞(∧kE∗) easily. Thus, the two Lie alge-
broid di�erentials are related by φ∗, namely φ∗ ◦ dE′ = dE ◦ φ∗.

Let us use the above lemma to prove that two isomorphic Lie algebroids have isomorphic
cohomology groups.

Theorem 4.9. Let (E, ρ, [·, ·]E) and (E ′, ρ′, [·, ·]E′) be two isomorphic Lie algebroids over
a manifold M . Then Hk

E(M) ∼= Hk
E′(M).

Proof. Suppose E and E ′ are isomorphic, let φ : E → E ′ be the isomorphism. De�ne a
map from Hk

E′(M) to Hk
E(M) as

[α] 7→ [φ∗(α)].

This is well de�ned for if [α1]E′ = [α2]E′ then α1 − α2 = dE′γ for some (k − 1)-form γ.
Then, by the above lemma, we get

φ∗(α1)− φ∗(α2) = φ∗(dE′γ) = dE(φ∗(γ))

and so [φ∗(α1)]E = [φ∗(α2)]E. Finally, the map is a bijection because φ is a bijection.

We now specialize to the case when our Lie algebroid has the form (L, πT , [·, ·]C) for a
generalized complex structure L. Denote the cohomology groups, more precisely, dL-closed
sections of L modulo dL-exact ones, by H

k
L(M) on the manifold M . Let us �rst establish

some corollaries of Theorem 4.9.
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Corollary 4.10. Let L be a generalized complex structure on M . If L is of type zero
everywhere, then the cohomology groups Hk

L(M) are isomorphic to the (complex) deRham
cohomology groups Hk

DR(M,C).

Proof. Consider the two Lie algebroids (TC, 1, [·, ·]) and (L, πT , [·, ·]C), from Examples 4.2
and 4.3, respectively. Since L has type zero everywhere the projection, πT : L → TC is
a surjection and therefore an isomorphism of vector bundles. Furthermore, πT is a Lie
algebroid isomorphism since 1 ◦ πT = πT and, for a, b ∈ C∞(L),

[πT (a), πT (b)] = πT ([a, b]C)

by the de�nition of the Courant bracket. Therefore, Theorem 4.9 applies and we obtain
Hk
L(M) ∼= Hk

DR(M,C).

Corollary 4.11. Let L be a generalized complex structure and B a real closed 2-form
on M . Let LB = eB(L) be the B-�eld transform of L. Then, Hk

L(M) ∼= Hk
LB

(M).

Proof. Note that our two Lie algebroids are (L, πT , [·, ·]C) and (LB, πT , [·, ·]C) in this case.
By de�nition, eB : L → LB is a vector bundle isomorphism. Let us check that it is an
isomorphism of Lie algebroids. First,

πT ◦ eB(X + α) = πT (X + α + ιXB) = X = πT (X + α),

which means πT ◦ eB = πT . Next, since B is closed, Proposition 2.33 gives

[eBx, eBy]C = eB([x, y]C)

for x, y ∈ C∞(L). Thus, eB is an isomorphism of Lie algebroids and we may apply Theorem
4.9 to obtain Hk

L(M) ∼= Hk
LB

(M).

We can now discuss when a deformed generalized complex structure is integrable. This
theorem is established in [11].

Theorem 4.12 (Gualtieri, [11], Section 5.1). J(t) is integrable if and only if ε(t) satis�es
the Maurer-Cartan equation

dL(ε(t)) +
1

2
[ε(t), ε(t)]S = 0,

where dL : C∞(∧2L∗) → C∞(∧3L∗) is the Lie algebroid di�erential of (L, πT , [·, ·]C) and
[·, ·]S is the Schouten bracket that extends the Courant bracket.
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Let us examine the smooth maps ε(t) more closely. Write ε(t) = ε0 + tε1 + t2ε2 + · · · ,
its power series expansion. Since we would like to obtain the original structure at t = 0,
we can set ε0 = 0. Further, if ε(t) satis�es the Maurer-Cartain equation, then

dL(ε(t)) +
1

2
[ε(t), ε(t)]S = 0.

Taking the derivative of both sides with respect to t yields

dL

(
dε(t)

dt

)
+

[
dε(t)

dt
, ε(t)

]
S

= 0

and evaluating at t = 0 gives
dL(ε1) + [ε1, 0]S = 0,

which implies dL(ε1) = 0.

Therefore, the �rst order part of the deformation lies in the kernel of dL. In [11], it is
shown that two �rst order deformations are equivalent if they di�er by an element in the
image of dL and so we will be examining cohomology classes of �rst order deformations ε1
in H2

L(M).

Next, we present the deformation theorem for generalized complex structures.

Theorem 4.13 (Gualtieri, [11], Theorem 5.4). There exists an open neighbourhood U ⊆
H2
L(M) containing zero, a smooth familyM′ = {εu : u ∈ U, ε0 = 0} of generalized complex

deformations of J, and an analytic obstruction map Φ : U → H3
L(M) with Φ(0) = 0 and

dΦ(0) = 0, such that the deformations in the sub-family M = {εz : z ∈ Φ−1(0)} are the
integrable ones. Furthermore, any su�ciently small deformation ε of J is equivalent to at
least one member of M. Finally, if the obstruction map vanishes, then M is a smooth
locally complete family of deformations.

Remark 4.14. The obstruction map is de�ned as the projection of [ε1, ε1]S onto a certain
subspace of C∞(∧3L∗). What is important for us is that, if the �rst order deformation tε1
satis�es [ε1, ε1]S = 0, then the obstruction map vanishes. This is of course not surprising
since, if the Schouten bracket [ε1, ε1] vanishes, then the �rst order deformation tε1 is a
full deformation of our structure, as tε1 satis�es the Maurer-Cartain equation on its own
without the need for higher order terms.

Theorem 4.15. If L is a generalized complex structure of type zero everywhere, then
there exists a small open neighbourhood U ⊆ H2

L(M) of zero on which the obstruction map
Φ vanishes. In other words, U is a smooth locally complete family of deformations.
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Proof. Suppose L has type zero everywhere. Proposition 2.37 tells us that L is the B-�eld
transform of a symplectic structure, say ω. Therefore, a generator for the associated pure
spinor line is eB+iω. Consider in�nitesimal deformations ε in an open neighbourhood U ⊆
H2
L(M) containing zero. Since L has type zero everywhere, we know H2

L(M) ∼= H2
DR(M)

by Corollary 4.10. Let Ũ be the image of U in H2
DR(M), so that Ũ is a neighbourhood of

0. In addition, for [ε] ∈ U , let [ε̃] ∈ Ũ be the image of [ε]. Write ε̃ = ε̃1 + iε̃2 where ε̃1 and
ε̃2 are the real and imaginary parts of ε̃. Choose U small enough so that the following two
conditions are satis�ed. First, ω + Im(ε̃) remains non-degenerate for any [ε̃] ∈ Ũ . Second,
if [ε̃2] = [ε̃2

′] then there is a path from ω + ε̃2 to ω + ε̃2
′ in S[ω+ε̃2] (the notation is from

Proposition 3.16).

For each [ε̃] ∈ Ũ , consider B + iω+ ε̃ = B + ε̃1 + i(ω+ ε̃2). Then B + ε̃1 is a real closed
2-form and, by construction, ω + ε̃2 is symplectic. This means that eB+iω+ε̃ is a B-�eld
transform of a symplectic structure (here the B-�eld is B+ ε̃1 and the symplectic structure
is ω + ε̃2) and is therefore a generalized complex structure on M . Next, if [ε̃] = [ε̃′], then
eB+iω+ε̃ and eB+iω+ε̃′ are isomorphic generalized complex structures. Indeed, B + ε̃1 and
B + ε̃1

′ di�er by an exact form and ω + ε̃2
′ is symplectomorphic to ω + ε̃2 because there

is a path from ω + ε̃2 to ω + ε̃2
′ in S[ω+ε̃2], which allows us to apply Proposition 3.16.

This proves that we obtain the same generalized complex structure regardless of choice of
representative of [ε̃].

Hence, we have constructed for each [ε̃] ∈ Ũ a new generalized complex structure close
to Lω in the moduli space of generalized complex structures. Therefore, Ũ parametrizes
in�nitesimal deformations of L, and since Ũ ∼= U it must be the case that the obstruction
map vanishes on U . Therefore, U forms a smooth locally complete family of deformations
of L by Theorem 4.13.

Remark 4.16. Recall that the vanishing of the Schouten bracket [ε, ε]S implies that the
obstruction map Φ vanishes. However, a vanishing Schouten bracket is a much stronger
result because it says that the �rst order part is a full deformation. The above theorem
does not guarantee that the Schouten bracket vanishes. On the other hand, in each of
the forthcoming symplectic-type computations in Sections 4.2 and 4.3 we will see that
the Schouten bracket does vanish for any choice of �rst-order part ε. It may be the case
that a stronger result holds, and that the Schouten bracket vanishes for any �rst order
deformation in general. This is a question that will be explored more in the future.

We can obtain a similar result regarding B-�eld transformations of L if we already
know that the obstruction map vanishes for in�nitesimal deformations of L.

Theorem 4.17. Let L be a generalized complex structure on M and U ⊆ H2
L(M)

be a small open neighbourhood of zero on which the obstruction map vanishes. Let B
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be a closed real 2-form and LB the corresponding generalized complex structure. Let
ψB : H2

L(M) → H2
LB

(M) be the isomorphism guaranteed by Corollary 4.11. Then, the
obstruction map Φ, vanishes on ψB(U) ⊆ H2

LB
(M) and ψB(U) is a smooth locally complete

family of deformations.

Proof. We use similar arguments to those found in the proof of Theorem 4.15. Since the
obstruction map vanishes on U , for [ε] ∈ U , we know that Lε is a generalized complex
structure close to L in the moduli space of generalized complex structures on M . Hence,
eB(Lε) is also a generalized complex structure, and it is close to LB = eB(L). If [ε] = [ε′],
then Lε ∼= Lε′ , which means eB(Lε) ∼= eB(Lε′). Hence, for each [ε] ∈ U we have constructed
a generalized complex structure close to LB. Consequently, U parametrizes in�nitesimal
deformations of LB. Therefore, since U ∼= ψB(U) (because ψB is an isomorphism), we
obtain that the obstruction map vanishes on ψB(U). Finally, Theorem 4.13 tells us that
ψB(U) is a smooth locally complete family of deformations of LB.

We will revisit these structures in the coming sections when we explicitly compute a
deformation space and examine generalized holomorphic bundles. We end this section with
two results regarding deformations of generalized complex structures of type zero.

Proposition 4.18. Small in�nitesimal deformations of a structure of type zero are of
type zero.

Proof. Let ε be an in�nitesimal deformation of a type zero generalized complex structure
L. Then, the deformed space is

Lε = (1 + ε)L = {x+ ε(x)|x ∈ C∞(L)},

which implies
πT (x+ ε(x)) = πT (x) + πT (ε(x)).

Fix y ∈ C∞(L) such that πT (y) 6= 0. If πT (y) + πT (ε(y)) = 0 then πT (ε(y)) = −πT (y)
which would imply that ε is not an in�nitesimal deformation. This shows that if πT (y) 6= 0
then πT (y) + πT (ε(y)) 6= 0. Hence, the type of the generalized complex structure cannot
increase via in�nitesimal deformations. Therefore, the type of Lε is zero.

This proposition tells us, in particular, that in�nitesimal deformations of a symplectic
structure Jω are all type zero. Recall that, if ω is a (real) symplectic structure, then the
corresponding generalized complex structure has maximal isotropic

Lω = {X − iω(X)|X ∈ TC},

which has type zero everywhere.
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Proposition 4.19. If ω is a (real) symplectic structure then small in�nitesimal deforma-
tions of Lω are of the form Lωε = {X − iω̃(X)|X ∈ TC} for a complex symplectic structure
ω̃ (that is, a complex 2-form that is both closed and non-degenerate as a complex-valued
2-form).

Proof. Fix a small in�nitesimal deformation ε of Lω, call the deformed structure Lωε .
Proposition 4.18 tells us that Lωε has type zero. Further, Proposition 2.37 guarantees the
existence of a real closed 2-form Bε and a real symplectic form ηε so that

Lωε = {X + (Bε − iηε)X|X ∈ TC} = {X − i(ηε + iBε)X|X ∈ TC}.

Moreover, ω is symplectic and therefore non-degenerate which means Lω has full-rank
projection onto T ∗C as well. Since ε is an in�nitesimal deformation, the same arguments
used in the proof of Proposition 4.18 shows that if x ∈ C∞Lω and πT ∗(x) 6= 0 then
πT ∗(x+ ε(x)) 6= 0 (here πT ∗ is projection onto T ∗C). Therefore, Lωε has full-rank projection
onto T ∗C. This means that the complex 2-form ηε + iBε is non-degenerate. Hence, ηε + iBε

is a complex symplectic structure.

Remark 4.20. Before we end this section, it is important to note that, while the above
proposition guarantees the existence of such a complex symplectic structure, it is in general
di�cult to compute ω̃ = ηε + iBε for a given symplectic structure ω and in�nitesimal
deformation ε. Indeed, ω and ε are intricate objects which implies that the generators of
Lωε can be very complicated. Therefore, obtaining a general formula for ω̃ can be di�cult.
However, when we work on Kodaira surfaces in Section 4.2.2, we will provide an explicit
description of ω̃ for a given ω and ε.

4.2 Deformations of Even-Type Structures on Kodaira

Surfaces

In this section we compute some explicit deformations of generalized complex structures
on a Kodaira surface. We deform a complex structure in Section 4.2.1 and a symplectic
structure in Section 4.2.2. We demonstrate that any complex-type structure has a smooth
family of deformations (Theorem 4.25). Similarly, Theorem 4.30 shows that the family of
deformations of the base symplectic structure forms a smooth locally complete family.

A (primary) Kodaira surface is a compact complex surface of Kodaira dimension 0
and odd �rst Betti number with trivial canonical bundle. In [22] Kodaira proved that a
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compact complex surface with trivial canonical bundle is either a K3 surface, a torus, or
a Kodaira surface. We will follow the notation presented in [2] and [4] to describe Ko-
daira surfaces so that we may explicitly compute certain deformation spaces of generalized
complex structures.

Let A denote the group of all real a�ne transformations of R4 = C2 (under the iden-
ti�cation z = x + iy and w = u + iv) that commute with any transformation of the
form

g(z, w) = (z + α,w + αz + β)

where α, β ∈ C. We may identify A with C2 where multiplication is de�ned as

(z, w) ∗ (α, β) = (z + α,w + αz + β).

Next, let Γ be a non-abelian group of a�ne transformations generated by four elements
g1, g2, g3, g4, where

gigjg
−1
i g−1

j = id

for all (i, j) 6= (3, 4) (i < j) and
g3g4g

−1
3 g−1

4 = gm2

for some m ∈ Z+. We may view the gi as transformations on C2 and in that case they
have the form

gj(z, w) = (z + αj, w + αjz + βj),

where α1 = α2 = 0 and α3α4− α4α3 = mβ2. Any Kodaira surface is the compact quotient
of A by a discrete subgroup Γ generated by the elements gi where (αi, βi) satisfy the above
constraints.

On the other hand, if Γ is any discrete, non-abelian, co-compact subgroup of A, then
the complex structure induced on the quotient A/Γ gives a compact complex surface with
trivial canonical bundle. It can be shown that this surface is non-Kähler and so is not a
torus nor a K3 surface. Thus, it must be a Kodaira surface.

Let us denote a Kodaira surface by N = C2/Γ, and consider the right-invariant tangent
vector �elds on our Kodaira surface N . We may compute these and determine that TN is
globally generated by invariant vector �elds {X, Y, U, V } where they are induced by the
invariant vector �elds on A:

X =
∂

∂x
+ x

∂

∂u
− y ∂

∂v
,

Y =
∂

∂y
+ y

∂

∂u
+ x

∂

∂v
,
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U =
∂

∂v
,

V =
∂

∂u
.

These are chosen to be consistent with the notation presented in [4] and [25]. One readily
computes that the only non-zero Lie bracket is

[X, Y ] = 2U.

Further, we de�ne an endomorphism J such that

JX = Y , JY = −X , JU = V , JV = −U

which is a complex structure on N . This is the base (right-invariant) complex structure
corresponding to Γ. If we de�ne

T =
1

2
(X − iY ), and W =

1

2
(U − iV )

then {T, T ,W,W} generate TN ⊗ C and the only non-zero Lie bracket is

[T, T ] = i(W +W ).

De�ne the dual basis of forms to be {ω, ω, ρ, ρ} which globally generates T ∗N ⊗ C.
Next, notice that

JT = iT, JW = iW, JT = −iT , and JW = −iW

which implies that T 1,0
N and T 0,1

N are globally generated by {T,W} and {T ,W} respectively.
Similarly, T ∗N1,0

is globally generated by {ω, ρ}.

4.2.1 Deformations Starting at a Complex Structure

If we begin with a complex structure J on a manifoldM , then the corresponding generalized
complex structure JJ corresponds to the maximal isotropic space

LJ = T0,1 + T ∗1,0,

which we recall has type n. Let us determine how dL acts on smooth functions. A typical
element of C∞(L) is X + α where X ∈ T0,1 and α ∈ T ∗1,0. Then, for a smooth function f ,

dL(f)(X + α) = πT (X)(f) + πT (α)(f) = X(f) + 0 = ∂(f)(X) + 0.
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We can see that the dL operator behaves like ∂ in this case. This extends to ∧kL∗, in
particular, dL behaves like ∂ on ∧k(T ∗0,1). This means we may decompose H2

L(M) as

H2
L(M) = H2(M,O)⊕H1(M,T1,0)⊕H0(M,∧2T1,0). (4.1)

See section 5.3 in [11] for more details. Note that H2(M,O) ∼= H0,2

∂̄
(M) corresponds to

complex closed (0, 2)-forms which are (complex)B-�eld transforms of the complex structure
JJ . Next, note that H1(M,T1,0) encodes the deformations of the base complex structure
J and

H2,0

∂̄
(M) ∼= H0(M,∧2T1,0)

corresponds to holomorphic Poisson bivectors which may alter the type of the structure
(the Maurer-Cartan equation in this case is satis�ed if and only of β is holomorphic and
Poisson). We recall some properties of B-�elds and holomorphic Poisson bivectors here.

Let B be a closed complex (0, 2)-form. From De�nition 2.31, B acts on LJ by

X + η 7→ X + η + ιXB.

Therefore, LB = eB(LJ) = ΓB⊕T ∗1,0 where ΓB = {X+ ιX(B) : X ∈ T0,1}. Even though we
only consider complex (0, 2)-forms, we actually obtain all B-�eld transforms of JJ because
LJ = T0,1 + T ∗1,0, which means only the (0, 2)-part of a 2-form B will have a non-trivial
e�ect on LJ . By de�nition, B-�eld transforms do not alter the type of the generalized
complex structure.

Next, let β be a holomorphic Poisson bivector. As in example 2.40, we get

Jβ =

[
−J Q
0 J∗

]
and

Lβ = T0,1 ⊕ Γβ,

where Γβ = {η + β(η) : η ∈ T ∗1,0}. If β is non-zero at some point of M , then Γβ will
have non-trivial projection onto TC, which means β transforms can alter the type of the
generalized complex structure.

Poon examines extended deformations of generalized complex structures on Kodaira
surfaces using di�erential Gerstenhaber algebras in [25]. In particular, a smooth locally
complete family of deformations is obtained for generalized deformations of a complex
structure. Similarly, Brînz nescu and Turcu ([4]) perform a direct computation of the same
deformation space but with some problems (see Remark 4.24). For the convenience of the
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reader, we perform a corrected version of the computation, as it will be of fundamental
importance in later sections.

On a Kodaira surface N and complex structure J , we know that the tangent bundle
T ⊗ C is globally generated by invariant vector �elds {T, T ,W,W} whose only non-zero
Lie bracket is

[T, T ] = i(W +W ).

With respect to this complex structure, T1,0 and T0,1 are globally generated by {T,W} and
{T ,W}, respectively. Similarly, T ∗1,0 is globally generated by {ω, ρ}.

The base generalized complex structure to be deformed is the one coming from the
complex structure J . Namely, JJ : T ⊕ T ∗ → T ⊕ T ∗ is de�ned to be

JJ :=

[
−J 0
0 J∗

]
,

which has +i-eignenbundle L := T0,1 ⊕ T ∗1,0 and is generated by T ,W, ω, and ρ. The −i-
eigenbundle L is generated by T,W, ω and ρ. Clearly L ∩ L = {0}. Referring to Equation
4.1 and the discussion following it, the cohomology space decomposes as:

H2
L(N) = H2,0

∂̄
(N)⊕H1(N, T1,0)⊕H0,2

∂̄
(N).

Note that H1(N, T1,0) corresponds to the usual deformations of complex structures. There-
fore, following the notation of [4], we obtain that a typical element of H2

L(N) is

ε = t14T ∧W + t11T ∧ ω + t22W ∧ ρ+ t32ω ∧ ρ.

The coe�cient t32 corresponds to the complex B-�eld, t14 corresponds to a holomorphic
Poisson bivector, and t11 and t22 parameterize deformations of the base complex structure.

Theorem 4.21. The above family of deformations ε ∈ H2
L(M) is a smooth locally com-

plete family.

The proof of Theorem 4.21 is an immediate consequence of the following two lemmas.

Lemma 4.22. d(ω) = d(ω) = 0 and d(ρ) = d(ρ) = −iω ∧ ω.

Proof. Recall that the only non-zero Lie bracket of pairs of elements of the set {T, T ,W,W}
is [T, T ] = i(W +W ). Further, for α ∈ {ω, ω, ρ, ρ} and X, Y ∈ {T, T ,W,W}, we know

d(α)(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]) = −α([X, Y ])
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because α(X) is either 1 or 0. Therefore, if the Lie bracket [X, Y ] vanishes, so does
d(α)(X, Y ), and the only non-zero Lie bracket gives

d(α)(T, T ) = −α([T, T ]) = −α(i(W +W )).

If α = ω or α = ω, then d(α)(X, Y ) = 0 for any X, Y ∈ {T, T ,W,W} which means
d(α) = 0.

On the other hand, if α = ρ or α = ρ, then d(α)(T, T ) = −i and d(α)(X, Y ) = 0 for
{X, Y } 6= {T, T}, which means d(ρ) = d(ρ) = −iω ∧ ω.

Lemma 4.23. For ε = t14T ∧W + t11T ∧ ω + t22W ∧ ρ + t32ω ∧ ρ, the Schouten bracket
[ε, ε]S vanishes for any t11, t22, t14, t32 ∈ C.

Proof. We prove that the Schouten bracket of any pair of elements in the set A = {T ∧
W,T∧ω,W∧ρ, ω∧ρ} is zero. This implies [ε, ε]S = 0 for any such ε. Recall for x∧y, w∧z ∈
A that [x ∧ y, w ∧ z]S = [x,w]C ∧ y ∧ z − [x, z]C ∧ y ∧w− [y, w]C ∧ x ∧ z + [y, z]C ∧ x ∧w.
Let us �rst check the Courant brackets of pairs of elements of {T,W, ω, ρ}. Obviously
[T,W ]C = [T,W ] = 0 and [ω, ρ] = 0 by de�nition. Also,

[T, ω]C = LTω = ιTdω + d(ω(T )) = 0

by the above lemma. Similarly [W,ω]C = 0. Next,

[T, ρ]C = LTρ = ιTdρ+ d(ρ(T )) = ιT (−iω ∧ ω) = −iω.

Finally, the same computation but with T replaced with W proves [W, ρ]C = 0.

Therefore, the only non-zero Courant bracket of pairs of elements of {T,W, ω, ρ} is
[T, ρ]C = −iω. Now we have 10 Schouten brackets to compute, but most of the Courant
brackets are zero which simpli�es the computation. It is easy to see that [T ∧W,T ∧W ]S =
[T∧W,T∧ω]S = [T∧ω, T∧ω]S = [W∧ρ,W∧ρ]S = [W∧ρ, ω∧ρ]S = [ω∧ρ, ω∧ρ]S = 0. Thus
we have only four more brackets to check: [T ∧W,W ∧ρ]S, [T ∧W,ω∧ρ]S, [T ∧ω,W ∧ρ]S,
[T ∧ ω, ω ∧ ρ]S.

First,

[T ∧W,W ∧ ρ]S = [T,W ]C ∧W ∧ ρ− [T, ρ]C ∧W ∧W
−[W,W ]C ∧ T ∧ ρ+ [W, ρ]C ∧ T ∧W

= 0 ∧W ∧ ρ+ iω ∧W ∧W − 0 ∧ T ∧ ρ+ 0 ∧ T ∧W = 0.
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For the second,

[T ∧W,ω ∧ ρ]S = [T, ω]C ∧W ∧ ρ− [T, ρ]C ∧W ∧ ω
−[W,ω]C ∧ T ∧ ρ+ [W, ρ]C ∧ T ∧ ω

= 0 ∧W ∧ ρ+ iω ∧W ∧ ω − 0 ∧ T ∧ ρ+ 0 ∧ T ∧ ω = 0.

Next, the third,

[T ∧ ω,W ∧ ρ]S = [T,W ]C ∧ ω ∧ ρ− [T, ρ]C ∧ ω ∧W
−[ω,W ]C ∧ T ∧ ρ+ [ω, ρ]C ∧ T ∧W

= 0 ∧ ω ∧ ρ+ iω ∧ ω ∧W − 0 ∧ T ∧ ρ+ 0 ∧ T ∧W = 0.

Finally, the last Schouten bracket,

[T ∧ ω, ω ∧ ρ]S = [T, ω]C ∧ ω ∧ ρ− [T, ρ]C ∧ ω ∧ ω
−[ω, ω]C ∧ T ∧ ρ+ [ω, ρ]C ∧ T ∧ ω

= 0 ∧ ω ∧ ρ+ iω ∧ ω ∧ ω − 0 ∧ T ∧ ρ+ 0 ∧ T ∧ ω = 0.

Hence, Theorem 4.13 and, more speci�cally, Remark 4.14 tell us that ε ∈ H2
L(N) are full

deformations of the structure and that this collection of ε form a smooth locally complete
family of deformations (since the obstruction map vanishes). This proves Theorem 4.21.

Remark 4.24. Note that in [4] the elements considered were not in H2
L(N) but rather

arbitrary elements of ∧2L∗. This causes problems in the rest of the paper since, for example,
they cannot be viewed as the �rst order part a deformation. Furthermore, the statement
of Theorem 4.6 in [4] seems to be incorrect. To be precise, if one considers an ε̃ of the form

t32T
∗ ∧W ∗ − t11T

∗ ∧ ω∗ − t21T
∗ ∧ ρ∗ − t12W

∗ ∧ ω∗ − t22W
∗ ∧ ρ∗ + t14ω

∗ ∧ ρ∗,

it will fail to satisfy [ε̃, ε̃]S = 0 if t12 6= 0. Also note that t12W
∗ ∧ ω∗ is not dL-closed, and

so ε̃ cannot be integrable if t12 6= 0.

Theorem 4.21 proves that a complex structure admits a smooth locally complete family
of deformations. To extend this, we can actually prove that every complex-type structure
on N admits a smooth locally complete family of deformations.
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Theorem 4.25. If L is a generalized complex structure of complex-type on a Kodaira
surface N , then there is a smooth locally complete family of deformations of L.

Proof. Let L be a complex-type generalized complex structure on N . Theorem 2.51 tells
us that L is of the form eBLJ for some B-�eld B and complex structure J on N . If B = 0,
L = LJ and J has the form presented at the start of this section (Section 4.2) for some
group of a�ne transformations Γ. Then the analysis performed above proves Theorem 4.21
for J . Therefore, if B = 0 the proof is done.

On the other hand, if B 6= 0 is a real closed 2-form then we may apply Corollary 4.17
to get a smooth locally complete family of deformations of eBLJ because LJ has a smooth
locally complete family of deformations.

We now understand the structure of these deformations locally. We assumed ε was
�small� in order for the operator

Aε =

[
1 ε
ε 1

]
to be invertible, which is equivalent to Lε ∩ Lε = {0}. However, since we have such an
explicit description of the deformation space we can obtain �big� deformations by explicitly
computing the determinant of the operator Aε.

Proposition 4.26. For ε = t14T ∧W + t11T ∧ ω + t22W ∧ ρ+ t32ω ∧ ρ, the operator

Aε =

[
1 ε
ε 1

]
is invertible if and only if the quantity

DC = 1− |t11|2 − |t22|2 + |t11|2|t22|2 + t14t32 + t14t32 + |t14|2|t32|2 − t14t32t11t22 − t11t22t14t32

is not zero.

Proof. First, working with the ordered bases {T ,W, ω, ρ} of L and {T,W, ω, ρ} of L we
can write ε in matrix form 

−t11 0 0 −t14

0 −t22 t14 0
0 −t32 t11 0
t32 0 0 t22

 .
Hence the operator Aε is invertible if and only of det(Aε) 6= 0. Then a routine (but tedious)
computation shows that det(Aε) = DC ·DC = |DC |2. Thus, Aε is invertible if and only if
DC 6= 0.
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Here, the notation DC is for complex determinant. Finally, let us compute the
generators for Lε. We know that Lε = (1 + ε)L, so Lε is generated by

(1 + ε)T = T − t11T + t32ρ,

(1 + ε)W = W − t22W − t32ω,

(1 + ε)ω = ω + t11ω + t14W, and

(1 + ε)ρ = ρ+ t22ρ− t14T.

From this expression, it is easy to see what the action of a B-�eld or holomorphic Poisson
structure is.

Example 4.27. (B-�eld Transforms) If B = t32ω∧ρ is a complex B-�eld then Propo-
sition 4.26 tells us that any t32 is valid because DC = 1. This corresponds to what we know:
B-�eld transforms of generalized complex structures are generalized complex structures.
In this case LB = ΓB ⊕ T ∗1,0 where ΓB = {X + ιXB|X ∈ T0,1}. Explicitly LB is generated
by

{T + t32ρ,W − t32ω, ω, ρ}.

The type of these structures is 2 globally.

Example 4.28. (Poisson Bivectors) If β = t14T ∧W is a holomorphic Poisson bivector
then, as in theB-�eld case, any t14 is valid becauseDC = 1 again. In this case Lβ = T0,1⊕Γβ
where Γβ = {η + β(η) : η ∈ T ∗1,0}. Lβ is generated by {T ,W, ω + t14W, ρ − t14T}. The
type of these structures is 0 globally. This is because β corresponds to the holomorphic
symplectic structure β∗ = ω ∧ ρ which is, in particular, non-degenerate.

4.2.2 Deformations Starting at a Symplectic Structure

In this section we deform a generalized complex structure coming from a symplectic struc-
ture on Kodaira surfaces. We �x a symplectic structure and calculate the deformation
space of the structure in the sense of generalized geometry.

Recall that T ∗ is generated by {ω, ρ, ω, ρ}. A family of real symplectic structures is
exhibited in [25] (see Section 3.3, ω = α + iβ and ρ = γ + iδ): for a, b ∈ C,

η = a ω ∧ ρ+ a ω ∧ ρ+ b ω ∧ ρ+ b ω ∧ ρ
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is non-degenerate if and only if |a|2−|b|2 6= 0. Let us choose the symplectic structure to be
η := ω∧ ρ+ω∧ ρ, that is, a = 1, b = 0. This time, our base generalized complex structure
is

Jη :=

[
0 −η−1

η 0

]
.

We know that the +i-eigenbundle, L, of Jη is {X − iη(X) : X ∈ T ⊗ C} and therefore a
basis for L is

{e1, e2, e3, e4} = {T − iρ, W + iω, T − iρ, W + iω}

and similarly a basis for L∗ is

{e∗1, e∗2, e∗3, e∗4} = {ω + iW, ρ− iT, ω + iW , ρ− iT}.

Next we wish to obtain a concise description of H2
L(N).

Lemma 4.29. H2
L(N) is generated by

e∗12 = (ω + iW ) ∧ (ρ− iT ),

e∗14 := (ω + iW ) ∧ (ρ− iT ),

e∗23 := (ρ− iT ) ∧ (ω + iW ), and

e∗34 := (ω + iW ) ∧ (ρ− iT ),

where e∗ij = e∗i ∧ e∗j .

Proof. We know from Corollary 4.10 that H2
L(N) ∼= H2

DR(M,C) via the dual of the pro-
jection map πT : L→ TN . Further,

H2
DR(N,C) = spanC{ω ∧ ρ, ω ∧ ρ, ω ∧ ρ, ω ∧ ρ}.

Therefore, using the isomorphism provided by Corollary 4.10, we see that H2
L(N) is gen-

erated by {e∗12, e
∗
14, e

∗
23, e

∗
34} as desired.

Let us consider ε = Ae∗12 + Be∗14 + Ce∗23 + De∗34 for some A,B,C,D ∈ C. As in the
complex setting it turns out that all of these are actually deformations themselves, as we
now demonstrate.

Theorem 4.30. The family of deformations of generalized complex structures on a pri-
mary Kodaira surface given by ε = Ae∗12 +Be∗14 +Ce∗23 +De∗34 with (A,B,C,D) ∈ U ⊆ C4

where U is an open neighbourhood of 0, is a smooth locally complete family.
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Proof. We prove that the Schouten bracket [ε, ε]S = 0 for any A,B,C,D ∈ C. It su�ces
to prove that the Schouten bracket of any pair of elements among

e∗12, e
∗
14, e

∗
23, e

∗
34

is zero. We �rst notice that the only non-zero Courant bracket of pairs of generators of
L∗, namely {e∗1, e∗2, e∗3, e∗4}, is

[e∗2, e
∗
4]C = −i(e∗1 + e∗3)

which simpli�es this computation since it is clear that [e∗12, e
∗
23]S = [e∗14, e

∗
34]S = 0. We do

not check all the remaining cases, but present two cases below which will make the result
clear.

First, let us check [e∗12, e
∗
14]S,

[e∗12, e
∗
14]S = [e∗1, e

∗
1]C ∧ e∗2 ∧ e∗4 − [e∗1, e

∗
4]C ∧ e∗2 ∧ e∗1

−[e∗2, e
∗
1]C ∧ e∗1 ∧ e∗4 + [e∗2, e

∗
4]C ∧ e∗1 ∧ e∗1 = 0

since [e∗1, e
∗
1]C = [e∗1, e

∗
4]C = [e∗2, e

∗
1]C = 0 and e∗1 ∧ e∗1 = 0.

Next, we check [e∗12, e
∗
34]S,

[e∗12, e
∗
34]S = [e∗1, e

∗
3]C ∧ e∗2 ∧ e∗4 − [e∗1, e

∗
4]C ∧ e∗2 ∧ e∗3

−[e∗2, e
∗
3]C ∧ e∗1 ∧ e∗4 + [e∗2, e

∗
4]C ∧ e∗1 ∧ e∗3 = 0

since
[e∗1, e

∗
3]C = [e∗1, e

∗
4]C = [e∗2, e

∗
3]C = 0

and
[e∗2, e

∗
4]C ∧ e∗1 ∧ e∗3 = −i(e∗1 + e∗3) ∧ e∗1 ∧ e∗3 = 0.

The remaining cases are similar to one of the above two cases. Therefore, the obstruc-
tion map vanishes for all ε, which means they form a smooth locally complete family by
Theorem 4.13. This completes the proof.

The above proof actually shows that every ε satis�es the Maurer-Cartan equation.
Using this, let us dispense with the small condition and �nd explicit restrictions on the
parameters A,B,C,D so that Lε ∩ Lε = {0}. This occurs if and only if the matrix

Aε :=

[
1 ε
ε 1

]
is invertible.
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Proposition 4.31. The operator Aε is invertible for ε = Ae∗12 + Be∗14 + Ce∗23 + De∗34 if
and only if

DS = 1− |D|2 − |A|2 + |A|2|D|2 +BC +BC + |B|2|C|2 + ADBC + ADBC (*)

is not zero.

Proof. It is easy to check that

ε =


0 −A 0 −B
A 0 −C 0
0 C 0 −D
B 0 D 0


under the bases {e1, e2, e3, e4} for L and {e∗1, e∗2, e∗3, e∗4} for L∗. Computing the determinant
of Aε, we get DS ·DS = |DS|2. Therefore Aε is invertible if and only if DS 6= 0.

Remark 4.32. Of course (*) is satis�ed in an in�nitesimal neighbourhood because the
expression will be close to 1. It is interesting to note that even far from zero, as long as
(*) is satis�ed we obtain an integrable generalized complex structure.

Example 4.33. (Type Analysis) We know by Proposition 4.18 that in an in�nitesimal
neighbourhood the type of these structures is always zero. Let us explicitly demonstrate
this. Recall that Lε = (1 + ε)L and therefore Lε is generated by

(1 + ε)e1 = e1 + Ae∗2 +Be∗4,

(1 + ε)e2 = e2 − Ae∗1 + Ce∗3,

(1 + ε)e3 = e3 − Ce∗2 +De∗4,

and
(1 + ε)e4 = e4 −Be∗1 −De∗3.

Hence the projection of Lε onto T is generated by

{(1− iA)T − iBT , (1− iA)W + iCW, (1− iD)T + iCT, (1− iD)W − iBW}. (**)

We wish to prove that the projection of Lε onto TN has full rank regardless of the (valid)
choice of A,B,C,D in a small neighbourhood of zero in C4. Since only the �rst and third
elements of (∗∗) have T and T , we work with them. The analysis will be the same using
the second and fourth for W and W .
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So we have (1 − iA)T − iBT and (1 − iD)T + iCT . We must prove that these two
vector �elds are linearly independent. A quick calculation supposing a linear combination
of these two vectors vanishes shows that these are independent as long as

BC 6= (1− iA)(1− iD).

If we are working with small deformations then the left-hand-side of this expression is close
to zero and the right-hand-side is close to 1. Therefore, the expression is satis�ed in this
case. This is what we wanted to establish.

Moreover, by Proposition 4.19 we know that given an in�nitesimal deformation ε we
should be able to �nd a complex symplectic structure ω̃ such that Lε = {X − iω̃(X)|X ∈
TN ⊗ C}. However, as we mentioned in Remark 4.20, this is hard to �nd in general.
Fortunately, we can explicitly determine ω̃ for a given ε in this case.

Example 4.34. (Finding ω̃) Let ε = Ae∗12 + Be∗14 + Ce∗23 + De∗34 with A,B,C,D in a
small open neighbourhood of zero. Then BC 6= (1− iA)(1− iD), or equivalently

Ξ := (1− iA)(1− iD)−BC 6= 0.

Also, as in the previous example we get Lε is generated by

(1 + ε)e1 = e1 + Ae∗2 +Be∗4,

(1 + ε)e2 = e2 − Ae∗1 + Ce∗3,

(1 + ε)e3 = e3 − Ce∗2 +De∗4,

and
(1 + ε)e4 = e4 −Be∗1 −De∗3.

Proposition 4.19 guarantees the existence of a complex symplectic structure ω̃ so that
Lε = Lω̃. Say

ω̃ = a1ω ∧ ρ+ a2ω ∧ ρ+ a3ω ∧ ρ+ a4ω ∧ ρ

for ai ∈ C. Then, Lω̃ = {X − iω̃(X)|X ∈ T ⊗ C} is generated by

{T − ia1ρ− ia2ρ, W − ia1ω + ia3ω, T − ia3ρ− ia4ρ, W + ia2ω + ia4ω}.

It is now a matter of solving a system of eight equations which we obtain by determining
when of Lε = Lω̃ by examining the basis elements. The equations are:

55



1. (1− iA)a1 − iBa3 = 1 + iA,

2. (1− iA)a2 − iBa4 = 1 + iB,

3. (1− iA)a1 + iCa2 = 1 + iA,

4. (1− iA)a3 + iCa4 = −iC,

5. iCa1 + (1− iD)a3 = −iC,

6. iCa2 + (1− iD)a4 = 1 + iD,

7. −iBa1 + (1− iD)a2 = iB,

8. −iBa3 + (1− iD)a4 = 1 + iD.

After employing one's preferred method of solving linear equations we get

a1 =
2(1− iD)

Ξ
− 1, a2 =

2iB

Ξ
, a3 =

−2iC

Ξ
, and a4 =

2(1− iA)

Ξ
− 1.

Therefore,

ω̃ =

(
2(1− iD)

Ξ
− 1

)
ω ∧ ρ+

(
2iB

Ξ

)
ω ∧ ρ+

(
−2iC

Ξ

)
ω ∧ ρ+

(
2(1− iA)

Ξ
− 1

)
ω ∧ ρ.

The condition that ω̃ is non-degenerate is that a1a4 − a2a3 6= 0, but

a1a4 − a2a3 =

(
2(1− iA)

Ξ
− 1

)(
2(1− iD)

Ξ
− 1

)
−
(

2iB

Ξ

)(
−2iC

Ξ

)
which is close to 1 if A,B,C,D are all close to zero. Hence, ω̃ is closed and non-degenerate,
which means it is a complex symplectic structure. Thus, for ε and ω̃ as above Lε = Lω̃.

Remark 4.35. Both of the above examples focused on small in�nitesimal deformations.
Using Proposition 4.31 we can allow A,B,C,D to be large. Then, we are able to obtain
generalized complex structures of complex-type as well. For example, choosing A = D = 0
and B = C = −1 satis�es DS 6= 0 and Lε has a two dimensional projection onto TN .
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4.2.3 An Intersection of Deformation Spaces

In both [11] and [29] a method is examined for interpolating between a complex structure
and a symplectic structure via generalized geometry on a Kähler manifold (see, for example,
[11] Section 4.6). In our case, these two deformation spaces intersect, which gives us a way
of deforming a complex-type structure into a symplectic-type structure. Let us explicitly
examine this intersection.

The �rst step is to understand what parameters t11, t22, t14, t32 ∈ C in the complex case
and A,B,C,D ∈ C in the symplectic case are permissable. As we mentioned above, the
restriction comes from the fact that the matrix

Aε :=

[
1 ε
ε 1

]
must be invertible. Recall the determinant equations were:

1. Complex Case

DC = 1−|t11|2−|t22|2+|t11|2|t22|2+t14t32+t14t32+|t14|2|t32|2−t14t32t11t22−t11t22t14t32,

2. Symplectic Case

DS = 1− |D|2 − |A|2 + |A|2|D|2 +BC +BC + |B|2|C|2 + ADBC + ADBC.

Proposition 4.36. A generalized complex structure from the symplectic deformation
space given by A,B,C,D coincides with a generalized complex structure from the complex
deformation space given by t11, t12, t21, t22 if and only if the following seven equations are
satis�ed:

(1') Bt11 + (1 + iA)t14 = i+ A,

(2') Bt32 + (1 + iA)t22 = −iB,

(3') (1− iD)t11 + Ct14 = −iC,

(4') (1− iD)t32 + Ct22 = i−D,

(5') Ct32 + (1 + iA)t11 = −iC,

(6') (1− iD)t22 +Bt14 = −iB,
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(7') Bt11 = Ct22.

Proof. We will use a C subscript to denote the generalized complex structure coming from
a complex structure and an S to denote those coming from a symplectic structure. Then,
given the above parameters, we know that in the complex case LεC = (1 + εC)LC is
generated by

T − t11T + t32ρ,

W − t22W − t32ω,

ω + t11ω + t14W, and

ρ+ t22ρ− t14T.

In the symplectic case LεS is generated by

(T − iρ)− iA(T + iρ)− iB(T + iρ),

(W + iω)− iA(W − iω) + iC(W − iω),

(T − iρ)− iD(T + iρ)− iC(T + iρ), and

(W + iω)− iD(W − iω)− iB(W − iω).

Let us examine when these two spaces coincide for some choice of the parameters
A,B,C,D and t11, t22, t32, t14. First we stipulate that each generator for LεS must be in
the span of the generators of LεC . Doing this, we obtain eight equations:

1. Bt11 + (1 + iA)t14 = i+ A,

2. Bt32 + (1 + iA)t22 = −iB,

3. (1− iD)t11 + Ct14 = −iC,

4. (1− iD)t32 + Ct22 = i−D,

5. Ct22 + (1 + iA)t14 = i+ A,

6. Ct32 + (1 + iA)t11 = −iC,

7. (1− iD)t22 +Bt14 = −iB,

8. (1− iD)t32 +Bt11 = i−D.
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Equations 1 and 5 immediately yield Bt11 = Ct22. From this we notice that 1 ≡ 5 and
8 ≡ 4 so we can reduce our equations to the seven equations 1′ − 7′ as in the statement of
the proposition.

Proposition 4.36 shows that one can �nd appropriate choices for A,B,C,D and t11,
t22, t32, t14 so that the resulting generalized complex structures are the same. It should be
noted that these spaces do not intersect in�nitesimally as is clear from the equations 1′−7′,
if A,B,C,D are small then the tij cannot be. Let us examine some explicit examples.

Example 4.37. Let us suppose B = C = D = 0 and A 6= 0. The symplectic determinant
equation becomes DS = 1 − |A|2 6= 0, that is |A| 6= 1. The above equations tell us that
t11 = t22 = 0. Equation 1' tells us that

t14 =
i+ A

1 + iA
.

Note that since |A| 6= 1 we get 1 + iA 6= 0. Further, equation 4′ gives t32 = i. Finally we
check the complex determinant equation and see that it reduces to

DC = 1 + t14t32 + t14t32 + |t14|2|t32|2 = |1 + t14t32|2 =
4

|1 + iA|2
6= 0.

Therefore we obtain that every symplectic deformation with B = C = D = 0 gives rise
to a generalized complex structure that can be obtained as a deformation of a complex
structure. In other words, all such generalized complex structures lie in the intersection
of our two deformation spaces which explicitly demonstrates that the intersection is non-
empty.

Example 4.38. Suppose our deformation has the form A = D and B = C = 0. First,
our symplectic determinant is DS = (1−|A|2)2 6= 0 which again holds if and only if |A| 6= 1.
Also, t11 = t22 = 0. Then using equations 1' and 4' to solve for t14 and t32 respectively we
get

t14 =
i+ A

1 + iA
, and t32 =

i− A
1− iA

which implies t14 = −t32. Lastly the complex determinant equation becomes

DC = 1− t214 − t14
2

+ |t14|4 = |1− t14|2.

But since |A| 6= 1 it follows that t14 6= 1, which means all of these generalized complex
structures lie in the intersection of the two deformation spaces as well.
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Remark 4.39. The simple fact that these two deformation spaces intersect has interesting
consequences. It implies that whether or not we start at a complex structure or a symplectic
structure that we can obtain any other structure in either deformation space via generalized
deformations.

4.3 Deformations of Even-Type Structures on Complex

Tori

In this section we work with a speci�c family of complex 2-tori, namely those that are
similar to Kodaira surfaces above. By doing this, many results that we obtained for
Kodaira surfaces will extend directly to the torus setting. These techniques can be applied
to general tori as well.

The complex 2-tori we will be working with are C2/Γ where Γ is a speci�c maximal
lattice, but let us describe it in a similar manner as we did for Kodaira surfaces. Let A be
C2, with multiplication

(z, w) ∗ (α, β) = (z + α,w + β).

Next, let Γ be an abelian group of a�ne transformations generated by four elements
g1, g2, g3, g4. We may view the gi as transformations on C2 and in that case they have
the form;

gj(z, w) = (z + αj, w + βj)

where α1 = α2 = 0 and β3 = β4 = 0. Then, our complex torus is N = C2/Γ. The tangent
bundle T is globally generated by invariant vector �elds

< X, Y, U, V >=<
∂

∂x
,
∂

∂y
,
∂

∂v
,
∂

∂u
>

and all Lie brackets vanish. Then, N admits a complex structure J such that

JX = Y, JY = −X, JU = V, JV = −U.

If we de�ne

T =
1

2
(X − iY ), and W =

1

2
(U − iV )

then {T, T ,W,W} generate T ⊗ C and all the Lie brackets vanish. De�ne the dual basis
of forms to be {ω, ω, ρ, ρ} which globally generate T ∗ ⊗ C.
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Then, as in the Kodaira surface case,

JT = iT, JW = iW, JT = −iT , and JW = −iW

which implies that T1,0 and T0,1 are globally generated by {T,W} and {T ,W} respectively.
Similarly, T ∗1,0 is globally generated by {ω, ρ}.

Deformations Starting at a Complex Structure

We perform a similar analysis of the deformations of a generalized complex structure that
comes from a complex structure, as was done by Brînz nescu, Dinuta, and Dinuta in [3].
It should be noted that the same problem outlined in Remark 4.24 is present here, but
it does not cause any problems because H2

L has rank 6 and therefore every generator of
∧2L∗ is a generator of H2

L. The method is the same as for Kodaira surfaces. De�ne
JJ : TN ⊕ T ∗N → TN ⊕ T ∗N to be

JJ :=

[
−J 0
0 J∗

]
which has +i-eigenbundle L := T0,1 ⊕ T ∗1,0, and −i-eigenbundle L.

The cohomology space in question decomposes, as in Equation 4.1 and the discussion
after it,

H2
L(N) = H2,0

∂̄
(N)⊕H1(N, T1,0)⊕H0,2

∂̄
(N).

and a typical element has the form

ε = t14T ∧W + t11T ∧ ω + t22W ∧ ρ+ t21T ∧ ρ+ t12W ∧ ω + t32ω ∧ ρ.

So the parameters t11, t22, t21, and t12 correspond to deformations of the base complex
structure, t14 is the coe�cient of a holomorphic Poisson structure, and t32 is the coe�cient
of a B-�eld. Once again, as the next theorem illustrates, all such ε are full deformations.

Theorem 4.40. The above family of deformations of generalized complex structures is a
smooth locally complete family.

Proof. Notice, for

ε = t14T ∧W + t11T ∧ ω + t22W ∧ ρ+ t21T ∧ ρ+ t12W ∧ ω + t32ω ∧ ρ,
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the Schouten bracket [ε, ε]S is zero for any tij ∈ C. This follows immediately from the
de�nition of the Schouten bracket since all the Lie brackets and, consequently, all the
Courant brackets vanish in this case.

Therefore, any such ε satis�es the Maurer-Cartan equation. Hence, Lε = (1 + ε)L
de�nes a generalized complex structures on N . Applying Theorem 4.13 shows us that this
is a smooth locally complete family of deformations.

We present an analogue of Theorem 4.25 for complex 2-tori now.

Theorem 4.41. If L is a generalized complex structure of complex-type then there is a
smooth locally complete family of deformations of L.

The proof of the above theorem is similar to the proof of Theorem 4.25 and is omitted.

In addition, we omit the analysis of the invertibiliy of the operator Aε, but one could
similarly compute the determinant of the matrix Aε where

ε =


−t11 −t12 0 −t14

−t21 −t22 t14 0
0 −t32 t11 t21

t32 0 t12 t22

 .
In this case, Lε is generated by

(1 + ε)T = T − t11T − t12W + t32ρ,

(1 + ε)(W ) = W − t21T − t22W − t32ω,

(1 + ε)ω = ω + t14W + t11ω + t21ρ, and

(1 + ε)ρ = ρ+ t21ω + t22ρ− t14T.

Remark 4.42. If the coe�cient of the Poisson structure, t14, is zero then the resulting
generalized complex structure is of complex-type, and if t14 6= 0 it is of symplectic-type.
If the B-�eld is non-trivial (t32 6= 0) then the structure still has type 2. The parameters
t11, t22, t21, and t12 correspond to the usual deformations of complex structures on N .

Both Kähler and hence generalized Kähler structures exist on a torus. In particular, any
Kähler structure (J, ω, g) on a complex 2-torus gives rise to a generalized Kähler structure
(JJ , Jω). Therefore, generalized complex structures that come from complex structures
give rise to a generalized Kähler structure.

Let us now examine a speci�c symplectic deformation space.
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Deformations Starting at a Symplectic Structure

Let us choose η = ω ∧ ρ + ω ∧ ρ as we did for Kodaira surfaces. Then L is generated by
{e1, e2, e3, e4} = {T − iρ, W + iω, T − iρ, W + iω} and L∗ is generated by {e∗1, e∗2, e∗3, e∗4} =
{ω + iW, ρ− iT, ω + iW , ρ− iT} as in the Kodaira surface setting.

Lemma 4.43. The Courant bracket of any two elements of L (or L ∼= L∗) is zero.

Proof. Recall that all Lie brackets of pairs of elements of TN are zero. Next, notice that
every non-zero element of L (or L) has non-zero projection onto TN . Further, we know

πT [X + α, Y + β]C = [X, Y ]Lie.

In particular, the only component in TN under the Courant bracket is the Lie bracket of
the vector �eld parts (which all vanish). Therefore, if the Courant bracket of two elements
of L (or L) were non-zero, the resulting element would only have a component in T ∗N . But
no non-zero element of L (or L) has zero projection onto TN which means it would not
be an element of L (or L). But L (L) is closed under the Courant bracket. This is a
contradiction. Hence, the Courant bracket of any two elements of L (or L) is necessarily
zero.

In order to obtain the deformations ε ∈ H2
L(N) ∼= H2

DR(N) we recall that since the
second Betti number of the torus is 6, all of the generators of ∧2T ∗ form a basis of H2

DR(N),
that is, it is generated by {ω ∧ω, ω ∧ ρ, ω ∧ ρ, ω ∧ ρ, ω ∧ ρ, ρ∧ ρ}, and therefore, H2

L(N)
is generated by e∗ij = e∗i ∧ e∗j for 1 ≤ i < j ≤ 6.

Lemma 4.44. For any ε ∈ H2
L(N), [ε, ε]S = 0.

Proof. This is immediate from Lemma 4.43 since every term will have a Courant bracket.

Therefore, any su�ciently small element ε ∈ H2
L(N) (so that Aε is invertible) is a

generalized complex deformation. Further, this is a smooth locally complete family.

Theorem 4.45. The family of deformations of generalized complex structures on complex
2-tori given by

ε =
∑
i<j

Aije
∗
ij

with Aij ∈ U ⊆ C6 where U is a small open neighbourhood of 0 is a smooth locally complete
family.
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Proof. As on Kodaira surfaces, this follows from Theorem 4.13 and Lemma 4.44.

Small in�nitesimal deformations of a generalized complex structure coming from a sym-
plectic structure on a torus all have type zero and also correspond to complex symplectic
structures according to Propositions 4.18 and 4.19. Let us proceed to a description of
the moduli spaces of even-type generalized complex structures on Kodaira surfaces and
complex 2-tori.

4.4 The Moduli Space of Generalized Complex Struc-

tures of Even-Type

In this section, we show that moduli spaces of generalized complex structures of even-type
on complex two-dimensional nilmanifolds are smooth complex manifolds of dimensions 4
or 6, and present a geometric description of these spaces. LetM2gen(N)/∼= be the moduli
space of generalized complex structures of even-type on a manifold N , up to isomorphism.
Huybrechts studiesM2gen(N)/∼= when N is a K3 surface in [21]. We begin this section by
summarizing his results and then extend them to Kodaira surfaces and complex 2-tori.

Proposition 4.46 (Huybrechts, [21], Section 3). Let M be a K3 surface. The moduli
space of generalized Calabi-Yau structures on M is a complex 22-dimensional space. For
comparison, the space of complex deformations in this case is complex 20-dimensional.
There is a hyperspace (complex 21-dimensional space) consisting of all B-�eld transforms
of complex structures, and a real 22-dimensional subspace of real symplectic structures.
Every other structure in the space is a B-transform of these symplectic structures.

Let us �rst consider the case where N is a complex 2-torus.

Theorem 4.47. The moduli space of left-invariant generalized complex structures of even-
type on a complex 2-torus is a complex six-dimensional manifold. Contained in this man-
ifold is a complex four-dimensional subspace of complex deformations. There is a hy-
perspace (complex �ve-dimensional subspace) consisting of all B-�eld transforms of com-
plex structures, and a real 6-dimensional space of real symplectic structures (coming from
H2
DR(N,R)). Every other structure in the space is a B-transform of these symplectic struc-

tures.

Proof. Let L ∈M2gen(N). Then L is either a complex-type structure or a symplectic-type
structure by Theorem 2.51. If L is a complex-type structure then Theorem 4.41 says that
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L admits a smooth locally complete family of deformations. On the other hand, if L is of
symplectic-type then Theorem 4.15 gives us such a smooth family. This provides a way to
place a smooth manifold structure onM2gen(N).

If the point corresponds to a symplectic-type structure thenH2
L(N) ∼= H2

DR(N,C) ∼= C6.
Moreover, if L is a complex-type point then L is a B-�eld transform of a complex structure,
J . The moduli space of complex structures is parametrized by H1(M,T1,0) ∼= C4 and
B-�eld transforms lie in H0(M,∧2T ∗0,1) ∼= C. Finally, H2

DR(N,R) ∼= R6 contains a 6-
dimensional family of real symplectic structures. Every other structure in the space is a
B-transform of these symplectic structures.

Next, let N be a Kodaira surface.

Theorem 4.48. The moduli space of left-invariant even-type generalized complex struc-
tures on Kodaira surfaces is a complex four-dimensional manifold. Contained in this man-
ifold is a complex 2-dimensional space of complex deformations and a hyperspace (complex
3-dimensional space) of all B-�eld transforms of complex structures. There is also a real
4-dimensional space of real symplectic structures coming from H2

DR(N,R).

Proof. Each point L of the moduli space M2gen(N)/∼= admits a smooth locally complete
family of deformations from Theorems 4.25 and 4.15. This provides a way to place a
smooth manifold structure onM2gen(N)/∼=. If the point corresponds to a symplectic-type
structure then H2

L(N) ∼= H2
DR(N,C) ∼= C4. If L is a complex-type point then L is the

B-�eld transform of a complex structure, J . But the moduli space of complex structures
is parametrized by H1(M,T1,0) ∼= C2 and B-�eld transforms lie in H0(M,∧2T ∗0,1) ∼= C.
Finally in Section 3.3 we exhibited a real 4-dimensional family of real symplectic structures
coming from H2

DR(N,R).

Remark 4.49. One particular reason that the above classi�cation theorems are interest-
ing is that it demonstrates that Kodaira surfaces are not so di�erent from K3 surfaces and
complex 2-tori. The moduli spaces (of even-type structures) has a very similar shape in
all three cases, despite the fact that Kodaira surfaces are non-Kähler. Perhaps this is not
surprising as the class of compact complex surfaces with trivial canonical bundle contains
only three surfaces: K3 surfaces, complex 2-tori, and Kodaira surfaces.
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4.5 Non-Existence of Some Generalized Kähler Struc-

tures on Kodaira Surfaces

Recall that a generalized Kähler structure consists of two commuting generalized complex
structures (J1, J2) such that G := −J1J2 induces a positive de�nite metric. We now
illustrate with speci�c examples that certain pairs of generalized complex structures on
Kodaira surfaces fail to induce a positive de�nite metric.

Complex Deformation Space

First we consider a pair (J1, J2) of generalized complex structures in the complex deforma-
tion space we examined in Section 4.2.1. Recall that J1 and J2 are of the form Jε = AεJJA−1

ε ,
where JJ is a complex structure. Further, ε : L→ L has the form

ε =


−t11 0 0 −t14

0 −t22 t14 0
0 −t32 t11 0
t32 0 0 t22


and

Aε =



1 0 0 0 −t11 0 0 −t14

0 1 0 0 0 −t22 t14 0
0 0 1 0 0 −t32 t11 0
0 0 0 1 t32 0 0 t22

−t11 0 0 −t14 1 0 0 0
0 −t22 t14 0 0 1 0 0
0 −t32 t11 0 0 0 1 0
t32 0 0 t22 0 0 0 1


,

is an automorphism of L⊕ L in the basis {T ,W, ω, ρ, T,W, ω, ρ} for L⊕ L. Since

JJ = diag{i, i, i, i,−i,−i,−i,−i},
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with respect to this basis, we obtain

Jε =



∗ 0 0 ∗ ∗ 0 0 ∗
0 ∗ ∗ 0 0 ∗ ∗ 0
0 ∗ ∗ 0 0 ∗ ∗ 0
∗ 0 0 ∗ ∗ 0 0 ∗
∗ 0 0 ∗ ∗ 0 0 ∗
0 ∗ ∗ 0 0 ∗ ∗ 0
0 ∗ ∗ 0 0 ∗ ∗ 0
∗ 0 0 ∗ ∗ 0 0 ∗


,

where the entries with a ∗ are not necessarily zero.

Next, the matrix corresponding to the pairing <,> in the above basis is

M =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


.

Fix any two deformations ε1 and ε2, and consider the corresponding generalized complex
structures Jε1 and Jε2 . Although these generalized complex structures commute for some
ε1 and ε2, G = −Jε1Jε2 never induces a positive de�nite metric. Indeed,

Jεi(T ) =



∗
0
0
∗
∗
0
0
∗


and MJεi(T ) =



0
∗
∗
0
0
∗
∗
0


,
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implying

G̃(T , T ) = < GT, T >

= < −Jε1Jε2T , T >

= < Jε2T , Jε1T >

= Jε1(T )tMJε2(T )

= 0.

Hence, no such metric G̃ is positive de�nite. We conclude that no pair of such generalized
complex structures gives rise to a generalized Kähler structure.

Symplectic Deformation Space

A similar argument to the one we used for the complex deformation space shows that no
pair of generalized complex structures from the symplectic deformation space computed
in Section 4.2.2 forms a generalized Kähler structure. In particular, we will show that
no pair of these generalized complex structures induces a positive de�nite metric. As in
the complex case, let us determine what Jε looks like for any deformation ε ∈ H2

L(N). In
this case, we use the matrix description of ε in Section 4.2.2. With respect to the basis
{T − iρ, W + iω, T − iρ, W + iω, T + iρ, W − iω, T + iρ, W − iω} of L ⊕ L we can
directly compute that these generalized complex structures have the form

Jε =



∗ 0 ∗ 0 ∗ 0 ∗ 0
0 ∗ 0 ∗ 0 ∗ 0 ∗
∗ 0 ∗ 0 ∗ 0 ∗ 0
0 ∗ 0 ∗ 0 ∗ 0 ∗
∗ 0 ∗ 0 ∗ 0 ∗ 0
0 ∗ 0 ∗ 0 ∗ 0 ∗
∗ 0 ∗ 0 ∗ 0 ∗ 0
0 ∗ 0 ∗ 0 ∗ 0 ∗


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where the entries with a ∗ are not necessarily zero. The matrix corresponding to the pairing
<,> in the above basis is

M =



0 0 0 0 0 0 0 −i
0 0 0 0 0 0 i 0
0 0 0 0 0 −i 0 0
0 0 0 0 i 0 0 0
0 0 0 −i 0 0 0 0
0 0 i 0 0 0 0 0
0 −i 0 0 0 0 0 0
i 0 0 0 0 0 0 0


.

Thus, �x any two deformations ε1, ε2. A direct computation shows that

Jεi(T − iρ) =



∗
0
∗
0
∗
0
∗
0


and MJεi(T − iρ) =



0
∗
0
∗
0
∗
0
∗


which implies, for G = −Jε1Jε2 ,

G̃(T − iρ, T − iρ) = < G(T − iρ), T − iρ >
= < −Jε1Jε2(T − iρ), T − iρ >
= < Jε2(T − iρ), Jε1(T − iρ) >

= Jε1(T − iρ)tMJε2(T − iρ)

= 0.

Therefore, no pair of these generalized complex structures gives rise to a generalized Kähler
structure.

Remark 4.50. If one instead considers generalized pseudo-Kähler structures, that is,
generalized Kähler structures which do not have a positive de�nite metric, then Kodaira
surfaces do admit them. Examining structures of this type on Kodaira surfaces has yet to
be completed.
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4.6 An Odd-Type Structure on Kodaira Surfaces

All of the above analysis was done for even-type generalized complex structures. These
are, in fact, the only structures that exist on K3 surfaces. However, odd-type generalized
complex structures do exist on Kodaira surfaces. In this section, we present an example of
an odd-type generalized complex structure.

Let us de�ne an odd-type structure by specifying its +i-eigenbundle L. Recall that the
basis for T ⊗ C is {T,W, T ,W} and the dual basis for T ∗ ⊗ C is {ω, ρ, ω, ρ}.

Proposition 4.51. Let L be generated by

T + ρ+ ρ,

W − ω + ρ,

W − ω − ρ, and

ω.

Then, L is a generalized complex structure. Note that the projection of L onto TN ⊗ C is
generated by {T,W,W} and L is therefore a type 1 structure.

Proof. We need to show that L is isotropic, L∩L = {0} and L is closed under the Courant
bracket. It is easy to see that L is isotropic by how it was chosen. It is also straightforward
to check that L ∩ L = {0}. Since L is generated by

T + ρ+ ρ,

W − ω + ρ,

W − ω − ρ, and

ω,

we show instead that L⊕L =)(T ⊕T ∗)⊗C. Indeed, ω and ω are both elements of L⊕L, so
areW, ρ,W, and ρ. Lastly, we get T and T from the �rst generator of L and L, respectively.
The only condition left to verify is integrability. It is enough to check that the Courant
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bracket of any two distinct basis elements of L is again an element of L. We will need the
identities: dω = dω = 0 and dρ = dρ = −iω ∧ ω. We �rst compute

[T + ρ+ ρ,W − ω + ρ]C = [T,W ] + LT (−ω + ρ)− LW (ρ+ ρ)

−1

2
d((−ω + ρ)(T )− (ρ+ ρ)(W ))

= ιTd(−ω + ρ)− ιWd(ρ+ ρ)

= −ιT iω ∧ ω + 2ιW (iω ∧ ω)

= −iω ∈ L.

The proof that [T + ρ+ ρ,W − ω − ρ]C ∈ L is similar. Next,

[W − ω + ρ,W − ω − ρ]C = [W,W ] + LW (−ω − ρ)− LW (−ω + ρ)

−1

2
d((−ω − ρ)(W )− (−ω + ρ)(W ))

= ιWd(−ω − ρ)− ιWd(−ω + ρ)

= ιW (iω ∧ ω) + ιW (iω ∧ ω)

= 0 ∈ L.

Finally, using the following computation,

[T + ρ+ ρ, ω]C = [T, 0] + LT (ω)− L0(ρ+ ρ)− 1

2
d((ω)(T )− (ρ+ ρ)(0))

= ιTd(ω)

= ιT0

= 0 ∈ L,

we similarly obtain [W − ω + ρ, ω]C = [W − ω − ρ, ω]C = 0 ∈ L.
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Chapter 5

Generalized Holomorphic Bundles

Generalized holomorphic bundles were introduced by Gualtieri in [15]. These objects are a
special class of Lie algebroid connections, where the Lie algebroid is a generalized complex
structure. In this chapter, we study some of their general properties and compute explicit
examples on Kodaira surfaces and complex 2-tori.

We begin with an examination of general Lie algebroid connections and prove that
�at connections are preserved under Lie algebroid isomorphisms (Proposition 5.2). We
then study generalized holomorphic bundles for speci�c generalized complex structures.
For a generalized complex structure coming from a complex structure, generalized holo-
morphic bundles are called co-Higgs bundles (see Section 5.1.1). Some of their properties
were studied by Hitchin in [19]. Moreover, their moduli spaces have been described by
Rayan over CP1 in [26] and over CP2 in [27]. In Section 5.1.2, we introduce the notion of
twisted co-Higgs bundle and prove that such bundles are preserved under B-�eld transforms
(Proposition 5.11). We then explain how generalized holomorphic bundles correspond to
Poisson modules when the generalized complex structure comes from a holomorphic Poisson
structure (see Section 5.1.3). Finally, in Section 5.1.4, we show that when the generalized
complex structure has type zero, generalized holomorphic bundles are in fact �at bundles.

We end the chapter by giving an explicit description of generalized holomorphic bundles
on Kodaira surfaces and complex 2-tori, with respect to the families of generalized complex
structures we constructed in Sections 4.2 and 4.3. This is done in Sections 5.2 and 5.3.
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5.1 De�nitions and Properties

Let M be a manifold. We begin with a general result for Lie algebroid connections over
M . Recall that we introduced Lie algebroids and Lie algebroid di�erentials in section 4.1.

Definition 5.1. Let (E, ρ, [·, ·]E) be a Lie algebroid over M . A Lie algebroid con-
nection for E is a vector bundle V over M together with an operator D : C∞(V ) →
C∞(V ⊗ E∗) such that a Leibniz rule is satis�ed, namely

D(fs) = dE(f)⊗ s+ fD(s)

for section s ∈ C∞(V ) and smooth function f on M . If D2 = 0 then the Lie algebroid
connection D is called �at.

The �atness condition requires an extension of D to elements of C∞(V ⊗ E∗). To do
this, we use the Leibniz rule,

D(s⊗ a) = D(s) ∧ a+ s⊗ dE(a) ∈ C∞(V ⊗ ∧2E∗).

We will introduce a special class of these objects shortly, when E is a maximal isotropic
corresponding to a generalized complex structure then a Lie algebroid connection is called
a generalized holomorphic bundle. Before this, let us prove a result regarding �at Lie
algebroid connections.

Proposition 5.2. Let (E, ρ, [·, ·]E) and (E ′, ρ′, [·, ·]E′) be two isomorphic Lie algebroids
over a manifold M , and let (V,D) be a Lie algebroid connection over E. Denote the
isomorphism by φ : E → E ′ which means ρ′ ◦ φ = ρ and [φ(a), φ(b)]E′ = φ([a, b]E). Then
(V,D) is �at if and only if the resulting bundle (V,D′) over E ′ (via φ) is �at.

Proof. First, we need to recall the result of Lemma 4.8: φ∗ ◦ dE′ = dE ◦ φ∗. In terms of a
local frame {s1, . . . , sr} of V ,

D(si) =
∑
j

Ωjisj

(analogous to standard connections), where Ωji ∈ C∞(E∗). Then we may write D = dE+Ω
where Ω is a matrix of smooth sections of E∗ (compared with standard connections where
Ω is a matrix valued 1-form). With this representation we can also locally interpret the
�atness condition as we do in the case of standard connections, namely D2 = 0 if and only
if dEΩ + Ω ∧ Ω = 0.

73



Suppose we have two isomorphic Lie algebroid connections (V,D) and (V,D′) for E and
E ′ respectively. We can write D = dE + Ω and D′ = dE′ + Ω′, for Ω ∈ C∞(End(V )⊗ E∗)
and Ω′ ∈ C∞(End(V ) ⊗ (E ′)∗) where Ω = φ∗Ω′. We extend the map φ∗ to the wedge
product in the natural way, that is φ∗Ω′ ∧ φ∗Ω′ = φ∗(Ω′ ∧Ω′). The curvature matrices are
related as well,

dEΩ + Ω ∧ Ω = dEφ
∗Ω′ + φ∗Ω′ ∧ φ∗Ω′

= φ∗dE′Ω
′ + φ∗(Ω′ ∧ Ω′)

= φ∗(dE′Ω
′ + Ω′ ∧ Ω′).

Therefore, dEΩ+Ω∧Ω = 0 if and only if dE′Ω
′+Ω′∧Ω′ = 0 because φ∗ is an isomorphism.

This is what we wanted to show.

Now let us restrict our attention to Lie algebroids of the form (L, πT , [·, ·]C), that is,
generalized complex structures. Recall that the anchor map in this case is πT , projection
onto the tangent bundle, and [·, ·]C is the Courant bracket. We will follow [19] in our
treatment of these bundles. Again, we identify L∗ with L via < ·, · >.

Remark 5.3. It is important to note that we can only identify L with L∗ when L is real,
that is, L ∩ L = 0. Of course this is the case for a generalized complex structure, but for
an arbitrary complex Lie algebroid this may not be possible.

Definition 5.4. A generalized holomorphic bundle on a generalized complex manifold
(M,L) is a vector bundle V together with a di�erential operator D : C∞(V )→ C∞(V ⊗L)
such that for a smooth function f and section s

� D(fs) = dL(f)s+ fDs,

� D
2

: C∞(V )→ C∞(V ⊗ ∧2L) vanishes.

The �rst condition is a Leibniz rule in the generalized setting. The second condition
is the integrability condition, and requires us to extend the de�nition of D to elements
of C∞(V ⊗ L). This is exactly the same as the extension we performed on a general Lie
algebroid,

D(s⊗ z) = D(s) ∧ z + s⊗ dL(z) ∈ C∞(V ⊗ ∧2L).
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In terms of a local frame {s1, . . . , sr}, we may write

D(si) =
∑
j

Ωjisj

where Ωji ∈ C∞(L). Then D = dL + Ω where Ω ∈ C∞(EndV ⊗ L). The second condition

is therefore the �atness condition in this setting. Locally we have D
2
vanishes if and only

if dLΩ + Ω ∧ Ω = 0.

We will examine these bundles in certain special cases in the following sections. We be-
gin with generalized holomorphic bundles corresponding to a generalized complex structure
that comes from a complex structure. In this case they are called co-Higgs bundles.

5.1.1 Co-Higgs Bundles

Let (V,D) be a generalized holomorphic bundle corresponding to a generalized complex
structure coming from a complex structure J . In this case L = T1,0 ⊕ T ∗0,1; we may write

D = Φ + ∂A where
Φ : C∞(V )→ C∞(V ⊗ T1,0)

and
∂A : C∞(V )→ C∞(V ⊗ T ∗0,1).

Then, for a section s, we may locally write:

D(s) = Φ(s) + ∂A(s) =
∑
k

φks
∂

∂zk
+
∑
j

(
∂s

∂zj
+ Ajs

)
dzj. (5.1)

Here, φk and Aj are the components in local holomorphic coordinates. Let us also use the
symbol ∂A to denote the induced connection of ∂A on End(V )⊗ T1,0 since we may view Φ

as a section of End(V ) ⊗ T1,0 (by de�nition, ∂
End

A (Φ) = ∂AΦ + Φ∂A = [∂A,Φ]). We now

examine the conditions obtained if we stipulate that D
2

= 0:

0 = D
2

= (Φ + ∂A)2 = Φ ∧ Φ + ∂AΦ + ∂
2

A.

Since Φ ∧ Φ is the only operator with a component in ∧2T , and ∂
2

A is the only one with a
component in ∧2T ∗, we get

1. ∂
2

A = 0 ∈ C∞(End(V )⊗ ∧2T ∗0,1),
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2. Φ∂A = 0 ∈ C∞(End(V )⊗ T1,0 ⊗ T ∗0,1),

3. Φ ∧ Φ = 0 ∈ C∞(End(V )⊗ ∧2T1,0).

In order to see how we obtained equation 5.1 recall from example 4.1 that for a smooth
function f ,

dL(f)(X + α) = πT (X)(f) + πT (α)(f) = X(f) + 0 = ∂(f)(X) + 0.

So the dL operator behaves like ∂ on T0,1 and the zero operator on T ∗1,0. This means that the

dL operator only appears in ∂A and not Φ. Locally, our above operators satisfy ∂A = ∂+A
while Φ = 0 + φ for A ∈ C∞(End(V )⊗ T ∗0,1) and φ ∈ C∞(End(V )⊗ T1,0).

Let us examine the three conditions, ∂
2

A = 0, Φ∂A = 0, and Φ ∧ Φ = 0, in detail.

The �rst condition, ∂
2

A = 0, gives V the structure of a holomorphic vector bundle. Next,
∂AΦ = 0 tells us that Φ is a holomorphic section of End(V ) ⊗ T1,0. Finally, the third
condition puts an algebraic restriction on Φ. If we locally write Φ =

∑
φi

∂
∂zj

, then Φ2 = 0
means ∑

j<k

[φj, φk]
∂

∂zj
∧ ∂

∂zk
= 0.

Hence the condition we require is that

[φj, φk] = 0

for any j, k. When this condition is satis�ed we will write Φ ∧ Φ = 0.

If all three conditions are satis�ed, the resulting bundle is called a co-Higgs bundle.
Hitchin examined some speci�c examples in [19], and Rayan classi�ed such bundles (with
a stability assumption) on P1 in [26], and on CP2 in [27]. We list some standard examples
here.

1. A co-Higgs line bundle (rank 1 co-Higgs bundle) is a holomorphic line bundle L
together with a vector �eld X. In this case, the condition X ∧ X = 0 is trivially
satis�ed.

2. Over P1, we may consider the trivial rank-k vector bundle V . Then a co-Higgs �eld Φ
is a k× k matrix with values in C∞(O(2)) since the tangent bundle is O(2). Thus Φ
is a matrix of quadratic polynomials in z. Once again, if k = 1 then the integrability
condition on Φ is trivially satis�ed.
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3. If V = O ⊕ T then we may de�ne Φ(λ,X) = (0, X) to get an integrable co-Higgs
structure.

4. On a Kodaira surface or a complex 2-torus, since T1,0
∼= O ⊕ O, we �nd that our

co-Higgs �eld lies in the direct sum of two holomorphic sections of End(V ),

Φ ∈ H0(End(V )⊗ T1,0) ∼= H0(End(V ))⊕H0(End(V ))

To end our discussion of co-Higgs bundles, we present one method for transforming a
co-Higgs bundle using a certain B-transform.

Definition 5.5. Let B be a closed real (1, 1)-form and (V,D) (where D = ∂A + Φ) be
a co-Higgs bundle. The transform of the co-Higgs bundle by B changes the holomorphic
structure ∂A and �xes the co-Higgs �eld Φ. That is, DB = ∂B + Φ where

∂B = ∂A + ιΦB.

Of course, with ιΦB, we are abusing notation to make the expression more condensed.
More explicitly, if B =

∑
Bij̄dzi ∧ dz̄j, we mean

ιΦB =
∑
j

(∑
i

φiBij

)
dz̄j.

A closed real (1, 1)-form B is a symmetry of the base generalized complex structure because
L = T0,1 ⊕ T ∗1,0 7→ LB = (1 + B)(T0,1) ⊕ T ∗1,0 but if B is a (1, 1)-form then B(T0,1) ⊆ T ∗1,0
and therefore LB = L. These transforms are discussed in detail in [19], where it is proven,
in particular, that integrability is preserved under these transforms.

Proposition 5.6 (Hitchin, [19], Section 4.1). If (V,Φ, ∂A) is a co-Higgs bundle and B
is a closed real (1, 1)-form then (V,Φ, ∂B) is again a co-Higgs bundle.

Remark 5.7. We will examine B-�eld transforms of the base generalized complex struc-
ture in the coming section on twisted co-Higgs bundles and prove an analogue of the above
proposition in that setting.

In a certain special case, if B is ∂-exact, then it was shown in [19] that we can say more
about our holomorphic structures:

Proposition 5.8 (Hitchin, [19], Proposition 2). If B is ∂-exact, then the two holomor-
phic structures ∂A and ∂B are gauge equivalent.
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Now let us explore what happens when we deform the base generalized complex struc-
ture coming from a complex structure. Recall, we may write any deformation as three
components ε = B + εJ + β, where B is a complex closed (0, 2)-form, β is a holomorphic
Poisson structure and εJ is a deformation of the complex structure. Of course, if we only
deform the base complex structure (that is, ε = εJ) then any generalized holomorphic
bundle is still a co-Higgs bundle. Let us examine what happens in the other two cases. In
the B-�eld case, we will obtain twisted co-Higgs bundles. In the Poisson structure case we
obtain Poisson modules.

Remark 5.9. Note that, if (V,Φ, ∂A) is integrable (that is, a co-Higgs bundle) and εJ
is a deformation of J , then it is not necessarily the case that the structure (V,ΦεJ , ∂AεJ )

is integrable. Here we de�ne ΦεJ = Φ + ιΦεJ and ∂AεJ = ∂A + ι∂AεJ as we did for the
(1, 1)-forms B above. The reason for this is that the transformation (1 + εJ) : L → LεJ
does not preserve projections onto T . Hence the assumptions of Proposition 5.2 are not
satis�ed because πT ((1 + εJ)x) 6= πT (x) (here πT is the anchor map).

5.1.2 Twisted Co-Higgs Bundles

A natural extension of the above B-�eld discussion is to ask what generalized holomorphic
bundles correspond to a given B-�eld transform if B is any closed (possibly complex) 2-
form and we transform a generalized complex structure coming from a complex structure
L = T0,1 ⊕ T ∗1,0 to LB = (1 +B)T0,1 ⊕ T ∗1,0.

First, let us decompose B = B2,0 + B1,1 + B0,2. It is clear that B2,0 + B1,1 has no
e�ect on L, so only B0,2 needs to be considered. Let us �x a closed (0, 2)-form B. Then
generalized holomorphic bundles for LB have the form (V,ΦB, ∂A) where

∂A : C∞(V )→ C∞(V ⊗ T ∗0,1) and ΦB : C∞(V )→ C∞(V ⊗ (1 +B)T1,0).

In fact, they are all B-�eld transforms of (V,Φ, ∂A) where ΦB = Φ+ ιΦB. The integrability
conditions in this setting are:

1. ∂
2

A = 0 ∈ C∞(End(V )⊗ ∧2T ∗0,1),

2. ∂AΦB = 0 ∈ C∞(End(V )⊗ (1 +B)T1,0 ⊗ T ∗0,1),

3. ΦB ∧ ΦB = 0 ∈ C∞(End(V )⊗ ∧2(1 +B)T1,0).

These look very similar to the integrability conditions in the co-Higgs setting, which
motivates the following de�nition.

78



Definition 5.10. Let L = T0,1⊕T ∗1,0 be a generalized complex structure corresponding to
a complex structure and LB = (1+B)L for a real closed (0, 2)-form B. Then a generalized
holomorphic bundle for LB, that is, a bundle of the form (V,ΦB, ∂A) is called a twisted
co-Higgs bundle.

The natural question to ask is if (V,Φ, ∂A) is integrable, is the transformed structure
(V,ΦB, ∂A) also integrable? Conversely, if (V,ΦB, ∂A) is integrable, is (V,Φ, ∂A) also inte-
grable? We can give an a�rmative answer to both questions.

Proposition 5.11. If B is a closed (0, 2)-form, then (V,Φ, ∂A) is integrable (to a co-
Higgs bundle) if and only if (V,ΦB, ∂A) is integrable (to a twisted co-Higgs bundle).

Proof. This is an application of Proposition 5.2, where φ = eB : L→ LB. We established
in Corollary 4.11 that this is an isomorphism of Lie algebroids.

Hence the result follows from Proposition 5.2.

Remark 5.12. The above proposition allows us to reduce the problem of classifying the
larger class of B-�eld transforms of co-Higgs bundles to just classifying co-Higgs bundles
themselves, as any twisted co-Higgs bundle can be viewed, in a natural way, as a co-Higgs
bundle.

5.1.3 Relationship to Poisson Modules

Poisson modules and their relationship to generalized geometry have already been studied
by Gualtieri in [13], [16], and Hitchin in [18]. Here we look at the de�nition and a speci�c
relation between Poisson modules and generalized holomorphic bundles.

Definition 5.13. A holomorphic Poisson module on a holomorphic Poisson manifold
(M,β) is a holomorphic bundle V together with a holomorphic structure ∂A : C∞(V ) →
C∞(V ⊗ T ∗0,1) and a map Ψ : C∞(V )→ C∞(V ⊗ T1,0) that satis�es, for smooth functions
f and g and section s:

1. Ψ(fs) = fΨ(s)− ιdfβ ⊗ s and

2. Ψd{f,g}(s) = (ΨdfΨdg −ΨdgΨdf )s

where {f, g} = β(df, dg) is the Poisson bracket induced by β, and Ψα(s) = Ψ(s)(α).
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Remark 5.14. A Poisson module is a holomorphic bundle V together with an action of
smooth functions on holomorphic sections s 7→ {f, s} that satis�es

1. {f, gs} = {f, g}s+ g{f, s} and

2. {{f, g}, s} = {f, {g, s}} − {g, {f, s}}

where we de�ne
{f, s} := Ψdfs.

The conditions in De�nition 5.13 are equivalent to the corresponding conditions in the
above de�nition of Poisson module. Let us consider the �rst condition here. The left-hand
side is

{f, gs} = Ψdf (gs) = Ψ(gs)(df).

The right-hand side becomes

{f, g}s+ g{f, s} = β(df, dg)s+ gΨdfs = gΨ(s)(df)− (ιdgβ)(df)s.

Hence the left-hand side and the right-hand side agree if and only if Ψ(gs) = gΨ(s)−ιdgβ⊗s
which is the �rst condition in the de�nition of Poisson module above.

For the second condition, the left-hand side is

{{f, g}, s} = Ψd{f,g}s

and the right-hand side is

{f, {g, s}} − {g, {f, s}} = Ψdf (Ψdgs)−Ψdg(Ψdfs).

Once again, these two expressions are equal if and only if

Ψd{f,g}(s) = (ΨdfΨdg −ΨdgΨdf )s.

It is useful to see which generalized holomorphic bundles are holomorphic Poisson mod-
ules. This question can be answered with the following proposition from [13].

Proposition 5.15 (Gualtieri, [13], Proposition 8). If

J =

[
−J Q
0 J∗

]
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for J a complex structure and β = P + iQ with P = QJ∗, a holomorphic Poisson structure
then a generalized holomorphic bundle is precisely a holomorphic Poisson module.

Equivalently, a generalized holomorphic bundle corresponding to a generalized complex
structure with maximal isotropic Lβ = T0,1 ⊕ Γβ where Γβ = {η + β(η) : η ∈ T ∗1,0} (for β a
holomorphic Poisson structure) is a holomorphic Poisson module.

Proof. In this case Lβ = T0,1 ⊕ Γβ where Γβ = {η + β(η) : η ∈ T ∗1,0}, and as we did in the

twisted co-Higgs case above, one can check that dL(f)(X+ η+ ιηβ) = ∂(f)(X)−β(df)(η),
thus if we decompose D = Ψ + ∂A then ∂A : C∞(V ) → C∞(V ⊗ T ∗0,1) and Ψ : C∞(V ) →
C∞(V ⊗Γ∗β). Further, the Leibniz rule for Ψ in this case is Ψ(fs) = fΨ(s)− ιdfβ⊗s which
is the �rst condition in the de�nition of Poisson module.

Also, D
2

= 0 tells us that ∂A is a standard holomorphic structure on our bundle, Ψ
is holomorphic with respect to this structure, and a routine (but tedious) computation
shows that Ψ2 = 0 implies Ψd{f,g}(s) = (ΨdfΨdg − ΨdgΨdf )s for any section s and smooth
functions f and g. This is the second condition in the de�nition.

Note. Recall from example 2.40 that any holomorphic Poisson structure β = P + iQ
has the property that P = QJ∗.

Remark 5.16. This gives us a way of viewing certain generalized holomorphic bundles
as holomorphic Poisson modules. We shall see in the coming sections that these bundles
are �at bundles when we have a holomorphic symplectic structure.

Remark 5.17. We have established above that we may also view a β-transform of a
co-Higgs bundle (V, ∂A,Φ) where ∂A : C∞(E)→ C∞(E⊗T ∗0,1) and Φ : C∞(E)→ C∞(E⊗
T 1,0) as a Poisson module. Explicitly, (V, ∂A,Φ) gets transformed to (V, ∂Aβ ,Φ) with

∂Aβ := ∂A + ι∂Aβ. It is natural to ask if integrability is preserved in this setting. In this

case, however, the answer is no. If (V, ∂A,Φ) is a co-Higgs bundle it does not mean that
(V, ∂Aβ ,Φ) is integrable and conversely, if (V, ∂Aβ ,Φ) is integrable, it does not mean that

(V, ∂A,Φ) is a co-Higgs bundle. One reason for this is that β changes the action of the
Lie-algebroid di�erential dL in a radical way. In fact, as we shall see in the next section,
while dL behaves like ∂ in the co-Higgs setting, it actually behaves like the full exterior
derivative d in the holomorphic symplectic setting. The assumptions of Proposition 5.2
are not satis�ed in this setting because x+ ιxβ changes projections onto T , and therefore
πT ((1 + β)x) 6= πT (x).

On the other hand, in the twisted co-Higgs setting we saw that applying a B-�eld
transform to our generalized holomorphic bundle structure preserved integrability. This is
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also the case in the Poisson setting because eB is an isomorphism of vector bundles that
satis�es the conditions of Proposition 5.2. Thus (V, ∂Aβ ,Φ) is integrable if and only if

(V, ∂Aβ ,ΦB) is integrable, for any closed (0, 2)-form B.

Explicit examples of this will be seen when we analyze the structures on Kodaira sur-
faces and complex Tori in the next section.

5.1.4 Relationship to Flat Bundles

Flat bundles are well understood, and in some cases we can relate generalized holomorphic

bundles to �at bundles. The second condition in the de�nition, that D
2

= 0, looks similar
to that of �atness. We can actually interpret such bundles as �at bundles when we are in
the type zero case as seen in the following proposition.

Proposition 5.18. If (V,D) is a generalized holomorphic bundle for a generalized com-
plex structure J of type zero everywhere, then (V,D) is isomorphic to a �at bundle (V,∇).

Proof. Our proof will follow the same method as the proof of Proposition 5.11. In this case,
since L has full-rank projection onto T everywhere, we may let φ = πT : L→ T and it will
be an isomorphism between the the two Lie algebroids (L, πT , [·, ·]C) and (T, id, [·, ·]Lie).
Thus, the resulting bundle after projecting onto T , (V,∇), is a vector bundle V and a
classical connection that can be locally expressed as ∇ = d + A. Proposition 5.2 tells us
that dA+ A ∧ A = 0, which means (V,∇) is �at, as desired.

We may immediately employ the above proposition when we are dealing with general-
ized holomorphic bundles coming from a symplectic structure.

Corollary 5.19. If (V,D) is a generalized holomorphic bundle for a generalized complex
structure Jω coming from a symplectic structure ω then (V,D) is isomorphic to a �at bundle
(V,∇).

Proof. Since Jω has type zero everywhere, we can apply Proposition 5.18.

Similarly, on a complex surface, if we deform our base complex structure by a holomor-
phic symplectic structure then the result will also be a �at bundle.
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Corollary 5.20. If β is a holomorphic symplectic structure, and Lβ = T0,1 ⊕ Γβ where
Γβ = {η + β(η) : η ∈ T ∗1,0} then any generalized holomorphic structure for Lβ, (V,D) is
isomorphic to a �at bundle (V,∇).

Proof. If β is nowhere-vanishing then Γβ ∼= T1,0 and so Lβ is everywhere of type zero and
we can use proposition 5.18.

5.2 Generalized Holomorphic Bundles on Kodaira Sur-

faces

In this section, we classify generalized holomorphic bundles using the deformation space
from section 4.2.1. We begin by looking at bundles for generalized complex structures that
are B- and β-transforms of a �xed complex structure. Then, we comment on what happens
if we allow a deformation of the base complex structure.

5.2.1 Bundles for a Fixed Complex Structure

Recall from Section 4.2 that the parameters t11 and t22 correspond to the deformations of
the complex structure. Therefore, changing these parameters will give rise to a generalized
complex structure that comes from a di�erent complex structure. The parameters we focus
on here are t14 (the Poisson structure's parameter) and t32 (the B-�eld's parameter) and
we will set t11 = t22 = 0. Therefore in this case

ε = t14T ∧W + t32ω ∧ ρ.

Throughout our analysis we will work with L∗ rather than identifying it with L. We know
L is generated by {T,W, ω, ρ} and so using the formula Lε = (1 + ε)L we get that

T 7→ T + ιT (t14T ∧W + t32ω ∧ ρ) = T + t32ρ.

Similar computations forW , ω, and ρ show us that Lε is generated by {v1, v2, v3, v4} where

v1 = T + t32ρ, v2 = W − t32ω, v3 = ω + t14W, v4 = ρ− t14T.

We work with a �xed ε for now, and write L without the subscript. Note that [vi, vj]C = 0
for all i, j except [v1, v4]C = i(t14v2 +v3). Consider the dual basis {v∗1, v∗2, v∗3, v∗4} of L∗ where

v∗1 =
2

1 + t14t32

(ω + t14W ), v∗2 =
2

1 + t14t32

(ρ− t14T ),
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v∗3 =
2

1 + t14t32

(T + t32ρ), and v∗4 =
2

1 + t14t32

(W − t32ω).

Our �rst goal is to identify explicit restrictions that the integrability condition places
on our bundles to make them generalized holomorphic bundles. Let (V,D) be a rank-r
generalized holomorphic bundle. Working locally, we may write D = dL + Ω where Ω is an
r × r matrix with values in C∞(L), or Ω ∈ C∞(End(V )⊗ L). Say

Ω = Ev∗1 + Fv∗2 +Gv∗3 +Hv∗4

where E,F,G,H are matrices of smooth functions. We must determine conditions on the
matrices E,F,G, and H so that the curvature, dLΩ + Ω∧Ω, vanishes. To do this, we need
to better understand dL. We will �rst compute dL(f) for a smooth function f .

Lemma 5.21. For a smooth function f and for L∗ generated by {v∗1, v∗2, v∗3, v∗4} as above,
then

dL(f) = T (f)v∗1 +W (f)v∗2 + t14W (f)v∗3 − t14T (f)v∗4.

Proof. Say dL(f) = f1v
∗
1 +f2v

∗
2 +f3v

∗
3 +f4v

∗
4 for some functions fi. Let us explicitly compute

f1, the rest are similar. We need to substitute elements of L in both sides of the above
expression. Input v1 on both sides. On the left-hand side, dL(f)(v1) = πT (v1)(f) = T (f).
For the right-hand side of course we get f1. Thus f1 = T (f).

Next, we �nd explicit formulas for dL(v∗k).

Lemma 5.22.

dL(v∗k) =


0 if k = 1, 4

−it14v
∗
1 ∧ v∗4 if k = 2

−iv∗1 ∧ v∗4 if k = 3.

Proof. Let us �nd, for example, dL(v∗2) to illustrate the process. The the rest will be
similar. Say

dL(v∗k) =
∑
i<j

Vijv
∗
i ∧ v∗j .

Focusing on the left-hand side, we see that

dL(v∗k)(vi, vj) = πT (vi)(v
∗
k(vj))− πT (vj)(v

∗
k(vi))− v∗k([vi, vj]C).

But v∗k(vi) = δki is a constant as is v∗k(vj) and therefore

πT (vi)(v
∗
k(vj)) = 0
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and
πT (vj)(v

∗
k(vi)) = 0.

So we have shown dL(v∗k)(vi, vj) = −v∗k([vi, vj]C) and we know the only non-zero Courant
bracket is [v1, v4]C = i(t14v2 + v3), therefore V14 6= 0 for dL(v∗2) and dL(v∗3). Furthermore,
Vij = 0 if (i, j) 6= (1, 4) for all k.

For dL(v∗2) we get V14 = −v∗2([v1, v4]C) = −it14 and therefore

dL(v∗2) = −it14v
∗
1 ∧ v∗4.

Similarly for dL(v∗3) we get V14 = −i and so

dL(v∗3) = −iv∗1 ∧ v∗4.

Now we can state the integrability conditions in our setting.

Proposition 5.23. A matrix Ω = Ev∗1 +Fv∗2 +Gv∗3 +Hv∗4 with values in C
∞(L∗) satis�es

dLΩ + Ω ∧ Ω = 0 if and only if Cij = 0 for 1 ≤ i < j ≤ 4 where

C12 = T (F )−W (E) + [E,F ],

C13 = T (G)− t14W (E) + [E,G],

C14 = T (H) + t14T (E)− it14F − iG+ [E,H],

C23 = W (G)− t14W (F ) + [F,G],

C24 = W (H) + t14T (F ) + [F,H], and

C34 = t14W (H) + t14T (G) + [G,H].

Proof. First we focus on dLΩ as it is simply a matter of using the Leibniz rule on each
component as well as lemmas 5.21 and 5.22. We perform one computation here, the rest
are similar. We will abuse notation and write E for any entry of E.

dL(Ev∗1) = dL(E) ∧ v∗1 + EdL(v∗1)

=
(
T (E)v∗1 +W (E)v∗2 + t14W (E)v∗3 − t14T (E)v∗4

)
∧ v∗1 + E(0)

=
(
−W (E)

)
v∗1 ∧ v∗2 − (t14W (E)) v∗1 ∧ v∗3 + (t14T (E)) v∗1 ∧ v∗4.
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Repeat the above computation for the remaining three terms in Ω then simply collect
the terms together for the six possible wedge products vi ∧ vj to obtain

dLΩ + Ω ∧ Ω =
∑
i<j

Cijvi ∧ vj

where the Cij denotes the matrix of functions that is the coe�cient of that 2-form. Af-
ter performing the computations one �nds that the Cij are as in the statement of this
proposition.

Remark 5.24. Notice that the B-�eld, which corresponds to t32, does not appear in the
above constraints. This is not surprising considering Proposition 5.11 because the B-�eld
will not a�ect the integrability condition.

This gives a characterization of the possible structures that generalized holomorphic
bundles can have in this case. We now analyze what happens in some sub-cases.

5.2.2 Analysis of Special Cases

Base Case: t14 = t32 = 0

First, if t14 = t32 = 0 then we are in the co-Higgs setting outlined in Section 5.1.1. Say
Ω = Ev∗1 +Fv∗2 +Gv∗3 +Hv∗4 and E,F,G,H ∈ C∞(EndV ). After substituting t14 = t32 = 0
into the conditions in proposition 5.23, the six conditions become

T (F )−W (E) + [E,F ] = 0,
T (G) + [E,G] = 0,

T (H)− iG+ [E,H] = 0,
W (G) + [F,G] = 0,

W (H) + [F,H] = 0, and
[G,H] = 0.

Remark 5.25. One can check that the conditions correspond directly to the three con-
ditions placed on ∂A = ∂ + Eω + Fρ and Φ = GT +HW . Namely

Φ ∧ Φ = 0⇔ [G,H] = 0,

∂
2

A = 0⇔ T (F )−W (E) + [E,F ] = 0, and
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∂AΦ = 0⇔


T (G) + [E,G] = 0,

T (H)− iG+ [E,H] = 0,

W (G) + [F,G] = 0,

W (H) + [F,H] = 0.

.

Twisted co-Higgs case: t14 = 0 and t32 6= 0

Consider the case where t14 = 0 and t32 6= 0, which means the resulting generalized complex
structure has complex-type (type 2).

We know that these correspond to twisted co-Higgs bundles. While we do not have a
simple decomposition into tangent and cotangent bundle parts, we may write D = ΦB+∂A
where ∂A is as above, but ΦB = G(T + t32ρ) + H(W − t32ω). We know in general that
(Φ, ∂A) is integrable if and only if (ΦB, ∂A) is integrable from Proposition 5.11. Therefore,
as we would expect, the six conditions placed on E,F,G,H are the same,

T (F )−W (E) + [E,F ] = 0,
T (G) + [E,G] = 0,

T (H)− iG+ [E,H] = 0,
W (G) + [F,G] = 0,

W (H) + [F,H] = 0, and
[G,H] = 0.

Remark 5.26. In this case, the conditions in terms of ΦB and ∂A are

ΦB ∧ ΦB = 0⇔ [G,H] = 0,

∂
2

A = 0⇔ T (F )−W (E) + [E,F ] = 0, and

∂AΦB = 0⇔


T (G) + [E,G] = 0,

T (H)− iG+ [E,H] = 0,

W (G) + [F,G] = 0,

W (H) + [F,H] = 0.

Poisson Case: t14 6= 0 and t32 = 0

If t14 6= 0, and t32 = 0 it means the resulting generalized complex structure has type zero
(symplectic-type). We know these are Poisson modules from proposition 5.15 since t14
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is the coe�cient of a holomorphic Poisson bivector which gives the deformed generalized
complex structure the correct form. This argument proves the following proposition.

Proposition 5.27. Fix t14 ∈ C, t14 6= 0 and t11 = t22 = t32 = 0 and consider the result-
ing generalized complex structure after applying this deformation. Then any generalized
holomorphic bundle associated to this generalized complex structure is a Poisson module.

These are also �at bundles themselves by proposition 5.18 since our Poisson structure is
actually a holomorphic symplectic structure and hence the type of the generalized complex
structure is everywhere zero in this case. The conditions in this case are:

T (F )−W (E) + [E,F ] = 0,

T (G)− t14W (E) + [E,G] = 0,

T (H) + t14T (E)− it14F − iG+ [E,H] = 0,

W (G)− t14W (F ) + [F,G] = 0,

W (H) + t14T (F ) + [F,H] = 0, and

t14W (H) + t14T (G) + [G,H] = 0.

Compare these conditions to those of the base case. If (V,Φ, ∂A) satis�es the conditions
there, it is not true that (V,Φ, ∂Aβ) will satisfy the above equations, and vice versa. The
problem is that there are new terms in these conditions (the ones with a t14). Despite this,
we can classify a certain sub-class of these Poisson modules as relating to co-Higgs bundles
by stipulating that the terms with a t14 vanish.

Proposition 5.28. If

W (E) = 0, T (E) = iF, W (F ) = 0, T (F ) = 0, and W (H) = −T (G)

then (V,Φ, ∂A) is integrable if and only if (V,Φ, ∂Aβ) is integrable.

The General Case: t14 6= 0 and t32 6= 0

Finally, we examine the most general case where t14 6= 0 and t32 6= 0. Generalized holo-
morphic bundles associated to these generalized complex structures can be viewed as �at
bundles. This is because the generalized complex structures all have type zero as t14 6= 0
implies we actually have a holomorphic symplectic structure. In this case our decomposi-
tion has the form D = ΦB + ∂Aβ .
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These are all B-�eld transforms of a Poisson module, and integrability transfers directly.
We can see this explicitly if we compare the conditions in the general setting to that of
the Poisson setting. Thus, a generalized holomorphic bundle over a generalized complex
structure in this general setting is a B-�eld transform of a Poisson module.

Remark 5.29. Deformations of the Base Complex Structure

Consider the case that t11 or t22 may be non-zero, but t14 = t32 = 0. These parameters
correspond to deforming the base complex structure, and if we only apply such a deforma-
tion (with no B-�eld or Poisson structure) then we are in the co-Higgs setting. However,
as we mentioned in the previous section, integrability is not preserved in this setting, much
like the Poisson setting above because we are changing the operater dL. Fortunately, our
analysis in the previous section extends directly here, if we allow for non-trivial B- or
β-�elds, then we obtain �at bundles, Poisson modules, and (twisted) co-Higgs bundles as
before. This is because if we change the base complex structure J → Jε, and then apply
one of these B- or β-�eld transforms to JJε then, regardless of what B or β are, only
the (0, 2) part of B and the (2, 0) part β with respect to Jε will have any e�ect on LJJε .
Thus, we have a full picture of generalized holomorphic bundles over generalized complex
structures in the complex deformation space.

Remark 5.30. Symplectic DeformationsWe could perform a similar computation for
the deformation space of generalized complex structures coming from symplectic structures
in section 4.2.2, but as we mentioned in that section the in�nitesimal deformations corre-
spond to generalized complex structures coming from symplectic structures. This means
they all have type zero which means we can naturally view them all as �at bundles by
proposition 5.18.

5.3 Generalized Holomorphic Bundles on Complex 2-

Tori

The results on the torus will be very similar to those on a Kodaira surface. We will not
repeat the computations here, but rather collect the results and remark on what changes
in each case.

5.3.1 Bundles for a Fixed Complex Structure

We consider the case when t11 = t22 = t21 = t12 = 0 as these parameters correspond to de-
forming the base complex structure. Thus for t14, t32 ∈ C, Lε is generated by {v1, v2, v3, v4}
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where
v1 = T + t32ρ, v2 = W − t32ω, v3 = ω + t14W, v4 = ρ− t14T.

This is the same as the Kodaira surface setting, but all Courant brackets vanish in this
case. Then L∗ε is generated by < v∗1, v

∗
2, v
∗
3, v
∗
4 >, which have the same expressions as before.

Let (V,D) be a generalized holomorphic bundle. The computation follows in exactly the
same manner. Consider the matrix-valued 1-form corresponding to D, say locally we write

Ω = Ev∗1 + Fv∗2 +Gv∗3 +Hv∗4

where E,F,G,H are smooth sections of End(V ).

Proposition 5.31. A matrix-valued 1-form Ω with values in C∞(L) with

Ω = E(T − t32ρ) + F (W + t32ω) +G(ω − t14W ) +H(ρ+ t14T )

satis�es dLΩ + Ω ∧ Ω = 0 if and only if Cij = 0 for 1 ≤ i < j ≤ 4 where

C12 = T (F )−W (E) + [E,F ],

C13 = T (G)− t14W (E) + [E,G],

C14 = T (H) + t14T (E) + [E,H],

C23 = W (G)− t14W (F ) + [F,G],

C24 = W (H) + t14T (F ) + [F,H], and

C34 = t14W (H) + t14T (G) + [G,H].

Remark 5.32. Only C14 changes in this case compared to the Kodiara surface case. The
same conclusions can be drawn here as was done above.

5.3.2 Analysis of Special Cases

Co-Higgs Bundles

If t14 = t32 = 0 then we have co-Higgs bundles on our torus.

B-Field Transforms and Twisted Co-Higgs Bundles

If t14 = 0 and t32 6= 0 (so we transform then the underlying generalized complex structure by
a non-trivial B-�eld action) then the resulting generalized complex structure is of complex-
type (type 2), and any generalized holomorphic bundle will be a twisted co-Higgs bundle.
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Poisson Modules and Flat Bundles

If we move the base structure in the Poisson direction, that is, t32 = 0 and t14 6= 0, then
the resulting structure will have symplectic-type (type 0) because we will be transforming
by a holomorphic symplectic structure. Hence we can either view this as a �at bundle or
a Poisson module. So we obtain:

Proposition 5.33. Fix t14 ∈ C, t14 6= 0 and t11 = t22 = t21 = t12 = t32 = 0. Then,
after applying this deformation to the base generalized complex structure, any generalized
holomorphic bundle associated to this generalized complex structure is a Poisson module.

General Setting

Once again, in this setting, given a deformation where t14 6= 0 and t32 6= 0 we get a �at
bundle that can be viewed as a B-�eld transform of a Poisson module.

Remark 5.34. Deforming The Base Complex Structure We may change the base
complex structure (by altering the parameters t11, t22, t21, and t12) but the conclusion is the
same as in the Kodaira surface case. If we deform with no B-�eld or Poisson structure then
we obtain a co-Higgs bundle. If we have any non-trivial β-�eld (a holomorphic symplectic
structure with coe�cient t14) applied to the generalized complex structure then we are in
the �at bundle setting because the underlying structure will have type zero. Finally, if
we have a non-trivial deformation of the complex structure (t11, t22, t21, and t12) as well
as a B-�eld (t32) but no β-�eld action then generalized holomorphic bundles are (twisted)
co-Higgs with respect to the new complex structure.

Remark 5.35. The symplectic case is the same, as in�nitesimal deformations have full-
rank projection onto T and can therefore be viewed as �at bundles.
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Chapter 6

Future Directions

Here we outline some remaining open problems and future directions this research could
take.

6.1 Generalized Complex Structures

1. (Symplectic Moduli) Let us begin with a rather lofty goal. While complex struc-
tures are well-understood in many settings, symplectic structures are not. There has
been considerable amounts of work done in the area, but many open problems still
remain. For example, if [ω1] = [ω2] ∈ H2

DR(M,R) whereM is a surface, does it follow
that ω1 and ω2 are symplectomorphic? Counterexamples are known in dimension
6 (see [24] for an example), but dimension 4 still proves elusive. Without fully un-
derstanding the symplectic moduli space, one cannot expect to fully understand the
generalized complex moduli space.

2. (Odd-Type Deformations) In our analysis of deformations of generalized complex
structures, we focused on even-type structures, that is, complex-type or symplectic-
type structures. We also exhibited an odd-type structure on a Kodaira surface.
The next step is to compute H2

L(N) for this structure and use it to understand the
deformation space. We could check if all its �rst-order deformations are integrable
as was the case for even-type structures.

3. (Explicit Description of Complex Symplectic Structures) In the general set-
ting, we saw in Proposition 4.19 that if one begins at a symplectic structure, and
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deforms it in the generalized sense, that in�nitesimal deformations give rise to a com-
plex symplectic structure. However, the proof was not constructive. It is di�cult, in
general, to determine the complex symplectic structure for a given deformation. A
more precise understanding of their relationship would be useful.

4. (A Stronger Torelli Theorem) While we do not need extra assumptions in the
complex-type setting for the Global Torelli Theorem on a Kodaira surface, we do need
a connectedness assumption in the symplectic setting. This is because symplectic
moduli spaces are not well understood, in general. It would be very enlightening
to �nd a method for relaxing the connectedness assumption (or the hyperKähler
assumption for complex 2-tori and K3 surfaces). If we could, then it might be possible
to extend the procedure to tori and K3 surfaces, and in particular deduce whether
or not every symplectic structure on these surfaces is (hyper)Kähler.

5. (Odd-Type Generalized Calabi-Yau)While we have a classi�cation of even-type
structures from Theorem 2.51, one could ask if there was a similar way to understand
odd-type structures and establish an analogous Global Torelli Theorem.

6. (Integrable First-Order Deformations) As we mentioned in Remark 4.16, it
would be interesting to determine if the �rst-order part of a type zero deformation is
always integrable on its own without higher-order terms.

7. (A Topological Description of the Moduli Spaces) In [2] Borcea was able to
provide a topological description of the moduli space of complex structures on a
Kodaira surface. He showed that the moduli space was isomorphic to the product
of the complex plane and a punctured disk. Obtaining a similar result, even for the
subspace of complex-type deformations, would be interesting (see 3.15).

6.2 Generalized Holomorphic Bundles

1. (Odd-Type Considerations) Following the theme of the previous section, once we
have a better understanding of odd-type generalized complex structures on a Kodaira
surface we can further our understanding of generalized holomorphic bundles. In this
way we might be able to obtain a class of generalized holomorphic bundles that do
not behave like a classical holomorphic bundle, a Poisson module, or a �at bundle.

With the above goals in mind, we end the thesis.
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