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Abstract

This thesis presents two different approaches and applications where nuclear dynamics
are treated quantum mechanically in order to obtain more accurate theoretical predictions
of molecular properties. In our first application, we report a first-principles prediction of
the Raman shifts of parahydrogen (pHz) clusters of sizes N = 4 —19 and 33, based on path
integral ground-state simulations with an ab initio potential energy surface. The Raman
shifts are calculated, using perturbation theory, as the average of the difference-potential
energy surface between the potential energy surfaces for vibrationally-excited and ground-
state parahydrogen monomers. The radial distribution of the clusters is used as a weight
function in this average. Very good overall agreement with experiment [1] is achieved for
p(Ha)a—s1333. A number of different pair potentials are employed for the calculation of the
radial distribution functions. We find that the Raman shifts are sensitive to slight variations
in the radial distribution functions. In our second application, we discuss the development
of Path Integral Molecular Dynamics (PIMD) methodology, which our group has previ-
ously incorporated into the Molecular Modeling Toolkit (MMTK) [2] to account for nuclear
quantum effects. This thesis is to provide a proof-of-concept for our software tools and
PIMD method through the gas phase investigation of methyl beta-D-arabinofuranoside,
which is a sugar residue in the cell wall of tuberculosis bacteria and is thought to pro-
vide bacterial resistance to drugs. We observe the effect of nuclear quantum sampling on
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the sugar’s dihedral angle distributions at different temperatures, which we then relate to
nuclear magnetic resonance proton-proton coupling constants via Karplus equations. We
also determine the sugar’s energy convergence with path integral sampling and the energy
behaviour with temperature. We find that quantum effects are non-negligible even at bio-
logical temperatures, although some challenges remain in converging our coupling constant
predictions. Finally, we discuss and benchmark our extension with the Open Molecular
Mechanics (OpenMM) program [3] to enable graphics processing unit-accelerated solution

phase simulations for future work.
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Chapter 1

Introduction

Computer simulations hold many promises for scientific inquiry. Thousands of virtual ex-
periments can be conducted simultaneously through simulation, depending on available
computing power. Additionally, analysis of results is made easy by direct access to the
microscopic details of the system under study, such as the positions of atoms at all points
in time. Arguably the most important function of simulation is to act as platforms to
test our theoretical understanding of the world through comparisons of our models’” pre-
dictions to real-world experimental results. However, our level of theory is often ahead of
what is feasible to model given computational limitations. Approximations are thus made,
including commonly treating nuclei as classical point-like objects in molecular dynamics

simulations, even though scientists have been developing quantum mechanics theory ever



since Max Planck presented his quantum hypothesis back in 1900[7].

This thesis explores two different approaches and applications where we are able to treat
nuclear dynamics quantum mechanically in our simulations. First, the Born-Oppenheimer
approximation [8] is invoked to separate the electronic and nuclear degrees of freedom. A
potential energy surface can be derived by solving the electronic structure problem for fixed
nuclear configurations. We then have the option of solving the nuclear dynamics problem
classically using Newtonian dynamics, where the potential energy surface provides the
forces acting on the nuclei, or quantum mechanically. One procedure for obtaining the
quantum mechanical solution is to use basis set methods where basis states are weighted
by the potential energy surface (Chapter 2 covers in part such an approach). The main
problem of basis set methods is that the computational cost scales exponentially as the
number of degrees of freedom increases [9, 10]. We can circumvent this problem using the
Feynman path integral formulation of quantum mechanics [11] to recast the quantum nuclei
in terms of a classical analogue [12]. The finite temperature version of this technique when
applied to molecular dynamics simulations is called Path Integral Molecular Dynamics
(PIMD) [13], and the ground state version developed and employed by our group is called
Langevin Equation Path Integral Ground State (LePIGS) [14, 15]. These path integral
approaches benefit from the O(N?) — O(Nlog N) scaling [16] of established Newtonian

molecular dynamics algorithms. This approach allows us to tackle much larger systems



for computing quantum ensemble average properties. Note that the eigenstate details of a
basis set approach are lost when using the path integral formulation. However, it is still

possible to recover ground state properties (as in Chapter 2).

One of our applications involves using LePIGS to perturbatively extend basis set cal-
culations of a parahydrogen (pHjy) dimer to predict vibrational frequency shifts in larger
pHy clusters. We thus benefit from the strengths of both the domains of basis set cal-
culations and the path integral approach. The other application involves PIMD to study
the structural and energy properties of methyl S-D-arabinofuranoside, a Mycobacterium
tuberculosis sugar. Both applications are linked by having the same prime objective, to
improve upon the approximations used in molecular modelling while remaining tractable
for today’s computational resources. The rest of this chapter introduces each application

further.

1.1 pH, cluster background

The study of pHy clusters is of considerable interest because of their potential superfluid
properties. pHs is a molecular boson with low mass and weak intermolecular forces and
thus may be expected to display superfluid properties under appropriate conditions, par-

ticularly when in the form of nano-clusters that retain liquid-like properties below the pH,



triple point [17]. The results of early experiments implied the presence of superfluidity
in such clusters embedded in helium nanodroplets based on rovibrational ) branch be-
havior of dopants [18, 19, 20, 21]. The first direct measurement of the superfluid fraction
was only recently conducted through comparisons of the results of Path Integral Monte
Carlo (PIMC) simulations with experimental data involving pHy clusters of varying sizes,
probed using infrared spectroscopy of a COy chromophore [22]. Recent advances in PIMC
techniques have allowed the accurate simulation of more complex asymmetric top dopants
[23] and have been applied to the case of pHy clusters doped with HyO [24] and SO, [25]
molecules. Highly accurate Potential Energy Surfaces (PESs) that describe the molecular
interactions are required for simulations of this type. The quality of a PES can be tested
by using it to predict the vibrational band origin shift of a chromophore when perturbed
by surrounding “solvent” cluster molecules. Li et al. demonstrated, for instance, that it
is possible to obtain accurate shifts from theory and simulation for the case of CO, in He

and pH, clusters of various sizes [26, 22].

An interesting question remains regarding what will occur if the chromophore is another
pHs, i.e., if we have a pure pH, cluster. Several PIMC studies have been carried out for
pure ground state pHs clusters at finite temperature [27, 28, 29, 30, 31] and in the ground
state using the Path Integral Ground-State (PIGS) formulation, [32, 33, 34] and Diffusion

Monte Carlo (DMC) [35] to elucidate their structural, energetic and superfluid nature. A



summary of these studies has been presented in a review by Navarro and Guardiola [36].
However, some of these studies have shown that the choice of interaction potential used
in a simulation affects the details of predicted properties [32, 37, 33, 38]. This reinforces
the need to test PESs via comparison of calculated band-origin shifts with experiment.
Figure 1.1 depicts the nature of the band origin shift for the fundamental vibrational
energy transition of a pHy chromophore in a pH, cluster. Care must be taken in modelling
these systems because the pHs chromophore is indistinguishable from the solvent pHs, and

bosonic exchange interactions will result in the delocalization of vibrational excitations.

|0)

————————— _ AEO

Figure 1.1: Schematic of the band origin shift of a ‘para-Hs’ chromophore in a para-Hs
cluster.

Two recent developments stimulated this line of inquiry. Tejeda et al. overcame difficul-

ties in studying liquid pure pHy clusters by using cryogenic free-jet expansions to produce



clusters of varying sizes resolved in space and time, thereby allowing their clear observa-
tion with Raman spectroscopy [1]. They also developed an empirical 1-D Lennard-Jones
model to fit their data that represents the difference between the PESs for the ground and
the first vibrationally excited state of the chromophore. That model predicts vibrational
band-origin shifts quite well when perturbatively combined with DMC calculated radial
distribution functions of the pHsy clusters. In independent work, [39] Hinde constructed a
six-dimensional ab initio PES for the pair interaction between Hy molecules and used it to
calculate infrared and Raman transition energies within (Hj)s, showing good agreement

with the experiments [1].

In the present thesis, the 6-D Hinde PES [39] is used to obtain a reduced-dimension
set of 1-D pHy dimer PESs by solving a rovibrational Hamiltonian of the pHy monomers
[6]. The difference between the PES in which the pHy dimer system has one quantum of
vibrational excitation, and the one in which both pHs monomers are in their vibrational
ground states is obtained. This difference-PES is then used to predict vibrational band
origin shifts in many-body pH, clusters from first-principles, by averaging this difference-
potential weighted by the radial distribution functions for various cluster sizes. The results
are tested against the experimental observations of Tejeda et al. [1] and predictions gen-

erated from their empirical difference-PES.



1.2 Sugar background

PIMD and related techniques have allowed investigation within the highly quantum regime
of nuclei, such as helium [40] and hydrogen clusters at low temperatures as outlined in our
other application. Our group seeks to promote and explore the use of PIMD for further
applications where the consideration of quantum effects might be needed for accurate
results. To this end, our group was involved in developing simulation software incorporating
PIMD that is accessible to use and Open Source [2, 41, 3]. We hope that these features

allow other researchers to adopt it and that it inspires broader research.

This work serves as a proof-of-concept of our methods and our concern for the wider
application of PIMD by demonstrating that nuclear quantum effects might even play a
role in biomolecules, which are a popular subject for simulation. Biomolecule nuclei are
traditionally treated classically because they are deemed too massive and the molecules
active at too high temperatures to exhibit significant quantum properties. We focus on
the sugar methyl g-D-arabinofuranoside found in Mycobacterium tuberculosis, which is
responsible for Tuberculosis (TB). The sugar’s conformations can be characterized in terms
of dihedral angles between hydrogens bonded to the carbon backbone [42]. The involvement
of these light hydrogen atoms makes its dihedral angles a prime target for evaluating the

influence of quantum effects and there has been extensive classical simulation studies on



the sugar that we can compare to. Furthermore, the unique structural properties of the
sugar is believed to confer drug resistance to the bacteria and thus the elucidation of sugar

conformations through simulation can lead to better treatments.

An estimated 8.7 million new people experienced adverse symptoms of TB and nearly
1.4 million died from it in 2011 [43]. For perspective, it is second only to Acquired Im-
munodeficiency Syndrome (AIDS) for worldwide deaths due to an infectious agent [43].
Although global targets for controlling and reversing the epidemic have been reached,
there is an alarming increase in multidrug resistant TB that has doubled in the number
of reported cases from 2009 to 2012 in prevalent countries [43]. This has drawn attention
to the development of novel treatments, where one area of focus is inhibitors of bacterial
cell wall biosynthesis [44, 45]. A constituent of the mycobacterial cell wall is polysaccha-
rides with residues of alpha and beta D-arabinofuranoside [46]. The structural formula of
a monomer with the g-configuration is shown in Figure 1.2. This furanose carbohydrate
with a five-membered ring is less thermodynamically stable than its six-membered ring
pyranose counterpart. The image of glucose, a pyranose, in its stable chair conformation
is evoked when thinking of carbohydrate conformations. In contrast, furanosides have
increased ring strain and low energy barriers between states that allow them to assume
many conformations [47]. This is proposed [48] to give flexibility to the polysaccharides

that the arabinofuranose residues compose, which promotes efficient packing of terminal



lipid residues around the cell wall of the TB bacteria [46]. In turn, this provides a tight
barrier that prevents the permeability of antibiotics and allows evasion from the host im-
mune system [49]. Understanding the arabinofuranose conformations through simulation
can thus lead to drug designs that overcome bacterial resistance by targeting the enzymes

that synthesize and process the sugars [44].

Figure 1.2: Structural formula of methyl S-D-arabinofuranoside

NMR can provide proton-proton (*H-'H) nuclear spin coupling constants for organic
molecules that are linked to their conformations[50], giving reference points to check the
accuracy of conformations predicted through simulation. In this case, we are interested in
coupling constants (*Ji 1) across sequences of three bonds (fragments of H-C-C-H) around
the ring and the methyl alcohol group of our sugar. These fragments are highlighted in

Figure 1.3.



9 9 9 9
H1-C1-C2-H2 H2-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H51

Figure 1.3: Sequences of atoms and their dihedrals (¢;) of interest in methyl [-D-
arabinofuranoside

These 3Jun can be related via a Karplus equation [51] to the dihedral angle that
describe the relative rotation of the four atoms that comprise each sequence of three bonds
[52, 53, 54, 55, 56]. There exists generalized empirical Karplus equations [52] as well as
recent equations parameterized by Density Functional Theory calculations (DFT) [54, 55].

The theoretical Karplus equations have the form [54]

*Jun = a+b cos (¢) + ¢ cos (29) , (1.1)

where ¢ is the dihedral angle and a, b, ¢ are constants that vary between the dihedral angles.

Molecular simulations result in trajectories of molecules traversing between different
configurations. Properties extracted from these trajectories can be binned and normalized
in a histogram to give a probability distribution of the property over conformational space.
In this case of dihedral angles as the property of interest, the average coupling constant is

10



calculated by[54]

(*Jun) = /0 T (0) p(9) do (1.2)

where p (¢) is the probability distribution of a dihedral angle ¢. The calculated coupling

constants can then be compared to those obtained from NMR experiments.

Prior classical molecular dynamics work looked at coupling constants and conformer
populations for monomers and oligosaccharides of both alpha and beta D-arabinofuranoside
[57, 53, 54, 55, 56, 58]. Ring averaged charges were calculated for the monomers to account
for their flexibility [57, 53], more advanced water models were examined for solution phase
simulations [53, 54|, results from DFT-derived Karplus equations were contrasted with
those from empirical equations [54], and the effect of different simulation force fields and
DFT basis sets were compared [55]. Although the more sophisticated procedures gener-
ally improved predictions, some coupling constants and relative magnitudes of conformer
populations still differed from experiment, particularly for the beta configuration [54, 55].
Taha et al. posited that the discrepancies may arise from the charge derivation procedure,
errors in fitting DF'T data to Karplus equations, problems in the conformational model, or

lack of polarizability in the force fields tested [53, 54, 55].

However, in this work we raise the question as to whether it was the lack of nuclear

11



quantum effects that led to poorer agreement with experiment. We limit our study to
the gas phase of a methyl §-D-arabinofuranoside monomer for simplicity in determining
optimal PIMD parameters, in part due to reduced computational cost. This means that our
coupling constant predictions can not be directly compared to previous classical simulations
and experiments conducted in the solution phase. Nevertheless, observing a change in
the predicted dihedral angle distributions and coupling constants in the gas phase with

increasing quantum sampling is enough to warrant further investigation.

1.3 Organization of the thesis

The remainder of this thesis is organized as follows: A first principle prediction of the
Raman vibrational shifts of parahydrogen clusters is presented in Chapter 2. The de-
velopment of a path integral methodology for the simulation of more complex molecular
systems is contained in Chapter 3. In this chapter, a sugar molecule is used to highlight
the challenges associated with the quantum simulation of molecular systems down to low
temperatures, where quantum effects dominate. Concluding remarks and future research

avenues are presented in Chapter 4.
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Chapter 2

First-principles prediction of the
vibrational Raman shifts in
parahydrogen clusters

2.1 Theory and methods

Vibrational band-origin shifts are defined as the difference between the vibrational tran-
sition energy of the free chromophore molecule and that of the chromophore molecule in
the cluster. This can also be described as the difference between the changes in the upper,
vy = 1, and lower, vy = 0, vibrational energies when the free chromophore is introduced
into the cluster. For the fundamental vibrational transition of a chromophore in a cluster
size of N, this may be written as

Ayt = AEW — ABge = BN — BV (2.1)

cluster Vg=1 V=0

13



in which A FE}.. is the vibrational spacing of a free molecule, AE™ s that spacing when

cluster

I'is the energy of the system

the molecule is in a cluster of N pHs molecules, and EKV
expressed relative to the dissociation limit for N pHs; molecules when the total number of

vibrational quanta of the pHy monomers is either vy = 1 or 0.

Direct calculation of these energies or energy shifts via simulation poses a challenge.
Conventionally, two simulations per cluster size would be undertaken, one with the chro-
mophore having vy = 0 and the other with the chromophore having vy = 1. The total
energies of the simulated clusters will eventually converge to the statistical ensemble aver-
age values and their difference relative to the free chromophore in either state will give the
vibrational band origin shift. However, a PIMC study of CO5 in He clusters found very
slow convergence of the statistical errors when increasing the number of simulation steps
[26]. Furthermore, in this case of pure pHy clusters, an individual molecule should not be
singled out and specified as the chromophore in different excitation states during simula-
tion, due to the presence of exchange interactions. Fortunately, a perturbative approach
exists to predict the shifts that converges faster by making direct use of the difference
between the PESs of the ground and first vibrationally excited states of the chromophore

while performing a simulation of just the ground vibrational state of the clusters [26, 1].

We begin by noting that the Hamiltonian for the vy = 1, the vibrational state of the

cluster is nearly identical to that in the vy = 0 state, except for the small difference in their

14



potential energies. Here “t” indicates the total quanta of vibrational excitation among the
cluster molecules, considering that the excitation can be diffuse due to exchange. Note
that if clusters have a more rigid structure, [33] they could potentially be trapped in a
metastable state that would prevent the vibrational excitation to be delocalized across the
whole cluster. We have not investigated this effect here and therefore assume that the
state of the cluster is totally symmetric upon identical particle permutations. The excited

state Hamiltonian can therefore be defined approximately as,
Hy oy~ Hy—o+ AVIN (2.2)

in which AVIN = ‘Z)[ji]l —‘A/U[jvz}o is the difference between the total potential energy functions
of clusters of size N when one chromophore is in its ground or its first excited state, in

which N includes the chromophore in the count. First-order perturbation theory then gives

the vibrational frequency shift as
Ay = (wf |av] e (2.3)

in which |Wo(R)|* is the probability in one dimension of finding a solvent pH, molecule
at a radial distance R from the chromophore, given by the radial probability distribution

function of the cluster, and AVIM is given by the addition of pairwise evaluations of the

15



difference-potential for each pH, at each position. With this knowledge, Eq. (2.3) becomes
AV = (N = 1) / AV (R) o™ (R)dR , (2.4)
0

in which (IV — 1) scales the result in response to the normalization of the radial probability

distribution function p!V! (R), and AV'P is the difference-PES reduced to one dimension.

Tejeda et al. obtained an empirical Lennard-Jones 1-D difference-PES for pure pH,
clusters of the form AV() (R) = aR™2+ BR~°, with the parameters o and 3 being deter-
mined by fitting their simulated shifts to their Raman spectroscopic data for the frequency
shifts, using a weight distribution function p!™¥! (R) obtained from DMC calculations [1].
Generation of higher dimensional distribution functions is computationally prohibitive,

necessitating the formulation of reduced 1-D PESs to accompany the radial probability

distribution functions.

Hinde’s 6-D PES must, therefore, first be reduced to effective 1-D potentials for the
vy = 0 and vy = 1 vibrational states. For our ab initio study, Fig. 2.1 shows the degrees
of freedom expressed in Jacobi coordinates for an interacting pair of pHs. Those are the
coordinates used to represent the 6-D PES, VSP(R ry, 7y, 601,05, ¢). In order to obtain a
1D PES, we use the Adiabatic Hindered Rotor (AHR) approach established by H. Li et

al., who employed it for calculating vibrational frequency shifts for COs in pHs clusters

16



[6, 22, 59]. It was shown that the AHR approach preserves some rotational details of the
interacting system that a simple spherical average does not [6, 60]. In the AHR approach a
five-dimensional intermolecular rovibrational Hamiltonian is diagonalized for a set of fixed
R values and the locus of lowest eigenvalues define the reduced 1-D PES. In the space fixed

frame, the Hamiltonian for the (Hg)s dimer is

]A{AHR(R) = B’EOVib<r1) + ]tLgOVib<r2) + VﬁD(R7 r1,Tro, 917 927 d)) ) (25)

where AV is the kinetic rovibrational Hamiltonian operator of the ith Hy, monomer
1
molecule. However, we directly incorporate pHy monomer rovibrational kinetic energies

that were precomputed by Ref. 61 instead of specifying our own ﬁﬁOVib.

R 1-D PES

Figure 2.1: Schematic of PES reduction [6].

The pH, monomer rovibrational radial wavefunctions of Ref. 61 (4% (r;)Y,m, (0;, ¢;) =

Yl (ri) Pl (61) ei;ngi) are used as primitive basis functions for constructing the Hamiltonian

matrix. Only even rotational states (7 = 0,2,4) are allowed due to the singlet nature of

17



the nuclear spin wavefunction. For the (pHs)s dimer, we symmetrize the basis functions
to account for bosonic exchange of rovibrational excitations between the two pHs bosonic

monomers, such that

1 ) . eimié1 eimas2
Zj1,42,m1,ma (Tl’ T2, 917 92517 627 ¢2> - = < ﬁ (TI)PJ& ' (81)

\/5 \/% q]; (T2>Pj72n2 (‘92> \/ﬂ

; ; cim2é1 ; ; pimids
+ 22 (r) P I (re) P .
Y2 (r) P2 (01) o 1 (ro) P (62) Tw)

(2.6)

We wish to base our 1-D AHR potential on the ground state of the Hamiltonian, so
we choose my + mo = 0 or my = —my, since otherwise there would exist additional overall
rotational kinetic energy in the system. For readability we hide the arguments of z and
set m = my, giving
i = 5 ( ) P (60) e 3 r2) P 0
J1,J2,m \/5 v1 j1 \/% Vo o \/%

] efimdn ] imaoo
bR 60 ) PR S )

(2.7)

1 1 . , . o o
Zjl,ja,mzﬁ (% ()03 (ra) P (601) P ™ (02) ™1 =92

1 1 1 —-m m —im(p1—opo
o) () P G0 PR Bl )

(2.8)

We further represent our basis in terms of ¢ = ¢; — ¢, since the potential only

depends on the relative ¢. Additionally, let A = sLabdt (r1)1p2 (ry) PH(01) P}, ™ (6) and

2 Tu1
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B = 5-1p32 (r1)¥]! (r2) P, (61) PJ(62) for more readability, producing

21 T U2

_ L (g ey

= (2.9)

We then convert to the real form of the spherical harmonic functions for simplicity,

using the following relationships

levavm

Rj17j27m

.

\

\/Li(zjlaj%m + Zjl,jz,m) m >0
i m=0 > (2.10)
\ \/Li(zjl,jzvm - Z;JQ,m) m <0
)
(A+ B)cos(mp) m>0
1(A+ B) m=0 - (2.11)
—(A = B)sin(m¢) m<0

We focus on the m > 0 cases because the symmetry of the basis functions causes

cancellation of m < 0 matrix elements. Substituting the original component basis functions
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into A and B results in

1, . .
R}, jom = — (3L (ro)0f2 (r2) P (01) P}, (65)
« (2.12)

+ P2 (r) Pl () P (01) PR (62) ) cos (mep) ,m >0,
where the normalization factor « is determined explicitly for each matrix element since it
varies due to the presence or lack of cross terms when expanding basis functions for certain
matrix elements. For the vy = 1 case, we arbitrarily set v1y = 1 and vy = 0 and the basis
function symmetry accounts for the exchange of the vibrational excitation between the two
pH, monomers. The difference-potential AVP(R) is then simply the difference between
the two 1-D PESs obtained after direct diagonalization of the Hamiltonian matrix for the

v, = 0 and vy = 1 cases.

The radial probability distribution functions of the clusters used in the perturbative
model were generated from Langevin equation Path Integral Ground State (LePIGS) simu-
lations, which is a molecular dynamics transmutation of the PIMC PIGS method and offers
more simple formulation, since specialized Monte Carlo moves are not required [14, 15]. In
turn, the PIMC implementation of PIGS is an improvement over DMC methods because it
does not suffer from the population-size bias issue affecting convergence in the latter [62].
Thus, LePIGS has two-fold advantages over the DMC method. Details of the LePIGS

formulation is the subject of past theses [3, 5] and papers [14, 15] of our group members,
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and will not be covered here. However, it is similar to the finite temperature PIMD for-
malism presented in Section 3.1 and a brief note is provided at the end of that section
to point out key differences. Multiple radial probability distributions for each cluster size
were generated for comparison via LePIGS using a number of different pH, interaction po-
tentials that were described in earlier studies [39, 63, 64, 65]. The Hinde [39] and Szalewicz
[65] potential functions are ab initio, while the empirical Silvera-Goldman [64] and Buck
[63] potential functions were parameterized to reproduce different types of experiments. A
Jastrow-type trial wavefunction [32] is used to simulate cluster sizes of N = 4 and above.
However, smaller clusters interacted too weakly and dissociated when utilizing this trial
wave function. Instead, a direct calculation is used for N = 2 and a perturbative approach
is used for N = 3. The simulation parameters were optimized using the N = 4 cluster,
resulting in a thermodynamic 8 value of 1.00 K~!, 7 of 0.003 K}, time step of 5 fs, and
0.2 ps skipped between trajectory output to obtain decorrelated data. The simulations

were run for 20 ns.

The output of the simulation trajectories contains a series of positions where the pH,
are located at each step. These are converted to raw radial probability distributions by
calculating all pHo-pHs pair distances. These raw radial probability distributions are di-
rectly used to calculate vibrational shifts instead of further processing them into radial

probability distribution functions, p(R), in order to maintain accuracy (however, the var-
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ious associated p(R) plots are available in the online supplementary material of Ref. 4).
The value of the difference-PES is then sampled for each of those raw pair distances and

the results averaged. This turns Eq. (2.4) into
1 n
A = =3 avt (RY) 2.13
4 n z@: () ’ ( )

where n is the number of data points throughout a simulated trajectory for a particular

cluster.

2.2 Results and discussion

Vibrational frequency shifts calculated for clusters using various radial probability distri-
butions and two choices of the difference-potential are presented in Fig. 2.2. Results in
the upper panel were obtained using the ab initio 1-D difference-potential derived from
Hinde’s 6-D PES [39] while those in the lower panel were generated using the empirical
difference-potential of Ref. 1. In the upper panel, the shifts predicted with radial probabil-
ity distributions obtained from the ab initio Hinde potential simulations (blue open circles)
are in better agreement with experiment (filled circles) at small cluster sizes (N < 13),
where shifts predicted with radial probability distributions using the Buck potential (red
open squares) simulations are systemically less negative than those from the Hinde results
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and from experiment. The agreement is reversed at large cluster sizes (N > 13), where
shifts obtained from the Hinde radial probability distributions become more negative com-
pared to the experiment, while the Buck distribution prediction at N = 33 agrees with the
experimental result. A feature of note present in all series of shifts is the change in slope

of the trend in shifts with respect to the cluster size at N = 13, a magic number.
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Figure 2.2: Variation with cluster size of predicted vibrational frequency shifts calculated
using radial probability distributions generated from different simulation potentials (see
key). Upper Panel: Results obtained using ab initio difference-potential. Lower Panel:
Results obtained using empirical difference-potential. The error bars represent experimen-
tal uncertainty to 2o.
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The shifts obtained using distributions generated from four different potentials, together
with the experimental values, are tabulated in Table 2.1. The discrepancy between the
predicted vibrational frequency shifts at small and large cluster sizes from the different
radial probability distributions might be explained by the origin of the potentials. The
Hinde potential is an accurate ab initio pair potential that should perform better for small
clusters where pair interactions dominate. A similar trend in the predicted shifts (not
shown in Fig. 2.2) was observed for distributions generated using the ab initio Szalewicz
potential, in that they are closer to experiment at small cluster sizes but are more negative
for N = 13 and 33. Perhaps at larger cluster sizes many-body effects become prominent,
which these ab initio pure pair potentials do not account for. This hypothesis may be
supported by the fact that predictions generated using the Silvera-Goldman distributions
that perform better than the ab initio potential distributions at N = 33, shown in the
upper panel of Fig. 2.2, considering that the version of the Silvera-Goldman potential
used includes an effective many-body term that was fit to solid state data [64]. However,
the Buck potential distributions also appears to perform well at large cluster sizes even
though it has been obtained from a fit to scattering cross section data, and scattering is
an inherently two-body process, meaning the Buck potential is a pure pair potential [63].
This suggests that the good performance of the empirical potential distributions at large

cluster sizes may simply be an accident. In fact, the Raman spectral peaks for the N = 13
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and 33 clusters were unresolved as reported in Ref 1 and we can deduce a large error in
the experimentally observed shifts from the broad peak widths, which might account for

some of our discrepancy.

Table 2.1: Ayy (em™!) obtained from radial probability distributions generated using dif-
ferent potentials and the two AV. Std. errors are < 0.005 cm~'. Experimental (Exp.) are
provided for comparison purposes.

Al/o, A\/ab AV07 AVemp

N Exp. [1] Hinde Szalewicz Buck S-G  Buck DMC [1] Hinde Szalewicz Buck S-G

4 -1.251 -1.19 -1.203  -1.118 -1.092 -1.255 -1.197  -1.223  -1.261 -1.180
5 -1.594 -1.517  -1.527  -1.417 -1.385 -1.597 -1.527  -1.566  -1.622 -1.515
6 -1.910 -1.785 -1.800 -1.683 -1.648 -1.904 -1.812  -1.863  -1.923 -1.809
7 -2136 -2.016 -2.025 -1.878 -1.852 -2.141 -2.045  -2.098  -2.175 -2.043
8§ -2.350 -2.206  -2.217  -2.059 -2.028 -2.344 -2.248  -2315  -2.392 -2.257
9 -2.369 -2.384 -2.219 -2.181 -2.431  -2.493  -2.588 -2.447
10 -2.542  -2.553 -2.367 -2.335 -2.611  -2.674  -2.774 -2.628
11 -2.729 2750 -2.545 -2.516 -2.800  -2.887  -2.990 -2.821
12 -2.965  -2.981  -2.752 -2.702 -3.028  -3.109  -3.222 -3.036
13 -3.140 -3.236 -3.276  -3.010 -2.922 -3.330 -3.297  -3.405  -3.507 -3.270
14 -3.279  -3.289  -3.043 -3.002 -3.352  -3.449  -3.573 -3.369
15 -3.334  -3.339 -3.111 -3.064 -3.425  -3.519  -3.657 -3.452
16 -3.404  -3.404  -3.160 -3.122 -3.495  -3.595 -3.736 -3.529
17 -3.453  -3.472  -3.209 -3.175 -3.566  -3.665  -3.802 -3.606
18 -3.5632  -3.550  -3.284 -3.250 -3.651  -3.753  -3.899 -3.694
19 -3.668  -3.683  -3.378 -3.333 -3.787  -3.892  -4.024 -3.793
33 4390 -4.784  -4811  -4.423 -4.169 -4.870 -4.941  -5.085  -5.183 -4.794

The change in slope of all the sets of predicted shifts at NV = 13 occurs because the first
solvation shell of the cluster is completed at that point. The first solvation shell makes a
larger contribution to the shift compared to outer shells because the peak of its distribution
is situated closer to the minimum of the difference-potential, so there is a steeper slope in

the trend of shifts as it gets filled. The lower panel in Fig. 2.2 presents shifts predicted
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using the empirical Lennard-Jones difference-potential reported by Tejeda et al.. It also
shows the predicted shifts that they calculated using DMC radial probability distributions
generated from the Buck potential. Shifts using the empirical difference-potential are good
for the small cluster sizes, as is to be expected, since a fit to observed shifts was used to
define the empirical difference-potential. However, they all diverge from experiment in the
same manner at large cluster sizes. This may be expected because the empirical difference-
potential was defined by a fit to the experimental shifts for only N = 2 — 8 clusters
that had resolved Raman spectral peaks. Interestingly, our LePIGS radial probability
distributions using the Buck potential do not fully reproduce those shifts predicted by the
earlier DMC distributions, despite using the same potential. This may be attributed to

LePIGS distributions being less noisy than those of Ref. 1.

A comparison of the empirical 1-D difference-potential from Ref. 1 with the one we
determine from the 6-D ab initio Hinde PES is shown in the upper panel of Fig. 2.3.
There is a marked difference in the position and depth of the potentials, despite similar
shift predictions for small NV, with the empirical difference-potential having a much deeper
well that is centered at a much shorter distance. Thus, the difference-potentials probe
the radial probability distributions with different emphases, e.g. the region where the
empirical difference-potential is most strongly negative is only sampled by the inner tail of

the radial probability distribution functions as shown in the upper panel of Fig. 2.3 for an
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N = 8 cluster, while the region where the empirical difference-potential turns positive is
not sampled at all. In contrast, the radial probability distribution functions sample both
positive and negative domains of the ab initio difference-potential. Additional insight into
the reasons why the empirical and ab initio difference-potentials give similar predictions
of shifts for small clusters is given by the lower panel of Fig. 2.3. It depicts plots of the
integrand of Eq. 2.4 for the two difference-potentials and the N = 8 distribution. The
shapes of the empirical and ab initio integrand curves are different due to the wells and
repulsive walls of the difference-potentials matching up with different portions of the radial
probability distribution function, however the net area under the curves representing the
shifts is similar. The ab initio difference-potential is clearly the correct one and this result

illustrates the difficulty of determining empirical difference-potentials using bulk-averaging.
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Figure 2.3: Upper Panel: Comparison of difference-potentials beside an N = 8 radial
probability distribution function. Lower Panel: The integrand of Eq. (2.4) for the two
difference-potentials when combined with the N = 8 radial probability distribution func-
tion.

A comparison of the four 1-D potentials used to generate the radial probability distri-
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butions is presented in Fig. 2.4. The top panel compares a plot of the 1-D v, = 0 potential
that was generated from the 6-D ab initio Hinde PES with the empirical Buck potential.
The bottom panel shows plots of the difference between the Hinde potential and other 1-D
potentials used to generate radial probability distribution functions, together with a plot of
the Hinde difference-potential AV, (black solid line). In the well region of the potentials,
the Buck (red dashed line) and Silvera-Goldman (purple dash-dotted line) potentials are
less attractive than the Hinde potential. This means the pH, are less bound to the vicinity
of the potential minima, and their radial probability distributions can seep further inward
or outward. This will result in a less negative shift for the Buck and Silvera-Goldman
potentials relative to the Hinde potential because there is less probing of the attractive
well of the difference-potential. In addition, in the region of the repulsive walls the Buck
and Silvera-Goldman potentials are less repulsive than the Hinde potential, indicating they
have gentler slopes. This means the pHs particles can approach closer together in those
cases and this will give rise to larger values for the radial probability distributions at short
distances. In this region the difference-potential is positive and so will again tend to pro-
duce less negative shifts when combined with the larger radial probability distributions of
the Buck and Silvera-Goldman cases relative to the Hinde potential case. The Szalewicz
potential (green dotted line) is slightly deeper than the Hinde potential in the region of

the potential well, meaning the radial probability distributions are more concentrated at
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the potential minimum, and more positive in the later part of the repulsive wall region,
indicating a steeper slope. This leads to slightly more negative shifts relative to the Hinde

potential case.
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Figure 2.4: Upper Panel: Key ground vibrational state 1-D potentials used in simulation to
generate radial probability distributions. Lower Panel: Differences of various 1-D potentials
with the ab initio potential of Hinde

31



Simulations to obtain a dimer or trimer radial probability distribution with LePIGs
using a Jastrow trial wavefunction is not possible because the clusters rapidly dissociate.
Instead, for the N = 2 dimer the eigenvalue problem in R was solved using exact diag-
onalization with a Colbert-Miller DVR basis [66] after reduction of the Hinde PES for
the ground and first vibrational states, with the resulting energy difference between them
giving the vibrational frequency shift for the dimer. As shown in Table 2.2, the result is
in good agreement experiment and with the binding energy calculations Hinde carried out

himself.

Table 2.2: Direct calculation of shift for pHy dimer

Method Avy (em™)
Observed —0.400
Tejeda et al.: AVemp(R) [1] —0.417
Hinde: direct ab initio [39] —0.405
Our Work: AV,,(R) —0.399

To obtain the shift for the N = 3 trimer, we employed the usual perturbative approach
using the ab initio difference-potential, with the trimer ground state radial pair density
being obtained from exact diagonalization using the approach of Refs. 32, 67-68. The
ground state interaction potential used in the evaluation was either the ground vibrational
state Hinde potential or the Buck potential. The result in Table 2.3 shows good agreement

with experiment for the Hinde potential case.

For comparison purposes, we have also calculated the vibrational shift based on the
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Table 2.3: Perturbative calculation of shift for pHy trimer

Method Avg (em™)
Observed —0.822
Tejeda et al.: AVimp(R) [1] —0.821
AV.p(R), empirical Buck V,,— —0.748
AV, (R), ab initio Hinde V,,—o —0.807

spherical averaging of the 6D Hinde hydrogen potential for the difference potential. Results
are presented in the online supplementary material of Ref. 4. The AHR results generally
agree better with experiments for clusters with 3 < N < 8. For the dimer (N = 2) the AHR
and spherically averaged results are essentially the same within errors. The spherically
averaged difference potential, however, leads to a better agreement with experiment for

N =13, 33. Future work will focus on a detailed analysis of these differences.

2.3 Conclusions

In conclusion, we have described the development and application of ab initio reduced PESs
for the prediction of Raman spectral shifts of pure para-hydrogen clusters. The results
confirm that the 6-D Hinde PES is a high quality pair PES, with its reduced 1-D surfaces
predicting shifts in good agreement with experiment for small cluster sizes including the
(pHg)s dimer. However, for a cluster size of N = 33, the shift predicted using radial

probability distributions generated from the ground state reduced Hinde potential was
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more negative than the experimental one. In that domain, radial probability distributions
generated from empirical potentials performed better, through accident in the case of the
Buck potential or possibly by accounting for many-body effects that may become non-
negligible after the first solvation shell in the case of the Silvera-Goldman potential. By
combining radial probability distributions generated from these empirical potentials and
the ab initio difference-potential, we are able to extend the prediction of shifts to large
pHs cluster sizes that have not yet been observed, such as those we have shown between
N = 13—33. If this were done with the empirical Lennard-Jones difference-potential, those
predicted shifts would diverge from experiment, as is expected at the large cluster sizes
that it was not parameterized for. However, it is clear that our ab initio difference-potential
is closer to physical reality. Future work will involve the assessment of the importance of
many-body effects that may account for the difference between our predictions and the
result of experiment for N = 33. In that regard, the work of Hinde [69] on three-body
effects on the energy of the Hy trimer will be of interest. One other possibility worth
exploring is an incorrect assignment of the experimental vibrational shift for N = 33 as

suggested in Ref. 37.
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Chapter 3

Conformation and energy analysis of
sugars using path integral molecular
dynamics

3.1 Theory

Molecular dynamics can reproduce statistical ensemble averages of properties, such as as
our (®Jgpu) of interest, through the ergodic hypothesis. The hypothesis states that a
member of an ensemble allowed to sufficiently evolve in time will visit all the accessible
states occupied by the entire ensemble, such that the time average of a property across the

trajectory of a single simulated copy of the system will eventually converge to the ensemble
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average. This is expressed formally as

:Zg&%;ammw@m>, (3.1)

{4)

where ¢ is the particle’s position and p is its momentum. We particularly want to replicate
the canonical ensemble where the number of particles, volume, and temperature are fixed

(NVT), in order to mirror the conditions of experiments.

The time evolution of the system is given by numerically integrating Hamilton’s Equa-

tions of Motion,

dt) _ 9H(p,q)

dat dqg (3:2)
dg(t)  0H(p,q)
dt ap (3:3)

through molecular dynamics, where H(p,q) is the classical mechanics Hamiltonian that
describes the total energy of the system. For the quantum nuclei case, the path integral
formulation allows us to transform the quantum canonical partition function into one that
describes a classical analogue system with an effective Hamiltonian [12] that we can subject

to the same equations of motion.

Following the notes of Tuckerman [70] and Refs. 41 and 3, we start with the quantum
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canonical partition function in the position representation for one particle,

2= [datale 19y = [ datale V) | (3.4)

where K and V are kinetic and potential energy operators, respectively. It is not possible
to solve this expression for Z directly because K and V do not generally commute in the
quantum case. The foundations for an approximate approach to the solution is provided

by Trotter factorization [71] to separate the exponential into P slices,
) _8y _Bi _so\F ) AP
Z = lim [ dq(q| <e 2PV e PTe 2P ) l¢) = lim [ dq(q|Q2"|q) - (3.5)
P—oo P—oo

Insertion of the identity operator I = [ dgq|q){q| between each of the P applications of

the Q) operator in the power allows for further break down into a cyclic form given by

Z = /dQ1~-dQP <Q1|Q|CI2>~~<QP|Q|(11> : (3.6)

The potential energy part of the Q) operator simply evaluates to the potential energy at

each ¢; coordinate. Looking at the individual integrands in the expression for Z, this results
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n

s 87
(@l Qgir1) = (@l e” 2PV€ PRe” > ’%H)

(3.7)
:e_%‘/(qz <Q1|e P |QZ+1>€ ﬁDV(qu) :

The remaining matrix element containing the kinetic energy operator can be evaluated by

applying a complete set of momentum eigenstates:

_BEK mP 2 —mP (g q)?
(@il e |givr) = (—QWBFLQ) ¢ 2pn (@it =0) (3.8)

Substituting these results back into the expression for Z gives the discretized path integral

form of the quantum mechanical canonical partition function,

P
) mP \?

) (3.9)
x exp{ 52 {252712 Qi1 — @) + FV (C]z)] } :

=1

In molecular dynamics, the P slices in the partition function can be represented by
identical classical particles or beads that compose a kind of cyclical polymer to stand in
for a quantum atomic nucleus. The exponential for the partition function now contains

an effective potential with a term for the potential energy at each bead that is governed
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by interactions with equivalent beads of neighbouring atoms, i.e. what would normally
be given through the force field used in molecular dynamics, but now distributed over the
beads, and a term resembling a spring potential energy between two neighhbouring beads

of the same atom that gives rise to the polymer analogy,

mw? 1
Ver(qu, - -, qp) = — Z {Tp (g1 — @:)° + FV (¢) ) (3.10)

=1 qpP+1=4q1

where wp = v/P/Bh. We can introduce fictitious classical momenta to enable molecular
dynamics sampling of states from the partition function [13] by transforming the partition

function prefactor into a set of P Gaussian integrals,

P 2

Z = lim dpl---dpp/dql---dqp X exp [—Bzﬂf% ‘I‘Veff(QM-“an)] ,
=1 ! qP+1=91

(3.11)
where we arbitrarily set m; = m, i.e. the full mass of the atom. Observing within the

partition function exponential then gives the fictitious effective classical Hamiltonian as

P 2
. WP 2 1
Hp(p.q) = Z{me (gi+1 — @) +§V(%’)] o (3.12)
=1 qP+1=4q1
& 1
Hp(p,q) = ) |Hepee(p.9) + 5V (0) , (3.13)
=1 qpP+1=41
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where Hpfee is the free ring polymer component. A beneficial aspect of the path integral
approach in addition to this classical isomorphism is that while the exact quantum situation
is sampled as P — 00, a limit can be specified on the number of beads used in simulations,
making the simulations computationally tractable. Note that P = 1 corresponds to a

classical simulation.

However, problems exists when attempting to integrate through the equations of motion
with the effective Hamiltonian in Cartesian space [72]. A primary concern is that increasing
P leads to stiffening of the harmonic spring term, which begins to dominate interactions
and results in non-ergodicity. A solution to this issue is to transform the position and
momenta of the discrete cyclic path into normal mode coordinates via a Fourier expansion

in order to uncouple the spring term into P independent harmonic oscillators [73],

P P
~(k j ~(k j
PO S P00, 3 3 qPCy (3.14)

j=1 j=1
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where the coefficients for even P are

1/P k=0
V2/Pcos(2mjk/P) 1<k<P/2-1
Cix = . (3.15)

VI/P(—1) k=P/2

V2/Psin(2rjk/P) P/2+1<k<P—1
\

The free ring polymer part of the Hamiltonian for NV particles in the normal mode repre-

sentation is then

P-1 [p(k mzwk ( )
HPfree p7 = Z 2sz 2 [qZ ] ) (316>

=1 k=0

where wy, = 2wp sin?(k7/P). New normal mode equations of motions can be derived from
this Hamiltonian to propagate the free ring polymer component in a separate step from
evaluating the potential energy component in Cartesian coordinates, thus avoiding the

influence of a problematic harmonic difference term.

To maintain constant temperature and sample the canonical ensemble, we employ a
thermostat based on a white-noise Langevin equation [74] formulated in the path integral

normal mode representation (PILE) [73]. The PILE thermostat stochastically models the
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interaction between the system of interest and a heat bath by modifying the momenta of

system particles according to

- ~ m; P

pgk) — cgk)pz(k) 4oy R e® (3.17)
where ¢ is a random number sampled from a Gaussian distribution for each degree of
freedom and path integral normal mode to account for high-energy collisions between the

particle and the bath particles, and the coefficients are

cgk) = A2y0) (3.18)
= 1= (3.19)

The friction parameter v emulates damping of a system particle’s motion by heat bath par-
ticles. For nonzeroth order modes, it is analytically chosen to minimize the autocorrelation
time of (Hpfree(0)Hpee(t)) and so allows for the fastest sampling of statistically distinct
free ring polymer energy states. These free ring polymer friction coefficients should also
allow for similar performance with the interacting ring polymer since the high frequency

internal modes are sufficiently decoupled from the influence of the potential. The optimal
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friction values are found to be

1/7’0 k=0
A ®) = , (3.20)

2w, k>0

where the centroid friction 4(9) is determined numerically by extracting the average centroid
decorrelation time 7y from a series of autocorrelation functions (A(0)A(t)) of a property
of interest sampled from a Ring Polymer Molecular Dynamics (RPMD) format [75]. In
RPMD, several microcanonical simulations with constant system energy (NVE) are un-
dertaken with initial configurations obtained from an NVT simulation in order to obtain
dynamical properties (whereas PIMD gives equilibrium properties). Autocorrelation func-
tions are then built from each of the NVE simulations. For the sugar application, we
denote centroid dihedral angles as the dihedral angles calculated from the centroid posi-
tions of the beads representing the sugar’s nuclei and we determine a centroid friction from

autocorrelation functions of these centroid dihedral angles.

The normal mode transformation and the PILE thermostat are incorporated into the

popular Velocity Verlet algorithm [76, 77] used in molecular dynamics to provide the fol-
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lowing scheme for numerically integrating through the equations of motion
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‘ P-1
P+ At > Cupk(t+ At) (13)
j=1

where At is the time step between subsequent states in the trajectory, VV is the gradient
of the potential, or force, acting on the particles, and where Step 7 contains the normal

mode equations of motion.

In addition to dihedral angles and proton spin coupling constants, we are also interested
in observing the convergence of the internal energy of our sugar system as function of path

integral beads as another property to gauge the “quantumness” of the system. Given that

P
2

olnZz 1 mP
— _ — —BVett
<€> = ( 86 )NVT 7 <27Tﬂh2> /dql ce quGTe s (321)
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a primitive or Barker estimator of the internal energy is obtained as [78]

P P
3NP Pm 5 1
€T = T - W ;(Qj —qj+1)” + P ;V(%’) : (3.22)
However, the mean square fluctuations of this estimator increase o % due to the spring

term. The virial theorem can be used to recast the spring energy in a form with better

variance, giving the centroid virial estimator [40]

N P P
cov = 35 + 35 6~ D V5 + 5 V(@) (3.23)

7j=1 7j=1
where ¢ = 1% Zle g; is the path centroid.

We compare the temperature dependence of both quantum and classical internal ener-
gies with analytic quantum and classical harmonic oscillator models based on the sugar’s
vibrational frequencies. Biomolecules are often treated using a harmonic approximation
via normal mode analysis of the system’s Hessian [79, 80|, and our comparison allows us
to establish whether this approach will be sufficient to describe the sugar’s energy. The

energy of a classical harmonic oscillator is given by

<€ClHO> = Vmin -+ % + Z % (3.24)
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where 7 is the vibrational mode and V,,;, is the potential energy minimum of the simulated
system. Vi, is required to match up the zero of the harmonic model with the contribution
from a multitude of nonharmonic interactions in a simulated system. The energy of a

quantum harmonic oscillator on the other hand is

1 1 3
<EQHO> = Vinin + ZZ: hv; (eﬁh”z——l + 5) + B ) (3-25)

where v; is the frequency of vibrational mode 1.

Finally, a brief note on how the LePIGS method utilized in Chapter 2 differs from
PIMD. Path Integral Ground State theory leads to an open path of beads representing
the quantum ground state nuclei instead of a closed ring. The end beads of the open
path are acted upon by trial wavefunctions that help to propagate the system to the
true ground state distribution [14, 15]. Sampling from the PIGS partition function via
molecular dynamics using LePIGS is also similar to the PILE PIMD integration scheme,
except that a cosine transform into the normal mode coordinates is required instead of a

Fourier transform [14, 15].
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3.2 Methods

The Molecular Modelling Toolkit (MMTK) [81] software is central to running and analyzing
our simulations. It consists of libraries for the Python scripting language that allow for easy
object-oriented setup and analysis of simulations by scientific users. Scientists are able to
use programming semantics related to molecular modelling terminology familiar to them.
However, performance critical aspects of the tasks, such as integration, are executed by
passing information to fast C language code under the hood. MMTK comes prepackaged
with many useful algorithms for molecular modelling tasks including solvation, support for
arbitrary force fields, and of special interest to us, PIMD, which was codeveloped for the

software by C. Ing while he was a member of our research group [41, 2].

Simulations take place in an infinite universe where the sugar is free to roam without
interaction with other particles and emulates gas phase behaviour. GLYCAM-Web Carbo-
hydrate Builder was used to generate the topology and initial configuration of the methyl
p-D-arabinofuranoside sugar, including partial charges on the atoms [82]. The AMBER
99 [83] force field is used to evaluate forces with carbohydrate parameter modification

GLYCAMOG6 [84] to tailor the force field parameters to our sugar application.

Integration of the equations of motion achieves a speed up by using as large of a

time step as possible while maintaining energy stability of the system. The primitive and
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centroid virial estimators can be compared to determine a maximum time step. Both
estimators should provide similar energy values and where they diverge in relation to the
size of the time step indicates instability introduced by too large of a step because particles
may jump too deeply into the repulsive wall region of their potential [2]. NVT simulations
with different time steps were run at 200 K with 10 fs of equilibration, 300 ps of production
and a centroid friction of 3.45x1072 ps~! from preliminary decorrelation analysis of the
sugar’s exocylic dihedral angle. A safe time step of 0.5 fs that was below the divergence

point of the estimators was selected for use in subsequent simulations.

To determine the optimal centroid friction for our sugar system, we first ran several sim-
ulations with different temperatures and path integral beads following the RPMD scheme
outlined earlier. We wished to establish whether those parameters have an effect on the
centroid friction. For each value of the parameters, 10 ps of equilibration and 300 ps of
production are carried out in NVT simulation, and no steps skipped between outputs to
the trajectory files. The centroid friction used in these initial NVT simulations are essen-
tially arbitrary, only set so that the thermostat samples the canonical ensemble, even if

the sampling may be inefficient. However, we alternatively tried 0.01/At applied to all

mol

g where m; is the molar mass of atom 7 in g/mol, applied separately

atoms or m; x 0.01
on each atom as preliminary sources of centroid frictions (based on Miiser’s rule [85] for

Ist method and K. Hinsen’'s MMTK example file [81] for 2nd method). The maximum
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dihedral angle decorrelation time of the production NVT trajectory is determined from
the endocyclic centroid dihedrals calculated from the centroid positions of the sugar nuclei
throughout the trajectory, and this decorrelation time is used to select statistically distinct
initial configurations from the production NVT trajectory. 100 samples of NVE simulation
are then carried out from an equivalent number of these initial configurations for 5 ps each.
Dihedral angle decorrelation times are calculated for the centroids of each NVE trajectory
and averaged. The inverse of this average decorrelation time gives the centroid friction,

which we apply to all atoms in subsequent simulations.

A similar format was used to determine the skip steps required for general NVT simu-
lation of the sugar to provide statistically distinct states in simulation trajectories. Except
in this case, the sampling simulations are also NVT simulations and the objective centroid
friction established previously is supplied to both the preliminary NVT simulation and the
sampling simulations. The simulation lengths are the same as the previous centroid friction
determination scheme, while the number of samples is 50 and the skip steps is chosen to
be the overall average of the endocyclic centroid dihedral angle decorrelation time of the
sample trajectories plus two standard deviations. We add the standard deviations in order
to ensure that our skip steps are large enough to provide decorrelated states for all cases.
The temperature and number of path integral beads are varied as before for these simula-

tions. In a separate study, the centroid friction is also varied several magnitudes around
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the value determined previously in order to confirm whether it is optimum and observe
the thermostat’s robustness. An optimum centroid friction should give a minimum NVT
decorrelation time and thus fewer steps will need to be skipped such that more usable data

is obtained with a shorter simulation length.

The convergence properties of dihedral angle distributions with path integral beads
at different temperatures was examined using NVT simulation after the centroid friction
and skip steps were established. The simulations involved 200 ps of equilibration and
20 ns of production. Visual inspection of the resulting distribution plots was used to
establish convergence. Coupling constants were then calculated for each distribution using

the Karplus equations of Ref. 55.

Energies converge at a different rate compared to structural properties, so a separate

convergence study of the quantum energy across a range of temperatures was undertaken

1

using the centroid virial estimator. The Trotter factorization error is O72, where 7 = 5

so we expect the energy convergence to be quadratic for small tau. For each temperature,
several simulations of varying beads were run for 100 ps of production if 7" < 405 K or
1 ns of production if 7" > 405 K to obtain energy data points throughout this quadratic
convergence region. A fitting function was then used to extrapolate the energies to the
7 = 0 full quantum value. We attempted to collect data over a similar range of 7 for all

temperatures. We noticed an unexpected divergence of the energies after ~ 7 = 4x107°
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K~! and discuss this in Section 3.3. Decreasing the time step to 0.25 fs fixed the issue
and we began using this new time step for subsequent path integral simulations. After
developing familiarity with the behaviour and analysis of the energy convergence data,
extrapolated quantum energies and classical energies were calculated for a large range
of temperatures and compared to the analytic energies from the quantum and classical

harmonic oscillator models.

3.3 Results and discussion

The primitive and centroid virial estimates of the average internal energy at 200 K for
different simulation time steps are shown in Fig. 3.1. The results of the two estimators
begin to diverge after At = 0.8 fs, where the system becomes unstable. A much smaller time
step of At = 0.5 fs was thus selected for a margin of safety, since we also simulate higher
temperatures where the faster motion of particles increases the likelihood of instability

with too large of a time step.

Some representative centroid dihedral angle correlation functions and their exponen-
tial fitting functions calculated from samples in the RPMD centroid friction determination
scheme are displayed in Fig. 3.2. Fig. 3.3 contains the average decorrelation times of the

NVE samples for each condition of temperature and number of beads and for each endo-
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Figure 3.1: Finding a safe At based on the divergence of average primitive and centroid
virial energy estimates

cyclic dihedral angle. However, subsequent NVT decorrelation analysis for determining

skip steps, which will be discussed shortly, indicates that the change in NVE decorrelation

times with temperature is small and will not have appreciable effect on the NVT decorre-

lation times. Therefore, we move ahead with an overall average NVE decorrelation time
NVE

for all conditions and dihedral angles of 7;°V* ~ 0.12 ps, which gives a centroid friction of

v = 8.33 ps~! that we use as a standard for subsequent NVT simulations.
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Figure 3.2: Some representative centroid dihedral angle autocorrelation functions from the
NVE sampling runs
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The average decorrelation times of NVT simulations using this centroid friction for a
range of temperatures, number of beads, and for each endocyclic centroid dihedral angle
are similarly shown in Fig 3.4. The overall average 70'V1 + 20,, = 0.385 ps, giving a
skip step of ~ 0.5 ps, where we have rounded up for convenience. Additionally, plots of
the H1-C1-C2-H2 decorrelation times from simulations using centroid frictions that vary
several orders of magnitude about the centroid friction previously established through
RPMD decorrelation analysis, which we now denote fyf{’liMD, are compiled in Fig. 3.5. The
relatively flat trend of low decorrelation times to the left of ’7§)I)’MD = 8.33 fs~! figure reveals

that system states are sampled almost equally efficiently with centroid frictions < ny({olgMD.

However, with centroid frictions > /71(%012MD the decorrelation times increase and so larger
skip steps would be required, indicating there is a one-sided robustness of the normal mode
Langevin thermostat towards lower centroid frictions for this sugar system. This picture of
the thermostat’s robustness is not general because changing the centroid friction in either
direction did not have a significant effect on 7{*V? for ground state para-H, simulations, [15]

whereas changing the centroid friction in either direction from the analytically predicted

optimal value for water dimer simulations using umbrella sampling increased 7'V1 [86].
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Figure 3.5: Checking the optimization of skip steps via 70'¥T by varying the centroid

friction for H1-C1-C2-H2

One concern with the preceding results is that our algorithm to fit an exponential decay
to the autocorrelation functions did not account for large amplitude oscillations over long
timescales. In Fig. 3.2, these oscillations in the centroid dihedral angle correlations are

visible at 200 K and more pronounced at 300 K, whereas they are sufficiently damped by ~
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0.5 ps at 100 K. Longer decorrelation times would be obtained for the lower temperatures
if the algorithm fit to the envelope of the oscillations. Molecules have less kinetic energy at
lower temperatures such that transitioning into different configurations will be hindered,
which makes longer decorrelation times expected. This issue of fitting the oscillations will

be addressed in the future.

With simulation parameters established, we can now look at physical properties of the
sugar itself. The convergence of endocylic dihedral angle distributions with number of
beads at 200 K is depicted in Fig. 3.6. As expected, increasing quantum sampling results
in decreasing distribution peak heights and broadens their widths. The distributions for
each dihedral angle are also bimodal, with one mode clearly favoured over the other in
each case. The distributions have roughly converged with P = 32 beads or 7 = 1.56x10~*
K~!. This 7 is maintained for PIMD simulations at 100 K (P = 21) and 300 K (P =
64) and a compilation of classical dihedral angle distributions and distributions at 7 =
1.56x10~* K~! are shown in Fig. 3.7 for all three temperatures. At 100 K, there is starker
contrast between the tall and narrow classical distributions and the shorter and spread out
quantum distributions. This result is in line with well known quantum theory whereby
quantum tunneling dominates at low temperatures. At 300 K, which is near biological
temperatures, the quantum distributions are still noticeably less concentrated compared

to the classical distributions, an important finding that may have implications for drug
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design. A mimic of the sugar may potentially require a similar conformational flexibility

entailed by the quantum spreading to act as an effective inhibitor of the sugar’s enzymes.
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Figure 3.6: Path integral bead convergence of endocyclic dihedral angle distributions. The
dotted vertical lines are guides to deliniate the different distributions
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Figure 3.7: Temperature dependence of endocyclic dihedral angle distributions
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A more quantitative look at quantum effects is provided by ®Jyu coupling constant
predictions. The 7 dependence of the coupling constant for each endocyclic dihedral angle
at 100 K, 200 K, and 300 K is displayed in Fig. 3.8. There appears to be a trend
of decreasing predicted coupling constant values with increasing 7 for the first few points
starting at high 7 (looking from the left hand side of the graphs). The first point on the left
hand side of each graph is the classical prediction. But the results become noisy at low 7,
shown by the scattered points on the graphs. Upon further inspection, we noticed that the
more extremely misbehaving points at low 7 corresponded to dihedral angle distributions
where the relative populations of the two dihedral modes did not follow the same trend
as the distributions for other 7. This suggests there may be ergodicity problems in our
simulations whereby the sugar becomes trapped more in one dihedral mode over the other
relative to the expected trend and that 20 ns of production simulation is not enough to
reach equilibrium distributions. In future work we will increase the simulation length to
improve sampling of the system’s phase space or employ umbrella sampling to force better
sampling [56]. It is important to note that these coupling constant results cannot be
compared to previous classical simulation predictions and experimental NMR observations
reported in Ref. 55 because those are based on the solution phase. We plan to carry
out solution phase simulations in the future while taking advantage of Graphics Processing

Unit (GPU) acceleration to distribute the computational load of the many water molecules
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required for the solution phase. We discuss our software and hardware set up for these

GPU-accelerated simulations and preliminary benchmarking in Section 4.2.
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Figure 3.8: 7 convergence of endocyclic coupling constants

After completing the investigation into the sugar’s structural properties, we moved on
to its energy properties. Our first attempt in establishing energy convergence with respect
to 7 using the centroid viral estimator for different temperatures is shown in Fig. 3.9.
The convergence appears quadratic up until about 7 ~ 4x107° K1, after which there is a

divergence in the energy. The simulation time step At was the first suspect in causing this
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discrepancy because it is a common culprit in energy instability for classical simulations.
We then calculated the energy for a series of simulations with varying At and 7 and found
that indeed a lower At is required for lower 7. We will attempt to uncover the source of
this energy instability with time step size in future work. A time step of At = 0.25 fs
was found to be sufficient to maintain energy stability for our energy convergence studies
that required going down to 7 ~ 3.5x107° K~! for convergence. This time step is used for

subsequent PIMD simulations.
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Figure 3.9: 7 convergence of energies with At too large (0.5 fs)

New plots of the energy convergence with the updated time step are displayed in Fig
3.10. The quadratic behaviour of convergence is consistent in these plots. This study
provided an idea of the number of data points and the range of 7 required for good fits in

order to extrapolate to 7 = 0 K~! full quantum energies. These parameters were roughly
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maintained across temperatures in the follow up large scale study of the temperature de-
pendence of the quantum energy. Plots of the full quantum and classical energies are
shown for 50 K - 1300 K in Fig. 3.11 alongside analytic quantum and harmonic oscillator
energies. As an aside, each of the data points in the quantum case (there are many more
in between but not displayed) needed ~ 12 simulations of varying 7 in a manner similar to
Fig. 3.10. Such a large scale undertaking was only possible through our supercomputing
cluster that we call nlogn. There is a visible systematic difference between the simulated
energies and their harmonic oscillator counterparts that grows with temperature, even at
low temperature as seen in the inset of Fig. 3.11. These differences represent the contri-
bution of nonharmonic degrees of freedom and are > 12 kJ/mol (2.87 kcal/mol) by 300
K. However, the energy difference between the simulations and harmonic oscillator models
are within chemical accuracy of ~ 1 kcal/mol at low temperatures, so treating the sugar
harmonically through normal mode analysis is sufficient to reproduce experimental results
for the energy at these temperatures and much cheaper computationally than PIMD. In
the future, we plan to use Monte Carlo sampling from a multivariate Gaussian distribution
to harmonically explore the sugar’s configuration space and obtain dihedral angle distri-
butions, which might also be more efficient than PIMD. We additionally plan to calculate
the ground state quantum energy using LePIGS and compare that to the ground state

quantum harmonic oscillator energy.
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Figure 3.11: Temperature dependence of the average sugar internal energy. The PIMD
results are based on Centroid Virial estimates extrapolated to 7=0

3.4 Conclusions

We have optimized PIMD simulation parameters for the gas phase study of the sugar beta
D-arabinofuranoside and confirmed that significant nuclear quantum effects exist for its
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structural and energy properties, even at biological temperatures. Our results indicate
that systematic optimization of simulation parameters is necessary to promote efficiency
and avoid system instability. Dihedral angle distributions visibly became more delocalized
as quantum sampling was increased by increasing the number of path integral beads. This
corresponded to a visible change in 'H-'H nuclear spin coupling constants as compared
to classical predictions, however the low 7 results were noisy and so we could not fit to a
converged value. The predicted quantum internal energies were also much larger than the
classical energy predictions and the quantum internal energy also had a temperature de-
pendence that followed the contour of an analytic quantum harmonic oscillator model that
is non linear at low temperature, whereas the classical internal energy had a temperature
dependence that followed the linear contour of an analytic classical harmonic oscillator
model. For temperatures < 300 K, the harmonic oscillator models, which are within chem-
ical accuracy in this domain, appear better suited for predicting energies due to their much
lower computational cost compared to their MD counterparts. We will extend to solution
phase simulation in future work so that we are able to compare our quantum results to

prior classical and experimental values.
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Chapter 4

Conclusions and future work

4.1 Concluding statements

Recall that our prime objective has been to improve the accuracy of molecular modeling
while remaining amenable to current computational resources. This thesis investigated
two different approaches and applications where quantum nuclear dynamics was included

in order to achieve this goal.

In Chapter 2, a basis set method was used to reduce a recent high quality 6D ab initio
hydrogen pair potential into a set of 1D pair potentials to enable feasible LePIGS simu-
lations of pHsy clusters. The difference of the reduced potentials were then perturbatively
combined with the resulting radial distributions of the simulated clusters in order to pre-
dict Raman vibrational shifts. The results based on radial distributions generated from our
ground vibrational state reduced potential were superior to that of other popular hydrogen
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pair potentials, at least for small pHy cluster sizes where reliable experimental shift values
exist. Also, we believe that our difference potential is closer to physical reality compared
to the empirical difference potential of Tejeda et al. and extensible to larger cluster sizes.
Thus, for this application it appears that prime objective has been accomplished. However,
there is still some doubt about the accuracy of our approach at larger cluster sizes. Future
work will investigate many-body effects and possible misassignment of the large cluster
experimental Raman peaks. Future applications include predicting vibrational shifts of
orthodeuterium and paratritium, the larger bosonic isomers of hydrogen, as well as solid

parahydrogen.

In Chapter 3, we sought to validate the broader use of PIMD by applying it to study
the structural and energetic properties of methyl S-D-arabinofuranoside, a sugar previously
examined through classical MD. We employed a systematic approach in establishing simu-
lation parameters, the importance of which is underlined by identifying energy instability
at low 7 or high number of beads if the time step At is too large. Increasing the amount
of quantum sampling visibly impacted structural properties including dihedral angle dis-
tributions and 'H-'H nuclear spin coupling constants. The dihedral angle distributions in
particular became noticeably more delocalized due to quantum tunneling. However, the
convergence of the coupling constants with 7 is still unresolved due to fluctuations at low 7.

In future work we will attempt longer simulations or umbrella sampling in order overcome
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any ergodicity problems that might be the cause of the coupling constant fluctuations. It is
too early to determine if we achieved our prime objective of increasing simulation accuracy
with regards to the coupling constants due to this fluctuation problem and the fact that we
can not compare to experiment until we undertake solution phase simulations. However,
our internal energy results support a quantum picture for the sugar, considering that the
temperature dependence of predicted quantum internal energy estimates followed the con-
tour of a quantum harmonic oscillator model. These quantum internal energy predictions
also behaved significantly differently from classical internal energy predictions, particularly
at low temperatures. Therefore we can conclude that it is important to treat the sugar’s
nuclear dynamics quantum mechanically, especially at low temperatures where quantum
effects dominate, and that we should investigate further. However, PIMD appears to be ex-
cessive for this task, considering that a quantum harmonic oscillator model can reproduce

quantum energies within chemical accuracy and with much lower computational cost.

4.2 Future directions: solution phase sugar simula-

tions

PIMD is more computationally demanding than traditional MD because the system grows

by a factor roughly proportional to the number of beads. Additionally, for our sugar
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application a long simulation time is required to get converged distributions of exocyclic
conformations [53, 56] and possibly even endocylic conformations as discussed earlier with
coupling constant fluctuation problem. It is therefore in our interest to optimize the simu-
lations as much as possible, both in terms of simulation parameters and also the software
and hardware infrastructure to carry them out. One time-saving measure is to adopt the
paradigm of parallel computing, which involves splitting up tasks into threads for multiple
physical processing cores such that they can be computed simultaneously. A schematic of
parallel computing is shown in Fig. 4.1. It is only practical for tasks that do not require
much communication between each other because the extra effort and downtime during
sending and receiving messages will create performance bottlenecks [87]. MD lends itself to
parallel computing because the forces on each particle and their translations at each time
step during integration can be calculated independently of other particles, only memory of
the other particles’ configurational state from the end of the previous time step is required,
such that separate threads can carry out calculations for different particles. Afterwards,
the threads collectively update the memory of the state of the system with their results,
for use by each thread for the subsequent time step calculations [88]. With this technique,

we get closer to O(NN) computational efficiency.
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Figure 4.1: Schematic depicting parallel computing. Note that this is an oversimplification
where one particle is assigned to one processing core.

Parallel computing using Central Processing Units (CPUs), the main computer chips
found in typical desktop machines, is already well established. CPUs of today in average
home desktops usually have 4 cores and CPUs for servers usually have up to 16 or 32 cores.
Multiple CPUs are linked over a high-speed network to create a supercomputing grid or
cluster with potentially thousands of cores accessible to demanding scientific applications
such as MD. However, the history of CPU use has lead to designs that maximize the
performance of single threads for serial processing and only a fraction of a CPU chip’s area
is devoted to raw computation, the rest being used as support mechanisms to help handle
irregular loads [87, 89]. This makes them useful for the varied tasks we subject them to
at home and in the office, but inefficient for the repeated set of instructions on large data

sets used in scientific computing [87, 89].

A new entrant to parallel computing that has been quickly gaining popularity over
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the last decade as an answer to these shortcomings is general-purpose Graphics Processing
Unit (GPGPU) computing. Current performance grade GPUs have hundreds of small cores
on a single chip with a large area focused on raw computation, which is an architecture
influenced by their roots of having to process many regular graphics generation tasks
simultaneously for real-time display [88, 87]. They gained widespread consumer adoption
to work alongside CPUs in computers and video game consoles for their role in driving video
game graphics, and so have the benefit of economies of scale in their manufacturing. Thus,
they offer the advantage of a small footprint both in terms of size and cost compared to CPU
parallel computing solutions. A schematic showing the overall structural difference between
CPUs and GPUs is shown in Fig. 4.2. GPU manufacturers and related consortiums
have opened up the GPUs to general computation beyond graphics by making the cores
programmable and providing Application Programming Interfaces (APIs) that allow easier
programming. A major platform for GPGPU computing is Nvidia Corporation’s Compute

Unified Device Architecture (CUDA) that includes a C-like APT [90].

MMTK can generate multiple threads for parallel force field evaluation. However, its
built-in code is designed to run on CPUs and may suffer from the limitations outlined in the
proceeding section. To address this, S. Constable, another graduate of our group, removed
the MMTK C language internals related to integration on the CPU and replaced them with

a series of custom codes [3] to instead pass data about the system and simulation parameters
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Figure 4.2: Schematic comparing CPUs and GPUs. CPUs have fewer, larger, general
purpose cores, whereas GPUs have many, smaller, raw computation cores

to the Open Molecular Mechanics (OpenMM) program using the OpenMM C API [91].
In turn, OpenMM provides an interface to a general-purpose GPU computing API like
CUDA, which it calls a Platform, that is geared specifically towards the acceleration of
molecular modeling tasks via parallel execution on GPU cores. Particularly, OpenMM'’s
LangevinIntegrator and RPMDIntegrator classes of algorithms are used for classical MD
integration and PIMD integration, respectively, with both applying the Langevin equation
to sample the canonical ensemble. After a specified number of integration steps, data about
the new state of the system is brought back up from the GPU memory to the C level of code
running on the CPU via OpenMM queries of the Platform, where an MMTK algorithm
for trajectory output reports the data for recording into a trajectory file and makes them
available at the surface Python level for further action by the user. OpenMM also has a

Reference platform that runs the integration on the CPU instead for benchmarking the
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performance of the GPU-based platforms. A schematic of this software setup is contained

in Fig. 4.3.

MMTK-OpenMM Hybrid

MMTK Easy
MMTK Python User
Interface

MMTK Easy
Python User
Interface

Custom Bridge
Code

!

MMTK FastC
Internals

OpenMM
OpenMM C API “ Reference

Integrator

OpenMM OpenCL
Integrator

Figure 4.3: Schematic of our software setup

This MMTK-OpenMM hybrid program was developed rather than using OpenMM as
standalone software because S. Constable evaluated that OpenMM does not have the level
of user friendliness and features for setting up and analyzing a system like MMTK [3]. For
example, this work requires the popular composite force field AMBER, [83], which is not
directly supported by OpenMM. Thus, our custom code that bridges between MMTK and
OpenMM extracts individual components of the AMBER force field, which is originally set

with MMTK, and feeds them into OpenMM, which builds the different forces separately

7



in its own representation that is suitable for GPU computation. With our hybrid program
this tedious process is hidden from the user and all they need to do is set the force field in
the MMTK Python front end with a simple command. User friendliness is important to
us because we want wide consumption of our tools and our perspective on the importance
of quantum sampling through PIMD by the scientific community. However, the nascent
status of the MMTK-OpenMM hybrid program entails the presence of software bugs that
we have to clear before general release of the program. Several ‘bug fixes’ have already been
committed to enable future solution phase work with the sugar. These include resolving
issues in the treatment of periodic boundary conditions and removing double processing

of vibrational force constants when transferring AMBER forcefield components.

Solution phase simulations will take place in an orthorhombic periodic universe with the
sugar surrounded by water molecules. A periodic universe enables computationally feasible
simulation of bulk systems by breaking them into a microscopic unit cell that is virtually
repeated in all directions. The unit cell in an orthorhombic universe is a box. Motions of
the particles in the central, explicit cell are implicitly mimicked by motions of the virtual
particles in the virtual copies of the unit cell. When a particle crosses the boundary of the
explicit cell it means that a virtual copy should enter the cell from the opposite boundary.
However, in practice locations of virtual copies are not stored in memory but generated for

temporary use in calculations by inferring from the location of the explicit particles and
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size of the unit cell. Force calculations take interactions with virtual particles into account
from their inferred locations and use the nearest image convention to select for interaction
with only the nearest copy of a particle and a cutoff distance to limit the extent of the
interactions to those particles that have significant influence. In this way, a small finite
number of particles can be used to reproduce bulk properties. A schematic of the nearest

image convention is displayed in Fig. 4.4.

PRl
2O
¢

= |

Figure 4.4: Schematic of the nearest image convention. Particle 1 only interacts with
Particle 2’, the virtual copy of Particle 2, because it is closer

Benefits of GPU acceleration are only seen if the system has enough particles such that
parallel evaluation of energy and forces outweighs the overhead cost of transferring infor-
mation between the CPU and GPU and setting up the system on the GPU. Additionally,
we expect larger systems to make more use of the greater number of cores on the GPU. To

investigate this system size effect on GPU acceleration, we ran several short simulations of
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30 ps with different sized periodic boxes of water molecules filled to a density of 0.9970479
g/cm?® using both the original pure MMTK software and the MMTK-OpenMM hybrid
software. The results of this benchmarking are shown in Fig. 4.5 and confirm that perfor-
mance gains increase with system size. For large box size of (2.5 A)3 containing 520 water
molecules, which corresponds to the size used in Ref. 55, the GPU simulation is ~100x
faster than the single-threaded pure MMTK CPU simulation. These results reassure us

that the investment in developing the hybrid program was a sound decision.

30



CPU: MMTK on Intel Xeon E5-2650, GPU: Hybrid on Nvidia GeForce GTX TITAN Black
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Figure 4.5: CPU and GPU benchmarking results for periodic boxes of water molecules
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