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Abstract

Quantum computing set a goal to harness the quantum laws of physics and create comput-

ers more powerful than ever imagined. Different technologies can be chosen to implement

quantum bits (qubits), each with their advantages and drawbacks. The idea of combining

different technologies then seems natural in order to come up with an optimal quantum

computer.

In this sense, Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR)

seem to be the perfect marriage. Indeed, while electron spins can perform quantum gates

within nanoseconds, they have to fight very fast decoherence phenomena, the nuclear spins,

on the other hand, require longer electromagnetic pulses to be rotated but can be controlled

longer without loss of quantum information. Using electron spins as actuators and nuclear

spins as memory then appears as the optimal use of this hybrid system. Another fact

accounting for this association is that the control of the system through the electron spin

requires techniques very similar to the well-known NMR ones.

This work focuses on characterizing as precisely as possible the Hamiltonian of a hybrid

spin system in a solid-state single crystal, especially the electron-nuclear interactions, to

perform high-fidelity control in a home-built pulsed ESR spectrometer. Using this knowl-

edge, we show that we can choose the orientation of the magnetic field with respect to our

crystal to obtain optimal experimental conditions. Indeed, with a good knowledge of the

Hamiltonian of the system, we want demonstrate high-fidelity quantum control.

The final aim of this work is to dynamically supply highly polarized ancilla qubits that

can be used in a Quantum Error Correction (QEC) experiment by implementing heat bath

algorithmic cooling using a cold electron spin bath. This is an important step towards

demonstrating the viability of spin systems for building quantum computers.
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Chapter 1

Introduction and motivation

1.1 Quantum computing

Alan Turing invented the programmable computer in 1936 [1]. The invention of the point-

contact transistor by Bardeen, Brattain and Shockley [2], in 1947, made it possible to

produce smaller and more affordable computers, preparing the mass production era we

are in today. We have been using these classical computers -they work out computations

using classical physics- for more than 50 years now and decades of innovation have turned

them into portable user-friendly everyday devices. Yet, the computers we use now still

rely on the model described by Turing close to 80 years ago. Of course, calculations are

much faster now (billions of operations every single second) while cheap memory and wide

networks have opened the door to new uses.

Roughly speaking, if we could run the same program on two computers manufactured

50 years apart, the algorithm would require the same number of elementary operations

on both. On the most recent one, the computation time would be much shorter, though,

simply because present-day processors can perform billions of elementary operations per

second.

Most of the improvements we find in recent computers can indeed be accounted for

by the incredible number of transistors we are now able to put on a microchip. In the
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1960s, a famous “law” claiming the number of transistors per surface unit would come

to double every 18 months was foreseen by Moore and named after him. This pace was

kept up until today, but classical computers designers are now approaching the limits of

miniaturization. Not only the smaller they go, the harder it gets in terms of engineering,

but they are reaching scales at which classical physics will not be sufficient to predict what

is happening in the electronic circuits anymore: the quantum mechanical behaviour of

electrons in the circuits have to be taken into account.

While for classical computers, this quantum mechanical behaviour can be considered

undesirable (because it is not under control), Feynman was one of the first to suggest the

idea of actually using the quantum properties of some systems to process information and

work out computations [3]. The theory of quantum mechanical computers has since grown

into a worldwide field of study, and first realizations are on their way.

Encoding information in quantum systems is indeed very different from its classical

counterpart. While classical bits have to be either 0 or 1, quantum bits (qubits) can be a

superposition of these two. Superposition is one of the reasons quantum computers will be

able to run some algorithms exponentially faster than classical computers. Indeed, it allows

the user to send all the possible inputs to a system in parallel, while classically those re-

quests would have to be sent one after the other. This is, for instance, a key in Grover’s fast

search quantum algorithm [4]. But superposition is not the only phenomenon to account

for the leap expected from quantum computers: entanglement is another one. Entangle-

ment has no classical counterpart and is the sharing of an inseparable state between several

quantum systems. The use of entanglement in quantum information processing is already

well-known for allowing superdense coding and teleportation.

The most famous and impressive algorithm designed for quantum computers so far is

probably the factoring algorithm [5]. While most of today’s cryptography systems rely on

the difficulty of factoring large numbers [6], which becomes exponentially harder with the

size of the number to factorize, in a world with quantum computers, such a problem could

actually be handled in a reasonable execution time.

2



1.2 Challenges of a physical implementation

Quantum states are known to be extremely fragile. The laws they obey can be counter-

intuitive, and if we never observe any quantum effect of any kind in our everyday life it

is because observing the quantum behaviour of a system requires an extremely stringent

environment.

In order to help identify potential physical realizations of quantum processors, DiVi-

cenzo listed 5 requirements which have now become a standard set of criteria when it comes

to physical implementation of qubits [7].

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the quibit to a simple, identifiable state (|00...〉,
...).

3. A “universal” set of quantum gates.

4. Decoherence times much longer than the gate operation times.

5. A qubit-specific measurement capability.

There are many different ways to physically implement qubits and store quantum in-

formation. For example, isolating two energy levels in an Hydrogen atom could serve as

a two-level system suitable to implement a qubit. As for macroscopic systems, neutron

interferometers define a two-level system by distinguishing the two different paths that can

be taken by a neutron.

Optical implementations are a leading candidate for the very long coherence times

of the photonic quantum states. The quantum state can for instance be encoded as the

polarization of a single photon, which involves well-known optics. Superconducting circuits

are also used to implement qubits and allow the researchers to work with macroscopic

system as opposed to much smaller systems with other technologies. On the other hand,

decoherence is hard to remove in these so-called “artificial” quantum systems. In the recent
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years, trapped ions (one of the first proposal for quantum computers [8]) have also been

used successfully, for instance in a 14-qubit entanglement experiment [9].

Spin is an intrinsic quantum angular momentum that some elementary particles carry.

Spin-1
2

particles form a natural quantum two-level system and are then used in many

systems as qubits. Indeed, electron spins can be confined inside quantum dots or result of

an ensemble of unpaired electrons in a crystal. Nuclear spins have a long history as probes

of matter in the field of nuclear magnetic resonance, and can be manipulated directly with

radio-frequency (RF) fields, or indirectly via coupled electron spins.

1.3 Towards implementation of quantum algorithms

1.3.1 Main obstacles

In classical computers, the“state” of the bits is usually physically implemented as a voltage.

Distinguishing between a 0 and a 1 then reduces to setting thresholds on said voltage. For

instance, it can be considered that any voltage between 0V and 1V should be understood

as a 0, any voltage between 2V and 3V as a 1, while a voltage between 1V and 2V could

be seen as a transcription error.

As far as quantum computers are concerned, even a small alteration of the information

contained in a qubit is very likely to affect the final result of a computation. Yet, the

threshold theorem tells us that the probability of error of a quantum algorithm using a

large enough number of qubits can be made arbitrarily small provided the error probability

for each single qubit is maintained under a certain threshold and quantum error-correcting

codes are applied and using an amount of resources that scale polynomially to the size of

the problem that one wants to solve.

All the physical implementations of qubits do not have to face the same obstacles

in order to handle complex algorithms. Indeed, the probability to have an error on a

single qubit as well as the pace at which errors can happen is related to the characteristic

decoherence times of the considered system: reaching fidelities needed for fault-tolerant

quantum operations is really technology dependent. A good knowledge of the errors likely
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to happen to the system then allows one to use the threshold theorem to its maximum

advantage: at regular intervals, quantum error-correcting procedures can be performed but

one has to keep in mind that those procedures are subject to errors as well!

1.3.2 Quantum error-correcting codes

As a consequence, similarly to classical computers, quantum computers will have to be

able to handle errors. Quantum error-correcting codes aim at protecting the information

contained in a state, especially against the imperfections of the control system and, more

than anything else, against the decoherence brought about by the interactions with the

environment.

The theory of quantum error-correcting codes has been worked out [10] and relies on

the encoding of the state to protect into a larger one. The idea1 is the following: if a

known error is likely to happen to a qubit, a quantum circuit can be designed to protect

the information against this error by adding some qubits initialized in the |0〉 state (called

ancilla qubits) to the original qubit. In addition of protection of the quantum information

contained in the original qubit, the ancilla qubits will end up carrying information about

the error that occurred.

Quantum error-correcting codes have been implemented in liquid-state [11] [12] [13]

NMR, solid-state [14] NMR and trapped ions [15] [16]. More recently, implementations

have been successful with superconducting circuits [17] and in NV-centres [18].

We believe that the implementation of quantum error-correcting codes in hybrid (or

heterogeneous) quantum systems will open the path to implementation of quantum infor-

mation processing in larger and more complex systems. Electron-nuclear systems are well

suited for such implementation too, since the nuclei have long decoherence times but slow

direct control, whereas the electron can give fast control (as an actuator) and also gives a

way to reset to |0〉 via spin-lattice relaxation. Similarly to the revolution it has been for

classical computers in the 1940s, it will set one more important step towards the realization

of quantum computers.

1Chapter 6 goes further in the details of quantum error correction.
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1.4 Layout of the thesis

Throughout this thesis, I will explain how and why we are going towards implementation

of quantum algorithms using electron and nuclear spins in single crystals. Contextualizing

the work I have taken part in, in the ESR project with Dr. Robabeh Rahimi Darabad

and Daniel K. Park, I will highlight my main contributions, which are the Hamiltonian

determination of our quantum system and how to use this knowledge in order to obtain

an optimal experimental setup for the quantum algorithms we plan to implement. My

goal is to convince the reader that using this knowledge, simulations programs we wrote

and the procedure for optimal orientation we set up, we will soon successfully implement

interesting quantum algorithms in a system potentially offering 5 qubits.

First of all, I will present the solid-state samples used in this work in Chapter 2.

The crystal structure will be presented and our ESR characterization method will be

discussed and reviewed. Chapter 3 presents the simulation programs used to confirm

the characterization results but also to plan the results of the different algorithms we

implemented or will implement for future work. The design of the experimental part of this

work is shown in Chapter 4. The two last parts of this thesis will focus on our proposals for

implementation of algorithmic cooling (Chapter 5) and quantum error correction (Chapter

6). Indeed, one method to dynamically provide the system with fresh ancilla qubits consists

of multiple rounds of heat-bath algorithmic cooling. We will then present a method to

refresh the ancilla qubits at the necessary pace and open the way to the implementation

of quantum error-correcting codes using electron and nuclear spins in single crystals.
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Chapter 2

Sample characterization

2.1 Malonic Acid

The samples we used in our experiments are malonic acid crystals. Malonic acid is a

dicarboxylic acid with chemical formula CH2 (COOH)2 which has proved to be an excel-

lent testbed for quantum information processing and has been studied a lot in the past

decades [19] [20] [21] and more recently to entangle an electron spin and a nuclear spin [22].

Malonic acid single crystals can be grown and are stable at room temperature, where their

structure is triclinic. The sample preparation is revealed in section 2.1.1 while the details

of this structure are described in section 2.1.2.

2.1.1 Nomenclature and preparation

In this project, we worked with various slightly different molecules of malonic acid. To

grow those different kinds of malonic acid crystals, we had to order labelled raw material

in the first place. Each malonic acid molecule contains 3 carbon atoms. The natural

abundance of carbon isotopes is close to 99% for 12C and 1% for 13C. Labelling is the

replacement of the spinless 12C by spin-1
2

13C. Our molecule then offers more nuclear spins

for quantum control and implementation of quantum information processing. Depending
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Figure 2.1: Spatial representation of a malonic acid molecule. The black spheres denote the

3 carbons, the red ones indicate the positions of the oxygens and the white ones represent

the hydrogens. The two COOH carboxylic groups appear on the sides while the central

CH2 methylene group connects them in the middle. The distance between the hydrogens

of the carboxylic groups is close to 5Å. For nomenclature, we label the 3 carbons 1, 2 and

3 respectively, from left to right.

on the situations, it was easier for us to work with one of the types listed in table 2.1.

For instance, we tried and perfected our orientation procedures on unlabelled malonic acid

crystals before applying them to more expensive labelled crystals. But cost was not the

only reason we sometimes chose to work with different samples: the difficulty of tensors

extraction from continuous-wave (CW) measurements of fully-labelled malonic acid made

us work with laterally-labelled crystals instead. We also performed CW measurements on

deuterated1 unlabelled malonic acid to estimate linewidth improvements we can expect for

future works.

1In those molecules, the 1H hydrogen atoms are replaced by 2H deuteriums.
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For all the different malonic acid molecule versions, the growth procedures are similar.

A solution is obtained by dissolving existing crystals in a solvent (usually water2). The

crystal growth is then made possible by controlling the evaporation rate of the solvent.

The final steps of the sample preparation were designed to get the controllable electron

spin in the molecule. This unpaired electron is obtained after γ or X-ray irradiation of

the sample for a precise duration (from a few of minutes for the former to a couple of days

for the latter, the dose needed being 2kGy). Inducing defects in the crystal structure by

destroying the carbon-hydrogen bonds results in the formation of radicals. Most of these

radicals are not stable and a 60◦C hot 24-hour long annealing was necessary to end up

with stable radicals only.

2The solvent is actually not always water. Crystals can be grown in pure ethanol and will usually be

larger but will then not be single crystals. To obtain nice single crystals, we ended up using a mix of water

and ethanol as our solvent. Also, growing deuterated malonic acid crystals requires the use of heavy water

(2H2O) instead of water (1H2O).
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Table 2.1: Nomenclature and skeletal representations of regular and irradiated malonic

acid molecules.

Molecule Regular form Irradiated form

Malonic acid

(MA)

HO

O O

OH HO

O

C

e−
H

O

OH

Centrally-

labelled

malonic acid

(2−13 C MA)

HO

O

13C

H H

O

OH HO

O

13C

e−
H

O

OH

Laterally-

labelled

malonic acid

(1, 3 −13 C

MA)

HO
13C

O

13C

O

OH HO
13C

O

C

e−
H

13C

O

OH

Fully-labelled

malonic acid

(1, 2, 3 −13 C

MA)

HO
13C

O

13C

H H

13C

O

OH HO
13C

O

13C

e−
H

13C

O

OH
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2.1.2 Crystal structure

The crystal structure of malonic acid has been studied throughout the past decades [23] [24].

The space group was found to be P 1̄ with Z = 2, meaning that each unit cell of the crystal

contains two molecules related by a centre of symmetry.

Malonic acid crystal have a triclinic structure. To define their unit cell, we need 3

vectors ~a, ~b and ~c, including their lengths and respective orientations to one another.

Hence the definition of α =
(
~b,~c
)

, β = (~a,~c) and γ =
(
~a,~b
)

~b

α

γ

~c

β

~a

Figure 2.2: Malonic acid triclinic unit cell. The three vectors ~a, ~b and ~c defining the unit

cell form a direct basis and are represented as black arrows. The three angles α (red), β

(blue) and γ (green) complete the definition of the unit cell.

The most recent structure results were published in 1994 by Jagannathan et al. [25].
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These results are consistent with the structure Dr. Jalil Assoud (Dept. of Chemistry,

University of Waterloo) is able to determine using a Bruker X-ray diffractometer.

Table 2.2: Malonic acid unit cell as published in 1994 by Jagannathan et al. and measured

in 2014 by Dr. Jalil Assoud. Both are determined at T = 298K.

Jagannathan et al. [25] Dr. Jalil Assoud

a 5.156 Å α 71.48◦ a 5.16 Å α 71.47◦

b 5.341 Å β 76.12◦ b 5.33 Å β 75.95◦

c 8.407 Å γ 85.09◦ c 8.39 Å γ 84.92◦

Note that it is important for us to consider the first results published for the unit cell

parameters of malonic acid because the first Hamiltonian determination publications (for

centrally-labelled malonic acid) were using them. In particular, the eigenvectors direction

cosines of the hyperfine tensor for the hydrogen have been published in that frame. These

are essential for us to determine the optimal orientation to ensure the success of our

implementations of quantum algorithms (see section 4.2 for more details).

2.2 Hamiltonian extraction

2.2.1 Mathematical model for Hamiltonian extraction

When dealing with quantum mechanical systems, the best characterization is usually the

determination of the Hamiltonian of the system. The Hamiltonian is the energy operator

of the system and in hybrid electron-nuclear spins-1
2

systems, it involves different types of

interactions.

Because all the spins in our system are spins-1
2
, when placed in a ~B0 = B0ẑ magnetic

field, every type of spins will be given two possible levels of energy. This is called the

Zeeman splitting. Apart from the Zeeman splitting, every spin interacts with every other,

meaning the Hamiltonian of our system contains electron-nuclear and nuclear-nuclear spins

12



Figure 2.3: Malonic acid molecules in the unit cell. The positions of the atoms in each

molecule has been published by Goedkoop and MacGillavry [24]. We also know that there

are two molecules per unit cell related by a centre of symmetry, making them magnetically

equivalent. The black spheres denote the positions of the carbons while the red ones show

the position of the oxygens.

interaction terms. All the examples in this chapter will be taken from our extraction of the

Hamiltonian for laterally-labelled malonic acid, which offers one electron spin and three

nuclear spins: one hydrogen 1H and two 13C carbons.

Considering the usual strengths of the nuclear-nuclear spins interactions (0.1 to 10

kHz), we decided to neglect them, which is a common assumption when working with

hybrid spins-1
2

systems.

Eventually, the Hamiltonian of the system we considered under those assumptions only

contains the Zeeman splitting terms for each species of spins as well as the electron-nuclear

spins interaction, called hyperfine interaction or hyperfine splitting - usually denoted by a

13



tensor ~A. If we have a system with one electron spin and K nuclear spins (usually referred

to as “1e-Kn” system) - see Appendix B for more details about the electron Ŝ and nuclear

În spin operators notations:

Ĥ =
µb
h
~B0 · ~g · Ŝ +

K∑
n=1

ωI,nÎn,Z +
K∑
n=1

Ŝ · ~An · În (2.1)

Where ωI,n = −γn‖ ~B0‖ is the nuclear Zeeman splitting (proportional to ‖ ~B0‖).

with :



µB : Bohr magneton (constant)

h : Planck constant
~B0 : external magnetic field

~g : g-tensor

γn : gyromagnetic ratio for nuclear spin n (constant)
~An : hyperfine tensor for nuclear spin n

To have a complete knowledge of this Hamiltonian for our system, we then need to

determine the ~g-tensor as well as the ~An hyperfine tensors. The procedure will be the same

for all the tensors: using the orientation dependence of a scalar parameter v, we will be

able to measure the coefficients of a certain tensor, that we call ~Γ and which is related

to the tensors we are looking for. Table 2.3 relates the parameter v and the ~Γ calculated

depending on the tensor (~g-tensor or hyperfine tensors) we want to extract. Notice that

we always expect ~Γ to be symmetric which leaves us 6 coefficients to determine it fully.

~Γ =

 Γxx Γxy Γzx

Γxy Γyy Γyz

Γzx Γyz Γzz

 (2.2)

If we call X − Y the plane being considered (with Z pointing up) and set X to be

initially aligned with the external magnetic field (thus defining θ as the angle between

the magnetic field and X to be 0 for the first measurement), the theory [26] gives us the

following orientation behaviour for v2:
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Table 2.3: Parameter to consider for the determination of the hyperfine and ~g-tensors.

Tensor Parameter to measure Tensor determined

~g v = g ~Γ = ~g · ~g
~An v = gAn ~Γ = ~g · ~An · ~An · ~g

v2(θ) = Γxx cos2 θ + Γyy sin2 θ + Γxy sin 2θ (2.3)

From table 2.3 and the orientation behaviour shown in equation 2.3, we see that we

need to measure the orientation dependence of a g and an An scalar values in more than

one plane. Actually, for a complete study, we need to measure those values (and their

orientation dependence) in 3 non-parallel planes. Our extraction model relies on two

assumptions: the 3 planes of measurements are mutually non-parallel, and the axis of

the rotation to go from one to the other actually belongs to both planes. Our algorithm

also assumes that the angle step between each measurement in one plane is constant. We

estimate our experimental angle precision to be ±1◦.
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Figure 2.4: Two non-parallel planes and their intersection. The two surfaces are character-

ized by their normal vector and intersect along a line. This line is one the axes of rotation

to go from one plane to the other. We tried to use this axis to go from one plane to an

other one.

2.2.2 Orientation study of the CW ESR peaks positions

In CW spectroscopy, a spectrometer sends pulses at a fixed frequency sweeping the mag-

nitude of the magnetic field. Peaks appear for particular values of the magnetic field for

which transitions between energy levels the system can occupy are driven. The extraction

procedure relies on the orientation study of the allowed transitions peaks positions in the

CW ESR spectra. From the orientation trajectories of these peaks, we are able to measure

the g and An values as a function of the orientation of the magnetic field.

A one electron spins - K nuclear spins system (abbreviated “1e-Kn” system) contains

K + 1 spins-1
2
, hence its Hamiltonian is a (K + 1)× (K + 1) matrix and there are K + 1

eigenenergies. In CW ESR spectroscopy, the peaks that will appear correspond to the

transitions flipping the electron spins. Among those, some transitions, called allowed tran-

sitions, will flip only the electron spin. The forbidden transitions, on the other hand, will
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flip the electron spin along with at least one nuclear spin. It can easily be understood from

the energy diagram in figure 2.5 that the number of allowed transitions in a 1e-Kn system

is 2K . Notice the transition probability is much higher for the allowed transitions and

this is revealed in the ESR spectrum in terms of amplitudes of the peaks. Since forbidden

transitions are very difficult to observe, this study only uses the allowed transitions peaks

to determine the tensors in the Hamiltonian.

|↓↓↓↓〉 |↓↓↓↑〉 |↓↓↑↓〉 |↓↓↑↑〉 |↓↑↓↓〉 |↓↑↓↑〉 |↓↑↑↓〉 |↓↑↑↑〉

|↑↓↓↓〉 |↑↓↓↑〉 |↑↓↑↓〉 |↑↓↑↑〉 |↑↑↓↓〉 |↑↑↓↑〉 |↑↑↑↓〉 |↑↑↑↑〉

Figure 2.5: Energy diagram of a 1e-3n system with allowed ESR transitions. The spin

states are in the |e−, H, C1, C2〉 order. Each spin qubit is a two-level system where the two

levels are denoted by |↑〉 and |↓〉. The state labelling can be done by replacing ↑ by 1 and ↓
by 0. Then, the states can be read as binary numbers. For example, in the top-left corner,

we have |↓↓↓↓〉 = |0000〉 = |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 = |0〉. Similarly, |7〉 = |0111〉 = |↓↑↑↑〉, for

instance.

To measure the g-value and the hyperfine splittingsAn needed for the tensors extraction,

it is important to understand the structure of a CW ESR spectrum. If we measure the

CW ESR spectrum of an electron spin alone, we will obtain one peak for a specific value of

the magnetic field called the centre field Bcentre. The centre field is related to the g-value

by the resonant condition (in which the frequency of the spectrometer, ν, is fixed):
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hν = gµBBcentre (2.4)

Adding one nuclear spin n1 to the system will double the number of peaks: we obtain

two “sub-spectra”, one shifted by A1

2
to the left, one shifted by A1

2
to the right. Here, A1 is

the observable hyperfine splitting due to n1, the one we need to determine the ~A1 tensor.

Similarly, adding one more nuclear spin n2 will continue this division process: the left and

right sub-spectra will be divided into four sub-sub-spectra shifted by A2

2
to the left and to

the right. Notice that, from the way the CW ESR spectrum is structured, and as the name

suggests, the centre field is the center of symmetry of the spectrum, as shown in figure 2.6.

e−

n 1

n 2

A1

A2

Spectrum

Figure 2.6: Structure of the CW ESR spectrum. The positions of the allowed transitions

peaks follow a pyramidal structure, each splitting adding new leaves to the tree.
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From this picture, we can understand how to use the information contained in each

spectrum to measure the observed hyperfine splittings for each nuclear spin as well as the

g-value. Since the peaks will ”move” with the orientation of the magnetic field with respect

to the crystal, their positions can overlap or cross, making the analysis a little tricky.

However, one splitting that is usually easier to measure is the largest one (i.e. A1)

because it divides the final spectrum into two sets of peaks usually clearly distinguishable.

Having a look at the general peaks trajectories in each plane is usually enough to relate a

measured spectrum to its expected structure.
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2.2.3 CW spectrometer and measurements

The usual way to go through this orientation study requires a goniometer, but we worked

on Hamiltonian determination relaxing the need for such a tool. We chose to work out mea-

surements in 3 non-parallel planes, trying to get them mutually orthogonal to each other.

In each of these 3 planes, for our study of laterally-labelled malonic acid, we measured 90

spectra of the sample3.

We use a Bruker X-band CW spectrometer belonging to David Cory’s group, whom

we thank a lot. The crystal is hosted by a Stycast 1266 box engineered to be as cubic

as possible (making it easy for us to identify the 3 planes we wanted to measure). This

box is then placed inside a sample tube allowing us to make sure the sample is centred

in the magnet. In order to measure spectra with different orientations of the magnetic

field with respect to the crystal, the sample tube is rotated by some angle between every

measurement, using a graduated plate as a reference.

Let us take the example of our Hamiltonian determination for laterally-labelled malonic

acid. For each measurement, the range of magnetic fields applied was 3295G to 3395G.

We performed 16 scans to average the noise out for every single spectrum measured. Our

results files contained the measured spectrum with 4000 points -which corresponds to a

field step of 0.025G-, as well as the frequency of the spectrometer, which had to be fine

tuned after a few measurements. Between every measurement, the sample tube was rotated

clockwise by 2◦.

On our measurements, it appeared that the hyperfine coupling between the electron and

each of the two lateral carbons were too close to be distinguished from one another. Thus,

instead of observing 8 peaks, we only see 6: two peaks appearing (with square markers on

figure 2.12) overlap for all the orientations.

3In theory, 3 infinitely precise measurements in each plane are sufficient. Collecting more data allowed

us to get results robust against systematic error and noise.
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Figure 2.7: Bruker X-band CW spectrometer. The two cylinders are the poles of the elec-

tromagnet. The sample is place between them, where the magnetic field is created, in the

cavity with a resonator. The boxes in the top-right corner are respectively a temperature-

meter and a pressure-meter (on the top). They are used to measure the temperature and

regulate the flow of liquid Helium or liquid Nitrogen when we do low-temperature experi-

ments. The box in the top-left corner is the wave-generator. At the very back on the right,

we can see the water chiller used to cool the electromagnet.
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Figure 2.8: The sample tube in which lays the Stycast box hosting the crystal. This is

simply a standard sample tube for the Bruker CW spectrometers. The tube is 25cm long

with a diameter of 4.1mm.

(a) Graduated plate for CW measurements. (b) Stycast box for crystal orienting.

Figure 2.9: The graduated plate (a) we used shows two types of marks: long ones every

4◦ with short ones in between. It was machined by the University of Waterloo machine

shop. The plate has a diameter of 5.2cm. We used a special mould to make the Stycast

box (b) as square as possible, making it much easier to manipulate the crystal and its very

irregular shape. The box has an estimated side length of 3mm.
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Figure 2.10: Example of a CW ESR spectrum we measured for laterally-labelled malonic

acid. The signal detected is the first derivative of the CW ESR absorption spectrum.

Without overlap and if the peaks are far enough from one another (compared to their

linewidth -here around 14MHz), the amplitudes of the peaks are expected to be symmetric

with respect to y = 0. The spectrum itself is symmetric with respect the centre field (here

approximately 3340G).

To extract the positions of the allowed ESR peaks on each spectrum, we had to do

some processing on the signals we got from the spectrometer. First of all, we know that

the peaks are expected when the signal crosses y = 0. Starting from all the zeros of the

system, we can then isolate the possible peak positions, for example by adding a constraint

on the sign of the derivative of the signal at the considered point, expected to be negative.

Eventually, we obtain a first guess of the positions and amplitudes of the peaks, as well as

their linewidth. This iterative process is terminated with our optimization program, which
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returns the optimal positions and amplitudes for each signal, allowing us to plot the plane

overview for the trajectories of these peaks.

To observe this, we plot the spectra measured for consecutive orientations of the mag-

netic fields with respect to our crystal in one plane. On the plane overview, it then appears

clear that we observe two different hyperfine splitting values. The large one splits the spec-

tra into two sets of curves clearly distinguishable: the first manifold is denoted by green

curves in figure 2.12 while the second manifold is denoted by the purple curves. This

splitting is due to the central hydrogen. In each manifold, we can see that the curves with

a square marker correspond to overlapping peaks coming from the lateral carbons. From

this observation, we can then measure the g-value along with the AH and AC values.
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Figure 2.11: Spectra and allowed transitions peak positions for equally-spaced consecutive

angles in plane 1 for our measurements on laterally-labelled malonic acid. The plot shows

absorption spectra, which are obtained by integrating the spectra returned by the spec-

trometer. The black crosses are the optimal peak positions determined with our algorithm.
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Figure 2.12: Allowed transitions peaks positions in plane 1 for our measurements on

laterally-labelled malonic acid. The figure reveals the orientation dependence of those

peaks alone. Two hyperfine splittings can be observed: a large one between the curves

of different colours sharing the same marker, and a small one between the curves of same

colours. This tells us that the curves denoted by a square marker are the result of an over-

lap between two peaks, as the single spectra revealed (the amplitude of those overlapped

peaks was around twice as large as the one of the other peaks).

2.2.4 Determination of hyperfine and ~g tensors

Using the peak trajectories in each plane, we are able to measure the orientation dependence

of v, where the definition of v depends on the tensor we are extracting, as shown in table 2.3.

If we provide our 3 planes with one axis system, X1, Y1, Z1 for plane 1, and so on, we then

expect an orientation dependence of v2 in this frame (for instance) as given by equation 2.3:
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v2(θ) = Γxx cos2 θ + Γyy sin2 θ + Γxy sin 2θ (2.5)

The key to determine the three coefficients of the ~Γ tensor that appear in this expression

is to see this problem as a problem of algebra. Indeed, let us consider the vector space of

infinitely differentiable functions of [0, π] to R, C∞([0, π],R), and especially the subspace

generated by
{

cos2 θ, sin2 θ, sin 2θ
}

= {f1, f2, f3}.

It is easy to show that those three vectors f1, f2 and f3 are linearly independent since

∀ (λk)k=1,2,3 ∈ R,
∑
λkfk = 0 ⇒ ∀kλk = 0. As a consequence, we can simply decompose

our vector v2 along this family of linearly independent vectors. This tells us that the

coefficients Γxx, Γyy and Γxy are unique but what is more is that we know how to obtain

them. Given a dot product on this vector space, denoted 〈.| .〉:

〈
v2
∣∣ f1

〉
= Γxx 〈f1| f1〉+ Γyy 〈f2| f1〉+ Γxy 〈f3| f1〉〈

v2
∣∣ f2

〉
= Γxx 〈f1| f2〉+ Γyy 〈f2| f2〉+ Γxy 〈f3| f2〉〈

v2
∣∣ f3

〉
= Γxx 〈f1| f3〉+ Γyy 〈f2| f3〉+ Γxy 〈f3| f3〉

 〈v2| f1〉
〈v2| f2〉
〈v2| f3〉

 =

 〈f1| f1〉 〈f2| f1〉 〈f3| f1〉
〈f1| f2〉 〈f2| f2〉 〈f3| f2〉
〈f1| f3〉 〈f2| f3〉 〈f3| f3〉


 Γxx

Γyy

Γxy


 Γxx

Γyy

Γxy

 =

 〈f1| f1〉 〈f2| f1〉 〈f3| f1〉
〈f1| f2〉 〈f2| f2〉 〈f3| f2〉
〈f1| f3〉 〈f2| f3〉 〈f3| f3〉


−1  〈v2| f1〉

〈v2| f2〉
〈v2| f3〉


We choose to use the natural dot product on our sub vector space V to calculate different

components.

∀ u1, u2 ∈ V, 〈u1| u2〉 =

∫ π

0

u1(θ)u2(θ)dθ (2.6)

Since we made the assumption that the rotation axis between two planes is contained

in both planes, we have two measurements in both planes giving exactly the same spectra,
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corresponding to the alignment of this rotation axis with the external magnetic field. Thus,

we can identify the labels of the measurements that are identical in the two planes and

rename our X axis to be the axis of rotation (which means re-labelling our measurements).

Since we know the three coefficients defining the orientation dependence of our different v

parameters, we can choose the precision of this localization to any angle step we want. We

considered 1◦ was a sufficient precision.
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Figure 2.13: Identical CW ESR spectra in plane 1 (blue) and plane 2 (red) for our measure-

ments on laterally-labelled malonic acid. “P1A7” is our eighth measurement in plane 1,

while “P2A4” is our fifth measurement in plane 2. By looking at all the spectra measured

in the two planes two by two, we can find the two corresponding with the same alignment

of the magnetic field. This gives us the ”coordinates” of the X-axis in plane 1 and plane

2.
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To finish this characterization, we need two angles. We will call ϕ the rotation angle

between plane 1 and plane 2 while ψ will denote the rotation angle between plane 2 and

plane 3. These two rotations are along the X-axis, whose definition is changed as explained

further. We then need to express the ~Γ tensor in 4 different frames: ~T1 is ~Γ. ~T21 is ~T1

rotated of ϕ around X12 (axis of rotation between plane 1 and plane 2). ~T22 is ~T21 with

the first measurement shifted to be aligned with X23 (axis of rotation between plane 2 and

plane 3). ~T3 is ~T22 rotated of ψ around X23. To complete this picture, we then need to

define a new angle α which, contrary to ϕ and ψ, is known and characterizes the rotation

to go from the frame of ~T21 to the frame of ~T22.

To summerize, we have:

~T1 = ~Γ

~T21 = RX(ϕ)† · ~T1 ·RX(ϕ)

~T22 = RZ(α)† · ~T21 ·RZ(α)

~T3 = RX(ψ)† · ~T22 ·RX(ψ)

At the same time, using the data of the three planes, we can measure 3 coefficients of

the tensors in each frame.

P1 : v2 = T1,xx cos2 θ + T1,yy sin2 θ + T1,xy sin 2θ

P2− 1 : v2 = T21,xx cos2 θ + T21,yy sin2 θ + T21,xy sin 2θ

P2− 2 : v2 = T22,xx cos2 θ + T22,yy sin2 θ + T22,xy sin 2θ

P3 : v2 = T3,xx cos2 θ + T3,yy sin2 θ + T3,xy sin 2θ

The fact that the three planes are mutually not orthogonal is now going to be critical

because it explains how, using these 3 coefficients in each plane, we can calculate the whole

tensor in the first frame. Indeed, here is how all the 12 coefficients measured are related

to one another and allow us to write a system and solve it.
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T21,xx = T1,xx

T21,yy = T1,yy cos2 ϕ+ T1,zz sin2 ϕ+ T1,yz sin 2ϕ

T21,xy = T1,xy cosϕ+ T1,zx sinϕ

T22,xx = T21,xx cos2 α + T21,yy sin2 α + T21,xy sin 2α

T22,yy = T21,yy cos2 α + T21,xx sin2 α− T21,xy sin 2α

T22,xy = T21,xy cos 2α− (T21,xx + T21,yy)
sin 2α

2

T3,xx = T22,xx

T3,yy = T22,yy cos2 ψ + T22,zz sin2 ψ + T22,yz sin 2ψ

T3,xy = T22,xy cosψ + T22,zx sinψ

Let us analyse this set of equations. Some of those equations actually do not bring

additional information: for example T21,xx = T1,xx and T3,xx = T22,xx were already known

because we looked for X12 and X23 to satisfy those. Also, measuring the coefficients of
~T22 does not bring additional information because the coefficients of ~T21 as well as α are

already known. They only serve as a double check.

Since Γxx, Γyy and Γxy have been measured directly by projecting v2 in plane 1, at

this stage, we have 5 unknowns left: Γzz, Γzx, Γyz, ϕ and ψ. At the same time, we have

4 equations (given by T21,yy, T21,xy, T3,yy and T3,xy), which means that if we only want

to extract one tensor, this method requires more data. In our case, though, we want to

characterize a 1e-Kn system with K ≥ 1. If we count the number of unknowns and the

number of equations as functions of K (noticing such a systems requires us to determine

K + 1 tensors), we can see that:

Nunknowns = 6(K + 1) + 2 since ϕ and ψ are the same for all the tensors.

Nequations = 7(K + 1) counting the 3 direct measurements plus the 4 equations to solve.
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In a nutshell, as long as we have at least one nuclear spin, this model of tensor extraction

is valid. Of course, the system we have to solve is non-linear. Another difficulty is that

our measurements are not infinitely precise, which means we stand no chance of actually

mathematically solving this system. Instead, our algorithm uses optimization methods to

get as close as possible to a solution simultaneously satisfying all the equations of this

system.

2.3 Sample characterization results

2.3.1 Uncertainties and error bars

Estimation of the uncertainty on the diagonal coefficients of the tensors

The precision of our results is directly related to the precision with which we determine the

coefficients in the tensors. We then had to work out the uncertainty on those coefficients.

First of all, each experimental transition peak position is determined by some processing

on the signals we got from the spectrometer. The rough detection is enhanced by a refined

optimization taking into account the expected shape of the signal, completing this iterative

process. Nevertheless, due to the linewidth of the peaks observed, there is a measurement

error when we detect these positions. This type of error brings about vertical uncertainty.

Furthermore, our method to manually rotate the sample, using a graduated plate, when

collecting the data in each plane, is not perfect and gives us some horizontal uncertainty,

due to experimental conditions.

However, we will not directly take into account these uncertainties and consider that

the whole error is carried by the coefficient determination. Similarly, we will consider the

values we determined for θ and ϕ as exact. Finally, we will consider that there is no error

at all in our assumption that the rotation axis from plane to plane is rigorously contained

in both planes.

From the tensors we determined, we can obtain the orientation dependance of the v2
sim.

parameter for the ~g-tensor and the hyperfine tensors and compare it to the measured v2
meas..
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In each plane, we can then calculate the mean value of the error E = v2
meas. − v2

sim.. We

take the average of this error in the 3 planes as our uncertainty on the diagonal coefficients

of the tensors we determined.

∆gexp. = 0.013

∆Aexp.H = 6.0 MHz

∆Aexp.Cm
= 10 MHz

∆Aexp.C1/2
= 1.3 MHz

In terms of orders of magnitude, our uncertainties are consistent with what can be ex-

pected. As said before, these uncertainties are overestimated because they contain all the

kinds of errors in both the measurements and the determination processes. For instance,

the measured line broadening of the peaks we observed in our measurements was 14MHz,

which means our values for ∆Aexp.H , ∆Aexp.Cm
and ∆Aexp.C1/2

are consistent, some of them being

an order of magnitude smaller. These uncertainties look very important because they are

overestimated. Our definition of ∆ is an upper-bound of the actual error made in the coef-

ficients determination and we are working on refining those results for future publications.

Nevertheless, calculating the error bars using these uncertainties will allow us to see that

they actually can account for the difference between our simulations and our measurements

for all the orientations measured.

Error bars calculation

Since the tensor extraction procedure uses all the CW ESR data we have on our sample,

we had no way to exploit additional data to work out error bars. We chose to use the

uncertainty in the coefficients of our tensors to apply the Monte-Carlo method [27] [28]4.

With this method, we obtained more data by doing many simulations in order to obtain

the distribution of our error. For every simulation, errors taken in a gaussian distribution

4I would like to thank my friend Mathieu Finas, from École Centrale de Lille for ideas and discussions

on this topic.
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of mean 0 and standard deviation ∆ were added to the diagonal coefficients of our tensors.

Using these “noisy” tensors, we can indeed simulate the positions of the allowed transition

peaks and compare them to our main simulation (i.e. the one with the determined tensors,

without the uncertainties).

From all those simulations we can measure the error distribution on the simulated

positions. Since the physics simulated is linear, the error distribution is also gaussian, and

we can easily calculate its standard deviation. The error bars are taken to be 2σ (σ being

the standard deviation of the error distribution). Indeed, for gaussian distributions, more

than 95% of the distribution is in the interval [−2σ 2σ] when the mean is 0, like in our

case.

Ideally, the number of simulations required to obtain convincing results is 10n, where n

is the number of variables in the system. In our case, we have three diagonal tensors, so we

should try to run 109 simulations. However, each simulation takes slightly more than 1s,

which means we would have to wait 32 years before getting the results! Fortunately, the

results given by this method are acceptable as long as the gaussian distribution converges.

To check the convergence, we consecutively ran our program with 100, 1000 and 10000

simulations, all converging to the same result.

2.3.2 Tensors and simulations

We used our Hamiltonian determination procedure on two different malonic acid crystals:

centrally-labelled and laterally-labelled. The data we have on fully-labelled malonic acid

was too complex to be analyzed with this procedure in the first place, but since our the

Hamiltonian (equation 2.1) is linear, we can still use all these results to work with fully-

labelled malonic acid.

The ~g-tensor for malonic acid had already been published [29], as well as the hyperfine

tensors of the hydrogen and central carbon [30]. On the contrary, the hyperfine tensor for

the lateral carbons is a new result, even if we have been unable to distinguish between

those two nuclear spins.
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~gpub. =

 2.0023

2.0033

2.0037

 = 2.0031 · 1 +

 −8

2

6

 · 10−4

∆gpub. = 0.00002

~gexp. =

 2.0048

2.0056

2.0061

 = 2.0055 · 1 +

 −7

1

6

 · 10−4

∆gexp. = 0.013

Qexp.
g =

x y z


−0.3620 0.8930 −0.2674

0.9322 0.3472 −0.1024

0.0014 −0.2863 −0.9581

(direction cosines to the hydrogen

hyperfine tensor eigenbasis)

~Apub.H =

 29.3

58.3

91.0

 MHz = 59.3 · 1 +

 −30

−1

31.7

MHz

∆Apub.H = 1 MHz

~Aexp.H =

 31.3

57.8

87.6

 MHz = 58.9 · 1 +

 −27.6

−1.1

28.6

MHz

∆Aexp.H = 6 MHz

Qexp.
H = 1 (direction cosines to the hydrogen hyperfine tensor eigenbasis)
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~Apub.Cm
=

 22.8

42.2

212.7

 MHz = 92.4 · 1 +

 −70.2

−50.2

120.3

MHz

∆Apub.Cm
=

 1.5

1.0

0.5

MHz

~Aexp.Cm
=

 29.5

44.1

216.1

 MHz = 96.6 · 1 +

 −67.1

−52.5

119.5

MHz

∆Aexp.Cm
= 10 MHz

Qexp.
Cm

=

x y z


0.8858 0.4607 0.0562

−0.0613 −0.0040 0.9981

0.4601 −0.8875 0.0247

(direction cosines to the hydrogen

hyperfine tensor eigenbasis)

~Aexp.C1/2
=

 36.7

39.4.

40.3

 MHz = 38.8 · 1 +

 −2.1

0.6

1.5

MHz

∆Aexp.C1/2
= 1.3 MHz

Qexp.
C1/2

=

x y z


0.0096 0.8667 0.4987

−0.1547 0.4940 −0.8556

−0.9879 −0.0689 0.1388

(direction cosines to the hydrogen

hyperfine tensor eigenbasis)

In addition, for laterally-labelled malonic acid, we found ϕ = 94.8◦ and ψ = 87.5◦,

which is very close to what we were expecting as we tried to make the rotation angles
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between measured planes as close to 90◦ as possible. For centrally-labelled malonic acid,

we obtained ϕ = −87.1◦ and ψ = 81.3◦.

2.3.3 Simulations

Using the direction cosines of the eigenbasis for the proton hyperfine tensor, published by

Goedkoop and MacGillavry [24], along with our results, we can identify the orientations

of the magnetic field corresponding to our measurements in plane 1, plane 2 and plane 3

with respect to the unit cell of the crystal.

 

b

a

c

 

plane 1
plane 2
plane 3

Figure 2.14: Orientation of the magnetic field in the unit cell corresponding to our mea-

surements. The unit cell is denoted by the cyan vectors ~a, ~b and ~c. The orientation of the

magnetic field for the measurements in plane 1, 2 and 3 appear respectively as red, green

and blue crosses.
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Figure 2.15: Simulation of plane 1 for laterally-labelled malonic acid.
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Figure 2.16: Simulation of plane 1 with error bars for laterally-labelled malonic acid .
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Figure 2.17: Simulation of plane 2 for laterally-labelled malonic acid.
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Figure 2.18: Simulation of plane 2 with error bars for laterally-labelled malonic acid.
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Figure 2.19: Simulation of plane 3 for laterally-labelled malonic acid.
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Figure 2.20: Simulation of plane 3 with error bars for laterally-labelled malonic acid .
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2.3.4 Conclusion

With the algorithm we designed and implemented, we have a rather quick way to charac-

terize a single crystal sample for ESR experiments. Indeed, measuring ESR spectra in 3

planes with a reasonable angle step (between 2◦ and 10◦) takes a few hours, while most of

the algorithm is automated.

What is more is that the simulation algorithm presented in the next chapter allows us to

check the relevance of our results very quickly as well. This knowledge of the Hamiltonian

will, in the future, allow us to reach the high-fidelity control needed to implement complex

algorithms such as algorithmic cooling and quantum error correction.

However, we are still working on refining the uncertainties for our tensors, through a

more precise error estimation. Also, for laterally-labelled malonic acid, we plan to use the

fact that the overlapping peaks are broader to extract two different tensors for the two

lateral carbons. These results will be the topic of a future publication, described in the

next section.

2.3.5 Future work using these results

While the Hamiltonian extraction method can be used for different samples, we plan to

complete our study of malonic acid with a scientific publication.

First of all, we want to show that we have been able to relax some of the usual assump-

tions and experimental setups usually necessary to complete this kind of study. Secondly,

even if we have not been able to distinguish the peaks coming from the lateral carbons in

1, 313C malonic acid, the hyperfine tensor we determined for both of them is a new result.

Eventually, while our original goal was to determine the hyperfine tensors for H, Cm, C1

and C2 from measurements on fully-labelled malonic acid, the procedure was not successful

due to the complex structure of the CW ESR spectra measured (16 peaks and many

overlaps). On the other hand, our procedure worked very well for laterally-labelled malonic

acid, but also for centrally-labelled malonic acid.
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Since the Hamiltonian we consider is linear (see equation 2.1), putting the tensors we

measured in different frames and on different molecules in the same basis still allows us to

write the Hamiltonian for fully-labelled malonic acid. The final objective of the scientific

article we plan to publish soon would then be to show that using this knowledge, we are

able to predict and explain the measurements we did on fully-labelled malonic acid. This

would be a starting point to further works with this 5-spin system.
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Chapter 3

Simulation

In order to predict the results of experiments we plan to run or understand the results of

some measurements, we have to be able to simulate these experiments. While I wrote the

CW simulator, our pulsed-ESR simulator contains some parts adapted from the pulsed-

NMR simulation code written by Dr. Colm Ryan a few years ago. Dr. Ryan later adapted it

to ESR and made compatible with our spectrometer: it is for example using the same pulse

programs, allowing us to compare very easily simulations with actual experiments. Daniel

K. Park and I, to a lesser extent, brought some new features for Electron Nuclear Double

Resonance (ENDOR) simulation: we made our code able to simulate pulsed-(ENDOR)

experiments, since we also worked on the spectrometer itself to add a radio-frequency

(RF) channel.

3.1 Simulation of CW experiments

3.1.1 Pseudo-secular approximation

If we want to express the Hamiltonian of the system in one specific orientation (defined by
~B0 = B0ẑ), we can make the pseudo-secular approximation. The axis system can also be

redefined so that we can separate the hyperfine interactions for each nuclear spins species
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into two contributions [31]. One is along the external magnetic field and is called isotropric

hyperfine interaction and is often written as a scalar a. The other one is orthogonal to the

field and is called anisotropic hyperfine interaction, commonly written b.

This choice leads us to the final form of the Hamiltonian of the system considering our

model and its assumptions [31].

Ĥ = ωSŜZ +
K∑
n=1

ωI,nÎn,Z +
K∑
n=1

anŜZ În,Z +
K∑
n=1

bnŜZ În,X (3.1)

Where : an = ~An,zz and bn =
√
~A2
n,zx + ~A2

n,zy

ωS =
~gzzµB
h

B0

To simulate CW spectra, one has to know that the peaks that appear correspond to

transition frequencies. The term transition indicates that under pulse at that particular

frequency, the system is brought from one quantum state to another one. Each of those two

states corresponds to a unique energy level and the transition frequency is the difference

between those two energy levels, expressed in frequency units.

As a consequence, simulating CW spectra implies knowing all the allowed energy levels

for the system considered. In quantum mechanics, those energy levels are easily found

when the Hamiltonian is known, as they correspond the its eigenvalues (usually referred

as eigenenergies).

Considering an chosen orientation of the external magnetic field in the crystal frame, we

can determine the coefficients of the interaction tensors and then create the Hamiltonian

matrix. The diagonalization matrix for this Hamiltonian can also be created as follows [31]:

U = exp

[
−i

K∑
n=1

(
ηα,nŜ

αÎn,Y + ηβ,nŜ
β În,Y

)]
(3.2)

With Ŝα =
1
2

+ ŜZ and Ŝβ =
1
2
− ŜZ

ηα,n = arctan

(
−bn

an + 2ωI,n

)
and ηβ,n = arctan

(
−bn

an − 2ωI,n

)
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Which gives us the diagonal form of our Hamiltonian as follows.

And Hd = UĤU † (3.3)

Hd =



E1

. . .

En 0
. . .

0 Em
. . .

EK+1


As a consequence, Hd is diagonal and its components are the eigenergies of the system.

Since the peaks we will see in the CW spectrum are the transitions between certain states,

their position is the difference between some eigenenergies that we know: the transition

frequency between |n〉 and |m〉 is fmn = |Em − En|.

For tensor extraction, we only detected and used the allowed transitions peaks. For

simulation of real experiments, however, we have to consider all the transitions frequencies

present in a certain field strength range, no matter if they are allowed or forbidden.

Once in possession of the transitions frequencies in the desired range of magnetic field

strength, we have to determine the amplitude of the peaks. To do that, we can simply

compute the coefficients of X̃ = UŜXU
†. Indeed, the amplitude of the peak for the fmn

transition is given by |x̃mn|2.

3.1.2 Results of CW simulations

Since we know the Hamiltonian of the system quite well, we are able to simulate different

kinds of CW spectra in any desired orientation. In addition to the CW ESR spectra

presented in the previous chapter, we can for example simulate (and then predict) the
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frequency of the NMR transitions: the CW ENDOR spectrum. This turned out to be very

useful when we worked on implementing algorithmic cooling (cf. Chapter 5) in partnership

with Takeji Takui’s group in Osaka City University, Japan.

Since simulations of CW ESR transitions peaks trajectories have already been shown

in section 2.3, we show here some examples of predictions made using our simulation code.
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Figure 3.1: Simulation of a CW ESR spectrum for laterally-labelled malonic acid. The

chosen orientation of the magnetic field is taken to be the same as in our P2A57 mea-

surement (fifty-eighth measurement in plane 2). The linewidth was taken to be 3.2G (as

measured), which corresponds to 18MHz (i.e. T ∗2 ≈ 17ns).
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Figure 3.2: Simulation of allowed NMR transition peaks trajectories in plane 1 for our

laterally-labelled crystal. Again, because the hyperfine tensors for the two lateral carbons

are the same, their NMR transition peaks overlap. Being able to determine the NMR

transition frequencies for any orientation of the external magnetic field with respect to our

crystal is essential for the optimal orientation procedure shown in section 4.2. Indeed, our

pulsed-ESR spectrometer allows us to measure some of these transitions and hence check

the orientation the crystal is sitting in corresponds to the optimal one.
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3.2 Simulation of pulsed experiments

3.2.1 Simulation of the time evolution

Initial state

Similarly to NMR, the ESR thermal equilibrium state of the system is given, by the

Boltzman distribution. Ĥint. refers to the internal Hamiltonian given by equation 3.1.

ρtherm. =
e−Ĥint./kBT

Tr(e−Ĥint./kBT )
(3.4)

We can always make the ”high temperature” approximation, i.e. kBT � |Ĥ|. As a

consequence, the two first terms of the Taylor expansion are a good approximation of the

density matrix of the thermal equilibrium state.

ρthem. ≈
1

2

(
1− Ĥint.

kBT

)
(3.5)

In that situation, we will prefer to work with the deviation density matrix ρdev.

ρdev. = − Ĥint.

2kBT
(3.6)

Since we know that the Zeeman energy of the electron is the dominant term in the

internal Hamiltonian of the system (by a factor of about 103), we can obtain a good

approximation of our thermal state.

ρdev. ≈
~ωS

4kBT
ŜZ (3.7)

Time-dependent Hamiltonian

The Hamiltonian Ĥint. given by equation 3.1 is still the internal Hamiltonian of our system.

To understand and simulate the behaviour of the system under the pulsed control of our
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spectrometer, we have to add the control Hamiltonian, often denoted as ĤRF in NMR

conventions. We stuck to this ”convention”, even if in our case, the control Hamiltonian

is in the microwave range.

Ĥ(t) = Ĥint. + ĤRF (t) (3.8)

The pulse sequence consists of microwave pulses applied in the X-Y plane of the spec-

trometer. The control we have allows us to change the amplitudes of these pulses on a

timescale of a nanosecond.

ĤRF (t) = γe~S · ~B1(t) (3.9)

H̃RF (t) = γeŜXB̃
X
1 (t) in the rotating frame. (3.10)

Unitary evolution

This first way to solve the time evolution of the system does not take into account the

effects of decoherence. The time evolution of a closed quantum system state is given, in

the density matrix formalism, by the Von Neumann equation:

~
∂ρ

∂t
= −i

[
Ĥ(t), ρ

]
(3.11)

Making the assumption that our Hamiltonian is time-independent during the small

time-steps we defined earlier, we calculate the propagator for this short period of time dt

at time tj as Uj, given as follows:

Uj = exp

(
−iĤ(tj)dt

~

)
(3.12)

Once we have our propagator, we can compute the value of the density matrix of the

state from one time-step to the next one:

ρ(tj) = Ujρ(tj−1)U †j (3.13)
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Lindblad equation and superoperator formalism

If we want to take into account the effects of decoherence in our simulations, we now have to

consider an open quantum system. Decoherence is the result of the undesired interactions

between the system and the surrounding environment. We consider the environment has

no memory, the dynamics of the system follow an equation slightly different from the Von

Neumann equation: the Lindblad equation.

~
∂ρ

∂t
= −i

[
Ĥ(t), ρ

]
+
∑
k

(
LkρL

†
k −

1

2

{
LkL

†
k, ρ
})

︸ ︷︷ ︸
D(ρ)

(3.14)

where:


{, } denotes the anticommutator

Lk is the kth Lindblad operator

D(ρ) is called the dissipator

We use this formalism to simulate the effect of the relaxation times of the electron over

the whole system. It can be shown [32] that the Lindblad operators for the T1 and T2

processes are given by :

T1 ⇒ L1 =

√
p

T1

Ŝα and L2 =

√
1− p
T1

Ŝβ , where p ≈ 1

2

(
1− ~ωS

2kBT

)
(3.15)

T2 ⇒ L3 =

√
1

2T2

ŜZ (3.16)

To solve the dynamics of the system, we can also use the superoperator formalism. We

are then acting on a different space : let ||ρ̂therm.〉〉 design the vector made by stacking all

the columns of ρtherm.. The time evolution of the system is then described by the action

of a superoperator Λ̂ on this vector ||ρ̂therm.〉〉.

Λ̂ = e−iH+D (3.17)

where :

{
H = Ĥ∗ ⊗ 1− 1⊗ Ĥ
D = −

∑
k

[
L∗k ⊗ Lk − 1

2
1⊗ L†kLk − 1

2
LTkL

∗
k ⊗ 1

]
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Free induction decay

No matter which method is used to determine the time evolution of the system, the simu-

lated results, just like the actual experimental results, come from the measurement of the

Free Induction Decay. The FID corresponds to a measure of the voltage in the X-Y plane

of the spectrometer. We can express it as sFID = MX − iMY , where MX/Y denotes the

magnetization measured along X/Y . Whence, if we use the lowering operator Ŝβ = 1
2
−ŜZ .

sFID(t) = Tr
[
ρ(t)Ŝβ

]
(3.18)

In most experiments, like Electron Spin Echo Envelope Modulation (ESEEM), we are

more interested in the Fourier spectrum of the FID than in the time-dependent signal

itself. For example, in 3-pulse ESEEM, the spectrum of the FID reveals peaks at the NMR

transition frequencies of the system.
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Figure 3.3: Example of 3-pulse Electron Spin Echo Envelope Modulation (ESEEM) Fourier

transform simulation for centrally-labelled malonic acid. This simulation, run by Daniel

K. Park, takes the following input parameters: T1 = 47µs, T2 = 6µs, aH = 72.671 MHz,

bH = 23.764 MHz, aC = −30.44 MHz and bC = 24.672 MHz. We can see two sets of peaks:

the ones with the larger amplitude come from the hydrogen (24 MHz and 47 MHz) while

the ones with the smaller amplitude (17 MHz and 23 MHz) come from the central carbon.
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Chapter 4

Preparation for experiments

4.1 Overview of pulsed ESR spectrometer

The choice of working with a home-built pulsed-ESR spectrometer [33] rather than with a

commercial one stems from the need to have full control over the system to achieve high-

fidelity computations, especially when it comes to control via optimal pulse sequences. The

fact that some components can be replaced is also an major point. Over the years, the

probes have evolved a lot, and resonators more adapted to the current needs have been

designed. Also, different amplifiers were tested to choose the one giving the optimal trade-

of between amplification and stability. Notice that we set our Rabi frequency to 25MHz,

meaning that with the considered amplifier’s maximum power (500W), it takes 40ns for

the electron spin to perform a 2π rotation.
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Figure 4.1: Schematic of the homebuilt X-band ESR spectrometer (from [34]). For the

input pulses to match the resonance frequency of the resonator, a microwave carrier fre-

quency is provided by the microwave source. The arbitrary waveform generator (AWG)

produces the arbitrary pulse shapes. The circulator and the switch ensure the reflected

power remains small and does not damage any components nor interfere with the signal

coming from the sample. This signal (demodulated or not depending on the oscilloscope

that is used) is then displayed on the oscilloscope and also recorded on the computer.

Daniel K. Park designed the current version of our probe. Low-temperature experiments

can be run with our spectrometer since the probe can be vacuum-sealed after being inserted

in our cryostat. Our spectrometer uses a 2-loop-1-gap copper resonator based on previous

designs [34] and an idea by Eaton et al. [35]. The quantum processors that are our malonic

acid crystals sit in the small loop. This loop is coupled to the bigger one, which is the one
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directly receiving the pulse sequence, through the gap. Daniel K. Park designed 3 similar

resonators with slightly different dimensions to adapt to as many samples as possible (the

small loop diameter being respectively 1.2mm, 1.6mm and 2mm).

Figure 4.2: Top view of the resonator employed in the pulsed-ESR experiments. The

sample is sitting in the smaller loop. The gap can get dirty after being used for a few

weeks and needs to be cleaned to prevent dust from making the coupling between the two

loops very inefficient in terms of transmitted power.

The main specifications were to have a resonance frequency close to 10GHz and a

bandwidth around 200MHz. Two resonators of each of the 3 different designs were ordered

from the company ProTechnique EDM in August 2013. In our experiments, considering

the sizes of our crystals, we only used the resonator with 1.2mm diameter for the small

loop.

53



9.8 9.9 10 10.1 10.2 10.3 10.4 10.5
46

48

50

52

54

56

58

60

Pulse f requency (GHz)

A
m
p
li
tu

d
e
(V

)

192 MHz bandwith
Q = 52.8

fr = 10.15 GHz

f1 = 10.04 GHz f2 = 10.24 GHz

Figure 4.3: Characteristics of the resonator. This measurement was made by Daniel K.

Park using the pickup coil and reveals a resonance frequency of 10.15GHz as well as a

bandwidth of 192MHz.

A copper box to hold the resonator was designed by Daniel K. Park and machined by

me at UW students’ machine shop. A cable assembly was made by Roberto J. Romero to

guarantee a good coupling between the coaxial cable of the pulsing channel and the larger

loop of the resonator. This box is itself held by two lateral bars allowing us to adjust the

position of the resonator to maximize the power transmission to the sample as well as the

tuning of the resonator. A vector network analyzer belonging to David Cory’s group was

used during the tuning procedure and allowed us to demonstrate the stability of the tuning

from 295K to 4K.
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4.2 Crystalline orientation

The whole point of using the electron spin to control the nuclear spins in the system is to

avoid having to excite allowed NMR transitions, which take µs, and excite ESR forbidden

transitions instead. As said previously, one drawback of exciting forbidden transitions is

that the transition rate is much lower than the one for allowed transitions, because instead

of rotating just one spin in the system, they rotate two or more at the same time.

To make things more simple (and without loss of generality), let us consider a 1e-1n

system. The transition rate for the two allowed transitions can be calculated: | cos η|, where

η = 1
2

(ηα − ηβ). On the other hand, the transition rate for the two forbidden transitions

is | sin η|. The ESR allowed transitions can be calibrated so that we know that a certain

power P is needed for a π
2
-rotation of the electron spin with a τ = 10ns square pulse.

The length of a pulse with the same amplitude for the corresponding forbidden transition

would then have to be τ
| tan η| and η ∈

[
−π

4
, π

4

]
means it takes always more time to excite

the forbidden transitions.

|↓↓〉
|↓↑〉

|↑↓〉
|↑↑〉

Figure 4.4: Energy diagram for a 1e-1n system given as |e−, n〉 showing all the transitions.

The allowed ESR transitions are shown as double arrows, NMR allowed transitions as thin

arrows and forbidden transitions as dashed arrows.

Still, we can try to put ourselves in the most favourable situation by choosing an orien-
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tation of our crystal in which the | tan ηn| of our nuclear spins are large. This orientation

can be determined from our knowledge of the Hamiltonian.

4.2.1 Optimization for quantum algorithms

Knowing the Hamiltonian of the system in any desired frame, we chose to work in the

eigenbasis of the hyperfine tensor of the hydrogen. The reason for this choice is that the

orientation of this eigenbasis in the unit cell of malonic acid crystals has been published

in 1972 [36].

Considering the first algorithm we want to implement (detailed in Chapter 5), we

worked with one-labelled malonic acid crystals and thus only consider this 1e-2n system,

the two nuclear spins being the hydrogen and the central carbon of the molecule. We know

that | tan ηH | is usually greater than | tan ηC | and as a consequence, our main concern will

be to pick an orientation for which the latter is as large as possible. Yet, we do not want

| tan ηH | to be to small either. It turns out that for the maximum value of | tan ηC |, | tan ηH |
is almost zeros. So we added the constraint that we want | tan ηH | ≥ | tan ηC |. We finally

find an orientation (see figure 4.5), that we call “optimal orientation”, in which the two

transition rates are comparable: | tan ηH |opt. = 0.0996 and | tan ηC |opt. = 0.0957.

Knowing the optimal orientation of the magnetic field with respect to our crystal to

favour as much as possible the forbidden transitions in our quantum system, our next

challenge is to actually orient the crystal as desired with respect to the external magnetic

field of our spectrometer.

4.2.2 Crystal cutting and indexing

The crystals we worked on were brought to Dr. Jalil Assoud in his crystallography labo-

ratory. Using big crystals, he would start detecting and cutting obvious parts making the

crystal not single. The indexing is then performed using a Bruker X-ray diffractometer. As

a result of his measurements, Dr. Assoud sends us a file containing pictures of the crystal

under different orientations on which the geometry of the crystal, the unit cell parameters

and the Miller indices of the surfaces shown are drawn.
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(a) | tan ηH | (b) | tan ηC |

Figure 4.5: Forbidden transition rates for H and C depending on the orientation of the

magnetic field in the hydrogen hyperfine tensor principal axis system. We can see that the

rate is usually smaller for the carbon, accounting for the fact that we choose our optimal

orientation to make it maximum. In this orientation, the two forbidden transition rates

are around 0.1.

The Miller indices allow us to know what surfaces of the crystal are available to help

us position the crystal as we want (see Appendix D for more details). One criterion to

choose which surface of the crystal to use is the area of said surface: if the area is too

small, sticking the crystal on our special holder is going to be very difficult. We also to

chose one of the borders of this surface, to be used as a rotation axis in our positioning

procedure.
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Figure 4.6: Example of indexing results for which we thank Dr. Jalil Assoud. The picture

of the crystal in that orientation also contains the black lines outlining the geometry of

the crystal. The unit cell parameters are also drawn (~a in red, ~b in green and ~c in blue).

Eventually, yellow lines terminated by Miller indices allow us to understand which surfaces

of the crystal we are observing and can use for positioning.

4.2.3 Machining of the sample holder

The crystal has to be inserted in the small loop in the orientation we want. Since we know

the surfaces we can use on the crystal thanks to the indexing results, and the optimal

orientation of the crystal in the external magnetic field, we can machine a specific sample

holder. This small rexolite piece will be used to hold the crystal upside down in the loop.

It was designed by Daniel K. Park.
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Figure 4.7: Design of the rexolite sample holder. We machined some spare holders for

future crystals, with some fixed dimensions (bigger and smaller diameters, for instance).

The crystal is stuck on the tilted flat surface, which angle is determined by the choice of

the surface of the crystal we decided to use. The flat step is used as a reference to make

the positioning successful.

In order to complete this design, we need to choose the surface of the crystal that we

want to use. We want this surface to be large enough for reasons explained earlier and we

want it to give us a machining angle for the rexolite rod between 0◦ and 20◦. To help us

choose among the possible candidates, I wrote a script calculating the angle to cut and the

orientation of the optimal orientation with respect to our rod’s reference line as functions

of the surface we consider to use.
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θ = 7.87◦

Bop t .

Bop t . , p r oj

l = edge 1̄00

ϕ = 38.12◦

Surface 012̄

m = normal

Figure 4.8: Angle to cut and rotation needed for optimal orienting of the crystal when we

use the 012̄ surface to stick the crystal and the 1̄00 one for the reference. The final design

requires to cut an angle of 8◦ (our precision being 1◦) and rotate our reference line by 38◦

in our magnet.

Following an idea of Hiruy Haile, precision machinist at the students’ machine shop

of the university, the final procedure to machine the holder includes the machining of a

fixture. Its role is to make several steps of the machining of the rod much easier. Holding

and machining the fixture instead of the rod directly indeed allows us to works with a

bigger, very regular piece instead of the small rod.
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Figure 4.9: Machining of the sample holder. On the left, a rod of rexolite which has not

been machined yet. In the middle, a fixture used in the machining procedure. On the

right, the same fixture after machining.

4.3 Optimal control with GRAPE pulses

A good knowledge of the Hamiltonian of the crystal in the orientation it is sitting in

will allow us to perform optimal control. This is very interesting, especially when the

electron spin is used to control the nuclear spins, allowing shorter gates and more complex

algorithms [37] [38].

4.3.1 Checking the Hamiltonian

Before actually running experiments with our sample, we have to check that the procedure

has been successful and that the crystal is indeed in the right orientation with respect to

the external magnetic field.

In order to check the Hamiltonian, we need to measure the ESR spectrum and the

ENDOR spectrum. The first one will give us access to the value of g and from the ESR

and NMR allowed transitions peaks positions, we will be able to determine an and bn for

the nuclear spins in the molecule. Yet, our spectrometer is an ESR spectrometer, and we

do not have a direct access to the allowed NMR transitions. Fortunately, 3-pulse Electron

Spin Echo Envelope Modulation (ESEEM) allows us to measure the nuclear frequencies of

the system indirectly through electron spin echo.

Indeed, if we go back to our example of the 1e-1n system, it can be shown [31] that the

two NMR transitions are functions of the an and bn parameters as (defined in equation 3.1)
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follows:

ω12,n =
(
ωI,n +

an
2

)
cos ηα,n −

bn
2

sin ηα,n (4.1)

ω34,n =
(
ωI,n −

an
2

)
cos ηβ,n +

bn
2

sin ηβ,n (4.2)

By choosing the orientation maximizing the forbidden transitions rates, we expect to

maximize the amplitude of the ESEEM peaks too. Nevertheless, for some spins, the

amplitude of the ESEEM peaks is small compared to the noise level and makes it hard to

measure the corresponding an and bn directly. This is actually the other challenge of the

crystal orientation procedure. Since we know the Hamiltonian very well and considering

small error in the positioning procedure, the crystal should sit in an orientation very close

to the optimal orientation we have determined and hence obtain spectra very similar to

the predicted ones. If the predicted and measured spectra are close enough, we will be

able to claim that we are in the desired orientation, and then, we will know the an and bn

coefficients we cannot measure directly from our knowledge of the Hamiltonian.

4.3.2 Pulse-finding and pulse-fixing

GRAPE optimal control

Once the sample is sitting in an orientation for which we know the Hamiltonian well-

enough, we can use the GRadient Ascent Pulse Engineering (GRAPE) algorithm to find

optimal control pulses [39]. Optimizing on the fidelity of the gate we want to perform with

the control pulse (F =
∣∣∣Tr
(
U †simulationUtarget

)∣∣∣2), the algorithm has two degrees of freedom

on for each time step of the pulse: one for the amplitude, the second for its phase.

Our pulse-finding algorithm was written by Dr. Ryan. It allows us to find pulses robust

against the Hamiltonian distribution (as the inhomogeneity of the external magnetic field

results in some uncertainty on the electron Zeeman splitting) and RF inhomogeneities.
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Pulse-fixing and pulse smoothing

Even with a pulse giving a very good fidelity (i.e. F ≥ 0.999), the hardware is not perfect

and there are some non-linearities due to different components and the resonator itself. To

make sure the sample actually receives the desired GRAPE pulse, we have a pulse-fixing

code, written by Colm Ryan.

One of the challenges in this procedure is that the optimal GRAPE pulse can sometimes

have very sudden amplitude changes when the maximum pulse amplitude is reached, which

is not physically realizable. To overcome this problem, Daniel K. Park had the idea to add

an iteration to the pulse design process. We first find an optimal pulse allowing a maximum

amplitude around 10% lower than the amplitude allowing us to do the 10ns 90◦ rotation.

We fix this pulse with Dr Ryan’s program. We use the result of the pulse fixing as an

initial guess to find an optimal GRAPE pulse, this time allowing a maximum power to

perform a 10ns 90◦ rotation. This pulse is expected to be smooth and not saturate, which

is the case in practise.

4.3.3 Benchmarking the control

Once the crystal orientation and Hamiltonian checking procedures are complete, we will

be able to characterize the goodness of the control on the system. To do this, we plan to

use randomized benchmarking of quantum gates [40].

4.4 Results of the experimental preparation

At the time this thesis is being written, the work on the spectrometer is focusing on the best

amplifier to use, looking for a trade-of between linear region size and possible amplification.

As for the crystal positioning with respect to the magnetic field, the procedure has

been tried twice, allowing us to learn a lot about each step and getting close to a successful

outcome. In those preparatory stages, we worked with unlabelled malonic acid crystals.

Among the different difficulties we had to go through, the machining of the rod and the
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size of the crystal have been overcome. Indeed, if the crystal is too small, it is really hard

to get a good signal from it (a lot of scans have to be ran in order to average the noise out,

making the measurements last for hours).

Another problem we had to solve is sticking the crystal on the rod. We first used

vaseline, which turned out not to be solid enough: the crystal was really likely to move

when the rod was inserted in the resonator’s loop. Our second test was ran with Stycast

1266. We discovered that the Stycast did not cure because the air was too humid. Hence

for the future works, we know the rod has to be put in a dry container for the Stycast to

cure. Moreover, it turns out that cutting the crystal is no longer necessary beforehand.

Indeed, after 2 days in the dry container, the parts of the crystal sticking out of the rod

diameter (hence not fitting in the loop) can be removed simply by using a q-tip and pure

ethanol, while it was really hard to do if the crystal has been exposed to humidity for a

few days.

Some crystals are currently being indexed for us to try the most updated version of this

orientation procedure, and we are confident we will manage to orient a crystal in the best

possible way to favour the forbidden transitions rate and allow fast control of the nuclear

spins via the electron spin.
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Figure 4.10: Example of 3-pulse Electron Spin Echo Envelope Modulation (ESEEM)

Fourier transform for unlabelled malonic acid. This spectrum, measured by Daniel K.

Park, shows the two NMR transitions for the hydrogen: one close to 5.5MHz, the other

around 33MHz. Thanks to this measurement (along with a measurement of the ESR

allowed transitions), we can recover the an and bn parameters of the hydrogen for the

orientation we are sitting in and check they correspond to the desired optimal orientation.
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Chapter 5

Heat-bath algorithmic cooling

In an ideal world, when we turn on our electromagnet, all our individual spins (as opposed

to the ensemble spins we are always talking about in ESR and NMR) would align with the

field and all be in the |0〉 state, resulting in perfect ensemble |0〉 spin states. Unfortunately,

the ensemble of spins follows a Gibbs distribution when it comes to occupying the two

eigenenergy levels E0 and E1.

Since one of the requirements to engineer a quantum computer is the ability to initialize

the qubits in an easily identifiable state like |00...0〉, we would like to find a way to force as

much spins with energy E1 as possible to move to the E0 energy level. There are various

techniques to setup an experiment and favour the E0 energy level to get closer to this

DiVicenzo criterion, but most of them are technology dependent. Amazingly, there are

technology independent methods, and heat-bath algorithmic cooling is one of them.

Implementing algorithmic cooling will help us dynamically provide highly-polarized an-

cilla qubits to implement quantum error-correcting codes, but interestingly, it is also an

algorithm of interest for other purposes. For instance, while usual magnetic resonance

imaging techniques rely on proton magnetic resonance spectroscopy, only allowing static

analysis, following dynamic processes would require the detection of 13C. Algorithmic cool-

ing would here be used to improve the signal to noise ratio of the carbon-based technique,

known to be much worse than for proton-based spectroscopy [41].
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5.1 Quantum circuit of the algorithm

Knowing the energy distribution on the two eigenstates, we can define the polarization

of an ensemble spin as the difference in populations on the state |0〉 and on the state

|1〉. It can easily be shown that this polarization ε̃ can be expressed as a function of the

experimental setup as follows [42]:

ε̃ = tanh
E1 − E0

2kBT
(5.1)

Heat-bath algorithmic cooling is a method used to boost the polarization on one of the

spins in the system. The idea is that a heat-bath of spins pumps the entropy out of the

other spins in the system. Eventually, the polarization on those spins can be compressed

onto only one spin, resulting in one highly-polarized spin. For instance, with centrally-

labelled malonic acid, which is a 3-qubit system, multiple rounds of algorithmic cooling

starting from a low polarization ε̃initial can, in theory, result in ε̃final = 2ε̃initial.

Heat-bath algorithmic cooling has already been successfully implemented in solid-state

NMR [43]. In our case, the electron spin is used both as a heat-bath (its relaxation time

being around a thousand times shorter than the nuclear spins’) and as the spin which

polarization is eventually boosted. We worked in partnership with Takeji Takui’s group in

Osaka City University in Japan to implement algorithmic cooling with one-labeled malonic

acid single crystals.

5.2 Various implementation methods

For our 3-qubit system, the general quantum circuit is shown in figure 5.1. We have

3 different ways to implement this algorithm. Among those, we chose to focus on two

methods, corresponding to the machines and knowledge that the two collaborating groups

have.

The gates of the algorithm can be decomposed so that only allowed ESR and NMR

transition have to be driven (CNOT and Toffoli gates shown in figure 5.2), making the
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e− × Relax × Relax

CompressionH ×
C ×

Figure 5.1: Quantum circuit for algorithmic cooling where the electron spin is used as a

heat-bath for its fast relaxation time (about 103 the one of the nuclear spins). The electron

spin is initially the most polarized (about 103 more than the nuclear spins). The algorithm

starts with two swap gates between the electron and one of the nuclear spins followed by

a relaxation time. The relaxation time (around 5T e1 ) lets the electron spin refresh and

recover its thermal polarization ε̃ while the swap gates store the high polarization on the

nuclear “memory” qubits. The compression gate consists of a simultaneous flip of the 3

spins in the system.

sequence much shorter. However, this requires a pulsed-ENDOR spectrometer that we do

not have yet at IQC. Takeji Takui’s group has one and this is why we are working towards

implementing algorithmic cooling this way in their laboratory.

e− • • Relax • • Relax • • • •

H • •
C • •

Figure 5.2: Quantum circuit for algorithmic cooling after decomposition of the gates.

The desired gates can also be implemented using square microwave pulses on ESR

forbidden transitions frequencies. Indeed, the swap gates flip two spins at a time, while

the compression gate flips all three spins in the system. This is hard because the transition

rate for such transitions is really low and requires either high-energy (often impossible to

reach due to hardware) or pulses so long that they exceed the coherence times of the spins.

Our simulations showed us that with the power available in our spectrometer, this method

would not boost the polarization of the electron spin.

Since our spectrometer is not able yet to handle RF pulses yet and that pulsing directly
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on forbidden transition makes the method irrelevant at our spectrometer power level, we de-

cided to work on implementing the algorithm with optimal control. Using GRAPE pulses,

we can get a pulse sequence with “short” pulses (about 200ns) at microwave frequencies

only, simply because GRAPE pulses are optimal as opposed to square pulses.

5.3 Results

Takeji Takui’s group in Osaka City University (Japan), works with a CW ENDOR and

a pulsed-ENDOR spectrometers in which the way the sample is held allows the use of

a goniometer and no change of orientation when going from one machine to the other.

As a consequence, they started by determining the Hamiltonian of their crystal. Once

in the pulsed-ENDOR spectrometer, they could check the orientation was still the same

with techniques described before (except they could measure the NMR transitions directly

instead of using 3-pulse ESEEM).

When we started the collaboration a few months ago, however, the measurement of the

NMR transitions was really noisy and did not allow us to check the Hamiltonian we had

was the correct one. The collaboration period happened to be a few weeks before Takeji

Takui’s machines had to be moved to a different building. Considering the time needed to

move those machine safely, this collaboration has not been successful yet.
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Chapter 6

Quantum error correction

Quantum error-correcting codes aim at protecting a state from an error likely to happen

in a quantum channel or during the implementation of a quantum circuit.

6.1 Concepts and examples

We can imagine a simple situation in which we need to send a qubit |ψ〉 = α|0〉 + β|1〉
through a quantum channel. Ideally, the state would not be modified by traveling through

the channel:

|ψ〉 |ψ〉

Experimentally, though, an error E can occur and modify the state. We could then

model our error by an undesired quantum gate that is likely to (but might not) act on the

state while it travels through the channel.

|ψ〉 E |φ〉 6= |ψ〉

The general procedure to design an error-robust quantum circuit in order to protect a

state starts with the necessity to identify said error. Then, the input state, to which we
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have added a certain number of ancilla qubits, is encoded. This operation will be denoted

by a C matrix. Each qubit (the one we want to protect as well as the ancilla qubits) is

then randomly impacted or not by an error. The state is then decoded (C−1 is applied).

Eventually, a recovery gate is applied, leaving us with our successfully protected state and

the syndrome of the error, carried by the former ancilla qubits.

Figure 6.1: The general circuit for quantum error correction (adapted from [44]).

As we work with qubits, all reversible operations can be written in terms of identity

and the Pauli matrices. As a practical example, let us then start by correcting X and Z

errors, first separately and then with the same circuit.

6.1.1 X or Z error corrections

First, imagine that the error can only be an X operation (bit flip) on the state. To

protect |ψ〉 against this error, we need to add ancilla qubits and send them all through the

channel. The ancilla qubits will shield |ψ〉 and can even give us information on the errors

that occurred in the channel.

To do that, we will encode our initial state |ψ〉 ⊗ |0〉 ⊗ |0〉 = α|000〉 + β|100〉 before

sending it through the channel and eventually decode it once it has got out of it. The

quantum error correction circuit would be the following one :

|ψ〉 • •
E⊗n

• • |ψ〉
|0〉 •
|0〉 •
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Again, in this situation, the error gate can be III or XII or IXI or even IIX. In

all these cases, we would have successfully transferred the state |ψ〉 from one end of the

channel to the other. Also, noticing Z = H ·X where H is the well-known Hadamard gate,

we can simply adapt our encoding and decoding circuits a little bit to make it correct a Z

error.

|ψ〉 • • H

E⊗n

H • • |ψ〉

|0〉 H H •

|0〉 H H •

6.1.2 Shor’s 9 qubits quantum error-correcting code

The two following examples are interesting and efficient but only in the case when one

pre-determined error can occur inside the channel. Let us now consider that any of X and

Z errors can occur when traveling through the quantum channel. Obviously, we will need

more ancilla qubits to “absorb” these potential errors. The following circuit would work

for the two possibilities.

|ψ〉 • • H • •

E⊗n

• • H • • |ψ〉

|0〉 •
|0〉 •

|0〉 H • • • • H •

|0〉 •
|0〉 •

|0〉 H • • • • H •

|0〉 •
|0〉 •

In that circuit, we can recognized the central part (boxed off) takes care of the X errors

while the outer part of the circuit deals with Z errors. Moreover, as Y = iXZ, this circuit
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also corrects Y errors.

6.2 Towards multi-round quantum error correction

One of the constraints of the model presented above is that it requires pure ancilla qubits,

which is very hard to prepare in ESR. Apart from the number of ancilla qubits to use,

we have to overcome a polarization issue. Yet, it was proved [44] that quantum error

correcting codes can be implemented with mixed ancilla qubits by performing the inverse

of the recovery operator before the encoding step.

Figure 6.2: The augmented circuit for quantum error correction (adapted from [44]).

The error is corrected as long as the polarization of the ancilla qubits is such that

ε̃anc. ≥
√

(2)−1 ≈ 0.41, which can be achieved by multiple rounds of heat bath algorithmic

cooling. As a comparison, for an electron spin at T = 1.9K and a magnetic field of 0.39T

(≈ 10.8GHz), ε̃e ≈ 0.04.

With our 1-to-5-qubit samples, we can of course not implement Shor’s 9 qubit quantum

error-correcting code but we could make a proof of principle. We are still investigating to

find and synthesize a sample that would offer more qubits and stable free radicals after

irradiation.

73



Chapter 7

Conclusion

Harnessing the quantum laws of physics to work out computation exponentially faster than

classical computers is a beautiful challenge. The work presented in this thesis is a small

step forward in the long path to a world with quantum computers.

Starting from incomplete information on our sample, we have been able to set up our

own experimental characterization procedure and make it systematic to study different

samples. We relaxed the need for a goniometer in the usual CW orientation study of a

sample and showed we could still determine the Hamiltonian of our sample precisely enough

to predict more complex experiments, using our simulation codes. Those simulation codes

were really useful to us in our goal to implement algorithmic cooling and quantum error-

correcting codes.

On our way to implementing heat-bath algorithmic cooling, we improved our control

on our home-built pulsed-ESR spectrometer and the positioning procedure for our crystals

which we expect to be successful soon. From that point on, there are a lot of interesting

things to be done and challenging experimental results to obtain.

Of course, there is still work in order to be able to implement quantum algorithms

using electron and nuclear spins in single crystals, but we are on the right path to make a

proof of principle with our sample and are looking for samples offering more qubits as well

as stable radicals on which to apply the knowledge we have accumulated.
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Appendix A

Standardization of unit cell

parameters

Since many publications used the unit cell parameters as published in 1957 [24], it is

important for us to make sure we understand how these first results are related to the latest

refined ones. In order to compare the published values, we have to choose a standard, and

we will stick to the choice made by Jagannathan et al. in 1994 [25] to have ‖a‖ ≤ ‖b‖ ≤
‖c‖. Table A.1 gives the parameters as they were published in 1957 [24] as well as the

standardized version. this appendix details the mathematical transformation from one to

the other.

The standardization of these results requires a swap between a and b, also implying the

new angles α′ = π − β and β′ = π − α.

First, let us explain how to express the unit cell vectors in an orthonormal basis. Since

we are only interested in the directions in which ~a, ~b and ~c will point to, we can work with

the unit vectors ā, b̄ and c̄. To make things simple, we can choose ŷ to be aligned with ~b

and ẑ to be directly orthogonal to ŷ in the plane formed by ~b and ~c.
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Table A.1: Malonic acid unit cell as published in 1957 and standardization.

Goedkoop and MacGillavry [24] Standardization

a 5.33 Å α 102.7◦ a 5.14 Å α 44.8◦

b 5.14 Å β 135.2◦ b 5.33 Å β 77.3◦

c 11.25 Å γ 85.2◦ c 11.25 Å γ 85.2◦

Let ā =

 āx

āy

āz

 , b̄ = Y =

 0

1

0

 , c̄ =

 0

c̄y

c̄z



c̄ · b̄ , cosα = c̄y

⇒ c̄ =

 0

cosα

sinα

 since ‖c̄‖2 = 1

ā · b̄ , cos γ = āy

ā · c̄ , cos β = āy cosα + āz sinα

⇒ cos β = cos γ cosα + āz sinα

⇒āz =
cos β − cos γ cosα

sinα

ā2
x + ā2

y + ā2
z ,1⇒ āx =

√
1− cos2 γ −

(
cos β − cos γ cosα

sinα

)2

⇒ ā =


√

sin2 γ −
(

cosβ−cos γ cosα
sinα

)2

cos γ
cosβ−cos γ cosα

sinα

 since 1− cos2 γ = sin2 γ
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Hence the transformation relating (ā, b̄, c̄) to a (X, Y, Z) basis :
√

sin2 γ −
(

cosβ−cos γ cosα
sinα

)2
0 0

cos γ 1 cosα
cosβ−cos γ cosα

sinα
0 sinα

 =

 0.7012 0 0

0.0843 1 −0.2198

−0.7080 0 0.9755



Now let us see how we have to redefine the unit cell so that (~a,~b,~c) remains a direct

system describing the same crystalline periodicity. To stay in the same frame as before,

we will align a (formerly b) in the Y direction.

Let ā = Y =

 0

1

0

 , b̄ =

 b̄x

b̄y

b̄z

 , c̄ =

 0

c̄y

c̄z



c̄ · ā , cos β = c̄y

⇒ c̄ =

 0

cos β

sin β

 since ‖c̄‖2 = 1
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b̄ · ā , cos γ = b̄y

b̄ · c̄ , cosα = b̄y cos β + b̄z sin β

⇒ cosα = cos γ cos β + b̄z sin β

⇒b̄z =
cosα− cos γ cos β

sin β

b̄2
x + b̄2

y + b̄2
z ,1⇒ b̄x =

√
1− cos2 γ −

(
cosα− cos γ cos β

sin β

)2

⇒ b̄ =


√

sin2 γ −
(

cosα−cos γ cosβ
sinβ

)2

cos γ
cosα−cos γ cosβ

sinβ

 since 1− cos2 γ = sin2 γ

Hence the transformation relating (ā, b̄, c̄) to a (X, Y, Z) basis :
0

√
sin2 γ −

(
cosα−cos γ cosβ

sinβ

)2

0

1 cos γ cos β

0 cosα−cos γ cosβ
sinβ

sin β

 =

 0 0.7012 0

1 0.0843 −0.2198

0 −0.7080 0.9755


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~a = ~b ′

~b = ~a ′

~c ′

~c

 

Published

unit ce ll

Standardized

unit ce ll

Figure A.1: Standardized malonic acid unit cell as published in 1957 [24]. The published

unit cell vectors are in blue while the standardized ones are in red. We can see that the

standardization does not change the representation of the crystalline structure.
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Appendix B

Mathematical notations

B.1 Pauli matrices

The Pauli matrices along with the identity matrix form a basis of the 2× 2 matrices.

1 =

[
1 0

0 1

]
X =

[
0 1

1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]

B.2 Spin operators

ŜZ = Z ⊗ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
number of nuclear spins

as the first spin is the electron spin.

În,X = 1⊗ 1⊗ 1⊗ · · · ⊗ X︸︷︷︸
(n+1)th position

⊗ · · · ⊗ 1

︸ ︷︷ ︸
number of nuclear spins

În,Z = 1⊗ 1⊗ 1⊗ · · · ⊗ Z︸︷︷︸
(n+1)th position

⊗ · · · ⊗ 1

︸ ︷︷ ︸
number of nuclear spins
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Appendix C

Magnetic field orientation and

Hamiltonian using spherical

coordinates

For some of the simulation and optimization programs, we made the choice to work with an

axis system where the external magnetic field ~B is aligned with the x-axis. To model the

rotation of the sample with respect to the magnetic field (which has a constant direction in

the laboratory frame), to simulate CW experiments for instance, we only need to describe

the change of orientation of the field with respect to the previous axes definition.

This means that we can temporarily work with the normalized external magnetic field

B̄. Since it is a normalized vector, its direction can be described as the direction between

the centre of the axis system O and a sphere of radius 1 centred on O. We will naturally

call this new direction xR. In spherical coordinates, since xR is unitary, we then only need

two coordinates to fully characterize xR: θ and ϕ.

When it comes to getting the Hamiltonian of a sample we know in a new frame, not only

do we need to know the direction of xR, but we also have to know precisely the directions

of yR and zR. Indeed, as explained in section 3.1.1, when the magnetic field is pointing in
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the ~x direction, the Hamiltonian of the sample can be written as:

Ĥ = ωSŜZ +
K∑
n=1

ωnÎn,Z +
K∑
n=1

anŜZ În,Z +
K∑
n=1

bnŜZ În,X (C.1)

Where : an = ~An,xx and bn =
√
~A2
n,xy + ~A2

n,xz

ωS =
gxxµB
h
‖ ~B0‖

As a consequence, we have to introduce the most natural rotation to go from our

initial axis system (x, y, z) to (xR, yR, zR). In spherical coordinates, this rotation can be

decomposed into two rotations: one rotation of ϕ around z turns (x, y, z) into (x′, y′, z′),
while a second rotation of π

2
− θ around y′ turns (x′, y′, z′) into (xR, yR, zR). The overall

rotation will be denoted R(θ, ϕ).

As for the expression of the new Hamiltonian, it can be obtained by expressing the

tensors in the new frame. The ~g-tensor as well as the hyperfine tensors have to be expressed

in this new frame in order to obtain the correct Hamiltonian. We have to be careful though:

when the sample is rotated in a certain direction with respect to the magnet, the magnetic

field is rotated in the opposite direction with respect to the crystal.

~ΓR = R(θ, ϕ)† · ~Γ ·R(θ, ϕ) (C.2)
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y

y ′ = yR

x ′

xR

θ

ϕ

z = z ′

x

zR

Figure C.1: Rotation to describe the new orientation of the magnetic field in spherical

coordinates. The initial frame is (x, y, z) (black solid arrows). A rotation of ϕ around z

turns (x, y, z) into (x′, y′, z′) (blue dashed arrows). A second rotation of π
2
− θ around y′

turns (x′, y′, z′) into (xR, yR, zR) (magenta solid arrows).
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Appendix D

Miller indices and surface indexing

analysis

A surface can easily be defined as an ensemble of vectors orthogonal to the normal vector

of the surface. Surfaces on a crystal can be characterized by their Miller index. The Miller

index [x, y, z] of a surface S, given the crystal’s unit cell vectors (~a,~b,~c), denotes the surface

containing the points x~a, y~b and z~c, unless some of x, y or z is 0. In that case, the surface

is parallel to every axis related to a 0 index.

In this situation, relating a Miller index to a normal vector of a surface depends on the

structure of the crystal. For crystals which structure consists of 3 orthogonal vectors, the

Miller index actually directly provides the coordinates of the normal vector of the surface

in the (~a,~b,~c) axis system. For other structures, like the triclinic crystal structure, things

are slightly more complex, due to the non-orthogonality between ~a, ~b and ~c.

We then have to go back to the original definition and, provided we have the direction

cosines of ~a, ~b and ~c in an orthonormal axis system, we can work out a value for the normal

vector of the surface. To do this, we first chose the 3 points needed to unambiguously

define the surface. If the considered Miller index does not contain any 0, the three points

are x~a, y~b and z~c. If the Miller index contains one or more zeros, say x 6= 0, we still know

at least one point (here M1 = x~a ∈ S). We then know that the surface is parallel to the

axes related to a 0 index: if y = 0, M1 +~b ∈ S, and similarly, if z = 0, M1 + ~c ∈ S.
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Given these three points M1, M2, M3, belonging to the surface, it is easy to find the

normal vector of the surface.

{M1,M2,M3} ∈ S ⇒ ~M1M2, ~M2M3 ∈ S
⇒ ~n = ~M1M2 × ~M2M3 ⊥ S

To complete this surface characterization, we can first normalize ~n and secondly make

sure that it is an outer-pointing normal. That means checking ~n· ~OMj > 0 for j = 1, 2 or 3.

~n

M3

M1

O

M2

Figure D.1: Normal to a surface defined by 3 points. The 3 points M1, M2 and M3 (solid

black) form the surface S (dashed black) and allow us to 4 calculate the direction cosines

of the normal vector ~n (solid red). It is clear from the ~OMj (j = 1, 2 or 3) that ~n is an

outer-pointing normal vector.
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~n121

~b

~a

~c
~n0 1̄1

Figure D.2: Surfaces designated by Miller indices for a triclinic crystal. The 3 vectors of

the unit cell are ~a, ~b and ~c. The red surface is denoted by the Miller index 01̄1 and hence

parallel to ~a. The blue surface corresponds to 121 in terms of Miller index.
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