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Abstract

Despite several full-scale applications in Canada, the vibrational characteristics and

performance of aluminium pedestrian bridges have not been studied comprehensively in

the literature. There is a large degree of variability between design codes and standards,

particularly in North America and Europe. This is in part due to a lack of comprehensive

experimental test data on full-scale pedestrian bridges. This is compounded by a lack of

agreement between researchers on the characterization of pedestrian induced loads and the

interaction between loads and the structure. This thesis aims to bridge this gap by building

and testing full-scale aluminum pedestrian bridges in a controlled laboratory test program.

Results from the experimental program are presented, discussed in detail, and used to

estimate the vibration characteristics of an aluminium pedestrian bridge of various lengths.

These characteristics include the modal properties —natural frequency, damping ratio, and

mode shapes —and human-structure interactions measured using accelerometers, load cells,

and strain gauges. Using multiple signal processing techniques, these characteristics were

extracted from the data. The results from the pedestrian loading tests were then used

to assess the bridge specimens through the above-mentioned design codes. Finite element

models of each specimen were built and used for parameter studies and model verification.

These data from full-scale pedestrian bridges are likely to shed new light on their

vibrational behaviour and performance, and allow aluminium bridge designers to create

competitive alternatives to bridges constructed with conventional materials. It is also an-

ticipated that these tests will form a foundation for future research in the area of pedestrian

bridge load modelling.
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Chapter 1

Introduction

1.1 Dynamic behaviour of pedestrian bridges

The dynamic behaviour of pedestrian bridges becomes increasingly important as the span

and slenderness increase. This is true not only for vertical vibration modes, but also for

lateral sway and torsion modes. Unlike vehicles, pedestrians introduce strong lateral vi-

bration due to the biomechanical alignment of each foot relative to the person’s centre of

gravity. The vibration of pedestrian bridges is seeing increased interest in recent years due

to the increased awareness of issues in the building code-based design of these structures.

Concerns with regards to the dynamic design arise when the serviceability of structure

is compromised by high amplitude movement of the bridge. This high amplitude move-

ment can occur when the walking speeds of pedestrians match the structure’s fundamental

frequency, resulting in resonance. Just as wind was responsible for the historic twisting de-

struction of the Tacoma Narrows Bridge in Washington State, so too has pedestrian traffic

caused alarming but not destructive movement of well-known pedestrian bridges such as
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the Millennium Bridge in London, England.

In order to appreciate the dynamic interactions that occur in a complex structure,

extensive computer simulations using structural engineering software or simplified exper-

imental testing are required. Experimentation has historically been more feasible, which

explains why design codes typically use empirical formulae for structural vibration checks.

The current simplistic design provisions in several North American and European bridge

design codes inhibit proper analysis. With the availability of more computing power, ad-

vanced analysis, monitoring and control become the preferred alternatives for addressing

vibration issues in structures. Monitoring includes data collection for the characterisation

of the bridge’s vibrational characteristics and the bridge’s behaviour subjected to common

pedestrian loading. The advanced analysis encompasses structural dynamics theory with

statistical signal processing to extract results from the data. Lastly, these results can be

fed back into the system to control the structure by the addition of masses and dampers

to alter the structure’s properties.

1.2 Aluminium as a building material

The use of aluminium for pedestrian bridge construction can be advantageous due to

its relatively high durability and strength-to-weight ratio in comparison with competing

construction materials. Transportation and erection of aluminium structural components

allow for rapid on-site installation of bridges. Shop welds are more reliable than field welds

due to controlled conditions, thus more complex bridge shapes can be pre-assembled and

shipped to the site. The reduced weight of the structure allows for non-invasive installation

methods that are well-suited to remote or environmentally sensitive regions where access

roads or staging areas are not feasible (30).
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Aluminium is a relatively new and less understood construction material in comparison

to typical concrete and steel structures. The primary advantage of using aluminium over

structural steel and concrete, for example, is that it is relatively maintenance-free due to

its high corrosion resistance, aesthetically pleasing, and can be transported and installed

quickly due to its low self-weight (Figure 1.1).

Figure 1.1: Installation of light-weight aluminium bridge (86)

Other advantages include its high formability, making it easy to extrude complex

shapes, and the ease with which it can be recycled at the end of its life. Steel structures can

require galvanizing or painting to maintain the structural integrity of the components. Pro-

vided that the components are well separated from reactive metals, aluminium construction

offers a lower operating and maintenance cost. The use of aluminium in civil structures

has been most successful in applications where all or several of these positive attributes

(corrosion resistance, lightweight, and extrudability) are exploited (62)(81)(54)(90).

Experiments on vibration properties of full scale bridges and pedestrian walking tests

in laboratory conditions have been previously conducted by other research groups. Areas
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of knowledge that are have not been documented are fully-instrumented - frequency, load

and strain - bridges for structural vibration properties and human-structure interactions.

Another gap area is the ability to study the effect of bridge length on the vibration proper-

ties. Few experiments from other research groups have been able to replicate the behaviour

of a full-scale bridge in a laboratory setting.

1.3 Objectives & scope

The main objectives of the current thesis are:

• to build full-scale instrumented laboratory aluminum bridge specimens that will al-

low for comprehensive testing under different loading situations, leading to a better

understanding of the behaviour and characterisation of full-scale aluminium bridges

subjected to pedestrian excitations,

• to complete a modal analysis using statistical signal processes and pedestrian load

tests of various crowd sizes and walking speeds on aluminium pony truss pedestrian

bridges, with validation from a finite element model, and

• to analyze the aforementioned bridges according to current design codes and stan-

dards and comment on their ability to predict the serviceability of aluminium pedes-

trian bridges.

In addition to the experimental work using the laboratory specimens, there was also

on-site testing which was previously documented and not included in this thesis. A 44

m long, welded aluminium pedestrian bridge crossing the Daigneault Creek in Brossard,

Québec was subjected to dynamic loading for structure characterisation, (i.e., ”heel drop”
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tests) and walking tests for further work on human-structure interaction. Though extensive

testing was completed for a single pedestrian and pairs of pedestrians, the scope did not

include a variety of test subjects nor was a large crowd test possible.

The laboratory bridge specimens were built of a bolted connection aluminium bridge of

variable length. Lengths from 10 feet to 75 feet in 5 foot increments were made possible, but

only spans of 10 feet, 40 feet, and 70 feet were tested for this thesis. With the laboratory

specimens, a broader range of pedestrian characteristics and crowd loading scenarios were

tested.

The analysis completed for this study included: finite element models of all possible

bridge lengths, statistical signal processing of collected data, and an example tuned mass

damper design. There were two benefits to building the finite element models: prediction

and validation. Building the computer simulations prior to the construction of the bridges

helped guide the experimental setup and understand what results could be expected. Sec-

ondly, the finite element models could be re-investigated upon completion of the laboratory

work to confirm the analysis of the measured data. If the models prove to be accurate, this

method could then be used for future similar structures without having to build the full-

scale specimen. The resulting data would then be used to suggest a preliminary damper

design using first principles and design guidelines.

The major contribution this thesis has to offer is a data set of acceleration, load, and

strain data for various numbers of pedestrians, walking at various paces, with a statis-

tically significant number of trials on three lengths of full-scale bridges. This includes a

comprehensive summary of each data type including statistical parameters.
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1.4 Organisation

This thesis presents the background information on previous work on pedestrian bridges,

pedestrian load models, dynamic design code calculations, signal-processing methods, and

damper design basics. The experimental setup of the laboratory work is then presented

with details on instrumentation and testing procedures. Next, the results from these

tests are presented, divided by data type —acceleration, load, strain, or displacement

—and subdivided by bridge span. The analysis section includes the finite element model

discussion, signal-processing results, design code review, and damper design.
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Chapter 2

Background

2.1 Research on pedestrian bridge vibration

2.1.1 Full-scale structure studies

The most notable instance of dynamic-governed design of a modern pedestrian bridge

was the Millennium Bridge, also known as the ”wobbly bridge” in London, UK. Since

the post-construction study, several other bridges were subjected to field tests for modal

characterisation, most notably the M-Bridge, the T-Bridge (59), the Solférino bridge (48),

and the Ponte del Mare (22).

The Millennium Bridge has a total span of 332 m, with the largest individual span

being in the centre at 144 m (Figure 2.1). Sets of four in-plane cables on each side created

the tension ribbon structure to support the 4 m bridge deck every 8 m. This bridge at-

tracted public interest due to its large lateral displacements during inauguration in 2000,

assumed to be due to the pedestrian lock-in phenomenon (29). The lock-in effect is the
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synchronisation and amplification of the structural vibration due to pedestrians modify-

ing their gait to maintain balance. Despite the structure’s adherence to Eurocode 5 for

footbridges, AASHTO 1997, the British Building and Construction Standards, and the

Ontario Building Code, video footage shows that the bridge had a maximum lateral dis-

placement of 50 mm due to this pedestrian activity. Problematic frequencies for this bridge

occurred at 0.48 Hz, 0.78 Hz, 0.95 Hz, and 1.05 Hz. To address the vibration concerns, 37

viscous dampers and 29 pairs of vertical tuned mass dampers (TMD) were installed along

the bridge, with the ability to be individually disconnected (63). Modal characterisation

tests used a vertical shaker, a horizontal shaker, and slotted bolted connections as friction

surface dampers (21)(47). Shortly after the Millennium Bridge studies, an investigation

on the Clifton Suspension Bridge in England was performed (51). In tests on this bridge,

27 modes under 3 Hz were identified, with most of those modes being either vertical or

torsional. The main objectives in these studies were to understand the reasons for the large

amplitude motions resulting from crowd loads.

Figure 2.1: Millennium Bridge, London, UK (28)
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In order to mitigate the excessive motions, dampers were installed. Plans show the

layout of the dampers installed on the bridge during the improvement (Figure 2.2). Each

damper could be independently disconnected from the system so that modal analysis could

be conducted with or without damping (63).

Figure 2.2: Damper layout of the Millennium Bridge (63)

The Millennium Bridge spurred extensive research on the subject of pedestrian induced

vibrations during the last decade; despite this, issues surrounding the response of pedestrian

induced vibrations in bridges are still not well understood.

The M-Bridge, Maple Valley Great Suspension Bridge in Honshu, Japan, is a suspension

bridge consisting of a reinforced concrete tower supporting a deck of two flexible steel H-

girders, sway bracing, and steel grating (60). With a main span of 320 m and two back

spans of 60 m, the 26.2 m high tower supports a 1.5 m wide deck with a seven-stranded
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spiral cable (Figure 2.3). The frequencies excited by pedestrian use were found to be the

third mode of 0.88 Hz and the fourth mode of 1.02 Hz. For quick validation of the data,

the modal frequencies and damping responses were calculated numerically on site (60).

During testing, it was noted that pedestrians could feel the displacement of 10 mm and

some were uncomfortable, whereas displacements of 45 mm caused many pedestrians to

lose stability, similar to what was seen on the Millennium Bridge. The T-Bridge, also

located in Toda City, Japan, is a similar cable-stay bridge, with a main span of 134 m

and a tower height of 61.4 m. A box girder deck of width 6.05 m and 1.8 m was laterally

excited by pedestrian activity at 0.9 Hz (Figure 2.3).

Figure 2.3: M-Bridge (left) and T-bridge (right), Japan (60)

Documentation from the study at the M-Bridge fully details the arrangement of the

modal analysis experiment. Accelerometers were installed in the lateral direction at L/8

L/4 3L/8, L/2, and 9L/16, where L is the bridge span. The accelerometers were connected

through amplifiers to an A/D simultaneous transformer, connected to a personal computer

(60). In addition to the station bridge setup, the pedestrian was fitted with accelerometers

at the waist, powered by a battery in an accompanying backpack. Knowing the bridge’s

reaction and the imposed pedestrian frequencies allowed the researchers to better under-
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stand which frequencies were natural bridge modes and which were forced vibrations. The

T-Bridge tests focused on crowd loading of the structure. These tests used photographs

from above the crowd to count the number of pedestrians in a given density on the bridge,

as well as monitor the walking pace of the pedestrians based on their head movement (60).

A 3-span pedestrian bridge at Texas Technical University connecting the campus to

the football stadium experienced large amplitude vibrations from a crowd leaving a game

(106). With spans ranging from 34 m to 40 m, the centre span deck is supported by 3

prestressed concrete girders, and the back spans are supported by 2 of the same type of

girders (Figure 2.4).

Figure 2.4: Pedestrian bridge at Texas Tech University, USA (106)

This pedestrian bridge was designed prior to the issuance of the AASHTO LRFD

bridge code for pedestrian bridges. Despite not being code-prescribed, layered neoprene

rubber and steel bearings were installed on all piers (106). The primary lateral frequency

that interacted with the crowd excitation was 0.799 Hz at one of the piers, where all

three spans exhibited energy at 0.917 Hz. In order to test the pedestrian bridge at Texas

Tech University, triaxial accelerometers were installed on the piers and the mid span on
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both sides of the bridge. Sampling at 30 Hz, which is greater than 2-3 times the target

frequencies, it was found that torsional modes were the most prevalent due to crowd loading

(106).

The Ponte del Mare is a suspension bridge over the Pescara River in Italy with two

decks; an inner cyclist track of 148 m length and 80 m radius and an outer pedestrian track

of 173 m length and 100 m radius (22) (Figure 2.5).

Figure 2.5: Ponte del Mare, Pescara, Italy (22)

Such structures exhibit natural frequencies within close proximity due to flexural-

torsional mode coupling, therefore modal identification is particularly challenging. Cou-

pling, the simultaneous presence of two frequencies within close proximity of each other

in the frequency domain, was predicted to occur within the structure of each deck and

between the two decks. Three types of ’output-only’ identification methods were studied;

Singular Value Decomposition, Stochastic Subspace Identification (SSI), and Canonical
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Variate Analysis. However, the identification results suffered due to the nonstationarity

of the data. An Ambient Vibration Survey (AVS) was used to filter ambient noise. This

process reduces data resolution that cannot be used for modal identification (63). The

lowest natural frequencies were found to be 0.75 Hz, 1.07 Hz, and 1.13 Hz without dampers

and 0.92 Hz, 1.08 Hz, and 1.34 Hz with dampers (22). As with the Millennium Bridge,

the Ponte del Mare also had dampers that could be individually disconnected in order

to conduct modal analysis tests with and without damping. The same set of tests were

repeated for both damping scenarios. A finite element model was utilised to select the

most effective locations for the piezoelectric accelerometers (Figure 2.6).

Figure 2.6: Accelerometer layout on the Ponte del Mare (22)
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Firstly, ambient tests were conducted at a sampling frequency of 100 Hz for 5 minutes

for stabilisation. Free vibration tests involved the sudden release of a large mass tied to

the underside of the bridge deck to intensely excite the bridge. These tests were measured

with a sampling frequency of 1000 Hz since the test is shorter than that of the ambient

tests. A higher sampling frequency was required for an acceptable frequency resolution.

Results from this work showed that with low vibration levels as with those from pedes-

trian or cyclist loading would not be enough to activate the dampers due to friction and

slack in connections. Impact tests for free vibration did activate the dampers and they

worked well. Low oscillation amplitudes caused the dampers to create a stiffening effect.

The finite element model designed for this work was not reassessed and updated given the

collected data.

These studies all focus around an in-place structure, where it is not feasible to complete

a rigorous set of repetitive studies due to time and inconvenience to its users. The next

step would be to investigate a full-scale structure in a controlled environment, which is

what is proposed for this thesis.

2.1.2 Laboratory research

Laboratory experiments provide the controlled environment that allows for repeatable re-

sults, especially when there are increased uncertainties in each trial from working with

pedestrians.

Rainer (71) conducted tests on a laboratory specimen of a steel undertruss and a

concrete deck, simply supported with a temporary support at the midspan. The structure

was approximately 17 m long and 2.1 m wide with a force transducer mounted at the

temporary centre support. Tests were conducted to determine that the lowest natural
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frequency was approximately 12 Hz. The specimen was therefore considered a stiff structure

since this is well above the threshold of concern for pedestrian walking frequencies and the

first few harmonics. Since the structure was significantly stiffer than the target walking

frequencies, it could essentially be regarded as a large load plate. Rainer recorded a single

pedestrian walking at frequencies from 1.0 Hz to 3.0 Hz, jumping from 1.0 Hz to 4.0 Hz,

and running from 1.6 Hz to 4.0 Hz (71)(70).

Laboratory tests can also be completed in conjunction with a full-scale field study

for further understanding. Paired with the investigation of the T-Bridge in Japan, an

instrumented laterally moving platform demonstrated that pedestrians synchronise their

head movement to the bridge movement. Approximately 20% of the pedestrians started

to widen their gate at vibration amplitudes of 10 mm in order to maintain balance (101).

After the vibration issues encountered during the Millennium Bridge inauguration,

vertical and lateral vibration tests were conducted by the engineering design firm, Arup

(29). A shaketable at the University of Southampton was used for the vertical load testing

with a pedestrian walking on the spot (29). At the Imperial College, lateral load tests

on a 7.3 m platform were conducted for analyzing the sway observed on the Millennium

Bridge (42). The ratio of the maximum periodic walking force to the pedestrian’s weight is

called the dynamic load factor (DLF). It was determined that the DLF increases with the

amplitude of the vibration, but the vibration amplitude was independent of the walking

frequency (42)(29). The probability of ”lock-in” was also quantified at 30-40% at an

amplitude of 5 mm to 80% at an amplitude of 30 mm (42).

Much of the research focus in recent years has been to measure the ground reaction

forces (GRFs) using instrumented platforms. A set of 4 m long suspended platforms were

built with lateral frequencies of 0.75 Hz, 0.84 Hz, 0.95 Hz, and 1.14 Hz in one study (78).

Three walking speeds were performed by each of the four subjects. The speed closest to
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the natural frequency of the bridge caused the highest lateral loads due to resonance in the

structure. These findings were used to develop a model capable of predicting the equivalent

DLF in the non-resonance condition. Other lab setups by other research groups included

a treadmill atop a force plate atop a shaketable where the treadmill and lateral shaking

were controlled (85).

A second team from the University of Reggio Calabria also completed tests for a range

of vibration amplitudes and lateral frequencies from 0.60 Hz - 0.92 Hz (65). This study

noted that pedestrians contributed to a negative mass on the system, and that only at one

of the vibration frequencies and amplitudes did pedestrians produce a negative damping

effect. Similar studies have been repeated with more subjects to verify the statistical

significance of these results (42).

These laboratory experiments provided a richer understanding of the vibration be-

haviour due to pedestrians in a small-scale manner. The common elements were that

either the pedestrian was moving over a small platform, or the platform moved under the

pedestrian (i.e., a treadmill). Both of these options, however, do not give the full sense of

how a pedestrian would walk on a flexible structure.

2.1.3 Analytical research

This section discusses the finite-element modelling for pedestrian bridges (restricted to the

Millennium Bridge and the Ponte del Mare), the basic pedestrian load models, serviceability

criteria and common means to mitigate vibrations in pedestrian bridges.

Due to the lack of detail in literature of the natural frequencies of the Millennium

Bridge, a finite element model was built by Law, Wu, and Chan to investigate the effect of

the slotted bolted connection elements (SBCE) under cyclical loading. The slotted bolted
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connection allows for movement in the joint and the contact surfaces serve as a frictional

damper. Matching the published measured full-scale results very closely, it was observed

that the first vertical modes were significantly less than pedestrian walking frequency of

approximately 2 Hz. The lateral modes, however, at less than 1 Hz were observed from the

model and thought to be the cause of the excessive vibrations in the structure (47). SBCE

connections were modelled to have a frictional behaviour, and thus provide an additional

avenue for damping. These points were useful for this thesis to understand connections

with allowance for movement.

The Ponte del Mare was modelled using ANSYSTM in order to better design the full-

scale tests (22). The natural frequencies, mode shapes, and modal damping values were

extracted from the model for damper design. To compare the model results to the experi-

mental data, Modal Assurance Criterion (MAC) values were calculated, which are a ratio

of measured to calculated mode shape, where the desirable value is 1.0. Results from this

study were a mean of 0.86 for the first 12 modes. Future work from this thesis will include

MAC values using the measured data.

Given the modal analysis conducted on full-scale pedestrian bridges and finite element

models, it was found that the shape of the deck, that is the ratio of length to width,

greatly impacted the dynamic performance of the structure. The optimal shape of the

deck to reduce the effects of vibration response is proportional to the first lateral mode

shape (14). This is also optimal since the first mode is the most influential in the response

and thus higher modes have less contribution to the mode shape. It was also determined

that the excited modes of vibration are heavily dependent on the crowd size or walking

pace of the pedestrian loading on the bridge.
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2.2 Dynamic load factors of pedestrian loading

As the interest in vibrations due to walking loads increased, parameters such as the cadence,

gait characteristics, and type of movement along the bridge had to be defined (69). The

cadence, or gait cycle, is the complete cycle of stepping on the left foot and the right foot.

Each leg in this gait cycle has a swing and a stance phase where it is either in motion or in

contact with the ground, respectively. The walking step load pattern has two maxima, one

at the heel acceptance and one at the toe push-off, and a minima at mid stance (Figure

2.7).

Figure 2.7: Vertical gait load (69)

The intensity of points F1 and F3 in Figure 2.7 are expected to increase and the time

interval between these peaks to decrease as walking pace increases. Rainer’s study (70)

collected load data for walking, running, and jumping tests. Harmonics of a frequency are

higher frequencies of the original, scaled by an integer. The DLF is then the ratio between

this amplified load and the weight of the pedestrian. The DLF of the first four harmonics

showed that the first harmonic had the highest energy and was most affected by the gait

cycle (Figure 2.8).
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(a) DLF for walking (b) DLF for running

(c) DLF for jumping

Figure 2.8: Dynamic load factors (71)

Gait cycle tests have been performed on several types of surfaces, including transducer-

equipped treadmills (77), and very stiff bridge structures (70). Blanchard (12) determined

the vertical DLF to be 0.257 given that the natural frequency of the structure is less than

4 Hz, with a reduction factor if the natural frequency is greater than 4 Hz (12). Bachmann

and Ammann determined that the vertical DLF is between 0.4 and 0.5 (6) and Young

developed the DLFs as a function of the structure harmonic (103). The technical guide

for the assessment of vibrational behaviour of footbridges under pedestrian loading by

the Service d’Études Techniques des Routes et Autoroutes (SÉTRA) prescribes a design

DLF of 0.4 for the first harmonic, and 0.1 for the second and third harmonic (61). Table

2.1 summarises the key dynamic load factors from literature where f is the first natural
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frequency of the structure. This will be the basis of comparisons presented later in the

current thesis.

Table 2.1: Key dynamic load factors (DLFs) from literature

Author(s) Dynamic load factor Activity and direction

Blanchard et al. DLF1 = 0.257 walking, vertical

Bachmann and Ammann DLF1 = 0.4− 0.5 walking, vertical

Rainer et al. DLF1, DLF2, DLF3,DLF4 dependent on walking,

running, jumping, ver-

tical

Young DLF1 = 0.37(f − 0.95) ≤ 0.5 walking, vertical

DLF2 = 0.054 + 0.0044f

DLF3 = 0.026 + 0.0050f

DLF4 = 0.010 + 0.0051f

SÉTRA DLF1=0.4 walking, vertical

DLF2=DLF3=0.1

2.3 Pedestrian load models

Pedestrian load models help predict the imposed load for the purpose of predicting the

structure response. These models can also be used to solve for the dynamic load factor

from the walking pedestrians. The main distinction between the models are whether they

are derived analytically or experimentally. Either method of developing load models can

be applied in either the time or frequency domain.
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Experimental models are more commonly presented in the time-domain and can be

either deterministic or probabilistic (53). Models to simulate pedestrian loading of the

T-Bridge and the M-Bridge included factors for the large crowd synchronizing with itself

and for the crowd synchronizing with the structure (60). The SAMEO model (48) uses

the concept of biological oscillators to the application of walking pedestrians. Discrete

modelling of the crowd permits flow simulations and boundary conditions of people (19).

The two major analytical load models that are of interest are those that simulate

individual pedestrian movement along the bridge; the moving load model and the biome-

chanical model. The simplest form of a single pedestrian loading is a sinusoid travelling

in time along the length of the bridge. This simulates the aggregated loading pattern of a

pedestrian walking and does not account for the individual footfalls (Figure 2.9).

Figure 2.9: Moving load model

The biomecanical model, however, uses the mechanics of walking to determine the

response of the flexible structure. The legs of the pedestrian are modelled as a hinged

pair of springs and dampers with their own properties separate from the structure (Figure

2.10)(68).
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Figure 2.10: Biomechanical model (68)

2.4 Pedestrian bridge codes

2.4.1 CSA S6-06

The Canadian Standards Association, CSA S6-06 Canadian Highway Bridge Design Code

(27) contains a section on pedestrian loading and serviceability deflection limits. These

limits are valid for structures with natural frequencies below 4 Hz, which is the assumed

upper limit of a pedestrian jogging. The assumed forward velocity of the pedestrian is the

lesser of 2.5 m/s or 0.9f1 m/s. For first flexural frequencies between 4 Hz and 5 Hz, the

maximum acceleration can be reduced linearly from 0% at 4 Hz to 70% at 5 Hz or more.

Figure 2.11 shows the acceleration limit for dynamic design and compares it with several

limits suggested in literature.

A standard 700 N load at the midspan is used to calculate the maximum deflection

generated by a pedestrian. This deflection is then used in the calculation of the acceleration
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Figure 2.11: CSA S6-06 Figure C3.3 (left): acceleration limit for pedestrian bridge

serviceability and Figure C3.4 (right): limits suggested by literature (27)

using the following expression:

a = 4π2f 2
1wSKΨ (2.1)

where a = acceleration in m/s2

f1 = first flexural frequency in Hz

wS = maximum static superstructure deflection due to a vertical concentrated force of 700

N in m

K = configuration factor (1 for single span structures)

Ψ = dynamic response factor, a function of damping

Coupling of modes occurs when at least two of the directions of vibration —vertical,

lateral, or longitudinal —occur simultaneously due to the relative closeness of those natural
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frequencies of the structure. Commentary to the CSA S6-06 advises to avoid mode coupling

of the vertical and lateral or longitudinal modes by ensuring that the latter two mode types

are not less than 1.5 times the first flexural frequency nor less than 4 Hz. The presence of

lateral or longitudinal modes are strongly dependent on the manner of connection of the

substructure.

2.4.2 HIVOSS

HIVOSS: Human Induced Vibration of Steel Structures (39) is a set of guidelines specifically

for the design of pedestrian bridges and floors. In the outlined design steps, the critical

range of natural frequencies for the first vertical and longitudinal modes are:

1.25 Hz ≤ f ≤ 2.3 Hz (2.2)

for the second vertical and longitudinal modes are:

1.25 Hz ≤ f ≤ 4.6 Hz (2.3)

and for the first lateral mode is

0.5 Hz ≤ f ≤ 1.2 Hz (2.4)

The assessment of the appropriate design case includes a qualitative description of the

pedestrian traffic, which is then correlated to a traffic class. One of four comfort classes is

assigned based on the expected occurrence of this traffic behaviour and sets vertical and

lateral acceleration limits (Table 2.2).
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Table 2.2: HIVOSS Table 4-4: Defined comfort classes with common acceleration ranges

Comfort Class Vertical, alimit Lateral, alimit

CL1 < 0.50 m/s2 < 0.10 m/s2

CL2 0.50 - 1.00 m/s2 0.10 - 0.30 m/s2

CL3 1.00 - 2.50 m/s2 0.30 - 0.80 m/s2

CL4 > 2.50 m/s2 > 0.80 m/s2

Damping can occur within the material or the connections of the members of a struc-

ture. Damping ratios for serviceability and large vibrations are specified by HIVOSS for

applicable materials limited to reinforced concrete, prestressed concrete, steel, and rein-

forced elastomers. Using a single degree of freedom system (SDOF) method, finite element

(FE) method, or response spectra method will yield maximum accelerations. The HIVOSS

guidelines specify a pedestrian load within a crowd of 280 N vertical, 140 N longitudi-

nal, and 35 N lateral per pedestrian. The reduction coefficient for the footfall frequency

probability is outlined in Figure 2.12.

Figure 2.12: HIVOSS load models from Table 4-7 (39)
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Calculating the number of effective pedestrians on the bridge is a separate process for

the three lighter and the two heavier traffic classes. Checking for the lock-in effect, the

synchronisation of pedestrian movement to the bridge sway, is prescribed in the HIVOSS

guideline due to its occurrence in precedent cases where pedestrian bridges experienced

vibration problems. Lock-in is most likely to occur when lateral accelerations reach 0.1 to

0.15 m/s2. Lastly, the comfort level of the bridge is determined, where the mass, frequency,

or damping can be modified to comply with the above design procedure. The raw measured

acceleration data are paired with the natural frequencies calculated from signal-processing

methods for a proper dynamic assessment of the bridge.

2.5 Signal-processing methods

Codes and computer simulations serve as tools to determine the prescribed limits and

predicted results, respectively, for a given structure. To validate the predictions and en-

sure the structure falls within acceptable code limits, measured data are required. Much

about the structure’s dynamic behaviour, its natural frequencies and damping ratio, are

embedded in the acceleration data. Processsing of the acceleration data using statistical

signal processing tools can extract the embedded properties of the structure (called modal

extraction).

The process of modal extraction applies elementary signal processing concepts to the

linear d’Alembert’s equation of motion, specifically:

Mẍ(t) + Cẋ(t) + Kx(t) = F(t)

ẍ(t) + 2ωnζẋ(t) + ω2
nx(t) = F(t)

(2.5)

where ζ is the damping ratio, ωn is the natural frequency, F(t) is the applied excitation,

and M is the mass matrix of the system.
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The particular method used in this study to separate the source signal is called stochas-

tic subspace identification (SSI) (91). Collected acceleration data are used in the estimation

of the state-space solution of the second-order differential equation. Gaussian white noise

is superimposed onto the state-space model in the stochastic analysis [2.6]. The state-space

model is defined as:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(2.6)

where x is the state-vector and A is the system matrix, C is the output matrix. B and D

are the input and feedthrough matrices respectively with u as the input vector, but since

zero-mean gaussian noise is being added to the system, the second terms of each of these

equations is simplified to a set of gaussian noise vectors.

The eigenvalues Λ, and eigenvectors Θ, are determined from the decomposition of

matrix A (66). Given an ordinate number of greater than 2 times the size of matrix A, it

is possible to complete the eigenvalue problem. The eigenvalues are used to solve for the

natural frequencies of the system.

The specific method of applying SSI for this study is called a Numerical algorithm

for Subspace State Space System IDentification (N4SID). This method allows for the re-

sponse data of the bridge to run through the algorithm and be subjected to singular value

decomposition to solve for the natural frequencies, damping, and mode shapes (91).

The basic framework of second-order blind identification (SOBI) (8) is the simultaneous

diagonalization of two covariance matrices Rx(0) and Rx(p) evaluated at the time-lag zero

and p, respectively. This can be written as:

Rx(0) = E
{
x(n)xT (n)

}
= ARs(0)AT (2.7)

Rx(p) = E
{
x(n)xT (n− p)

}
= ARs(p)A

T
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where:

Rs(p) = E
{
s(n)sT (n− p)

}
(2.8)

The following three steps set up the essence of SOBI: whitening, orthogonalization,

and unitary transformation. Whitening is a linear transformation in which, Rx(0) =

(1/N)(
N∑
n=1

x(n)xT (n)) is first diagonalized using singular value decomposition, Rx(0) =

VxΛxVT
x where Λx and Vx are the eigenvalues and eigenvectors of the co-variance matrix

of Rx(0) respectively. Then, the standard whitening is realized by a linear transformation

expressed as:

x̄(n) = Qx(n) = Λ
− 1

2
x VT

x x(n) (2.9)

Because of whitening, Rx(p) becomes Rx̄(p), which is given by the equation:

Rx̄(p) = (1/N)(
N∑
n=1

x̄(n)x̄T (n− p)) = QRx(p)Q
T (2.10)

Using the Eq. 2.10 and Eq. 2.7, we get:

Rx̄(p) = QARs(p)A
TQT (2.11)

The above equation states that by diagonalizing the whitened covariance matrix at a par-

ticular time-lag, the unitary matrix product QA can be determined, resulting in the mixing

matrix, A. This process of diagonalization is implemented numerically, and typically in-

volves jointly diagonalizing several covariance matrices at a given lag p (8). The second

step, called orthogonalization, is applied to diagonalize the matrix Rx̄(p) whose eigen-value

decomposition satisfies:

Vx̄Rx̄(p)VT
x̄ = Λx̄ (2.12)
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Since the diagonal matrix Λx̄ has distinct eigenvalues, the product QA is a unitary matrix,

and the mixing matrix can be estimated by the equation:

Â = Q−1Vx̄ = VxΛ
1/2
x Vx̄ (2.13)

where Â is the estimated mixing matrix of A. The problem now becomes one of unitary

diagonalization of the correlation matrix Rx̄(p) at one or several non-zero time lags. The

determination of the unitary matrix is carried out using a numerical procedure, commonly

known as joint approximate diagonalization (8). Denoting V = QA, D = VT R̃x̄(p)V,

the problem is one of finding the minimum of the performance index J given by:

J(V,p) =
∑
p

∑
1≤i 6=j≤n

∣∣Dp
ij

∣∣2 (2.14)

Then, the unitary matrix V corresponding to minimum J over fixed h iterations is said

to be an approximate joint diagonalizer (8). Once Â is estimated, the sources ŝ can be

estimated using the pseudo-inverse of Equation 2.5:

ŝ = Â−1x (2.15)

2.6 Damper design

Structural dampers offer a means of energy dissipation to mitigate structural vibrations

from wind, earthquakes, or other imposed loading. The type of damper varies greatly

based on the size constraints of the system and whether the damper passively, actively, or

semi-actively responds to the structure’s movement. Key examples of dampers are fluid

tanks (Figure 2.13a), tuned-mass dampers (Figure 2.13b), viscous dampers (Figure 2.13c),
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and frictional dampers (Figure 2.13d); all of which can be instrumented to be passive,

active, or semi-active.

(a) Fluid tank (52)
(b) Tuned liquid column damper (37)

(c) Viscous damper (3)
(d) Friction damper (Slotted bolted connection)

(36)

Figure 2.13: Types of dampers

In the instance of the fluid tank, the inertia of the fluid is out of phase to the main

structure, counteracting the force of the moving structure (83). A tuned-mass damper

(TMD) is a mass of a prescribed fraction of the primary structure fitted with springs and

dampers will achieve the same result as the fluid tank (38). Viscous dampers are an in-line

solution for damping that are analogous to shock absorbers on a vehicle where damping is

provided by the flow of a viscous fluid through an orifice, actuated by a piston. A variant

of viscous dampers are visco-elastic fluid dampers, which are cost effective and effective,

but the modelling is difficult since the stiffness and damping coefficient are dependent

on frequency (89). Friction dampers use surface slipping to dissipate energy, such as a
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slotted-bolted connection or friction plates (36).

Unlike passive dampers (e.g., fluid, tuned mass and viscous), active dampers are more

adaptable to a wide range of frequencies, but conversely they require a fair amount of

energy for their operation (92). Real-time data collection and computations for correction

are part of the system. Additionally, computer learning techniques may be incorporated in

order to predict trends in the structure’s behaviour. Corrections can come in the form of

displacement control for a frictional damper, orifice diameter control on a viscous damper,

or spring stiffness adjustments to a tuned-mass damper.

Semi-active dampers are a compromise between the two previous damper types. They

have been developed to keep the cost of energy and computation low, whilst providing

damping over a range of frequencies (7). The amount of control provided in a semi-active

damper is variable depending on the design, but the concept is to provide corrections to

the damper on a less frequent but effective basis.

In the following section, some examples of full-scale damper applications will be de-

scribed, along with the design principles for the most commonly used damper, the TMD.

2.6.1 Damper studies and applications

The famous Taipei 101 tower in Taiwan has been the subject of many studies due to its

incredible height, and thus need for sway mitigation. At the top of the tower is a large,

suspended spherical mass, connected to the building structure with viscous dampers. An

analytical study was conducted using a model of the tower with semi-active tuned mass

dampers (SATMD) and passive tuned mass dampers (PTMD) (102). It was found that

when the structure is in resonance, the tuned-mass damper is most effective with a lagging

phase shift of 90 degrees. When modelling a SATMD and PTMD frictional damper, both
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dampers had a target frequency to structure natural frequency ratio of nearly 1. The

damping coefficient, however for the PTMD was approximately 6%, whereas the SATMD

damping coefficient was an order of magnitude less (25). Damping for the SATMD was

provided by a controllable frictional force, limited by displacement.

Three pairs of viscous dampers were installed on the Ponte del Mare; one set on the

outer foot track and two sets on the inner cycling track. Dampers A on the outer track

had a damping of 128 kNs/m and stiffness of 127.6 kN/m. Dampers B on the inner track

had a damping of 349 kNs/m with the same stiffness as Dampers A. Dampers C had a

damping of 794.2 kNs/m and no spring (22). The spring coefficient was deliberately set as

low as possible to prevent distortion of natural frequencies and mode shapes, however the

dampers were not effective for low-vibration levels. Additionally, the dampers contributed

to an increased response for some modes (21). It was found through simulations that

the type of numerical representation affects the damping coefficient by manipulating the

type of window, and time length (21). Short time Fourier transform (STFT) was the best

representation of the estimation factors given the presented bridge structure.

Carpineto (18) observed that pedestrian behaviour affected structural damping, which

he used as his starting point for damper design. Pedestrians walking all in the same direc-

tion increased the response of the bridge, whereas crowds moving in opposing directions

provide natural damping to the system. A system of multiple TMDs were installed on

the Singapore Footbridge where the effects of TMDs at L/2, and L/4 used in isolation

were compared to those used simultaneously (18). The total mass of the TMDs was held

constant at 1/50th of the mass structure. The TMD at midspan only provided damping

to the symmetric modes and none to the anti-symmetric modes since there would be zero

displacement at midspan. Dampers at L/4 mitigated the anti-symmetric modes in addition

to part of the symmetric modes.
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Different approaches have been taken to design dampers and their placement. Take-

waki developed a gradient-based and optimisation-based approach for determining critical

locations for damper placement (89). Conversely, Guo developed a performance spectra

for damper design using a graphical design tool to link SDOF responses, residual displace-

ments, peak base shear, and peak base acceleration (96). For frictional dampers however,

it was found to be necessary to know the frequencies and their contributions within the

excitation signal and the transfer function between the excitation and response (79). In

this case, the mean square response, the expectation of the signal squared, must be taken

since the frictional damper is a nonlinear system. Theoretically, these methods are ele-

gant, but using experimental results is challenging since the original frequencies and their

contributions in the signal are unknown. This requires the solution of the inverse problem

from measurement data.

2.6.2 Tuned Mass Damper design principles

The basic steps outlined in Chapter 4: Tuned mass damper systems by Connor (26) will

be examined for a simply supported beam, which is the model used to analyse the bridge

specimens in this study (26). The simply supported beam in Figure 2.14 is the model

of the primary structure. The tuned-mass damper is then added to primary structure

(Figure 2.15) for the calculation of the combined dynamic behaviour. From the figure, md

is the mass of the damper, kd is the stiffness of the damper spring, and cd is the damping

coefficient of the damper. Displacements u∗ and ud are the displacements of the structure

and the damper respectively at the damper location x∗ along the beam.

Since the structures of this thesis will have inherit damping, the analysis process will

include this in the damper design. All of the following calculations are in relation to the
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Figure 2.14: Simply supported beam with constant EI and cross section (26)

Figure 2.15: Tuned-mass damper connected to beam element (26)

frequency ratio between the system and the damper, f , mass ratio between the damper

and the system, m̄, the ratio of forcing frequency to system natural frequency, ρ, system

damping ratio, ξ, and damper damping ratio, ξd.

In a case where a damper is attached to a non-damped primary structure, the damper

properties can be analytically determined using Den Hartog’s method (26). When the

primary structure, however, also includes damping, the process can no longer be solved

by this analytical process, and therefore becomes a problem of optimisation. Given initial

conditions of the system, the following plots allow for an iterative design process in order

to optimize the damper design. The derivation of this optimisation is shown in section

4.4.3 of Connor’s book (26).
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Firstly, the mass ratio of the damper to the system is determined using Figure 2.16.

Optimal condition to solve for mass ratio, H5|opt, occurs when f = 1 and the appropriate

curve is selected for the system damping value, given by

Figure 2.16: Maximum dynamic amplification factor for a SDOF

H5 =

√
[f 2 − ρ2]2 + [2ξdρf ]2

|D3|
(2.16)

where,

|D3| = [−f 2ρ2m̄+ (1− ρ2)(f 2 − ρ2)− 4ξξdfρ
2]2

+4[ξρ(f 2 − ρ2) + ξ2fρ(1− ρ2(1 + m̄))2]
(2.17)

The mass ratio is then used for Figure 2.17 to determine the maximum dynamic am-

plification factor for the TMD.
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Figure 2.17: Maximum dynamic amplification factor for a TMD

Depending on the nature of the design parameters, Figure 2.18 could be used directly

to determine the mass ratio of the TMD to the system. Figures 2.19, 2.20, and 2.21 provide

the relationships for optimum TMD tuning frequency, optimum TMD damping ratio, and

equivalent damping ratio for an optimally tuned TMD.
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Figure 2.18: Ratio of maximum TMD amplitude to system amplitude

Figure 2.19: Optimal tuning frequency of TMD
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Figure 2.20: Optimal damping ratio of TMD

Figure 2.21: Equivalent damping ratio for optimal TMD performance
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2.7 Summary of gap areas

Gap areas in prior research remain the:

• examination of a full-scale structure with extensive, statistically significant number

of studies on a wide range of pedestrian crowd sizes and walking paces

• analysis of DLFs from pedestrians walking on a full-scale bridge structure with nat-

ural frequencies well above pedestrian walking paces

• assessing the performance of non-traditional construction materials (i.e., aluminium)

with respect to current dynamic design sections of bridge design codes.

These areas will be addressed in this thesis through the investigation of the dynamic

behaviour of three aluminium pedestrian bridges.
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Chapter 3

Experimental procedure

3.1 Overview

The goal of the experimental work for this project is to understand the vibrational be-

haviour of multiple aluminium pedestrian bridge specimens. Thus for each bridge speci-

men, a common procedure is developed, which consists of:

• Collecting acceleration, load, and strain data from a full-scale bridge specimen under

various types of pedestrian-induced loading. Accelerometers are installed vertically

and laterally. Triaxial load cells are installed at the four corners of the bridge. Strain

gauges are installed on various members in axial tension and bending.

• Using the acceleration data to determine the vibrational properties of natural fre-

quencies, mode shapes, and modal damping using signal-processing techniques.

• Building a finite element (FE) model of the bridge specimen in a structural analysis

program based on the bridge manufacturer’s design drawings.
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• Comparing the results of the FE model analysis to those obtained using the measured

data.

• Designing an updated specimen model employing external damping to mitigate vi-

brational concerns. The damper design is then proposed as a retrofit to the existing

structure.

For the purposes of this thesis, the first item will be addressed in the experimental

procedure, the results in chapter 4, while the rest will be part of the analysis in chapter 5.

3.2 Instrumentation

3.2.1 Make-A-Bridge

For the purposes of conducting more extensive tests on an aluminium pedestrian bridge,

the MAADI Group provided a specimen for controlled laboratory tests. The bridge uses

their patented modular Make-A-Bridge system to create the longest span to date with this

design. The bridge segments provided were: two 6.096 m (20 ft) spans, two 3.048 m (10 ft)

spans, and two 1.524 m (5 ft) end caps. Each bridge length measured 1.353 m (4 ft 5 in) in

width and 1.140 m (3 ft 9 in) in height from the centroids of the joints. The bridge lengths

tested for this study were 3.048 m (10 ft) (Figure 3.1a), 12.192 m (40 ft) (Figure 3.1b),

and 21.336 m (70 ft) (Figure 3.1c). For simplicity of naming convention, each bridge is

referred to by their length in bays, thus two-bay, eight-bay, and fourteen-bay bridge. The

following figures denote the splice locations where the extruded members were connected

with a splice piece inserted inside the top and bottom chords.
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(a) Two-bay bridge

(b) Eight-bay bridge

(c) Fourteen-bay bridge

Figure 3.1: Design drawings of Make-A-Bridge

There are six main components to the Make-A-Bridge design which are all fabricated

from extruded T6061 aluminium; top chord, bottom chord, diagonal, transversal, deck

stringers and decking. With the exception of the stringers that are standard aluminium

angles, all of the other components are custom extruded shapes. The assembly is an

updated version of that found in patent CA 2688813: Structural assembly for constructing

bridges and other structures (Figure 3.2).

The top chord creates the handrail, while the diagonals form the vertical sides of the
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Figure 3.2: Make-A-Bridge parts and assembly

pony truss. The transverse members connect the bottom chords together, forming the

cross members of the bridge deck. The ends of the diagonals and transverse members are

fitted with neoprene sleeves, which are bolted into a custom-cast aluminium joint. The

sleeves are a hard plastic, but since they are not as strong as aluminium, it is possible

that they would allow for some movement of the members within the cast joint. All bolts

for the construction of these bridges are 5/6” stainless steel. This cast joint is similar to

that previously patented, number CA 2607711: Moment-resisting joint and system. These

sleeves were coated in silver anti-seize, a viscous liquid, to permit ease of deconstruction.

The bottom chords slip into place and are bolted at the joints. The bottom and top

chords of adjacent bridge sections are connected by a splice section with three bolts on

either side of the splice. The relatively tight fit of the connection essentially results in a

moment-resisting connection, however some movement is still possible due to tolerances

from machining and fitting the neoprene sleeves. Each deck section measures one truss

bay in length with four C-channel stringers running longitudinally along the bridge, and

U-bolts secure the deck to the transversal members. Each deck section is individually
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attached to the transversals and adjacent deck plates are not directly connected.

Three carts were used to arrange the instrumentation: the load cell workstation (Fig-

ure 3.3a), the accelerometer workstation (Figure 3.3b), and the strain gauge workstation

(Figure 3.3c). Figure 3.3d shows the arrangement of the carts for the dynamic testing com-

pleted on the two, eight, and fourteen-bay bridges. For subsequent strain gauge testing of

the eight and fourteen-bay bridges, Figure 3.3e shows the modified arrangement.

(a) Load cell workstation
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(b) Accelerometer workstation

(c) Strain gauge workstation
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(d) Configuration of the equipment for dynamic testing

(e) Configuration of the equipment for strain and dynamic testing

Figure 3.3: Instrumentation layout
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3.2.2 Load cells and installation

Due to the fact that some of the instrumentation was not hermetically sealed, the bridge

was installed indoors, which also reduces thermal effects on the specimen. Underneath each

of the four bridge bearing plates, a plate sandwich system was installed that contained a

strain-based triaxial load cell; model TR3D-B-4K from Michigan Scientific. These were

installed in order to observe the vertical and sidesway (lateral) reaction forces during

pedestrian loading. These load cells are capable of up to 18 kN axial force and up to 4.5

mV/V excitation in any of the coordinate directions. This limit is reduced if the orthogonal

directions are loaded in unison.

The load cells are sandwiched between two 12 mm thick aluminium mounting plates. A

top plate connects the bridge abutment plates at the manufacturer-prescribed location to

the top of the load cell with a counterbored M12x1.75 mm bolt. The bottom plate connects

the bottom of the load plate with M8 bolts and bolts into a steel W310x129 section at

each abutment. (Figure 3.4).

Figure 3.4: Triaxial load cell mounted between steel beam abutment and underside of

bridge
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The mounting system is intended to simulate stiff abutments for the bridge while raising

it off the ground for ease of instrumentation. Since it elevated the bridge above comfortable

stepping height, a pair of wooden 4-riser stairs and landings were built to walk on and off

the bridge. This was also done to accommodate the flow of crowds for pedestrian walking

tests. To create a rigid connection from the bridge to the floor, the bottom flanges of the

support beams were bolted down to the floor of the lab using 1/2” threaded rods and 50

mm deep drop-in Hilti anchors drilled into the floor.

Levelling of the bridge was identified as important, and thus threaded rods were in-

stalled in holes tapped into the beam so that each of the four corners could be adjusted

until the load cells equally divided the bridge self-weight. Non-shrink sand-based grout was

then cast between the bottom flange of each support beam and the floor as a filler material

to minimise vibration of the support beams. Figure 3.5 shows the abutment beams with

the formwork to encase the casted grout to keep the bridge level.

Figure 3.5: Abutment support beams bolted into the floor and grouted

In order to amplify the signal from the load cells, a bank of ten Vishay amplifiers with a

full bridge, two parallel sets of two resistors in series, connection for each channel was used
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since these devices contribute little to no signal noise. Given an excitation of 8 V, the signal

was amplified such that 1 mV = 1 N for ease of interpretation. To check the functionality

of the load cells, a 100 k 1% shunt resistor was used to compare to company-printed data

sheets specific to each load cell.

Due to the importance of vertical and lateral loads on this bridge specimen, only the

vertical, Fz, and lateral, Fy channels of the load cells were wired into the signal amplifiers.

A 16-bit 12-channel A/D DAQ, model DT9836 by DataTranslation, was used to collect

the load cell data. The data collection software, MeasureFoundry, was used to produce the

text files for each trial. Table 3.1 summarises the DAQ channel, Vishay channel, and load

cell ID and load cell arrangement.

Table 3.1: Load cell placement and channel allotment

DAQ channel Vishay channel Load cell ID Direction

0 1 405 Vertical

1 2 405 Lateral

2 3 436 Vertical

3 4 436 Lateral

4 5 420 Vertical

5 6 420 Lateral

6 7 440 Vertical

7 8 440 Lateral
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3.2.3 Accelerometers

Twelve low-frequency, high-sensitivity model 393B31 accelerometers by PCB Piezotronics

were installed along the bottom chords of the bridge at L/4, L/2, and 3L/4; a laterally and

vertically mounted accelerometer was placed at each attachment point. Each aluminium

mounting system consisted of a block, allowing accelerometers to be installed in any axis.

This block is screwed into a top plate, 300 mm long, 100 mm wide, and 12 mm thick.

Another similar plate sits underneath the beam to which the accelerometers are being

installed. Threaded rod and wingnuts secure and tighten the two plates on opposing sides

of the beam (Figure 3.6). This connection system was used as it avoided drilling holes,

gluing to the bridge itself, or marring the surface.

Figure 3.6: Accelerometer mounting system using sandwiching plates

The geometry of the diagonals made installation of the accelerometers close to the

joint prohibitive, thus an alternative mounting was developed to hang the sensors below

the bottom chord. This mounting configuration was only used for the two-bay bridge, since

an offset from the joint in order to use the standard mounting was less significant on the
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longer specimens. Figure 3.7 shows the alternative mounting, which consisted of a slotted

aluminium block attached with screws to the same accelerometer mounting block; all of

which was tightened to the bottom chord using a hose clamp.

Figure 3.7: Accelerometer mounting system using hose clamp

The accelerometers were ideal for monitoring bridge and pedestrian vibrations since

their operable frequency range is 0.1 Hz to 200 Hz with an excitation voltage of 10 V/g

with less than 1% non-linearity and 5% sensitivity.

Three daisy-chained 24-bit 4-channel A/D DAQs, model DT9837A by DataTranslation,

were used to collect the accelerometer data from another laptop. These pre-amplified

DAQs were read by the software VIBpoint, by DataTranslation. Data collection for the

load cells and the accelerometers was necessary due to software, DAQ, and CPU usage

incompatibilities. However, all tests were coordinated to record concurrently. Table 3.2

summarises the DAQ channel, accelerometer ID, and load cell arrangement.
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Table 3.2: Accelerometer placement and channel allotment

DAQ ID DAQ channel Accelerometer ID Calibration (mVs2/m) Location Direction

00 0 25760 989 L/4 Vertical

00 1 26263 987 L/4 Lateral

00 2 25764 980 L/4 Vertical

00 3 25761 977 L/4 Lateral

01 0 25151 998 L/2 Vertical

01 1 25147 986 L/2 Lateral

01 2 26264 1016 L/2 Vertical

01 3 26265 998 L/2 Lateral

02 0 25688 1003 3L/4 Vertical

02 1 25154 988 3L/4 Lateral

02 2 25558 1001 3L/4 Vertical

02 3 26262 992 3L/4 Lateral

3.2.4 Strain gauges and dial gauges

Static deflections of the bridges were recorded to compare with the allowable deflection

from CSA S6-06 and to use for code-based dynamic design. The dial gauge used for this

purpose was a Baty HL series with an accuracy of 0.01 mm. For a reliable measurement,

the dial gauge was used in the middle of its operating range and installed with a magnetic

base underneath the bridge (Figure 3.8).
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Figure 3.8: Dial gauge for static deflection measurements

The strain gauges used in the second phase of testing were Tokyo Sokki Kenkyujo Co.

Ltd, Type FLA-5-23-3L, gauges with a length of 5 mm, and a gauge factor of 2.16 ±1%.

In order to measure chord stresses, one bottom chord was selected. A diagonal near the

bridge support was selected for measuring stress in the diagonal (Figure 3.9). Each strain

channel was excited with 3.5 V and balanced with a 100 k shunt to 2 V. Two strain gauges

were placed on opposite sides of each instrumented member so that axial and bending

strains could be isolated.

Strain gauges were located at the midspan of the selected members to avoid end effects.

These strain gauge channels were added to the eight load cell channels in the DT9837 DAQ

system.

3.3 Testing procedure

For modal analysis of the aluminium pedestrian bridge, ambient and free vibration tests

were conducted. Pedestrian walking tests were then run to observe human-structure inter-
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Figure 3.9: Installation of strain gauges on chord member at midspan

action and for validation of future loading models. The pedestrian walking tests were then

repeated with the strain gauges for future fatigue work of aluminium structures.

Ambient tests were performed for approximately 60 seconds where no loading was

induced on the bridge. These tests were sampled at 500 Hz and were used for verifying

baseline noise levels.

Static design checks were in place to ensure the stability of the structure and the

accuracy of the finite element model to measured results. A person weighing 700 N stood

stationary at midspan where a dial gauge was positioned under the centre of the deck.

The difference between the final and initial reading of the dial gauge is the effective static

displacement, which can be used as a input for the CSA S6-06 deflection checks.

For the free vibration tests, both vertical and lateral-induced forces were applied. For

the vertical impact loading, a dead-blow mallet was dropped from a height of 50 mm to

avoid peaking the accelerometers. To excite lateral vibrations, the hammer test was noted

to overload the accelerometers and thus an alternative weight-release method was used.

For the eight-bay bridge, a rope was tied to the bottom chord of the bridge and pulled
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to give an initial displacement. This rope was then suddenly released to cause an impact

load and incur free vibration. For the fourteen-bay bridge, a pulley system (Figure 3.10)

carrying 100 lbs of weight was used to pre-load the bridge which was then quickly released.

All free vibration tests were run for approximately 20 seconds.

Figure 3.10: Lateral free vibration system for fourteen-bay bridge

For the pedestrian walking tests, previous work on the statistics of walking frequency

determined that the mean and standard deviation were 2.0 Hz, steps per second, and 0.3 Hz

respectively (70). Thus, in order to obtain the desired level of resolution of the gait analysis,

walking frequencies for this study were established from 100 beats per minute (BPM) or

1.67 Hz, to 140 BPM or 2.33 Hz, in increments of 10 BPM. These tests were paired with

running tests at 160 BPM, 170 BPM, and 180 BPM, since previous work confirms feasible

running cadences for up to 3 Hz (70). The weight of each walking participant was taken

as the difference between readings from the load cell when the participant is stationary

and after they leave the bridge. In order for future work to be completed on developing

a load model for walking pedestrians, the participants’ leg length was measured prior to

testing. Using a camera aimed at the legs of the participants, stride length could be also
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be measured.

Walking tests were conducted for one pedestrian, two pedestrians, and pedestrian den-

sities of 0.2 p/m2, 0.5 p/m2, 1.0 p/m2, and 1.5 p/m2 as prescribed by the HIVOSS (39)

code for traffic classes. Table 3.3 denotes the number of pedestrians present for each crowd

test for each specimen.

Table 3.3: Number of pedestrians in crowd tests

Crowd density (p/m2) Two-bay bridge Eight-bay bridge Fourteen-bay bridge

0.2 1 3 5

0.5 2 7 13

1.0 4 15 26

1.5 6 22 39

For each participant or set of participants, there were 30 trials conducted in order to

ensure statistical significance of the results. Additionally, the single pedestrian walking

tests were repeated for six individuals; three men three women, one each of below average,

average, and above average weight and height.

3.4 Test matrix

Table 3.4 summarises the tests conducted on the bridge specimen for this study where

instrumentation is abbreviated for accelerometers (Acc), load cells, (LC), dial gauge (DG)

and strain gauges (SG).
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Table 3.4: Testing matrix for experimental study

Test name Duration (sec) Equipment Description

Ambient 60 Acc, LC, SG No bridge excitation

Impact ≈ 20 Acc, LC Dead-blow mallet

≈ 20 Acc, LC Lateral pulley release

Deflection ≈ 20 DG Midspan deflection from 700 N

person

Weight check ≈ 20 Acc, LC Subject stationary on bridge

Single pedestrian 5+walking+5 Acc, LC, SG 100 BPM to 140 BPM, 10 BPM

increment, 160 BPM, 170 BPM,

180 BPM

Two pedestrians 5+walking+5 Acc, LC, SG Walking synchronously

5+walking+5 Acc, LC, SG One at 115 BPM, one at 130 BPM

0.5 p/m2 5+walking+5 Acc, LC, SG 100 BPM to 140 BPM, 10 BPM

increment, 160 BPM, 170 BPM,

180 BPM

1.0 p/m2 5+walking+5 Acc, LC, SG 100 BPM to 140 BPM, 10 BPM

increment, 160 BPM, 170 BPM,

180 BPM

1.5 p/m2 5+walking+5 Acc, LC, SG 100 BPM to 140 BPM, 10 BPM

increment, 160 BPM, 170 BPM,

180 BPM

In this thesis, the units of beats per minute, BPM, and Hertz, Hz, are both used to

describe walking frequency. To convert from BPM to Hz, divide the number by 60.
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In order to capture the effect of two pedestrians walking synchronously, the test subjects

matched each others’ steps. To ensure a proper asynchronous test, each pedestrian followed

a different walking frequency using independent metronomes.

For the two-bay bridge free vibration tests, five trials were conducted using a dead

blow hammer at the midspan. Each walking test was completed twice since statistical

significance of the test results was not deemed to be of interest for this span.

For the eight-bay bridge free vibration tests, six vertical impact tests were conducted

similar to the two-bay bridge and ten lateral impact trials were run using the laterally-

loaded rope. Walking tests were all consisted of 30 trials of each walking pace. In the case

of the single pedestrian tests, the testing was repeated for each of the eight participants.

The number and type of tests for the fourteen-bay bridge were identical to those of the

eight-bay bridge.

Excitation of the lateral direction was only completed on the eight-bay and fourteen-

bay bridges. The lowest crowd density according to HIVOSS guidelines of 0.2 people

per square meter was ignored for the two-bay bridge since it was the equivalent of one

pedestrian. Conversely, the highest crowd density from HIVOSS, 1.5 people per square

meter, was not obtainable on the eight or fourteen bay bridges due to difficulty fitting that

number of pedestrians on the bridge.

3.5 Specimen description

This section provides the plans for the instrumentation of each bridge and specific notes

about each specimen. Figures 3.11a, 3.11b, 3.11c illustrate the location of each load cell

and accelerometer input, identified by DAQ channel number and direction of installation.
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Boxed labels refer to the load cells and unboxed labels refer to the accelerometers.

The system coordinates for instrumentation was Z-direction positive upwards, Y-direction

across the width of the bridge positive towards the workstation, and the X-direction along

the length of the bridge, starting at 0 to the right of the workstation. Figures 3.12a and

3.12b locate the four strain gauges and their respective channels in the DAQ.

The two-bay and eight-bay specimens were installed at the University of Waterloo in

room E3-2104 on a slab on grade. Measurements of the space determined that the eight-bay

specimen was the largest possible in this space, and thus the fourteen-bay was installed in

the adjacent room E3-2102. The 1 m thick concrete strong floor in this structural testing

lab is 70 ft (21.336 m) long. The centreline of the support beams on either side of the

bridge were aligned with the edge of the strong floor.
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3.5.1 Two-bay bridge

The bridge in its two-bay configuration is 3.048 m long and weighs approximately 280

kg. This is the shortest of the available spans and is constructed by joining the two bridge

sections, designated as the end caps, at the midspan of this length. Figure 3.13 is an overall

view of the structure in the lab. This was the only setup where the midspan accelerometers

were mounted in the downwards position using the hose-clamp mounting system in order

to obtain measurements as close to the midspan as possible. The hose clamp mounts were

installed to the left of the joints as indicated in the schematics.

Figure 3.13: Two-bay bridge overview
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3.5.2 Eight-bay bridge

The bridge in its eight-bay configuration is 12.192 m long and weighs approximately 982

kg. This bridge is constructed by stringing together the endcaps, a 4-bay section, and a

2-bay section. Due to the asymmetry in the assembly, it was predicted this may have an

observable impact on the structure. Since the overall length was much greater for this

specimen than that of the previous, the sandwich-style mounting systems were used for

every location. The mounting was kept as physically close to the left side of the joint as

possible as shown in the setup schematic. Figure 3.14 is an overall view of the structure

in the lab.

Figure 3.14: Eight-bay bridge overview

3.5.3 Fourteen-bay bridge

The bridge in its fourteen-bay configuration is 21.336 m long and weighs approximately

1600 kg. This bridge is constructed by stringing together the endcaps, a 4-bay section, two

2-bay sections, and a 4-bay section. The sections were assembled in a symmetrical manner

63



in order to prevent localised anomalies. Additionally, the 2-bay sections were installed in

the centre since it was observed that the tolerance gap in joints was a major contributor to

the structure’s overall maximum deflection under self-weight. The splice gaps were ”locked”

under self-weight, but their behaviour was not observed during pedestrian loading. The

gaps reduced the effective stiffness of the bridge which changes its vibration characteristics.

Placing the 4-bay sections towards the abutments was done to ensure that these sections

act as cantilevers from the abutments during construction. This was considered in the

build process in order to prevent local stresses or deformations. Figure 3.15 is an overall

view of the structure in the lab.

(a) Side-view

64



(b) End-view

Figure 3.15: Fourteen-bay bridge overview
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Chapter 4

Results

This chapter provides sample data sets and key observations for each type of measurement

—acceleration, load, strain, and displacement —that was captured using the instrumen-

tation previously mentioned. Within each type of measurement is each applicable bridge

specimen. Main highlights of the data and preliminary observations directly inferred from

the data are summarized in this section. Since no comparable experiments have been com-

pleted, results are compared to the first bridge specimen built, the two-bay bridge, and

design codes in Chapter 5. The data from this study are then used for further analysis in

Chapter 5.

4.1 Accelerometer results

Through preliminary analysis of the finite element models built prior to experimental

work, it was determined that the two-bay bridge would experience the highest frequencies.

Within the first twenty modes from the analysis, the natural frequencies reached up to 180
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Hz, and it was determined that the accelerometers should be capable of sensing this range.

For the purposes of future signal processing, the sampling frequency is twice that of the

highest measureable frequency due to a Nyquist value of 2. Thus, accelerations from all

bridge specimens were measured at the same sampling frequency of 500 Hz, in order to

capture frequencies up to a possible 250 Hz.

In the following sections, sample plots are given to illustrate the results of the ac-

celerometer measurements, the remaining of which can be found in Appendix A. Each plot

lists the test type, DAQ channel and geometric configuration of accelerometer.

4.1.1 Impact test acceleration results

Figure 4.1 shows the vertical hammer impact and the lateral pulley release tests for the

fourteen-bay bridge.
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(b) Lateral pulley release, 05+Y

Figure 4.1: Sample acceleration histories from impact tests
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All of the impact tests completed on the bridge specimens —either vertical or lateral

—have all shown the same sharp initiation of acceleration, with an exponential decay back

to rest. This is what was anticipated from these tests in order to determine the natural

frequencies and damping of the structures without pedestrian involvement. The lateral

pulley release test was only developed for the fourteen-bay bridge and the eight-bay bridge

was manually pulled laterally using a rope. Even though the two-bay bridge did not have

a specific lateral test, there was lateral acceleration measured in the lateral accelerometers

during the vertical hammer impact test.

4.1.2 Single pedestrian results

For the purposes of discussion on acceleration results of a single pedestrian, the fourteen-

bay specimens with pedestrians walking at 120 BPM and running at 180 BPM will be

referenced. Figure 4.2 shows the acceleration results from a pedestrian walking at 120

BPM on the fourteen-bay bridge. Figure 4.3 shows the same pedestrian running on the

same bridge at 180 BPM.

As the pace of the pedestrian increases, the time interval between the peaks decreases.

In the first plots, two peaks per second are observed while in the second, three peaks are

observed. The shape of the peaks changes with the increase in pace due to the biome-

chanical nature of walking compared to running. The attack of the peaks increases with

increasing pace due to a more sudden step by the pedestrian.

Additionally, Figures 4.2 and 4.3 show that the vertical accelerations are greater than

the lateral accelerations.

As bridge span increased, the accelerations at the same walking pace also increased.

For example, the peak accelerations for the 100 BPM walking test for the two-bay, eight-
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Figure 4.2: Sample acceleration histories for single person walking at a pace of 120 BPM,

weight: 0.65 kN, leg length: 0.95 m, fourteen-bay

bay, and fourteen-bay bridges are 0.54 m/s2, 0.86 m/s2, and 1.15 m/s2 respectively. These

results were expected since more movement during pedestrian testing was observed on the

eight-bay bridge in comparison to the two-bay bridge. Given a single walking pace over

multiple bridge lengths, the imposed frequency will be constant but the amplitude of the

vibration increased as the span increases, thus an increase in acceleration.

4.1.3 Pedestrian crowd acceleration results

Figure 4.4 shows the acceleration results for a crowd of 0.5 p/m2 of the fourteen-bay bridge.

Figure 4.5 shows the acceleration results for a crowd of 1.0 p/m2.

From Figures 4.4 and 4.5, the number of pedestrians was doubled, but the acceleration

amplitude was not. This shows that the peak acceleration is not linearly related to the

number of pedestrians walking. This was expected from literature that the peak acceler-
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Figure 4.3: Sample acceleration histories for single person running at a pace of 180 BPM,

weight: 0.65 kN, leg length: 0.95 m, fourteen-bay

ation would be approximately proportional to
√
n, where n is the number of pedestrians

(51).

Unlike the single pedestrian tests where all of the peaks were evenly spaced, each

pedestrian in the crowd walked at different paces and at different phase angles, creating

unevenly distributed peaks. Seen in both figures, but particularly evident in the 1.0 p/m2

test, sudden acceleration peaks occur when pedestrians changed their gait to match the

sway of the bridge or had to catch themselves on the handrail. This trend of unevenly-

spaced peaks is evident even in the two-pedestrian synchronous and asynchronous walking

tests, provided in Appendix A.

The fourteen-bay bridge exhibits a higher acceleration sensitivity than the two-bay or

the eight-bay bridges. In particular, the 1.0 p/m2 test for the fourteen-bay bridge shows

a large amplitude, low frequency resonance in the lateral direction, unique to this test on
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Figure 4.4: Sample acceleration histories for 0.5 p/m2 walking, total weight: 9.66 kN,

fourteen-bay

this bridge. As the large crowds were introduced, the combined weight of the bridge and

pedestrians lowered the natural frequency into the resonance range with pedestrian walking

paces. The increase in bridge span increased the lateral sensitivity to acceleration due to

the natural frequencies approaching that of the lateral resonance with walking paces.

4.1.4 Peak and RMS acceleration results

The summary of the acceleration data are presented as the mean of the peak accelerations

per test, and the mean root mean square (RMS) value of each test.

The root mean square (RMS) of a signal is:

RMS =
√

1/n(x21 + x22 + . . .+ x2n) (4.1)
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(b) Lateral, 05+Y

Figure 4.5: Sample acceleration histories for 1.0 p/m2 walking, total weight: 20.32 kN,

fourteen-bay

where values 1 to n are individual data points in a signal. It is a valuable calculation as it

characterises the embedded energy within the signal.

All analyses were completed on all 30 trials of every test. The single pedestrian tests

are those noted by the walking pace, the crowd tests by the pedestrian density, the two

pedestrian tests by ”Sync” and ”Async”, and the impact tests by ”Hammer” and ”Lateral”.

Some tests were not completed for each bridge span (i.e., the 1.5 p/m2 crowd test was only

completed for the two-bay bridge). Figures 4.6 and 4.7 show the mean and standard

deviation of the RMS acceleration. Figures 4.8 and 4.9 show the mean and standard

deviation of the peak acceleration.

For the single pedestrian, both the RMS and peak accelerations increased with an

increase in walking frequency. As the bridge span increased, both the RMS and peak

accelerations increased. Given a single walking pace over multiple bridge lengths, the
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Figure 4.6: RMS acceleration for all bridge spans in vertical direction
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Figure 4.7: RMS acceleration for all bridge spans in lateral direction
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Figure 4.8: Peak acceleration for all bridge spans in vertical direction
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Figure 4.9: Peak acceleration for all bridge spans in lateral direction
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imposed frequency will be constant but the amplitude of the vibration increased as the

span increases, thus an increase in acceleration.

For the pedestrian crowds on the two-bay and eight-bay bridges, both the RMS and

peak accelerations increased with an increase in crowd density. For the fourteen-bay bridge,

the RMS accelerations increase with the crowd size but the peak accelerations do not.

This could suggest that in the relationship between peak acceleration and the number of

pedestrians,
√
n, there is little influence to an increase of crowd size. The energy content of

the signal however, characterised by the RMS of the acceleration, continues to increase with

increasing crowd size. Similarly to the single pedestrian, as the bridge span increased, the

RMS and peak accelerations increased, with the maximum RMS accelerations being for the

1.0 p/m2 crowd test and the 180 BPM running test. The increase in crowd density on the

fourteen-bay bridge does not exhibit the typical relationship of the vertical acceleration

being double of the lateral acceleration. This is likely due to the fact that the natural

frequency of the structure with the weight of the pedestrians is within lateral resonance

range of pedestrian walking paces.

4.2 Load cell results

Load cell data were typically recorded at 500 Hz sampling frequency with the exception

of single pedestrian tests on the two-bay and eight-bay bridges. Walking the length of

the bridge elapsed quickly for these specimens, thus the sampling frequency was increased

to 1000 Hz to obtain a longer data set. Though not covered in the scope of this thesis,

frequency analysis of the load cell data will be completed. For adequate resolution and

frequency range, the sampling frequency was at least double of the maximum desired

frequency attainable. This is due to the Nyquist value of 2, mentioned in the accelerometer
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results section.

All load cell plots are the combination of all four units, thus showing the total load of

the bridge and pedestrian(s). In the following sections, sample plots are given to illustrate

the results of the load measurements, the remaining of which can be found in Appendix

B. Sample plots are consistent with those from the acceleration results.

4.2.1 Single pedestrian results

Figure 4.10 shows the load results from a pedestrian walking at 120 BPM on the fourteen-

bay bridge. Figure 4.11 shows the load from the same pedestrian running on the same

bridge at 180 BPM.
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Figure 4.10: Sample load histories for single person walking at a pace of 120 BPM,

weight: 0.65 kN, leg length: 0.95 m, fourteen-bay

As the pace of the pedestrian increases, the time interval between the peaks decreases.
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Figure 4.11: Sample load histories for single person running at a pace of 180 BPM,

weight: 0.65 kN, leg length: 0.95 m, fourteen-bay

The shape of the peaks changes with the increase in pace due to the biomechanical nature

of walking compared to running. The individual impacts from the heel and toe are visible

on the 120 BPM test, whereas the running tests show a single impact. The amplitude of

oscillation increases greatly with the increase in pace where they oscillate about the mean

weight of the bridge and the pedestrian. This is still observed in the running tests, but is

categorically different since the pedestrian is airborne while transitioning between feet.

Additionally, Figures 4.10 and 4.11 show that the vertical load is greater than the

lateral load. The plots were zeroed at the weight of the bridge, thus the negative load

is the effect of the high amplitude from the walking load. From literature, a pedestrian

will produce a lateral force 10% of their body weight (69). This was completed on a stiff

structure, however, and thus more closely resembles the load results from the two-bay

bridge in Appendix B. The eight-bay and fourteen-bay were more flexible structures, and
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thus the lateral load was closer to 0.3 of the vertical load. The results from the two-bay

bridge were expected to resemble that of the literature and were met. It was also expected

that the longer spans would behave uniquely, though the lateral load contribution was

not predicted, to the two-bay bridge since their first lateral frequencies are much closer to

pedestrian walking paces.

As bridge span increased the peak load above the weight of the pedestrian and the

bridge, given the same walking pace, also increased. The peak load, given a particular

walking frequency, increased with longer bridge spans, as seen in Appendix B.

4.2.2 Pedestrian crowd results

For the purposes of discussion on load results of pedestrian crowds, the fourteen-bay spec-

imens with crowd densities of 0.5 p/m2 and 1.0 p/m2. Figure 4.12 shows the load results

for a crowd of 0.5 p/m2. Figure 4.13 shows the load results for a crowd of 1.0 p/m2.

Peak load remains approximately constant over the various crowd density tests. The

spacing between the peaks is uneven due to the various walking paces of the pedestrians.

The load data, however, follows an overall trend of ramping up and then ramping down of

the load with the oscillations superimposed. With smaller pedestrian crowds, the presence

of each individual can be observed. Again, a ratio of the lateral load to the vertical load

of approximately 0.3 can be observed for the crowd loading tests.

4.2.3 Peak load results

All analyses were completed on all 30 trials of every test. The single pedestrian tests

are those noted by the walking pace, the crowd tests by the pedestrian density, the two
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Figure 4.12: Sample load histories for 0.5 p/m2 walking, total weight: 9.66 kN,

fourteen-bay
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Figure 4.13: Sample load histories for 1.0 p/m2 walking, total weight: 20.32 kN,

fourteen-bay
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pedestrian tests by ”Sync” and ”Async”. Some tests were not completed for each bridge

span (i.e., only the two-bay bridge tested 1.5 p/m2). Figures 4.14 and 4.15 show the mean

and standard deviation of the peak load.
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Figure 4.14: Peak load for all bridge spans in vertical direction

The lateral load for the two-bay and eight-bay bridges are very similar throughout the

single pedestrian tests whereas the laterally-sensitive fourteen-bay bridge registers a greater

load. This was expected given visual inspection during testing and that the fourteen-bay

bridge with the largest crowd weighed enough to be in the lateral resonance range of

pedestrian walking paces. As the walking pace increases, the vertical and lateral loads

increase. The highest attained loads for every bridge is during the largest crowd test

from that bridge (i.e., 1.5 p/m2 for the two-bay bridge and 1.0 p/m2 for the eight-bay and

fourteen-bay bridges). The two pedestrian tests walking synchronously and asynchronously

measure the same load. For the fourteen-bay bridge, the ratio between the peak load and

the total load applied by the pedestrians decreased from 1.4 at 0.2 p/m2 to 0.9 at 1.0 p/m2.
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Figure 4.15: Peak load for all bridge spans in lateral direction

4.3 Strain gauge results

Strain gauges were only installed on the eight-bay and fourteen-bay bridges since the

these two specimens demonstrated observable movement during testing. Only three strain

gauges, two on the bottom chord and the top face of the diagonal, were active during

the tests on the eight-bay bridge. Results were processed with a low-pass filter at 10 Hz,

which is well above the walking frequencies and first natural frequencies of the bridge. The

purpose of the strain data are for future fatigue work on aluminium structures.

In the following subsections, sample strain results were plotted for the eight-bay and

fourteen-bay bridge configurations. Results are plotted as axial and bending strains for

each member on each test. Axial strain is:

εaxial =
εtop + εbottom

2
(4.2)
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and the bending strain is:

εbending =
εtop − εbottom

2
(4.3)

It is important to note that the bottom chord is part of a truss, where the centre of

gravity is above the bottom chord, putting both faces of the bottom chord in tension. The

bending strain recorded here is the bending within the element, and the axial strain is a

measure of the structure’s overall bending strain.

In the following sections, sample plots are given to illustrate the results of the ac-

celerometer measurements, the remaining of which can be found in Appendix C.

4.3.1 Single pedestrian results

For the purposes of discussion on strain results of a single pedestrian, the fourteen-bay

specimens with pedestrians walking at 120 BPM and running at 180 BPM will be refer-

enced. Figure 4.16 shows the strain results from a pedestrian walking at 120 BPM on the

fourteen-bay bridge. Figure 4.17 shows the strain results from a pedestrian walking at 180

BPM on the fourteen-bay bridge.

For the single pedestrian walking frequencies, as seen for the 120 BPM and 180 BPM

tests, there is negligible bending strain in the diagonal and minimal bending strain in

the bottom chord. Axial strain is the predominant measurement, with the strain in the

bottom chord consistently greater than the strain in the diagonal. These results were

expected since the diagonals, top chords, and bottom chords form a truss and the bottom

chord in a simply supported truss would be taking tension. Since the pedestrian walks

from one end of the bridge to the other, the strain in the diagonal is greater when the

pedestrian is closest to the strain gauge and decreases as the pedestrian walks away.
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Figure 4.16: Sample strain histories for single person walking at a pace of 120 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure 4.17: Sample strain histories for single person walking at a pace of 180 BPM,

weight: 0.65 kN, leg length: 0.95 m
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The same ramp up and ramp down trend that was noticed on the load cell plots can be

seen on the 120 BPM strain data. However, strain data from the 180 BPM test oscillates

about zero.

4.3.2 Pedestrian crowd results

Figure 4.18 shows the strain results for a crowd of 0.2 p/m2. Of the fourteen-bay bridge

pedestrian crowd tests, the 0.2 p/m2 was the only set of tests that did not reach the voltage

limits on the amplifier for the strain gauges on the diagonal. The plots of the other crowd

densities are available in Appendix C, however future work on these specimens will require

re-calibration of the voltage amplification.
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4.3.3 Peak strain results

Tables 4.1 and 4.2 summarise the peak strains for the eight-bay and fourteen-bay specimens.

Since only the bottom-face strain gauge was active for the eight-bay bridge tests, neither
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Figure 4.18: Sample strain histories for 0.2 p/m2 walking, total weight: 4.27 kN

the axial nor bending strain could be calculated. Since the bending strain of the bottom

chord is very low in comparison to its axial strain, the structure nearly behaves as an ideal

truss.

Strains for the eight-bay bridge were greater than the fourteen-bay bridge for the single

pedestrian tests, which was not expected. The two pedestrian tests walking synchronously

and asynchronously yielded very similar peak strain results for the eight-bay and fourteen-

bay bridges. Additionally, longer bridge spans result in larger member forces and thus

larger strain values are possible for the crowd loading. As per the load and acceleration

values for the eight-bay bridge, the strain values are greater for walking frequencies that

coincide with the structure’s natural frequencies.

The axial and bending strains in the diagonals of the fourteen-bay bridge, however,

cannot be properly analysed for the 0.5 p/m2 or 1.0 p/m2 crowd densities since the strain

gauges were not electrically calibrated on the amplifier to read such large strain values.
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Table 4.1: Eight-bay bridge strain peak

Bottom chord Diagonal

Test Axial (10−6) Bend (10−6) Bottom (10−6)

µ σ µ σ µ σ

100 BPM 31.14 12.31 3.93 1.05 13.70 5.04

110 BPM 30.54 11.15 3.66 0.89 13.78 4.60

120 BPM 33.83 9.54 3.87 1.24 14.61 3.91

130 BPM 33.06 9.68 4.28 1.11 14.30 3.98

140 BPM 30.01 10.46 4.23 1.18 12.81 4.26

160 BPM 41.09 11.44 6.86 1.99 20.15 5.47

170 BPM 38.86 9.66 7.56 1.67 16.92 3.65

180 BPM 37.23 12.42 6.96 1.86 17.37 5.12

0.2 p/m2 35.96 9.83 6.54 1.62 17.55 4.76

0.5 p/m2 64.56 16.87 10.41 0.89 33.20 7.72

1.0 p/m2 89.58 20.12 19.61 5.12 47.35 10.59

Sync 33.86 10.29 5.15 1.40 14.97 4.24

Async 34.65 10.26 4.73 1.42 16.13 4.32

Other than these anomalies in the highest crowd density tests, in most cases the bottom

chord exhibits higher strains in the faster walking paces and in the diagonal in the lower

walking paces. Faster walking paces incur a higher intensity of impact, imposing a ”bounc-

ing” effect to the bridge. The bottom chord at midspan could be more sensitive to this

movement since it is a longer element and not as well braced at the diagonal.

Since the yield stress of the T-6061 aluminium alloy is 241 MPa, Hooke’s Law can be
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Table 4.2: Fourteen-bay bridge strain peak

Bottom chord Diagonal

Test Axial (10−6) Bend (10−6) Axial (10−6) Bend(10−6)

µ σ µ σ µ σ µ σ

100 BPM 10.47 2.71 2.13 0.59 26.26 2.18 3.29 0.37

110 BPM 11.58 3.42 2.37 0.54 25.62 2.05 3.54 0.50

120 BPM 11.85 6.50 3.49 8.25 29.33 2.45 3.92 0.48

130 BPM 12.82 3.53 2.49 0.54 30.33 3.44 3.86 0.45

140 BPM 12.20 3.94 3.22 1.46 34.61 4.46 3.89 0.78

160 BPM 20.96 4.32 3.52 0.96 59.72 5.92 5.91 2.09

170 BPM 18.18 3.18 3.42 0.86 53.92 5.22 5.38 0.94

180 BPM 18.85 4.64 3.91 1.14 55.13 4.98 5.65 0.64

0.2 p/m2 90.97 26.03 33.18 1.19 25.08 5.44 12.29 9.02

0.5 p/m2 145.19 33.48 75.16 2.03 - - - -

1.0 p/m2 282.91 95.70 80.78 12.31 - - - -

Sync 30.73 2.61 31.08 0.44 35.48 2.19 9.40 0.73

Async 27.42 1.77 31.55 0.52 34.43 2.33 9.01 0.54

used to determine yield strain:

ε =
σ

E
(4.4)

where ε is strain and σ is axial stress. Equations 4.2 and 4.3 were used. The yield stress

of aluminium is 3460 microstrain, 3.46x10−3 m/m. The axial and bending stresses in both

bridge specimens for the single and two pedestrian tests were well within the elastic region

of aluminium. The crowd tests induce larger stresses, most notably on the fourteen-bay

bridge.
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Bending strains on the fourteen-bay bridge reach a peak of approximately 81 micros-

train on the bottom chord. Axial strains on the fourteen-bay bridge reach a peak of

approximately 283 microstrain on the bottom chord.

4.4 Displacement results

Three types of displacements were calculated amongst the bridge specimens: self-weight

deflection, lateral displacement from tests, and vertical deflection due to a 700 N person at

midspan. Self-weight displacements were not measured for the two-bay bridge since little

or no movement was perceived by pedestrians. Midspan self-weight deflection was noticed

on the eight-bay and fourteen-bay bridges. Using high-precision digital civil surveying

equipment, the midspan deflection was 8 mm for the eight-bay bridge, and 69 mm for the

fourteen-bay bridge. The deflection of the fourteen-bay bridge was confirmed by stretching

a piece of piano wire horizontally from each end of the bridge and measuring the deflection

from the wire to the bridge at midspan.

Since lateral displacements on the fourteen-bay bridge were significant during the

1.0p/m2 density tests, a marker was held over a board clamped to the midspan of the

bridge to mark the lateral deflection. The peak-to-peak displacement of the bridge was a

maximum of 120 mm. This large lateral movement led to an investigation of how horizontal

bracing under the deck would affect the amplitude of vibration. The lateral deflection was

measured during the lateral pulley release test, 32 mm, as a repeatable and predictable

source for later comparison.

The vertical deflections under a static 700 N pedestrian at midspan were 0.40 mm, 0.50

mm, and 1.27 mm for the two-bay, eight-bay, and the fourteen-bay bridge respectively.
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The fourteen-bay bridge deflection had a standard deviation of 0.05 mm, the other two

specimens had a standard deviation of zero over three trials.

4.5 Summary

The overall trends from these experiments on the three full-scale pedestrians bridges with

regards to the acceleration, load, and strain data were; all increase with increasing walking

pace; all increase with an increased crowd density, most increased as bridge span increased,

and lateral data were most often less than the vertical (with the exception of the fourteen-

bay bridge under large crowd loading). Strain data for single pedestrians walking did

not increase with increased bridge span. These results were expected since eight-bay and

fourteen-bay bridges compared to the two-bay bridge are significantly longer with higher

member forces and thus be more responsive to pedestrian loading. Another trend is that

the two-bay bridge and the eight-bay bridge behave more similarly than the eight-bay

bridge and the fourteen-bay bridge. Given the results of the finite element analysis of

these specimens, this was expected. The shortest bridge span does not exhibit typical

bridge behaviour since the short chords were very rigid. Construction of more bridge

specimens was not possible for the timeframe of this thesis, but a parametrisation of

bridge span between the eight and fourteen bays would determine the point at which

lateral-sensitivity develops. In the next chapter, these data are used to assess the results

of the finite element models that were built, extract the natural frequencies and damping

ratio from the acceleration data, and calculate DLFs from the load data. These analysis

results are then used to evaluate the bridge specimen’s performance using dynamic design

codes and to propose a preliminary damper design for the fourteen-bay bridge.
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Chapter 5

Analysis

5.1 Finite element analysis

5.1.1 Model setup

Overview

A finite element model of each bridge was constructed to fulfill three purposes:

• to ensure satisfactory static design,

• to predict the fundamental modes in a bridge for optimal sensor placement, and

• to validate the model using the measured data.

Even though similar checks were completed at the design stage of the Make-A-Bridge,

simple element yielding and maximum deflection checks were made possible with the model
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based on the design drawings. In addition to modelling the unloaded static structure, the

design weight of 700 N for a single pedestrian was applied at the midspan along the deck.

This was to check the model behaviour compared to dynamic design checks from CSA

S6-06 (27). Using the highest crowd density from HIVOSS, the bridge was checked for

strength and stiffness to ensure the structure remained elastic under service loads. The

fourteen-bay bridge is compared to the Ultimate Limit State (ULS) of CSA S6-06.

Placement of the accelerometers determined which natural frequencies are captured

based on their mode shapes. A vertical sensor at the midspan, for example, will experience

little to no excitation from the second vertical mode since the midspan is stationary for this

mode. However, a vertical sensor at the quarter span, L/4, of the bridge, will experience

partial excitation from the first mode and the maximum amplitude of the second mode. The

finite element model —through an eigenvalue analysis —identifies all modes of vibration,

from which the optimal sensor arrangement can be designed to capture excitation from

the fundamental modes. Pony truss bridges have an open cross section shape, which will

permit localised modes.

Upon completion of signal processing of the measured data, the accelerometer results

can be compared to the predicted values from the finite element model. Discrepancies

between the measurement data and the model can be due to idealised model assumptions,

connectivity of the members, or structural behaviour not present in the simplified model.

Due to the symmetry and constant cross section of this pony-truss bridge, in conjunction

with ideal symmetric and anti-symmetric mode shapes, it was determined that sensors

should be placed at L/4 and L/2.

Despite only building full-scale structures for the two-bay, eight-bay and fourteen-bay

bridges, finite element models were built of all possible lengths from two bays to fifteen

bays, in increment lengths of one bay. The construction methodology was extrapolated to
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bridge lengths of up to twenty bays. Breaks in the elements were inserted in the model

where the splice joints occur on the full-scale bridges to allow for modification of the

connectivity properties. The following sections outline the material, cross-section, and

connection properties of the finite element models.

Model inputs

The finite element models were constructed using the structural analysis software, SOFiSTiK

FEA 2013 (82), which includes structural design and modal analysis capabilities. The as-

sumed properties of T6061 aluminium include a specific weight of 26.6 kN/m3, and Young’s

modulus of 69637 MPa. All sections in the models were simulated as frame elements, ca-

pable of resisting axial and bending forces. No damping was explicitly entered into the

computer model.

Definition of the cross sections, with exception to the bottom chord and the longitudinal

deck stringers, had to be simplified due to the complexity of the cross-section shapes of

the extruded aluminium members. The tubular extruded sections of the bridge, diagonal

and transversal, were modelled as tube cross sections with a wall thickness to reflect the

true cross-sectional area of these members. The top chord was modelled as a rectangular

section of the same dimensions as the true section with an equivalent wall thickness. Since

modal analysis of structures often leads to inaccurate estimate when connecting plate or

shell elements to frame elements, the deck was not directly modelled. Instead, the weight of

the deck was incorporated into the bottom chord, transversals, and stringers as an increase

in material density. Since the deck was only attached to the transversals through a set of

U-bolts, it was determined that the deck does not provide significant lateral stiffness to

the structure.
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In addition to these section property definitions, an additional fictitious member was

created to model a stationary 700 N pedestrian at the midspan. The weight was modelled

by modifying the material density of this member so that the overall weight of the structure

increased by 700 N. Since the closest element to the midspan changes depending on whether

the bridge has an even or odd number of bays, the pedestrian load was modelled on the

midspan transveral for even-numbered bay bridges, and on the midspan stringer for odd-

numbered bay bridges. This method was used instead of modelling a point load as to

ensure that the mass of the pedestrian was included in the modal analysis, rather than

just an excitation force.

Connectivity

The Make-A-Bridge product employs bolted rather than welded member connections.

Welding around an entire joint can be considered a fully moment-restrained connection,

however bolted connections can experience minor slip and rotation. Based on the construc-

tion of the bridge specimens, the following end releases in the global coordinate system

were implemented for the model to more accurately predict the structural response:

1. moment about y and z axis released (lateral and vertical), allowing free rotation about

the x axis for the connection of the ends of the top chord to the vertically-aligned

diagonal members,

2. moment about y axis released (lateral), allowing free rotation in the vertical (x-z)

plane, at the splice locations on the top chord,

3. moment about y axis released (lateral), allowing free rotation in the vertical (x-z)

plane, for the connection of the diagonals into the top chord, and
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4. moment about z axis released (vertical), allowing free rotation in the horizontal (x-y)

plane, for the connection of the transversals to the stringers.

Figure 5.1 locates the joint releases in the finite element models.

Figure 5.1: Joint releases of the finite element model to simulate bolted connections

The first type of release originates from the diagonals being connected inside the top

chord with a single bolt, which is an ideal manifestation of a pin-connected joint. The sec-

ond type of release accounts for the possible movement of the U-bolts along the transversal.

Additionally, movement that was not modelled was the possible moment release of the di-

agonals and the transverse members within the cast joints due to the neoprene sleeves.

Not only could this have allowed for movement but may have affected the damping ratio

of the bridge specimens.

5.1.2 Modal analysis results

Eigenvalue, or modal, analysis is a mathematical method to solve for the natural frequen-

cies, damping ratio, and mode shape for multi-degree of freedom system. The equations
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that explain the motion of each mass are linearized and solved using linear algebra. The

active participating mass is the percent mass of the structure that is contributing to a

particular mode.

Modal analysis results from finite-element models provide all possible modes of vibra-

tion (number equal to the degrees-of-freedom). However, only a fraction of these modes

can be measured using sensors, due in part to sensor placement and low energy associated

with many higher modes. Tables 5.1 summarises the vibration modes predicted by the

finite element models of the two-bay, eight-bay, and fourteen-bay bridges. Modal mass per

mode is reported as a mass fraction of the bridge that is actively engaged in that mode.

Figures 5.2, 5.3, and 5.4 show the finite element analysis of the first mode for each

bridge specimen. All remaining figures of the finite element modal analysis are provided

in Appendix D. Note that the magnitude of the member forces are indicated by the colour

gradient, where blue is the minimum and red is the maximum.

Figure 5.2: First mode from two-bay bridge FE model: 7.6 Hz
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Figure 5.3: First mode from eight-bay bridge FE model: 2.3 Hz

Figure 5.4: First mode from fourteen-bay bridge FE model: 0.9 Hz
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Table 5.1: Finite element results for two-bay, eight-bay, and fourteen-bay bridges

Two-bay bridge Eight-bay bridge Fourteen-bay bridge

fn (Hz) Modal mass (%) fn (Hz) Modal mass(%) fn (Hz) Modal mass (%)

7.6 18.1 2.3 48.7 0.9 46.6

8.1 19.7 6.1 42.3 2.2 49.6

15.4 38.7 8.1 19.5 3.9 43.6

17.9 11.4 9.8 24.6 5.1 43.7

18.6 10.4 11.0 41.6 5.8 12.9

31.7 30.1 11.8 9.5 5.8 40.7

34.1 8.9 14.3 9.2 7.8 34.1

37.9 8.2 15.8 7.0 7.9 12.0

40.5 23.1 16.9 31.8 9.4 9.4

44.1 10.7 18.0 7.2 9.8 27.6

44.1 10.2 19.9 27.7 11.2 10.6

50.1 16.2 23.3 27.9 12.0 5.1

59.9 28.4 24.0 6.1 12.2 13.9

88.1 29.9 24.7 32.1 12.4 7.9

109.5 10.3 26.5 6.3 14.5 13.6

119.3 6.0 31.3 41.3 14.7 4.4

138.5 16.5 32.1 24.8 15.3 16.1

138.5 9.7 37.2 37.3 15.6 8.3

161.4 21.5 38.6 9.3 17.3 6.4

180.9 19.4 38.9 24.4 17.4 3.9

Appendix D contains images of the resulting mode shapes from each of the natural
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frequencies in Table 5.1. From these mode shapes, the first few modes of each direction

of movement, vertical, lateral, and torsional, can be identified visually. Several of the

modes solved by the finite element software will either be local modes or coupled modes

introducing vibration in multiple planes. Table 5.2 summarises the significant mode shapes

for each bridge specimen.

Table 5.2: Significant modes for two-bay, eight-bay, and fourteen-bay bridges

Two-bay bridge Eight-bay bridge Fourteen-bay bridge

fn (Hz) Mode shape fn (Hz) Mode shape fn (Hz) Mode shape

15.4 1st lateral 2.3 1st lateral 0.9 1st lateral

40.5 1st vertical 6.1 2nd lateral 2.2 2nd lateral

109.5 1st torsional 16.9 1st vertical 3.9 3rd lateral

23.3 1st torsional 5.0 1st vertical

32.1 2nd vertical 5.8 1st torsional

47.9 2nd torsional 7.8 4th lateral

12.0 2nd vertical

21.9 2nd torsional

The Make-A-Bridge product was specifically fabricated so that various spans from two

bays to fifteen bays, in one bay increments, could be built. Due to timing of the project, not

all of these spans were built, but all of the finite element models were created. Additionally,

specimens with spans up to twenty bays were constructed in the finite element analysis

software using the same segment lengths (Figure 5.5).
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Figure 5.5: First vertical and first lateral natural frequencies from SOFiSTiK finite

element model of all bridge spans

5.1.3 Connectivity-sensitivity analysis

Previously, an in-place aluminium bridge in Brossard, Queb́ec, was subjected to dynamic

testing and analysis of natural frequencies and modes shapes (87). This was a 44 m span

welded aluminium pedestrian pony truss bridge. Due to the welded connections, the finite

element model was such that all the members were fixed about each axis. The specimens

under investigation were bolted, however, and thus experienced some degree of rotation.

With this in mind, the models were assessed to study the effects of connectivity restraints.

From this assessment, it was found that the degree of restraint greatly influenced the

resulting natural frequencies.

The natural frequencies from the models cannot be compared directly, as the restraints

alter the global dynamic behaviour (and hence the resulting modes) of the structure. In-

stead, the relative error in the fundamental frequency and the last frequency was recorded

for each specimen. For each specimen, the global trends of the first few modes will be
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discussed.

Table 5.3 shows the first 3 modes and the first vertical modes for the bolted and welded

bridge models of the two-bay bridge. For the two-bay bridge, the first natural frequencies

were 7.6 Hz and 9.0 Hz for the bolted and welded models respectively. Both of these modes

were a combination of vertical and lateral vibrations. The second and third modes in both

models are both lateral modes, and the third mode is a weak longitudinal movement within

the deck.

Table 5.3: Bolted and welded FE models of two-bay bridge

Mode Bolted (Hz) Welded (Hz)

1 7.6 9.0

2 8.1 10.6

3 17.2 21.0

Vertical 40.5 42.0

Table 5.4 shows the first 3 modes and the first vertical mode for the bolted and welded

bridge models of the eight-bay bridge. In both of the bolted and welded models, the first

natural frequency was a strong lateral mode. The second and third modes resulting from

the finite element model were weak lateral and torsional modes respectively.
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Table 5.4: Bolted and welded FE models of eight-bay bridge

Mode Bolted (Hz) Welded (Hz)

1 2.3 3.5

2 6.1 8.4

3 8.1 9.2

Vertical 16.9 18.2

Table 5.5 shows the first 3 modes and the first vertical mode for the bolted and welded

bridge models of the fourteen-bay bridge. Similar to the two-bay and eight-bay bridges,

the mode types remain the same whether the bridge is simulated as a bolted or welded

structure. The difference, however, is the increase in stiffness that occurs due to the fully

moment-connected joints from welding.

Table 5.5: Bolted and welded FE models of fourteen-bay bridge

Mode Bolted (Hz) Welded (Hz)

1 0.9 1.7

2 2.2 3.8

3 3.9 6.3

Vertical 5.1 7.6

5.2 System identification

In this section, the signal processing tools investigated in this thesis are discussed, including

Fast Fourier Transform (FFT), power spectral density, and second-order blind identification
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(SOBI). The FFT allows for maximum extraction of natural frequencies, which is useful

for comparison to the finite element model. The power spectral density is a rudementary

form of a second order statistical analysis of the signal, which identifies the highest energy

mode. Lastly, SOBI is a more complex statistical analysis which can separate multiple

natural frequencies based on the quality of the signal and the number of measurements. In

this thesis, the power spectral density and SOBI methods are only used for the first natural

frequencies in the vertical and lateral directions, where SOBI is then used to extract the

damping ratios of those modes.

5.2.1 Fast Fourier Transform

The simplest form of frequency domain analysis is to perform a Fast Fourier Transform

on the time-series data collected by the instrumentation. Since the impact loading tests

do not impose a forced frequency, peaks in the FFT from these data sets correspond to

the natural frequencies of the structure. Figures 5.6, 5.7, and 5.8 show sample FFT plots

of both vertical and lateral accelerometers at midspan. Since a direct lateral test was not

performed for the two-bay bridge, the lateral data from the hammer test are shown instead.
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Figure 5.6: Two-bay bridge FFT from hammer impact test
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Figure 5.7: Eight-bay bridge FFT, vertical from hammer impact test and lateral from

lateral pulley release test

Table 5.6 shows the mean and standard deviation of the FFT peaks over all of the
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Figure 5.8: Fourteen-bay bridge FFT, vertical from hammer impact test and lateral from

lateral pulley release test

impact tests. Results from both hammer impact and lateral pulley release tests are included

in this table.

The FFT of the two-bay bridge contains many closely-spaced frequencies in the higher

mode range. The presence of closely-spaced modes presents significant challenges to many

signal-processing methods because these techniques rely on well-separated peaks. A trend

that emerged in the eight-bay and fourteen-bay bridges in the lateral direction is that

the first lateral frequency is a highly damped one (due to a very rounded peak), possibly

caused due to slippage between the bridge supports and the underlying support structure.

Furthermore, the spacing between the frequency peaks increases, making the process of

modal identification (explained later) easier for the longer span.
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Table 5.6: FFT natural frequencies from bridge specimens

Two-bay bridge Eight-bay bridge Fourteen-bay bridge

µ σ µ σ µ σ

7.2 0.03 2.3 0.12 1.4 0.00

17.4 0.12 4.9 0.10 2.5 0.07

28.5 0.15 6.8 0.15 4.9 0.11

34.4 0.25 7.8 0.51 6.1 0.08

40.4 0.33 9.1 0.11 8.1 0.48

45.3 0.35 10.0 0.09 8.3 0.50

49.5 0.58 11.9 0.07 9.1 0.00

60.4 0.68 15.6 0.91 11.3 0.29

90.4 1.20 16.4 0.16 12.0 0.00

109.0 2.52 23.0 0.24 13.4 0.13

121.0 1.83 25.7 0.56 14.7 0.22

137.2 0.28 29.9 1.38 16.2 0.00

32.9 0.22 20.5 0.08

35.5 0.40 21.4 0.00

39.2 0.03 24.6 0.00

41.5 0.21 24.6 0.00

44.5 1.03 27.6 0.00

48.7 0.07 31.0 0.77

51.7 0.57 32.8 0.16

56.5 0.90 34.9 0.08

60.7 3.29

65.4 0.98
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5.2.2 Power spectral density

Another statistical signal processing tool to extract the frequencies of the highest energy

is to calculate the power spectral density. Given an excitation, F (t), using the convolution

theorem, the response can be written as (100):

X(t) =

∫ ∞
−∞

F (t)h(t− τ)dτ (5.1)

where the mean response is the expectation (100):

E[X(t)] =

∫ ∞
−∞

E[F (t)h(t− τ)]dτ (5.2)

Taking the cross-correlation of the random signal and itself given a time lag, τ , called the

autocorrelation RXX(τ), allows for a further analysis of the signal properties as follows

(100):

RXX(τ) = E[X(t)X(t+ τ)]

= E[
∫∞
−∞ h(τ1)F (t− τ1)dτ1

∫∞
−∞ h(τ2)F (t+ τ − τ2)dτ2]

=
∫∞
−∞

∫∞
−∞ h(τ1)h(τ2)E[F (t− τ1)F (t+ τ − τ2)]dτ1dτ2

=
∫∞
−∞

∫∞
−∞ h(τ1)h(τ2)RFF (τ + τ1 − τ2)dτ1dτ2

(5.3)

The Fourier transform of RXX(τ) results in the power spectral density in the frequency

domain:

SXX(ω) =

∫ ∞
−∞

RXX(τ)e−iωτdτ (5.4)

Table 5.7 summarises the results from the free vibration tests on the bridge specimens.

For each hammer impact or lateral pulley release test, the lowest frequency peak —in

most cases the only peak —was selected. The population mean and standard deviation

was taken of these results. Results from the power spectral density confirm the results

obtained from the FFT of the raw vibration signals with the exception of the fourteen-bay

bridge vertical frequency.
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Table 5.7: Power spectral density frequency analysis

Two-bay bridge Eight-bay bridge Fourteen-bay bridge

µ σ µ σ µ σ

First vertical 40.2 0.20 16.2 0.04 3.8 0.35

First lateral 17.5 0.04 2.3 0.04 1.4 0.02

5.2.3 Second-order blind identification

As detailed previously in Chapter 2, this second-order statistical analysis uses the autocor-

relation of the signal to solve the inverse problem of separating the individual structural

frequencies and the associated mode shapes. It was noted that these bridge specimens have

very closely spaced natural frequencies in the frequency domain, making traditional modal

estimation methods very difficult. While the method did not yield meaningful results

for the short span, the first vertical and lateral modes for the eight-bay and fourteen-bay

bridges were successfully determined using this method. A time lag of 500 was used for this

purpose. Many of the SOBI results above the first vertical or first lateral mode contained

mixed frequencies, and were thus not well-separated. Table 5.8 summarises the mean and

standard deviation of damping, µξ and σξ respectively, for that given averaged natural

frequency from the previous table, µf .
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Table 5.8: Results from the second-order method

Eight-bay bridge Fourteen-bay bridge

µf (Hz) µξ σξ µf (Hz) µξ σξ

Vertical 16.6 0.097 0.056 4.97 0.148 0.083

Lateral 2.34 0.320 0.172 1.33 0.361 0.16

Damping estimate using decaying exponential

The rate at which the energy decays in a signal after an impact test is a function of

the structural damping. Using a simple exponential decay trend, the damping could be

approximated for all bridge spans (Table 5.9). The table also references the frequency to

which the decaying trend was applied. It is important to note that this method, while

extensively used in the field, yields correct results only for simple systems where most of

the structural response is contained in a single mode. Hence, not surprisingly, the results

do not correspond well with the second-order method, as for the bridge spans considered

here there is contribution from several modes which makes the results less reliable.

Table 5.9: Exponential decay approximation of damping

Two-bay bridge Eight-bay bridge Fourteen-bay bridge

µf (Hz) µξ σξ µf (Hz) µξ σξ µf (Hz) µξ σξ

Vertical 17.5 0.009 0.002 16.6 0.03 0.002 4.97 0.06 0.02

Lateral 40.2 0.02 0.007 2.34 0.20 0.04 1.33 0.25 0.09
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5.3 Design code comparison

In the following sections, the bridge specimens are evaluated on the dynamic criterion from

the Canadian design standards and the European HIVOSS footbridge guide (27)(39). The

goals are to:

• determine where the specimen bridges lie on the spectrum of dynamic performance

for each code, and

• determine the accuracy of the empirical equations for maximum acceleration.

5.3.1 CSA S6-06

The Canadian Highway Bridge Code C3.4.4 (Commentary on CAN/CSA-S6- 06, Cana-

dian Highway Bridge Design Code) recommends checking values for a single pedestrian

(weighing 700 N) against the serviceability criteria prescribed in their commentary. If the

first flexural frequency is above 4 Hz, it is reduced by up to 70% at greater than or equal

to 5 Hz. This code only applies to bridges above 10 m, therefore the two-bay bridge is

not included in the analysis but its measured results are provided for comparison to the

other specimens. Table 5.10 summarises the dynamic code applied to the eight-bay and

fourteen-bay bridges assuming a 0.8% damping.

Using the fourteen-bay bridge as an example calculation, the dynamic response factor,

Ψ, for this bridge length is 7.5. The static midspan deflection due to the 700 N person was

1.27 mm. The first flexural frequency is 4.9 Hz, above 4 Hz, and is therefore scaled down

by a portion the 70% reduction factor for an effective frequency of 1.8 Hz. Therefore, using
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the calculation from Chapter 2:

amax = 4π2f 2
1wSKΨ

= 4π2(1.8Hz)2(0.00127m)(1)(7.5)

= 1.22m/s2

(5.5)

Table 5.10: CSA S6-06 single pedestrian acceleration

Pace (Hz) Peak acceleration (m/s2)

Two-bay Eight-bay Fourteen-bay

CSA S6-06 - 2.58 1.22

1.67 0.67 0.73 1.08

1.83 0.62 0.75 1.02

2.00 0.60 1.14 0.99

2.17 0.82 1.08 0.95

2.33 1.01 1.90 1.25

2.67 1.87 1.37 2.05

2.83 1.94 1.61 2.15

3.00 3.08 1.81 2.44

Of the specimens considered, the first flexural frequency for the two-bay bridge (7.2

Hz) is outside the range considered dynamically sensitive by CSA S6-06. The first flexural

frequencies for the eight-bay and fourteen-bay bridge are 2.3 Hz and 1.4 Hz, respectively

(5.6). Based on these values, the predicted peak accelerations using the simplified methods

are listed in the first row in Table 5.9. Note that the directionality (whether the first flexural

mode is a vertical, lateral, or coupled) is ignored in this simplified calculation. CSA S6-06
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states that the first flexural frequency is to be used ignoring torsional contributions, without

providing explanation as to what exactly this means. For this thesis, this is interpreted as

the lowest frequency achieved from an eigenvalue analysis using the finite-element model.

CSA S6-06 recommends a detailed dynamic analysis where the bridge dynamics contain

multiple modes below pedestrian walking range of 4 Hz, but this is not pursued in this

thesis.

Using the maximum acceleration due to a single pedestrian walking on each specimen

span and the CSA predicted design acceleration, the maximum bridge span that does

not exceed the design standards is 15.4 m (Figure 5.9). The consequence of exceeding

the maximum acceleration is a violation of the serviceability limit states, therefore the

movement will be great enough for pedestrians to feel unsafe.
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Figure 5.9: CSA S6-06 design compared to measured acceleration

For static strength and deflection requirements, CSA S6-06 clause 3.8.9 prescribes the
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maximum of 4.0 kPa to all three bridge specimens for the Ultimate Limit State (ULS).

This is a much greater distributed load than prescribed by HIVOSS. This thesis does not

contain a full code design check of the bridge specimen, though maximum compressive and

maximum tension stresses were extracted from the finite element model of the fourteen-

bay bridge. Since the fourteen-bay bridge is the most flexible, its finite element model was

subjected to the static load. With this load on the finite element model, the maximum

tension stress located in the bottom chord and is 35 MPa. The maximum compressive

stress is located in the top chord and is 55 MPa. The calculated stresses are moderate

compared to the yield strength, but that a more rigorous check is needed to verify that all

Code strength requirements are satisfied. Midspan deflection is L/402 which does not have

a prescripted maximum, but AASHTO LRFD recommends L/1000 for pedestrian bridges

(1).

5.3.2 HIVOSS

Unlike the CSA standard, HIVOSS guidelines 4.3.1 (39) focus on crowd loading, not on an

individual pedestrian. The philosophy used here is that generally the governing loads are

contributed from multiple pedestrians, not an individual pedestrian. This is also consistent

with observed failures on footbridges. The crowd densities in this thesis were selected to

match the boundary values between traffic classes according to the HIVOSS guidelines in

Chapter 2. Table 5.11 lists the recorded peak accelerations for the three bridge configu-

rations. These tests involved volunteers walking on the bridge, corresponding to various

crowd densities. Crowd tests were repeated three times, thirty times, and ten times for

the two-bay, eight-bay, and fourteen-bay bridges respectively. The mean of all peak accel-

erations were recorded and then classified according to the comfort class levels defined in
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HIVOSS (Table 5.11).

Table 5.11: Measurements and HIVOSS crowd acceleration classification

Crowd density Peak acceleration (m/s2)

(p/m2) Two-bay Eight-bay Fourteen-bay

Vertical Lateral Vertical Lateral Vertical Lateral

0.2 N/A N/A 1.79 1.16 4.20 2.67

0.5 1.50 1.25 3.72 1.92 4.05 2.96

1.0 1.93 1.54 2.90 1.85 4.26 3.90

1.5 2.44 1.74 N/A N/A N/A N/A

Legend CL 1 CL 2 CL 3 CL 4

Results from tests show that none of the bridge specimens experienced less than 0.5

m/s2 of acceleration, the HIVOSS prescribed limit of comfortable acceleration, but with

the shortest specimen, the amplitude of vibrations were very small, therefore barely any

movement could be noticed. The fourteen-bay bridge experienced significant oscillations,

beyond the acceptable level of comfort prescribed by the codes. The resulting motion

caused imbalance, where test subjects reported significant difficulty maintaining their bal-

ance while walking.

The design process in HIVOSS to calculate the maximum acceleration, detailed previ-

ously, is not applicable for these bridges. The scaling factor of resonance between pedestri-

ans’ walking pace and the bridge’s natural frequency does not account for the frequencies

of the bridge specimens. Additionally, the number of pedestrians present for the 0.2 p/m2

crowd tests on all bridges is below the minimum threshold of the HIVOSS guidelines. The

traffic class below 0.2 p/m2, called very weak traffic, consists of 15 pedestrians.
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5.4 Dynamic load factors

The work previously conducted by Rainer (71) used a very stiff simply supported structure

with a fundamental frequency of 12.0 Hz, for the pedestrians to walk across. The two-bay

bridge from this thesis is such that its first flexural frequency is well beyond the walking

frequency range, which makes it ideal to validate the results from Rainer’s work. DLFs

are embedded in all design codes, including CSA S6-06 for dynamic design.

The DLFs were calculated by extracting each peak from ten trials of each test and

taking the mean of these peaks. The weight of the bridge and the pedestrian were then

subtracted from these peak values, leaving the amplified load. The DLF is then the ratio

between this amplified load and the weight of the pedestrian. The mean and standard

deviation was taken of the DLFs from all thirty trials, given one walking frequency. Figure

5.10 summarises the dynamic load factors for both walking and running cases.

Referring back to the conclusions from Rainer’s work in Chapter 2, Figure 5.10 exhibits

similar trends for the DLFs over the various frequencies for walking and running tests. The

measured DLFs for walking are between 0.5 and 0.7 and for running are between 1.4 and

1.8. From Rainer’s work, the DLFs for walking frequencies are between 0.3 and 0.6 and

running frequencies around 1.4. In the tests conducted here, the peak walking DLF occurs

at 2.17 Hz, rather than 2 Hz as noted by Rainer, and the DLF corresponding to running

are also higher. These differences may be attributable in part to the rather short span of

the bridge, which resulted in very short duration test data.
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Figure 5.10: Two-bay bridge DLF

5.5 Tuned mass damper design

The following is a simple case study to illustrate a tuned mass damper design using the

properties of the fourteen-bay bridge. With a total mass of approximately 1600 kg, the

modal mass is 0.5m, thus the active mass in the calculations is 800 kg. The first lateral

of 1.4 Hz is highly damped with over 10% structural damping. However, assuming a 1%

damping, a mass ratio of 0.02m̄ yields an amplitude ratio of approximately 5.5. Please

note that a significantly higher value of lateral damping was obtained (10%) due to the

slip between the bridge and the supports. This is to say that if the bridge experiences a

maximum lateral amplitude of 25 mm, then the peak stroke of the damper, would be 275

mm. This will be limited using a damper attached in parallel to the elastic element in the

tuned mass damper. At a mass ratio, m̄, of 0.02 m and damping, ξ of 0.01, the following
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properties result:

fopt = 0.972

ξd|opt = 0.089

ξe = 0.059

(5.6)

Thus, the damper properties with relation to the main structure are:

md = 0.02m = 0.02(800kg) = 16kg

ωd = 0.972ω = 0.972(1.4 ∗ 2 ∗ π) = 8.6rad

kd = m̄f 2
optk = 0.0190k = 0.0190ω2 ∗m = 1170N/m

(5.7)

Therefore, a tuned mass damper of 16 kg with a spring constant of 1170 N/m would

allow for a maximum lateral bridge movement of 50 mm. The optimal damping ratio of

the TMD would be 8.9% for a primary structure damping of 1.0 %. Since the first lateral

mode is of primary concern, this damper will be located at the midspan of the bridge. For

ease of construction, the TMD could be split into two separate masses, both located in

proximity to each other near the midspan. This damper design is based on fundamental

principles and these parameters will be used in future work for the design and testing of

a TMD for this bridge specimen. Two proposed designs are: to install two static TMDs

under the traverse members or to design a mobile TMD that can drive on the deck surface

to optimise its location for maximum damping.

5.6 Lateral bracing

5.6.1 Modelling lateral bracing

Two types of lateral bracing were used: a single diagonal per bay, called ”N-bracing”, and

two diagonals per bay, called ”X-bracing”. The lateral bracing consists of angle sections of
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aluminium, bolted into the web of the cast joints between the transversal and the bottom

chord. In the case of the X-bracing arrangement, the angles are secured together at their

intersection.

The finite element model of the fourteen-bay bridge was modified to incorporate both

N-bracing and X-bracing. Components were added as pin-jointed elements to the existing

nodes. The modifications to the original structure changed the first natural mode from

lateral at 1.1 Hz to torsional at 3.6 Hz for N-bracing and 3.8 Hz for X-bracing. There

was a significant change in the natural frequency and the mode shape between the original

structure and those with either form of bracing. In the finite element model, the modal

displacement at the midspan between the original structure and that of the N-bracing is

reduced by a factor of approximately 1.5.

5.6.2 Measuring the effect of lateral bracing

Lateral impact and crowd loading tests were performed with both the N-bracing and X-

bracing. Crowds consisted of 10 pedestrians for the N-bracing tests and 20 pedestrians for

the X-bracing tests. Crowd size was selected based on the maximum number of participants

available for the test. The primary mode of vibration clearly changed from lateral in

the case of no bracing to torsional for the braced cases. The FFT calculated from the

accelerometer data shows the dominant modes (Table 5.12). These frequencies were present

in the lateral impact and pedestrian crowd tests as well.
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Table 5.12: Measured torsion and vertical modes from horizontally braced bridges

N-bracing (Hz) X-bracing (Hz)

1st torsion 2.5 2.6

1st vertical 4.9 4.8

2nd torsion 7.7 8.2

The average acceleration RMS from the set of N-bracing tests is 0.36 m/s2 and of X-

bracing tests is 0.43 m/s2, sensors at midspan at locations 04+Z and 05+Y. Since these

values are in the same range as those noted for the crowd tests without bracing, it can

be inferred that the energy contained in the signal from braced and unbraced structures

is very similar; however, the mode of dissipation is greatly different (lateral mode in the

un-braced case to coupled modes in the braced cases). The unbraced mode moves laterally

and dissipates energy through the friction contact between the deck plates and at the

supports. The braced mode moves torsionally and is a much stiffer structure.

Using the finite element models, the first natural frequency of the bridge with a torsion

mode 3.6 Hz and 3.7 Hz for N-bracing and X-bracing respectively. Measured results are

subject of future work not in this thesis.

Since the lateral displacement of the structure without bracing was of interest, the

lateral displacement due to the lateral load was measured for both types of bracing. This

consisted of laterally loading the bridge with two 50 lb weights using a pulley system.

When loaded with 100 lb, the N-bracing resulted in 6 mm peak displacement and the X-

bracing resulted in 3 mm of displacement. In comparison, without any bracing, the same

lateral load resulted in 32 mm displacement amplitude, greater by a factor of 5.3 compared

to N-bracing. Thus, the presence of bracing greatly increases the lateral stiffness of the
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structure.

5.6.3 Geometric sensitivity

So far in this thesis, the alternatives for reducing structural vibration amplitudes have been

to install horizontal bracing or to design a tuned-mass damper. These measures focused

on the fourteen-bay bridge due to its large lateral movements under crowd loading during

the laboratory experiments. Another alternative when analyzing the design of aluminium

pony truss bridges is to parametrise the height between the top and bottom chords or the

width of the bridge, and observe the resulting changes to its dynamic properties.

A preliminary analysis of the fourteen-bay bridge was completed based on the finite ele-

ment models without bracing, N-bracing, and X-bracing. From each model, two variations

were created where only the width or the height were manipulated, but not simultaneously.

The weight of the bridge is more sensitive to changes in the width of the bridge compared

to changes in the height. In order to compare the effect of the changing either set of dimen-

sions, the weight of the widened or heightened bridges were held constant. The natural

frequency of the first lateral/torsional and the first vertical modes were checked for changes,

as well as the modal displacement at the midspan. The displacements produced by the

simulation were true to nature, but the relative changes between these displacements were

useful for comparing the behaviour of different bridge spans.

Manipulating the width of the braceless bridge had no effect other than a small fre-

quency change due to the added mass. Increasing the height, however, quickly increased

the first vertical natural frequency to well out of the pedestrian walking frequency. The

N-bracing and X-bracing models behaved nearly identically. Increasing the width also in-

creased the natural frequency of the first torsion mode, but this had no effect on the natural
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frequency of the first vertical mode. Increasing the height of the top chord increased the

natural frequency of the first vertical mode, but had no effect on the torsional mode. Since

the lateral or torsional mode on all three bridge models are within the range of pedestrian

walking influence, the most effective design change would be to increase the deck width.

For the braced models, a width increase of 200 mm, 500 mm, and 1000 mm results in a

torsional frequency increase of 0.4 Hz and 0.6 Hz, and 0.7 Hz respectively. If the bridge

was widened by 1000 mm and held a live load of 4 kPa as per CSA S6-06 clause 3.8.9, the

maximum tension stress is 50 MPa in the bottom chord and the maximum compressive

stress in the top chord is 75 MPa. The midspan deflection would be 73 mm, thus L/292,

which is well above the AASHTO LRFD suggested L/1000 deflection recommendation. In

varying the height between the top and bottom chords, a height of 2.5 m would ensure that

the AASHTO deflection recommendation is satisfied. Though this increases the vertical

natural frequency, deepening the truss is independent of the lateral frequencies, which are

of concern on the fourteen-bay bridge.
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Chapter 6

Conclusions & recommendation

6.1 Conclusions

The dynamic behaviour of aluminium pedestrians bridges was assessed; experimentally

with full-scale specimens, theoretically with finite element models, and empirically using

design codes. Conclusions are based on an extensive set of experimental trials on bolted

aluminium pony-truss bridges of two-bay, eight-bay, and fourteen-bay spans.

The finite element models of the bridge specimens yielded the same natural frequencies

and mode shapes as the measured data from the accelerometers. Connections in the finite

element model included releases of degrees of freedom to emulate the allowable movement

from the bolted connections and splice locations. This shows that the modelling methods,

assumptions, and measurement techniques are reliable and can be used for further research

on pedestrian bridges.

The load cell data from individual pedestrian walking tests permitted the calculation

of the DLFs associated with a range of walking speeds on all three bridge specimens.
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Results for DLF obtained from the short-span specimen largely agreed with previous tests

published in the literature. The eight-bay and fourteen-bay bridges had lateral natural

frequencies within the range of walking frequencies and thus could not be used to calculate

the DLFs.

The Canadian Highway Bridge Design Code S6-06 and the European HIVOSS foot-

bridges guideline were used to assess the serviceability of bridge specimens for single pedes-

trian and crowd loading, respectively. According to studies referenced by S6-06, structures

with flexural frequencies above 4 Hz will not be governed by dynamic design, but should

still be verified if the natural frequency is below 6 Hz. The calculated maximum accelera-

tion due to a single pedestrian for the long span bridge (fourteen-bay bridge) was exceeded

by the measured acceleration. The eight-bay bridge maximum prescribed accelerations are

greater than the measured data by a factor of 1.3. The HIVOSS footbridge design code

does not adequately prescribe a maximum acceleration for the bridge specimens so that it

exceeds the measured values.

The CSA S6-06 calculation for maximum acceleration is limited to bridge spans above

10 m, therefore the two-bay bridge does not fall under the jurisdiction of this code. In

terms of loading, the CSA S6-06 only accounts for the effect of one pedestrian, and does

not contain any prescriptive measures for crowd loading. HIVOSS guidelines mainly focus

on crowd loading, and propos modified models for single pedestrians. Using CSA S6-06

for static design, the maximum stresses in the members of the fourteen-bay bridge do not

indicate a concern, the deflection does not meet the AASHTO recommended L/1000. A

full-scale design check was not completed so adequacy of the fourteen-bay bridge cannot be

determined. Both codes, however, make the assumption that major vibrations only occur

when the bridge’s first natural frequency aligns with the walking frequency of the pedes-

trians. This is particularly seen in the HIVOSS guidelines where the amplification factor
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would discount all of the bridge specimens from this thesis since their natural frequencies

are above the limits of interest.

The maximum measured strain was in the bottom chord was moderate in comparison

to the factored yield strain of aluminium. This does not indicate any concerns though a

full Code check was not completed to determine if this was acceptable. In most cases, the

strain in the bottom chord is greater than the strain in the diagonal. Strain values on the

diagonal member were not obtainable for the two larger crowd tests on the fourteen-bay

bridge due to instrumentation error. The strain for the single

The presence of either N-bracing or X-bracing greatly reduced the lateral movement

of the bridge, by a minimum factor of 5.3. The primary mode of vibration changed from

lateral when unbraced, to torsion when braced. There was little to no change in the vertical

mode and no major difference in terms of natural frequency, RMS accelerations, or mode

shape between the N-bracing and the X-bracing.

6.2 Recommendations

The topic that leaves the most room for development is the re-assessment of the CSA S6-

06 and HIVOSS guidelines in order to better define their criteria for dynamically-sensitive

bridges. Even though the specimens of this thesis were not within the preferred regions

of either of the codes, the longest span exceeded or nearly exceeded the code provisions.

More work should be done on bridges with natural frequencies that are not in resonance

with pedestrian walking pace, yet produce high amplitude vibrations under loading.

In order to better understand the human-structure interaction of aluminium pedestrian

bridges, new load models should be developed. Key factors in these models should include:
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a biomechanically accurate loading mechanism of the pedestrian’s footfall and a response

that can be explained by the data collected in this thesis. Having a model that explains the

measured results well joins the experimental and theoretical components of this research,

where the models can then be used to predict responses on future bridges.

It is recommended that the bridge be lengthened to achieve a lateral frequency closer

to 1.0 Hz so that it becomes lively even for a single pedestrian walking case.

In order to mitigate vibration on a structure like the fourteen-bay bridge with light

traffic, lateral bracing would be an acceptable choice. The lateral bracing still allows for

bridge movement in larger crowds, which becomes a serviceability concern. For this type

of bridge in dense traffic, a TMD is recommended.
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pedestrian-induced excitation. Slovak Journal of Civil Engineering, XVIII(4):1–7,

January 2010.

[44] Hiroshi Katsuura, Kaoru Yokoyama, Shunichi Nakamura, and Toshitsugu Kawasaki.

Experimental studies on lateral forces induced by pedestrians. Journal of

Constructional Steel Research, (64):347–252, May 2008.
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Appendix A

Acceleration results
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Figure A.1: Sample acceleration histories from impact test

Figure A.2 shows sample acceleration plots for a single person walking at a pace of 100

steps per minute, BPM.
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Figure A.2: Sample acceleration histories for single person walking at a pace of 100 BPM,

weight: 0.61 kN, leg length: 0.89 m

Figures A.3, A.4, A.5, A.6, A.7, A.8, and A.9, show similar results for the same person

running or walking at different speeds.
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Figure A.3: Sample acceleration histories for single person walking at a pace of 110 BPM,

weight: 0.61 kN, leg length: 0.89 m
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Figure A.4: Sample acceleration histories for single person walking at a pace of 120 BPM,

weight: 0.61 kN, leg length: 0.89 m
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Figure A.5: Sample acceleration histories for single person walking at a pace of 130 BPM,

weight: 0.61 kN, leg length: 0.89 m
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Figure A.6: Sample acceleration histories for single person walking at a pace of 140 BPM,

weight: 0.61 kN, leg length: 0.89 m
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Figure A.7: Sample acceleration histories for single person running at a pace of 160

BPM, weight: 0.61 kN, leg length: 0.89 m
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Figure A.8: Sample acceleration histories for single person running at a pace of 170

BPM, weight: 0.61 kN, leg length: 0.89 m
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Figure A.9: Sample acceleration histories for single person running at a pace of 180

BPM, weight: 0.61 kN, leg length: 0.89 m

Figure A.10 shows sample results for two people (0.5 p/m2) passing over the bridge at

a time in the same direction.
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Figure A.10: Sample acceleration histories for 0.5 p/m2 walking, total weight: 1.37 kN

Figures A.11 and A.12 show similar results for crowds of 1.0 p/m2 and 1.5 p/m2.
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Figure A.11: Sample acceleration histories for 1.0 p/m2 walking, total weight: 3.22 kN
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Figure A.12: Sample acceleration histories for 1.5 p/m2 walking, total weight: 4.75 kN

A.0.1 Eight-bay bridge

Figure A.13 shows sample acceleration plots for the vertical hammer impact test.
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Figure A.13: Sample acceleration histories from impact test

Figure A.14 shows sample acceleration plots for the lateral pulley release test.
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Figure A.14: Sample acceleration histories from lateral pulley release test

148



Figure A.15 shows sample acceleration plots for a single person walking at a pace of

100 BPM.
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Figure A.15: Sample acceleration histories for single person walking at a pace of 100

BPM, weight: 0.65 kN, leg length: 0.95 m

Figures A.16, A.17, A.18, A.19, A.20, A.21, and A.22, show similar results for the same

person running or walking at different speeds.
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Figure A.16: Sample acceleration histories for single person walking at a pace of 110

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.17: Sample acceleration histories for single person walking at a pace of 120

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.18: Sample acceleration histories for single person walking at a pace of 130

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.19: Sample acceleration histories for single person walking at a pace of 140

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.20: Sample acceleration histories for single person running at a pace of 160

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.21: Sample acceleration histories for single person running at a pace of 170

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.22: Sample acceleration histories for single person running at a pace of 180

BPM, weight: 0.65 kN, leg length: 0.95 m

Figure A.23 shows sample results for the smallest crowd (0.2 p/m2) passing over the

bridge at a time in the same direction.
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Figure A.23: Sample acceleration histories for 0.2 p/m2 walking, total weight: 2.18 kN

Figures A.24 and A.25 show similar results for crowds of 0.5 p/m2 and 1.0 p/m2.
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Figure A.24: Sample acceleration histories for 0.5 p/m2 walking, total weight: 5.41 kN
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Figure A.25: Sample acceleration histories for 1.0 p/m2 walking, total weight: 11.30 kN

Figures A.26 and A.27 show the acceleration histories for two people walking in sync

and out of sync (one at 115 BPM and one at 130 BPM).
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Figure A.26: Sample acceleration histories for two people walking synchronously, total

weight: 1.25 kN
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Figure A.27: Sample acceleration histories for two people walking asynchronously, total

weight: 1.25 kN
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A.0.2 Fourteen-bay bridge

Figure A.28 shows sample acceleration plots for the vertical hammer impact test.
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Figure A.28: Sample acceleration histories from impact test

Figure A.29 shows sample acceleration plots for the lateral pulley release test.
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Figure A.29: Sample acceleration histories from lateral pulley release test

Figure A.30 shows sample acceleration plots for a single person walking at a pace of

100 BPM.
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Figure A.30: Sample acceleration histories for single person walking at a pace of 100

BPM, weight: 0.65 kN, leg length: 0.95 m

Figures A.31, A.32, A.33, A.34, A.35, A.36, and A.37, show similar results for the same

person running or walking at different speeds.
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Figure A.31: Sample acceleration histories for single person walking at a pace of 110

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.32: Sample acceleration histories for single person walking at a pace of 120

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.33: Sample acceleration histories for single person walking at a pace of 130

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.34: Sample acceleration histories for single person walking at a pace of 140

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.35: Sample acceleration histories for single person running at a pace of 160

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.36: Sample acceleration histories for single person running at a pace of 170

BPM, weight: 0.65 kN, leg length: 0.95 m
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Figure A.37: Sample acceleration histories for single person running at a pace of 180

BPM, weight: 0.65 kN, leg length: 0.95 m

Figure A.38 shows sample results for the smallest crowd (0.2 p/m2) passing over the

bridge at a time in the same direction.
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Figure A.38: Sample acceleration histories for 0.2 p/m2 walking, total weight: 4.27 kN

Figures A.39 and A.40 show similar results for crowds of 0.5 p/m2 and 1.0 p/m2.
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Figure A.39: Sample acceleration histories for 0.5 p/m2 walking, total weight: 9.66 kN
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Figure A.40: Sample acceleration histories for 1.0 p/m2 walking, total weight: 20.32 kN

Figures A.41 and A.42 show the acceleration histories for two people walking in sync

and out of sync (one at 115 BPM and one at 130 BPM).
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Figure A.41: Sample acceleration histories for two people walking synchronously, total

weight: 1.25 kN
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Figure A.42: Sample acceleration histories for two people walking asynchronously, total

weight: 1.25 kN

166



Appendix B

Load cell results

B.0.3 Two-bay bridge

Figure B.1 shows sample load plots for a single person walking at a pace of 100 BPM.
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Figure B.1: Sample load histories for single person walking at a pace of 100 BPM,

weight: 0.65 kN, leg length: 0.95 m

Figures B.2, B.3, B.4, B.5, B.6, B.7, and B.8, show similar results for the same person

running or walking at different speeds.
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Figure B.2: Sample load histories for single person walking at a pace of 110 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.3: Sample load histories for single person walking at a pace of 120 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.4: Sample load histories for single person walking at a pace of 130 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.5: Sample load histories for single person walking at a pace of 140 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.6: Sample load histories for single person running at a pace of 160 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.7: Sample load histories for single person running at a pace of 170 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.8: Sample load histories for single person running at a pace of 180 BPM,

weight: 0.65 kN, leg length: 0.95 m

Figure B.9 shows sample load results for the smallest crowd for the two-bay bridge (0.5

p/m2) passing over the bridge at a time in the same direction.
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Figure B.9: Sample load histories for 0.5 p/m2 walking, total weight: 1.37 kN

Similarly, figures B.10 and B.11 show similar load results for crowds of 1.0 p/m2 and

1.5 p/m2.
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Figure B.10: Sample load histories for 1.0 p/m2 walking, total weight: 3.22 kN
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Figure B.11: Sample load histories for 1.5 p/m2 walking, total weight: 4.75 kN
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B.0.4 Eight-bay bridge

Figure B.12 shows sample load plots for a single person walking at a pace of 100 BPM.
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Figure B.12: Sample load histories for single person walking at a pace of 100 BPM,

weight: 0.65 kN, leg length: 0.95 m

Figures B.26, B.27, B.28, B.29, B.30, B.31, and B.32, show similar results for the same

person running or walking at different speeds.
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Figure B.13: Sample load histories for single person walking at a pace of 110 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.14: Sample load histories for single person walking at a pace of 120 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.15: Sample load histories for single person walking at a pace of 130 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.16: Sample load histories for single person walking at a pace of 140 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.17: Sample load histories for single person running at a pace of 160 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.18: Sample load histories for single person running at a pace of 170 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.19: Sample load histories for single person running at a pace of 180 BPM,

weight: 0.65 kN, leg length: 0.95 m

Figure B.20 shows sample load results for the smallest crowd for the eight-bay bridge

(0.2 p/m2) passing over the bridge at a time in the same direction.
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Figure B.20: Sample load histories for 0.2 p/m2 walking, total weight: 2.18 kN

Similarly, figures B.21 and B.22 show similar load results for crowds of 0.5 p/m2 and

1.0 p/m2.
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Figure B.21: Sample load histories for 0.5 p/m2 walking, total weight: 5.41 kN
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Figure B.22: Sample load histories for 1.0 p/m2 walking, total weight: 11.30 kN

Figures B.23 and B.24 show the load histories for two people walking in sync and out
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of sync (one at 115 BPM and one at 130 BPM).
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Figure B.23: Sample load histories for two people walking synchronously, total weight:

1.25 kN

182



2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

Time (s)

L
o
a
d
 (

k
N

)

(a) Vertical

2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

Time (s)

L
o

a
d

 (
k

N
)

(b) Lateral

Figure B.24: Sample load histories for two people walking asynchronously, total weight:

1.25 kN

B.0.5 Fourteen-bay bridge

Figure B.12 shows sample load plots for a single person walking at a pace of 100 BPM.
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Figure B.25: Sample load histories for single person walking at a pace of 100 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.26: Sample load histories for single person walking at a pace of 110 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.27: Sample load histories for single person walking at a pace of 120 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.28: Sample load histories for single person walking at a pace of 130 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.29: Sample load histories for single person walking at a pace of 140 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.30: Sample load histories for single person running at a pace of 160 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.31: Sample load histories for single person running at a pace of 170 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure B.32: Sample load histories for single person running at a pace of 180 BPM,

weight: 0.65 kN, leg length: 0.95 m

Figure B.33 shows sample load results for the smallest crowd for the fourteen-bay bridge

(0.2 p/m2) passing over the bridge at a time in the same direction.
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Figure B.33: Sample load histories for 0.2 p/m2 walking, total weight: 4.27 kN

Similarly, figures B.34 and B.35 show similar load results for crowds of 0.5 p/m2 and

1.0 p/m2.
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Figure B.34: Sample load histories for 0.5 p/m2 walking, total weight: 9.66 kN
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Figure B.35: Sample load histories for 1.0 p/m2 walking, total weight: 20.32 kN

Figures B.36 and B.37 show the load histories for two people walking in sync and out
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of sync (one at 115 BPM and one at 130 BPM).
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Figure B.36: Sample load histories for two people walking synchronously, total weight:

1.25 kN
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Figure B.37: Sample load histories for two people walking asynchronously, total weight:

1.25 kN
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Appendix C

Strain gauge results

C.0.6 Eight-bay bridge

Figure C.1 shows sample strain plots for a single person walking at a pace of 100 BPM.
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Figure C.1: Sample strain histories for single person walking at a pace of 100 BPM,

weight: 0.87 kN, leg length: 1.07 m
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Figure C.2: Sample strain histories for single person walking at a pace of 110 BPM,

weight: 0.87 kN, leg length: 1.07 m
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Figure C.3: Sample strain histories for single person walking at a pace of 120 BPM,

weight: 0.87 kN, leg length: 1.07 m
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Figure C.4: Sample strain histories for single person walking at a pace of 130 BPM,

weight: 0.87 kN, leg length: 1.07 m
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Figure C.5: Sample strain histories for single person walking at a pace of 140 BPM,

weight: 0.87 kN, leg length: 1.07 m
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Figure C.6: Sample strain histories for single person walking at a pace of 160 BPM,

weight: 0.87 kN, leg length: 1.07 m
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Figure C.7: Sample strain histories for single person walking at a pace of 170 BPM,

weight: 0.87 kN, leg length: 1.07 m
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Figure C.8: Sample strain histories for single person walking at a pace of 180 BPM,

weight: 0.87 kN, leg length: 1.07 m

Figure C.9 shows sample load results for the smallest crowd for the eight-bay bridge

(0.2 p/m2) passing over the bridge at a time in the same direction.
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Figure C.9: Sample strain histories for 0.2 p/m2 walking, total weight: 2.18 kN

Similarly, figures C.10 and C.11 show similar strain results for crowds of 0.5 p/m2 and

1.0 p/m2.
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Figure C.10: Sample strain histories for 0.5 p/m2 walking, total weight: 5.41 kN
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(a) Bottom chord axial
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Figure C.11: Sample strain histories for 1.0 p/m2 walking, total weight: 11.30 kN

Figures C.12 and C.13 show the strain histories for two people walking in sync and out

of sync (one at 115 BPM and one at 130 BPM).
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Figure C.12: Sample load histories for two people walking synchronously, total weight:

1.25 kN
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Figure C.13: Sample load histories for two people walking asynchronously, total weight:

1.25 kN

C.0.7 Fourteen-bay bridge

Figure C.14 shows sample strain plots for a single person walking at a pace of 100 BPM.
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Figure C.14: Sample strain histories for single person walking at a pace of 100 BPM,

weight: 0.65 kN, leg length: 0.95 m

208



5 10 15 20

−10

0

10

20

30

40

Time (s)

M
ic

ro
st

ra
in

(a) Bottom chord axial

5 10 15 20

−10

0

10

20

30

40

Time (s)

M
ic

ro
st

ra
in

(b) Bottom chord bending

5 10 15 20

−10

0

10

20

30

40

Time (s)

M
ic

ro
st

ra
in

(c) Diagonal axial

5 10 15 20
−15

−10

−5

0

5

10

15

20

25

Time (s)

M
ic

ro
st

ra
in

(d) Diagonal bending

Figure C.15: Sample strain histories for single person walking at a pace of 110 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure C.16: Sample strain histories for single person walking at a pace of 120 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure C.17: Sample strain histories for single person walking at a pace of 130 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure C.18: Sample strain histories for single person walking at a pace of 140 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure C.19: Sample strain histories for single person walking at a pace of 160 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure C.20: Sample strain histories for single person walking at a pace of 170 BPM,

weight: 0.65 kN, leg length: 0.95 m
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Figure C.21: Sample strain histories for single person walking at a pace of 180 BPM,

weight: 0.65 kN, leg length: 0.95 m

Figure C.22 shows sample load results for the smallest crowd for the fourteen-bay bridge

(0.2 p/m2) passing over the bridge at a time in the same direction.
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Figure C.22: Sample strain histories for 0.2 p/m2 walking, total weight: 4.27 kN

Similarly, figures C.23 and C.24 show similar strain results for crowds of 0.5 p/m2 and

1.0 p/m2.
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Figure C.23: Sample strain histories for 0.5 p/m2 walking, total weight: 9.66 kN,

suspected voltage overload on diagonal strain gauges
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Figure C.24: Sample strain histories for 1.0 p/m2 walking, total weight: 20.32 kN,

suspected voltage overload on diagonal strain gauges

Figures C.25 and C.26 show the strain histories for two people walking in sync and out

of sync (one at 115 BPM and one at 130 BPM).
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Figure C.25: Sample load histories for two people walking synchronously, total weight:

1.25 kN
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Figure C.26: Sample load histories for two people walking asynchronously, total weight:

1.25 kN
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Appendix D

Finite element model results

Results from the SOFiSTiK finite element models of the two-bay, eight-bay, and fourteen-

bay bridges are provided below. Note that the magnitude of the member forces are indi-

cated by the colour gradient, where blue is the minimum and red is the maximum.
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D.1 Two-bay bridge

Two-bay bridge

Figure D.1: Two-bay bridge: 7.55 Hz

Figure D.2: Two-bay bridge: 15.38 Hz
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Figure D.3: Two-bay bridge: 17.90 Hz

Figure D.4: Two-bay bridge: 31.66 Hz
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Figure D.5: Two-bay bridge: 37.88 Hz

Figure D.6: Two-bay bridge: 42.37 Hz
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Figure D.7: Two-bay bridge: 44.08 Hz

Figure D.8: Two-bay bridge: 50.11 Hz
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Figure D.9: Two-bay bridge: 88.13 Hz

Figure D.10: Two-bay bridge: 119.29 Hz
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Figure D.11: Two-bay bridge: 138.47 Hz

Figure D.12: Two-bay bridge: 142.32 Hz
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D.2 Eight-bay bridge

Figure D.13: Eight-bay bridge: 2.32 Hz

Figure D.14: Eight-bay bridge: 6.10 Hz
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Figure D.15: Eight-bay bridge: 8.01 Hz

Figure D.16: Eight-bay bridge: 9.85 Hz

Figure D.17: Eight-bay bridge: 10.95 Hz

229



Figure D.18: Eight-bay bridge: 11.75 Hz

Figure D.19: Eight-bay bridge: 14.31 Hz

Figure D.20: Eight-bay bridge: 15.77 Hz
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Figure D.21: Eight-bay bridge: 16.86 Hz

Figure D.22: Eight-bay bridge: 18.04 Hz

Figure D.23: Eight-bay bridge: 19.87 Hz
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Figure D.24: Eight-bay bridge: 23.28 Hz

Figure D.25: Eight-bay bridge: 24.04 Hz
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Figure D.26: Eight-bay bridge: 24.69 Hz

Figure D.27: Eight-bay bridge: 31.26 Hz
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Figure D.28: Eight-bay bridge: 32.06 Hz

Figure D.29: Eight-bay bridge: 37.19 Hz
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Figure D.30: Eight-bay bridge: 38.92 Hz

Figure D.31: Eight-bay bridge: 42.18 Hz
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Figure D.32: Eight-bay bridge: 45.55 Hz

Figure D.33: Eight-bay bridge: 47.86 Hz
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Figure D.35: Eight-bay bridge: 53.55 Hz

Figure D.34: Eight-bay bridge: 50.94 Hz
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Figure D.36: Eight-bay bridge: 54.43 Hz

Figure D.37: Eight-bay bridge: 60.55 Hz
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Figure D.38: Eight-bay bridge: 62.31 Hz

Figure D.39: Eight-bay bridge: 63.77 Hz
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Figure D.40: Eight-bay bridge: 64.36 Hz

Figure D.41: Eight-bay bridge: 66.07 Hz
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Figure D.42: Eight-bay bridge: 67.06 Hz

D.3 Fourteen-bay bridge

Figure D.43: Eight-bay bridge: 0.91 Hz
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Figure D.44: Fourteen-bay bridge: 2.85 Hz

Figure D.45: Fourteen-bay bridge: 5.08 Hz
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Figure D.46: Fourteen-bay bridge: 5.11 Hz

Figure D.47: Fourteen-bay bridge: 5.38 Hz

243



Figure D.48: Fourteen-bay bridge: 7.85 Hz

Figure D.49: Fourteen-bay bridge: 7.94 Hz
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Figure D.50: Fourteen-bay bridge: 9.67 Hz

Figure D.51: Fourteen-bay bridge: 10.65 Hz
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Figure D.52: Fourteen-bay bridge: 11.84 Hz

Figure D.53: Fourteen-bay bridge: 12.25 Hz

Figure D.54: Fourteen-bay bridge: 13.37 Hz
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Figure D.55: Fourteen-bay bridge: 13.66 Hz

Figure D.56: Fourteen-bay bridge: 14.80 Hz
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Figure D.57: Fourteen-bay bridge: 15.75 Hz

Figure D.58: Fourteen-bay bridge: 16.49 Hz

Figure D.59: Fourteen-bay bridge: 17.31 Hz
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Figure D.60: Fourteen-bay bridge: 18.54 Hz

Figure D.61: Fourteen-bay bridge: 20.10 Hz
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Figure D.62: Fourteen-bay bridge: 22.01 Hz

Figure D.63: Fourteen-bay bridge: 23.18 Hz

Figure D.64: Fourteen-bay bridge: 24.63 Hz
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Figure D.65: Fourteen-bay bridge: 24.93 Hz

Figure D.66: Fourteen-bay bridge: 26.88 Hz

Figure D.67: Fourteen-bay bridge: 27.17 Hz
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Figure D.68: Fourteen-bay bridge: 30.36 Hz

Figure D.69: Fourteen-bay bridge: 30.74 Hz
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Figure D.70: Fourteen-bay bridge: 33.10 Hz

Figure D.71: Fourteen-bay bridge: 33.26 Hz
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Figure D.72: Fourteen-bay bridge: 34.70 Hz

Figure D.73: Fourteen-bay bridge: 35.60 Hz
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Figure D.74: Fourteen-bay bridge: 37.74 Hz

Figure D.75: Fourteen-bay bridge: 37.94 Hz
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Figure D.76: Fourteen-bay bridge: 42.32 Hz

Figure D.77: Fourteen-bay bridge: 42.87 Hz
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Figure D.78: Fourteen-bay bridge: 46.94 Hz

Figure D.79: Fourteen-bay bridge: 47.17 Hz
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Figure D.80: Fourteen-bay bridge: 47.37 Hz

Figure D.81: Fourteen-bay bridge: 51.33 Hz

258



Figure D.82: Fourteen-bay bridge: 52.38 Hz

Figure D.83: Fourteen-bay bridge: 53.01 Hz
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Figure D.84: Fourteen-bay bridge: 54.50 Hz

Figure D.85: Fourteen-bay bridge: 56.70 Hz
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Figure D.86: Fourteen-bay bridge: 57.24 Hz

Figure D.87: Fourteen-bay bridge: 58.35 Hz
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Figure D.88: Fourteen-bay bridge: 61.19 Hz

Figure D.89: Fourteen-bay bridge: 62.20 Hz
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Figure D.90: Fourteen-bay bridge: 62.60 Hz

Figure D.91: Fourteen-bay bridge: 63.41 Hz
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Figure D.92: Fourteen-bay bridge: 63.41 Hz

Figure D.93: Fourteen-bay bridge: 66.18 Hz
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Figure D.94: Fourteen-bay bridge: 67.60 Hz

Figure D.95: Fourteen-bay bridge: 69.03 Hz
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Figure D.96: Fourteen-bay bridge: 76.42 Hz

Figure D.97: Fourteen-bay bridge: 76.86 Hz
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Figure D.98: Fourteen-bay bridge: 78.14 Hz

Figure D.99: Fourteen-bay bridge: 81.57 Hz
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