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Abstract 

Accessibility is a concept based on the interaction between transportation and land use 

systems, and reflects the ability of individuals to reach destinations.  A new tool to 

measure and represent accessibility called Access Profile Analysis (APA) is developed in 

this thesis.  I use APA to explore two general research questions.  First, how do various 

transportation and land use policies affect job accessibility in Kitchener-Waterloo?  

Second, how is job accessibility distributed in relation to other socio-economic variables 

in Kitchener-Waterloo?  To analyze these questions I developed six specific applications 

of APA for the Kitchener-Waterloo area.  The findings indicate that transportation and 

land use policies have a direct and measurable impact on job accessibility.  Moreover, 

the accessibility implications of these policies vary for different socio-economic groups. 
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1.1 Why Accessibility? 
This thesis is inspired by two rather broad questions: ‘What is the purpose of 

transportation?’ and ‘What is the purpose of cities?’  Transportation researchers David 

Levinson, Kevin Krizek, and David Gillen (2005) answer these questions with an 

analogy.  If a house is a machine for living, as the 20th century architect and planner Le 

Corbusier famously argued, then transportation is a machine for moving, and a city is a 

machine for access (Levinson et al., 2005).  With respect to the first question, this 

analogy reflects that transportation is not an end in itself, but a means to an end (Ortúzar 

& Willumsen, 2001; Tumlin, 2012).  The vast majority of transportation is motivated not 

by the joy of movement, but the desire to reach a destination. 

With respect to the second question, the analogy highlights how fundamental 

accessibility is to the function of cities.  People are drawn to cities because they provide 

access to employment, leisure opportunities, services, and other people.  As Handy and 

Niemeier state, 

“In short, what keeps residents in metropolitan areas is accessibility, the 
potential for interaction, both social and economic, the possibility of getting 
from home to a multitude of destinations offering a spectrum of 
opportunities for work and play” (1997, p. 1175) 
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Accessibility—the ease with which individuals can reach destinations associated with 

employment and other quality of life enhancing activities (Dalvi, 1978)—is a fundamental 

aspect of society.  Improving accessibility, particularly for those who are comparatively 

deprived of it, is therefore an important societal goal, and the underlying motivation for 

this thesis. 

1.2 What is Accessibility? 
The conceptual framework of accessibility that I developed for this thesis is shown in 

Figure 1.  In this framework, accessibility is negatively related to the amount of travel 

effort and positively associated with the number of destinations that can be reached.  

Accessibility can be thought of as a measure of how effectively travel effort is translated 

into destination access.  Both travel effort and the number of destinations that can be 

reached are shaped by four core accessibility components—origins, destinations, 

transportation networks, and travel costs—which are explored in the paragraphs below. 

 

Origin and destination locations are the land use components of accessibility.  Since this 

study focuses on job accessibility, origins are defined as household locations and 

destinations are defined as job locations.  In order to illustrate the relationship between 

origins, destinations, and accessibility, consider an origin that is relatively isolated from 

destinations.  On the one hand, an individual could expend a lot of travel effort and reach 

defining 
accessibility 

Figure 1: 
Accessibility 
Framework 

origins and 
destinations 
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the destinations.  The other option is to expend a moderate amount of travel effort and 

reach relatively few destinations.  Either way, the travel effort is not very effective in 

providing destination access—accessibility is low.  If there are many destinations in close 

proximity to an origin, however, a moderate amount of travel effort can be very effective 

in providing destination access.  In this case, accessibility is high.  Land use patterns 

such as the concentration of origins and destinations, and the extent to which they are 

spatially integrated or segregated, therefore influence accessibility (see Bertolini, le 

Clercq, & Kapoen, 2005). 

Accessibility, however, depends not only on the location of origins and destinations, but 

on the travel effort required to move between them.  In this analysis, the travel effort 

required to move from an origin to a destination—referred to as an OD pair—is modelled 

as a generalized cost (GC) of travel.  Generalized costs are derived by converting travel 

time into monetary units, or vice versa, and summing the monetary and time costs of 

travel (see Section 3.2.4). The travel time between an OD pair depends on the length of 

the route, and the travel speed along the route.  Both route length and travel speed are 

determined by the transportation network of the travel mode used to make the trip.  

Monetary travel costs also depend on the travel mode, and can be categorized as either 

fixed costs, which do not vary based on route properties, or variable costs, which are a 

function of route properties.  The transportation components of accessibility can be 

summarized as follows: for any given set of origins and destinations, transportation 

networks determine travel time, which, along with monetary travel costs, determines 

travel effort. 

All four of these components—origins, destinations, transportation networks, and travel 

costs—interact to determine the number of destinations that can be reached and the 

travel effort required to reach them.  These components, however, do not exist in 

isolation.  Conversely, many of them exist in tension with one another.  Increasing land 

use density, for example, typically results in higher traffic volumes, which may in turn 

reduce travel speeds and increase travel times (Levine, Grengs, Shen, & Shen, 2012).  

Accessibility is determined by how effectively these components interact.  This complex 

web of relationships underscores the importance of comprehensive analysis and 

measurement. 

transportation  
networks and 

travel costs 

land use and 
transportation 

interactions 
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1.3 Research Motivations 
In this thesis, I demonstrate a relatively novel approach to modelling accessibility, which I 

refer to as access profile analysis (APA).  This model builds on earlier work done by 

Black and Conroy (1977) several decades ago.1  In demonstrating this modelling 

approach, I had two goals. First, I wanted to explore the methodological strengths and 

weaknesses of this approach, relative to commonly used accessibility tools.  Second, I 

wanted to demonstrate potential policy applications for this approach.  Both of these 

research goals are addressed through a case study of Kitchener-Waterloo, Ontario, 

which is introduced in Chapter 3. 

The accessibility tools that are widely used today exhibit a number of methodological 

limitations that can reduce their efficacy in some contexts (see Chapter 2).  APA 

addresses several of these limitations and expands the number of tools available to 

accessibility researchers and planners.  Specifically, APA improves upon alternative 

accessibility measures by (a) not requiring assumptions about the amount of time and 

money an individual is willing to spend on travel, (b) measuring and representing 

accessibility for multiple modes within a common framework, and (c) producing visual 

outputs that are easy to interpret and communicate. 

The second motivation for this research is to demonstrate how APA can help bridge the 

gap between accessibility scholarship and accessibility practice.  I developed six 

applications, which are shown in Figure 2, to test how the model responds to various 

policy scenarios and show how it could be used in a policy context.  The first three 

applications examine policy as a driver of accessibility.  Each of these applications 

evaluates either how specific policies retrospectively affected accessibility or how 

specific policy scenarios could prospectively impact accessibility.  Applications 4-6 

explore some of the broader socio-economic implications of observed accessibility 

patterns.  Figure 2 illustrates the relationship between policy, accessibility, and socio-

economic outcomes, and situates each application in this context.  The paragraphs 

                                                        
1 Note that the discovery of the work by Black and Conroy (1977) occurred after the 
analysis for this research was complete.  While I developed APA independently, I 
acknowledge that it is not the first presentation of this methodology in the literature. 

methodological 
improvements 

policy analysis 
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below describe the accessibility implications of each application, and highlight why these 

implications are important for policy. 

 

The first application examines how transportation investments affect accessibility. From 

the construction of rapid transit lines to the expansion of highway capacity, transportation 

investments typically aim to improve accessibility by increasing travel speeds, increasing 

directness, decreasing travel time, and / or improving reliability.  Since most of these 

projects require substantial public funding, a comprehensive understanding of how 

effectively they improve accessibility is important to ensure that scarce public resources 

are being used efficiently. 

Figure 2: 
Accessibility and 

Policy 

Application #1: 
Transportation 

Investment 
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The second application explores the accessibility implications of transportation taxes and 

user fees such as road tolls, gas taxes, transit fares, etc.  There are three ways that 

transportation taxes and user fees could theoretically affect accessibility.  First, 

transportation taxes and user fees influence the monetary costs of making any given trip 

with any given mode.  Second, they provide funding for the operation and expansion of 

transportation networks.  If more revenue is generated, there could also be more funding 

available for operations and investments (see above).  Third, transportation taxes and 

user fees affect travel behaviour, which can subsequently influence the performance of 

transportation systems.  Road tolls, for example, may reduce traffic volumes and 

subsequently increase travel speeds.  A comprehensive understanding of how a 

transportation tax or user fee affects accessibility is important to ensure that (a) undue 

negative accessibility impacts are avoided, particularly for travellers with limited financial 

resources, (b) necessary revenues are generated, and (c) desired behaviour changes 

are achieved. 

Application three explores how land use policies and plans affect accessibility.  Along 

with market forces, land use policies determine the location, density, and diversity of new 

development through Official Plans, Secondary Plans, and Zoning By-Laws.  The land 

use patterns that are shaped by these policies have a direct impact on the origin and 

destination components of accessibility.  It is therefore important to understand how 

different kinds of development will affect accessibility, in order to leverage public policy to 

achieve greater accessibility. 

The concept of modal redundancy is introduced in application four, and refers to the 

number of modes that connect an origin to a destination, and the relative effectiveness of 

these modes.  Modal redundancy indicates the accessibility gap between modes.  The 

most important socio-economic implication of low modal redundancy is single mode 

dependency, which in the North American context typically implies auto dependency.  

Auto dependency is a concern because it restricts the mobility of those who are unable 

to drive and financially strains low income households.  As inclusiveness, age-friendly 

cities, and energy costs become more important issues, the measurement of modal 

redundancy will also become more important.  An understanding of the degree and 

distribution of modal redundancy can be used to develop policies that support multi-

modal transportation options. 

Application #2 
Transportation 
Taxes and User 

Fees 

Application #3 
Land Use 

Application #4 
Modal 

Redundancy 
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This application explores the accessibility implications of housing costs.  If housing costs 

and accessibility are strongly and positively related, the location choice of low income 

households may be restricted to low accessibility areas.  The double burden of low 

income and low accessibility is generally problematic, and is discussed in the following 

application.  If affordable neighbourhoods are not accessible, and the problem is clearly 

identified and understood, a variety of policy instruments can be used to both preserve 

existing affordable housing and encourage new affordable housing development in 

accessible locations (see Haughey & Sherriff, 2010).  

This application examines the degree of overlap between low accessibility areas and low 

income areas.  The spatial overlap of low income and low accessibility may be a result of 

prohibitively high housing costs in more accessible neighbourhoods or other factors.  A 

particular concern addressed in this application is the potential for a positive feedback 

loop to develop, where low job accessibility negatively impacts employment prospects, 

which in turn negatively impacts income and the ability to afford sufficient job 

accessibility.  It is important to understand the combined spatial patterns of income and 

accessibility because a variety of policy responses can potentially prevent the positive 

feedback loop described above from occurring.  Appropriate policy responses could 

range from improved unemployment / job search services to additional transit service for 

affected neighbourhoods. 

In this chapter, I have defined accessibility, developed a conceptual framework of the 

relationship between accessibility and policy, and presented six policy relevant 

applications (see Figure 3).  In Chapter 2 I focus on the first research motivation and 

review other methodological approaches for accessibility analysis and highlight the need 

for an expanded accessibility toolkit.  0 includes a description of the case study area, and 

an introduction to the APA methodological framework.  In Chapter 4, I use the APA 

framework to operationalize each of the six policy applications.  The results from these 

policy applications are presented and discussed in Chapter 5.  I also use these results to 

evaluate the methodological performance of APA.  Reflections about the contributions of 

this research, along with areas for further research, are offered in Chapter 6. 

Application #5 
Accessibility and 

Housing Costs 

Application #6 
Accessibility and 

Low Income 

thesis structure 
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Figure 3: Chapter 1 
in Context 
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In this chapter I outline a set of criteria for evaluating the performance of accessibility 

tools.  I then use these criteria to explore the methodological strengths and weaknesses 

of two commonly used accessibility tools: cumulative opportunity models and gravity 

models.  After briefly considering other approaches, I argue that accessibility scholarship 

and planning practice can benefit from an expanded accessibility toolbox (see Figure 4). 

2.1 Accessibility Tool Criteria 
As with any complex construct, the measurement and representation of accessibility can 

be challenging.  On the one hand, an accessibility tool should capture the complexity of 

transportation and land use interactions in order to be accurate and meaningful.  On the 

other hand, an accessibility tool should not be so complex that it becomes onerous to 

implement in practice.  Thus accessibility tools are inherently characterized by trade-offs 

between theoretical rigour and operational ease (Curtis & Scheurer, 2010).  In order to 

appreciate the trade-offs associated with any given tool, a set of methodological 

evaluation criteria are needed. 

 

Chapter 2:  
Review of Common Accessibility Tools 

chapter abstract 

challenges in 
measurement and 

representation 
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Several examples of such criteria can be found in the literature (e.g. Curtis & Scheurer, 

2010; Geurs & van Wee, 2004; Morris, Dumble, & Wigan, 1979).  I use the criteria 

outlined by Geurs and van Wee (2004), with two minor additions that I note below.  Each 

criterion is outlined in this section, and then applied to two common accessibility tools in 

the following sections.  The same criteria are used again in Chapter 5 to evaluate access 

profile analysis (APA). 

 

The first general criterion proposed by Geurs and van Wee (2004) is theoretical 

soundness, which the authors define on the basis of five characteristics.  The first of 

these is sensitivity to changes in the transportation system.  Any change to transportation 

networks or travel costs that increases the travel effort associated with reaching a 

destination should decrease accessibility, and vice versa.  Sensitivity to land use 

changes is the second characteristic discussed by Geurs and van Wee (2004).  Any 

change in the location of origins or destinations should be reflected in overall 

accessibility.  The third characteristic of theoretical soundness involves the inclusion of 

destination competition effects.  Since many destinations, including jobs, have limited 

evaluation criteria 

Figure 4: Chapter 2 
in Context 

theoretical 
soundness 
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capacity, both the supply and the demand for destinations should be considered.  If the 

number of jobs (supply) remains constant, for example, but the number of individuals 

seeking jobs (demand) increases, accessibility should decrease.  Fourth, an accessibility 

measure should be sensitive to the temporal constraints of destinations.  For example, 

job accessibility should be sensitive to job shifts, since congestion, transit service, and 

other factors that influence the ease of reaching a job, such as safety, vary temporally.  

Finally, Geurs and van Wee (2004) suggest that accessibility measures should be 

sensitive to the characteristics of individuals that affect their accessibility, such as the 

amount of time and money they have available for travel, and their ability to use different 

travel modes. 

In addition to the five characteristics of theoretical soundness proposed by Geurs and 

van Wee (2004), I have added a sixth characteristic: the ability to distinguish between 

local and regional accessibility.  Local accessibility refers to the number of destinations 

that can be reached with relatively little travel effort, whereas regional accessibility refers 

to the number of destinations that can be reached with greater travel effort.  An origin on 

a main street in a small town may have high local accessibility, and relatively low 

regional accessibility; the opposite may be true of an origin in a residential suburb that is 

well connected to a major employment centre (see left and right diagrams in Figure 5 

respectively).  The distinction between local and regional accessibility is important 

because (a) local and regional accessibility are relatively independent of one another (b) 

some individuals may not be able to afford the higher travel costs and travel times 

associated with regional accessibility, and (c) improving local and regional accessibility 

may require different strategies.2  The ability to distinguish between local and regional 

accessibility is therefore considered an important aspect of theoretical soundness. 

The second category of evaluation criteria is operationalization, which refers to the level 

of expertise and resources required to use an accessibility tool.  An important goal of 

accessibility analysis is to affect policy and ultimately improve accessibility outcomes.  

                                                        
2 For example, strategies to improve regional accessibility in the small town case may 
involve better transportation connections to the nearest metropolitan centre.  Strategies 
for improving local accessibility in the residential suburb case may require the 
introduction of new land uses near the origin. 

operationalization 
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Since measures that can be more readily implemented are more likely to be embraced 

by planners and policy makers, operationalization is a critical criterion. 

 

Interpretability, the third criterion proposed by Geurs and van Wee (Geurs & van Wee, 

2004), refers to how readily the meaning of an accessibility measure can be understood 

and articulated.  Two issues underscore the importance of interpretability for an 

accessibility measure.  First, unlike travel speed or highway level of service, accessibility 

is a multi-faceted and abstract concept; it cannot be observed visually, and does not 

have any natural units of measurement.  Second, the goal of accessibility analysis is to 

affect policy, a process that involves a broad range of non-expert participants.  Since 

accessibility measures are not inherently intuitive, and must be communicated effectively 

to a broad audience, many authors have emphasized the need for readily interpretable 

measures (Benenson, Martens, Rofé, & Kwartler, 2011; Bertolini et al., 2005; Curl, 

Nelson, & Anable, 2011). 

Suitability for social and economic evaluation is the fourth general criterion suggested by 

Geurs and van Wee (2004).  To be useful for social and economic evaluation, an 

accessibility tool should be able to help predict the social and economic outcomes of 

various accessibility conditions or scenarios.  The aim of social evaluation is to 

understand both who is affected by accessibility and how they are affected.  This 

typically involves disaggregate analysis with particular attention devoted to 

Figure 5: Local and 
Regional 

Accessibility 
Illustration 

interpretability 

social and 
economic 

evaluation 
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disadvantaged groups (e.g. Foth, Manaugh, & El-Geneidy, 2013; Páez, Mercado, Farber, 

Morency, & Roorda, 2009). Economic evaluation focuses on either direct micro-

economic benefits for individuals, such as travel time savings, or macro economic 

benefits for the general economy, such as increased GDP (Geurs & van Wee, 2004).  

Any measure of accessibility that can be linked to economic theory will be suitable as an 

economic indicator and satisfy this criterion. 

In this review, I have added comparative analysis as an additional criterion related to 

social and economic evaluation.  There are two reasons for including comparative 

analysis as a distinct criterion.  First, the purpose of accessibility analysis is often to 

compare the level of accessibility between different regions (e.g. Grengs, Levine, Shen, 

& Shen, 2010), different socio-economic groups (e.g. Foth et al., 2013), or different travel 

modes (e.g. Benenson et al., 2011).  As discussed below however, the methodology of 

some accessibility tools can make comparative analysis challenging.  In order to 

explicitly consider these challenges I chose to include suitability for comparative analysis 

as an additional criterion. 

These four criteria categories—theoretical soundness, operationalization, interpretability, 

and suitability for social and economic evaluation—are useful to understand the 

strengths and weaknesses of various accessibility measures.  Several of these criteria 

exist in tension with one another, particularly theoretical soundness vis-à-vis 

operationalization and interpretability.  It is not surprising, therefore, that no accessibility 

measures fully satisfy all of the criteria (Handy & Niemeier, 1997; Geurs & van Wee, 

2004).  Nevertheless, an understanding of the strengths and weaknesses of different 

measures is useful in two ways.  First, it enables researchers and practitioners to select 

the measure that fits the most relevant criteria for any given situation.  Once a measure 

has been selected and implemented, an awareness of its strengths and weaknesses is 

useful to define reasonable limitations of the analysis and to identify ways of addressing 

these limitations.  In the following sections, the strengths and weaknesses of two widely 

used accessibility measures are discussed, with reference to the criteria outlined above. 

2.2 Cumulative Opportunity Model 
Cumulative opportunity models, also known as isochronic measures or contour 

measures, are the simplest form of accessibility models (Handy & Niemeier, 1997).  The 

usefulness of 
evaluation criteria 

overview 
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basic principle involves establishing an upper threshold of travel effort (typically 

expressed as travel time, distance, or cost) and constructing a contour or isochrone 

around an origin based on this upper threshold.  The destinations lying in the area 

bounded by this contour are then counted, and this count reflects the accessibility for the 

respective origin.  The concept of cumulative opportunity models is illustrated in Figure 6.  

Using the outer ring as a travel threshold, the origin on the left would have an 

accessibility score of 16 destinations, whereas the origin on the right would have an 

accessibility score of five destinations.  The simple and intuitive nature of these models 

has contributed to their popularity in urban planning practice (Geurs & van Wee, 2004; 

Curl et al., 2011). 

Theoretical soundness is generally considered a weakness of cumulative opportunity 

models (Geurs & van Wee, 2004).  While these models are sensitive to origin and 

destination locations, transportation networks, and potentially even travel costs (if travel 

effort is modelled as generalized cost for example), the binary nature of the travel 

threshold is considered a poor representation of the ease of reaching destinations.  For 

example, the ease of reaching destinations adjacent to the origin is considered equal to 

the ease of reaching destinations that are located just within the threshold.  Destinations 

located just beyond the travel threshold have absolutely no bearing on accessibility, even 

though they may only be marginally more difficult to reach than destinations located just 

within the threshold. 

As one might expect, cumulative opportunity model outputs are highly sensitive to the 

threshold value (Handy & Niemeier, 1997).  The selection of a threshold value is 

therefore an important and somewhat contentious step in operationalizing a cumulative 

opportunity model.  Some authors argue that the definition of a binary threshold is 

inevitably arbitrary (Curtis & Scheurer, 2010; Geurs & van Wee, 2004).  Others rely on 

relevant empirical travel behaviour data to specify a threshold value.  For example, 

Gutiérrez (2001) uses a 4 hour travel time contour to evaluate the impact of high-speed 

rail on interregional accessibility.  The 4 hour threshold is based on evidence suggesting 

this is the maximum travel time that most people are willing to accept for single day 

round trips between cities.  Bertolini et al. (2005) explore commuting accessibility and 

select a 30 minute threshold based on data indicating that the journey to work is 30 

minutes or less for more than 80% of commuters in their study area.   
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Both of these issues—the binary nature of travel threshold, and the difficulty of 

establishing an appropriate threshold value—are illustrated in Figure 6.  Using the 

smaller circle as the travel threshold, the left and right scenarios are considered to have 

the same accessibility value (4 destinations), even though the destinations in the left 

scenario are much closer to the origin than those in the right scenario.  If the threshold 

value changes, and the larger circle is used, the scenarios suddenly have very different 

accessibility values (16 destinations on the left, and 5 destinations on the right).  

Beyond the specification of threshold values, cumulative opportunity models also suffer 

from other theoretical shortcomings.  The models are not sensitive to competition effects 

or the temporal constraints of destinations (Geurs & van Wee, 2004).  Similarly, 

variations in the amount of time and money individuals have available for travel cannot 

be reflected in the model.  With respect to distinguishing between local and regional 

accessibility, cumulative opportunity models could achieve this to some extent by using 

two distinct travel thresholds.  The limitations associated with using a binary and 

arguably arbitrary threshold apply here as well however, and limit the ability of 

cumulative opportunity models to effectively make this distinction. 

Figure 6: 
Cumulative 

Opportunity Model 
- Binary Threshold 
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A novel approach that potentially overcomes the problems of an arbitrarily defined 

threshold, and lack of sensitivity to the characteristics of individuals has been proposed 

by Páez, Scott, & Morency (2012).  Their approach uses travel survey data to generate 

spatially and socio-demographically disaggregate estimates of how far individuals 

actually travel.  The authors identify several socio-demographic profiles of interest, and 

then calculate an accessibility score for each zone in their study area based on these 

disaggregate travel thresholds.  While this approach shows promise it does not yet 

appear to have been replicated by other authors, and further research is needed to fully 

appreciate its merits and limitations. 

While the simplicity of cumulative opportunity models is a disadvantage from a 

theoretical perspective, it is a major advantage for operationalization (Geurs & van Wee, 

2004).  Data requirements are comparatively modest, and can be as simple as a set of 

travel distances between defined origins and destinations.  More robust models may 

incorporate mode-specific travel times or generalized costs as well as more detailed 

destination information.  For example, the magnitude of activity at a destination—such as 

the number of jobs, retail floor area, or number of hospital beds—could be used to 

provide a more accurate reflection of the overall attractiveness of a destination, as 

opposed to simply counting destination locations.  Computation is also straightforward, 

and can be achieved with standard GIS software. 

From the perspective of interpretation and communication, cumulative opportunity 

models are advantageous because the model outputs are tangible and intuitive.  Outputs 

are expressed as the number of opportunities that can be reached from a given origin 

within a given travel threshold.  Results, such as ‘58,384 jobs can be reached by car 

within 30 minutes from neighbourhood x’ are meaningful to non-experts.  These results 

can be generated for various travel modes, destination sets, and travel thresholds.  

Results can also be compared, ranked, and mapped.  Since cumulative opportunity 

models are intuitive enough for planners, policy-makers, and the public to understand, 

they can also be used effectively in participatory planning processes. 

The usefulness of cumulative opportunity measures for social and economic impact 

analysis is debated in the literature.  Geurs and van Wee (2004) argue that the 

theoretical shortcomings of cumulative opportunity models preclude their usefulness as 

operationalization 
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social and economic indicators.  Many widely cited studies have, however, used 

cumulative opportunity measures as social or economic indicators (see Wachs & 

Kumagai, 1973; Gutiérrez, 2001; Bertolini et al., 2005).  The two main arguments in 

support of using cumulative opportunity measures for social and economic analysis are 

that the benefits of interpretability outweigh the theoretical shortcomings, and that the 

theoretical shortcomings can be mitigated with the use of a travel threshold derived from 

observed travel behaviour patterns (Bertolini et al., 2005).  With respect to comparative 

analysis, different modes, regions, and socio-economic groups can be compared using 

the same travel thresholds.  However, the challenge of identifying a suitable travel 

threshold becomes even more difficult when disparate modes, regions, or socio-

economic groups are being compared.  Overall, the lack of consensus in the literature 

suggests that while cumulative opportunity models have some value, especially where 

public engagement is emphasized, the results produced by these models must be 

interpreted with an understanding of their theoretical limitations. 

2.3 Gravity Model 
Gravity models, also known as potential measures, have been widely used to analyze 

accessibility for more than a half century (see Hansen, 1959 for an early example).  In a 

gravity model, accessibility is positively related to the number or magnitude of 

destinations and negatively related to the impedance3 associated with reaching them.  

Therefore, if the number or magnitude of destinations increases, or if impedance 

decreases, accessibility will increase.  The basic formulation of a gravity model is given 

in Equation 1: 

!! = !!!(!!")
!

!!!
 

where Ai is an accessibility index, reflecting the accessibility from zone i, to all destination 

zones J.  Dj indicates the magnitude of each destination zone j, and f(cij) is an impedance 

function representing the travel effort of moving from zone i to zone j. 

                                                        
3 Impedance is synonymous with travel effort; the term impedance is used in the 
discussion of gravity models in order to be consistent with the literature on gravity 
models. 

overview 

Equation 1: Gravity 
Model Formulation 
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The impedance function is the defining element of any gravity model (Iacono, Krizek, & 

El-Geneidy, 2008).  Typically, local travel survey data are used to estimate an 

impedance function (Grengs et al., 2010).  This is achieved by generating observed 

travel time distributions from the local travel survey data, either in aggregate, or for a 

small number of segmentations based on trip purpose, mode, etc.  Various estimation 

techniques are then used to derive a mathematical formulation that approximates the 

observed distribution of travel time (McNally, 2008).  A number of formulations can be 

found in the literature (Reggiani, Bucci, & Russo, 2011) with the most common being 

exponential decay functions and power decay functions, shown in Equation 2 and 

Equation 3 respectively: 

! !!" = !!!!!" 

 

! !!" = !!"
!! 

where tij is the travel time (or distance, or cost) from origin i to destination j, and β and γ 

are impedance coefficients derived using the estimation techniques. 

These impedance coefficients are assumed to represent willingness to travel (Harris, 

2001; Iacono et al., 2008).  Distinct impedance coefficients can be estimated for different 

trip purposes, travel modes, regions, and socio-economic groups (Cheng & Bertolini, 

2013; Grengs et al., 2010; Iacono et al., 2008).  For example, observed travel patterns 

might indicate that the average traveller is willing to travel 45 minutes to reach their job, 

but only 15 minutes to reach a shopping destination, or that the average transit user is 

willing to travel 60 minutes, whereas the average auto user is only willing to travel 45 

minutes, etc. (Iacono et al., 2008).  As one might expect, the results of a gravity model 

are significantly influenced by the formulation of the Impedance function (Geurs & van 

Wee, 2004) the implications of which are discussed below. 

Gravity models improve upon the theoretical soundness of cumulative opportunity 

models with respect to transportation, land use, and competition effects (Geurs & van 

Wee, 2004).  The use of a continuous impedance function to weight destinations based 

on the ease of reaching them generally satisfies the transportation and land use aspects 

Equation 2: 
Exponential Decay 

Function 

Equation 3: Power 
Decay Function 
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of theoretical soundness (Geurs & van Wee, 2004).  And while basic gravity models do 

not account for competition effects, they can be modified to do so. 

 

Consider the following scenario, illustrated in Figure 7.  An origin o is equidistant from 

two destinations d1 and d2 which are equal in magnitude.  Since the demand from other 

origins is much higher for d1 than it is for d2 however, the magnitude of d2 that is available 

to o is greater than the magnitude of d1 that is available to o.  In order to capture this 

effect, the magnitude of a given destination relative to a given origin must be modified to 

reflect demand for the destination from all other origins.  This can be achieved by 

dividing the accessibility function presented in Equation 1, which reflects the destination 

supply, by a demand factor representing the demand for each destination zone, as 

shown in Equation 4: 

!! =
!!!(!!")
!!"!(!!")!

!

!

!!!
 

Figure 7: Gravity 
Model - 

Competition Effects 

Equation 4: Gravity 
Model with 

Competition Effects 
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where l is one of n origins where competition for destinations in zone j originates, and Wlj 

represents the demand for destination zone j originating in zone l.  In the case of 

employment accessibility, for example, Wlj would be the number of workers in zone l 

competing for jobs in zone j. 

Other approaches have also been developed to adapt gravity models to account for 

competition effects.  For example, Geurs and van Wee (2004) argue that the balancing 

factors from a doubly constrained gravity model serve as an inverse measure of 

accessibility.  Cheng and Bertolini (2013) point out, however, that this approach is better 

suited to analyse spatial matching of jobs than actual job opportunities.  Overall, the 

method shown in Equation 4 appears to be the more common approach (see for 

example Sanchez, Shen, & Peng, 2004; Wang, 2003). 

While gravity models perform well with respect to the first three theoretical criteria—

transportation, land use, and competition effects—they are less successful at addressing 

the remaining three aspects of theoretical soundness.  The aggregate nature of gravity 

models means that temporal constraints of destinations are difficult to accommodate 

(Dong, Ben-Akiva, Bowman, & Walker, 2006).  Gravity models are somewhat better than 

cumulative opportunity models at reflecting the amount of time and money that 

individuals have available for travel because they are based on actual travel time or cost 

distributions.  The aggregate nature of gravity models once again prevents them from 

reflecting individual variations in the amount of time or money available for travel 

however.  Finally, the accessibility score produced by gravity models reflects the 

combination of both local and regional accessibility, making distinctions between the two 

virtually impossible.  Generating distinct local and regional accessibility scores would 

also be problematic since it would require distinct travel time or cost distributions for local 

and regional trips.  Therefore, the temporal constraints criterion is not satisfied, the 

individual characteristics criterion is somewhat satisfied, and the local/regional distinction 

criterion is not satisfied. 

While gravity models are somewhat data intensive, the required data—zone delineation, 

zone attributes such as employment and population, travel time or cost matrices, and 

one or more calibrated impedance factors—are frequently available from travel 

forecasting exercises (McNally, 2008). The data overlap between travel forecasting and 

operationalization 
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accessibility analysis is a consequence of the widespread use of gravity models for trip 

distribution purposes in traditional travel forecasting methods (National Research Council 

(U.S.), 2007).  The need for one or more calibrated impedance factors makes the 

operationalization of gravity models somewhat more complex than the operationalization 

of cumulative opportunity models however. 

Interpretability is often seen as a weakness of gravity models (Curl et al., 2011; Curtis & 

Scheurer, 2010; Geurs & van Wee, 2004).  Gravity models produce an abstract 

accessibility index that does not readily translate into real-world terms.  Whereas 

cumulative opportunity models produce absolute results—e.g. 35,492 jobs can be 

reached within 30 minutes of auto travel from this particular origin—gravity models 

produce results that are relative in nature, and have little meaning to non-experts (Cheng 

& Bertolini, 2013).  A UK study based on interviews with accessibility planners found that 

practitioners, particularly those working at the local scale, favoured cumulative 

opportunity models over gravity models in part due to the challenges around interpreting 

and communicating the results of gravity models: 

“Respondents were hesitant to discuss the use of more complex measures 
such as gravity-based measures…and where these were discussed they 
were dismissed as being flawed, too difficult to explain to stakeholders, as 
well as being difficult to compare longitudinally” (Curl et al., 2011, p. 7) 

 

Other studies have also noted that difficulties around interpretability limit the use and 

efficacy of gravity models in planning practice (Benenson et al., 2011; Gutiérrez, 2001). 

Gravity models have been effectively used for social evaluation (e.g. Foth et al., 2013; 

Sanchez et al., 2004; Wang, 2003) and economic evaluation (e.g. Gutiérrez, 2001; see 

also: Geurs & van Wee, 2004).  A conceptual limitation related to impedance functions 

curtails their effectiveness for comparative analysis however.  Recall that impedance 

coefficients, which are assumed to reflect willingness to travel, vary based on trip 

purpose, mode, region, and socio-economic characteristics of the traveller.  Where 

analysis involves comparisons along these lines, i.e. between modes, etc. two options 

are available: (a) specification of unique impedance coefficients for each comparison 

group, or (b) specification of the same impedance coefficient for all comparison groups.  

Both options are problematic. 

interpretability 

social and 
economic 
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The specification of a unique impedance coefficient for each comparison group is 

problematic because it obscures comparison results.  Consider a comparison between 

transit users and auto users.  Observed travel data typically indicate that transit users 

have longer travel times than auto users (Grengs et al., 2010).  Longer travel times, in 

turn, produce lower impedance coefficients.  When these coefficients are used for 

accessibility analysis, transit users essentially get ‘credited’ for their greater ‘willingness’ 

to travel greater distances4 (Grengs et al., 2010).  If the same hypothetical travel time 

and destination set were applied to both transit users and auto users, the accessibility 

index for transit users would be higher than the auto accessibility index, due to the 

difference in impedance coefficients.  This creates an obvious problem for the 

interpretation of results, because it is difficult to know whether a measured difference in 

accessibility between auto and transit reflects actual differences in accessibility or is 

simply a bias caused by the use of distinct impedance coefficients.  Grengs et al. (2010) 

explore these issues in a study comparing transit and auto accessibility in two 

metropolitan areas in the US, and ultimately specify a single impedance coefficient for all 

of their comparison groups. 

While the use of a single impedance coefficient for all comparison groups is preferable to 

the use of multiple impedance coefficients, it also presents another challenge: how does 

one arrive at a single impedance coefficient to represent trips that are traditionally 

modelled with distinct impedance coefficients?  This has only recently become an area of 

research interest in the literature, and the best approach has not yet been well 

established (see Levine et al., 2012).  Moreover, the implications of using a single 

impedance factor have not been explored in the literature.  Due to these complexities, 

Benenson et al. (2011) note that most multi-modal accessibility studies use cumulative 

opportunity models rather than gravity models. 

                                                        
4 The use of distinct impedance functions is based on the assumption that differences 
in trip length distributions for different travel modes, trip purposes, and socio-economic 
groups reflect differences in personal choice. This assumption is not always valid 
because while trip length may be influenced by personal choice, it is also influenced by 
aspects of accessibility that are beyond an individual’s control such as land use or the 
availability of alternate travel modes (Ewing & Cervero, 2010; Foth, Manaugh, & El-
Geneidy, 2013).  The failure to make this distinction is important because it means that 
accessibility is not only the dependent variable of a gravity model, it is also represented 
in the coefficient of an independent variable (impedance). 
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2.4 Other Models 
This chapter has focussed on cumulative opportunity and gravity models because these 

are the approaches most often used in policy making and planning practice (Curl et al., 

2011).  Several other accessibility tools can be found in the literature however, including 

economic utility approaches (Geurs & van Wee, 2004), time-space geography measures 

(Geurs & van Wee, 2004), and the approach introduced by Black and Conroy (1977) 

which this model resembles.  While both the economic utility measures and the time-

space geography measures offer theoretical improvements over gravity and cumulative 

opportunity models, the difficulties in operationalizing these measures and interpreting 

their results have restricted their use in planning practice and policy-making (Curl et al., 

2011; Curtis & Scheurer, 2010).  Since policy relevance is a key consideration for this 

research, I do not explore these tools in greater detail here.  I explore the approach 

presented by Black and Conroy (1977) with particular attention to the similarities and 

differences between their methods and APA in Section 0, after introducing the basic APA 

framework. 

2.5 Expanding the Accessibility Toolbox 
Table 1 shows the assessed relative performance of cumulative opportunity models, 

gravity models, and gravity models with competition effects, based on the criteria used in 

this chapter.  In summary, cumulative opportunity models are easy to interpret, 

somewhat useful for comparative analysis, but not very comprehensive due to the use of 

an arbitrary and binary travel threshold.  Gravity models are more comprehensive, but 

also more difficult to interpret, and can be problematic for comparative analysis.  Both of 

these tools face serious shortcomings in contexts requiring (a) comprehensive analysis, 

(b) results that can be understood by a range of stakeholders, and (c) comparisons 

between modes, local and regional scales, etc.  There is a need therefore to expand the 

accessibility toolbox, and provide practitioners and researchers with additional analytic 

tools.  The next chapter aims to achieve this by introducing APA, an accessibility tool that 

is comprehensive, interpretable, and well suited for comparative analysis. 
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!! criterion comprehensively satisfied   
! criterion somewhat satisfied  
— criterion not satisfied 

  

Table 1: 
Accessibility Tool 

Evaluation 
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This chapter introduces the concept of access profile analysis (APA).  A three part 

methodological framework is used to broadly describe how APA works (see Figure 8).  

The first section outlines general analytic goals for APA.  Using a case study, the next 

section describes the data on which access profiles are based.  Since several data 

inputs are generated specifically for this study, a review of how these inputs are 

generated is also included in this section.  The third section explains what access profiles 

are, how the data are used to generate them, and how they can be interpreted.  This 

three part methodological framework is used as a template in the following chapter, 

where it is adapted to address the six applications outlined in Chapter 1. 

3.1 Analytic Goals 
The basic analytic goal of APA is to measure the ease of reaching destinations using 

various travel modes.  To illustrate how APA works, two specific goals are identified for 

this chapter.  The first goal is to compare the average level of job accessibility provided 

by pedestrian, transit, and auto modes in the study area.  The second goal is to calculate 

Chapter 3:  
Access Profile Analysis: Methodological 
Framework 
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a disaggregate measure of job accessibility, and show spatial accessibility patterns in the 

study area. 

 

3.2 Data 
After a brief outline of the study area, the following subsections describe the different 

kinds of data I used to operationalize APA: origin data, destination data, and generalized 

travel cost (GC) data.  The GC data subsection includes an overview of how I generated 

pedestrian and transit travel time data for this study. 

3.2.1 Study Area 

To demonstrate how APA works, I did a case study of Kitchener-Waterloo.  Located in 

south western Ontario, approximately 100 kilometres west of Toronto, Kitchener-

Waterloo has a population of approximately 300,000 residents (Data Management 

Group, 2006c).  While Kitchener and Waterloo are separate municipalities, they form one 

continuous urban area.  The study area includes two downtown centres, Downtown 

Figure 8: Chapter 3 
in Context 
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Kitchener and Uptown Waterloo, which are located approximately 3 kilometres apart 

along a central corridor.  Much of the study area outside of these centres is suburban in 

nature, transitioning to rural around the study area borders.  The transportation network 

includes the street network, two highways, a number of pedestrian/bike trails, and a bus 

transit system.  A single operator, Grand River Transit (GRT), oversees the operation of 

buses, a central transit terminal, and a number of smaller satellite terminals.  A map 

illustrating the relevant features of the study area is shown in Figure 9. 

 

I chose Kitchener-Waterloo as the case study area for pragmatic reasons—data 

availability, manageable size and complexity, personal familiarity with the area—and also 

Figure 9: Study 
Area 
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because a number of interesting developments are currently underway in Kitchener-

Waterloo that have direct accessibility implications.  These developments include (a) the 

construction of a Light Rail Transit (LRT) line along the central corridor, (b) the 

construction of a mobility hub in downtown Kitchener, (c) the introduction of new express 

bus routes that feed into the planned LRT line, and (d) policies that foster more intensive 

land uses along the central corridor.  These developments make Kitchener-Waterloo a 

particularly interesting location to implement APA; moreover the results of this study 

provide a benchmark for future accessibility analysis. 

3.2.2 Origin Data 

Since this study examines job accessibility, origins are defined as the residential 

locations of individuals.  Due to data availability, household origin locations are 

aggregated into zones.  This approach is common for both cumulative opportunity and 

gravity model accessibility studies (e.g. Foth et al., 2013; Bertolini et al., 2005; Levinson, 

1998); it also facilitates regional scale operationalization.  Since origins in close proximity 

with one another have similar access to transportation networks and similar travel 

distances to destinations, spatial aggregation can effectively represent a cluster of 

origins while reducing complexity for analysis at larger spatial extents. 

The zonal system used in this study is taken from the Transportation Tomorrow Survey 

(TTS), which is the regional household travel survey (Data Management Group, 2006c).  

The TTS divides Kitchener-Waterloo into 270 Traffic Analysis Zones (TAZs).  The shape 

and size of TAZs vary, with TAZ boundaries typically following major roads, rivers, or 

railways.  Geographically smaller TAZs are generally located in denser areas, and larger 

TAZs located toward the urban periphery, as shown in Figure 10.  The centroid of each 

TAZ is used as the origin point for travel time generation.  The spatial and socio-

demographic extent and resolution of the study area are summarized in Table 2. 

 Total Study Area (extent) TAZs (resolution) 
Unit  min mean max SD 
Geographic Area (ha) 20,356 3.2 75.4 528 72.5 
Population 300,104 0 1111 8223 1329 
TAZs 270 - - - - 
 

defining origins 

origin scale, 
extent, resolution 

Table 2: Study Area 
Extent and 
Resolution 
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Origin TAZs can be characterized by a number of attributes such as population or socio-

economic indicators that are relevant to accessibility.  The only attribute used in the basic 

methodological framework discussed in this chapter is origin TAZ population.  This is 

used to derive population-weighted averages of accessibility (see Subsection 3.3.1), as a 

way of compensating for the wide range of origin TAZ populations (see Table 2).  Socio-

economic origin attributes are discussed in Chapter 4, where they are used to 

operationalize several applications.  

 

3.2.3 Destination Data 

Destinations are defined as jobs in this study.  Job data are taken from the TTS, which 

indicates that a total of 138,797 jobs exist in the study area (Data Management Group, 

2006c).  Both the scope of this study and data availability preclude job sector or salary 

disaggregation, and all jobs are therefore considered equal to one another.  Since any 

given worker is only qualified for—and perhaps only willing to accept—a small fraction of 

the total jobs that exist in a study area, the number of jobs that are relevant for any given 

worker will be much lower than what is indicated in this general accessibility study.  A 

origin attributes 

Figure 10: Study 
Area TAZs 
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further limitation arises from this, because the spatial distribution of jobs may be very 

uneven in terms of where different job sectors are located.  A worker with manufacturing 

qualifications living in a downtown area, for example, may be considered to have 

excellent job accessibility in a general analysis, as presented here, but may in fact have 

low job accessibility if all the manufacturing jobs are located near the urban periphery.  

Consequently, this analysis only provides broad findings about accessibility to the 

employment market as a whole, and is not capable of identifying sector specific patterns. 

If job sector data for both jobs and workers were available, two extensions of this 

analysis could be explored.  First, sector specific analyses could be undertaken.  This 

would be particularly useful from a social equity perspective, since it could, for example, 

provide greater insight on the employment challenges faced by workers in declining job 

sectors.  Second, data from service / retail job sectors may also be useful as a proxy for 

access to retail and service destinations.  Consideration of retail and service destinations 

would be a helpful first step to consider more realistic travel patterns such as trip 

chaining, as opposed to the simple origin-destination trips considered here.  In a recent 

study, Cheng and Berolini (2013) found that relatively few job accessibility studies have 

included job sector disaggregation, noting also that this is an important area for further 

research. 

The spatial extent used to define origins is also used to define destinations—i.e. only 

jobs located in Kitchener-Waterloo are considered in this study.  While there are 

important employment centres located in close proximity to the study area—most notably 

the City of Cambridge, and to some extent the four townships located in the Region of 

Waterloo—I decided to exclude these areas for four reasons.  First, the study area is 

characterized by a relatively simple land use pattern—two proximate downtown centres, 

and an overall pattern of diminishing densities with increasing distance from these 

centres—which is well suited for an initial application of this model.  Adding centres 

outside of Kitchener-Waterloo to the study area would have increased the complexity of 

land use, and would be more appropriate for subsequent applications of this model.  

Second, the City of Cambridge and the four townships contain many rural TAZs.  Since 

the rural areas of Waterloo Region are typically relatively inaccessible by pedestrian and 

transit modes, and since the focus of this model is multi-modal accessibility, I wanted to 

keep the number of rural origins and destinations to a minimum.  Third, the City of 

spatial extent of 
destinations 
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Cambridge appears to have a greater proportion of interregional commuting than the 

study area (Herhalt, 2014), which may be due to the proximity of Highway 401.  Fourth, 

while employment centres outside of Kitchener-Waterloo may be moderately accessible 

for some study area workers, the most accessible jobs—and therefore the jobs of 

greatest interest in this study—are those located in the study area itself.  A limitation of 

the study area delineation is that auto and perhaps even transit accessibility for some 

origins may be slightly underestimated.5 

The employment data included in the TTS are provided at TAZ resolution.  This 

resolution is well suited for transit and auto accessibility measurement, and many transit 

and auto job accessibility studies define destinations at this resolution (e.g. Foth et al., 

2013; Grengs et al., 2010; Sanchez et al., 2004).  For pedestrian analysis, however, this 

resolution is problematic because pedestrian travel is comparatively slow, and pedestrian 

accessibility is most relevant at the local scale (Iacono, Krizek, & El-Geneidy, 2010).  A 

finer destination resolution is therefore needed to measure pedestrian accessibility. 

Parcel level employment data is available in many regions, but is often expensive to 

procure (Iacono et al., 2010).  I therefore used available generic land parcel data to 

downscale TAZ resolution employment data.  This method is based on the assumption 

that employment is distributed among employment parcels in proportion to the area of 

each parcel.  Three steps are involved: 

1. Identification of employment parcels.  First, I acquired parcel data (MPAC, 

2013) from the Region of Waterloo.  Each parcel in this dataset is assigned a 

Municipal Property Assessment Corporation (MPAC) code, which reflects the 

dominant use of a parcel (see MPAC, 2014).  In order to identify plausible 

employment parcels, I sorted these codes into employment-related and non-

employment-related categories, as shown in Table 3.  While most codes were 

sorted by series, several exceptions were made for specific codes such as golf 

courses, where parcel area was not considered proportionate to employment 

potential. 
                                                        
5 According to the TTS, 73% of workers living in the study area also work in the study 
area, while 5% work at undefined locations and 22% work in TAZs outside the study 
area (Data Management Group, 2006a).  This suggests that while the study area is not 
a self contained system, the majority of workers living in the study area also work there. 

spatial resolution 
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2. Calculation of proportionate parcel area.  For each TAZ, I summed the total 

area of all employment-related parcels.  I then divided the area of each individual 

parcel by the total employment area in the respective TAZ.  The quotient 

represents the proportion of TAZ employment area associated with an individual 

parcel. 

3. Allocation of parcel employment.  Finally, I allocated the jobs contained in 

each TAZ to individual parcels based on the area quotient derived in Step 2, as 

shown in Equation 5: 

Emp!"#$%&!! =
Area!"#$%&!!
Area!"#$%&!!!

!!!
⋅ Emp!"# 

where parcel i is one of n parcels within a TAZ. 

 

Several assumptions and limitations are implied in this approach.  First, it is assumed 

that parcels with MPAC codes that are not considered employment-related do not have 

any employment, and vice versa.  Moreover, the number of jobs allocated to a parcel is 

assumed to be proportional to the area of the parcel relative to the area of other 

employment parcels in the TAZ.  Another limitation arises from an alignment issue 

between the TAZ employment dataset and the MPAC parcel dataset.  Nineteen TAZs 

contain no parcels that are considered to be employment-related.  Of these, eleven TAZs 

Equation 5: Parcel 
Employment 

Allocation 

Table 3: MPAC 
Property Codes  MPAC Code Series Employment 

Related? Exceptions 

100 series – Vacant 
Land 

!   

200 series – Farm !   
300 series – Residential !   
400 series – Commercial "  except golf courses (490) 

500 series – Industrial "  except rail and hydro rights of way (561, 
562, 597) 

600 series – Institutional "   
700 series – Special & 
Exempt 

"  except cemetery and non-commercial 
sports complex (702, 721) 

800 series – 
Government 

"   
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also have zero jobs according to TTS data.  This creates a problem for eight TAZs, 

which, according to TTS data have employment, but do not contain any employment-

related parcels.  The affected TAZs contain less than 1% of the jobs in the study area 

and are mostly located at the periphery of the study area.  Since the magnitude of these 

jobs is negligible, they are omitted from the pedestrian analysis.  While this method is 

subject to some limitations, it does estimate job data at a suitable resolution for 

pedestrian analysis, based on the best available data. 

3.2.4 Generalized Cost Data 

Travel effort in this study is quantified as generalized travel cost (GC).  GC models 

convert non-monetary travel costs such as travel time into monetary units, or vice versa, 

to combine the different aspects of travel effort into a single measure (Ortúzar & 

Willumsen, 2001). The following subsections describe the travel time and travel cost data 

used to generate GCs in this study.  Since pedestrian and transit travel times were 

generated specifically for this research, the derivation methods are also presented here, 

along with a validation exercise.  Specific GC models for each mode are then given in 

Subsection 3.2.4.3. 

3.2.4.1 Travel Time Data 

Recall that the destinations for pedestrian travel are considered at the parcel scale.  This 

results in a very large number of origin destination (OD) pairs (nearly 1 million).  As 

expected, no pre-existing travel time data were available for this set of OD pairs, nor was 

it considered feasible or necessary to generate travel time data for each individual OD 

pair.  Instead, I used an alternative approach to generate the necessary data for APA 

without generating individual OD pairs. 

APA requires data that indicate how many destinations can be reached at specific GC 

intervals.  I achieved this by translating GC intervals into pedestrian travel time intervals,6 

                                                        
6 This conversion is straightforward: pedestrian travel involves no monetary costs, 
therefore GC is linearly related to travel time; travel time is linearly related to distance, 
since pedestrians are considered to travel at a constant speed.  If the value of time and 
walking speed are known, GC units can be converted into distance units. 
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and then into travel distance intervals, based on a standard walking speed of 5.0 km/h.7  

Using a pedestrian travel network dataset that was provided by the Region of Waterloo 

(Region of Waterloo, 2011b), I then generated a service area (i.e. buffer area based on 

travel through the network) for each origin and each distance interval in ArcGIS.  Next I 

created a spatial join to link each service area to the employment parcel layer and sum 

the number of jobs within each service area.  This provides the number of jobs that are 

reachable from each origin at each GC interval, satisfying the APA travel time 

requirement (see Section 3.3) 

In this study I generated transit travel times using an ArcGIS extension.8  A number of 

factors need to be considered to generate accurate transit travel times that reflect door-

to-door travel.  As shown in Figure 11, a transit trip is comprised of access time, wait 

time, in-vehicle time (IVT), egress time, and in some cases transfer walk time and 

transfer wait time.  In order to model all of these trip components accurately, a tool is 

needed to (a) integrate a pedestrian network with the transit network, (b) read transit 

schedule data, and (c) interpret exogenous trip parameters such as origin/destination 

locations and departure or arrival times. 

 

I chose to use a new ArcGIS extension, referred to here as the ArcGIS transit tool 

(ATT),9 to generate transit travel times.  Not only does the ATT satisfy the three 

                                                        
7 Walking speeds vary in the literature between 4.2 km/h and 5.5 km/h (see Foth et al., 
2013; Knoblauch, Pietrucha, & Nitzburg, 1996; Salonen & Toivonen, 2013); 5.0 km/h 
was found to be an approximate average of walking speeds used in the literature. 
8 Initially I attempted to use a transit travel time matrix provided by the Region of 
Waterloo, however these data proved to be insufficient for APA. 
9 This tool does not yet have an official name as it is still under development; in the tool 
documentation (Morang, 2014) it is simply referred to as Add GTFS to a Network 
Dataset – version 0.3.0. 
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requirements outlined above, it also made use of available data and available software.  

These features suggest that this tool could readily be used for APA analysis in other 

metropolitan areas. 

The first step in using the ATT is to build the transit network using Generalized Transit 

Feed Specification (GTFS) data.  This data format is widely used by many transit 

agencies around the world, and is frequently published by transit agencies in open data 

libraries (e.g. Region of Waterloo, 2013b).  GTFS data includes information about routes, 

trips, stops (including longitude and latitude), stop times, and calendar dates.  The ATT 

uses the stop location data in the GTFS dataset to create transit stops in an ArcGIS 

shapefile.  Next, the ATT creates direct links between stops according to their route 

sequence in the GTFS dataset.  The next step is to import a pedestrian network to 

enable the access, transfer, and egress trip components.  I used the same pedestrian 

network (Region of Waterloo, 2011b) here that I used earlier to generate pedestrian 

travel times. The ATT then connects each transit stop to the closest point on the 

pedestrian network with a special link.10  With the transit route network connected to the 

pedestrian network, the ATT is able to read schedule data and model realistic transit trips 

based on exogenously determined origins, destinations, and departure or arrival times.  

Figure 12 shows a simple transit trip modelled with the ATT, including the access, wait, 

in-vehicle, and egress trip components.  In order to appreciate how modelled transit trips 

compare with realistic transit travel behaviour, each trip component is discussed in 

greater detail below. 

In modelling a transit trip, the first factor considered by the ATT is the exogenously 

determined departure or arrival time.  Since this study examines job accessibility, I chose 

to specify a fixed destination arrival time of 8:30 AM on a weekday, reflecting a typical 

start time for many jobs.  Given an arrival time, an origin location, and a destination 

location, the ATT uses an algorithm to identify the trip route with the latest possible 

departure time that does not violate the fixed arrival time. 

 

                                                        
10 The properties of this link are described below. 
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In-vehicle times (IVTs) form the skeleton of any trip, since this trip component is 

restricted by transit schedules.  IVTs are also relatively simple to model since they are 

taken directly from the GTFS schedule data.  A minor limitation in this regard is that IVTs 

generated by the ATT assume perfect schedule adherence.  In actual transit operations 

there is always some deviation from scheduled travel times, though the extent of this 

deviation for GRT buses—and the impact of this deviation on modelled travel times—is 

unknown. 

The process of modelling wait and transfer times is complicated by two factors: (a) a lack 

of consensus in the literature about what constitutes appropriate wait and transfer times, 

and (b) limited options to implement this behaviour in the ATT.  Half the headway time11 

                                                        
11 Headway time refers to the amount of time between transit vehicle 
arrivals/departures at any given stop. 
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is frequently recommended as an appropriate wait time, however Salonen & Toivonen 

(2013) suggest that commuters are likely to minimize their wait time by consulting transit 

schedules and adjusting their departure time accordingly.  This is the approach taken 

here, and a traversal time of 2 minutes is assigned to the connectors that link the 

pedestrian network to transit stops,12 as shown in Figure 12.  This behaviour reflects a 

traveller arriving at a bus stop 2 minutes before the bus is scheduled to depart. 

Limited options exist in the ATT to implement accurate transfer behaviour.  For transfers 

that involve alighting at one bus stop and boarding at another nearby bus stop—i.e. 

when transferring at a terminal or between routes that are perpendicular to one 

another—the 2 minute boarding time applies, in addition to any walking time involved 

between the two stops.  I acknowledge that 2 minutes plus walking time may not be 

sufficient to reliably transfer between routes in some cases.  Increasing this delay factor, 

however, would also affect initial wait times for all trips, and an initial wait time greater 

than 2 minutes is considered to be higher than necessary.  A 2 minute delay, in my view, 

is a reasonable compromise to approximate both initial wait time and transfer time.  

Another limitation arises, however, for transfers that involve alighting and boarding at 

exactly the same transit stop.  Since the connector link does not need to be traversed in 

this case, a transfer can theoretically happen instantaneously.  This is a weakness in the 

ATT that currently cannot be avoided; the impact of this shortcoming on travel times is 

explored in the travel time validation section below. 

Access time and egress times are calculated based on walking via the pedestrian 

network from the origin to the initial boarding location, and from the final alighting location 

to the destination location respectively.  Two aspects of the modelled access and egress 

behaviour deviate somewhat from realistic behaviour.  First, the ATT does not limit the 

amount of walking that can be included in a trip.  This is not considered a major 

limitation, since (a) excessive walking is an infrequent occurrence in the ATT because 

travel in a transit vehicle usually results in shorter travel times than walking, and (b) 

excessive walking may be necessary in some cases to generate travel times for origin-

destination (OD) pairs that are not well served by transit. 

                                                        
12 Note that this traversal time is uni-directional and only applies for movement from the 
pedestrian network to a stop (i.e. boarding).  Movement in the other direction (i.e. 
alighting) is not subject to this traversal time. 
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Second, ATT egress times are somewhat distorted because they include an early arrival 

penalty.  A transit user incurs an early arrival penalty when they arrive at a destination 

ahead of a fixed desired arrival time due to transit scheduling (Casello, Nour, & Hellinga, 

2009).  This distortion occurs because the ATT does not permit arrival in advance of the 

fixed arrival time.  In cases where the actual arrival time would normally be ahead of the 

fixed arrival time, the ATT pushes the alighting time/location forward to the earliest 

possible point where the destination can still be reached before the fixed arrival time by 

walking.  This distortion is shown in Figure 13.  Again, this is not seen as a major 

limitation because early arrival penalties are very relevant to job accessibility, where 

desired arrival times at a job are often fixed.  Since an early arrival penalty is a legitimate 

component of total travel time in the context of job accessibility, the modelled total travel 

times are considered a reasonable reflection of actual total travel time. 

 

Given the complexity of each trip component, the calculation of total travel times is 

surprisingly straightforward.  Using the closest facility tool in ArcGIS, I calculated the 

travel time to the n closest destinations for each origin.  The closest facility tool uses the 

ATT travel network with 8:30 AM set as the destination arrival time.  This produces a 

total travel time estimate for each OD pair in the study.  A further tool contained within 

the ATT can be used to disaggregate total travel times and indicate the amount of time 

Figure 13: Early 
Arrival Penalty 
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allocated to each trip component.  Since the ATT distorts the amount of time allocated to 

each trip component, however, disaggregated travel times are not used in this study.13 

Unlike pedestrian and transit travel times, I did not independently generate auto travel 

times for this study.  Instead, I obtained an auto travel time matrix from the Region of 

Waterloo (Region of Waterloo, 2011a), which was generated using VISUM travel 

forecasting software.  The travel times in this matrix are based on actual travel speeds 

under PM peak period conditions.  A very minor limitation in this data is the omission of 

51 OD pairs.  It is not known why travel times are not provided for these OD pairs.  Since 

they constitute 0.07% of the full OD matrix, however, I consider the impact of the 

omission to be negligible. 

Since travel times play a central role in APA, an indication of their validity is useful to 

assess the overall robustness of APA results.  Unfortunately, modelled travel times 

cannot be validated against some ‘true’ set of travel times, since actual travel times vary 

based on normal fluctuations in transportation network performance.14  I therefore used 

validation as a strategy to assess the general alignment between study travel times 

(STT) and a set of independently generated travel time estimates.  This validation 

approach indicates whether STTs are plausible, and whether discrepancies between the 

two travel time datasets are random or attributable to systemic factors.  An independently 

generated multi-modal travel time data source was therefore needed. 

I selected Google Maps Travel Times (GMTTs) as a suitable source of validation data for 

a number of reasons.  First, GMTTs meet the criterion of independence, since they are 

not generated with any of the same software or algorithms as STTs.15  Second, GMTTs 

are available, convenient, and could be acquired without exceeding the financial or time 

constraints of this research.  Third, GMTTs are available for all three modes including 

transit.  Finally, the widespread use of Google Maps for pedestrian, transit, and auto 

                                                        
13 Disaggregated travel times—if they were available—could be used to assign different 
weights to each trip component in a GC model; this approach is frequently used to 
incorporate travelers’ perceptions into GC models (Ortúzar & Willumsen, 2001). 
14 The travel time of all modes is affected by variables such as weather, construction, 
congestion, signal delay, etc. 
15 This is assumed to be the case, though the proprietary nature of the algorithms used 
by Google, ArcGIS, and VISUM make this a difficult assumption to verify. 
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directions suggests that routes and travel times align reasonably well with actual travel 

behaviour. 

Having established a source of validation data, I then randomly selected 10 TAZs to use 

as both origin and destination locations (see Appendix A).  This resulted in a 90 OD pair 

matrix, since 10 OD pairs have identical origins and destinations.  For each OD pair, I 

generated and then compared travel times for with both STT and GMTT methodologies.  

The results of this comparison is discussed in the following paragraphs, and then 

summarized in Table 4. 

The average STT for pedestrian trips was 101.2 minutes, whereas the average GMTT for 

pedestrian trips was 105.3 minutes.  Average delta travel time is therefore -4.1 minutes 

or -4% of travel time, and the standard deviation of the delta travel time is 2.7 minutes.  

This means that the study methodology predicts travel times that are consistently slightly 

shorter than the travel times predicted by Google Maps.  This can probably be attributed 

to a slight difference in walking speed, though the actual walking speed used in Google 

Maps is unknown.16  Given the relatively close agreement in STT and GMTT estimates, 

and the small standard deviation of delta travel time, the STTs are considered plausible, 

and no problematic estimation biases are noted. 

The average STT for transit trips was 62.6 minutes whereas the average GMTT for 

transit trips was 68.2 minutes.17  The delta travel time was -5.6 minutes or -8.9% of travel 

time, and the standard deviation of the delta travel time was 9.3 minutes.  This means 

that STTs are typically shorter than GMTTs, and range from being much shorter to 

slightly longer than GMTTs.  The moderate discrepancy between these two travel time 

datasets was investigated, and it was found that much of the discrepancy was 

associated with two particular TAZs.  Both of these TAZs are located on the periphery of 

the study area, and neither of them have transit service within or along their boundaries.  

Consequently, long walking distances were associated with trips to and from these TAZs, 

                                                        
16 There are indications that Google uses a variable pedestrian travel speed, 
determined by variables such as grade (see Google, 2010). 
17 In order to compare like figures, an early arrival penalty was included in both STT 
and GMTT (i.e. travel time begins at departure and ends at the fixed arrival time, 8:30 
AM). 
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which is handled differently by Google Maps than it is with ATT.18  Further analysis 

revealed that the random sample of 10 TAZs used for validation purposes 

overrepresented TAZs with no transit service, which constitute less than 10% of all study 

area TAZs.  In order to understand how much of the travel time discrepancy could be 

attributed to these two TAZs, I conducted a second analysis omitting the OD pairs 

involving these TAZs. 

Among the remaining 56 OD pairs, the average STT was 45.0 minutes, and the average 

GMTT was 46.9 minutes.  Delta travel time is therefore -1.9 minutes or -4.2% of travel 

time, and the standard deviation of delta travel time is 4.6 minutes.  This means that 

STTs are slightly shorter on average than GMTTs, with a moderate range of dissimilarity.  

These results are in line with expectation, and the remaining minor discrepancy can be 

attributed to differences in transfer rules, boarding times, walking speed, and a minor 

schedule issue.19  While the STTs for transit trips to or from locations with poor transit 

service may be underestimated, overall the STTs for other cases are closely aligned with 

GMTTs. 

The average STT for auto trips was 15.2 minutes, whereas the average GMTT for auto 

trips was 12.1 minutes.  The delta travel time is 3.2 minutes or 26% of travel time, and 

the standard deviation of the delta travel time was 5.2 minutes.  These results were 

expected since GMTTs are based on free flow conditions, and the STTs are based on 

peak period congested conditions.  Consequently, the STTs may well be a more 

accurate reflection of actual travel time than the GMTTs.  Further investigation of the 

discrepancy confirmed that delta travel times generally increased in proportion to travel 

time—i.e. longer trips had greater delta travel times—and for routes that included 

significant highway travel.  This is consistent with congestion being the primary 

difference between the two sets of travel times.  Given the logical explanation for the 

                                                        
18 For trips that involve significant amounts of walking, Google Maps appears to 
minimize walking by always using the nearest transit stop, even when walking to a 
slightly further transit stop with better service reduces overall trip time.  As discussed 
earlier, the ATT behaviour has no aversion to walking. 
19 After completion of the validation exercise it was discovered that GRT made minor 
schedule adjustments on 5 of their routes in early January 2014; the GTFS dataset 
used in the study does not reflect these changes, whereas the GTFS dataset used by 
Google does. 
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moderate alignment between the two datasets, STTs for auto trips are considered very 

plausible. 

The results of the validation exercise are shown in Table 4.  STTs for all modes were 

closely and consistently aligned with the corresponding GMTTs, with caveats noted 

above.  The average discrepancy between the two datasets was less than 5 minutes for 

each mode, though the inclusion of origins and destinations poorly served by transit lead 

to slightly higher average discrepancies for transit travel times. 

Statistic Pedestrian Transit (90 
OD pairs) 

Transit (56 
OD pairs) Auto 

STT Sample Mean (min) 101.2 62.6 45.0 15.2 
GMTT Sample Mean 
(min) 105.3 68.2 46.9 12.1 

Min Delta (min) -11.0 -36.4 -15.4 -3.8 
Mean Delta (min) -4.1 -5.6 -1.9 3.2 
Mean Delta as % of 
Travel Time -4.0% -8.9% -4.2% 20.7% 

Max Delta (min) -0.2 3.0 2.3 20.0 
St Dev of Delta (min) 2.7 9.3 4.6 5.2 

Comments 

Slightly 
slower 
walking 
speed 
suspected 
for GMTT 

Poor 
alignment for 
TAZs with no 
transit 
service 

Minor 
differences 
with 
transfers, 
boarding, 
walk speed 

GMTT based 
on free flow 
conditions; 
STT based 
on peak hour 
conditions 

*Delta = STT - GMTT 

3.2.4.2 Travel Cost Data 

This subsection reviews the monetary travel cost inputs used in the GC models.  

Pedestrian travel is the simplest mode in this regard, as it does not entail any monetary 

costs.  Transit service in the study area is priced using a flat fare (i.e. not distance 

based), with various fare structures available such as single fares, monthly passes, 

student fares, etc.  In order to calculate a meaningful average fare cost among the 

different fare structures, I divided the annual farebox revenue received by Grand River 

Transit (GRT) by the number of annual passenger trips that were taken on the GRT, as 

shown in Equation 6: 
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!average!fare = !Passenger!RevenuePassenger!Trips = $17,368,537
13,726,874 = $1.27 

The average monetary cost of transit use is therefore $1.27 per trip (Canadian Urban 

Transit Association, 2007).20  While this may seem like a low average fare considering 

that cash fare in 2006 was $2.25, only approximately 15% of passenger trips were paid 

as cash fare (Canadian Urban Transit Association, 2007).  An overview of the variables 

collected by the Canadian Urban Transit Association (CUTA) for each transit agency in 

Canada is provided in Appendix B. 

Estimating the monetary cost of travel for auto is considerably more complex than for 

either of the other modes.  This is because auto travel entails fixed costs that are 

unrelated to the number or length of trips made.  Fixed costs include insurance, 

depreciation, and financing costs, and are typically expressed as annual figures.  In the 

literature, fixed auto costs are frequently excluded from generalized cost models (e.g. 

Koopmans, Groot, Warffemius, Annema, & Hoogendoorn-Lanser, 2013).  In my view, the 

exclusion of fixed costs could only be justified if all potential workers in the study area 

owned a car, which is of course not the case.  In the real world auto use is not possible if 

fixed costs are not paid, and there is no reason why they should be left unaccounted for 

in modelled behaviour aimed at measuring the ease of reaching destinations.  The 

question is how—not whether—fixed costs should be modelled.  Since these costs do 

not vary based on trip length, it is not appropriate to include them with variable costs 

such as fuel.  The only alternative is to allocate a portion of these costs to each trip, 

independent of trip length. 

Estimates of both fixed and variable auto costs are taken from the Canadian Automobile 

Association (CAA) (2007).  These estimates are based on the purchase of a new 

compact car, with retention and financing over a four year period.  Financing is based on 

a 10% down payment, with 7.75% interest (Canadian Automobile Association, 2007).  

Variable costs accounting for fuel, maintenance, and tire costs are estimated at 12.5¢ 

per kilometre; fixed costs are estimated at $7,080 per year based on insurance, 

licence/registration fees, depreciation, and financing costs (Canadian Automobile 

Association, 2007). 

                                                        
20 2006 data are used to align with the 2006 TTS data in this study. 
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I allocate fixed auto costs to individual trips on the basis of average trip making rates.  

The TTS indicates that the average resident in the study area made 2.43 trips per day 

(Data Management Group, 2006b), resulting in 888 trips per person annually.  While the 

survey was only conducted on weekdays, I assume the same trip rate for weekend 

travel.  To calculate the fixed costs per trip, I divide the annual fixed costs by the number 

of the number of annual trips, as shown in Equation 7: 

Fixed!costs!per!trip = ! Annual!Fixed!Costs
trips!per!day! ∙ days!per!year = !

$7,080
2.43 ∙ 365 = $7.97 

3.2.4.3 Generalized Cost Models 

In order to convert non-monetary travel costs (i.e. travel time costs) into dollars, the value 

of time must be established.  Empirical estimates suggest that the value of travel time 

(VOT) for commuting purposes is frequently estimated at 50% of the gross wage rate 

(Small, 2012, p. 5).  The average wage in Ontario ranged between $20.47 and $23.59 

from 2006 to 201021 (Statistics Canada, 2014), suggesting a VOT between $10.25 and 

$11.75.  The Region of Waterloo employs a VOT of $12.35 for their modeling (Region of 

Waterloo, 2013a), whereas the Toronto regional transit authority, Metrolinx, uses $13.02 

(Steer Davies Gleave, 2010).  Based on these estimates, I specified a VOT of $12.00 per 

hour.  While the actual value of travel time for a specific individual depends on a range of 

personal and environmental factors such as income, comfort, etc., a more 

heterogeneous formulation of travel time was beyond the scope of this research. 

Based on the data introduced above, the three generalized cost models used in this 

study are as follows: 

GC!"# = VOT! ⋅ ! t!"!(!"#) != !VOT! ⋅ !DistanceSpeed = $12
h ⋅ Distance5!km/h  

 

GC!"#$% = VOT ⋅ t!"!(!"#$%) + average!fare! = ($12/h ⋅ t) + $1.26 

                                                        
21 2006-2010 represents the time range of data sources used in this study 
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GC!"#$ = (VOT ⋅ t!"!(!"#$)) !+ (C!"# ⋅ d!"!(!"#$)) !+ !C!"#$% != ! ($12/h ⋅ t) !+ ($0.125 ⋅ d) + $7.97 

where tij and dij represent travel time and travel distance from origin i to destination j 

respectively, and Cvar and Cfixed are variable and fixed costs of travel respectively. 

With the data described in this section, a generalized cost can be calculated for travel 

between all origins and destinations, for all three modes.  The use of GC models in APA 

is described in the following section. 

3.3 Generating Outputs and Representations 
Having explored the analytic goals and data requirements of APA, this section provides a 

detailed explanation of what access profiles are and how they are generated.  

3.3.1 Calculating Access Profiles 

Consider a simple scenario with a single origin and seven destinations, as shown in 

Figure 14.  Based on the data generated in Section 3.2, the generalized cost of travel 

from the origin to each destination is known (for simplicity, this scenario considers only 

one travel mode).  The number of jobs at each destination is also known.  If I define a set 

of GC intervals—$1 increments in this case—I can sum the number of jobs that can be 

reached at each GC interval.  These data point can then be plotted on a graph, with GC 

on the horizontal axis and the number of jobs on the vertical axis, as shown in Figure 15.  

I refer to the line on this graph as an access profile. 
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An access profile, therefore, is a graphical representation of accessibility, where the 

cumulative number of reachable destinations is modelled as a function of GC.  The 

summation of a basic access profile is represented mathematically in Equation 11: 
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A!! = jobs!
!

!!!
; !∀!j!where!GC!" ≤ x 

where !!! is the number of jobs located at all destinations j that can be reached from 

origin i without exceeding the GC interval x. 

One of the consequences of aggregating jobs into destination zones is that access 

profiles may resemble step functions, with the number of reachable jobs increasing 

sharply between some intervals, and not at all between others.  This is shown in Figure 

15 where the number of reachable jobs increases significantly for GC intervals $3-$4, $4-

$5, and $6-$7, but not for $5-$6, since there are no destination TAZs associated with a 

GC in the $5-$6 range.   

Access profiles can be generated not only to represent specific origins, but also to 

represent average accessibility for multiple origins.  When considering multiple origins it 

is important to distinguish between accessibility at the average origin and accessibility for 

the average individual at all origins.  This distinction is particularly important for the case 

study used in this research, since the population of TAZs varies widely, with a number of 

TAZs having zero population (see Table 2).  In order to avoid having uninhabited TAZs—

which frequently have poor accessibility—skew the accessibility results, average access 

profiles must be weighted by origin population. This can be achieved by weighting the 

number of destination jobs for each OD pair based on origin population: 

weighted!jobs!" !=
pop!
pop!!

!!!
∙ jobs! 

where the weighted jobs at destination j for OD pair ij is proportional to the population of 

origin i divided by the total population of all n origins. 

The population weighted average number of reachable jobs for origin i at GC x is then: 

A!! =
pop!
pop!!

!!!
∙ jobs!

!

!!!

!

!!!
; !∀!j!where!GC!" ≤ x 
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Using the data outlined in Section 3.2, access profiles can be generated for any mode(s) 

and any origin(s) in the study area.  Figure 16 shows pedestrian, transit, and auto access 

profiles representing the population weighted average accessibility of all TAZs.  Each 

access profile is calculated based on $1 GC intervals. 

 

 

These access profiles show that at a GC of $15 for example, the average pedestrian in 

the study area can reach 61,403 jobs, the average transit user can reach 109,972 jobs, 

and the average auto user can reach 125,394 jobs.  The interpretation of access profiles 

is explored further in the next subsection. 

3.3.2 Access Profile Features 

Several key access profile features are highlighted in Figure 17.  The first feature to 

consider is the point along the GC axis where an access profile begins to rise and 

destinations first become reachable.  This point indicates the minimum GC that is 

incurred to reach any destinations at all—a sort of “barrier to entry” for the mode in 

question.  For an origin that is in close proximity to destinations, the barrier to entry is 

effectively the fixed monetary costs of travel—$0 for pedestrian travel, $1.27 for transit 

Figure 16: Average 
Access Profiles for 

Pedestrian, Transit, 
and Auto Modes 

fixed costs and the 
“barrier to entry” 
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travel, and $7.97 for auto travel in this study.  For an origin that is isolated from 

destinations, the barrier to entry will also include the travel time to reach the first 

destination.  In urban contexts, therefore, the barrier to entry is typically lowest for 

pedestrian travel and highest for auto travel; in more suburban or rural contexts, the 

barrier to entry for auto travel may be more comparable or even lower than the barrier to 

entry for other modes, since it may take a particularly long time to reach destinations by 

pedestrian or transit modes in such cases. 

 

Whereas the fixed cost component of GC—along with land use—determines where on 

the GC spectrum an access profile begins to increase, the variable cost component 

determines the rate at which it increases.  The rate of increase, i.e. the slope of an 

access profile, represents the relative accessibility gain for a unit increase in GC.  From 

the variable cost perspective, travel speed is the main determinant of slope.  Travel 

speed indicates distance travelled per unit time, and since travel time is the most 

important variable component of GC,22 travel speed also reflects distance travelled per 

unit GC.  If all other things are equal, a greater travel distance per GC interval will also 

mean access to more destinations per GC interval, and thereby result in a steeper 

access profile slope.  Not surprisingly, auto travel has the steepest slope, followed by 

transit travel, while pedestrian travel typically has the smallest slope, as shown in Figure 

                                                        
22 Recall that travel time is the only variable cost component of GC for pedestrian and 
transit travel; therefore travel time and GC have a linear relationship for these modes.  
Although auto travel includes variable monetary costs, such as fuel, travel time is still 
the most important variable cost component. 

Figure 17: Access 
Profile Features 

access profile slope 
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16.  The value of time (VOT) also influences access profile slope, with higher VOTs 

creating smaller slopes, and lower VOTs producing steeper slopes. 

All other things are not always equal however.  In addition to variable costs, land use 

also shapes the slope of an access profile.  A higher density of destinations increases 

the slope of an access profile because each unit of travel time or distance provides 

access to more destinations than would be the case in a low density environment.  

Levine et al. (2012) point out that density and travel speed often exist in tension with 

each other, with higher density urban areas exhibiting lower travel speeds than less 

dense urban areas.  The slope of an access profile therefore does not directly indicate 

density or travel speed; rather, it indicates how effectively these factors are balanced.  A 

steeper slope indicates that the combined impact of speed and density is supportive of 

accessibility, whereas a small slope indicates either very low density or very low travel 

speed, or both. 

Access profiles also reveal information about both regional and local accessibility.  At the 

lower end of the GC spectrum, the shape of an access profile indicates how many 

destinations can be reached in a short amount of time with low monetary costs.  Local 

accessibility favours pedestrian and transit travel, since the high fixed costs of auto use 

prevent auto travel from being competitive at the low end of the GC spectrum.  At the 

upper end of the GC spectrum, the shape of an access profile indicates the level of 

accessibility to regional destinations.  The shape of an access profile at this end of the 

GC spectrum is only relevant to those individuals who are willing and able to incur the 

high travel costs associated with regional travel. 

The upper end of the GC spectrum also indicates “accessibility saturation,” the point 

along the GC spectrum where all jobs can be reached (see Figure 17).  Accessibility 

saturation only occurs in a closed system, where the number of potential destinations is 

finite.  In this study, auto is typically the first mode to achieve accessibility saturation, 

though in some cases transit may reach saturation at an even lower GC.  Virtually all 

TAZs reach auto accessibility saturation by GC=$20, and most TAZs achieve transit 

accessibility saturation at this point as well, which is why $20 is used as the upper GC 

limit on most of the diagrams in this thesis.  

local and regional 
accessibility 

accessibility 
saturation 
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3.3.3 Access Profile Analysis (APA) 

Access profiles can be used for various kinds of analysis.  The basic principle of APA is 

that the greater the magnitude of destinations that can be reached at any given GC 

interval, the better the accessibility is at that origin.  In the left diagram in Figure 18, the 

best accessibility is achieved by access profile C; the accessibility of access profile B is 

almost as good as access profile C, whereas access profile A has much poorer 

accessibility.  Comparison may, in some cases, be more complicated, as seen in the 

right diagram in Figure 18, where access profile A has better local accessibility, while 

access profile B has better regional accessibility.  Specific analytic goals must be defined 

in order to determine whether access profile A or access profile B offers better 

accessibility in any given context. 

 

APA can be applied to policy scenarios by modelling how a scenario would change one 

or more accessibility components.  In the left diagram in Figure 18 for example, access 

profile A could represent a hypothetical base case.  Access profiles B and C could 

represent accessibility outcomes resulting from planned accessibility interventions (e.g. a 

new bridge, a rapid transit line, or the intensification of land uses).  In this case, APA 

indicates that intervention C is more effective at increasing accessibility than intervention 

B.  This information can be used alongside other project criteria such as cost, to evaluate 

the merits of competing proposals.  The first three applications in this study analyze 

policy scenarios and ex post policy implementations to understand how various 

interventions affect accessibility. 

 

comparative 
analysis 

Figure 18: 
Comparative 

Analysis 

policy scenario 
analysis 
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Spatial APA involves comparing access profiles for multiple destinations.  For a small 

number of origins (5-10), access profiles can be visually interpreted on a graph with 

relative ease.  As the number of origins increases, however, it becomes increasingly 

difficult to identify individual access profiles on a graph, and patterns become lost as the 

graph becomes overcrowded.  A graph showing the unique access profile for all origins 

in this case study would be completely illegible.  Access profiles also fail to show the 

spatial relationship between origins.  Therefore, while access profiles are useful for 

evaluating either a few individual origins or a few aggregated sets of origins, a different 

approach must be taken for disaggregate spatial analysis. 

There are two basic ways of deriving an indicator value from an access profile.  The first 

option is to measure the distance from the vertical (i.e. destination) axis to the access 

profile at regular intervals.  This approach indicates the overall cost of accessibility.  To 

illustrate how this works, consider a theoretical scenario of perfect accessibility where all 

destinations can be reached at GC=0.  The GC associated with each destination interval, 

the average of these intervals, and the total of these intervals would all equal zero.  In a 

theoretical no accessibility scenario, the GC associated with each destination interval, 

and the average of these, would be equivalent to the upper GC bound.  The total sum of 

these intervals would be equal to the product of the upper GC bound and the number of 

intervals used for calculation.  In any scenario between no accessibility and perfect 

accessibility, the average GC calculated from all the destination intervals would indicate 

the average GC of destination access.  A lower value of this indicator corresponds to 

better accessibility.  I develop an indicator that is similar to this approach to measure 

modal redundancy in Section 4.4. 

The second approach is to measure the distance from the horizontal (i.e. GC) axis to the 

access profile at regular intervals.  This approach indicates the overall level of 

destination access.  In a perfect accessibility scenario, the destination access associated 

with each GC interval, and the average of these, would equal either 1 (if destinations are 

measured proportionately) or the total number of destinations contained in the scenario 

(if destinations are measured absolutely).  The sum total of these intervals would either 

equal the number of intervals or the product of the number of intervals and the total 

number of jobs, respectively.  In a no accessibility scenario, each interval, and therefore 

their total and average, would equal zero.  In any scenario between no accessibility and 

spatial analysis 

API calculation 
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perfect accessibility, the average of these intervals indicates average destination access; 

a higher value indicates better accessibility. 

I use the second approach to develop an indicator of accessibility in this research, which 

I refer to as the API (Access Profile Indicator).  The indicator is based on average 

destination access calculated at $1 GC intervals.  To provide a normalized scale, I 

measure destination access proportionately (i.e. total study area jobs = 1).  The 

calculation of API is given in Equation 14: 

API! =
accessible!jobs!"!

total!jobs
!!
!"!!

20  

where APIi is the Access Profile Indicator for origin i.   

Figure 19 shows a simple access profile, with a bar representing the number of 

reachable jobs at each GC interval.  Allowing the size of the interval to go to zero would 

produce the mathematical integral of the accessibility function, indicating the exact area 

under the curve.  In the interest of simplicity, I chose to use the approach shown in 

Equation 14, which provides sufficient precision for this context. 

 

To reflect the combined level of accessibility provided by multiple modes, I calculated a 

variation of the API, based on the maximum access profile.  The maximum access profile 

indicates the highest level of accessibility that can be achieved with any mode at any 

given GC interval, as shown in Figure 20.  I refer to the API based on the maximum 

access profile as APImax. 

Equation 14: API 
Formulation 

Figure 19: API 
Single Mode 
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Figure 21 shows a map of APImax across the study area.  The values of APImax range 

from 0.26 to 0.67, suggesting that in the least accessible TAZ, 26% of study area jobs 

can be reached at the average GC interval, whereas 67% of jobs can be reached at the 

average GC interval in the most accessible TAZ.  More accessible TAZs appear to be 

located near the downtown areas, while less accessible TAZs are located near the study 

area periphery.  Applications 4-6 in this study use APIs and related measures to 

represent the spatial variation of accessibility across the study area. 

Figure 20: 
Maximum Access 

Profiles and APImax 
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3.3.4 Comparison with Black and Conroy 

As mentioned in Chapters 1 and 2, the APA methodology outlined in this chapter shares 

similarities with previous research by Black and Conroy (1977).  First, the basic 

underlying principle—graphically representing accessibility as a function of travel effort—

is common among both studies (a replication of an “access profile” graph from Black and 

Conroy (1977) can be found in Appendix B).  Second, Black and Conroy (1977) develop 

an indicator based on the area below an access profile, similar to the API.  Finally, Black 

and Conroy also suggest that their approach can be used for the evaluation of 

transportation and land use plans. 

While much of the conceptual approach is similar, there are several aspects in which this 

study differs from the study by Black and Conroy (1977).  First, Black and Conroy (1977) 

model travel effort simply as travel time, whereas travel effort is modelled more 

comprehensively as GC for APA.  This is a particularly relevant distinction for social 

equity analysis, where monetary travel costs can be a significant barrier to accessibility.  

Second, Black and Conroy (1977) only consider transit and auto modes, whereas APA is 

Figure 21: 
Maximum Access 

Profile Indicator 
Map 
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operationalized for transit, auto, and pedestrian modes, providing a more comprehensive 

understanding of local accessibility.  Third, Black and Conroy (1977) only generate 

access profiles for a small number of specifically selected TAZs.  In this study, both 

individual TAZ access profiles and aggregate average access profiles for groups of TAZs 

are generated, which means that APA can be applied on a much broader scale beyond 

just a few specific origins of interest.  Fourth, in this study APA is operationalized to 

examine six policy relevant questions, only two of which—the evaluation of transportation 

plans and the evaluation of land use plans—are mentioned by Black and Conroy (1977).  

The applications of APA related to monetary transportation costs, modal redundancy, 

housing costs, and low income are therefore unique to this research. 

Finally, I believe that APA is a much more powerful tool today than it would have been in 

the 1970s.  The rise of open data, the emergence of common data formats such as the 

generalized transit feed specification (GTFS) format, the prevalence of powerful GIS 

software, and the general advances in computational capability that have occurred since 

the 1970s have made it much easier to implement APA and operationalize detailed 

scenarios.  As discussed in Chapter 6, recognition of transportation-land use interactions 

has also increased since the 1970s, suggesting that there is greater interest in 

accessibility—and a greater need for accessibility tools—among planners today.  It 

seems timely, therefore, to revisit and expand the concepts that Black and Conroy (1977) 

presented almost four decades ago, and demonstrate their potential in a contemporary 

context. 

3.4 Methodological Framework Summary 
In this chapter, I have developed a methodological framework to illustrate the basic 

concept of APA, which is summarized in Table 5.  The methodological framework is 

divided into analytic goals, data, and outputs.  In this chapter the analytic goals and 

subsequent outputs have been broad, and no attempts to answer specific policy related 

questions have been made.  In Chapter 4, the methodological framework is used as a 

foundation and a template for operationalizing the six applications introduced in Chapter 

1.  This entails more focussed analytic goals, dataset modifications, and outputs tailored 

to the respective application.  A modified version of Table 5 is developed for each 
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application to show how the methodological framework is adapted in each case.  The 

results for each application are then presented in Chapter 5. 

 Component / Type Description, Value, Source 

A
na

ly
tic

 
G

oa
ls

 Multi-modal accessibility 
inventory 

Understand the average accessibility of each mode for the 
entire study area 

Disaggregate, multi-modal 
spatial analysis 

Illustrate variation in overall accessibility across study area 

D
at

a 

Origins 
Locations TAZ centroids; n=270 (Data Management Group, 2006c) 
Attributes TAZ population (Data Management Group, 2006c) 

Destinations 

Locations 
Pedestrian travel: parcels; n=3,192 (MPAC, 2013) 
Transit/Auto travel: TAZs; n=270 (Data Management Group, 
2006c) 

Magnitude 

Pedestrian travel: n=137,811 (Data Management Group, 
2006c; MPAC, 2013) 
Transit/Auto travel: n=138,797 (Data Management Group, 
2006c) 

Travel time 

Pedestrian 
Network Dataset (Region of Waterloo, 2011b) 
Travel speed: 5.0km/h 
Measurement: TAZ centroid - GC interval 

Transit 
Network dataset constructed with ATT and 2010 GTFS data 
(Region of Waterloo, 2010) 
Measurement: TAZ centroid - TAZ centroid 

Auto 
PM peak period travel time matrix (Region of Waterloo, 
2011a) 

Travel cost 

Value of 
time 

$12.00/hr 

Pedestrian No costs 
Transit Fixed: $1.26 (Canadian Urban Transit Association, 2007) 

Auto 

Variable: 12.5¢/km (Canadian Automobile Association, 2007) 
Fixed: $7,080/year (Canadian Automobile Association, 
2007); $7.97/trip based on 2.43 trips/day (Data Management 
Group, 2006b) 

O
ut

pu
ts

 

Aggregate access profiles 
Generates one profile per mode based on the average of all 
origins 

APImax map Generates and maps the APImax for each individual TAZ  

 
 
 

Table 5: 
Methodological 

Framework 
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This chapter adapts the APA methodological framework introduced in Chapter 3 to each 

of the six policy applications outlined in Chapter 1.  Applications 1-3 evaluate specific 

policies to understand aggregate accessibility implications either for the study area as a 

whole or for a defined subset of traffic analysis zones (TAZs).  This is achieved by 

modifying input data such as travel times, travel costs, or land uses to reflect either policy 

scenarios or ex post policy outcomes.  Applications 4-6 focus on disaggregate 

distributions of accessibility.  The disaggregate nature of these applications means that 

access profile indicators (APIs) and related measures are used to evaluate each TAZ 

individually. 

4.1 Application #1: Transportation Investment 
In this application I used APA to evaluate the accessibility implications of transportation 

investments.  To operationalize this application, I compared 2010 and 2013 Grand River 

Transit (GRT) GTFS schedule data to model how investments in better bus service 

affected accessibility.  Between 2010 and 2013, GRT implemented several bus service 

improvements, most notably introducing two new express bus routes.  These routes are 

a limited stop service operating in mixed traffic, through largely suburban areas.  The 

Chapter 4:  
Operationalizing Policy Applications 

chapter abstract 

analytic goals 
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analytic goal for this application is therefore to evaluate the extent and distribution of 

accessibility benefits that resulted from this investment. 

 

Operationalizing this application required two extensions to the standard dataset.  First, 

in addition to the 2010 transit travel time matrix, I needed a 2013 travel time matrix. I 

generated a 2013 transit travel time matrix by applying the same approach (using the 

ATT) to the 2013 GTFS dataset (Region of Waterloo, 2013b) that I had applied earlier to 

the 2010 GTFS dataset (see Section 3.2.4.1). 

In order to evaluate how the accessibility impacts of the bus service improvements were 

distributed, I sorted TAZs into two categories based on their proximity to one of the two 

new express bus routes.  To make this distinction, I created a 600 metre service area 

(i.e. buffer based on network travel) around each of the express bus route stops in 

ArcGIS.  If more than 50% of the area of a TAZ overlapped with the express bus stop 

service areas, I categorized the TAZ as a corridor TAZ; if less than 50% of the area 

overlapped with the express stop area, I categorized the TAZ as a non-corridor TAZ. 

I generated the following four aggregated transit access profiles for this application: 2010 

corridor TAZs; 2010 non-corridor TAZs; 2013 corridor TAZs; 2013 non-corridor TAZs.  

Figure 22: Chapter 
4 in Context 

data 

outputs 
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The methodological framework for this application is summarized in Table 6; results are 

presented in Chapter 5. 

 Component / Type Description, Value, Source 

A
na

ly
tic

 
G

oa
ls

 

Policy analysis 
Did 2010-2013 transit investments improve 
accessibility? By how much? Where? 

D
at

a 

Origins 
Locations 

Non Corridor: n=243 (TAZ centroids) 
Corridor: n=27 (TAZ centroids) 

Attributes Standard 

Destinations 
Locations Standard 
Magnitude Standard 

Travel time 

Pedestrian N/A 

Transit 
2010 / 2013: Network dataset constructed 
with ATT and 2010 / 2013 GTFS data 
(Region of Waterloo, 2010, 2013b) 

Auto N/A 

Travel cost 

Value of time Standard 
Pedestrian N/A 
Transit Standard 
Auto N/A 

O
ut

pu
ts

 

Aggregate access profiles 
Four transit access profiles: 2010 corridor / 
non-corridor; 2013 corridor / non-corridor 

4.2 Application #2: Transportation Taxes and User Fees 
For this application, I developed a fuel tax scenario to explore how transportation taxes 

and user fees affect accessibility.  To provide a clear indication of accessibility impacts, I 

chose to double the fuel cost component of auto travel.  As outlined in the introduction, a 

fuel tax could affect accessibility in a number of ways.  In this analysis, only the direct 

impact of higher travel costs is considered; indirect impacts related to transportation 

investments enabled by the additional fuel tax revenue and behaviour changes resulting 

Table 6: 
Application #1 - 
Methodological 

Framework 

analytic goals 
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from the higher travel costs are not considered here due to lack of data.23  The analytic 

goals of this application are to (a) determine how a fuel tax would affect the generalized 

cost of travel, and subsequently affect accessibility, and (b) compare the accessibility 

impacts for high and low income TAZs. 

I operationalized the higher fuel tax by increasing the variable monetary costs of auto 

travel.  According to the CAA, fuel accounts for 8.3¢ of the 12.5¢/km variable cost of auto 

travel (2007).  For the higher fuel tax scenario I doubled this 16.6¢/km, making the total 

variable cost of auto travel 20.8¢/km.  Based on this revised GC model, I calculated a 

new auto GC for each OD pair. 

To compare the differential impacts of an increased fuel tax at both ends of the income 

spectrum, I divided TAZs into average income quintiles.  Since average income is not 

included in the TTS, I used census income data (Geographic Research, Inc., 2006), at 

Dissemination Area (DA) resolution.  DAs were the finest resolution available for the 

data, and are comparable in size to TAZs.  While the approximate size of DAs and TAZs 

is comparable, they do not share common geographic boundaries however.  To generate 

average income data for TAZs, I translated the income data from DA spatial units to TAZ 

spatial units using the following method in ArcGIS. 

First, I intersected DAs with TAZs so that each spatial unit was associated with only one 

TAZ and only one DA (Area! !∩ !Area!).  I then divided the area of each intersected 

spatial unit by the area of the associated DA, Aread.  Next, I multiplied this quotient by 

the total income of the DA, Total Incomed.  The sum of total incomes for all intersected 

units D associated with TAZ z, yields the total income of TAZ z, as shown in Equation 15: 

Total!Income! =
Area! !∩ !Area!

Area!

!

!!!
⋅ Total!Income! 

                                                        
23 These impacts could be modelled in APA, but would require a more comprehensive 
scenario that would include (a) specific transportation investments and (b) travel time 
matrices that reflected these investments and any travel behaviour changes caused by 
the fuel tax increase itself. 

data 

Equation 15: 
Geographic Unit 

Conversion - Step 
#1 
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I applied the same equation to translate the number of households from DA units to TAZ 

units, by substituting total income with total number of households.  The calculation of 

average after-tax household income for TAZ z is shown in Equation 16: 

Average!Household!Income! =
Total!Income!

Total!Number!of!Households!
 

This method results in a 1:1 translation of data, where each dollar of income and each 

household in the Census data is included exactly once in the resulting TAZ data.  After 

calculating the average household income for each TAZ, I ranked TAZs by income and 

categorized them into income quintiles. 

I generated a total of eight average access profiles: a base case access profile for 

pedestrian, transit, and auto modes, and an auto access profile for the increased fuel 

cost scenario; these four access profiles were generated for both the highest and lowest 

income quintiles.   

  

Equation 16: 
Geographic Unit 

Conversion - Step 
#2 

outputs 
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 Component / Type Description, Value, Source 
A

na
ly

tic
 

G
oa

ls
 

Policy scenario analysis 
What impact would higher fuel costs have 
on high and low income TAZs? 

D
at

a 

Origins 
Locations 

Lowest income quintile: n=54 (TAZ 
centroids) 
Highest income quintile: n=54 (TAZ 
centroids) 

Attributes 
Average after-tax household income 
(Geographic Research, Inc., 2006) 

Destinations 
Locations Standard 
Magnitude Standard 

Travel time 
Pedestrian Standard 
Transit Standard 
Auto Standard 

Travel cost 

Value of time Standard 
Pedestrian Standard 
Transit Standard 

Auto 
Increased fuel cost scenario: 
Variable: 20.8¢/km 
Fixed: Standard ($7.97/trip) 

O
ut

pu
ts

 

Aggregate access profiles 
8 access profiles: base case (all modes) 
and higher fuel cost scenario (auto); 
highest and lowest income quintiles 

 

4.3 Application #3: Land Use 
For this application I developed two contrasting land use scenarios and compared their 

accessibility impacts.  The first scenario reflects intensification policies that prioritize 

urban employment growth.  In this scenario, I increased the number of jobs in a 

downtown Kitchener TAZ where a future innovation district is planned.  The second 

scenario reflects suburban development policies that do not restrict greenfield 

development.  In this scenario, I added jobs to an undeveloped TAZ at the urban 

Table 7: 
Application #2 - 
Methodological 

Framework 

analytic goals 
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periphery.24  The analytic goal in this case is to determine whether these scenarios have 

significantly different impacts on accessibility. 

 

I operationalized these scenarios by adding new 10,000 jobs to the respective 

destination TAZ in each scenario.  I chose 10,000 because (a) one TAZ could 

reasonably contain 10,000 jobs25, and (b) the addition of 10,000 jobs would constitute a 

7.2% growth in employment in the study area, an increase large enough to be readily 

measured in APA, yet not so large that it would be implausible for the study area.  The 

respective TAZ locations are shown in Figure 23. 

I generated a total of nine aggregate access profiles to represent the three travel modes 

for each of the two scenarios and for the base case.  These access profiles represent 

average accessibility from all origins to all destinations, including the respective modified 
                                                        
24 Interestingly, both scenario TAZs have already experienced development since the 
data used in this study were generated.   
25 The TAZ with the highest employment in the study area, which incidentally is located 
in downtown Kitchener near the urban scenario TAZ, contains 7,437 jobs. 

Figure 23: Land Use 
Scenario TAZs 

data 

outputs 
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destinations.  Since both scenarios increase the total number of destinations from 

138,797 to 148,797, accessibility will also increase in both scenarios, relative to the base 

case.  Comparing these access profiles will indicate how effectively each scenario 

increases accessibility for each mode. 

 Component / Type Description, Value, Source 

A
na

ly
tic

 
G

oa
ls

 

Policy scenario analysis 
What are the differential accessibility 
impacts of urban and suburban 
employment growth scenarios? 

D
at

a 

Origins 
Locations Standard 
Attributes Standard 

Destinations 
Locations Standard 

Magnitude 
10,000 jobs added to TAZ 151 (urban 
scenario) and TAZ 242 (suburban scenario) 

Travel time 
Pedestrian Standard 
Transit Standard 
Auto Standard 

Travel cost 

Value of time Standard 
Pedestrian Standard 
Transit Standard 
Auto Standard 

O
ut

pu
ts

 

Aggregate access profiles 
9 access profiles: two scenarios and base 
case (all modes) 

 

4.4 Application #4: Modal Redundancy 
Redundancy is a common network concept that refers to the number of possible routes 

connecting an origin to a destination and the relative effectiveness of these routes 

(Jansuwan, Chen, Xu, & Yang, 2013; Immers, Yperman, Stada, & Bleukx, 2004). Modal 

redundancy is defined here as the number of modes that connect an origin to a 

destination, and the relative effectiveness of these modes.  For example, an origin where 

the ease of reaching destinations is similar for multiple modes has high modal 

redundancy.  Conversely, an origin where the ease of reaching destinations varies widely 

between modes has low modal redundancy. 

Table 8: 
Application #3 - 
Methodological 

Framework 

context – what is 
modal 

redundancy? 
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While there are some TAZs where transit provides better accessibility than other modes, 

the greatest modal disparities in the study area occur in TAZs with poor transit and 

pedestrian accessibility.  In these cases, accessibility is much higher for auto than it is for 

other modes, implying a degree of auto dependency.  Both the lack of modal redundancy 

in general, and auto dependency in particular, have important social and economic 

implications, which are discussed below. 

The freedom to choose one’s travel mode is an important socio-economic aspect of 

modal redundancy because not everybody wants to drive.  The propensity for auto travel 

among younger adults, for example, is declining (Delbosc & Currie, 2013; Goodwin & 

Van Dender, 2013).  Similarly, the desire to live in walkable neighbourhoods, where auto 

travel is not required for all trips, appears to be shared not only by those living in 

walkable neighbourhoods, but also by a significant portion of those living in auto 

dominated neighbourhoods as well (Toronto Public Health, 2012).  Modal redundancy 

provides choice for individuals with varying travel preferences. 

Social equity is another important aspect of modal redundancy because not everybody is 

able to drive.  If accessibility is a fundamental aspect of society (see Section 1.1), it is 

important that it be available to all members of society.  While some barriers exist with 

regard to pedestrian and transit travel, the barriers associated with auto travel are much 

more restrictive.  In order to travel by auto, an individual must be of a certain age, satisfy 

a range of health and physical ability requirements, possess a valid drivers licence, and 

have sufficient financial resources to own and operate an auto.  In environments that are 

prone to auto dependency, modal redundancy provides an indication of the accessibility 

gap between those who are able to drive and those who are not able to drive. 

Reliability is another aspect of modal redundancy.  All modes are subject to various 

disruptions that can compromise an individual’s ability to reach a destination.  While 

certain disruptions, such as inclement weather, may affect all modes simultaneously, 

many other disruptions, such as traffic congestion or a transit strike, primarily affect only 

one mode.  In these cases, modal redundancy allows individuals to travel with an 

alternate mode and avoid the disruption.  A lack of modal redundancy, by contrast, would 

make individuals more vulnerable to potentially unpredictable disruptions.  

Consequences of this include a greater risk of not reaching a destination at the required 

context – why does 
modal redundancy 

matter? 
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time and / or individuals routinely increasing the amount of contingency or buffer time in 

their travel plans. 

Modal redundancy also has broad implications for quality of life and the urban 

environment.  Transportation systems that are heavily dominated by auto travel are 

associated with a variety of negative outcomes such as traffic congestion, environmental 

pollution, higher infrastructure costs etc.  These outcomes ultimately reduce the livability 

of regions that are auto-dependent and lack modal redundancy (Vuchic, 1999). 

This application aims to measure modal redundancy at the TAZ level.  The specific 

analytic goals are to (a) gauge whether a policy response is necessary to address low 

modal redundancy, (b) develop the foundation for such a policy response, if it is 

necessary, and (c) establish a baseline to monitor the evolution of modal redundancy 

over time.  Since there are no established ways of measuring modal redundancy, a 

further aim is to identify a meaningful metric of modal redundancy. 

No additional data are needed to estimate TAZ modal redundancy. 

To analyze modal redundancy I developed a measure that I refer to as the modal 

redundancy cost indicator (MRCI).  The MRCI is similar to the API, but differs in two 

important ways.  First, whereas the API reflects the magnitude of an access profile (i.e. 

how many jobs can be reached), the MRCI measures the difference between two access 

profiles.  Any two access profiles can be used to calculate an MRCI value.  To measure 

modal redundancy based on three modes, I measured the difference between the 

maximum access profile, and the secondary access profile.  Recall that the maximum 

access profile (m1) refers to the access profile of the mode that reaches the highest 

number of destinations at any given GC.  The secondary access profile (m2) therefore 

refers to the access profile of the mode that reaches the second greatest number of 

destinations at any given GC, as shown in Figure 24.  The MRCI essentially represents 

the accessibility disparity between modes—a high MRCI value indicates low redundancy, 

while a low MRCI value indicates high redundancy 

The other distinction between the MRCI and the API involves the unit of measurement.  

The API is expressed as the average percentage of jobs that are reachable across the 

GC spectrum.  While the MRCI could also be expressed as percentage of jobs, it is 

analytic goals 

data 

outputs 



 

 68 

expressed here as the average delta GC between m2 and m1.  The MRCI therefore 

indicates the additional GC that would be incurred for travel with the second most GC 

effective mode (m2) in comparison to the GC incurred for travel with the most effective 

mode (m1).  Using GC as the measurement unit conveys the concept of modal 

redundancy in very concrete terms that are easily communicated and interpreted. 

 

Since the MRCI is measured in GC units, regular job intervals must be established to 

measure the delta GC between m2 and m1.  For this analysis, intervals of 10% of the total 

number of study area jobs are used.  As noted earlier, if the job intervals were allowed to 

go to zero, the MRCI would represent the difference between the integrals for m1 and m2.  

Figure 24: Modal 
Redundancy Cost  

Indicator 
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In the interest of simplicity, I used the 10% intervals, which provide a reasonable degree 

of precision for this context.  In cases where some jobs are reachable with only one 

mode—i.e. significant auto dependency—an upper GC threshold (GC max) may be 

necessary in order to establish an m2 value for upper job intervals.  The calculation of the 

MRCI is illustrated visually in Figure 24 with examples of high and low modal 

redundancy.  The MRCI is defined mathematically in Equation 17: 

Modal!Redundancy!Cost!Indicator!(MRCI) = GC!!! !−!GC!!!

! !
!

!
 

where x is one of N job intervals. 

The primary output for this application is a map of the MRCI for each TAZ in the study 

area. 
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4.5 Application #5: Accessibility and Housing Costs 
In this application, I explore whether housing costs are likely to restrict accessibility for 

low income households.  Housing costs are typically influenced by a number of variables 

related to the dwelling and its location, including job accessibility.  If accessibility is 

strongly correlated with housing costs across an urban area, the location choice of low 

income households may be restricted to comparatively inaccessible locations.  Section 

4.6 explores the issue further by focusing specifically on the relationship between income 

and accessibility. 

A strong correlation between housing costs and accessibility is most likely to occur when 

the demand for access to a major employment centre is high, and the supply of 

accessible housing is relatively low.  To the extent that housing costs are related to 

accessibility, they are an indication of how much competition exists for origin locations.  

While destination competition effects are frequently discussed in the accessibility 

literature (see Chapter 2), the notion of origin competition effects represented by housing 

costs is only beginning to be explored in the literature (see for example Center for 

Housing Policy & Center for Neighborhood Technology, 2012). 

Since housing costs can be influenced by accessibility, and can also restrict the 

accessibility of low income households, they form an important part of the overall 

accessibility picture.  Simply put, one cannot fairly compare differences in job 

accessibility in Manhattan and rural Manitoba, for example, without comparing the 

differences in housing costs.  Wherever accessibility and housing costs are related, the 

ease of reaching destinations cannot be divorced from the ease (i.e. cost) of residing at 

the respective origin location.  An understanding of the relationship between accessibility 

and housing costs is therefore essential, and where a strong relationship exists, housing 

costs should be integrated into an accessibility measure. 

The analytic goal of this application is to evaluate the relationship between housing cost 

and accessibility.  From a policy perspective, the analytic goal is to determine what kind 

of policy response, if any, may be warranted to address housing costs in accessible 

neighbourhoods. 
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To evaluate housing costs, I used data from the Statistics Canada Household 

Expenditure Survey (Geographic Research, Inc., 2010).  The variable that I used to 

represent housing costs was average household expenditure on the household’s primary 

residence.  These data were available at the Dissemination Area scale, and were 

translated to TAZ units using the method described for income data in Section 4.2.  In 

the interpretation of these data, a distinction should be drawn between housing cost and 

housing affordability.  While housing expenditure data is a reasonable indicator of 

housing cost, it is not, on its own, an adequate indicator of housing affordability.  

Typically, housing affordability is calculated as a percentage of income that is spent on 

housing, with housing costing more than 30% or 50% of household income typically 

considered to be unaffordable (e.g. Moore & Skaburskis, 2004; Skaburskis, 2004).  Other 

conditions, such as housing tenure, and total household income are also frequently used 

to further define housing affordability (Moore & Skaburskis, 2004; Skaburskis, 2004).  A 

rigorous analysis of housing affordability was beyond the scope of this research.  The 

analysis in this application therefore provides an indication of how housing costs relate to 

accessibility patterns, and does not indicate the affordability of housing for any specific 

socio-economic groups. 
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Figure 25: 
Accessibility and 

Housing Costs 
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I generated two kinds of outputs for this analysis.  First, I produced maps of both housing 

costs and accessibility (based on APImax) and visually compared them to observe spatial 

patterns.  Second, I adapted access profiles to include housing costs.  I achieved this by 

scaling per trip generalized travel costs to annual costs using the average trip generation 

rate discussed in Section 3.2.4.2.  Annual housing expenditures were then added as 

fixed costs to access profiles.  Figure 25 illustrates conceptually how housing costs can 

be incorporated into access profiles.  To compare the accessibility of TAZs with low 

housing costs to the accessibility of other TAZs, I divided TAZs into quintiles based on 

average housing expenditure.  I then generated and compared the access profiles of the 

lowest housing cost quintile with the average access profiles of all other TAZs (the 

average of quintiles 2-5). 
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4.6 Application #6: Accessibility and Low Income 
Consider the four possible combinations of income and accessibility shown in the matrix 

in Figure 26.  The top left quadrant reflects households that have poor accessibility, but 

comparatively high income.  While these households may not have good accessibility, 

they have financial resources to afford higher monetary travel costs or to relocate to a 

higher accessibility location.  The top right quadrant contains households that have both 

good accessibility and financial resources to afford monetary travel costs.  Moving 

clockwise to the bottom right quadrant, these households may not have financial 

resources, but they have the benefit of being able to reach a large number of 

destinations without incurring high monetary travel costs.  From a social equity 

perspective, the bottom left quadrant is the most concerning, since these households 

may not have financial resources to afford high monetary travel costs or to relocate.  

Since they have low accessibility, their lack of resources could potentially limit their ability 

to access destinations. 

 

The challenge of low income coupled with low accessibility could theoretically be 

exacerbated by a positive feedback loop, as mentioned briefly in Chapter 1.  As income 

decreases, sensitivity to GC increases because it becomes more difficult for a household 

to pay for monetary travel costs.  On the other hand, the ability to earn an income 

depends, at least to some extent, on access to employment (e.g. Korsu & Wenglenski, 

2010).  Since accessibility is influenced by income, and the ability to afford access, and 

income is influenced by access to employment, the potential for a positive feedback loop 

exists.  Evidence from the Greater Toronto Area suggests that low income households 

context – why does 
income matter? 

Figure 26: Income 
Accessibility 

Quadrants 
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are increasingly located further away from both the central business district and areas 

served with rapid transit (Hulchanski, 2010), suggesting that the double burden of low 

income and low accessibility is becoming more prevalent.  Since an income-accessibility 

feedback loop seems plausible in Toronto, I wanted to analyze whether such a feedback 

loop would also be plausible in Kitchener-Waterloo. 

The analytic goal for this application is to determine the extent of spatial overlap between 

low income and low accessibility, and identify TAZs where this overlap occurs. 

In addition to the standard dataset, I used average TAZ household income data, which I 

described in Section 4.2.  I also calculated the percentile rank of each TAZ for both 

average household income and for accessibility, based on APImax. 

The first output that I generated was a quadrant designation for each TAZ based on the 

income and APImax percentile rank of the TAZ.  I used the 50th percentile as the 

threshold; a TAZ with an average income above the 50th percentile and an APImax below 

the 50th percentile was therefore designated as “high income, low accessibility” for 

example.  This revealed the number of TAZs in each quadrant. 

Since the low income, low accessibility quadrant is of greatest concern and interest from 

an equity perspective, I developed a further metric to evaluate TAZs in this category.  For 

each TAZ, I multiplied the APImax percentile by the income percentile, to produce an 

accessibility income measure (AIM).  A TAZ ranked at the 20th percentile for accessibility 

and 30th percentile for income would therefore have an AIM value of 0.06.  To identify the 

spatial patterns where low accessibility and low income overlap, I then mapped these 

AIM values.  Note that I filtered out TAZs with negligible populations (<50). 
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In this chapter I present and interpret the results of the six analyses that were described 

in Chapter 4.  I also discuss the insights that can be drawn from each analysis, 

particularly as they relate to the analytic goals that were outlined in Chapter 4.  A 

summary of both the methodological framework and the results for each application can 

be found in Appendix D.  After discussing the results of the policy applications, I evaluate 

the overall performance of APA based on the criteria outlined in Chapter 2 (see Figure 

27). 

5.1 Application #1: Transportation Investment 
For this application I generated four transit access profiles, which are shown in Figure 28 

and Figure 29, to measure the effect of transit improvements between 2010 and 2013.  

The results show a small but significant accessibility improvement between 2010 and 

2013 for both TAZs along the express bus corridors and—to a lesser extent—for all other 

TAZs in the study area.  These results are in line with my expectations, since the transit 

investments that I analyzed were relatively incremental improvements. 

Chapter 5:  
Results and Discussion 
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Figure 27: Chapter 
5 in Context 

Figure 28: Transit 
Investment Results 
for Corridor TAZs 



 

 78 

 

The greatest improvement can be seen in the corridor TAZs in the GC range of $8 to 

$17, which translates into a total trip time of 34-79 minutes.  In the lower GC range, 

which represents trips of 30 minutes or less, little improvement is noticed.  This is not 

surprising, because trips in the lower GC range are already have short travel times, 

either because the origin and destination are in close proximity, or because the origins 

and destinations are well connected by transit.  Improving travel times for these trips 

further may not be feasible or even necessary.  For medium and long trips however, the 

2010 – 2013 investments resulted in significant accessibility improvements, particularly 

for corridor TAZs.  At a GC of $10 (44 min travel time) for example, the transit 

investments allow the average corridor resident to reach an additional 15,165 jobs, an 

increase of 26% (see Figure 28).  Overall, the 2010 – 2013 transit investments resulted 

in a modest accessibility improvement for the average study area resident, with the 

greatest benefit affecting corridor residents making medium or long transit trips. 

APA has significant potential as a tool for transportation investment analysis for two 

reasons.  First, APA can support decision-making processes by comparing different 

investment scenarios before they are approved, funded, and implemented.  The main 

requirements for doing this type of analysis are travel time matrices for all affected 

modes in each scenario.  The generation of scenario based travel time matrices can be 

Figure 29: Transit 
Investment Results 

for Non-Corridor 
TAZs 
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greatly facilitated by traffic simulation models and transit scheduling software, which are 

used by many planning authorities. 

APA also has potential for modelling scenarios that are more complex than the ex post 

policy analysis presented here.  Consider, for example, investment in an extensive transit 

signal priority system.  Transit signal priority works by manipulating traffic signals to 

reduce signal delay for transit vehicles, which may lead to increased signal delay for non-

transit vehicles.   The direct accessibility impact of such an investment would include 

shorter transit travel times and potentially longer auto travel times.  There may, however, 

be important indirect accessibility impacts to consider.  New transfer opportunities may 

become possible due to faster transit travel speeds.  Congestion may compound signal 

delay for autos.  APA can model the overall accessibility impact of all of these factors, 

provided that the changes can be reflected in modelled travel times. 

APA is well suited to evaluate transportation investments that aim to improve travel 

speeds, expand transportation networks, increase transit frequencies, or otherwise 

improve accessibility.  For some transportation investments, however, improving 

accessibility may not be a central goal.  Goals such as enhancing travel safety, comfort, 

reliability, or restoring aging infrastructure are certainly valid, but cannot be effectively 

measured with APA. 

5.2 Application #2: Transportation Taxes and User Fees 
For this application I generated four access profiles for the lowest quintile TAZs (Figure 

30) and four access profiles for the highest quintile TAZs (Figure 31).  In both cases, the 

four access profiles consisted of the base case for each mode, and an auto access 

profile that reflects higher fuel costs.  The higher fuel costs reduce auto accessibility in 

both income quintiles, as expected.   

While auto accessibility for both income quintiles decreases with the higher fuel costs, 

there are different implications for both quintiles.  First, the magnitude of the accessibility 

reduction caused by the fuel tax is greater for the highest income quintile than it is for the 

lowest income quintile.  For example, at a GC of $12 the number of jobs that can be 

reached by autodecreases by 14% in the lowest income quintile, whereas the number of 

reachable jobs decreases by 30% in the highest income quintile; at a GC of $14 the 
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decrease is 9% and 17% respectively.  These results suggest that in this study area, a 

fuel tax is not entirely regressive, and is to some extent proportional to income.  In other 

words, households in higher income TAZs would pay a higher cost than households in 

low income TAZs to maintain access to a constant number of jobs. 

 

 

Figure 30: Impact of 
Higher Fuel Costs 
on Lowest Income 

Quintile 

Figure 31: Impact of 
Higher Fuel Costs 

on Highest Income 
Quintile 
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Observing the overall accessibility landscape—i.e. the accessibility offered by multiple 

modes across the GC spectrum—reveals a second insight.  In the lowest income 

quintile, transit appears to be competitive with the base cost of auto use across most of 

the GC spectrum, though auto becomes slightly more competitive at GC=$13.  The 

average resident in one of these TAZs therefore has a viable alternative to auto use.  

Increasing the cost of fuel makes transit even more competitive relative to auto, with 

transit being the more competitive up to GC=$16, and both modes being equally 

competitive beyond that point.  This suggests that the average low-income individual 

struggling to afford higher fuel costs is likely to have the option of taking the bus, without 

facing unreasonably long travel times or low frequency service.  Transit, however, is 

much less competitive in the highest income quintile.  The average individual in these 

high income TAZs, however, has a greater capacity to either pay for the higher fuel cost 

or to relocate to a more transit accessible location.   

One of the arguments occasionally made in opposition to fuel taxes is that they 

negatively affect the poor, who will no longer be able to afford basic mobility (see 

discussion in Vuchic, 1999).  The results from this study area however, suggest that 

households in low income TAZs are not only less affected than those in high income 

TAZs, but also have viable alternatives to auto travel.  It should also be noted that a 

moderate fuel tax increase would have much less of an impact than the results of this 

analysis, where the total cost of fuel was doubled.  As other authors have noted (Vuchic, 

1999), the cost of fuel represents only a small fraction of the cost of auto ownership and 

use, and modest fuel tax increases are likely to have an almost negligible impact on the 

overall costs of auto travel. 

5.3 Application #3: Land Use 
For this application I developed two contrasting employment growth scenarios where 

10,000 jobs were added to an urban TAZ and a suburban TAZ respectively.  For each 

travel mode, I generated an access profile for the base case and each scenario (Figure 

32).  As expected, both scenarios resulted in a small accessibility improvement, though 

the improvement is generally greater for the urban employment growth scenario than for 

the suburban employment growth scenario.  

results 
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Figure 32: Land Use Scenario Results 
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As Figure 32 indicates, the urban employment growth scenario increases pedestrian and 

transit accessibility considerably more than the suburban employment growth scenario. 

For example, in the base case (no additional jobs) the average transit user can access 

51,281 jobs at a GC of $10.  The addition of 10,000 suburban jobs allows the average 

transit user to access 52,415 jobs, an increase of 1,134 or 2.2%.  The addition of 10,000 

urban jobs allows the average transit user to access 57,474 jobs, an increase of 6,193, 

or 12.1%. 

In contrast to pedestrian and transit travel, auto accessibility is affected in a similar way 

by both scenarios.  One explanation for this is that the auto network, and consequently 

auto accessibility, is ubiquitous in the study area.  A suburban auto user may, therefore, 

find the ease of reaching a job in another suburb to be comparable with the ease of 

reaching a downtown job.  The transit network, in contrast, is shaped by demand for 

transit, which is typically higher in central, dense, urban areas than in outer suburban 

areas.  A suburban transit user, therefore, may be able to reach a downtown job with 

much greater ease than a job located in another suburb, because transit service to the 

downtown is likely to be better than suburb-suburb service. 

These results suggest two broad conclusions.  First, urban employment growth is more 

effective at improving job accessibility for pedestrian and transit travelers than suburban 

employment growth.  Second, in comparison with suburban employment growth, urban 

employment growth increases the relative competitiveness of pedestrian and transit 

travel vis-à-vis auto travel.  I do not interpret these results as an argument for or against 

urban development however.  Apart from accessibility, there are many factors that 

should inform growth policies, including market demand.  However, if a modal shift away 

from auto to pedestrian and transit modes has been established as a policy goal, the 

findings presented in this section provide evidence that urban employment growth will be 

more effective at achieving this goal than suburban employment growth. 

I developed these two diametrically opposed employment growth scenarios for illustrative 

purposes. Not surprisingly, the results from this example confirm what many planners 

and researchers might intuitively expect: the urban scenario is more effective at 

increasing pedestrian and transit accessibility.  Similarly, the first two applications also 

explored relatively simple, single variable scenarios and policies.  An interesting area for 

further research is to apply APA to more complex, integrated scenarios where the 
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outcomes are less obvious.   Job growth, for example, could be modelled together with 

residential growth and corresponding transportation investments and revenue schemes 

to estimate net accessibility outcomes for multiple variables.  In my view, APA has 

significant potential to model detailed, integrated scenarios based on actual forecasts. 

5.4 Application #4: Modal Redundancy 
For this application I developed a new indicator, which I refer to as the modal 

redundancy cost indicator (MRCI).  Recall that the MRCI reflects the average GC of 

reaching jobs with the second most competitive mode relative to the most competitive 

mode.  Figure 33 shows a map of MRCI values across the study area. 

 

The MRCI ranges from $0.53 to $9.24 across the study area, with an average of $1.54 

(see Table 12).  Overall, modal redundancy is higher near the downtowns, and lower 

toward the urban periphery.26  There are important exceptions to this pattern, however, 

                                                        
26 Recall that a low MRCI value indicates high redundancy and vice versa. 
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which can be illustrated by examining four TAZs of particular interest.  Access profiles for 

the four TAZs labelled in Figure 33 are shown in Figure 34.  The shaded area in each 

graph indicates the accessibility gap between the most and second most competitive 

modes, which is the basis for the MRCI.  Note that individual TAZ transit access profiles 

are somewhat coarser or more discontinuous than pedestrian and auto access profiles 

due to transit schedules.27 

  MRCI 
Min $0.53  

Mean $1.54  
Max $9.24  
SD $1.11  

 

Modal redundancy is highest in the inner suburbs, with the lowest MRCI score achieved 

in TAZ 212.  The access profile for TAZ 212 is shown in the top left of Figure 34.  Below 

the $10 GC point, a similar number of jobs can be reached by pedestrian and transit 

travel; above the $10 GC point, transit and auto accessibility are very similar.  If any 

mode were to become unavailable, individuals in this TAZ would be able to experience a 

similar level of accessibility with an alternate mode. 

Interestingly, some of the very urban TAZs in downtown Kitchener have moderate MRCI 

scores.  The access profile for TAZ 162, shown in the bottom right of Figure 34, 

illustrates why this is the case: transit outperforms both pedestrian and auto modes.  

While this TAZ has very high accessibility, modal redundancy is moderate because 

individuals would experience a reduction in their accessibility if transit were unavailable.  

The high level of transit accessibility in downtown Kitchener therefore increases the 

MRCI value of TAZ 162 and other nearby urban TAZs. 

The highest MRCI values are found at the urban periphery, with the highest value 

occurring in TAZ 489.  This TAZ is predominantly rural, with no transit service or 

employment areas in close proximity.  Accessibility is therefore much higher for auto, 

than for other modes, and the TAZ can be considered auto dependent.  Auto 
                                                        
27 For example, the number of reachable jobs may be equal for two consecutive $1 GC 
intervals (equivalent to 5 minutes travel time) because no additional buses depart from 
nearby bus stops within those 5 minutes. 
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dependency, however, does not necessarily warrant a policy response.  According to the 

TTS data, the population of TAZ 489 is zero.  Given the sparse/non-existent population, 

improving transit or pedestrian accessibility in TAZs such as this one may not be the 

most efficient use of resources. 

 

TAZ 256 is another interesting case because it appears to be an outlier.  Modal 

redundancy in TAZ 256 appears to be high, despite its location at the urban periphery, 

and the low modal redundancy in adjacent TAZs.  The access profiles for TAZ 256 are 

shown in the bottom right corner of Figure 34.  Below the $10 GC point, accessibility by 

all modes is very poor, reflecting the relative isolation of TAZ 256 with respect to major 

Figure 34: TAZ 
Access Profiles and 

MRCI 
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employment areas.  Above the $10 GC point, transit and auto modes offer similar 

accessibility. 

TAZ 256 provides some insight about how transportation and land use affect modal 

redundancy and accessibility.  Owing to the presence of Conestoga College, a major 

post-secondary educational institution, this TAZ—relative to other peripherally located 

TAZs—is well served by transit.  The isolated location of this TAZ, however, means that 

even with high frequency bus service a significant amount of travel time is required to 

reach major employment areas.  This travel time lag affects the transit access profile in 

much the same way that the fixed monetary costs of auto affect the auto access profile.  

Overall, the high quality of transit service in this TAZ increases modal redundancy 

considerably—as seen by the much lower MRCI score of this TAZ relative to other 

peripheral TAZs.  The quality of transit service does not fully compensate for the 

relatively isolated location of this TAZ in terms of accessibility however, as TAZ 256 has 

one of the lowest APImax values (3rd percentile) in the study area.  The low APImax value 

for this TAZ illustrates that while transit investments can improve the competitiveness of 

transit relative to auto in relatively isolated locations—and thereby increase 

redundancy—they cannot fully compensate for the effect that dispersed land use 

patterns have on accessibility. 

Two broad insights can be drawn from this exploration of modal redundancy.  First, 

accessibility and modal redundancy are distinct measures that do not necessarily 

coincide.  An origin can have high accessibility and moderate redundancy, if one mode 

performs exceptionally well, and other modes perform moderately well, as is the case for 

TAZ 162.  Alternatively, an origin can have high modal redundancy, with moderate or low 

accessibility, if multiple modes perform equally poorly, as is the case for TAZ 256. 

The second insight that can be drawn from the results involves the sensitivity of modal 

redundancy to the formulation of GC.  In this analysis modal redundancy appears to be 

relatively high.28  This can be attributed in part to the high fixed cost associated with auto 

travel, which compensates for the comparatively longer travel times associated with 
                                                        
28 While modal redundancy appears to be relatively high, it is difficult to make any 
assessment in absolute terms in the absence of other MRCI analyses that might serve 
as reference points.  Additional applications of the MRCI are needed to develop a 
reasonable sense of what constitutes high and low modal redundancy. 
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transit travel.  If modal redundancy were to be calculated exclusively on the basis of 

travel time, the results would indicate much lower modal redundancy in the study area. 

Given the sensitivity of modal redundancy to the formulation of GC, I am reluctant to 

make specific policy recommendations.  Nevertheless, there are two general findings 

that emerge from this analysis.  First, transit provides enough modal redundancy to most 

parts of the study area that relatively few TAZs can be considered auto-dependent.  

Second, further investment in transit would help reduce the travel time gap that exists 

between auto and transit modes across most of the study area. 

5.5 Application #5: Accessibility and Housing Cost 
For this application I generated two outputs to analyze the relationship between 

accessibility and housing costs.  First, I mapped both APImax and average housing 

expenditures to highlight spatial patterns in both variables (see Figure 35).  The maps 

suggest that accessibility and housing cost are generally negatively related, with areas 

near the downtowns typically having higher accessibility and lower housing costs than 

areas near the urban periphery. 

  

map comparison 
results 

Figure 35: Housing 
Cost and 
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I also evaluated the relationship between accessibility and housing costs by comparing 

average access profiles for TAZs in the lowest housing expenditure quintile (noted below 

as HEQ1) to average access profiles for all other TAZs (noted below as HEQ2-5).  

Figure 36 shows the pedestrian, transit, and auto access profiles for both groups, and 

reveals that the lower housing cost TAZs have significantly higher accessibility with all 

modes.  The same access profiles are shown again in Figure 37, except this time 

housing costs are integrated into the access profiles as fixed costs.  The access profiles 

in Figure 37 provide an indication of the full costs associated with accessibility—the cost 

of living at the origin, and the cost of moving from the origin to destinations.  

 

APA results 

Figure 36: APA 
Comparisons 
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Overall, these findings suggest that accessible neighbourhoods frequently contain low 

cost housing.  Since housing costs are an indication of competition for origin locations, it 

appears that in the study area, origin competition effects do not restrict accessibility.  

This is an encouraging finding from a social equity perspective, because it suggests that 

low income households are unlikely to find themselves in a position where they must 

trade off accessibility for affordable housing. 

While origin competition effects do not restrict accessibility in Kitchener-Waterloo, this 

may not be true for all metropolitan areas.  Larger metros, particularly those dominated 

by a single central business district (CBD), will have much higher demand for accessible 

housing, due to the larger number of jobs in the CBD.  Depending on the built form and 

the transportation networks, however, the supply of accessible housing may be 

proportionately less than the demand for it.  An analysis of housing costs and 

accessibility in larger metros is therefore a particularly interesting area for further 

research. 

Even in the study area, the evolution of housing costs and accessibility is uncertain.  A 

significant amount of both residential and employment development is currently 

underway in both downtowns, along with the construction of a new light rail transit line.  If 

development leads to overall gentrification of the downtown areas, the cost of housing in 

the most accessible areas of Kitchener-Waterloo may increase, and low-income 

households may be pushed into less accessible neighbourhoods..  The analytic 

Figure 37: Access 
Profiles with 

Housing Costs 

insights 
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techniques described in this section could therefore be useful to monitor the coevolution 

of housing costs and accessibility in the study area. 

5.6 Application #6: Accessibility and Low Income 
While the findings from Section 5.5 suggest that housing costs do not prevent low 

income households from living in accessible areas, I explored relationship between 

income and accessibility directly in this application.  For the first output, shown in Figure 

38, I calculated the number of TAZs that are in each income accessibility quadrant.  A 

total of 35 TAZs are in the low income, low accessibility quadrant, meaning that these 

TAZs fall below the 50th percentile for both income and accessibility.  Of these 35 TAZs, 

only 16 have significant populations. 

 

For these 16 TAZs, I generated an accessibility income measure (AIM) by multiplying a 

TAZ’s accessibility percentile by its income percentile.  The AIM for these 16 TAZs is 

shown in Figure 39. 

The first insight that can be drawn from these results is that the double burden of low 

accessibility and low income is not very severe in the study area.  Only 16 TAZs have 

results 

Figure 38: Income 
Accessibility 

Quadrant Results 

insight 
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both below median accessibility and below median income.29  Furthermore, none of 

these TAZs have an average income below the national Low Income Measure for a four 

person household of $33,578 (Statistics Canada, 2013). 

 

The second insight revealed by this research is that the TAZs most likely to be affected 

by low accessibility and low income are clustered together.  As a general strategy, 

improving transit service or adding employment in this part of the study area could help 

reduce the double burden of low accessibility and low income.  Closer examination of the 

four TAZs with the lowest AIM values, which are highlighted in Figure 39, provides some 

insight into more specific policy recommendations.  The three highlighted TAZs to the 

north have moderate accessibility—ranging from the 36th to the 45th percentile—but very 

low income—ranging from the 11th to the 16th percentile.  Since these TAZs have 

moderate accessibility but very low income, efforts to reduce the monetary costs of travel 

would likely be most effective.  One approach could be to offer low income residents 

                                                        
29 This excludes TAZs with negligible populations. 
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living in these TAZs a discounted transit pass—an approach that is already implemented 

in other Ontario municipalities (Dale, 2014). 

The fourth highlighted TAZ, in contrast, has a moderate average income (47th percentile), 

but very low accessibility (13th percentile).  In this context, improving transit service is 

likely to be a more effective strategy than reducing monetary travel costs, because the 

average resident lacks accessibility more than income.  Since the average income in this 

TAZ is nearly equivalent to the median income, an intervention may not be a high policy 

priority. 

Overall, this analysis is useful in three ways.  First, it has demonstrated that the double 

burden from low accessibility and low income is not an acute problem in the study area.  

Second, it has provided an indication of which parts of the study are most vulnerable to 

low accessibility and low income.  Third, it has provided a baseline and demonstrated 

analytic tools that can be used to track the evolution of accessibility and income in the 

study area. 

5.7 Methodological Results 
Having discussed the results for the policy applications, it is now possible to reflect on 

how the APA methodology performs as an accessibility tool.  The evaluation criteria 

introduced in Chapter 2 are used again here.  The APA evaluation results are 

summarized in Table 13, along with the results for other accessibility tools for 

comparison purposes. 

 

context 
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!! criterion comprehensively satisfied   
! criterion somewhat satisfied  
— criterion not satisfied 
 
Six aspects of theoretical soundness were identified in Chapter 2.  The results of 

applications 1 and 2, indicate that APA satisfies the first aspect of theoretical 

soundness—sensitivity to changes in the transportation system.  In these applications, 

changes to both the transit network and the costs of auto use produced a measurable 

change in accessibility.  The results of application 3, where employment growth 

scenarios were modelled, demonstrate the sensitivity of APA to changes in land use, 

satisfying the second aspect of theoretical soundness.  The third aspect is the 

incorporation of competition effects.  No attempt was made in this research to 

accommodate destination competition effects, which is an issue left to further research.  

However, I argued that origin competition effects are potentially manifested through 

housing costs, and I demonstrated how these can be incorporated in APA.  Therefore 

APA somewhat satisfies the competition effects criterion.  The next criterion, 

consideration of temporal constraints, is not satisfied by APA, and is another area for 

further research.  APA somewhat satisfies the fifth aspect of theoretical soundness, 

which is sensitivity to individuals’ characteristics.  Characteristics such as household 

income and housing costs were considered in this analysis, but only as aggregate 

attributes that were averaged for the population of one or more TAZs.  This approach 

Table 13: APA 
Evaluation 

theoretical 
soundness 
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can provide some sensitivity to the characteristics of individuals, as long as the variables 

exhibit spatial patterns, as income does.  Deeper integration of individuals’ 

characteristics is another matter left to further research.  The final aspect of theoretical 

soundness involves distinguishing between local and regional accessibility.  APA 

satisfies this theoretical aspect because accessibility is represented across the full GC 

spectrum with an access profile.  Local and regional accessibility can be distinguished by 

generating API values based on specifically defined ranges of GC.30  Overall, APA 

satisfies three of the theoretical criteria and somewhat satisfies two criteria, which leaves 

only a single theoretical criterion (temporal constraints) unsatisfied. 

The ease with which APA can be implemented depends on data availability and the 

complexity of analytic goals.  If all the required data are available in appropriate formats, 

APA can be implemented very easily with basic spreadsheet or database tools.  The 

operationalization of APA in this study was complicated by data that were (a) unavailable 

(e.g. transit travel times), (b) in dissimilar geographic units (e.g. Census data relative to 

TTS data), and (c) unavailable at the necessary scale (e.g. pedestrian destination set). 

Each of these issues arose as consequences of specific analytic goals, such as modal 

comparison and socio-economic analysis.  The complexity of operationalizing APA will 

therefore vary from one circumstance to another. 

Relative to the other accessibility tools discussed in Chapter 2, APA satisfies the criterion 

of operationalization.  In comparison with gravity models, APA is somewhat easier to 

operationalize, because observed travel time distributions are not required to estimate 

impedance coefficients.  Apart from the estimation of an impedance coefficients, gravity 

models, cumulative opportunity models, and APA rely on similar data, and the ease of 

operationalizing any of these models will therefore also be similar. 

One of the advantages of APA is the ease with which results can be interpreted and 

communicated.  The underlying concept of APA—that the number of reachable 

destinations is a function of location, mode, and the amount of time and money available 

for travel—resonates intuitively with experts and non-experts alike.  This concept is 

                                                        
30 For example, a GC range of $0-$8 might be defined for generating local accessibility 
API values, and a GC range of $8-$16 could be defined for generating regional API 
values. 
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illustrated visually through access profiles, which show how accessibility is affected by 

various aspects of GC.  The concept of GC is also relatively straightforward, especially in 

comparison with the impedance function used in gravity models.  APA therefore satisfies 

the criterion of interpretability. 

The use of APA for social evaluation was illustrated in applications 2, 5, and 6.  Each of 

these applications predicted the outcomes or impacts of accessibility, both in terms of 

who was affected by accessibility, and how they were affected by accessibility.  APA 

therefore satisfies the social evaluation criterion. 

With respect to economic evaluation, I did not attempt to link accessibility to macro or 

micro economic concepts such as GDP or travel time savings in this analysis.  This is 

largely due to the limited scope of this particular research project and the data that were 

available.  Conceptually, however, APA could be used for economic evaluation.  Since 

economic evaluation is conceptually possible, but not yet demonstrated, this criterion is 

considered to be somewhat satisfied. 

APA is well suited for comparative analysis relative to cumulative opportunity models and 

gravity models, and satisfies this criterion.  The challenge with cumulative opportunity 

and gravity models in this regard is that they require assumptions about maximum travel 

thresholds and willingness to travel respectively.  These assumptions are problematic 

because maximum travel thresholds and willingness to travel vary based on travel 

modes and socio-economic factors.  APA circumvents these assumptions by modelling 

accessibility across the entire spectrum of travel effort.  The ability to use APA to 

compare accessibility between modes and/or socio-economic groups was illustrated in 

five of the six applications. 

As with any model, there are a number of assumptions and limitations associated with 

APA.  Many of these assumptions and limitations relate to the formulation of GC, to 

which APA is very sensitive.  There are many possible formulations of GC, and the most 

appropriate formulation will depend on the analytic goals in any given context.  In this 

analysis, I chose to include the full fixed cost of auto travel in the auto GC model even 

though these costs may not be perceived by all drivers.  In the context of this analysis, 

the inclusion of fixed costs was justified because they play an important role in social 

social  and 
economic 

evaluation 

limitations 
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equity and can be a significant accessibility barrier for low income households.  In a 

different context, the inclusion of fixed costs may not be justified.  Overall, the sensitivity 

of APA to GC formulation can be addressed by (a) specifying a GC formulation that is 

appropriate for the analytic goals in any given context, (b) interpreting results with an 

awareness of how they were influenced by the GC formulation, and (c) developing more 

advanced GC formulations—an area for further research discussed in the following 

chapter. 
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I begin this chapter by summarizing the findings for the study area.  In the next Section, I 

outline the contributions this research has made, both to planning practice and to 

accessibility scholarship.   I then suggest three areas for further research, and conclude 

this thesis with some final thoughts about the future of accessibility (see Figure 40) 

6.1 Summary of Study Area Findings 
The first general finding from the study area analysis is that various transportation and 

land use policies and / or policy scenarios have a direct and measurable impact on 

accessibility.  The addition of two new express bus routes and other service 

improvements made by the GRT between 2010 and 2013 increased accessibility at the 

GC=$10 point by 26% for TAZs in proximity to the new express bus routes, and by 9% 

for other TAZs.  The analysis of transportation taxes and user fees found that the highest 

income TAZs experienced a 30% and 17% decrease in accessibility in response to a 

higher fuel cost scenario, whereas the lowest income TAZs only experienced a 14% and 

9% decrease in accessibility, at GC=$12 and GC=$14 respectively.  Moreover, transit 

appears to be a viable alternative for the lowest income TAZs.  A fuel tax is therefore not 

predicted to have a significant negative impact on the mobility of the average low income 

Chapter 6:  
Conclusions 

chapter abstract 
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household in the study area.  With respect to land use policies, employment growth in an 

urban location was found to be much more effective at increasing pedestrian and transit 

accessibility than employment growth in a suburban location.  The difference between 

the two scenarios was much less pronounced for auto accessibility however. 

 

The study area analysis also revealed several interesting findings about the distribution 

of accessibility and modal redundancy.  First, while more central areas tend to have both 

higher accessibility and higher modal redundancy than outlying areas, accessibility and 

modal redundancy are characterized by different spatial patterns. The highest levels of 

modal redundancy in this study were found in the inner suburbs rather than in the 

downtown areas.  Moreover, outlying TAZs with strong transit connections achieved 

relatively high levels of modal redundancy. 

Finally, from a social equity perspective, the findings suggest that housing costs do not 

prevent low income residents from living in accessible locations.  While there appears to 

be relatively little overlap between areas of low income and areas of low accessibility, 

some overlap does exist in several suburban areas of Kitchener.  Monitoring is 

recommended for these neighbourhoods, to ensure that lack of accessibility does not 

become a significant barrier to employment and general well-being. 

Figure 40: Chapter 
6 in Context 
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As the economy, demographics, and government priorities in Kitchener-Waterloo evolve, 

transportation and land use patterns will inevitably change.  The findings from this 

research provide a useful benchmark to track accessibility patterns through this period of 

community transformation. 

6.2 Research Contributions 
For planning practitioners, this research presents a novel accessibility tool that can be 

used in a variety of policy domains.  In particular, APA can help planning practitioners (a) 

recommend transportation investments that maximize accessibility gains, (b) recommend 

transportation revenue sources that minimize accessibility losses, (c) anticipate the 

accessibility impacts of land use plans, and (d) track and respond to social equity issues.   

This research also illustrates how APA can be operationalized to achieve these goals. 

Many transportation scholars (Banister, 2008; Cervero, 2001) have argued that the field 

of transportation planning must shift from an auto-mobility paradigm to a multi-modal 

accessibility paradigm.  This shift will require a change in the key metrics that are used to 

evaluate our transportation systems (Tumlin, 2012).  It will also require broad stakeholder 

engagement (Banister, 2008).  APA makes a valuable contribution to both of these 

issues, as it links policy to accessibility outcomes, and provides results that can engage 

a wide audience.  As the paradigm shift progresses, meaningful accessibility tools and 

metrics will become increasingly important in transportation and land use planning. 

From an academic perspective, this research has revived a relatively obscure modelling 

approach and demonstrated its potential in a contemporary policy context.  This 

modelling approach has been adapted to include motorized and non-motorized modes of 

travel, and reflect both monetary and non-monetary travel costs.  Furthermore, the 

applications for this tool have been expanded, particularly with regard to modal 

redundancy and social equity aspects of accessibility.  The merits of APA have been 

analyzed with regard to both theoretical rigour and practical usability.  While several 

applications of APA have been demonstrated in this research, many more applications 

have been left for further research. 

contributions for 
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6.3 Areas for Further Research 
Since there do not appear to be any other applications of APA, with the exception of 

Black and Conroy (1977), the most obvious area for further research is simply replication 

of APA in other cities.  This is important because the conclusions drawn about APA from 

this research are based on only one application.  Additional methodological strengths 

and weaknesses are likely to be revealed from further applications.  Beyond other cities, 

APA should also be applied to a variety of destination sets such as retail, educational, 

recreational, and medical destinations.  Finally, as discussed in Section 5.3, APA should 

also be applied to more complex, integrated policy scenarios, since this research only 

investigated single variable scenarios. 

The GC models used in this research represent the value of travel time (VOT) in a 

simplistic way.  More advanced formulations of GC aim to reflect travellers’ perceptions 

of the ease of travel.  A well accepted way of achieving this is to assign different weights 

to different kinds of travel time, such that the VOT for access, transfer, and egress times 

is higher than the in-vehicle VOT (Ortúzar & Willumsen, 2001).31  More recent advances 

in GC modelling aim to capture traveller anxiety based on the reliability of transit service 

and an individual’s level of risk aversion (Nour, Casello, & Hellinga, 2010).  This 

highlights the potential to tailor a GC model not only to the attributes of a trip, but also to 

the characteristics of an individual. 

In addition to perceptions of travel time, the ability and willingness to pay the monetary 

costs of travel also vary among individuals, particularly with regard to an individual’s 

income (Giuliano, 2005).  While there do not appear to be any precedents for this in the 

literature, the monetary costs in the GC model could be weighted based on an 

individual’s income. 

GC models are used in APA to model travel effort.  The perception of travel effort is 

influenced not only by trip attributes, such as reliability or the amount of transfer time, but 

also individual characteristics such as risk aversion, income, and potentially many others.  

As more of these factors are integrated into a GC model, its ability to reflect actual 

perceptions of travel effort increases.  Finding appropriate data sources and techniques 
                                                        
31 This approach was not possible for this study due to the transit data that were 
available. 

replication 

advanced GC 
models 



 

 102 

to integrate individualized GC models into APA is therefore an interesting and important 

area for further research. 

Incorporating travel barriers that are not related to travel time or monetary expenses is 

another interesting area for further research.  While non-time, non-monetary barriers 

apply to all modes, some modes have much more restrictive barriers than other modes.  

As discussed in application 4, auto travel involves barriers around age, health, ability, 

and possession of a valid license, which are not reflected in the GC models.   

Consideration of these barriers is especially important to expand the number of travel 

modes considered in APA.  Several modes that were not considered in this analysis, 

such as cycling or carpooling, would likely have very favourable access profiles, but are 

also subject to non-monetary, non-time travel barriers.  Cycling, for example, involves 

minimal monetary costs, is not restricted by schedules, and has moderate travel speeds.  

Access profiles for cycling may in some cases be more competitive than all other modes 

across a range of GC values in a study area such as Kitchener-Waterloo.  Yet there are 

many barriers to cycling—such as weather, personal fitness, and safety concerns—that 

affect the ease of travel but are not typically considered in GC models,.  One solution 

may be to find ways of incorporating these barriers directly into GC models (see for 

example Casello, Nour, Rewa, & Hill, 2011).  Another approach may be to combine 

multiple modes, and develop an access profile that reflects, for example, making a trip by 

bicycle 80% of the time and by taxi 20% of the time.  APA can potentially be expanded to 

include many additional modes and combinations of modes such as carpooling, 

carshare, taxis, mopeds, cycling, and bikeshare.  In order to accurately reflect the ease 

of travel with any of these modes, however, consideration must be given to non-

monetary, non-time travel barriers. 

6.4 Concluding Thoughts 
This is an exciting time to be involved in accessibility research.  Both the rapidly growing 

body of academic literature on accessibility and the increasing alignment of 

transportation policies with accessibility concepts (e.g. City of Toronto, 2014) reflect the 

ongoing transition toward an accessibility paradigm.  It is my hope that this research can 

provide a small, yet meaningful, contribution to this paradigm shift. 

travel barriers 

travel barriers and 
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Appendix A: Map of Travel Time Validation OD Pairs 

 

The TAZs without transit service are 236 and 489.  Note that both of these TAZs have 

very few roads that run within them.  As a result, Google shifted the origin / destination 

point to the closest point on the road network.  To ensure both methods used the same 

origin / destination points, the centroids were manually shifted in ArcGIS to the same 

location used by Google for the validation exercise. 
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Appendix B: CUTA Data 

OPERATING DATA: 
Revenue Vehicle Kilometres 
Total Vehicle Kilometres 
Revenue Vehicle Hours 
Auxiliary Revenue Vehicle Hours 
Total Vehicle Hours 
 
Operator Paid Hours 
Mechanic Paid Hours 
Total Employee Paid Hours 
 
Adult Passenger Trips 
Concession Fare Trips 

Child Passenger Trips 
Student Passenger Trips 
Senior Passenger Trips 

 
REGULAR SERVICE PASSENGER TRIPS 
Regular Service Passenger Kms 
Auxiliary Serv. Pass. Trips 
 
Transportation Operations Expenses 
Fuel/Energy Exp. for Vehicles 
Vehicle Maintenance Expenses 
Plant Maintenance Expenses 
General/Administration Expenses 
 
TOTAL DIRECT OPERATING EXPENSES 
Debt Service Payment 
Total Operating Expenses 
 
REGULAR SERV. PASS. REVENUES 
TOTAL OPERATING REVENUES 
Total Revenues 
 
NET DIRECT OPERATING COST 
NET OPERATING COST 
Federal Operating Contribution 
Provincial Operating Contribution 
Municipal Operating Contribution 
Other Operating Contributions 
Provincial Debt Service Contribution 
Municipal Debt Service Contribution 
TOTAL CAPITAL EXPENDITURES 
Total Capital Disposals 
TOTAL CAPITAL FUNDING 

Federal Capital Contribution 
Provincial Capital Contribution 
Municipal Capital Contribution 
Other Capital Contributions 
 
PERFORMANCE INDICATORS: 
 
FINANCIAL PERFORMANCE 
Tot. Oper. Rev. / Tot. Dir. Oper. Exp. (R/C Ratio) 
Municipal Operating Contribution / Capita 
Net Dir. Oper. Cost / Reg. Serv. Pass. 
 
AVERAGE FARE 
Reg. Serv. Pass. Rev. / Reg. Serv. Pass 
 
COST EFFECTIVENESS 
Tot. Dir. Oper. Exp. / Reg. Serv. Pass. 
 
COST EFFICIENCY 
Tot. Dir. & Aux. Oper. Exp. / Tot. Veh. Hr. 
 
SERVICE UTILIZATION 
Reg. Serv. Pass. / Capita 
Reg. Serv. Pass. / Rev. Veh. Hr. 
 
AMOUNT OF SERVICE 
Rev. Veh. Hrs. / Capita 
 
AVERAGE SPEED 
Rev. Veh. Kms. / Rev. Veh. Hr. 
 
VEHICLE UTILIZATION 
Tot. Veh. Kms. / Active Vehicle 
LABOUR PRODUCTIVITY 
Rev. & Aux. Rev. Veh. Hrs. / Oper. Paid Hr. 
 
TOP WAGE RATES 
Operators 
Mechanics 
 
 
*highlighting indicates variables used in this 
study 
 
(Canadian Urban Transit Association, 2007) 
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Appendix C: Sample Figure from Black and Conroy 
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Figure 4 from Black and Conroy (1977) 

West Fairfield (Auto) Baulkham Hills (Auto) 
St. Ives (Auto) Mona Vale (Auto) 
West Fairfield (Transit) Baulkham Hills (Transit) 
St. Ives (Transit) Mona Vale (Transit) 
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Appendix D: Application Summary Table 

 
Application 1: Transportation 

Investment 
Application 2: Transportation Taxes and 

User Fees Application 3: Land Use 

Analytic Goals 
Did 2010-2013 transit investments 
improve accessibility? By how much? 
Where? 

What impact would higher fuel costs have on 
high and low income TAZs? 

What are the differential accessibility impacts of 
urban and suburban employment growth scenarios? 

Data 

Origins 
Locations 

Non Corridor: n=243 (TAZ centroids) 
Corridor: n=27 (TAZ centroids) 

Lowest income quintile: n=54 (TAZ centroids) 
Highest income quintile: n=54 (TAZ centroids) 

Standard 

Attributes Standard 
Average after-tax household income 
(Geographic Research, Inc., 2006) 

Standard 

Destinations 
Locations Standard Standard Standard 

Magnitude Standard Standard 
10,000 jobs added to TAZ 151 (urban scenario) and 
TAZ 242 (suburban scenario) 

Travel time 

Pedestrian N/A Standard Standard 

Transit 

2010 / 2013: Network dataset 
constructed with ATT and 2010 / 2013 
GTFS data (Region of Waterloo, 2010, 
2013b) 

Standard Standard 

Auto N/A Standard Standard 

Travel cost 

Value of 
time 

Standard Standard Standard 

Pedestrian N/A Standard Standard 
Transit Standard Standard Standard 

Auto N/A 
Increased fuel cost scenario: 
Variable: 20.8¢/km 
Fixed: Standard ($7.97/trip) 

Standard 

Outputs 
Four transit access profiles: 2010 
corridor / non-corridor; 2013 corridor / 
non-corridor 

8 access profiles: base case (all modes) and 
higher fuel cost scenario (auto); highest and 
lowest income quintiles 

9 access profiles: two scenarios and base case (all 
modes) 

Results 

Modest overall accessibility 
improvement; greatest impact along 
express bus corridors for medium and 
long trips. 

High income TAZs experience a greater 
accessibility decrease than low income TAZs; 
low income TAZs also have viable alternative 
to auto travel. 

Urban employment growth scenario results in 
significantly better pedestrian and transit accessibility 
than suburban scenario; auto accessibility impact is 
similar for both scenarios. 
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 Application 4: Modal Redundancy 
Application 5: Accessibility and Housing 

Costs 
Application 6: Accessibility and Income 

Analytic Goals 
How much modal redundancy is there across the 
entire transportation network?  How is modal 
redundancy distributed? 

Do accessible neighbourhoods also contain 
low cost housing? 

Do areas of low income and low accessibility 
overlap?  If so, where? 

Data 

Origins 
Locations Standard Standard Standard 

Attributes Standard Average household housing expenditure 
(Geographic Research, Inc., 2010) 

Average after tax household income 
(Geographic Research, Inc., 2006) 

Destinations 
Locations Standard Standard Standard 
Magnitude Standard Standard Standard 

Travel time 
Pedestrian Standard Standard Standard 

Transit Standard Standard Standard 
Auto Standard Standard Standard 

Travel cost 

Value of 
time 

Standard Standard Standard 

Pedestrian Standard Standard Standard 
Transit Standard Standard Standard 
Auto Standard Standard Standard 

Outputs Map of MRI Scores 

- Map comparison (APIs / Housing cost) 
- 6 access profiles including housing cost:  
lowest housing cost quintile TAZs and all 
other TAZs (all modes) 

# of TAZs in each accessibility-income 
quadrant; map of AIM values 

Results 

Further analysis needed for absolute assessment 
of modal redundancy; relatively few areas are 
auto dependent; travel time gap between auto 
and transit could be reduced with further transit 
investment. 

Housing costs and accessibility are 
negatively related; accessible 
neighbourhoods frequently contain low cost 
housing 

There are virtually no areas where very low 
accessibility and very low income overlap; 3 
TAZs in east Kitchener have moderately low 
income and moderately low accessibility. 
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