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Abstract 

In Drosophila melanogaster, hindsight (hnt) encodes a putative Zinc-finger transcription 

factor that is expressed in a highly complex pattern during development. Despite an 

apparent wealth of information regarding the dynamic expression pattern of hnt, the 

cellular response and defined target genes of Hnt remain largely unknown. Hnt is 

important in various developmental processes, and recent work suggests that Hnt function 

is downstream of the Notch (N) signaling pathway. Interestingly, the mammalian 

homolog of hnt is RAS-Responsive Element Binding Protein 1 (RREB1), which functions 

by binding to the RAS-responsive elements of the target gene promoters. Ras is a key 

downstream effector of the highly conserved Epidermal Growth Factor Receptor (EGFR) 

signaling pathway, yet the relationship between Hnt and EGFR signaling has not been 

extensively studied using the powerful approach of Drosophila genetics. This study 

involved a detailed examination of hnt mutant phenotypes and phenotypes associated 

with Hnt overexpression. Overall, this work revealed striking similarities between egfr 

and hnt mutant embryos. In particular, hnt mutant embryos were found to resemble egfr 

mutant embryos in their failure to properly develop peripheral nervous system (PNS) 

structures known as chordotonal organs and in their inability to recruit neighbouring 

secretory oenocytes. In addition, Hnt overexpression was found to induce ectopic DPax2 

expression in an EGFR-dependent manner within the embryo. This relationship was also 

examined in a second developmental context, the pupal retinal neuroepithelium. Overall, 

the data presented suggests that Hnt’s primary function in the development of the PNS is 

associated with potentiating EGFR signaling.  
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Chapter 1: Introduction 

1.1 Background 

During development, conserved signaling pathways coordinate critical developmental 

responses such as cell proliferation, differentiation, and survival. Of particular interest are 

two signaling pathways that have been shown to repeatedly interact in a variety of 

contexts: the Notch (N) signaling pathway and the Epidermal Growth Factor Receptor 

(EGFR) signaling pathway (Lage and Jarman, 1999). These two pathways interact in a 

highly context-specific manner, where the cellular responses may differ depending on 

tissue-specificity, the level of expression, or target gene expression (reviewed in 

Sundaram, 2005). 

1.1.1 Notch (N) Signaling Pathway 

The canonical N signaling pathway is a conserved signaling pathway found throughout 

metazoan development. The Notch receptor is a transmembrane receptor consisting of an 

extracellular (NECD) and an intracellular domain (NICD). Activation of the Notch signaling 

pathway requires binding of its ligands, Delta or Serrate. Upon binding of the ligand, the 

Notch receptor is proteolytically cleaved. This causes separation of the two domains, and 

the cleaved NICD is released into the cell and directed into the nucleus. The NICD then 

interacts with CBF/Suppressor of Hairless/LAG-1 (CSL) family of transcription factors, 

such as Core Binding Factor 1/Suppressor of Hairless (Su(H)) and its co-activator 

Mastermind (Mam), ultimately directing target gene transcription (reviewed in Artavanis-

Tsakonas et al., 1999).  
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 The N signaling pathway mediates its functions primarily through two modes of 

action: inductive signaling and lateral inhibition (reviewed in Sundaram, 2005). During 

inductive signaling, one cell type signals to its neighboring cell through expression of a N 

ligand, activating the N response and ultimately influencing gene expression in the 

neighboring cell to promote a specific cellular response (Fig. 1.1A) (reviewed in 

Artavanis-Tsakonas et al., 1999). The process of lateral inhibition starts with a group of 

equivalent cells that are competent to acquire a certain fate. This process is reiteratively 

used during peripheral neurogenesis, and this equivalence group is designated as the 

proneural cluster (PNC). However, within the PNC, a single cell that acquires the highest 

level of proneural protein expression is selected as the sensory organ precursor (SOP). 

The SOP secretes high levels of the N ligand Dl, then laterally inhibits the surrounding 

cells within the PNC from acquiring a neural fate through the activation of the N signal, 

ultimately remanding these cells to an epidermal fate (Fig. 1.1B) (Cubas et al., 1991; de 

Celis et al., 1991; Jarman et al., 1995).  
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Figure 1.1 Inductive signaling and lateral inhibition by the N signaling pathway 
(A) The activation of the N signaling pathway involves a bipartite N transmembrane receptor, 
consisting of the N extracellular domain (NECD) and intracellular domain (NICD). Binding of a N 
ligand, in this case Delta (Dl), results in proteolytic cleavage of the N transmembrane receptor, 
and subsequently the release of NICD into the cytoplasm. NICD is directed into the nucleus and 
affects target gene transcription through interaction with Supressor of Hairless (Su(H)) and 
Mastermind (Mam). Figure prepared using information provided by (Bray, 2006; Kopan and 
Ilagan, 2009) 
(B) Lateral inhibition by N signaling starts with an equivalence group of cells, all capable of 
adapting to a certain fate (i.e. a neural fate). A single sensory organ precursor (SOP) is selected 
through feedback loops involving proneural genes in order to isolate the SOP (red), which will 
have no N activity but express and present the N ligand, Dl. The surrounding cells (yellow) will 
be receptive to the N signal through the ligand provided by the SOP, and ultimately, their fates 
will be remanded to an epidermal fate due to the activation of N. Figure prepared using 
information provided by (Bray, 2006)  
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1.1.2 Epidermal Growth Factor Receptor (EGFR) Signaling Pathway 

In Drosophila, EGFR serves to activate the canonical Ras/Mitogen-Activated Protein 

Kinase (MAPK) pathway downstream of the receptor (Diaz-Benjumea and Hafen, 1994). 

The activation of EGFR requires the binding of one of its EGF ligands: Spitz, Keren, 

Gurken, and Vein (reviewed in Shilo, 2005).  Spitz (Spi) is the most common ligand used 

to activate EGFR (Rutledge et al., 1992; Schweitzer et al., 1995), in comparison to the 

more restricted ligands, Keren, Gurken, and Vein, which have more spatially and 

temporally regulated expression patterns found throughout development. Prior to receptor 

binding, EGF ligands require intracellular cleavage by Rhomboid (Rho) and trafficking 

by Star, ultimately allowing for secretion of the active ligand. The secreted ligand is then 

able to bind to EGFR, activating the Ras/MAPK signaling pathway downstream of the 

receptor (reviewed in Shilo, 2005). The Ras/MAPK signaling pathway is responsible for 

phosphorylation of E26 transformation-specific (ETS) proteins, Pointed (Pnt) and Yan, 

ultimately affecting the transcription of the target genes (Gabay et al., 1996). 

Pointed (Pnt) and Yan belong to the ETS-family of transcription factors. Both 

proteins are downstream effectors of MAPK phosphorylation to mediate target gene 

transcription. The pnt locus generates two isoforms of Pnt: PntP1 and PntP2. The PntP1 

isoform acts as a constitutive transcriptional activator, while PntP2 activity is dependent 

on MAPK phosphorylation. Yan competes with Pnt for DNA-binding sites on target 

genes, and acts to repress transcription of target genes. The phosphorylation of Pnt via 

MAPK results in the increase of the transactivation of target genes, however, 

phosphorylation of Yan leads to the inhibition of its transcriptional repressive functions 

(Fig. 1.2) (Klämbt, 1993; O'Neill et al., 1994).  
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The EGFR signaling pathway has been implicated in various modes of 

differentiation, contact-dependent cell survival, and control of cell cycle progression 

(reviewed in Sundaram, 2005). Morphogenetic events such as dorsal closure of the 

amnioserosa (AS), maintenance of epithelial integrity of the trachea, photoreceptor (R) 

cell recruitment and differentiation in the eye, and development of the chordotonal organs 

and oenocytes require precise levels of input from EGFR signaling for proper 

development of the respective systems (Cela and Llimargas, 2006; Clifford and 

Schüpbach, 1992; Elstob et al., 2001; Freeman, 1996; Llimargas and Casanova, 1999). 
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Figure 1.2 EGFR ligand processing and the activation of the EGFR signaling pathway 
Prior to receptor binding, EGF ligands require cellular processing to become activated. The 
ligands undergo intracellular trafficking from the endoplasmic reticulum to the golgi apparatus to 
subsequently become cleaved by the golgi-associated protease, Rhomboid. The activated ligands 
are then secreted and bind to EGFR. Consequently, the activated EGFR dimerizes and is 
autophosphorylated, leading to the activation of the GTPase, Ras. Ras activation initiates a series 
of phosphorylation events through kinases downstream of Ras. Ultimately, once MAPK is 
phosphorylated, target gene transcription is affected through phosphorylation of the ETS-family 
of transcription factors, Yan or Pointed. Phosphorylation of Yan inhibits its transcriptional 
repressor function, thereby promoting target gene transcription. Phosphorylation of Pointed, a 
transcriptional activator, leads to higher activation of target gene transcription. 
Figure prepared using information provided by (Shilo, 2005; Sundaram, 2005) 
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1.2 Drosophila Peripheral Neurogenesis  

Peripheral neurogenesis throughout Drosophila development is a series of processes that 

are heavily reliant on the coordination between N and EGFR signaling pathways. The 

peripheral nervous system (PNS) consists of external mechanosensory organs, 

chemosensory organs, internal stretch receptors, and the visual system (Brewster and 

Bodmer, 1995; Carlson, 1996; Ready et al., 1976). All systems utilize lateral inhibition 

via N signaling for the general differentiation process of the SOPs, ultimately giving rise 

to one neuronal cell and other accessory cells that can be variable depending on the 

particular internal or external structure (reviewed in Lai and Orgogozo, 2004). 

Specifically, the development of embryonic internal stretch receptors known as 

chordotonal organs, as well as the process of photoreceptor differentiation in the 

developing retina show striking similarities involving the interactions between N and 

EGFR signaling pathways. In both systems, the selection of the SOPs requires expression 

of the proneural gene atonal (ato) (Jarman et al., 1995), rho, and spi. The expression of 

ato, a basic helix-loop-helix protein, in ectodermal cells allows these cells to acquire 

competencies to become neural precursor cells. In addition to ato expression, the selected 

SOP expresses high levels of spi, the unprocessed ligand of EGFR, and rho, which allows 

for proteolytic cleavage and activation of the ligand, ultimately activating the EGFR 

signal in neighboring cells for further cell recruitment and differentiation of both the 

photoreceptor cells and the chordotonal organs (Lage et al., 2004; Okabe and Okano, 

1997).  
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1.2.1 Drosophila Embryonic Chordotonal Organ Development  

During Drosophila embryogenesis, eight chordotonal organs arise in each abdominal 

hemisegment, consisting of a cluster of five lateral pentascolopodia, (lch5), one 

dorsolateral scolopodia (v’ch1), and two single ventral scolopodia (vchA, vchB) (Fig. 

1.3). Each chordotonal organ (scolopodium) consists of one neuron, one ligament, one 

cap, and one sheath cell that are determined by lateral inhibition via N signaling 

(Brewster and Bodmer, 1995). Chordotonal organs are formed in two distinctive steps 

(Okabe and Okano, 1997). Initially, the founder cluster, consisting of five chordotonal 

organ precursors (COPs, C1-C5), arises from atonal expression and lateral inhibition. In 

the absence of ato, a complete absence of chordotonal organ formation is seen (Lage et 

al., 1997; Okabe and Okano, 1997), however, in the absence of egfr, only three 

scolopodia are seen due to the failure to recruit the remaining scolopodia (Elstob et al., 

2001; Rusten et al., 2001). Expression of ato, rho and spi in COPs causes subsequent 

activation of the activated ligand, resulting in the completion of cell recruitment during 

chordotonal organ development. C1-C3 are three scolopodia from the lch5, where C2 and 

C3 will induce the remaining two scolopodia of the lch5. C4 is the vchB and C5 is the 

v’ch1, both of which contribute to the induction of vchA (Elstob et al., 2001; Lage et al., 

1997; Okabe and Okano, 1997; Rusten et al., 2001).  

 During embryonic chordotonal organ development, non-neural secretory cells, 

oenocytes, are also recruited by the EGFR signaling pathway. Oenocytes are formed via 

delamination from the ectoderm upon receiving EGFR signals from dorsal-most COP of 

the lch5, the C1 (Elstob et al., 2001; Rusten et al., 2001). Each of the seven abdominal 

hemisegments that have clusters of approximately six oenocytes are in close proximity to 
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lch5 chordotonal organs (Hartenstein et al., 1992). Similar to the development of 

chordotonal organs, induction of oenocytes requires input from ato, rho, and spi. In the 

absence of any of the three inputs, a failure of oenocyte recruitment results. Excess signal 

can lead to induction of supernumerary oenocytes, indicating that proper oenocyte 

induction is sensitive to the levels of EGFR signaling (Elstob et al., 2001; Rusten et al., 

2001). Overall, the presence of EGFR signaling is crucial for proper cell recruitment for 

both chordotonal organs and oenocytes (Elstob et al., 2001; Lage et al., 1997; Lage et al., 

2004; Okabe and Okano, 1997; Rusten et al., 2001). This mode of cell recruitment and 

differentiation is highly analogous to photoreceptor development in the retina (Freeman, 

1996; Okabe and Okano, 1997).  
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Figure 1.3 Schematic of the embryonic chordotonal organs and oenocytes 
Each abdominal hemisegment consists of eight chordotonal organs: one located dorso-laterally 
(v’ch1), five located laterally (lch5), and two in the ventral region (vchA, vchB). The recruitment 
and development of the chordotonal organs depends on the chordotonal precursor cells (C1-C5, 
yellow) expressing adequate levels of atonal, rhomboid, and spi. The secretion of activated 
ligands from C1-C5 activates EGFR signaling to further recruit the remaining three chordotonal 
organs (two of the lch5 and vchA, blue) and permits the recruitment of non-neural oenocytes 
(red). Figure adapted from (Gould et al., 2001) 
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1.2.2 Drosophila Retinal Development 

The Drosophila compound eye is composed of approximately 750 individual 

photoreceptor units called ommatidia. In Drosophila, the development of the ommatidia 

is a popular paradigm for studying cellular recruitment, differentiation, death, and 

interactions between cell signaling pathways (Ready et al., 1976; Wolff and Ready, 

1991). The recruitment of cells for an ommatidial cluster undergoes a stereotypical 

sequence of events and induction patterns, consisting of intricate interplay between 

various signaling pathways. Each ommatidium is comprised of eight neuronal 

photoreceptor (R) cells (R1-R8), four cone cells (CCs), and two primary pigment cells 

(1°). All of the individual units of ommatidia share surrounding lattice cells in the 

finalized hexagonal lattice, comprised of two types of pigment cells (2°/3°) and 

interommatidial bristles (Ready et al., 1976). Initially, the neuronal cells (R cells) are 

specified, and the founder cell R8 is isolated from a proneural cluster via N-dependent 

lateral inhibition. As mentioned above, similar to the chordotonal organs, the selection of 

R8 is dependent on levels of ato expression (Lage et al., 1997; Okabe and Okano, 1997; 

Yang and Baker, 2001). Following R8 specification, the R2/R5 and R3/4 cells are 

recruited, forming a 5-cell cluster. Subsequently, R1/R6/R7 cells are recruited, followed 

by recruitment of cone cells and lastly the accessory pigment cells (Ready et al., 1976).  

With respect to developmental timing, specification of all R cells and CCs occurs 

during larval stages. The recruitment of accessory cells occurs after puparium formation 

(APF) and after eye disc eversion (Fig. 1.4), and is highly dependent on levels of EGFR 

signaling and N signaling to control cell survival and cell death at appropriate time points 

to achieve the highly organized retina structure (Miller and Cagan, 1998). EGFR 
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signaling is used reiteratively throughout retinal morphogenesis during the differentiation 

and recruitment of all cell types. In the developing larval eye disc, egfr is not required for 

the establishment of the founder R8 cell, but is required for subsequent R cell 

recruitment. When excess EGFR signaling is activated, supernumerary R cell recruitment 

is seen (Domínguez et al., 1998). Therefore, it is critical for the EGFR signal to be 

activated and inhibited within specific time frames to achieve successive waves of 

recruitment of different cell types (Freeman, 1996).  

During the final stages of eye morphogenesis, programmed cell death (PCD) is 

required in the undifferentiated cells surrounding the ommatidia (secondary and tertiary 

pigment cells). A wildtype apical surface of the ommatidium consists of four CCs and 

two 1°s that are encased by twelve lattice cells: three bristle cells, six 2°s, and three 3°s. 

PCD occurs in the lattice cells between 18-40 hr APF, eliminating approximately 2000 

excess undifferentiated cells present within the lattice, and ultimately forms twelve lattice 

cells shared by each ommaditium (Cagan and Ready, 1989). During this time, excess Ras 

signal promotes cell survival while excess N signal can promote cell death (Miller and 

Cagan, 1998). The formation of interommatidial bristles also undergo the stereotypical 

lateral inhibition process, however, the specific mechanism regarding the formation of 

interommatidial bristles is largely unknown.  

Numerous genes are involved in the development of embryonic chordotonal 

organs and the retina. Of interest is the hindsight (hnt) gene that is strongly expressed 

throughout peripheral neurogenesis. Robust expression of Hnt is seen throughout 

embryonic chordotonal development and retinal development within the PNS lineage. 

However, the regulation of hnt in these contexts is unknown. Interestingly, recent 
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research from our lab suggests a role of Hnt to mediate both N and EGFR signaling 

pathways in the context of the development and maintenance of the adult midgut 

(Baechler, 2014). In support of many publications presenting hnt as a N-responsive gene 

in several different contexts (Housden et al., 2013; Krejci et al., 2009; Sun and Deng, 

2007; Terriente-Felix et al., 2013), in the adult midgut, Hnt was shown to act downstream 

of N signaling. In addition, the maintenance of Hnt expression was shown to be 

dependent on the EGFR signaling (Baechler, 2014). Since N and EGFR signaling are 

providers of critical inputs during peripheral neurogenesis, the responsiveness of hnt, as 

well as its potential role during these processes, requires further investigation. 
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Figure 1.4 Drosophila ommatidial development 
Eye morphogenesis begins at third instar larval stage. At this stage, the photoreceptor cells (R cells) are selected and recruited using lateral 
inhibition via N signaling and inputs from the EGFR signaling pathway. R8, the founder cell, is responsible for the recruitment of R1-R7 through 
the secretion of activated EGF ligands. Subsequently, CCs are induced by inputs from the R cells. In the pupal stages, the development of all 
pigment cells (1°/2°/3°) and bristle cells occurs, followed by PCD, which removes undifferentiated cells to ultimately form a hexagonal array of 
ommatidia.  Each ommatidium is comprised of eight R cells, four CCs, and two 1°s, which are surrounded by the shared lattice cells, consisting of 
2°s and 3°s and interommatidial bristles. Figure prepared using information provided by (Freeman, 1996; Voas and Rebay, 2003)
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1.3 Hindsight (Hnt) 

The hindsight (hnt) (Flybase – pebbled (peb)) gene of Drosophila melanogaster encodes 

a protein containing 14 C2H2-type zinc finger protein with a highly complex expression  

pattern found throughout Drosophila development. Two independent studies of sensory 

organ development identified hnt as a gene that is significantly upregulated in specified 

SOPs (Bufflin and Gho, 2010; Reeves and Posakony, 2005). However, the regulation of 

hnt expression and its function in the SOP cells has not been well characterized thus far. 

Previous research suggests the significance of Hnt as being a critical factor for numerous 

developmental processes.  Mutations to hnt display embryonic lethality, and therefore hnt 

was classified as an essential gene required for proper Drosophila embryonic 

morphogenesis. In this context, hnt is required for the maintenance of the amnioserosa 

(AS), an extraembryonic membrane composed of squamous epithelial cells. In addition, 

Hnt is an essential factor involved in the permissive control of germ band retraction, 

where hnt mutant embryos display an unretracted germ band phenotype (Yip et al., 

1997). Moreover, hnt mutants are unable to proceed with tracheal morphogenesis due to 

the loss of epithelial integrity in developing tracheal cells (Wilk et al., 2000). Following 

embryonic development, Hnt promotes the differentiation of crystal cells within the 

hemocyte lineage (Terriente-Felix et al., 2013). Furthermore, Hnt is a regulator of the 

mitotic cycle to endocycle (M/E) transition in Drosophila follicle cells in the adult ovary. 

Hnt is also required during several stages of retinal development, in addition to neuronal 

morphogenesis in adult flies (Oliva and Sierralta, 2010; Pickup et al., 2002; Sun and 

Deng, 2007). 



! 16!

Throughout Drosophila development, the expression of Hnt can be found in 

tissues such as the AS, trachea, components of the PNS, the developing midgut, follicular 

cells in the ovary, cells of the hemocyte lineage, as well as cells during retinal 

development (Lamka and Lipshitz, 1999; Pickup et al., 2002; Sun and Deng, 2007; 

Terriente-Felix et al., 2013; Wilk et al., 2000; Yip et al., 1997). While the general 

functions associated with Hnt have been broadly studied, specific molecular functions of 

Hnt, as well as the mechanism that controls hnt expression remain elusive. In several 

contexts such as Drosophila muscle cell lines, hemocyte-like cell lines, and ovarian 

follicle cells, hnt has been identified as a N-responsive gene (Housden et al., 2013; Krejci 

et al., 2009; Sun and Deng, 2007; Terriente-Felix et al., 2013). However, in the 

developing retina, Hnt acts upstream of N signaling to modulate levels of the N ligand, 

Dl (Pickup et al., 2009). Despite the numerous ties between N signaling and hnt 

expression in Drosophila, the human homolog of hnt, Ras-Responsive Element Binding 

Protein 1 (RREB1), is a downstream effector of the canonical Ras/MAPK signaling 

pathway (Zhang et al., 1999). Since the regulation of embryonic Hnt expression is largely 

unknown, it is of interest to determine the responsiveness and function of hnt to 

conserved signaling pathways such as N and EGFR signaling pathways.  
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1.4 Ras Responsive Element Binding Protein 1 (RREB1) 

The mammalian homolog of hnt, RREB1, encodes a Zinc-finger transcription factor 

(Thiagalingam et al., 1997; Zhang et al., 1999). RREB1 binds to Ras-responsive 

elements, ultimately regulating the transcriptional outputs of the Ras/MAPK signaling 

pathway. RREB1 has multiple roles to regulate gene expression. It has been well 

established that RREB1 can act as either a transcriptional repressor to attenuate target 

gene expression, or as a transcriptional activator to potentiate target gene expression. 

RREB1 directly binds to regulatory regions of genes such as calcitonin and p53 to 

upregulate the expression of the respective genes (Liu et al., 2009; Thiagalingam et al., 

1997). However, its activity as a transcriptional repressor has been found to downregulate 

genes such as hZIP1 and p16INK4a (Milon et al., 2010; Zhang et al., 2003). Additionally, 

RREB1 directly binds and represses microRNA (miR)-143 and miR-145, inhibitors of Ras 

signaling, ultimately enabling higher levels of the Ras signal (Kent et al., 2010).  

 Although Hnt remains to be a putative transcription factor, its zinc-finger domains 

and consistent nuclear localization suggest that it is indeed a transcription factor (Yip et 

al., 1997). In addition, Hnt binds to similar DNA sequences and carries similar functions 

using the same domains as the DNA-binding domain as RREB1, indicating high 

functional conservation for the two proteins. Furthermore, expression of RREB1 in the 

AS of hnt mutant embryos that display failure in germ band retraction was shown to 

rescue this mutant phenotype, indicating a functional overlap of the two proteins (Ming et 

al., 2014). Therefore, since RREB1 has been implicated in multiple forms of tumors and 

cancer, investigating the regulation of and functions associated with RREB1 by using the 

Drosophila model of RREB1 homolog, hnt, is of significance.  
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1.5 Drosophila Pax2 (DPax2): A potential transcriptional target of Hnt 

A recent microarray analysis performed in our lab of the transcriptional profiles of 

embryos ubiquitously overexpressing Hnt identified DPax2 as a putative transcriptional 

target of Hnt. The microarray result was confirmed by in-situ hybridization and 

immunostaining, and established that Hnt overexpression induces ectopic DPax2 

expression, suggesting a possible regulatory relationship between the two genes  

(Du, 2013). 

1.5.1 DPax2 

DPax2 encodes a paired-domain transcription factor, homologous to the vertebrate Pax2 

gene. DPax2 is primarily involved in the development of CCs of the eye and the adult 

sensory organ, bristles. There are two main allelic forms of DPax2, sparkling (spa) and 

shaven (sv), driving the eye-specific expression of DPax2 and the sensory organ-specific 

expression in the adult fly, respectively. The transcriptional regulation of DPax2 is highly 

complex during Drosophila development. During embryogenesis, DPax2 expression is 

seen within the developing components of the PNS and the central nervous system (Fu et 

al., 1998). The regulation of embryonic DPax2 expression is not well characterized, 

however, the expression of DPax2 pertinent to the two identified allelic forms, spa and 

sv, have been well characterized in later stages during Drosophila morphogenesis. The 

spa enhancer is a 362 bp region located within the fourth intron of the DPax2 gene and 

serves to specifically activate DPax2 in the developing eye (Fu and Noll, 1997). The sv 

enhancer is a 6.7 kb region upstream of the DPax2 gene, including a portion of the 5’ 

untranslated region, and activates DPax2 expression only within the developing SOPs 

(Kavaler et al., 1999). 
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1.5.2 A Model for Cone Cell Induction 

The spa enhancer allows CC-specific expression of DPax2 and has been extensively 

studied to date. A combinatorial model of activation of DPax2 expression of the spa 

enhancer has been identified, and this model suggests the requirement of a tripartite input 

system: the nuclear effector of the N signaling pathway, Su(H), the nuclear effectors of 

the EGFR signaling pathway, ETS proteins Yan and Pnt, and Lozenge, the Drosophila 

homolog of the Runt-domain family of transcription factors (Flores et al., 2000). Within 

the spa enhancer, 5 binding sites for Su(H), 4 binding sites for ETS proteins, and 3 

binding sites for the Lozenge/Runt domain are present (Flores et al., 2000; Swanson et 

al., 2010). The 3 inputs are necessary for the transcriptional activation of DPax2 in the 

developing CCs. The removal of each input results in the loss of DPax2 expression in CC 

precursors of the developing larval eye discs (Flores et al., 2000). Interestingly, it has 

been shown that Hnt and DPax2 have an indirect relationship during CC induction 

(Pickup et al., 2009). According to Pickup and others (2009), Hnt is able to regulate 

DPax2 expression indirectly by modulating levels of the N ligand, Dl.  

To determine the mechanism of ectopic DPax2 induction through Hnt 

overexpression in the embryo, this combinatorial model for CC induction was 

extrapolated to test for a potential indirect mode of activation of DPax2 through Hnt 

overexpression, in addition to testing whether a direct correlation was present between 

the expression of Hnt and DPax2.  
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1.6 Research Goals and Objectives 

Given that the present information regarding Hnt is primarily pertinent to its role in the 

regulation of morphogenesis, I wished to investigate how Hnt expression is regulated in 

the developing embryo by testing to see whether hnt is dependent on, and/or is responsive 

to inputs from either N or EGFR signaling. Moreover, in continuation of the work started 

by a former graduate student in our lab, the relationship of Hnt and DPax2 was 

investigated to elucidate a mechanism that leads to ectopic DPax2 induction upon 

overexpression of Hnt. 
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Chapter 2: Materials and Methods 

2.1 Fly Genetics 

All fly stocks were stored and maintained at 25°C on standard yeast and molasses-based 

media unless stated otherwise. Stocks used during GAL80temperature sensitive (GAL80ts) 

experiments were stored at 18°C then shifted to 29°C. For information regarding list of 

stocks used and crossing schemes, see Appendix A. 

2.2 GAL4-UAS System 

The GAL4-UAS system utilizes the yeast transcriptional activator, GAL4, to bind to and 

activate the expression of genes under the control of the responding element, the 

Upstream Activating Sequence (UAS). In Drosophila, this system is used as an inducible 

gene expression system to manipulate expression of a gene of interest under the control 

of a particular promoter. The expression of the GAL4 protein is controlled by a specific 

promoter, to allow for precise spatial and temporal control of the desired gene expression. 

The GAL4 protein can bind to particular regions of DNA that contain the responder UAS 

sites, with each UAS site being comprised of 17 basepairs. The responding UAS element 

is attached with the gene of interest, and transcription of the gene of interest is dependent 

on the presence of the GAL4 driver. 

For the purposes of gene misexpression in Drosophila, this system is a bipartite 

system where the GAL4 driver and the UAS responder remain separate until parental 

lines are crossed together. Once the parental lines are crossed, resulting in progeny that 

carry both the GAL4 and UAS constructs together will activate the expression of the gene 

of interest under the control of a specific promoter (Fig. 2.1A) (reviewed in Duffy, 2002).  
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2.3 GAL80 temperature sensitive (ts) 

To allow for higher degree of control and inducibility of the desired gene expression, an 

additional element, GAL80, which specifically binds to and inhibits transcriptional 

activity of the GAL4 was used (reviewed in Duffy, 2002). In Drosophila, the GAL80 

protein is modified to allow for temperature-dependent repression and activation of the 

GAL4 transcriptional activity. The modified GAL80ts protein contains conditionally 

active inteins alleles, which are protein introns, from the VMA1 gene. The inserted inteins 

require post-translational splicing, which is temperature dependent, to temporally 

regulate the activity of the GAL80ts. At the permissive temperature, 18°C, splicing of the 

inteins allow production of functional GAL80, prohibiting transgene expression through 

the GAL4-UAS system. However, at the non-permissive temperature, 29°C, the splicing 

of the inteins cannot occur, thus producing a non-functional GAL80, resulting in 

expression of the transgene through the GAL4-UAS system. In addition, GAL80ts 

reversibly functions upon shifting to and from permissive temperatures and non-

permissive temperatures (Fig. 2.1B) (Zeidler et al., 2004). 
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Figure 2.1 The GAL4-UAS system of inducible gene expression 
(A) In Drosophila, expression of any desired transgene can be directed using the bipartite GAL4-
UAS system. The system utilizes two yeast-derived constructs, the GAL4 transcriptional activator 
and the UAS responder. Parent (P) 1 carries a tissue-specific genomic enhancer upstream of the 
GAL4 coding sequence, which temporally and spatially regulates GAL4 protein expression. 
When P1 is crossed with P2, which carries the gene of interest downstream of UAS, the resulting 
progeny (F1) produce GAL4, which subsequently binds to the UAS-gene of interest, ultimately 
activating tissue-specific transcription of the gene of interest. (B) For more stringent temporal 
control of the GAL4-UAS system, GAL80ts is used to conditionally direct expression of the gene 
of interest. GAL80ts is downstream of a promoter derived from an ubiquitously expressed gene, 
such as tubulin. P1 and P2 carrying GAL4, GAL80ts, and UAS-gene of interest constructs are 
crossed and the resulting progeny inherits all three constructs. At permissive temperatures (18°C), 
the production of functional GAL80ts represses GAL4 activity, ultimately inhibiting target gene 
transcription. At non-permissive temperatures (29°C), GAL80ts is non-functional, allowing GAL4 
to bind to the UAS responder to activate desired gene expression.  
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2.4 Embryo Dechorination and Fixation 

Embryos were collected following an overnight mating set-up of the desired parental 

genotypes. All embryos subjected to immunostaining or live-imaging were dechorionated 

prior to following respective protocols (see Section 2.5 and 2.8). Dechorionation is a 

process of removing the outer protective layer, the chorion, of the embryo. Two methods 

were utilized depending on the quantity of the embryos that were collected. If large 

amounts of embryos were collected, a mild bleach mixture consisting of 50% bleach, 

40% dH2O, and 10% 1XPBT (0.1% Triton X in 1X phosphate buffered saline (PBS)) was 

used to soak the embryos for 3-4 minutes (min). The embryos were drained using a small 

piece of cheesecloth then thoroughly washed with dH2O. However, if only a small 

quantity of collected embryos were available, embryos were individually dechorionated 

using forceps to remove the chorion layer by gently rolling the embryo on a double-sided 

tape attached to a slide. Proceeding dechorionation of the embryos, embryos were 

subjected to a fixation process in 5 ml of 3.7% formaldehyde in 1XPBS and 5 ml of 

methanol for 20 min.  
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2.5 Pupal Retina Dissection and Fixation 

White prepupae were collected and aged for 48 hours (hr) at 25°C. For experiments 

involving GAL80ts, white prepupae were collected then aged for 24 hr at 18°C, then 

transferred to 29°C for an additional 24 hr. On a slide with double-sided tape, the 48 hr 

APF pupae were then carefully placed to remove the pupal case. Next, the dissected 

pupae were placed into 1XPBS in a small dissecting dish using a brush, then gently 

pushed down to the bottom of the dish to break the surface tension. Holding a pupa 

laterally with one forcep by grabbing the abdomen area, the proboscis was pulled with 

another forcep to open up the head of the pupa. Once the retina that is attached to the 

optic lobe was found, it was transferred into a new dissecting dish containing fresh 

1XPBS by using a P200 micropipette. This process was repeated until a desired amount 

of retinas attached to the optic lobe were dissected. 

 The dissected retinas were then transferred to an eppendorf tube and once the 

1XPBS was removed, 500 µl of 3.7 % formaldehyde in 1XPBS was added and fixed on 

the shaker for 20 min.  

  



! 26!

2.6 Immunostaining  

Prepared embryos were rehydrated with increasing concentrations of 1X PBS in 

methanol (prepared retinas did not require rehydration) and then washed 3 times in 1X 

PBT for 10 min per wash. Using 1% normal goat serum, 5% BSA, and 1X PBT, the 

prepared embryos or pupal retinas were blocked to prevent non-specific binding of the 

primary antibody for 1 hr at room temperature. Then, the primary antibody was added 

into 1% normal goat serum, 5% BSA, and 1X PBT according to proper dilutions for 

respective antibodies (listed below), then incubated overnight at 5°C. The diluted primary 

antibody was removed, and then saved for up to 3 more uses. Subsequently, the embryos 

or retinas were washed 3 times with 5% BSA and 1X PBT in a 1:1 ratio for 15 minutes 

per wash. An additional blocking step followed to prevent non-specific binding of the 

secondary antibody using normal goat serum, 5% BSA, and 1X PBT, and was incubated 

for 1 hr at room temperature. After blocking, appropriate amount of the secondary 

antibody was added to normal goat serum, 5% BSA, and 1X PBT and incubated for 2 

hours at room temperature covered in foil. Then, the secondary antibody was removed, 

followed by 4 washes with 1X PBT for 15 min per wash, then a gravity wash with 1X 

PBS. The stained embryos or retinas were then subjected to a glycerol series with 

increasing concentrations of glycerol and decreasing concentration of 1X PBS. Finally, 

the embryos or retina were put in DABCO, a mounting solution, ready to be placed on a 

microscope slide for imaging purposes.  

 The dilutions for primary antibody stains were as follows: mouse monoclonal 

anti-Hindsight antibody (1:25; Howard Lipshitz, University of Toronto), mouse 

monoclonal anti-22C10 antibody (1:500; Developmental Studies Hybridoma Bank 
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(DSHB)), mouse monoclonal anti-Cut antibody (1:20; DSHB), mouse monoclonal anti-

Armadillo antibody (1:100; DSHB), rabbit monoclonal anti-Croquemort antibody 

(1:1000; Nathalie Franc, Scripps Research Institute), and rabbit monoclonal anti-DPax2 

antibody (1:2000; Joshua Kavaler, Colby College). The secondary antibodies used were: 

Alexa Flour® 488 goat anti-mouse and goat anti-rabbit (1:500; Cedarlane Labs), and 

TRITC goat anti-mouse (1:500; Cedarlane Labs). 

2.7 Live-imaging of embryos and pupae 

Embryos and pupae expressing green fluorescent protein (GFP) or discosoma red 

fluorescent protein (dsRed) reporters were dechorionated and removed from the pupal 

cases, respectively, on a double-sided tape prior to live imaging. Using the hanging drop 

technique (Reed et al., 2009) to prevent compression of the embryos or pupae, time-lapse 

confocal microcopy was performed using a Nikon Eclipse 90i microscope.  

2.8 Laser Confocal Microscopy 

All stained embryos or pupal retina as well as those prepared for live imaging were 

imaged using a Nikon Eclipse 90i microscope fitted with a Nikon D-eclipse C1 scan head 

using the Nikon EZ-C1 software at 20X objective. All images were processed through the 

Nikon EZ-C1 software, NIH ImageJ software, and Adobe Photoshop. 
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Chapter 3: Results 

3.1 Tissue-specificity of Hnt expression in response to N signaling 

It has been previously established that hnt interacts with and responds to N signaling in a 

variety of contexts. For example, it has been proposed that Hnt is required for the 

increased expression of the N ligand, Dl, during CC induction in the pupal retina (Pickup 

et al., 2009). Additionally, hnt has been identified as a direct target gene of N in the 

developing pupal muscle, larval lymph gland, and adult follicular epithelium (Housden et 

al., 2013; Krejci et al., 2009; Sun and Deng, 2007; Terriente-Felix et al., 2013). The 

regulation of hnt expression in the developing embryo is not well characterized, and 

therefore my first line of investigation was to ask if hnt expression is dependent on N 

signaling during embryogenesis. 

3.1.1 Embryonic Hnt expression is selectively responsive to N 

In order to examine the effect of N signaling on hnt expression, a mutant allele of N, 

N55e11, and the GAL4-UAS system were utilized (see Materials and Methods) for the 

analysis of N loss of function and activation, respectively. To activate N signaling, a 

cleaved form of the N transmembrane receptor, UAS-Nintra, was used. In both N loss of 

function and activation, embryonic Hnt expression was examined via immunostaining. 

Examination of the Hnt expression pattern in N55e11 embryos revealed expression of HNT 

in the AS and throughout the hypertrophic PNS that is a well-known characteristic of N 

mutants (Fig. 3.1C). The hypertrophic PNS of N mutants, which is frequently referred to 

as a neurogenic phenotype (de Celis et al., 1991), is readily visualized using anti-22C10, 

a marker for differentiated neurons. Compared to the wildtype expression of both Hnt and 
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22C10 (Fig. 3.1A, B, respectively), in embryos overexpressing activated N, the areas of 

Hnt-positive cells are strikingly similar to the expanded neuronal populations, suggesting 

that neuronal Hnt expression in the developing PNS is independent of N signaling 

(compare Fig. 3.1C and 3.1D). 

Overexpression of UAS-Nintra universally in embryos using the daughterless-

GAL4 (daGAL4) driver resulted in a dramatically different Hnt expression pattern and a 

failure in the process of germ band retraction (Fig. 3.1E). The expression of Hnt, in this 

context, was confined to what appears to be the tracheal placodes and unknown scattered 

cells in the anterior region of the embryo. These embryos also showed a striking absence 

of Hnt expression in the PNS. However, universal activation of N is well known to 

eliminate neuronal differentiation (reviewed in Louvi and Artavanis-Tsakonas, 2006). 

Therefore, the lack of anti-Hnt staining was presumably due to the absence of PNS 

development in this background. To confirm that Hnt expression in the developing 

trachea persists in the context of global activation of N signaling, a deficiency, Df(1)rb1, 

which is known to be associated with the absence of Hnt expression in the developing 

trachea (Wilk et al., 2000), was crossed to recover embryos overexpressing UAS-Nintra in 

this deficiency background. In the Df(1)rb1 embryos overexpressing UAS-Nintra, the 

presumed tracheal expression of Hnt was abolished, confirming that this expression was 

indeed tracheal. However, the unknown Hnt-expressing cells located in the anterior 

region of the embryo persisted, indicating that these cells were not of tracheal origin (Fig. 

3.1F) 
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Figure 3.1 Tissue-specific responsiveness of embryonic Hnt expression to N signaling 
Endogenous Hnt expression and outlines of differentiated neurons were detected by anti-Hnt 
(yellow) and anti-22C10 (white), respectively. Wildtype expression of Hnt (A) and neurons (B) 
compared to N55e11 embryos (C, D). Hnt expression (C) is observed throughout the stereotypical 
hypertrophic PNS phenotype observed in N mutants (D). Overexpression of activated N 
(daGAL4>UAS-Nintra) leads to Hnt-positive cells in the anterior region of the embryo (E, white 
arrowheads) as well as presumed tracheal placodes. The absence of tracheal-specific expression 
of Hnt in Df(1)rb1 embryos overexpressing activated N results in the elimination of Hnt 
expression in the presumed tracheal placodes. However, the Hnt-positive scattered anterior cells 
persist (F, white arrowheads) in addition to the normal expression of Hnt in anterior and posterior 
midgut. 
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3.1.2 Embryonic overexpression of activated N induces hemocyte-like cells 

expressing Hnt 

In embryos associated with global activation of N signaling, Hnt-positive cells were 

observed scattered throughout the anterior region. As outlined in the previous section 

(Section 3.1.1), these cells were neither neuronal nor tracheal. As mentioned in Chapter 

1, previous findings suggest that hnt is responsive to N in some cell types, including the 

hemocyte lineage and the muscle lineage (Housden et al., 2013; Krejci et al., 2009; 

Terriente-Felix et al., 2013). Based on cellular morphology and location of these Hnt-

positive cells, I speculated that these cells may be related to the embryonic hemocyte 

lineage. Embryonic hemocytes originate in the head mesoderm and are often 

characterized as scattered, and having a round or irregular cellular morphology (Tepass et 

al., 1994). This description of embryonic hemocytes is similar to my observations of the 

scattered anterior Hnt-positive cells in the activated N embryos. Croquemort (Crq) is a 

macrophage receptor expressed in many embryonic hemocytes (Franc et al., 1996), and 

anti-Crq antibody is useful as a marker for this cell type. By performing anti-Crq, Hnt 

double immunostaining on the N activated embryos; the anterior scattered Hnt-positive 

cells were found to also be Crq-positive (Fig. 3.2A-C). This result is consistent with hnt 

being a N-responsive gene in the embryonic hemocyte lineage. This novel observation is 

consistent with previous findings suggesting that hnt functions as a N-responsive gene 

within the larval hemocyte lineage, the origin of which is distinct from the embryonic 

lineage. Overall, these results suggest the transcriptional activation of hnt by N signaling 

is highly tissue-specific. 
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Figure 3.2 Hnt is responsive to activated N in embryonic hemocyte-like cells 
Embryos overexpressing an activated form of N were double-immunostained using anti-Hnt, Crq. 
All of the anterior scattered Hnt-positive cells, marked by nuclear immunostaining of Hnt (B), 
show cytoplasmic anti-Crq immunostaining (A, C), indicating that these cells are related to the 
hemocyte/macrophage lineage. The inset located at the bottom right corner of each panel displays 
a zoomed-in section of the anterior Hnt-positive scattered cells. 
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3.2 Analysis of hnt mutant embryos  

As described previously, Hnt is required for various morphogenetic processes in addition 

to cellular differentiation throughout development. To further characterize and identify 

functions that require Hnt, embryos of a hnt antibody-null allele used in many previous 

publications (Lamka and Lipshitz, 1999; Pickup et al., 2002; Reed et al., 2001; Wilk et 

al., 2000; Yip et al., 1997), hntXE81, were analyzed. In comparison to wildtype embryos 

(Fig. 3.3A), the neurons of hntXE81 embryos, visualized by anti-22C10 immunostaining, 

displayed a reduction in the number of neurons associated with the lch5 chordotonal 

cluster (Fig. 3.3B). Three neurons were present along each lateral cluster of hntXE81 

embryos in contrast to five neurons normally found in wildtype embryos (Fig. 3.3C, D, 

white arrowheads). Intriguingly, this exact reduction of neurons from five to three has 

been previously described for mutants of the EGFR signaling pathway, including rho, 

spi, and egfr (Lage et al., 1997; Okabe and Okano, 1997; Rusten et al., 2001). The entire 

chordotonal structure in wildtype and hnt mutant embryos was also examined using a 

DPax2-GFP reporter. This revealed that two entire chordotonal organs, not just their 

associated neurons, were absent in hnt mutants (Fig. 3.3E-H, asterisks). 

The recruitment of oenocytes, which as described in Chapter 1 is also an EGFR-

dependent process, was also found to be severely impaired in hntXE81 embryos. This 

analysis used the oenocyte-specific driver, BO-GAL4, in combination with UAS-GFPnls 

(Fig. 3.3J). In wildtype embryos, seven BO-GAL4-positive (from here on referred to as 

BO-positive) clusters were present, with each cluster containing a minimum of six cells 

(Fig. 3.3I). In hnt mutants, the overall number of BO-positive clusters was reduced and 

the clusters were frequently dispersed. In addition, the overall number of BO-positive 
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cells, which was expected to be a minimum of n=42 for each lateral side of the embryo, 

was reduced to n=26 (Fig. 3.4). Curiously, in hnt mutant embryos many of the BO-

positive cells were improperly located in the anterior region of the embryo. These 

displaced BO-positive cells could represent non-specific BO-GAL4 expression, or they 

could reflect a defect in cell adhesion (see discussion). The impairment of oenocyte 

recruitment as well as the reduction of numbers in the lateral chordotonal organ clusters 

has not been previously reported and is consistent with the possibility that Hnt is required 

for these EGFR-dependent processes.  
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Figure 3.3 hnt mutant embryos display impairment during chordotonal organ and oenocyte 
recruitment 
Analysis of neuronal phenotypes (A-D) and chordotonal phenotypes (E-H) in wildtype (A, C, E, 
G, I) and in hnt mutant embryos (B, D, F, H, J). The neuronal outlines in wildtype (A) and hnt 
mutant (B) embryos were visualized via anti-22C10 immunostaining. Wildtype chordotonal 
organs display a pentascolopodial structure, consisting of 5 neurons (C, white arrowheads). In hnt 
mutants, scolopodial neurons are reduced in number, from 5 to 3 neurons (D, white arrowheads). 
Chordotonal organs, visualized using DPaxD7GFP, are also reduced in number in hnt mutants (F, 
asterisks) compared to wildtype embryos (E, asterisks). Oenocytes, visualized using BO-GAL4 
expressing nuclear GFP,  are similarly reduced in number in hnt mutants (J) compared to 
wildtype (I). 
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Figure 3.4 Reduction of oenocytes in hnt mutants 
A comparison of the number of BO-GAL4 expressing nuclear GFP (BO-positive) cells, 
representing oenocytes, in wildtype and hnt mutant (hntXE81) embryos. In wildtype embryos (3 
embryos examined), 42 BO-positive cells were consistently present as seven clusters of six cells 
per lateral side. In hnt mutant embryos (2 embryos examined), approximately 26 BO-positive 
cells were present, including those that were dispersed throughout the embryo. 
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3.3 Requirement of EGFR signaling for embryonic HNT expression 

The previous section (see Section 3.2) described some striking similarities in the 

phenotypes of egfr and hnt mutant embryos. One possibility that would be consistent with 

these observations would be a requirement of EGFR signaling for Hnt expression. Thus, 

to determine whether embryonic Hnt expression was dependent on EGFR signaling, Hnt 

expression was analyzed in egfr mutants using anti-Hnt immunostaining (Fig. 3.5A). In 

the absence of egfr, Hnt expression appeared to be EGFR-independent in several tissues. 

This, however, does not rule out the possibility that some embryonic Hnt expression 

could be EGFR-dependent. To examine this possibility, an activated EGFR ligand, 

secreted Spitz (sSpi), was expressed throughout the embryo using the daGAL4 driver. 

These embryos were immunostained for Hnt, revealing massive ectopic Hnt expression 

throughout the dorso-lateral region of the embryo (Fig. 3.5B). It has been previously 

shown that overexpression of secreted Spitz (sSpi) can induce supernumerary oenocyte 

recruitment (Elstob et al., 2001). Given that Hnt is strongly expressed in oenocytes, the 

observed ectopic expression could represent these supernumerary oenocytes.  Therefore, 

the effect of overexpressing sSpi on the induction of Hnt expression could be indirect. 

Interestingly, a very similar effect was seen using a downstream component of the EGFR 

signaling pathway, UAS-RasDV12, which is an activated form of Ras. Overexpression of 

activated Ras with daGAL4 also resulted an expansion of Hnt expression in the dorso-

lateral region of the embryo (Fig. 3.5C). Overall, these results suggest that EGFR 

signaling may promote, but may not be required for Hnt expression during Drosophila 

embryogenesis. 

 



! 38!

 

 
 

Figure 3.5 EGFR signaling is not required for, but can promote, Hnt expression 
Hnt expression persists in egfr mutant embryos (A), suggesting that EGFR signaling is not an 
absolute requirement for embryonic Hnt expression. However, ubiquitous overexpression of 
secreted Spitz (sSpi) induces ectopic Hnt expression in the lateral region of the embryo (B). 
Similarly, overexpression of activated Ras (Ras85DV12) also induces ectopic Hnt expression (C), 
suggesting that EGFR signaling can promote Hnt expression in this region of the embryo. 
  



! 39!

3.4 Ectopic DPax2 induction in Hnt overexpressing embryos 

Several studies have described hnt mutant phenotypes in various tissues. Yet, Hnt’s role 

as a potential transcription factor and its transcriptional targets remain poorly 

characterized. Previous work in our lab involving a microarray analysis of embryos 

overexpressing Hnt identified numerous putative transcriptional targets. Among the many 

candidate genes identified, DPax2 was one of most interest. Upon strong overexpression 

of Hnt, it was found that DPax2 could be induced throughout the embryo (Fig. 3.6D-D”) 

(Du, 2013). Interestingly, Hnt and DPax2 are both strongly expressed during the 

development of the PNS during embryogenesis, and both genes have been identified as 

genes being significantly upregulated in the SOP lineage (Bufflin and Gho, 2010; Reeves 

and Posakony, 2005). Further to these studies and observations, I investigated the 

possibility that DPax2 is a direct target of Hnt, in addition to investingating signaling 

pathways that could mediate the effect of Hnt overexpression on DPax2 expression. 
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3.4.1 The sv promoter is responsible for the induction of DPax2 upregulation during 

Hnt overexpression 

In hopes of finding an accurate DPax2 reporter to visualize embryonic DPax2 expression 

faithfully as seen with DPax2 immunostaining (Fig. 3.6A), embryonic expression 

patterns of several GFP or RFP-tagged DPax2 reporter lines (provided by Dr. Joshua 

Kavaler, Colby College, Maine) were characterized (see Appendix B). These reporters 

carry various regions of the large shaven (sv) enhancer, spanning approximately 6.7 kb 

upstream of DPax2 (Johnson et al., 2011). These reporters allow DPax2 expression to be 

analyzed via live-imaging of embryos and other tissues, and provides a cost and time-

efficient method of visualizing gene transcription. In total, seven reporter lines were 

examined. Among the seven, the B reporter line, DPax2B1, was found to be most faithful 

to endogenous DPax2 expression during embryonic development (Fig. 3.6A-C). The 

DPax2B reporter constructs are comprised of a 3.1 kb portion of sv, as well as 100 bp of 

the 5’ UTR of DPax2 (Johnson et al., 2011). To determine whether this reporter construct 

is also overexpressed in embryos overexpressing Hnt, its expression was examined in the 

daGAL4>UAS-GFP-HNT(II) background (Fig. 3.6E-E”). Interestingly, the same 

phenotype of ectopic DPax2 induction was observed, indicating that the regulatory region 

that is responsive to Hnt overexpression is contained within this 3.1 kb region as 

described above.  
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Figure 3.6 DPax2 is responsive to Hnt overexpression through the sv enhancer 
Wildtype embryonic DPax2 expression (A-C), visualized via anti-DPax2 immunostaining (A, blue) and DPax2B reporter lines, DPax2B1GFP (B, 
yellow), and DPax2B1dsRed (C, red). Embryos ubiquitously overexpressing GFP-HNT(II) showing DPax2 overexpression by anti-DPax2 
immunostaining (D-D”; provided by Y. Du (Du, 2013)). Embryos ubiquitously overexpression GFP-HNT(II) showing DPax2 overexpression 
detected using the DPax2B1dsRed reporter (E-E”). 
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3.4.2 Induction of ectopic DPax2 is highly dependent on levels of Hnt 

Previous studies in our lab have shown an apparent threshold effect with respect to the 

induction of DPax2 expression by Hnt overexpression. In particular, ectopic DPax2 

expression was found to only be induced in the context of high levels of Hnt 

overexpression (Du, 2013). To investigate this effect further, similar experiments were 

performed utilizing three GAL4-responsive hnt lines that are associated with lower levels 

of Hnt overexpression when compared to the UAS-GFP-HNT(II) line. Among the three 

lines, two UAS-responsive P-element insertions (so called enhancer-promoter lines), 

EP55 and GS1018, were used. In addition, an independent insertion of the same UAS-

GFP-HNT construct mapping to the third chromosome, UAS-GFP-HNT(III), was used. 

Previous results from our lab have shown that EP55 crossed to daGAL4 is unable to 

induce DPax2 expression (Du, 2013). If a threshold effect is in place, increased 

expression of EP55 should be able to induce DPax2 expression. To test this hypothesis, 

two GAL4 drivers, Act5cGAL4 and daGAL4, were used simultaneously to drive 

expression of EP55. Strikingly, expression of EP55 using the two GAL4 drivers did not 

induce DPax2 expression throughout the lateral epidermis, but did result in ectopic 

DPax2 expression in the embryonic salivary gland (Fig. 3.7A). In wildtype embryos, 

DPax2 expression as evaluated by immunostaining or DPax2 reporter expression is never 

observed in the embryonic salivary gland (see Fig. 3.6A-C). Ectopic salivary gland 

expression of DPax2 was also observed when GS1018 or UAS-GFP-HNT(III) was 

overexpressed with daGAL4 (Fig. 3.7B,C).  Other studies in our lab of Hnt 

overexpression have indicated that these different UAS-responder lines are associated 

with different levels of Hnt expression, where UAS-GFP-HNT(II) is the strongest, GS1018 
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and UAS-GFP-HNT(III) are intermediate, and EP55 is the weakest (data not shown, 

B.H.R. personal communication). Overall, these results demonstrate that the level of Hnt 

required to induce DPax2 expression varies depending on tissue-specificity. Interestingly 

though, the embryonic salivary gland displays the lowest threshold for HNT-dependent 

ectopic DPax2 expression.  
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Figure 3.7 Ectopic DPax2 expression is sensitive to levels of Hnt overexpression  
Embryos showing DPax2 expression, via the DPax2B1dsRed reporter, using three different 
GAL4-responsive Hnt constructs, each of which is weaker than UAS-GFP-HNT(II) (see text). 
Overexpression of EP55 using 2 GAL4 drivers to elevate expression induces ectopic DPax2 in 
the embryonic salivary gland, as marked by the yellow arrow (A). Similarly in embryos 
overexpressing GS1018 (B) and GFP-HNT(III) (C), DPax2 expression is induced in the salivary 
gland, as marked by the yellow arrow (compare to Fig. 3.6A-C). 
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3.5 Examining the mechanism of ectopic DPax2 expression in HNT 

overexpressing embryos  

The suggested functional conservation between Hnt and its mammalian homolog, 

RREB1, allows speculatation that Hnt can function as either a transcriptional potentiator 

or attenuator to regulate the expression of its target genes (Ming et al., 2014). Our studies 

on DPax2 expression suggest that this gene could be directly activated by high levels of 

Hnt. However, it is also possible that Hnt’s effect on DPax2 expression is indirect. 

Interestingly, in pupal eye development, Hnt has been reported to be required non-

autonomously for cone cell (CC) induction, which is dependent on DPax2. This model 

for CC induction has been described in Chapter 1, and indicates that DPax2 expression, 

through the spa enhancer, requires three key inputs from N, EGFR, and Lz (Fig. 3.8A) 

(Flores et al., 2000). Since the overexpression of Hnt interacts with the sv enhancer, and 

the regulation of DPax2 activation through sv is not well-defined, inputs from the model 

for CC induction were tested. Two of three inputs are highly conserved signaling 

pathways during metazoan development, and thus, DPax2 expression in embryos 

overexpressing Hnt was tested in the absence of the i) N signaling pathway (Fig. 3.8B) or 

ii) EGFR signaling pathway (Fig. 3.8C). 
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Figure 3.8 The model for DPax2 expression during CC induction 
(A) The model for CC induction as described by Flores et al. (2000). Activation of DPax2 
expression requires inputs from N and EGFR signaling, and Lz. To test whether Hnt is dependent 
on either N or EGFR to activate ectopic DPax2 expression, Hnt overexpression will be tested in N 
mutant (B) or egfr mutant (C) backgrounds 
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3.5.2 EGFR signaling is required to induce ectopic DPax2 expression in Hnt 

overexpression embryos 

To test if DPax2 expression is activated indirectly as a consequence of Hnt 

overexpression, UAS-GFP-HNT(II) was overexpressed with daGAL4 in N and egfr mutant 

embryos. In N55e11 mutant backgrounds, the absence of N signaling did not affect Hnt’s 

ability to induce ectopic DPax2 expression (Fig. 3.9A-A”), suggesting that N signaling 

does not mediate this response. However, in this context, the induced DPax2 expression 

was localized only in the lateral region of the embryo, despite Hnt being overexpressed 

throughout the embryo. This clustering effect may relate to the neurogenic phenotype of 

N55e11 mutants (recall Fig. 3.1C), and is suggestive that ectopic DPax2 induction through 

Hnt overexpression is restricted to the PNS lineage. 

        Since DPax2 induction in the context of Hnt overexpression is not dependent on 

N signaling, the Hnt overexpression effect on DPax2 expression was subsequently 

analyzed in egfr mutant embryos. Strikingly, ectopic DPax2 expression, as visualized 

using the DPax2B1dsRed reporter, was completely suppressed in egfr mutant embryos 

overexpressing Hnt  (Fig 3.9B-B”).  In these embryos, which were highly abnormal in 

their development, some endogenous DPax2 expression was observed - presumably in 

the degenerating PNS. DPax2 expression in egfr mutant embryos lacking Hnt 

overexpression was also examined using the DPax2B1dsRed reporter (Fig. 3.9C), and was 

found to be similar to egfr mutant embryos overexpressing Hnt, although in the absence 

of Hnt overexpression, PNS development was not as irregular.  
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Figure 3.9 Induction of ectopic DPax2 expression through Hnt overexpression is dependent on EGFR signaling and does not require N 
signaling 
Hnt overexpression was visualized by GFP-HNT(II) (A, A’, B’, B’, yellow) and DPax2 expression was visualized by anti-DPax2 immunostaining 
(A”, red) or DPax2B1dsRed reporter expression (B”, C, red).  Embryos overexpressing GFP-HNT(II) in N mutant embryos display strong DPax2 
expression (A”). Strikingly, egfr mutants overexpressing GFP-HNT(II) does not show ectopic DPax2 expression (B”). In egfr control mutant 
embryos, DPax2 expression is reduced but is detectable (C). 
 



! 49!

3.5.3 Levels of Hnt and EGFR combinatorially control ectopic DPax2 induction 

As discussed in Section 3.4.2, ectopic DPax2 expression is only induced upon high levels 

of Hnt overexpression. To determine if this effect is dependent on levels of EGFR 

signaling, induction of ectopic DPax2 expression was assessed in embryos heterozygous 

for the egfr mutant allele, egfrf2, as well as embryos overexpressing dominant-negative 

Ras. In heterozygous egfr mutants overexpressing Hnt, DPax2 induction was visibly 

reduced (Fig. 3.10A-A”). A similar result was found in embryos simultaneously 

overexpressing UAS-GFP-HNT(II) and a dominant negative form of Ras, UAS-Ras85DN17 

(Fig. 3.10B-B”). These results support the idea that the requirement of a high level of Hnt 

expression for the induction of DPax2 is further dependent on the level of EGFR 

signaling, as the induction effect can be partially suppressed by reducing EGFR gene 

dosage or dominantly suppressing downstream effectors of Ras.  

The above results suggest that levels of EGFR signaling are able to impact DPax2 

expression. Subsequently, it was of interest to test whether activation of the EGFR 

signaling pathway can induce DPax2 overexpression without Hnt overexpression. Using 

the DPax2B1GFP reporter, embryos driving the expression of Ras85DV12 (activated Ras) 

with daGAL4 were found to be associated with some expansion of DPax2 expression 

(Fig. 3.10C).  Similar activation of the EGFR signaling pathway can be achieved by 

expressing the activated ligand, sSpi, and such embryos were also found to show 

expanded DPax2 expression (Fig. 3.10D). Given that embryos overexpressing a low level 

of Hnt do not result in inappropriate DPax2 expression (associated with the EP55 

insertion as described in Section), it was of interest to determine if EP55 could enhance 

the effect of activated Ras. Again, using the DPax2B1GFP reporter, co-expression of 
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EP55 and Ras85DV12 resulted in increased DPax2 expression beyond what was observed 

when expressing Ras85DV12 on its own (Fig. 3.10E). This observation is consistent with 

Hnt’s function being to potentiate or enhance the activity of the EGFR signaling pathway.  
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Figure 3.10 EGFR signaling and Hnt work cooperatively to induce DPax2 expression in the embryo 
Embryos heterozygous for a egfr mutant allele, Egfrf2, overexpressing GFP-HNT(II) show a significant reduction of ectopic DPax2 expression (A-
A”). A similar reduction in ectopic DPax2 expression is observed in embryos simultaneously expressing a dominant negative form of Ras, 
Ras85DN17, and GFP-HNT(II) (B-B”). Embryos overexpressing components of EGFR signaling, either activated Ras, Ras85DV12 (C) or secreted 
Spitz (D), show expanded DPax2 expression without Hnt overexpression. However, co-expression of Ras85DV12 and EP55 results in a higher 
degree of expansion of DPax2 expression (E). 
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3.6 Examining the responsiveness of DPax2 to Hnt in the pupal retina 

Both Hnt and DPax2 are endogenously expressed in multiple cell types during retinal 

development. Wildtype Hnt expression is present in all neuronal precursor cells in third 

instar eye discs (Pickup et al., 2002). In a 48 hr after puparium formation (APF) pupal 

retina, Hnt expression is present in the R cells (R1-R8) and the neuronal cell within the 

interommatidial SOP lineage. Wildtype DPax2 expression is confined to the CCs, 1°s, 

and the interommatidial bristles. To assess whether Hnt can ectopically induce DPax2 

expression in a different tissue context, the developing retina was chosen. Embryonic 

expression of Hnt and DPax2 show complementary expression patterns in the developing 

embryonic PNS during the differentiation of the SOP lineage (Fig. 3.11A-A”). Similarly 

in the retina, within the interommatidial SOP cells, Hnt and DPax2 display 

complementary expression patterns (Fig. 3.11B-B”). Additionally, as mentioned in 

Chapter 1, it has been stated that the specification of the chordotonal SOPs is analogous 

to the development of the interommatidial SOPs (Lage et al., 1997). Therefore, one 

possible mode of action for the cause of DPax2 induction upon Hnt overexpression is that 

the SOP cells are highly sensitive to Hnt or EGFR levels, leading to an activation of 

DPax2 expression. 
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Figure 3.11 Hnt and DPax2 expression is infrequently co-expressed and often close 
proximity in the developing PNS of wildtype retinas and embryos 
Embryos (A) and retinas (B) immunostained with anti-Hnt (A, A’, B, B’, yellow) and anti-DPax2 
(A, A”, B, B”, blue) showing endogenous PNS expression patterns of Hnt and DPax2. All pupal 
retinas were staged at 48 hours after puparium formation (APF). Co-immunolocalization 
(indicated by white in panels A and B) is not prominent. 
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3.6.1 Overexpression of Hnt induces DPax2 expression in the pupal retina through 

the sv promoter 

Since embryonic DPax2 expression is responsive to the overexpression of Hnt through 

the sv promoter, it was of interest to determine whether the same mechanism is utilized in 

the pupal eye. As mentioned in Section 3.4.1, DPax2B reporters contain a fragment of the 

sv promoter, which has been characterized in the development of bristles (Johnson et al., 

2011). Interestingly, upon comparison of wildtype DPax2 immunostaining (Fig 3.12A-

A”) and DPax2B1dsRed expression in the eye, DPax2B1dsRed expression was detected in 

the interommatidial SOP cells and CCs (Fig. 3.12B-B”,C-C”). However, unlike the 

expression of endogenous DPax2, which is expressed in all four CCs (Fig. 3.12A’), the 

expression of the DPax2B1dsRed reporter was most frequently observed in only one CC 

(Fig. 3.12B-B”). 

To assess whether DPax2 is responsive to overexpression of Hnt in the pupal 

retina, the GMR-GAL4 driver was utilized. The Glass-Mediated-Response (GMR) 

synthetic promoter element specifically promotes expression throughout eye 

morphogenesis in most cell types (Brand and Perrimon, 1993). Overexpression of Hnt 

using GMR-GAL4 resulted in larval lethality (data not shown) and, therefore, the 

GAL80ts system (see Chapter 2) was utilized to induce overexpression of Hnt 24 hr APF. 

Strikingly, this overexpression of Hnt induced ectopic DPax2 expression in the eye, 

detected by anti-DPax2 immunostaining (Fig. 3.13A-A”). Consistent with observations of 

DPax2B1dsRed reporter expression in the embryo, DPax2B1dsRed reporter was also 

responsive to Hnt overexpression throughout the retina (Fig. 3.13B-B”). However, DPax2 

expression, as detected by immunostaining, was qualitatively different from the DPax2 
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reporter expression, where the latter shows areas devoid of expression (Fig. 3.13A”,B” 

arrowheads). These areas presumably correspond to the CCs, which as stated previously, 

activate DPax2 reporter expression in only one of the four CCs. To visualize the 

arrangement of cells within the retinal epithelium, anti-Armadillo (Arm) staining was 

performed. This revealed that overexpression of Hnt under these conditions (GAL80ts 

shift 24 hr APF, from here on referred to as strong/late Hnt overexpression) did not 

disturb the specification of the CCs, but greatly disturbed the surrounding cells and the 

development of the interstitial lattice. Interestingly, based on morphology, most 

interstitial cells resembled primary pigment cells. The ectopic DPax2 expression resulting 

from Hnt overexpression could represent increased DPax2 expression in the primary 

pigment cells or ectopic expression in the lattice cells. 

        In a previous publication by Pickup et al. (2009), it has been stated that 

overexpression or reduction of Hnt in the larval eye discs can affect the expression of the 

transcription factor Cut, which is a marker for CCs. To determine if this was the case in 

the pupal eye, anti-Cut immunostaining was performed on the strong/late Hnt 

overexpression pupal retinas. This revealed an unusual localization of Cut in comparison 

to wildtype (Fig. 3.13D”,E). Wildtype retinas display strong anti-Cut immunostaining in 

CC nuclei (Fig. 3.13E’), as well as the nuclei of the cells of the interommatidial SOP 

lineage (Fig. 3.13E”). In the Hnt overexpression retinas, Cut showed normal nuclear 

localization in CCs (Fig. 3.13D” arrow); immunostaining of Cut in the SOP lineage, 

however, showed very strong nuclear localization, in addition to localization throughout 

the developing interommatidial bristle cells. The failure of complete Cut nuclear 

localization is consistent with strong Cut overexpression, resulting in cytoplasmic 
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accumulation of this transcription factor.  This result suggests that Hnt overexpression 

can result in increased Cut expression in the interommatidial SOP lineage. CC expression 

of Cut, however, was unaffected. This is most likely due to the timing of Hnt 

overexpression, which was induced 24 hr APF. At this developmental stage, CC 

specification has been completed (see Fig. 1.4) and these cells may no longer be 

competent to respond to Hnt overexpression. 

. 
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Figure 3.12 A comparison between DPax2 immunostaining and DPax2B1dsRed reporter 
expression in the pupal retina 
Wildtype anti-DPax2 immunostaining of pupal retinas 48 hr APF (A) displays strong DPax2 
expression in all four CCs and weak expression in 1°s as seen in an apical focal plane (A’). 
DPax2 expression is also observed within the cells of the developing interommatidial SOPs as 
seen in a basal focal plane (A”). DPax2B1dsRed reporter expression in pupal retinas 48 hr APF 
carrying a Lachesin-GFP reporter expression to visualize cell outlines (B, C) shows reporter 
expression is limited to one or two CCs as seen in an apical focal plane (B-B”). However, in the 
developing interommatidial SOP cells, DPax2B1dsRed reporter reports strong expression of 
DPax2, remaining faithful to the endogenous expression of DPax2 as seen in a basal focal plane 
(C-C”). 
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Figure 3.13 DPax2 is responsive to Hnt overexpression in the pupal retina through the sv promoter 
Strong overexpression of Hnt induced 24 hours APF (A-D, see text) leads to induction of ectopic DPax2 expression, shown by anti-DPax2 
immunostaining (A, A”, blue) and DPax2B1dsRed reporter expression (B, B”, blue). Qualitative differences between the immunostaining (A”) and 
reporter (B”) are indicated by the white arrowheads (see text). Anti-Armadillo (Arm) immunostaining of the same background (C-C”) showing 
cell outlines and revealing clusters of 4 CCs. Anti-Cut immunostaining in the overexpression background (D-D”), compared to wildtype (E-E”), 
shows inappropriate cytoplasmic localization of Cut throughout the developing bristle shaft and expression within CCs (D”, arrow). Wildtype Cut 
is detected within all 4 CCs (E’, apical) and the interommatidial SOP lineage (E”, basal). 
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3.6.2 Temporal sensitivity of DPax2 to Hnt overexpression in the developing retina 

The anti-Arm result in Section 3.6.1 was surprising in that CC specification did not 

appear to be disrupted. This may have been due to CC specification being an early event 

during differentiation of the pupal retina, and induction of Hnt 24 hr APF is likely too 

late to disrupt this process. To address whether Hnt overexpression is capable of 

disrupting CC specification, a weaker UAS-GFP-HNT insertion (UAS-GFP-HNTJ27), 

which is viable with GMR-GAL4, was used. Since this is a viable GAL4-UAS 

combination, a lower level of Hnt overexpression occurs earlier in the development of the 

pupal retina and the consequences on the development of the retinal epithelium can be 

evaluated 48 hr APF. To confirm if the viable GMR-GAL4>UAS-GFP-HNTJ27 pupae are 

associated with ectopic DPax2 expression, the DPax2B1dsRed reporter was crossed with 

this background. As expected, this resulted in upregulation of DPax2 expression, 

although this was qualitatively different from the induction of strong/late Hnt 

overexpression. In particular, the degree of ectopic DPax2 expression was less, but larger 

strongly expressing cells were observed (Fig. 3.14A-A”). While the GAL80ts shift 

experiment did not disrupt CC specification, the early/weak Hnt overexpression may 

have resulted in increased DPax2 expression in CCs, either through enhanced expression 

in specified CCs or through the production of supernumerary CCs. To address this 

question, the early/weak Hnt overexpression background (GMR-GAL4>UAS-GFP-

HNTJ27) was crossed to Ubi-DE-Cadherin-GFP to visualize apical membranes (Fig. 

3.14C). The organization of the retinal epithelium was very different from the above 

GAL80ts shift experiment (see Fig. 3.13C) as well as the wildtype epithelium (Fig. 

3.14B), in that the typical CC cluster arrangement was not observed. Based on this 
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morphology, it is likely that the early/weak Hnt overexpression result is associated with 

supernumerary CCs, and this was confirmed using a CC-specific marker, anti-Cut (Fig. 

3.14D). 

 
.  
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Figure 3.14 Early, weak overexpression of Hnt induces supernumerary CC differentiation 
Pupal retinas associated with weak Hnt overexpression imaged 48 hr APF (GMR-GAL4>GFP-
HNTJ27, see text) (A, C, D) show disruptions in the retinal epithelium compared to wildtype (B). 
Strong DPax2B1dsRed reporter expression is seen (A”, compare to Fig. 3.12B”) in addition to a 
strong disruption of the cellular organization, visualized using Cadherin-GFP (C). Compared to 
the apical focal plane of wildtype (B), the cell outlines as displayed by Cadherin-GFP in the Hnt 
overexpressing pupal retina suggest supernumerary CC formation, confirmed by anti-Cut 
immunostaining (D). 
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3.7 Analysis of the pupal retina in hntpeb mutants  

In the developing retina, Hnt plays a critical role in the maintenance of epithelial integrity, 

establishment of planar polarity, and proper formation of photoreceptor cell morphology 

(Pickup et al., 2002). In previous publications, the phenotype of the pupal retinal 

epithelium of hnt mutants was not examined in detail.  Therefore, pupal eyes of a viable 

temperature-sensitive hnt mutant, hntpeb, were immunostained with anti-Arm to outline 

the apical cell membranes. In a 48 hr APF wildtype retinas, each ommatidium consist 

four CCs, two 1°s, six 3°s, three 3°s, and three bristle cells (Fig. 3.15A,A’), which are on 

the apical surface of the ommatidium, and located basally to the apical surface are eight R 

cells. In comparison to the wildtype ommatidial arrangements (Fig. 3.14B, B’), the hntpeb 

mutant retinas display disturbances in the stereotypical hexagonal arrangement, such as 

ommatidial fusion due to the absence of the lattice cells and bristle clustering. 

Interestingly, the recruitment of CCs and 1°s was also notably affected; most ommatidial 

CC clusters consisted of fewer than the normal four-cell cluster, and the number of 

recruited 1°s was highly variable, ranging from one to three (Fig. 3.15C, C’).  

This experiment revealed that the hntpeb mutant phenotype includes a previously 

unreported defect in CC recruitment. Taken together, the above results fully support and 

add to the findings by Pickup et al (2002), and suggest that Hnt may be a critical factor in 

cell fate determinations during retinal development.  
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Figure 3.15 Hnt is required for proper recruitment and development of ommatidial cells 
Pupal eyes 48 hr APF immunostained with anti-Armadillo showing organization of the retinal 
epithelium in wildtype (A, B) and in hntpeb mutants (C). Confocal micrographs (A, B, C) and 
cartoon schematics for each (A’, B’, C’) are shown. The apical surface of the eye of a wildtype 
ommatidium consists of four CCs (red), two 1°s (yellow), six 2°s (white), three 3°s (white), and 
three bristle cells (as shown in A’). A direct comparison of wildtype (B, B’) and hntpeb (peb) (C, 
C’) mutant retinas at the same magnification shows a highly disorganized ommatidial structure in 
the mutant retinas, including a reduction in the number of CCs per ommatidium.  
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Chapter 4: Discussion 

4.1 Regulation of hnt during Drosophila embryonic development  

In this study, I addressed the regulation of embryonic Hnt expression through two 

major signaling pathways used reiteratively during development: N and EGFR signaling. 

In the developing SOP lineage, Hnt expression is found in the founder SOP prior to 

asymmetric cell division, but its expression becomes ultimately confined to the neurons 

(Pickup et al., 2002; Reeves and Posakony, 2005). N mutants disrupt the normal 

development of the SOP lineage, and result in a hypertrophic PNS. In this context, strong 

anti-Hnt staining was observed throughout the hypertrophic PNS, suggesting that 

embryonic Hnt expression in this tissue is not dependent on N signaling.  

Additionally, in this study, the novel observation of hnt being a N-responsive 

gene was found in the context of embryonic hemocyte cells upon global expression of 

activated N in the embryo. In Drosophila, hematopoiesis occurs in two distinct phases 

(Meister and Lagueux, 2003). The first phase occurs during the second-half of 

embryogenesis, originating from the head mesoderm to give rise to the embryonic 

hemocytes. The second phase occurs in larval lymph glands, which are derived from the 

lateral mesoderm at the end of embryogenesis. Additional hemocytes originating from the 

larval lymph gland continue to mature throughout larval development (Meister and 

Lagueux, 2003; Tepass et al., 1994). It has been previously shown that hnt is a N-

responsive gene in the context of the larval hemocyte lineage in the lymph gland 

(Terriente-Felix et al., 2013). However, whether the same response occurs in embryos is 

not known. As demonstrated in Section 3.1, it is possible that embryonic hemocytes, like 

their larval counterparts, share the same cellular response to activate hnt expression upon 
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activation of N. Overall, these results suggest that the ability of N signaling to activate 

Hnt expression is highly tissue-specific, and during embryogenesis, N-dependent Hnt 

expression appears to be confined to the embryonic hemocyte lineage. Previous analysis 

of N-dependent expression of Hnt in the larval lymph involved the construction of 

fluorescent protein reporters using the N-responsive elements from the hnt upstream 

regulatory sequence. I examined embryos from three different reporter lines (provided by 

Dr. Sarah Bray) but was unable to detect any embryonic expression (data not shown). 

Thus, at this time, it is not possible to definitively establish that Hnt is indeed a direct 

target of N signaling during embryogenesis. 

Analysis of hnt mutant embryos revealed novel observations, in that hnt mutant 

phenotypes were found to display striking similarities to egfr mutant embryos, 

particularly in the developing PNS and oenocyte recruitment. In the developing PNS, hnt 

mutants displayed a reduction from five to three chordotonal organs and their associated 

neurons. Additionally, oenocyte recruitment was found to be severely impaired in hnt 

mutants. The recruited BO-positive cells in hnt mutants, which were reduced in number, 

generally appeared smaller than wildtype oenocytes and were dispersed throughout the 

embryo. In contrast, wildtype oenocytes are tightly clustered in the dorso-lateral region in 

embryonic abdominal hemisegments. The dispersal of the BO-positive cells in hnt 

mutants suggests a defect in cell adhesion, which could be required for proper clustering 

of the oenocytes. Interestingly, Hnt has been implicated in the regulation of cell adhesion 

and collective cell migration in the context of anterior follicle cells and associated border 

cells in the adult ovary (Melani et al., 2008). This apparent defect in cell adhesion 

warrants further investigation. Overall, however, the process of oenocyte recruitment is 
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well-established to depend on levels of EGFR signaling, further suggesting that EGFR 

signaling is impaired in hnt mutant embryos. My observations of defects in the 

recruitment of chordotonal organs and oenocytes represent new additions to the list of 

phenotypic similarities between hnt and egfr mutants. These include failure in germ band 

retraction and dorsal closure, and the maintenance of tracheal epithelial integrity (Cela 

and Llimargas, 2006; Clifford and Schüpbach, 1992; Shen et al., 2013).  

A possible explanation for the extensive similarities between hnt and egfr mutant 

phenotypes could be that Hnt expression in many embryonic tissues is not dependent on 

N signaling, but rather, is dependent on EGFR signaling. A precedent for EGFR-

dependent Hnt expression is found within the intestinal stem cells of the adult midgut 

(Baechler, 2014). It has been previously reported that Hnt expression remains “normal” 

in egfr mutants (Yip et al., 1997). My analysis of Hnt immunolocalization used 

fluorescence confocal microscopy rather than the immunohistochemical techniques and 

standard bright field microscopy that were used in the previous study. This more rigorous 

examination of Hnt immunolocalization in egfr mutant embryos revealed that Hnt 

expression was not entirely “normal”. In addition to the obvious absence of oenocyte 

expression, the overall expression of Hnt in egfr mutant embryos appeared reduced. 

Whether or not this reduction is associated with defects in EGFR-dependent 

differentiation, or is possibly a consequence of hnt being a direct target of the EGFR 

signaling pathway remains uncertain. As mentioned above, EGFR signaling is pivotal in 

the formation of chordotonal organs, recruitment of oenocytes, and invagination, primary 

branching, and maintenance of the epithelial integrity within the tracheal system (Cela 

and Llimargas, 2006; Lage and Jarman, 1999; Llimargas and Casanova, 1999; Rusten et 
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al., 2001). Each of these examples is associated with strong Hnt expression. My 

observations of Hnt immunolocalization lead me to speculate that the expression of Hnt 

does not absolutely require EGFR signaling, but the possibility that an upregulation of 

Hnt in some tissues could be EGFR-dependent. 

Interestingly, I found that overexpression of two components of the EGFR 

signaling pathway, the active ligand sSpi or activated Ras, led to an expansion of Hnt 

expression in the dorso-lateral region of the embryo. In previous studies, supernumerary 

oenocyte recruitment was observed upon overexpression of sSpi (Elstob et al., 2001), and 

thus, it can be speculated that the expansion of Hnt expression via sSpi overexpression is 

most likely an indirect effect of supernumerary oenocyte recruitment. In addition, 

although overexpression of Ras has not been directly associated with additional oenocyte 

recruitment, the expansion of Hnt expression in the dorso-lateral region of the embryo, as 

well as the cellular morphology of these cells, suggested that this response may be 

indirect through additional oenocyte recruitment. Overall, the above results suggest that 

the dependence and responsiveness of hnt to N or EGFR signaling seems to be highly 

context-specific. 

Ultimately, the activation of the EGFR/Ras/MAPK pathway results in the 

phosphorylation of the transcriptional regulators, Pointed and Yan. In general, Pointed is 

activated by MAPK and promotes the transcription of numerous EGFR target genes. On 

the other hand, Yan normally functions as a negative regulator of EGFR target genes, and 

its activity is inactivated by MAPK. Interestingly, previous genetic interaction studies 

have shown that the temperature-sensitive hypomorphic phenotype of hntpeb is suppressed 

in a dosage-sensitive manner by loss of function yan alleles (Wilk et al., 2004). This 
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genetic interaction is consistent with the possibility that Hnt is a direct target of EGFR 

signaling. The activation of Hnt expression by the Pnt transcription factor, however, has 

not been addressed either in the literature or in our lab. In addition, an analysis of the 

extensive upstream regulatory region of hnt for putative Pnt/Yan (ETS transcription 

factor) binding sites has not been performed. The suppression of hntpeb by Yan, however, 

is also consistent with the possibility of Hnt negatively regulating Yan without itself 

being a target of the EGFR signaling pathway (see future directions). 
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4.2 Hnt-dependent embryonic DPax2 induction requires EGFR signaling 

The examination of effects on DPax2 reporter expression following Hnt overexpression 

indicated that a 3.1 kb region which lies within the sv enhancer is responsive to Hnt 

overexpression. The sv enhancer has been described as a bristle-specific enhancer, and 

given that bristles are a component of the PNS, in addition to the finding that Hnt 

overexpression resulted in ectopic DPax2 throughout what appeared to be an expansion 

of the embryonic PNS, it is tempting to speculate that Hnt’s effect on DPax2 expression 

is PNS-specific. However, embryonic DPax2 induction by Hnt overexpression was also 

found to occur within the embryonic salivary gland. Overall, the response to Hnt 

overexpression was not only PNS-specific, but displays an apparent tissue-specific 

threshold-effect. The embryonic salivary gland likely displays the lowest threshold for 

Hnt-dependent ectopic DPax2 expression. Based on the model for the induction of DPax2 

expression within the pupal retina, where DPax2 expression requires inputs from both the 

N and EGFR signaling pathways, a similar analysis was performed in the embryo.  Here 

it was found that the induction of DPax2 expression by Hnt overexpression is indirect, as 

this effect was sensitive to the dosage of EGFR, and was completely abolished in the 

absence of EGFR. Furthermore, activation of EGFR signaling in the embryo was found 

to also expand DPax2 expression, however, simultaneous overexpression of activated Ras 

and EP55 revealed that Hnt creates an additive effect to increase the expansion of DPax2 

expression. 

These results not only confirm that the upregulation of DPax2 expression via Hnt 

overexpression is dependent on EGFR signaling, but also reveal the capacity of EGFR 

signaling to activate DPax2 expression in the embryo. The results of this study suggest 
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that increased EGFR signaling is sufficient to induce an expansion of the domain of 

DPax2 expression, regardless of the presence of Hnt. In addition, the expansion of DPax2 

expression displayed an additive effect upon simultaneous expression of activated Ras 

and Hnt. This is consistent with the interpretation that Hnt amplifies the EGFR signaling 

pathway to stimulate EGFR-sensitive DPax2 expression. Such relationship between 

EGFR signaling and Hnt is not unprecedented. In mammals, the Hnt homolog, RREB1, 

has been described to potentiate levels of Ras/MAPK signaling. The mechanism has been 

suggested to involve the direct binding of RREB1, which results in the repression of the 

microRNAs genes, miR-143 or miR-145. These microRNA genes are proposed to 

function as negative feedback regulators of the EGFR signaling pathway (Kent et al., 

2010; Saj and Lai, 2011). Since the function and binding sequences of Hnt and RREB1 

have been suggested to be conserved (Ming et al., 2014), Hnt may increase DPax2 

expression using a similar mechanism to potentiate EGFR signaling. Interestingly, in 

Drosophila, one of the positive-feedback regulators of the EGFR signaling pathway is the 

microRNA gene, miR-7. In this case, however, miR-7 targets the negative regulator Yan, 

promoting EGFR pathway activation and any possible repression of this target gene by 

Hnt would have a dampening effect (Li and Carthew, 2005). At the present time, no 

microRNA genes have been identified to function as negative-feedback regulators of the 

EGFR signaling pathway, but such a category of genes would be strong candidates as 

targets of Hnt, should the mammalian mechanism prove to be conserved. 
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4.3 DPax2 is responsive to Hnt misexpression in the pupal eye 

The DPax2 gene has been well characterized and mutants disrupting eye development 

were originally isolated as alleles of the gene sparkling (spa), while mutants disrupting 

bristle development were isolated as alleles of the gene shaven (sv) (Fu and Noll, 1997; 

Fu et al., 1998; Hochman, 1971; Kavaler et al., 1999). It was eventually established that 

the DPax2 gene behaves as a complex locus and that spa and sv alleles disrupt two 

distinct regulatory regions required for eye and bristle development, respectively (Fu et 

al., 1998). Curiously, despite directed efforts, a null DPax2 allele has not been isolated. 

The intronic regulatory region associated with spa alleles has been studied exhaustively 

in association with DPax2 expression in the CCs of the developing pupal retina (Flores et 

al., 2000; Swanson et al., 2010; Swanson et al., 2011). The upstream regulatory region 

associated with sv alleles has been characterized with respect to expression in the 

microchaetae SOP lineage, but has not been analyzed with respect to CC expression 

(Johnson et al., 2011). While the spa enhancer is well described as activating CC-specific 

expression of DPax2, I found that the upstream sv enhancer region, used to drive the 

DPax2B reporters, is also associated with CC expression. Curiously, the spa enhancer 

drives expression in all four CCs, while DPax2B reporters show prominent expression in 

only one or two CCs, depending on the developmental stage. It has been previously 

shown that the developing CCs have four distinct subtypes (anterior, posterior, polar, and 

equatorial) that show differential DPax2 expression, in which the anterior and posterior 

show higher DPax2 expression (Charlton-Perkins et al., 2011). Based on my observations 

of the expression of the DPax2B reporter, it is likely that this non-equivalent expression 
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pattern within the four CCs results from DPax2 expression associated with the upstream 

sv enhancer.  

In the experiments in which Hnt overexpression was induced 24 hr APF, ectopic 

DPax2 expression was observed using the DPax2B reporter, demonstrating that, as is the 

case in the embryo, Hnt overexpression likely acts through the sv enhancer. Interestingly, 

in these experiments, ectopic DPax2 expression was most prominent in cells other than 

the CCs, and no supernumerary CCs were detected. In several studies, CC number has 

been directly associated with the activity of the EGFR signaling pathway, where reduced 

EGFR signaling consistently results in less than four CCs per ommatidium, whereas 

increased EGFR signaling induces supernumerary CCs (Domínguez et al., 1998; 

Freeman, 1996; Wech and Nagel, 2005). In a different experiment in which Hnt 

overexpression was induced at an earlier developmental stage using the GMR-GAL4 

driver, supernumerary CCs were plentiful. This result suggests that Hnt overexpression in 

the pupal eye can also amplify EGFR signaling, but that there is a window of competence 

for this effect. Significantly, supernumerary CCs were not associated with GMR-GAL4 

driven expression of GFP-HNT, indicating that this induction occurred non-

autonomously. Overall, this study revealed the responsiveness of DPax2 in the pupal eye 

to Hnt overexpression through the sv enhancer, and suggests that the sensitivity of 

DPax2’s response is variable depending on the developmental timing of the pupal retina. 

While these experiments using the pupal eye are consistent with observations made in the 

embryo, the EGFR-dependence of DPax2 expression resulting from Hnt overexpression 

has yet to be definitively established. 
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4.4 Hnt and its possible relationship to EGFR signaling during development  

Previous analysis on hntpeb mutants has shown many R cell abnormalities, mainly missing 

outer R cells, and defects in establishing planar polarity (Pickup et al., 2002). This work, 

however, did not include analysis of the pupal retinal epithelium 48 hr APF, at which 

time, I found hntpeb to display striking defects in CC recruitment. The hntpeb mutation, 

which has been described as a temperature sensitive allele, has not been analyzed 

molecularly, and the consequences of shifting to the restrictive temperature of 29°C is 

largely unknown. That is, it is presently unknown if the restrictive temperature reduces 

the expression of hntpeb, or if the Hntpeb protein is destabilized. Regardless of the 

mechanism, reduced CC induction at the restrictive temperature clearly shows that hntpeb 

functions non-autonomously since Hnt is not expressed in CCs. Numerous studies 

reported in the literature link CC induction with EGFR signaling (Behan et al., 2002; 

Domínguez et al., 1998; Freeman, 1996; Wech and Nagel, 2005; Yogev et al., 2008). 

Overall, the striking effect of both hnt loss of function as well as overexpression on the 

recruitment of CCs strongly suggests that Hnt functions in the pupal eye to modulate 

EGFR signaling. The apparent non-autonomy of Hnt with respect to CC induction 

suggests that if Hnt is, in fact, modulating EGFR signaling, it could be doing so by 

influencing the production of activated EGFR ligands. 

During eye development, EGFR signaling is complex and dynamic. In wildtype 

retinas, EGFR signaling is used in several waves throughout eye morphogenesis. The first 

three waves occur within the third instar larval eye disc. The initial wave of EGFR 

signaling establishes proper R8 spacing, and the subsequent organization of the proneural 

clusters which ultimately determines the organization of the hexagonal array of 
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ommatidia in the adult retina (Baonza et al., 2001; Domínguez et al., 1998). The second 

wave of EGFR signaling is required for the recruitment of R1-R7, which surround R8, 

where excess signal from R8 can recruit additional R cells(Freeman, 1996). The third 

wave is responsible for the regulation of cell proliferation in the developing larval eye 

disc, where excess signal promotes cell proliferation. It is important to note that a 

temporal gradient is present in the developing retina, in which the cells of the developing 

retina have a window of competence to differentiate and be receptive to various signals. 

With each successive wave of the EGFR signal, different cell types that develop at the 

respective time frames are competent to the signal, and therefore, studies directed to 

misexpress identical components of the EGFR signaling pathways will have different 

outcomes depending on the timing of the misexpression (Domínguez et al., 1998). The 

fourth wave occurs after R cell determination in the larval eye disc, and continues into 

pupal development, where the activation of EGFR signaling, in combination with other 

regulatory factors, determines the cell fate of CCs/1°s/2°s/3°s at distinct stages 

(Domínguez et al., 1998; Flores et al., 2000; Freeman, 1996; Miller and Cagan, 1998; 

Wech and Nagel, 2005; Wildonger et al., 2005). Lastly, the final wave of EGFR signaling 

occurs approximately 22 hours APF, when PCD occurs to eliminate excess lattice cells 

(Miller and Cagan, 1998). EGFR signaling, at this time point, serves as a cell survival 

signal, where in combination with N signaling, it regulates the elimination of 

approximately 2000 lattice cells via PCD, ultimately resulting in the exquisitely precise 

hexagonal arrangement of the ommatidia (Bergmann et al., 2002; Miller and Cagan, 

1998; Wech and Nagel, 2005) 
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My observations of three different experiments performed in the pupal retina, 

these being: 1) Hnt overexpression 24 APF (GAL80ts + GMR-GAL4>UAS-GFP-HNT(II) = 

late/strong); 2) Hnt overexpression (GMR-GAL4>UAS-GFP-HNTJ27 = early/weak); and 3) 

hntpeb mutant analysis (conditional hypomorph), are all consistent with the possibility that 

Hnt functions to modulate EGFR signaling. Each of these experiments resulted in 

different phenotypes, and these differences can be explained by the sensitivity of the 

developing pupal eye to the levels and timing of EGFR activation. In the first experiment, 

there was no defect in CC recruitment, while the interstitial lattice was greatly perturbed. 

The second experiment resulted in supernumerary CCs, while the third experiment 

resulted in reduced CCs. The observations of the first two experiments are likely best 

explained by the different times at which Hnt overexpression was induced, whereas the 

observations in the third (hntpeb) experiment likely reflect reduced levels of EGFR 

signaling. The latter possibility can be confirmed by Hnt immunostaining combined with 

hntpeb clonal analysis (see Future directions) 

However, as discussed previously, hnt is a bona-fide N responsive gene in several 

contexts (Housden et al., 2013; Krejci et al., 2009; Terriente-Felix et al., 2013), and 

therefore, the possibility of Hnt acting to mediate the interplay of N and EGFR signaling, 

both of which are required for proper eye morphogenesis, remains. Overall, my 

observations from both the embryo and the pupal retina strongly suggest an overarching 

theme of Hnt acting to potentiate levels of the EGFR signaling pathway.  
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Chapter 5: Future Directions 

5.1 Addressing the role of Hnt in the EGFR signaling pathway 

The presented data suggests a strong link between Hnt and the EGFR signaling pathway, 

where Hnt may be involved in the potentiation of the levels of EGFR signaling. 

Preliminary results from both the embryonic context and the pupal retina are suggestive 

of this link, however, the pupal retina serves as a better tissue to work with due to the 

wealth of information available regarding this tissue-context. In addition, embryos consist 

of all differentiating tissue types, and therefore, may not be a specific method for testing 

such detailed responses. As mentioned in Section 4.1, hntpeb mutation was previously 

observed to genetically interact with Yan, a transcriptional repressor of the EGFR 

signaling pathway (Wilk et al., 2004). If Hnt modulates levels of EGFR signaling by 

interacting with Yan, speculatively, Hnt would act as a negative regulator of Yan to 

repress its functions, ultimately allowing for increased output of EGFR signaling. 

However, similar to mammals, the possibility of Hnt binding to microRNA genes 

remains. Ultimately, it would be beneficial to identify potential target genes of Hnt 

through high-throughput techniques such as chromatin immunoprecipitation-sequencing 

(ChIP-Seq).  

Additionally, it would be beneficial to determine whether hnt itself could be a 

target of the EGFR signaling pathway. This can be achieved through the identification of 

possible ETS-transcription factor DNA binding domains in the upstream regulatory 

region of hnt, and testing the interaction between the putative ETS-protein binding 

sequence and Pnt/Yan. Alternatively, Hnt may be a direct target of MAPK itself, and 

phosphorylation of Hnt by MAPK may also lead to differential protein activity. The 
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phosphorylation of Hnt would be consistent with the activity of the mammalian homolog, 

RREB1, where RREB1 is a direct target of MAPK, and serves as a transcriptional 

repressor to bind to microRNA genes, ultimately leading to an upregulation of 

Ras/MAPK signaling (Saj and Lai, 2011). Additionally, a phosphoproteome analysis in 

Drosophila embryos has revealed eleven distinct phosphorylation sites within the Hnt 

protein (Zhai et al., 2008), two of which contain conserved MAPK-consensus 

phosphorylation sites. Therefore, it would be of great interest to determine whether Hnt 

can be phosphorylated via MAPK, which would be most efficiently done using in vitro 

techniques to ultimately perform mobility shift assays to visualize a shift in the Hnt 

protein upon introduction to a concentrate of activated MAPK.  

5.2 Clonal analysis in the pupal eye  

It has been clearly established that in both the embryo and the pupal eye, DPax2 is 

responsive to Hnt through the sv enhancer. Whether this response is associated with the 

EGFR signaling pathway was not established in the pupal eye, due to egfr mutants being 

embryonic lethal. Generating egfr mutant clones in the pupal eye overexpressing Hnt 

would serve as a great technique to establish whether this response from DPax2 upon Hnt 

overexpression is EGFR-dependent, and would provide a direct comparison between the 

tissue area that do not contain the clonal patches. Additionally, generating clonal patches 

of GFP-HNTJ27 overexpression in the pupal eye would address whether the induction of 

supernumerary CCs is indeed a non-autonomous response. Finally, whether hntpeb results 

in reduced EGFR signaling can be addressed by generating clones in the pupal eye then 

performing an anti-pMAPK immunostaining to compare relative levels of activated 

MAPK levels in hntpeb directly with a wildtype internal control tissue.  
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Appendix A: Stocks and Crossing Schemes 

Table A1. Genetic Stocks  

Genotype Source 
yw hntXE81FRT19A/FM7 Bloomington Drosophila 

Stock Center 
N55e11/FM7c Bloomington Drosophila 

Stock Center 
yw; UAS-Nintra/CyO Bloomington Drosophila 

Stock Center 
Df(1)rb1/FM7 H. Lipshitz   
yw; BO-GAL4 A. Gould 
w; UAS-GFPnls14 Bloomington 
w;; DPax2A1-GFP J. Kavaler 
w;; DPax2B1-GFP J. Kavaler 
w;; DPax2B1dsRed J. Kavaler 
w; DPax2B2-GFP J. Kavaler 
w; DPax2B2dsRed J. Kavaler 
w;; DPax2C1-GFP J. Kavaler 
w;; DPax2C4-GFP J. Kavaler 
w;; DPax2D1-GFP J. Kavaler 
w;; DPax2D7-GFP J. Kavaler 
w; Egfrf2 /CyO Bloomington Drosophila 

Stock Center 
w; UbiDECadGFP + Egfr1a15/CyO, TwiG Reed Lab Stock 

Collection 
w; Gla/CyO Reed Lab Stock 

Collection 
w; dp1a15UbiDECadGFPEgfr1a15/CyO Bloomington Drosophila 

Stock Center 
w;; daughterless-GAL4 (daGAL4) Bloomington Drosophila 

Stock Center 
w pebEP55 Bloomington Drosophila 

Stock Center 
yw EP55 FRT19A ;; DPax2B1dsRed Reed Lab Stock 

Collection 
w;; UAS-sSpi/TM6 [Gal80] Bloomington Drosophila 

Stock Center 
w;; UAS-Ras85DV12 Bloomington Drosophila 

Stock Center 
UAS-Ras85DN17 (on X) Bloomington Drosophila 

Stock Center 
w; UAS-GFP-HNT(II) H. Lipshitz 
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w; UAS-GFP-HNT(III) L. Ming 
w; UAS-GFP-HNTJ27 Reed Lab Stock 

Collection 
w; snaSco/CyO ; tubGAL80ts Bloomington Drosophila 

Stock Center 
w; UAS-GFP-HNT(II); tubGAL80ts Reed Lab Stock 

Collection 
Act5cGAL4/CyO Bloomington Drosophila 

Stock Center 
yw GS1018/FM7 Kyoto Drosophila Genetic 

Resource Center 
w; GMR-GAL4  Bloomington Drosophila 

Stock Center 
hntpeb (on X) Reed Lab Stock 

Collection 
w; Egfrf2 /CyO, dplvI, tub Bloomington Drosophila 

Stock Center 
UbiDECadherinGFP/CyO Bloomington Drosophila 

Stock Center 
Lachesin-GFP Bloomington Drosophila 

Stock Center 
yw;; dronc51/TM6, sb Bloomington Drosophila 

Stock Center 
w; UAS-CherryNLS; daGAL4 + DPax2B1GFP/TM6, Tb, Sb Reed Lab Stock 

Collection 
EP55;; eyeless-218GAL4 / TM6B Reed Lab Stock 

Collection 
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Table A2. Crossing Schemes  

Figure # Crossing Schemes 
3.1 3.1D w;; daGAL4 × yw; UAS-Nintra/CyO 

→ (y)w; Nintra/+ ; daGAL4/+ 
3.1F w;; daGAL4 × Df(1)rb1/FM7 

→ Df(1)rb1/+;; daGAL4/+ 
Df(1)rb1/+;; daGAL4/+ × yw; UAS-Nintra/CyO 
→ Df(1)rb1/+; Nintra/+; daGAL4/+ 

3.2 w;; daGAL4 × yw; UAS-Nintra/CyO 
→ (y)w; Nintra/+ ; daGAL4/+ 

3.3 3.3F, H yw hntXE81FRT19A/FM7 × w;; DPax2D7-GFP 
→ yw hntXE81FRT19A /+;; DPax2D7-GFP /+ 

3.3I yw; BO-GAL4 × w; UAS-GFPnls14 

→ (y)w; BO-GAL4 /+ ; UAS-GFPnls14/+ 
3.3J yw hntXE81FRT19A/FM7 × w; UAS-GFPnls14 

→ yw hntXE81FRT19A /+;; UAS-GFPnls14/+ 
yw hntXE81FRT19A /+;; UAS-GFPnls14/+ × yw; BO-GAL4 
→ yw hntXE81FRT19A /+; BO-GAL4/+ ; UAS-GFPnls14/+ 

3.5 3.5A w; UbiDECadGFP + Egfr1a15/CyO, TwiG × w; Egfrf2 /CyO 
→ w; UbiDECadGFP + Egfr1a15/ Egfrf2 

3.5B w;; daGAL4 × w;; UAS-sSpi/TM6 [Gal80] 
→ w;; daGAL4/UAS-sSpi 

3.5C w;; daGAL4 × w;; UAS-Ras85DV12 
→ w;; daGAL4/UAS-Ras85DV12 

3.6 3.6B w;; daGAL4 × w; UAS-GFP-HNT(II) 

→ w; UAS-GFP-HNT(II) /+; daGAL4/+ 
3.6C Making daGAL4+DPax2B1dsRed recombinants: 

w;; daGAL4 × w;; DPax2B1dsRed 
→ w;; daGAL4/ DPax2B1dsRed 
w;; daGAL4/ DPax2B1dsRed × w; UAS-GFPnls14 
→ select recombinants: w; UAS-GFPnls14; daGAL4+ 
DPax2B1dsRed /+ 
w; UAS-GFPnls14; daGAL4+ DPax2B1dsRed /+ × yw;; 
dronc51/TM6, sb 
→ select: w; +; daGAL4+ DPax2B1dsRed / TM6, sb 
w; +; daGAL4+ DPax2B1dsRed / TM6, sb × w; +; daGAL4+ 
DPax2B1dsRed / TM6, sb 
→ select: w;; daGAL4+ DPax2B1dsRed 
w;; daGAL4+ DPax2B1dsRed × w; UAS-GFP-HNT(II) 

→ w; UAS-GFP-HNT(II) /+; daGAL4+ DPax2B1dsRed/+ 
3.7 3.7A w;; daGAL4 × Act5cGAL4/CyO 
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→ w; Act5cGAL4/+; daGAL4/+ 
yw EP55 FRT19A ;; DPax2B1dsRed × w; Act5cGAL4/+; 
daGAL4/+ 
→ yw EP55 FRT19A /+; Act5cGAL4/+; daGAL4/ DPax2B1dsRed 

3.7B w;; daGAL4 × yw GS1018/FM7 
→ yw GS1018/+;; daGAL4/+ 

3.7C w;; daGAL4+ DPax2B1dsRed × w;; UAS-GFP-HNT(III) 

→ w;; daGAL4+ DPax2B1dsRed/ UAS-GFP-HNT(III) 
3.9 3.9A N55e11/FM7c × w;; daGAL4 

→ N55e11/+;;daGAL4/+ 
N55e11/+;;daGAL4/+ × w; UAS-GFP-HNT(II) 
→ N55e11/+; UAS-GFP-HNT(II)/+;daGAL4/+ 

3.9B Making UAS-GFP-HNT(II) + Egfrf2 recombinants: 
w; UAS-GFP-HNT(II) × w; Egfrf2 /CyO, dplvI, tub 
→ select no CyO: w; UAS-GFP-HNT(II)/ Egfrf2  

w; UAS-GFP-HNT(II)/ Egfrf2 × w; Gla/CyO 
→ select single males: w; UAS-GFP-HNT(II)(Egfrf2)/CyO 
w; dp1a15UbiDECadGFPEgfr1a15/CyO × w; UAS-GFP-
HNT(II)(Egfrf2)/CyO 
→ select lines that throw no Cy+, select virgin female and males: 
w; UAS-GFP-HNT(II) + Egfrf2/CyO  × w; UAS-GFP-HNT(II) + 
Egfrf2/CyO 
→ w; UAS-GFP-HNT(II) + Egfrf2/CyO 
w; UbiDECadGFP + Egfr1a15/CyO, TwiG × w;; DPax2B1dsRed 
→ select no CyO: w; UbiDECadGFP + Egfr1a15/+; 
DPax2B1dsRed / + 
w; UbiDECadGFP + Egfr1a15/+; DPax2B1dsRed / +× w; UAS-
GFP-HNT(II) + Egfrf2/CyO 
→ w; UbiDECadGFP + Egfr1a15/ UAS-GFP-HNT(II) + Egfrf2 ; 
DPax2B1dsRed / + 

3.9C w; Egfrf2 /CyO × w;; DPax2B1dsRed 
→ select no CyO: w; Egfrf2 /+; DPax2B1dsRed/+ 
w; Egfrf2 /+; DPax2B1dsRed/+ × w; UbiDECadGFP + 
Egfr1a15/CyO, TwiG 
→ w; Egfrf2 / UbiDECadGFP + Egfr1a15; DPax2B1dsRed/+ 

3.10 3.10A w; UAS-GFP-HNT(II) + Egfrf2/CyO  × w;; daGAL4+ 
DPax2B1dsRed 
→ w; UAS-GFP-HNT(II) + Egfrf2/+; DPax2B1dsRed / + 

3.10B UAS-Ras85DN17 × w; UAS-GFP-HNT(II) 

→ pick males UAS-Ras85DN17/Y; UAS-GFP-HNT(II) 

UAS-Ras85DN17 × UAS-Ras85DN17/Y; UAS-GFP-HNT(II) 

→ pick females UAS-Ras85DN1; UAS-GFP-HNT(II) / + 
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UAS-Ras85DN1; UAS-GFP-HNT(II) / + w;; daGAL4+ 
DPax2B1dsRed 
→ UAS-Ras85DN1; UAS-GFP-HNT(II) / +; daGAL4+ 
DPax2B1dsRed / + 

3.10C w; UAS-CherryNLS; daGAL4 + DPax2B1GFP/TM6, Tb, Sb × w;; 
UAS-Ras85DV12 
→ w; UAS-CherryNLS/+; UAS-Ras85DV12/ daGAL4 + 
DPax2B1GFP 

3.10D w; UAS-CherryNLS; daGAL4 + DPax2B1GFP/TM6, Tb, Sb × w;; 
UAS-sSpi/TM6 [Gal80] 
→ w; UAS-CherryNLS/+; UAS-sSpi / daGAL4 + DPax2B1GFP 

3.10E ywEP55;; eyeless-218GAL4 / TM6B × w;; UAS-Ras85DV12 
→select and cross vigin females and males no rough eyes: 
EP55/(+)(Y);; UAS-Ras85DV12/ TM6B 
EP55;; UAS-Ras85DV12/ TM6B  ×  w; UAS-CherryNLS; daGAL4 + 
DPax2B1GFP/TM6, Tb, Sb 
→ EP55; UAS-CherryNLS/+; UAS-Ras85DV12/ daGAL4 + 
DPax2B1GFP 

3.12 3.12B,C Lachesin-GFP × w;; DPax2B1dsRed 
→ w;Lachesin-GFP/+; DPax2B1dsRed/+ 

3.13 3.13A-D w; GMR-GAL4 × w;; DPax2B1dsRed 
→ w; GMR-GAL4/+ ; DPax2B1dsRed/+ 
w; GMR-GAL4/+ ; DPax2B1dsRed/+ × w; UAS-GFP-HNT(II); 
tubGAL80ts 
→ grow at 18° until 24 hr APF, shift to 29° for 24 hrs 
w; GMR-GAL4/ UAS-GFP-HNT(II) ; DPax2B1dsRed/tubGAL80ts 

3.14 3.14 A,D w; GMR-GAL4 × w;; DPax2B1dsRed 
→ w; GMR-GAL4/+ ; DPax2B1dsRed/+ 
w; GMR-GAL4/+ ; DPax2B1dsRed/+ × w;; UAS-GFP-HNTJ27 
→ w; GMR-GAL4/+ ; DPax2B1dsRed/ UAS-GFP-HNTJ27 

3.14 C w; GMR-GAL4 × w;; DPax2B1dsRed 
→ w; GMR-GAL4/+ ; DPax2B1dsRed/+ 
UbiDECadherinGFP/CyO × w;; UAS-GFP-HNTJ27 

→w; UbiDECadherinGFP/+; UAS-GFP-HNTJ27 

w; GMR-GAL4/+ ; DPax2B1dsRed/+ × w; 
UbiDECadherinGFP/+; UAS-GFP-HNTJ27 

→ w; GMR-GAL4/ UbiDECadherinGFP ; DPax2B1dsRed/ UAS-
GFP-HNTJ27 
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Appendix B: Characterization of DPax2 reporter lines 

 
Figure'A1'Characterization'of'different'DPax2'reporter'lines'constituted'from'
fragments'of'the'large'sv'enhancer'
All DPax2 reporter lines, constructed and provided to us by Dr. Joshua Kavaler, show differential 
expression. All of the above reporter lines were constructed using fragments of the large sv 
enhancer as described by (Johnson et al., 2011). 
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