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Abstract

The demands for high data rates and ubiquitous/broadband wireless access necessitate

the development of radio systems that deploy wide- and multi-band signals. These signals

lead to high spectral utilization with negative trade-offs, such as rapidly varying envelopes

and high peak-to-average power ratios (PAPRs). To deploy these types of signals, radio

frequency (RF) transmitters face several challenges in power consumption, i.e., efficiency,

and sources of distortions, i.e., nonlinearity. These challenges are most apparent in power

amplifier (PAs) and degrade the overall performances of RF transmitters.

PA efficiency and linearity are characteristics that cannot be satisfied simultaneously.

At high input power, PAs exhibits high efficiency; however, a PA in that region is inherently

nonlinear. Conversely, at low input power, PAs are fairly linear at the expense of efficiency.

With the deployment of wide- and multi-band signals, PAs exhibit strong static nonlinearity

and memory effects at high input power. These effects lead to distortions, resulting in

degradation of the error vector magnitude (EVM) and spectral regrowth. This regrowth

creates adjacent channel interference and violates the emission requirements mandated

by regulatory bodies. Digital predistortion (DPD) has been devised to mitigate the PA

nonlinearity at high input power. Subsequently, DPD improves the achievable PA linearity

versus power efficiency trade-off.

DPD incorporates an extra nonlinear function before the PA in order to preprocess the

input signal. As a result, the cascaded system (DPD+PA) behaves linearly. DPD+PA

linearity requires the DPD function to produce nonlinearities that have equal magnitude

and are out phased compared to those generated by the PA. Thus, accurate PA behavioral

modeling is essential for the development of DPD and is usually explored before DPD

development.

In the context of wide- and multi-band signals, PA behavioral models/DPD schemes

face several problems that have not been addressed appropriately in the literature. One

particular problem is the exponential growth of the number of coefficients with nonlinearity

order and memory depth. This growth leads to models’ high complexity identification and

implementation. Therefore, it restricts DPD performances in trading off linearity and

efficiency. Moreover, for multi-band signals, the carrier frequencies’ separation can be

very large (in the order of hundreds of MHz). Consequently, the conventional single-input

single-output DPD is not viable due to the unrealistic sampling rate required to cover a

large range of frequencies. Finally, because a very high sampling rate is needed in the

PA output observation path, the practicability of the DPD is rendered more complex and

sometimes unfeasible when it is deploying wideband signals.
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This thesis explores new schemes suitable for modeling and linearizing PA outputs when

driven with wide- and multi-band signals. First, a new pruning technique is introduced

to alleviate the complexity of DPD implementation. This pruning identifies the minimum

set of dominant kernels needed in the Volterra series modeling scheme based on Wiener G-

Functionals. The pruned Volterra series allows significant improvements of the numerical

computation and stability of the DPD scheme. Second, new generalized memory polyno-

mial (GMP) models for multi-band DPD are proposed. These multi-input multi-output

GMP models show excellent potential in linearizing different nonlinear multi-band PAs.

In addition, they involve cross terms and a reduced number of coefficients, which allows

robustness against time delay misalignment between the multi-band signals. Finally, a new

method to reduce the conventional high output sampling rate in the PA output observa-

tion path is proposed. Detailed analysis assesses the extent to which the output-sampling

rate can be reduced through careful selection of the set of kernels used to represent the

Volterra series DPD. This analysis results in a 2/5 reduction when the G-Functionals prun-

ing technique is deployed. Extensive analysis and measurement validation are discussed

and carefully analyzed to prove the validity of the different proposed solutions and to

guarantee their generalizability.
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Chapter 1

Introduction

The information and communications technology sector has been continuously growing to

fulfill increasingly evolving applications. An exponential growth of mobile cellular tele-

phones and broadband services subscriptions has been recorded over the past ten years,

according to the international telecommunication union [33]. This rapid growth is being

driven by wireless network usage evolution from voice centric to broadband Internet access

and video transmission.

Third generation wireless-network technology (3G)’s ongoing deployment has provided

a partial solution for mobile broadband Internet access. Certainly, 3G has enabled the de-

ployment of high-speed mobile networks, such as worldwide interoperability for microwave

access (WiMAX) and high-speed packet access (HSPA). These networks allow people to

connect to the Internet, anytime, anywhere. Nevertheless, 3G do not offer a complete solu-

tion for tomorrow’s wireless networks as was expected by international telecommunication

union and other standard-setting agencies around the world. Thus, fourth-generation wire-

less network technology (4G) has been developed and should eventually provide:

• Similar data throughput as wired broadband technology: 4G should offer

speed comparable to that of wired broadband technologies along with high mobility

features [33].

• Significantly lowered network latencies: Broadband networks suffer from a long

time delay between when the source sends a packet and when the destination receives

it. Accordingly, 4G is promising to shorten this delay.

• Improved spectral efficiencies: 4G is promising new wide-/multi-band modula-

tion schemes to increase the spectrum usage efficiency. Thus, 4G will enable more

data throughput within the same 3G and anterior standards bands [3].
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Table 1.1: Fourth-generation wireless network technology features

Features Values

Signal bandwidth Up to 100 MHz

C-plane capacity Up to 300 active data clients in every 5 MHz cell

Peak to average power ratio Up to 12 dB

Peak downlink speed Up to 299.6 Mbit/s

Peak uplink speed Up to 75.4 Mbit/s

Low data transfer latencies < 50 ns from idle

Mobility Up to 500 km/h depending on the frequency band

Table 1.1 shows the main features that 4G was conceived to provide. Among others, 4G

networks should allow an instantaneous bandwidth of up to 100 megahertz (MHz), thereby

enabling a downlink speed of about 300 megabits per second (Mbit/s). This reduces the

latency time to less than 50 nanoseconds (ns) and offers a high mobility operation for up

to 500 kilometres per hour (km/h) (network accessible in operating cars, trains, etc.). To

accommodate such features, the wireless network is expected to involve:

• Wideband signals: According to Cooper’s law [22], the spectrum efficiency doubles

every 30 months. However, the user demand for data capacity increases at a much

higher speed [2]. Therefore, wider bandwidth signals are required to meet the demand

for broadband data access that cannot be satisfied solely through spectrum efficiency

improvement.

• Multi-band signals: The wireless spectrum usage between 100 MHz and 5 GHz

shows no unallocated continuous 100 MHz band [95]. Alternatively multiple carriers’

aggregation is envisaged. Moreover, a wireless access provider is expected to deploy

different 4G and/or anterior wireless standards simultaneously to meet various users’

needs. Conventionally, the stacking of different radios was conceived to enable various

standards. However, radios are currently expected to handle these various standards

using the same hardware by enabling multi-band operation [52].

1.1 Wireless Communication Challenges

Emerging wireless networks were conceived to provide ubiquitous, fast and reliable wireless

access. Thus, they require wide-/multi-band signals, adaptive modulation and multi-input
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multi-output (MIMO) transmitters [13]. These requirements make radio frequency (RF)

transmitters implementation very complex and create the major challenges discussed in

this section.

The non-availability of a continuous wideband spectrum is the main challenge for en-

abling 4G networks. Unfortunately, most of the wireless spectrum opportunities are cur-

rently either bought or reserved [33]. Moreover, there is no continuous wideband signal

allocation within the spectrum dedicated to mobile communication. Alternatively, multi-

ple carrier aggregation enables the existence of wide frequency bands [60]. This technique

is motivated by discrete spectrum bands’ availability, because they can be combined to

support high bandwidth requirements. Moreover, RF transmitters should deploy simulta-

neously different modulation schemes for different carriers and different signal bandwidths

due to back compatibility requirement. In this way, the network results in deploying

wide-/multi-band signals that increase the signal peak-to-average-power ratio (PAPR).

For example, 4G networks PAPR can reach up to 12 decibels (dB), as shown in Table 1.1.

Unfortunately, this PAPR growth reduces the signal quality, i.e., linearity. Therefore, RF

transmitters are operated in the back-off region far from their peak power capabilities to

avoid strong nonlinearity. This nonlinearity generates high error vector magnitude (EVM)

and spectrum regrowth that interferes with adjacent channels. Unfortunately, at the back-

off region, the RF transmitters experience poor efficiency.

The design of wide-/multi-band ultra linear RF transmitters becomes increasingly com-

plex when combined with the requirement for high power efficiency. Cascades of different

hardware optimized for each standard can be deployed in order to enable multi-band stan-

dards. However, this solution suffers from two drawbacks. First, the cost of the network

increases due to the deployment of different hardware. Second, the size of the resulting

cascaded RF systems becomes large. This is contradictory to wireless communication evo-

lution toward remote radio heads [57], where the size and the cost of the RF system should

be small enough to be mobile and easily installed.

Current state-of-the-art RF transmitters are only capable of coping with single-band

scenarios with optimized linearity and efficiency, or wide-/multi-band scenarios with lower

requirements for linearity and efficiency. In the literature, the efficiency and linearity of

RF transmitters have only been optimized for narrow bandwidth signals, typically in the

range of 1.4 − 20 MHz [20, 48]. These types of RF transmitters are not suitable for

4G networks, i.e., when using wide-/multi-band signals. Furthermore, their performance

drops dramatically when they are operated at regions different from where they were

optimized. Alternatively, linearity and efficiency are compromised to satisfy wide-/multi-

band operation. These RF transmitters are also not suitable for a 4G network, as these

transmitter dramatically increase its cost and complicate its implementation and mobility.
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Among the different constituents of RF transmitters, the power amplifier (PA) inherits a

large portion of the previously enumerated challenges. Indeed, the RF transmitters’ power

consumption (efficiency) and the sources of distortions (nonlinearity) are apparent in the

PA. Unfortunately, PA efficiency and linearity are characteristics that cannot be satisfied

simultaneously [24]. At high input power, the PA exhibits high efficiency; however, the

PA in that region is inherently nonlinear. Conversely, at low input power, the PA is fairly

linear, whereas its efficiency is very poor. Furthermore, PA nonlinearity is more pronounced

in the case of wide-/multi-band signals, where linearity and efficiency are compromised to

ensure wide-/multi-band operation.

One trivial solution for tackling the PA nonlinearity is the use of brute force to operate

the PA deeply in the back-off region far from its power capability. This approach guar-

antees that the PA output signal will pass the mandatory spectrum mask and the EVM

requirements [1]. Despite its simplicity, this solution is increasingly discarded. In fact, it

leads to costly and power inefficient RF transmitters, because of the poor PA efficiency

in low input power regions. Alternatively, several linearization techniques are being de-

vised to mitigate the PA nonlinearity at high input power, consequently improving the

achievable PA linearity versus power efficiency trade-off. Table 1.2 illustrates typical per-

formances of the major linearization techniques, namely feedback, feed-forward [29, 62],

and digital predistortion (DPD) [36, 45, 87]. Among these techniques, DPD incorporates

an extra nonlinear function before the PA to preprocess the input signal. This results in

a cascaded system (DPD+PA) that behaves linearly. DPD+PA overall linearity requires

primarily the DPD function to produce nonlinearities that have equal magnitude and are

out of phase with those generated by the PA. DPD is the focus of this thesis since it offers

higher efficiency and greater flexibility at a lower cost.

Table 1.2: Comparison of different linearization techniques

Technique Correction Bandwidth Efficiency Flexibility Cost

Feedback High Narrow High Moderate Low

Feed-Forward High High Low Moderate High

Digital Predistortion Moderate Moderate High High Low

The main DPD attribute is its principle simplicity. Actually, the predistortion function

can be generated by modeling the inverse behavior of the PA, as shown in Figure 1.1

and explained in the following [84]. First, the output signal is attenuated by small signal

gain (SSG); the DPD is a nonlinear function that does not change the average power of

the signal being transmitted. Then, the PA input and output signal samples are recorded.
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Finally, the DPD is constructed as a dynamic nonlinear mathematical function that models

some PA input signal samples as a function of the output one; i.e., it is an inverse model.

Thus, a key point of DPD is the construction of an accurate PA inverse behavioral model.

Consequently, building a good DPD linearizer depends on the ability to develop an accurate

and simple PA behavioral model.

Figure 1.1: Digital predistortion model generation principle

DPD practical implementation and design face several challenges in the context of wide-

/multi-band signals. These problems extend from the three different components of the

DPD solution, as shown in Figure 1.2, namely:

1. the DPD engine,

2. the DPD coefficients identification, and

3. the transmitter’s observation receiver path.

Figure 1.2: Digital predistortion block diagram

Several DPD engines were proposed in the literature. They vary from simple look-up

table [18, 23, 56] to more complex structures such as Volterra series [31, 40, 59, 64, 118, 120–

122]. The Volterra series is a universal and excellent framework for modeling nonlinear
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dynamic systems [93]. However, one particular problem of the Volterra series is the ex-

ponential growth of the number of coefficients with high nonlinearity and memory depth

orders. Although it has been proven that the Volterra series formulation is convergent for

fading memory systems [97], the number of coefficients needed for practical PA degree of

nonlinearity and memory depth is still large. For example, a Volterra series approximation

of a polynomial degree of 7 with 5 memory taps contains some 8,364 coefficients that need

to be determined; if only odd orders were involved. Historically, this was an intractable

problem and Volterra series approximations were limited to low degrees and only a couple

of memory taps. In addition, due to the large degree of freedom in the Volterra series

formulation, a large number of parameters should be determined/estimated before deter-

mining the model coefficients; namely, the nonlinearity order and the memory span for each

order. Traditionally, these parameters are estimated using a trial and evaluation technique

leading to not necessarily the optimum selection of these parameters.

In the context of multi-band scenarios, the conventional implementation of the DPD

faces several issues. Mainly, the carrier frequencies separation can be very large (in the

order of hundreds of MHz), and a single-input single-output (SISO) DPD is not viable due

to the unrealistic sampling rate required to cover a large range of frequencies. Moreover,

a SISO Volterra model will require unrealistic number of coefficients due to high memory

taps needed if the multi-band signal is combined and treated as one signal. If fact, the

memory span of the PA is an intrinsic property, i.e., independent of the signal being used

to drive the PA. Therefore, combining a multi-band signal to one single signal will lead to

an increase of the required memory taps to model the memory span. Since the Volterra

series number of coefficients increases exponentially with the memory depth, using a SISO

model for a multi-band DPD will results in a huge number of coefficients that can not be

identified neither in real time systems of in computer aided design (CAD) tools. Thus,

MIMO behavioral models/DPDs are envisaged.

In the literature, multi-band DPD models were developed using two strategies; gener-

alization of SISO model structure to accommodate multi-band signals [8, 88, 107, 112, 113]

or pruning of a general Volterra series formulation [30]. These approaches lead to different

challenges. Either, large number of coefficients results as the construction of the DPD

model is not specific to the multi-band PA operation or extra complexity due to pruning

needed to accommodate the general Volterra series formulation to the multi-band case.

Deployment of wide-/multi-band signals require a wideband transmitter observation

receiver (TOR) with high-speed analog-to-digital converters (ADCs) and flat frequency

response over a wide range of frequencies. This is particularly important for capturing

accurate measurement data essential for the identification of the DPD coefficients. The

significant power and cost overheads of high-speed ADCs brings down the overall efficiency
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of the DPD+PA cascade [49]. Thus, it limits the usefulness of the DPD approach to

enhancing the trade-off between efficiency and linearity. Indeed, it is widely accepted

that the application of DPD to PA linearization requires the capture of the PA output

signal using a TOR that has a bandwidth equal to at least five times the input signal

modulation bandwidth. As this latter widens, this requirement becomes less manageable.

For example, for a long term evolution (LTE)-advanced signal where the instantaneous

bandwidth reaches 100 MHz, the DPD needs to deploy an ADC with a speed equal at least

twice 500 MHz to follow the Nyquist-Shannon sampling theorem. This bandwidth is even

more challenging in the case of multi-band signals, where large separation of the frequency

carriers requires an unrealistic sampling speed for ADC to sample the entire multi-band

signal at once. This requires an RF measurement systems to include high-speed ADCs,

e.g., at least 1 giga Hertz (GHz). Such systems present major challenges, as their signal-

to-noise ratio (SNR) is very high. In addition, for a linear and accurate measurement

of the output signal, accurate calibration of the transmitter, i.e., in-phase/quadrature-

phase (I/Q) imbalance correction, and accurate calibration of the receiver, i.e., amplitude

and frequency correction, should be performed across a large range of frequency bands

[7, 17, 102]. The cost of DPD systems using high TOR bandwidth when handling wide-

/multi-band signals, due to the complex models and high-speed ADCs, limit the efficacy

of the DPD solution as a good linearizer in efficiency and linearity trade-off. In fact, the

power consumption of the high-speed ADCs required for wide-/multi-band DPD systems

is no longer negligible [49] and significantly affects the overall efficiency of the DPD+PA

cascade. Furthermore, the large size memory and processor needed for the computation of

the complex behavioral models require a large cooling system, thereby increasing the size

and cost of the RF system. This compromises the evolution toward remote radio heads

[58], where the aim is a small and simple architecture for wireless networks.

Several algorithms and approaches were developed in the literature for DPD coefficients

identification. The direct and the indirect learning were both used for the identification of

the DPD coefficients [84]. While the direct learning identifies first a PA model and then

a DPD model is estimated [117], the indirect learning approximates the DPD function

to the inverse model of the PA [91]. These learning identification methods were used

solely and combined for better enhancement [39]. The indirect learning showed broader

application and success for the identification of the DPD coefficients and will be adopted

in this thesis. Different algorithms were developed and used for the indirect learning,

namely least squares error (LSE), recursive least squares (RLS), and intelligent algorithms

[9, 19, 27, 47, 71, 108, 116].
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1.2 Thesis Objectives, Statements and Organization

From the discussion in Section 1.1, development of new DPD engines and pruning technique

with reduced complexity are required for PA driven with wide-/multi-band signals. In ad-

dition, reduced TOR bandwidth is seek without compromising the modeling/linearization

performances. The objective of this thesis is to tackle these limitations as summarized in

the following statements:

• Systematic pruning of Volterra series: a new pruning approach based on Wiener

G-Functionals is sought for the selection of reduced number of dominant kernels in

the Volterra series scheme.

• DPD with reduced TOR bandwidth: a reduced TOR bandwidth solution is

proposed and validate for wideband PA behavioral/DPD models.

• Multi-band complexity reduced DPD: a new strategy to construct SISO and

MIMO PA behavioral/DPD models is proposed that takes into account PA behavior

driven with single- and multi-input excitations.

This thesis is organized as follows.

Chapter 2 introduces PA nonlinearity and efficiency dilemma. Then, literature review

of different linearization techniques is proposed with a special focus on DPD.

Chapter 3 expounds on the pruning of single-band DPD model using G-Functionals

[73, 75]. This pruning approach starts with dominant kernels identification in the Volterra

series scheme. Then, the pruned Volterra series is applied to synthesize a DPD function.

The resulting model reduces the kernels’ number and its range of values, and produces

better numerical conditioning when compared to the full Volterra series.

Chapter 4 investigates the reduction of the TOR’s bandwidth in DPD system [67]. It

starts by demonstrating that the general sampling theorem (GST) [123] is not applicable

for synthesizing a DPD function. Alternatively a novel technique for identifying a DPD is

proposed using a reduced TOR bandwidth. The theoretical basis of the proposed technique

is presented. Then, a detailed analysis assesses the bandwidth reduction sensitivity extent

to the kernels set selected to represent the Volterra series DPD. This analysis reveals a

robust DPD synthesis when the TOR bandwidth is reduced from the conventional five times

to twice the input signal bandwidth. The G-Functionals pruning technique, proposed in

Chapter 3, is used to determine a low pass equivalent Volterra model that identifies the

most suitable structure needed for a given PA under test and signal characteristics. Finally,
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the linearized PA and the GST are used for PA behavioral modeling using a reduced TOR

bandwidth.

Chapters 5 and 6 expound a generalized memory polynomial (GMP) models for single-

/multi-band DPD [68, 74]. First, PA block diagrams characterizing the behavior of a PA

under single-/multi-band stimulus are proposed. Second, GMP forward models are derived

from the feedback PA block diagrams for the case of single-band, dual-band, and tri-band

PAs. A general formulation for the multi-band case is then deduced. Finally, it will be

shown that the proposed GMP models are robust against time delay misalignment between

the different multi-band signals.

Lastly, Chapter 7 concludes the thesis by summarizing the contributions and the

achieved results. Future works and possible improvement are discussed.
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Chapter 2

Power Amplifier Behavioral Modeling

and Linearization Techniques

This chapter gives a literature review of wide-/multi-band PA behavioral modeling/DPD. It

starts with an introduction to PA efficiency, nonlinearity, memory effects, and linearization

techniques. Next, wide-/multi-band PA behavioral models/DPD schemes latest develop-

ment are presented. Throughout this chapter, the proposed solutions are introduced and

discussed to distinguish their novelties and the problems that they tackled.

2.1 Power Amplifier Overview

In this section, wireless radio system architecture is described. Then, PA nonlinearity and

efficiency characterization is discussed. Finally, the different linearization techniques are

introduced with a special focus on DPD.

Figure 2.1 shows a typical wireless radio system. It is mainly composed of three sub-

blocks: the transmitter, the air, and the receiver.

Receiver: the receiver is responsible for capturing an RF signal and down-converting it

to digital. The receiver is composed by:

• An antenna that captures the analog signal.

• A band-pass filter to reject all the unwanted signals, i.e., adjacent and harmonic

signals.

• Low-noise amplifiers (LNAs) are used in lieu of PAs to amplify the filtered signal

to a suitable power level for an optimal demodulator operation.
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Figure 2.1: Wireless radio system architecture

• A demodulator that down-converts and transforms the RF signal into in-phase

(I) and quadrature-phase (Q) baseband components.

• Digital signal processor (DSP) that extracts the modulation scheme from the I

and Q components.

Transmitter: the transmitter is responsible for generating a digital signal and converts

it to RF. The transmitter is identical to the receiver with two differences:

• A modulator that combines the I and Q baseband components with a local

oscillator (LO) into a specific RF signal called the carrier frequency (fc).

• PAs: the signal at the output of the modulator is at low power. Thus it cannot

propagate in the air and reach the receiver before dying due to air attenuation.

Thus, a power amplification stage is considered to amplify the RF signal up to a

certain high output power given by the regulatory bodies. For traditional wire-

less radio systems, the transmitter contains as many PAs as there are standards

deployed. Thus, in the transmitter, different PAs are stacked in parallel after

the modulator. In a base station (BS), the output power of the signal should be

very high. Thus, the amplification stage is performed in two steps, where the

first amplifier is referred to the driver and the second one is the main PA. For

modern wireless system, wide-/multi-band PA are used instead of multiple PA
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to reduce the size and cost of the system and enhance its performances.

The transmission from the baseband DSP to its receiver counterpart is characterized

by two main factors:

• Linearity which determines the quality of the signal transmission. The linearity is

measured using EVM or the bit error rate (BER) and adjacent channel power ratio

(ACPR).

• Efficiency which characterizes the amount of power needed to transfer a digital

signal to an RF one.

In this thesis, only the efficiency and linearity of the transmitter are investigated. The

PA is the major contributor to nonlinearity and power consumption in the transmitter. In

the next subsections, PAs nonlinearity and efficiency are discussed.

2.1.1 Power Amplifier Efficiency

PA efficiency characterizes the amount of input power needed to generate the output RF

signal. It can be evaluated using two figures of merit:

• Drain efficiency (DE), η, gives the ratio of the RF output signal power to the direct

current (DC) supplied power, as expressed in (2.1):

η =
Pout
PDC

(2.1)

where Pout and PDC designate the RF PA output power and the supplied DC power,

respectively.

• Power added efficiency (PAE), expressed in (2.2), involves the PA input signal power.

Consequently, the efficiency is characterized in converting all the input supplied pow-

ers to the RF output one.

PAE =
Pout − Pin
PDC

= η

(
1− 1

G

)
(2.2)

where Pin is the RF PA input power and G is its gain.

Figure 2.2 illustrates typical DE and gain power curves versus the PA input power. It

is clear from Figure 2.2 that the efficiency decreases rapidly as the input power back-off

increases. However, at the high input power region, the PA output gain drifts from the

ideal linear amplification as a consequence of PA nonlinearity. Therefore, improving PA

efficiency comes at the expense of its linearity and vice versa [24]. In the next subsection,

PA nonlinearity is discussed.
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Figure 2.2: Power amplifier drain efficiency and linearity

2.1.2 Power Amplifier Nonlinearity

PA nonlinearity can be characterized when using different input signals, namely continuous

wave (CW), two-tone, and modulated signals.

2.1.2.1 Power Amplifier Nonlinearity Characterization With Continuous Wave

A PA under CW stimulus causes two types of distortions, namely amplitude and phase

distortions:

• Amplitude distortion is usually expressed as an output amplitude power level change

as a function of the input amplitude power level. This is known as amplitude-to-

amplitude distortion (AM/AM) and is given in (2.3):

rout (t) = g (rin (t)) (2.3)

where rin and rout are the PA input and output amplitude signals, respectively, and

g(.) gives a nonlinear function. Sometimes, the AM/AM characteristic is plotted as

a gain compression curve when using (2.4).

G (t) =
rout (t)

rin (t)
=
g (rin (t))

rin (t)
(2.4)
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• Output amplitude distortion in a nonlinear PA, i.e., AM/AM, is usually accompanied

with a phase distortion, i.e., amplitude-to-phase distortion (AM/PM). The AM/PM

corresponds to a non-constant PA output signal phase shift when the PA input en-

velope signal changes. AM/PM is expressed in (2.5):

φout (t)− φin (t) = f (r (t)) (2.5)

where φin, φout and r (t) are the PA input and output phases and the PA input

amplitude signal, respectively; and, f(.) gives a nonlinear function.

Figures 2.3 and 2.4 illustrate a typical Gain and AM/PM characteristics, respectively.

The CW characterization was a first attempt to study the PA nonlinearity. However, very

limited information is extracted from this test, i.e., AM/AM and AM/PM. This was not

enough to characterize signal regrowth and memory effects. Thus, a two-tone test was

introduced to provide a more detailed PA nonlinearity characterization, as discussed in the

next subsection.

Figure 2.3: Gain compression of a typical nonlinear power amplifier driven with continuous

wave

2.1.2.2 Power Amplifier Nonlinearity Characterization With a Two-Tone Test

The two-tone test provides a good illustration of the amplitude and phase distortions

discussed previously. The test consists of stimulating a nonlinear PA driven with two

sinusoids at different carrier frequencies, f1 and f2. The frequency separation |f2 − f1|
should be negligible compared to carrier fc = (f1 + f2) /2; i.e., |f2 − f1| � fc. The

two-tone test representation allows a good understanding of the in-band, out-of-band,

intermodulation, and amplitude and phase distortions. An example of a two-tone test is
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Figure 2.4: Phase distortion of a typical nonlinear power amplifier driven with continuous

wave

when using a PA represented by a third-degree memoryless polynomial, as shown in (2.6),

where x(t) and y(t) represent the PA input and output signals, respectively; a1 describes the

linear SSG; and a2 and a3 are the quadratic and cubic nonlinearity coefficients, respectively.

y (t) = a1x (t) + a2x
2 (t) + a3x

3 (t) (2.6)

Considering the following two tones v1(t) = Asin(w1t) and v2(t) = Asin(w2t), where

A is the amplitude of each tone. The PA output driven with v1(t) and v2(t), is as follows:

y(t) =a2A
2
[
1 + cos

(
(w1 − w2) t

)]
+ a1A [sin (w1t) + sin (w2t)] +

9

4
a3A

3 [sin (w1t) + sin (w2t)]

+
3

4
a3A

3
[
sin
(

(2w1 − w2) t
)

+ sin
(

(2w2 − w1) t
)]

− 1

2
a2A

2 [cos (2w1t)− cos (2w2t)]− a2A2 cos
(

(w1 + w2) t
)

− 1

4
a3A

3 [sin (3w1)− sin (3w2)]

− 3

4
a3A

3
[
sin
(

(2w1 + w2) t
)
− sin

(
(2w2 + w1) t

)]
(2.7)

From (2.7), and as illustrated in the frequency domain in Figure 2.5, one can conclude

that the first linear term in (2.6), i.e., a1x, amplifies the fundamental tones. The quadratic

term in (2.6), i.e., a2x
2, down-converts the RF signal to the DC band and generates the

second harmonic band. The cubic term in (2.6), i.e., a3x
3, generates intermodulation
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distortion (IMD) and third harmonic band. The IMD is this case are known as third-

order IMD (IMD3) and are located around the fundamental frequency. Note that, the

second and third harmonic bands can be easily filtered out by a band-pass filter around

the fundamental frequency. Therefore, their significance is minor.

Figure 2.5: Frequency representation of a two-tone test

From (2.7) and Figure 2.5, it is clear that only the cubic term generates frequency

components around the carrier frequency, and the quadratic term does not. This fact

can be generalized for all odd and even terms [63]. In fact, the PA is assumed to have a

narrow fractional bandwidth compared to the carrier frequency; therefore, all even-order

terms are harmonics and baseband. Consequently, the even-order do not interfere with the

fundamental frequency.

When the PA exhibits memory effects, Figure 2.6 shows that the two-tone test al-

lows their identification. In fact, new IMD that occur at the same IMDs caused by the

static nonlinearity of (2.7) appear. These IMD are distortions that alter the already ex-

isting IMDs as a phase shift. In this way, the discrepancy of IMDs around the two tones

demonstrates a remixing of these as a consequence of memory effects. Memory effects

characterization can be demonstrated by varying the two-tone spacing and measuring the

discrepancy of the left and right IMDs around the two tones.

The two-tone test can be used to characterize a nonlinear PA driven with a modulated

signal. This is done by setting the frequency separation of the two tones, i.e., |f2−f1|, equal

to the bandwidth of the modulated signal [10, 42, 55, 86]. Yet, measurements showed that

although this characterization gives an estimation of the PA response, the two-tone test

fails to accurately model the PA response and its behavior. Therefore, PA characterization

when using modulated signal is required.
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Figure 2.6: Intermodulation distortion of a nonlinear power amplifier exhibiting memory

effects

2.1.2.3 Power Amplifier Nonlinearity Characterization With Modulated Sig-

nal

PAs driven with modulated signals exhibit stronger nonlinearities and memory effects when

compared to the case of two-tone stimulus. Consequently, different characterization meth-

ods are put in practice to determine the unwanted signals engendered by the nonlinear PA.

Two established measures exist for this purpose, namely ACPR and EVM characteristics.

• The ACPR, also expressed as the adjacent channel leakage ratio (ACLR), is the ratio

between the total neighbouring channels’ powers to the main channel signal power.

It describes the degree of the signal regrowth into adjacent channels, as shown in

Figure 2.7. The ACPR is an important criterion for wireless radio standards because

it characterizes the maximum power allowed to be radiated outside the allocated

band. This measure is used to prevent interference with other adjacent radios [1].

• The EVM is a measure that quantifies the imperfection to the output signal when

compared to the input one. The EVM is illustrated in Figure 2.8, where v is the

ideal output signal, w is the measured PA output signal, e is the magnitude error,

θ is the phase error, and w − v is the EVM. For a signal sequence of length N , the

EVM is defined in (2.8).

EVM =

√√√√√√∑N
j=1

[(
Ij − Ĩj

)2
+
(
Qj − Q̃j

)2]
∑N

j=1

[
I2j +Q2

j

] (2.8)

where Ij and Qj are the ideal output signal in-phase and quadrature components and

Ĩj and Q̃j are their output measured counterparts, respectively.
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Figure 2.7: Adjacent channel power ratio

Figure 2.8: Error vector magnitude

In the previous, only distortions caused by change of the current input amplitude were

discussed, i.e., static nonlinearities. However, as the bandwidth of the input signal gets

wider, new sources of distortion happen, which are known as memory effects. These mem-

ory effects occur when the distorted output signal amplitude and phase vary as functions

of not only the current input one but also of the previous input and output signals. Unlike

the static nonlinearity, memory effects do not generate new spectral components. Instead,

the memory effects change the shapes of the already existing signal components, as it was

illustrated in Figure 2.6.

PAs exhibit fading memory effects [97]. Thus, PA output at time t depends on a finite

spanning history of the input and output signals. To characterize PA memory effects, PA

circuit characterization is essential to determine their sources. Consequently, accurate yet

simple modeling is possible as it will be shown in Chapters 5 and 6. Figure 2.9 shows

the principle sub-blocks of which a PA is composed; namely the transistor, the input and

output matching networks, and the bias network. The transistor amplifies the signal and

is the main contributor to the static nonlinearity. In fact, depending on the PA biasing

point, the transistor transforms some input current to a voltage shape that may cause

nonlinearity. The three networks, i.e., biasing, input and output matching networks, are

responsible of the memory effects, due to their non-constant frequency responses. Two

different types of memory effects exist:

• Short-term memory effects take place on a time scale that is close to the carrier

frequency fc. The input and output matching networks generate short-term memory

effects because of the reactive components present in these networks (chip capacitors,

inductors, transmission lines).
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• Long-term memory effects take place on a time scale that is close or smaller than

the signal bandwidth. Some of these long-term memory effects are manifested by

the spread of the AM/AM and AM/PM around the compression. This is caused by

thermal effects, charge trapping effects and DC-self biasing. These long-term memory

effects consist of even distortions of the DC bias network. This causes reflection of

the input signal, thereby resulting in memory effects.

Figure 2.9: Nonlinearity, short-term and long-term memory effects sources in power am-

plifiers

2.1.3 Power Amplifier Linearization Techniques

As discussed in the last subsection, linearity and efficiency are two critical design factors

that cannot be satisfied simultaneously. Different linearization techniques were introduced

in the literature to enhance the linearity-efficiency trade-off. PA are driven to high in-

put power for high efficiency and linearization is applied to enhance the linearity in this

efficient region. Three major techniques for PA linearization have been reported in the

literature, namely feedback [29, 83], feed-forward [53] and DPD [36, 45, 87] linearizers. In

the following, an overview about these linearization techniques is given with a special focus

on DPD.
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2.1.3.1 Feedback Linearization

The feedback approach is a method based on algebraic transformation of nonlinear systems

into linear ones [83]. The feedback linearization principle consists of compensation for the

nonlinear system output signal by a feedback loop. In this way, the current output signal

is used to adjust the future input ones. This is achieved by comparing the output signal

to a desired output. Then, an error signal is deduced and substituted from the next input

signal. Figure 2.10 shows a typical feedback linearizer block diagram. Its transfer function

is given in (2.9), where x(t) and y(t) represent the feedback system input and the output,

respectively, and G and A are PA and feedback loop transfer functions, respectively.

y (t) =
G

1 +GA
x (t) (2.9)

Figure 2.10: Feedback linearization block diagram

Feedback linearization is reasonably simple to implement. However, it suffers from

many drawbacks when applied to PA linearization. Its major problem gains importance

when it is applied to wideband signals. Indeed, the feedback linearizer reduces the PA

gain and suffers from serious potential instability. Better linearity comes at the expenses

of 1/ (1 + AG) gain reduction, as shown in (2.9). In addition, it is generally difficult to

preserve stability in the case of large frequency range, i.e., when feedback linearization is

used with wideband signals. In fact, the feedback system stability is determined by the

feedback loop gain AG variation with frequency. This is difficult to control over a wide

bandwidth signal.

2.1.3.2 Feed-Forward Linearization

Figure 2.11 illustrates a typical feed-forward linearizer. Feed-forward linearization principle

is based on the generation of an error signal, e(t). This error signal is intended to represent

the additive distortion products that are present at an attenuated version of PA output

signal, yPA (t) /SSG.
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Figure 2.11: Feed-Forward linearization block diagram

The feed-forward linearization works as follows. The error signal is scaled up to its

original magnitude using an error power amplifier (EPA). Then, it is subtracted from

the PA output, yPA (t− τEPA), where τEPA is the propagation delay caused by the EPA.

These steps result in a linear PA. It is important to note that, there is no bandwidth

limitation attributed to the linearization effort. Since phase shifts is introduced in the

carrier of the PA and EPA, PA and EPA equal delays are introduced to compensate for

these propagation delays. These two delay blocks must be very tightly tuned, in order to

realize good linearization performance. In addition, the gain of the EPA must be very well

matched to the gain of the PA so that good cancellation of the distortion can be realized.

Moreover, the EPA must be linear to amplify the error signal, e(t), with no additional

distortions. Finally, the analog delays and the EPA must be extremely low-loss, in order

for the whole linearization effort to be worthwhile in terms of efficiency. Feed-forward

linearization is very effective, however, it is complex to implement and introduces non

negligible addition power consumption.

2.1.3.3 Digital Predistortion

The DPD principle is based on intentionally introducing a nonlinear function in the base-

band part of the transmitter, which is commonly called the digital pre-distorter. This

function generates additional distortions that are out of phase to those introduced by the

PA. Thereby, DPD leads to a linear cascade, as illustrated in Figure 2.12. The DPD cor-

rects the power and phase level of a primary input signal. In this way, the corrected signal

nonlinear amplification results in a linear amplification of the primary input signal. The

cascaded system (DPD+PA) linearity relies primarily on the DPD ability to produce non-

linearities that are complementary in magnitude and out of phase to the PA ones. Hence,
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digital pre-distorter successful deployment requires proper choice of the predistortion func-

tion and accurate PA behavior modeling.

Figure 2.12: Digital predistortion principle

It is possible to introduce a post-distorter function instead of pre-distorter one. In

this case, the complementary nonlinear function is placed after the PA. However, post-

distortion is undesirable, because it leads to processing the signal at a high power level.

This results on a high power consumption and decreases the overall efficiency. Nevertheless,

it is demonstrated that post-distortion and predistortion exit simultaneously and are equal

[46, 91].

In the following, the DPD principle is illustrated for a memoryless PA, as shown in

Figure 2.13. To achieve the PA output level, VoutA , an adjustment of the input signal

amplitude from VinA
to VinB

is required. This correction can be deduced by projecting the

input VinA
in the DPD transfer function, which provides the required level VinB

. The DPD

is, therefore, responsible for the transformation from level VinA
to level VinB

. This DPD

transformation is found to be equal to the inverse of the PA transfer function. The DPD

transformation is achieved by finding a function that maps the PA output signal to the

input one. This is known as the indirect learning.

Predistortion main attribute is the simplicity of its principle. In addition, the DPD

is unconditionally stable and does not suffer from a bandwidth limitation thanks to the

open loop-scheme. Moreover, due to the DPD low power consumption relative to the PA,

there is no significant degradation in the transmitters power efficiency. However, DPD is

optimized for specific PA operating conditions (average output power, modulation scheme,

bandwidth, PAPR, etc.). Unfortunately, the DPD loses its complementarity with the PA
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Figure 2.13: Digital predistortion principle illustration

nonlinearities as these conditions change. Thus, constructing a good DPD is conditional

on the determination of a simple, yet accurate PA behavioral model that is insensitive to a

signal or environmental change. It is shown in Chapter 6 that, if the DPD function is not

set correctly for the case of multi-band signal, the linearization performance can degrades

due to change in the time delay misalignment.

2.2 Wide- and Multi-Band Digital Predistortion Lit-

erature Review

The DPD principle, as explained in the previous section, relies on producing PA inverse

function. To synthesize this function, a good understanding and accurate modeling of PA

distortion is essential. Actually, the DPD construction is achieved usually through two

steps:

1. Model the PA behavior to identify PA nonlinearity characteristics.

2. Construct the DPD function by modeling the PA inverse function.

PA behavioral models, also called black-box models, consider the PA device under

test (DUT) as an unknown device. A behavioral model finds the best dynamic nonlinear

function that relates some measured output data to the measured input data, as shown in

Figure 2.14. Behavioral models are used at high levels of abstraction in the overall circuit or

system design [4], due to their simplicity and lack of necessity for an in-depth knowledge

of the system. Behavioral models have the advantage of fast convergence suitable for
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simulation. They can be applicable for processes that are not understood and require

little expertise in the domain of the system application. However, they cannot guarantee

reliable extrapolation; it is widely known that behavioral models are only valid where they

were characterized and constructed [4]. Indeed, they are non-scalable, very dependent

on the measurement data, and very sensitive to noise. They give little understanding

about the system being modeled and they can only be applicable to an already existing

process since they require measurement. In this thesis, behavioral models will be adopted

as modeling schemes, due to their principle simplicity, and, because they take advantage of

the advanced development of DSP techniques. However, it is shown throughout Chapters

5 and 6 that the modeling procedure will not be limited only to black-box modeling.

Instead, physical inspiration and PA behavior will be used to derive reduced complexity

DPD schemes without compromising its simplicity and linearization capability.

Figure 2.14: Black box modeling procedure

PA behavioral modeling is not a trivial problem, and different PA model schemes have

been suggested in the past. In the literature, these models can be classified in two cat-

egories: memoryless models and memory capable models. With a memoryless model,

the current output signal depends only on the current input ones through a nonlinear

mechanism. This instantaneous nonlinearity is referred to static nonlinearity. The Saleh

[90], memoryless polynomial [99], the LUT [18, 23, 56] models and diode based linearizers

[79, 94] were the first techniques that aimed to fit the PA static nonlinearity. As the input

signal bandwidth gets wider, the PA begins to exhibit memory effects. Accordingly, the PA

output signal no longer depends only on the current input one but also on past input and

output ones. In other words, the PA becomes a dynamic nonlinear system. For such a PA,

memoryless predistortion can achieve only limited linearization performance. Therefore,

the DPD model needs to capture these memory effects by introducing structures capable of

modeling them. Since the focus of this thesis is on wide-/multi-band signals, only memory

capable models are tackled.

In the following, detailed descriptions of the main behavioral models/DPD are pre-

sented. First, important and recent SISO models are presented and their limitation are

discussed. Second, new MIMO models are presented and their limitation are discussed. In
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both cases, the proposed solutions in this thesis are put into context. The Volterra series is

considered as a reference for modeling dynamic nonlinear systems due to its richness [101].

Nevertheless, the Volterra series has always been criticized for its prohibitive complexity

and restricted applicability to high nonlinear PAs. Alternatively, the excellent capabil-

ity of artificial neural networks (ANNs) to accurately approximate continuous functions

[26, 34, 43] has been successfully exploited to model RF and microwave devices/circuits

[5, 12, 21, 28, 44, 65, 66, 69–71, 82, 96, 98, 104, 109]. In this thesis the Volterra series

scheme is adopted. Chapter 3 introduces an efficient approach to prune the Volterra series

while allowing high nonlinearity order and large memory span with reduced complexity.

2.2.1 Single-Input Single-Output Behavioral Models

2.2.1.1 Volterra series base model

A Volterra series can be thought of as a Taylor series with memory [93]. In other words,

it is a polynomial approximation to the target function at the present instant convolved

with the target function over some history. The mathematical formulation of the Volterra

series is given in (2.10), where x(t) and y(t) are the input and output signals, respectively;

and hn are the Volterra series kernels.

y (t) =
∞∑
n=0

Hn [x (t)]

=
∞∑
n=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

hn (τ1, · · · , τn)x (t− τ1) · · ·x (t− τn) dτ1 · · · τn (2.10)

In the discrete time domain, the Volterra series formulation is given in (2.11), where

x(n) and y(n) are the discrete input and output signals, p is the nonlinearity order, and

M0, · · · ,Mp are the respective memory depths for the order 0, · · · , p. Chua et al. [14]

demonstrated that this formulation is applicable to fading memory systems, e.g., PA and

consequently DPD.

y (n) =
∞∑
p=1

 M0∑
m1=0

· · ·
Mp∑
mp=0

hp (m1, · · · ,mp)x (n−m1) · · ·x (n−mp)

 (2.11)

One major drawback of the Volterra series is its large number of coefficients; the num-

ber of coefficients increases exponentially with the nonlinearity degree and the memory
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depth. For example, a Volterra series with a nonlinearity degree of 7 and 5 memory taps

contains some 8,364 coefficients that need to be determined, assuming only odd orders are

involved. Historically, this was an intractable problem, and Volterra series were limited

to low nonlinearity degrees and only a reduced number of memory taps. However, unlike

other behavioral models, e.g., ANN, Gaussian functions, etc., the advantage of the Volterra

series resides on the linearity of its coefficients with respect to the input signal. Indeed,

Volterra series identification is determined using simple and powerful linear algorithms that

are capable of fast convergence into the global minima [81]. Therefore, number of tech-

niques to reduce the number of coefficients in the Volterra series have been implemented

in the literature. In the following, an overview of the major Volterra series approximation

is given.

Two Box Models

A very simple reduction of the Volterra series is two-box models, known also as Wiener

or Hammerstein models [37, 54, 61, 69, 70, 110]. These models have been employing a

cascade of nonlinear function and a linear filter. In the case of the PA, the first box of

the Hammerstein scheme captures its static nonlinear behavior, while the second one is

intended to take into account memory effects, as shown in Figure 2.15. For the Wiener

model, the two boxes are arranged differently than in the Hammerstein case as shown in

Figure 2.16.

Figure 2.15: Block diagram of the Hammerstein model

Figure 2.16: Block diagram of the Wiener model

In the literature, polynomial functions, LUT and ANN system has been used to con-

struct the static nonlinear function of the Hammerstein/Wiener models. Authors in [61]

showed the limitation of conventional Hammerstein/Wiener scheme in mimicking the wide-

band PA behavior. Alternatively, they suggested an augmented version of these models

with weakly nonlinear one with multiple filters to solve the modeling inaccuracy. Paral-

lel Hammerstein/Wiener models [54] have been also suggested to address the traditional
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schemes limited capability in accounting for the memory effects. This was achieved by

stacking extra branches in parallel, however, their parameters identification become too

tedious. In [69, 70] authors used ANN for an accurate construction of the static nonlinear

part, then, the error signal between the output and the input signal of the memoryless

sub-model was filtered and post-injected at the model output through two linear filters.

The main problem of two box models resides in their identification; nonlinear algo-

rithms are needed to extract accurately the two boxes coefficients. A popular technique to

divert this issue is to use two steps identification. First, the memoryless block is identified

and then its response is used for the identification of the memory block [69]. It was demon-

strated in the literature that the two box models achieve inferior linearization capabilities

when compared to Volterra series and MP models even for narrow band signals [36]. Thus,

it is expected that two-box model performance will be inferior to other models in the case

of wideband signals.

Memory polynomial

The MP model [51, 78] is the most popular simplification of the Volterra model that

excludes cross terms to alleviate the complexity of the Volterra series. In other words,

MP exploits the diagonal kernels of the Volterra series corresponding to the pure powers

of the input signals samples. MP model is expressed in (2.12), where x(n) and y(n) are

the discretized input and output signals, respectively; M is the memory depth; N is the

highest polynomial order; and, ai,j are complex coefficients.

y(n) =
M−1∑
j=0

N∑
i=1

ai,j|x(n− j)|i−1x(n− j) (2.12)

A typical MP structure is shown in Figure 2.17, where M is equal to the number of

branches and N is the highest order of the different polynomials in each branch. Fig-

ure 2.17 suggests that the order of nonlinearity in the different branches does not have

to be the same. However, for ease of representation, orders of the different polynomials

of the MP model are usually considered to be equal. Despite the simplicity of the MP

structure, attempts to reduce the number of coefficients of the MP model are proposed. In

[63], elimination of the even-order coefficients from the MP formulation is proposed. This

was motivated by the fact that even-order only affect the harmonics, i.e., very far from

the PA carrier frequency. In [11], the number of MP coefficients was reduced by assigning

individual nonlinearity orders in the different MP branches. The author in [11] succeed

in decreasing the number of coefficients to almost one third and the conditioning num-
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ber by three orders of magnitude while maintaining the same modeling and linearization

capabilities.

Figure 2.17: Memory polynomial structure

Due to the large nonlinearity order required to model/linearize a given PA, the MP

models high conditioning number and range of the coefficients render it not suitable for

real time implementation. In [77, 78], authors proposed a new MP formulation that is more

suitable for hardware implementation. It uses the Horner’s rule and a new arrangement in

coefficients that allows their range to be smaller. Consequently, the new MP formulation

requires less numbers of bits to preserve the precision of the implementation of the DPD.

This formulation is given in (2.13).

y(n) = a1x (n)

(
1 +

(
a2
a1
|x (n)|

(
· · · 1 +

(
an−1
an−2

|x (n)|
(

1 +
an
an−1

|x (n)|
)))))

(2.13)

Compared to the Volterra series formulation, the MP reduces considerably the number

of coefficients. However, due to the lack of cross terms, its application to linearize highly

nonlinear PA has limited capabilities, e.g., for Doherty PA [71]. In Chapter 3, a new

Volterra series pruning technique based on G-Fucntionals is proposed. This pruning allows

a selection of a PA/DPD model with reduced number of coefficients while preserving cross

terms. In addition, it also results in a small range of coefficients suitable for hardware

implementation.

Dynamic Deviation Reduction

In dynamic deviation reduction (DDR) techniques [40, 120–122], the Volterra series is ex-

panded around the deviation of the signal from its static value, which may be DC or, as

more commonly used in PA modeling, the large-signal RF tone. In this way, the Volterra
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series is expressed in terms of a static polynomial plus dynamic polynomial contributions

of up to several orders. The model reduction is achieved by limiting the number of dynamic

orders used in the approximation. Some success with using only first-order dynamics has

been claimed [121]. However, in more complex PA structures used in wireless communi-

cations, higher dynamic orders are needed [40, 120]. Although the DDR approach reduces

considerably the number of kernels of the Volterra series, its identification is still compu-

tationally extensive. In fact, when using wideband signals, strong memory effects happen

and require high order of dynamics resulting in a large number of coefficients. A description

of the Volterra series DDR and its derivation is provided in the following paragraphs.

For a nonlinear, causal, and time-invariant system with fading memory, a truncated

discrete time domain Volterra series, expressed in (2.14), is used to model its output re-

sponse. x(n) and y(n) are the nonlinear system input and output discrete signals, respec-

tively; hp(i1, · · · , ip) is the pth-order Volterra kernel; and, P and M denote the nonlinearity

degree and memory depth, respectively.

y (n) =
P∑
p=1

M∑
i1=0

· · ·
M∑
ip=0

hp (i1, · · · , ip)
p∏
j=1

x (n− ij) (2.14)

In the following, a description of the DDR technique is given. A dynamic deviation

function given in (2.15) is introduced to reduce the complexity of the Volterra series for-

mulation, where x(n− i) is the delayed input signal.

e (n, i) = x (n− i)− x (n) (2.15)

Substituting (2.15) in (2.14) results on the following expression:

y (n) =
P∑
p=1

M∑
i1

· · ·
M∑
ip

hp (i1, · · · , ip)
p∏
j=1

[x(n) + e(n, ij)]

=
P∑
p=1

xp(n)
M∑
i1=0

· · ·
M∑
ip=0

hp (i1, · · · , ip)

+
P∑
p=1

p∑
r=1

xp−r(n)

(
p

r

)
M∑
i1=0

· · ·
M∑
ip

hp (i1, · · · , ip)
r∏
j=1

e (n, ij) (2.16)

The output signal, y(n), can be expressed as a summation of static ys(n) and dynamic

yd(n) characteristics, where ap are the memoryless coefficient of the response, and wp,r(.)

represents the rth-order dynamic kernel.
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ys(n) =
P∑
p=1

apx
p(n) (2.17)

yd(n) =
P∑
p=1

p∑
r=1

xp−r(n)
M∑
i1=0

· · ·
M∑
ir=0

wp,r (i1, · · · , ir)
r∏
j=1

e (n, ij) (2.18)

The previous formulation in (2.18) introduces a new variable, r. It represents the order

of the dynamics that allows the truncation of the Volterra series to be a simpler version.

For instance, if r = 1, the Volterra series formulation is truncated as given in (2.19), where

only the static and the first-order dynamic behavior are taken into account.

y(n) =
P∑
p=1

apx
p(n) +

P∑
p=1

xp−1(n)
M∑
i=0

wp,1 (i) e (n, i) (2.19)

Another rearrangement of the Volterra series coefficients is performed to result in the

Volterra series DDR shown in (2.20).

y(n) =
P∑
p=1

hp,0 (0, · · · , 0)xp(n)

+
P∑
p=1


P∑
r=1

xp−r(n)
M∑
i1=1

· · ·
M∑

ir=ir−1

hp,r (0, · · · , 0, i1, · · · , ir)
r∏
j=1

x (n− ij)

(2.20)

In the Volterra series DDR, the variable r is used to limit the dynamic response order.

This method reduces considerably the number of coefficients when compared to the full

Volterra series, as shown in Table 2.1.

The DDR-based Volterra series is still relatively limited to low nonlinearity orders, since

it preserves the important dependency of the number of kernels on the nonlinearity order.

For wideband signals, e.g., LTE-advanced, where the PA/DPD models run at 500 MHz,

the DDR method is still computationally complex. For example, if the Volterra series

model accounts for dynamic up to 100 ns (low memory values) when running at 500 MHz,

the DPD requires the use of the 50 past values of the input signal. Combined with the

nonlinearity degree equal to 5 (relative low nonlinear order), and when using the Volterra

series DDR model (where the dynamics are set equal to 1, the simplest reduced Volterra

series model), the resulting number of coefficients of the DPD is around 250. This opti-

mistic, yet still large number of coefficients, increases the complexity of the identification of

the DPD model even when using a lab computer equipped with MATLAB. More difficult

implementation will be faced when dealing with real-time systems, in terms of memory
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Table 2.1: Number of coefficient when modeling DPD with a 100 MHz bandwidth input

signal

DPD Memory Nonlinearity Volterra series DDR

Speed Depth Order r=0 (MP) r=1 r=2 r=∞ (Full)

300 MHz 50 ns 5 45 78 888 > 113e3

300 MHz 50 ns 7 75 109 > 1e3 > 3e6

300 MHz 100 ns 5 90 153 > 3e3 > 2e6

300 MHz 100 ns 7 150 214 > 5e3 > 255e6

500 MHz 50 ns 5 75 128 > 2e3 > 1e6

500 MHz 50 ns 7 125 179 > 3e3 > 78e6

500 MHz 100 ns 5 150 253 > 9e3 > 31e6

500 MHz 100 ns 7 250 354 > 14e3 > 7e9

and computation. Examples of the resulting number of coefficients in the case of wideband

DPD are summarized in Table 2.1. This table shows that the conventional DPD solution

for wideband signals, even when using the Volterra series DDR, is not practical. In fact,

it leads to very complex model with unrealistic number of coefficients to be identified.

The Volterra series DDR has only been applied to signals with relatively low bandwidth,

up to 20 MHz, due to the uniform selection of the kernels. This pruning technique leads to

a large number of coefficients. Therefore, new methods are needed to truncate the number

of kernels in the Volterra series scheme when dealing with wideband signals. In Chapters 3

and 5, two novel pruning approaches for Volterra series are introduced. These approaches

were used for PA behavioral modeling/DPD schemes that were driven with signals having

a bandwidth up to 60 MHz. The resulting reduced complexity model show similar mod-

eling performances and linearization capabilities with fewer numbers of coefficients to the

DDR approach. This was achieved by using non-uniform selection of the kernels. Thus,

high selection of nonlinearity order and memory depth was possible without augmenting

extensively the number of coefficients. Consequently, it will be concluded that these new

pruning approaches are more suitable to be applied to wideband signals.

2.2.1.2 Transmitter Observation Receiver Bandwidth for Wideband Signal

In the previous subsection, an overview of different DPD engines was given. In Chapters

3, 5 and 6, new DPD engines will be introduced that allow the DPD model construction
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with high nonlinearity and memory depth without exponentially increasing the number of

coefficients. However, when deploying wideband signals, another problem rises. To capture

the PA output signal driven with a wideband signal, a wideband TOR with high-speed

ADCs and flat response over a wide range of frequencies is required. This is particularly

important for capturing accurate measurement data essential for the DPD coefficients

identification. However, the significant power and cost overheads of high-speed ADCs [49]

bring down the overall efficiency of the DPD+PA cascade. This, it eventually limits the

usefulness of the DPD approach to enhancing the trade-off between efficiency and linearity.

Consequently, reducing of the TOR bandwidth is a must when deploying wideband signals.

Several attempts to relax the TOR bandwidth have been reported in the literature.

The relaxed TOR bandwidth consequently reduces the required ADC sampling rate, and

alleviates the complexity of the DPD implementation as the signal bandwidth broadens.

In [123], Zhu introduced the GST to reconstruct a nonlinear system output signal using

a reduced TOR bandwidth. This theorem calls for an additional function which is used

to reduce the output signal bandwidth. According to [123], the application of GST in

PA behavioral modeling problems requires a priori knowledge of its corresponding inverse

function, called g (.) function in [123]. In this way, the PA output signal can be sampled

using the input Nyquist rate (INR); i.e., twice the input signal bandwidth, rather than the

output Nyquist rate (ONR); i.e., twice the output signal bandwidth. Typically, the ONR

is equal to five times the INR. The GST principle is explained in the following subsection.

Authors in [6, 103, 119] proclaimed GST successful application to PA behavioral modeling

and linearization. However, a close examination of the reported approaches reveals non-

conformance with the GST as stated in [123] and introduction of under-sampling technique

[50]. As an example, the PA behavioral modeling procedures reported in [103] did not

involve the inverse function g (.) as stipulated in [123]. In [119], the authors proposed the

identification of the DPD function using the GST and a sampling rate equal to the INR.

However, simulation and measurement results were conducted using a sampling rate higher

than the INR. Authors attributed this choice to the sensitivity to the noise. In Chapter

4, it is demonstrated that the GST direct application for DPD identification with reduced

TOR bandwidth is not possible. Alternatively, a new approach is proposed.

In [32, 100], the Volterra series kernels were constructed using input and output sig-

nals sampled at the INR instead of the ONR. This was achieved using an under-sampling

technique that exploits the alias of the output signal harmonic and/or inter-modulation

components [50]. However, the focus of the current thesis is on lowering the TOR band-

width used to capture the PA band limited output signal driven with band-limited single

harmonic modulated signal. Under-sampling technique cannot be applied in this case as

the signal alias will fold on the modulated signal. A new approach is proposed in Chapter
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4 to enable DPD construction using only a portion of PA output signal bandwidth. Con-

sequently, the linearization with the reduced TOR bandwidth will enable the application

of the GST.

In [15], the author proposed a method based on multiple narrow-band observations at

the PA output signal. The proposed method consisted of capturing a frequency portion

of the output signal and used a modified DPD algorithm to update the DPD coefficients

accordingly. In fact, by capturing only a portion of the output signal, a linear transforma-

tion, noted L {.}, can be applied to both the input and output signals. In this way, the

PA/DPD model coefficients can be approximated without acquiring the full input/output

signal spectrums.

In [41], the authors proposed linear sub-filtering to adjust the PA/DPD model in sub-

blocks. Thereby, the output sampling rate is lowered by any desired order. The proposed

approach works as follows. First, a memoryless nonlinear function was applied to the

input signal, allowing the generations of IMDs. Next, linear sub-band filters were used to

adjust these IMDs, so they align with the suitable DPD model. Note that, there was no

restriction on how wide the linear filters bandwidth could be. In [41], the authors split the

signal into M adjacent frequency sub-bands by a predefined linear filter bank. Decimation

after each linear filter separation was then applied to reduce the sampling rate value. In

this manner, the signals were divided into M sub-sampled input signals and M sub-sampled

output signals. These signals were then used to adjust the pre-distorted signal so that it

was aligned with a suitable DPD function through linear filters. In the final stage, the

pre-distorted signals were recombined using up-sampling and filtering to rematch them to

the input signal full bandwidth. Using this technique, the authors showed the possible

linearization of a 3G BS PA driven with a 4 MHz signal when 4 and 8 sub-bands were

used. The technique proposed in [41] provided a good alternative to reduce the sampling

rate. However, the authors did not extend their technique to wider bandwidth signals, i.e.,

20 MHz or higher. In addition, the proposed technique used linear filters to adjust the

IMDs. Thus, only limited results could be achieved when dealing with highly nonlinear

PA, especially when the sub-bands interact with each other.

In [38, 114], the authors proposed a band-limited Volterra series model to restrict the

linearization application to the available TOR bandwidth. It was shown that linearization

was successful within the set observation band. The residual spectrum regrowth introduced

by the PA outside the observation bandwidth, and not tackled by the band-limited Volterra

series DPD, was mitigated using a sharp band-pass filter. The band-pass filter high-order

would imply non negligible insertion loss, which should be included in order to carefully

assess the potential performance degradation. While the band-limited Volterra DPD does

not allow for complete linearization of PA output IMDs, it appears to be the most promising
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practical solution in the literature.

In Chapter 4, it is shown that to compensate for wideband PA nonlinearity, the correct

pre-distorted signal can be accurately synthesized using a fraction of the output signal

bandwidth. Since the GST cannot be used, a new approach is proposed to reduce the

required TOR bandwidth without compromising the linearization capability. This ap-

proach allows the identification of the DPD coefficients using a reduced TOR bandwidth

by pre-processing the PA input signal using a nonlinear function. It is identified that the

sensitivity of the linearization capacity to the agreement between the PA inverse model

and the structure of the DPD function (nonlinearity order, memory depth, and dominant

distortion products needed to model the PA inverse) used to pre-process the input signal.

Theoretical and experimental analysis revealed a robust and accurate PA output lineariza-

tion when TOR bandwidth is set to only twice the input signal modulation bandwidth

instead of the usual five times.

In the following, overview of GST, under-sampling and band-limited Volterra series are

given.

Generalized Sampling Theorem

The GST was introduced as a solution to capture a nonlinear system output signal, e.g., a

nonlinear PA, at a reduced sampling rate, i.e., less than the ONR. The GST stipulates that

for an arbitrary function f (.), with no requirement limit on is output signal bandwidth, if

a one-to-one mapping function g (.) can be found such that g (f (t)) is band limited, i.e.,

∃w0 ∈ R such that the Fourier transformation Gf (w) = 0 ∀|w| ≥ w0 = π
Ts

= πfs, then

f (.) can be fully recovered by sampling at the points tn = nTs. This is possible through

sampling g (f (t)) at reduced rate. Then, g−1(.) is applied as given in (2.21) to recover

f(t), where g−1 is the inversion of g.

f(t) = g−1

{
∞∑
−∞

g [f(tn)]
sin [w0 (t− nTs)]
w0 (t− nTs)

}
(2.21)

From this theorem, an arbitrary function f(.) can be sampled at a low rate, whether

it is band limited or not, if the function g(.) can be found and applied with f(.). This

can be seen as a frequency compression of f(.) and a frequency decompression, in order

to recover. Utilization of this technique allows for sampling rate reduction to capture the

PA output. However, in Chapter 4, it will be shown that the GST cannot be used for

the DPD coefficients identification solely and an alternative technique is proposed. It is

also shown that after identifying the DPD, the GST is used to estimate the PA wideband

output response using a reduced TOR bandwidth.

34



Under-Sampling

The conversion of analog signal to a digital one depends on two important criteria that

should be carefully set, namely time step and amplitude quantization as shown in Fig-

ure 2.18. To ensure unambiguous data, i.e., non-aliased signal, the sampling frequency fs,

i.e., the inverse of the time step ts = 1/fs, should be equal or greater than twice the analog

signal maximum frequency, according to the Nyquist-Shannon theorem [50, 92]. In the

case of an envelop signal, i.e., signal having only components around a carrier frequency

fc, sampling according to the previous yields to sampling unoccupied frequencies, from DC

to the envelop signal around fc. To solve the issue, the signal is down-converted to an in-

termediate frequency (IF) so that the signal occupies all frequency component from DC to

fs/2 as shown in Figure 2.19. In this case, the sampling rate fs is equal or greater than the

envelop signal bandwidth rather than its maximum frequency component. Alternatively,

under-sampling can be used to sample directly the envelop signal with a new condition on

the sampling rate as explained hereafter.

Figure 2.18: Sampling of analog signal [50]

Figure 2.19: Sampling of an envelop signal using down-converting

The under-sampling uses aliased signals to capture the envelop signal as long as one of

these aliased signals lies in the first half of the Nyquist range, DC to fs/2 [50]. Any signals

which fall outside the bandwidth of the interest should be filtered using a band-pass filter.
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In this case, a new sampling rate is required and is given in the following. If an analog

signal occupies a bandwidth ∆f = fh−fl, where fl and fh are the signal lowest and highest

frequency components, then the sampling rate has to be within 2fh
n
< fs <

2fl
n−1 , where n is

positive integer such that n < fh
fh−fl

. It can be deduced that the sampling rate should be

at least about twice the bandwidth of the signal fs > 2∆f but much less than the highest

frequency component fs � fh. For example, in the case where an envelop analog signal

has a bandwidth of 100 MHz and modulated at fc = 2.14 GHz, without down-converting

the signal to IF, a sample rate higher than twice 2.14 GHz should be deployed. However,

using the under-sampling, knowing that fh = 2.14 GHz + 100/2 MHz = 2.19 GHz and

fl = 2.14 GHz − 100/2 MHz = 2.09 GHz, the sampling rate should be within 2×2.19 GHz
n

<

fs <
2×2.09 GHz

n−1 with n < 2.19 GHz
100Mhz

= 21.9⇒ nmax = 21. Thus, 208 MHz < fs < 209 MHz

which is about twice the bandwidth of the envelop signal.

It is important to distinguish between the GST and the under-sampling. The GST

goal is to reduce the sampling rate less than twice the bandwidth of the envelop signal.

Whereas, the under-sampling reduces the sampling rate from twice the signal maximum

frequency component to twice its envelop bandwidth.

Band-Limited Volterra series

The band-limited Volterra series [114, 115] is applied in the case where only the distor-

tions within a limited bandwidth is captured, as shown in Figure 2.20. The band limited

Volterra series is explained in the following. Let’s consider a PA modeled using a Volterra

series as given in (2.22) where x(n) and y(n) represent the input and output signals, re-

spectively, hp (i1, · · · , ip) is the pth-order Volterra kernel, and Dp [x (n)] =
∏p

j=1 x (x− ij)
is the pth-order Volterra operator. One problem of Volterra series is that the bandwidth

increases with the pth-order Volterra operator as shown in Figure 2.21. The identification

of a Volterra series model using reduced bandwidth input and output signal can lead to

modeling error. In fact, the Volterra series model output will have non-zero frequency

components outside the limited band, while measurement capture only the limited band.

y (n) =
∞∑
p=1

∞∑
i1=0

· · ·
∞∑
ip=0

hp (iq, · · · , ip)Dp [x (n)] (2.22)

To solve the previous mentioned problem, the band-limited Volterra series incorporated

a band-pass filter after every pth-order Volterra operator. This restricts the bandwidth

expansion to only the reduced captured band as shown in Figure 2.22. The new pth-order

band-limited Volterra operators are given in (2.23), where ∗ is the convolution operator
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Figure 2.20: Band-limited input and output signals

Figure 2.21: General Volterra series model

and w (n) is a band-pass filter. Consequently, the band-limited Volterra series is given

(2.24), where K is the length of the filter.

Tp [x (n)] = Dp [x (n)] ∗ w (n) (2.23)

y (n) =
∞∑
p=1

∞∑
i1=1

· · ·
∞∑
i1=p

hp,BL (i1, · · · , ip)

{
K∑
k=0

[
p∏
j=1

x (n− ij − k)w (k)

]}
(2.24)

Similar to the conventional Volterra series, the band-limited Volterra series kernels

are linear with respect to the input signal. Hence linear identification algorithms can be

used for the model coefficients identification. In Chapter 4, it will be shown that using

only a band-limited input signal portion, wideband nonlinear PA output signal accurate
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Figure 2.22: General band-limited Volterra series model

linearization and modeling is possible under certain conditions. Comparison with the

band-limited Volterra series will be discussed.

2.2.2 Multi-Input Multi-Output Behavioral Models

In the previous, it was shown that wideband signals involve very complex DPD and be-

havioral models. Moreover, for accurate data acquisition, linear measurement system

across a wide bandwidth are required leading to expensive resources for computation and

memory storage. These factors become more complicated when dealing with multi-band

signals. Indeed, the multi-band signal carrier frequencies separation can be very large

i.e., � 100 MHz. Therefore, a multi-band PA model using the conventional behavioral

model/DPD schemes, i.e., sampling all the frequencies at once, is no longer practical.

Actually, using conventional behavioral PA modeling/DPD leads to the capture of many

unoccupied frequencies between the carrier frequencies, in order to cover the multi-band

signal at once. Thereby, this leads to the loss of hardware resources in sampling noise,

i.e., unrealistic ADCs and digital-to-analog converters (DACs) sampling rate requirements

to capture unnecessary data. Moreover, even if such ADCs and DACs can be conceived,

the model scheme and identification process complexities will be unrealizable in real-time

systems. This is due to the large amount of memory and computation resources needed.

Accordingly, new multi-band modeling schemes should be envisaged to reduce the require-

ments of the model complexity and the hardware resources needed to implement these

models.

Different attempts to model/linearize multi-band PAs have been presented in the lit-

erature. These attempts were limited to only dual-band and few tri-band cases. In the
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following, introduction to multi-band nonlinearity is given. Second, major contributions

in multi-band PA output modeling and linearization is given.

2.2.2.1 Distortion in case of Multi-Band Power Amplifier

A typical nonlinear PA frequency representation driven by K multi-tone multi-band stim-

ulus is given in Figure 2.23. It is clear that in addition to the inter-modulation generated

by each band around its respective carrier frequency, the multi-band signal generates cross

modulation. These cross modulation are a result of the mix between the multi-band sig-

nals. Consequently, the PA/DPD model can no longer be a SISO model, since it fails for

accounting for these cross modulation. Alternatively, a MIMO model shown in Figure 2.24

is envisioned, where xi(n) and yi(n) are the PA input and output signals around each car-

rier frequency fci , respectively, and Gi(.) are MIMO nonlinear functions. These functions

describe the PA nonlinear outputs around fci as given in (2.25), where j2 = −1.

yi (n) = Gi [x1(n), · · · , xK(n)] ej2πfi i ∈ {1 · · ·K} (2.25)

Figure 2.23: Input and output spectrums representation of a nonlinear power amplifier

driven by multi-tone multi-band signal

Figure 2.24: Multi-input multi-output multi-band power amplifier model
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Ideally, the Gi(.) functions should be expressed in MIMO Volterra series form. In the

case of dual-band signal, the Kronecker product can be used as follows:

Gi [x1(n), x2(n)] =
M∑

m1=0

HT
m1
Xm1 +

M∑
m1=0

M∑
m2=0

HT
m1m2

(Xm1 ⊗Xm2)

+ · · ·+
M∑

m1=0

· · ·
M∑

mp=0

HT
m1···mp

(
Xm1 ⊗ · · · ⊗Xmp

)
i ∈ {1, 2} (2.26)

where ⊗ denotes the Kronecker product, which is defined as:

[
x1

x2

]
⊗

[
y1

y2

]
=


x1y1

x1y2

x2y1

x2y2

 (2.27)

The vectors Hm1···mp and Xmp are defined as:

Hm1···mp =
[
hm1···mp,1, hm1···mp,2, · · · , hm1···mp,2p

]T
(2.28)

Xmp =

[
x1 (n−mp)

x2 (n−mp)

]
(2.29)

where hm1···mp is the pth-order kernel of the Volterra series.

The previous formulation guarantees the optimal functions Gi(.) that describe an accu-

rate dual-band PA. Unfortunately, the number of coefficients in this previous formulation

explodes exponentially with the nonlinearity order and memory depth. In Chapters 5 and

6, a complexity-reduced generalized memory polynomial is derived from a simple PA block

diagram to represent the functions Gi(.). This proposed formulation allows cross terms

between different delayed input signals to account for the cross modulation distortions. In

addition, the proposed formulation results in a manageable number of coefficients.

2.2.2.2 Dual-Band Power Amplifier Behavioral Models

In the literature, dual-band PA behavioral models were developed using two strategies;

generalization of SISO model structure to accommodate dual-band signals [8, 88, 107] and

pruning of general Volterra series formulation [30].

In [8], authors extended the SISO MP formulation to a dual-input model (2D-DPD).

The 2D-DPD allows the construction of a predistorted signal using two input signals to
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model/linearize cross distortion generated by the two-band interaction on each others.

However, it has been demonstrated that the 2D-DPD suffers from numerical instability

as reported in [88, 107]. Moreover, it is shown in Chapter 6 that the 2D-DPD is very

sensitive to time delay misalignment between the two transmitted signals. This results in

modeling/DPD performances degradation.

One particular problem with SISO model generalization to multi-input cases is the in-

crease of the number of coefficients. Authors in [88] proposed two box model structures

(memoryless block+MP) to limit the increase of number of coefficients to only the mem-

oryless block. The derived model achieved smaller number of coefficients when compared

with the 2D-DPD. Yet, nonlinear identification algorithms are needed to extract accurately

the model coefficients. It is demonstrated in the literature that the two box models achieve

inferior linearization capabilities when compared to Volterra series and MP SISO models

[36]. Thus, the same is expected in the case of dual-band and multi-band signals. In [107],

similarly to the 2D-DPD case, the authors generalized the Volterra series DDR model to

the case of dual-band. However, the resulting number of coefficients was larger comparing

to the 2D-DPD.

Alternatively to the SISO model generalization to dual-band one, general Volterra series

schemes pruning was proposed in [30]. A systematic pruning and derivations were applied

to yield a simple baseband equivalent low-complexity model. This model does not require

empirical pruning and uses only few number of coefficients. However, the model includes

kernels that need pre-computation before the model coefficient identification, thus leading

to model implementation complexity increase. The baseband equivalent Volterra model

showed comparable results to the 2D-DPD when applied to behavioral modeling and DPD.

In the following subsection, an overview about the 2D-DPD model is given. The 2D-DPD

model is used Chapter 6 as a model reference for the proposed dual-band model.

One particular problem in dual-band DPDs identification is the necessity of dual-output

signal sampling at the same time. This is required to ensure that all the PA output signal

are time aligned and synchronized with the PA input ones. A common method to solve this

issue is using repeated signals. Tn this case, only one TOR is used to capture the different

PA output signals. However, in real time system, this solution is not practical as the signal

changes constantly. Alternatively, authors in [35] proposed PA model identification first,

since it requires all the PA input signals (which are known) but only one output signal.

Then estimation of the PA output signals is performed. In this way, all the estimated

output signals are time aligned. Consequently, indirect learning can be used for DPD

coefficients identification. This method allows the usage of only one TOR, however, it

added the complexity of identifying a PA model. Additionally, the DPD model will suffer

from the PA model imperfections. Authors in [80] proposed the usage of direct learning
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instead of the in-direct learning as it requires only one output signal at a time. For that, an

explicit formula is identified for the DPD coefficients based on the assumption that the PA

is modeled using 2D-DPD. This allows the identification of the DPD coefficients without

the need of inverting large matrices of capturing synchronized output signals. Authors in

[16] proposed also an explicit formula for dual-band DPD that doesn’t requires multiple

receiver to capture a synchronized dual-output signals. However, the performances of these

techniques were inferior to the 2D-DPD one.

Dual-band signals are usually located at carrier frequencies that are not necessarily

close, thus they involve a large range of frequencies. To characterize these signals, the

measurement tools deployed suffer from I/Q imbalance. Authors in [111] proposed a joint

predistorter and I/Q imbalance correction for the transmitter imperfection across wide

range of frequencies. The proposed technique involved the cascade of a SISO Volterra filter

for the compensation of the I/Q imbalance and dual-band LUT table for the correction of

the dual-band PA distortions.

In this thesis, the 2D-DPD model is used as a reference model. In Chapter 6, it is shown

that a new proposed model is less complex and achieves better linearization/modeling

performances when compared to 2D-DPD. In addition, it is shown that the proposed model

is more robust to time delay misalignment where the 2D-DPD is not. In the following, an

overview of the 2D-DPD is given.

Dual-Band Digital Predistortion (2D-DPD)

Figure 2.25 shows the block diagram of the 2D-DPD model. In the following, the processing

steps that lead to 2D-DPD are explained.

Figure 2.25: Block diagram of the dual-cell processing digital predistortion [8]
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Consider two modulated signals, namely, x1e
jw1t and x2e

jw2t, around the carrier fre-

quencies, w1 and w2, respectively. For simplicity, the 2D-DPD model is first demonstrated

for a simple memoryless model, and then by analogy, the case with memory is deduced.

For that, consider a memoryless fifth-order nonlinearity, y = x + x |x|2 + x |x|4, and a

discrete-time baseband equivalent input signal, x = s1 + s2 = x1e
−jwnT + x2e

−jwnT , where

t = nT . By simple mathematical derivation, the PA output is given in (2.30).

y =
(
x1 + x1|x1|2 + x1|x2|2 + x1|x1|4 + 4x1|x1|2|x2|2 + x1|x2|4

)
e−jwnT

+
(
x2 + x2|x1|2 + x2|x2|2 + x2|x1|4 + 4x2|x1|2|x2|2 + x2|x2|4

)
ejwnT

+
(
x21x

∗
2 + 2x21|x1|2x∗2 + 3x21|x2|2x∗2

)
e−j3wnT

+
(
x∗1x

2
2 + 3x∗1|x1|2x22 + 2x∗1|x2|2x22

)
ej3wnT

+
(
x31x

∗2
2

)
e−j5wnT +

(
x∗21 x

3
2

)
ej5wnT (2.30)

Equation (2.30) revels that the output signal contains terms at the fundamental and

intermodulation frequencies. In [8], it was assumed that the two carrier frequencies are

far enough to allow filtering the intermodulation and not taken them into account by the

PA/DPD model. Consequently, the relevant terms of (2.30) leads to (2.31), where y(−w)

and y(w) are the signals around the frequencies −w and w.

y(−w) =
(
x1 + x1|x1|2 + x1|x2|2 + x1|x1|4 + 4x1|x1|2|x2|2 + x1|x2|4

)
e−jwnT

y(w) =
(
x2 + x2|x1|2 + x2|x2|2 + x2|x1|4 + 4x2|x1|2|x2|2 + x2|x2|4

)
ejwnT (2.31)

Equation (2.31) shows that the output signal around each carrier frequency contains

both the dual-input signals. Therefore, a dual-band PA/DPD model should contain both

dual-input signals in the same manner than (2.31). For the case of a model with nonlinear-

ity order equal to N and a memory depth equal to M −1, (2.31) was generalized to (2.32).

In (2.32), i is an index that represent the band 1 or 2 and c
(i)
k,j,m are the coefficient of the

model. The coefficients of the 2D-DPD model are linear with respect to the input signals

xi(n−m)×|x1(n−m)|k−j×|x2(n−m)|j, therefore, linear identification, e.g., LSE, can be

used. It is worth mentioning that, even though the first derivation of the 2D-DPD model,

i.e., (2.31), involved only odd-terms, the proposed model in (2.32) contains both even and

odd terms. In fact, it was shown in [30] that 2D-DPD odd terms are not enough for

linearizing dual-band PA, and can results in numerical instability. The resulting number

of coefficients of the 2D-DPD model is small comparing to the dual-band Volterra based

43



models. However, this number is still large especially when involving even and odd terms

as shown in Table 2.2.

yi(n) =
M−1∑
m=0

N∑
k=0

k∑
j=0

c
(i)
k,j,mxi(n−m)× |x1(n−m)|k−j × |x2(n−m)|j (2.32)

Table 2.2: Number of coefficient for the 2D-DPD model

N

2D-DPD Memory Depth M

Odd Only Orders Even Odd Orders

M=1 M=2 M=3 M=4 M=5 M=1 M=2 M=3 M=4 M=5

1 1 2 3 4 5 1 2 3 4 5

3 3 6 9 12 15 6 12 18 24 30

5 6 12 18 24 30 15 30 45 60 75

7 10 20 30 40 50 28 56 84 112 140

9 15 30 45 60 75 45 90 135 180 225

2.2.2.3 Tri-Band Power Amplifier Behavioral Models

In the literature, dual-band behavioral model/DPD had a lot of intention in the recent

years, whereas fewer researches dealt with tri- and higher band. In fact, generalizing

SISO model to MIMO cases or pruning a general Volterra formulation increases noticeably

the required number of coefficients and/or the complexity. As an example, authors in

[113] extended the MP formulation to the case of tri-band signal (3D-DPD). This model

achieved more than 15 dB reduction in the ACPR; however, the number of coefficients

needed was over 100 coefficients. In addition, the 3D-DPD is expected to suffer from the

same limitation of the 2D-DPD, namely numerical instability and sensitivity to time delay

misalignment. Alternatively, authors in [112] proposed a phase-aligned pruned Volterra

series and demonstrated about 2 dB better performances than the 3D-DPD. However, the

required number of coefficients was even higher than the 3D-DPD case.

In this thesis, to construct a MIMO behavioral model/DPD, a novel strategy is adopted.

First, a block diagram that describe the behavior of single-, dual-, tri- and multi-band PAs

are established. These block diagrams will be the root of developing a single-, dual-, tri-

and multi-band GMP models. The derivations of these models are detailed in Chapters

5 and 6, whereas a general multi-band behavioral model/DPD is inspired by the special
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cases. It will be shown that the resulting models are inherently low complexity and able

to taken into account cross modulation and correct for time-delay misalignment.
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Chapter 3

Wideband Digital Predistortion

Pruning

Reduction of the PA behavioral modeling and DPD complexity is a challenging task, even

when dealing with single narrow-band signals. Indeed, for accurate modeling and good

linearization performances, the Volterra series model requires large nonlinearity order and

a large memory depth. This yields to large number of coefficients as it was shown in Ta-

ble 2.1. In this context, a new technique based on the Wiener G-Functionals [73, 75] is

proposed to prune the Volterra series. This pruning technique doesn’t need the estimation

or restriction of the nonlinearity order or the memory depth of each kernel. This approach

is measurement-based where the pertinence of each coefficients in the Volterra series for-

mulation is evaluate off-line. Therefore, it allows the identification of dominant kernels

while eliminating unnecessary and negligible ones.

The Wiener G-Functionals are originally developed by Wiener [93] as a more general

formulation of the Volterra series. They are orthogonal; representing the minimum set

of approximating functions. Additionally, when they are identified using a white Gaus-

sian noise input, they are convergent in their means. These characteristics, namely or-

thogonality and convergence in the mean, significantly alleviate the complexity of Wiener

G-Functionals identification as it is shown hereafter.

In the following, it is shown that the kernels of the Wiener G-Functionals under white

Gaussian noise are determined using an explicit formula. Unlike when using LSE, all

the kernels can be computed separately. Consequently, there is no need for inverting a

large matrix that involves all the possible powered delayed input signals as it is used

conventionally. When using the Wiener G-Functionals, increases in the nonlinearity order

and the memory taps can be envisioned without an exponential increase of the number of

coefficients.
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This chapter outlines the Wiener G-Functional formulation and its use in pruning

the Volterra series. The technique is illustrated first by identifying a known dynamic

nonlinearity and then for modeling and linearizing PA output signals.

3.1 Overview of Wiener G-Functionals

Consider a nonlinear dynamical system that is described by a conventional Volterra series,

where x(t) and y(t) are the input and output signals, respectively; and, hn are the Volterra

series kernels:

y (t) =
∞∑
n=0

Kn [x (t)]

=
∞∑
n=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

kn (τ1, · · · , τn)x (t− τ1) · · ·x (t− τn) dτ1 · · · dτn (3.1)

The Wiener G-Functionals aim to reformulate the Volterra series equation into an equiv-

alent set of equations where the orthogonality property between the basis can be exploited.

This reformulation builds on the orthogonality of the white Gaussian noise to determine a

simplified expression of the Volterra series kernels as given in [93]. Let’s consider a white

Gaussian noise input signal, x(t), with an autocorrelation function, φxx(τ) = Au0(τ), where

u0(τ) is the unit impulse function. The pth-degree nonhomogeneous G-Functionals is de-

fined in (3.2), where Kn(p) [x(t)] =
∫
· · ·
∫
kn(p) (τ1, · · · , τi)x (t− τ1) · · ·x (t− τn) dτ1 · · · dτn

are the modified Volterra kernels of order p. The modified kernels are applied to an input

signal with a degree of nonlinearity n, and are generated such that the orthogonal property

of (3.3) holds.

gp
[
kp, kp−1(p), · · · , k0(p);x(t)

]
=

p∑
n=0

Kn(p) [x(t)]

= k0(p)

+

p∑
n=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

kn(p)x(t− τ1) · · ·x(t− τn)dτ1 · · · dτn

(3.2)

Km [x(t)] gn
[
kn, kn−1(n) · · · , h0(n);x(t)

]
= 0 ∀m < n (3.3)

⇒
p∑

n=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

kn(σ1, · · · , σm)kn(p)(τ1 · · · τn)
x(t− σ1) · · ·x(t− σm)

x(t− τ1) · · ·x(t− τn)

dσ1 · · · dσm
dτ1 · · · dτn

= 0
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The expression of pth-degree nonhomogeneous Volterra functionals, gn, contains all the

Volterra series kernel, kn, as shown in (3.2). Thus, it can be concluded that gn is equivalent

to the Volterra series kernels, kn. Thus, the expression of the output signal, y(t), in (3.1)

expressed as a function of the Volterra series kernel, kp, can be expressed using the pth-

degree nonhomogeneous G-Functionals. In other words, the output signal, y(t), in (3.1)

is rewritten using the Wiener G-Functionals, while satisfying the orthogonality property

of (3.3). Note that, the set of functionals derived to be orthogonal are denoted in capital

letter as Gn[kn;x(t)]. In addition, only the kernels kn are the same for the Volterra series

and the Wiener G-Functionals, whereas the kernels kn−1(n), kn−2(n), · · · , k1(n), and k0(n) are

determined uniquely from the kernel kn. In [93], the kernel kn was called nth-order Wiener

kernel and the kernels kn−1(n), kn−2(n), · · · , k1(n), and k0(n) are referred to as the derived

Winer kernels of the Winer G-Functional, Gn[kn;x(t)].

y (t) =
∞∑
n=0

Gn [kn;x(t)] =
∞∑
n=0

gn
[
kn, kn−1(n), · · · , k0(n);x(t)

]
(3.4)

In the following, identification of Wiener G-Functionals expressions is given. First, the

zeroth and the first degree Wiener G-Functionals are as follows:

G0 [k0;x(t)] = k0 (3.5)

g1
[
k1, k0(1);x(t)

]
= K1[x(t)] +K0(1)[x(t)] =

∫
k1(τ1)x(t− τ1)dτ1 + k0(1) (3.6)

Since H0[x(t)]g1
[
k1, k0(1);x(t)

]
= 0 according to (3.3) and x(t) is a white Gaussian

input signal, then:

H0[x(t)]g1
[
k1, k0(1);x(t)

]
= 0 (3.7)

⇒h0
∫
k1(τ1)x(t− τ1)dτ1 + h0k0(1) = 0 (3.8)

⇒h0k0(1) = 0 (3.9)

Because h0k0(1) = 0 for any constant h0, then k0(1) = 0. Consequently:

G1 [k1;x(t)] =

∫
k1(τ1)x(t− τ1)dτ1 (3.10)

Using the same procedure, all the Wiener G-Functionals can be identified iteratively.

Few of these are given in the following and in Table 3.1.
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G2 [k2;x(t)] =

∫ ∫
k2(τ1, τ2)

2∏
i=1

x(t− τi)dτ1dτ2 − A
∫
k2(τ1, τ1)dτ1 (3.11)

G3 [k3;x(t)] =

∫ ∫ ∫
k3(τ1, τ2, τ3)

3∏
i=1

x(t− τi)dτ1dτ2dτ3

+

∫
k1(3)(τ1)x(t− τ1)dτ1 (3.12)

G4 [k4;x(t)] =

∫ ∫ ∫ ∫
k4 (τ1, τ2, τ3, τ4)

4∏
i=1

x(t− τi)dτ1dτ2dτ3dτ4

− 6A

∫
k4 (τ1, τ2, τ3, τ3) dτ3 + 3A2

∫ ∫
k4(τ1, τ1, τ2, τ2)dτ1dτ2 (3.13)

G5 [k5;x(t)] =

∫ ∫ ∫ ∫ ∫
k5 (τ1, τ2, τ3, τ4, τ5)

5∏
i=1

x(t− τi)dτ1dτ2dτ3dτ4τ5

− 10A

∫
k5 (τ1, τ2, τ3, τ4, τ4) dτ4 + 15A2

∫ ∫
k5(τ1, τ2, τ2, τ2, τ3)dτ2dτ3 (3.14)

Table 3.1: Relation between the Wiener and Volterra kernels [93]

G- 0th-order 1st-order 2nd-order 3rd-order 4th-order 5th-order

Functional kernels kernels kernels kernels kernels kernels

G0 k0

G1 k1

G2 k0(2) k2

G3 k1(3) k3

G4 k0(4) k2(4) k4

G5 k1(5) k3(5) k5

To determine an explicit formula of the Wiener kernels using the white Gaussian in-

put signal, consider an n-dimensional delay function, Dn [x(t)] = x (t− σ1) · · · x(t − σn).

This function is represented by a Volterra series with the kernel dn [τ1, · · · , τn] =

u0 (t− σ1) · · ·u0(t−σn). The average product of the output signal with the n-dimensional

delay system is given in (3.15):

y(t)Dn[x(t)] =
∞∑
p=1

Gm [km;x(t)]Dn[x(t)] (3.15)
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According to (3.3), Dn[x(t)]Gm[km;x(t)] = 0 ∀n < m. Thus, ifGn[dn;x(t)] = Dn[x(t)]+

F [x(t)], where F [x(t)] is a sum of homogeneous functionals of degrees lower than n, the

crosscorrelation for the previous term where m = n is:

Gn[kn;x(t)]Dn[x(t)] = Gn[kn;x(t)]Gn[dn;x(t)]−Gn[kn;x(t)]F [x(t)] (3.16)

Since Gn[kn;x(t)] is orthogonal to all functionals of degree lower and n, then:

Gn[kn;x(t)]F [x(t)] = 0 (3.17)

Gn[kn;x(t)]Dn[x(t)] = Gn[kn;x(t)]Gn[dn;x(t)] (3.18)

Therefore,

Gn[kn;x(t)]Gn[dn;x(t)] = n!An
∫
· · ·
∫
kn(τ1, · · · , τn)dn(τ1, · · · , τn)dτ1 · · · dτn

= n!An
∫
· · ·
∫
kn(τ1, · · · , τn)u0(τ1 − σ1) · · ·u0(τn − σn)dτ1 · · · dτn

= n!Ankn(σ1, · · · , σn) (3.19)

Consequently,

Gn[kn;x(t)]Dn[x(t)] = n!Ankn(σ1, · · · , σn) (3.20)

Finally, it can be deduced that the nth-degree Volterra kernel is given in (3.21) [93]:

kn (σ1, · · · , σn) =
1

n!An

[
y(t)−

n−1∑
m=0

Gm [km;x(t)]

]
Dn [x(t)] (3.21)

3.2 Volterra series Pruning Technique

Using the explicit expression of the Volterra kernels found in the last section, i.e., (3.21),

one can identify the dominant kernels required for nonlinear system modeling. These

dominant kernels are determined as those that lie within a given distance or norm from

the maximum value of that order. This later generates only the required Volterra kernels,

irrespective of the kernel order or memory depth. In addition, the formula (3.21) allows
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the dominant kernels identification without the need to estimate the nonlinearity order

and memory depths for each kernel. Conversely, the kernels with small contributions to

the target are ignored.

The resulting set of dominant kernels needs not to be a uniform or dense selection in

the total kernel space. This is in contrast to the Volterra series DDR approaches, where

the number of kernels for a high dynamic order is large because the complete sequence of

coefficients for the polynomial is included for each order. Thus, at each dynamic order,

an exponential growth of coefficients is still present. The G-Functional method provides a

non-uniform selection of dominant kernels that are essential for nonlinear dynamic system

modeling and linearization. Therefore, the high dynamics orders can be used without

suffering from the exponential growth of the number of coefficients.

The abovementioned approach can be applied in PA behavioral modeling or DPD syn-

thesis. First, the PA is driven with a white Gaussian noise to determine the set of dominant

kernels as explained above. The same PA is then driven with the realistic signal. The re-

sulting PA input and output are then used to construct a pruned Volterra series model

where only the dominant kernels are used. It is important to note that the PA should ex-

hibit the same distortions during the phase of dominant kernels selection and when driven

with the desired realistic signal. Therefore, the PA should be operated at the same carrier

frequency and input average power in both cases. In addition, the white Gaussian noise

and desired realistic signal should have similar characteristics that would dictate the dis-

tortions of the PA. Thus, the Gaussian noise has to be preprocessed to generate a signal

with similar bandwidth and PAPR to those of the modulated signal.

The operation of band limiting the white Gaussian noise yields non zero autocorrelation

for non zero lag time σ. Figure 3.1 shows the autocorrelation of various filtering scenarios of

the white Gaussian noise. It is clear from Figure 3.1 that as the filter bandwidth decreases,

the resulting autocorrelation deviates from the ideal Gaussian noise. In the following, the

realistic signal used in the measurement has a bandwidth of 20 MHz. However, as shown

clearly in Figure 3.1, the 20 MHz filtered noise autocorrelation is experiencing significant

correlation compare to the white Gaussian one. Therefore, the filter bandwidth was set to

30 MHz when generating the signal used to identify to set of dominant kernels.

The abovementioned approach is summarized in Figure 3.2. It starts with the deter-

mination of the set of dominant kernels when the PA is driven with white Gaussian noise.

The same PA is then excited with a realistic signal. The PA input and output signals are

then used to construct a pruned Volterra series model where only the previously chosen

set of kernels is used.
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Figure 3.1: Autocorrelation of filtered Gaussian white noise

Figure 3.2: Volterra series pruning using the Wiener G-Functionals for Volterra kernels

selection

Volterra Kernels Selection using G-Functionals for a Predefined

Dynamic Nonlinear System

For initial validation, the previously described approach is used here to determine the

dominant kernels of a predefined dynamic nonlinear system given in (3.22), where αi are

preset constant values, ∀ i ∈ {1, · · · , 6}.

y(n) = α1x(n) + α2x(n− 2) + α3x
2(n)x∗(n) + α4x(n)x(n− 4)x∗(n− 4)

+ α5x
3(n)x∗(n)x∗(n− 5) + α6x

2(n)x(n− 2)x∗2(n− 5) (3.22)

The application of (3.21) to the predefined nonlinear system led to the following set of
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dominant kernels: {h1(0), h1(2), h1(4), h3(0, 0, 0), h3(0, 4, 4), h5(0, 0, 0, 0, 5), h5(0, 0, 0, 5, 5)},
which have been found to accurately approximate the predefined dynamics of the system.

3.3 Behavioral Modeling and Digital Predistortion

using G-Functionals Pruned Volterra series

In this section, the G-Functionals pruning technique is applied to model a 250 W Doherty

PA driven with 20 MHz 4C WCDMA signal, and to linearizer a 45 W gallium nitride

(GaN) PA [105] driven with 20 MHz 1001 WCDMA signal. Both PAs are operating at the

carrier frequency fc = 2.14 GHz.

3.3.1 Behavioral Modeling using G-Functionals Pruned Volterra

series

In this subsection, modeling the output response of the 250 W Doherty PA is investigated.

First, the measured output signal of the Doherty PA driven with the filtered white Gaussian

noise was used to compute the Wiener G-Functionals. Subsequently the set of non-uniform

dominant kernels is deduced. It is worth mentioning that the Wiener G-Functionals com-

putation was performed using a nonlinearity order and memory depth equal to 7 and 9,

respectively. These large values were chosen to cover the largest possible combination of

Volterra kernels. Nevertheless, no major computation complexity was involved thanks to

the explicit formula given in (3.21). Furthermore, the Wiener G-Functionals were computed

only once with the objective being the set of dominant kernels determination necessary to

accurately model the PA behavior.

Following the dominant kernels identification, the pruned Volterra is reduced to small

number of coefficients. Table 3.2 shows the selected kernels for the nonlinearity order of

3 which are a non-uniform selection. Indeed, Table 3.2 shows a number of gaps in the

selection of h3. Comparing this selection with the Volterra series DDR model leads to the

following conclusions. On one hand, if a small number of coefficients are targeted, i.e.,

when using the first order reduction, i.e., r = 1, the DDR results in a selection of kernels

that are less general than those found by the Wiener G-Functional based technique. For

example, kernel k3(1, 2, 3) will not be selected, since it represents cross terms of the third

order. On the other hand, if a higher order of deviation, i.e., r = 3, and a larger number

of memory taps, i.e., M = 9, are used in the DDR, the number of coefficients will be

extremely large, higher than 500 coefficients for only the third order. This demonstrates
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that the G-Functional pruning method selects only the dominant kernels irrespective of the

nonlinearity order or memory depth. Thus, it allows high nonlinearity order and memory

taps without increasing exponentially the number of coefficients.

Table 3.2: Pruned kernels of order using the G-Functionals

Kernel 3

h3(0, 0, 0) h3(0, 3, 2) h3(0, 7, 8) h3(0, 0, 1) h3(0, 3, 3) h3(0, 8, 8)

h3(0, 0, 2) h3(0, 4, 4) h3(0, 8, 9) h3(0, 1, 0) h3(0, 4, 5) h3(0, 9, 9)

h3(0, 1, 1) h3(0, 5, 5) h3(1, 1, 0) h3(0, 1, 2) h3(0, 5, 6) h3(1, 1, 1)

h3(0, 1, 3) h3(0, 6, 5) h3(1, 1, 2) h3(0, 2, 0) h3(0, 6, 6) h3(1, 1, 3)

h3(0, 2, 1) h3(0, 6, 7) h3(1, 2, 1) h3(0, 2, 2) h3(0, 7, 6) h3(1, 2, 2)

h3(0, 2, 3) h3(0, 7, 7) h3(1, 2, 3)

Following the dominant kernel selection, pruned Volterra series identification using the

LSE algorithm is performed. Figure 3.3 demonstrates the capacity of the pruned Volterra

series in predicting the PA output signal to deduce the AM/AM characteristics. It is clear

that the prediction is in very good agreement with the measured output signal. The pruned

Volterra model also shows similar agreement for the AM/PM characteristics. The overlap

between the measured and modeled power spectrum densities (PSDs) of the output signal,

as shown in Figure 3.4, and a normalized mean square error (NMSE) equal to -43 dB,

confirm the modeling capability of the pruned Volterra series. These results were obtained

using only 73 kernels, with a nonlinearity order and a memory depth equal to 7 and 9,

respectively.

3.3.2 Digital Predistortion using G-Functionals Pruned Volterra

series

In this subsection, the 45 W GaN PA output response linearization is investigated. Sim-

ilarly to the previous subsection, the measured PA output signal driven with modified

white Gaussian noise was used to compute the Wiener G-Functionals. Subsequently, a set

of non-uniform dominant kernels is deduced. Following the dominant kernels selection, the

pruned Volterra series identification using the LSE algorithm was performed. Figure 3.5

demonstrates the pruned Volterra series capacity in reducing the output signal ACPR to

lower than -50 decibels relative to the carrier (dBc). According to Figure 3.5, the proposed

pruned Volterra series model shows similar results than the Volterra series DDR when the
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Figure 3.3: Measured and modeled AM/AM characteristic of the power amplifier

Figure 3.4: Measured and modeled spectrums of the power amplifier output signal

reduction order was set to 2, i.e., r = 2. However, Table 3.3 reports better EVM with fewer

number of coefficients for the proposed pruned Volterra series. This is attributed to the ad-

equate non-uniform dominant kernels selection when adopting the G-Functionals pruning

technique. Furthermore, according to Figure 3.6 and Table 3.3, the G-Functionals pruning

coefficients values range is smaller than when using the DDR approach. This results in eas-

ier hardware implementation, e.g., when using field programmable gate array (FPGA). In

fact, smaller coefficient values range requires lesser bits to preserve the computational accu-

racy. For instance, in Table 3.3, the coefficient values range is reduced by a factor of 100 in

the case of the G-Functionals versus DDR, resulting in a 7-bits, i.e., log2(100), reduction to

achieve the same computational accuracy. Therefore, the G-Functional approach achieves
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similar ACPR while improving the EVM and the ease of hardware implementation.

Table 3.3: Linearization and modeling performances comparison

EVM Number of Conditioning max(|hp|)
min(|hp|)

(dB) coefficients number

Without DPD -25.45 N.A. N.A. N.A.

Volterra series DDR DPD -35.05 91 3.8e7 4.4e4

G-Functionals pruned DPD -38.15 90 4.2e5 4e2

Figure 3.5: Output spectrum of the power amplifier before and after digital predistortion

Figure 3.6: Absolute value of Coefficients for the Volterra series DDR and G-Functionals
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3.4 Conclusion

This chapter introduces a novel pruning technique to reduce the number of kernels in

the Volterra series formulation using G-Functionals. With memory taps and highest kernel

order set to 9 and 7, respectively, a pruned Volterra series which involves only 73 coefficients

was constructed to linearize a nonlinear PA output signal. Excellent EVM and ACPR

reduction results demonstrate the reliability of the Wiener G-Functionals based pruning of

the Volterra series. In addition the Volterra pruning allowed for significant improvements

of the numerical computation (through smaller conditioning number and smaller range of

coefficient values) when compared to the Volterra series DDR. It is shown in Chapter 4 that

this pruning is very important when reducing the TOR bandwidth as it selects only the

dominant kernels. This technique is, however, not suitable for the pruning of multi-band

PA. Alternatively, Chapters 5 and 6 propose a new procedure to construct accurate, yet,

complexity reduced, multi-band behavioral models/DPD schemes for multi-band PA.
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Chapter 4

Wideband Digital Predistortion

Using Reduced Transmitter

Observation Receiver Bandwidth

Deployment of wideband signals necessitates the use of wideband TOR with high ADCs

and flat frequency response over a wide range of frequencies. The significant power and

cost overheads of high-speed ADCs reduce the DPD+PA cascade overall efficiency. Con-

sequently, they limit the usefulness of the DPD approach to enhance the trade-off between

efficiency and linearity.

The goal of this chapter is to relax the TORs bandwidth stringent requirements. It

starts with demonstrating that GST is insufficient on its own to reduce the TOR band-

width. Then, a new approach is devised to identify the DPD predistorter which utilizes an

appropriate nonlinear function to pre-process the PAs input signal. G-Functionals, intro-

duced in Chapter 3, are used to prune a low pass equivalent Volterra series. Consequently,

the nonlinear function structure, i.e., dominant kernels, nonlinearity order, and memory

depth, that approximates the PA behavior inverse is determined. It will be shown that

using only a portion of the PA output signal spectrum, the coefficients of the DPD are

iteratively updated to linearize its output response. It is also demonstrated that the TOR

bandwidth reduction extent is proportional to the agreement between the nonlinear func-

tion structure and the actual structure of the PA inverse. Simulations and measurements

conducted using different PA architectures and signals demonstrate the validity and gen-

erality of the proposed approach for linearizing and modeling wideband signals of up to 60

MHz. The modeling and linearization will be evaluated inside and outside of the reduced

TOR bandwidth. The band-limited Volterra series [114] is used as a model reference to

evaluate the proposed approach performances. Following the linearization of output of the
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PA, it will be shown that the GST is enabled to model a wideband PA output signal using

reduced TOR bandwidth.

4.1 General Sampling Theorem for Digital Predistor-

tion Identification

The application of DPD to linearize a PA requires capturing the output signal using a TOR

that has a bandwidth equal to at least five times the input signal modulation bandwidth.

As the latter widens, this requirement becomes less manageable. The GST was suggested

as a potential solution to model nonlinear systems with reduced observation bandwidth,

however, it will be demonstrated in this section that GST is not suitable for DPD iden-

tification. As explained in Chapter 2, the GST [123] provides a solution to capture the

output signal of a nonlinear system, e.g., a PA at a sampling rate lower than the ONR,

ultimately at the INR.

In the PA post-distortion cascade case, if f(.) and g(.) represent the PA model and

its corresponding post-distortion function, respectively, then g(f(.)) reduces the output

signal bandwidth to that of the input signal. Therefore, the GST theoretically supports

a reduction in the bandwidth of the TOR needed to capture the PA output signal. This

signal can be obtained by applying the inverse function of g(.) as given in (2.21); g(.)

needed to be known a-priori. However, if a post-distorter exists, then a pre-distorter exists

which is exactly equal to the post-distorter (according to the pth-order inverse theorem

[91]). Therefore, application of the GST as formulated in [123] to reduce the bandwidth

requirement when capturing the PA output signal would require a priori knowledge of

the pre-distortion function itself. Since the exact DPD, i.e., the g(.) that meets the GST

conditions, is not available beforehand, GST is not a suitable approach to use to reduce

the TOR bandwidth requirement.

Below, examples are provided to illustrate that using the GST alone is insufficient to

obtain the output of a nonlinear PA. Using a 20 MHz input signal as a test signal for

a nonlinear PA yields an output signal of wider bandwidth, i.e., 100 MHz, as shown in

Figure 4.1. Therefore, a sampling rate of 2×100 MHz is needed to capture the PA output

signal envelope without loss of information according to Nyquist-Shannon theorem [92].

To apply the GST and reduce the TOR bandwidth, knowledge of the exact post-distortion

function, g(.), is required so that the output signal of the cascade composed by the PA

and the post-distorter can be sampled at a sampling rate equal to 2× 20 MHz, as shown

in Figure 4.2. Given the equality between the pre-distortion and post-distortion functions,
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the GST may be applied to reduce the TOR bandwidth at the PA output as depicted in

Figure 4.3. However, in the absence of an exact pre- or post- distortion function, the output

signal of the cascade will not experience a bandwidth reduction, as shown in Figure 4.4.

In this latter case, the output signal will need to be sampled at the normal sampling rate

of 2 × 100 MHz. Note that when using the pth-order inverse, the pre-distorter and the

post-distorter are equivalent and will not affect the applicability of the GST.

Figure 4.1: Signal representation of a nonlinear power amplifier

Figure 4.2: Signal representation of a nonlinear power amplifier with exact post-distortion

Figure 4.3: Signal representation of a nonlinear power amplifier with exact pre-distortion

Figure 4.4: Signal representation of a nonlinear power amplifier with inexact pre-distortion
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4.2 Bandwidth Requirement in the Transmitter Ob-

servation Receiver

In order to enable the GST to sample the output spectrum using reduced rate, a technique

is proposed to enable the configuration of Figures 4.1 and 4.4 to attain the conditions

satisfied by Figures 4.2 and 4.3. In the following sections, the PA will always be in the

configuration of Figure 4.1 or Figure 4.4 unless otherwise stated. It will be shown that a

reduced sampling rate of 2 × INR can be used for the linearization of the PA instead of

the conventional 5× INR. Theoretical explanations, simulation and measurement results

are reported to support the sampling rate reduction claim.

Transmitter Observation Receiver Bandwidth Requirement

Let us consider a PA with a static nonlinear transfer function as given in (4.1), where x(n)

and y(n) are the PA input and output signals respectively, P is the nonlinearity order,

and ai are known memoryless coefficients of the PA model. Since the nonlinearity order

dictates the bandwidth expansion, a memoryless model was selected for simplicity rather

than a model with memory effects. For reasons of clarity, the nonlinearity order will be set

to 3, i.e., P = 3, initially. Later, it will be shown that the results can be generalized to any

order of nonlinearity. Using the pth-order inverse [91], (4.1) suggests that the DPD model

can be expressed in the same form, i.e., (4.2) , with bi being the unknown memoryless

coefficients, u(n) the DPD input signal and x(n) the DPD output signal.

y(n) =

P−1
2∑

p=0

a2p+1 |x(n)|2p x(n) (4.1)

x(n) =

P−1
2∑

p=0

b2p+1 |u(n)|2p u(n) (4.2)

In order to identify the DPD models unknown coefficients, i.e., bi, when P = 3, at least

two independent equations are needed, i.e., one for each unknown value. Figures 4.5 and 4.6

illustrate the frequency domain of the PAs input and output signals, with and without the

presence of a DPD. In Figure 4.6, while the DPD must be a nonlinear function, it does

not have to be exactly the inverse of the PA (Figure 4.4). In either case, the PA input

signal is a multi-tone. Figure 4.5 suggests that one of the equations for identifying bi can

be deduced from the nonlinear amplification of the fundamental tones. A second equation
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can be determined by the identification of the IMD3 generated at the output of the PA.

Note that, theoretically the fundamental tones are amplified differently and thus lead to

two equations toward the identification of bi [89]. However, in practice the theoretical

difference between the amplitude of the different amplified tones can be very small and its

practical determination can be subject to measurement noise and limited resolution (please

refer to Appendix A). Thus, the inclusion of the IMD3 measurement is used to mitigate

this problem. The same conclusions remain true for any nonlinearity order. For example,

for P = 7, measurement of IMD3, fifth order IMD (IMD5) and seven order IMD (IMD7) is

required to accurately determine the DPD model coefficients when driven by a multi-tone

signal; in other words five equations. However, in practice, while the nonlinearity order of

the DPD model is usually set higher than 5, only IMD3 and IMD5 are captured to identify

the DPD coefficients. This discrepancy is discussed later.

Figure 4.5: Frequency domain representation of the input and output signals of a memo-

ryless nonlinear power amplifier driven with a multi-tone signal

Figure 4.6: Frequency domain representation of the input and output signals of a memo-

ryless nonlinear digital predistortion and power amplifier cascade driven with a multi-tone

signal

Returning to the case of P = 3, Figures 4.5 and 4.6 show that the output signal band-

width is larger than the input due to the PA nonlinearity that generates IMDs. However,

the same figures show a major difference in the location of the IMDs at the PA output

signal. Figure 4.5 shows that all IMD3 are generated outside of the output in-band signal:

[fmin · · · fmax], where fmin and fmax are the smallest and highest frequency amplified tones
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respectively. Figure 4.6, however, shows that even though the PA nonlinearity is only 3, up

to 5 times the input bandwidth is observed at the output of the PA and the IMDs location

is now in both the in-band and out-of-band regions, i.e., inside and outside [fmin · · · fmax].
The presence of IMDs inside the output signal in-band region is due to the presence of

tones outside the [fmin · · · fmax] band at the input of the PA. The latter generates in-band

IMDs at the output of the PA when passing through the nonlinear PA. Therefore, by only

measuring the in-band output signal (the amplified multi-tone and the in-band IMDs),

more than one independent equation can be deduced. In other words, with an observa-

tion of only the in-band output signal, all bi can be identified and a DPD model can be

computed. This allows for a reduction of the required TOR bandwidth at the output of

the PA. The previous demonstrates that more IMDs are generated inside and close by the

in-band when preceding the PA with a nonlinear function. Therefore more equations can

be produced for the identification of the DPD coefficients with reduced TOR bandwidth.

With a large enough number of tones, only in-band observation would be required to

characterize the PA nonlinearity and to identify the DPD coefficients. This is due to the

large number of IMDs generated in the output in-band region which provide a large number

of independent equations to identify the DPD coefficients, bi. However, in practice, this

is not sufficient and an observation of up to twice the input signal bandwidth is usually

needed. This is explained in detail in Section 5.3.

Reduction of the Bandwidth Requirement for a Memoryless Non-

linear Power Amplifier

In the proposed technique, the output signal is captured by a receiver with a bandwidth

equal to twice the input one. This is still a considerable reduction of the TOR bandwidth

from five times to only two times the input signal bandwidth. Several iterations were

needed to identify the DPD coefficients when using the reduced TOR bandwidth. For

the remainder of this chapter, all linearization performances have been calculated after

iterating the DPD coefficients identification ten times.

A simulation case study of a memoryless nonlinear PA was conducted using a three

uniformly spaced tones input signal. The nonlinearity of the model was set equal to 9 and

even and odd orders were used. The model is given in (4.3).
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y(n) =
9∑
p=1

ap |x(n)|p−1 x(n) (4.3)

a1 ≈ −0.56 + 0.84j a2 ≈ −1.14 + 0.57j a3 ≈ 15.94− 8.80j

a4 ≈ −95.11 + 50.22j a5 ≈ 303.09− 136.99j a6 ≈ −50.68 + 202j

a7 ≈ 575.1− 168.66 a8 ≈ −321.89 + 76.1j a9 ≈ 74.9− 14.66j

The frequency components which were far from the carrier frequency (both baseband

and harmonics) were neglected. To determine the DPD coefficients bi, (4.4) was expanded

and minimized as follows:

e(n) = y(n)− u(n) (4.4)

where x(n) =
9∑
q=1

bq |u(n)|q−1 u(n) (4.5)

When (4.4) is expanded using MAPLE software, within a TOR bandwidth equal to

twice the bandwidth of the input signal, a total of 11 independent equations were found in

the case of Figure 4.5 and 25 in the case of Figure 4.6. One can conclude that a reduced

TOR path is more likely to be feasible for the identification of bi due to the presence of the

nonlinear non-convergent DPD function prior to the PA. Therefore, identifying the DPD

coefficients is possible using a reduced TOR path in the case of Figure 4.6.

It is important to note that while the TOR bandwidth is reduced at the output of

the PA, the input signal of the PA should still be sampled at full rate (sampling equal to

5 × INR). In fact, the generation of the IMDs at the input of the PA is what makes the

sampling rate reduction possible in the TOR path. It allows the generation of IMDs inside

the output in-band and close to the output in-band region. In addition, the nonlinear pre-

distorter generates IMDs at the input of the PA both inside of and outside the observable

band. As the PA is also a nonlinear function, some of the IMDs outside of the observ-

able band will generate new sets of IMDs in the observable band, as shown Figure 4.6.

Therefore, by capturing only the observed band, information about the PA behavior out-

side the observable band can be found. Consequently, modeling and linearization using

reduced TOR bandwidth is possible even when the PA is non-consistent outside the ob-

servable band. In other words, a reduced TOR bandwidth is only possible when using a

full speed DAC (5× INR) at the input of the PA. This is in contrast to the band-limited

Volterra series [114] where both the input and the output of the PA are sampled at the
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reduced rate. Actually, the reduced rate of the input signal in the band-limited Volterra

series yields to linearization only within the observed band; no linearization is possible

elsewhere. However, using the proposed approach, linearization will also be possible out-

side of the observed band. This hypothesis is supported by simulation and measurement

results reported in the following sections.

4.3 Necessity of Twice the Input Nyquist Rate at the

Transmitter Observation Receiver

Above, it was shown that within a bandwidth equal to that of the input signal, enough

signal information at the output is present to linearize the PA output signal. However, due

to potential modeling error in selecting the right kernels for the DPD (selecting kernels

that do not represent the inverse of the PA model), the sampling rate should be set to

2× INR instead of 1× INR. In this section, an explanation of this claim is provided.

The DPD structure is thought to be correct/appropriate when the right kernels are

selected for the DPD to represent exactly the inverse of the PA. Conversely, the incorrect

DPD structure means that either different, more or fewer kernels have been selected for

the DPD model. As an example, if a PA model is given in (4.6), the correct DPD model

should be similar to (4.7). Thus, when selecting the kernels of (4.7) to be identified, it

is said that the correct DPD structure is selected. Whenever any other, fewer or more

kernels are selected to be identified as a DPD model, e.g., as in (4.8) or (4.9), it is said

that the incorrect DPD structure has been selected. Note that, the harmonics are not

considered in the DPD system as the focus is on the signal around the carrier frequency

and the harmonics have been previously filtered.

y(n) = a1x(n) + a3x(n− 1)x(n− 2)x(n) (4.6)

x(n) = b1u(n) + b3u(n− 1)u(n− 2)u(n) (4.7)

x(n) = b1u(n) + b5u(n− 1)u(n− 2)u3(n) (4.8)

x(n) = b1u(n) + b3,1u(n− 1)u2(n) + b3,2u
3(n) (4.9)

In the case where a correct DPD structure is selected, a sampling rate equal to 1×INR
can be used for the linearization of the PA output as explained before. The coefficients

identified using the in-band information will ensure the construction of a PA inverse model

that covers the out-of-band region too. However, if an incorrect DPD structure is used,
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the coefficients identified using the in-band information will not guarantee good accuracy

in the out-of-band region or the exact PA inverse model. In such a case, the constructed

DPD will only fit the inverse of the PA within the in-band region and deviates outside,

(please refer to appendix B for an illustration with an example). In practice, it is almost

impossible to come up with the correct DPD kernels for the following reasons:

• Complexity: only a limited number of kernels are allowed, i.e., there will be always

some kernels missing that perfectly describe the inverse of the PA.

• Modeling error: due to measurement noise and test setup calibration.

In a simulation environment (modeling error free mode) and using a memoryless model

(reduced complexity mode), it has been shown that when a correct DPD structure is found,

a sampling rate equal to 1 × INR suffices to linearize the output of the PA model. Let

us consider the case of a memoryless PA as was given in (4.3) with P = 7. The DPD

structure is easy to find and is equal to a memoryless polynomial with P ≈ 7. In this case,

identification of bi can be done while sampling at a rate equal to 1×INR and linearization

of the PA output is achieved. Figure 4.7 shows the case of a nonlinear PA with and without

DPD where the input signal is a 20 MHz 4C WCMDA. The DPD was constructed using

the conventional approach with the sampling rate is equal to 5× INR, and with a reduced

sampling rate equal to 1 × INR. It is clear from Figure 4.7 that both DPD approaches

were able to linearize the output signal of the PA. It can be concluded then that when the

structure of the DPD is known a priori, sampling the output signal at 1×INR is sufficient.

Figure 4.7: Power amplifier output spectrum without digital predistortion and with a

memoryless digital predistortion of nonlinearity order equal to 7 with Fs = 1× INR and

Fs = 5× INR
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When the DPD structure is not chosen correctly, i.e., in the cases of over/under mod-

eling or incorrect choice of the set of kernels, and the sampling rate is set to 1 × INR,

it is anticipated that the linearization capability will be very limited. Conversely, if the

sampling rate is increased to 2 × INR, even if the correct DPD structure has not been

selected, good linearization will be achieved. Figure 4.8 shows the linearization capabilities

of a memoryless DPD model when N = 13 (incorrect DPD structure due to over model-

ing). It is clear from Figure 4.8 that when the sampling rate at the output of the PA was

set to 5 × INR, a good reduction of the output spectrum was observed. However, when

the output sampling rate was reduced to 1 × INR, the linearization capabilities degrade

as there were uncorrelated IMDs inside and outside the in-band region. In this case, due

to over modeling, accurate linearization can occur only for the inside IMDs. Since more

degrees of freedom than needed are present in the model, there is no guarantee that the out

of band IMDs will be deduced. Consequently, limited linearization was recorded. However,

when the output sampling rate was increased to 2× INR, some of the outside IMDs were

captured and accurate linearization was achieved inside and outside the observation path

as shown in Figure 4.8. It is important to note that, when the TOR bandwidth is set

equal to the targeted linearized band, increasing the nonlinearity order will not degrade

the linearization capability.

Figure 4.8: Power amplifier output spectrum without digital predistortion and with a

memoryless digital predistortion of nonlinearity order equal to 13 with Fs = 1 × INR,

Fs = 2× INR and Fs = 5× INR

Figure 4.9 shows the ACLR performance for the memoryless model against the TOR

bandwidth (output sampling rate) and nonlinearity order of the DPD. It can be deduced

that when a correct DPD structure is selected, (P ≈ 7), a reduction of the sampling

rate to 1× INR is possible without trading-off the linearization capabilities. However, as
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soon as the nonlinearity order begins to drift from P ≈ 7, the linearization capabilities are

degraded if the sampling rate is decreased to less than 2×INR. Note that, for cases where

P < 7, the performance is limited even for high sampling rates due to under modeling.

Figure 4.9: Adjacent channel leakage ratio versus the digital predistortion nonlinearity

order and the transmitter observation receiver bandwidth

In conclusion, Figure 4.9 demonstrates that if the correct DPD structure is selected,

any sampling rate equal to or greater than 1 × INR can be deployed without trading-off

the linearization capabilities. However, when the correct DPD structure is not precisely

known, the sampling rate has to be increased to at least 2× INR in order to achieve good

linearization. For realistic PAs, memory effects are introduced in addition to the static

nonlinearity and therefore a correct DPD structure is more challenging and complex to

determine. There is no guarantee that the correct DPD kernels can be identified, especially

when the PA is driven with wideband signals and thus exhibiting strong memory effects.

For this reason, in our analysis, the reduced sampling rate was relaxed to 2 × INR to

improve the linearization capabilities. This is still a considerable reduction of the ADC

speed requirement as a 2/5 reduction rate is achieved compared with the conventional

approach.

Since, it is established that selecting the right kernels for the DPD is crucial for the

reduction of the TOR bandwidth, the G-Functionals pruned Volterra series described in

Chapter 3 is used for a better approximation of the correct DPD structure. Consequently,

the DPD structure that describes best the inverse of the PA can be found and a reduction

of the TOR bandwidth will be more likely possible.
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4.4 Digital Predistortion with Reduced Transmitter

Observation Receiver Bandwidth Identification

Algorithm

In this section, the pruned Volterra series using G-Functionals is used for the validation of

the reduced TOR bandwidth approach in simulation using multi-tone and modulated sig-

nals. First, three-, four- and five-tones signals were used as input signals to the memoryless

nonlinear PA model given in (4.3). The sampling rate of the output of the PA was set to

2× INR instead of the usual 5× INR. In other words, if the input signal bandwidth was

set to 20 MHz, the required ADC sampling rate would be only 80 Msps (40 MHz band-

width observation) instead of 200 Msps (100 MHz bandwidth observation). The output

signal was then up-sampled by a factor of 5/2 to match the bandwidth of the input of the

PA (the predistorted signal) and the DPD coefficients were identified. Ten iterations of

this process were performed. After sufficient iterations, the DPD aligned with the inverse

of the PA behavior and the results are discussed hereafter. The previous statements are

summarized in the algorithm 1 and Figure 4.10.

initialize g0(u(n)) to a random nonlinear expansion function ;

for k from 1 to 10 do

compute xk(n) = gk−1(u(n))|Fs = 5× INR ;

modulate discrete xk(n) to continuous xk(t) ;

up-convert xk(t) to RF ;

down-convert the PA output yk(t) to IF ;

filter yk(t) by a band-pass filter having a bandwidth equal to twice the

bandwidth of the input signal ;

sample continuous yk(t) to discrete yk(t)|Fs = 2× INR ;

up-sample yk(n) by 5/2 ;

identify DPD parameters with LSE ;

B =
(
Y TY

)−1
Y TX = [hi1(σ1) · · ·hiP (σ1, · · · , σP )]

T
;

where X = [xk(n) · · · xk(n−M)]T — M: memory depth ;

Y =

 yk(n− σ1) · · · yk(n− σ1) · · · yk(n− σnp)
...

. . .
...

yk(n−M − σ1) · · · yk(n−M − σ1) · · · yk(n−M − σnp)


end

Algorithm 1: Identification algorithm for digital predistortion with reduced transmitter

observation receiver bandwidth
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Figure 4.10: Identification process of the digital predistortion function using a reduced

transmitter observation receiver bandwidth

Figure 4.10 shows the block diagram of the DPD+PA cascade using a reduced TOR

bandwidth. The example is provided for a 20 MHz bandwidth input signal. The full rate

DPD generates a 100 MHz predistorted signal from a five times oversampled input signal.

A 200 MHz DAC converts the digital signal to analog and an up-converter makes it RF.

The PA produces an output signal of a bandwidth equal to 100 MHz. Since the purpose

of this chapter is to demonstrate the use of a reduced TOR bandwidth, the signal goes

through a band-pass filter with a bandwidth equal to 40 MHz. This allows the capture

of the output signal without aliasing. Indeed, although the signal has a bandwidth of

100 MHz, the ADC speed is only set to 80 Msps allowing a capture of only 40 MHz. To

avoid any aliasing problem, the signal is first filtered to remove any unnecessary spectrum

then sent to the ADC. Up-sampling of the digitized output signal is carried out to ensure

the matching between the sampling rates of the samples representing the PA input and

output signals (2×100 Msps). This does not recover the filtered spectrum band but rather

augments the sampling rate of the output signal to match the full speed rate of the DPD.

The input and output of the PA are then used to identify the DPD using indirect learning.

Finally, the coefficients of the DPD are updated and another iteration of the previous steps

is begun.

Figures 4.11 and 4.12 show the worst ACLR for the equally spaced and non-uniformly

spaced multi-tone input signals for both the DPD with reduced TOR bandwidth and a

conventional DPD with full bandwidth. It is clear that the linearization performance

starting with four tones for equally spaced multi-tone signals, and beginning at three for

non-uniformly spaced multi-tone signals, is the same for both the DPD with full bandwidth

and DPD with reduced TOR bandwidth. In fact, as the number of tones is increased,

more IMDs are generated in the in-band and close to the in-band output spectrum region.

Thus, more equations for identifying bi are generated. This suggests the applicability of
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the reduced TOR bandwidth technique for modulated signals, as these signals are as rich

as multi-tone signals. Next, simulation and measurement results are presented for 20 MHz

and 60 MHz modulated wideband signals.

Figure 4.11: Adjacent channel leakage ratio of the output signal of the power amplifier in

Figure 4.6 under equally spaced multi-tone stimuli

Figure 4.12: Adjacent channel leakage ratio of the output signal of the power amplifier in

Figure 4.6 under non-uniformly spaced multi-tone stimuli
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4.5 Digital Predistortion with Reduced Transmitter

Observation Receiver Bandwidth Validation

4.5.1 Simulation Results

Simulation with a nonlinear dynamic PA, with an output signal having an ACLR of about

-30 dBc, was used. The input signal was set to 20 MHz 4C WCDMA. The linearization

of this PA was performed with an output observation path set to 40 MHz (the proposed

reduced TOR bandwidth). For comparison, a 40 MHz band-limited Volterra series was

used in addition to the conventional DPD with full and limited-bandwidth. The four DPD

configurations are given in Table 4.1. To contextualize the results outlined in Table 4.1,

the DPD with full-bandwidth uses full rate ADC (speed equal to 5× INR) to capture the

output signal with a bandwidth equal to five times the bandwidth of the input signal. It

also uses a full rate DAC (speed equal to 5× INR) to generate a predistorted signal with

a bandwidth equal to five times the original input signal. Finally, the model identifies the

DPD coefficients when the time step is T = 1/Fs = 1/(5×INR).

Table 4.1: Different linearization digital predistortion schemes

DAC ADC DPD

Speed Speed Speed

Conv DPD with full bandwidth 5× INR 5× INR 5× INR

Conv DPD with limited bandwidth 2× INR 2× INR 2× INR

Band-Limited Volterra series DPD 2× INR 2× INR 5× INR

DPD with reduced TOR bandwidth 5× INR 2× INR 5× INR

Figure 4.13 shows the output PSD of the nonlinear PA with and without DPDs. The

four DPDs were iterated ten times for convergence, especially relevant when using the

reduced TOR bandwidth of 40 MHz. The band-pass filter appears in the figures that

follow, when applicable, to illustrate the TOR bandwidth. On the one hand, after ten

iterations, the reduced TOR bandwidth DPD approach allowed an adjacent channel power

ratio (ACPR) of less than -50 dBc, i.e., met the WCDMA mask [1]. On the other hand,

the DPD with an output signal sampled at 100 MHz had faster convergence and allowed

an ACPR reduction of about -60 dBc. However, the band-limited Volterra series was able

to linearize the PA only within the observed band; no linearization was achieved elsewhere.

Finally, the band-limited conventional DPD showed no linearization outside the observed
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band and poor linearization within. Thus, it can be concluded that under simulation the

reduced TOR bandwidth succeeded in linearizing the PA output signal within and outside

the observation path but achieved slightly less ACPR reduction than the DPD with full

bandwidth. Nevertheless, it should be pointed out that the sampling rate was lowered by

more than half, thereby trading-off some ACPR reduction while still passing the WCDMA

mask. These results were replicated under measurement conditions which are reported in

the next subsection.

Figure 4.13: Output spectrum of the power amplifier driven with a 20 MHz 4C WCDMA

signal with and without the different digital predistortion schemes of Table 4.1

The same conclusions were found in the case where the input signal bandwidth was

60 MHz as shown in Figure 4.14. The conventional DPD with full bandwidth and the

DPD with reduced TOR bandwidth were able to linearize the PA for more than -50 dBc,

meeting the spectrum mask. Similarly, the band-limited Volterra series could only linearize

inside the observed band. The conventional DPD with limited bandwidth achieved poor

linearization performance even within the observed band. Therefore, one can conclude that

using the DPD with reduced TOR bandwidth, linearization of a given PA is possible inside

and outside the observed band without a severe degrading of the linearization performance.

Note that the DPD with reduced TOR bandwidth and the band-limited Volterra series

model achieved better ACPR next to the in-band signal. In fact, when sampling at large

time step (small TOR bandwidth), both the receiver noise figure and flatness are better

than when using small time step (large TOR bandwidth). Therefore, the sampling of the

output signal close to the in-band region was better in the case of the proposed model

with reduced TOR bandwidth and the band-limited Volterra series DPD when compared

to the case of conventional DPD with full bandwidth. Consequently, better linearization
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Figure 4.14: Output spectrum of the power amplifier driven with a 60 MHz mixed LTE

signal with and without the different digital predistortion schemes of Table 4.1

was recorded in that region.

4.5.2 Measurement Results

In this subsection, measurement results are presented to prove the applicability of the

proposed approach in reducing the required bandwidth of the TOR. Two different PA

architectures were used (GaN single-ended [105] and GaN Doherty PA [106]), with two

different signal bandwidths (20 MHz and 60 MHz), in order to prove the generalizability of

the DPD with reduced TOR bandwidth. As was done for the simulation results, the DPDs

with reduced TOR bandwidth performance was compared with the band-limited Volterra

series and conventional DPDs with limited and full bandwidth. ACPR and EVM mea-

surements were used to evaluate the different DPD performances. The ACPR is given in

(4.10), where Pch is the average power in the channel (the in-band power) and Padj(offset)

is the average power of the adjacent channel centered at fc ± offset. Note that for the

20 MHz signal, the average power is computed over 5 MHz bandwidth, while for the 60

MHz signal the average power is computed over a 15 MHz bandwidth. The EVM is given

in (4.11) where u(n) and y(n) are the PA input and output signals respectively, N is the

number of samples (set to 100e3), and SSG is the small signal gain of the PA stages (main

PA and drivers). Note that different sets of samples are used during the DPD coefficients

identification and performance evaluation (EVM and ACPR).
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ACPR = 10log10

(
Padj(Offset)

Pch

)
(4.10)

EVM = 10log10


∑N

n=1

∣∣∣u(n)− y(n)
SSG

∣∣∣2∑N
n=1 |u(n)|2

 (4.11)

Figure 4.15 illustrates the measurements setup that allows for PA DUT model-

ing/linearization up to 300 MHz. It included an I/Q modulation generator of 1 Gsps

(R&S R©AFQ100A) and an RF source up to 12.75 GHz (R&S R©SGS100A) on the transmis-

sion side. A signal and spectrum analyzer of 320 MHz analysis bandwidth (R&S R©FSW)

was used in the feedback path. All equipments were locked to the same 10 MHz refer-

ence and the transmitter path triggered the feedback path. A computer equipped with

MATLAB controlled the instruments and performed time alignment, up-sampling, DPD

coefficients identification, predistorted signal generation and linearization performance cal-

culations.

Figure 4.15: Characterization setup of the digital predistortion with reduced transmitter

observation receiver bandwidth

Figure 4.16 depicts the linearized output spectrum of the GaN single-ended PA, driven

with a 20 MHz 4C WCDMA signal, under the different DPD schemes as given in Table 4.1.

Figure 4.16 shows a significant reduction in the out-of-band spectrum emission when de-

ploying the conventional DPD with full bandwidth. About -42 dB of EVM was achieved

when deploying the conventional DPD with full bandwidth as shown in Table 4.2, and less

than -51 dBc of ACPR was recorded according to Table 4.3. It is clear from Figure 4.16

and Table 4.3 that when using the conventional DPD with limited-bandwidth, the lin-

earization performance dropped dramatically, especially in terms of ACPR. For instance,
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at the second offset, the DPD did not reduce the out-of-band spectrum at all (-34 dBc).

The band-limited Volterra series reduced the spectrum regrowth within the observation

bandwidth; however, there was still spectrum regrowth outside the observed band. Actu-

ally, the band-limited Volterra DPD almost matched the performance of the conventional

DPD with full bandwidth inside the observed band, but did not improve the signal quality

outside of the band. The DPD with reduced TOR bandwidth, however, showed lineariza-

tion performance close to those of the conventional DPD with full bandwidth. In fact,

about -50 dBc ACPR was maintained within and outside the observed bandwidth.

Figure 4.16: Output spectrum of the GaN single-ended power amplifier driven with a 20

MHz 4C WCDMA signal with and without the different digital predistortion schemes of

Table 4.1 when Fs = 2× INR

The sampling rate 2 × INR allowed linearization inside and outside the observable

band. The linearized output signal respected the spectrum mask [1] and achieved better

performance than the band-limited and conventional DPD with limited bandwidth. In the

following section, an attempt to reproduce the exact performance of the full bandwidth

DPD is provided with a small increase of the sampling rate to 2.5 × INR. Figure 4.17

shows a comparison between the PA output PSDs when deploying the different DPD

linearizers when the output sampling rate is 2.5 × INR. It can be concluded that the

conventional DPD with limited-bandwidth failed to linearize the PA output outside the

observed band and only achieved limited linearization inside the observed band. The band-

limited Volterra series DPD reduced the spectrum regrowth only within the observation

bandwidth and did not improve the signal quality outside of the observed band. However,

the DPD with reduced TOR bandwidth linearization capabilities were the same than those

of the DPD with full bandwidth as shown in Table 4.3. About -53 dBc was maintained
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Table 4.2: Error vector magnitude at the output signal of the power amplifiers

`````````````````̀Model Type

Signal type 20 60

MHz MHz

Without DPD -20.92 -21.39

Conv DPD with Full Bandwidth 5.0× INR -41.93 -38.64

Conv DPD with Limited Bandwidth 2.0× INR -29.01 -33.66

Conv DPD with Limited Bandwidth 2.5× INR -35.29 -35.32

Band-Limited Volterra Series DPD 2.0× INR -29.96 -34.29

Band-Limited Volterra Series DPD 2.5× INR -35.70 -37.15

DPD with Reduced TOR Bandwidth 2.0× INR -39.13 -34.31

DPD with Reduced TOR Bandwidth 2.5× INR -39.93 -37.54

Table 4.3: Measured adjacent channel power ratio at the output of the GaN single-ended

power amplifier Driven with a 20 MHz 4C WCDMA signal

XXXXXXXXXXXXXX
Model Type

Offset 12.5 17.5 22.5 27.5

MHz MHz MHz MHz

Without DPD -27.09 -29.28 -32.69 -42.84

Conv DPD with Full Bandwidth 5.0× INR -50.42 -52.30 -53.64 -54.64

Conv DPD with Limited Bandwidth 2.0× INR -41.97 -34.18 -30.83 -39.19

Conv DPD with Limited Bandwidth 2.5× INR -47.19 -46.17 -40.65 -39.93

Band-Limited Volterra Series DPD 2.0× INR -49.70 -44.25 -30.41 -39.69

Band-Limited Volterra Series DPD 2.5× INR -52.19 -52.22 -44.92 -39.08

DPD with Reduced TOR Bandwidth 2.0× INR -52.70 -51.33 -49.28 -47.92

DPD with Reduced TOR Bandwidth 2.5× INR -52.17 -52.53 -53.46 -54.68

across 100 MHz at the output of the PA although only 50 MHz of output signal was

captured and used during the DPD coefficients identification. This demonstrates that

increasing the sampling rate beyond 2.5× INR is not necessary.

To demonstrate the applicability of the DPD with reduced TOR bandwidth to wideband

signals, a 60 MHz bandwidth signal was used, namely a mixed LTE and WCDMA signal

as given in Figure 4.18. The PAPR of the signal was 10.5 dB and the GaN Doherty PA
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Figure 4.17: Output spectrum of the GaN single-ended power amplifier driven with a 20

MHz 4C WCDMA signal with and without the different digital predistortion schemes of

Table 4.1 when Fs = 2.5× INR

was driven to 2 dB compression point. The PA carrier frequency was set to 850 MHz.

Figure 4.18 shows the PA output spectrums with and without DPDs. The different DPD

schemes, shown in Table 4.1, were used to linearize the PA and the results are reported in

Figures 4.18 and 4.19 and Tables 4.2 and 4.4. First, the TOR bandwidth was set to 120

MHz (twice the input signal bandwidth) and then increased to 150 MHz (2.5 times the

input signal bandwidth).

Figure 4.18: Output spectrum of the GaN Doherty power amplifier driven with a 60 MHz

mixed LTE signal with and without the different digital predistortion schemes of Table 4.1

when Fs = 2.5× INR
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Figure 4.19: Output spectrum of the GaN Doherty power amplifier driven with a 60 MHz

mixed LTE signal with and without the different digital predistortion schemes of Table 4.1

when Fs = 2.5× INR

Table 4.4: Measured adjacent channel power ratio at the output of the GaN Doherty power

amplifier driven with a 60 MHz 4C WCDMA signal

XXXXXXXXXXXXXX
Model Type

Offset 37.5 52.5 67.5 82.5

MHz MHz MHz MHz

Without DPD -35.82 -35.13 -43.07 -45.14

Conv DPD with Full Bandwidth 5.0× INR -50.03 -50.52 -51.18 -51.03

Conv DPD with Limited Bandwidth 2.0× INR -46.58 -41.62 -41.50 -44.31

Conv DPD with Limited Bandwidth 2.5× INR -49.79 -49.57 -46.92 -45.35

Band-Limited Volterra Series DPD 2.0× INR -49.82 -44.81 -41.33 -44.31

Band-Limited Volterra Series DPD 2.5× INR -49.95 -49.04 -48.18 -44.94

DPD with Reduced TOR Bandwidth 2.0× INR -50.90 -50.83 -50.64 -50.45

DPD with Reduced TOR Bandwidth 2.5× INR -50.71 -50.91 -50.93 -50.60

Figure 4.18 shows that the conventional DPD with full bandwidth linearized the output

spectrum for less than -50 dBc along the 300 MHz bandwidth. Similarly to the previous

experiments, the DPD with limited bandwidth failed to linearize the output spectrum PA

outside the observed band and achieved limited linearization within the observed band.

The band-limited Volterra series succeeded in linearizing the PA within the observed band

but did not reduce the spectrum regrowth beyond 120 MHz (outside the observed band).
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However, it is clear from Figure 4.18 and Table 4.4 that the DPD with reduced TOR

bandwidth linearized the output of the PA for the entire 300 MHz bandwidth at about 50

dBc. Therefore, using only reduced ADC speed, the DPD with reduced TOR bandwidth

was able to show similar performance to the conventional DPD with full bandwidth. The

DPD with reduced TOR bandwidth resulted in an EVM of about -35 dB. It can be con-

cluded therefore, that the proposed technique to identify the DPD coefficients succeeded

at fully linearizing the PA output IMDs even though only limited spectrum is observed at

the output of the PA. Unlike the band-limited Volterra series, where a band-pass filter is

necessary to remove all the remaining distortion, the DPD with reduced TOR bandwidth

does not involve any additional linearization steps.

When the sampling rate was increased to 2.5 × INR, in an effort to improve the lin-

earization performance of the DPD models, Figure 4.19 shows that the DPD with reduced

TOR bandwidth now matches the conventional DPD with full bandwidth performance in

both EVM and ACPR (shown in Tables 4.2 and 4.4). The band-limited Volterra series and

conventional DPD were still not linearizing outside the observed band and the band-limited

conventional DPD had poor linearization even within the 150 MHz observed band.

4.6 Nonlinear System Behavioral Modeling Using Re-

duced Transmitter Observation Receiver Band-

width

Traditionally, to construct a PA behavioral model, the PA is first driven with a modulated

signal while a TOR is used to capture the output signal. Then, a low pass equivalent

Volterra series behavioral model is identified to describe the input to output relationship.

This model can then be used with CAD tools to predict both the response of the PA

and its impact on overall RF system performances. However, since the PA is a nonlinear

system, its output signal has a bandwidth that is typically five times that of the input

signal. Therefore, in order to construct the corresponding low pass equivalent Volterra

series model, the TOR is required to have a bandwidth equal to at least five times the input

signal bandwidth. This requirement is more stringent when deploying wider bandwidth

signals. For example, to accurately model the PA when using advanced-LTE (where the

modulation bandwidth can reach 100 MHz), a TOR with a bandwidth equal to at least 500

MHz would be required. Not only would this result in a frequency dispersive receiver across

the signal bandwidth, the cost and power consumption of the TOR would be excessive and

not feasible for certain applications.
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In the Section 4.1, it was shown that the GST is a potential solution for capturing

the output signal of a nonlinear PA with a received that has a bandwidth less than the

output signal bandwidth under the condition of identifying an appropriate function g(.)

that compresses the output spectrum of the PA. Throughout Sections 4.2-4.4, it was shown

that a DPD with reduced TOR bandwidth is possible to linearize the output spectrum of

the PA and thus determine the function g(.). Combining these two results, construction

of an accurate behavioral model using a reduced TOR bandwidth is possible and could

predict the output response of the PA inside and outside the TOR bandwidth as it is shown

hereafter. First, a DPD is identified using a reduced TOR bandwidth. This determine the

function g(.) and thus enables the application of the GST and the output of the PA can be

accurately predicted using (2.21). Two DPD schemes are used, namely the band-limited

Volterra series and the proposed reduced TOR bandwidth Volterra series pruned using

G-Functionals. The Behavioral model identification process is illustrated in the flow chart

of Figure 4.20 [72].

Figure 4.20: Behavioral model identification approach

A 250 W laterally diffused metal oxide semiconductor (LDMOS) Doherty PA was used

as the DUT. The PA was driven with a 20 MHz 4C WCDMA input signal into compression

resulting in an output signal with a bandwidth of about 92.16 MHz. An N9030A PXA

signal analyzer was used to capture the output signal with analysis bandwidths set to

27.65, 36.86, 55.30, and 92.16 MHz.
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The TOR bandwidth was first set to 92.16 MHz to prove the validity of the low pass

equivalent Volterra series model in predicting the output spectrum. It is clear from Fig-

ure 4.21 that the NMSE and the power spectrum density error (PSDE) showed excellent

modeling capability. In fact, with or without DPD, the modeling performances are equal

since the full output PA spectrum is captured. However, as the TOR bandwidth decreased,

the modeling of the PA response became inaccurate and the modeled spectrum get far from

the actual spectrum, especially outside of the observed band. For example, Figure 4.21

shows an NMSE of only -31 dB and a PSDE of only -40 dB when the TOR bandwidth was

set to 27.65 MHz. This illustrates again that the GST cannot be applied unless the DPD

is first identified. To support this assertion, the application of (2.21) when identifying first

the DPD, i.e., the function g(.), will guarantee an accurate recovery of the output spectrum

shown hereafter.

Figure 4.21: NMSE and PSDE between the modeled and the measured output spectrum

When applying the band-limited Volterra series DPD, better modeling performances

were recorded when compared to the case where no DPD is used as illustrated in Fig-

ure 4.21. Nevertheless, as the TOR bandwidth is reduced below 46.08 MHz, the NMSE

and the PSDE degrades as well. This is explained by the fact that the band-limited Volterra

series allows linearization only inside the TOR bandwidth and no linearization is observed

outside as explained previously. Therefore, the band-limited Volterra series doesn’t satisfy

the GST condition. However, when the proposed reduced TOR bandwidth DPD is used,

linearization inside and outside the TOR bandwidth is achieved and therefore the condi-

tion of the GST are met. Consequently, as illustrated by Figure 4.21, the NMSE and the

PSDE are constant versus the TOR bandwidth even for very small output sampling rate.
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4.7 Conclusion

This chapter demonstrates that GST is not applicable for DPD identification. Alterna-

tively, it is shown that a DPD can be constructed using only a portion of the output

spectrum, i.e., when using a reduced TOR bandwidth. This is possible by lowering only

the sampling rate of the PA output signal and conserving the full sampling rate of the PA

input one. Moreover, it is shown that the reduction extend of the TOR is depending on the

DPD structure used. For that, the G-Fucntionals pruning technique introduced in Chapter

3 is deployed. Excellent linearization capabilities are achieved for wideband signals, up to

60 MHz, using a reduced TOR bandwidth. The proposed technique is compared to the

band-limited Volterra series. It is shown that using the proposed technique, linearization

is possible inside and outside the TOR bandwidth, where only linearization inside the

TOR bandwidth is achieved in the band-limited Volterra series case. The proposed DPD

linearization capabilities enabled the GST application for PA behavioral modeling. This

allows the TOR bandwidth reduction from the usual five times to as low as one time the

original signal bandwidth.
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Chapter 5

Single-Band Digital Predistortion

This chapter presents a novel strategy for constructing a SISO behavioral model/DPD

scheme. The process starts with establishing a block diagram that describes the output

signal of single-band PAs. Then, a closed-form formulation is derived. It will be shown that

the resulting model is inherently low complexity and takes into account linear and nonlinear

memory effects. The Volterra series DDR and the GMP [76] models are used as model

references. It will be shown that the proposed model exhibit similar or better performances

than the previously mentioned reference models while deploying fewer coefficients.

5.1 Power Amplifier Physical Inspiration

A good understanding of PA behavior is a crucial step in developing a suitable model

that can closely mimic or linearize the PA output response. This section describes the

PA behavior. Then, the subsequent sections explain the development process of PA/DPD

model schemes.

In [4, 25, 85], a simplified field-effect transistor (FET) based PA circuit was proposed,

as shown in Figure 5.1. The PA circuit is composed of a voltage input source, Vs(t); an

input band-pass filter, representing the linear dynamic input matching network; a nonlin-

ear current source, iDS, representing the nonlinear transistor; an output band-pass filter,

representing the linear dynamic output matching network; and the output voltage, VO(t).

Figure 5.1 is used to derive the block diagram of the PA given in Figure 5.2. The PA is

represented by two band-pass filters representing the input and output matching networks,

a memoryless nonlinear function representing the nonlinear transistor, and a low pass filter

representing the bias network that is responsible for reflecting the baseband component at

the output of the transistor. The mechanism of the PA block diagram is illustrated with a
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two-tone test input signal. First, the signal passes through the linear input band-pass filter

without any nonlinear distortion, i.e., no generation of new frequency components. Sec-

ond, the transistor amplifies the two tones and generates IMDs, harmonics, and baseband

components. Finally, the baseband signal is reflected back to the input of the transistor,

the harmonics are filtered out, and the amplified two-tone and the IMDs pass through

the output band-pass filter, i.e., the output matching network. It is safe to consider the

response of the two band-pass filters to be flat and thus contribute little to the combined

distortions.

Figure 5.1: Simplified field-effect transistor based power amplifier circuit

Figure 5.2: Power amplifier block diagram illustration with two-tone test input signal

The resulting block diagram (Figure 5.2) is the root used in the next section to derive

a single-band PAs. This block diagram is also used in the next chapter for the multi-band

PA case.

5.2 Single-Band Generalized Memory Polynomial

5.2.1 Single-Band Model Derivation

The physically based model presented in the previous section is used to formulate a closed-

form expression for the nonlinearity and memory effects present in an RF PA. The adopted
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PA block diagram is a simplification of the one given in Figure 5.2, where the input and

output matching networks are considered flat. Figure 5.3 shows a simple representation of

the behavior of the PA in the envelope domain: the signals x(n) and y(n) are real discrete-

time sampled at Ts = 1/2fmax , where fmax is the highest RF frequency of the input and

output signals.

Figure 5.3: Simplified physical model of a power amplifier

The closed-form expression of Figure 5.3 encompasses a static nonlinear function G

that accounts for the memoryless nonlinear behavior of the PA, along with a finite impulse

response (FIR) filter, FIRfb, which captures the frequency-dependent mechanism behind

the memory effects. In Figure 5.3, the discrete real output signal, y(n), of the RF PA

circuit is expressed in terms of the discrete real input, x(n), and its past samples as in

(5.2), where γj is the jth instance of the discrete time domain representation of the feedback

FIR filter, FIRfb, and M denotes the memory depth. The feedback FIR, FIRfb, allows the

modeling of the biasing and matching networks dispersive behavior at the signals’ envelope

and harmonic frequencies.

y(n) = G (x(n) + z(n)) (5.1)

y(n) = G

(
x(n) +

M∑
j=1

γjy(n− j)

)
(5.2)

The static nonlinear behavior of the transistor is characterized by a memoryless non-

linear function, G, defined in (5.3), where N is the memoryless nonlinear order.

G(x) = p1x+ p2x
2 + · · ·+ pNx

N (5.3)

Expanding the expression of G in (5.2), the following formulation is obtained:

y(n) = p1

(
x(n) +

M∑
j=1

γjy(n− j)

)
+ · · ·+ pN

(
x(n) +

M∑
j=1

γjy(n− j)

)
(5.4)
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Equation (5.4) suggests that if memory effects are not taken into account, i.e., γj = 0,

the model reduces to the memoryless nonlinear transistor expression, i.e., G. It is important

at this stage to examine the summation of reflected signals in (5.2); the terms of which are

expressed as: γjy(n− j) j ≥ 1. Expanding each term of that summative expression, using

N = 3 as an example, yields the following expression in terms of the real input signal,

x(n):

γjy(n− j) = p1γjx(n− j) + p1γj

M∑
k=1

γky(n− j − k)

+ p2γjx
2(n− j) + p2γj

(
M∑
k=1

γky(n− j − k)

)2

+ 2p2γjx(n− j)
M∑
k=1

γky(n− j − k)

+ p3γjx
3(n− j) + 3p3γjx

2(n− j)
M∑
k=1

γky(n− j − k)

+ 3p3γjx(n− j)

(
M∑
k=1

γky(n− j − k)

)2

+ p3γj

(
M∑
k=1

γky(n− j − k)

)3

(5.5)

In (5.5), the underlined terms similar to γjx
Q(n − j)

(∑M
k=1 γky(n− j − k)

)K
where

Q,K ∈ {0, 1, 2} with Q+K > 1, can be rewritten as xQ(n−j)
(∑M

k=1 γ
1
K
j γky(n− j − k)

)K
.

These terms represent multiple cycles through the feedback path outlined in Figure 5.3,

and become negligible when the total order is higher than one, that is, when past samples

of the input are multiplied by a factor of γaj γ
b
k, where a + b > 1 [76]. Consequently, such

terms can be omitted from the calculations, and the previous expression of γjy(n − j)

substituted for all j ≥ 1; thus, (5.5) is simplified to:

γjy(n− j) = γj
(
p1x(n− j) + p2x

2(n− j) + p3x
3(n− j)

)
(5.6)

γjy(n− j) = γjG(x(n− j)) ∀j ≥ 1 (5.7)

This simplification is explained by the fact that a realistic PA can be modeled using a

finite memory feed forward model. doing so requires the recursive model to have a finite

output memory span (fading memory system [97]). Therefore, if we assume that the overall

memory of the PA model is equal to M , where M is set by definition to be the length of
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the feedback FIR according to (5.2), the components at the output of the nonlinear block

can only enter the filter once, since the second and following entries would be out of the

output’s memory span. Thus, the delayed output signal includes only delayed input terms,

as shown in (5.7), (Equation (6) in [122]). It is worth mentioning that (5.7) does not mean

that the system (memoryless block + feedback) is a memoryless function of the input

signal. Conversely, (5.7) is only true for the delayed output signal and not for the current

sample of the output signal; i.e., (5.7) is only for j ≥ 1.

The substitution of (5.7) into (5.4) leads to the following:

y(n) = G

(
x(n) +

M∑
j=1

γjy(n− j)

)

= G

(
x(n) +

M∑
j=1

γjG (x(n− j))

)
= p1x(n) + p2x

2(n) + · · ·+ pNx
N(n)

+
(
p1 + 2p2x(n) + · · ·+NpNx(n)N−1

) M∑
j=1

γjG(x(n− j))

+ terms including higher order of γj
(
i.e.; γaj ; a > 1

)
(5.8)

Based on (5.3), γj represents the memory effects contribution of signal y(n− j) added

to the current input x(n) toward the output signal y(n). Therefore, to ensure a stable

system, the absolute value of γj can be considered to be less than one. Consequently, in

(5.8) higher powers of γj are considered negligible and can be omitted; that is, |γj| < 1⇒
|γj|a � 1. Using the last approximation, (5.8) leads to the expression given in (5.9), where

ai,j,k = (i+ 1)pi+1γjpk.

y(n) = G (x(n)) +
N−1∑
i=0

M∑
j=1

N∑
k=1

ai,j,kx
i(n)xk(n− j) (5.9)

In DPD technique, the envelope signal is deployed to construct the predistorted signal

in baseband. Therefore, (5.9) should be transformed to its baseband equivalent. In order

to accomplish this, the complex envelope signal is denoted hereafter by x̃(n) such that

2x(n) = x̃(n)ej2πf0n + x̃∗(n)ej2πf0n, where f0 is the carrier frequency of the PA. Usually,

only components around the carrier frequency are significant to the PA output formulation

[76]. Therefore, all of the terms that lead to spectral components far away from the carrier

frequency are discarded. Writing the expression (5.9), using the baseband input and output

signals, leads to:

88



ỹ(n) =
N∑

i=1
i odd

pix̃
i+1
2 x̃∗

i−1
2

+
N−2∑
i=1
i odd

M∑
m=1

N−1∑
k=2
k even

αi,m,kx̃
i+1
2 (n)x̃∗

i−1
2 (n)x̃

k
2 (n−m)x̃∗

k
2 (n−m)

+
N−1∑
i=0
i even

M∑
m=1

N∑
k=1
k odd

βi,m,kx̃
i
2 (n)x̃∗

i
2 (n)x̃

k+1
2 (n−m)x̃∗

k−1
2 (n−m) (5.10)

Equation (5.10) presents a pruned Volterra series formulation denoted as single-band

generalized memory polynomial (1D-GMP), where with a high degree of nonlinearity and

a large value for memory depth, the number of kernels is much lower than that of the full

Volterra series formulation. In addition, the 1D-GMP offers a comparable or lower number

of coefficients than does the Volterra series DDR model with r = 2, where r is the order

of dynamics, as shown in Table 5.1.

This formulation allows the usage of the Volterra series’ proven capabilities to model

highly nonlinear PAs. When using large values for N and M , no exponential growth occur

in the number of kernels, thanks to the physical inspiration of the 1D-GMP. In fact, this

model leads to the elimination of unnecessary kernels from the full Volterra series without

the need to restrict the nonlinearity order or the memory depth.

Equation (5.10) reveals an order of nonlinearity equal to 2N − 1 in the closed-form

expression, where N is the memoryless nonlinearity order of the transistor (Figure 5.3).

In fact, as shown with the above expressions, when dealing with memory effects, the

nonlinearity order is higher than the memoryless nonlinearity and equal to P = 2N − 1,

where N is the actual memoryless nonlinear order of the system being modeled.

The 1D-GMP model exhibits similarities to the GMP model [76], where the cross terms

combining the delayed and current input signals are shared. In this 1D-GMP model, the

sources of its formulation are given and are based on the physical behavior of the PA. This

process leads to a systematic technique to identify, separately, both the nonlinearity order

and memory depth. A comparison of the proposed approach to both the Volterra series

DDR and the GMP is included to demonstrate that the 1D-GMP affords similar or better

results with less complexity, i.e., fewer coefficients.
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Table 5.1: Number of kernels in different Volterra series schemes

Volterra series Nonlinearity Memory Number of

scheme order depth coefficients

Full 5 4 605

DDR r=1 5 4 23

DDR r=2 5 4 85

GMP
Ka = [0 : 4] La = [0 : 3]

61
Kb = [1 : 3] Lb = [0 : 3] Mb = [1 : 3]

1D-GMP 5 4 57

Full 5 5 1308

DDR r=1 5 5 28

DDR r=2 5 5 123

GMP
Ka = [0 : 4] La = [0 : 3]

73
Kb = [1 : 4] Lb = [0 : 3] Mb = [1 : 3]

1D-GMP 5 5 70

Full 7 3 944

DDR r=1 7 3 25

DDR r=2 7 3 82

GMP
Ka = [0 : 5] La = [0 : 4]

83
Kb = [1 : 4] Lb = [0 : 3] Mb = [1 : 3]

1D-GMP 7 3 80

Full 7 4 3055

DDR r=1 7 4 32

DDR r=2 7 4 130

GMP
Ka = [0 : 5] La = [0 : 4]

115
Kb = [1 : 5] Lb = [0 : 3] Mb = [1 : 4]

1D-GMP 7 4 103
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5.2.2 Experimental Validation Conditions

This subsection describes the test conditions, circuit, and signal tests. Two technologies

of PAs exist nowadays, namely, GaN and LDMOS and two different architectures, namely

single-ended or multiple transistors configuration, e.g., Doherty and envelop tracking PA.

The experimental results in the following subsections were conducted on four PAs as it

follows, to span a wide range of the PA selection available in the market.

• 45 W GaN single-ended PA [105]

• 90 W GaN Doherty PA [106]

• 250 W LDMOS single-ended PA from Freescale Semiconductor

• 250 W LDMOS Doherty PA from Freescale Semiconductor.

Both 20 MHz 1001 WCDMA and 20 MHz LTE test signals, with PAPR of 7.12 dB

and 7.74 dB, respectively, were synthesized in Agilent’s advanced design system (ADS)

and used as test signals. The four PAs were driven into the nonlinear region (output peak

power ≈ P1dB + 1.3 dB) to ensure the presence of highly dynamic nonlinearity requiring

correction, where P1dB is the 1 dB gain compression.

The performance of the PA behavioral modeling and DPD were evaluated based on

different figures of merit. For the forward model, the NMSE was used to evaluate the

accuracy of the PA behavioral model by capturing the output of the PA. For the reverse

model DPD, the ACPR and the EVM were used as indicators of the linearization capability.

5.2.3 Behavioral Modeling Forward Validation

To assess the accuracy of the 1D-GMP model for predicting the behavior of the PA DUT,

several tests were conducted.

Parameters Identification

The 1D-GMP has two structure parameters that must be determined; namely the memory-

less nonlinearity degree N and the memory depth M . Therefore, two tests were conducted

to determine whether the approached achieves a good approximation for these numbers.

First, a memoryless polynomial model, as shown in (5.11), was used to determine the un-

known N . Tables 5.2 and 5.3 show the memoryless models NMSE versus the nonlinearity
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degree for the four PAs driven with the two previously mentioned signals. From these

tables, the value of N is chosen as the smallest value that corresponds with the NMSE

plateau.

ymemoryless(n) =
N∑
i=1

aix(n) |x(n)|i−1 (5.11)

Table 5.2: Normalized mean square error versus nonlinearity order for the memoryless

model for the GaN power amplifiers

N

NMSE (dB) NMSE Change (dB)

Single-Ended Doherty Single-Ended Doherty

WCDMA LTE WCDMA LTE WCDMA LTE WCDMA LTE

1 -21.46 -20.05 -23.26 -23.80 N.A. N.A. N.A. N.A.

2 -30.00 -24.76 -28.31 -29.97 -8.53 -4.71 -5.05 -6.17

3 -32.15 -25.32 -29.40 -31.32 -2.15 -0.56 -1.09 -1.35

4 -33.10 -25.53 -29.94 -32.52 -0.95 -0.22 -0.54 -1.2

5 -33.27 -25.57 -30.44 -33.15 -0.16 0.03 -0.51 -0.64

6 -33.26 -25.57 -30.44 -33.23 0 0 0 -0.08

7 -33.27 -25.58 -30.46 -33.44 0 0.01 -0.02 -0.21

8 -33.27 -25.58 -30.46 -33.46 0 0 0 -0.02

9 -33.27 -25.58 -30.46 -33.47 0 0 0 0

From Tables 5.2 and 5.3, we chose a value of N = 5 for the memoryless nonlinearity,

as the relative change between N = 5 and N = 7 is very small. The total nonlinearity

degree for the Volterra series is then equal to P = 2N − 1 = 9 when including memory as

previously explained.

In the second step, the memory depth of the model (5.10) was determined. The value of

M is increased for the model expressed in (5.10); and, the optimal value is the smallest M

that corresponds to the plateau in NMSE. Tables 5.4 and 5.5 show a summary of the results

of these tests when using the optimal nonlinearity degree, N = 5. One can observe that

starting at M = 4 or M = 5, only modest changes occurred in the NMSE; consequently,

M was selected as 5 in all cases except for the GaN PA driven with an LTE signal where

M was selected to be equal to 4.
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Table 5.3: Normalized mean square error versus nonlinearity order for the memoryless

model for the LDMOS power amplifiers

N

NMSE (dB) NMSE Change (dB)

Single-Ended Doherty Single-Ended Doherty

WCDMA LTE WCDMA LTE WCDMA LTE WCDMA LTE

1 -24.38 -25.48 -16.90 -20.40 N.A. N.A. N.A. N.A.

2 -34.47 -36.58 -25.74 -27.66 -10.1 -11.2 -8.85 -7.26

3 -35.25 -38.09 -28.09 -29.86 -0.78 -1.41 -2.34 -2.20

4 -35.56 -38.95 -29.22 -30.50 -0.31 -0.86 -1.13 -0.63

5 -35.61 -39.02 -30.27 -30.65 -0.04 -0.16 -0.11 -0.15

6 -35.62 -39.16 -30.33 -30.69 -0.01 -0.05 -0.06 0.04

7 -35.62 -39.22 -30.35 -30.69 0 -0.06 0.02 0

8 -35.62 -39.25 -30.35 -30.69 0 -0.03 0 0

9 -35.62 -39.25 -30.35 -30.69 0 0 0 0

Table 5.4: Normalized mean square error versus memory depth for the 1D-GMP model for

the GaN power amplifiers

M

NMSE (dB) NMSE Change (dB)

Single-Ended Doherty Single-Ended Doherty

WCDMA LTE WCDMA LTE WCDMA LTE WCDMA LTE

N=5 N=5 N=5 N=5 N=5 N=5 N=5 N=5

1 -41.64 -39.23 -35.22 -35.64 N.A. N.A. N.A. N.A.

2 -42.50 -39.23 -37.52 -36.24 -0.87 0 -2.30 -0.6

3 -42.57 -39.27 -38.43 -36.47 -0.07 -0.04 -0.92 -0.24

4 -43.41 -39.40 -38.88 -36.61 -0.84 -0.13 -0.45 -0.13

5 -43.56 -39.47 -39.05 -36.66 -0.16 -0.06 -0.17 -0.06

6 -43.62 -39.53 -39.22 -36.74 -0.05 -0.06 -0.17 -0.07

7 -43.67 -39.57 -39.29 -36.78 -0.05 -0.04 -0.07 -0.06

8 -43.72 -39.62 -39.34 -36.87 -0.05 -0.05 -0.05 -0.07
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Table 5.5: Normalized mean square error versus memory depth for the 1D-GMP model for

the LDMOS power amplifiers

M

NMSE (dB) NMSE Change (dB)

Single-Ended Doherty Single-Ended Doherty

WCDMA LTE WCDMA LTE WCDMA LTE WCDMA LTE

N=5 N=5 N=7 N=5 N=5 N=5 N=5 N=5

1 -44.53 -43.42 -41.40 -42.19 N.A. N.A. N.A. N.A.

2 -45.61 -44.90 -40.15 -40.91 -1.08 -1.49 1.25 1.28

3 -45.96 -45.12 -40.10 -41.81 -0.35 -0.22 0.05 -0.90

4 -46.75 -45.20 -41.45 -42.63 -0.79 -0.07 -0.32 -0.82

5 -46.83 -45.33 -41.80 -42.81 -0.08 -0.13 -0.34 -0.18

6 -46.88 -45.43 -41.94 -42.92 -0.05 -0.10 -0.15 -0.11

7 -46.96 -45.54 -42.09 -43.08 -0.08 -0.12 -0.15 -0.16

8 -46.99 -45.60 -42.10 -43.20 -0.04 -0.06 -0.01 -0.12

Forward Validation

To evaluate the performance of the 1D-GMP approach further, its modeling accuracy was

compared to the GMP the Volterra series DDR. The GMP parameters were set such that

its number of coefficients is about the same than the 1D-GMP, and the Volterra series

DDR was used with the first and second-order dynamics and M = 5 up to the fifth kernel.

Tables 5.6–5.9 show the NMSE between the modeled and measured signals for the different

PAs driven. From these tables, one can observe that although the Volterra series DDR

(r=2) number of coefficients is a little higher than that of the 1D-GMP, a slightly better

NMSE is observed in the case of the proposed model. Moreover, the proposed model shows

similar NMSE results to the GMP, yet, the linearization performances differ.

5.2.4 Digital Predistortion Reverse Validation

The 1D-GMP model is used here to linearize the previously mentioned four PAs when

driven with 20 MHz 1001 WCDMA and 20 MHz LTE signals. Tables 5.10–5.13 summarize

the values obtained for the 1D-GMP parameters, under the different scenarios, and the

obtained optimal EVMs. In each case, the obtained 1D-GMP DPD performances were

compared with that of the Volterra series DDR r=1 and r=2 models, using the same
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Table 5.6: Normalized mean square error of the 1D-GMP versus the Volterra series DDR

and GMP for the single-ended GaN power amplifier

Model Name
NMSE (dB) Number of Coefficients

WCDMA LTE WCDMA LTE

Volterra series DDR r=1 -42.08 -38.95 28 25

Volterra series DDR r=2 -43.50 -39.36 123 87

GMP -43.51 -39.47 73 61

1D-GMP -43.56 -39.41 70 57

Table 5.7: Normalized mean square error of the 1D-GMP versus the Volterra series DDR

and GMP for the GaN Doherty power amplifier

Model Name
NMSE (dB) Number of Coefficients

WCDMA LTE WCDMA LTE

Volterra series DDR r=1 -43.47 -38.95 28 25

Volterra series DDR r=2 -43.85 -39.36 123 87

GMP -44.23 -39.47 73 61

1D-GMP -44.45 -39.65 70 57

Table 5.8: Normalized mean square error of the 1D-GMP versus the Volterra series DDR

and GMP for the single-ended LDMOS power amplifier

Model Name
NMSE (dB) Number of Coefficients

WCDMA LTE WCDMA LTE

Volterra series DDR r=1 -45.29 -44.53 28 25

Volterra series DDR r=2 -46.47 -44.90 123 87

GMP -46.53 -44.86 73 73

1D-GMP -46.83 -45.33 70 57

nonlinearity degree and memory depth order, and the GMP, using about the same number

of coefficients.

Figures 5.4 and 5.5 describe the output spectrum of the GaN single-ended PA, driven

with 20 MHz 1001 WCDMA and LTE signals without DPD and with the previously men-
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Table 5.9: Normalized mean square error of the 1D-GMP versus the Volterra series DDR

and GMP for the LDMOS Doherty power amplifier

Model Name
NMSE (dB) Number of Coefficients

WCDMA LTE WCDMA LTE

Volterra series DDR r=1 -38.69 -37.97 28 25

Volterra series DDR r=2 -40.57 -41.17 123 87

GMP -41.42 -41.17 73 73

1D-GMP -41.12 -41.53 70 57

Table 5.10: Error vector magnitude with and without DPDS for the GaN single-ended

power amplifier

Model Name
EVM (dB) Number of Coefficients

WCDMA LTE WCDMA LTE

Without -23.92 -24.87 N.A. N.A.

Volterra series DDR r=1 -34.34 -35.20 28 25

Volterra series DDR r=2 -34.66 -35.17 123 87

GMP -33.73 -34.81 73 61

1D-GMP -34.58 -34.98 70 57

Table 5.11: Error vector magnitude with and without DPDS for the GaN Doherty power

amplifier

Model Name
EVM (dB) Number of Coefficients

WCDMA LTE WCDMA LTE

Without -20.39 -19.55 N.A. N.A.

Volterra series DDR r=1 -37.29 -35.65 28 25

Volterra series DDR r=2 -37.10 -35.74 123 87

GMP -38.64 -35.36 73 61

1D-GMP -38.06 -35.24 70 57

tioned DPDs. It is clear from these figures that the four schemes were able to linearize

the Doherty PA and achieved a reduction of more than 20 dB in the ACPR. Figure 5.4
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Table 5.12: Error vector magnitude with and without DPDS for the LDMOS single-ended

power amplifier

Model Name
EVM (dB) Number of Coefficients

WCDMA LTE WCDMA LTE

Without -26.16 -26.91 N.A. N.A.

Volterra series DDR r=1 -38.20 -38.81 28 25

Volterra series DDR r=2 -36.86 -43.79 123 123

GMP -42.57 -41.86 73 73

1D-GMP -42.55 -41.07 70 57

Table 5.13: Error vector magnitude with and without DPDS for the LDMOS Doherty

power amplifier

Model Name
EVM (dB) Number of Coefficients

WCDMA LTE WCDMA LTE

Without -20.39 -19.55 N.A. N.A.

Volterra series DDR r=1 -37.29 -35.65 50 28

Volterra series DDR r=2 -37.10 -35.74 131 123

GMP -38.64 -35.36 115 73

1D-GMP -38.06 -35.24 103 57

shows that the 1D-GMP slightly outperformed the other DPDs models at reducing the

out-of-band spectrum, by 3 dB. The 1D-GMP used about the same number of coefficients

as the GMP and fewer than the Volterra DDR r=2. Similar performances were found in

the case of GaN Doherty PA. Figures 5.6 and 5.7 show the linearization performances of

the GaN Doherty PA using the 1D-GMP, the DDR and the GMP DPDs.

Figures 5.8 and 5.9 describe the LDMOS Doherty PA output spectrum, driven with

20 MHz 1001 WCDMA and LTE signals without DPD and with the previously mentioned

DPDs. As before, all four schemes were able to linearize the PA and achieved a reduction of

more than 20 dB in the ACPR. However, the 1D-GMP linearization capability is now more

pronounced when using the 1001 WCDMA signal. Actually, better than 5 dB reduction

was achieved (Figure 5.8) as compared to the other DPD models. Similar performances

were found in the case of LDMOS single-ended PA as given by Figures 5.10 and 5.11.
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Figure 5.4: PSD of the GaN single-ended PA driven with a 20 MHz 1001 WCDMA signal

without DPD and when linearized with the Volterra series DDR r=2, r=1, GMP and

1D-GMP

Figure 5.5: PSD of the GaN single-ended PA driven with a 20 MHz LTE signal without

DPD and when linearized with the Volterra series DDR r=2, r=1, GMP and 1D-GMP

with N=5

The number of coefficients reduction required in the proposed DPD formulation has two

advantages. With fewer kernels or coefficients, the DPD identification and implementation

is less demanding in terms of both time and memory computation. Therefore, the proposed

model can be implemented more easily in a real-time DPD application. In addition, with

fewer coefficients, the problem of “over fitting” and the problem conditioning are improved.

Thus, the 1D-GMP demonstrated similar or better performances when compared to the

proven scheme of the Volterra series DDR r=2, as was reported in the above-mentioned

measurements.
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Figure 5.6: PSD of the GaN Doherty PA driven with a 20 MHz 1001 WCDMA signal

without DPD and when linearized with the Volterra series DDR r=2, r=1, GMP and

1D-GMP

Figure 5.7: PSD of the GaN Doherty PA driven with a 20 MHz LTE signal without DPD

and when linearized with the Volterra series DDR r=2, r=1, GMP and 1D-GMP

5.3 Conclusion

This chapter presents a closed-form deterministic approach to identifying a single-band

PA/DPD modeling scheme, i.e., 1D-GMP. It starts with proposing PA block diagram that

describes the PA behavior. Derivations from the feedback block diagram structure to a

feed-forward GMP model is proposed and carefully justified. The resulting 1D-GMP shows

good performance in modeling and linearization, when compared to the proven Volterra

series DDR and GMP models. In addition, the 1D-GMP has the advantages of both fewer

coefficients and a deterministic method to identify its structure parameters. The proposed

DPD scheme is used to model and linearize two different PAs with two different 20 MHz

WCDMA signals. The linearization performances are discussed in terms of EVM and
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Figure 5.8: PSD of the LDMOS Doherty PA driven with a 20 MHz 1001 WCDMA signal

without DPD and when linearized with the Volterra series DDR r=2, r=1, GMP and

1D-GMP

Figure 5.9: PSD of the LDMOS Doherty PA driven with a 20 MHz LTE signal without

DPD and when linearized with the Volterra series DDR r=2, r=1, GMP and 1D-GMP

ACPR reduction. It is reported that the 1D-GMP model provides similar or better results

than the Volterra series DDR and GMP models while boasting reduced complexity.
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Figure 5.10: PSD of the LDMOS single-ended PA driven with a 20 MHz 1001 WCDMA

signal without DPD and when linearized with the Volterra series DDR r=2, r=1, GMP

and 1D-GMP

Figure 5.11: PSD of the LDMOS single-ended PA driven with a 20 MHz LTE signal without

DPD and when linearized with the Volterra series DDR r=2, r=1, GMP and 1D-GMP with

N=5
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Chapter 6

Multi-Band Digital Predistortion

In the previous chapter, the 1D-GMP was introduced for a single-band PA. This model

enabled a reduced complexity Volterra series like model and offered comparable results

to the Volterra series DDR model while using fewer coefficients. The nonlinearity order

and memory depth were allowed to reach high values without excessively augmenting the

number of coefficients. The inherently low complexity and excellent modeling/linearization

capabilities were mainly attributed to the model’s construction procedure. In this chapter,

the construction of dual-, tri- and multi-band models will be performed using the same

procedure.

6.1 Dual-Band Generalized Memory Polynomial

Multi-band PA/DPD models have been proposed to mimic the behavior of a PA under

multi-band stimulus. PA distortions in multi-band PAs are more complex than for single-

band PAs due to the cross modulation distortion [8]. these cross modulation are a result

from the mix between the multiple bands. Thus, the MIMO model, given in Figure 6.1,

is adopted for linearizing the multi-band PA output signal, where xi(n), ui(n), and yi(n)

are the input, predistorted and output signals of the (DPD+PA) cascade, respectively for

each band.

6.1.1 Dual-Band Power Amplifier Block Diagram

Chapter 5 introduced Figure 5.3 as a simplified block diagram of a single-band PA. The

same block diagram can be used for the dual-band case. In fact, consider dual-band

signals modulated around f1 and f2 and a PA with a carrier frequency of (f1+f2)/2. If G(.)
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Figure 6.1: Digital predistortion for a multi-band power amplifier

is a gain characteristic of the PA around (f1+f2)/2, and FIRfb is a filter that illustrates

the feedback of low frequencies, Figure 5.3 illustrates the behavior of the dual-band PA.

Unfortunately, function G(.) must be very wideband to cover the two band around f1 and

f2. Alternatively, two different functions, G1(.) and G2(.), may be considered to describe

the PA gain characteristics around the two carrier frequencies, f1 and f2.

Figure 6.2 represents a special case of Figure 5.3 for a typical dual-band PA. The block

diagram of Figure 6.2 is composed of two nonlinear memoryless functions and one feedback

filter: x1(n) and x2(n) are the two input RF signals, and y1(n) and y2(n) their respective

output RF signals sampled at Ts = 1/2fmax, where fmax is the highest RF frequency com-

ponent. The FIRfb filter is maintained as it continues to illustrate the feedback of low

frequencies. Figure 6.2 is described by (6.1)-(6.3), where γj is the jth instance of the

feedback FIR discrete time domain representation, FIRfb, and M denotes the memory

depth.

y(n) = y1(n) + y2(n) (6.1)

yi(n) =
i∈{1,2}

Gi [ui(n)] = Gi [x1(n) + x2(n) + z(n)] (6.2)

z(n) = FIRfb [y(n)] =
M∑
j=1

γjy(n− j) (6.3)

6.1.2 Dual-Band Power Amplifier Model Derivations

In this subsection, derivations of the dual-band generalized memory polynomial (2D-GMP)

model are given using (6.1)-(6.3). Gain characteristics G1(.) and G2(.) are represented by
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Figure 6.2: Block diagram of a dual-band power amplifier

a memoryless polynomial given in (6.4), where N1 and N2 are the memoryless nonlinear

orders for each band, respectively.

Gi(u) =
i∈{1,2}

pi,1u+ pi,2u
2 + · · ·+ pi,Ni

uNi (6.4)

Substituting (6.3) and (6.4) into (6.2), the following is obtained, where i ∈ {1, 2}:

yi(n) =

Ni∑
q=1

pi,q

[
x1(n) + x2(n) +

M∑
j=1

γjy(n− j)

]q
(6.5)

The feedback signals in (6.5), i.e., γjy(n − j) where j ≥ 1, can be simplified, as given

in (6.6) and illustrated in the previous chapter. In fact, γjy(n − j) include terms that

represent multiple cycles through the feedback path, i.e., γj

[∑M
k=1 γky(n− j − k)

]s
where

s ≥ 1. Since the multiple cycles become negligible [76], the feedback signal is simplified to

(6.6). In fact, a realistic PA is modeled using a finite memory feed-forward model. This

requires the recursive model to have a finite output memory span (fading memory system

[97]). Therefore, if the overall memory of the PA model is equal to M , the second and

following entries of the delayed output signal to the FIR filter would be out of the output’s

memory span. Consequently, the delayed output signal expression includes only delayed

input terms. Similarly to the single-band case, the previous does not mean that the system

(memoryless gains + feedback) is a memoryless system. In fact, (6.6) is only true for the

delayed output signals, γjy(n− j); j ≥ 1, that contribute to the current output expression

and not for the current output signal sample, y(n), as shown hereafter.
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γjyq(n− j) = γjGq [x1(n− j) + x2(n− j)] (6.6)

Substituting (6.6) into (6.5) leads to (6.7).

yi(n) =

Ni∑
k=1

pi,k [x1(n) + x2(n)]k

(
pi,1 + · · ·+Nipi,Ni

(x1(n) + x2(n))Ni−1
) M∑
j=1

γj

[(
G1[x1(n− j) + x2(n− j)]+
G2[x1(n− j) + x2(n− j)]

)]
+ terms with higher power of γj

(
γaj ; a > 1

)
(6.7)

Based on Figure 6.2, γj represents the ME contribution of the signal y(n− j), added to

the current input signals, x1(n) and x2(n), resulting in the output signal yi(n). Therefore,

to ensure a stable system, the absolute value of γj should be considered to be less than

one, i.e., |γj| < 1. Thus, higher powers of γj are considered to be negligible and may be

omitted in (6.7), i.e., |γj| < 1 ⇒ |γj|a � 1 where a > 1. Using the last approximation,

(6.7) leads to the following expression where repetitive terms are combined:

yi(n) =

Ni∑
k=1

k∑
r=0

δxk−r1 (n)xr2(n) +
M∑
j=1

Ni∑
k=1

max(N1,N2)∑
q=1

k−1∑
r=0

q∑
s=0

(
θxk−1−r1 (n)xr2(n)

xq−s1 (n− j)xs2(n− j)

)
(6.8)

where δ =

(
k

r

)
pi,k θ =

(
k − 1

r

)(
q

s

)
kγjpi,kpp,q

In the DPD technique, the envelope signal is deployed to construct the predistorted

signal in the digital domain. Therefore, (6.8) is transformed here to its baseband equivalent

form, where the complex envelope signal is denoted by x̃i(n). This signal is given such that

2xi(n) = x̃i(n)ejwin+x̃∗i (n)e−jwin, where wi is the carrier angular frequency of the dual-band

signal, i ∈ {1, 2}. According to [76], only components around the two carrier frequencies

are significant to the PA output formulation in general. Therefore, all of the terms that

lead to spectral components far from the two carrier frequencies are discarded.

Writing (6.8) using the baseband input and output signals leads to (6.9). This obtained

formulation, i.e., (6.9), represents the 2D-GMP model. This model allows cross terms

between the two delayed input signals. This feature is crucial to correct for any time delay

misalignment between the two signals, as discussed hereafter. The proposed 2D-GMP is

inherently reduced complexity when compared to other conventional models, such as the

dual-band Volterra series model.
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ỹi(n) =

Ni∑
k=2
k odd

k∑
r=0

r even

ϕx̃i(n) |x̃1(n)|k−r−1 |x̃2(n)|r

+

Ni−1∑
k=2

k even

max(N1,N2)−1∑
q=2

q even

k−1∑
r=0

r even

q∑
s=0

s even

M∑
j=1

αx̃i(n)

(
|x̃1(n)|k−r−2 |x̃1(n− j)|q−s |
|x̃2(n)|r |x̃2(n− j)|s

)

+

Ni∑
k=1
k odd

max(N1,N2)∑
q=1
q odd

k−1∑
r=0

r even

q∑
s=0

s even

M∑
j=1

βx̃i(n− j)
(
|x̃1(n)|k−r−1 |x̃1(n− j)|q−s−1

|x̃2(n)|r |x̃2(n− j)|s
)

(6.9)

where ϕ = δ

(
k − r
k−r−1

2

)(
r
r
2

)
α = θ

(
k − r − 1
k−r−2

2

)(
r
r
2

)(
q − s
q−s
2

)(
s
s
2

)
β = θ

(
k − r − 1
k−r−1

2

)(
r
r
2

)(
q − s
q−s−1

2

)(
s
s
2

)

It is important to note that the nonlinearity order Ni in (6.9), results in an order

of nonlinearity equal to Ni + max(N1 + N2) − 1 in the closed-form expression. When

dealing with memory effects, the memory nonlinearity order is higher than the memoryless

nonlinearity (denoted hereafter as Pi = Ni + max(N1 + N2) − 1). In fact, for the second

and third summation of (6.9), the nonlinearity order is equal to k + q − 1. For k = Ni

and q = max(N1 + N2), the total nonlinearity is increased to Pi. In this context, the

nonlinearity in the 2D-GMP model of (6.9) is higher than in the 2D-DPD model or any

polynomial-based model. Consequently, a comparison between polynomial based models

will be ineffective as the number of coefficients is high in the 2D-GMP, due to the increase

of nonlinearity to Pi.

To alleviate this inequality, the pruning of (6.9) is proposed to unify the nonlinearity

order of the memoryless part (first summation of (6.9)) and the memory part (second

and third summation of (6.9)) to Pi = 2Ni − 1. Therefore, (6.9) is written as (6.10) and

referred to hereafter as the modified 2D-GMP model. The resulting number of coefficients

is illustrated in Table 6.1. The number of coefficients for the modified 2D-GMP is lower

than that of the 2D-DPD, although the proposed model includes cross terms and the 2D-

DPD does not. Since the proposed model was derived from a dual-band PA block diagram,

only necessary kernels are present. Whereas, the 2D-DPD is a generalization of the MP

model with no particular selection of kernels, resulting in a high number of coefficients.
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ỹi(n) =

2Ni−1∑
k=2
k odd

k∑
r=0

r even

ϕx̃i(n) |x̃1(n)|k−r−1 |x̃2(n)|r

+

Ni−1∑
k=2

k even

max(N1,N2)−1∑
q=2

q even

k−1∑
r=0

r even

q∑
s=0

s even

M∑
j=1

αx̃i(n)

(
|x̃1(n)|k−r−2 |x̃1(n− j)|q−s |
|x̃2(n)|r |x̃2(n− j)|s

)

+

Ni∑
k=1
k odd

max(N1,N2)∑
q=1
q odd

k−1∑
r=0

r even

q∑
s=0

s even

M∑
j=1

βx̃i(n− j)
(
|x̃1(n)|k−r−1 |x̃1(n− j)|q−s−1

|x̃2(n)|r |x̃2(n− j)|s
)

(6.10)

Table 6.1: Number of coefficients comparison between the modified 2D-GMP, the 2D-CR-

GMP and the 2D-DPD models

Pi

Modified 2D-GMP 2D-CR-GMP
2D-DPD Even Odd

(6.10) (6.11)

Memory Taps Memory Taps Memory Taps

0 1 2 3 0 1 2 3 0 1 2 3

1 1 2 3 4 1 2 3 4 1 2 3 4

3 3 6 9 12 3 4 7 10 6 12 18 24

5 6 17 28 39 6 7 14 25 15 30 45 60

7 10 34 58 82 10 11 18 36 28 56 84 112

9 15 66 117 168 15 16 23 47 45 90 135 180

To allow large value of memory taps while keeping a realistic and manageable number

of coefficients, a reformulation of (6.10) is proposed in (6.11). The reformulation tolerates

a large memory span for low nonlinearity orders and a small memory span for high nonlin-

earity orders. This is translated in different M values in the second and third summations

of (6.10). This leads to (6.11) which is identified as the 2D-complexity-reduced GMP (2D-

CR-GMP) model. In this case, M is no longer a single integer number but a vector of

integers, i.e., M = [M1 · · ·Mmax(N1,N2)].

107



ỹi(n) =

2Ni−1∑
k=2
k odd

k∑
r=0

r even

ϕx̃i(n) |x̃1(n)|k−r−1 |x̃2(n)|r

+

Ni−1∑
k=2

k even

max(N1,N2)−1∑
q=2

q even

k−1∑
r=0

r even

q∑
s=0

s even

M(m1)∑
j=1

αx̃i(n)

(
|x̃1(n)|k−r−2 |x̃1(n− j)|q−s |
|x̃2(n)|r |x̃2(n− j)|s

)

+

Ni∑
k=1
k odd

max(N1,N2)∑
q=1
q odd

k−1∑
r=0

r even

q∑
s=0

s even

M(m2)∑
j=1

βx̃i(n− j)
(
|x̃1(n)|k−r−1 |x̃1(n− j)|q−s−1

|x̃2(n)|r |x̃2(n− j)|s
)

(6.11)

where m1 =
(1 + (k − r − 2) + (q − s) + r + s) + 1

2

m2 =
(1 + (k − r − 1) + (q − s− 1) + r + s) + 1

2

One approach to select the values for M is to start with the highest values as M1 and

decrease the values of Mk by a step equal to 1 until 0, when all consequent values are

set equal to zero. This is summarized in (6.12). The resulting numbers of coefficients for

(6.10) and (6.11) are summarized in Table 6.1. It is clear that the proposed 2D-CR-GMP

allows a large value for M , while keeping a manageable number of coefficients. In addition,

the 2D-CR-GMP model allows cross terms, resulting in better modeling and linearization

capabilities especially when time delay misalignment between the two signals exists.

{
M1 = M

Mk+1 = max(0,Mk−1 − 1)
k =
k odd
· · ·max(N1, N2) (6.12)

6.2 Tri-Band Generalized Memory Polynomial

6.2.1 Tri-Band Power Amplifier Block Diagram

In order to generalize (6.12) to a tri-band PA, the same procedure that yielded the 2D-

CR-GMP model is followed. A simplified block diagram of a tri-band PA is proposed,

and a feed-forward model is then derived. Figure 6.3 shows a tri-band PA block diagram

represented by three nonlinear memoryless functions and a feedback filter, where x1(n),

x2(n) and x3(n) are the three input RF signals and y1(n), y2(n) and y3(n) are the respective

RF output signals. As with the dual-band case, the three nonlinear functions can be
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attributed to the PA exhibiting different gain characteristics at each frequency range. The

filter simulates the feedback of low frequencies that produce memory effects and thus this

feedback filter is kept the same as in Figure 5.3. Figure 6.3 is described by (6.13)-(6.16),

where γj is the jth instance of feedback filter discrete time domain representation FIRfb,

and M denotes the memory depth.

y(n) = y1(n) + y2(n) + y3(n) (6.13)

yi(n) = Gi [ui(n)] i ∈ {1, 2, 3} (6.14)

ui(n) = x1(n) + x2(n) + x3(n) + z(n) i ∈ {1, 2, 3} (6.15)

z(n) = FIRfb[y(n)] =
M∑
j=1

γjy(n− j) (6.16)

Figure 6.3: Block diagram of a tri-band power amplifier

6.2.2 Tri-Band Power Amplifier Model Derivations

The static nonlinearities G1(.), G2(.), and G3(.) are characterized by memoryless polyno-

mials given in (6.17), where N1, N2 and N3 are the memoryless nonlinear orders.

Gi(u) = pi,1u+ pi,2u
2 + · · ·+ pi,Ni

uNi i ∈ {1, 2, 3} (6.17)

Following the derivations that led to the 2D-GMP model, it is easy to show that the

tri-band delayed output signals are expressed as in (6.18). Since the PA has fading memory,
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the delayed output signals are allowed to enter the FIR feedback filter only once. Thus,

their expressions include only the input signals.

γjy1(n− j) =
∀j≥1

γjGq [x1(n− j) + x2(n− j) + x3(n− j)] (6.18)

Substituting (6.17) and (6.18) into (6.14) leads to (6.19), where i ∈ {1, 2, 3}:

yi(n) =

[
x1(n) + x2(n) + x3(n)+∑M

j=1

∑3
q=1 γjGq [x1(n− j) + x2(n− j) + x3(n− j)]

]
(6.19)

To ensure that the system of Figure 6.3 is stable, the absolute value of γ should be less

than 1, i.e., |γj| < 1. Using (6.19) and recognizing the fact that any powered terms of the

feedback FIR are neglected, |γj| < 1⇒ |γj|a � 1, with a > 1, the following is obtained.

yi(n) =

Ni∑
k=1

k∑
r=0

r∑
t=0

σxk−r1 (n)xr−t3 (n)xt3(n)+

Ni∑
k=1

M∑
j=1

3∑
p=1

Np∑
q=1

q∑
r=0

k−1∑
s=0

r∑
t=0

s∑
u=0

ϑ

(
xk−s−11 (n)xs−u2 (n)xu3(n)

xq−r1 (n− j)xr−t2 (n− j)xt3(n− j)

)
(6.20)

δ =

(
k

r

)
pi,k σ =

(
r

t

)
δ ϑ = θ

(
r

t

)(
s

u

)
θ =

(
q

r

)(
k − 1

s

)
kγjpi,kpp,q

Writing (6.20) as the baseband equivalent model, (6.21) is obtained and denoted as tri-

band generalized memory polynomial (3D-GMP). Since the total nonlinearity of (6.21) is

Pi = Ni+max(N1+N2+N3)−1, in order to compare this model with the polynomial based

model, the memoryless nonlinearity (the first summation (6.21)) is set to Pi = 2Ni − 1.

This results in the modified 3D-GMP model given in (6.22).

ỹi(n) =

Ni∑
k=1
k odd

k−1∑
r=0

r even

r∑
t=0

t even

ϕx̃i(n)|x̃1(n)|k−r−1|x̃2(n)|r−t|x̃3(n)|t+

Ni∑
k=2

k even

max(N1,N2,N3)∑
q=2

q even

q∑
r=0

r even

k−1∑
s=0

s even

r∑
t=0

t even

s∑
u=0

u even

M∑
j=1

α
x̃i(n)|x̃1(n)|k−s−2|x̃2(n)|s−u|x̃3(n)|u

|x̃1(n− j)|q−r|x̃2(n− j)|r−t|x̃3(n− j)|t
+

Ni∑
k=1
k odd

max(N1,N2,N3)∑
q=1
q odd

q∑
r=0

r even

k−1∑
s=0

s even

r∑
t=0

t even

s∑
u=0

u even

M∑
j=1

β
x̃i(n− j)|x̃1(n)|k−s−1|x̃2(n)|s−u|x̃3(n)|u

|x̃1(n− j)|q−r−1|x̃2(n− j)|r−t|x̃3(n− j)|t

(6.21)
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ỹi(n) =

2Ni−1∑
k=1
k odd

k−1∑
r=0

r even

r∑
t=0

t even

ϕx̃i(n)|x̃1(n)|k−r−1|x̃2(n)|r−t|x̃3(n)|t+

Ni∑
k=2

k even

max(N1,N2,N3)∑
q=2

q even

q∑
r=0

r even

k−1∑
s=0

s even

r∑
t=0

t even

s∑
u=0

u even

M∑
j=1

α
x̃i(n)|x̃1(n)|k−s−2|x̃2(n)|s−u|x̃3(n)|u

|x̃1(n− j)|q−r|x̃2(n− j)|r−t|x̃3(n− j)|t
+

Ni∑
k=1
k odd

max(N1,N2,N3)∑
q=1
q odd

q∑
r=0

r even

k−1∑
s=0

s even

r∑
t=0

t even

s∑
u=0

u even

M∑
j=1

β
x̃i(n− j)|x̃1(n)|k−s−1|x̃2(n)|s−u|x̃3(n)|u

|x̃1(n− j)|q−r−1|x̃2(n− j)|r−t|x̃3(n− j)|t

(6.22)

From Table 6.2, it can be seen that the modified 3D-GMP requires fewer coefficients

than the 3D-DPD, although cross terms are included in the proposed model. To allow a

large value in the memory span, while keeping a manageable number of coefficients, the

same pruning applied to obtain the 2D-CR-GMP is used here. In other words, different M

values in the second and third summations of (6.22) are used. This leads to (6.23), called

hereafter the tri-band complexity reduced generalized memory polynomial (3D-CR-GMP)

model. Mk are selected as in (6.12). The resulting number of coefficients is summarized in

Table 6.2.

ỹi(n) =

2Ni−1∑
k=1
k odd

k−1∑
r=0

r even

r∑
t=0

t even

ϕx̃i(n)|x̃1(n)|k−r−1|x̃2(n)|r−t|x̃3(n)|t+

Ni∑
k=2

k even

max(N1,N2,N3)∑
q=2

q even

q∑
r=0

r even

k−1∑
s=0

s even

r∑
t=0

t even

s∑
u=0

u even

M(m1)∑
j=1

α
x̃i(n)|x̃1(n)|k−s−2|x̃2(n)|s−u|x̃3(n)|u

|x̃1(n− j)|q−r|x̃2(n− j)|r−t|x̃3(n− j)|t
+

Ni∑
k=1
k odd

max(N1,N2,N3)∑
q=1
q odd

q∑
r=0

r even

k−1∑
s=0

s even

r∑
t=0

t even

s∑
u=0

u even

M(m2)∑
j=1

β
x̃i(n− j)|x̃1(n)|k−s−1|x̃2(n)|s−u|x̃3(n)|u

|x̃1(n− j)|q−r−1|x̃2(n− j)|r−t|x̃3(n− j)|t

(6.23)

m1 =
(1 + (k − s− 2) + (s− u) + u+ (q − r) + (r − t) + t) + 1

2

m1 =
(1 + (k − s− 1) + (s− u) + u+ (q − r − 1) + (r − t) + t) + 1

2
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Table 6.2: Comparison of number of coefficients required by modified 3D-GMP, 3D-CR-

GMP and 3D-DPD Models

Pi

Modified 3D-GMP 3D-CR-GMP
2D-DPD Even Odd

(6.22) (6.23)

Memory Taps Memory Taps Memory Taps

0 1 2 3 0 1 2 3 0 1 2 3

1 1 2 3 4 1 2 3 4 1 2 3 4

3 4 8 12 16 4 5 9 13 10 20 30 40

5 10 29 48 67 10 11 21 40 35 70 105 140

7 20 72 124 176 20 21 31 65 84 168 252 336

9 35 171 307 443 35 36 46 92 165 330 495 660

6.3 Multi-Band Generalized Memory Polynomial

In Chapter 5 and the previous sections, single-, dual- and tri-band models are derived from

simplified PA block diagrams. The formulations given in (5.10), (6.11) and (6.23) show

similarities in their derivations, which leads to the proposal of a general multi-band PA

model given in (6.24). This model can be reduced to single-, dual-, and tri-band and any

number of bands, depending on the number of inputs.

ỹi(n) =

2Ni−1∑
k1=1
k1 odd

k1∑
k2=0

k2 even

· · ·
hK−1∑
kK=0

kK even

ϕx̃i(n)|x̃1(n)|k1−k2−1
(
K−1∏
l=2

|x̃l(n)|kl−kl+1

)
|x̃K(n)|kK+

Ni∑
k1=2

k1 even

· · ·
hK−1∑
kK=0

kK even

max(Ni)
i∈{1,··· ,K}∑
q1=2

q1 even

· · ·
qK−1∑
qK=0

qK even

M(m1)∑
j=1


αx̃i(n)

|x̃1(n)|k1−k2−2|x̃K(n)|kK∏K−1
l=2 |x̃l(n)|kl−kl+1

|x̃1(n− j)|q1−q2 |x̃K(n− j)|qK∏K−1
l=2 |x̃l(n− j)|ql−ql+1

+

Ni∑
k1=1
k1 odd

· · ·
hK−1∑
kK=0

kK even

max(Ni)
i∈{1,··· ,K}∑
q1=1
q1 odd

· · ·
qK−1∑
qK=0

qK even

M(m2)∑
j=1


βx̃i(n− j)

|x̃1(n)|k1−k2−1|x̃K(n)|kK∏K−1
l=2 |x̃l(n)|kl−kl+1

|x̃1(n− j)|q1−q2−1|x̃K(n− j)|qK∏K−1
l=2 |x̃l(n− j)|ql−ql+1

 (6.24)
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m1 =
(1 + (k1 − k2 − 2) + kK +

∑K−1
l=2 (kl − kl+1) + (q1 − q2) + qK +

∑K−1
l=2 (1l − ql+1)

2

m1 =
(1 + (k1 − k2 − 1) + kK +

∑K−1
l=2 (kl − kl+1) + (q1 − q2 − 1) + qK +

∑K−1
l=2 (1l − ql+1)

2

6.4 Test Setup and Experimental Validation Condi-

tions

Two wideband PAs were used as the DUTs for validation of the 2D-CR-GMP and 3D-CR-

GMP models:

• 45 W single-ended GaN PA (1.9-2.9 GHz)

• 20 W Doherty GaN PA (700-950 MHz)

The two PAs were driven into their nonlinear regions to ensure the presence of highly

dynamic nonlinearities requiring correction. Different signal standards were deployed:

• 20 MHz 4 C WCDMA signals with a PAPR equal to 7.14 dB

• 20 MHz 1001 WCDMA signals with a PAPR equal to 7.11 dB

• 20 MHz LTE signals with a PAPR equal to 7.73 dB

The test bed used to assess the proposed models’ linearization performance is given in

Figure 6.4. An 8 giga sample per second arbitrary waveform generator (AWG M9180A) al-

lows the generation of signals from DC up to 4 GHz. This covers a wide range of cellular fre-

quencies including the two DUTs’ operating frequencies. Modulations and up-conversions

of the multi-band signals were digitally performed using MATLAB. The resulting real sig-

nal is uploaded to the AWG. A spectrum analyzer (PXA N9030A) was used to capture the

different output signals with an analysis bandwidth equal to 100 MHz.

A multi-band PA has different group delays for the different carrier frequencies. These

different group delays result in time delay misalignment between the different signals,

i.e., different times needed by the input signals to transform to the output signals. To

correct for this time delay misalignment, some input signals should be intentionally delayed

before modulation to equal the total delay between the different input and output signals.

Unfortunately, these group delays vary based on many variables, e.g., PA output power,

carrier frequency, temperature. Thus, there is no guarantee that the correction applied is

valid over time.
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Figure 6.4: Test bed for the multi-band digital predistortion

Typically, the DPD should handle this time delay misalignment. It is shown in last

section of this chapter that when cross terms exists in the DPD structure, as in the case

of the 2D-CR-GMP model or 3D-CR-GMP, the linearization is not sensitive to this issue.

However, in the absence of these cross terms, as in the case of 2D-DPD, the performance

of the DPD degrades even for a small time delay misalignment.

6.5 Dual-Band and Tri-Band Digital Predistortion

Validation

In the previous sections, behavioral modeling schemes of dual-, tri- and multi-band signals

has been discussed. Derivations from PA block diagrams have demonstrated a CR-GMP

models that allow cross terms, while keeping a manageable number of coefficients. The

objective of this section is the validation of these models as DPD linearizers.

To begin, the DPD parameters; nonlinearity order Pi and memory depth M , were

selected. The NMSE was then used to evaluate the forward DPD modeling capabilities.

Finally, the linearization performance of the DPD was evaluated by observing the EVM

and the output spectrum reduction through the ACPR. The first subsection examines the

dual-band case, the second subsection, the tri-band case.
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6.5.1 Dual-Band Digital Predistortion

The two DUTs were driven with dual input WCDMA signals. The single-ended GaN PA

was driven with the 4C 20 MHz WCDMA signal around 2.14 GHz and the 20 MHz 1001

WCDMA signal around 2.8 GHz (combined signal PAPR was 9.28 dB). The Doherty PA

was driven with the 20 MHz 1001 WCDMA signal around 750 MHz and the 4C 20 MHz

WCDMA around 900 MHz (combined signal PAPR was 9.24 dB). The DUTs were driven

to compression to ensure high nonlinearity.

To identify the 2D-CR-GMP nonlinearity and memory depth, several tests were con-

ducted. A memoryless 2D model given in (6.25) was identified to determine the best

nonlinearity degree, Pi. The nonlinearity order was chosen as the smallest value that cor-

responded to the NMSE plateau: Pi was selected as 7 for both DUTs. The memory depth

of model (6.11) was determined with the optimal selected Pi = 7: M was selected to be 3

for both DUTs.

ũi(n) =

2Ni−1∑
k=1
k odd

k∑
r=0

r even

δỹi(n)|ỹ1(n)|k−r−1|ỹ2(n)|r (6.25)

To evaluate the performance of the 2D-CR-GMP approach with the obtained parame-

ters, its modeling accuracy was compared to that of the 2D-DPD. For this section, the time

delay misalignment was equal to zero, while in next section, the time delay misalignment

is non-zero.

Table 6.3 shows a comparison between the proposed 2D-CR-GMP and the 2D-DPD

modeling with odd only and even odd order capabilities. In Table 6.3, LB refers to the

lower band and HB refers to the higher band. The 2D-DPD nonlinearity and memory

depth were chosen to be the same as the 2D-CR-GMP. It is clear from Table 6.3 that the

2D-CR-GMP provided comparable NMSEs for both DUTs when compared to the 2D-DPD

model, although the latter model requires more coefficients.

Tables 6.4 and 6.5 summarize the EVM values obtained under the different scenarios.

Measured performances were compared against the 2D-DPD where odd only and even

odd orders were selected. Both DPD schemes succeeded in linearizing the DUT, reducing

the EVM by more than 10 dB in all cases. This is clear from Figures 6.5–6.8 where the

linearized output spectrums achieved -50 dBc in all cases. Therefore, the 2D-CR-GMP

showed comparable EVM and ACPR reductions and forward DPD performance as the

2D-DPD model.
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Table 6.3: Normalized mean square error of the 2D-CR-GMP model versus the 2D-DPD

model without time delay misalignment

Model Name
NMSE (dB) # of Coeffs

LB HB LB HB

2D-DPD Odd Only (Pi = 7,M = 3) -36.47 -38.12 40 40

GaN 2D-DPD Even Odd (Pi = 7,M = 3) -36.80 -38.52 112 112

PA 2D-DPD Even Odd (Pi = 5,M = 3) -36.80 -38.49 60 60

2D-CR-GMP (Pi = 7,M = 3) -36.76 -38.43 36 36

2D-DPD Odd Only (Pi = 7,M = 3) -37.78 -38.76 40 40

Doherty 2D-DPD Even Odd (Pi = 7,M = 3) -38.34 -39.28 112 112

PA 2D-DPD Even Odd (Pi = 5,M = 3) -38.16 -39.17 60 60

2D-CR-GMP (Pi = 7,M = 3) -38.59 -39.11 36 36

Table 6.4: Error vector magnitude with and without DPD for the GaN single-ended power

amplifier

Model Name

EVM (dB) # of Coeffs

2.14 GHz 2.80 GHz 2.14 GHz 2.80 GHz

Band Band Band Band

Without DPD -26.31 -24.94

2D-DPD Odd Only (Pi = 7,M = 3) -36.39 -38.64 40 40

2D-DPD Even Odd (Pi = 7,M = 3) -36.74 -39.38 112 112

2D-DPD Even Odd (Pi = 5,M = 3) -36.83 -34.87 60 60

2D-CR-GMP (Pi = 7,M = 3) -36.77 -39.12 36 36

6.5.2 Tri-Band Digital Predistortion

To examine the 3D-CR-GMP model capabilities, the single-ended GaN PA was driven

with a tri-band signal composed of a 20 MHz LTE signal around 2.14 GHz, a 4C WCDMA

signal around 2.6 GHz and a 1001 WCDMA signal around 2.7 GHz (combined PAPR was

10.43 dB). First, the memoryless 3D model given in (6.26) was identified to determine

the nonlinearity degree Pi. This nonlinearity order is chosen to be the smallest value that

corresponded to the NMSE plateau: Pi was selected to be 7. Second, the memory depth
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Table 6.5: Error vector magnitude with and without DPD for the Doherty GaN power

amplifier

Model Name

EVM (dB) # of Coeffs

750 MHz 900 MHz 750 MHz 900 MHz

Band Band Band Band

Without DPD -25.52 -28.28

2D-DPD Odd Only (Pi = 7,M = 3) -37.43 -38.32 40 40

2D-DPD Even Odd (Pi = 7,M = 3) -38.09 -39.06 112 112

2D-DPD Even Odd (Pi = 5,M = 3) -37.96 -38.66 60 60

2D-CR-GMP (Pi = 7,M = 3) -38.41 -38.67 36 36

Figure 6.5: 2.14 GHz band power spectrum density of the GaN single-ended PA driven

with a dual-band 20 MHz WCDMA signal, without DPD and when linearized with the

2D-CR-GMP and 2D-DPD linearizers

of the 3D-CR-GMP model, i.e., (6.23), was determined with the optimal selected Pi = 7:

M was selected to be 2.

ũi(n) =

2Ni−1∑
k=1
k odd

k∑
r=0

r even

r∑
t=0

t even

ϕỹi(n)|ỹ1(n)|k−r−1|ỹ2(n)|r−t|ỹ3(n)|t (6.26)

To evaluate the performance of the 3D-CR-GMP approach, its modeling accuracy was

compared to 3D-DPD with odd only and even odd order capabilities. The nonlinearity

and memory depth of the 3D-DPD and 3D-CR-GMP were set at 7 and 2, respectively. It
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Figure 6.6: 2.80 GHz band power spectrum density of the GaN single-ended PA driven

with a dual-band 20 MHz WCDMA signal, without DPD and when linearized with the

2D-CR-GMP and 2D-DPD linearizers

Figure 6.7: 750 MHz band power spectrum density of the GaN Doherty PA driven with a

dual-band 20 MHz WCDMA signal, without DPD and when linearized with the 2D-CR-

GMP and 2D-DPD linearizers

is clear from Table 6.6 that the 3D-CR-GMP provides comparable NMSE when compared

to the 3D-DPD model, although the latter model used much more number of coefficients.

Table 6.7 summarizes the EVM values obtained for the two models. Both DPD schemes

linearized the DUT by reducing the EVM more than 10 dB in the three bands. It can be

seen in Figures 6.9–6.11 that the linearized output spectrums pass the spectrum mask [1]

for all three bands. It is worth mentioning that the 3D-CR-GMP used only 31 coefficients

in each band to linearize the PA output whereas the 3D-DPD required a much larger

number of coefficients.
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Figure 6.8: 900 MHz band power spectrum density of the GaN Doherty PA driven with a

dual-band 20 MHz WCDMA signal, without DPD and when linearized with the 2D-CR-

GMP and 2D-DPD linearizers

Table 6.6: Normalized mean square error of the 3D-CR-GMP model versus the 3D-DPD

model

Model Name
NMSE (dB) # of

2.14 GHz 2.6 GHz 2.7 GHz Coeffs

3D-DPD Odd Only (Pi = 7,M = 2) -36.60 -38.56 -38.38 60

3D-DPD Even Odd (Pi = 7,M = 2) -36.78 -38.77 -38.48 252

3D-DPD Even Odd (Pi = 5,M = 2) -36.80 -38.80 -38.50 105

3D-CR-GMP (Pi = 7,M = 2) -36.67 -38.44 -38.49 31

Table 6.7: Error vector magnitude of the 3D-CR-GMP model versus the 3D-DPD model

Model Name
NMSE (dB) # of

2.14 GHz 2.6 GHz 2.7 GHz Coeffs

Without DPD -27.53 -25.43 -24.34

3D-DPD Odd Only (Pi = 7,M = 2) -36.64 -38.24 -38.31 60

3D-DPD Even Odd (Pi = 7,M = 2) -36.73 -38.58 -38.34 252

3D-DPD Even Odd (Pi = 5,M = 2) -33.99 -38.45 -38.39 105

3D-CR-GMP (Pi = 7,M = 2) -36.80 -38.17 -38.31 31
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Figure 6.9: 2.14 GHz band power spectrum density of the GaN single-ended PA driven with

tri-band signals, without DPD and when linearized with the 3D-CR-GMP and 3D-DPD

linearizers

Figure 6.10: 2.6 GHz band power spectrum density of the GaN single-ended PA driven with

tri-band signals, without DPD and when linearized with the 3D-CR-GMP and 3D-DPD

linearizers

6.6 Multi-Band Digital Predistortion Sensitivity to

Time Delay Misalignment

In this section, the sensitivity of the multi-band DPD to time delay misalignment is ex-

amined, and measurement validation for dual-band PA is proposed. As mentioned in

the previous section, a multi-band PA has different group delays for the different carrier

frequencies. These different group delays result in time delay misalignment between the

different signals, i.e., different times needed by the input signals to transform to the output

signals. Hereafter, this time is noted τi, where i is an index indicating one band.
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Figure 6.11: 2.7 GHz band power spectrum density of the GaN single-ended PA driven with

tri-band signals, without DPD and when linearized with the 3D-CR-GMP and 3D-DPD

linearizers

Consider a baseband signal {ũ1(n) · · · ũK(n)}. Prior to driving the PA, correction for

the different group delays is applied such that τi is the same for all bands. This is done

through delaying the baseband signal as follows: {ũ1(n+ δ1) · · · ũK(n+ δK)}, where δi

corrects for the different τi. Note that for the DPD identification, the PA input signal

{ũ1(n) · · · ũK(n)} is used, while the delayed version is used to drive the PA. If the different

multi-band PA group delays are constant, but not necessarily equal, the resulting output

signal is {ỹ1(n+ δ1 + τ1) · · · ỹK(n+ δK + τK)} such that δi + τi = τ ∀i ∈ [1, K]. The

sampled signals at the output of the PA are in the form of {ỹ1(n+ τ) · · · ỹK(n+ τ)}.
The time alignment adjustment results in the following signals: {ũ1(n) · · · ũK(n)} and

{ỹ1(n) · · · ỹK(n)}.

DPD coefficients for a particular band, i, are derived using (6.27), where the time

aligned output signals are used to map the input signal ũi(n). Thus, all the output signals

should be time aligned with ũi(n). Since the corrected group delays in this case are

constant, δi + τi = τ ∀i ∈ [1, K], the identification of the DPD coefficients is accurate and

good linearization results, as shown in the previous section.

ũi(n) = fDPD (ỹ1(n) · · · ỹK(n)) (6.27)

When the group delays change, due to changes in the temperature, input power,

bandwidth, etc., the PA output signals are in the form { ỹ1(n + δ1 + τ1 + τ ′1) · · ·
ỹK(n+δK+τK+τ ′K) }. In this case, δi+τi+τ

′
i 6= τ ′ for some i ∈ [1, K], where τ ′ is a constant.

Since the delay adjustment is performed between the couple {ũi(n), ỹi(n+ δi + τi + τ ′i)},
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the resulting output signals are still {ỹ1(n) · · · ỹK(n)}. For specific band i using (6.27)

to identify the DPD coefficients, the total delay between the output signals and the

input signal ũi(n) should be δi + τi + τ ′i . Thus, the output signals that must be

used for (6.27) and aligned with ũi(n) are { ỹ1 (n+ (δ1 + τ1 + τ ′1)− (δi + τi + τ ′i)) · · ·
ỹK (n+ (δK + τK + τ ′K)− (δi + τi + τ ′i)) }. Using δi+τi = τ ∀i ∈ [1, K], the output signals

for (6.27) are {ỹ1 (n+ τ ′1 − τ ′i) · · · ỹi(n) · · · ỹK (n+ τ ′K − τ ′i)}. The DPD formulation should

be able to take into account this time delay misalignment and use signals {ỹ1(n) · · · ỹK(n)}
to generate {ỹ1 (n+ τ ′1 − τ ′i) · · · ỹi(n) · · · ỹK (n+ τ ′K − τ ′i)}.

In the following, the dual-band case is studied to illustrate how the proposed 2D-CR-

GMP is able to adjust for time delay misalignment while 2D-DPD cannot. The second

predistorted signal is studied here, i.e., ũ2(n), and by analogy the same is applied to the first

predistorted signal, ũ1(n). To identify the DPD coefficients of the second band, the output

signals used should be {ỹ1(n+ δ′1 − δ′2), ỹ2(n)}. Thus, kernels that involve the power of

ỹ1(n+ ∆δ − j) and ỹ2(n− j) should be used where ∆δ = δ′1 − δ′2.

Recalling that the adjusted delayed signals used in the DPD coefficients are { ũ1(n),

ũ2(n) } and {ỹ1(n), ỹ2(n)} for the 2D-DPD formulation, all the kernels are in the form of

ỹ2(n − j)|ỹ1(n − j)|a|ỹ2(n − j)|b. Therefore, in the 2D-DPD formulation, it is impossible

to generate or estimate kernels with different delays, ỹ1(n + ∆δ − j) and ỹ2(n − j). It is

anticipated that the linearization performance of the 2D-DPD degrades in the case of time

delay misalignment. However, in the case of the proposed 2D-CR-GMP, cross terms, such

as ỹ2(n− j)|ỹ1(n)|a|ỹ1(n− j)|b|ỹ2(n)|c|ỹ2(n− j)|d, are allowed. Thus, estimation of kernels

with different delays for the two output signals is possible; and, it is anticipated that the

2D-CR-GMP linearization performance is not sensitive to time delay misalignment.

Measurement validation of the sensitivity to time delay misalignment of the 2D-DPD

and the 2D-CR-GMP models is conducted hereafter. The single-ended and Doherty PAs

were driven with dual-band signals with 4.6 ns and 10 ns time delay misalignments, respec-

tively. These time delay misalignments are equivalent to half a sample for the single-ended

PA and one sample for the Doherty PA. The 2D-CR-GMP and 2D-DPD were used to

linearize the two PAs; and, the performances are summarized in Tables 6.8 and 6.9 and

Figures 6.12–6.15.

Tables 6.8 and 6.9 show the EVM results without DPD and when using the 2D-CR-

GMP DPD and 2D-DPD with odd only and even odd orders. When comparing these tables

with those presented in previous section, it is clear that the 2D-CR-GMP maintained EVM

results in the presence of time delay misalignment; whereas the 2D-DPD EVMs degraded

by more than 2 dB for the higher bands of both DUTs. The 2D-CR-GMP achieved the

same out-of-band reduction. This is also evident from the ACPR reduction shown in
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Figures 6.12–6.15, where the 2D-DPD sometimes violates the -45 dBc mask. It is worth

mentioning here that the time delay misalignment was selected to be very small; however,

there is no guarantee that the misalignment is small in real applications. Thus, more severe

degradation can be observed in the case of the 2D-DPD.

Table 6.8: Error vector magnitude with and without DPD for the GaN single-ended power

amplifier, with 4.6 ns time delay misalignment

Model Name

EVM (dB) # of Coeffs

2.14 GHz 2.80 GHz 2.14 GHz 2.80 GHz

Band Band Band Band

Without DPD -26.37 -24.96

2D-DPD Odd Only (Pi = 7,M = 3) -36.54 -36.04 40 40

2D-DPD Even Odd (Pi = 7,M = 3) -36.72 -36.34 112 112

2D-DPD Even Odd (Pi = 5,M = 3) -36.80 -36.32 60 60

2D-CR-GMP (Pi = 7,M = 3) -36.77 -38.79 36 36

Table 6.9: Error vector magnitude with and without DPD for the Doherty GaN power

amplifier, with 10 ns time delay misalignment

Model Name

EVM (dB) # of Coeffs

750 MHz 900 MHz 750 MHz 900 MHz

Band Band Band Band

Without DPD -25.62 -28.47

2D-DPD Odd Only (Pi = 7,M = 3) -35.67 -34.52 40 40

2D-DPD Even Odd (Pi = 7,M = 3) -35.89 -34.64 112 112

2D-DPD Even Odd (Pi = 5,M = 3) -35.85 -34.63 60 60

2D-CR-GMP (Pi = 7,M = 3) -38.18 -36.82 36 36

The sensitivity of the DPD to time misalignment can also be generalized for higher

bands. In other words, if the multi-band DPD has proper cross terms in its formulation,

the linearization is robust against time delay misalignment. This is the case of the pro-

posed 2D-CR-GMP and 3D-CR-GMP models and the proposed multi-band DPD of (6.24).

However, due to the construction of the 2D-DPD and 3D-DPD, no cross terms were al-
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Figure 6.12: 2.14 GHz band power spectrum density of the GaN single-ended PA driven

with a dual-band 20 MHz WCDMA signal, without DPD and when linearized with the

2D-CR-GMP and 2D-DPD linearizers

Figure 6.13: 2.80 GHz band power spectrum density of the GaN single-ended PA driven

with a dual-band 20 MHz WCDMA signal, without DPD and when linearized with the

2D-CR-GMP and 2D-DPD linearizers

lowed; therefore, the performances of these models degrade when time delay misalignment

occurs.

It is important to note that the 2D-CR-GMP and the other proposed multi-band models

are robust against the time delay misalignment without the need of adding new coefficients

and thereby increasing the complexity. In fact, since the proposed models were designed

from PA block diagrams, these models are inherently robust against this issue.
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Figure 6.14: 750 MHz band power spectrum density of the GaN Doherty PA driven with

a dual-band 20 MHz WCDMA signal, without DPD and when linearized with the 2D-CR-

GMP and 2D-DPD linearizers

Figure 6.15: 900 MHz band power spectrum density of the GaN Doherty PA driven with

a dual-band 20 MHz WCDMA signal, without DPD and when linearized with the 2D-CR-

GMP and 2D-DPD linearizers

6.7 Conclusion

This chapter proposes a closed-form deterministic approach to identifying CR-GMP models

for multi-band nonlinear PAs modeling/linearization. First, block diagrams that describe

the PA behavior under multi-band signals are proposed. Second, derivations of dual- and

tri-band models (2D-CR-GMP and 3D-CR-GMP) are detailed. A general form multi-band

PA behavioral model/DPD is then proposed. Extensive validations of the 2D-CR-GMP

and 3D-CR-GMP models show good linearization capabilities for two different PAs driven

with wide-/multi-band signals. The proposed models are compared to contemporary 2D-

DPD and 3D-DPD models; and, it is shown that the 2D-CR-GMP is robust to time delay
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misalignment between the different input and output signals. The proposed models are

inherently low complexity and allow for high nonlinearity and large memory span, while

keeping a manageable number of coefficients.
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Chapter 7

Conclusion

Emerging wireless networks call for ubiquitous and multi-standard wireless access that

satisfies the demands of wireless users by increasing data rates, broadband Internet and

video transmission. To ensure such wireless access, radio systems require the deployment of

wide-/multi-band signals. These signals impose linearity and efficiency challenges on radio

frequency (RF) transmitters, particularly for the power amplifier (PA) stage, due to their

high peak-to-average power ratio (PAPR) and large frequency range. PAs are, however,

inherently nonlinear in their efficient region. Consequently, to ensure linear operation, PAs

need to operate in the back-off region far from their peak power capability, leading to

an increase in the operational cost of base stations. Digital predistortion (DPD) has been

introduced in the literature to linearize the PA output signal in its nonlinear region, thereby

enhancing the trade-off between linearity and efficiency. DPD consists of incorporating an

extra nonlinear function before the PA, to preprocess the input signal, so that the cascaded

system (DPD+PA) behaves linearly.

In this thesis, it is shown that conventional PA behavioral models/DPD schemes have

been limited to single- and narrow-band signals. The direct application of these conven-

tional models to wide-/multi-band signals creates challenging requirements that have not

been adequately addressed in the literature. These challenges include unrealistic sampling

rates in the observation path of PA input/output signals. In addition, the complexity of

existent PA behavioral models/DPD schemes increases exponentially with the PA nonlin-

earity order and memory taps, leading to an unmanageably high number of coefficients. To

that end, newer modeling schemes are needed to tackle these problems, and new approaches

are essential to reduce their complexity.
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7.1 Summary of Contributions

The main goal of this thesis has been the development of new modeling schemes that can

accurately model and linearize wide-/multi-band PAs with reasonable complexity. Physical

inspiration and a study of the sources of memory effects have been investigated to derive

simple and powerful modeling schemes. First, an innovative pruning technique for the

Volterra series based on G-Functionals was proposed. This technique allowed the selection

of dominant kernels without the estimation of the nonlinearity order or the memory depth.

This pruning results in a reduced-complexity behavioral model/DPD that allows high

values for the nonlinearity order and memory depth while keeping a manageable number

of coefficients. Therefore, this pruning technique is suitable for wideband signals. In

addition, it allows for better numerical stability by achieving a smaller conditioning number

and coefficient range than the widely used dynamic deviation reduction (DDR) approach

ones.

For wideband PAs, the conventional DPD identification procedure requires the deploy-

ment of a transmitter observation receiver (TOR) with a bandwidth that is equal to at

least five times the input signal bandwidth. This requirement restricts the effectiveness

of the DPD to only narrow-band signals. In fact, the high complexity and the high cost

to achieve a wideband TOR bandwidth degrade the effectiveness of the DPD in trading

off linearity and efficiency. In this context, a novel procedure was proposed to allow the

construction of a DPD while using a TOR bandwidth that is equal to only twice the input

signal bandwidth. This 2/5 reduction allowed the application of DPD to wideband signals

without extensively increasing the cost of the DPD implementation and complexity.

For multi-band PAs, a new approach for generating behavioral model schemes is pro-

posed. It starts with simplified block diagrams that characterize the behavior of a typical

PA driven by a multi-band signal. Second complexity-reduced generalized memory poly-

nomial (CR-GMP) models were derived from the feedback PA block diagram for the case

of single-, dual-, tri-band cases. Then a general formulation for the multi-band case was

proposed. The resulting CR-GMP models were inherently low complexity and allowed

good linearization while deploying fewer coefficients. In addition, the proposed models

were proven to be robust against time delay misalignment.

The thesis has developed of reduced complexity behavioral models/DPD schemes that

are capable of predicting and linearizing different PA topologies and technologies output

signals. These PAs were driven with wideband (up to 60 MHz) and multi-band signals

with widely spaced carrier frequencies (higher than 100 MHz).
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7.2 Future Work

In Chapter 4, it was demonstrated that the TOR bandwidth can be reduced without

affecting the DPD linearization performances. However, one critical condition for that

reduction was the deployment of a wideband PA input signal, as shown in Figure 7.1. This

wideband PA input signal can be synthesized digitally, i.e., as a DPD output signal, then

converted to analog and up-converted to RF. This process calls for the deployment of high

speed digital-to-analog converters (DACs) and consequently limits the effectiveness of the

DPD when applied for wideband signals. Similar to the TOR bandwidth reduction, the

transmitter path sampling speed can be restricted to only twice the input Nyquist rate

(INR), i.e., a reduction of the DAC speed, as shown in Figure 7.2. To ensure a wideband

PA input signal, a nonlinear analog circuit can be cascaded between the DPD and the

PA. Doing so allows the expansion of the DPD output signal bandwidth to five times

the original input signal bandwidth. Consequently, the DAC speed is reduced and the

TOR bandwidth reduction condition is satisfied, simultaneously. One way to implement

this nonlinear system is analog predistortion. In this way, DPD and analog predistortion

are combined, thus reducing DAC speeds, thanks to the analog predistortion function,

and reducing the analog-to-digital (ADC) speed while achieving excellent linearization

capabilities, thanks to the DPD. However, combining DPD and analog predistortion calls

for new identification algorithms to take into account the presence of the two linearizers.

Figure 7.1: Linearization block diagram with reduced speed analog-to-digital converter
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Figure 7.2: Linearization block diagram with reduced speed analog-to-digital and digital-

to-analog converters
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Appendix A

Three-tone Characterization

This appendix illustrates that modeling a memoryless PA, with an order of nonlinearity

equal to 3, and driven by a three-tone signal, using only the inner tones, is not practical,

as suggested by [89]. For that, let us consider a memoryless PA model given in (A.1); the

goal is the estimation of a1 and a3.

y(n) = a1x(n) + a3x(n)3 (A.1)

a1 ≈ 0.977 + 0.0591i

a3 ≈
2.197− 3.907i

1000

Figure A.1 shows the PA input and output spectrums; i.e., blue is for PA input spectrum

and red is for output one. It can be observed that the 3rd order inter-modulation (IMD3)

is quite high, only 20 dBc from the in-band tones. However, it is also observed that the

in-band amplification is barely noticed. In fact, zooming into the three in-band tones

frequency range, Figure A.2, shows a difference of less than 0.01 dB. Consequently, it is

deduced that: theoretically, only the in-band tones are necessary to estimate a1 and a3

(by measuring two of the in-band output tones and deducing the amplification difference).

However, in practice, measurement errors can affect the estimation of this difference and

consequently the accuracy of a1 and a3 modeling. For example, the R&S R©FSW signal and

spectrum analyzer used in the measurement of Chapter 4 has a measurement uncertainty

of less than 0.4 dB. This measurement uncertainty is higher than the difference that should

be captured to accurately estimate a1 and a3. Hence, it was concluded in Chapter 4 that

IMD3 measurement is necessary to mitigate the a for-mentioned problem.
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Figure A.1: Input and output spectrums of a memoryless nonlinear power amplifier driven

by a three-tone signal

Figure A.2: Zoom into the in-band of the input and output spectrums of a memoryless

nonlinear power amplifier driven by a three-tone signal
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Appendix B

Over Modeling with Reduced

Transmitter Observation Receiver

This appendix use an example to illustrate that the sampling rate reduction depends on

the model structure. In other words, when the model structure is comparable to the real

structure of the system being modeled, reducing the sampling rate is more likely.

Let us consider a system being represented by a polynomial given in (B.1), where

x ∈ [−1, 1]. Figures B.1 and B.2 illustrate the curves of y as a function of x (the blue curve

is for the original polynomial). The goal here is the estimation of this polynomial.

y(n) = −1.0462 x+ 0.2403 x4 − 1.0864 x5 + 1.3511 x7 + 0.0303 x9 + 0.9680 x13 (B.1)

A first test consists of sampling only four points from x and y, i.e.,{ (−1, 0.0234),

(−0.34, 0.3631), (0.32,−0.3354), (0.98, 0.157) }, and finding a polynomial model that best

fits these points. In this test, the nonlinearity of the polynomial is selected to be exactly the

same as that of the polynomial being modeled as given in (B.2); i.e., the model structure

is identical to the original polynomial (correct structure). MATLAB identification results

in a polynomial (represented by the red curve in Figure B.1) that perfectly fits the original

polynomial for the sampled points and perfectly extrapolates elsewhere.

y(n) = a1x
1 + a4x

4 + a5x
5 + a7x

7 + a9x
9 + a13x

13 (B.2)

A second test consists of sampling the same four points from x and y and finding a

polynomial model that best fits these points. In this test, the nonlinearity of the polynomial
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Figure B.1: Modeling using four sampling points

is selected to be 13, as given in (B.3); i.e., the model structure is unlike the original

polynomial (incorrect structure). In fact, in this case, the polynomial in (B.3) contains more

terms than needed to represent exactly the structure of (B.1). MATLAB identification

results in a polynomial (represented by the black curve in Figure B.1) that perfectly fits

the sampled points but fails to extrapolate elsewhere. To solve this issue, if the sampled

points are augmented to eight instead of four, MATLAB identification now results in a

model that perfectly fits the sampled points and perfectly extrapolate elsewhere.

y(n) = b1x
1 + b2x

2 + · · ·+ b13x
13 (B.3)

It is important to note that sampling eight or four points is a non-deterministic problem

as the number of coefficients is higher that the sampled points. This problem is equivalent

to sampling the PA output signal using a TOR bandwidth that is less than the PA output

bandwidth. However, when the model structure is close to the system being modeled, fewer

samples are needed. However, augmenting the number of samples allows more flexibility

in the structure choice. This is equivalent to the case in Chapter 4 where; if the DPD

structure is correct, the sampling rate is reduced to as low as the input Nyquist rate

(INR). However, when the DPD structure is incorrect, the sampling rate is reduced to

only 2× INR.
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Figure B.2: Modeling using eight sampling points
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