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Abstract

Dwarf galaxies can be used to trace invisible dark matter substructure. Studies of the
properties of dwarf galaxy populations are crucial in solving the so-called “Missing Satel-
lite Problem”, and hold important implications for galaxy formation. We use data from the
COSMOS survey to study the statistical properties of nearby satellite galaxies, including
their clustering, spatial distribution and abundance as a function of the luminosity relative
to the central galaxies. The COSMOS data have 30-band photometric redshifts of very
high quality, which greatly help our measurements. We detect an over-density of galaxies
at projected separation < 600 kpc, corresponding to 7.9 ± 0.5 satellites per central galaxy.
We also measure the relative abundance of satellites as a function of the magnitude differ-
ence between satellites and central galaxies, the so-called “relative luminosity function”.
After correcting for the variation of the magnitude limits for different primaries, we find a
detection of 17.7 ± 5.1 satellites per central galaxy at ∆mg ≡ g+

sat−g+
main ≤ 10. This result

is two magnitudes fainter than most of the recent studies. This result is of two magnitudes
less deep than the result of Speller & Taylor (2014), but is much more complete at the
faint end, as we include the compact and low surface brightness galaxies that are excluded
in their work. Additionally, we investigate satellite alignment with the orientations of the
central galaxies, searching for the so-called “Holmberg effect”. We split our primary sam-
ple into several sub-samples, including blue/red, bright/faint, and early/late SED types.
The blue and red and early and late sub-samples have roughly similar g-band luminosities.
For early type and red primaries, we find some evidence for alignment between satellite
positions and the major axes of the primary galaxies. We also study the dependence of
the amplitude of the clustering signal on the primary properties. We find that early-type
primaries have a stronger clustering signal with their satellite populations, a larger pop-
ulation per central galaxy and possibly a more extended radial distribution of satellites
than the late-type primaries on average. This may indicate differences in the properties or
in the baryonic evolution of the host halos of the two types of primaries.
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Chapter 1

Introduction

1.1 Cold Dark Matter Structure Formation

Dark matter (DM) comprises over 80% of the total matter density of the universe (or
26.5% of the total energy, while baryons are only 4.9%, most recent results of the Planck
collaboration (Planck Collaboration et al., 2013)), and it thus has a dominant effect in the
current standard picture of structure formation. The Cold Dark Matter (CDM) model and
numerical simulations predict that structures in the universe are formed in a hierarchical
manner, where the initial density fluctuations present at early times grow through gravi-
tational instability and eventually collapse and virialize into dense, relaxed systems called
“halos”. Halos then continue to form larger structures through accretion and mergers
(Blumenthal et al., 1984).

Dark matter halos are the fundamental non-linear units of the cosmic structure and
also provide the environments where galaxies (e.g. the Milky Way) are formed (White &
Rees, 1978). This cosmic structure consisting of dark matter halos causes the matter in
the universe to cluster, rather than being randomly distributed. Dark matter particles and
sub-structures are spatially associated inside individual host halos (also called “one-halo
term” clustering), which themselves are associated in large-scale structures (also called
“two-halo term” clustering) (Navarro, Frenk & White, 1996; Cooray & Sheth, 2002). The
nature of this clustering can be found through the observation of the visible galaxies, which
are predicted to form inside individual halos and thus can be used to trace the dark matter
structures that are themselves invisible. The galaxy clustering at large scales, or the two-
halo term clustering, has been well measured using observations of bright galaxies (e.g. the
Luminous Red Galaxy (LRG) catalogues from the Sloan Digital Sky Survey (SDSS) (York
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et al., 2000)) and has been successfully matched with the prediction from the CDM model.
On the other hand, the one-halo term clustering at small scales, which involves observing
generally fainter satellite galaxies, is more difficult to measure in practice and is also more
theoretically complex, due to the effects from baryonic processes that are not well known.
Chapter 3 will focus on the one-halo term clustering measurement.

High resolution numerical simulations have predicted various properties of dark matter
halos. First of all, halos are defined as relaxed, virialized systems. The virial mass of dark
matter halos is the total mass inside the virial radius (Frenk & White, 2012):

Mvir = (4πr3
vir/3)∆vir,c ρc (1.1)

where Mvir is the virial mass of the halo, rvir is the virial radius of the halo, ρc is the
critical density of the universe and ∆vir,c ≈ 200 in a universe with mean density equal to
the critical density, according to linear theory. When we use ∆vir,c = 200, the virial radius
is equivalent to the R200, which is defined as the radius within which the average density
of the halo is equal to 200 times of the mean density of the universe. Similarly, the M200

is defined as the mass inside R200 of the halo. Inside individual dark matter halos, the
mass density of halos with different masses can be fit with a universal density profile as a
function of radius from the halo center, which was proposed by Navarro, Frenk & White
(1996), also known as the NFW profile:

ρNFW (r) =
ρs

r
Rs

(1 + r
Rs

)2
(1.2)

where Rs is the scale radius (the radius at which the logarithmic slope of the density profile
is -2) and ρs is the characteristic mass of the halo. This density profile provides us with
an initial guess at the spatial distribution of satellite galaxies: the halo mass densities of
the region with radius close to Rs are ∝ r−2 (for MW-like host halos, Rs is typically 1/10
of the virial radius, which is around 30 kpc), so the corresponding projected density will
go as ∝ r−1

p (where rp is the projected separation). Assuming the substructures of the
halos follow the same distribution, the abundance of substructures of a given halo in a
given projected radial bin 2πrdr will be approximately a constant. This rough estimate is
a good match to our measurements of the actual satellite spatial distribution. This result
will be presented in chapter 4.

Additionally, numerical simulations also show that individual dark matter halos usually
do not have spherical shapes, but are ellipsoidal or triaxial (Jing & Suto, 2002). It is
interesting but remains unclear whether the shapes of the dark matter halos are related
to the morphologies of the galaxies we observed within them (e.g. galactic disks of spiral
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galaxies). If we assume the shapes of the dark matter halos and the galaxies are associated
through some mechanism like the exchange of angular momentum, we can expect that
the distribution of the substructures of the halos may have certain alignment with central
galaxies sitting in the centers of the host halos. Furthermore, this alignment pattern may
be observable by tracing the dark matter substructures with the dwarf galaxies that are
located inside the virial radius of the host halos of the central galaxies. This will be
discussed in detail in chapter 4.

1.2 Galaxy Formation in Dark Matter Halos

In theory, galaxies are considered to form inside dark matter halos, and this is also sup-
ported by abundant observational evidence. Some of the main pieces of the observational
evidence include: 1) In 1939, the measurement of rotation curve (stellar rotation velocity
as a function of radius) for the Andromeda Nebula (Babcock, 1939) indicated that much
of its mass is distributed at a larger radius than where its stars are found. 2) Kinetic
studies of spiral galaxies show their stellar mass is generally insufficient to stabilize their
galaxy disks, and spherical dark matter halos are needed (Ostriker & Peebles, 1973). 3)
Gravitational lensing can directly provide evidence for the spatial association of the visible
galaxies with invisible structures of much larger mass.

The hierarchical structure formation model along with high resolution numerical sim-
ulations also predict that progenitor halos can often survive the process of merging into
larger systems, giving a population of substructures, or subhalos. The baryonic materials
inside the progenitor halos may also manage to cool and form stars before the mergers take
place (Yang et al., 2006). This gives a population of satellite galaxies around the central
galaxies, which are formed in the centers of the larger systems. The existence of those
satellite galaxies can be found through the observation of the dwarf galaxies that are close
to our Milky Way (MW). These dwarf galaxies typically have relatively high velocity dis-
persion (σdwarf > 10 km s−1) with only very low stellar mass. This indicates that they are
bound within local, over-dense dark matter structures. Furthermore, there are more than
25 identified dwarf galaxies that are located within 300 kpc from the MW (McConnachie,
2012), which is about the virial radius of the MW (Moore et al., 1999; Klypin, Zhao &
Somerville, 2002), indicating the host dark matter structures of these dwarf galaxies cannot
be independent dark matter halos but must be subhalos of the MW, and that these dwarf
galaxies themselves must be the satellites of the MW.

However, when comparing to dwarf galaxies to the high resolution CDM based simu-
lations, the predicted subhalos that are able to host the dwarf galaxies inside the galactic
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halos like those of the MW and M31 outnumber the dwarf galaxies we observe dramatically
(Klypin et al., 1999; Moore et al., 1999; Diemand, Kuhlen & Madau, 2007; Springel et al.,
2008; Kravtsov, Gnedin & Klypin, 2004). This is known as the missing satellite problem
(MSP). Although more faint satellites around the MW and M31 have been discovered dur-
ing the past two decades or so (Grebel, Dolphin & Guhathakurta, 2000; van den Bergh,
2000b; Zucker et al., 2004; Willman et al., 2005; Zucker et al., 2006, 2007; Irwin et al.,
2007; Martin et al., 2006; Liu et al., 2008; Martin, de Jong & Rix, 2008; Simon & Geha,
2007; Watkins et al., 2009; Belokurov et al., 2008, 2009, 2010), the number of observed
satellites is still much smaller than the prediction. This problem may indicate some mech-
anism shuts down galaxy formation at small scales (Taylor & Babul, 2004; Taylor, Silk
& Babul, 2004), or may challenge the CDM model and favour other dark matter models
such as the Warm Dark Matter (WDM) model (Moore et al., 2000; Spergel & Steinhardt,
2000; Yoshida et al., 2000; Bode, Ostriker & Turok, 2001; Craig & Davis, 2001; Zavala
et al., 2009; Lovell et al., 2011). Another possible explanation for this discrepancy may
be the incompleteness of the observed satellite populations of the MW and M31 (Simon &
Geha, 2007; Walsh, Willman & Jerjen, 2009; Willman et al., 2004; Koposov & Belokurov,
2008). Nevertheless, the MSP is of great importance and contains valuable implications
for structure formation and galaxy formation.

1.3 The Local Group

The Local Group (LG) is the group of galaxies consisting of the MW and nearby galaxies,
including the Andromeda galaxy (M31) and the satellite galaxies of the MW and M31. M31
is the nearest bright, spiral galaxy to the MW and is about 780 kpc from us (Ribas et al.,
2005; McConnachie, 2012). It has a similar (though probably slightly higher) luminosity
and mass as the MW (Karachentsev & Kashibadze, 2006). Both host halos of the MW
and the M31 are estimated to have virial radii of ∼ 300 kpc (Klypin, Zhao & Somerville,
2002), so their halos do not quite overlap with each other.

The LG is the best measured galaxy system we have. It has a large population of nearby
dwarf galaxies, with over 50 confirmed satellite members and more being discovered in the
recent years. McConnachie (2012) reviews all the 100 nearby (within 3 Mpc from the
Sun) dwarf galaxies that were known by 2012, of which 76 galaxies are very likely to be
members of the LG. Among these LG members, there are 27 galaxies that are within
300 kpc (the suggested virial radius of the MW halo), which are all likely bound satellite
galaxies of the MW, with one exception of Leo I (the current velocity measurements of Leo
I suggest it may be unbound with the MW halo unless its tangential velocity components
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are overestimated (Zaritsky et al., 1989; Mateo, Olszewski & Walker, 2008). ). In addition,
there are three more galaxies (Leo T, NGC 6822 and Phoenix) that have distances larger
than 300 kpc, but are likely to be dynamically bound with the MW (McConnachie, 2012),
which makes them the potential satellites of the MW. For the M31 sub-group, there are
21 galaxies within 300 kpc (suggested virial radius of the M31) from the center of M31,
with two of them (Andromeda XII and XIV) possibly unbound given their relatively large
tangential velocities, assuming the halo mass of M31 to be 1012M� (McConnachie, 2012).
Additionally, the Pegasus dwarf galaxy (DIG) and IC 1613 are also the potential satellites
of M31, as they are arguably dynamically associated, just as Leo T, NGC 6822 and Phoenix
are likely associated the MW. The associations of the remaining LG members (excluding
the MW and M31) with any dynamical subgroup are ambiguous.

The dwarf galaxies of the LG have been measured within a very broad luminosity range.
The satellites of the MW and M31 are distributed in the V-band absolute magnitude range
of −17 6 MV 6 −6, and the least luminous members (candidates, e.g. Segue I, Segue II,
Willman I, Bootes II) of the LG have V-band absolute magnitude down to MV ∼ 1 − 3
(McConnachie, 2012). The spatial distribution of the satellites of the MW appears to be
anisotropic. The 11 innermost satellites are distributed almost perpendicular to the MW
disk (Lynden-Bell, 1982; Kroupa, Theis & Boily, 2005). However, there may be more
undiscovered satellites that are close to the plane of the MW, due to the extinction of the
galactic disk. This possibility of unknown satellites make it more complicated to draw a
firm conclusion on the real isotropy of the MW satellites. We will determine the alignments
of the nearby dwarf galaxies outside the LG with their central galaxies, and discuss the
implications in section 4.2

1.4 Outside the Local Group

The Local Group is, and probably will always be, our best-observed system. Given the high
quality of the LG data, they play an essential role in studying problems like the missing
satellite problem. However, before drawing any conclusion from the LG studies to explain
galaxy evolution in the broader universe, we need to know whether the LG and its halos
are typical enough to represent other similar systems, which remains an open question (van
den Bergh, 2000a; Weisz et al., 2011; Lovell et al., 2011). Currently it is still very difficult
for numerical simulations and semi-analytic studies to fully reproduce the MW satellite
population, especially to reproduce the two extremely bright satellites (LMC and SMC) of
the MW (Benson et al., 2002; Koposov et al., 2009; Okamoto et al., 2010; Liu et al., 2011),
which are also suggested to be observationally rare in MW-like systems (Robotham et al.,
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2012).

To answer the question of how typical the LG is, we obviously need the observations of
dwarf galaxies in other systems outside the LG that are similar to the MW and M31. In
this way, we will be able to study the satellite properties such as the abundance and spatial
distribution in a broader cosmological context. A better understanding of the statistical
behaviour (e.g. average properties and statistical scatter) of these systems will help to
determine whether the LG represents a typical case or a statistically rare one. In addition,
studying the dwarf galaxies outside the LG allows us to understand satellite behaviour in
various cases beyond the MW-like systems. We will be able to study the dependence of the
satellite populations on the properties of the central galaxies and the local environment,
which has useful implications to galaxy formation. We will analyse of the dependence of
satellite behaviour on the central galaxy properties in chapters 3 to 5.

This thesis is organized as follows. In Chapter 2, we introduce the COSMOS survey, the
catalogue we use and our galaxy selection criteria. In Chapter 3, we present a measurement
of clustering between our bright primary sample and faint secondary sample, using the two-
point correlation function. In Chapter 4, we present an analysis of the spatial distribution
of the satellites, with a calculation of their radial density distribution and their angular
alignment with the orientation of their central galaxies. In Chapter 5, we present an
analysis of satellite abundance as a function of luminosity relative to the central galaxies.
In Chapter 6, we discuss some of the possible systematic uncertainties in our measurement.
In Chapter 7, we briefly present a preliminary analysis of satellite populations using the
CFHT Stripe 82 survey. Finally, we summarize our results in Chapter 8.
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Chapter 2

Data and Reduction

2.1 The COSMOS Survey

The Cosmic Evolution Survey (COSMOS) is a project that is designed to probe various
astronomical topics over a large redshift range that extends up to z ∼ 6, covering 2 deg2

sky area. The survey includes multi-wavelength imaging and spectroscopy from X-ray to
radio wavelength, including the Hubble Space Telescope (HST) imaging (Scoville et al.,
2007). The wide wavelength coverage and multiple bands give the potential for accurate
photometric redshift measurement (Ilbert et al., 2009).

2.2 The COSMOS Photo-z Catalogue

The clustering (satellite) study intensively relies on a reliable measurement of redshift.
Spectroscopic redshifts provide robust and highly accurate estimates, but they are ex-
tremely expensive and inefficient for faint objects, which are, however, very important for
satellite study. On the other hand, the photometric redshifts (photo-zs), which are based
on the observed color in a few broad-band filters (e.g. 5 in the case of the SDSS survey), are
a cheap, efficient method to collect redshift information both for bright and faint galaxies.
However, they usually have large uncertainties and do not meet the accuracy requirements
for studying small-scale clustering.

The COSMOS survey has produced a photometric redshift catalogue using a very large
number of bands, which provides a compromise between these two techniques. Is has 30-
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bands in total, including some intermediate or narrow bands, compared to the five broad
bands using by SDSS.

2.2.1 Photo-z Derivation

The photometric redshift in this catalogue is based on a χ2 template-fitting procedure,
using the LePhare code 1 (S.Arnouts & O.Ilbert) (Ilbert et al., 2009). The full galaxy
SED template library includes 7 SED templates of elliptical galaxies and 12 templates
of spiral galaxies and 11 SEDs of starburst (SB) galaxies, which are shown in Fig. 2.1.
For each template, the code scales the SED to different redshifts, with a grid spacing of
δz = 0.01. Then it compares the predicted SED to the observed flux from the 30 filters.
The merit function χ2(z, T, A) is defined as (Ilbert et al., 2009):

χ2 =

Nf∑
f=1

(
F f
obs − A× F

f
pred(z, T ) 10−0.4sf

σfobs

)2

(2.1)

where Nf = 30, refers to the number of filter; F f
obs refers to the observed flux at filter f ;

F f
pred(z, T ) refers to the predicted flux at filter f , using template T and fitting with redshift

z; A is the normalization; sf is the zero-point of the filter f ; σfobs refers to the uncertainty
of the observed flux of the filter f . The photo-z is estimated from the minimization of the
function χ2(z, T ). The redshift probability distribution function (PDFz) is also derived
from the χ2 function:

P (z) ∝ exp

(
−χ

2(z)− χ2
min

2

)
. (2.2)

The 1σ error, based on the definition of PDFz, is estimated by:

χ2(zmax, zmin) = χ2
min + 1. (2.3)

Throughout this thesis, the error of the photo-z is defined as (zmax − zmin)/2.

Some examples of demonstrating the precision of this χ2 template-fitting method are
shown in Fig. 2.2, where the predicted flux of the best fit F (z, T ) is compared to some of
the filters.

By comparing the photo-z redshift zp to corresponding spectroscopic redshift zs (e.g.
from zCOSMOS (Lilly et al., 2007)), the quality of the photo-z can be evaluated with

1www.oamp.fr/people/arnouts/LE PHARE.html
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Figure 2.1: The 31 templates that the COSMOS photo-z catalogue used.
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Figure 2.2: Four examples of how the spectral templates fit the photometry in multiple
filters to estimate the redshift.
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parameter σ∆z = |zp − zs|/(1σ error). The quality shows two feature (Ilbert et al., 2009):
The photo-z has significantly higher uncertainty at high redshift (z ≥ 1.25); The accuracy
of the photo-z is high for bright objects (σ∆z/(1 + zs) = 0.007 at i+ < 22.5 (Ilbert et al.,
2009)), slightly worse for median magnitude (σ∆z/(1 + zs) = 0.011 at i+ ∼ 23.1, and is
significantly degraded for very faint objects (σ∆z/(1 + zs) = 0.053 with a catastrophic
failure rate of 20% for objects with 24 < i+ < 25).

2.3 The Spectroscopic Catalogue

In addition to the photo-z catalogue, we also use redshifts from the internal spectroscopic
catalogue of the COSMOS collaboration (updated on October 9th, 2012), for the ob-
jects that have these available. The redshifts of this catalogue are compiled from various
sources, including the NASA extragalactic database (NED) and the z-COSMOS survey
(Lilly et al., 2007). The z-COSMOS is a large spectroscopic redshift survey covering the
COSMOS field, using Visible Multi-Object Spectrograph (VIMOS) on the 8-meter Very
Large Telescope (VLT). The survey contains two parts: zCOSMOS-bright and zCOSMOS-
deep. The zCOSMOS-bright contains about 20,000 bright galaxies with a I-band criteria of
IAB < 22.5 and with redshift range 0.1 < z < 1.2, covering the whole COSMOS Advanced
Camera for Survey (ACS) field; While the zCOSMOS-deep only covers the 1 deg2 central
area of the COSMOS ACS field but with higher redshift 1.4 < z < 3.0, and contains about
10,000 galaxies.

The spectroscopic catalogue allows independent test for the accuracy of the 30-band
photometry method and directly provides highly accurate redshift estimates for a part of
the sample we used in this study.

2.4 The COSMOS Shape Catalogue

Compared to ground-based observation, the space telescopes can have better resolution
as they are free from the effects of atmospheric seeing. The best seeing for ground-based
observation is typically 0.5-1.0”, while the full width half-maximum (FWHM) of the point-
spread function (PSF) of the Advanced Camera for Surveys (ACS) and the Wide Field
Camera (WFC) on the Hubble Space Telescope (HST) is 0.12” (Leauthaud et al., 2007).
The high resolution can provide a huge advantage of resolving close pairs, which is very
helpful for our purposes.
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Figure 2.3: Photo-z quality of the COSMOS shape catalogue (after the photo-zs of some
bright galaxies are corrected using their spectroscopic redshift). The top plot shows the
distribution of photo-z error as a function of the g-band apparent magnitude; the bottom
plot shows the normalize cumulative counts as a function of photo-z error. The local sample
(black) is cut at z < 0.3, while the selections of the primary (red) and the secondary sample
(green) are described in section 2.6 and section 2.7. Note the secondary sample is also
separated into three magnitude range bins(pink, yellow, blue) in the bottom plot.

12



The COSMOS shape catalogue was constructed by Leauthaud et al. (2007), with the
primary goal of minimizing the effects of contaminations by stars, cosmic rays, diffraction
spikes and other artifacts, providing clean PSF-corrected shape measurement, together
with the high quality COSMOS photometric redshift. They first extracted objects from
the ACS/WFC imaging with a “Hot-Cold” method employed by Rix et al. (2004), which
runs SExtractor2 twice, once with a configuration optimized for detecting only bright ob-
jects (”cold” step) and once with a configuration optimized for detecting faint objects
(“hot” step). They then constructed the base catalogue by combining the two samples
produced separately from the two steps. This two-step method helped to improve the
detection of close pairs and improved the completeness of the very luminous objects and
the very faint objects (Leauthaud et al., 2007). Additionally, a carefully defined (gener-
ally based on automatic algorithm and made by hands in a few cases when the algorithm
fails), polygonal-shaped mask is created around each bright object during the “cold” step,
removing a certain number of spurious detections. Afterwards, instead of using the au-
tomatic classification, they classified the galaxies/stars on the peak-surface-brightness-to-
magnitude (both parameters are generated from the SExtractor) plane, which was tested
to be a more robust method (Leauthaud et al., 2007). Finally, the catalogue was carefully
cleaned again by masking out other contaminated regions (including reflection ghost, as-
teroids and satellite trails) and removing astronomical sources such as HII regions around
bright galaxies and stellar clusters. In the end, the completed catalogue contains 1.2× 106

objects (3.9×105 galaxies) with a limiting magnitude of F814W = 26.5 after all those cuts
(Leauthaud et al., 2007).

The COSMOS photo-z catalogue provides the 30-band redshift information for 89% of
the objects selected from the ACS/WFC imaging while the remaining 11% of the objects
are mainly small objects that cannot be covered by the ground-based imaging and thus have
no valid photo-zs. In addition, there are larger areas are masked out for the ground-based
imaging and the objects inside these areas do not have good photo-zs, either. Overall, there
are about 73% objects of the shape catalogue with accurate photometric redshifts, including
2.8 × 105 galaxies (Leauthaud et al., 2007). Fig. 2.3 shows the quality of the photo-z
of the local galaxies of the shape catalogue. Note that a part of the redshifts (mainly
bright galaxies) are revised using the COSMOS spectroscopic redshifts. Fig. 2.4 shows the
photometric redshift versus g-band absolute magnitude distribution at low redshift for the
COSMOS shape catalogue, as well for our selected primary and secondary samples.

2SExtractor is a program that builds a catalogue of objects from an astronomical image, also see Bertin
& Arnouts (1996)
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2.5 Masking the Field

Halos and scattered light from other stars, bad pixels and other problems may cause flaws
in certain images on an image. Galaxy detection and photometry measurement may be
unreliable in these regions. A common strategy to reduce catalogue contamination is to
mask these regions out, as was done with the COSMOS shape catalogue (Fig. 2.6, left
panel). The masks are designed to fit the shape of the Point Spread Function (PSF) of
the stars and other artifacts (holes, spikes, ect), so that it prevent us from using the low
quality data and not to lose too much effective information at the same time. However,
it also brings more complicated boundary effects for any further statistical studies. It is
important to determine the shapes of the masked regions and to apply this consistently
for the clustering analysis.

In the COSMOS shape catalogue, the parameter “Mask-s” indicates that whether the
object should be masked or not. Besides deciding whether to mask out data point, we
need to produce a sky description of the masking to ensure that we can produce a random
sample that has the exactly same spatial distribution with the data. In order to determine
the shape the masked regions, we divided the ACS field into N ×N grids and counts how
many effective data points are inside each grid cell, whereas the grid cells containing “no
objects” (lower number of objects than certain threshold) will be defined as the masked
regions. Fig. 2.5 shows a histogram of the counts per grid in four resolution choices of
making the grids. Although we want high resolution to map out mask boundaries, excess
resolution runs the risk of over-estimating the masked areas. This is because the low
average count per grid, as a consequence of the high resolution (e.g. the case of 400× 400
resolution in Fig. 2.5), can introduce a high Poisson noise, which will then require a higher
threshold of counting to deal with. However, a higher threshold means a sacrifice of more
effective data points.

As the comprise between mapping out the boundaries of masked regions in a high
resolution, as well as keeping relatively complete data, we chose a resolution of 300× 300
and a threshold of two points per grid and defined all the grids with point number equal or
below the threshold to be the masked regions. The masking that we defined will be later
used to generate a random sample that matches with the secondary sample. Additionally,
we also excluded all the data points of the secondary sample in the masked regions to
guarantee that the random sample and the secondary sample will have almost the same
2-dimensional distribution on the sky.
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Figure 2.5: Distribution of object counts per grid cell for four different grid resolutions.
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2.6 The Primary Sample

The detailed construction steps of our primary sample are described as below, along with
the number of remaining galaxies after each step shown in the brackets:

1. We use the COSMOS shape catalogue as the base catalogue (737,932 galaxies in
total);

2. We apply a redshift cut 0 < ZPHOT (photo-z) < 0.3 to select the relatively local
galaxies (34,274 galaxies left);

3. We revise the redshift, using the spectroscopic catalogue: we matched these pri-
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maries to the low redshift galaxies from the spectroscopic catalogue, and corrected
the redshift of the galaxies that are also available in the spectroscopic data (34,274);

4. We apply a further redshift cut: 0 < mZPHOT (photo-z with spectroscopic redshift
correction) ≤ 0.2 (15,858);

5. We apply a magnitude cut of the g-band absolute Magnitude −50.0 < Mg < −19.0
(623);

6. We exclude the data in the masked regions, selecting data with parameter “Mask s”
== 1; (502)

7. We apply an apparent magnitude cut: We found a part our primary selection are
abnormally faint (g+ ∼ 21.5 − 25.0) in g-band magnitude, indicating errors in the
absolute magnitude estimates. We exclude them by cutting the sample with: g+ <
21.0. (486)

8. We add supplementary primary samples from the SDSS: We searched the SDSS
DR9 photometric and spectroscopic database by searching for galaxies that have
magnitude of g+ < 18.0 within the ACS field. We found 5 additional galaxies that
meet the criteria above but not are included in the our primary list. And three of
them also meet our absolute magnitude criteria: Mg < −19.0. We added these three
galaxies into our primary sample. (489)

9. We apply an additional “Kick-out” cut (see section 2.8 for further explanation):
Despite the bright magnitude cut we applied, the sample we selected may still contain
galaxies that are not truly primaries but satellites of other brighter galaxies. We
define the galaxies that have one or more brighter companions (∆Mg > 1.0, ∆V <
300km/s+ 1σV , ∆rp < 600kpc) to be potential satellites. We cut out these galaxies
(96) from the primary and build a “Kick-out” primary list. (393 galaxies in the
“Kick-out” primary sample.)

After the reduction, there are 489 bright galaxies left as our primary sample (without
the additional “Kick-out” cut). Fig. 2.7 show the redshifts of the primaries versus their
g-band absolute magnitude, where the green dots are the primaries whose redshifts have
been revised, using the spectroscopic catalogue, the blue dots are the three supplementary
galaxies obtained from the SDSS. The top left and top right panels in Fig. 2.8 show the
g-band absolute magnitude and apparent magnitude distribution of the primary sample.
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Figure 2.7: The g-band absolute magnitude–redshift distribution of the Primary sample
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2.7 Cleaning the Secondary Sample

We used the shape catalogue as base catalogue and picked the galaxy samples within
redshift range of 0.0 to 0.25 (zlow68 ≤ 0.25 in this case, using zlow68 instead of z and a
slightly higher up limit to ensure that the secondary sample includes all the possible faint
galaxies that may cluster with the primary galaxies) and with the absolute magnitude in
g-band fainter than -19.5 as the secondary sample. Then we matched the sample to the
spectroscopic catalogue and replace the redshift of the galaxies that were also available in
the spectroscopic catalogue, reducing the error in the redshift to zero.

The detailed construction steps of our secondary sample are described as below, along
with the number of remaining galaxies after each step shown in the brackets:

1. The sample was initially built based on the COSMOS shape catalogue (737,932);

2. We applied a redshift cut: 0 < ZPHOT (photo-z) < 0.3 (34,274);

3. We revised the redshift using the spectroscopic catalogue: we matched these galaxies
to the low redshift galaxies (z < 0.6) from the spectroscopic catalogue, and corrected
the redshift of the galaxies that are also available in the spectroscopic data (34,274);

4. We applied a further redshift cut of 0 < zlow68 < 0.25 (31,135), where zlow68 the
modified redshift lower limit. Note that we use a lower limit and a relatively larger
range than the primary to include relatively complete secondary sample in case that
some faint galaxies have poor photometric redshift.

5. We applied an absolute magnitude cut: −19.5 < Mg < −0.1; (29,947)

6. Data masking: using mask parameter “mask s”, we selected objects in the unmasked
regions; (22,638)

7. We applied a further apparent magnitude cut using g-band magnitude: MAG AUTO <
26.0. (20,7033)

8. We excluded the galaxies with large redshift errors: σz = (zhigh68 − zlow68)/2 < 0.25.
(16,702)
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Figure 2.8: The first plot shows the distribution of absolute g-band magnitude of the
primary sample; the second one shows the distribution of the apparent magnitude of the
primary sample; the third one shows the distribution of the absolute magnitude of the sec-
ondary sample; the last one shows the distribution of apparent magnitude of the secondary
sample with the g = 26.0 cut we applied to the sample.
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2.8 Properties and Further Sub-samples

We looked at the detailed magnitude distribution of our primary and secondary sample,
shown in Fig. 2.8.

Previous studies usually focus on the primary galaxies that are relatively isolated from
other bright galaxies (Speller & Taylor, 2014; Nierenberg et al., 2012; Wang & White, 2012;
Wang et al., 2014; Strigari & Wechsler, 2012), which probably correspond to individual
dark matter halo systems as opposed to more massive groups . Focusing the isolated
primaries has an advantage of being able to easily avoid satellite over-counting but it also
dramatically reduces the sample size. Specifically, the isolation cut is a particular unfavored
choice for the COSMOS in term of sacrificing the sample size. Since the COSMOS field
only contains few extremely bright sources, we have choose a relatively faint luminosity
limit to achieve a reasonable number size of our primary sample. As a result, the surface
density of our primaries is relatively high, which makes it less likely for the primaries to
be isolated with each other (see Section 6.4 for more detailed discussion).

Instead of an isolation cut, we applied a “Kick-out” technique to clean our primary
sample. One of the main motivations of the isolation cut and many other primary selection
criteria is to select the galaxies that are the most likely to be the central galaxies of their
systems, because otherwise (e.g. mistaking a satellite as the central galaxies), we would
be looking at the unimportant objects that are representative for the systems. The goal of
the “Kick-out” method is to find those candidates that are not truly the primaries of their
systems and kick them out of our primary list. Specifically, we checked the regions within
a projected distance of rp < 600 kpc and velocity difference of |∆V | < 300km/s + σ∆V

around each primary (where σ∆V is the uncertainty of the relative velocity between two
primaries). We chose the distance 600 kpc to match the range within which we searched
for satellites, also see section. 4.1.3. We chose 300 km s−1 as a consertive relative velocity
limit, as CDM simulations predict that typical orbital velocities of subhalos in MW-like
host halos are around or below 200 km s−1 (Springel et al., 2008). If we find another galaxy
that is one or more magnitudes brighter, the fainter member of the pair is then identified
as a secondary and is kicked out of the primary list. By applying this technique, we can
ensure that all the galaxies in our primary list are genuinely the dominant galaxies in their
immediate neighbourhood. By doing the “Kick-out” cut, we reduced the number of the
primary sample from 489 to 392 galaxies. The size of the remaining “Kick-out” primary
sample is still fairly large, which allows us to split it into sub-samples for further analysis.
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Table 2.1: Morphological classification from NED for the three extra primary galaxies from
SDSS.

Object name (from NED) Ra(degree) Dec(degree) Type Reference
2MASX J10005519+0223437 150.23005 2.395523 S1 Véron-Cetty & Véron (2006)
2MASX J10000814+0245542 150.03379 2.765140 Sb Nair & Abraham (2010)
DSS J100236.57+014836.0 150.65241 1.810012 Sc N/A

“N/A” means Not Available.

The Bright and Faint Sub-samples

We split our primary sample into another two sub-samples using a luminosity criterion
based on the g-band absolute magnitude: We defined the galaxies with Mg < −20.5 as
the Bright sub-sample, which has 120 galaxies; correspondingly, we also define the galaxies
with Mg > −20.5 as the Faint sub-sample, which includes 272 galaxies. Note that the full
“Kick-out” primary sample has a mean absolute magnitude in g-band of 〈Mg〉 ≈ −20.1,
the Bright primary sub-sample has 〈Mg〉 ≈ −21.0 and the Faint primary sub-sample has
〈Mg〉 ≈ −19.7

The Elliptical/S0 and Spiral Sub-samples

We have the SED type information from the catalogue (Column “MODD”), which allows
us to cut the primary into elliptical and spiral galaxies. For the three SDSS-based galaxies,
we searched their images (shown in Fig. 2.9) and estimated their morphologies by eye. We
then searched the NASA/IPAC Extragalactic Database (NED) for further morphological
identification. The search results are shown in Tab. 2.1 . Note that the third galaxy
only has the SDSS system classification, without any reference available. Nevertheless, the
system classification of that galaxy (Sc) agrees with our manual morphology estimate.

In the end, we have 62 galaxies in the Elliptical/S0 sub-sample; and we have 330 galaxies
in the Spiral sub-sample. Fig. 2.10 shows their g-band absolute magnitude versus their
color. Note that the mean absolute magnitude in g-band of the Elliptical/S0 sub-sample
is 〈Mg〉 ≈ −20.2, slightly brighter than the Spirial sub-sample, which has 〈Mg〉 ≈ −20.1.
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Figure 2.9: The images of the three SDSS-based galaxies. The images are obtained using
the COSMOS skywalker (http:www.mpia-hd.mpg.deCOSMOSskywalker#). The morpho-
logical types of the three galaxies are identified as (from left to right, top to bottom): S1,
Sb, Sc.
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The Red and Blue Sub-samples

We also looked into the color index B − V distribution of our primary, which is shown in
Fig. 2.10. Based on the two peaks shown in the figure, we divided our primary sample
into a Red (B − V ≤ 0.48) sub-sample and a Blue (B − V > 0.48) sub-sample. The color
of the three SDSS-based galaxies use another color index criterion, as we lack the B-band
photometry: g − r > 0.4 to be Red, g − r ≤ 0.4 to be Blue. Eventually, we have 197
galaxies in the Red sub-sample and 195 galaxies in the Blue sub-sample. Note that the
Red sub-sample has a mean absolute magnitude in g-band of 〈Mg〉 ≈ −20.3, whereas the
Blue sub-sample has 〈Mg〉 ≈ −19.9.
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Figure 2.10: The color (B − V )— magnitude distribution the kick-out primary sample,
Elliptical/S0 sample and Spiral sample.
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Chapter 3

Clustering Analysis

3.1 Distance Calculation

There are many methods to determine the distance of an astronomical object. Among
those methods, using the Hubble Flow to determine distance from its redshift is the most
commonly used method. The redshift of an object is mainly contributed from its Hubble
flow velocity, which is tightly related to the expansion rate and therefore varies at different
epochs. If two objects are very close to one-another along the line of sight, we are seeing
them at roughly the same epoch, and the expansion rate is constant. The separation along
the line of sight of the two objects in the comoving space δDC is (Hogg, 1999):

δDC =
c

H0E(z)
δz (3.1)

where H0 is the Hubble constant, δz refers to the redshift difference between the two
objects, and E(z) is a function of redshift that is defined as (Hogg, 1999):

E(z) ≡
√

ΩM(1 + z)3 + ΩK(1 + z)2 + ΩΛ (3.2)

where ΩM ,ΩK ,ΩΛ are the density parameters for mass, curvature, cosmological constant.
Note that we did not include the radiation component as its contribution at low-redshift
universe is negligible.

Thus the comoving distance along the line of sight of an object at redshift z can be
given by the integration (Hogg, 1999):

DC =
c

H0

∫ z

0

dz′

E(z′)
. (3.3)
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The transverse comoving distance DM depends on the curvature and can be related to the
comoving distance along the line of sight by DC (Hogg, 1999):

DM =


DH

1√
Ωk
sinh[

√
ΩKDC/DH ] for ΩK > 0

DC for ΩK = 0

DH
1√
Ωk
sin[
√

ΩKDC/DH ] for ΩK < 0

(3.4)

where DH = c
H0

is the Hubble distance. Based on observation, the curvature is, if not zero,
negligible. Therefore, DM = DC is a good approximation.

Another useful concept is the Angular Diameter Distance DA, which is defined as:

DA =
x

θ
(3.5)

where x is the actual size of an object (or actual transverse separation of two objects),
and θ is its observed angular size (the observed angular separation). The angular diameter
distance can be relate to the comoving distance by (Hogg, 1999):

DA =
DM

1 + z
=

DC

1 + z
(3.6)

Here I have also listed several cosmology models for the distance calculation (Hinshaw
et al., 2013; Planck Collaboration et al., 2013), shown in Table.3.1

Table 3.1: Cosmological parameters, based on the results of WMAP9 and Planck experi-
ments.

WMAP-9
Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits
Ωbh

2 0.02264± 0.00050 0.022068 0.02207± 0.00033 0.022032 0.02205± 0.00028
Ωch

2 0.1138± 0.0045 0.12029 0.1196± 0.0031 0.12038 0.1199± 0.0027
ΩΛ 0.721± 0.025 0.6825 0.686± 0.020 0.6817 0.685+0.018

−0.016

H0 70.0± 2.2 67.11 67.4± 1.4 67.04 67.3± 1.2

H0 is in unit of km s−1Mpc−1

Throughout this work, I use the Planck +WP cosmology, which specifically includes:

H0 = 100h km s−1Mpc−1 = 67.0 km s−1Mpc−1 (3.7)

Ωm = (Ωbh
2 + Ωch

2)/h2 = 0.32 (3.8)

ΩΛ = 0.68 (3.9)

ΩK = 1− Ωm − ΩΛ = 0 (3.10)
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3.2 The Clustering Calculation

3.2.1 The Two-point Correlation Function

The Two-point Correlation Function (2PCF) is one of the most common and robust sta-
tistical methods for characterising the clustering of galaxies. It is widely used for large-
scale-structure studies, tracing the massive galaxies in the universe. We find it can be also
particularly useful at small scales, tracing the abundance of faint galaxies and measuring
their clustering with respect to their host galaxies.

The application of the 2PCF in Astronomy started with the angular correlation func-
tions, when redshift catalogues were rare. These early studies (Davis & Geller, 1976;
Dressler, 1980) determined the dependence of galaxy correlation on galaxy morphology.
The angular correlation is defined as the joint probability δP of finding two galaxies at an
angular separation of δθ, with respect to a random distribution (Peebles, 1980).

δP (θ) = N2[1 + w(θ)]δΩ1δΩ2 (3.11)

where N is the mean surface density of the data, and Ω1,Ω2 are two small solid angles on
the sky. If w(θ) is always zero, the sample distribution is equivalent to a random one.

As more redshift surveys were being conducted, it became practice to calculate the
three-dimension correlation function, with count pairs based on distance separation instead
of angular separation:

δP (s) = N2[1 + ξ(s)]δV1δV2 (3.12)

where the distance s is defined as (with c = 1):

s ≡ [z2
1 + z2

2 − 2z1z2cos(θ12)]1/2/H0 . (3.13)

At small separation scales, it approximates to:

s ≈ (π2 + r2
p)

1/2 (3.14)

where π refers to the radial separation and rp refers to the transverse separation (Davis &
Peebles, 1983), which are defined as:

π = (z1 − z2)/H0 (3.15)

rp ≡ (z1 + z2)/H0 × tan(θ12/2)
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However, the peculiar velocity of the galaxies significantly affects the radial separation
measurement and thus introduces systematic uncertainty for the 3-D 2PCF measurement,
which is known as the redshift distortion. As a result, it recently became popular to
measure the clustering in the Anisotropic Correlation Function (ACF) ξ(rp, π), which splits
the 2PCF measurement into two directions—radial and transverse. While this is similar
to the angular correlation function, the measurement that is perpendicular to the line of
sight does not suffer the uncertainty from the redshift distortion. By integrating the ACF
along the line of sight (π direction), we can get the Projected Correlation Function (PCF)
w(rp), which utilizes the redshift information while minimizing the effects from redshift
distortion.

w(rp) = 2

∫ ∞
0

ξ[(r2
p + π2)1/2]dπ (3.16)

The technique of PCF is very useful for our project, not only because it reduces the
uncertainties due to peculiar velocities, but also because it minimizes the effect from the
relatively low quality of redshifts of the faint galaxies from the COSMOS catalogue. As
discussed previously, COSMOS provides very accurate photometric redshifts overall, but
the accuracy of the photo-zs drops as the galaxies become fainter. This means we should
not fully rely on the photo-zs of the secondary sample to estimate π and the correlation
function.

For our purpose here, we calculated the 2PCF in a slightly different way. First the
projected distance is determined solely from the redshifts of the primary galaxies instead
of the average of two galaxies, as the former is more accurate:

rp ≡ dA|z=zp × tan(θps) (3.17)

where dA here refers to angular-diameter distance that corresponds to the redshift of the
primary galaxies; θps refers to the angular separation between primary and secondary
galaxies. We use angular-diameter distance to get the projected distance as it gives a more
direct physical interpretation. Secondly, we only integrate a finite range along the line of
sight to get the PCF:

w(rp) =

∫ π|z=zp+zd

π|z=zp−zd
ξ[(r2

p + π2)1/2]dπ (3.18)

where zp is the redshift of the primary, zd is a redshift difference cut defined as:

zd = 0.0022 + σzs (3.19)

where σzs is the redshift uncertainty of the secondary sample, while 0.0022 is a manual
cut, which corresponds to the redshift that may be caused by the peculiar velocity as large
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as 2× 300 km s−1 plus the largest separation scale we care about (∼ 1Mpc). We did not
extend the integral to infinity, as we know from large scale structure that:

ξ(rp, π|∞) −→ 0 (3.20)

At very large scales, pairs do not contribute much to the correlation signal and the remain-
ing signal comes from the “two-halo” term (Cooray & Sheth, 2002). We are focusing on
the scale where we can possibly find satellites and thus the larger scales are not our target
but simply will increase the noise of our measurement.

3.2.2 Estimators

There are several estimators for calculating the correlation function:

ξn =
DD

RR
− 1 , (3.21)

ξDP =
DD

DR
− 1 , (3.22)

ξHew =
DD −DR

RR
, (3.23)

ξHam =
DD ·RR
DR2 − 1 , (3.24)

ξLS =
DD − 2DR +RR

RR
. (3.25)

The top one is the natural estimator, which is based on the definition of the correlation
function (Peebles, 1980; Peebles & Hauser, 1974). The following estimators are, from top to
bottom, contributed by Davis & Peebles (1983, ξDP ), Hewett (1982, ξHew) , Hamilton (1993,
ξHam), and (Landy & Szalay, 1993, ξLS). The DD refers to the pair counting of galaxies
within the sample, RR refers to the expected pair counting for a random distribution
that has the same sampling geometry and mean density (or proper normalization), DR
refers to the cross-pair counting between the sample and random distribution with suitable
normalization.

Ideally, if the artificial random distribution perfectly matches the observation data,
sharing the exact same sampling spacing and mean density everywhere, the uncertainties
of all the estimators above originate from the Poisson error of bin counts (Peebles, 1980;
Landy & Szalay, 1993). In practice, the major challenge of estimating the correlation
function is that the observed samples are often extremely complicated. The complexity
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involves the boundaries and masking of the field, the variance of the actual sample density
due to the different observation conditions at different areas or large-scale cosmic variance,
which makes it extremely difficult to reproduce the sampling properties of the observation
data (Landy & Szalay, 1993). Inevitably, the discrepancy will introduce the calculation
biases and extra variances from the “real” correlation function. The different estimators
mentioned above were historically proposed to overcome and minimize these biases and
variances.

Among the numerous estimators of the correlation function, the Landy & Szalay esti-
mator is usually recognized as the most popular estimator. In theory, the LS estimator is
able to minimize the error down to the Poisson level (Landy & Szalay, 1993). Its power
has also been tested by simulations (Kerscher, Szapudi & Szalay, 2000), which shows that
the Landy & Szalay estimator generally has the best performance for most applications,
with the Hamilton estimator next to it. We also tested the different estimators by us-
ing them to calculate the correlation between two randomly generated samples that have
slightly different spatial distributions. The Landy & Szalay estimator did beat the other
estimators, though the difference from the Hamilton estimator is almost negligible.

As a conclusion, the Landy & Szalay estimator is chosen for our 2PCF calculations
throughout our clustering study.

3.2.3 Cross-correlation Between Bright and Faint Galaxies

The 2PCF essentially characterizes the joint spatial distribution relation (clustering) be-
tween two groups of objects. The samples can be either a single group, in which is the result
is the so-called “auto correlation function”, or between two groups of objects that may have
very different properties. In our case, we are particularly interested in the clustering of
faint galaxies (the secondary sample) around bright galaxies (the primary sample), as they
can be the potential candidates for the satellite systems.

The projected cross-correlation function between bright and faint galaxies gives ξBC(r)
the estimated joint probability of finding a faint galaxy in a infinitely small area δAF , at
a projected distance r to one bright galaxy, which is found in another infinitely small area
δAB:

δP (r) = nBnC [1 + ξBC(r)]δABδAF (3.26)

where the nB and nF are the mean two-dimensional density of the bright galaxies and faint
galaxies.
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We use the popular Landy-Szalay estimator in the redshift space as it shows highest
signal-to-noise ratio in our calculation.

ξBF (r) =
DBDF −DBRF −DFRB

RBRF

+ 1 (3.27)

where DBDF , DBRF , DFRB, RBRF are the normalized pair numbers at the projected red-
shift separation s, between four sets of data—DB: the Data of Bright galaxies; DF : the
Data of Faint galaxies; RB: a random sample distributed in the same field as DB; RF : a
random sample distributed in the same field as DF . In the case where the bright and faint
galaxies share the same field, it is not necessary to produce random samples individually
for the bright and faint samples and use one shared random sample, as long as the size of
the random sample is significantly larger than any of the original data.

3.2.4 The Random Sample and Spherical Pair Counting

Building a three-dimensional random sample requires the number density of the random
sample to scale with the effective volumes of the observed sample at different redshifts.
A common way to meet this requirement is using a “wash out” method, which gives the
random sample the same redshift distribution as the observed sample, while randomizing
the RA and DEC distribution of the random sample. However, this method does not work
for surveys of small sky coverage, in which case massive galaxy clusters and other large
structures can lead to density peaks in the redshift distribution and artificially imprint the
random sample with the same over-dense feature. As the COSMOS covers a region of only
2deg2, it is not appropriate to use the “wash out” method.

Therefore, rather than building a three-dimensional random sample, we chose to build
a two-dimensional random sample and use it with a “spherical pair counting” method.
In this method, we construct a redshift layer for each primary, by cutting the part of
the secondary sample that are far away from the primary along the line of sight, using a
redshift criterion:

|zs − zp| < 0.0022 + 2σzs , (3.28)

where zs refers to the photometric redshift of the secondary sample, zp refers to the redshift
of the primary, σzs refers to the error of the redshift of the secondary sample. Note that
we include the secondary sample within redshift difference of 0.0022, which corresponds to
the redshift that may be caused by the peculiar velocity as large as 2 × 300 km s−1 plus
the largest separation scale we care about (∼ 1Mpc). We then project all the secondary
sample within the redshift layer and the two-dimensional random sample onto the spherical
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surface where the primary lies, and count the pairs using the projected separation on this
surface. Note that the number of secondary sample within the redshift layer is different
for each primary, which requires an individual normalization for each primary:

[DpDs(pi)] =
DpDs(pi)

Ns(pi)
(3.29)

[DpR(pi)] =
DpR(pi)

NR

(3.30)

[DsR(pi)] =
DsR(pi)

Ns(pi)NR

(3.31)

[RR(pi)] =
RR(pi)

NRNR

(3.32)

where [DpDs(pi)],[DpR(pi)],[DsR(pi)] and [RR(pi)] are the normalized pair counts for the
primary pi; DpDs(pi),DpR(pi),DsR(pi) and RR(pi) are the pair counts for the primary pi
before normalizing; Ns and NR are the number of the secondary sample within the redshift
layer of the primary pi and the number of random sample. Finally, the normalized count
for each primary will be summed up to give the final count.

Applying the redshift cut that we mentioned above is very important for the clustering
calculation; in this way we can largely remove the foreground and background, depending
on the quality of the redshift for each primary. The COSMOS photo-zs are quite accurate
for the relatively bright objects while the quality degrades for fainter objects. We test
the significance of the improvement that the redshift cut can bring to the clustering mea-
surement, by comparing the projected cross-correlation measurements with and without
the redshift cut. The test is done using the same primary sample (full primary sample),
together with a bright secondary sub-sample and a faint secondary sub-sample. From the
test results that are shown in Fig. 3.1, we can see that this redshift cut can greatly im-
prove the clustering measurement, especially for bright secondary sample, for which we
have relatively accurate photo-zs.

3.2.5 Error Estimate

The error of the 2PCF calculation is estimated by using the so-called “bootstrap resampling
technique” (Barrow, Bhavsar & Sonoda, 1984). The idea behind this technique is to
randomly generate a set of re-samples from the original sample, and rerun the calculation
with the re-samples. The averaged variance between the results of those recalculations is
used as the error of the original calculation.
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Figure 3.1: The power of applying redshift cut to the 2PCF calculation. Left side is the
correlation between the full primary sample and the secondary sample within −19 < Mg <
−17, the right side is the correlation between the full primary sample and the secondary
sample within −17 < Mg < −15. Both plots show the contrast between using and not
using the redshift cuts
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In practice, we produce 100 randomly generated bootstrap arrays for our primary sam-
ple before the calculation, of which each element indicates how many times a primary
should be used in a bootstrap sample. Specifically, each element has an value of 1 – Np,
whereas the sum of the array should be equal to Np, where Np is the number size of the
primary sample. Thus each array defines a bootstrap sample. In the next step, we apply
the bootstrap arrays and weighting parameters to the counting process and produced 100
sets of differently weighted counting results through one single calculation process. We
then use the randomly weighted counting results to generate 100 different 2PCF results
using the same estimator. Finally, we use the rms of those results as the error estimate
for our 2PCF calculation.

Our error estimate was also tested by comparing it to the results of several artificially
half-cut sub-samples and by applying our code to the correlation calculation between two
randomly generated samples. In the former case, the error fitted the variance among the
calculation results of those sub-samples. In the latter case, the code returned a clustering
signal within about 1σ of zero in all cases.

3.2.6 Results and Discussion

We tested several combinations of primary and secondary sample for the projected two-
point cross-correlation function measurement. We discussed the dependence the measure-
ments on several properties of the primary and secondary samples below.

Dependence on the Secondary Luminosity

We divided our secondary sample into three sub-samples with the g-band absolute mag-
nitude and use them to calculate the correlation with the full primary sample. The three
sub-samples are:

1. Secondary sample with g-band absolute magnitude −19.0 < Mg < −17.0; (2,395
galaxies)

2. Secondary sample with g-band absolute magnitude −17.0 < Mg < −15.0; (8,271
galaxies)

3. Secondary sample with g-band absolute magnitude Mg > −15.0 and g-band apparent
magnitude g < 26.0. (9,014 galaxies)
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The result is shown in Fig. 3.2. From the plots, we can see the correlation functions have
a strong dependence on the magnitude of the secondary sample. The brighter secondary
sample has much strong correlation signal than the faint samples, as well as a better
signal-to-noise ratio.

Dependence on the Primary luminosity

We split our primary into two sub-samples by the g-band absolute magnitude: one rela-
tively bright sub-sample of 120 galaxies with Mg ≤ −20.5 and one relatively faint sample
with 272 galaxies with Mg > −20.5 .

The result is shown in Fig. 3.3. From the plots we can see the correlation strongly
depends on the luminosity of the primary sample. The correlation functions of the full
primary sample, the relatively bright sample and the relatively faint sample share similar
slope. The bright sample has a significantly higher signal detection than the faint sample
and the overall average. The bright sample also has almost the same signal-to-noise ratio
as the full primary sample, despite the much smaller sample size.

Dependence on the Primary SED Type

The shape catalogue has a column called “MODD”, which lists the spectral template that
best fits the photometry of each galaxy. We can use this information to classify and divided
our primary sample into two sub-samples: 63 Elliptical/S0 galaxies and 392 Spiral galaxies.

The result is shown in Fig. 3.4, which shows that the SED type of the primries has some
effects on the correlation measurement. The elliptical galaxies have relatively high signal
detection and good signal-to-noise ratio, considering the extremely small sample size.

This result may be related to the dependence of the clustering signal on the primary
luminosity, as the elliptical galaxies have a higher luminosity on average; it may also be a
result of that fact that ellipitical primaries are more likely to locate in groups and clusters;
or it may indicate some essitential difference of the galaxy formation between these two
types of galaxies.

Dependence on the Primary Colour

We looked into the colour of our primary sample (Fig. 2.10), and split our primary sample
into two sub-samples with the criterion of B − V ∼ 0.48. We got a red type sample with
197 galaxies and a blue type sample with 195 galaxies.
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Figure 3.2: The effect of secondary brightness. The blue, green and red lines show the
projected cross-correlation function between the full primary sample and three secondary
sub-samples that cut by brightness, with a comparison to the measurement using the full
secondary sample (black line).
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Figure 3.3: The effect of primary brightness. The figure shows the projected cross-
correlation function for two primary sub-samples (Bright Mg < −20.5 and Faint −20.5 <
Mg < −19.0 and a secondary sub-sample Mg < −15.0
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Figure 3.4: The effects of primary SED type. The figure shows he cross-projected cor-
relation function for two primary sub-samples (Ellipticals and Spirals) and a secondary
sub-sample Mg < −15.0
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When we split the primaries into the Red and Blue samples discussed previously, the
result is shown in Fig. 3.5. The plot shows that the clustering depends on the colour
of the primary, although the dependence is not that strong as on the primary luminosity
or the primary SED type. Overall, the red primary sub-sample shows higher correlation
detection and better signal-to-noise ratio than the blue primary sub-sample.
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Figure 3.5: The effect of primary colour on the clustering signal. The figure shows the
cross-projected correlation function for two primary sub-samples (Red and Blue) and a
secondary sub-sample Mg < −15.0
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Chapter 4

Satellite Spatial Distribution

This chapter summarizes work on two aspects of the spatial distribution of the satellites
— the radial distribution and the angular distribution (galaxy alignment). For the radial
distribution, we compare two different methods of background subtraction and conclude
that the locally averaging method works better with the COSMOS data. We then discuss
and determine the proper distance range that we should use for satellite counting. Finally,
we look into the dependence of the radial distribution on the properties of the primary.
For the angular distribution, we study the alignment of the position angle of the satellites
with the position angle of the projected major axis of the primaries.

4.1 Radial Profile

Given some projected distance range from the central galaxies, the galaxies inside the
range consist of the actual satellites and background galaxies. Since the satellites are
relatively faint and thus usually have uncertain redshift information, it is difficult to directly
distinguish the satellites from the background1. The key to achieve good measurements of
the satellite abundance is to subtract the background population statistically.

Here we apply two methods to subtract the background and calculate the satellite
radial density profile. The essential difference between these two methods is whether the
background is defined as a global average over the whole primary sample, or whether it is
determined for each galaxy individually.

1By “background”, we mean both background galaxies and foreground galaxies and we do not distin-
guish them in this thesis, because neither of them are real satellites, and both need to be subtracted from
the satellite counts.
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4.1.1 Radial Profile using a Global Average Background

It has been a common practice to use the global mean of the secondary sample to estimate
the background (Wang et al., 2011; Wang & White, 2012; Wang et al., 2014; Jiang, Jing
& Li, 2012). It has been argued that the distribution of background galaxies should be
uncorrelated, and thus in effect randomly distributed, with respect to the central galaxies
(Jiang, Jing & Li, 2012). We can use a random sample that contains a large number
of points to fill in the volume that has exactly the same masked areas and boundaries
as the observations. The distribution of this random sample should represent accurately
the uncorrelated background, once we scale it down to the size of the observed secondary
sample. We can then use the mean density of the random sample averaged over the effective
observation volume to estimate the background.

However, with our clustering measurement, we can clearly see the correlation signal is
non-zero even at very large projected distances (close to 1 Mpc), where there should be
no genuine satellites. This implies that the local background of faint galaxies is slightly
higher than the global mean density. The higher local background is actually an expected
phenomenon, contributed by the large-scale correlation that is also known as the “two-halo
term” correlation (Cooray & Sheth, 2002). If we can measure the extra amount contributed
by the two-halo term, in principle it should be able to give better estimate of the real local
background.

From our discussion of the 2PCF calculation in the previous chapter, we expect the
correlation signal to be strong at small separations, and drops with projected distance.
Specifically, from the linear-scale plot of the correlation function (Fig. 4.1), we can tell
the correlation signal flattens out when the projected distance reaches rp > 700 kpc, at
which scale the satellite contribution is negligible and the large scale structure dominates
(Speller & Taylor, 2014; Wang & White, 2012). If we assume the signal of the two-halo
term is approximately flat within several virial radii from the central galaxies and the total
correlation signal only comes from the one-halo term and the two-halo term, we can use
the correlation signal at large projected distance as the mean two-halo term correlation,
and then subtract it from the total correlation signal to get the one-halo term signal.

We define the averaged background correlation signal as:

ω̂bg =

∫ r3
r2
ω(rp)drp

r3 − r2

. (4.1)

If we assume the background does not vary with radius around the primary, which is
a proper approximation at relatively small scales (rp < 1.0Mpc), we can subtract the
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Figure 4.1: Correlation calculation with the full primary sample with the full secondary
sample, plotted with linear scales. Top: The projected two-point correlation function,
calculated using the full primary sample and the full secondary sample, and plotted with
linear scales. Bottom: Signal-to-noise ratio for the same.
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contribution from the background and estimate the satellite number as a function of the
radius:

n(rp) = (ω(rp)− ω̂bg)DpR(rp)
NpNs

NpNR

(4.2)

where the DpR(rp) is the non-normalized primary-random pair profile, and the NpNs

NpNR
nor-

malizes the profile to the size of the primary-secondary pair sample.

The error of this estimator mainly comes from the error of the correlation ω(rp), while
the error from the DpR(rp) is negligible as the size of the random sample is big enough to
minimize the Poisson uncertainty.

σn =
√
σ2
ω + σ2

ωbg
DpR(rp)

NpNs

NpNR

(4.3)

A result of using the projected 2PCF with the full primary and the full secondary sample
is shown in Fig. 4.2.

4.1.2 Radial Profile using Local Background

First of all, we can remove a significant amount of background by making use of the
accurate photo-zs available of our dataset. Around each primary, we exclude any galaxy
that has difference of line-of-sight velocity larger than 2 × 300 km s−1 by 2σ confidence
(|∆V | < 300km/s+ 2σV ). This cuts out most of the background and foreground galaxies
and constructs a layer around each primary that consists of the galaxies that are at roughly
the same redshift. We then assume satellites are only distributed in the regions that are
close to the central galaxies, such that:

nsat(r) = 0 (when r > r2) (4.4)

Then we assume of density of background is a constant and we use the galaxy counts at
the outer region that is relatively far away from the central galaxies to estimate the density
of the background:

nbg = ntot|r>r2 =
N tot
i |r>r2
A|r3r2

(4.5)

where N tot
i and ntot refer to the total counts and the density of the total counts of all the

galaxies within the radial bin around the primary i; A|r3r2 refers to the effective area within
projected distance range of r2 – r3.
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Figure 4.2: The satellite radial density profile, derived from the correlation function. The
result here is converted from the projected 2PCF calculated using the full primary and
secondary samples. The top panel shows the satellite profile in radial bins of 50 kpc,
ranging from 25 kpc to 925 kpc. The second panel shows the cumulative counts, excluding
the first bin. The bottom panel shows the signal-to-noise ratio of the cumulative counts.
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For Primary galaxy i, the satellite number within distance range r1 – r2 can be given
by subtracting the background within the same range:

N sat
i |r2r1 = (N tot

i −N
bg
i )|r2r1 (4.6)

= N tot
i |r2r1 − A|

r2
r1
nbg

= N tot
i |r2r1 −

A|r2r1
A|r3r2

N bg
i |r3r2

Due to the masking and other boundary effects, the areas around the primaries are
usually not complete, which leads to the miscounting for satellites. To correct this effect,
we need to know the area completeness of each radial bin for each primary. We define:

γi(r, r + dr) =
A′i(r, r + dr)

Ai(r, r + dr)
(4.7)

where A′i(r, r+ dr) refers to the area of the radii range (r, r+ dr) without any masking or
boundary conditions. The corrected satellite number can then be expressed as:

N sat′

i |r2r1 =

∫ r2

r1

γi(r, r + dr) nsati (r, r + dr)dr (4.8)

To get all the areas (A,A′) around each primary, we randomly generate a sample of
300,000 objects to fill an area that covers the whole ACS field. The counts of the random
sample can provide the complete area without any masking and boundary effects for each
primary. Then we apply the masking we obtained for the COSMOS shape catalogue (see
Section 2.5) to this random sample. The counts of the random sample can provide an
estimate of the effective area observed around each primary. Technically, we conduct the
counting process in radial bins of 50 kpc. We use the radial range of 750 ∼ 1000 kpc as
outer range for background estimate, and the radial range of 50 ∼ 600 kpc as the satellite
counting range. The detailed reason for choosing these ranges are described in Section
4.1.3.

We applied this method to produce the satellite radial density profile plot (Fig. 4.3)
with the same primary and secondary samples that are used in producing Fig. 4.2. These
include the 489 galaxies from the full primary sample and 17,143 galaxies from the full
secondary sample. The error bars are estimated from Poisson uncertainty of the secondary
counts.

Comparing Fig. 4.2 and Fig. 4.3, we can see the two methods produce very similar
results with the same signal level and profile shape, while the result from local background
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Figure 4.3: The satellite radial number density profile, using a local background subtrac-
tion. The top panel shows the satellite profile in radial bins of 50 kpc, ranges from 0 kpc
to 950 kpc. The second panel shows the cumulative counts, which excludes the first bin to
avoid possible contaminations (see Section 4.1.3 for detail of distance range choice). The
bottom panel shows the signal-to-noise ratio of the cumulative counts.
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subtraction has better signal-to-noise ratio. The reason the globally estimated background
has lower signal-to-noise, may be because of cosmic variance between the background re-
gions behind individual primaries. This variance can be the result of the essential variance
of the halo mass, the variance of the two-halo term correlation (cosmic variance), and per-
haps more importantly, the difference of effective observation volumes between individual
primaries. Our galaxy samples are distributed in the redshift range of 0.02 < z < 0.2,
which has 5 magnitude difference in distance modulus between the lowest redshift and
highest redshift. Therefore, individual primaries can potentially have very different ef-
fective observation volume and different background counts because of that. Overall, we
concluded that using the local background subtraction is a better method for our purposes,
while using an average background subtraction provides verification of these results, albeit
at slightly lower signal-to-noise.

4.1.3 Distance Dependence

The typical physical scale of galaxies is on the order of 10 kpc, while the typical scale of
galaxy clusters on the order of 1 Mpc. Our primary sample has an average g-band absolute
magnitude of M̄g = −20.1, which is fainter than the MW. We expect the virial radius of
our primaries should be less than 500 kpc except for a few of the most massive systems, and
thus this is the radial range within which we expect that most satellites will be found. This
is also confirmed by Fig. 4.2 and Fig. 4.3, where the satellite number that is contributed
by the outskirts (r > 0.6 Mpc) is much less significant than the inner region. Therefore,
we set the upper limit of distance of satellite counting to 600 kpc.

In addition, we should exclude pairs within the innermost radial bins for two reasons:
First of all, there are faint detections as a result of the image splitting of the bright
extended galaxies. The catalogues we use are initially selected by SExtractor (Leauthaud
et al., 2007; Ilbert et al., 2009; Lilly et al., 2007; Capak et al., 2007), which is an image
analysis program (Bertin & Arnouts, 1996). A single bright extend source can sometimes
be identified as multiple ones when the source has an irregular shape or when parts of it,
like galactic arms, appear to be separated from the source. Despite of the excellent work of
PSF modelling and masking by Leauthaud et al. (2007), a part of the secondary samples
in the shape catalogue that are very close to the primary can still actually be contributed
by the multiple detections of the central galaxies (some examples can be seen in Fig. 4.6).
The second concern is the optical contamination. Areas close to bright source can be
potentially contaminated by bright globular clusters, HII regions that are associated with
the central galaxies (Speller & Taylor, 2014) and the halos and scattered light of the central
bright source that are not completely masked out. The contamination can make it difficult
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to resolve the images of close pairs in some cases. In general, it can add extra systematic
errors to the photometry measurement (Wang & White, 2012) (also see Fig. 4.7), and
further cause extra uncertainty for the photo-z measurement, as the contaminations come
from sources that may have different redshifts.

For these reasons above, we decided not to use the close pairs. To establish where to
place the cut on separation, we examined the images of 30 close galaxy pairs and evaluated
the detection by analysing the images. We selected 500 close pairs, which all have a very
faint companion (g+ > 23.0). Then we searched the images of 32 bright-faint galaxy pairs
within the separation range of rp < 22 kpc and 24 pairs within the range of rp ∼ 22− 60
kpc. We evaluated the resolvability of those pairs in the images and classified them into
three categories —“clearly separated”, “questionable” and “ambiguous”. We show some
examples of images of questionable pair detection in Fig. 4.5 and some really bad detections
(“ambiguous”) in Fig. 4.6, in contrast to the images of the clearly separated pairs shown in
Fig. 4.4. Finally we plotted our manual classification of those pairs with the distribution of
their projected physical separations and the photo-z error of the faint companions, which
is shown in Fig. 4.7.

From the plot, we can see that the questionable cases are mostly distributed within 32
kpc from the central galaxy. The unresolvable detections are distributed within a separation
of 20 kpc. In addition, some faint galaxies within the small separation have significantly
larger errors in their photometry. This implies that at small physical separation, the risk
of having fake faint galaxy detection does exist. Fortunately, the risk is significantly lower
when the separation is larger than about 30 kpc. We concluded that a lower separation
limit of 30 kpc for pair counting can remove most of the problematic and questionable pair
detections and we decided to set the limit to be 50 kpc, as a relatively safe choice. Finally,
the projected separation range for pair counting is set to 50 – 600 kpc.

4.1.4 Dependence on Central Galaxy Properties

In this section, we will test the satellite radial distribution’s dependence on the primary
properties by dividing the primary into different sub-samples and comparing the corre-
sponding results. Specifically, we will test the effects from the primary luminosity, the
primary morphology (SED type) and the colour of the primary sample.
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Figure 4.4: Examples of clearly separated bright-faint galaxy pairs. The faint galaxies of
these pairs are circled in green. The images are obtained with image search tool “COSMOS
SkyWalker” (http://www.mpia-hd.mpg.de/COSMOS/skywalker/#), using the coordinate
information from the COSMOS shape catalogue.
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Figure 4.5: Examples of bright-faint galaxy pairs that the detection of the faint com-
panions are questionable. The faint galaxies of these pairs are circled in green. The
images are obtained with image search tool “COSMOS SkyWalker” (http://www.mpia-
hd.mpg.de/COSMOS/skywalker/#), using the coordinate information from the COSMOS-
shape catalogue.
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Figure 4.6: Examples of bright-faint galaxy pairs that can be barely resolved as sep-
arated objects. The faint galaxies of these pairs are circled in green. The im-
ages are obtained with image search tool “COSMOS SkyWalker” (http://www.mpia-
hd.mpg.de/COSMOS/skywalker/#), using the coordinate information from the COSMOS
shape catalogue.
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Figure 4.7: The results of bright-faint galaxy pair image checking. The color corresponds
to our evaluation of how well the pairs are resolved as separted objects. There are four red
points for ambiguous pairs; 19 blue points for questionable pair detections and 33 green
points for clearly separated pairs. And the plot shows how the resolvability is distributed
with projected separation and the error of g-band magnitude.
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Dependence on Primary Luminosity

We use the g-band magnitude Mg = −20.5 as the dividing line and split the kick-out
primary sample into two sub-samples — a bright sub-sample with 120 galaxies and a faint
sub-sample with 272 galaxies. We then calculated the excess number counts ∆N for the
two sub-samples separately, using the full secondary sample for both calculations. The
results are shown in Fig. 4.8, along with the result of the full kick-out primary sample for
comparison.

We find that the bright primaries have more satellites than faint primaries overall. This
general trend is expected if we assume that bright galaxies are located in more massive
halos on average. Another interesting result is that the number profile of faint primaries
seems drop more quickly with radius. As we can see in the plot, the faint primaries seem
have significantly less satellites per bin at the range of 250 ∼ 500 kpc than the inner regions.
In contrast, the bright primaries have a quite flat radial profile throughout the range of
0 ∼ 500 kpc. This arguably implies satellites of faint primaries are less widely distributed
than satellites of bright primaries. The more extended distribution of the bright primaries
may indicate that they are located in halos with a larger virial radius (more massive) than
the faint primaries.

Dependence on Primary SED Type

To see the dependence of the primary SED type, we used the catalogue parameter “MODD”,
which indicates the best fit spectrum template for the 30-band photometry, to separate
the primaries into early and late sub-samples, as in section 2.8. We used the primaries
with 1 ≤ MODD ≤ 9, which corresponds to galaxy type E1 to S0, as our “Elliptical/S0”
sub-sample, including 62 galaxies, and use the primaries with MODD > 9, which corre-
sponds to galaxy type S1 to SB11 (star burst), as the “Spiral” sub-sample, including 230
galaxies. For both SED type sub-samples, we used the full secondary sample to calculate
their satellite radial density profile and compared to the profile of the full sample, shown
in Fig. 4.9 .

From the plot, we can see that the satellite radial distribution has a strong dependence
on the primary SED type. The Elliptical/S0 type primaries have much higher satellite
radial number density than the Spiral type primaries. The satellite distribution of the
Elliptical/S0 type primaries also extends to larger radii (signal-to-noise ratio peaks at
∼ 600 kpc) than the Spiral type primaries (signal-to-noise ratio peaks at ∼ 200 kpc).
As in the previous figure, the more extended distribution of the elliptical primaries may
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Figure 4.8: The satellite radial distribution of faint (blue) and bright (red) primary galaxies,
with a comparison of the full “Kick-out” primaries (black).
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Figure 4.9: The radial distribution of satellites around Elliptical/S0 (red) type and Spiral
type (blue) primary galaxies, with a comparison of the full “Kick-out” primaries (black).
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indicate that they are located in halos with larger virial radius (more massive) or more
likely to be located in more massive halo groups than the spiral primaries.

Dependence on Primary Colour

We used a color criterion to divide the primary sample into a Red (B − V ≤ 0.48) sub-
sample and a Blue (B − V > 0.48) sub-sample. As we do not have B-band information
for the SDSS-based galaxies, we used a slightly different color criterion for them, taking
g − r > 0.4 to be Red, and g − r ≤ 0.4 to be Blue. After the cuts, we got 197 galaxies
in the Red sub-sample and 195 galaxies in the Blue sub-sample. We then calculated their
satellite radial density profiles with the full secondary sample, and compared the results
to the satellite radial density profile using the full “Kick-out” primary sample, as shown
in Fig. 4.10.

From the plot, we can see that the satellite radial distribution also has a very strong
dependence on the primary colour. The Red type primaries have much higher satellite
radial number density than the Blue type primaries. The satellite distribution of the Red
type primaries also extends to larger radii (signal-to-noise ratio peaks at ∼ 450 kpc) than
the Blue type primaries (signal-to-noise ratio peaks at ∼ 150 kpc). Furthermore, the more
extended distribution of the red primaries may indicate that they are located in halos with
larger virial radius (more massive) or more likely to be located in more massive halo groups
than the blue primaries.

4.2 Galaxy Alignment

The numerical simulations based on the CDM model predict the shapes of DM halos are
usually not spherical, but are more likely ellipsoidal or triaxial (Jing & Suto, 2002). Some
studies also show that the subhalos have anisotropic distributions that are slightly aligned
with the major axis of the host halos (Knebe et al., 2004; Zentner et al., 2005), which is
probably due to angular correlations of satellite infall directions with large scale filaments
(Tormen, Bouchet & White, 1997; Knebe et al., 2004; Zentner et al., 2005). Assuming
satellite galaxies can trace the angular distribution of subhalos and the orientations of the
central galaxies are also aligned with their host halos, we might then expect to observe
some anisotropy in the distribution.
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Figure 4.10: The radial distribution of satellites around Red type (red) primary galaxies
and Blue type (blue) primary galaxies, with a comparison of the full “Kick-out” primaries
(black).
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Figure 4.11: The galaxy alignment found by Holmberg. The plot shows the combined
spatial distribution of 218 galaxies around 58 Sa central galaxies (Holmberg, 1969).

4.2.1 The Holmberg Effect

Holmberg (1969) investigated 174 groups of galaxies and studied the distribution of their
position angles and separations with respect to their central galaxies. He found that for
spiral primaries, the companion galaxies preferentially align with the minor axis of their
central galaxies (Holmberg, 1969), as shown in Fig. 4.11. However, this galactic alignment
effect, which is known as “Holmberg effect”, was not confirmed by many subsequent studies
over the next decade (Hawley & Peebles, 1975; Sharp, Lin & White, 1979; MacGillivray
et al., 1982). Note that the original detection of Holmberg was restricted to a small range
of projected separation: rp < 50kpc (Yang et al., 2006; Holmberg, 1969).

Later on, Zaritsky et al. (1997) attempted to measure the Holmberg effect within a much
larger projected distance range. They did not find any significant detection of alignment
for the distance range of rp = 0 ∼ 200 kpc, but they did manage to detect a preferred
satellite-central alignment with the minor axis of the central galaxies for a larger range
of separation of 300kpc 6 rp 6 500kpc (Zaritsky et al., 1997), which are already larger
than the typical virial radii of the host halos of those central galaxies (Yang et al., 2006).
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The alignment at large distance scale was later confirmed by Sales & Lamdas (2004),
using the two-degree Field Galaxy Redshift Survey (2dFGRS) data, despite the fact that
they were using a relatively small line-of-sight velocity constraints (|∆v| < 160 km s−1) to
identify satellites (Sales & Lambas, 2004). The MW satellites may also show a Holmberg
effect — the 11 innermost satellites are distributed almost perpendicular to the MW disk
(Lynden-Bell, 1982; Kroupa, Theis & Boily, 2005), although extinction complicates this
conclusion.

More recently, however, the opposite results was found by several groups (Brainerd,
2005; Yang et al., 2006; Azzaro et al., 2007; Wang et al., 2009; Zhang et al., 2013). These
studies used SDSS data and analysed several types of primaries and satellites. They all
found that the satellites preferred to align with the major axis of the central galaxies, with
complicated dependence with the primary and secondary properties.

Given the conflicting conclusions of these studies, we wished to test the isotropy of the
satellite-central distribution independently with our sample. In addition, the COSMOS
data has the great advantage of high quality photometric redshifts for the satellites. Note
that the poor quality of Sloan photometry forced the previous studies using SDSS to
consider a very large range of line-of-sight velocity difference to include all the potential
satellites. The high resolution imaging in COSMOS is also very helpful to resolve the
potential satellites within the innermost radial bins.

4.2.2 Methodology

Position Angle Measurement

We define the orientation of the primary galaxies by using the position angle ϕa of their
major axis that is provide by the COSMOS shape catalogue, which is measured from the
North (the increasing Dec direction), and going East (the increasing Ra direction). Using
the sample position angle system, the position angle of the galaxy-galaxy line ϕGG for the
galaxies around our primary sample is calculated based on their coordinate information:

ϕGG = tan−1

(
(αS − αP )cos(δP )

δS − δP

)
(4.9)

where αP and αs are the right ascensions (RA) of the primary and secondary galaxies, and
δP and δS are the declinations (DEC) of the primary and secondary galaxies.
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We define the relative position angle θ as:

θ =

{
|ϕGG − ϕa| When |ϕGG − ϕa| < 90◦

180◦ − |ϕGG − ϕa| When |ϕGG − ϕa| > 90◦
(4.10)

where θ = 0◦ implies the secondary sample perfectly aligns with the major axis; while
θ = 90◦ implies the secondary sample perfectly aligns with the minor axis.

Binning Strategy

Previous studies (Yang et al., 2006; Zhang et al., 2013) showed that satellite-central align-
ment has a dependence on the projected radius from the central. So rather than simply
binning the satellite counts in position angle, we choose to bin the pair counts n(θ, rp) in
both position angle θ and projected separation rp from the central galaxies. The radial
binning is also helpful for the area incompleteness correction (see section 6.1). Although
the average satellite contribution per radial bin becomes insignificant at large projected
separation (rp > 600 kpc) from the central galaxies, the radial distribution may be slightly
different for different position angles. Therefore, we choose to count the satellites in a
larger radial range, extending to rp ≤ 950 kpc, than what we did in the previous section.

Background Subtraction

We use essentially the same method for estimating the background as the locally-averaged
background we used for the last section. We use the number of pairs at the projected
separation range of 750 kpc < rp < 1000 kpc as the satellite background counts.

Assuming the background is isotropic for each primary, then we have:

nbgi (θ, rp)drpdθ =
Ai(rp)drp
Aouti

N out
i · dθ

360◦
, (4.11)

where nbgi refers to the background of the two-dimensional number density distribution
around the primary i; Ai(rp)drp and Aouti are the area of a inner radial bin and the area of
the outer region (750 – 1000 kpc as defined above.) around the primary i. Note that the
effective area are estimated from counting the random sample around each primary, as we
did in the previous section.
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Now we have the background for each position angle-projected distance bin. By sub-
tracting the background, we then can have a 2-D distribution of observed satellite number
density with the two parameters:

nsati (θ, rp)drpdθ = ni(θ, rp)drpdθ −
Ai(rp)drp
Aouti

N out
i · dθ

360◦
. (4.12)

where ni is the total observed pair number count around the primary i and nsati is the excess
pair number count after background subtraction (the observed number of satellites). We
can fix the area incompleteness effect with the same method we used in the previous section
(also see section 6.1 for detailed explanation and discussion):

nsat
′

i (θ, rp)drpdθ = γi(rp, rp + drp)n
sat
i (θ, rp)drpdθ (4.13)

where γi(rp, rp + drp) is the reciprocal of the area incompleteness at the radial bin of
rp ∼ rp + drp for the primary i, which is defined as:

γi(r, r + dr) =
A′i(r, r + dr)

Ai(r, r + dr)
(4.14)

where A′i(r, r+ dr) refers to the area of the radii range (r, r+ dr) without any masking or
boundary conditions.

The nsat
′

i (θ, rp) describes the two-dimensional number density of the satellite as a func-
tion of two parameters, which itself is already very interesting result. When we integrate
the 2-D distribution over certain radial ranges, we can the angular satellite number density
distribution over those radial ranges for individual primaries:

nsat
′

i (θ)|r2r1 =

∫ r2

r1

nsat
′

i (θ, rp)drp . (4.15)

We then can average the distribution over all the primaries:

N ′sat(θ)|r2r1 =
1

Np

Np∑
i=1

N ′sat(θ)|r2r1 (4.16)

When we are looking the angular satellite number density distribution and trying to find
whether there is a Holmberg effect, we care more about the relative distribution between
each angular bin than the individual density values. Thus we define the normalized angular
satellite probability distribution function as:

fsat(θ) =
N ′sat(θ)

〈N ′sat(θ)〉
(4.17)

where 〈N ′sat(θ)〉 is the averaged angular satellite number density over the position angles.
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4.2.3 Results

Visualizing the Projected Satellite Density Field

We included all the pairs within a projected radii of rp 6 1Mpc and velocity difference of
|∆V | < 300km/s+ 1σV from our primaries. We then combined all the systems by shifting
to coordinates centred on the central galaxies, and rotated so the major axes of central
galaxies are aligned. Then we plotted all the pairs with their position angles and scaled
projected separations from the central galaxies, which gives us a density map of all the
close pairs around our primary sample. Subtracting the background density field that we
generated previously, the density field left describes the projected spatial distribution of
the satellites, which can be easily visualized.

Examining the derived density maps around several sub-samples of our primary sample,
we noticed that the satellites of all types of primary samples seem to have fairly isotropic
distribution at small projected radial separations (rp < 350 kpc). At large separations
(rp > 450 kpc), the satellites, however, seem to show some anisotropic distribution patterns,
where we found that the early-type primaries, for instance, seem more likely to align with
the major axis of the central galaxy disks, showing an anti-Holmberg effect. These different
alignment patterns between the inner regions and outer regions inspired us to measure the
alignment at different radial ranges.

Position Angle Distribution at Inner and Outer Radii for Different Primary
Samples

We measured and integrated the two-dimensional satellite number density and the nor-
malized angular satellite probability distribution over three radial ranges: full radii (50 –
800 kpc), inner radii (50 – 400 kpc) and outer radii (450 – 800 kpc). We omitted the out-
ermost radial bins (800 kpc 6 rp 6 950 kpc) for the consideration of signal-to-noise level.
We also investigated the dependence of the galactic alignment on the primary properties
(e.g. primary luminosity, galaxy type and color), by using the corresponding sub-samples
to calculate the results separately. The sub-samples involved include the full base primary
sample before applying “Kick-out”(489 galaxies) , the “Kick-out” primary sample (392
galaxies), the bright primary sub-sample (120 galaxies), the faint primary sub-sample (272
galaxies), the early-type (Elliptical/S0) primary sub-sample (62 galaxies), the late-type
(Spiral) primary sub-sample (329 galaxies), the red primary sub-sample (197 galaxies) and
the blue primary sub-sample (195 galaxies), whose detailed selections are explained in
section 2.8.
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The results over the full radial range are shown in Fig. 4.12. Integrating over all radii,
the satellite distributions of all subsamples of primaries appear to have some anisotropic
patterns, which are however hard to confirm given the signal-to-noise ratio. The results
over the inner radial range are shown in Fig. 4.13, from which we can find that the satellites
around most types of primaries are fairly isotropic. The pair detections in each bin are
mostly consistent with average within 1σ uncertainty, except for one 1.5σ detection for the
blue primaries. This detection is still not significant enough to confirm any anisotropic
distribution. The results over the outer radial range are shown in Fig. 4.14, from which we
can see that quite a few types of primaries seem to have anisotropic satellite distributions,
including the full base primary sample, the “Kick-out” primary sample, the faint primary
sample, the early-type primary sample and the red primary sample. All those primary
samples show the same alignment pattern, where their satellites appear to have a preferred
alignment with the major axis of the central galaxies. The early-type primary sample and
the red primary sample show the strongest detection. The early-type primary sample has
a 2σ detection and a 1.5σ detection; whereas the red primary sample has 3σ detection.
In addition to the detections in individual bins, the detections of these primary sample
over all angular bins show consistent trend. At the same time, no significant anisotropic
satellite distribution patterns are found for the late-type and blue primary samples.

4.2.4 Discussion

We can draw the following conclusions from the plots:

The position angle distributions of the full radial range 50 – 800 kpc, for all types of
primaries do not show any significant anisotropy. The faint primary, early-type primary
and red primary samples show possible indications of the anti-Holmberg effect, but the
detections at the angular bin is only marginal.

When the angular distributions are measured in two projected distance ranges, the
inner regions (50 – 400 kpc) and outer regions (450 – 800 kpc), interesting patterns occur.
The satellite distributions in the outer regions show several possible preferred alignment
detections while the satellite distributions in the inner regions are fairly isotropic. This is
expected as the anisotropy of subhalo distributions are mainly due to large scale filaments
(Tormen, Bouchet & White, 1997; Knebe et al., 2004; Zentner et al., 2005), which affect the
subhalo distribution of outer regions more significantly than the inner regions. If we assume
our detections in the outer regions are real anti-Holmberg detections, the detections first
may indicate the orientations of the central galaxies have preferred alignments with the
orientation of the host halos. Secondly, the detections may show some essential difference
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Figure 4.12: The normalized angular satellite number density distribution averaged within
50 – 800 kpc. See section 2.8 for detailed explanations of each primary sub-samples used
in this plot.
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Figure 4.13: The normalized angular satellite number density distribution averaged within
50 –400 kpc. See section 2.8 for detailed explanations of each primary sub-samples used
in this plot.
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Figure 4.14: The normalized angular satellite number density distribution averaged within
450 – 800 kpc. See section 2.8 for detailed explanations of each primary sub-samples used
in this plot.
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of satellite alignments between the early-type and late-type primary galaxies, which may
hold possible clues for galaxy formation.
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Chapter 5

The Relative Luminosity Function

The Relative Luminosity Function (RLF) N(∆m) describes the mean number of satellites
per primary that are at the given magnitude range ∆m relative to the primary, where we
define ∆m = msat − mmain . This function has been studied previously by many other
groups (Liu et al., 2011; Guo et al., 2011b,a, 2012, 2013; Nierenberg et al., 2011, 2012;
Strigari & Wechsler, 2012; Speller & Taylor, 2014), and provides a point of comparison
between the satellite abundance to the predicted abundance of DM substructures. The
dark matter simulations predict that dark matter halos should host a constant number
of subhalos within a given dark matter mass fraction of the host halo (Kravtsov, 2010;
Nierenberg et al., 2012). The scale invariance relates to the measurable RLF, given the
assumption that the satellite and central galaxies trace the subhalos and host halos. The
RLF is expected to be similar to the relative mass function but different, due to the non-
linearity of luminosity-mass relationship and stellar-mass-to-halo-mass relationship.

In this chapter, we construct our relative luminosity function measurements using the
COSMOS datasets. We explain our method of calculating the RLF in section 5.1; In
section 5.2, we then present our results of RLF measurements on the satellite population
around our primary sample and the primary sub-samples; and we discuss the dependence
of the RLF on the properties and compare our measurements to the previous studies.

5.1 Methodology

To build the RLF, we need to know the distribution of satellites as a function of their
luminosity relative to their central primary. At the same time, we also need to know
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their radial distribution so that we are able to fix the area incompleteness caused by the
masking and other boundary conditions. Our method is to count the galaxy pair number
with a binning in two parameters, including the binning of the relative magnitude difference
between the primary and the secondary sample, and the binning of the projected separation
from the central primaries. We use a bin-size of 1 magnitude (∆mk+1−∆mk = 1.0) for the
relative luminosity binning, and a bin-size of 50 kpc for the radial binning (rpj+1−rpj = 50
kpc). Thus, for each primary, the number of secondary-primary pairs insider the bin ∆mk

and rpj can be written as:

ni(rpj,∆mk) = Npair
i (rpj−1 < rp < rpj,∆mk−1 < ∆m < ∆mk) (5.1)

For the ∆m, we use the difference of the g-band apparent magnitude between the secondary
and the primary. Furthermore, We use the pair counts at the same relative luminosity bin
at the outer radial range of 750kpc 6 rp 6 1000kpc as the background, written as nouteri . We
then estimate the effective area for the each radial bin and for the outer region by counting
a randomly generated sample of 300,000 objects around each primary Aouteri . Note that we
also count the random-primary pairs before any masking or boundary condition is made
to the random sample A′outeri , which gives an estimate of the “real” area for each primary
and will be used later to fix the area incompleteness.

We also count the random-primary pairs for each radial bin and estimate the back-
ground for each radial bin by scaling the secondary-primary counts of the outer region
with the ratio of the random counts:

nbgi (rpj,∆mk) =
Ai(rpj)

Aouti

nouteri (∆mk) (5.2)

For each bin, we then subtract the background from the secondary-primary pairs and get
the satellite number in that bin.

nsati (rpj,∆mk) = ni(rpj,∆mk)− nbgi (rpj,∆mk) (5.3)

Finally we correct the area incompleteness effect by multiplying the satellite number of
each radial bin with the reciprocal of the area completeness of the corresponding bin:

nsat
′

i (rpj,∆mk) = nsati (rpj,∆mk)×
A′i(rpj)

Ai(rpj)
(5.4)

where nsat
′

i (rpj,∆mk) refers to the derived satellite number of the bin, without any masking
or boundary conditions for the primary “i”; A′i(rpj) and Ai(rpj) refer to the random-
primary pair counts of the corresponding radial range of the primary “i”, whose ratio gives
an estimate the reciprocal of the area completeness of the radial bin.
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We use Poisson statistics to estimate the uncertainty of satellite number, which mainly
comes from the counting of secondary-primary pairs:

σni(rpj ,∆mk) =
√
ni(rpj,∆mk). (5.5)

The Poisson uncertainty of the random-primary counting is omitted here as the large
number size of the random sample makes it totally negligible in the end. The error of the
satellite number in each bin can be expressed as:

σsat
′

i (rpj,∆mk) =
A′i(rpj)

Ai(rpj)

√√√√ni(rpj,∆mk) +

(
Ai(rpj)

Aouti

)2

nouteri (∆mk) . (5.6)

The remaining work is to combine the individual bins and sum them up to the whole
RLF. First, we sum the satellite numbers (that is the excess secondary counts relative to
the background) of all the relative magnitude-radial bins over the radius range of 50 – 600
kpc.

dNi(∆mk) =

600kpc∑
rpj=50kpc

nsat
′

i (rpj,∆mk) . (5.7)

The error can be expressed as:

σ2
i (∆mk) =

600kpc∑
rpj=50kpc

[
σsat

′

i (rpj,∆mk)
]2

. (5.8)

The next step is to average the satellite number per relative magnitude bin over the
primaries, which is actually is not that straightforward because of the magnitude depth of
the survey. When the relative magnitude gets big enough, there would be no corresponding
secondary galaxies for some of the primary galaxies, due to the magnitude limit of the
secondary sample. These primary galaxies should not be included during the averaging
for that relative magnitude bin as they are actually not contributing anything. So the
averaged satellite number for each relative magnitude bin should be:

dN̄(∆mk) =

∑Np

i=1 σ
2
i (∆mk) δ(m

p
i ,∆mk)∑Np

i=1 δ(m
p
i ,∆mk)

, (5.9)

where Np refers to the total number of the primary sample, mp
i refers to the magnitude of

the primary i, and δ(mp
i ,∆mk) is the criterion for whether the primary should be taken
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into account, which can be defined as:

δ(mp
i ,∆mk) =

{
1 if mp

i < mlimit −∆mk,

0 if mp
i > mlimit −∆mk,

(5.10)

where mlimit is the magnitude limit of the secondary sample.

Similarly, the overall error of the satellite number at the relative magnitude bin ∆mk

can be expressed as:

σ̄2(∆mk) =

∑Np

i=1 dNi(∆mk) δ(m
p
i ,∆mk)∑Np

i=1 δ(m
p
i ,∆mk)

, (5.11)

At this point, the equation of dN̄(∆mk) already gives the differential format of the RLF
in principle. However, it would be inconsistent to consider the RLF for ∆m < 1.0, since
by construction, the “Kick-out” primary sample1 excludes pairs with relative magnitude
difference of less than one. Thus we decide to omit the detection of the first relative
magnitude bin, which corresponds to ∆m < 1.0. This would affect the cumulative result
by about 0.1 satellite per primary.

5.2 Results

5.2.1 Overall Results of the “Kick-out” Primary Sample

We first calculated the RLF for our “Kick-out” primary sample with the full secondary
sample. We detected an excess pair signal from companion down to ∆m = 10, which is two
magnitudes fainter than most of the previous studies, while brighter than the measurement
by Speller & Taylor (2014) by two magnitudes. Correcting for the magnitude limits of
COSMOS, we detected a total excess of objects within separation < 600 kpc, corresponding
to about 17.7 ± 5.1 satellites per central galaxy at ∆m ≤ 10 and 5.5 ±0.5 satellites per
central galaxy at ∆m ≤ 7, where the detection has the highest signal-to-noise ratio.

Fig. 5.1 compares the RLF measurement using the “Kick-out” primary sample (392
galaxies) to the measurement using the full base primary sample (489 galaxies) and the
RLF of the MW satellites. From the plot, we can see our detection using the “Kick-out”
primary sample is similar to the MW satellites overall, while it is lower than the MW

1Definition of the “Kick-out” sample, see section 2.6
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Figure 5.1: The RLF of using the “Kick-out” primary sample and the RLF of using the
base primary sample without kicking out any potential satellites.

satellite sample at 3 < ∆m < 5 and higher than the MW satellite sample at 5 < ∆m < 8.
Specifically, at ∆m = 3, we have a satellite detection of 0.50 ± 0.15 galaxies per central
galaxy, which may suggest the LMC is a statistically rare case (> 3σ).

Additionally, we found that the RLF of the ”non-Kick-out” primary sample has much
higher number of satellites at a given relative luminosity. The difference is probably caused
by the fact that the “non-Kick-out” primary sample actually contains some satellite galax-
ies. The detections around those galaxies are actually contributed by their host galaxies,
whose luminosities are much higher. This means we shifted the RLF signals that should
correspond to a larger relative magnitude to the lower relative magnitude end, producing
misleading results.
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Figure 5.2: The RLF of using the Bright primary sample that has 120 galaxies with
Mg < −20.5 and the RLF of using the Faint primary sample that has 272 galaxies with
Mg > −20.5.
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Figure 5.3: The RLF of using the Red primary sample that has 197 galaxies with B−V <
0.48 and the RLF of using the Blue primary sample that has 195 galaxies with B−V > 0.48.
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Figure 5.4: The RLF of using the Elliptical/S0 primary sample that has 62 galaxies with
the spectrum template type “MODD” ≤ 8 and the RLF of using the Spiral primary sample
that has 330 galaxies with the spectrum template type “MODD” > 8.
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5.2.2 Dependence on Primary Properties

Just as we did in the previous chapters, we also split the ”Kick-out” primary sample into 6
sub-samples based on the galaxy properties. Then we calculated their RLF with the same
secondary sample (full secondary sample) separately and compared the results to show the
dependence of the RLF on the properties of the central galaxies.

The RLFs of the Bright primaries (Mg < −20.5, 120 galaxies) and the Faint primaries
(Mg > −20.5, 272 galaxies) are shown in Fig. 5.2. From the plots, we can see that the
Red primaries have a significantly higher (three times more) average satellite number over
the relative magnitude range than the Blue primaries. This is actually quite a surprising
result. From Fig. 2.10, we know that there is not much luminosity difference between the
Red primaries and Blue primaries. Therefore, this huge satellite number difference that
cannot even be found in between the Bright and Faint primaries may suggest that the
satellite abundance has a strong dependence on the color of the central galaxies.

The comparison of the RLFs of the Red primaries (B − V < 0.48, 197 galaxies) and
the Blue primaries (B − V > 0.48, 198 galaxies) is shown in Fig. 5.3. From the plot,
the bright primaries seem to have significantly larger number of satellites at the large
relative magnitude end while having fewer satellites at the small relative magnitude end
than the faint primaries. These differences are very likely to be artificial, however. As
our secondary samples have a brighter limit of g-band absolute magnitude Mg > −19.0,
there is a magnitude gap of 1.5 magnitude between the Bright primary and the secondary
sample, which will lower the satellite number of the Bright primary sample at the small
relative magnitude end. On the other hand, our secondary also has a fainter limit of g-band
apparent magnitude of g+ < 26.0. The satellite counting will become incomplete when the
relative magnitude become higher than a certain point. This effect will obviously happen
earlier (lower relative magnitude) for the Faint primary sample, which may be responsible
for the difference of the RLF at the large end of the relative magnitude scale.

The RLFs of the Elliptical/S0 primaries (“MODD” ≤ 8, 63 galaxies) and the Spiral
primaries (“MODD” > 8, 272 galaxies) are shown in Fig. 5.4. Similarly to the result
of the Red primaries compared to the Blue primaries, the Elliptical/S0 primaries have
a significantly higher satellite detection than the Spiral primaries, over the full relative
magnitude range. We can conclude that the RLF also has a very strong dependence on
the galaxy types of the central galaxies.

Overall, we find that the RLF does not show a very significant dependence on the
primary luminosity, except for the differences at the low ∆m and the high ∆m ends,
which are likely to be artificial as previously discussed. This luminosity invariance is very
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similar to the scale invariance of dark matter substructures predicted by the simulations. In
contrast, we find the RLF has a very strong dependence on the primary galaxy type. Early-
type (elliptical, red) primaries have a significantly larger satellite population than the late-
type (spiral, blue) primaries. Possible explanations involve the systematic underestimation
of the photometry of the bright early-type galaxies, different luminosity-to-stellar-mass
relationships, different stellar-mass-to-halo-mass relationships, or different environments
between early and late type galaxies (e.g. Early-type primaries may be more likely to be
found in groups, and exist in more massive host halos than late-type primaries.) In section
6.2, we test the possible effects of the potential bias of the photometry measurement for
the bright early-type galaxies to the RLF measurement. Based on the results of these
tests, we conclude that the systematics of the photometry can cause overestimate of the
RLF of the early-type galaxies by only a small amount, but are not significant enough
to explain the difference of the RLFs between the early-type primaries and the late-type
primaries. If the difference is a result of different luminosity-stellar-mass relations, it gives
a possible clue to the missing satellite problem. Star formation, for instance, probably
cuts off in low mass subhalos, as a result of photo-ionization and feedback from SNe
and AGN. The different environments of the subhalos around different types of central
galaxies may suppress star formation in different ways. If the difference comes from some
essential differences between the two types of galaxies, either in their stellar-mass-to-halo-
mass relations or in their environments, it gives very important implications for galaxy
formation (e.g. maybe more baryonic materials are striped away from the subhalos around
the early-type central galaxies, as a result of different subhalo in-fall history, interactions
with the disks of the central galaxies, or different feedback from AGN and SNe), and
provides a test for the semi-analytical models that attempt to explain the missing satellite
problem.

5.2.3 Comparison to Previous Studies

As mentioned in the beginning, the relative luminosity function has been measured by many
previous studies (e.g. Liu et al. (2011); Guo et al. (2011b,a, 2012, 2013); Nierenberg et al.
(2011, 2012); Strigari & Wechsler (2012); Speller & Taylor (2014) - see Nierenberg et al.
(2012) and Speller & Taylor (2014) for a better summary). Fig. 5.5 compares our RLF
measurement using the “Kick-out” primary sample to the measurement of the “low mass,
low redshift” samples from Nierenberg et al. (2012, hereafter N12) (blue open triangles and
red open squares represent early and late types of primary, offset slightly for clarity), the
measurement and upper limits from Strigari & Wechsler (2012, hereafter SW11) (purple
crosses and arrows indicate the measurement and the upper limits respectively) and to the
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measurement from Speller & Taylor (2014, hereafter Speller14) (green diamonds). Note
that the previous studies used r-band photometry while we are using g-band, which may
effect the ∆m slightly. We investigated the averaged value of the magnitude difference of
〈r − g〉, which is about 0.3 for our primary sample, and is about 0.6 for the secondary
sample. This means that those r-band-based results should be shifted slightly to the low
∆m end for a better comparison. The data points of previous studies in Fig. 5.5 are offset
by 0.15 ∼ 0.25 for this reason and to add clarity.

From the plot, we can see all previous results are in good agreement for ∆m ∼ 1 − 6,
in the case our measurement is slightly higher and has much better signal-to-noise ratios.
This discrepancy becomes significantly smaller when the isolation is applied to our primary
sample (see section 6.4 and Fig. 6.4). So we can conclude that the discrepancy is mainly
due to the fact that we include the galaxies in groups and clusters in our “Kick-out” primary
sample, which arguably implies that the primaries in groups and clusters are sitting in more
massive host halos and have larger populations of satellites. Additionally, at ∆m ∼ 7− 8,
our measurement is lower than the measurement of N12 early types and SW11, which is
not a surprise as SW only gives the estimate of upper limit, and the early-type primaries
are expected to have a larger satellite population as we have shown in the previous section.
Finally, we can see at ∆m ∼ 6− 10, our measurement is higher than the measurement of
Speller14 (even when isolation cut is applied, see Fig. 6.4). This is because that Speller
& Taylor (2014) uses a size-magnitude cut to reduce the background, which increases the
incompleteness of the faint secondary sample and thus lowers the measurement at the high
∆m end. The COSMOS has a better survey depth than the SDSS (down to g+ ∼ 26) and
very high quality photo-zs, which allow us to measure the satellite abundance at the faint
end with a much higher completeness. Also note that Speller & Taylor (2014) uses satellite
counting range of 50 – 400 kpc while we are using 50 – 600 kpc. This may allow our result
to include slightly more satellites for the very bright primaries by definition.
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Figure 5.5: The RLF for the kick-out primary sample, compared to previous measurements.
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Chapter 6

Systematics and Correction

6.1 Area Incompleteness Correction

Due to masking and our inner radial cut, the areas around the primaries are not complete.
Therefore, the satellites that are located in those regions are not included in our abundance
estimate.

To correct this affect, we assumed the masking and other boundary conditions are sta-
tistically isotropic, based on which we measured the effective area around each primary
using random sample counts. We first filled the field that extends slightly over the ACS
field with a sufficiently large random sample (5 × 106 data points), without applying any
boundary conditions. Afterwards, we counted the random points around individual pri-
maries in radial bins of 50 kpc, and compared it to the same counts, but only after applying
to the random sample the masking and boundaries corresponding to those in the obser-
vations. The ratio of the two random sample counts indicates the ratio of the areas that
are missing in each radial bin for each primary. Accordingly, we corrected the area incom-
pleteness by multiplying the satellite number each bin with the ratio of the full random
counts to the counts after masking.

The key assumption for this area correction is that the masked area should be sta-
tistically no different from any other areas that are located in the same radial bin. This
assumption is fairly reasonable but we have no good way to estimate the effect of this
assumption being incorrect. If the masking was correlated with the large scale filaments,
for instance, or if it was aligned with the principal axes of bright galaxies, our correction
would introduce extra bias. Overall, however, this correction seems unlikely to introduce
significant extra bias into our results.
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6.2 Photometry of the Bright Early Type Galaxies

Recent studies pointed out that there is a trend in the traditional flux measurement to
underestimate the total flux of bright early type galaxies, as a result of over-subtracting
the background (He et al., 2013; Bernardi et al., 2013). This implies possible bias when
we select the elliptical primaries for our study.

This effect may slightly affect our RLF measurement as it implies that we slightly un-
derestimated the brightness of our early-type primaries and therefore also underestimated
the value of ∆m for the RLF measurement. Equivalently speaking, the RLF signal from
some primaries have a larger value of ∆m and the plot is expected to be shifted slightly to
the larger magnitude difference end. We can test the significance of this systematic through
a process of decreasing the magnitude of our blue primaries (making them brighter) by
a small random amount and observing how it changes the result. He et al. (2013) re-
measured the photometry for 2,949 bright (Mr < −22.5) SDSS early-type galaxies with
improved algorithms and they claimed an average difference of about 0.16 ∼ 0.26 r-band
magnitude measurement, depending on which algorithm is applied. According to their
result, we added a Gaussian random distributed magnitude difference ∆m = −0.2± 0.2 to
the magnitude of our elliptical/S0 type primary galaxies and then reran our RLF calcula-
tion for 10 times. We averaged the results from the 10 recalculations as the shifted RLF
measurement, which is shown in Fig. 6.1, along with the original result for comparison.

The result of adding the extra magnitude does slightly affect the measurement. The
RLF after the magnitude changes is lowered by a small amount, or equivalently speaking,
is shifted to the high relative luminosity end by a small amount. This shows that the
systematics of the photometry measurement of the bright early type galaxies are potentially
important for the RLF measurement, but is not significant enough to explain the difference
of the detection between the elliptical and spiral galaxies.

6.3 Photometric Errors in Areas Close to Bright Galax-

ies

The photometry measurement of faint objects can be affected by the halos and refractions
from nearby bright stars and galaxies, which brings it extra uncertainty and further affects
our relative luminosity function measurement. As shown in Fig. 4.7, the error of g-band
magnitude measurement of the COSMOS shape catalogue is significantly higher when a
faint secondary gets close (< 30 kpc) to a bright primary. However, as we only consider
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Figure 6.1: The RLF of Elliptical/S0 type primaries after adding extra Gaussian random
luminosity of ∆Mg ∼ 0.2 ± 0.2 (blue dots), with the original measurement included for
comparison (Red dots).
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the pairs with projected distance rp > 50 kpc, the extra uncertainty to the photometry
measurements from bright companions should be fairly small. We can expect the g-band
magnitude error to be smaller than 0.15 on average, according to Fig. 4.7. In principle,
we can test this effect to our RLF measurement by adding extra Gaussian random error of
σg = 0.2 to the g-band magnitude values of our secondary sample. However, we can easily
expect this effect would be comparable or smaller to the effects caused by the photometry
bias of the bright early type galaxies we tested in the previous section, which is almost
negligible.

6.4 Isolation Effects

6.4.1 Isolation Criteria on the Primary

The COSMOS survey covers only a small fraction of the sky (2 deg2). It contains a
very limited number of nearby, very bright galaxies (only 5 galaxies with Mg < −22.0).
Therefore, we have to choose a relatively faint magnitude cut (Mg < −19.0) to obtain
a primary sample with reasonable size. At the same time, however, it also means the
observation volume will be so crowded that it is hard to find enough primaries that are
isolated from the other primaries. We tested cutting the base primary sample with various
sets of isolation criteria. The relation between the number of remaining primaries and the
isolation criteria is shown in Fig. 6.2. From the plot we can see, even with the criteria of
cutting galaxy pairs with |∆V | < 300 km s−1 and rp < 1.0 Mpc, there would be only 105
primaries left after the isolation, which is a much smaller number size than simply using
the “kick-out” technique.

Additionally, we also test another two conditional isolation criteria. One of them is
similar to the method used by Guo et al. (2011a), whose essential idea is to exclude the
primaries that have companions that have similar or higher luminosity. Specifically, we
search for companions around each primary with the criteria of rp < risl and |∆V | <
2 ×∆Visl, and once we find a primary has companions with gc − gp < ∆misl, we exclude
that primary. We test isolation criteria with ∆Visl = 300 km s−1 and ∆misl = 1.0, and
plot the number of remaining isolated primary sample as a function of the isolation radius,
which is shown with the blue dots in Fig. 6.2. We can see that this isolation criterion saves
more primaries at given isolation radius compared to the non-conditional isolation criteria
(with risl = 1.0 Mpc, we will have 152 primaries), as a result of ignoring the companions
that are much fainter than the central galaxies.
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The other isolation criterion we test is based on the “Kick-out” method (see section 2.8
for the detailed description for the “Kick-out” method). We first use half of the isolation
radius as the “kick-out” radius and exclude the galaxies that are not truly primaries out
from the primary list first. Afterwards, we apply the usual isolation cut to the remaining
primaries, where we exclude any primary that has a companion from the current primary
list and produce an isolated primary sample. Overall, the essential idea of this criterion
is to isolate the primaries from other “real” primaries, ignoring the galaxies that are not
truly the primaries of any system. The size of isolated primary sample produced with
this method is also plotted as a function of the isolation radius, which is shown in Fig.
6.2 (red dots). We can see that this method provides the largest population of primaries
with a given isolation radius. Specifically, we will have 224 primaries with risl = 1.0 Mpc,
∆Visl = 300 km s−1 and 204 primaries with risl = 1.2 Mpc and the same ∆Visl.

In the following test, we use the isolated primary sample (204 galaxies) produced with
the method that is based on the ”Kick-out” method, as this method provides a relatively
larger population of primaries than other methods. We are also using risl = 1.2 Mpc,
∆Visl = 300 km s−1, to be consistent with the previous “Kick-out” radius of 0.6 Mpc. As
the size of the isolated primary sample is relatively small, we do not split it further into
more sub-samples and directly compare the results of using this isolated sample to the
results of using the “Kick-out” primary sample.

6.4.2 Primary Isolation Effects on the 2PCF Measurement

We test the effect of primary isolation on the clustering measurement. Fig. 6.3 shows the
comparison between the result of using the full ”Kick-out” primary sample and the result
of using the isolated primary for the projected cross-correlation function calculation with
a same secondary sub-sample selected by −19.0 < Mg < −15.0. From the plot, we can
see that the two detections of clustering signal have similar amplitude, while the clustering
signal of the isolated primary sample seems to have a steeper slope. This may imply that
the isolated primaries have a more concentrated mass distribution and they may arguably
be located in more concentrated host halos. Additionally, the signal-to-noise ratio of the
detection using the isolated primary sample is significantly lower (about half) than the
detection of using the full ”Kick-out” primary sample, which is expected as the size of the
isolated primary sample is much smaller.
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Figure 6.2: The number of primary sample with different isolation criteria.
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Figure 6.3: The isolation effect. The cross-projected correlation function between the full
primary samples and a secondary sub-sample −19.0 < Mg < −15.0, and the correlation
between the isolated primary sample and the same secondary sub-sample
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6.4.3 Primary Isolation Effects on the Relative Luminosity Func-
tion

Here we also test the isolation effects on the RLF by recalculating the RLF with the isolated
primary sample produced by the ”Kick-out”-based method, which uses isolation radius of
1.2 Mpc, velocity difference cut of |∆V | < 2 × 300 km s−1 and contains 204 primaries.
The result of this recalculation should give a better comparison to the previous studies on
the RLF that are also using isolated primary samples, as shown in Fig. 6.4. In the plot,
the measurements of the “low mass, low redshift” samples from Nierenberg et al. (2012,
hereafter N12) are shown in blue open triangles and red open squares represent early and
late types of primary; the measurement and upper limits from Strigari & Wechsler (2012,
hereafter SW11) are shown in purple crosses and arrows, whereas the crosses and arrows
indicate the measurement and the upper limits respectively; the measurement from Speller
& Taylor (2014, hereafter Speller14) is shown in green diamonds. Note that the previous
studies are conducted using r-band photometry while we are using g-band, which may effect
the ∆m slightly. Specifically, the averaged value of the magnitude difference of 〈r − g〉 is
about 0.3 for our primary sample and about 0.6 for the secondary sample. This means
that those r-band-based results should be shifted slightly to the low ∆m end for a better
comparison. The data points of previous studies in Fig. 6.4 are offset by 0.15 ∼ 0.25 for
this reason and for clarity.

Compared to Fig. 5.5, the result of using the isolated primary sample shows an over-
all slightly lower RLF detection and a significantly lower signal-to-noise ratio. The lower
signal-to-noise ratio is simply due to smaller sample size and the lower detection arguably
indicates that isolated primaries are more likely to be located in less massive host halos
and have smaller satellite populations than the primaries in groups and clusters. Addi-
tionally, the result of using the isolated primary sample has a better agreement with the
previous studies at ∆m ∼ 3 − 7 but still slightly higher than the other results, which is
arguably contributed by the better completeness of our measurement. Our measurement
also appears to have a higher detection at ∆m ∼ 2, which is possibly due to our isolation
criterion allowing relatively bright companions for each primary or may be just a statistical
fluctuation. Finally, our result after applying the isolation cut is still higher than Speller
& Taylor (2014) at ∆m ∼ 7 − 10, which is probably due to the fact that our secondary
sample is more complete at the faint end, indicating the photo-zs of the COSMOS is a
more powerful tool to reduce the background than the magnitude-size cut used in Speller
& Taylor (2014).
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Figure 6.4: RLF using ”kick-out”-isolated primary, along with four results from previous
studies on the RLF for comparison.
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6.5 Photometric Depth

From the bottom right panel of Fig. 2.8, we can see our secondary sample is relatively
complete at g+ < 25.0 and the number counts per magnitude bin drop dramatically after
that. This incompleteness of the secondary sample at the faint end also leads to the
incompleteness of our RLF measurement when the relative luminosity is larger than a
certain point. In order to estimate at what relative luminosity the completeness of our
RLF measurement starts to drop, we can artificially cut a part of our faint secondary
sample and test how it affects the result.

As our secondary was originally cut at g+ < 26.0, we applied three brighter test cuts
of g+ < 25.0, g+ < 24.5 and g+ < 24.0 as the luminosity faint limits of the secondary
sample. We then used the corresponding secondary samples to recalculate the RLF with
the “Kick-out” primary sample. The results of those recalculations are shown in Fig. 6.5.
From the plot, we can see the measurements using the secondary samples with luminosity
cuts of g+ < 25.0, g+ < 24.5 and g+ < 26.0 basically agree with the other measurements,
except for the detections at ∆mg ∼ 10, where the detection using the original secondary
sample with g+ < 26.0 has a higher amplitude than the other two. Additionally, we
found that the measurement using the secondary with luminosity cut within g+ < 24.5
well matches with the rest at the relative luminosity range of ∆mg . 7, although it is
lower than the other detections at the higher relative luminosity end. This implies that
our RLF measurements are relatively complete down to ∆mg ∼ 7 even when we cut out
the secondaries that have g+ > 24. Note that the secondary sample of 24.0 < g+ < 25.0
is relatively complete. Therefore, we can conclude that our RLF measurement using the
“Kick-out” primary sample and the full secondary sample with g+ < 26.0 is probably
complete down to ∆mg ∼ 8 .

6.6 Surface Brightness Limit

As much as a survey is limited by the magnitude depth, it is also, perhaps more importantly,
limited by the surface brightness of the targets. This means we lose the sources that are
intrinsically faint or have extended shapes that cause low surface brightness as a result.
Losing low surface brightness objects leads to an underestimate of the satellite abundance,
and may also introduce some extra bias. The relatively low density of the very extended
sources may cause them to be more strongly affected by feedback processes (e.g. star
formation and AGN activity). Or perhaps it is the other way around, and the low surface
brightness of these objects are already the consequence of the environment. Nevertheless,
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Figure 6.5: The RLFs of using the “Kick-out” primary sample and the secondary samples
with the luminosity cuts of g+ < 25.0, g+ < 24.5 and g+ < 24., with a comparison to the
result of using the secondary sample with the original luminosity cut of g+ < 26.0.
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these low surface brightness objects may have a different way of interacting with their
primaries and therefore have a different clustering and spatial distribution with respect to
the host galaxies.

6.7 Lensing Magnification

The lensing effect, which is caused by the gravitational potential of a massive object de-
flecting the light rays that are passing close by, can magnify the apparent luminosity of
background sources. When we are looking at lose pairs of bright and faint galaxies, this
lensing effect artificially amplify the luminosity of the faint galaxies. It will not affect our
results on the clustering and spatial distribution of satellites, but it may cause bias for our
RLF measurement, which depends on accurate relative luminosity information. We would
like to determine how serious the lensing effect can be in our RLF measurement.

The amount of surface brightness magnification caused by a circular symmetric lens
can be given by (Bartelmann & Schneider, 2001):

µ =
1

|(1− κ)2 − γ2|
(6.1)

where κ is the isotropic convergence, which quantifies the ability of the lens to cause the
light rays passing close by to converge; while γ is the anisotropic tangential shear, which
describes the lens’ ability to distort the images behind the lens. Considering the sample
isotropic case for rough estimate, then the magnification is dominated by the κ, which can
be defined as (Johnson et al., 2014):

κ =
Σ

Σcrit

=
4πG

c2

DLDS

DLS

Σ (6.2)

where Σ is the surface mass density of the lens, and Σcrit is the so-called critical surface
mass density;DL, DS and DLS refer to the distance from the observer to the lens and
source, and the distance between the lens and source. For our case, we are interested in
close pairs with |∆V | < 300km/s+2σV with the most remote objects sit at z ∼ 0.2. When
the both galaxies of a pair have the same redshift, obviously no lensing effects will occur.
The worst case happens where the two galaxies of a pair have the largest separation along
the line of sight. As we cut the sample with redshift error smaller than 0.25: σz < 0.25,
the most extreme case would be when the redshift of the primary galaxy has the highest
value (zp = 0.2) and the secondary is separated from the primary by the maximum value
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of the redshift error zs = 0.45, which will give us (refer to section 3.1 for the calculation of
luminosity distance):

DLDS

DLS

≈ 1700 Mpc (6.3)

We define the surface mass density to be approximately:

Σ ≈ M

πR2
(6.4)

where the smallest radius we are concerned is about 50 kpc, where we cut the inner region
pairs. The typical halo mass for our primary sample is around 1012M�, while the mass
inside the projected radius of 50 kpc should be much smaller (about 2 × 1011M� if we
assume a spherical NFW density profile and a virial radius of 300 kpc). We can take
1012M� as a conservatively high mass estimate. Therefore, the highest magnification effect
we can get is about:

κmax ≤
4G

c2
1700Mpc

1012M�
(50kpc)2

≈ 0.13 (6.5)

This corresponds to a difference of magnitude of 2.5 log(1/(1− κmax)2) ≈ 0.3.

Note that this conservative estimation of lensing magnification only applies to those
secondaries that have the largest redshift errors and lie at the smallest projected separa-
tions, but far behind the most massive primaries along the line of sight, which are a very
small part of our secondary sample. This means the lensing effect on the real satellites,
which are close to the primaries along the line of sight, is negligible. On the other hand,
the lensing magnification slightly brighten some very faint background galaxies that may
be not be detected otherwise, which may cause a small over-density of faint background
galaxies around the primaries and thus artificially increase satellite abundance by a small
amount at the faint end. Overall, the effect from lensing magnification is small and prob-
ably negligible, but it may worth further analysis and correction for studies at higher
redshift, where the lensing effect will be more significant.
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Chapter 7

CS82

7.1 Introduction to the Survey

The Canada-France-Hawaii Telescope Stripe 82 Survey (CS82) is an i-band follow-up survey
of the SDSS. It covers the SDSS equatorial Stripe 82 region, which originally covers more
than 200 deg2 with a high density of spectroscopic redshifts (it has over 100,000 redshift
measurements so far and the ongoing surveys such as SDSS-III BOSS and WiggleZ are
adding more new spectra (Shan et al., 2014)). The CS82 survey contains a total of 173
tiles (165 tiles CFHTStripe-82 and 8 CFHTLS Wide tiles). Each CS82 tile was obtained
in four dithered observations with a total exposure time of 4 × 410s, each resulting in a
5σ limiting magnitude in about 2 arcsec diameter aperture of about iAB = 24.0 (Li et al.,
2014) (Shan et al., 2014). Each stripe also covers about 1 deg2 and thus the CS82 has
final sky coverage of 173 deg2, which drops to an effective sky coverage of ∼ 124 deg2

(Shan et al., 2014). The stripes are mostly distributed between −40.0 < RA < 45.0,
−1.0 < DEC < +1.0, as shown in Fig. 7.1.

The CS82 survey has a fairly good i-band depth with excellent seeing conditions. The
i-band depth reaches iAB ∼ 24.0 for point sources and iAB ∼ 23.5 for galaxies, while the
typical seeing is between 0.4′′ and 0.8′′, with a median of 0.59′′ (Leauthaud et al., 2012; Li
et al., 2014).
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Figure 7.1: The distribution of CS82 field, with the names of each stripe. This figure is
taken from a talk by Leauthaud et al. (2012).

7.2 A Preliminary Look at the Data

Before working with the final reduced data set currently under production for the survey, we
have used public-release data1 to estimate the potential satellite clustering signal in CS82.
We first looked at one of the CS82 stripes that is named “S86p3m”, which is located at
3.45 ≤ RA ≤ 4.30 and −0.99 ≤ DEC ≤ −0.02 (it can be found at the bottom left corner
of Fig. 7.1). The catalogue of “S86p3m” provided by the Megapipe contains 152,890
objects, which drops to 104,044 objects after we applied a galaxy-star cut to exclude most
of the point sources (stars) and other image artifacts. The catalogue does not provide
redshift information, which is however required for the primary galaxies for the subsequent
analysis. We built the primary sample with the following steps:

1. we searched NED to obtain the redshift information for the bright galaxies in the
“S86p3m” field. With the criteria of z ≤ 0.15 and “Object Type”=“ Galaxy”, the
NED returned 108 galaxies with reliable spectroscopic redshifts;

1Download through the Megapipe, see Megapipe: http://www2.cadc-ccda.hia-iha.nrc-
cnrc.gc.ca/en/megapipe/
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2. We calculated their g-band absolute magnitude Mg with their g-band apparent mag-
nitude and their redshifts. We then applied a g-band absolute magnitude cut of
Mg < 19.5, which left us 74 galaxies;

3. We applied an isolation criterion: we excluded all the close bright galaxy pairs that
have small velocity difference of |∆V | < 300 km s−1 and a small projected separation
of rp < 500 kpc, which left us 39 isolated primary galaxies.

The remaining 39 galaxies will be used as the primary sample and the reduced catalogue
from the field “S86p3m” (104,044 galaxies) will be used as the secondary sample for our
subsequent analysis.

7.3 Preliminary Results

We calculated the RLF using the NED-based primary sample, along with the secondary
sample based on the public data of the field “S86p3m”. The method is very similar to the
method described in section 5.1, but we did not apply any cuts on the background as we do
not have any redshift information for the secondary sample. Instead, we simply calculate
the projected separation between the secondary galaxies and a given primary, assuming
all the secondaries are at the same redshift as that primary. We then used the projected
distance range of 50 – 400 kpc for pair counting and used the projected distance range of
600 – 800 kpc for the background estimation. The result is shown in Fig. 7.2. Overall, it
appears similar to our previous results using the data from the COSMOS survey and has
a surprisingly good signal-to-noise ratio of 2.3 at ∆m = 9.

The preliminary result of the RLF using the data from a single field (“s86p3m”) may be
showing the great potential of the CS82 survey. If the data of the other 172 fields provide
measurements of similar quality, the signal-to-noise ratio of the RLF for the whole entire
survey can reach more than 20, which would allow us to divide the sample into quite a few
sub-samples and study the effects of the galaxy properties in an extremely detailed way.
However, this expectation is over-optimistic as this measurement using a single field is very
likely to a lucky statistical incidence; we also tested the RLF calculation with the data of
another field “S86p5m”, whose detection only has a signal-to-noise ratio much less than 1
at ∆m = 8 and does not reach the depth of ∆m ∼ 9. In addition, without any redshift
information for the secondary sample, it will inevitably introduce more systematics and
statistical uncertainties. For instance, we found that the RLF detection is sensitive to the
pair counting range. Once the counting range is extended to projected distance of 50 –
500 kpc, we found that the signal-to-noise ratio will drop to 1.2 at ∆m = 9.
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Figure 7.2: The RLF measurement of using the stripe “S86p3m” from the CS82 public
data and the NED-based isolated primary sample.
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All things considered, the CS82 is still likely to be of great potential for measuring
satellite populations, and future work can be done to improve the measurements. For
instance, the final reduced catalogues with better completeness than the public data will
surely improve the analysis. We can also use the redshift information from other sources
for a part of our secondary sample. Furthermore, we can try other methods to pre-reduce
the background (e.g. the magnitude-size cut used by Speller & Taylor (2014)).
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Chapter 8

Conclusion

We have used data from the COSMOS survey to search for dwarf satellites around nearby
bright galaxies (z < 0.2). We have detected these satellite populations statistically based on
their clustering around bright galaxies. We have also studied both the radial and angular
distributions, as well as the relative luminosity function of the satellites, as a function of
central properties. Our conclusions are summarized as follows:

• We measured the projected two-point cross-correlation function (2PCF) between
the bright primary galaxies and the faint secondary sample. We found the high
quality photo-zs of the COSMOS data can greatly improve the clustering measure-
ment. We also found the correlations are strongly dependent on both the primary
luminosity and secondary luminosity. The brighter primary and secondary galaxies
show stronger correlations than the faint ones. The secondary sample clusters more
strongly around Red primary galaxies than around Blue primaries.

• We measured the radial distribution of satellite galaxies around the bright primary
galaxies, using the “Kick-out” primary sample and six primary sub-samples based
on that sample, along with the full secondary sample. We detected an excess over
the background of 7.9 ± 0.5 galaxies per central galaxy within 600 kpc projected
radius from the central galaxies, using the full “Kick-out” primary sample. Secondly
we found that the radial distributions of satellites around all the sub-samples of
primaries are relatively flat within the inner radial bins and drop to zero in the outer
regions, following a pattern similar to that predicted for an NFW density profile.
This implies the satellites may, at a certain level, trace the dark matter substructures
inside individual host halos. Third, we found that the radial satellite number density
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has a strong dependence on the primary luminosity. Brighter galaxies have a higher
number of satellites per radial bin and their satellite distributions extend to larger
radius than the faint primaries. This may imply that the brighter primaries are
more likely to be located in halos of larger virial radii (thus more massive) than
the faint primaries, or may imply that the bright primaries are more likely to be
associated with massive groups rather than isolated halos. Lastly, we found that
the radial satellite number density has a strong dependence on the morphological
(SED) type of the primary. Early-type primaries have a much larger population of
satellites on average than the late-type primaries, and their satellite distribution also
extends to larger radii. There are several possible explanations for this difference.
It could be that early-type primaries are more likely to be located in more massive
individual halos or are associated with massive halo groups. It could also imply
different luminosity-mass relations for early-type and late-type bright galaxies, or
perhaps it implies different baryonic physics in the two types of galaxies. For further
investigation of these possibilities, we may need to repeat the measurement with a
larger primary sample and focus on the isolated primaries. It would also be interesting
to study the dependence of radial satellite number density on the stellar mass and
see whether the discrepancy between the two types of galaxies will go away when the
primary samples are selected in a restricted stellar mass range.

• We studied the alignment of the satellite-central position angle with the orientation
of the central galaxies, trying to detect the so-called Holmberg effect. First of all, we
found that the alignment has a dependence on the projected radius from the central
galaxy. When the alignment measurements were conducted separately for the inner
regions and the outer regions, we found that a part of the systems showed convincing
alignment patterns. This already arguably shows that the orientation of the central
galaxies are related to the asymmetry of the host halo in certain ways. Specifically, in
the inner regions around all types of primary galaxies, the distribution of the satellites
were found to have no preferred alignment with the major axis of the central galaxies,
while in the outer regions, the satellites of some types of primary samples were found
to have a preferred alignment with the major axis, including the satellites of the
faint primary sample, the early-type primary sample and the red primary sample.
In the case of late-type galaxies, no significant anisotropy was found in the satellite
distribution at any radius. These alignment patterns may contain information about
the formation history of different types of galaxies.

• We determined the Relative Luminosity Function of the satellites for 392 “Kick-out”
primary galaxies, along with the full secondary sample. First of all, we detected
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17.7± 5.1 satellites per primary down to ∆m = 10 and detected 5.5 ± 0.5 satellites
per primary at ∆m = 7, where we obtained the best signal-to-noise ratio. Second, we
compared our measurement of the MW satellite. We found that overall, our measured
satellite abundance exceeds that of the MW satellites (at ∆m ∼ 5− 10), which may
be because our primary sample includes elliptical galaxies and galaxies in massive
groups. We also found that our measured satellite abundance is significantly lower
than that of the MW satellites at the relatively low luminosity range of ∆m ∼ 3− 5,
which may suggest the LMC-MW combination is a statistically rare case. Third, we
also looked into the dependence of the RLF on the properties of the primary galax-
ies. The early-type galaxies were found to have a significantly larger population of
satellites than the late-type primaries over the whole magnitude range. We discussed
the possible systematics in our measurement and concluded those systematics are
not significant enough to explain the discrepancy between the satellite abundances
of the different types of primaries. The discrepancy may indicate different host halo
properties, different luminosity-mass relations and possible different baryonic effects
between the two types of primaries. For further investigation of these possibilities,
we may need to repeat the measurement with a larger primary sample and focus
on the isolated primaries. This will help to constrain the host halo properties. In
addition, we can use stellar mass information (available for the COSMOS data) to
test the possible luminosity-mass effects.

• It would also be interesting to study the difference between the satellite populations
of different properties (e.g. color, surface brightness, etc.). Satellites with different in-
fall history and subject to different environment effects may show different properties
as a consequence. For instance, a lot current semi-analytic studies try to solve the
MSP by adding strong feedback. However, this causes an over-prediction of the
population of red satellites as a result (Guo et al., 2011b; Liu et al., 2011; Wang et al.,
2014). In addition, assuming feedback has strong effects on the star formation in
subhalos, we can thus expect the red satellites, which are more likely under the effects
of the feedback, would have different angular alignments and radial profiles from
the blue satellites. Overall, studies of the effect of the secondary properties on the
satellite-primary clustering, satellite spatial distribution and satellite abundance can
provide more useful implications for galaxy formation and the structure formation.

Finally, we introduced preliminary work on satellite populations in the CS82 survey.
We showed that the CS82 survey can provide a primary sample of much larger size, which
probably will allow us to measure the satellite abundance with much higher signal-to-
noise ratio. Furthermore, the larger size of the primary sample in CS82 may also allow
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us to study dependence of satellite abundance on the primary galaxy properties in a more
detailed way.
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