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Abstract

Many automobile manufacturers are switching to Electric Power Steering (EPS) systems

for their better performance and cost advantages over traditional Hydraulic Power Steering

(HPS) systems. EPS compared to HPS offer lower energy consumption, lower total weight,

and package flexibility at no cost penalty. Furthermore, since EPS systems can provide

assistance to drivers independent of the vehicle driving conditions, new technologies can

be implemented to improve the steering feel and safety, simultaneously.

In this thesis, a neuromusculoskeletal driver and a high-fidelity vehicle model are devel-

oped in MapleSim to provide realistic simulations to study the driver-vehicle interactions

and EPS systems. The vehicle model consists of MacPherson and multilink suspensions

at front and rear equipped with a column-type EPS system. The driver model is a fully

neuromusculoskeletal model of a driver arm holding the steering wheel, controlled by the

driver’s central nervous system. A hierarchical approach is used to capture the complexity

of the neuromuscular dynamics and the central nervous system in the coordination of the

driver’s upper extremity activities. The proposed motor control framework has three lay-

ers: the first layer, or the path-planning layer, plans a desired vehicle trajectory and the

required steering angles to perform the desired trajectory, the second layer (or the force

distribution controller) actuates the musculoskeletal arm, and the final layer is added to

ensure the precision control and disturbance rejection of the motor control units.

The overall goal of this thesis is to study vehicle-driver interactions and to design a

model-based EPS controller that considers the driver’s characteristics. To design such an

EPS controller, the high-fidelity driver-vehicle model is simplified to reduce the compu-

tational burden associated with the multibody and biomechanical systems. Then, four

driver types are introduced based on the physical characteristics of drivers such as age and

gender, and the corresponding parameters are incorporated in the model. Last but not

least, a new model-based EPS controller is developed to provide appropriate assistance to

each of the predefined driver types. To do this, the characteristic curves are tuned using

a systematic optimization procedure to provide appropriate assistance to drivers with dif-

ferent physical strength, in order to have a similar road and steering feel. In this thesis,
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it is recommended that muscle fatigue be used as a measure of steering feel. Then, based

on the tuned EPS characteristic curves, an observer-based optimal disturbance rejection

controller, consisting of a linear quadratic regulator controller and a Kalman filter observer

augmented with a shaping filter, is developed to deliver the assistance while attenuating

external disturbances. The results show that it is possible to develop a model-based EPS

controller that is optimized for a given driver population.
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1
Introduction

Realistic driver models and computer simulations can play an important role in designing

and improving driver-assistance technologies by reducing cost and time associated with

vehicle development. A realistic driver model that provides path planning predictions

mimics the reality, because the the physiological limitations and attributes of a human

driver have been considered. The overall goal of this research is to develop an integrated

driver and vehicle model to study driver-vehicle interactions and to design an Electric

Power Steering (EPS) system that considers a driver’s physical characteristics. With the

introduction of driver-assistance technologies such as torque or angle overlay systems, a

capable driver model is required to study the performance of these technologies. In this

thesis, this model is used to design and evaluate an Electric Power Steering controller that

can account for a driver’s physical characteristics and preferences.
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1.1 Background

The steering system is an essential part of a vehicle, because not only does it steer the

vehicle but it also conveys information about the road and vehicle to the driver. The well-

established front-wheel drive preference results in a high weight concentration over the

steered wheels, which significantly increases the effort to turn the steering wheel manually.

Automobile manufacturers introduced power steering systems to reduce the physical effort

of drivers. Based on the power source, these systems are divided into two categories:

hydraulic and electric power steering systems. A Hydraulic Power Steering (HPS) system

uses hydraulic pressure supplied from an engine driven pump to assist drives to turn the

steering wheel. On the other hand, an Electric Power Steering (EPS) system generates

steering assistance using an electric motor to make steering more comfortable for drivers.

EPS systems compared to HPS systems offer lower energy consumption, lower total weight

and package flexibility, at no cost penalty. In addition, with the increase of fuel prices,

the fuel saving benefits of EPS systems make these products more economical than HPS

systems. Consequently, it is expected that the share of EPS in the steering market will

significantly grow, especially in small and medium sized vehicles [9]. Furthermore, EPS

systems can generate assistance independent of the vehicle driving condition; therefore,

new control strategies can be implemented to improve the steering feel and safety of the

vehicle, simultaneously.

1.2 Motivations

When a vehicle is steered, a friction force is produced at the contact patch between the

tire and road. This friction force is transferred back through the steering linkages to the

steering wheel and produces a resistive torque that opposes the driver’s steering input.

Power steering systems are used to decrease this resistive torque to reduce the physical

effort of drivers and to provide good steering feel. However, the term “good” is very

subjective and is a function of many parameters such as the steering assist mechanism and

the driver’s characteristics and physical ability.
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Currently, vehicle manufacturing companies use professional drivers to tune EPS sys-

tems to provide good steering feel. This group of drivers should represent all drivers with

different physical characteristics and abilities. Drivers may have different steering stiffness

and sensitivity preferences. Therefore, developing a unique and universal steering system

that is tuned for all drivers at the same time seems impossible. A driver’s characteristics

and physical ability significantly affect that driver’s desired steering feel. For example, an

older driver with weaker muscles requires more assistance in steering than a young driver

with stronger muscles. The young driver may prefer a more sporty steering setting and has

stronger muscles to overcome the resistive torque. On the other hand, since EPS systems

can generate assist torque independent of the vehicle driving condition, they can easily be

programmed to implement sophisticated assist algorithms, or modify the control param-

eters at any time. Therefore, different assistance algorithms can be used to improve the

steering feel based on the drivers’ preference and physical characteristics.

Most of the literature on EPS control design is focused on the control structure de-

sign. In addition to the control structure, systematic studies on the control objectives

such as steering feel and comfort are still needed for better understanding of driver-assist

technologies. However, to the best of the author’s knowledge, no research has been done

on the systematic design of an EPS system that accounts for the physical abilities and

characteristics of drivers.

A recent direction of driver-assist technologies has been development of a realistic driver

model to be used in designing new technologies to aid drivers in their driving tasks. For

example, an integrated driver-vehicle model can be conveniently used to design and evalu-

ate driver-assist systems such as EPS. A suitable driver-vehicle simulation interface should

consider the neuromuscular dynamics, physical capabilities and limitations of the driver. A

human driver can be modeled as an adaptive feedback controller with various propriocep-

tive measurements, as shown in Fig. 1.1. Drivers use visual feedback to correct/plan the

trajectory of the vehicle, and at the same time, they use the somatosensory/proprioceptive

measurements to control the steering wheel position while the information from the ki-

naesthetic sensory system is used to adapt to different steering conditions. The human

neuromuscular system, including the Central Nervous System (CNS) and Stabilizer, can
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Figure 1.1: Neuromusculoskeletal structure of a driver

describe the driver’s response and physical limits to the steering wheel force feedback by

considering the muscle dynamics and reflexive response to the change in force and displace-

ment.

The natural flow of human motion starts from the motor-neuron spikes, leading to the

production of muscle twitches and finally a force pulling the bones to reach a desired po-

sition. A forward dynamics approach can properly capture this neuromuscular dynamics,

since it also follows the same natural flow. Equations of motion are integrated forward

in time to obtain the motion trajectories in response to neuromuscular inputs. In con-

trast, an inverse dynamics approach uses the information in the opposite direction; the

measured joint trajectories/limb motion and external loads are the inputs and the joint

torques are the outputs. While an inverse dynamics approach is useful for clinical deci-

sion making, it cannot explain the underlying cause-and-effect relationships between motor

neuron-spikes and system kinematics and what-if simulations. Therefore, muscle-actuated

forward dynamic simulations can be used to predict each muscle contribution on a specific

movement.

In this research, a high-fidelity driver model is developed which includes a brain model

in conjunction with a neuromusculoskeletal model of driver’s arm. This model is human-

centered, meaning that the physical capabilities, limitations and preferences of the driver

were taken into account in the design process, which then can be used to tune steering
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controllers for a specific driver or the general population. Developing a simple model

which can quantify objective criteria such as feel and comfort for different types of people

can be a breakthrough in future steering developments. This approach reduces the time

and cost associated with the preliminary design of experiments, and at the same time

reduces the human (professional drivers) error on the evaluation of steering systems. In

this approach, the EPS system can be easily tuned based on a desired steering preference,

or for a population with a similar physical characteristics and ability.

1.3 Challenges

There are some serious challenges in the development of an integrated driver-vehicle model

and dynamical modeling and control of electric power steering systems:

1. Development of a realistic simulation environment to study EPS systems is very

challenging. Vehicle and driver models, as two essential components in the steering

simulation, should be developed together and in detail to provide a clear understand-

ing of the plant behavior before the design process for the controller begins.

2. Performance criteria in EPS systems, such as driver comfort and feel, are subjective

matters because they vary according to drivers and driving conditions. Although

recent research and experimental work described a number of guidelines to satisfy

such criteria, a standard solution has not been ratified yet.

3. The EPS system is a system in which humans and machines interact directly; from

the safety perspective, the control system must be stable and robust. Closed-loop

stability must be maintained in the presence of nonlinearities such as Coulomb friction

and parameter variations in the various mechanical sub-systems.

4. Driver models of varying degrees of complexity have been developed over the last half

century. A significant proportion of these models have focused solely on brain model-

ing for tracking the desired path (autonomous driving). However, the neuromuscular
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system contributes to task performance, disturbance rejection, and metabolic energy

consumption, all of which influence motor control behavior of muscles, and should

be considered in the design process.

5. In the forward dynamic simulation, both modeling and control aspects should be

carefully considered. The modeling aspect covers the dynamic representation of the

limb geometry and inertia, joint kinematics and muscle force origins and insertions,

and the control aspect covers the central nervous system responsibility to coordinate

the human limbs.

A suitable integrated driver-vehicle model assists engineers to overcome these chal-

lenges, and guide them in the right direction. In this thesis, we use the naturally pre-

dictive forward dynamics approach to predict subject-specific simulations of human arm

movements. As an application of this model, an EPS controller is designed which considers

the driver preference for the stiffness level of the steering wheel.

1.4 Thesis Organization

Chapter two begins with a literature review of electric power steering systems addressing

modeling challenges. A literature review on driver modeling and the interaction between

driver and vehicle is presented, and finally the different control strategies of EPS systems

are discussed. Chapter three presents the development of a high-fidelity vehicle model

including a column-assist EPS system as well as two simplified model of vehicle, internal

model and control-oriented model, which then will be used in the neuromusculoskeletal

control of driver’s arm and design of EPS controller, respectively. Chapter four elabo-

rates on a high-fidelity driver model with three-dimensional musculoskeletal arm model

as well as a two-dimensional arm model. The high-fidelity model will be used to verify

the two-dimensional model and evaluate the proposed EPS controller. In chapter five, the

architecture and principle of EPS is introduced in detail. EPS characteristic curves are

tuned for four groups of people and implemented in a new optimal disturbance rejection

6



controller. This EPS controller is based on the model-based stochastic optimal control,

and satisfies the assistance, driver feel, and road feel criteria. Last but not least, simu-

lations to evaluate the proposed controller on the high-fidelity driver model is performed

and effectiveness of the controller are presented. Conclusions are made in chapter seven

and the directions of future work are drawn.
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2
Literature Review

In this chapter, a review of the relevant published research studies on the driver and vehicle

interaction is presented. This review is classified into three sections: vehicle dynamical

modeling by looking at power steering, driver modeling, and Electric Power Steering (EPS)

system design. The combination of the aforementioned sections are required to build a

concrete background to study the interaction between the driver and steering system with

tendency to design and develop new driver-assist steering technologies.

In the dynamical modeling category, different models of the vehicle and power steering

with various levels of complexity are introduced and some examples for each level are

presented. Then, different approaches to driver modeling are introduced, and application

of the optimal control theory in the path-following controller as the supervisory/vision-
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based part of the driver model is explained. Furthermore, neuromusculoskeletal (NMS)

features, classified into stretch reflex and muscle intrinsic stiffness/co-contraction, and the

relevant publications are presented.

Research and developments in power steering systems can be divided into two cat-

egories: control objectives and control strategies. In this thesis, control objectives are

classified into assistance, and road feel; each category is briefly introduced and some ex-

amples for each category are presented. Finally, EPS control strategies including classical

and model-based control strategies, along with their advantages and disadvantages are

discussed.

2.1 Vehicle Modeling

The first step in the design process of a controller is to understand the dynamics of the

plant. A detailed high-fidelity dynamical model of a system can give in-depth insight into

the system behavior. A high-fidelity model not only can be used to study the system’s

dynamics, but can also be used as a real plant to validate the designed controller. However,

the high-fidelity model requires significant computational time in comparison to a simplified

reduced-order model. Literature shows that there are many research studies on modeling

different power steering systems with various levels of complexity for both hydraulic and

electric power steering systems.

Liao et al. [77] developed a high-fidelity multibody dynamic model of vehicle including a

column-assist EPS in ADAMS 1. The full vehicle model has demonstrated good correlation

with experimental results. This model has 347 degrees of freedom and includes non-linear

elastic elements (bushing) in front and rear suspensions. Lower-order models also exist

which consider a steering model with a simplified vehicle model (such as a lumped spring

and damper [140] or a bicycle model of vehicle [166]). Badaway [8] developed a high-order

model of a column-assisted EPS system, then a model reduction method is used to develop

1ADAMS is a registered trademark of MSC. Software
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Figure 2.1: Types of Electric Power Steering (EPS) systems (a) Column-assist, (b) Rack-
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a reduced-order model such that important dynamic distinctions such as stability, torque

performance, disturbance rejections, and road feel are preserved.

Mohammadi and Kazemi [52] introduced the different types of EPS systems, and in-

vestigated the effect of assistance torque location on the performance of the EPS. The

authors demonstrated that changing the location of the applied assist torque from the

steering wheel to the wheels improves the steering sensitivity and efficiency. Other articles

[33, 143] studied the possibility of using different electric actuators such as DC and AC

motors in EPS systems. Tsuji et al. [143] investigated the effect of the EPS system on

battery voltage and current.

Analyses of the stability of EPS systems have been reported for several types of EPS

products. A stability condition for a double-pinion EPS is derived by Zaremba and Davis

[163]. The authors derived an analytical approximation of the stability boundary condition,

which gives the maximum assist torque that can be generated by the EPS system, while

the closed-loop system is stable.
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2.2 Types of Electric Power Steering (EPS) Systems

EPS systems can be categorized into different types depending on the location of the

electric motor in the steering system as shown in Fig. 2.1. The most popular types of EPS

systems are:

1. Column-assist type: the assist motor is attached to the steering column.

2. Pinion-assist type: the assist motor is attached to the steering gear’s pinion shaft.

3. Rack-assist type: the assist motor is attached directly to the steering rack forming a

single package.

4. Double pinion-assist type: the assist motor is attached to the steering rack via a

separate pinion gear assembly.

Electric power steering systems were first used in mini-sized vehicles in 1988. Subse-

quent development of new electric motors with higher output power made it feasible for

car manufacturers to equip bigger cars such as SUVs with EPS products. In 2004, the

share of EPS in the steering market in Europe was 45%, and was predicted to reach 63%
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Figure 2.3: Architecture of a column-type EPS system

of the steering market by 2009 [9]. Fig. 2.2 shows the forecast of the global market trend

of steering systems.

An EPS system typically consists of a vehicle speed sensor, a torque sensor, a steering

angle sensor, an Electronic Control Unit (ECU) and a motor as shown in Fig. 2.3. When a

vehicle with an EPS system turns, the column torque (measured by the torque sensor) and

the steering angle are detected and sent to the ECU. The ECU defines target motor current

based on the pre-established characteristic curves (see Chapter 5), steering direction, and

vehicle speed. Then, it regulates the voltage of the electric motor to produce a desired

current. A gear is used to decrease the motor speed to amplify the assist torque, and finally

the loop is closed by applying the magnified torque to the steering column.
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2.3 Driver Modeling

To reduce the design and development time of new automotive products, especially the

parts that interact with drivers such as steering, a reliable driver model is required. Hence,

understanding and anticipating the driver behavior has attracted many researchers from

different disciplines. Driver models, based on their distinctive demands and applications,

can be divided into vehicle-based and human-based driver models. The major concern of a

vehicle-based driver model is the design and tuning of the vehicle components; it finds the

required steering angle/torque to perform a given maneuver, but it does not consider how

this torque is produced, or if the produced torque is physiologically possible. In contrast,

a human-based driver model is focused on the understanding of the driver’s limitation

and preferences. Such a model essentially requires a path-following controller (similar to

vehicle-based driver), along with a neuromusculoskeletal (NMS) model of the driver.

The following sections review the required tools to develop a human-based driver model,

i.e. path-following controller and driver’s neuromusculoskeletal system.

2.4 Path-following Controller

A path-following controller usually uses a mathematical expression of the vehicle dynamics

and a control logic, and navigates the vehicle in a desired trajectory by manipulating the

steering wheel, brake and throttle pedals. However, the scope of this research is limited

to navigating only with the use of steering wheel. This group can be classified under

two subcategories based on their objectives: compensatory control and preview (pursuit)

control.

2.4.1 Compensatory Control

Driver models in this subcategory are closed-loop feedback controllers that follow a desired

trajectory. The output of these controllers is usually the steering wheel angle, and the
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input is the desired trajectory, while feedback information such as lateral displacement of

the vehicle in local or global coordinates, heading angles, etc. are provided for corrections.

There is no preview information provided to these controllers. These models can be appro-

priately used in the compensatory steering task. For example, when the driver is driving

in the straight line, and an unknown disturbance such as side wind or road irregularity

acts on the vehicle, the compensatory driver model compensates for the disturbance and

heads back to the desired path.

The most famous compensatory driver model is the Crossover driver model [150] that

considers human adaptive behavior. McRuer suggests that a human operator interacting

with a physical device form a closed-loop compensatory control to the visually perceived

errors. The experiments on different devices show that the response of a human driver can

be fitted in the following transfer function:

G = KP
TLjω + 1

TIjω + 1
e−jω(τ+TN ) (2.1)

where τ and TN are the cognitive and neuromuscular time delays, respectively, and KP ,

TL and TI are the three parameters that operator adjust to ensure the stability of the

closed-loop system.

Crossover models were first developed for pilot-aircraft systems, but in 1960 the idea was

applied to driver-vehicle systems as well. A single loop feedback on the lateral position of

the vehicle showed poor performance and low bandwidth. Therefore, a multi-loop feedback

was developed in [150] to improve the vehicle response. In this model, an outer-loop on

the lateral displacement of vehicle is enhanced by an inner loop on the heading angle to

improve vehicle stability.

2.4.2 Preview (Pursuit) Control

Human drivers plan proper steering actions by considering the path ahead of the vehicle and

their prediction on the vehicle response. For example, in an obstacle avoidance maneuver,

the driver begins to steer before hitting the obstacle! Therefore, in this case, the crossover
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models are not suitable, since they do not consider the predictive ability of human drivers.

Kondo in 1953 [70] presented a driver model which steers the vehicle in such a way that

a predicted vehicle’s position at a certain distance ahead of the vehicle coincides with the

previewed path at that point. Kondo model [69], inspired by riding a bicycle in narrow

roads, is used to counterbalance for external disturbances, such as wind, to maintain the

steering wheel at the desired position. Later, McRuer and Weir [150] adopted a similar

approach to Kondo’s approach for pursuit component of their general STI (Systems Tech-

nology Inc.) driver model. The STI driver model consists of precognitive, compensatory,

and pursuit control of crossover model with a single preview point.

With advances in optimal control theories, multi-point preview control has received

more attention. Optimal control theory is widely used in path-following driver models.

For example, MacAdam in 1981 [83] utilized an Linear Quadratic Regulator (LQR) control

strategy with a prediction horizon to calculate the steering angle based on the previewed

path information and predicted vehicle path. The driver time lag associated with neu-

romuscular and cognition delays have been added to the vehicle model, but not in the

controller. Later, he added heading angle error compensation to the controller to take

advantage of this model on curved roads [84].

Peng and Tomizuka [110] extended MacAdam’s work and assumed that the road lateral

curvature and elevation information is perfectly known in a certain preview horizon, and

after that only statistical information is available. The authors also added the lateral

acceleration as a ride comfort criteria to the objective function. The resultant optimal

control has two preview parts, one corresponding to the known previewed horizon, and the

other corresponding to the road ahead of the previewed section, which is represented by

an exponential decay.

Casanova’s driver model [130] uses the linear discrete-time preview (DLQRP) control

approach; the authors, based on the fact that in DLQRP each element of the preview gain

only affects the corresponding preview error element in the sequence, defined eight unevenly

distributed preview points ahead of the driver with a smooth and decaying gain sequence.

The tire saturation has been considered in the gain selecting process, and therefore, this
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model has good performance in the near-limit conditions. A formal formulation of DLQRP

with infinite prediction horizon and a random road disturbance has been derived by Sharp

and Valtetsiotis [131]. The authors show the preview gains will converge to zero and

become negligible when the full preview is presumed, and concluded that the driver model

with 1 to 1.5 seconds preview can perform at full performance for slow speeds; this period

should be increased for higher speeds.

Drivers use a representation of the vehicle response to steering input, a so-called path-

following controller’s internal model, to predict the vehicle path. An on-line parameter

identification approach is used in [145] to identify the linear internal model dynamics in

a rich excitation period and to make the control suitable for a longer range of operating

conditions.

In [23], the model predictive control (MPC) approach is applied to the driver-steering

system. The authors have shown that similar gains to LQR with infinite preview horizon

can be found from the unconstrained MPC controller when they have similar objective

functions. In this case, the MPC has the same length of prediction and control horizon

and they are sufficient for full preview. Cole et al. in [23] compared the predictive (un-

constrained MPC), receding horizon linear quadratic (LQ) and infinite-horizon LQ (LQR)

methods of path-following controller. They showed that all controllers are identical when

there are long enough preview and control horizons, and discussed the differences with

different combination of prediction and control horizons. For the special case of long pre-

diction horizon and short control horizon (single interval control horizon with 0.02 s) the

predictive controller is the equivalent of the MacAdam [84] controller.

An MPC with multiple internal models has been developed in [63, 64] to replicate a

highly skilled driver, who has knowledge of the vehicle nonlinearities such as tire satura-

tions, to cover the entire range of vehicle dynamics. In this approach, a linear dynamical

model of driver neuromuscular system and non-linear tire models are used to develop the

internal model. Then, this model is linearized at evenly spaced linearization points, to

form a family of linearized internal models.
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2.5 Neuromusculoskeletal Dynamics

Computer simulations of biomechanical systems can provide in-depth insight about the

system’s dynamics, which then enables researchers to develop new human-based designs.

The majority of research on driver modeling is concentrated only on the driver as a

path-following controller, as discussed above. However, a minority of research papers have

followed a different approach and focused on the human neuromusculoskeletal (NMS) sys-

tem, which gives insight into task performance, and driver’s preferences and limitations.

The NMS system is a complex system including chemical, electrical and mechanical com-

ponents. Skeletal muscles involve all aforementioned components; moreover, the activation

dynamics are an electrochemical process where the contraction dynamics is a highly non-

linear procedure.

Driver models with the NMS representation of the human enable a force interface

between the driver and vehicle, and it can be used to develop driver assistance systems

such as the haptic gas pedal, lane keeping, and artificial steering wheel torque feedback.

The developments in these areas have shown promising results [2]. In the future, a steering

system can be developed to identify the driver characteristics and environment conditions

in real-time and change the steering system parameters accordingly.

2.5.1 Muscle Indeterminacy Problem

The control aspect of the NMS system manages the muscle force magnitudes, replicating

the role of the motor control system in the Central Nervous System (CNS). The CNS re-

ceives information from the sensory organs and coordinates the motion of all body parts.

The well-known indeterminacy of muscle force distribution and the nonlinearity of the sys-

tem itself results in a challenging coordination problem. The indeterminacy refers to the

number of muscles wrapping around a joint exceeding the number of degrees of freedom

(DoF) of that joint, which can result in infinite muscle force patterns for a desired trajec-

tory. However, it is observed that humans tend to produce similar activation patterns for
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similar tasks [146]. In this thesis, it is assumed that the CNS controls the human move-

ments in such a way that a psychologically motivated exertion is minimized. A driver’s arm

is an example of an indeterminate NMS system; therefore, it requires an extra criterion to

reach a unique solution, where the exertion could be quantified as metabolic energy [144],

or muscle fatigue [26, 6].

The minimization procedure can be performed in two ways. It can be carried out over

the whole period of the simulation in a forward dynamic simulation setup (the so called

Dynamic Optimization (DO) method). The common way of performing DO is to discretize

the control inputs over time and search the acceptable space to find the optimal control

sequence [28, 159, 105, 62, 6]. The other approach is an inverse dynamic approach or the

so-called Static Optimization (SO) method [5]; in this approach the optimization is carried

out at each time step independent of time history. The SO approach takes advantage of

known joint trajectories and external loads to scale down the optimization problem. In the

SO approach, the number of unknown variables is reduced to the number of muscles; they

are not function of time, which results in shorter simulation time. However, the accuracy

of this method heavily depends on experimental or desired trajectories. Furthermore, the

time-independent nature of SO makes it difficult to incorporate time-dependent physio-

logical performance criterion such as metabolic energy consumption [5]. Moreover, since

the values predicted by SO at an instance are independent of the previous step, SO can

result in unphysiological sharp discontinuities in the prediction of control signals; in other

words SO is memory-less [28]. On the other hand, time-dependent objective functions can

be easily included in DO, and the objective can be formulated independent of experimen-

tal/desired trajectories, and only is a function of final position. However, DO typically

requires thousands of integrations of model states to converge to a unique solution [5, 104],

which then results in very long simulation times.

Alternatively, the DO optimization can be performed at a shorter horizon instead of

full period in a receding horizon approach. A nonlinear model predictive control (NMPC)

can be used to suit this idea. Forward static optimization (FSO) is the special case of

this approach with a single-step prediction and control horizon [129]. Depending on the

prediction horizon length of NMPC, the results can be as reliable as DO simulations or
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the simulation time can be as fast as SO simulations. Therefore, this method can manage

the trade-off between the simulation time and accuracy. NMPC, by considering a proper

prediction horizon, can use a more appropriate physiological cost function such as fatigue

or metabolic energy consumption in the optimization, which can lead to more realistic

simulation results.

Three other approaches have been developed to use the benefits of SO in reducing

the computational loads demanded by DO approaches. Yamaguchi used a pseudo-inverse

method to find muscle forces to track the desired joint acceleration [158]. This method does

not consider dynamic properties of muscle and requires a specific optimization approach.

Thelen et al. developed the Computed Muscle Control (CMC) method [139], considering a

feedforward and feedback control to track the desired kinematics which should be known

(i.e. not a predictive simulation). The feedforward controller computes the steady state

value of muscle activation, and the feedback controller find the muscle excitation to track

the steady-state muscle activation. However, CMC cannot account for muscle activation

delay and muscle-tendon contraction dynamics, and may require residual forces to find a

unique solution. Later, the authors modified the CMC approach [138] to explicitly account

for the delays between muscle excitation and active force production.

2.5.2 Mechanical Dynamics of Muscle

Many dynamical muscle models are developed to describe different aspects of human mus-

cles and to describe why a human muscle behaves in a particular way. In this thesis, a

dynamical model is defined as the relation between the neural activation and the resulting

muscle force/length. There are two well-known approaches for muscle modeling: the Hill-

type muscle model [51] explains the muscle behavior at a macroscopic level, and is based

on empirical relations; on the other hand, the cross-bridge (Huxley) [55] model can explain

the microscopic behavior of the muscle. In this thesis, a simplified Hill-type muscle has

been used to simulate the muscle dynamics. Since the Hill muscle model is based on empir-

ical relations, it is computationally less demanding than Huxley’s molecular approach, and

is computationally manageable for a system with several muscles. Furthermore, the Hill
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Figure 2.4: Schematic of Hill-type muscle model [51]

muscle model parameters can be easily adjusted to represent the age and gender-related

changes in muscle mechanical properties.

The three-element Hill-type muscle model as shown in Fig. 2.4 consists of a large

sarcomere2 (Contractile Element, CE), with some additional visco-elastic properties to

contribute for the tendon and aponeurosis (series element, SE) and connective tissues

epimysium, perimysium and endomysium (parallel element, PE). However, the mathemat-

ical representation of this model results in stiff ordinary differential equation. Therefore,

different versions of this muscle model are used in the literature to overcome this issue. For

example, a simple model incorporating a contractile element in series with the tendon (SE)

is used in [151, 161]. Similarly, a contractile element in parallel with a parallel element

(PE) has also been used in literature ([1], Voigt configuration).

Pick and Cole reported the passive dynamics of arm for two conditions [113], based

on the measurement of steering torque and angle in response to a filtered pseudo-random

binary-sequence excitation. The first condition involves minimal gripping of the steering

wheel, while avoiding sliding of hands relative to wheel (relaxed muscle); the second con-

dition involves resisting the motion of steering wheel by co-contracting and stiffening the

muscles. It is shown that the measurements can be represented by a system lumped at the

steering wheel and can easily fit to a second order transfer function of inertia, damping

and stiffness. It is also shown that in the stiffened muscle condition in comparison to the

relaxed condition, the damping parameter is slightly and stiffness parameter is significantly

increased while the change in inertia is negligible. Later, they used an electromyography

2the smallest anatomical unit that contracts like a muscle
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approach [114, 117] to investigate the key muscles involved to generate the steering torque

while performing an isometric and a dynamical steering maneuvers on a driving simulator,

and later for a lane change maneuver [115].

2.5.3 Stretch Reflex

Each muscle is stimulated by the release of chemical materials from a somatic motor neuron.

Motor neurons (nerve cell) originate from the spinal cords, and carry the impulse-shape

signals (action potential) to the muscle fibers. Motor neurons (alpha and gamma motor

neurons) entering a muscle (interafusally and extrafusally) branch and form synapses with

a number of muscle fibers as shown in Fig. 2.5. The motor neuron and all muscle fibers

that it innervate are called a motor unit. Often a group of motor units (so called motor

pool) work together to coordinate a muscle contraction. The size of a motor unit may vary

significantly from a few synapses (for eye muscles) to thousands of synapses (for big leg

muscles).

To coordinate the muscle properly, the sensory information about the muscle length

and tension is required. Golgi tendon organ and muscle spindle afferents are two impor-

tant sensory receptors of the muscle, providing sensory information about muscle tension

and muscle length and contraction velocity, respectively. The muscle length and velocity

information (primary muscle spindle afferent, Ia) is used by reflex mechanisms to control

the muscle length against the unwanted disturbances, and the Golgi organ (Ib afferent) is

used to regulated the muscle force.

Alpha motor neurons are activated from motor cortex or higher centers, while gamma

motor neurons are activated from brain stem or cerebellum. The direct command of limb

movement is going through alpha motor neurons to the muscles motor units while the

gamma motor neurons adjusts the sensitivity of the muscle spindles. The simultaneous

activation of alpha and gamma motor neurons are required for a movement. For example,

during a voluntary muscle shortening, its spindles have to shorten too, to retain the same

level of intrafusal fiber tension. This is called alpha-gamma co-activation, which can be

represented by the feedforward and feedback control of the muscle. The stretch reflex (my-
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Figure 2.5: The schematics view of stretch reflex mechanism including α and γ motor
neurons

otatic reflex) is a muscle contraction in response to stretching within the muscle. In the

presence of disturbance (involuntary muscle stretch), the primary muscle spindle (Ia) reg-

isters a different muscle length from the desired muscle length set by gamma motoneuons.

This difference excites the alpha-motor neurons (using M1 pathways) to increase the firing

rate, which then increases the muscle force to oppose the unwanted stretch. The commu-

nication between the peripheral and central nervous system runs through the pathways

in the spinal cords. Spinal mono-synaptic feedback (M1) pathway is the fastest feedback

pathway, which takes about 20-30 ms for arm muscles [29], and has the major role in

maintaining of posture. Mono-synaptic spinal reflex is one mechanism for automatic reg-

ulation of skeletal muscle length; different pathways are also known to reduce the activity

of antagonist muscles.

Merton [71] constructed a reflex loop consisting of spindles and alpha motor neurons

forming a feedback-loop on the muscle length; a similar approach has been employed by

[86, 24].

The co-activation of α and γ motoneuons in the steering tasks has been considered in

[21, 22, 53]; these signals are generated by a cognitive controller as the feedforward, and a

corrector as the feedback. These signals show the relationship between the steering wheel

torque and angle, and not in the muscle activation level. It is shown in the occurrence of
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steering angle overlay, the driver NMS system interacts with steering system soon after the

fault; the stretch reflex attempts to return the steering wheel to the zero position, and then

after the cognition delay, the path-following response dominates the steering response.

2.5.4 Intrinsic Stiffness

The Central Nervous System (CNS) uses two mechanisms to maintain the limb position in

the presence of external disturbances: by using the stretch reflex system (mentioned above)

and by increasing the intrinsic stiffness of skeletal joints. The intrinsic muscle stiffness has

no time delay, whereas the stretch reflex is more energy-efficient.

It is known that by co-contraction of agonist and antagonist muscles, the joint stiff-

ness and damping can be modulated without altering the net joint torque. Muscle co-

contraction is known to stabilize limb movements [97, 96, 162, 72] and this feature is used

in many motor control models [37, 142]. Winters and Stark [152, 154] could accurately

predict the limb stiffness by employing an eighth-order agonist and antagonist Hill-type

muscle. The series element (SE) in the Hill-type muscle model, which simulates passive

elasticity of muscle tissue and tendon, play an important role in the joint impedance. In

the presence of antagonist co-contraction, the series elastic stiffness increases non-linearly,

which increases the joint stiffness [153, 154].

By performing EMG experiments on a driver’s arm performing a lane change maneuver

on a driving simulator, Pick and Cole in [115, 116] reported that increase in the muscle

co-contraction improves the path-following accuracy. However, in this experiment, the

stretch reflex and muscle co-contraction are considered as the only means of stabilizing the

steering, and the feedforward/active/voluntary control is neglected. The co-contraction

stiffness is implemented by a linear spring acting on the steering wheel angle, where stiffness

is proportional to the co-contraction parameter. The co-contraction parameter is defined

by:

Ic(t) = (M+ve −M−ve)− |Mz| (2.2)

where M+ve is the steering torque generated by the positive muscles, M−ve is the steering
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torque generated by the negative muscles and Mz = M+ve +M−ve is the resultant steering

torque generated by the arms. The authors identified the torque-generating muscles in a

steering maneuver by measuring the muscle EMG [114]. The co-contraction phenomenon

during the steering maneuver was observed to increase limb stiffness, and thus the band-

width for the control loop, which allowed smaller path-following errors. It can be shown

that during normal driving conditions, elevation of the co-contraction level is mainly be-

cause inexperienced drivers attempt to compensate for their own control imperfections or

internal noise [64]. However, even experienced drivers employ co-contraction in order to be

more robust to disturbances, and to compensate for their own inaccurate control actions.

2.6 Control Objectives for EPS Systems

In contrast to that of conventional feedback systems, in the design of an EPS controller,

or in general an active steering controller, there are no well-defined measurements for the

driver steering feel and comfort. Steering feel and comfort are subjective matters, because

they vary according to drivers and driving conditions, and cannot be evaluated by physical

measurements. Several studies have been conducted to identify the correlations between

what drivers feel and vehicle handling measurements [121, 123, 122, 25, 169]; however, they

can only be used as guidelines to satisfy such criteria.

Some drivers complain about loose or heavy steering, and also unpleasant oscillations

at the steering wheel of the cars equipped with EPS systems. For example in 2009, there

were some complaints about the Toyota Corolla’s EPS system; some drivers said it had

a wobbly and off-center steering feel. Accordingly, the National Highway Traffic Safety

Administration (NHTSA) opened an investigation into Corolla’s EPS system following 168

complaints, but the NHTSA concluded there was no actual defect in the cars themselves.

In fact, the NHTSA reported that “the alleged defect is a driver-related preference for a

less sensitive on-center steering feel” [106].

Several studies have been devoted to steering feel issues. Norman [107] studied the

interaction between drivers and vehicles. Norman’s study led to a technique to dynam-
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Figure 2.6: (a) Typical characteristic curves of an EPS system, (b) Lissajous curve of a
typical EPS with high and low frequency inputs

ically measure and characterize the non-linear behavior of a power steering system for

on-center handling. Later, Farrer [36] introduced new characteristics including steering

activity, steering feel, and vehicle response for handling quality. Morita et al. [99, 100, 101]

introduced driver feel criteria for an EPS based on a variable gear transmission steering

system, and determined that the unpleasant reaction force at the steering wheel may be

caused by a combination of external disturbances, mechanical flexibility and friction non-

linearity. The authors used the phase shift and oscillation characteristics of the Lissajous

curves between driver torque and steering wheel angle to compare the steering feels. For

example, Fig. 2.6b shows the Lissajous curves of a typical EPS system with high and low

frequency inputs (steering speeds). In this figure, both oscillation and phase shift can be

observed in the high frequency input.

The main responsibility of EPS systems is to reduce the driver physical effort. There-

fore, the assistance torque should compensate for most of the resistance torque at the steer-

ing wheel. As a result, almost all power steering systems have a component in their logic to

generate an assist torque proportional to the driver torque. This relation is typically pre-

sented in so-called characteristic curves [17]. The shape and dynamics of these curves were
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studied in the literature to provide better assistance and feel for drivers [168, 167, 74, 157].

Typically, the steering characteristic curves are a bi-linear or multi-linear function of the

driver steering torque. For example, Fig. 2.6a shows a steering characteristic curve which

is a bi-linear function of the column torque, where the rate of assistance varies with the ve-

hicle speed. This characteristic curve consists of an unassisted zone to avoid the off-center

feeling and a linear steering assistance zone. A similar characteristic curve is utilized in

the EPS controllers.

Adams [4] studied the problem of power steering road feel. The road feel objective deals

with the level of permissible resistive torque in various road surface conditions and vehicle

speeds that the driver perceives. It was shown that eliminating certain high-frequency

components of the resistance forces improves the steering feel [4]. Some authors utilized

disturbance observers to estimate the road/tire interaction force, specifically the feedback

to the steering wheel from the low-frequency portion of the road-tire forces [14, 140, 16]. A

road/tire force estimator developed by Lawson and Chen [73] was used to design a torque

sensor fault-detection control for EPS systems, in which the total motor load/disturbance

torque was estimated using a Luenberger disturbance observer. Alternatively, Marouf [85]

developed a sliding mode observer to estimate the driver torque and the reaction force

using only the steering wheel angle and the assist motor angle measurements without the

need for a torque sensor and a vehicle lateral speed sensor.

In the investigations by Zaremba and Davis [163], analytical expressions of assist force,

driver feel, and steering response to driver inputs, as well as assist forces in the form of

transfer functions are defined for a double-pinion EPS system. The authors defined the

measure of driver feel of the road as:

JF = (
1

2πω0

∫ ω0

0

|HF jω|2dω)1/2 (2.3)

where ω0 is the frequency range of interest and HF is given as follows:

HF (jω) =
Td(jω)

FR(jω)
(2.4)

where Td and FR are driver torque and rack force, respectively.
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2.7 Control Approaches

Designing an EPS system requires solving a tracking control problem under the existence

of disturbance and uncertainty. A wide range of control strategies have been reported

in the literature including classical, model-based, and black-box control methods for the

EPS controller. This section is followed by a review of the classical and model-based EPS

control design strategies. The black-box control methods have been left out since they are

not in the scope of this thesis.

2.7.1 Classical Control Methods

Proportional Integral Derivative (PID) controllers with compensators have been extensively

and successfully implemented in EPS systems [149, 164, 20]. The advantages of compen-

sators and PID control algorithms over other control methods are their simple structure

and low implementation cost. However, these controllers have poor transient performance

in the presence of external disturbances or uncertainties. Badawy et al. [8] implemented a

“Return Algorithm” and “Damping Algorithm” components with which the EPS tracking

controller logic was implemented. These two algorithms use the steering wheel position

and velocity information to guarantee the return of the steering wheel to the exact center

position upon release. The root locus controller design method was used in [38] for a hy-

draulic power steering system, in which zeros and poles are added to the system to force

the desired behavior of the closed loop system.

2.7.2 Model-Based Control Methods

The robust control approach has been regularly used in the EPS control design to improve

robustness and performance of the system [14, 15, 27]. H∞ synthesis is used in [13, 140, 12]

to provide assistance, while simultaneously minimizing the effect of disturbances on the

outputs. Zhao and Wang [166] designed a mixed H2/H∞ controller to obtain better system

performance, and to improve steering sensitivity and stability by adding these objectives
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to the previous objective function. A similar approach has been used in [34, 35], where the

passivity constraint of the human drivers is considered in the design to ensure the closed-

loop stability. Li [15] developed a two-stage controller for a column-type EPS system. The

first stage is a PI controller to improve motor reaction response, while the second stage is

an H∞ controller which defines the desired assist torque based on the road feel performance

requirements. In [16], model reduction for a similarly structured controller was discussed

and implemented to reduce the computational resources. In comparison to the original

controller, the reduced-order controller performs like the original one in a normal situation

as opposed to its decreased performance in the presence of random disturbances.

The Linear Quadratic Gaussian (LQG) control method also has been used in designing

EPS controllers. Parmar et al. [108] designed an LQG controller consisting of a Linear

Quadratic Regulator (LQR) in conjunction with a Kalman filter for a double-pinion type

EPS system. The LQR was designed to provide assistance proportional to the steering

column torque. Then, the Kalman filter was utilized to estimate the dynamics of the

system’s states in the presence of measurement noise. Later in [109], the authors expanded

the LQG controller for a bi-linear characteristic curve. LQG control is used to reduce the

number of required sensors and to provide assistance in the presence of external disturbance

and measurement noise [108, 109, 18]. To the best of author’s knowledge, the Model

Predictive Control (MPC) theory has not been used in the EPS systems.

Relatively less effort has been made in designing friction compensation and disturbance

observer controllers for EPS systems. A friction compensation control is developed in [136]

by considering an equivalent friction model of the worm gear. Then, the prediction of

this model is used to compensate for the friction through motor torque. Dannöhl et al.

[27] developed a modified H∞ controller for a rack-assisted EPS by considering separate

unknown external forces to model friction at the steering wheel, rack and motor. The mod-

ified controller enhanced the performance of the system in comparison with the original

H∞ controller. To suppress periodic disturbances (shimmy) at the steering column, dis-

turbance compensation controllers have been developed. In these controllers, the periodic

disturbance is extracted from the measured steering torque using an analytical approach

[44] or by use of a non-linear low-pass filter [75], and then compensated through the actu-
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ator. A disturbance observer also has been developed to estimate the steering torque load

and driver steering torque using an extended state observer [31], or Kalman filter [91] or

sliding mode observer [76]; this estimation is then used to produce a desired assistance in

the presence of external disturbances.

2.8 Chapter Summary

In this chapter, different approaches for modeling of the electric power steering systems as

well as different EPS control strategies have been introduced. It can be noted that there

is no clear and well established objective function in the designing of EPS controllers to

improve driver’s steering feel. The traditional performance criteria used in EPS systems

such as comfort and feel are subjective matters and vary according to drivers and driving

conditions. One way to improve the traditional design of steering systems is to consider

the driver’s characteristics and preferences in the design process. However, developing

driver-based technologies requires proper understanding of the driver itself. Therefore, in

this chapter, the relevant passive and active properties related to the neuromusculoskeletal

dynamics of driver’s arm is briefly explored.

With such understanding, one possible solution might be using this knowledge to tune

or design a steering system to provide improved steering response and better steering feel.

However, how steering response and steering feel can be measured or even defined is the

subject of ongoing research and debate. One important tool for designing new steering

products is to develop a realistic driver model to reduce the time-consuming trial and

error process of designing products, and eventually reduce the vehicle’s development time

and cost. Some research studies investigated the passive dynamics of the neuromuscular

system of the driver arm to understand the driver dynamics. However, the effect of the

force generating part of muscle on the steering dynamics as well as the effect of physical

ability, gender and age has not been studied.
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Mechanics is the paradise of the mathematical sciences

because by means of it one comes to the fruits of math-

ematics.

Leonardo da Vinci (1452 – 1519)

3
Electric Power Steering (EPS) System

Modeling

A clear understanding of the dynamics of a system is crucial in designing control systems,

since not only does it strengthen our knowledge of the system but also it reduces devel-

opment time and cost. Therefore, in this thesis, a full vehicle model including a column-

assisted EPS system is developed in MapleSim1 using a multibody dynamics approach.

This model is used to design and evaluate an EPS controller. Although the high-fidelity

model is suitable to study the system’s dynamics, it is not suitable to be used within a

model-based controller due to its non-linearities and complexities. Low-order linear models

1MapleSim is a registered trademark of Maplesoft
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Figure 3.1: A view of the vehicle model in the MapleSim program

are more desirable than higher-order ones since they preserve the important dynamics of

the system and simultaneously simplify the controller.

In this chapter, a high-fidelity multibody dynamical model of vehicle, a control-oriented

model, and a simplified model of vehicle (internal model) are presented and the accuracy

of the two latter models are verified against the high-fidelity model.

3.1 Full Vehicle Model in MapleSim

In this research, a vehicle model with a front MacPherson suspension and a rear multi-

link/semi-trailing arm suspension typical in an SUV (Sport Utility Vehicle) is developed

in MapleSim as shown in Fig. 3.1. The symbolic modeling engine of MapleSim is able to

generate optimized C code describing the system’s equations of motion. These symboli-

cally generated equations can reduce the simulation time significantly and allow extensive

manipulation of the system’s equations. The developed model consists of 50 generalized co-

ordinates coupled by 34 algebraic equations. This model in total has 16 degrees of freedom
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Figure 3.2: (a) Rear multi-link muspension, (b) Rear multi-link suspension in MapleSim
construction mode

(DOF). Six DOF are associated with the rigid body motion, four are related to the wheels’

spin, four are related to the suspensions’ vertical motion and two are associated with the

steering motion. The simulation integration time for a sinusoidal steering maneuver is five

times longer than real-time.

3.1.1 Chassis - Front and Rear Suspensions

Front Suspension

The MacPherson suspension topology is a popular choice for automobiles front suspension

because of its low manufacturing cost and simplicity. A conventional MacPherson suspen-

sion consists of a lower control arm, spindle and strut as shown in Fig. 3.2. The lower

control arm is connected to the chassis (with a revolute joint) and to the spindle (with a

spherical joint) allowing vertical and lateral movements of the tire. The strut, including a
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Figure 3.3: (a) Rear Multi-link Suspension, (b) Rear Multi-link Suspension in MapleSim
construction mode

co-linear spring and shock absorber, is mounted on the spindle to carry the vehicle weight

and reduce the vibrations to the body. The MacPherson suspension has three rigid body

components, which results in a one degree-of-freedom mechanism.

Rear Suspension

A multi-link/semi-trailing arm rear suspension, consisting of four arms connecting the

spindle to the chassis, is developed in MapleSim. The arms are connected to the spindle

by spherical joints, and to the body by spherical and revolute joints as shown in Fig. 3.3. A

spring and a shock absorber is mounted separately on the arms to isolate the body from the

road irregularities. A similar mechanism to that shown in [68] has been used to construct

the multi-link rear suspension. The Multi-link suspension consists of five rigid bodies, four

spherical joints, three universal joints and a revolute joint. This mechanism results in

one degree of freedom in the vertical direction of wheel movement. The kinematics of the

suspension systems are verified against an experimentally validated ADAMS model. More

information about the high-fidelity vehicle model can be found in [46, 45].
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Body

The vehicle center of mass location and mass and inertia reflects the SUV mass and inertia,

as given in Table. 3.1. The positive x-axis of the vehicle coordinate system points in the

direction of movement, the positive y-axis points to its left, and the positive z-axis points

upward.

Table 3.1: List of parameters used in the body

Parameters Description Value Unit

Mass vehicle mass 2000 [kg]
Inertia vehicle body moments of inertia [450,1600, 2000] [kg.m2]

[x, y, z ]
CM location of center of mass [2.57,0,0.8] [m]

[x, y, z ]

3.1.2 Fiala Tire Model

Tires are the key element in modeling vehicle dynamics because not only do they support

the vehicle weight, but they also provide the necessary forces and moments for changing

the speed and direction of the vehicle.

In this study, the Fiala tire model is used to simulate the tire/contact patch interaction

[102, 39]. The Fiala tire in comparison with other more sophisticated tire models, such

as Pacejka, has fewer parameters and is therefore simpler to construct. However, this

simplification limits the accuracy of the model. The Fiala tire model does not consider

the effect of inclination angle, the lateral and longitudinal stiffness are assumed constant

during simulation, the overturning moment (Mx) is assumed zero and the tire’s force and

moment curves must go through the origin. Despite these limitations and assumptions,

the Fiala tire model is a good candidate to study steering tasks. This is because the Fiala

tire model can capture the fundamental behavior of the tire using only a few parameters

and all of the tire parameters can be measured or estimated with reasonable accuracy. The
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positive direction of local axes in the wheel are defined in the same direction of the center

of mass coordinate system.

The Fiala tire model requires tire slip angle (α), longitudinal slip (S) and tire normal

force (Fz) as inputs to calculate longitudinal and lateral forces and rolling resistance (My)

and self-aligning moments (Mz) as follows:

SLα = 2
√
S2 + tan2(α) (3.1)

µ = µ0 − SLα(µ0 − µ1) (3.2)

H = 1− Cα|tan(α)|
3µ|Fz|

(3.3)

Fx =

 CsS if |S| <
∣∣∣µFz2Cs

∣∣∣
sgn(S)

(
µFz −

(
µFz

4|S|Cs

))
otherwise

(3.4)

Fy =

{
−µ|Fz|(1−H3)sgn(α) if |α| < arctan

(
3µFz
Cα

)
−µ|Fz|sgn(α) otherwise

(3.5)

My =

{
CrFz if Ω < 0

−CrFz otherwise
(3.6)

Mz =

{
µFzD2(1−H)H3sgn(α) if |α| < arctan

(
3µFz
Cα

)
0 otherwise

(3.7)

The cornering stiffness, longitudinal stiffness, rolling resistance, peak coefficient of fric-

tion, sliding coefficient of friction and the width of the tire are the additional parameters

that are required for the Fiala tire model. The tire parameters used in the simulations are

given in Table. 3.2. The same tire model is used for front and rear wheels.
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Table 3.2: List of parameters used in the tire model

Parameters Description Value Unit

µ0 the peak coefficient of friction between tire and
ground (the static coefficient of friction)

1 [-]

µ1 the steady-state coefficient of friction between tire
and ground (the sliding coefficient of friction)

0.9 [-]

Cα tire cornering stiffness (the slope of the Fy vs α of
the tire curve at α = 0)

117000 [N/rad]

CS tire longitudinal stiffness (the slope of the Fx vs S
of the tire curve at S = 0)

115000 [N/rad]

Cr tire rolling resistance coefficient 0.01 [N/rad]
D2 half of the tire width 0.1075 [m]

3.1.3 Steering System Model in MapleSim

Since the steering system is the focus of this research, the model construction is described

in detail. A conventional rack and pinion steering system consists of two universal joints

that connect the three steering column shafts to transmit the rotational motion of the

steering wheel to the pinion (see Fig. 3.4). The steering wheel is connected to the steering

column housing by a cylindrical joint allowing rotational and telescopic movements of

steering column, and at the other end, a rack-and-pinion gear is used to transform the

rotational motion of the lower steering shaft to the translational motion of the rack with a

specified reduction ratio. As shown in Fig. 3.4b, the rack and pinion steering system is a

one-degree of freedom mechanism, in which rotating the steering wheel results in a unique

displacement of the rack and the wheel.

Universal (Hooke’s) joints are used to transfer torque between inclined axes. One

revolution of inbound shaft results one revolution of outbound shaft. However, depending

on the articulation angle, the angular acceleration and deceleration may not be transmitted

evenly. To avoid the non-uniformity, double universal joints with equal bending angles and

90 degree phase shift between input and output shafts can be used, as shown in Fig. 3.4b.

In electric power steering systems, the driver’s steering torque should be known to
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Figure 3.4: (a) A view of the developed steering system in MapleSim, (b) Schematic view
of steering system in MapleSim, including the location of driver torque (Td), assist torque
(Ta), disturbance torque (Tr = Frrp), and Coulomb frictions

the EPS controller to provide proper assistance, proportional to driver’s intention. Strain

gauges and twist angle measurements are common ways of measuring the steering torque.

In both cases an intermediate compliant member in the steering shaft (usually a torsion

bar) is required. Torsion bars (torque sensors) are an essential part of electric and hydraulic

power steering systems and the major source of flexibility in the steering systems. In the

high-fidelity model, a torsion bar is placed in the upper steering shaft by employing a linear

spring and damper representing the shaft elasticity properties. By registering a differential

(or relative) angular displacement between the two ends of the bar, and by considering

the elastic behavior of shaft, it can measure the torque transferring through the shaft, as

shown in equation Eq. (3.8).

Ttb = Ktb∆θtb + Ctb∆θ̇tb (3.8)

where Ktb and Ctb are the stiffness and damping coefficients of the torsion bar, and ∆θtb is
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the torsion bar deflection. The torsional stiffness of universal joint, worm gear and pinion

is at least 1000 times greater than the torsion bar stiffness. Therefore, flexibility of these

components are neglected in the model.

Table 3.3: List of parameters used in the high-fidelity steering system

Parameters Description Value Unit

runloaded unloaded tire radius 0.45 [m]
Ktb torsion bar stiffness 117 [N.m/rad]
Ctb torsion bar damping 2.2 [N.m.s/rad]
θ1 lower steering shaft angle 118.6 [degree]
γ universal joint bending angles 22.3 [degree]
Lm electric motor inductance coefficient 1.5 10−5 [H]
Rm electric motor resistance coefficient 0.15 [ohms]
Ke electric motor back electromotive force (emf) coef-

ficient
0.02 [V.s/rad]

asw, bsw viscous friction coefficients of the steering wheel 0,1 [-]
Tc,sw, Ts,sw coulomb friction coefficients of the rack 141.9,130 [N.m]

Direct current (DC) electric motors connecting through a worm gear to the steering

column are commonly used in EPS systems to provide the assist torque [137]. In this thesis,

a first-order differential equation is used to simulate the DC electric motor dynamics. This

model is given by:

Lm
di

dt
+Rmi+Keθ̇m = uv

Te = Kei
(3.9)

where i and uv are the current and terminal voltage of the DC motor, Lm, Rm, and Ke are

the inductance, resistance and back electromotive force (emf) coefficients of the electric

motor, and Te and θ̇m are the motor torque and angular velocity of the motor shaft.

In the physical system, friction is generated at the mechanical connections between the

steering wheel and its housing, the rack and its housing and in the worm gear [132]. In

this thesis, a friction model representing the Coulomb and viscous part of the friction force

as given in Eq. (3.10) has been used [7].
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Ffric(t) = a vbrel + tanh
(
vrel
v0

)(
fc + (fs − fc)−|

vrel
vs
|n
)

(3.10)

where a and b are the viscous damping coefficient and exponent and fs and fc are the

Coulomb friction coefficients. vrel is the relative velocity between the two components and

vs, v0 and n are shaping factors. The numerical value of the parameters used in the steering

system are shown in Table. 3.3.

3.2 Control-Oriented Model of EPS System

In this thesis, a simplified control-oriented model is developed for use in the EPS controller.

Since the EPS controller has to perform in real-time, and since the amount of memory and

process time allocated to steering control in the vehicle’s Electronic Control Unit (ECU) are

limited, a simplified control-oriented model is used to reduce the computational resources

required.

Since the proposed control method is based on linear control theory, the control-oriented

model should be linear. Therefore, a seventh-order linear model of a vehicle including a

column-type EPS system is presented as the control-oriented model. As shown in Fig. 3.5,

this reduced model includes the steering wheel, steering intermediate shaft, electric motor,

and lateral dynamics of vehicle. These steering components have been selected because of

their important influence in the steering dynamics. The lateral dynamics of the vehicle

have been included in this model to predict the lateral force of front tires because it makes

the largest contribution to the resistive steering torque. Considering the moment of inertia

and the viscous damping of a steering wheel, the steering wheel equation of motion is

obtained:

Jswθ̈sw = −bswθ̇sw + Ttb + uτ (3.11)

Ttb = Ktb(θsw − θr) (3.12)

where uτ and Ttb are the driver torque and the torque developed due to flexibility of the

torsion bar. θsw, Jsw and bsw are angle of rotation, moment of inertia and viscous damping
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Figure 3.5: Schematic view of the control-oriented model confined in the LQG controller
including a linear bicycle model (right) with a column-assisted EPS system (left)

of the steering column.

The rack and its connection to the wheel spindle as well as intermediate shaft of steering

are combined together, and represented as a single inertia at the intermediate shaft. The

dynamics of the steering intermediate shaft are described by:

Jrθ̈r = −Krθr − brθ̇r + Ttb + Ta + Tr + ud (3.13)

where θr, Jr and br are angular displacement, inertia and damping of the intermediate

shaft. Kr is the stiffness induced by the inclined kingping axis on the rack displacement.

Gsteering is the ratio of the rotation of steering wheel angle to the average value of left and

right wheel steer angles. Tr and ud represent the self-aligning torque (SAT) and external

torque due to road irregularities or disturbances at the intermediate shaft, respectively.

Ta is the assist torque provided by the DC motor; assuming the worm gear ratio of G,

Ta = GTe (see Eq. (3.9)).

A single-track or “bicycle” model can be used to analyze the vehicle dynamics behavior

as shown in Fig. 3.5. This model includes several important exclusions and simplifications.

These simplifications greatly reduce the model’s complexity and degrees of freedom, but
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do not significantly affect the vehicle lateral dynamics. For example, in the bicycle model,

the height of vehicle’s center of gravity is at the road surface; therefore, the roll and pitch

angles of the vehicle are neglected. As a result, the normal tire force at the left and right

sides of vehicle remain the same during cornering. Thus, the lateral forces produced by

the front or rear wheels remain the same, so the left and right wheels are lumped together

and represented by a single wheel. In this section, a bicycle model is used to capture the

lateral dynamics of the vehicle and estimate the self-aligning torque of the high-fidelity

vehicle. The vehicle’s velocity at the center of mass is denoted by V and makes an angle

β with the heading direction of the vehicle. The side slip angle (β) and yaw rate (ωz) of

the vehicle’s center of mass are selected as the state variables of the bicycle model. The

equations of motion of this model are expressed as follows:

mvx

(
β̇ + ωz

)
= Fyf + Fyr (3.14)

Izz ω̇z = Lf Fyf − Lr Fyr (3.15)

where Fyf and Fyr are front and rear lateral force of the wheels and are approximated by

the linear tire model in contrast to the Fiala tire model used in the high-fidelity model:

Fyf = Cαfαf (3.16)

Fyr = Cαrαr (3.17)

As shown in Fig. 3.5, the front and rear slip angles with small steer angles can be

approximated as follows:

αf =
vy + Lfωz

vx
− δf (3.18)

αr =
vy − Lfωz

vx
(3.19)

In these equations, the longitudinal velocity of the vehicle at center of mass is assumed
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Table 3.4: List of parameters used in the control-oriented model

Parameters Description Value Unit

Jsw inertia of steering wheel 0.0009 [kg.m2]
bsw viscous damping of steering wheel 0.008 [N.s/m]
Jr inertia of steering intermediate shaft and rack 0.01258 [kg.m2]
br viscous damping of intermediate shaft and rack 3.715 [N.s/m]
Kr stiffness of intermediate shaft and rack 71.4 [N/m]
Gsteering average steering ratio 15.29 [m]
Lf the distance from front tire to c.g. 1.192 [m]
Lr the distance from rear tire to c.g. 1.548 [m]
m vehicle mass 2077 [kg]
Izz vehicle yaw inertia 1995.78 [kg.m2]
CTα self-aligning-torque stiffness 2000 [N.m/rad]
Cα front and rear tire cornering stiffness 117000 [N/rad]

constant and is expressed as vx, and the steering angle of front wheel is represented by δf .

Self-aligning torque, which is created by the interaction between the tire and the road,

can be found from Eq. (3.7) of Fiala tire model. However, for small slip angles, the SAT

is a linear function of slip angle (αf ). Assuming the average steering angle of the wheels

is δf = θr/Gsteering , the SAT can be found from Eq. (3.20).

Tz = CTα αf = CTα

(
δf − β −

Lf ωz
vx

)
(3.20)

The remaining parameters are defined and summarized in Table. 3.4. The control-

oriented model consists of four linear ordinary differential equations (ODEs), three of

which are second-order which is equivalent to a set of seven first-order linear ODEs. The

state-space representation of the control-oriented model is presented in Appendix A.
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3.3 Internal Model

Drivers generally steer a vehicle in a predictive way, meaning that based on the their

knowledge of the vehicle response they anticipate the vehicle trajectory, and steer the

vehicle accordingly. It is hypothesized that a race car driver has a good understanding

of the vehicle such as the saturation level of the tires, while a novice driver considers the

vehicle as a point mass based on the current state of vehicle [65, 63]. This complexity of

the internal model can used as a factor to include the driver skill in the simulations. In

this thesis, a column-assisted EPS with a bicycle model of vehicle (control-oriented model)

is selected as the internal model. However, the Fiala tire model is used instead of linear

tire model to accurately model the tire forces in the internal model. This nonlinear model

is used in the control movement of the driver arm.

In the internal model, the longitudinal speed of vehicle is assumed constant; thus, it

is a fair assumption that the longitudinal slip (S) is equal to zero. Therefore, the Fiala

tire model equations are reduced to Eqs. (3.5) and (3.7), and the longitudinal force and

rolling resistance moments are assumed to have a negligible effect. The tire normal forces

are found by the static distribution of vehicle weight on the front and rear tires:

Fzf =
mgLr
Lf + Lr

, Fzf =
mgLr
Lf + Lr

(3.21)

where Fzf and Fzr are the front and rear tire normal forces.

3.4 Model Validation

To use the aforementioned control-oriented and internal models in the control design pro-

cess, the models should be a good representation of the actual system.

To demonstrate this, a sinusoidal steering maneuver is simulated for the control-oriented,

internal and the high-fidelity models. Figure 3.6 shows the torque required to steer the

wheels against the steering wheel angle in the following situations. Figure 3.6a shows the
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Figure 3.6: (a) The steering torque required versus steering wheel motion when the front
wheels are on the friction-less pads, (b) The steering torque required for a smooth steering
wheel motion at 10 m/s vehicle speed

required torque when the wheels are on friction-less pads; this graph is used to identify

br and Kr coefficients, while Fig. 3.6b is used to estimate the SAT contribution to the

required steering torque. In this simulation, the longitudinal speed of the car is 10 m/s

(36 km/hr). An optimization approach is used to find the steering and vehicle parameters.

The discrepancy seen in Fig. 3.6a is the result of the absence of friction in the control-

oriented model. This conclusion is verified by removing the Coulomb friction from the

steering system and comparing the steering torques. The Coulomb friction is not included

in the control-oriented model to keep the linearity of the model.

Then, a random steering maneuver with different voltage and disturbance inputs to the

system as shown in Fig. 3.7a is simulated for the internal model, control-oriented and high-

fidelity models. Since the maximum driver torque is usually about 10 N.m, a sinusoidal

driver torque input with a magnitude of 10 N.m is used. The magnitude of the terminal

voltage is assumed to be 5 V, and the magnitude of the disturbance force at the rack is

500 N. Figure 3.7 shows the steering wheel angle, assist torque and lateral acceleration

of the high-fidelity vehicle model as well as the tuned control-oriented model and internal
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model. These measurements are selected since they are the sensor measurements of the

EPS system, and they should agree well with the real measurements (in this case the

high-fidelity model). The results show a good correlation between these three models.

A shown in Fig. 3.7c, the torque sensor value for all three models is the same since the

dynamics between the steering input and torque sensor measurement are closely modeled in

all models. However, other measurements have slight differences since the vehicle dynamics

is simplified in the control-oriented and internal models.

3.5 Chapter Summary

In this chapter, a high-fidelity vehicle model, control-oriented model and internal model

are developed. The high-fidelity vehicle model, including a detailed representation of the

vehicle’s suspension and steering system, is used to verify two other simplified vehicle

models and will be used to evaluate the proposed EPS controller. The control-oriented

model consists of a linear bicycle model and a column-assist EPS system; this model will

be used inside the EPS controller. The third model is the control-oriented model with non-

linear tire models to be used as the internal model confined in the driver model. Based

on the results presented in the Section 3.4, all three models show similar behavior when

subject to harmonic inputs with magnitudes and frequencies in the ordinary steering range.
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Figure 3.7: Comparison of the control-oriented model with the high-fidelity vehicle model
(a) Inputs to the system: terminal voltage, driver torque and disturbance force, (b) Steering
wheel angle, (c) Torque sensor (torsion bar torque), (d) Vehicle lateral acceleration, (e)
Vehicle yaw rate, (f) Lower intermediate shaft angle
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“THE FUNDAMENTAL VARIATIONAL PRINCIPLE

Namely, because the shape of the whole universe is most

perfect and, in fact, designed by the wisest creator, nothing

in all of the world will occur in which no maximum or

minimum rule is somehow shining forth . . . ”

Leonhard Euler (1707 – 1783)

4
Neuromusculoskeletal Driver Model

In this chapter, a physics-based driver model including a three-dimensional musculoskele-

tal model of driver arm and a novel Central Nervous System (CNS) motor control struc-

ture, hereafter called the three-dimensional (3D) driver model is developed. A simpli-

fied two-dimensional driver model with the same CNS structure, hereafter called the two-

dimensional (2D) driver model is also developed. The 3D driver model is used to replicate

the neuromusculoskeletal dynamics of a human driver while the 2D driver model will be

used in the vehicle component-level design procedures. The simplified 2D driver model

conveys the same general characteristics as the high-fidelity (3D) driver model but does

not contain all the details of the system.
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4.1 Physics-based Three-dimensional Driver Model

Before getting into the details of the high-fidelity (3D) driver model, the author would like

to explain the difference between the two types of models that are used in our simulations:

the high-fidelity model and the internal models. The high-fidelity model (section 4.1.1) tries

to faithfully replicate the real system, and is used to obtain the simulation outputs. The

internal models, on the other hand, do not necessarily contain all the details of the system,

and are only used to provide some prediction about the real system. These simplified

models are confined within the motor control systems (sections 4.2.1 and 4.2.2), and are

solved multiple times at each time step. Therefore, the simplicity of the models is vital in

keeping the computational burden at a manageable amount. The validity of both types of

models is equally important, as the errors in either will affect the reliability of the results.

Additionally, due to the interaction of the models, error in the any of models will hinder

the interpretation of the results.

4.1.1 3D Musculoskeletal Arm Model

In this section, the 3D musculoskeletal arm model is developed to reliably study the neu-

romuscular dynamics of steering tasks with a larger range of operations than already pub-

lished models such as the neuromuscular driver model introduced by Pick and Cole [116].

Figure 4.1a shows the schematic view of the 3D arm model. In this model, the torso

(scapula, assumed fixed relative to the vehicle) is attached to the upper arm (humerus) via a

spherical joint. The forearm (ulna and radius) is, in turn, connected to the upper arm via a

revolute joint to allow for flexion/extension of the elbow. Finally, a universal joint is used to

connect the forearm to the hand, allowing the flexion/extension and abduction/adduction

of the wrist joint. It is also assumed that the hand firmly grips the steering wheel; thus,

hand/steering wheel interaction is modeled as a fixed (weld) joint.

The number of degrees of freedom in this model is smaller than the actual degrees

of freedom in a human arm. Unlike the human arm, this model does not allow supina-

tion/pronation of the forearm. These degrees of freedom have negligible effect on the

48



S

R

UR

(a)

x
y z

x

z y

x

z
y

(b)

Figure 4.1: (a) Schematic view of the 3D arm model. (b) Coordinate systems for each
segment

kinematics of the steering act for the range of steering angle (±90◦) considered here; more-

over, the associated muscles (Supinator, Pronator Teres and Subscapularis) have negligible

activation during steering [111]. Such simplifications reduce the complexity of the model,

while maintaining its versatility.

In total, 15 muscles are used in this model to move the arm (see Figure 4.2a); 8 and 7

of these muscles are responsible for shoulder and elbow motions, respectively. The muscles

that are not included are either negligible in effect, or related to the removed degrees of

freedom (e.g. supination). Moreover, in spite of significant activity of some wrist actuator

muscles during steering [111], the wrist joint is left unactuated because the elbow and

shoulder muscles are of the most interest. The muscle path parameters used in this work

are adopted from existing research articles [111, 43, 159, 139], and are summarized in

Table B.1 of Appendix B.

4.1.2 Hill-type Muscle Model

The model used to simulate the muscle dynamics is inspired from the popular Hill muscle

model [139, 51]. As shown in Fig. 4.3, the Hill muscle model consists of a Contractile

Element (CE) and a Parallel Elastic element (PE) in series with a Series Elastic element
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(a) (b)

Figure 4.2: The 3D arm and the vehicle models in MapleSim (a) The muscle-actuated arm
model, (b) Vehicle and driver model

(SE). In this thesis, the tendon dynamics (SE) are neglected, as the motion is relatively

slow, and amount of energy transfer in tendons is small. However, stiffness produced by

the SE element of muscles wrapping the shoulder and elbow joints, as a result of muscle

co-contraction, are approximated and replaced with a stiffness and damping at the joint.

This stiffness and viscous damping increases with the muscle co-contraction as a function

of the muscle co-contraction ratio. Therefore, the muscle model is reduced to the CE

element in parallel with the PE element. Based on these assumptions, the muscle force

can be found as follows:

FTM(t) = Fmax
0 {FPE (t, LM) + FCE(t, a, LM , VM)} cos(αp) (4.1)

where FPE and FCE are the passive and active forces of the muscle, respectively. LM , VM ,

αp and Fmax
0 are the muscle length, contraction velocity, pennation angle and maximum

isometric muscle force, respectively. The muscle activation (a) represents the fraction of

active motor units in the muscle (between 0 and 1), and since the SE element is removed,

the pennation angle for all muscles is assumed to be zero.

The force generated by the active part of muscle (CE) can be separated into force-length
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Figure 4.3: An example of a Hill-type muscle model [139]. The Hill muscle model consists
of series elastic element (SE), parallel elastic element (PE) and contractile element (CE)
as the active part of muscle.

and force-velocity relations [139], which is scaled by the activation level of the muscle as

shown in Eq. (4.2). A schematic diagram of these two relations is shown in Fig. 4.4.

FCE(t, a, VM) = a (t) FL
CE (t, LM) F V

CE(t, a, LM , VM) (4.2)

The force-length relation is described by the normal distribution function as follows

[139]:

FL
CE (t, LM) = e

−
LM (t)

L
opt
M

−1

2

/γ
(4.3)

where the shaping factor γ is set to 0.45, and the length of muscle in the initial posture

is selected as the optimal length of muscle (LoptM ). The driver is holding the steering wheel

at 3 o’clock position in his/her initial posture, and the steering axis is parallel to the

line connecting the shoulder to the steering wheel (see Fig. 4.17a). The force-contraction

velocity dependent relation is approximated by the following formula [139, 127]:

F V
CE =


VM/V

max
M Lopt

M +AV max
M

VM/V max
M Lopt

M Af+AV max
M

VM < 0

VMBF̄
len
max/V

max
M Lopt

M +ACV max
M

VMB/V max
M Lopt

M Af+ACV max
M

VM > 0

(4.4)
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Figure 4.4: (a) The relation of the muscle force-velocity dependent relation (F V
CE) with

activation, (b) The muscle force-length dependent relation of CE (active force) and PE
element (passive force)

where V max
M , the maximum contraction velocity of the muscle, is set to 10 (LoptM /s) and A, B

and C are shape factors calculated by A = 0.25+0.75 a(t), B = 2+2/Af and C = F̄max
len −1,

respectively. F̄max
len , the maximum normalized muscle force achievable during lengthening,

is set to 1.4 and Af , a force-velocity shape factor, is set to 0.25.

The force-length relationship of the PE element of the muscle as shown in Fig. 4.4b is

represented by an exponential function [139]:

FPE (t, LM) =
e

kpe

LM (t)

L
opt
M

−1


/εm0 − 1

ekpe − 1
(4.5)

where kpe, a shape factor, is set to 5 , and εm0 , the passive muscle strain due to the maximum

isometric muscle force, is set to 0.6.

52



Figure 4.5: The motor control framework to study steering task

4.2 Motor Control Framework

A feature-rich motor control framework for the musculoskeletal driver model consider-

ing the sensory and actuator dynamics of human limb has been developed to study the

driver/vehicle interaction. In humans, the CNS comprises information processing in the

brain, the cerebellum and the neural circuits of spinal cord, to modulate motor commands

and control the voluntary and the involuntary actions of the driver.

To reliably study motor action tasks, we need to establish a predictive framework with

sufficient bio-fidelity. With the motor control framework presented in this thesis, we can

define an environment (which may include disturbances and uncertain dynamics) and a

desired steering action, run the simulation, and observe the consequences. Such a model

can help to study steering tasks and design new driver-assistance technologies.
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As shown in Fig. 4.5, the proposed motor control framework consists of three parts: the

path planning part, the musculoskeletal control part, and finally the stabilizer part. The

path planning controller (level one of control hierarchy) works in the low-dimensional end-

effector space (in this context the steering wheel angle); it defines a desired steering wheel

trajectory, θsw,des, based on its internal representation of the system. The musculoskeletal

controller (level two in the hierarchy), works in the high-dimensional muscle space, and

tries to predict the muscle activation, apredict, required to follow the high-level controller’s

set points. In the stabilizer part, the stretch reflex (the lowest level in the hierarchy) also

works in high-dimensional muscle space, and the intrinsic stiffness module works in the

joint space. The lowest level of hierarchy is responsible for compensating for inaccuracies

and disturbances in the system.

4.2.1 Level One – Model Predictive Path Planning Controller

The first layer of the framework, the path planning part, estimates the required steering

wheel angle to perform a specific task, and is represented by a model predictive controller

(MPC) [23, 90].

As argued by Kim and Cole [65], the cerebellum may contain representations of the

nonlinear body/vehicle dynamics, in the form of a set of linear models (internal models).

The versatility of this set shows the driver steering skill, which results in better performance

of the driver in the near-limit conditions. In this thesis, a single linear model is used to

represent the driver’s steering skill. Since all the predictions in the MPC are based on this

internal model, this model is of great importance. For this reason, the validated nonlinear

internal model of vehicle (as defined in section 3.3, a bicycle model of vehicle with non-

linear tire model) is linearized at the equilibrium tire slip angles (αf = αr = 0) to be

used in the MPC path-following controller. Therefore, the internal model is reduced to a

linear bicycle model with a linear tire model (control-oriented model). The control-oriented

model captures the significant dynamics of the yawing and lateral motion of the vehicle.

Figure 4.6b shows the comparison of the lateral response to a sweep sinusoidal steering

wheel angle (shown in Fig. 4.6a) for the high-fidelity and this internal control-oriented
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Figure 4.6: System response for the high fidelity vehicle and the bicycle model (a) The
steering wheel angle as the input to the systems, (b) The lateral position as the output of
the systems

model at a constant speed of 10 m/s.

The MPC path planning controller tries to predict the best steering wheel trajectory

by solving an optimization problem. The cost function to minimize is defined by Eq. (4.6).

JPF =

np∑
i=1

{
c1 (y(i)− ydes(i))2 + c2 (wz(i)− wz,des(i))2

}
+

nc∑
i=1

c3(θsw(i))2 (4.6)

where np and nc are the prediction and control horizon lengths, and θsw, y, wz, ydes and

wz,des are the steering wheel angle, vehicle’s lateral position, yaw rate and their desired

values, respectively. Lastly, c1, c2 and c3 are weighting factors in the cost function, which

requires that the vehicle follow the desired path (first term), with as little steering as

possible (the second term).

In this implementation of MPC, the time is discretized into 10 ms intervals, in which

the control inputs (the steering wheel angle) are assumed to be constant. MPC finds the

optimal sequence of control input (with the control horizon length) over the prediction
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horizon length resulting in the optimal tracking performance. Then, the MPC selects the

initial element of the sequence and applies it to the high-fidelity model.

To study the effect of prediction and control horizon lengths on the path planning

performance of the driver model, two simulation studies using the control-oriented model

are performed. In these simulations, a step signal with amplitude of 3 m is set as the desired

lateral trajectory of the vehicle, as shown in Fig. 4.8. Since the desired trajectory is a sharp

step signal, the path planning controller should plan to begin steering earlier than when

the step arises. This behavior of MPC clearly shows the predictive path planning ability of

the driver model. In the first set of simulations, the prediction and control horizons of the

MPC controller are kept identical, and raised from looking 1 s (np = nc = 100× 0.01 = 1

s) ahead of the vehicle to 3 s (np = nc = 300×0.01 = 3 s), consecutively. Figure 4.7 shows

the steering wheel angle calculated by the MPC to perform the lane change maneuver.

It can be seen that with the prediction horizon of 1 s, the driver model cannot manage

to perform the lane change in the specified time. By increasing the horizons, the perfect

lane change is achieved. As shown in Fig. 4.8, with prediction horizons over the 2.5 s,

the vehicle actual path does not change significantly. Therefore, 2.5 s is chosen as the

prediction horizon length in the remaining of this thesis.

In the second set of simulations, to study the influence of control horizon on the per-

formance of controller, the prediction horizon kept constant and equal to 2.5 s while the

controller horizon increases gradually. As shown in Fig. 4.10, with a single interval control

horizon (nc = 1× 0.01 = 0.01 s, this case reproduces results similar to MacAdam optimal

controller [23]), the performance of controller is degraded; nonetheless, the closed-loop sys-

tem is stable. By increasing the control horizon, the performance of controller converges

to the case with full length control horizon; however, the increase more than 0.25 s only

slightly improves the performance of the controller, while notably increases the computa-

tional expense. Figure 4.9 shows the required steering wheel angle to perform the lane

change maneuver corresponding to the varied prediction control length. Therefore, in our

path planning MPC, the prediction horizon length is 250 intervals (250×0.01 = 2.5 s) and

the control horizon length is 25 intervals (25 × 0.01 = 0.25 s). The prediction horizon is

long-enough that it covers the delay associated with the cognition of the road changes.
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Figure 4.8: The effect of control and prediction horizon lengths of MPC path planning
controller on the vehicle actual lateral displacement and yaw rate

57



0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (seconds)

S
te

e
ri
n
g
 w

h
e
e
l (

ra
d
)

 

 

n
p
=250, n

c
=1

n
p
=250, n

c
=5

n
p
=250, n

c
=25

n
p
=250, n

c
=75

n
p
=250, n

c
=250

Figure 4.9: The effect of prediction and control horizon of MPC path planning controller
on the steering wheel angle

0

1

2

3

L
a

te
ra

l d
is

p
la

ce
m

e
n

t 
(m

)

 

 

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

Y
a

w
 r

a
te

 (
ra

d
/s

)

n
p
=250, n

c
=1

n
p
=250, n

c
=5

n
p
=250, n

c
=25

n
p
=250, n

c
=75

n
p
=250, n

c
=250

Time (seconds)

Figure 4.10: The effect of control horizon length of MPC path planning controller on the
vehicle actual lateral displacement and yaw rate

58



4.2.2 Level Two – Force Distribution Controller and Disturbance

Observer

The second layer of the motor control framework, the musculoskeletal control, includes

the Force Distribution (FD) controller and the disturbance observer. This layer represents

the process of information collection from the sensory organs and the control of conscious

voluntary actions of the upper limb.

In this thesis, the FD controller assigns the required muscle activations to perform a

specific arm motion. The development of the FD controller has been inspired from a well-

known motor control hypothesis: it postulates that the CNS minimizes a physiological cost

function while performing a motion. However, the configuration and states of the body

should be known to the CNS/FD controller to find the optimal muscle forces. Therefore,

an observer is added to the system to estimate the state variables during the motion.

In the presence of disturbances, the disturbance observer identifies the disturbance and

predicts the altered state variables. However, the FD controller response to disturbance

has a relatively long latency due to biological delays in signal processing.

4.2.2.1 Force Distribution Controller

Similar to the path planning controller, the system behavior (steering wheel rotation as

a result of the muscle activity) is predicted by an internal representation of the system,

called the vehicle-driver internal model. Here, the internal model of vehicle (section 3.3)

in conjunction with the 3D model of arm (section 4.1.1) is selected as the vehicle-driver

internal model. However, to incorporate steering skill into the internal model, the vehicle

model is linearized at zero slip angle. Consequently, the vehicle-driver internal model set

consists of a single member, a 3D arm model holding the steering wheel at 3 o’clock position

and a resistive torque calculated using the control-oriented model from section 3.3. The

resistive steering torque (SAT) can be calculated from Eq. (3.20).

This resistive torque can be approximated with a passive torque (spring and damper)

at the steering column. Figure 4.11b demonstrates the comparison of the passive torque
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Figure 4.11: Simplified model resistive steering torque for a sinusoidal steering angle tra-
jectory, compared against the high fidelity model. In the high-fidelity model, the right
hand of the driver is holding the steering wheel at 3 o’clock position.

and high-fidelity model of vehicle and arm (in terms of the resistive torque). In this figure,

the resistive steering torque is shown when the steering wheel angle follows a sinusoidal

trajectory (see Fig. 4.11a). Therefore, to accelerate the simulations, the passive torque is

used (instead of the control-oriented model) along with the 3D model of arm as the internal

model. The passive resistive torque at the steering wheel, Tsw, is given by

Tsw = Kswθsw + Cswθ̇sw (4.7)

where the stiffness, Ksw, and the damping coefficients, Csw, are found so that the internal

model response matches the real vehicle dynamics as closely as possible within the range

of interest. Ksw and Csw are functions of vehicle driving condition such as vehicle speed,

road coefficient of friction, etc.

The output of the path-following controller is the low-dimensional value for the steering

wheel angle θsw,des. To perform the steering task, the desired steering wheel angle must

be transformed into the high-dimensional muscle activation space. The major challenge

associated with such transformation is the inherent redundancy of the problem (there are
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more actuators than required). The redundancy issue can be addressed by including a

separate criterion when solving for the muscle activations apredict. Such criteria are usually

chosen to minimize a form of the physiological cost (such as muscle force or muscle fatigue)

while maintaining the desired response.

In this thesis, the force distribution controller minimizes the muscle activations accord-

ing to the physiological cost function [41], as shown in Eq. (4.8).

G(a) =
n∑
i=1

(ai − αi)p (4.8)

where the symbols ai and αi represent the individual muscle activations, and the muscle

co-contraction ratios, respectively. The exponent p is chosen to be 2 in the simulations.

The summation accounts for all muscles (n = 15).

Additionally, since our motor control framework is a forward dynamic simulation (i.e.

the applied forces generate the motion), tracking the desired motion is challenging. To

ensure that the applied forces result in the desired motion, the tracking error is also included

as a separate term into the FD controller cost function.

apredicti [k] = arg min
{
w1 (θsw[k]− θsw,des[k])2 + w2 G(a[k])

}
(4.9)

where θsw[k] is the resultant steering wheel at time step k, which is compared against the

desired value (θsw,des[k], defined by the path-following controller), and w1 and w2 are the

weighting factors in the cost function.

The minimization can be performed at each time step (Forward Static Optimization

[129]) or over the entire time span (Dynamic Optimization [5, 128]). In this research, the

former approach is selected. At each time step, the force distribution controller solves a

constrained optimization problem to minimize both the physiological effort and the tracking

error (Eq. (4.9)), while keeping the activations in the range ai ∈ [0, 1].

The sequential quadratic programming (SQP) optimization routine is used to solve

this optimization problem. Figure 4.12 shows the performance of the second layer of motor
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Figure 4.12: Force distribution controller performance (a) The muscle forces calculated by
the controller, (b) The desired and actual steering wheel angle

control framework in steering with the right hand only, in which Fig. 4.12a shows the

required muscle forces to follow the steering wheel trajectory in Fig. 4.12b. The anterior

and middle part of deltoid muscle (DELT2, DELT1) and coracobrachialis muscle (CORB)

are used to abduct and then adduct the shoulder and long and medial head of triceps,

and the anconeus muscle (ANC) has been used to extend and then flex the elbow. No

antagonist muscle is activated in this simulation because gravity helps the driver to return

the steering wheel to its original position.

4.2.2.2 Disturbance Observer

The FD controller needs the state variables of the steering and arm dynamics to predict

the optimal muscle activations. A disturbance observer is used to estimate the arm and

steering state variables as well as the disturbance torque at the steering wheel. In this

thesis, the disturbance observer is used to replace the predictor/corrector process of the

CNS internal model structure to estimate the limb position. If there is no disturbance in

the system, the estimated states are similar to the actual states of the system, since they

have started from the same initial condition and have similar dynamics. In this situation,
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the identified disturbance torque accounts for the difference between the internal model

(passive torque) and the actual resistive steering torque.

However, when the system states are altered by an external disturbance, there is an

error in the estimated states. To correct this error, a feedback loop on the steering wheel

position is added to the observer to identify the disturbance and predict the altered states,

as shown in Fig. 4.13a. However, there is a delay associated with vestibulo-ocular and

signal processing to represent the difference between the expected and actual steering

wheel angle.

To summarize, the feedback estimator is a proportional and integral controller with a

time delay to identify the applied external disturbance at the steering wheel and predict

the altered state variables required for the force distribution controller. Therefore, the

response of the disturbance observer/force distribution will lead to a response with latency

in the voluntary range. The transfer function of the feedback loop used to identify the

disturbance torque is,

He =
Tdisturbance(S)

∆θsw(S)
=

(
Ke
p +

Ke
i

S

)
e−τ

e
dS (4.10)

where Tdisturbance and ∆θsw are the estimated disturbance torque and the steering wheel

angle error between actual and estimated, and Ke
p and Ke

i are the proportional and integral

coefficients, respectively and τ ed is the time delay associated with the biological signal

processing.

Figure 4.13b shows the performance of the disturbance observer to identifying a distur-

bance torque at the steering wheel. In this simulation, the car is driving in a straight line

when a sudden unknown disturbance is applied to the car, which results in a pulse shape

steering torque at the steering wheel. The observer starts to identify the disturbance after

300 ms, reaches the actual disturbance after one second, and then returns to zero again.
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Figure 4.13: Disturbance observer mechanism and performance (a) The mathematical
realization of the disturbance observer in the motor control framework, (b) The disturbance
torque at the steering wheel estimated by the disturbance observer

4.2.3 Level Three – Stretch Reflex/Intrinsic Stiffness

The third layer of the motor control framework, the stabilizer layer, stabilizes the limb and

reduces the error introduced by external disturbances. This layer includes the stretch reflex

and the intrinsic stiffness mechanisms. The stretch reflex uses the muscle proprioceptive

feedback of the muscle spindles to regulate the muscle length, and the intrinsic stiffness

modulates the visco-elastic properties of the muscles by co-contracting muscles wrapping

a joint to stand against external disturbances.

The involuntary response due to stretch reflex occurs more quickly than the voluntary

actions. In spite of the difference in their nature and response time, both the involuntary

stretch reflex and the voluntary co-contraction contribute to movement stabilization.

4.2.3.1 Stretch Reflex

The sensitivity of the stretch reflex and its effectiveness in the rejection of unexpected mo-

tions can be modulated by the high centres of the CNS, via modulation of the γ-motor neu-
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ron activities [3, 141]. During a voluntary action, the nervous system has expected settings

for muscle lengths; such expected lengths are set by adjusting the muscle spindle sensitivity,

which in turn is done by modulating the γ-motor neuron activities. If due to a change in

environment, the muscle length diverges from the expected value (say over-stretched), the

Ia afferent activity will increase. Because of the excitatory synapse between the Ia afferent

and α-motor neurons, such increase in Ia activity will boost the α-motor neuron activity

which results in more muscle force that resists the muscle stretch. The stretch reflex can

therefore provide disturbance rejection properties. In this research, the short-loop monosy-

naptic spinal stretch reflex is considered as the most effective mechanism for disturbance

rejection and the transcortical (long-loop) stretch reflex is neglected. Figure 4.14 presents

a schematic of the stretch reflex mechanism in a human, and its block diagram replication

in our model.

The response of the muscle spindles to a change in the muscle length can be considered

as a nonlinear summation of the muscle length and muscle contraction velocity, and there

is a delay associated with the response [49, 95] according to the transfer function:

Hsr =
amuscle(S)

Lmuscle(S)
=
(
Ksr
p +Ksr

d S
)
e−τ

sr
d S (4.11)

where Lmuscle and amuscle are individual muscle length and activation, and Ksr
p , Ksr

d and

τ srd are the proportional and derivative coefficients and the delay associated with short-loop

stretch reflex mechanism, respectively.

The expected muscle length is found from the response of the internal model to the

predicted optimal muscle activations (within the FD controller, see Figure 4.5). For each

muscle, the error between the expected length from the actual length is calculated, and

then multiplied by Hsr to find the amount of corrective activation. It is then added to the

original activation command to drive the muscle (see Figure 4.14b).

Figure 4.15 shows the disturbance rejection capabilities of the reflex loop. Figure 4.15a

shows that the driver tries to keep the steering wheel stationary, when the disturbance

torque as described in section 4.2.2.2 (see Figure 4.13b) is suddenly applied to the steering

wheel. Figure 4.15b shows the middle part of deltoid muscle response to the disturbance

65



(a) (b)

Figure 4.14: Stretch reflex mechanism and performance (a) The schematic of the stretch
reflex loop in humans, (b) The mathematical realization of the stretch reflex in the arm
model

to stabilize the steering wheel. It can be seen that the stretch reflex responds quickly when

the disturbance occurs but it takes more time for voluntary contribution of the CNS to

notice, identify, and resist the disturbance.

4.2.3.2 Intrinsic Stiffness

Joint stiffness (impedance) modulation is another strategy employed by the CNS to resist

external disturbances. This strategy works against all sorts of perturbations, but it is

highly energy consuming. The voluntary contribution to the joint stiffness and impedance

has roots in the structure and properties of muscle during co-contraction.

It is shown in [154] that the intention to resist external disturbance is well correlated

to the antagonistic co-contraction ratio. Likewise, the muscle co-contraction can represent

the driver’s steering skill or the concentration of the driver on the path. In this thesis,

the equilibrium-point hypothesis [37] has been used to regulate the intrinsic properties

of joints. Feldman proposed that the net passive moment at the joint is a function of

joint angle and the equilibrium point, and the CNS manipulates the equilibrium point by

adjusting the antagonistic co-contraction [37].
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Figure 4.15: Disturbance rejection properties of the stretch reflex (a) Actual and desired
steering wheel angle, (b) The middle part of deltoid muscle force. The three graphs are
the force distribution controller prediction, the stretch reflex addition and the total muscle
force

Since in the implementation, the SE element of Hill-type muscle model is not included, a

moment is added to the joints to represent the intrinsic properties of the muscles wrapping

the joint. This moment is the function of the deviation of the actual 3D direction of

shoulder/elbow from its expected value (from the forward model, Figure 4.5) and the

muscle co-contraction ratio as illustrated in Eq. 4.12,

T̄ ISi = α (KIS
i θi + CIS

i θ̇i) n̄ (4.12)

where α is the muscle co-contraction ratio and θi and θ̇i are angle and angular velocity

difference between the expected and actual shoulder/elbow directions. The passive moment

is in the direction n̄ which is the unit vector normal to the error plane, and is constructed

using the cross product of the actual and expected direction vectors as shown in Fig. 4.16a.

Figure 4.16b shows the passive joint moments produced by intrinsic properties of muscle

when the muscle co-contraction ratio is assumed to be 30%, in the scenario described in

4.2.2.2.
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Figure 4.16: (a) Sketch of the joint stiffness mechanism, (b) The passive joint moment
produced by intrinsic properties of the muscles (reference frame as shown in Figure 4.1a).

4.3 Evaluation of Active Properties of Musculoskele-

tal Driver Model

To develop a realistic driver model, and to secure the interpretation of neuromusculoskeletal

dynamics of the driver’s arm model, the muscle functions of the 3D arm model are validated

against experimental data [89].

The first study on the upper limb muscles function on the automotive steering task has

been conducted by Jonsson and Jonsson (J&J) [60, 58, 59] in 1975 using electromyography

(EMG). They studied the functionality of shoulder, elbow and trunk muscles in the steering

task by performing a controlled condition experiment on a driving simulator with two hands

on the steering wheel. However, no experimental measurements were disclosed, and only

the functionality of muscles were discussed. Later in 2006, Pick and Cole [114] chose eight

muscles based on J&J publications and studied the EMG activity of driver arm muscles

to investigate the muscle functionality and the relation between muscle EMG and steering

torque. Similarly in 2013, JTEKT Corporation researchers [50, 80, 98] captured the EMG

activity of ten arm muscles while performing the steering maneuver with only right hand
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(a) (b)

Figure 4.17: (a) Schematic view of the 3D arm model. (b) Experimental setup [50]

for a larger population of drivers. In this thesis, the EMG signals of the right arm from the

latest research [50] have been used to evaluate the 3D arm model, while the other papers

have been used to adjust the differences.

Two steering maneuvers, similar to the experiments described by Hayama et al. [50],

are performed by the 3D arm model, and the predicted muscle activations are compared

to the EMG signals from the experiments. The muscle activation signal is the muscle’s

detected EMG voltage normalized by its maximum voluntary contraction value. However,

the EMG signals from [50] are not normalized; therefore, for the model evaluation, EMG

signals are scaled to match the predicted muscle activations. In these experiments, the

steering wheel and seat are adjusted in a way that the line from shoulder to steering wheel

center is parallel to steering axis, and the driver’s elbow angle is about 100◦ and the hand

is at 3 o’clock position, as shown in Fig. 4.17b.

In the first maneuver, the driver holds the steering wheel stationary against a triangular-

waveform steering torque as shown in Fig. 4.18a, while in the second maneuver, the driver

performs a sinusoidal steering with amplitude of 60◦ and frequency of 2 rad/s, as shown

in Fig. 4.18b. Both experiments are equally important for evaluation of the driver model.

The first experiment simulates the on-center handling situation, where the driver steers in a

straight line and the road irregularities generate a disturbance torque at the steering wheel,
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Figure 4.18: (a) The triangular-wave form steering torque in the disturbance rejection
experiment, (b) The steering wheel angle in the slalom steering maneuver experiment

and the second experiment represents a regular steering task such as slalom maneuver.

From the fifteen muscles modeled in the 3D arm model, electromyographic activity

of eight muscles have been measured in the experiments. As shown in Fig. 4.20, in the

disturbance rejection experiment, the predicted muscle activations found from the 3D arm

model are closely correlated with the experimental data. However, the EMG signal of the

posterior deltoid muscle shows two bursts (see Fig. 4.20g) while the model predicts only

one burst. The second burst could be the result of EMG signal crosstalk from the middle

and anterior portions of deltoid. Surface EMG crosstalk is the EMG signal detected over

a non-active muscle generated by a nearby muscle. This explanation is consistent with

foundings in [60, 98] where they consider the posterior deltoid as a synergist to the muscles

resisting the negative steering torques (although Pick and Cole consider it as synergist

to muscles assisting the negative steering torques). Similarly, the lateral head of triceps

brachii is activated over the whole disturbance duration, while the predicted activation is

only active at the negative disturbance torque. This could be result of either crosstalk

signal detection or the high co-contraction ratio of elbow muscles in the experiments.

Figure 4.21 depicts the model muscle activation predictions and the EMG signals in the

sinusoidal steering maneuver. In this simulation, since the muscle length and contraction

velocity change during the maneuver, the muscle dynamics effect is more noticeable than
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Figure 4.19: Muscle groups for the active experiment

isometric contraction. Although a simplified muscle model is used in the 3D arm model to

simulate the muscle dynamics, the correlation between experiments and model predictions

are fairly consistent.

Figure 4.19 shows that the muscle functions can be easily classified into two groups: the

muscles generating the clockwise torque and muscles generating counterclockwise torque.

Latissimus dorsi, brachialis and posterior deltoid muscles act as synergist muscles to their

already known agonist muscle, long head of triceps brachii, to resist the negative steer-

ing torque (Group CW), while the second group (Group CCW) hires more muscles such

as anterior and middle portions of deltoid muscle and pectorials major muscles to resist

the positive steering torque. The muscle functions for steering with only right hand is

summarized in table 4.1.

Table 4.1: List of muscles producing torque in the clockwise and counterclockwise direction
in the first maneuver

Clockwise torque Counterclockwise torque

Anterior deltoid Long head of triceps
Middle deltoid Posterior deltoid

Pectoralis major Latissimus dorsi
Infraspinatus Brachialis

Short head of biceps
Medial head of biceps
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Figure 4.20: Electromyography signal and optimal muscle activation comparison for the
disturbance rejection maneuver (a) Anterior deltoid, (b) Middle deltoid, (c) Pectorialis
major, (d) Infraspinatus, (e) Long head of biceps brachii, (f) Lateral head of triceps brachii,
(g) Posterior deltoid, (h) Long head of triceps brachii
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Figure 4.21: Electromyography signal and optimal muscle activation comparison for the
slalom-like steering maneuver (a) Anterior deltoid, (b) Middle deltoid, (c) Pectorialis ma-
jor, (d) Infraspinatus, (e) Long head of biceps brachii, (f) Lateral head of triceps brachii,
(g) Posterior deltoid, (h) Long head of triceps brachii
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4.4 Steering with Two Hands

Since the validity of the driver’s right arm model is verified, to study a realistic driving

condition, the second arm (left arm) is developed and attached to the steering wheel at

the nine o’clock position. The muscles and bones of the left arm are developed in way a

that the driver model becomes symmetrical as shown in Fig. 4.22a. In this model, thirty

muscles are used to actuate the driver’s arms and to finally turn the steering wheel, and

the plausible range of steering motion without replacing the hands is -90◦ to +90◦.

To study the dynamics of steering with two hands, a sinusoidal steering maneuver is

performed with this 3D driver model, as shown in Fig. 4.22b. As expected, the shoulder

muscles make the major contributions to steering. Figure 4.23 illustrates the right and

left shoulder muscle activations to perform the mentioned steering task. As shown in

Figs. 4.23a and 4.23b, the shoulder muscles can be classified on the basis of steering torque

into the muscles providing the counterclockwise steering torque (group I) and the muscles

providing the clockwise steering torque (group II). Group I consists of long head of triceps,

Latissimus dorsi and posterior portion of deltoid, and group II consists of anterior and

middle portions of deltoid, pectoralis major and Coracobrachialis. When the driver turns

the steering wheel clockwise, the group I muscles of the right arm and the group II muscles

of the left arm are activated, and in the counterclockwise rotation, the opposite muscles

of each arm are involved. The shoulder muscles providing clockwise and counterclockwise

steering torques are summarized in Table 4.2.

Table 4.2: List of shoulder muscles producing torque in the clockwise and counterclockwise
direction when steering with two hands holding the steering wheel

Counterclockwise torque (group I) Clockwise torque (group II)

Long head of triceps (TRIlong) Anterior deltoid (DELT1)
Posterior deltoid (DELT3) Middle deltoid (DELT2)

Latissimus dorsi (LAT) Pectoralis major (PECT)
Coracobrachialis (CORB)
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Figure 4.22: (a) Schematic view of the driver model in MapleSim with two hands on the
steering wheel, (b) The sinusoidal steering wheel angle maneuver
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Figure 4.23: Sinusoidal steering wheel task (a) Right arm shoulder muscle forces, (b) Left
arm shoulder muscle forces
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4.5 Simplified Two-dimensional Driver Model

In this section, a simplified two-dimensional (2D) neuromusculoskeletal driver model is

developed to be used in component-level optimization procedures to design and develop

new driver-assistance technologies. For the purposes of optimization, the model should be

fast to reduce the optimization time and at the same time convey the important dynamics

of the human driver.

To develop a simplified driver model, first, the kinematics of the high-fidelity 3D driver

model performing a steering maneuver is studied. Figure 4.24 shows the variation of elbow

and shoulder angles when the driver performs a sinusoidal steering maneuver with an

amplitude of 45 degrees and frequency of 0.5 Hz (see Fig. 4.24a). As shown in Fig. 4.24b,

the shoulder’s plane of elevation and elevation angle are significantly larger than the elbow

flexion and extension angle for a typical steering maneuver. The standard deviation of

the elbow angle for this simulation is about 5 degrees while it is 22 and 18 degrees for

the shoulder’s plane of elevation and elevation angle. As expected, the standard deviation

of the shoulder’s axial rotation is small, around 3 degrees. The deviation of the elbow

angle from its initial position is less than 5 degrees when the steering wheel angle variation

is less than 35 degrees, and the humerus deviation from the humerus sagittal plane (see

Fig. 4.25a) is less than 5 degrees for a steering variation of less than 14 degrees as shown

in Fig. 4.25b. The humerus sagittal plane is defined as the plane normal to the initial

humerus direction and the vertical axis of thorax.

As a result of the simulations performed for single and double hand steering in sections

4.4 and 4.3, it is known that the shoulder muscles are the prime movers in steering tasks,

and the shoulder muscles of each arm can be classified into two groups: the muscles pro-

viding counterclockwise torque and the muscles providing clockwise torque on the steering

wheel. This classification can be easily seen in Figs. 4.19 and 4.23 for the cases with one

and two hands steering, respectively.

Therefore, removing the elbow joint and its associated muscles will have small effect

on the dynamics of the driver’s arm. Similarly, the shoulder joint can be reduced from a

spherical joint to a revolute joint for small steering angles. Based on these assumptions, a
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Figure 4.24: (a) The sinusoidal steering wheel maneuver, (b) Shoulder and elbow angles
presented by the recommendation of the International Society of Biomechanics (ISB). The
shoulder angles are consistent with the description of shoulder joint angles recommended
by the International Society of Biomechanics (ISB) [156].
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Figure 4.25: (a) The sagittal plane of humerus in the initial position, (b) The deviation
angle of humerus from the sagittal humerus plane during a sinusoidal steering maneuver
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AVEC ’12 

from the popular Hill muscle model [10]. The 

three-element Hill-type model is shown in Fig. 4. This 

model includes a Contractile Element (CE), a Parallel 

Elastic element (PE), and a Series Elastic element (SE). 

The CE is the muscle's actuator and is representative of 

the active part of the muscle. The PE models the tissue 

parallel to the CE element, and the SE represents the 

tendon [11].  
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Fig. 3: The simplified driver model 

 

Fig. 5 shows the schematic view of the HMS driver 

model. The neuromuscular model is an indeterminate 

dynamic system because the number of muscles is more 

than the degrees of freedom (DOF), which requires an 

extra criterion to reach a unique solution. Usually this 

muscle redundancy is solved by assuming that a human 

minimizes a specified cost to perform the desired 

motion. This cost could be metabolic energy [12], 

muscle fatigue [13], [14], etc. Here, the driver's muscle 

fatigue is considered as the objective function of the 

optimization. 

 

 

Fig. 4: An example of a Hill-type muscle model [10] 
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Fig. 5: Schematic of the HMS driver model 

 

This proposed neuromuscular driver model is 

human-centered, meaning that the capabilities, 

limitations and preferences of the driver can be taken 

into account in the design process. The proposed driver 

model with activation dynamics can consider many 

factors such as age and posture and also can be utilized 

to quantify driver characteristics such as fatigue and 

total mechanical energy consumption which then can be 

applied in the control design process. Therefore, this 

simulation setup can provide a good interface between 

driver and vehicle to study and design new steering 

technologies. 

The force generated by a muscle can be separated 

into force-length and force-velocity dependent functions. 

A schematic diagram of these two relations is shown in 

Fig. 6. There are some studies in the literature regarding 

how to calculate the force from the length, velocity and 

activation. In this research, a similar formulation from 

Buchanan [15] is used. Considering the CE only and a 

constant moment arm for muscles, the muscle torque as 

a function of joint angle, joint angular velocity, and 

activation can be written as follows: 

     taqTqTTT
CE

w
CEm

0m
  (1) 

The torque-angle dependent function is 

approximated with the following formula: 

  2CE
KBAT    (2) 

The  
CE

T  relation was considered such that the 

produced torque greater than θ = 90
o
 and less that θ = 

-180
o
 would be zero; θ = 0

o
 is where the upper arm is 

perpendicular to the driver's trunk. Furthermore, the 

peak value, which is the maximum normalized torque, 

must be equal to one and occurs at θ = -45
o 

which seems 

reasonable for a driver. This posture is the most 

convenient where the driver's hand can exert force on 

the steering wheel. Considering the above, the shape 

parameters of the  
CE

T curve can be calculated 

symbolically.  
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Fig. 6: Force-length and Force-velocity relationships [16] 

 

The torque-angular velocity dependent function is 

approximated with the following formula: 
 

 










01C1

0CC8081
T
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ecececce
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
 



)()(

)(..  (3) 

 

where in equations 2 and 3, A, B, K, Cecc, Cconc are the 

constant shape parameters of the muscle dynamic 

equations and the piecewise  
CE

T is defined such 

that continuity of the function at  = 0 is guaranteed. 

(a)

+ -
PID

Flexor 
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sw

expectedsw

(b)

Figure 4.26: (a) The two-dimension musculoskeletal driver model, (b) The simulation setup
used to solve the muscle redundancy problem

simplified 2D driver model is developed as shown in Fig. 4.26a, in which the arm segments

move only in the sagittal plane of the driver’s body, pivoting at the shoulder. Two repre-

sentative muscles, one flexor and one extensor, are used to actuate each arm segment. The

two-element Hill-type muscle model (similar to the one used in the 3D driver model) is

used to simulate muscle dynamics. Table 4.3 shows the parameters used in the 2D driver

model.

Table 4.3: List of parameters used in the two-dimensional driver model

Parameters Description Value Unit

Fmax0 maximum isometric muscle force 1200 [N]
rsw the radius of the steering wheel 0.21 [m]
` the distance between the hand gripping position at

the steering wheel to the shoulder
0.7 [m]

A similar hierarchical CNS structure to the 3D driver model is used in the 2D driver

model. In the first level, an identical path-following controller to the one used in 3D

driver model is used to find the expected steering wheel angle. In the second level, zero

co-contraction ratio is assumed for the physiological cost function (muscle fatigue, see

Eq. (4.9)). This cost function leads to arm movements with no muscle co-contraction.
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Figure 4.27: (a) The desired and actual steering wheel angle of the 2D driver model, (b)
The agonist and antagoinst muscle activation to perform the sinusoidal steering wheel
angle

Since the arm model is reduced to the arm segment hinged at the shoulder actuated with

a pair of agonist and antagonist muscle, a proportional-derivative (PD) controller is used

instead of FSO to find the required shoulder torque to perform the steering task. Then,

the required torque calculated by the PD controller is separated into positive and negative

torques and fed to the agonist and antagonist muscles, as shown in Fig. 4.26b.

A sinusoidal steering maneuver is performed to study the performance of the 2D driver

model. Figure 4.27a shows the desired and actual steering wheel angles, and the muscle

activation to perform this maneuver for the right arm is shown in Fig. 4.27b; the muscle

activations of the left arm are the opposite of those in the right arm, and there is no

co-contraction between flexor and extensor muscles as expected.

The same stabilizer layer structure as the 3D driver model is used in the simplified

2D driver model by constructing the the stretch reflex feedback loop for the agonist and

antagonist (flexor and extensor) muscles. This model has the same disturbance rejection

properties as the high-fidelity model. A similar scenario as described in section 4.2.2.2

is used in the relaxed driving condition (no co-contraction and no disturbance observer)
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Figure 4.28: (a) The desired and actual steering wheel angle of the 2D driver model, (b)
The agonist and antagoinst muscle activation to perform the sinusoidal steering wheel
angle

to study the disturbance rejection properties of the 2D driver model. Figure 4.28a shows

the steering angle variation when a disturbance torque (see Fig. 4.33b) is applied to the

steering wheel, and figure 4.28b shows the muscle activations associated with the stretch

reflex.

4.6 Validation of Passive Properties of Musculoskele-

tal Driver Models

Pick and Cole [117] in 2007 performed an experiment to identify the passive properties of

driver arms holding a steering wheel. In this experiment, the steering wheel was subjected

to a filtered pseudo-random binary-sequence excitation, and drivers asked to hold the

steering wheel. Eight young subjects consisting of seven males and one female (21-32 year-

old) with average height of 1.7 m and weight of 75 kg are used to collect electromyography

data as well as the steering torque and steering wheel angle. In this experiment, the
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intrinsic stiffness of the arm (joints and muscles) and the reflexive response of arm (stretch

reflex) contribute to the steering response. The authors suggest that a single-degree-of-

freedom linear mass-damper-spring model can be used to capture the underlying dynamics

of the passive response of the driver arm:

Hmod(S) =
θ(S)

T (S)
=

1

JdrS2 +BdrS +Kdr

(4.13)

where Kdr and Bdr are the torsional stiffness and damping of the driver’s arm as seen at the

steering wheel, and Jdr is the inertia of arm and steering wheel. Three conditions have been

studied to identify the transfer function parameters: fully relaxed muscles, co-contracted

muscles, and biased muscles. In the fully relaxed condition, the subjects were asked to

hold the steering wheel with just enough force that the hands are not slipping as wheel

rotates, while in the co-contracted muscle condition, the subjects were co-contracting the

muscles in order to hold the steering wheel firmly in the straight ahead position. In the

biased condition, the subjects were asked to hold the steering wheel at a constant angle

by tensioning the muscles enough to hold steering wheel stationary, but otherwise relaxed

the muscles as possible. The identified parameters for the first and second condition are

given in Table 4.4 and are used to evaluate both the 3D and 2D driver models.

Table 4.4: The identified parameters of the passive properties of driver arm [117]

Condition Jdr (kg.m2) Bdr (N.m.s/rad) Kdr (N.m/rad)

fully relaxed 0.130 0.35 4.17
co-contracted 0.130 1.08 78.63

As shown in Table 4.4, the damping coefficient is slightly increased and the stiffness

coefficient is significantly increased in the co-contracted condition compared to fully relaxed

condition. The increased stiffness is associated with the joint stiffness induced by co-

contracting all the muscles wrapping the shoulder and elbow joints. Co-contracting an

agonist and antagonist muscle pair around a joint change the length of muscle tendons,

which result in more stiffness at the joint while producing the same actuating torque.

A similar study to Pick and Cole [117] is performed on the 3D and 2D driver models to
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Figure 4.29: The random signal used as the disturbance torque at the steering wheel to
evaluate the passive properties of driver arm

verify and adjust the parameters associated with the passive properties of driver model, i.e.

stretch reflex and stiffness of joints, which are reported in Table 4.5. Figure 4.29 shows the

excitation at the steering wheel in the fully relaxed and co-contracted conditions. In the

fully relaxed condition, the co-contraction ratio is zero while in the co-contracted condition

it is equal to 40%. Since the objective of these experiments is to identify the muscle passive

parameters, the cognition time delay associated with the disturbance observer is assumed

to be longer than the disturbance period. This means the model only uses the passive

properties of arm to counteract the unknown disturbance torque.

As shown in Figs. 4.30 and 4.31, the driver-steering system responses of the 2D and

3D driver models correlate with Pick and Cole’s identified transfer functions for the fully

relaxed muscles and co-contracted muscle conditions, respectively. Figures 4.30b and 4.31b

show the passive torques produced at the shoulder and elbow joints of the driver arm.

Table 4.5: List of the joint stiffness and the reflexive parameters used in the 2D and 3D
driver models

Parameters Description Value Unit

Ksh, Csh stiffness and damping of shoulder joint of 3D model 12, 8 [N/m, N.s/m]
Ke, Ce stiffness and damping of elbow joint of 3D model 50, 10 [N/m, N.s/m]
Ksh, Csh stiffness and damping of shoulder joint of 2D model 100, 5 [N/m, N.s/m]
Ksr
p ,K

sr
d proportional and derivative stretch reflex coefficient

of 2D and 3D model
9, 1 [N/mm,

N.s/mm]
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Figure 4.30: The driver response to the random steering torque when the driver is holding
the steering wheel in the fully relaxed condition (a) The steering wheel angle, (b) The
shoulder and elbow joint passive force
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Figure 4.31: The driver response to the random steering torque when the driver is holding
the steering wheel in the co-contracted condition (a) The steering wheel angle, (b) The
shoulder and elbow joint passive force
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4.7 Simulation Results and Discussion

Two simulation studies have been performed to study the performance of the driver mod-

els in different steering maneuvers. In the first simulation, the two-dimensional driver

model performs a double lane change maneuver without any external disturbance in the

relaxed driving condition. In the second maneuver, the three-dimensional driver model

performs a lane change maneuver in the presence of an external disturbance in the relaxed

and tensed driving conditions. All the simulations are performed in the Matlab/Simulink

environment. The MapleSim models are exported as optimized C-code using the Maple

CodeGeneration toolbox to Matlab, and the motor control framework is constructed in the

Simulink environment.

4.7.1 ISO Double Lane Change Maneuver with Two-dimensional

Driver Model

The simulation results of the first simulation study are presented in Fig. 4.32. In this

simulation, the two-dimensional driver model performs an ISO double lane change (DLC)

maneuver with the speed of 10 m/s.

A trajectory satisfying the ISO lane change constraints is predefined and used as the

desired trajectory of the vehicle position in the path planning controller, as shown in

Fig. 4.32a. Figure 4.32b shows the expected steering wheel angle calculated by the path

planning controller to follow the predefined trajectory. The actual value closely follows the

expected value; it means that the PD controller can successfully replace the forward static

optimization (FSO) controller. Figure 4.32c shows the required agonist and antagonist

muscle activations calculated by the PD controller to perform the steering maneuver. Since

there is no disturbance to the system and the maximum activation is less than the maximum

allowable activation (amax=1), the actual steering wheel angle is equal to its expected value.
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Figure 4.32: Simulation results of the double lane changing maneuver using two-
dimensional driver model (a) Desired and actual lateral displacement with ISO lane change
trajectory constraints, (b) Desired and actual steering wheel angles (c) Muscle activations
to perform the ISO lane change maneuver
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4.7.2 Lane Change Maneuver with Three-dimensional Driver Model

The simulation results of the second simulation study, a step-like lane change maneuver,

at the speed of 10 m/s using the 3D driver model are presented in Figs. 4.33 and 4.34.

Three simulations have been performed to show the full extent of the physics-based driver

model capabilities. The first simulation is performed in the normal driving condition

(no disturbance). The other two simulations correspond to relaxed and tensed driving

conditions, when a two second long pulse-shaped disturbance occurs at the steering wheel.

The torque disturbance at the steering wheel could be considered the result of a pothole or

a strong cross wind. The parameters used in the simulations are summarized in Table 4.6.

In the relaxed condition, the voluntary contribution of the CNS (the FD controller)

in disturbance rejection is neglected; in other words, it takes longer for the observer to

estimate the altered states than the duration of disturbance itself. Additionally, the muscle

co-contraction ratio is assumed to be zero; therefore, there is no intrinsic muscle stiffness

properties in the relaxed driving condition. In the tensed driving condition, the latency

associated with the disturbance observer and the muscle co-contraction ratio are assumed

to be 300 ms and 30%, respectively.

Figures 4.33 and 4.34 show the effect of the external disturbance on all layers of the

motor control framework. Figure 4.33a shows the comparison between the lateral displace-

ment of the vehicle in the presence and absence of the disturbance. It can be seen that,

for all three conditions, the driver starts to steer 2.5 seconds before the desired trajectory,

which is consistent with predictive ability of the path following controller; the responses

also settle down at about t=9 s. However, the deviation from the desired path (overshoot)

Table 4.6: Co-contraction ratio and stretch reflex and disturbance observer time delay
values used in the simulations

Parameters Description Value Unit

α muscle co-contraction ratio (relaxed, tensed) (0%, 30%) [-]
τ ed disturbance observer time delay (relaxed, tensed) (∞, 0.3) [s]
τ srd stretch reflex time delay 0.025 [s]
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Figure 4.33: Simulation results of the lane changing maneuver (a) Desired and actual
lateral displacement with and without disturbance, (b) Actual and estimated disturbance
torque applied to the steering wheel (c) Desired and actual steering wheel angles, with and
without disturbance. PPC is the output of path planning controller.

of the perturbed vehicle is different across the three simulations. In the relaxed driving

condition, the overshoot is more than the tensed condition and unperturbed vehicle. This

difference is a result of the difference in the actual steering wheel angles in Figure 4.33c.
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As a result of the disturbance, the reflex addition to the muscle forces is substantial.

However, despite the stretch reflex corrections, the arm cannot follow the desired steering

wheel trajectory. This deviation in the steering wheel angle, in turn, results in a deviation in

the vehicle’s path. The path following controller then tries to correct the path by providing

a new desired steering wheel angle, which finally results in different muscle activations that

are predicted by the force distribution controller compared to the case with no external

disturbance.

In addition to the disturbance itself, Figure 4.33b also shows the performance of the

disturbance observer for the tensed driving condition. It can be seen that the observer does

not start to identify the disturbance at the steering wheel until 300 ms (the observer time

delay) after its onset, after which it quickly reaches the actual disturbance torque. The time

delay associated with the observer is the latency regarding the information transmission

to and processing in the sensorimotor area of brain, which leads to voluntary response of

the driver to overcome the disturbances. The slight difference between the estimated and

actual disturbance in the no disturbance zone is due to the difference between the internal

model and the actual vehicle model.

At the beginning and end of the disturbance we have the largest error in the distur-

bance estimation, which causes the largest error in the actual and desired steering wheel

angles. These periods are the times before the voluntary action intervenes and reduces the

disturbance. At the same time, because of this error in the steering wheel angle, the first

layer of the motor control framework, the path-following controller, intervenes and corrects

the desired steering wheel angle to follow the new desired path.

Figure 4.34 shows the required muscle activations wrapping the shoulder to perform the

expected steering wheel angle in the three simulation conditions. It can be seen that there

is no antagonist muscle activation in the no disturbance condition as shown in Fig. 4.34a,

as the gravity helps the driver to turn the steering wheel clockwise. In this condition, the

anterior and the middle part of deltoid muscle (DELT1, DELT2), coracobrachialis muscle

(CORB), infraspinatus (INFRA) and pectoralis major (PECT) are responsible for the

steering action. On the other hand, in the relaxed condition, as a result of the disturbance

and consequently the deviation of steering angle from its expected value, the antagonist
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Figure 4.34: (a) Total shoulder muscle activations during the maneuver without distur-
bance (only active muscles are shown), (b) Total muscle activations during the maneuver
with the presence of disturbance in the relaxed driving condition, (c) Total muscle activa-
tions during the maneuver with the presence of disturbance in the tensed driving condition.
Note the difference in vertical scale.
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muscles are activated to first stabilize the steering wheel and then to return it to its

expected value. In the tensed driving condition, the muscle activations are already built

up to stabilize the steering if there is a disturbance. As shown in Fig. 4.34c, both agonist

and antagonist muscles are activated to reject the disturbance; thus the vehicle closely

follows the path of the unperturbed vehicle.

4.8 Chapter Summary

In this chapter, a high-fidelity driver model (3D driver model) as well as a control-oriented

driver model (2D driver model), in conjunction with a hierarchical central nervous system

model, are developed. Both models are evaluated against published experimental data, to

verify the passive and active properties of a human driver model.

A hierarchical approach is used to capture the complexity of neuromuscular dynamics

and the CNS in the coordination of driver upper limb activity, and consequently the steering

wheel angle. The proposed motor control framework has three layers: the first layer is

responsible for finding the proper steering wheel angle to follow the desired path, the

second layer is responsible for actuating the arm, and the final layer is added to ensure

better control precision and disturbance rejection. In the final layer, the CNS regulates

the muscle activation by modulating the intrinsic stiffness of the muscle and stretch reflex

phenomena to coordinate the movement of limb in the presence of external disturbances

or steering faults.
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“The real voyage of discovery consists not in seeking new

landscapes, but in having new eyes.”

Marcel Proust (1871 – 1922)

5
Electric Power Steering Control Design

Recent research studies suggest that considering the human driver alongside the vehicle

measurements can lead to better understanding of the underlying dynamics between driver

and vehicle as well as more accurate evaluation of driver-assist technologies [50, 98]. As an

example, a neuromuscular driver model offering physiologically realistic steering maneuvers

can provide insights into the task performance and energy consumption of the driver.

Considering specific driver or a general population characteristic in the design can enhance

and strengthen a driver-assist product. In this thesis, a two-dimensional (2D) driver model

as described in section 4.5 is used to study the effect of the driver’s characteristics such as

age, gender and physical ability on the steering tasks. Then, this modified driver model

is used to tune the Electric Power Steering (EPS) characteristic curves for that particular

population.
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Many research studies have investigated the structural design of the EPS controller but

left the characteristic (assist) curve design unattended. The design of characteristic curves

is a complex procedure and usually is based on trial and error. The shape and dynamics of

these curves were studied in [168, 167, 74, 157] to provide easier implementation and better

assistance; however, there is no well-accepted curve in the literature yet. A well-defined

characteristic curve should be designed to allow a permissible level of resistance (road feel),

while providing enough assistance to reduce driver fatigue.

In this chapter, a systematic approach has been proposed to tune the characteristic

curves for both road feel and assistance. Then, a model-based EPS controller is developed

to incorporate these characteristic curves as well as to attenuate external disturbances to

the system.

5.1 Effects of Age and Gender on Muscle Mechanics

The 2D neuromuscular driver model is human-centered, meaning that the physical abilities

and limitations of the driver are taken into account. Many studies have documented

changes in the mechanical output of skeletal muscles with aging. These changes can be

the result of age-related muscle atrophy and re-modeling. These phenomena can occur as

early as the age of 30 in men, and can reach a loss of 54-89% in the muscle strength by the

age of 75 [139]. However, this decrease is only observed in the 5th decade in women [133].

The muscle atrophy due to a decrease in the total number, size and the specific strength

of muscle fibers is reported to reduce the maximum muscle isometric force (muscle strength)

by 20 to 40 percent by the age of 70 [139]. In this thesis, the average value of 30 percent

reduction is chosen for older adults. Older muscles also have larger amounts of non-

contractile tissues, which result in a greater portion of total tension. This is reflected in

the model by reduction of the passive muscle strain in older adults.

The number of fast twitch motor units and their cross-sectional area are reported to

be reduced by 20 percent in old muscles, which can result in a reduction in the muscle

maximum contraction velocity [139]. Since the muscle strength during lengthening is better
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Table 5.1: List of muscle parameters for young and old adults

# population V max
m (Lopt0 /s) ε0 F̄max

len Fmax
0 (%)

1 Young Male 10 0.6 1.4 100
2 Old Male 8 0.5 1.8 70
3 Young Female 10 0.6 1.4 80
4 Old Female 8 0.5 1.8 50

preserved with age, the maximum normalized force achievable during lengthening (F̄M
len)

was increased from 1.4 for young adults to 1.8 for older adults [139]. Other parameters

such as the optimal fiber length and shape, as well as the tendon stiffness are relatively

unchanged by age, and therefore assumed to be constant in this study. Table 5.1 shows

the adjusted muscle parameters for young and old adults.

Figure 5.1a demonstrates the effect of changes in the maximum contraction velocity

(V max
m ) of muscle on the generated normalized muscle force. The normalized muscle force

is more sensitive to a variation of V max
m in the negative contraction velocities (shortening)

than the positive contraction velocities (lengthening). Similarly, Fig. 5.1b shows that with

a stiffer passive muscle strain (εm0 ), the produced muscle force increases in the long muscle

lengths. As expected the maximum normalized force during lengthening is strongly a

function of F̄max
len , as shown in Fig. 5.2a. Figure. 5.2b shows the effect of the combination

of V max
m and F̄M

len on the normalized muscle force.

Studies on the knee and trunk muscles show, in general, the peak value of generated

torque in women in all age groups, regions and function is lower than men [133]; specifically,

the knee extension muscles in men can produce 20% more torque than women. Similarly,

another study compared the abduction, adduction, internal and external rotation strength

of the arm for healthy men and women [54]. The authors proposed that the strength

reduced linearly by age, and women can produce less torque than men. In this thesis,

the maximum isometric muscle force is reduced by 20% in women; however, the other

parameters are kept unchanged.
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Figure 5.1: (a) The effect of variation of maximum muscle contraction velocity on the nor-
malized muscle force, (b) The effect of variation of muscle passive strain on the normalized
muscle force
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Figure 5.2: (a) The effect of variation of maximum muscle force during lengthening on the
normalized muscle force, (b) The effect of variation of combination of maximum muscle
contraction velocity and maximum force during lengthening on the normalized muscle force
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5.2 EPS Characteristic Curves

In design optimization, a low-order linear model is more desirable than a high-order non-

linear model because it reduces the computational time while conveying the important

dynamics of the high-fidelity model. Therefore, in this study, a linear vehicle model in-

cluding a column-assist EPS system (control-oriented model, as described in section 3.2)

in conjunction with a 2D driver model (as described in section 4.5) is used to study and

design an EPS characteristics curve. Figure 5.3a shows a schematic diagram of the steering

system of the control-oriented model and the location of the electric power steering sys-

tem. Since the EPS controller will be designed to track a desired assist torque based on the

EPS characteristic curves, the dynamics of electric motor and reduction gear are neglected

here and it is assumed that the assist torque is directly applied at the steering column.

Typically, the steering characteristic curves are a non-linear or multi-linear function of the

driver steering torque at different vehicle speeds. In this section, a nonlinear and a bi-linear

characteristic curve are introduced and tuned for the different driver types in Table 5.1.

5.2.1 Nonlinear EPS Characteristic Curve

Figure 5.3b shows a steering characteristic curve (at a specific vehicle speed), which is a

non-linear function of the driver torque. This characteristic curve or so-called nonlinear

EPS characteristic curve consists of an unassisted zone to avoid the off-center feeling, a

sinusoid steering assistance zone and a saturation zone. This curve is expressed by the

following equation [157]:

Ta =


0 0 < Td < Td0

f(Td) Td0 < Td < Tmaxd

Tmaxm Tmaxd < Td

(5.1)

where

f(Td) =
1

2

{
sin

[
π

(
Td − Td0
Tmaxd − Td0

)κ
− π

2

]
+ 1

}
Tmaxm (5.2)
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Figure 5.3: (a) A schematic view of column-assist EPS system, (b) Sinusoidal EPS char-
acteristic curve

and Ta and Tmaxm represent the assist torque and the maximum torque of the motor. Td, Td0

and Tmaxd respectively represent the driver’s steering torque, the driver’s steering torque

when the motor begins to assist, and the driver’s steering torque when the motor assist

reaches the maximum assistance. The exponent κ is a shape factor associated with the

slope of the characteristic curve. Figure 5.4 illustrates the effect of variation of the shape

factor (κ) and the maximum driver torque (Tmaxd ) on the shape of the EPS characteristic

curve. In Fig. 5.4a the maximum driver torque is kept constant while the shape factor is

increased gradually; it can be seen that the increase of shape factor reduces the assistance

since the maximum assist torque is fixed. Similarly, in Fig. 5.4b the driver maximum torque

is varying when the shape factor is fixed; it can be seen that an increase in the maximum

driver torque results in the reduction of assistance.
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Figure 5.4: Sinusoidal EPS characteristic curve (a) Effect of variation of κ, (b) Effect of
variation of Tmaxd

5.2.2 Bi-linear EPS Characteristic Curve

Figure 5.5a shows a steering characteristic curve which is a bi-linear function of the driver

torque at a constant vehicle speed. Similar to the nonlinear EPS characteristic curve,

the bi-linear characteristic curve consists of an unassisted zone, a steering assistance zone,

and a maximum assist value that is restricted by maximum motor torque. The bi-linear

characteristic curves can be expressed as follow:

Ta =


0 0 < Td < Td0

Ka(Td − Td0) Td0 < Td < Tmaxm /Ka + Td0

Tmaxm Tmaxm /Ka + Td0 < Td

(5.3)

where Ka is the assist gain, and the remaining of parameter definitions are similar to the

nonlinear characteristic curve. The nonlinear (sinusoidal) EPS characteristic curve has

two adjustable shaping factors (Tmaxd , κ), whereas the bi-linear curve has only one shaping

factor (Ka). Therefore, the calibration procedure for the bi-linear curves is easier than the

nonlinear curve.

97



0 5 10 15 20

0

10

20

30

40

50

Driver torque (N.m)

A
ss

is
t t

or
qu

e 
(N

.m
)

T
d0

T
m

max

K
a

(a)

0 5 10 15

0

10

20

30

40

50

Driver torque (N.m)

A
ss

is
t t

or
qu

e 
(N

.m
)

 

 

K
a
=10

K
a
=8

K
a
=6

K
a
=4

(b)

Figure 5.5: (a) Bi-linear EPS characteristic curve, (b) Effect of variation of Ka on the
characteristic curve

5.3 Steering Feel Optimization Procedure

In this section, a systematic approach to tune the EPS characteristic curves to provide

a good steering feel is introduced. However, the word “good” is very subjective and is a

function of many parameters such as the driver’s physical ability. Therefore, to achieve

a good steering feel, both driver characteristics and the road feel should be considered in

the EPS characteristic curve. In this case, the average energy transferred from road to

driver (road feel) should be as strong as possible in a certain frequency domain, while the

physical workload of the driver should be minimized.

The transferred torque to the steering wheel can be separated into two portions: (1)

the torque due to road-tire friction and suspension mechanism and (2) the torque due to

external disturbances. Since the disturbance forces applied to the steering system will

be attenuated by the EPS controller (see section 5.5), this portion is neglected here. In

this study, the control-oriented vehicle model steered with the 2D driver model is used to

simulate an ISO double lane-change maneuver [40] at a speed of 10 m/s. The expected

trajectory of the vehicle is defined in such a way that the ISO double lane change maneuver
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Figure 5.6: ISO double lane change (DLC) constraint and vehicle desired trajectory.

constraints are satisfied as shown in Fig. 5.6.

To tune the EPS characteristic curves for a particular population, the muscle parameters

are adjusted to represent the population. Then, an optimization is performed to find

the optimum EPS assist curves for that specific population. The characteristic curve

parameters (κ and Tmaxd ) for the sinusoid and (Ka) for the bi-linear curve have been

optimized for different driver types by minimizing the following cost function:

CF =
1

tf

∫ tf

0

(
q1 F̃rf + q2 G(a) + q3 i

2
)
dt (5.4)

where F̃rf and G(a) respectively are the inverse of road feel and the muscle fatigue of the

driver during the steering task, and i is the electric motor current. q1, q2 and q3 are the

weighting factors, which have been chosen in a way to normalize each term in the cost.

The q1 and q2 weighting factors are used to adjust the steering stiffness while q3 is used to

reduce the EPS electric motor size. The muscle fatigue (G(a)) is defined in Eq. (4.8), and

it is assumed that the driver is in the relaxed condition (there is no muscle co-contraction

while performing the maneuver, αi = 0).

The road feel criterion is used to quantify the intensity of feedback information from

the road to the driver. To consider the non-linearity induced by the steering system and

the assist curve for a specific maneuver, the road feel is defined in the time domain as the
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Figure 5.7: Sensitivity of the optimal characteristic curve to the variation of optimization
weights, (a) Variation of q1, (b) Variation of q2

relationship between the resistive steering torque to the driver torque as follows [163]:

Frf =
1

F̃rf
=
|Td(t)|
|Tr(t)|

(5.5)

where Tr is the resistive torque at the pinion gear, and Td is the driver torque. Since the

resistive torque is due to road-tire friction force, the larger the ratio is, the more feedback

(feel) is delivered to driver about the road friction and surface roughness.

Figure 5.7 shows the sensitivity of characteristic curve to the variation of cost function

weighting factors. The cost function weights are modified proportional to their nominal

values. The results demonstrate that the variation of muscle fatigue weight has a greater

effect on the characteristic curve’s assist gain than the variation of road feel weight, because

the cost function is a linear function of the road feel but a quadratic function of muscle

activations. These cost function weights can be used to adjust the target steering feel. For

example, for a sports car, the driver expects to have stiffer steering than in a comfortable

car. To have a more sporty feel, the road feel weighting factor should be increased as shown

in Fig. 5.7a, which results in less assistance and a steering system that is therefore more

sensitive to road forces.
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5.4 Driver-Specific EPS Characteristic Curves

In this section, the sensitivity of the optimal characteristic curves to the variation of muscle

parameters has been studied. The maximum assist torque (Tmaxm ) is assumed to be constant

and equal to 50 N.m, and a value of 1 N.m is selected for the no-assist zone (Td0) to avoid

the off-center steering feel.

To study the effect of variation of muscle parameters on the EPS characteristic curves,

first, the muscle parameters are changed separately and the effect of each parameter on

the curves is studied. Then, the muscle parameters are modified to the values in Table 5.1,

and the EPS characteristic curves are tuned for each driver type.

Figure 5.8 demonstrates the effect of maximum isometric muscle force (Fmax
0 ) on the

optimal delivered assistance. As expected, a stronger driver with a higher maximum iso-

metric muscle force require less assistance, and consequently more resistive steering torque.

In other words, since the stronger driver has stronger muscles, the average value of muscle

activations is less compared to a driver with weaker muscles. Therefore, the EPS curve

stretches to reduce the assistance. In this case, both bi-linear and sinusoid EPS charac-

teristics curves show the same behavior. Similarly, Figure 5.9 depicts that the assist gain

and the slope of assist curves are reduced by increasing the maximum contraction veloc-

ity (V max
m ) of muscle. As shown in Fig. 5.2a, the amount of generated muscle force at a

specific shortening velocity increases by increasing V max
m , which means that a muscle with

less V max
m requires more muscle activation to generate the same force than a muscle with

higher V max
m , and more driver assist torque.

Figure 5.10 shows the effect of variation of maximum muscle force during the lengthen-

ing (F̄max
len ) on the optimal characteristic curves. As shown in Fig. 5.10a, by increasing F̄max

len ,

the assistance is reduced for small driver torques and increased for large driver torques in

the nonlinear characteristic curves. However, in the bi-linear curves (see Fig. 5.10b), the

assist gain is only slightly reduced by an increase of F̄max
len . Figure 5.11 shows that the

variation of passive muscle strain on the assist curves has a negligible effect, since it only

affects the passive part of muscle and has no effect on the force generating part of muscle.

Figure 5.12a presents the optimal curves for all four populations. As expected, the
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Figure 5.8: The effect of maximum isometric muscle force variation on the optimal assist
curves (a) Non-linear characteristic curve, (b) Bi-linear characteristic curve
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Figure 5.9: The effect of maximum muscle contraction velocity variation on the optimalas-
sist curves (a) Non-linear characteristic curve, (b) Bi-linear characteristic curves
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Figure 5.10: The effect of maximum muscle force during lengthening variation on the
optimal assist curves (a) Non-linear characteristic curve, (b) Bi-linear characteristic curve

driver with more strength requires less assistance while perceiving more road information.

Therefore, young male drivers require less assistance than young females, old male and old

female drivers. Similarly, in the bi-linear curves as shown in Fig. 5.12b, the old female

driver requires the most assistance and the young male driver requires the least assistance.

Table 5.2 displays the optimal assist gains and optimal shaping factors of the bi-linear and

nonliear characteristic curves. In section 5.6.4, the optimal assist gains of the bi-linear

characteristic curves will be used in the proposed optimal EPS controller to deliver the

proper steering assistance to each population.

Table 5.2: Optimal characteristic curve parameters for young and old adults

# population nonlinear characteristic curve bi-linear characteristic curve
(κ, Tmaxd ) Ka

1 Young Male (1.24, 22) 2.17
2 Young Female (1.63, 13.27) 3.17
3 Old Male (3.49, 7.7) 4.34
4 Old Female (5.59, 7.45) 7.4
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Figure 5.11: The effect of passive muscle strain variation on the optimal assist curves (a)
Non-linear characteristic curve, (b) Bi-linear characteristic curve
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Figure 5.12: The optimal assist curve for the four driver types (a) Non-linear characteristic
curve, (b) Bi-linear characteristic curve
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5.5 Optimal Model-Based Controller

Model-based control design is now widely accepted by the automotive industry as a time-

saving and cost-effective approach because it enables optimal application of available

mathematical-physical knowledge to achieve complex objectives. Compared to static rule-

based control, this approach has better performance in the transient response of the vehicle.

However, challenges are still posed in practical applications.

In this research, to investigate the application of optimal control to electric power steer-

ing systems, an observer-based optimal disturbance rejection controller (modified Linear

Quadratic Gaussian - LQG) is presented.

As shown in Fig. 5.13, the steering system is subjected to two exogenous inputs, the

driver steering torque (uτ ) and disturbance torque (ud), and a known input of the electric

motor voltage (uv). The EPS controller should reject or attenuate any unwanted oscil-

lations on the steering wheel while magnifying the driver’s steering torque (based on the

EPS characteristic curves). Since the driver’s steering torque is unknown to the LQG con-

troller, the torque sensor value is used instead of steering torque in the EPS control logic.

Therefore, the number of unknown inputs for the controller is reduced to one.

Since not all states of the control-oriented model are measured using the external sen-

sors, some states should be reconstructed using the available measurements and by use of

(a)

Figure 5.13: Workflow of the Linear Quadratic Gaussian controller

105



an observer (Kalman filter). The difference between real (y) and estimated (ŷ) value of

sensor measurements due to external disturbances and different initial conditions are fed

back to the observer (through an observer gain (L)) to adjust the state estimations (x̂)

and to identify the external disturbance (ûd).

The disturbance rejection observer uses an augmented disturbance model to estimate

states and unknown disturbances. The observer, based on the idea of modifying the estima-

tion using the difference between the estimated output and actual measurements, predicts

the unknown disturbances. Since the driver torque and EPS electric motor current are mea-

sured by sensors, sudden changes in the driver steering torque and EPS control voltage are

considered to be valid inputs, not disturbances.

Optimal disturbance rejection can be achieved by including a feedforward controller,

canceling the effects of the disturbance, into the control logic [66]. Since the external

disturbances to the steering systems are unknown, and it is not possible to predict the

exact value of a random process beforehand, this method is impractical. However, an

effective disturbance rejection can be achieved by including the dynamic properties of the

disturbance in the observer and controller design [78, 124]. In this research, the disturbance

torque at the intermediate shaft of steering is modeled as a zero-mean colored stochastic

process. A shaping filter has been used to transform white noise w into an appropriately

stationary random process of disturbance torque (ûd). This linear shaping factor is defined

as follows:

ẋD = ADxD +BDw (5.6)

ûd = CDxD +DDw (5.7)

where xD is the disturbance state, and Ad, Bd, Cd and Dd are shaping filter coefficients.

Note that the shaping filter corresponding to Eqs. (5.6) and (5.7) is a causal first order

low-pass filter with DD = 0.

By substituting Eq. (5.7) into the state-space representation of the system (Eq. (A.1)
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in Appendix A), the new system can be represented as follows:

ẋ = Ax +Bvuv +Bτuτ +Bdud

= Ax +Bvuv +Bτuτ +BdCDxD +BdDDw
(5.8)

where A, Bv, Bτ , Bd and C are respectively the system, input and output matrices of the

system, and the inputs to the system are defined as driver torque (uτ ), terminal voltage of

electric motor (uv) and disturbance torque (ud) at the intermediate shaft (pinion).

Equation (5.8) can be rewritten by forming an augmented state vector x including the

system states x and the disturbance state xD such that the dynamics of the system are

described by:

ẋ = A x +Bvuv +Bww (5.9)

where

x =

[
x

xD

]
, A =

[
A BuCD

0 AD

]
Bu =

[
Bv

0

]
, Bw =

[
BuDD

BD

]
(5.10)

Since the torque sensor value is being used instead of the driver torque in the EPS

controller, the driver torque is removed from the control inputs. Similarly, in the observer

(Kalman filter) design, the driver torque (Eq. (3.11)) has been removed and the steering

wheel angle is assumed to be the input to the system. Therefore, the state variables required

for estimation are reduced to x̂ =
[
β i r θr θ̇r

]T
and the system is subjected to only

one external unknown input (disturbance torque). The state space representation is as

follows:

˙̂x = Âx̂ + B̂uuv + B̂θθsw + B̂dud

ŷ = Ĉx̂
(5.11)

By substitution of Eq. (5.7) into Eq. (5.11) and forming an augmented state vector x̂

including the system states x̂ and the disturbance state xD, the dynamics of the Kalman
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filter system are described by:

˙̂x = Â x̂ + B̂uuv + B̂θθsw + B̂ww

ŷ = Ĉ x̂
(5.12)

where

x̂ =

[
x̂

xD

]
, Â =

[
Â B̂dCD

0 AD

]
, B̂u =

[
B̂d

0

]
,

B̂θ =

[
B̂θ

0

]
, B̂w =

[
B̂dDD

BD

]
Ĉ =

[
Ĉ 0

] (5.13)

In this thesis, according to the state equations defined in Eq. (5.12), a Kalman Filter

is used as an optimal state estimator as follows [66]:

˙̂x = Â x̂ + B̂uuv + B̂θθsw + L(y− Ĉx̂) (5.14)

where

L = ΦĈ
T
V −12 (5.15)

and V2 is the intensity of the sensor noise and Φ is the solution to the following Riccati

equation.

ΦÂ
T

+ ÂΦ + V1 − ΦĈ
T
V −12 ĈΦ = 0 (5.16)

where V1 is the intensity matrix of the plant disturbance, which is determined by trial and

error.

Based on the separation principle, the optimal control can be determined by feeding the

estimated states from the Kalman filter into an optimal state feedback controller. There-

fore, the optimal control can be found by rearranging the estimated states and augmenting

the known steering wheel angle and velocity to the state vector estimation,

uv = KFB

[
x̂ T θsw θ̇sw ûd

]T
(5.17)
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where

KFB = R−1B̂
T

uP (5.18)

and R is a input usage weight (see Eq. (5.21)) and P the solution to the following Riccati

equation:

PÂ+ Â
T
P +Q− PB̂uR

−1B̂
T

uP = 0 (5.19)

where Q is a state deviation weighting matrix (see Eq. (5.21)).

It is known that the optimal disturbance rejection can be achieved by a full state

feedback controller in conjunction with a feedforward controller with a known disturbance.

Therefore, it can be seen that by partitioning the feedback gains of the proposed controller

into KFB = [KFB | KFF ], the observer-based disturbance rejection controller can have a

similar property; it has a feedback function of system states and feedforward function of

the estimation of disturbance, as follows:

uv = [KFB | KFF ]
[
x̂ T θsw θ̇sw | ûd

]T
= KFB[x̂ T θsw θ̇sw]T +KFF ûd (5.20)

The LQG control finds the state feedback gains such that the following cost function is

minimized.

J =

∞∫
0

(
x Q xT + u R uT

)
dt (5.21)

where Q or state deviation weighting matrix is a symmetric positive semi-definite matrix

and R or input usage weight is a symmetric positive definite matrix.

In this thesis, the bi-linear characteristic curve as described in section 5.2.2 (see Fig. 5.5a)

is used in the LQG controller. The EPS characteristic curves include two intervals: [0, T0)

is the interval with no steering assistance, and [T0, Tmax] is the interval with linear steer-

ing assistance. Therefore, for full tracking of characteristic curves in the whole operating

region, two control laws are required. The first law is indicating that current of the electric

motor should be zero unless there is a disturbance; in the presence of a disturbance the

assist torque should cancel the disturbance torque. Therefore, the following cost function
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is proposed for the first interval:

J1 =

∞∫
0

(
q(Ta −Kbûd)

2 + ρu2v
)
dt (5.22)

where q and ρ are the tracking and input usage weights, and Kb is the disturbance rejection

feature switch. The disturbance rejection module is turned off when Kb is equal to zero,

and it is enabled when Kb is equal to one.

The second interval suggests that the assist torque be proportional to the torque mea-

sured by the torque sensor. To construct the state-space representation, the state variables

are defined as x =
[
β i+KaTa0 r θ̇r θsw θ̇sw

]T
. To ensure the improvement of

steering feel by attenuation of the disturbance torque, the following cost function has been

used in the second interval:

J2 =

∞∫
0

(
q(Ta − T desa −Kbûd)

2 + ρu∗2v
)
dt (5.23)

where

T desa = KaKtb (θsw − θr) (5.24)

Here, Ta and T desa are actual and desired assist torques and u∗v is the modified terminal

voltage of the electric motor (u∗v = uv +KaRT0), where T desa is proportional to the torque

sensor value, and Ka is the EPS assist gain.

By substituting Eqs. (5.24) and (3.9) into Eq. (5.23) and expanding the equation, the

Q and R in their standard integral quadratic form as shown in Eq (5.21) for the second

interval can be described by:
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Q = q



0 0 0 0 0 0 0 0

0 G2K2
e 0 GKaKeKtb 0 −GKaKrKtb 0 KbGKe

0 0 0 0 0 0 0 0

0 GKaKeKtb 0 K2
aK

2
tb 0 −K2

aK
2
tb 0 KbKaKtb

0 0 0 0 0 0 0 0

0 −GKaKeKtb 0 −K2
aK

2
tb 0 K2

aK
2
tb 0 −KbKaKtb

0 0 0 0 0 0 0 0

0 KbGKe 0 KbKaKtb 0 −KbKaKtb 0 K2
b


R = ρ

(5.25)

The weights of current error (q) and terminal voltage (ρ) in cost functions J1 and J2

are chosen by trial and error to ensure that the current of electric motor will track the

desired current with minimum electric motor terminal voltage.

5.6 Simulation Results and Discussion

To evaluate the performance of the proposed controller, closed-loop simulations with the

high-fidelity vehicle and driver model are required. In this section, first, the effects of assist

gain variation and the effect of disturbances on the performance of the controller have been

studied using the high-fidelity vehicle model alone. Then, the 3D driver model steering the

high-fidelity vehicle model is used to evaluate the performance of EPS controller with the

already found optimal characteristic curves for the four driver types.

To study the robustness of the EPS controller to different assist gains, a sinusoidal

steering maneuver is performed. In these simulations, the vehicle speed is equal to 10 m/s

and the length of no-assist zone (Ta0) is set to 1 N.m. The Disturbance Rejection (DR)

module is switched off (Kb = 0) and Ka is set to 0.5, 1 and 2, consecutively. As shown in

Fig. 5.14 the proposed controller can closely follow the desired assist curves with different

assist gains.
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Figure 5.14: The produced assist torque versus torque sensor value with different assist
gains

Second, to study the performance of the controller in a real-world condition, two ma-

neuvers have been used. In the first maneuver, the vehicle is driving in a straight lane

while suddenly a step-like disturbance torque (Fig. 5.16a) is applied to the steering col-

umn. In the second maneuver, the driver performs a sinusoidal slalom-like maneuver, in

the presence and absence of a disturbance torque. In both cases, the vehicle speed is equal

to 10 m/s and the assist gain (Ka) is set to 3 N.m.

5.6.1 Straight-line Driving Maneuver

In the first maneuver, while the vehicle is driving in a straight lane, three conditions have

been applied to the EPS controller: the EPS system is off, the EPS system is enabled

but the DR module is off, and the EPS system is fully functional. As shown in Fig. 5.15

with the given disturbance, the first situation has the largest steering wheel angle variation

while in the second situation, the assistance module enables the driver to produce more

resistive torque which results in less steering wheel angle variation. In the third situation,

when the DR module is on, the EPS controller estimates the disturbance automatically

and produces a counter torque at the steering wheel, so the effects of the disturbance are

greatly reduced at the steering wheel.
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Figure 5.15: Comparison of the steering wheel angles in the straight line simulation in
presence of a step-like disturbance

Fig. 5.16a shows the performance of the Kalman filter in the estimation of the external

disturbance. It should be noted that Coulomb friction between the rack and rack housing

is also considered as a disturbance since it is not included in the control-oriented model

and it acts as an external force to the rack. Fig. 5.16b shows the assist torque produced

by the EPS controller; it can be seen that the estimated disturbance is effectively used by

the disturbance rejection module of EPS controller to reduce the transferred disturbance

to the driver’s hands.

5.6.2 Slalom Driving Maneuver

In the second maneuver, a sinusoidal rotation of steering wheel with frequency of 0.5 Hz

and amplitude of 50 degrees is performed, and similar situations to the first maneuver have

been studied in the presence and absence of an external disturbance.

In the first case, without the existence of any external disturbances, the performance of

the controller for all three situations has been studied. As shown in Fig. 5.17a when the DR

module is off, the assist curve is equal to its nominal value (bi-linear curve) as expected;

however, when the DR module is enabled, the EPS controller produces more or less assist

113



0 2 4 6 8
−12

−10

−8

−6

−4

−2

0

2

Time (s)

D
is

tu
rb

an
ce

 (
N

.m
)

 

 

Actual Disturbance
Estimated Disturbance

(a)

0 2 4 6 8
−2

0

2

4

6

8

10

12

Time (s)

A
ss

is
t t

or
qu

e 
(N

.m
)

 

 
Assistance with DR
Assistance without DR

(b)

Figure 5.16: (a) Comparison between the actual and estimated value of disturbance, (b)
Torque sensor measurement when DR module is on and off

torque based on the estimated value of disturbance (as shown in Fig. 5.18a). Since there is

no external disturbance to the system, the estimated value represents the friction present

in the steering system and the virtual force that deviates the steering system from its linear

response.

Figure 5.17b shows the torque sensor (driver torque) value against the steering wheel

angle (the so called Lissajous curves) for all the aforementioned situations. It can be seen

that in the no-assist zone, the Lissajous curves in all the situations are on top of each

other, which represents the regular behavior (without EPS) of the steering system. In

the linear assist zone, the driver’s torque is significantly reduced since the controller is

producing the assist torque proportional to the steering torque. A reduction in the area

inside the required steering torque curve when the DR module is on in comparison with

the control without DR can be observed since the EPS controller is compensating for the

friction present. It can be also noted that the EPS controller with DR leads to a linear

response while the behavior of the system is nonlinear.

Figure 5.18b shows the torque sensor value in all aforementioned situations. As ex-

pected, the steering torque for the case without assistance is higher than the other cases,
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Figure 5.17: Simulation of the proposed EPS controller applied to the high-fidelity vehi-
cle model in a smooth steering maneuver (a) The produced assist torque versus torque
sensor value in the absence of external disturbance with and without the DR module, (b)
The required steering torque versus the steering wheel position in the absence of external
disturbance with and without the DR module
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Figure 5.18: (a) Comparison between the actual and estimated value of disturbance, (b)
Comparison of the required driver torque with and without EPS controller in a sinusoidal
steering maneuver
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Figure 5.19: Simulation of the proposed EPS controller applied to the high-fidelity vehicle
model in a smooth steering maneuver (a) The produced assist torque versus torque sensor
value in the presence of external disturbance with and without the DR module, (b) The
required steering torque versus the steering wheel position in the presence of external
disturbance with and without the DR module

and the steering torque when the DR module is on is slightly higher than the situation

without DR since the controller is enforcing a linear response to the steering system.

In the second maneuver , in the presence of an external disturbance, the effectiveness of

the DR module in a realistic steering maneuver has been studied. As shown in Fig. 5.19b,

in the situation when the DR module is off, the Lissajous curve is contorted, meaning that

the disturbances are transferred to steering wheel and the driver’s hands (see fig. 5.20b).

In the third situation (EPS on, DR on), these oscillations are significantly reduced because

the EPS controller uses the estimated value of disturbance to attenuate the oscillations

on the steering wheel. As shown in Fig. 5.19a, the produced assist torque, when the DR

module is on, is highly nonlinear while the assist torque when the DR is off is bi-linear.

Fig. 5.20a shows the estimated value of disturbance in comparison with the external

disturbance; similar to Fig. 5.18a, it should be noted that the friction forces are also

included in the estimated value of disturbance. Figure 5.20b shows the torque sensor value
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Figure 5.20: (a) Comparison between the actual and estimated value of disturbance, (b)
The required steering torque with and with out the proposed EPS controller

for all aforementioned situations. In the case with enabled DR module, the disturbance is

successfully attenuated and the behavior of the system is linear.

5.6.3 Slalom Driving Maneuver with Measurement Noise

It is known that the Kalman filters can remove the noise from the measurement signals by

considering a predefined model of the system. In this research, a similar scenario to the

sinusoidal steering input with corrupted measurement signals are studied. Since the torque

sensor is measuring the transferring torque through the torsion bar, it has more tendency

to absorb noise; however, in this section, all of the observer outputs are corrupted by a

Gaussian noise. Fig. 5.21 shows the corrupted and reconstructed torque sensor and yaw

rate values. It can be seen that the reconstructed signals are noise-free and conveying the

correct dynamics of the system.

As shown in Fig. 5.22, the performance of the controller (when the DR module is on

and in the presence of measurement noise) is not degraded in comparison with the case

without measurement noise.

117



0 2 4 6 8 10 12
−10

−5

0

5

10

Time (s)

T
or

qu
e 

S
en

so
r 

(N
.m

)

 

 
With noise
Filtered

(a)

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Y
aw

 r
at

e 
(r

ad
/s

)

 

 
With noise
Filtered

(b)

Figure 5.21: Corrupted and reconstructed measurement signals (a) Torque sensor, (b)
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Figure 5.22: Simulation of the proposed EPS controller applied to the high-fidelity vehicle
model in a smooth steering maneuver (a) The produced assist torque versus torque sensor
value in the presence of measurement noise with the DR module, (b) The required steering
torque versus the steering wheel position in the presence of measurement noise with the
DR module
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Figure 5.23: The vehicle trajectory of the four driver types performing an ISO double
lane-change (DLC) maneuver.

Since the steering wheel angle is the input to the observer, the steering wheel angle is

left noise free; however, in the case of a corrupted steering wheel angle measurement, a

separate filter should be designed for this signal.

5.6.4 Double Lane-Change Maneuver with Driver-Specific EPS

Controller

In this section, to study the performance of the driver-specific EPS controller, the tuned

controllers are evaluated using the high-fidelity vehicle-driver model. The muscle param-

eters of the 3D driver model (as described in section 4.4 - steering with two hands) are

adjusted to represent the corresponding group, i.e. young male, old male, young female, old

female. Then each group performs a double lane change maneuver with the the high-fidelity

vehicle model at the speed of 10 m/s.

As shown in Fig. 5.23, the vehicle lateral displacements of all groups are similar to each

other and to the desired trajectory, and they are all within the ISO double-lane change

maneuver constraints. Therefore, the resistive steering torque in all of the simulations are

the same, since the driving conditions in all of the simulations are the same.
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Figure 5.24: Right hand’s muscle activities during a double lane-change maneuver for the
four driver types (a) Anterior portion of deltoid, (b) Long head of triceps

Figure 5.24 shows the predicted muscle activities of the anterior portion of deltoid

and the long head of triceps of the driver’s right arm for the four predefined driver types.

Although other muscle activations are not presented here, a similar behavior can be seen in

other muscles. As shown in this figure, the magnitude and trend of these patterns are very

similar. Although young male drivers have higher physical strength than old female drivers,

the portion of motor units that have been recruited by the central nervous system are the

same. In conclusion, the drivers’ muscle (physical) fatigue are equal, thereby satisfying the

controller objective to provide equal assistance to all drivers.

It should be noted that the EPS controller has been tuned based on a simplified vehicle

model and the 2D driver model, but the tuned controller is evaluated using the high-fidelity

vehicle model steered with a 3D driver model with two hands on the steering wheel, which

shows the same expected behavior. Therefore, it can be concluded that the simplified 2D

driver model is a good and efficient model to be used in the design optimization procedures

of the active steering systems.
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5.7 Chapter Summary

In this chapter, first, drivers are categorized into four types: young male, old male, young

female and old female. Then, the muscle dynamics of each group are identified and the

muscle parameters are adjusted to represent each group. Second, two EPS characteristics

curves are introduced, and a systematic way to tune the curves for the four defined driver

types are presented.

Then, an observer-based disturbance rejection controller for electric power steering

systems is proposed. To construct the EPS controller, the LQG control approach with

separate observer and controller has been used. A Kalman filter augmented with a shap-

ing filter is used to estimate the unmeasured states and the external disturbances to the

steering system. Simultaneously, the estimated states and the disturbance is used in the

LQR controller with a new formulation of control objective function to actively cancel the

disturbances while magnifying the driver’s steering torque.

The proposed EPS controller is evaluated in a software-in-the-loop simulation using a

high-fidelity vehicle model to ensure the robust performance of the controller in a real-

world condition. In the case with no external disturbance to the system, the disturbance

observer estimates the steering’s component frictions, which is deviating the system states

from their linear response. Similarly, in the presence of an external disturbance, the iden-

tified disturbance is the combination of friction and external disturbance. Removing this

identified disturbance from the system reduces the driver torque, thereby enforcing the

linear response of control-oriented model to the system. Therefore, the proposed EPS

controller improves the steering feel by reducing the required steering torque and reduc-

ing the oscillations due to road irregularities. Finally, the driver-specific EPS controllers

are verified against the high-fidelity vehicle-driver model adjusted for that specific group.

The results showed that the tuned EPS controller can equally assist drivers with different

physical strength. The proposed LQG controller has strong robustness properties against

measurement noise and external disturbance. The simulation results show that it can effi-

ciently attenuate the interference caused by random road excitation and can competently

work with corrupted measurements.
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6
Conclusions and Future Work

In this chapter, the contributions of the conducted research (interaction of driver with

steering system) to the study of steering tasks and the design of electric power steering

(EPS) systems are discussed. Since the steering system is a device that interacts with a

human, the large part of this research is focused on the neuromusculoskeletal dynamics of

a driver and how it interacts with the steering system. EPS systems improve the steering

experience by reducing the physical effort of drivers and at the same time by ensuring the

stability of the vehicle and providing necessary information to drivers from the surrounding

environment such as road friction and surface roughness. However, it is known that the

steering feel is a subjective criteria and the steering feel satisfaction level is varied for

different drivers with different driving habits and physical abilities.
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In this thesis, the effects of musculoskeletal dynamics of the driver arm as well as

the driver’s cognition delay and response time (voluntary and involuntary) on steering

tasks have been studied and possible guidelines to improve the steering feel have been

investigated. Then, the findings in this area have been applied to an EPS controller to

improve the steering feel.

In the following sections, the different research challenges that have been faced in this

study will be discussed.

6.1 High-Fidelity Integrated Driver-Vehicle Interac-

tion Model

Having a clear understanding about the dynamical system is crucial in designing control

systems, since not only does it strengthen our knowledge about the system but also it

reduces development time and cost. In this research, to facilitate the interpretation of the

result, a high-fidelity vehicle model and a driver model, consisting of a central nervous

system and a musculoskeletal arm model holding the steering wheel, are developed in silico

to replicate the interaction between the driver and vehicle.

The high-fidelity model of vehicle consists of MacPherson and multilink suspension

systems at the front and rear as well as a column-assist electric power steering system (for

details see Chapter 3). The musculoskeletal arm model consists of the thorax, humerus,

forearm and hand. The thorax is assumed to be fixed on the driver seat, and connected to

the humerus using a three degree-of-freedom shoulder joint. The humerus connects to the

forearm using a hinge joint allowing the flexion/extension of the elbow. The wrist joint is

modeled by a universal joint simulating the lateral and vertical movements of the hand,

which is firmly holding the steering wheel. The developed arm is covered by eight muscles

around the shoulder and seven muscles around the elbow (for details see Chapter 4). The

muscular functionality of the arm model is validated using electromyography of a driver

performing on-center steering and sinusoidal steering maneuvers.

123



6.2 Motor Control Framework

The fully integrated driver-vehicle model requires a command center to monitor and coor-

dinate the driver’s arm movements to steer the steering wheel, and consequently to control

the vehicle movements. This command center in humans is known as the central nervous

system (CNS), which consists of brain and spinal cord. The CNS requires sensory infor-

mation and visual feedback to sense the position and orientation of the body members

relative to each other and in the global frame. Then, the CNS uses this information to

coordinate the bodies to perform a desired motion by stimulating the appropriate motor

control units.

In this thesis, a hierarchical approach is used to capture the complexity of neuromus-

cular dynamics and the central nervous system in the coordination of the driver upper

limb activity. The proposed motor control framework has three layers: the first layer is

responsible to find the proper steering wheel angle to follow a desired path (path-planning

layer), the second layer is responsible for actuating the arm (force distribution controller),

and the final layer is added to ensure better control precision and disturbance rejection of

the motor control (stabilizer layer). The following sections discuss the challenges that have

been addressed in the development of a human-like neuromusculoskeletal driver model in

this research.

6.2.1 Path-Planning Controller and Driver’s Steering Skill

To consider the predictive ability of a human driver in the proposed motor control frame-

work, a model predictive controller (MPC) is employed in the path-planning layer to plan

the vehicle’s desired trajectory. In Chapter 4, the effects of prediction horizon and control

horizon lengths on the predicted trajectory have been studied. The prediction horizon rep-

resents the driver’s line of sight, and it is shown that the maximum steering angle predicted

by MPC is proportional to the prediction horizon. In this research, the control horizon

is used to regulate the computational load of the MPC, without altering the predicted

trajectory.
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As discussed in Chapter 4, the cerebellum contains an internal model of the motor

control apparatus as well as the environment with which it is interacting. This model rep-

resents the internal cognition of driver from his/her body and the surrounding environment;

in this case, the surrounding environment is the steering wheel and vehicle.

In this thesis, it is assumed that a skilled driver has a developed/detailed understanding

of the vehicle behavior, while a novice driver considers the vehicle as a point-mass with a

linear behavior. It is also hypothesized that the internal vehicle model is stored as a family

of linearized vehicle models in the cerebellum, and the size of this set represents the driver’s

steering skill. Therefore, a bicycle model of the vehicle with a nonlinear tire model is used

as the internal representation of vehicle in the cerebellum and to represent a skilled driver,

the nonlinear vehicle model should be linearized at multiple operating points. However,

in the simulations, the vehicle model only is linearized at the equilibrium point to manage

the computational load.

6.2.2 Steering Wheel Coordination

The main responsibility of the CNS is the coordination of the driver’s upper limb. The

path-planning controller passes the desired steering wheel angle to the force distribution

controller to find the required muscle activations to rotate the steering wheel to the desired

position.

The driver’s musculoskeletal arm is actuated with fifteen muscles while it only has

one degree-of-freedom. This configuration represents an indeterminate dynamical system.

To solve this indeterminacy problem a forward static optimization (FSO) approach is

used, engaging a cost function to produce the physiologically possible motions. In this

thesis, a muscle fatigue criterion enhanced with a muscle co-contraction ratio is used as

the physiological cost function. Then, the optimal muscle activations are sent to Hill-

type muscle models to calculate the muscle forces required to perform the desired steering

motion.
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6.2.3 Disturbance Rejection and Precision Control

Stretch reflex, joint stiffness modulation and voluntary disturbance rejection mechanisms

are used by the CNS for the precision control and the attenuation of disturbances applied

to the upper limb. If the steering wheel is perturbed with an external disturbance, the

unexpected position of the hand or the steering wheel is quickly sensed by visual and

proprioceptive sensory organs and is sent to the CNS. The muscle length and velocity

errors are processed locally in the spinal cord and appropriate commands are sent to the

corresponding motor control units. The response of this locally processed mechanism (or

so-called stretch reflex) is involuntary and only activates when a muscle unexpectedly

stretches.

The muscle length and velocity and other sensory information are also sent to the higher

brain centers for further interpretation of the situation and to counteract the disturbance.

This mechanism (or so-called voluntary disturbance rejection) is modeled using a closed-

loop disturbance observer. The disturbance observer compares the actual steering wheel

angle to its expected value; in the presence of any difference, a proportional-derivative

controller on the error with a time delay is used to estimate the disturbance torque at the

steering wheel. Then, the estimated disturbance torque is sent to the force distribution

controller to provide necessary muscle activations to counteract the disturbance torque.

Joint stiffness modulation is the other mechanism used by the CNS to attenuate dis-

turbances. In this case, the driver increases the shoulder and elbow rotational stiffness

by co-contracting the muscles around the joints. In the presence of a disturbance, the

deviation of joint angle from its expected value is less than when the muscles are not

co-contracted. In this thesis, the muscle stiffness modulation is implemented by increas-

ing the shoulder and elbow stiffness and damping coefficients proportional to the muscle

co-contraction ratio.
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6.2.4 Relaxed and Tensed Steering Conditions

It is observed that novice drivers or drivers in an unknown environment tend to co-contract

their muscles to increase the steering accuracy and the steering impedance. In this thesis,

to capture this dynamics, two different steering conditions are introduced: tensed and

relaxed conditions.

In the relaxed condition, no muscle co-contraction is considered while the time delay of

voluntary disturbance rejection is assumed to be very long. On the other hand, in the tensed

steering condition, the muscle co-contraction ratio is assumed to be 30% for shoulder and

elbow muscles, and the time delay to identify the perturbation for the voluntary disturbance

rejection is assumed to be 0.3 s.

6.3 Electric Power Steering Controller

Electric Power Steering (EPS) systems are used to reduce the physical effort of the driver

during steering tasks and to provide a good steering feel while ensuring the stability of the

vehicle.

In this thesis, an observer-based disturbance rejection EPS controller is developed. This

controller consists of a LQR and a Kalman filter with a new formulation to actively cancel

disturbances while magnifying the driver’s steering torque. To provide a better steering

feel, the characteristic curves are tuned for predefined groups of drivers. In the design

process of the EPS controller, the following challenges have been faced and addressed.

6.3.1 Control-Oriented Model and Two-Dimensional Driver Model

The developed high-fidelity vehicle model is a nonlinear multibody dynamical model, and

is not suitable for model-based controllers. Therefore, to design a model-based EPS con-

troller, a control-oriented model is developed and validated against the high-fidelity model.

The control-oriented model conveys the necessary information about the lateral dynamics
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of the vehicle as well as the EPS dynamics. The control-oriented model consists of a linear

bicycle model of a vehicle equipped with a column-assist EPS system. In this model, the

longitudinal velocity of the vehicle is assumed to be constant and the interaction between

tire and road is simulated using a linear tire model.

Since the three-dimensional (3D) driver model is very complex and computationally

expensive, it cannot be used efficiently in the optimization process. Therefore, in this thesis,

a simplified two-dimensional (2D) driver model is developed to capture the important

dynamics of the arm, and to reduce the simulation time.

In the 2D driver model, the elbow is assumed to be locked, and the shoulder only allows

motion in the saggital plane. In this model, a pair of agonist and antagonist muscles is used

to represent the group of muscles that are producing the clockwise and counterclockwise

steering torques. Since the number of muscles in the 2D driver model are reduced to two,

a PID controller with a splitter that separates the positive and negative torques is used

instead of the FSO approach. Using this simplifications, the simulation time is significantly

reduced.

6.3.2 Driver-Specific EPS Controller

In this research, four driver types are defined based on the driver’s physical characteristics

such as age and gender: young male, old male, young female and old female. The physical

characteristics of each group is represented in the 2D driver model by adjusting the muscle

model parameters. Then, in the design optimization procedures, the adjusted 2D driver

model and a simplified vehicle model is used to tune the EPS characteristic curves to have

a similar steering feel (activation patterns) and road feel for all drivers. The muscle fatigue

calculated from the 2D driver model is used to quantify the steering feel. In other words,

the EPS controller can equally assist and improve the steering feel for different populations.
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6.3.3 Controller Robustness and Stability

Since drivers directly interact with an EPS system, the EPS system must be stable and

robust to ensure safety. In this research, the LQG control strategy guarantees the stability

of the system with infinite gain margin and the 60 degrees phase margin under linear con-

ditions. However, the robustness of the LQG controller should be independently verified.

In this thesis, the robustness of the controller in the presence of external disturbances

and measurement noise has been studied. The simulation results show that the EPS

controller can efficiently attenuate the interference caused by road random excitation and

can competently work with the corrupted measurements. The robustness of the controller

against the changes in the system parameters such as mass and inertia of steering linkages

has been investigated for an early version of this controller [91]. The simulation results show

that the modified LQG controller is robust against small changes in system parameters.

6.3.4 EPS Controller Evaluation

Designing a complex product typically requires many trial and error experiments, which is

a time-consuming and costly approach. A strategy that usually is adopted by car manufac-

turers to reduce the development time is to perform experiments using software-in-the-loop

(SIL) simulations before testing on a real vehicle. SIL simulations provide a platform to

consider the complexity of the real vehicles via computer simulations. In this thesis, the

EPS controller is evaluated in SIL simulations using the high-fidelity driver-vehicle model.

The high-fidelity vehicle model used in this thesis is verified against an experimentally

validated ADAMS model, and the driver model is validated against the published research

articles. SIL simulations using the high-fidelity integrated driver-vehicle model ensures

the robust performance of the controller interacting with a human driver in a real-world

condition.
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6.4 Summary of Contributions

The research contributions of this thesis can be summarized as follows:

• Development of a high-fidelity integrated driver-vehicle model to study steering tasks

• Development of a high-fidelity model of a vehicle equipped with a column-assist

electric power steering system in MapleSim. The model is verified against an exper-

imentally validated ADAMS model.

• Development of a fully neuromusculoskeletal driver model, validated with the data

published in the research articles, considering the bone and muscle geometry of the

driver’s arm in MapleSim

• Development of a simplified (2D) driver model to be used in the optimization proce-

dures

• Improvement in the disturbance rejection control of the driver model by considering

a disturbance observer, muscle stretch reflex and joint stiffness modulation

• Development of an observer-based disturbance rejection controller with new objective

function formulation for electric power steering systems

• Quantifying the muscle fatigue to represent the steering feel

• Considering age and gender in the EPS control design to improve the steering feel

for a predefined group of drivers

• Development of a systematic way to tune the EPS characteristics curves

6.5 Recommendations for Future Research

The research described in this thesis contributes to better understanding of neuromus-

culoskeletal modeling of driver and improvement of driver-assist technologies. There are

several areas where further research would be beneficial:
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• The next step that naturally follows the software-in-the-loop simulations (using the

validated integrated driver-vehicle model) is to verify EPS controllers using Driver-

in-the-loop simulations. A set of driver-in-the-loop simulations can be conducted to

ensure the performance of tuned EPS controllers. For these simulations, a driving

simulator can be used to implement the different EPS controllers to study differ-

ent drivers within a predefined driver group. Electromyography activities of driver’s

upper limb muscles should be measured to verify the validity of the proposed hy-

potheses.

• An additional set of electromyography activities of driver upper limb can be used

to further validate the driver’s arm model. Since some of the parameters of driver

model are adopted from the published data or optimization, further experiments can

be designed to verify these parameters.

• A three-element Hill-type muscle model can be used instead of two-element muscle

model to enhance the fidelity of muscle model and to physiologically replicate the

joint stiffness induced by muscle co-contraction.

• Scapula and the muscles holding it are one of the major locations of shoulder injuries;

therefore, the scapula should be added to the driver’s arm model to study shoulder

injuries during steering tasks; and more importantly, to develop a more accurate

model.

• The 3D driver model can be used in the driver ergonomic studies to find the best

position and orientation of steering wheel or driver seat as well as other driver-assist

devices.

• The 3D driver model can be used as a stand-alone model to study human upper-

extremity movements. For example, this model can be easily adjusted to hold other

devices such as a rehabilitation robot. The interaction between the patient’s hand

and robot can be extensively investigated.

• The muscle fatigue calculated from the neuromuscular driver model can be used to

dynamically adjust the EPS characteristic curve. For example, in a long and extreme
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maneuver where a continues amount of activation is required, the assist gain can be

increased to hold the fatigue at a constant level.

• A separate filter can be designed for the case with corrupted steering wheel angle

measurements to improve the EPS controller’s disturbance rejection performance as

well as providing proper assistance.

• An adaptive approach can be used to learn a driver’s characteristics and use this

information to provide appropriate assistance to the driver.
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A
State-Space Formulation of Control-Oriented

Model

To construct the state-space representation of the control-oriented model (see Fig. 3.5),

the state variables are defined as x =
[
β i ωz θr θ̇r θsw θ̇sw

]T
, and the inputs to

the EPS system are defined as driver torque (uτ ), terminal voltage of electric motor (uv)

and disturbance torque (ud) at the intermediate shaft (pinion). The state space equations

of the system can be described by,

ẋ = Ax +Bvuv +Bτuτ +Bdud

y = Cx =
[
Ttb θsw i θ̇m ay r

] (A.1)
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where A, Bv, Bτ , Bd and C are the system, input and output matrices of the system. Here,

it is assumed that the torque sensor value, steering wheel angle, motor current, angular

velocity of motor shaft, yaw rate and lateral acceleration of vehicle are measurable and

included in the output y.

By rewriting the differential equations (3.12 - 3.15) into the state-space matrix format,

the system matrix (A) can be desribed by Eq. (A.4), and input matrices can be described

as follow:

Bτ =



0

0

0

0

0

0

Jsw
−1


, Buv =



0

L−1

0

0

0

0

0


, Brf =



0

0

0

0

Jr
−1

0

0


(A.2)

where the input matrices related to driver torque, friction force, and terminal voltage are

Bτ , Brf , and Buv, respectively. The output matrices C and D can be described by:

C =



0 0 0 −Ktb 0 Ktb 0

0 0 0 0 0 1 0

0 0 0 0 G 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

− (Cαf+Cαr)

m
0 − (CαfLf−CαrLr)

mVx

Cαf
Gsteeringm

0 0 0


, D =

[
0
]

(A.3)

153



A
=
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+
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0
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0
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0
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)
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B
Upper Extremity Muscle Path Parameters

In this thesis, the upper extremity model of driver including torso, humerus, forearm and

hand holding a steering wheel is developed in MapleSim. The muscle path parameters used

in the 3D musculoskeletal arm model are adopted from the published research articles

[111, 43, 159, 139], and are summarized in Table B.1. The muscle origin and insertion

coordinates are given with respect to the local reference frames as shown in Figure 4.1b.
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