
The UNIX Process Identity Crisis: A
Standards-Driven Approach to

Setuid

by

Mark S. Dittmer

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Mark S. Dittmer 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This work revisits the setuid family of calls for privilege management that is imple-
mented in several widely-used operating systems. Three of the four commonly used calls
in the family are standardized by POSIX.

The work investigates the current status of setuid and, in the process, challenges some
assertions in prior work. It addresses three sets of questions with regards to the setuid
family: (1) Is the POSIX standard indeed broken as prior work suggests? (2) Are imple-
mentations POSIX-compliant as claimed? (3) Are the wrapper functions that prior work
proposes to circumvent issues with setuid calls correct and usable?

Towards (1), the standards are expressed in a precise syntax that lends itself to a
rigorous assessment of whether the standards are unambiguous and logically consistent
descriptions of well-formed functions. Under some reasonable assumptions, two of the
three functions that are standardized fit these criteria, which challenges assertions in prior
work regarding the quality of the standard. In cases wherein the standard is broken, the
problem is clearly characterized, and suggestions are given for fixing standard, but at the
cost of backwards-compatibility.

Towards (2), a state-space enumeration is performed as in prior work, and a discussion
of the implications of non-conformance and differences in implementation is presented.

Towards (3), some issues with prior wrappers are identified. The work proposes a new
suite of wrapper functions which are designed with a different mindset from prior work,
and provides both stronger guarantees with respect to atomicity and a clearer semantics
for permanent and temporary changes in process identity.

With a fresh approach, this work is a contribution to a well-established mechanism for
privilege management.

iii

Acknowledgements

All blessings are divine in origin but none can be compared with this power of
intellectual investigation and research which is an eternal gift producing fruits
of unending delight. [...] Briefly; it is an eternal blessing and divine bestowal,
the supreme gift of God to man.

∼ ‘Abdu’l-Bahá

For all my capacities and achievements I give thanks to God.

I would like to thank my wife, Livia, for her loving support in every aspect of my education,
this work included. I would also like to thank my supervisor, Dr. Mahesh V. Tripunitara,
whose unfailing support and generosity continue to ensure a high standard of quality for
my work, and Dr. Vijay Ganesh whose compelling offering of a course on formal logic
applications inspired core aspects to my approach of the subject matter. Finally, I would
like my league of indefatigable proofreaders. You know who you are.

iv

Dedication

For Tessa, my constant source of inspiriation. Welcome to this wonderful world. May you
always engage it with passion, rigor, and precision.

v

Table of Contents

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

1.1 Motivation . 4

1.2 Contributions . 5

1.2.1 Summary of Observations . 5

1.3 Related Work . 6

1.4 Outline . 7

2 Setuid Standard 8

2.1 Unambiguity of the Standards . 11

2.2 Logical Consistency of the Standards . 12

2.3 Standards as Function Descriptions . 13

2.4 Fixing the Standard . 13

2.5 Setresuid . 14

vi

3 Setuid Implementations 15

3.1 Standards Compliance . 16

3.1.1 Results . 17

3.2 Security Implications . 18

4 Alternative Interfaces 20

4.1 Proposed Interface . 21

5 Conclusions and Future Work 25

APPENDICES 27

References 38

vii

List of Tables

1.1 The four functions that comprise the setuid family 2

2.1 Implementation-dependent parameters in the POSIX setuid standard . . . 11

3.1 POSIX setuid standard compliance for five modern operating systems . . . 18

A.1 Semantic definitions of syntactic elements in logic formulas 27

A.2 Formulas common among four main setuid functions 30

A.3 Function definition and formulas for setuid() 31

A.4 Function definition and formulas for seteuid() 32

A.5 Function definition and formulas for setreuid() 33

A.6 Function definition and formulas for setresuid() 35

viii

List of Figures

1.1 A compressed setuid() state graph fragment that contrasts Darwin and
FreeBSD . 3

3.1 An example of implementation differences for the EINVAL error being poten-
tially problematic . 19

ix

List of Algorithms

1 ChangeIdentityPermanently(uid,G) . 23

2 ChangeIdentityTemporarily(uid,G) . 23

3 GoToState(ncState, ntState, uidMap,G) . 23

x

Chapter 1

Introduction

Privilege management is an essential security function provided by modern operating sys-
tems. It provides a way to control access to system resources. An underlying reason for
managing privileges is so the system as a whole achieves some security property, such as
adherence to the principle of least privilege [11]. Via mechanisms provided for privilege
management, a process may, for example, temporarily raise its privilege to complete a
sensitive task, and then return to its lower privilege level for its remaining tasks.

The setuid family of functions is a POSIX standard [12], and is amongst the oldest
mechanisms for privilege management. It has been part of UNIX systems for several
decades [16]. In systems in which setuid is used, the privilege of a process is indicated by
the user and group identities (IDs) that it possesses. In this way, privilege management
with setuid()-related functions is a sort of process identity management ; to modify its
privileges, a process assumes a different user and/or group identity. There are customarily
three user IDs with which a process is associated: real, effective, and saved. A history of
the evolution of these IDs is provided by Chen et al. [7]; a brief description is provided here.
The real user ID is the ID of the user that invokes the program that the process executes.
The effective user ID is used by the operating system for most authorization checks. In
many cases, the effective user ID is the same as the real user ID, because access control is
based customarily on the invoker (i.e., the user whose process is attempting access).

However, the effective and the real user IDs may differ in cases wherein, for example,
a developer wants authorization to be granted based on the owner of the program rather
than the invoker of the program. This is a common way of controlled privilege escalation
— a process executed by an unprivileged user is able to perform privileged actions, but
only within the confines of what a particular program is created to do. The saved user ID

1

Table 1.1: The four functions that comprise the setuid family, a brief description of each,
and whether each is available on the operating systems under test. The functions setuid(),
seteuid(), and setreuid() are standardized by POSIX, whereas setresuid() is not.

Name Purpose OS

setuid(uid t i)

Sets the effective user ID of the calling pro-
cess. Leaves the real and saved IDs un-
changed, unless the caller is privileged.

1–5

seteuid(uid t e)

Sets the effective user ID of the calling pro-
cess. If the caller is unprivileged, it may set
the effective to the real or saved user IDs.

1–5

setreuid(uid t r, uid t e) Sets the real and effective user IDs. 1–5
setresuid(uid t r, uid t e,

uid t s)
Sets the real, effective, and saved user IDs. 2–4

1: Darwin 13.0.0 2: FreeBSD 9.1 3: Linux 3.8.0 4: OpenBSD 5.4 5: OpenIndiana 5.11

is used, as its name suggests, as scratch space — to save, for example, a user ID of higher
privilege so the effective user ID may be set to it when needed.

When a process is created and starts to execute a program, the real, effective, and saved
user IDs of the process are instantiated based on the permission settings of the program.
These permission settings are stored on disk along with the program as its meta-data. The
permission settings may indicate, for example, that a process that executes the program
should have, as its initial effective user ID, the ID of the owner of the program and not the
invoker [3].

The purpose of setuid functions is to enable a process to change its real, effective,
and/or saved user IDs. For example, if the real and effective user IDs are those of an
unprivileged user, and the saved user ID is that of a privileged user, then a setuid call can
be invoked to set the effective user ID to the saved user ID, and leave the real and saved
user IDs unchanged. This has the effect of raising the privilege level of the process. Later,
the process can invoke a setuid function to set the effective user ID to be the same as the
real user ID, and thereby lower its privilege level. Processes that follow this pattern are
often referred to as setuid-root processes. Processes in the broader class of programs that
invoke setuid functions to switch identities — regardless of whether one of the identities is
privileged — are referred to as setuid processes.

There are four functions in the setuid family for changing a user ID, listed in Table 1.1.

2

Figure 1.1: A compressed setuid() state graph fragment that contrasts Darwin and
FreeBSD. The graph fragment contains all setuid() calls where: (1) the transitions on the
two platforms differ, and (2) the transitions are to and from the three selected states. Nodes
are labeled with <real, effective, saved> user IDs. Edges are labeled with Platform

(argument): return value. The state labeled with both <1, 1, 1> and <2, 2, 2>

is a merger (“compression” — see Chapter 3) of those two states, which are equivalent.
For example, in the FreeBSD transition from <1, 2, 1>, the actual destination state is
<2, 2, 2>.

There are other functions in the extended family, such as those for inspecting the user IDs
and manipulating group IDs. Some systems have additional, implementation-specific user
IDs than just the three (real, effective, saved) discussed here. In addition, some systems
implement fine-grained credentials that decouple privileges from user IDs. For example,
Linux capabilities and Solaris privileges allow processes to hold privilege to perform specific
actions, regardless of the user IDs associated with the process. Although these additional
mechanisms do play an important role in process identity management, only the setuid
family is considered here.

The three functions, setuid(), seteuid() and setreuid() are standardized by POSIX,
although setreuid() is marked for deprecation. The last function, setresuid(), is non-
standard. Despite that POSIX setuid is a decades-old standard, setuid implementations
differ from system to system. An example of some setuid() implementation differences
is given in Figure 1.1. Each edge in the graph fragment is labeled as belonging to either
Darwin or FreeBSD. The graph illustrates how FreeBSD may set all three user IDs (real,
effective, saved) on successful setuid() calls, even if the effective user ID is unprivileged.

3

Darwin, in contrast, sets only the effective user ID in the unprivileged case. Also notice
that, on Darwin, calls to setuid() that are passed the current effective ID remain in the
same state, but sometimes return 0 and other times -1.

Taken together, setuid implementations across different platforms are fraught with such
inconsistencies, some easy to generalize and some not. For example, seteuid() behavior
on Darwin and FreeBSD are identical, and the same is true for setreuid() on Linux and
OpenIndiana1. However, the implementation differences in setreuid() on other platforms
is very difficult to characterize succinctly. As discussed in Chapter 2, this sore spot is not
surprising given several problems with the standard for setreuid().

1.1 Motivation

Setuid is well-established both in the POSIX standard and in implementations, and several
of its problems are well-known. It has even been characterized as “untrustworthy” [21].
Furthermore, some systems have implemented fine-grained privilege management that in-
teracts with setuid (e.g., Linux Capabilities and Solaris Privileges).

Also, devices that rely on setuid number in the tens or even hundreds of millions [2].
Such devices include cloud-computing and e-commerce servers. Furthermore, setuid is
invoked by many tools in UNIX systems, such as mount. Given the fundamental nature of
such setuid-dependent tools, devices’ reliance on setuid is unlikely to ease in the foreseeable
future.

The behavior of some calls, such as setuid(), has changed in some systems recently.
For example, setuid(-1) behaves differently in Linux 3.2 (released early 2012) than in
3.8 (released early 2013). It is no surprise that work on addressing issues related to setuid
continues (see Jain et al. [13] for a recent example).

Therefore, it is meaningful for us to investigate the status of setuid with an intent of
seeking improvements. The research community in security has exposed a number of issues
with setuid in the past [7, 8, 21]. This work explores whether things have improved with
setuid over the past decade or so, particularly since the work of Chen et al. [7], which
discusses the issues in some depth.

1Unless otherwise indicated, statements about different UNIX platforms refer to the particular platform
versions mentioned below Table 1.1.

4

1.2 Contributions

This work is broadly about investigating the current status of setuid, and challenging some
of the assertions from prior work, such as those of Chen et al. [7] and Tsafrir et al. [21].
It poses and answers the following sets of questions. (1) Is the POSIX standard indeed
broken as prior work suggests? That is, are the relationships described in the standard un-
ambiguous, and does the standard specify well-formed functions? (2) Do implementations
that claim to be POSIX-compliant comply with the latest standard? (3) Do the setuid
functions and/or setuid wrappers from prior work provide programmers with an interface
that is both correct and usable?

Towards (1), the standards are expressed using quantifier-free first-order logic with an
associated semantics. (See Chapter 2 and Appendices.) Constructing this logic was not
very challenging, which suggests that the standards are somewhat well-written. Of course,
the standards could be encoded in some other precise syntax (e.g., functional). This choice
is not critical to the work or the ensuing results.

Towards (2), the precise expression of the standards is combined with a state-space
enumeration similar to that of Chen et al. [7] to assess whether five systems that claim to
be POSIX-compliant adhere to the latest standard (see Chapter 3).

Towards (3), a discussion of some issues with setuid wrappers proposed in 2002 [7] and
2008 [21] is provided. Further, the afforementioned state-space enumeration is extended to
include the functions from 2008 (see Chapter 4). These analyses reveal several usability and
correctness problems. Finally a new interface is proposed for managing process identities,
and analyzed to establish its correctness and argue its usability.

1.2.1 Summary of Observations

Several observations and results that differ from or build upon prior work are reported. For
example, the notion of appropriate privileges, which the standard uses to capture implemen-
tation differences between standard-compliant systems, does not fully do so. Nevertheless,
the presented analysis reveals that the standards for the setuid() and seteuid() are,
under some reasonable assumptions, unambiguous function descriptions. Furthermore,
with the exception of FreeBSD, all of the operating systems under test abide by these two
standards, and a simple explanation for FreeBSD’s deviation from the standard is provided.

Analysis also reveals that the standard for setreuid() is both ambiguous and logically
inconsistent. The analysis precisely identifies the ways in which the standard is broken,

5

offers an interpretation of the standard that is consistent with most systems under analysis,
and precisely defines the way in which other systems appear to have implemented the
function. Also note that POSIX has designated setreuid() for deprecation [12].

Analysis of existing setuid wrappers points to several usability and correctness issues.
Both wrappers do not perform sufficient sanity checks to ensure that the action implied by
the function name is performed correctly. A wrapper proposed in 2002 also has a condition
in which it fails silently. Finally, the wrapper proposed in 2008 will, by default, crash the
process when it gets stuck in an irreparable state.

1.3 Related Work

Setuid has been part of UNIX systems for several decades [16]. Chen et al. [7] provide a
concise history of the evolution of the three user IDs (real, effective and saved) discussed in
this work, and the associated family of functions, setuid(), seteuid(), setreuid(), and
setresuid(). Issues with setuid have been known for a long time. For example, Bishop [3]
discusses how to write a program for which it is safe to set the setuid bit, so that it runs
with the owner’s user ID as its effective user ID, rather than the invoker’s.

The work of Chen et al. [7] is the first to systematically study the setuid family, and
discuss problems related to ambiguity in the POSIX standard and compliant implementa-
tions. It remains the most comprehensive study on the topic. That work considers POSIX
1003.1-1988, which, as that work asserts, standardizes the setuid() call only. Since then,
and as of the writing of this paper, POSIX has standardized seteuid() and setreuid()

as well. Also, the standard for setuid() has not changed in any substantive way since the
publication of that paper.

The work of Tsafrir et al. [21] builds upon the work of Chen et al. [7]. Specifically, it
points out that the prior work does not consider the role that groups play in an access
control decisions. It then provides wrapper-functions over the setuid, setgid, and setgroups
calls for a process to, for example, drop its privileges permanently.

This work builds upon the work of Chen et al. [7] and Tsafrir et al. [21], comparing
new data from the presented state-space enumeration to the data reported by Chen et
al. [7]. Also, the work challenges several assertions in those two pieces of work regarding
the quality of the standard, and compliance of implementations. Portions of this work are
published elsewhere [9].

Apart from the above pieces of work that deal directly with setuid, there is broader
work related to authorization; refer to Bishop [4] for a comprehensive discussion.

6

1.4 Outline

The remainder of this work is organized as follows. The next chapter discusses a precise
encoding of the POSIX standard (formalized in the Appendices) and an implementation-
independent description of setresuid(), which has not been standardized. The chapter
also contains analysis that shows which of these standards and documentation are unam-
biguous function descriptions. In Chapter 3, five setuid implementations are compared
with the standards and documentation. In addition, the chapter contains analysis of the
usability and correctness of two process identity management interfaces that wrap setuid.
In Chapter 4 two alternative interfaces that wrap setuid are discussed and and a third
based on experiments presented in Chapter 3 is described. Finally, Chapter 5 summarizes
conclusions drawn from this work and opportunities for future work are identified.

7

Chapter 2

Setuid Standard

This work assesses the latest POSIX standard [12] for setuid as to whether it provides un-
ambiguous, logically consistent function descriptions. In this context, unambiguous means
that the standard text does not have more than one reasonable interpretation, logically
consistent means that there are no contradictions, and function description means that
the relationships described in the standard define mathematical functions (i.e., a map-
ping from each possible input to exactly one output). The first criterion, unambiguity, is
somewhat subjective; the other two criteria are objective.

Structure of the standard The text in the standard for each setuid function has four
parts: (1) the name and signature of the function, (2) a description of function behavior,
(3) a description of the return value, and (4) a list of error conditions which may cause the
function to fail. This work does not consider other sections, such as rationale and change
history, that discuss the evolution of the standard. The setuid functions standardized by
POSIX have three features in common:

• Return a value of 0 to indicate success;

• Return a value of -1 to indicate failure;

• Fail for one of two reasons:

– The EINVAL error occurs if any function argument is invalid or out-of-range,

– The EPERM error occurs if the process does not have permission to set user IDs to
the requested values. This error can only occur when a process is unprivileged.

8

How the standards were assessed As the standards are written in a natural language,
interpreting them is inherently a subjective exercise. The first task was to express the
standard for each function using a precise syntax that lends itself to a precise semantics.
The standard has been translated using quantifier-free first-order logic, with an associated
semantics.

This representation was chosen for two reasons: (1) the sentences of the standard
describe relations over process UID states and function inputs, (2) these relations are
expressed in terms of value equality/inequality. The results from this exercise are presented
in the Appendices. Translation of standards from a natural language to logic is not novel.
There is work, for example, in translating standards for communication devices to logic for
the purpose of verification [1, 19].

For each setuid function, there is a set of formulas. The intent is that the formulas are
true facts about any invocation of the function. The set of facts for a function together
specify when an invocation of the function succeeds, and when it fails. Process state
is modeled as a three-tuple of the process’ real, effective, and saved user IDs. Setuid
function calls are modeled as stateful functions that can manipulate these three values.
Each function has a set of explicit arguments as defined by the standard. In addition,
the standards contain several implementation-specific parameters. The most conspicuous
of these parameters is “appropriate privileges,” which is discussed at length by Chen et
al. [7]. Implementation-specific parameters are discussed below, after this discussion of the
translation. Although these components (state, arguments, and parameters) are sufficient
to capture the meaning of statements in the standards, additional intermediate variables
are introduced for clarity.

Consider the following passage from the standard for setuid() and the corresponding
translation to logic. Prior work [7] points to setuid() as a particularly problematic func-
tion in the setuid family. The example serves to illustrate the translation process, and to
convince the reader that the translation process is sound in that a reasonable interpretation
of the standard has been adopted.

From the standard:

If the process does not have appropriate privileges, but arg uid1 is equal to the
real user ID or the saved set-user-ID, setuid() shall set the effective user ID to
arg uid ; the real user ID and saved set-user-ID shall remain unchanged. [12]

1The argument name used in the standard is actually uid. Its name is changed to arg uid to avoid
confusion between propositional variables in logical expressions.

9

Translation2:

success nap↔ rtn = 0 ∧ new ruid = old ruid ∧
new euid = arg uid ∧ new svuid = old svuid

(2.1)

success nap← ¬AP ∧ (old ruid = arg uid ∨
old svuid = arg uid)

(2.2)

The prose applies to the case that the process does not have appropriate privileges. The
boolean variable (propositional atom) success nap indicates a successful call by a process
that does not have appropriate privileges. Formula (2.1) expresses the effect, and serves to
define success nap. Formula (2.2) expresses the conditions under which success nap are
expected to occur. Notice that the use of the form, “If [condition], [action]” translates to
implication, not equivalence, because the text does not state that success nap should not
occur when the given condition is false.

Implementation-specific parameters It can be argued that, for application devel-
opers, it is ideal that all setuid functions have well-defined implementation-independent
standards. However, in reality, systems developers usually care more about backwards-
compatibility than with highly refined function behavior. It can be argued, then, that
the ideal of implementation independence is unattainable for POSIX for two reasons: (1)
there are setuid implementation differences between some of the earliest UNIX systems,
and (2) many modern systems have moved away from the mindset of the all-powerful root
user, preferring to divide power into smaller units. An example of this is the notion of
capabilities in Linux [15]. In Linux, assigning the root user ID to the effective user ID of
a process activates all capabilities. However, processes can be given individual capabili-
ties even when their effective user ID is not root. For example, a process may obtain the
CAP_SETUID capability, which allows the user to “make arbitrary manipulations of process
UIDs” [15].

POSIX’s way of dealing with this has been to abstract unrestricted setuid privileges
in the phrase “appropriate privileges.” Prior work has suggested that this abstraction is
a cause of confusion about setuid implementation differences [7]. Based on analysis of
the standard, appropriate privileges is not to blame for this confusion. Indeed, it is not
difficult to give a crisp definition of appropriate privileges on most platforms; for example,
on Linux, a process has appropriate privileges if and only if the process has CAP_SETUID

in its set of effective capabilities.

2The given equations are duplicates of A.10 and A.11

10

Table 2.1: Implementation-dependent parameters in the POSIX setuid standards, as they
are defined in the logic system in the Appendices.

Name Description
AP Appropriate privileges.

IsUID(id)
The value, id, is not a valid user ID on
the system.

RuidIsPermitted(id)

Given the current privileges of the pro-
cess, the value of id is permitted by
the system as real user ID argument for
setreuid().

The notion of appropriate privileges can make the standard easier to read for the
following reason. If all implementation-dependent behavior is captured by the notion of
appropriate privileges, then the constraints of the standard + a definition of appropriate
privileges suffice to precisely define function behavior. Unfortunately, as discussed below,
appropriate privileges is not the only implementation-dependent parameter in the setuid
standards. A complete list of such parameters is presented in Table 2.1.

Special user IDs It is worth noting that setreuid() and setresuid() treat an argu-
ment value of -1 specially. Informally, this value indicates, “do not change the correspond-
ing user ID”. Unfortunately, the standards for setuid() and seteuid() make no mention
of how an argument value of -1 should be treated. By this omission, it is presumed that
POSIX intends such cases to fall under the purview of implementation-dependent param-
eters. Security implications of this choice are discussed in Section 3.2.

2.1 Unambiguity of the Standards

This section discusses the first of three properties for the standard: unambiguity. The
setuid() and seteuid() standards are unambiguous. All references to function arguments
and state variables have a clear meaning.

However, the standard is ambiguous for setreuid(). For example, the standard refers
to the real user ID state variable in different instances as “new real user ID”, “current
real user ID”, and “real user ID”. It is unclear whether the third term refers to the state

11

variable at the time the function is invoked, or upon return. The same issue arises in the
use of the phrase “either the real, effective, or saved user ID.”

Through various iterations of setuid state graph verification (see Chapter 3), the mean-
ing of ambiguous phrases that minimizes the number of systems under test that violate
the setreuid() standard has been deduced. By “real user ID” the standard appears to
be most widely interpreted as the current real user ID (i.e., the real user ID value prior to
function invocation). By “either the real, effective, or saved user ID” the standard appears
to be most widely interpreted as the respective current IDs.

2.2 Logical Consistency of the Standards

The second criterion for assessing the standard is logical consistency — the absence of
contradictions.

The standards for setuid() and seteuid() are logically consistent. The standards
describe the following four broad categories of behavior: (1) function success for a pro-
cess with appropriate privileges, (2) function success without appropriate privileges, (3)
function failure due to lack of appropriate privileges, and (4) function failure due to in-
valid input arguments. As such, the class of relations described in the standard can be
contradictory in two ways: some set of input arguments may entail (1) different function
behaviors (e.g., the function both succeeds and fails), and/or (2) some implementation-
dependent parameter is both true and false. In the case of setuid() and seteuid(), no
two behaviors overlap, and that no parameter contradictions are entailed. Therefore, these
standards are logically consistent.

The setreuid() standard is logically inconsistent. The standard explicitly allows pro-
cesses without appropriate privileges to set the effective user ID to any one of the current
real, effective, or saved user IDs. However, the EPERM condition specifies that an attempt
by processes without appropriate privileges to set the effective user ID to any value other
than the real or saved user ID is an error. As such, the standard contains contradic-
tory success/failure conditions for certain inputs. For example, if <ruid, euid, svuid>

= <0, 1, 2> and setreuid(0, 1) is invoked, the main function description suggests that
the call should succeed whereas the errors section suggests that the call should fail.

12

2.3 Standards as Function Descriptions

The third criterion is whether the standards specify well-formed functions, that is, a map-
ping from every possible input to a single output.

The standards for setuid() and seteuid() describe well-formed functions. The four
categories of behavior described in the previous section cover all possibilities. Furthermore,
each category describes precisely what the function’s return value and the process-state
should be upon return. Therefore, these standards are complete. Taken together, the
standards are indeed function descriptions.

In the case of setreuid(), in addition to the logical inconsistencies described in the
previous section, the standard does not specify the behavior for all function inputs. For-
mula 2.3 below3 is the only one that defines the behavior of the saved user ID when the
function returns successfully. The problem is that the formula specifies an “only if” con-
dition, and not an “if and only if”. That is, the expression evaluates to > (i.e., “true”),
even if the expression to the right of the inference is false. The new saved user ID is not
constrained to a single value when the right-hand side of the formula is false.

(new svuid = new euid) ←(arg ruid 6= −1 ∨
(arg euid 6= −1 ∧ (2.3)

arg euid 6= old ruid))

2.4 Fixing the Standard

Based on observations in the three previous sections the standards are broken in two ways.
One is the ambiguity, contradictions, and incompleteness of setreuid(). The other is
the extraneous implementation-dependent parameters outside the context of appropriate
privileges. There seem to be two conflicting perspectives on whether the standards are
easily fixed.

On one hand, these problems are seemingly easy to fix. A previous section offered an
interpretation of ambiguous statements that maximizes compliance of five modern UNIX-
like systems. Contradictions in setreuid() can be resolved by adopting one of the two
descriptions for a valid arg euid argument, and its functional description can be completed
by changing the saved user ID requirements to read “if and only if.” Finally, extraneous

3Formula 2.3 is a simplified form of Formula A.21 in the Appendix.

13

implementation-dependent parameters can be dropped by specifying: (1) arg ruid values
for setreuid() in the unprivileged case that are acceptable, and (2) user IDs that should
trigger the EINVAL error condition for each function.

On the other hand, however, these changes would break standards compliance for sev-
eral implementations. At least three setreuid() implementations (FreeBSD, Linux, and
OpenIndiana), and two setuid() and seteuid() implementations (Darwin, and OpenIn-
diana) would no longer comply.

2.5 Setresuid

As mentioned in Chapter 1, POSIX standardizes only three of the setuid functions under
investigation: setuid(), seteuid(), and setreuid(). Three of the five operating systems
under test additionally support setresuid() (see Table 1.1 in Chapter 1). A careful study
of setresuid() in prior work [7, 21] and the documentation for it in the three systems that
support it [10, 14, 17] reveals that all of them specify the same semantics for it with respect
to processes with and without appropriate privileges. That is, even where the specifications
for the function’s behavior may differ, they do not differ for success and failure conditions
for a process with appropriate privileges, or for a process without appropriate privileges.
Any difference is only in what constitutes appropriate privileges. This work refers to their
common specification as the consensus standard for setresuid().

The consensus standard for setresuid() is an unambiguous, logically consistent func-
tion description. All terms have a clear and consistent meaning, the input conditions for
each output behavior are non-overlapping, and every input maps to an output. This clar-
ity with setresuid() has been pointed out by prior work [7, 21], and the investigation
presented in Chapter 3 verifies that the three setresuid() implementations under test
conform to the consensus standard. Nevertheless, cross-platform applications cannot rely
on setresuid() alone, making other analyses in this work crucial to such applications,
because, as mentioned above, (1) it is not standardized, and (2) not all systems support
it.

14

Chapter 3

Setuid Implementations

To evaluate setuid standards compliance a state-space enumeration similar to the one
described by Chen et al. [7] was performed on the five operating systems mentioned in
Table 1.1. The procedure systematically explores all possible user ID states of a process,
and the state-transitions from each state to other states, under certain assumptions. The
procedure assumes that, with the exception of uid = -1 — implicitly or explicitly cast
to uid_t, discussed below — all unprivileged user IDs have the same restrictions placed
on their setuid calls. It further assumes that no new user IDs other than those listed as
function arguments are introduced in the resulting state.

As noted in Table 1.1, Darwin and OpenIndiana do not implement setresuid(). As
one might expect, they similarly do not implement getresuid(). To look up the saved
user ID on Darwin, the state-space explorer invokes proc_pidinfo(), which fills out a
struct containing, among other things, the current saved user ID of the process. To look
up the same datum on OpenIndiana, the program reads it from the /proc/[pid]/cred

file.

A point of curiosity during this exercise was how the EINVAL error is triggered in each
system. Before completing a full state-space enumeration, two hypotheses were manually
tested: (1) systems will return EINVAL when a negative user ID is applied to any setuid
function (with the exception of passing -1 to setreuid() and setresuid()), and (2)
systems will return EINVAL when -1 is passed to setuid() and seteuid(). Hypothesis
(1) proved to be false; this is not surprising, given the uid_t is unsigned int on all
five platforms. Hypothesis (2) holds for Linux and OpenIndiana, but not for Darwin,
FreeBSD, and OpenBSD. In fact, Hypothesis (2) accounts for all instances of EINVAL in
the enumeration.

15

The above-mentioned observations led to two key differences between the state-space
exploration presented here (henceforth referred to this enumeration) and that of Chen et
al. [7]. This enumeration investigates five systems, whereas the prior work investigated
three. Also, Chen et al. [7] do not present findings regarding transitions between non-
root users. This enumeration is performed over eight user IDs: -1, 0, and 1 through
6. User IDs -1 (only supported by some systems) and 0 (the super-user) are treated
specially. Six additional unprivileged user IDs are included to cover state transitions such
as: 〈1, 2, 3〉 → setresuid(4, 5, 6) → 〈?, ?, ?〉. Constructing this larger graph ensures
that, under the above-mentioned assumptions, the enumeration explores all possible states.
The output of the state-space enumeration is a graph, GOS as follows:

U = {−1, 0, 1, 2, 3, 4, 5, 6}
GOS = 〈V,E〉
V = 〈ruid, euid, svuid〉
E = 〈function, arguments, return value〉
function ∈ {setuid(), seteuid(), seteuid(),

setreuid(), setresuid()}
every argument ∈ U

The assumptions suggest that the graph could be compressed; one could, for example,
deem that <1,2,2> = <6,4,4>. This compression would save space and require that edges
be labeled with a remapping of canonical user IDs. Figure 1.1 shows a fragment of a
“difference” graph (generated automatically) that contains such a compression. The graph
fragment shows some of the differences between Darwin and FreeBSD for setuid().

3.1 Standards Compliance

Once the setuid state graphs for all five systems were constructed, the logic of the stan-
dards1 was reified as C++ code that inspects state transitions for standards compliance.
Then, standards compliance of the five graphs was checked against the reified logic. The
results of this experiment are reported in Table 3.1. As a follow up experiment, con-
straints were relaxed in the standard to better understand the nature of non-compliant
implementations.

1In the case of setreuid(), the more permissive interpretation of acceptable arg euid values from the
DESCRIPTION portion of the standard is applied. Naturally, applying the unmodified standard in its
logically inconsistent state would fail.

16

Checking for contradictions related to function output was straightforward: the propo-
sition (success ∧ ¬fail) ∨ (fail ∧ ¬success) must hold for all edges.

Checking implementation-dependent parameters was more nuanced. In the case of
¬IsUID(.), observe that if a call to function, f , with arguments, A, triggers an EINVAL

error in one context, it is because ∃ a ∈ A . ¬IsUID(a). Therefore, if f(A) triggers EINVAL
in one context, then it must trigger EINVAL in any context. To check the consistency of
EINVAL, a list of 〈f, A〉 pairs that trigger the error was maintained. After visiting the entire
graph once, the graph was revisited to confirm that no such pair triggers the error in one
context but not another. Note that this proves a weak condition on the full set of function
parameters. It does not prove which argument value triggers EINVAL, or whether the
offending argument is treated inconsistently by the system. As discussed below, the identity
and consistency of invalid user IDs become self-evident when each system’s instances of
EINVAL are manually inspected.

To check AP (appropriate privileges), the formulas constructed from the standard
were manipulated to derive facts that necessarily entail either AP or ¬AP . Then the
fact ¬(AP ∧ ¬AP) was checked on all edges. In the case of setreuid(), where such
facts contain the implementation-dependent condition RuidIsPermitted(arg ruid), the
weak condition that ¬(AP ∧ ¬AP) holds for either RuidIsPermitted(arg ruid) = > or
RuidIsPermitted(arg ruid) = ⊥ (where > and ⊥ indicate true and false, respectively)
was checked. The same procedure was used to check RuidIsPermitted(arg ruid) with
this weak condition applied to AP .

3.1.1 Results

FreeBSD’s setuid() implementation is out of date. In previous revisions of the POSIX
standards, POSIX introduced a parameter called _POSIX_SAVED_IDS, which was to be set
to either “defined” or “undefined”. POSIX now mandates that implementations follow
the behavior for which _POSIX_SAVED_IDS is defined, but FreeBSD’s setuid() function
implements the _POSIX_SAVED_IDS-undefined case in the old standard.

Darwin and OpenBSD’s setreuid() implementations violate the standard for setting
the saved user ID. Rather than following the rule expressed by Formula 2.3 from Section 2.3
(or, in the complete standard logic, Formula A.21 from the Appendices), Darwin and
OpenBSD follow the rule expressed by Formula 3.1 and Formula 3.2, respectively. On
Darwin, a successful setreuid() call either leaves the saved user ID unchanged, or sets it
to the previous effective user ID. On OpenBSD, a successful setreuid() call either leaves
the saved user ID unchanged, or sets it to the new real user ID.

17

Table 3.1: POSIX setuid standard [12] compliance for five modern operating systems.
“Yes” indicates standard compliance, and “No” indicates deviation from the standard.

System\Function setuid() seteuid() setreuid()

Darwin Yes Yes No
FreeBSD No Yes Yes

Linux Yes Yes Yes
OpenBSD Yes Yes No

OpenIndiana Yes Yes Yes

svuid success↔ new svuid = old svuid ∨ new svuid = old euid (3.1)

svuid success↔ new svuid = old svuid ∨ new svuid = new ruid (3.2)

Note that the above two rules are not a complete description of the behavior of
setreuid() on the saved user ID. The exact rules for Darwin and OpenBSD are consid-
erably more complex. Given that the setreuid() standard is an incomplete description
of a function that has been marked for deprecation by POSIX, the above two rules are
presented in the interest of clarity.

3.2 Security Implications

This section discusses implications of the presented findings to the security of a system that
uses setuid. One issue is that any setuid program that assumes that a platform complies
with the latest standard, when it does not, may be vulnerable to attack. This appears to be
the case with FreeBSD’s implementation of setuid(), and with Darwin and OpenBSD’s
implementations of setreuid() (see Table 3.1 and Section 3.1.1).

Implementation differences with respect to when the error EINVAL is returned are likely
also problematic. A specific case of this is the mismatched semantics of -1 as an argu-
ment (implicitly or explicitly cast to uid_t) between the pairs of functions setuid() and
seteuid(), and setreuid() and setresuid(). The mismatched semantics can, for ex-
ample, cause a process to reasonably assume that it has dropped privileges when it has
not.

18

�������������������
�������������������
�����������������

�������������������
�������������������
�����������������

��������������������
��������������������
������������������������

Figure 3.1: An example of implementation differences for the EINVAL error being potentially
problematic. It is reasonable to expect the setresuid() call in the figure to cause the
process to downgrade itself to the real user ID.

An example is shown in Figure 3.1. In the figure, a process is in the state in which its
real, effective, and saved user IDs are 〈−1, 0, 0〉, each typecast to uid_t. Now, a call to
setresuid() as shown in the figure does not downgrade the process to 〈−1,−1,−1〉. One
would reasonably expect an invariant to be respected that when the real user ID of the
process is non-root, and such a call is made, the process is permanently downgraded to its
real user ID.

19

Chapter 4

Alternative Interfaces

Prior work [7, 21] has suggested that UNIX process identity management functions are:
(1) often misused, suggesting usability problems, and (2) designed to support temporarily
dropping/restoring privileges and permanently dropping privileges. In light of these ob-
servations, the prior work proposes two alternative interfaces, one that wraps the setuid
family of functions and one that wraps an extended family user and group ID management
functions. To extend the analysis of setuid these two wrappers are analyzed for usability
and correctness. The issues found through this analysis motivated the implementation of
a different wrapper interface (presented in Section 4.1).

Chen et al. [7] provide two versions of their interface; one for use with systems that
support setresuid(), and another for systems that do not. The issues discussed below
manifest consistently in the former implementation.

Both Chen et al. [7] and Tsafrir et al. [21]’s interfaces do not perform sufficient san-
ity checks on function arguments. There is no check to ensure that the argument to
drop_priv_perm() (which is used to drop privileges permanently) or drop_priv_temp()

(drop privileges temporarily) cause the process to indeed drop privileges. In Chen et
al. [7]’s case, if a privileged process invokes one of these functions with an argument value
of -1 or 0, then the privilege-dropping functions return 0 without dropping appropriate
privileges. The same probelem arises in Tsafrir et al. [21]’s privilege-dropping functions
for an argument value of 0, though a sanity check is performed for a value of -1.

Chen et al. [7]’s functions that rely on setresuid() contain another bug. If a process
calls restore_priv(), perhaps mistakenly, after calling drop_priv_perm(), restore_-
priv() erroneously returns 0, implying that privileges have been restored.

20

Tsafrir et al. [21]’s interface also contains a serious usability issue. The interface is
written to “do its best” to switch to the requested user identity. When setresuid() is not
available this can entail making two setuid-like function calls (the same goes for setgid-like
functions). Unfortunately, the second call may fail, leaving the process in a potentially
irreversible intermediate state. The interface authors’ way of dealing with this problem is
to call abort() on any system call failure, crashing the process1. While this approach is
secure, it is also highly unusable.

4.1 Proposed Interface

This section proposes an alternate interface for user ID management. The interface is
similar to Chen et al. [7]’s and Tsafrir et al. [21]’s insofar as it is designed with the notions
of “temporary” and “permanent” identity changes in mind. Indeed, the implementation
shares some code with theirs [20]. However, unlike Tsafrir et al. [21]’s interface, this
implementation deals exclusively with user IDs, and not groups. An extension to properly
manage groups is left as future work. The implementation will soon be available for
download [18].

The hallmark usability consideration of the interface design is the following observation:
a setuid-like interface should be usable for root-setuid processes as well as non-root-setuid
processes. Nevertheless, wrappers from prior work use the language of dropping and restor-
ing privileges. In light of this observation, the proposed interface comprises the two func-
tions: change_identity_permanently(uid) and change_identity_temporarily(uid).
This puts the onus on the developer to correctly select a privileged or unprivileged identity.
The function names do not imply that privileges will be dropped or restored.

The interface is designed to provide the following guarantees: (1) internally consistent
success or failure2: return 0 on success, or return -1 and set errno appropriately without
changing any user identity state on failure; (2) in the _permanent case, upon success, set
all three user IDs to the specified value; and (3) in the _temporary case, upon success, set
the effective user IDs to the specified value and store the previous effective ID in either the
real or saved ID location.

1Tsafrir et al. [21] provide a C-style #define, LIVING ON THE EDGE, to allow users of the interface
to get a return of -1 instead of crashing, but this does not solve the intermediate state problem.

2The implementation can be compiled with or without threading support, which wraps interface func-
tions in a basic locking mechanism to prevent concurrent identity changes on different threads. Naturally,
this does not guarantee correct behavior in multi-threaded environments where setuid functions are man-
ually invoked, or where interface functions are invoked within interrupt handlers.

21

The greatest challenge in implementing such an interface is dealing with systems that
do not support setresuid(). In such cases, the implementation must rely on potentially
multiple platform-dependent system calls to change identities. In light of the divergent
— sometimes non-standard — setuid implementations discovered during the experiments
presented in Chapter 3, the proposed interface exploits a platform-specific call graph to
correctly execute the desired behavior.

The implementation uses a shortest path matrix to efficiently look up relevant details
of the call graph. This matrix can be automatically computed offline for each version
of each operating system where the implementation is to be deployed. The computation
repeatedly invokes Boost’s implementation of Dijkstra’s shortest path algorithm [5], which
outputs a predecessor map for a given starting vertex. The resulting predecessor maps, one
for each choice of source vertext, are stored as a shortest path matrix for quickly looking
up the sequence of predecessors to get from any source vertex to any destination vertex.
When a change-identity function is called, the implementation first uses the shortest path
matrix to determine the feasibility of the identity change. If the change is feasible, the
implementation employs the matrices to follow the shortest path to the desired state; if
not, it returns an error without touching the process’ current privileges.

The proposed change-identity algorithms are described in Algorithms 1, 2, and 3. Note
that ChangeIdentityPermanently and ChangeIdentityTemporarily are analogous
to change_identity_permanently(uid) and change_identity_temporarily(uid), re-
spectively. Also note that the Path function looks up a shortest path using a predecessor
map. Both algorithms have an implicit input parameter, G, that represents the user ID
state graph.

In order to use the user ID state graphs, the actual user IDs at runtime must be nor-
malized to the IDs used in the graph (hence the UIDMap and Normalized* functions).
Two user IDs, 0 and -1, are not normalized. As mentioned in Chapter 3, all other users
are treated as having interconvertible privileges. As such, the implementation converts
each non-zero-and-non-negative-one “actual ID” to a “normalized ID” within the range
presented in Chapter 3. When setuid functions are called, IDs are converted back to their
actual values before the functions are invoked (hence the uidMap parameter for Invoke-
SetuidFunction).

If a system does not support user ID -1, then any attempt to lookup a user ID state
containing -1 will fail. In such cases, the implementation returns the EINVAL error. In this
way, invoking the interface with a user ID of -1 can succeed only on systems that support

22

setting the ID to -1, and will fail on all other systems by construction.

Algorithm 1: ChangeIdentityPermanently(uid,G)

cState← CurrentUIDs(uid)1

uids← {x ∈ cState} ∪ {uid}2

uidMap← UIDMap(uids)3

ncState← NormalizedState(cState, uidMap)4

nUID← NormalizedUID(uid, uidMap)5

ntState← 〈nUID, nUID, nUID〉6

return GoToState(ncState, ntState, uidMap,G)7

Algorithm 2: ChangeIdentityTemporarily(uid,G)

cState← CurrentUIDs(uid)1

uids← {x ∈ cState} ∪ {uid}2

uidMap← UIDMap(uids)3

nUIDSet← NormalizedUIDSs(uidMap)4

ncState← NormalizedState(cState, uidMap)5

nUID← NormalizedUID(uid, uidMap)6

〈a, b, c〉 ← ncState7

ntStates← {〈x, y, z〉 : y = uid ∧ ((x = b ∧ z ∈ {a, b, c}) ∨ (x ∈ {a, b, c} ∧ z = b))}8

ntState← x : x ∈ ntStates, ∀y∈ntStates|Path(ncState, x)| ≤ |Path(ncState, y)|9

return GoToState(ncState, ntState, uidMap,G)10

Algorithm 3: GoToState(ncState, ntState, uidMap,G)

if not StateExists(ntState,G) then1

errno← EINVAL2

return −13

if not PathExists(ncState, ntState,G) then4

errno← EPERM5

return −16

path← Path(ncState, ntState,G)7

foreach functionCall ∈ path do8

InvokeSetuidFunction(functionCall, uidMap)9

return 010

In ChangeIdentityTemporarily, a state with the shortest available path is chosen
for the sake of efficiency.

23

The runtime of ChangeIdentityPermanently and ChangeIdentityTemporarily
is O(|Vertices(G)|). This is clear from the following observations: (1) |uidMap| ≤ 4,
making normalization and normalized ID lookup O(1); (2) |ntStates| ≤ 5; (3) |path| ≤
|Vertices(G)|, and the same applies to all shortest paths in G. In practice, shortest paths
of interest — when they exist — contain two edges or fewer. The worst case is starting in a
state with with an unprivileged user ID, and requesting a change to a different unprivileged
user ID that appears nowhere in the current user ID state. When such a change is possbile,
it requires one call to elevate privilege and a second call to set the effective user ID (and
possibly the other IDs) to the requested value.

Resilience to change During data collection on different machines it was observed that
Linux has changed its behavior for user ID -1 at least as recently as the last three years.
Darwin and FreeBSD have a common BSD ancestry, but FreeBSD supports setresuid()
whereas Darwin, which was more recently introduced into the UNIX/BSD ecosystem,
does not. Suffice it to say that setuid behaviors do change. One of the advantages to the
proposed user ID call graph approach is its resilience to change. The graph can be generated
for any version of any POSIX-compliant kernel and, with virtually no code changes3, the
interface will work properly.

Converting existing code It is reasonable to expect that switching to the proposed in-
terface is straightforward for developers familiar with their existing code. In such instances,
developers can readily identify whether setuid calls constitute attempts to change identity
permanently or temporarily. Unfortunately, automating this process may prove difficult
due to the strange ways in which setuid invocations are sometimes used (e.g., checking the
return value of setuid() to test whether privileges have been permanently dropped [6]).

3A #define is used in the generator code to declare which platforms do not support setresuid().
Naturally, legacy systems may also require changes to #includes as well.

24

Chapter 5

Conclusions and Future Work

Prior work has suggested that standardized setuid functions are broken, and that the
non-standard setresuid() has superior (i.e., more straightforward) semantics. This in-
vestigation has revealed problems with both the standard itself and standard compliance.
The standards for setuid() and seteuid() are, for the most part, well-written. The stan-
dard for setreuid() is ambiguous, logically inconsistent, and incomplete as a description
of a well-formed function. Given that the standard requires “appropriate privileges” (or an
abstraction like it) to allow for some flexibility, this work concludes that the biggest over-
all problem with how the standards are written is that this abstraction does not entirely
encapsulate implementation-defined parameters of the setuid family of functions. These
issues can be fixed with straightforward changes to the standard, but such changes would
make at least five current function implementations non-compliant.

With respect to standards compliance, FreeBSD has not updated its setuid() imple-
mentation to abide by the latest standard, and Darwin and OpenBSD do not abide by
the prescription for setreuid() saved user ID behavior. Also, Darwin, FreeBSD, and
OpenIndiana do not treat -1 as an invalid ID, leading to problematic differences between
setuid() and seteuid(), and setreuid() and setresuid().

In terms of usability, missing implementations for setresuid() on Darwin and OpenIn-
diana complicates the construction of an interoperable interface for process identity man-
agement. Through evaluation of two such interfaces this work confirms that building
something that is both usable and correct on top of setuid is not straightforward. Never-
theless, preliminary testing of the proposed interface suggests such an interface is possible
to construct when platform-specific behaviors are integrated into the implementation in a
consistent manner.

25

The investigation presented here suggests several directions for future work. The cur-
rent implementation does not use a compressed graph, which could, if implemented, reduce
space requirements. Also, the state graph-based approach could be extended to additionally
manage group IDs. Finally, the interface could employ platform-specific credential man-
agement systems, specifically Linux capabilities and Solaris privileges, when state graph
lookup suggests the requested identity change is infeasible. These research directions may
serve to further unify the fragmented interface for POSIX process identity management.

26

APPENDICES

The tables below describe setuid function standards, a representation in quantifier-free first-
order logic, and an associated semantics. The standard texts are from POSIX 1003.1 Base
Specification Issue 7 [12]. Some input argument names are changed for clarity, and formula
numbers are referenced in the standard text (in parentheses) to indicate the passage(s)
from which a particular formula is derived. The following assumptions, which may not be
self-evident in the text, are made:

1. Function success entails both a return value of 0 and a change in user process user
IDs consistent with the “DESCRIPTION” section of the function standard.

2. Function failure entails not only a return value of -1 and appropriate setting of errno,
but also no change in the state of the process user IDs.

3. The term “any value”, when applied to a user ID, is interpreted to mean “any valid
user ID value”.

Table A.1: Semantic definitions of syntactic elements in logic formulas.

Syntactic Ele-
ment(s)

Element Type Semantics

0 Integer constant The number 0; either the root/superuser
UID or a function return vaule that indicates
success (depending on the context).

−1 Integer constant The number -1; a function return value that
indicates failure or a “do not change UID”
input argument value.

Continued on next page

27

Table A.1 – continued from previous page
Syntactic Ele-
ment(s)

Element Type Semantics

arg uid Integer Variable
(Int. Var.)

The only input argument to setuid() and
seteuid().

arg ruid Int. Var. The first input argument to setreuid().
arg euid Int. Var. The second input argument to setreuid().
old ruid Int. Var. The real UID of the process before function

invocation.
old euid Int. Var. The effective UID of the process before func-

tion invocation.
old svuid Int. Var. The saved UID of the process before function

invocation.
new ruid Int. Var. The real UID of the process directly following

function invocation.
new euid Int. Var. The effective UID of the process directly fol-

lowing function invocation.
new svuid Int. Var. The saved UID of the process directly follow-

ing function invocation.
rtn Int. Var. The return value of the invoked function.
AP Boolean Vari-

able (Bool.
Var.)

An implementation-dependent parameter.
True if and only if the process has appro-
priate privileges.

success Bool. Var. Indicates whether or not the function suc-
ceeded with no errors.

fail Bool. Var. Indicates whether or not the function failed
due to an error.

einval Bool. Var. Indicates that the EINVAL error occurred.
eperm Bool. Var. Indicates that the EPERM error occurred.
ruid success Bool. Var. Indicates correct behavior of the real UID for

setreuid() function success.
euid success Bool. Var. Indicates correct behavior of the effective

UID for setreuid() function success.
svuid success Bool. Var. Indicates correct behavior of the saved UID

for setreuid() function success.

Continued on next page

28

Table A.1 – continued from previous page
Syntactic Ele-
ment(s)

Element Type Semantics

arg euid success Bool. Var. Relates arg euid is valid (see below) with
AP and the case that the euid argument is
−1.

arg euid is valid Bool. Var. Indicates that the arg euid argument passed
to setreuid() is permissible for a process
without appropriate privileges.

arg euid is invalid Bool. Var. Indicates that the arg euid argument passed
to setreuid() is not permissible for a pro-
cess without appropriate privileges.

einval Bool. Var. Indicates that an EINVAL error occurs in a
call to setreuid().

eperm Bool. Var. Indicates that an EPERM error occurs in a call
to setreuid().

= 6= Binary Predi-
cates

True if and only if the value on the left and
right are equal, or not equal (respectively).

RuidIsPermitted(.) Unary Predicate True if and only if its integer argument is
a real UID that is “permitted by the imple-
mentation”.

IsUID(.) Unary Predicate True if and only if its integer argument is a
valid UID in the system.

¬ ∧ ∨ → ↔ Boolean Con-
nectives

The Boolean connectives: negation, and, or,
impliciation, equivalence (respectively).

29

Table A.2: Formulas common among setuid(), seteuid(),setreuid(), and
setresuid().

Logic Expressions

(success ∧ ¬fail) ∨ (fail ∧ ¬success) (A.1)

fail↔ rtn = −1 ∧ new ruid = old ruid ∧
new euid = old euid ∧ new svuid = old svuid

(A.2)

fail↔ einval ∨ eperm (A.3)

IsUID(old ruid) ∧ IsUID(old euid) ∧ IsUID(old svuid) (A.4)

IsUID(new ruid) ∧ IsUID(new euid) ∧ IsUID(new svuid) (A.5)

30

Table A.3: Function definition and formulas for setuid().

Annotated Standard Text / Logic Expressions
setuid(arg uid)

DESCRIPTION
If the process has appropriate privileges, setuid() shall set the real user ID, ef-
fective user ID, and the saved set-user-ID of the calling process to arg uid (A.7,
A.9).
If the process does not have appropriate privileges, but arg uid is equal to the real
user ID or the saved set-user-ID, setuid() shall set the effective user ID to arg uid ;
the real user ID and saved set-user-ID shall remain unchanged (A.8, A.10).

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, -1 shall be returned
and errno set to indicate the error (A.1, A.2, A.6).

ERRORS
The setuid() function shall fail if:
[EINVAL] The value of the arg uid argument is invalid and not supported by the
implementation (A.7, A.8, A.3, A.12).
[EPERM] The process does not have appropriate privileges and arg uid does not
match the real user ID or the saved set-user-ID (A.3, A.7, A.8, A.13).

success↔ (success ap ∨ success nap) (A.6)

AP → success ap ∨ fail (A.7)

¬AP → success nap ∨ fail (A.8)

success ap↔ rtn = 0 ∧ new ruid = arg uid ∧
new euid = arg uid ∧ new svuid = arg uid

(A.9)

success nap↔ rtn = 0 ∧ new ruid = old ruid ∧
new euid = arg uid ∧ new svuid = old svuid

(A.10)

success nap← ¬AP ∧ (old ruid = arg uid ∨
old svuid = arg uid)

(A.11)

Continued on next page

31

Table A.3 – continued from previous page
Annotated Standard Text / Logic Expressions

einval↔ ¬IsUID(arg uid) (A.12)

eperm↔ ¬AP ∧ arg uid 6= old ruid ∧ arg uid 6= old svuid (A.13)

Table A.4: Function definition and formulas for seteuid().

Annotated Standard Text / Logic Expressions
seteuid(arg uid)

DESCRIPTION
If arg uid is equal to the real user ID or the saved set-user-ID, or if the process
has appropriate privileges, seteuid() shall set the effective user ID of the calling
process to arg uid ; the real user ID and saved set-user-ID shall remain unchanged
(A.14, A.15).
The seteuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, -1 shall be returned
and errno set to indicate the error (A.1, A.2, A.14).

ERRORS
The seteuid() function shall fail if:
[EINVAL] The value of the arg uid argument is invalid and not supported by the
implementation (A.3, A.16).
[EPERM] The process does not have appropriate privileges and arg uid does not
match the real user ID or the saved set-user-ID (A.3, A.17).

success↔ rtn = 0 ∧ new ruid = old ruid ∧
new euid = arg uid ∧ new svuid = old svuid

(A.14)

success← arg uid = old ruid ∨ arg uid = old svuid ∨ AP (A.15)

einval↔ ¬IsUID(arg uid) (A.16)

Continued on next page

32

Table A.4 – continued from previous page
Annotated Standard Text / Logic Expressions

eperm↔ ¬AP ∧ arg uid 6= old ruid ∧ arg uid 6= old svuid (A.17)

Table A.5: Function definition and formulas for setreuid().

Annotated Standard Text / Logic Expressions
setreuid(arg ruid, arg euid)

DESCRIPTION
The setreuid() function shall set the real and effective user IDs of the current
process to the values specified by the arg ruid and arg euid arguments. If arg ruid
or arg euid is -1, the corresponding effective or real user ID of the current process
shall be left unchanged (A.19, A.20).
A process with appropriate privileges can set either ID to any value (A.27). An
unprivileged process can only set the effective user ID if the arg euid argument
is equal to either the real, effective, or saved user ID of the process (A.22, A.23).
If the real user ID is being set (arg ruid is not -1), or the effective user ID is
being set to a value not equal to the real user ID, then the saved set-user-ID of
the current process shall be set equal to the new effective user ID (A.21).
It is unspecified whether a process without appropriate privileges is permitted to
change the real user ID to match the current effective user ID or saved set-user-ID
of the process.

RETURN VALUE
Upon successful completion, 0 shall be returned (A.18). Otherwise, -1 shall be
returned and errno set to indicate the error (A.1, A.2).

Continued on next page

33

Table A.5 – continued from previous page
Annotated Standard Text / Logic Expressions

ERRORS
The setreuid() function shall fail if:
[EINVAL] The value of the arg ruid or arg euid argument is invalid or out-of-
range (A.3, A.25).
[EPERM] The current process does not have appropriate privileges, and either
an attempt was made to change the effective user ID to a value other than the
real user ID or the saved set-user-ID or an attempt was made to change the real
user ID to a value not permitted by the implementation (A.3, A.24, A.26).

success↔ rtn = 0 ∧ ruid success ∧ euid success

∧ svuid success ∧ arg euid success
(A.18)

ruid success↔ (arg ruid = −1 ∧ new ruid = old ruid)

∨ (arg ruid 6= −1 ∧ new ruid = arg ruid)
(A.19)

euid success↔ (arg euid = −1 ∧ new euid = old euid)

∨ (arg euid 6= −1 ∧ new euid = arg euid)
(A.20)

svuid success↔ (new svuid = arg euid) ←
(arg ruid 6= −1 ∨
(arg euid 6= −1 ∧ arg euid 6= old ruid))

(A.21)

arg euid success↔ arg euid is valid ←
(¬AP ∧ arg euid 6= −1)

(A.22)

arg euid is valid↔ arg euid = old ruid ∨ arg euid = old euid

∨ arg euid = old svuid
(A.23)

arg euid is invalid↔ ¬(arg euid = −1 ∨ arg euid = old ruid

∨ arg euid = old svuid)
(A.24)

einval↔ ¬((arg ruid = −1 ∨ IsUID(arg ruid)) ∧
(arg euid = −1 ∨ IsUID(arg euid)))

(A.25)

Continued on next page

34

Table A.5 – continued from previous page
Annotated Standard Text / Logic Expressions

eperm↔ ¬AP ∧
(arg euid is invalid ∨ ¬RuidIsPermitted(arg ruid))

(A.26)

AP → success ∨ ¬IsUID(arg ruid) ∨ ¬IsUID(arg euid) (A.27)

Table A.6: Function definition and formulas for setresuid(). The function definition is
the consensus standard, derived from three platform-specific setresuid() manual pages
[10, 14, 17]. Ellipses indicate areas where platform-specific details appear in manual pages.

Annotated Standard Text / Logic Expressions
setresuid(arg ruid, arg euid, arg svuid)

DESCRIPTION
setresuid() sets the real user ID, the effective user ID, and the saved set-user-ID
of the calling process.
Unprivileged user processes may change the real UID, effective UID, and saved
set-user-ID, each to one of: the current real UID, the current effective UID or the
current saved set- user-ID (A.33, A.34, A.35, A.36, A.37).
Privileged processes [...] may set the real UID, effective UID, and saved set-user-
ID to any value (A.32).
If one of the arguments equals -1, the corresponding value is not changed (A.29,
A.30, A.31). [...]

RETURN VALUE
On success, zero is returned (A.28). On error, -1 is returned, and errno is set
appropriately (A.38, A.39).

Continued on next page

35

Table A.6 – continued from previous page
Annotated Standard Text / Logic Expressions

ERRORS
[...]
[EINVAL] The value of the arg ruid, arg euid, or arg svuid argument is invalid
and not supported by the implementation (A.3, A.38).
[EPERM] The calling process is not privileged and tried to change the IDs to
values that are not permitted.

success↔ rtn = 0 ∧ ruid success ∧ euid success

∧ svuid success
(A.28)

ruid success↔ (arg ruid = −1 ∧ new ruid = old ruid)

∨ (arg ruid 6= −1 ∧ new ruid = arg ruid)
(A.29)

euid success↔ (arg euid = −1 ∧ new euid = old euid)

∨ (arg euid 6= −1 ∧ new euid = arg euid)
(A.30)

svuid success↔ (arg svuid = −1 ∧ new svuid = old svuid)

∨ (arg svuid 6= −1 ∧ new svuid = arg svuid)
(A.31)

AP → success ∨
(arg ruid 6= −1 ∧ ¬IsUID(arg ruid)) ∨
(arg euid 6= −1 ∧ ¬IsUID(arg euid)) ∨
(arg svuid 6= −1 ∧ ¬IsUID(arg svuid))

(A.32)

arg ruid is valid↔ arg ruid = old ruid ∨
arg ruid = old euid ∨
arg ruid = old svuid

(A.33)

arg euid is valid↔ arg euid = old ruid ∨
arg euid = old euid ∨
arg euid = old svuid

(A.34)

Continued on next page

36

Table A.6 – continued from previous page
Annotated Standard Text / Logic Expressions

arg svuid is valid↔ arg svuid = old ruid ∨
arg svuid = old euid ∨
arg svuid = old svuid

(A.35)

new uids are valid ↔ arg ruid is valid ∧
arg euid is valid ∧ arg svuid is valid

(A.36)

success← ¬AP ∧ new uids are valid (A.37)

einval↔ ¬((arg ruid = −1 ∨ IsUID(arg ruid)) ∧
(arg euid = −1 ∨ IsUID(arg euid)) ∧
(arg svuid = −1 ∨ IsUID(arg svuid)))

(A.38)

eperm↔ ¬AP ∧ ¬new uids are valid (A.39)

37

References

[1] Abu Nasser Mohammed Abdullah, Behzad Akbarpour, and Sofiène Tahar. Error
Analysis and Verification of an IEEE 802.11 OFDM Modem using Theorem Proving.
In Proceedings of the First Workshop on Formal Methods for Wireless Systems (FMWS
2008), pages 3–30, 2009.

[2] Alexander Löhner. LiCo - The New LinuxCounter Project. http://linuxcounter.

net/. Last accessed: Nov. 12, 2013.

[3] Matt Bishop. How to write a setuid program. USENIX; login:, 12(1), January 1987.

[4] Matt Bishop. Computer Security — Art and Science. Addison-Wesley, 2003.

[5] dijkstra shortest paths. http://www.boost.org/doc/libs/1_55_0/libs/graph/

doc/dijkstra_shortest_paths.html. boost C++ libraries. Last accessed: Aug. 14,
2014.

[6] CERT. POS37-C. Ensure that privilege relinquishment is successful.
https://www.securecoding.cert.org/confluence/display/seccode/POS37-C.

+Ensure+that+privilege+relinquishment+is+successful, June 2013.

[7] Hao Chen, David Wagner, and Drew Dean. Setuid Demystified. In Proceedings of the
11th USENIX Security Symposium, pages 171–190, August 2002.

[8] Drew Dean and Alan J. Hu. Fixing Races for Fun and Profit: How to Use access(2).
In Proceedings of the 13th USENIX Security Symposium, pages 195–206, August 2004.

[9] Mark S. Dittmer and Mahesh V. Tripunitara. The UNIX Process Identity Crisis: A
Standards-Driven Approach to Setuid. In Proceedings of the 21st ACM conference on
Computer and communications security. ACM, 2014.

38

http://linuxcounter.net/
http://linuxcounter.net/
http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/dijkstra_shortest_paths.html
http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/dijkstra_shortest_paths.html
https://www.securecoding.cert.org/confluence/display/seccode/POS37-C.+Ensure+that+privilege+relinquishment+is+successful
https://www.securecoding.cert.org/confluence/display/seccode/POS37-C.+Ensure+that+privilege+relinquishment+is+successful

[10] getresgid, getresuid, setresgid, setresuid – get or set real, effective and saved user or
group ID. FreeBSD System Calls Manual, April 2001.

[11] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Com-
puter Systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

[12] IEEE and The Open Group. POSIX.1-2008, 2013. Available from http://pubs.

opengroup.org/onlinepubs/9699919799/.

[13] Bhushan Jain, Chia-Che Tsai, Jitin John, and Donald E. Porter. Practical Techniques
to Obviate Setuid-to-root Binaries. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys’14, pages 8:1–8:14, New York, NY, USA, 2014. ACM.

[14] setresuid, setresgid - set real, effective and saved user or group ID. Linux Programmer’s
Manual, July 2007.

[15] Capabilities - overview of Linux capabilities. Linux Programmer’s Manual, August
2009.

[16] Dennis M. Ritchie. Protection of data file contents. US Patent 4135240, January 1979.

[17] getresgid, getresuid, setresgid, setresuid - get or set real, effective and saved user or
group ID. OpenBSD Programmer’s Manual, August 2013.

[18] Mark S. Dittmer and Mahesh V. Tripunitara. unix-process-identity. https://github.
com/mdittmer/unix-process-identity, 2014.

[19] A. Souari, S. Tahar, and A. Gawanmeh. Formal error analysis and verification of a
frequency domain equalizer. In IEEE 10th International New Circuits and Systems
Conference (NEWCAS), pages 189–192, 2012.

[20] Dan Tsafrir, Dilma Da Silva, and David Wagner. Change Process Identity. Available
from https://code.google.com/p/change-process-identity/. Last accessed May
2014.

[21] Dan Tsafrir, Dilma Da Silva, and David Wagner. The Murky Issue of Changing
Process Identity: Revising “Setuid Demystified”. USENIX; login:, 33(3), June 2008.

39

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://github.com/mdittmer/unix-process-identity
https://github.com/mdittmer/unix-process-identity
https://code.google.com/p/change-process-identity/

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Contributions
	Summary of Observations

	Related Work
	Outline

	Setuid Standard
	Unambiguity of the Standards
	Logical Consistency of the Standards
	Standards as Function Descriptions
	Fixing the Standard
	Setresuid

	Setuid Implementations
	Standards Compliance
	Results

	Security Implications

	Alternative Interfaces
	Proposed Interface

	Conclusions and Future Work
	APPENDICES
	References

