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Abstract

A general framework for determining when a solution component is monotone with

respect to changes in an initial component value is developed.

Conditions for monotonicity with respect to an orthant are formulated graph

theoretically, and conditions for partial strong monotonicity are given.

Monotonicity with respect to a closed, convex cone, K, is also investigated. For
a sys'tem of differential equations, # = f(z), £(0) = o, & € 0, the Kamke-Miiller
Theorem (1932/1927) is extended to closed, convex cones by imposing the essential
hypothesis .

3 such that Df(Z) + (I : K — K,V # € N, N compact.
Strong monotonicity is achieved by further demanding that
3 m such that (Df(Z) + ({ + 1)I)™ : K\ {0} — int(K),V £ € N,

or, more practically, through a graph theoretic formulation. Given a cone with
n generators, €;, a directed multigraph on n vertices, g;, is constructed with a
directed edge from g; to g;, 7 # j, if €; is in the smallest face of the cone containing
(Df(#) + (I + ))&, Y £ € N. The multigraph being strongly connected is a

sufficient condition for strong monotonicity.

The results of this thesis are applicable to general autonomous ODEs, but the

examples are drawn mostly from chemical kinetics.
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Chapter 1

Introduction

The goal of this work is to establish a general framework for the investigation of
monotonicity properties of autonomous systems of ordinary differential equations.
Earlier efforts in [18] used very specific arguments for particular problems to estab-

lish monotonicity; there was a limited amount of broadly applicable resuits.

We are primarily interested in how a solution component to a general au-
tonomous system of ODEs changes when a single initial component is changed.
If a solution component with a single changed initial component is always greater
(less) than the original solution component, then we say that the component is
monotone increasing (decreasing) with respect to changes in that initial component
value. Alternatively, one can look at the sign of the partial derivative of a solution
component with respect to an initial component value. If this derivative does not
change sign, then the component is monotone with respect to changes in the cor-
responding initial component value. We will typically focus on obtaining this type

of derivative result.

Monotonicity results are of interest for several reasons, the simplest of which is

1



CHAPTER 1. INTRODUCTION 2

that non-linear ODEs theory has broad application. This work adds the spice of

graph theory and convex cones to present some surprisingly rich mathematics.

More practically, monotonicity results can allow one to predict the qualitative
behaviour of a solution component relative to that same solution component with
a changed initial value in some component; this knowledge can lead to an under-
standing of the stability of solutions under changes in initial values. Furthermore,
monotonicity results can also prove useful when deciding if a given mathematical
model correctly represents a physical problem of interest. For example, if exam-
ination of a proposed mathematical model does not verify certain monotonicity

observed in experiments, one could conclude that the proposed model is in error.

The work is presented in two parts. This introduction is followed by a small
subsection discussing the mathematical basics of chemical kinetics; it is followed by

the two chapters of the main body.

Chapter 2 deals with monotonicity with respect to an orthant. The Kamke-
Miiller Theorem (1932/1927) is the key foundation upon which many of the results
existing in the literature are built. Kamke-Miiller-like results allow us to determine
when the partial derivatives of interest are non-negative or non-positive. If possi-
ble, we will want strict sign, or strong monotonicity, results; the graph theoretic
approach proved essential in the proofs of these results. Indeed, a related result in
the literature has au error in its proof, a proof with no graph theoretic component.
Examples are distributed throughout the chapter, with lengthier examinations of

particular problems of interest appearing at the end.

In Chapter 3, the theory of convex cones is merged with the theory of the or-
thant, producing a more general approach to the problem of monotonicity with

respect to initial conditions. After some preliminaries, the Kamke-Miiller Theorem
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is extended to convex cones; this forms the foundation for a new group of tools for
investigating monotonicity. The essential condition of this new theorem is linked to
several other conditions that exist in the literature. Once again, a graph theoretic
approach proves essential as a practical tool for determining when there is strong
monotonicity. Some seemingly strange ideas, such as expanding convex cones, are
introduced and then showcased in the examples. After a brief discussion of condi-
tions for finding useful cones, the bulk of the examples is presented. To highlight
the additional power of this more complicated approach, results obtained in the

examples of Chapter 1 are improved upon.
We close this introduction by making three notational remarks.

Throughout this work, vectors will be denoted by placing a tilde on top of their

letter (for example, £).

The letter I will have three different meanings. [(Z) will denote the positive
interval of existence of a solution # (explained in the preliminaries of Chapter 1).
The identity matrix of the appropriate dimension at the time of use will also be
denoted I. In epidemiological examples, [(t) will represent the infective population
at time ¢. It is expected that the reader will be able to discern, based on context,

what role the letter I plays in a particular instance.

N will have two different meanings. N, often indexed, will be used to denote
normal vectors. N will be used to denote a neighbourhood. Once again, context

should clarify which meaning is in effect.
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1.1 Chemical Kinetics

In the framework of formal mass action kinetics, a given reaction mechanism is
translated into a mathematical model by associating a rate expression to each
process in the reaction mechanism. We assume that the Law of Mass Action holds

in order to determine these rate expressions.

Definition 1 The Law of Mass Action postulates that the rate expression of a
reaction depends on the product of the concentrations of reacting species raised to

the power of their molecularity.

[8] provides a detailed discussion of the Law of Mass Action. The mass action
type kinetic equation was first derived by Wilhelmy in 1850. We should note that
this is a macrosco;;ic theory. Our primitive concept is an elementary reaction; we
are not concerned with electrons, atoms, or molecules and their arrangement. We
assume that all rates of reactions are positive constants; they could, in reality,
be temperature dependent, for example. We also assume that any mixtures are

homogeneous; that is, the vat within which the reaction takes place is evenly stirred.

A general chemical reaction mechanism is of the form
Z aud; = ZﬂaAi ) (1.1)
=1 =1
where [ = 1,...,m labels the reactions, the stoichiometric coefficients o;; and Gy
are non-negative integers, and it is assumed that 3y # ay for some i. Let zi(t) be
the concentration of species A; at time t. Assuming mass action chemical kinetics
gives

(t) = fi(#) = Y_(Bu~aa)n(t) = Y_kl(Ba — ca) [[(zo(0))™*,  (1:2)

=1 =1 p=1
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fort=1,...,n. r(t) is the rate expression for reaction [.

There are some technical details that merit mentioning. We use atom-free stoi-
chiometry; for some discussion, see [8], page 26. Concentrations are either positive
for all positive time or they are identically zero for all time. In the second case, one
can consider a new reaction mechanism which fits the first case. This is detailed in
[39], chapter 12. We state this as a fundamental assumption, where O denotes the

open positive orthant and O denotes its closure, the non-negative orthant:

Positivity Assumption: For zy € Sy C O, ¢,(Zo), the solution to the chemi-
cal kinetics system (1.2) with initial condition Zy, satisfies ¢¢(Zo) € O for t > 0.



Chapter 2

Monotonicity With Respect to an
Orthant

2.1 Preliminaries

The positive orthant in R"™, denoted O, is given by {z:|z; > 0,i = 1,...,n}. The
non-negative orthant is denoted O. The results in this chapter will often involve
inequalities between vectors. Of course, we write £ > § (or § < Z) if the inequality
holds componentwise; # > § (or § < &) means that the strict inequality holds
componentwise. Geometrically in R?, Figure 1 illustrates which vectors Z satisfy
the two strict inequalities for a fixed vector 7; the idea extends naturally to R™.
We can also note that # > §j (Z > §) means that £ —§ € O (£ ~ § € O).

A fundamental theorem that is useful when considering monotonicity of solu-
tions with respect to changes in an initial condition is the Kamke-Miiller Theorem
(presented with proof as Theorem 1.3.1 in [22]).
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Figure 1: Orderings with respect to a quadrant in R?

Definition 2 f is quasimonotone non-decreasing if Y i, fi(t, ) < fi(t,9) for

ui = v, u; v, Vi#i.

Theorem 1 (Kamke-Miiller Theorem)

If v < f(¢,9), 5(0) = By, and w > f(t,), W(0) = 1o, for 0 <t < T, and 5 < tho,
where f(t,%) is quasimonotone non-decreasing on @ C R”,  is open and convez,
f is continuous on  and Lipshitz continuous with respect to Z on compact subsets

of 2, then o(t) < w(t) for 0 <t < T.

Remark: The convexity assumption in Theorem 1 is not necessary. It is necessary

if the quasimonotone non-decreasing hypothesis is replaced by

af; .,
—_— R
3 >0,1#7

g

Suppose we are working with a chemical system and are interested in deter-
mining the monotonicity properties of the concentrations of species with respect
to changes in initial concentrations. If the concentrations of the chemical species
satisfy the autonomous system w = f (), @(0) = tip, where f is quasimonotone
non-decreasing, then we can apply the Kamke-Miiller Theorem to conclude that
all concentrations are monotone non-decreasing with respect to changes in any ini-

tial condition. We may equivalently conclude that the partial derivative of any
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concentration with respect to any initial concentration is non-negative. For either
conclusion, we say that the system induces a monotone flow (with respect to the

non-negative orthant).

Remark: A Mean Value Theorem argument shows that a solution component is
monotone non-decreasing with respect to changes in an initial condition if and only
if the partial derivative with respect to that initial condition of that component is

non-negative for all time. Consider the system
w(t) = f(t,®), B(0) = wp. (2.1)

Denote by u;(t, ig) the i** component of the solution to (2.1) with initial condition
w(0) = @(0). Denote by u;(¢,%g) the #** component of the solution to (2.1) with
initial condition w(0) = @*(0). Suppose that

u;(0) > u;(0), for some 7, and u;(0) = u;(0), i # j. (2.2)

If u;(t) is monotone non-decreasing with respect to changes in u;(0) — that is, if
we know that u;(t, i) — ui(t, i) > 0 for all time and all pairs of vectors #(0) and
4*(0) satisfying (2.2), then we know that

du;
Bu J(O)

(¢) >0

for all time.

By the Mean Value Theorem, for a fixed time ¢ we know that there is some 4(0),
with u;(0) < v;(0) < u}(0) and u;(0) = v;(0), for ¢ # j, such that

wi(tyg) — wi(t, ) = {u3(0) — “j(o)}a%(t,f’o);

hence, if we know that
Ou;
9u;(0)

() =0
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for all time, then u;(¢) is monotone non-decreasing with respect to changes in u;(0).

Furthermore, if we know that
au,

u;(0) F—ox(t) >

for all time, then u;(t) is strictly monotone increasing with respect to changes in
u;(0).

For non-monotonicity, we can show by a Taylor series argument that if the
partial derivative with respect to an initial value of a solution component takes
both signs in time, then two solution curves with that initial condition different
but sufficiently close will cross. The Taylor series in u;(0) for u;(t, uo) near uj(0) is

given by

wi(t, ) — wilt, do) = (u5(0) — u;(0)) 5~ (¢t Go) + O((u5(0) — u;(0))%)-

1(0)
So, if 32 (0) 5erioy(£, o) is of both signs in time, then for u}(0) sufficiently close to u;(0)

we can conclude that the curves u;(¢, #g) and u;(t, @g) cross. This ends the remark.

Recall that a flow ¢ for an autonomous system Z(¢) = f(Z) is defined to be the
map ¢, : Q — §) where ¢,(z) is the solution with initial value £. We define the
positive interval of existence [(Z) by

[(2) = {t > 0: ¢(3) € N}
Ift € I(Z) and s € I(¢(Z)), then
s+t € I(&)

Ps($(2)) = Ps4e(Z), and
M(z) = Z, Ve

Definition 3 The flow ¢ is monotone if

wo < o = ¢i(tho) < Pe(Dh), V ¢ € [(w) N (D). (2.3)
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Reference [12] offers a pleasant discussion of monotone flows.

Example 1: All monomolecular chemical reactions induce a monotone flow. Let
A;, ¢ = 1,...,n, denote n reacting substances and let z:(¢), ¢ = 1,...,n, denote
the concentration of A; at time ¢. In a monomolecular reaction mechanism, all the

reactions are of the form

A; S A (2.4)
which means that all the rate expressions are linear. Thus we obtain a linear,
constant coefficient system of differential equations,

& = Ai(t), £(0) = o, (2.5)

where the matrix A = (a;;) satisfies:
(1) az <0V,
(2) a;; 20V #j,

(3) Yoi,ai; =0, and

i=1
(4) No row of A is 0.

All these properties follow directly from the form of the rate expressions and the

induced DEs (see [30]). Solving (2.5),
#t) = Foet
= Foe- MtelA+ANt

= Foe MelAtAM) (2.6)

where A is some positive number. For A sufficiently large, all entries in the matrix

A + A are non-negative. Hence, all entries in

B(t) = (bij(t)) = e+
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are non-negative, { > 0. Now, for any i,
zi(t) = e Y _ bii(t)z;(0),
i=1
and since b;;(t) > 0,Vi, 7, we get

a.'c.'

— = b: ~At . )
a(xm(O))(t) blm(t)e > O,Vt > O,V i, m;

all concentrations are monotone with respect to changes in any initial concentra-

tions.

In [34], it is shown that a necessary and sufficient condition for the autonomous

system
z = f(&), (0) = Zo, (2.7)
to induce a monotone flow is
afi,. .
fui= g2 @) 20, Vi#] (28)
Zj

M. Hirsch discusses cooperative or competitive vector fields in [11] and [13]. Here,
“cooperative” means that f;; > 0, for ¢ # j, and “competitive” means that f;; <0,

for i # j. A new generalization of a result in these papers will be discussed later.

When we do not have a monotone flow, we can consider the possibility of there
being a simple transformation to the system, which essentially switches the signs
of some of the components of the system, in order to produce a monotone flow.
In this case, the original system is called an order preserving flow and all solution
components are still monotone with respect to changes in any solution component.
Mathematically, we say that this system induces an order preserving flow with

respect to an orthant if there is a matrix P,

P= diag[(—l)ml, SRR (__1)m,.]’ m; € {01 1}7 (2‘9)
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such that under the coordinate transformation § = PZ, we obtain a monotone flow

in y; in other words,

Py < Piip = Péy(10) < Pee(t0),V t € [(wio) N I(0).

Lemma 2.1 in [34] gives a necessary and sufficient condition for an order pre-

serving flow, namely that
all off-diagonal entries of PDf(Z)P are non-negative, (2.10)

where D f() represents the n x n Jacobian matrix with f;; as its (i,5)* entry.
Some work from [18] appears in [20]. It was shown that for every possible order
preserving flow sign pattern a chemical reaction mechanism which induces it can
be constructed and, in fact, if the mechanism is to induce an order preserving flow,

only certain chemical reactions are allowed.

2.2 Practical Tools for Establishing Monotonicity

Unfortunately, most systems (2.7) do not satisfy the restrictive conditions for mono-
tone or order preserving flows. In [18], the monotonicity properties of several chem-
ical and epidemiological models were investigated. None of the considered problems
induced monotone or order preserving flows; so specific, and somewhat unsophisti-
cated, methods were used to analyze each problem. More refined techniques have

since been developed.

To give the reader an understanding of the thought process followed in estab-
lishing the upcoming results, we very quickly mention the theory of qualitative
stability. The question of qualitative (or sign) stability of the system

i(t) = Az, (2.11)
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where A = (a;;) is a constant matrix, has been solved. The system is said to be
stable if all of the eigenvalues of A have negative real parts. The system is said
to be sign stable if for each matrix B = (b;;) with sign(b;;) = sign(a;;), V 4,7,
the corresponding system, Z(t) = Bz, is stable regardless of the magnitudes of the
elements b;;. A graph theoretic approach proved to be essential in solving this
problem (see [26], [9], [15], and [17}; the interested reader is warned that results
were restated incorrectly in the literature). Upon examination of the theory of sign
stability, it seems natural to consider a graph theoretic approach to the problem of
monotonicity with respect to changes in an initial condition of the nonlinear system

of differential equations (2.7).

2.2.1 A Graph Theoretic Approach

Subsections 2.2.1 through 2.2.4 present the work contained in [19] and [21].

We associate with the matrix D f a signed, directed multigraph. For S C Q, let
G(f,S) be the signed, directed multigraph with vertices labelled vy, ..., v,, where
vertex v; is associated with solution component z;, constructed in the following

way:

G.i) If f;; > 0, i # j, at some point of S, a positive edge, labelled e;

36

directed from vertex v; to vertex v; is drawn in the multigraph.

G.ii) If fi; <0, 7 # j, at some point of S, a negative edge, labelled e,
directed from vertex v; to vertex v; is drawn in the muitigraph.

G.iii) If f;; =0, VZ € S, ¢ # j, no edge is drawn in the graph.

Note: if f;; takes both signs in S, (G.i) and (G.ii) will both apply.
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Edges in the directed multigraph are parallel if they have the same end vertices
and direction; edges are anti-parallel if they have the same end vertices and opposite
directions. Duplicate edges (same sign and direction) of G( f,S) may be deleted.
It should be noted that there are no directed edges from a vertex to itself. Two
distinct vertices in G(f, S) can be connected by at most two parallel and two anti-
parallel directed edges, one edge of each sign in each direction. This leads to a
potential difficulty in labelling edges, which we deal with by including the sign in
the edge label. An arbitrary edge of G(f,S) will be denoted e, s € {+,—}. In
the examples, positive edges will be drawn as solid lines and negative edges will be
drawn as dashed lines. Note that G(f, S) need not be connected. In the examples,
it will be.

At times, we will assume that
H(f,S) fii@) 200t fij(Z) <O,YZ€ S, Vi#j.

Under H(f,S), when Df is sign symmetric, sign(fij(Z))sign(f;i(z)) = 0,
VeSS, Vi# j and any parallel or anti-parallel edges in G( f,5) will have
the same sign. We construct the signed (undirected) multigraph G ( f, S) by re-
moving the directions of edges in G(f, S) and deleting any redundant parallel edges.
In an undirected graph, edges are parallel if they have the same end vertices; “re-
dundant parallel edges” are parallel edges with the same sign. In [20], H( f,8) is
not introduced and a slightly different G,(f,S), allowing parallel edges of oppo-
site sign, is used. [20] shows how to apply this graph theory directly to chemical
mechanisms, without listing the induced system of differential equations, making

hypothesis H(f,S) unnatural to implement.
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2.2.2 Notation and Terminology

The following concepts will be required in the upcoming graphical discussion.

A walk (path) in G.(f,S) between two vertices, v; and v;, is an alternating
sequence of vertices and edges (distinct vertices and distinct edges) beginning with
v; and ending with v;. A directed walk (directed path) in G( f,8S) from vertex v; to
vertex v; is an alternating sequence of vertices and directed edges (distinct vertices
and distinct directed edges) beginning with v; and ending with v;, with the edges
being appropriately directed. A directed path (directed walk) can be described by
a sequence of vertices and edges (distinct vertices and distinct directed edges) as
Vi€jg, Uk €k p, Uky - - - €pm sU;, Where edge e]r, has tail vertex v,, and head vertex v,

and s, € {+,—}. In a closed walk, v; = v;.
The length of a walk (path) is the total number of edges comprising it.
The sign of a walk (path) is the product of the signs of the edges comprising it.

Combining a path and an edge which connects the terminal vertices of the
path creates a cycle in G,(f,S). A directed cycle in G(f,S) is a directed walk
Vi€Gh, Vky €xs i, Uz - - - Ukt €k ko Vkemy WheTE ;€30 Uk, €00, Uk, - . Uk, , is a directed
path, v; = v, and s, € {+, —}.

The vertex v; is a source (sink) if all incident edges are outgoing (incoming).

We say that the ordered vertex pair (v;,v;), © # 7, is strongly connected if there
is a directed path from v; to v;. Notice that if there is a directed walk from v; to v;
then there is a directed path from v; to v; as well. The directed graph is strongly
connected if for each ordered pair of vertices (v;,v;) in the graph, (v;,v;) is strongly

connected. Furthermore, a strongly connected vertex pair (v;, v;), ¢ # j, is

(i) positively (negatively) consistently strongly connected if all directed walks



CHAPTER 2. MONOTONICITY WITH RESPECT TO AN ORTHANT 16

from v; to v; are positive (negative), and

(ii) inconsistently strongly connected if there is a directed walk of each sign

from v; to v;.

Notice that we must use “walk” above; should the walk involve a negative directed

cycle, then the ordered vertex pair will be inconsistently strongly connected.

We say (v;,v;) is inconsistently strongly connected if v; is part of a negative
directed cycle. Otherwise, we say that (v;,v;) is positively consistently strongly
connected. If (v;,v;) is not inconsistently strongly connected, then we say that

(vi, vj) is consistent.

Given a connected graph, a spanning tree of this graph is a connected, spanning
subgraph without any cycles. A spanning subgraph is a subgraph involving all of
the vertices of the original graph. An unconnected graph has a spanning forest,
a collection of spanning trees, one for each of its connected components. Adding
back an edge from the original graph which is not in a spanning forest produces a
subgraph with exactly one cycle. Separately adding each of the excluded edges to
a spanning forest gives a set of cycles called a fundamental set of cycles. Let F be
a spanning forest in a graph G. For each edge e of G — F, there is a unique cycle C.
such that C. — F = {e}. For any F, {C. : e € G- F} is a fundamental set of cycles.
A fundamental set of cycles forms a basis for the set of all unions of edge-disjoint
cycles in the graph; here, we are thinking of a basis in the linear algebra sense where
the field is Z;. Let C; = {ey,...,¢€p,€p41y...,6,} and C = {e1,...,€p,€041,---16r}
be two unions of edge-disjoint cycles. Then the sum is C; + C2 = {€p41,---.€r}.
This is the symmetric difference of the sets, namely C, +C; = (C; —C2) U(C2 —Cy).

We present the following simple lemma.
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Lemma 2 ForC; and C; two unions of edge-disjoint cycles,

sign(C, + C;) = sign(C,)sign(C,).

Proof: Suppose C; = {e1,...,6p,6pp1,...,6,} and C; = {e1,...,€p€0414--.,6r}
are two unions of edge disjoint cycles. Then C; +C; = {ep41,.--,¢€-} and

r r p 2
sign(Ci+C) =[] sign(es) = [[ sion(es) (Hsign(e.-))
i=p+1 i=p+l i=1
= sign(Cy)sign(Cs). a

Remark: Some treatments of elementary graph theory define cycle to include
unions of edge-disjoint cycles. This permits the above algebra to be cleanly stated:
the space of cycles (so defined) is closed under mod 2 addition. In this work, we
find the simpler definition of cycle to be more useful.

2.2.3 Graph Theoretic Results

These first results deal with system-wide monotonicity. Theorem 5 gives a graph
theoretical equivalent to condition (2.10) for an order preserving flow. We will need

these simple observations before presenting this result.
Lemma 3 FEvery closed, negative walk contains a negative cycle.

Proof: The proof is by induction on the length of the closed, negative walk. Sup-
pose the walk has length 2; then it must consist of one edge of each sign and the
result follows. Suppose the result is true for a closed, negative walk of length < m.
Consider a closed, negative walk of length m + 1. If the closed, negative walk has
no repeated vertices, then the result follows. If the closed, negative walk has a
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repeated vertex, then the walk is a union of two closed walks, one of each sign. The
closed, negative walk in this union has length < m —1 and, therefore, must contain

a negative cycle by the induction hypothesis. (®]

Lemma 4 If f induces an order preserving flow and the graph G(f,Q) has a pos-
itive (negative) directed edge labelled e (e;) from vertez v; to vertez vj, i # j,
then P;P; = 1 (—1) where P = diag[P,] is the matriz associated with the order

preserving flow.

Proof: Suppose the directed edge has positive sign. Then f;; > 0in and f;; > 0
at some point of . Since f gives an order preserving flow, there is a matrix P as in
(2.9) such that P;f;;P; > 0. Evaluating at the point where f;; > 0, we must have

P; P; > 0 and hence P;P; = 1. The other case is argued in the same way. a

Theorem 5 System (2.7) induces an order preserving flow if and only if the con-
ditions H(f,Q) and sign(f;;(%))sign(f;i(%)) >0, VZ € Q, Vi # j, hold and there
are etther no cycles in G, ( £, Q) or every cycle in any one fundamental set of cycles

in Gu(f,Q) is positive.

Proof: We first establish that (2.7) induces an order preserving flow if and only
if condition H(f,Q) holds and G.(f, Q) contains no negative cycles. The forward
direction of the Theorem follows immediately; the other direction follows from

Lemma 2.

If f induces an order preserving flow, there is a matrix P as in (2.9). Suppose
that the graph G,(f,f) has a negative cycle with vertices v,,...,u,, where v
is connected to v, 1 < i < k, with the convention v;,,, = v;,. By Lemma 4,

PPy, is the sign of the edge between v;; and v;,,,. Since the cycle is negative
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we must have (P, P, )(P, P, ) --- (P P,) = —1, but this is a contradiction because

(Pllplz)(PlzP'a) '”(PlkPh) = (PllPlz tee P’k)z = 1.

Next, we prove that if G,(f,Q) has no negative cycles then we must have
an order preserving flow. The graph G,(f,Q) consists of connected components
G\( £, Q),...,G?(f,9). Since the variables corresponding to the vertices in two
different subgraphs do not interact, we need only consider a connected subgraph of
G.(f,9), say GL(f,Q), with n, vertices.

Choose any vertex v; in GL(f,Q). Since there are no negative cycles, every
vertex in the subgraph is connected to v; by paths of only one sign. If not, then v,
is connected to vy, say, by paths of both sign; hence, v; is part of a closed, negative
trail (combining the two paths) and, by Lemma 3, GL(f,Q) contains a negative

cycle, giving a contradiction. We define the disjoint sets

Q = {vk:v and v are only connected by positive paths in G1( f,2)}, and

R = {vg:v, and v are only connected by negative paths in GL(f,Q)}.

In order to avoid a simple contradiction, vertices in @ can only be connected to
each other by positive paths, vertices in R can only be connected to each other
by positive paths, and vertices in @ can only be connected to vertices in R by
negative paths. We relabel the vertices in GL(f,) so that vz,...,v, € Q and

Vgtly-+-1Un, € R. Hence,

fix>0, 1<i,k<gq,i#k,

fix 20, g+1<i,k<ny, 1 #k,
fie 0, 1<1<q, q+1<k<ny,
fie<0, 1<k<q, q+1<i<n,.

For this subsystem, D f has the sign pattern given in Figure 2, where ‘+’ means the
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af\ _ +
(az,-) -

¢
\
4

T m—g
Figure 2: Sign pattern of Df after relabelling.

corresponding 5&tial derivative is non-negative and ‘—’' means it is non-positive;
hence, choosing the matrix P = diag[l,...,1,~1,...,—1], where P has q entries
of 1 and n; — ¢ entries of —1, means that P(Df)P has non-negative off-diagonal

entries. Thus, this subsystem gives an order preserving flow. The result follows. O

A version of Theorem 5 was stated informally in {34] and, later, more carefully

in [35); however, a careful proof has not been found in the literature.

Remark: Let C be a fundamental set of cycles in a graph. Every cycle in the graph
is positive if and only if every cycle in C is positive; thus, in checking for an order
preserving flow, only a single fundamental set of cycles needs to be considered. The
number of cycles in a fundamental set of cycles is bounded by the number of edges
in the graph. The total number of cycles can be exponential in the number of edges.

We may want to apply this result to the non-negative orthant. In this case, we
will suppose that f € C'(2). The following limit property is necessary (see [35]);
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it extends our ordering to the non-negative orthant.

Proposition 6 Let Q be an open, connected, convez set. Then for any 7, §*) €
Q with P < P, 3 sequences {z(™},{§(™} € Q@ with PE™ < P§™ ¥ m,
and
lim #™ = ™ and lim §™ = 7.
m—$00

m=$00

Proof: Let 7j € Q. For #* and §® € Q, the sequences #™ and §(™ in Q can
be defined by #™ = () 4 2-™( — z(*)) and §™ = g 4 2-™(f — §*)); then
P(™ — §(™) = (1 —2-™)P(z(*) — §*)) and the limit property holds. a

Proposition 6 implies that if P < P§ = Ppi(z) < Pype(3) for Z,7 € §, then
P < Pj(*) = Py () < Pye(§™)). This leads us to the following result.

Corollary 7 Suppose Q is a closed, positively invariant, connected, convez set.
System (2.7) induces an order preserving flow with respect to an orthant if and only
if the conditions H(f,Q) and sign(f;;j(Z))sign(f;i(%)) >0,V € Q, Vi # j,
hold and there are either no cycles in the graph of Df or every cycle in any one
fundamental set of cycles in the graph of Df is positive.

As we will be focusing from now on on the signs of partial derivatives of com-
ponents with respect to initial conditions we can drop the convexity assumption on
Q. Furthermore, it will suffice to make assumptions only on G(f, ['(£)) rather than
G(f, ), where ['(Z) = {¢:(%) : t > 0} is the positive semi-trajectory. The follow-
ing theorem shows how to determine the signs of partial derivatives with respect

to initial conditions when G(f, ['(Z)) has no negative cycles.
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Theorem 8 Suppose that G,(f,[(z)) has no negative cycles. If all paths connect-
ing v; and v; in G.(f, (%)) are positive then

a4} o4} -
a:l:.' (1:) >0 and 3}:(1:) >0,

V t € [(Z). If all paths connecting v; and v; in Gy f,T(&)) are negative, then the

dertvatives are both non-positive.

Proof: If all paths connecting v; and v; in G, ( f, ['(£)) are of one sign then v; and
v; must be part of a connected subgraph GL(f, ['(Z)) which has no negative cycles.
The argument used to prove Theorem 5 then applies and gives the result. o

These final theorems allow us to obtain partial and strong monotonicity results;

they require considering the graph along the solution curve.

Theorem 9 If the vertez pair (v;,v;) is positively consistently strongly connected
in G(f,I\(z)), then

apl . .

'3;(1") >0, Vte I().
Furthermore, if (v;,v;), i # J, is consistent in G(f, [(Z)) then, ¥ t € I(3),

(

= 0 if (v, v;) is not strongly connected in G( f£,L(&))

> 0 if (v;,v;) is positively consistently strongly connected

Oy . . -
@ n @)

< 0 if (vi,v;) is negatively consistently strongly connected

in G(f,[(2))

Proof: Suppose (v1,v;) is consistent in G(f,I'(Z)). For any vertex v, (vy,vr)

is either consistently strongly connected, inconsistently strongly connected or not
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strongly connected. Define the disjoint sets

Q1 = {vk:(v1,vx) is positively consistently strongly connected in G(f, [(Z))},
Q@2 = {vr:(v1,vs) is negatively consistently strongly connected in G(f,[(z))},
R = {w: (v, v) is not strongly connected in G(f,['(Z))}, and
S = {uvi: (v1,ve) is inconsistently strongly connected in G(f, L(z))}.
We relabel the vertices so that vy,...,v, € @i, Vg 415---1Vg € Q2, Vgpi1y.-.,Ur €

R, and vr44,...,u, € S. With the corresponding relabelling of z;, 1 < ¢ < n, the
system (2.7) takes on the form

:i:" = 'f"(xl,...,zqz,qu...l,...,zr), 1Si-<—q2)
T = ff(xﬂ'ﬂ’ ooy Tp)y @+1<:<r,
T = fi(zh-'wzln’zq:-fh'--1xr,xr+h"-7zn)1 r+1<:<n.

Since (vi,v;) is consistent, either
(i) @ +1 < j <, in which case
a7
>
. £)=0,Yt>0,

ar

(ii) 1 <j < ¢, and then

M) = Zf,. Yier - it
k=q2+1
= 3,0
= glf;.k 50 (8)- (2.12)

We can write (2.12) as l;’(t) = MY (t) where Y is a g, vector and M is
a ¢z X q; matrix with ¥; = —a-"-'i and Mji = f;i. Choosing

P = diag[P] = diag[l,...,1,-1,...,-1], (2.13)
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where P has ¢; entries of 1 and q; — ¢, entries of —1, means that PM P
has non-negative off-diagonal entries.

We let Z = PY. Since Y(0) = E, then Z(0) = E, where £ =
(1,0,...,0)T. We will prove that Z > 0, V ¢ € I(Z), which by the
construction of Z gives the remainder of the second result (with i = 1).
Now,

Y =PZ=MY = MPZ.

So, we have

Z = (PMP)Z. (2.14)

Since (PM P)Z is quasimonotone nondecreasing, Z(¢) > 0, V ¢ > 0, by
the Kamke-Miiller Theorem.

-

We still need to prove the first result. Take 7 = 1 in the above setup. We will show
that Z,(¢) > 0,V t € I(Z). From (2.14), we have

Z+\Z =(PMP+\Z=N2Z,

where ) is chosen large enough so that N = PMP+\I > 0. Solving for Z in terms
of the right-hand side, we get

- - t -~ .
Z(t) = eME + / e -INZ(s)ds. (2.15)
o

We can immediately conclude from (2.15) that Z,(¢) > 0, Vt € I(Z). a

Definition 4 We say that (2.7) gives a consistent flow if, for each i and j, either

g—i:(i') >0, Yte I(z), or -g—:—:‘-(i) <0, Vte I(7).

If (vi, ;) is consistent in G(f, S) for each i and j, we say that G(f,S) is consistent.
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Figure 3: G(f, ) and G,(f,9) for Example 2.
Thus, by Theorem 8, we get the following corollary.

Corollary 10 If (2.7) gives a consistent graph G(f,Q), then (2.7) gives a consis-
tent flow.

Example 2: Consider the example graphs G(f,Q) and G,(f,Q) in Figure 3. As
mentioned earlier, we adopt the convention of positive edges being represented by
solid lines and negative edges being represented by dashed lines. G.(f, Q) consists
of a single negative cycle and, by Theorem 5, does not induce an order preserving
flow. However, there are no inconsistently strongly connected vertices. This is
a consistent flow and we can immediately state the sign pattern for the matrix of

partial derivatives of solution components with respect to initial conditions, namely

(+ 0 0 0
o} . + + 0 -
(@) = ,
i + 0 + +
\0 0 0 +

L4 b

where ‘+’ means that the corresponding partial derivative is non-negative, ‘—~
means that the corresponding partial derivative is non-positive, and ‘0’ means that

the corresponding partial derivative is identically zero.

We can also use Theorem 8 to give partial results on the signs of partial deriva-

tives with respect to initial values.
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The condition that G(f,R) be consistent is a sufficient, but not a necessary,

condition for a consistent flow as the following example illustrates.

Example 3: Consider

3, >0 0 220
521=f1={ » y Ta=fo= ’ .

0, z2<0 —z1z3, 72 <0

One can check that f;; > 0 and fz; <0,V Z € Q = R?, so the graph, G(f,Q), for

this system is as follows:

The vertices are inconsistently strongly connected and Theorem 8 does not apply.

Yet, solving the system gives:

(z2)*t+ 1z, >0 Tz, r2>0

Pe(z1,22) = { y Pz T2) = {

e T <0

Z1 z2<0 T¥z1228?

This gives the following sign pattern for partial derivatives with respect to initial

() - (* 1)

where ‘4’ means that the corresponding partial derivative is non-negative, and ‘—’

conditions:

means that the corresponding partial derivative is non-positive. By definition, this
is a consistent flow. This result could be obtained by combining the conclusions of

Corollary 7 for each of the half-planes z; > 0 and z; < 0.
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Theorem 11 For some ¢, € [(Z), let ¢y, (Z) = Ty; then, Vt > t; (Vt > 0 if
ty=0),tel(z),:#7,

> 0 if (v;,v;) is positively consistently strongly connected

Qﬁ(i) ) in G(f,I(z)) and G(f,#)

dz; < 0 if (v;, v;) is negatively consistently strongly connected

| in G(f,[(#)) and G(f,21)

Proof: The proof begins in a similar way to the proof of Theorem 8. Suppose
(v1,v;),J # 1, is consistently strongly connected in G( f,0(&)) and in G(f,#).
with £; > 0. Define the disjoint sets

Q1 = {uvk:(v1,vs) is positively consistently strongly connected in G(f, ['())
and in G(fv il)}a
Ri = {vr:(v1,vs) is positively consistently strongly connected in G( £, (&)

and not strongly connected in G(f, i:l)},

Q2 = {vi:(v1,v) is negatively consistently strongly connected in G( f, L&)
and in G(f, 1)},

R2 = {vi:(v1,u) is negatively consistently strongly connected in G( £, L&)
and not strongly connected in G(f,# )}, and

S = {vi:(v1,v:) is inconsistently strongly connected in G(f,[\())
or (vy, vi) is not strongly connected in G(f, ['())}.
We relabel the vertices so that vy,...,v, € Q1) Vg415--+,Vr, € Ryy Uri41y--.,0g, €

Q2, Vg41y---1Vr, € Ry, and v4yy...,0; € S. Performing the corresponding

relabelling of z;,2 < i < n, puts the system (2.7) in the form

f o= fi@1y.r2n), 1SS,
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z = fi(zi,...,zp)y2+1<i<n.
We will show that for ¢ > ¢,

-—z -
Oz, <0, n+1<j<q

For 1 <1 < ry, we proceed as in the proof of Theorem 8. We have

=, OF
7. = gf.,ka—zl(x). (2.16)

We can write (2.16) as li'(t) = MY(t) where Y is an r; vector and M is an
rp x rp matrix with ¥; = 2%(3) and Miz = fix. Choosing P = diag[P] =
diag[l,...,1,~1,...,~1], where P has r, entries of 1 and r, — r; entries of —1,
means that PM P has non-negative off-diagonal entries.

Let Z = PY. By Theorem 9, we know that Z; > 0,V ¢ € [(Z), k # 1, and
that Z, > 0, V ¢ € I(z). We will prove that Z;(t) >0,V t > ¢, 1 < j < q and
r1 + 1 < j < g2. Then the conclusion of the theorem would follow. As in the proof

of Theorem 9, we have
Z=(PMP)Z = Z + A3 = (PMP+)\)2 = N2,

where A is chosen large enough so that N = PMP+ Al > 0. Solving for Z in terms
of the right hand side, we get
t
Z(t) =eME + / e*=YNZ(s)ds. (2.17)
0
The proof will now proceed by induction on the length of the shortest directed path
in G(f,%,) from v, to v;j. Suppose that a shortest directed path from v; to v; in
G(f,#) has length 1. Then
t r2
Zit) = / =0 " NuZids
0 i=1

t
2 / e‘\("‘)leZIds. (2.18)
1]
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Since Nji(t1) = P;fi1(Z1)P1 > 0, we conclude that Z;(t) > 0, for ¢ > ¢,.

Now suppose the result is true if the shortest directed path has length m. We
consider the case when the shortest directed path from v; to v; in G(f,Z;) has
length m + 1. Suppose the intermediate vertices are vy, , - . ., Uk, , With vg, adjacent
to vy, vy, adjacent to vg,,,, 1 <! <m -1, and v, adjacent to vi,. Note that each
k; satisfies either 1 < k&t < q or ry +1 < k; < qz2. Then

t r2
Z;i(t) = /0 =0 " Ny Zids
I=1

t
> / e IN; 7, ds. (2.19)
0

Again, Nji.(t1) = Pjfikm(£1)Pe, > 0. In order for a shortest directed path from
vy to v; to have length m + 1, a shortest path from v, to v, must have length m;
hence, Z,,(t) > 0, t > ¢, by the inductive hypothesis. Thus, Z;(¢) > 0, ¢ > ¢;.

The proof by induction is now complete.
The case t; = 0 is argued in exactly the same way. a

Theorem 11 requires some knowledge of the solution trajectory in order to be
useful. The following corollary gives a result which does not require any information

about the solution trajectory; it is most useful in applications.

Corollary 12 If (v;,v;) is positively (negatively) consistently sirongly connected in
G(f,0), #0) € Q, i(t) € for t > 0, then

i .
51—:;(:1:) >0(<0)fort>0.

A particular, well-known case of Corollary 12 is stated by M. Hirsch in [11] and
(13]:
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Corollary 13 If f is a cooperative vector field and Df (2) is also irreducible for

all , then {¢¢} has positive derivatives.

Recall that a cooperative vector field is one that satisfies f; () >0,V Z € Q,
Y i,7, i # j. Df(%) is irreducible means that G(f,Q) is strongly connected, that

there is a directed path from any vertex to any other vertex.

It is perhaps important to make some comments on Corollary 13. The prools
in [11] and [13] are incorrect (verified by M. Hirsch). References to the (incorrect)
proof pervade the literature, but a careful search reveals the following. [1] contains
a result that can be used to establish Corollary 13. [24] contains a related result
with stricter hypotheses. [34] refers to [13] without mentioning the incorrect proof.
[33] and [35] contain a correct proof. [19] contains a proof of Theorem 11 from
which the corollary immediately follows. In [41], a generalization of Corollary 13,
with weaker hypotheses, is given..

2.2.4 An Algorithm For Complicated Multigraphs

[t may be difficult to check the conditions of the previous theorems, so we present an
algorithm for dealing with complicated multigraphs. We will require the following
graph theory results.

Lemma 14 Delete the sources and sinks (and their incident edges) from G(f, Q).
Repeat this procedure on the resulting graph as long as there are sources or sinks
remaining. The result is the empty graph (no vertices or edges) if and only if the
original graph has no directed cycles. There is a directed cycle involving some of

the vertices that survive this procedure.
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Figure 4: Example graph for Lemma 14.

Proof: See [27], pages 18 and 332. o

Remark: Not all vertices that survive the process outlined in Lemma 14 are nec-
essarily involved in a directed cycle. Consider the graph in Figure 4. The graph
contains no sources or sinks, yet neither vertex v; nor vertex vg is involved in a

directed cycle.

Lemma 15 Let G be a signed, directed, connected graph all of whose vertices are
contained in the same directed cycle C. Delete one edge from C to obtain a directed
path P. In turn, add the edges in G which are not in P, producing (ignoring
leftover edges) either a directed cycle or two co-terminal directed paths, where the
second possibility will be called a directed bicycle. Let S denote the set of these
directed cycles and directed bicycles. Then the vertices in G are consistently strongly
connected if and only if all of the directed cycles and directed bicycles in S are

positive.

Proof: If all of the directed cycles and directed bicycles in S are positive, then all
cycles in a fundamental set of cycles of the associated undirected graph G, are pos-
itive, implying that the vertices are consistently strongly connected. If a directed
cycle or a directed bicycle is negative, then (at least) two of the vertices of G are in-

consistently strongly connected. Since the vertices are strongly connected by the di-
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rected cycle C, it would then follow that any two vertices are inconsistently strongly

connected. a

A directed graph can be represented by an adjacency matrix. For such a graph
with n vertices, the adjacency matrix A is an n x n matrix with ij** element a;;
where a;; = 1 if there is a directed edge from vertex v; to vertex v; and a;; = 0
otherwise. Since there are no loops (edges with the same start and end vertices),
a; =0.

The powers of A give information about the walks in the graph. There are
(AP);; directed walks of length p from v; to v;.

We will need a similar matrix representation for a weighted, directed graph, a
directed graph in which each edge has a value (not necessarily numeric) associated
with it. With .this in mind, we will represent a weighted, directed graph by a
matrix W which captures all of the connections and weights. For such a graph
with n vertices, the n x n matrix W has ij** element w;; equal to the weight of
the directed edge from v; to v;. If there is no directed edge from v; to v;, we set
wi; = 0. In a graph with no loops, w; = 0.

In general, G(f, Q) can be a complex graph. This algorithm offers a way to
collapse G(f, ) to a weighted, directed graph, G,(f,Q), that can be analyzed
systematically; the analysis can then be extended back to G(f, ).

Step I: Collapse the signed, directed multigraph G(f,Q) to a signed, directed
multigraph with no directed cycles, Gy(f,2). We perform the following

iterative procedure, eliminating one directed cycle with each iteration.

(1) Let the iteration counter be k. Let k = 0 to start and let
Go(f, ) = G(f,Q). Each iteration produces Gi4.1(f, ) from
Gu(f, Q).
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(ii) Let Vi = {v1,...,0p,,0°,..., v,?,k} represent the vertex set of

Gi(f, ) and let mi = 0 to start. The notation will become

clearer shortly.

(iii) Find a directed cycle in Gr(f,Q), by using Lemma 14 if neces-

(iv)

sary. Let VO be the set of vertices of G(f,?) in the directed
cycle. If no directed cycle exists in Gi(f, ), then Step I is
completed.

Grp1(f, Q) has vertex set Viyp = Vi\VP+ {v0}. That is, the
vertices of G(f, ) not in the directed cycle remain vertices
of Grs1(f,Q), but vertices of Gi(f,) in the directed cycle
are collapsed into one vertex, v,?, in Grga( f , ).

We will say that vertices of VQ are contained in v$. For
v; € G(f,0), ifv; € VP in Gi(f, Q) then we will write v; € v
in Geaa(f,Q). fv; € v € v €... € vQ in Gi(f, D) then
we will write v; € v0 in Grei(f,9).

It will be important to keep track of which vertices are col-
lapsed and which vertices they (ultimately) contain.

If the vertices in V are connected by other edges, Lemma 15
must be applied to determine whether the vertices are con-
sistently strongly connected. This is only necessary if the di-
rected cycle is positive and contains no negative vertices. v
is labelled positive (negative) if the vertices are consistently
(inconsistently) strongly connected. If the directed cycle con-

tains a negative vertex then v? is negative.

(v) To avoid confusion when signing the edges of Gis1(f, ), we

pick a vertex of the directed cycle, say v; € VP; it is sensible
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to pick the vertex of highest degree. Now, suppose there is a
directed edge from v; to v; in Gi(f, Q) (v; and v; might be
collapsed vertices).

(a) if v;,u; € Vi \ VO then a directed edge of the same
sign from v; to v; is drawn in Geer(F,9).

(b) if v; € Ve \ V2 and v; € VP then a directed edge
from v; to vQ is drawn in Gisy(f, ). This edge in
Gier1(f, ) has the same sign as the shortest path
from v; to v} in Gi(f, ).

(c) if v; € V2 and v; € Vi \ VQ then a directed edge
from vQ to v; is drawn in Giyy(f, Q). This edge in
G ( f, 1) has the same sign as the shortest path
from v} to v; in Gi(f, Q).

(d) if v;,v; € VO then no edge is drawn in Gry1(f, Q).

Edges with the same sign and direction need not be drawn
more than once. It is interesting to note that if the directed
cycle is negative, one need not be careful when signing the
edge in (b) or (c) above since the next step of the algorithm
will erase the signs of these edges.

(vi) Increase k by 1 and return to (ii). The process is completed

when no directed cycle is found in Gi(f, ) in (iii).

The result of this process is in general a signed, directed, tripartite
(three different kinds of vertices) multigraph with no directed cycles,
Gy( f,9Q), but the only possible parallel edges will be edges of opposite

sign in the same direction.
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Step II: Transform the signed, directed, tripartite multigraph produced in
Step I, Gy(f, ), into a weighted, directed, tripartite graph, G ( £,

on the same vertices, using the following steps in order:

(i) Replace parallel or anti-parallel edges of opposite sign by a

single edge in the same direction weighted *.

(ii) Assign a weight of * to any edge adjacent to a negative vertex.
This includes both incoming and outgoing edges.

(iii) Assign a weight of +1 (—1) to any positive (negative) edge.
The * weighting is given to edges which carry an inconsistency. A
negative vertex involves vertices of G(f, ) that are connected by walks

of both signs; hence, edges adjacent to a negative vertex in the collapsed

graph carry this inconsistency in whichever direction they point.

Step III: Making no distinction between collapsed vertices and original ver-
tices, construct the matrix W associated with G (f, ). W has possible
entries of 0, +1, -1, and *. Let the vertices of G (f, Q) be {&y,...,7a,}.

Step IV: We define

I*' = %,
a+* = % a=0,-1,1,%,
a-* = x,a=-1,1,%, and

0-» = 0.

Since G,,(f, ) has no directed cycles, any directed walk can have length

at most equal to n,, — 1; hence, W™ is the zero matrix.
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We compare entries in [WP| and [W? for 2 < p < n, — 1, where

[W|;; = |[W;;|. For any i # j, there are three possibilities:

(i) If {W[%; = 0 for each p then (;,T;) is not strongly connected
in Gu(f,9Q).

(ii) Otherwise, if [W[f; = [WP;; # * and sign(WP);; is the same
for each p then (¥;, ;) is consistently strongly connected in
Gu(f,9); the sign of the connection can be determined by
finding a directed path in the graph from v; to v; or by ex-

amining the non-zero sign of ij for somep, 2 <p<n,—1.

(iii) All other vertex pairs (7;,7;) are inconsistently strongly con-

nected in G, (f, ).

Remark: We are extending our earlier definitions of consistently and inconsis-
tently strongly connected for Gi(f, Q) and G.(f, Q). A vertex pair in Gi( f£,Q)
is consistently (inconsistently) strongly connected if all directed walks are of the
same sign and none includes a negative vertex (if there are directed walks of each
sign or a directed walk includes a negative vertex). A vertex pair in Gy(f,Q) is
consistently (inconsistently) strongly connected if all directed walks are of the same
sign and none includes * weighted edges (if there are directed walks of each sign or
a directed walk includes a * weighted edge).

Before proceeding, we introduce the following lemma.
Lemma 16 Let v; € vQ in Gy(f,Q). Then vQ contains only the vertices v; of

G(f, ) where there is both a directed walk from v; to v; and one from v; to v; in

G(f,Q).
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Proof: We proceed by induction on the counter k in Step I of the algorithm.
Suppose k = 1; then, the vertices contained in v{ are vertices in G(f,) that

comprise a directed cycle in G(f, ) and we are done.

Suppose the claim holds for £ = r — 1. Consider the case of k = r. The claim
holds for G,_,(f,f); hence, in G( £, ?) we need only consider the newly added
collapsed vertex, v©, which corresponds to a directed cycle in G,_i(f,R). There

are several possibilities for two distinct vertices v;,v; € v0:

(i) v: and v; are vertices of G,_,(f,); then the claim holds by assumption.

(ii) v; and v; are contained in the same collapsed vertex of G, ( f, 2); then

the claim holds by assumption.

(iii) v; and v; are contained in the different collapsed vertices of G,_;(f, Q)
say v and v respectively; then there is a directed walk from v; (v;)
to each other vertex in v® (v?) and to v; (v;) from each other vertex
in v (v?P). Using those directed walks and the connections between v{
and vf—’ in Gr-1(f, ), one can construct directed walks in each direction

between v; and v;.

(iv) only one of v; or v; is contained in a collapsed vertex of G,—;(f, ).

Similar reasoning to the above works in this case.

0

Lemma 16 allows us to state that Gy(f,Q) and hence G, (f,) are unique
for a given G(f, ), regardless of the order in which directed cycles are identified
in Step I(iii). Furthermore, we will see that all vertices of G(f,() in a positive
(negative) collapsed vertex of G, (f,) are consistently (inconsistently) strongly
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connected. These results, drawing conclusions on the connections in G(f, Q) from

the connections in Gy, (f,Q), will be presented in the next theorem.

For convenience, we first introduce the following notation. Let the vertices
of G(f,9) be {v,...,v.}. If (v;,v;) is not strongly connected (positively consis-
tently strongly connected, negatively consistently strongly connected, inconsistently
strongly connected) in G(f, ), then we write (v, v;)€ §1(Sz, Sa,84). We will use

the same notation for vertex pairs, (@i, 7;), of Gu(f, ).

The set of positive (negative) collapsed vertices in G, (f, ) will be denoted by
V+ (V). Welet VO = V* U V- and let V° denote the set of vertices in Gy (f, )
that are also vertices in G(f, ). The next theorem follows from the work of this

section:

Theorem 17 /ifter performing the algorithm in Steps [-1V, all vertez connections
in Gy f,ﬂ) can be classified according to the following rules:

1. Let v;,v; €5y € VO. If i € V(D1 € V™), then (v;,v;) € S2 U S5 (S4)-
In the first case, examining the sign of a directed path from v; to v; in
G(f,Q) determines whether (v;, v;) € S2 U Ss.

2. Let v; € ¥y, vj € D, U F O, 01,0 € VO. If (T1,0m) € S1 (S4) in
Gu(f,Q), then (v;,v;) € S (84) in G(f, Q). If (B1,7m) € S2USs in
Gu(f,0), then (vi,v;) € S; U Ss in G(f,Q). Iftii € V™ or b € V™
then only (vi,v;) € 81 or (vi,v;) € Sy are possible.

3. Let v; = 5 € V°, v; € Bm € VO. If (81,0m) € S1 (S4) in Gu(f, ),
then (vi,v;) € S (S4) in G(f, Q). If (B1,m) € S2U 83 in Gu(f, D),
then (v;,v;) € S2 U S; in G(f,Q). If b € V™ then only (v;, v;) € & or

(vi,v;) € Sy are possible.
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4. Let v; = 5 € V°, vj = Ty € V. [f (51, 5m) € S1 (Sa) in Gu(f,Q),
then (v;,v;) € Sy (S4) in G(f, Q). If (51,Tm) € S2U S5 in Gu(f, ),
then (v;,v;) € S, USs in G(f,Q).

Proof: We first observe that at each iteration of Step 1(v) the consistency or
inconsistency of pairs of vertices are maintained in the following sense. In case (a),
(vi,v;) is consistently (inconsistently) strongly connected in Gi(f, Q) if and only
if (v;,v;) is consistently (inconsistently) strongly connected in Gis1(f, Q). In case
(b), (vi,v;) is consistently (inconsistently) strongly connected in Gi(f,R) if and
only if (v;,v?) is consistently strongly connected in Gis1(f,2) and v is positive
(inconsistently strongly connected, i.e. either vQ is negative or there are walks of
each sign from v; to v¥). In case (c), (v;, v;) is consistently (inconsistently) strongly
connected in Gi(f,Q) if and only if (v2,v;) is consistently strongly connected in
Grr(f, Q) and v is positive (inconsistently strongly connected, i.e. either v
is negative or there are walks of each sign from vQ to v;). In case (d), (vi,v;)
is consistently (inconsistently) strongly connected in Gi(f,) if and only if v? is

positive (negative).

Case 1. We now see that only consistently strongly connected vertices of G( X))
will be contained in a positive vertex in G,,(f,) and that all vertices contained
in a negative vertex in G, (f, Q) are inconsistently strongly connected. The result
follows.

Cases 2, 3, and 4. In each case, (U1,7m) € Si (S4) = (vi,v;) € S1 (S4) follows
immediately. (j,m) € S2 US3 = (v;,v;) € S2 U 83 follows as well, with the sign
of the connection being determined by any path from v; to v; in G( £,Q). This
information may be buried in the collapsed vertices of G, (f,Q).
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Finally, we can connect Theorem 17 with Theorem 9 of the previous section to

draw conclusions on the signs of partial derivatives.

We should note that two inconsistently strongly connected vertices could still
correspond to solution components which have some monotonicity with respect to
each other. The theory of this chapter does not help us; but the next chapter makes

some inroads (see example 12).

Before presenting several examples, we offer a method for determining when the
positivity assumption is satisfied for a class of chemical kinetics problems; this is

highlighted in Example 10.

2.3 Positivity For a Class Of Reaction Mecha-
nisms

In general, a careful analysis is required when seeking initial sets that satisfy the
positivity assumption (see Section 1.1). A graph theoretic approach is given in
[39]; it determines which concentrations will be positive for ¢ > 0 when a particular
set of species is present initially. For a certain class of reaction mechanisms, the
analysis simplifies and we present it here in the following theorem which determines
the smallest possible sets of species which must be present initially. Note that this
theorem uses a different graph than the one in [39)].

Theorem 18 Consider a reaction mechanism which involves reactions of only two

types:

(i) the product species are a subset of the reactant species, or
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(ii) there is a single reactant species.

Suppose that the reactions of type (ii) involve species A,,...,An. We draw a
directed multigraph G, with m vertices, vy,...,v,, with vertex v; corresponding
to species A;. Directed edges are drawn from vertex v; to vertex v;, i # j, if a
reaction of type (ii) with species A; as a reactant produces species A;. We call each
source vertex of G (a vertex with no incoming édges) and each strongly connected

subgraph of G4 with no incoming edges an initial group.

In each initial group, at least one species must be present initially to guarantee
positivity of all species for ¢ > 0. In addition, if there is a species in a reaction of
type (i) that does not occur in any of the reactions of type (ii) (as a reactant or as

a product), it must also be present initially.

Proof: [39] provides a labelling scheme to determine which species will be present
for t > 0 given that certain species are present initially. The species which are
present initially are labelled with a 0. In the first step of the labelling process,
the products of reactions with only Q-labelled species as reactants are labelled 1.
The process continues in this manner, with unlabelled products of reactions with
labelled reactants getting the label for the current step. At the end, all labelled

species will be present for ¢ > 0.

In our set-up, each vertex of G4 is either in an initial group or connected to
an initial group by a directed walk from the group to the vertex. The vertices of
G+ correspond to all of the species in the chemical system except for species in a
reaction of type (i) that do not occur in any of the reactions of type (ii).

If no species in an initial group is present initially, it is clear that none of the

species in that group will ever be present. If a species in a reaction of type (i) that
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does not occur in any of the reactions of type (ii) is not present initially, then it is

clear that this species will never be present.

If at least one species in an initial group is present initially, then, by the strong
connectedness of the group in G4, all of the species will be present for ¢ > 0. Any
vertices that are connected to an initial group by a directed walk (from the group
to the vertex) will also be present for ¢ > 0. If this is the case for each initial group,
then we need only additionally insure that any species in a reaction of type (i) that
do not occur in any of the reactions of type (ii) are also initially present. In this

case, all species are present for t > 0. m]

2.4 Examples

>

Example 4 (Neural Networks): A standard equation to model a neural network

is

Iy = H.-(:c,-,s,-) = F.-(a:l,...,a:,.), 1= 1,...,7!, (2.20)
where
a dg;
i= E Wi;jgi(z;), W;; constant , >0, and == >0.
3 dz;

See [16] or [14] for more details. Two mathematically interesting cases are (i)
ezcitatory nets, and (i) even-loop nets. In case (i), Wy > 0, i # j, so G(F,1)
has only positive edges; by Theorem 5, the system induces an order preserving
flow (monotone flow, in this case). In case (ii), every directed cycle in G(F,Q) is
positive, so Theorem 5 applies again. In both cases, one can determine whether

partial derivatives are negative, positive, or zero for all time by examining G(F', Q).

Example 5 (Chemical Kinetics): Consider a chemical reaction mechanism con-
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D —
2

@e&

Figure 5: G(f,Q) for Example 6

sisting of reactions of the form
kg
agdi = BjiA;.

It is easily seen that the corresponding signed, directed multigraph has only positive
edges; hence, by Theorem 5, the system induces an order preserving flow (monotone
flow, in this case). By investigating the directed graph G(f, ), we can determine

if each partial derivative is positive or zero for all positive time.

Example 6 (Chemical Kinetics): In [30], the reaction mechanism
24, = 4 2 4

was considered and the signs of partial derivatives of concentrations with respect
to initial concentrations were given without proof. This mechanism induces the

system of differential equations,

-‘él = ——klzf + k_lzg,
23 = —(kg+ k.[)z‘z + kle, and

3'3 = kgzz.

Figure 5 presents the multigraph G(f,Q) for this mechanism. The positivity as-
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sumption will hold if Zo € Sp = {z; + z; > 0}. In such a situation, Table 1 sum-
marizes the signs of the partial derivatives, where ‘++4’ means positive for ¢ > 0,

‘+’ means positive for ¢ > 0, and ‘0’ means the derivative is zero for all time.

z1(t) | z2(t) | z3(2)
Tio | ++ + +
T20| + | ++ | +
z3g| O 0 ++

Table 1: Signs of concentrations with respect to changes in initial concentrations

for Example 6.

Example 7 (Chemical Kinetics): Consider the simple bimolecular reaction
A+ A > 4,

which leads to the system of differential equations

zy = —kz,z,,
332 = -kz 1L2, and
23 = +kzyz,.

We construct the multigraph in Figure 6, where, as usual, dashed edges have nega-
tive sign and solid edges have positive sign. It is easily seen that the graph G.(f, Q)
consists of a single negative cycle, confirming by Theorem 5 that the reaction does
not induce an order preserving flow. Using Theorem 9, we can still conclude that if
the positivity assumption is satisfied, Table 2 gives the signs of the partial deriva-
tives of concentrations with respect to initial concentrations, where the table entries

have the same meaning as in Example 6, with ‘~’ meaning that the derivative is
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Figure 6: G(f,Q) and G,(f,Q) for Example 7

negative for ¢ > 0. Blank entries mean that we have not determined the sign of the
derivative. The positivity assumption will be satisfied if o € Sp = {z; > 0,2, > 0}.

z1(2) | za(t) | za(t)
Tyo | ++ -

Zzo0|{ — | ++
z30| O 0 ++

Table 2: Signs of concentrations with respect to changes in initial concentrations

for Example 7.

Example 8 (Chemical Kinetics): Consider the same bimolecular reaction of

Example 7, with the reaction now being reversible:

ky
A+ Ay ;—-‘- As,
This mechanism leads to the system of differential equations

2y = —kzz2 + k73,
£ = —-kyz T3+ k_123, and
T3 = +kzx2 — ko123,

and the corresponding multigraph is given in Figure 7, where dashed edges have
negative sign and solid edges have positivesign. Asin Example 7, G,(f,) consists
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Figure 7: G(f,Q) and G.(f, Q) for Example 8

of a single negative cycle, so the reaction does not induce an order preserving flow.
This time, however, we cannot draw any conclusions on the partial derivatives since
every pair of vertices is inconsistently strongly connected in G(f, ). We will return

to this example in the next chapter.

Example 9 (Epidemiology): Consider the following mechanism for the SIS

epidemic model (see [7]):

This mechanism describes an epidemic in which susceptibles () meet infectives
(I) to produce two infectives at a positive rate of 3, while infectives recover without
immunity at a positive rate of ~.

Let the time dependent populations of susceptibles and infectives be denoted by
the variables z,(t) and z(t), respectively. The law of mass-action gives the system

of differential equations

21(t) = fi(z1,x2) = yz2(t) — Bzi(t)z2(t), and (2.21)
z2(t) = fa(@1,22) = —v22(t) + Bz (t)Ta(2). (2.22)
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To insure that we have a non-trivial situation, we require that z,(0) > 0.

This problem was analyzed in (18] and [31]; problem-specific arguments were
needed to obtain monotonicity results for this model. The results are summarized
in the Table 3, which gives the sign of a partial derivative of a population with
respect to an initial population. The */+ entry in Table 3 means that the partial
derivative is always positive for the case z,(0) < 7, and of both signs for the case
z1(0) > 3. The —/+ entry means that the partial derivative is always positive for
the case z,(0) < %, always negative for the case z,(0) > 7, and identically zero

for all time in the case z,(0) = %. Before attempting to obtain the monotonicity

z1(t) | za(2)
z(0) | */+ | +
22(0) "/'{" +

Table 3: Behaviour of populations with respect to changes in initial populations

for the SIS epidemic model for Example 9.
results of Table 3 using the methods of Chapter 2, we first notice that

(i) if2(0) <7 thenz\(t) < F, V20,

(i) if y(0) =7 then z,(t) =%, V¢ 20, and
(iii) if 21(0) > 7 then zy(t) > F, V¢ > 0.
The Jacobian matrix for this problem is

Df= ( —Bz; -z ) .
Bz —v+ Bz

For case (i), applying the theory of this chapter, we draw the directed graph

@ @
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which consists of a single positive directed cycle. For case (ii), applying the theory
of this chapter, we draw the graph

which also contains no inconsistencies. These two graphs give us the ‘+’ entries in
Table 3 in the case z,(0) < F. For case (iii), applying the theory of this chapter,
we draw the graph

) —— @)

which consists of a single negative directed cycle. The theory of this chapter takes

us no further.

Example 10 (Chemical Kinetics): The Michaelis-Menten reactions of enzyme

kinetics can be written

E+S:=‘ ES2 P+ E

where £, S, ES, and P are the enzyme, substrate, complex, and product, respec-
tively. We will denote the concentrations of E, S, ES, and P by z(t), z(t), za(t),

and z4(t), respectively; mass action chemical kinetics yields the system

&(t) = fi(zi, T2, T3, 34) = —k1z122 + (k=1 + k2) 23, (2.23)
z2(t) = faz1,z32, T3, 24) = k12122 + kT3, (2.24)
z3(t) = fa(zr, 22, T3, 24) = kyz1x2 — (k-1 + k2)z3, and (2.25)
24(t) = fazi, T2, T3, 24) = koza. (2.26)

This problem was analyzed in [32], using involved arguments that were specific to
the system. The signs of the partial derivatives of a concentration with respect to

an initial concentration are given in Table 4. The * entries in Table 4 mean that the
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Figure 8: G(f, ) for Example 10

partial derivative is of both signs. The 0 entries mean that the partial derivative is

identically zero. The Jacobian matrix for this system is

z1(t) | z2(t) | za(t) | za(2)
z(0) | + - * +
z(0) | — + + +
z3(0) | + * * +
20| o | o | o | +

Table 4: Behaviour of concentrations with respect to changes in initial concentra-

tions for the Michaelis-Menten system for Example 10.

( —kyzy —kxy ki +k 0

Df - -—kl.'tg —klxl k_[ 0
kyz, kyz; —-(k..l + kz) 0
\ 0 0 ks 0

Figure 8 presents the multigraph G(f, Q) for the Michaelis-Menten system. Almost

all ordered vertex pairs are inconsistently strongly connected in G(f,Q); we can
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only conclude that

8:1:,- . 3:1:4
= = —_— t>0.
3z:(0) 0, :=1,23, and Bza(0) >0,t>

Example 11 (Chemical Kinetics): We look at the complicated mechanism:

»

Al + AG - Alv
A2 3 A4 + ASv

A2 + A3 fi A21
kq
A3 + AG - AGv
A3 :i Alv
As 2 a4,
N ky
A4 - Al + A69
As 2 A, and
ko
Az+ Ay = Ag

The corresponding system of differential equations is

£, = ksz3 + krzy, (2.27)
I = —kyzq + kezg, (2.28)
T3 = —k3zox3 — k4T3Te — kszz — koZazy, (2.29)
Ty = kazg — krzy, (2-30)
zg = koxy — kgxs, and (2.31)
g = —kiz1x6 — kez6 + kx4 + kszs, (2.32)

and we construct the multigraph in Figure 9, where dashed edges have negative
sign and solid edges have positive sign. One spanning tree of the associated graph
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Figure 9: G(f,Q) for Example 11

G. and the fundamental set of cycles that it induces are given in Figure 10. As

listed, the fifth cycle is negative, confirming that the mechanism does not induce

an order preserving flow. In fact, performing the algorithm of Section 4 leads to a

collapsed graph consisting of just one negative vertex; all vertices are inconsistently

strongly connected.

Example 12 (Chemical Kinetics):

A+ Ag

A,
A+ A3
Az + As

Consider the reaction mechanism given by

ky
—

L&

L

Lr

b |r Lr

L& |r

As, and
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Figure 10: Spanning tree and fundamental set of cycles for Example 11.
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Figure 11: G(f,Q) for Example 12

ko

A+ Ay = Ax

The corresponding multigraph is presented in Figure 11. This multigraph differs
very little from the multigraph in previous example: the directed edge from v, to v;
is now negative. Once again, we choose one spanning tree of the associated graph
G, and draw it and the fundamental set of cycles that it induces; see Figure 12.
In this case, all of the cycles in the chosen fundamental set are positive; hence, by

Theorem 5, the system induces an order preserving flow.

If the positivity assumption is satisfied, Theorem 8 applies and we can deduce
the signs of the derivatives of the associated concentrations with respect to ini-
tial concentrations. These are presented in Table 5, where entries have the usual

meaning.

The positivity assumption will be satisfied if 2o € So = O N {z3 > 0 and
either z; > 0 or z4 > 0 or =5 > 0 or z¢ > 0}. Using Theorem 18, we see that each
reaction in this mechanism with a bimolecular reactant plays no role when analyzing
positivity (every species occurs as a reactant or as a product in the reactions with

a single reactant). The remaining reactions correspond to the positive edges in the
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Figure 12: Spanning tree and fundamental set of cycles for Example 12.
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z1(t) | z2(t) | za(t) | za(t) | 2s(t) | ze(t)
T10| ++ - + - - -
T}l — | ++ - + + +
T30 | + e B o o -~ -
Zsgo| — + - |+ | + +
Tso | — + - + ++ | +
Teo| — + - + + | ++

Table 5: Signs of concentrations with respect to changes in initial concentrations

for Example 12.

graph of Figure 13. There are two initial groups: {vs} and {v;, vy, vs,ve}. The

conclusion follows.

Example 13 (Chemical Kinetics): We look at the reaction mechanism:

ky

A[ + As - Ala

Ar > A+ As,

AZ + AS - A2a

Az +As — As,
As = A,
As = Ay,
A 2 4,

A+A, = A,
As 2 4

At Ad = A, aud
Ai+A+A7; — A+ A,
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Figure 13: G(f,) for Example 13

The corresponding system of differential equations is

£
Z2
T3
T4
s
Te

Zq

]

—ksz 174 + k573,

~kaz2 + kezs,

—k3zy23 — kyzeTs — ksza — kioZ3Z4,
kazy — krzy,

kez2 — kozs,

—kyz,z6 — kezg + k14 + ko5, and

-'kutlzzx'r,

56

(2.33)
(2.34)
(2.35)
(2.36)
(2.37)
(2.38)
(2.39)

which leads to the multigraph in Figure 13, where dashed edges have negative sign

and solid edges have positive sign. Applying Lemma 14 tells us that vertices v,

through ve in G(f, ) are each involved in at least one directed cycle. We observe

that vertices vy, ve, v2, and v3 comprise a positive directed cycle. We collapse these

four vertices into a positive vertex labelled v 62,3 and pick vertex v, to determine

the signs of the edges in our collapsed graph. For example, there is a negative
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Foiezasd]

Figure 14: G(f,Q), Ga(f, ), and G, (f, Q) for Example 13.

edge from vertex vy to vertex v; and there is a positive edge from vertex vs to
v; hence, we will draw a negative edge from v4 to v 623 in the collapsed graph.
Proceeding in this way leads to the leftmost multigraph in Figure 14. Vertices
v1,6,2,3 and vs obviously form a positive directed cycle; the same is true of vertices
v1,62,3 and vy. We can collapse both of these cycles to get the middle multigraph in
Figure 14. Finally, G, (f, Q) is constructed on the right in Figure 14. Here, n,, =2
and we need only observe that w;; = *. We conclude that vertices v; through
ve are consistently strongly connected in G(f,R) and can deduce the signs of the
derivatives of the associated concentrations with respect to initial concentrations.

These are presented in Table 6, where entries have the usual meaning.
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zi(t) | z2(2) | z3(t) | za(t) | zs(t) | z6(t) | z2(¢)
o | ++ | — + - - -
Tago| — | ++ - + + +
Z3p | + - | ++ - - -
;:0 - + - ++ + +
T50| — + - + ++ +
Zgo | — + - + + | ++
Zzo| O 0 0 0 0 0 ++
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Table 6: Signs of concentrations with respect to changes in initial concentrations

for Example 13.



Chapter 3

Monotonicity With Respect to a

Cone

In previous work (see {30}, [32], [18], [31]), partial monotonicity results were proven
for several specific chemical and epidemiological models. Solutions were only mono-

tone with respect to initial conditions in a subset of solution space.

The treatment of linear systems in [5] and [4] combined with our experience with
some specific nonlinear problems motivates an attempt to formulate monotonicity
results with respect to a convex cone. In the next section, we provide an extension

of the Kamke-Miiller Theorem to closed, convex cones.

3.1 Preliminaries

Firstly, we need to define the concept of a cone in R".

Definition 5 A set K C R" is defined to be a cone if , V& € K and a 2> 0,
af € K. A cone K is said to be solid if int(K) # 0. K is said to be pointed if

59
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Figure 15: A two-dimensional cone K in R3 is not solid.
K 0 {-K} = {0}.

One must be careful when discussing non-solid cones. For example, consider the
two-dimensional cone K in R? presented in Figure 15. K is not solid: for any point
in K, an arbitrarily small ball in R3 around that point is not in K. However, K is
solid when we restrict ourselves to the smallest subspace containing it (the plane
spanned by @ and b in the example). The cone’s interior relative to the smallest
subspace containing K is called the relative interior of K; we denote it relint(hA’).
Similarly, the cone’s boundary relative to the smallest subspace containing A is

called the relative boundary of K and is denoted relbdy(K).

Recall that a set in R™ is convex if for any two of its points it contains the line
segment between them. A convex cone K induces a partial ordering “<x” in R"™.
For z,i € R", we write & <, § (or § 2x &) ifand only if § — & € K. We will
write £ <x § (or § >, &) if § — £ € relint(K). The partial ordering induced by a
convex cone K is antisymmetric (§ 2, w and @ >, ¥ = ¥ = W) if and only if K

is pointed.
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Figure 16: Orderings with respect to a proper cone A" in R?

A proper cone is a cone which is closed, convex, solid and pointed. A proper
cone is generated by its extreme rays (all vectors in the cone are a non-negative,
linear combination of the extreme rays; see page three of [5]). A vector Z is an
extreme rayof K if 0 <y § <, # = § is a non-negative multiple of Z. The early
pages of [5] and [43] offer an introduction to this terminology and theory.

Geometrically, in R?, Figure 16 illustrates which vectors # satisfy the two strict
inequalities for a fixed vector § and a proper cone K. As it turns out, we will want
to verify that a chosen cone satisfies particular hypotheses in order to apply the
upcoming results. Since proper cones are generated by their extreme rays, we need
only check that the extreme rays satisfy the properties we demand of all rays in the

cone.

All seems well, but we will frequently use polyhedral cones in practice. The cone

in Figure 16 is a polyhedral cone as well as a proper cone.

(5] offers the following comments on polyhedral cones (Theorem 2.5, page 2):

(1) A ponempty set K of R™ is a polyhedral cone if and only if it is the
intersection of a finitely many closed half spaces, each containing the

origin on its boundary;

(2) A polyhedral cone is a closed, convex cone; and
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(3) A nonempty subset A" of R" is a polyhedral cone if and only if K* is a
polyhedral cone.

K* denotes the dual cone of K, given by
K={gjeR*":z€ K=>i-52>0}

Note that K** = K if and only if K is a closed, convex cone (see [5]).

The right, circular (“ice-cream”) cone with vertex at the origin is a proper cone
that is not polyhedral. It would seem that the defining difference is that proper
cones do not necessarily have a finite number of extreme rays (or generators). Note
that we will use the word generators here because the notion of extreme rays will
not make sense for some polyhedral cones we consider. It is not quite as siuiple
as one might hope to establish that polyhedral cones do have a finite number of
generators. We will need a small amount of theory.

We need to define the concept of a face. Let K and F' C K be pointed, closed
cones; then F is called a face of K if

f€eFand 0<, g<xi=>jeF.

~ The face F is nontrivial if F # {0} and F # K. For example, the faces of the
non-negative orthant O are of the form Fy = (€O :z; =0ifj ¢ J} where
J € {1,...,n}. This includes the two-dimensional faces that one might think of
naturally, along with the one-dimensional faces (the extreme rays of @) and the
trivial faces (0 and @). As a second example, note that the nontrivial faces of the
ice-cream cone with vertex at the origin are of the form af where a > 0 and % is
a boundary vector. The non-negative orthant has a finite number of extreme rays

(and faces) while the right circular cone has an infinite number.
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Corollary 2.6.14 in [42] gives some insight into how the finite number of gener-
ators are chosen: Every closed, conver set in R™ is the convex hull of those of its
faces which are flats or closed halfflats. A set A € R" is called a flat if whenever it
contains two points, it also contains the entire line through them. A closed halfflat
is the intersection of a flat with a closed halfspace which meets it, but does not
contain it. We now present the result from [42] (Theorem 4.1.1) that satisfies our
needs.

Theorem 19 A conver cone in R" is finitely generated if and only if it is polyhe-
dral.

Consider the polyhedral cone K in Figure 17; K is the cone in R? defined by
{(z,¥,2) : z > |y|}. K is polyhedral (it is the intersection of two halfspaces, each
with the origin on its boundary); but, it is not proper (it is not pointed). Its faces
are two closed halfflats (the two halfplanes) and one flat (the z-axis). Following the

results above, its generators are

1 -1 0 0
0|,] o {,|1],ad] -1 |,
0 0 1 1

where the last two vectors could each be chosen to be any vector in each of the
halfplanes but not on the z-axis. Notice that neither of the final two vectors,

however chosen, are extreme vectors.

The following results will be useful.

Lemma 20 Let S be a conver subset of R® and let & € relbdy(S). Then there
ezists a hyperplane H containing & such that S is contained in one of the halfspaces
associated with H. We call H a supporting hyperplane at . The vector b € R" is
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K={(xy,2): z>|yl}

Figure 17: An unpointed polyhedral cone in R3

a normal to H ifb # 0 is orthogonal to the difference of any two vectors in H. We
say b is normal to S at . Furthermore, if b satisfies b- (j —£) <0,V ,§ € S, we

say that b is an outward normal to S at %.

For a proof of this result, see Theorem 2.7 in [4]. Books on linear programming

(such as [10]) also introduce this result and discuss convex cones.

Lemma 21 Let X be a compact subset of R® and K be a closed, convez cone in
R" with k € relint(K). Then there is a positive constant a such that ok + % >, 0
forallz € X.

Proof: It is sufficient to show that there exists a positive a so that E+f- € relint(K)
for all # € X. Since k is a relative interior vector of the closed, convex cone K/, there
is a ball of radius ¢, for some € > 0, centered at k, contained in relint(K). Denote
this ball by B,(k). Then B.(k) = B.(0)+k C relint(K). Let d = maz{|#| : € X}
and choose a > d. Then £ € B,(0) for all # € X, and the conclusion follows. O

Since we will want to allow non-solid cones in applications, we need the following

result. It guarantees that a difference of super- and sub-solutions which begins in
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a closed, convex cone K stay in the smallest subspace containing A under the

hypotheses of the key results in this chapter.

Lemma 22 For K a closed, convez cone in R", suppose v <; f(#), w >, f(0),
and ©(0) > #(0). Suppose also that f(i) is continuously differentiable in & on
compact subsets of R" and that for any compact set, N, 3 | = I{(N) such that

Df(F)+U:K~ KN ieN;
then w — ¥ € 7, where « is the smallest subspace containing K, fort > 0.
Proof: Rewrite the hypotheses, 1 — f(#) € K and f(®) -~ € K, giving
W — v+ f(3) - f(w) € K. (3.1)
Now, V @ in some compact set N, kek ke K,
[(D Fl + sk))k + u;] >0, (3.2)

where we have strategically chosen the argument of Df and s € [0, 1]. Notice that
if §(s) = F(ib + k), then §(s) = DF (i + sk)k; hence, if we define

g(s) = [f(ﬂ) + sk) +slI::] ~k*,
then (3.2) says that ¢/(s) > 0. We can conclude that g(1) > g(0), say. This gives
[f(u‘; +E)+1E- f(ﬁ;)] >0,
which, upon letting & = @ + k > 1, leads to
f(8) ~ F(@) +1(5 — ©) 24D,

or

f(®) = f(@) + (5 - ®) = a,
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where @ € K. So, (3.1) becomes
w—o+I(0—3)+a=a €K
Let h(t) = b- (1 — &), where b is normal to the subspace =; then,

h(t) = b-(w—9)
= —lb- (% — ) +b- (4 — &)
= _[B.(u”,_ﬁ) sincea; —a € K

= —lh(t)

and k(0) = 0, since w(0) — 9(0) € K. This implies that A(t) =0, V¢ > 0, and the
conclusion follows. a

We are now able to present an extension of the Kamke-Miiller Theorem to
closed, convex cones. The results of this section will generally be stated “¥ ¢ > 0,”
as opposed to for “0 < ¢t < T™ or “t € I(£)” as in the previous chapter. We are

assuming that solutions exist for all time; this will be the case in our examples.

The results could be reformulated if one wanted to deal with intervals of existence.

Theorem 23 (Extended Kamke-Miiller Theorem) For K a closed, convex
cone in R®, suppose v <, f(¥), & >x f(®b), and ©B(0) >, #(0). Suppose also
that f(&) is continuously differentiable in  on compact subsets of 2, §) open and
convez, and that for any compact set, N, 3 | = {(N) such that

Df()+U: K~ KN z€N.

Then w(t) >, 9(t), Vi > 0.

Proof: Since %(0) — #(0) € K, by Lemma 22, w(t) — 5(¢) € = for ¢ > 0, where
m is the smallest subspace of R™ containing K. We first suppose that © <, f(¥),
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W > f(1), and B(0) >, 5(0). We will prove that @(t) > 5(t), V t > 0. Suppose
this is the not the case. Then 3 #, > 0 such that w(t) >, 0(t) for 0 < t < £
and wW(tg) — 9(to) € relbdy(K’). Let N be a compact, convex set containing both
trajectories w(t) and #(¢) for 0 < ¢ < ty (choose a large enough closed bali containing
both). Let Z(t) = w(t) — i(t). If (o) € relint(K) then 3 ¢, 0 < £, < to, such
that 2(t) € relint(K) for t; < t < t,. Then 3(t) € relint(K) for 0 < ¢t < ¢,
and E(t) € relint(K) for t; < t < ty give Z(tp) € relint(K), a contradiction.
Hence, (to) ¢ relint(K ). By Lemma 20, 3 a supporting hyperplane to K at
%(to). Let b be the outward unit normal to A at (o). Since #(to) € relbdy(K)
and Z(tg) € relint(K) we have #(to) - b = 0 and Z(to) -b > 0. Now, by the
hypotheses, #(t) = w(t) — #(t) > f(@) — f(#), V t > 0. Evaluating at to gives
#(to) — f((ta)) + f(B(to)) > 0. Thus,

[é(to) — F(a(to)) + f(a(to))] b<0 = [f(u';(to)) - f(ﬁ(to))] 5> Htg)-5>0
> [flact) - Aotto))] & K

Now,
- - L
Featto)) = Fote) = | [ D sta) + (1 = sittols (o).
0
Since, by assumption and by the closure of K,

U;l Df(si(to) + (1~ s)i(ta))ds + 11] (ko) € K,

we have ,
[ / D f(si(to) + (1 ~ s)i(to))ds + u] 3(to)-b<0.

But
1 - ]
[ Ditsitto) + 1 - syt + HEOR

= [ fo ! D f(sis(to) + (1 ~ s)é(to))ds] £(to) - b, since Z(tg) B = 0
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= [fato)) - fi(ta))] -5
> 0,
gives a contradiction; hence, Ww(t) > #(t), V¢ > 0.

To prove the theorem, we let (t) = t(t) + ee**k, where € is a small positive
parameter, k is a relative interior vector of K, and a is a constant to be chosen
later. Then

w5(0) = w(0) + ek > w(0) > (0).

Now, let X be the compact set {f(t(t)) — f(i5(t)) : t € [0, T]}. Lemma 21 tells
us that for some # > 0 and for all ¢ € [0, T]

F(@(t)) — F(°(8)) + Bk > 0.
Now, choosing a = £, we have for ¢ € [0, T]
W (t) = w(t) + eae®k > f(B(2)) + Bk > F(H(2)).

By the first result in this proof, we can conclude that #(t) <, w*(t) = @(¢) + ek,
for t € [0,T]. Letting ¢ — 0 proves the theorem. O

It turns out that there is some development of this type of result in the literature
(see [40], [37], [38], [28], and [29]). In particular, [29] presents a result very similar

to the above, but the condition
3l = {(N) such that Df(Z) +{I: K — K,¥ & € N, (3.3)

is not given. Later in this chapter, we will show how the various conditions in
the literature and condition (3.3} are linked. When (3.3) holds, we will say that
D f () preserves the cone K. A closed, convex polyhedral cone is determined by
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its generators. Hence, we need only investigate the effect of Df(Z) + (I on the

generators.

One might imagine the Extended Kamke-Miiller Theorem being applied to two
solutions of a system of ordinary differential equations, one with a single component
changed initially. When the hypotheses are satisfied, we could conclude that the two
solution vectors maintain a partial ordering with respect to the cone used (finding
useful cones is a thorny issue we will deal with later). Still, we would like to be
able to draw conclusions on partial derivatives with respect to initial conditions.
So, suppose we are considering the usual system of ordinary differential equations
(2.7) and that we have found a cone A" which satisfies condition (3.3). Apply
Theorem 23 with #(¢) = (¢, %0) and w(t) = Z(¢, %o + 4), with 8 € K \ {0}, and
Z(t,%,) the solution to (2.7) with initial condition £(0) = &, ¢ € 2, to conclude
that w(t) >« 9(t). In other words, we conclude that

E(t, 3o + B) — E(t, Zo) >4 0.

Pick 8 = sit € K\ {0}, s > 0, where i is a unit vector; then

#(t, o + sit) — &(t, Zo)
S

m ft(t, To+ sﬁ) - i(t, :l-,‘o) —

Dzz(t) = li lim
20 S s—0+

represents the directional derivative of & in the direction #. We have shown that
D3z € K. When 4 is a standard basis vector, this gives derivatives with respect
to an initial component as before. Upcoming examples will illustrate the idea. We

state the following Corollary for use in applications.

Corollary 24 Suppose that O is positively invariant and that f(%) is continuously
differentiable on @ and that 3 | such that

Df()+U: K~ KN ie0,
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where K is a closed, convez cone in R*; then

9%
— > 0,
ik ="

foranyke K\ {0},Vt>0.

Proof: Define the sequences {if*} and {jJ'} with §§° >« 27, 5,05 € O,
limmaoo Jo* = T, and limpoo 2 = 5, with £ € bdy(O). By Theorem 23,
E(t,7g') 2k &(t,z7). Using the limit property, Z(¢,95) 2« (t,Z3). Now choose
j = &P + k, k € K\ {0}; then Z(¢, 3] + k) > (¢, Z5), which leads to

oz .
o >c 0-
ok ="

3.2 Practical Tools for Establishing Monotonicity

For preliminary investigation, and to highlight the complexity of this approach, we

consider a 2x2 constant matrix,

M= mpy myz '
m2, M2
and a general closed, convex cone with extreme rays @ and b, oriented as in Fig-
ure 18. In order for (3.3) to hold, with M replacing Df(&), Ma must lie on the
same side of the line containing @ as does at, the vector that is rotated 90° coun-

terclockwise from a. Similarly, Mb and —b* must lie on the same side of the line

containing b. That is,

Ma-at = Mai-(—aza)
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<1

bt

Figure 18: A 2-dimensional cone with extreme rays & and b.

= mya} + a1ax(my; — my;1) — myze; > 0, and (3.2)
Mb-(=b) = Mb- (b, —by)
= —mg b} — biby(may — myy) + mygbl > 0. (3.5)

These are conditions on the quadratic form Q(a,;,a;) = Ma -a+. As outlined in
[44], through a rotation of the coordinate axes the mixed term in (3.4) and (3.5)
will be eliminated when the form is expressed in terms of the new coordinates. In

these new coordinates, the form can be expressed as
Q'(z1,22) = Mz} + oz}, (3.6)
where A, and A; are in fact the eigenvalues of the 'matrix
M= [ mzy M2 ] ,
—mn —MmMy
@ is rotated to a new vector &', and b is rotated to a new vector b. With the form

expressed as in (3.6), we require Q'(@') > 0 and Q'(d) < 0. This is possible if and
only if AiA2 < 0; in this case, the form is called negative semidefinite.
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A quadratic form Ay?+ By y,+Cy3 is negative semidefinite when 44C— B? < 0;
thus, we have arrived at a necessary and sufficient condition for there to exist a

cone preserved by the matrix M, namely that

(ma — Tﬂ-n)2 + 4m;omy; > 0, or equivalently 3.7
tr(M)? — 4det(M) > 0. (3.8)

In the case AA; < 0, Q'(zy,z;) = 0 along exactly two lines, those with slopes
++/—=A1A7" in the rotated coordinates, or Q(ay,a;) = 0 along lines with slope

Moy — myy + /(M2 — mp)? + dmygmy

= 3.9
#1 9 12 ] and ( )
M2 — My — \/(mzz —my )? + dmamy
= , 3.10
B2 omia ( )

in the original coordinates, for m12 # 0. These lines divide R? into regions where
the form is of distinct sign. The vector & must lie in a region of non-negative sign
and b must lie in a region of non-positive sign, with the counterclockwise angle from

a to b being at most 180° and determining the cone K.
Example 14: Consider the simple example reaction mechanism
a1 A, + a4, A a Ay + aA,. (3.11)
From page 27 of {18], we know that (3.11) does not induce an order preserving flow
if @ > a; and a; > a;. Let A,(t) and A2(t) denote the concentrations of species
A; and A; at time {. Reaction (3.11) induces the system of differential equations
Ai(t) = fi(A, A7) = k(@ — en1)(Ai(2))™ (A2(t))*?, and (3.12)
Ag(t) = fo(A Az) = k(G2 — aa)(A(8))™ (Ao(t))™, (3.13)

subject to initial conditions A;(0) = Ay and A2(0) = Ay, where Ay and Az

are positive for the positivity assumption to hold. The 2 x 2 Jacobian matrix for
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this system has f;2 > 0 and f;; <0, ¢ > 0. Applying the theory of the previous

section, we draw the graph

which consists of one negative directed cycle. The theory of the previous chapter

gives us no conclusion. We will try something new.

The system admits the conservation equation

Ar(t) — Ao = 22224 Ay(t) ~ Am). (3.14)

g — Q

This gives bounds on the concentrations, namely

0< A(t) < Ayp— ———Az and (3.15)
Qz — a2

0< Ay(t) £ Ap-— ?2 — azAms (3.16)
ap —ag

and so our solutions lie in a rectangle. We could conceivably use (3.14) to elimi-
nate A,(t) from the right hand side of (3.12); this would still leave a complicated
differential equation for A;(£). As can be seen in [18], even seemingly simple mono-
tonicity problems like this can require rather complicated specific arguments and
usually require a fair bit of insight into the physical problem. Let us try to apply
Theorem 23 instead. From chemical kinetics, &; > a; > 0 and a; > a2 > 0 imply
that

. _ . a4 _[oa—a
tl-!glo Az(t) =0 and ‘l_l-’.lglo Al(t) = Alo (ﬁg — ag) Azo. (3.17)

The corresponding Jacobian matrix is

(!1(&1 - al)Az(t) az(&l - al)Al(t) :| . (3.18)

k(AL(8)) 1 (A(t))
(A(8)™(4a(2)) I:al(&z_a,)A,(t) az(@; — az)Au(t)

Condition (3.7) requires that

[ar(@ — ar)Az(t) + az(@ — a2) As(2)]* > 0. (3.19)
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Az

5 slope 0

A

t = oo

slope 11(0)

K

slope ug

Figure 19: The cone preserved by the Jacobian matrix for Example 14.

Using (3.9)—(3.10), the lines where the corresponding quadratic form vanishes have

slope
arAs(t) az; — az
= ————= and = —=——.
: e azAl(t) H2 a; —ay
Using (3.14) and (3.17), we see that
ap Az
0)=— < ui(t) € >0.
I“l() azAlD_.”l()..Oa Vt_o
Choose

1 - 1
a= a.lldb—-él: ,
K2 0

The quadratic form vanishes along @ and is non-positive along b, V ¢t > 0; hence,
the cone K with extreme rays & and b will be preserved by the Jacobian matrix
VY t > 0. Figure 19 shows the cone K; note that — K is also preserved and will lead
to the same conclusions. With the cone K so defined, we can apply Theorem 23
with §(2) = A(t, Ao) and @(t) = A(t, Ao+ f), with 3 € K, and A(t, Ao) the solution
to (3.12)—(3.13) with initial condition A(0) = Aq. Then w(t) >, #(t), V¢ > 0. In
particular, choosing 4 = €, allows us to conclude that

04,
dAro

A(t, Ao+ &) — Ai(t, Ag) >0 = (¢)>0,¥t>0, and (3.20)
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0A;
dAy

Ay(t, Ao+ &) — Ay(t,Ag) <0 = (¢) <0, Ve>0. (3.21)

These same partial derivative results, with strict inequalities, can in fact be obtained

through a direct argument.

A variation of Theorem 23 which allows us to use expanding cones will prove
useful in the examples. The proof is very similar to the proof presented for The-
orem 23, but it is instructive to present it in full. The reader should realize why
expanding cones work and why shrinking cones do not work.

Definition 6 A cone K(t) with extreme rays that change with t is called expand-
ing if K(t,) C K(t;) whenever t; < t3.

Theorem 25 Constder a closed, convez, solid, ezpanding cone K(t) in R™. Sup-
pose & <y f(B), W Srw F(), and w(0) > 5(0). Suppose also that f(Z) is
continuously differentiable in & on compact subsets of , ! open and convez, and
that for any compact set, N, 3 | = I(N) such that Df(z) + I : K(t) — K(t),
VZeN. Then w(t) >k 0(t), Vt>0.

Proof: Following the proof of Theorem 23, we first suppose that ¥ <k« f(9),
W S f(B), and B(0) >y 7(0). We will prove that 6(t) > 9(t), V ¢t > 0.
Suppose this is not the case. Then 3 a first time to > 0 such that @(t) > (t)
for 0 <t < to and w(te) — 9(tp) € bdy(K(tp)). Let N be a compact, convex set
containing both trajectories @(t) and #(¢) for 0 < t < ¢y (choose a large enough
closed ball containing both). Let (t) = w(t) - &(t). If ¥(to) € int(K(to)) then 3 ¢,
0 < t1 < tg, such that (2) € int(K(to)) for t; < t < to (we are using the fact that
K(t) is expanding). Then 3(t) € int(K(to)) for 0 < t < to and 2(t) € int(K(to))
for t; < t < tg give Z(to) € int(K(to)), a contradiction. Hence, 3(to) & int(K(to)).
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By Lemma 20, 3 a supporting hyperplane to K'(£o) at Z(fo). Let b be the outward
unit normal to K'(to) at (o). Since Z(to) € bdy(K(to)) and (o) & int(K(to)) we
have (to) -b = 0 and Z(to) - > 0. Now, by the hypotheses, 3(t) = w(t) — 9(£) >k
f(®) — f(8), Yt > 0. Evaluating at to gives (to) — f(B(to)) + f(#(t0)) >xeg) 0-
Thus,

~ - - -~

[E(to) - Fl(ta)) + Fo(t0))] -5 <0 = [Fato) ~ Fi(ta))] -5 > E(to) -5 2 0
= [Fflatta)) - fl5(ta))] & int(K(to))
Now, :
Fatto)) - f(ate) = | [ DFtsta) + (1 = spoteo)ds] (o).

Since, by assumption,
[‘/—l Df(szb(to) + (1 — s)o(to))ds + II] 2(to) € K(to)
()

we have

[ [ ‘D Fsw(to) + (1 — s)i(to))ds + u] £(t) -5 < 0.

But
[ 01 Df(si(to) + (1 — s)i(to))ds + [[] (ko) - b
= [ /0‘ Df(st(to) + (1 — s)a(t.,))ds] #(to) - b since 3(ta) b = 0
[.(""(fo)) - f(ﬁ(t.,))] iy
0

7

>
gives a contradiction; hence, W(t) > 9(¢), V¢ > 0.

To prove the theorem, again let ©%(t) = w(t) + ee®*k, where ¢ is a small positive
parameter, £ is an interior vector of K(0) C K(t), and a is a constant to be chosen
later. Then

w(0) = w(0) + €k >0 D(0) >0 5(0).
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Now, let X be the compact set {f(ti(t)) — f(%(t)) : t € [0,T]}. Lemma 21 tells
us that for some 3 > 0 and for all ¢ € [0, T}

F(@(8)) = F5*(8)) + Bk >k 0 = fl(t)) = F(5°(2)) + Bk >0 0,
since K(t) is expanding. Now, choosing a = g, we have for ¢ € [0, T}
W' (£) = w(t) + eae™k > F(@B(t)) + Bk >upy F0(2)).
By the first result in this proof, we can conclude that &(t) <y, W5(t) = b(t)+ee**k,

for t € [0, T]. Letting € — 0 proves the theorern. O

Remark: Theorem 25 could be stated for non-solid cones, where we would addi-
tionally demand that the smallest subspace containing K(t) be the same for each
t > 0. In our example applications, we will only need the result for solid cones.

To illustrate that shrinking cones which satisfy the hypotheses of Theorem 25

will not lead us to the conclusion of the theorem, consider the following example.
Example 15: Suppose that our system, & = f(Z), is given by

) = 5= a:l(t) = .'31(0)6!

522 = I3 = :L'z(t) = 22(0)6‘,
with easily calculable solutions. In this case D f is just the identity matrix. Consider
the cone K(t) with extreme rays @ = [1,0]T and b(t) = [1,e~|7, as illustrated in

Figure 20. Since (Df+11)a = (140)a € K(t) and (Df +I1)b(t) = 1 +1)b(t) € K(¢),
the essential hypothesis is satisfied. Now, let 1w(t) and #(t) be two solutions with

initial values
‘I’(O) = ( 2 ) 2K ( L ) = l~’(0);
1 0
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sm-( o )

Figure 20: A shrinking cone A'(t) with extreme rays @ and b(¢).
then the solutions satisfy

~ 2 (4 1 ¢ 1 {4
w(t)—.v(t)z(l)e-(o)e (1)e &€ K(t) for t > 0.

It is perhaps interesting to note that this example suffers from a richness of pos-

sibilities: Df preserves any cone we choose! We could use the machinery of the
previous chapter, use the machinery of this chapter with the positive quadrant as
our cone, or just take partial derivatives of our solutions to conclude that the matrix
of sign patterns for the partial derivatives with respect to initial conditions is given
in Table 7, where the entries have their usual meanings. This should highlight the
difficulty in finding cones that yield valuable results.

zy(t) | za(t)
Ti0 | ++ 0
22,0 0 ++

Table 7: Signs of partial derivatives with respect to initial concentrations for Ex-

ample 15.
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In the previous chapter on monotonicity with respect to an orthant, we saw that
graph theory played a key role in establishing strict sign results. When dealing with
cones, it is perhaps not all together obvious how to use graphs to this end or devise
strict sign results some other way. We present the following theorem as a first step;
it will lead us into a graph theoretic discussion. This theorem could also be stated
for expanding cones.

Theorem 26 Let K be a closed, convez cone in R™. Suppose that & <, f(),
w >x f(@), and (0) >x 5(0). Suppose also that f(Z) is continuously differen-
tiable in T on compact subsets of R" and that for any compact set, N, 3 { = [(N)
such that

Df@E)+I[:K— K, VEeN.

Further assume that for N and [ chosen as above, 3 a positive integer m such that
(D) + l[)'" . K\ {0}~ relint(K), ¥ E € N.

Then w(t) >« i(t), Y £ > 0.

Proof: Let N be a compact set containing both trajectories w(t) and Let N be
a compact, convex set containing both trajectories w(t) and o{t) for 0 < ¢t < T
(choose a large enough closed ball containing both), and let (t) = w(t) — (¢);
then 2(0) >x 0 and, by Lemma 22, 3(t) € « for ¢ > 0, where 7 is the smallest

subspace of R" containing K. Furthermore,
é 2k f(".’) "f('.’)
= f(fl+ %) — f(®)
- [ fu Df(s3(t) + 6(t))ds] ().
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Choose { as in the hypothesis. We have

F4lz>p [ f l Df(sz(t) + 6(t))ds + 11] (t)
4]

= -::—tieu >eelt [ / "D Fs3(2) + 5(t))ds + u] 5(t).
o

Integrate with respect to ¢ from ¢g to ¢, 0 <t < T, to get

t 1
22 e 5(1) + / elle2=9) [ / Df(312(32)+6(32))d31+l[] #(s2)ds;. (3.22)
0

to

Note that we are using the property that if §(t) >« 7(t), for 0 < ¢ < T, then

[ 4(s)ds s [ '#(s)ds,

for 0 < to <t < T, proven with Riemann integral and cone closure under addition.
So,
¢
2 2 e 5(k) + / e~ ') M (5,)2(s2)ds,, (3.23)

to

to <t < T, where
l -~
M(s;) = A [Df(S[E(SQ) + 9(s2)) +l[] ds;.

By the Extended Kamke-Miiller Theorem (Theorem 23), 2(t) € K, for 0 <t < T.
Furthermore, if (o) € relint(K) then (3.23) tells us that £(¢) € relint(K), to <
t < T, since M(s;)3(s;) € K because Df preserves K.

We plan to apply inequality (3.23) to the z(sz) term on the right hand side of
(3.23). We have (3.23) with ¢, = 0:

[
Ht) >e e3(0)+ / e1=12) M(5)5(52)ds3,
(1]

¢
>k / e~=*2) M(3,)3(s,)ds,, since 3(0) € K. (3.24)
0
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This gives
32
foo) 2ic [ e M(se)i(sa)dsa, 0< 32 St
0

or, in other words,
#(s2) - /0 N e~12=%) M(33)2(s3)dss € K,
which, in turn, gives
M(s;) [2(52) - /0 * e~ o2=s3) \f (33):2(33)ds3] €K,
since M(s;) preserves K. So,
M(s2)2(s2) 2k M(s2) L. ” e~92=2) N (53)3(s3)ds3
= fo K e~'02=%3) M(3,) M (s3)2(33)ds3,

giving

t t ra2
] e =) M (s7) 2(s2)ds2 > [ / e~ t=%3) M(s7) M(s3)3(53)ds3ds2,
0 o Jo

or
t 82

Z(t) >k / / e~10=%) M(s,) M (53)2(53)dsads;.
o Jo

We can repeatedly iterate in this way to get

81

#(t) 2« fo ]0 L /o " e =) M(33) - - - M(Spg1)Z(Sng1)dSnsr - - ds2,  (3.25)

0 < Sp41 < --- < 83 < t. We consider the m* iterate, m chosen as in the final

hypothesis of the theorem. For ¢ sufficiently small, we get

Bt) 2 e [o ' / /o " M(0) - M(0)Z(0)(1 + o(1))dsmss - - dsz

= e [(M(O))'“E(O)t;m!(l + o(l))]

>K Ov
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using the final hypothesis. This means that there is a small ¢5, 0 < {5 < T, such
that (o) € relint(LK’). As stated eatlier, (3.23) then implies 3(t) € relint(K),
to <t < T. Since ¢y can be chosen as small as we like, we conclude that z(¢) €
relint(K),0<t <T.

(m]

Remark: As with earlier results, Theorem 26 is stated for a closed, convex cone
K. The additional hypothesis for strong monotonicity, namely that

(Df(Z) +1)™ : K\ {0} — relint(K),

will not hold for an unpointed cone. An unpointed cone will contain a subspace of
R™; so, there will be two vectors € and —é on the boundary of the cone. It is clear
that (D f(%) +{I)™ cannot map é to relint(K), since it would then map —é to the
exterior of K. 1;1 fact, the only way for Df + (I to map such a cone into itself is

for the subspace to be invariant under the transformation.

From the proof of Theorem 26, we get the following corollary.

Corollary 27 Under the hypotheses of Theorem 26,

w(to) >r ¥(to) = w(t) > #(t), ¢ 2 to.

Writing
0% i -
—==D;%-k, —(0) =k, 3.26
o = Daz k220 (320

leads to the following corollary to Theorem 26.

Corollary 28 Suppose that f(Z) is continuously differentiable in & on compact
subsets of R" and that for any compact set, N, 3 | = I(N) such that

DfF)+l[:K—~ K, YZ€N,
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where K is a closed, convez cone in R". Further assume that for N and | chosen

as above, 3 a positive integer m such that
- m .
(D F#) + u) k e relint(K), ¥ % € N,

for some vector k € K \ {0}; then

fort>0(t >0 ifk > 0).
Proof: Differentiate equation (2.7) with respect to o to get
d . z . -
E(Diox) = Ds, f(2) Dz, 2, (3.27)

which, upon dotting with &, gives

d (0% - 0%
I 5,:) =Dz f(2) -
For convenience, let w(t) = gf; then @ = Df(Z)w and w(0) = k. With [ chosen as

in the corollary, we write
W+l = (DF(&) + (),
which we solve to get
w(t) = e " (to) + L ‘ e~ D f(&(s)) + L) (s)ds. (3.28)

We notice that w(to) > 0 implies that w(t) > 0, ¢ > ¢, since each term on the
right hand side is in K. As in the theorem, with ¢¢ = 0, we now iterate, repeatedly
replacing the @ on the right hand side by the entire expression, which at iteration

m, chosen as in the corollary, gives us

w(t) = e"i(0) + fo fo . '/0' " e~ =2 M (s;) - - - M(Sp41)5(Sng1)dSnsr - - - dS3,
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where M(s) = (Df(#(s)) + {I) and 0 < 8p4y < --- < 82 < t. For ¢ sufficiently

small, we get
at) = talo) +/0' / ) ,/ Y (0)--- M(0)w(0)(1 + o(1))dsn41 - -+ dsg
0 0
= e a(0) +7 [ @0/ o1+ o)

t
m
> 0, (3.29)

= ke [aoES o)

since (M(0))™k > 0, using the second hypothesis. Applying Corollary 27 lead to
W(t) > 0,t>0. o

In applications, Df(%) + [I may change substantially from time zero to time
greater than zero. For example, solutions to chemical kinetics or epidemiological
problems may begin with some components zero, but, if the positivity assumption
holds, all components will be positive for positive time. Under these circumstances,
it is possible that the strong monotonicity hypothesis of Corollary 28 will not be
satisfied at ¢ = 0. We formulate another corollary that deals specifically with the

applications we plan to analyze.

Corollary 29 Assume that O is positively invariant and that the positivity assump-
tion holds (&(t) > 0 for t > 0). Suppose that f(%) is continuously differentiable on
O and that 3| such that

Df(E)+U: K+ K, V€0,

where K is a closed, convez cone in R™. Further assume that for | chosen as above,

3 a positive integer m such that

(Di(Ett)) + u)'" k ¢ relint(K),
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for some vector k € K \ {0}; then
0z -

_>I(07

ok
fort >ty (t > to if k >, 0).

Proof: From the proof of Corollary 28, we have that
w(t) = e~k + §(t),
where §(t) € K.

We follow the same line of attack as in the proof of Corollary 28, iterating to

get
t 32 n

w(t) = e (ko) + / f / e~ M=) M(35) - - - M(Spg1)0(Sns1 )dSnsr - - - dS2,
tg vt to

where M(s) = (Df(#(s)) + {I) and g < sp4y < --- < s; < t. For t sufficiently

close to £y, we get

w(t) = e Mi(to)
+ / ' [ . / " e M(to) - -- M{to)is(to)(1 + o(1))dsny1 - - - ds
= <t + e [ttt a0 L1+ o)
= e (eMk+(to ))
+e () (e + gt E 1 +ot1))
>« 0, (3.30)

since (M (to))™k >« 0, by the second hypothesis. Apply Corollary 27 to conclude
W(t) >k 0, ¢ > to (t > to if £ > 0). aj
Before using the ideas of Theorem 26 to motivate a graph theoretic approach to

monotonicity with respect to general cones, we first discuss the place of condition

(3.3) amidst similar conditions in the literature.
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3.2.1 A Discussion of the Cone Preserving Condition

Having established several results involving condition (3.3), we now present several

related conditions that are present in the literature:

(V1) & <@ and $(3) = () = ¥(f(8)) < $(f(w)),
(V2) @ —§ € relbdy(K) and (%) = $(@) = $(f(7)) < $(f(@)),
(V) VY ie N, N compact, (Df(#))é- N: >0, V & € relbdy(K),
where é- N: =0, N: € K™,
(K1) VYV e€ N, N compact, 3 { such that Df(z) + ([ : K — K, and
(W1) VZ,g€N,3A>0such that & <, § = f(&)+ A& < f(@) + A§.

(V1) and (V2) are due to Volkmann (see [37]); in each case ¥ is a functional on K
with ¥(Z) > 0 for £ € K. (V2) is also given in [23]. (V2') is the analog to (V2) for
differentiable f; it is not stated in Volkmann, but it follows naturally from (V2).
(W1) is due to Walter (see [40] or [29]). The research of Walter and Volkmann is
abstract, dealing with functionals in Banach spaces.

To connect these conditions, we state the following theorem.
Theorem 30 For f(&) continvously differentiable and K a closed, convez cone,
(V1) &= (V2) &= (V?') & (K1) <= (W1).

If K is polyhedral, then
(V2') = (K1).

Proof: (K1) = (V2'): Suppose that (K1) holds; then V # in some compact set N,
3 1 such that Df() + I : K — K. For & € relbdy(K), (Df() + lI)é- Nz > 0,
implying (D f())é - Nz > 0 and proving (V2').
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(V2) = (V2): Suppose that (V2’) holds. Choose w and & such that leté =w—v €
relbdy(\); then V Z in some compact set N (choose N large enough to contain the

line segment connecting w and ©),

(Df(z))(® — ) - Nz > 0. (3.31)

Define () = N;- 2, so (w — ©) = 0, implying ¥(?) = ¥(w). For (V2) to hold,
we must have

(f(w) — f(8))N: > 0,

or, using the mean value theorem,
/01 [Df(su') +(1- s)ﬁ)ds] (% —3)- Nz >0,
Evaluating (3.31) at sw + (1 — s)3, s € [0,1], gives
Df(sw + (1 — s)8)(w —3) - N: > 0,

implying
Lo -
/ [D Fls®+ (1 — s)ﬁ)ds] (% -15)-N:>0
0
and proving (V2).

(V2) = (V1): Suppose that (V2) holds; then ¥(@) = ¥(#) = 3 b with y() = b-w,
50 b (% — &) = (w0~ 5) = 0. Since & — 5 € K, % — 5 = 3, i, ¥i € relbdy(K),
3idi =1, Xi 20, % linearly independent, ¥(¥;) > 0; but ¥(w — ) = 0 implies
that ¥(v;) = 0, V i. Putting things together,

f®) = f (6 + Z A.—a.-)
=1
n~1

= f (,-, +Andn + Y A;a;)

i=1

= f(".’lv'*‘ Ani;u)a
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where ; = 7 + Yre? Aidii; hence,

P(f(t1 + Aniin))

> (f(b1)), using (V2),
Sz + AneiBamr),

> $(f(i2)), using (V2).

¥(f(@))

Continuing in this way leads to ¥(f(w)) > ¥(f(7)), proving (V1).

(V1) = (V2): Suppose that (V1) holds; since w — ¢ € relbdy(K) = 0 <, w, (V2)
holds.

(V2) = (V2'): Suppose that (V2) holds; Choose v arbitrarily and let € be any
vector in relbdy(K). Define w by w — U = €€, € > 0, and choose ¥(Z) = N; -2
Then '

(o —5) =Nz (b —7)=Nz-e€=0,

implying that ¥(i%) = (). Since (V2) holds,

$(f(5)) < $(f(@)) = ¥(f(7 + )
L, G +e) —d(U0) 5, 4

: €
. [f(ﬁ+eé€)-f'(ﬁ)] F >0

= (Df(9))é- Ns 2 0,

proving (V2').

- .-

(W1) = (K1): Suppose that (W1) holds; let § = # + sk, k € i, s > 0. It follows
from (W1) that

f@) — f(Z) + MG — £) 2« 0,
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which gives - _ . _
S(Z+ sk) — f(£) + Ask ~
2k 0.

S

Letting s — 0, we get
(Df(&)k+ Ak 2. 0,

which means that
(Df(E)+ M) : K = K,

proving (K1).

(K1) = (W1): Suppose that (K1) holds; we follow the previous argument in reverse.
Let k£ € K and k* € K*. (K1) tells us that V Z in some compact set N,

[(D F( + k)i + 1] - & > 0, (3.32)

where we have strategically chosen the argument of Df and s € [0, 1]. Notice that
if §(s) = F(& + sk), then §(s) = DF(z + sk)k; hence, if we define

§(s) = [f(a + k) + su'c] -,
then (3.32) says that §(s) > 0. We can conclude that §(1) > §(0), say. This gives
[f(:i: + k) + 1k~ f'(:s)] >0,
which, upon letting § = # + k > Z, leads to
F(@) = F(2) +1(5 - #) 2« .
Rearranging proves (W1).

Finally, we prove that if K is polyhedral, then (V2') = (K1): Suppose (V2') holds.
Since K is polyhedral, we need only consider the finite number of generators of K,

denoted &, i = 1,...,ns. For a given &, there is a set of choices for Nz € K*
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generator ¢ ,..z cone

dualedge cone |\
at generator e,

x/ \

Figure 21: An edge cone and dual edge cone in R

with & -"Nx = 0. We label this set N(K,é&) and notice that it is a polyhedral
dual edge cone of K. As the name implies, N(K, &) is dual to the edge cone of K
based on &'. See Figure 21. Since N(K,¢) is also polyhedral, we need only consider
its finite number of generators, denoted Niy,i=1,...,04, ] = L. mes, since
any Nz € K* with & - Nx = 0 is generated by the Nzii’s. This labelling is not
unique, but it suits our needs. Since (V2') holds, for each 7 3 compact N, such that
VzeN,
(Df(&))& - Nas 20,

where & - Nxiy =0,7=1,... )Ty

In order for Df(#) + I : K — K we need (Df(Z) + )& € K for each i. This
is true if

r(&,i,7,k, 1) = (Df(&) + )& - Naxy >0,

forj=1,..., s and V k; that is, if the image of & has non-negative inner i)mduct

with all of the generators of K*. Expanding gives
r(3,1, ], k1) = DF(E)& Ny +1& - Naas.
For k =1,

r(%,i,7,i,l) = Df(%)& - Ny, + & - Nuis
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Df(£)& - Nz,

2 0,

by (V2). For k # t, notice that & - Nz, > 0 because & € K and Nux, € K*. We

examine the two cases.

(1) &- 1\.1'5&.;‘ > 0. Picking

1 s -
Lk = o T T Df(z)e" - N,
gives r(Z,1,7,7,{) > 0.
(2) & - Na, = 0. This means that 1\75&.,» = Néi,' for some ;' = 1,.. . TH
hence, by (V2'), r(z,1,5,¢,{) > 0.
Upon considering all ¢, we have a finite number of values for {, namely the {; ;.;
picking [ = max{l; ;. } gives an I such that Df(Z)+{[: K — K,¥Z € N. o
To show that (V2') # (K1) in general, we present the following example.

Example 16: Consider the linear system z = f (2) = Az, where

0 10
A=Df=| -1 0 0
0 00

We look at the right, circular cone K in R® given by z > /z2? + y2. The inward nor-
mal at the point (a, b, va? + b?) on the boundary of the cone is (~a, ~b, va? + 8?);
condition (V?2') is satisfied:

0 10 a —-q
(Df)e-Ns=| -1 0 0 b . ~b =0.
0 00 VET R Ny
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But, testing condition (K1) yields

a (l 10 a
(Df +1I) b =] -110 b
VI Lo o)\ vaTE

- (b a

= -q +[ b T

\ 0 Ve + B

which will not be in K for any real {. To see this, realize that A projects vectors

onto the zy—plane and rotates vectors by 7 in the zy—plane; adding any amount
of a boundary vector to its image under A cannot push the image back into A'.
Algebraically, we can check the resultant vector in the inequality that defines the

-

z= Va2 + B ¥ (1 + P)Wa? + 02 = /22 + 42

cone:

In this case, (V') is satisfied, but (K1) is not. [37] considers this same example as
Beispiel 5.

Finally, we observe that the condition (V2') is in fact a necessary condition for

order preserving flows with respect to a closed, convex cone.

Theorem 31 If ¢ is monotone with respect to a closed, conver cone K then 3 N
compact such that, ¥ & € N, (Df(z))é- N: 2 0, V & € relbdy(K), where é- N: = 0,
Na c K*.

Proof: If ¢ is monotone with respect to a closed, convex cone K, then for € a unit

vectorin A and ¢ > 0

d(Zo + €€) 21 e(Zo)

- be(Zo + €€) — pu(Z0) N: > 0.
€
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Letting € — 0 gives
(Dzo$r)é- Nz > 0.

Let 9(t) = (Dz,:)& - Ne; then 1(¢) > 0 for ¢ > 0 and #(0) = 0. We conclude that
$(0) > 0. Now
¥(t) = Df() Dz, $eé - N,
giving
$(0) = Df(Zo)é- N,
and the desired result follows. o

From Theorem 30, we know that (V2’) and (K1) are equivalent for polyhedral
cones, so (K1) is a necessary and sufficient condition for a monotone flow with

respect to a polyhedral cone.
One might ask whether the condition for strong monotonicity, namely that there
exists in addition a positive integer m such that

(Df(z)+ 11)"' . K\ {0} = relint(K), ¥ 5 € N,

is also necessary for polyhedral cones or what the analogous condition in the form
of (V2') is. This final question remains unanswered. The following example shows

that this condition for strong monotonicity is not necessary.

Example 17: Suppose that our system z = f| (%) is given by

£ = y°,and

<
I
8

then
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satisfies Df : @ — O. This gives a monotone flow with respect to the orthant.

However, for any neighbourhood N containing the origin, we have for = 0,
(Df(z) + u)"' . K\ {0} % relint(K),

so the condition for strong monotonicity fails. Note that solutions with initial value
away from the origin are positive for all positive. Using Corollary 12 of Chapter 2,
we see that the directed multigraph for this example consists of a single directed
cycle with two positive edges. This system induces a strongly monotone flow even

though our condition is not satisfied.

3.2.2 A Graph Theoretic Approach

Theorem 26 gives strong monotonicity for super- and sub-solutions w(¢t) and (t)
relative to a closed, convex cone A" provided that, for any compact set N, 3 { and

m such that

Df()+II : K= K,VieN, and (3.33)

(Df(&) + u)"‘ . K\ {8} » relint(K), ¥ 3 € N. (3.34)

As remarked upon earlier, (3.34) will only be able to hold for pointed cones. Based
on the case of the orthant, we might expect that strong monotonicity has something
to do with irreducibility of the matrix D f() + {I. Irreducibility with respect to a

proper cone is discussed in [5); to avoid confusion, the terminology K-irreducible is

used. [5] presents the following equivalences for an n x n matrix A:

(i) A:K — K is K-irreducible,

“(ii) No eigenvectors of A are on the boundary of K,
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(iii) Only the trivial faces of K are left invariant by A, and
(iv) (A+D""':K\ {0} — relint(K),

where, in each case, K" is a proper cone. The final item on this list is of immediate
interest; it is closely related to (3.34). Rewrite (3.33) and (3.34) with [ replaced
by [ — 1 and let A = Df(Z) + (I — 1){; then (3.34) implies (iv) above with m =
n ~— 1. So, Theorem 26 achieves strong monotonicity with respect to proper cones
by demanding that Df(&) + ({ — 1)I be K-irreducible. We could formulate our

conditions as follows: for any compact set N, 3 [ and m such that

Df(F)+l : K~ K,¥YZ€ N, and (3.35)
(D fG@&) +U+ 1)1)"‘ . K\ {0} = relint(K), ¥ 3 € N. (3.36)

Of course, by picking [ large enough, both (3.33) and (3.34) can be satisfied for the

same [.

As in the case of the orthant, we can present the strict sign condition (3.34)
graph theoretically. (3.34) requires that K be closed, convex, and pointed. In fact,
the upcoming results will depend on whether A has the same number of generators
as its dimension; when this is the case, we will say that A" is n-generated. n-
generated cones have a useful property: the non-negative span of any subset of

generators yields a face of K.
We will use a graph based on the faces of the cone. For k € K, define

F; = {®w € K : 3 a > 0 such that aw <, k}.

F is the smallest face containing k € K. For a pointed, polyhedral cone satisfying
(3.33) with generators labelled &;, ¢ = {1,...,n}, we can construct a directed

multigraph Gi,(f, N), where p is a positive integer, on the vertices {gi,...,gn, }
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as follows. For each i, let k,; = (Df(#) + ({ + 1)[)?&;. Draw a directed edge from
gito gj, i #j,if & € Fi ,,V & € N. The following theorem gives a graph theoretic
condition for K-irreducibility.

Theorem 32 Suppose that f(Z) is continuously differentiable in & on compact sub-

sets of R™ and that for eny compact set, N, 3 | = [(N) such that
Df(#)+I[: K~ K, ¥ Z€N,
where K is a pointed, polyhedral cone; then ¥ compact N
Df(2) + I is K-irreducible V £ € N < Gi1(f, N) is strongly connected.

If, in addition, K is n-generated then

a

Df(2) + U is K-irreducible ¥ & € N = Gy.1(f, N) is strongly connected.

Proof: («) We prove the contrapositive. Suppose that D f(z)+{[ is K-reducible;
then some nontrivial face F of K is left invariant by it. Let €;, i = {1,...,nF}, be
the generators of F, where 0 < ng < n. The strongly connected subgraph on the
vertices {g1,...,gnp} has no outward edges. G ,(f, N) is not strongly connected.

(=, K n-generated) We prove the contrapositive. Suppose G fiN ) is not
strongly connected; then there exists a strongly connected subgraph on the ver-
tices {g1,...,9n }» 1 2 n1 < n, which is not strongly connected to the remainder of
G. From the rules of construction and because K is n-generated, this means that
Df()+(1+1)] : Fy, = Fy,, for each i = {1,...,m}; thus, DF(Z) + ({ + 1)I
and, hence, Df(z) + (I leave at least one nontrivial face of K invariant and must
be K-reducible. a
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Remark: The graphs in the examples will not change based on- N.

We provide the following example from [2] to show that the forward direction

of the theorem does not hold when A is not n-generated.

Example 18: Let K be the proper cone in R* with generators

1)

1 0 (o) 1
. 0 . 1 . 0 . 1 . 1
€= €2 = 1€3 = 164 = ,andesz
0 0 1 1 1
0 0 | 1

\ 9 1)
Let Df be the projection onto the z, z,x3 subspace following by a linear mapping on
the range of the projection given by é; — €,+¢é,, €; — é;+¢€3, and €3 > €3+¢€;; then
DfK C sp*{é1,é,, é}. Better yet, (Df)%&; € int(K), Vi, so Df is K-irreducible.
However, (Df+1)&, = 2&,+&,, (Df +1)é; = 2&;+&;, and (Df +1)és = 2&;+¢;. In
Gk.1(f, N), there is no path from g, to g4 say; the graph is not strongly connected.

Most systems will not be irreducible; it is desirable to have a result which gives
us partial strong monotonicity with respect to convex cones. Lemma 34 leads to
the primary result of this section. We will need the following lemma to establish

Lemma 34.

Lemma 33 Let é,,---,&, be the generators of a closed, convez, pointed cone K.
Suppose that €,,---,én, m < n, generate a face of K. Then
m
F; =spt{é1, - -,én} & v = ZC.-é,-, ¢ > 0.

i=1

Proof: (=) If F; = sp*{é;,---,ém}, then the finite list of ways of expressing ¥

as non-negative combinations of the & must include each é;, 1 < i < m, in some
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combination. If this is the not the case, then Fj is not the smallest face containing
?. Adding all of the expressions for # and dividing by the total number of such
expressions gives 7 as a positive combination of all of the é&;.

(<) By definition,  is in Fj if there is a positive a such that  — aw € K. To see
which generators of K are in F;, notice that

m
§~agj =) _cifi~adj, ¢; > 0.

=1

It is clear that only &, ---, é,, are in F;. The result follows. a

Lemma 34 For K a pointed, polyhedral cone, if the ordered vertez pair (g;,g;) is
strongly connected in Gr1(f, N) then (gi,g;) is strongly connected in G p( fiN),
Y p2>1. If K is n-generated then the converse holds.

Proof: The proof is by induction on p. The result is true for p = 1. Assume
that the result holds for a particular p > 1. We consider the case p + 1. Since the
result holds for p, we need only show that the ordered vertex pair (g;, g;) is strongly
connected in Ggp(f, N) if and only if (gi, g;) is strongly connected in G ps1(f, N).
Notice that

kperi = (DF(Z) + (1 + 1) DPHE = (DF(E) + (L + 1) Dk

Suppose the generators of F;_ . are labelled {é:,,...,é,, &}; notice that & must be

one of them. This gives, using Lemma 33,

generators of F¢ =D generators of F U generators of Ff U ---

U generators of Fi U generators of Fi_;; (3.37)

furthermore, in the multigraph Gk ,(f, N), there is a directed edge from g; to each
Gry-
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(=) Using (3.37), if ¢; € Ff:,,s’ then é; € F,;”m.. In fact, this means that all edges
in Ggp( f, N) exist in Grpti( f. N) as well; if there is a directed path from g; to g;
in Gk p(f, N), that same path exists in Gg p41(f, N). The claim follows.

(<, K n-generated) In this case, equality holds in (3.37). We use induction on
the length of the shortest directed path from g; to g; in Gk p41(f, N). Suppose
the shortest directed path from g; to g; in Gip1(f, N) has length one, that there
is a directed edge from g; to g; in Gk p4i( f,N). This means that & € F; it
Using (3.37), either &; € F¢_, or é; € F  for some s. In the first case, we are
done. In the second case, there is a directed path of length two in Gg,(f, N) from
gi to g;, passing through g,,. We assume the claim holds for a shortest directed
path of length b. Consider a shortest directed path of length b+ 1 on the vertices
§,§%,...,§%,&, in this order. To avoid a simple contradiction this means that
the shortest directed path from §® to § in Gipsr(F, N) has length b. The claim
holds for this directed path by assumption: there is a directed path from g,, to
gj in Gk p( f,N). We need to show that there is a directed path from g; to g,, in
Gkop(f, N). Since &, € F, ., using (3.37), either &, € Fy , or &, € Fy,  for
some s. In the first case, the edge exists in Gk,,(f, N) and we are done. In the
second case, there is a directed path of length two in G ,(f, N) from g; to a1 s

passing through g,,, and we are done. The claim follows. The lemma is proved. O

The following example shows that the converse of Lemma 34 does not hold when

K is not n-generated.

Example 19: Let K be the proper cone in R? with four generators, €;,6;,€3, and éq,
where any three of the four generators are linearly independent and &, +€3 = é;+¢é4.
Suppose that Df : &, — & + €2, Df : &3 36; + &3, and Df : &3 > & + 263. It is
then easy to check that Df : &, — & Gk.1(f, N) and Gk2(f, N) are presented in
Figure 22; Gk a( fiN ) contains a connection which G, (f, N) does not contain.
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D @)

Q

Figure 22: Gx.(f, N) and G 2(f, N) for Example 19.

The graph theoretic approach offers an advantage over the linear algebra ap-
proach insofar as one need not calculate powers of the matrix Df(2) + ({ + 1)[.

Consider the following proposition:

Proposition 35 Gg,(f,N), p > 1, can be constructed by using Gg1(f, N) and

the face structure of K.

Remark: We offer no careful proof of Proposition 35. Intuitively, however, knowing
the face structure of K and knowing in which smallest face of K the image of each
generator of K under the matrix D f(Z) + ({+1)! lies allows us to determine where
each generator is mapped by higher powers of the matrix. The graphs can be
generated inductively from G ;(f, N).

We arrive at the following result, which will lead us to the result we will use in

the examples.

Theorem 36 Suppose that f(%) is continuously differentiable in & on compact sub-
sets of R™ and that for any compact set, N, 3 | = {(N) such that
DfE)+I: K~ K,VZeN,

where K is a pointed, polyhedral cone in R™. Further assume that for N and [

chosen as above,

Y & € Fi,g; is strongly connected to all other vertices in G n1(f,N),Y & € N,
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for some vector k € K\ {0}; then

for £ >0 (£ >0 if k>4 0).

Corollary 37 will prove particularly useful in applications; we suppose that the
key hypotheses apply to the orthant (where solutions for chemical kinetics or epi-
demiological problems live), eliminating the need to check all compact sets. In this
case, the multigraph G;(f, N) is replaced by G 1(f, @), where we are assuming
that the graph has the same structure at all points of the positive orthant.

Corollary 37 Assume that © is positively invariant and that the positivity assump-
tion holds (&(t) > 0 for t > 0). Suppose that f(%) is continuously differentiable on
O and that 3 [ such that

Df(E)+I[: K- K, Y€ O,

where K is a pointed, polyhedral cone in R". Further assume that for | chosen as

above,
V & € F,g; is strongly connected to all other vertices in G ( f, 0),

for some vector k € K \ {0}; then
oz «
Z .0,

ok
for t >0 (t >0 if k>, 0).

At first glance, it may seem that Theorem 36 demands more than its analog in

Chapter 2, since requiring that Df preserves K demands that the system induces
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an order preserving flow with respect to KA. We had results in Chapter 2 guarantee-
ing monotonicity in some components when the system does not induce an order
preserving flow with respect to an orthant. For the partial monotonicity results
of Chapter 2, it is the case that there is a simple polyhedral cone with respect to
which the flow is order preserving. Using the hypotheses of Corollary 12, we state
the following result.

Theorem 38 If (v, v;) is positively (negatively) consistently strongly connected in
G(f,Q), then the system is order preserving with respect to a polyhedral cone with

generators that are standard basis vectors or the negative of standard basis vectors.

Proof: Without loss of generality, use ¢ = 1 and, as in the proof of Theorem 9,

partition the system by defining the disjoint sets

Qi = {ve: (v, ) is positively consistently strongly connected in G(f, )},
Q2 = {vk:(v1,v) is negatively consistently strongly connected in G( £, )},
R = {ve:(v1,v) is not strongly connected in G(f, )}, and

S = {vi: (v, ) is inconsistently strongly connected in G(f,Q)}.
Relabel the vertices so that

U[,--.,Uql € Qh
Vg #ly---1 Vg € QZs
Ugatly--- 0 ER, and

vr+l,...,vn es.
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With the corresponding relabelling of z;, 1 < i < n, the system (2.7) takes on the

form
-ii = .fi(zlv-'vzr), 1355%

z—f = -fl'(:c'n-l—la-“’x!’)s ‘Iz+1$i$7‘,
& = fi(z1,...,20), r+l1<i<n.

In this setting the Jacobian matrix has the form

ql qz r n
+
q, f " unknown 0
-— + .
Df = 2
0 unknown 0
r
\ unknown unknown unknown
n

where the ‘4’ signs represent non-negative entries, the ‘-’ signs represent non-
positive entries, the zeroes represent entries which are identically zero, and ‘un-
known’ is written in blocks for which we do not have sign information. The polyhe-

dral cone K preserved by this D f has extreme rays &;,i = 1,... 2 +2n—r+1),
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each +1 or ~1 times a standard basis vector, where

0 )
( b [ o |
0
ql 0 q,
= | £ . = ; <7/ L
e[ qz .Isl\ql, el 6 q2 :q, l\qz:
0 0
r r
| 0 | 0
[0 |
9,
-~ 0 -
e = : 4, <i<qn-r+l,
9
0
o1 th
| e

9
€ = 0 0 gn-rel<i g q2+2(n-r+1),
0 2
0 f th
\ _ie]L/(i+2r-n~qz-2)
0

104
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It is easy to check that this cone is preserved by D f:

Fettlcg, 20, 1<idq :
yutntee, 620, p+1<i<@+2(n-r+l)

i=qz+1

wha={

all images of extreme vectors are in K. o

By Theorem 38, supposing that our system does induce some monotonicity,
assuming that there exists a convex cone K satisfying (3.33) places no additional

restrictions on our system.

Remark: In Corollary 12, we concluded that the partial derivative of z; with
respect to z; was of strict sign. This follows in Theorem 38 as well. With the vertices
relabelled as in the proof of Theorem 38 and K so defined, (D f(2)+({+1)[)*"1é, €
relint(K). As in the proof of Corollary 29 with k& = &, it follows that the partial
derivative of z;, 1 < j < gqq, with respect to z, (the relabelled z;) is of strict sign.

Example 20: We reconsider the problem of Example 14, the chemical reaction

mechanism .
Ay + az Az = @ Ap + az4,, (3.38)

with @; > a; and a@; > @;. The Jacobian matrix for this problem was

(@1 — ar)Az(t) az(@r — ) Au(t) } . (3.39)

Df = k(A\(t))™ Y (As(t))>
f (Ax(t))™ 7 (Aa(t)) [01(&2 —ag)Ax(t) az(@z — az)Au(2)

The proper cone used in that example had extreme rays

where
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From the work of Example 12, we already know that

0A, aAg
Y™ —() 20 a.nd

Let us see if the inequalities are strict. We will construct a graph on two vertices,

(<0, VE20; (3.40)

g1 corresponding to & and g, corresponding to b. Now,

ar(@ — a1)A; [1 + alAlez] ]

(0h = KAGP A
a ( 1( )) ( ( ) [ al(&z —QZ)A2 [1 + auhy ]

2411 1
(@ = ak(A(O)" (Al |1+ 22t [p ]
2

= a multiple of a,

(Df)i) Q[(C_!l - a;)Az ]

a1(@; — az)A;

k(Ay(8))*~H(Aq(t)) ™ [

= i@ ~ ar)k(Ay(£))™ 7" (A2(2)) [ : ]
H2

a positive multiple of a;

hence, Df +1[ : &+ l;a,1; >0, and Df +1I : b~ relint(K) for { > 0. Qur graph
has but a single edge:

Since g; corresponds to extreme ray é;, we can conclude by Theorem 36 that the

partial derivatives in (3.40) have strict sign for ¢ > 0.

3.2.3 Finding Cones

Given a particular system (2.7), how does one find a cone K which satisfies the
conditions of the theorems in this chapter? This is a very difficult question. The
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majority of the literature in this area is abstract with no practical focus. An
extremely useful contribution was made by J. Vandergraft in [36]. The backbone

of this work is Perron-Frobenius theory. We present some results from this paper.

Theorem 39 If K is a solid cone and Az € K,V % € K, then

(i) p(A), the spectral radius of A, is an eigenvalue;

(i) The degree of p(A) is no smaller than the degree of any other eigen-

value having the same modulus; and

(#ii) K contains an eigenvector corresponding to p(A).

Furthermore, conditions (i) and (ii) are sufficient to insure that A leaves invariant

a solid cone.

Theorem 40 A satisfying Az € K, V & € K, is K-irreducible for some solid cone
K

(i) if and only if no eigenvector of A lies on the boundary of K;
(it) if and only if one eigenvector lies in the interior of K ;

(iis) implies p(A) is a simple eigenvalue, any other eigenvalue with the
same modulus is also simple, there is an eigenvector corresponding to

p(A) in the interior of K, and no other eigenvector lies in K.

Both of the above theorems require that the cone KA be solid. This means that
the cone must be of the same dimension as the space in which it resides. As it turns

out, we will often be able to obtain results from cones of lower dimension than their
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space (for example, two-dimensional cones in R3?). To find non-solid cones, first find
invariant subspaces of A and then restrict to these subspaces. Of course, having
found such a cone, one can rewrite the matrix A restricted to the subspace spanned
by the cone and verify that the conditions of the above theorems are satisfied. We

will see this in the examples.

Work on convex polytopes is applicable to the problem of finding the facial
structure of polyhedral cones, which is required for the strong monotonicity results.
There is work on algorithms for finding the convex hull of a set of points or the
representation of convex polyhedra in terms of faces in [25] and [6]. [45] offers
an advanced discussion of the theory of convex polytopes. The discussion of face
structure includes program code which produces a minimal system of facet-defining
inequalities from a set of vertices. Facets are the faces of a polytope of one lower

dimension than the polytope.

The following result will prove useful in the examples.

Proposition 41 Let #,, 03, 03, and 9, € R3, with any three of the four vectors

being linearly independent. Suppose that
@19} + az0; + a3ds + a4iq =0, (3.41)

where a)azazay # 0; then ¥y, 0, 03, and U4 generate a polyhedral cone if and only

if two of ay, ay, a3, and a4 are positive and two are negative.

Proof: (<) The vectors v; can be scaled and relabelled so that (3.41) takes the
form

By + 1y = 3 + s (3.42)

With this labelling, when the vectors generate a polyhedral cone, the two di-

mensional faces of the cone are F)3 = sp* {1, 13}, Fi4 = spH{, i}, Fa3 =
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sp*{ip,13}, and F,4 = sp*{w;, ws}. The vectors generate a polyhedral cone
when for each face the two vectors w; not in the face both lie on the same side of
the plane containing the face. Suppose this is not the case: assume that @, and w,
lie on opposite sides of F 3. The line segment connecting -, and t, must intersect

the plane spanned by W, and ws. Mathematically, for somer, s, and t,0 <t < 1,
tip + (1 — )Wy = rwy + sti3;
using (3.42) to eliminate 14 gives
Wy + (1 — t) (@) — w3) = ry + sws.
Since any three of the four vectors are assumed to be linearly independent, this
gives a contradiction.
(=>) Suppose that one q; is negative and the others are positive; then, after scaling
and relabelling, (3.41) gives
Wy = Wy + w3 + Wy,

This means that w, is an interior vector of the polyhedral cone generated by w;,
w3, and Wy, contradicting the assumption that all four vectors are extreme rays.

The argument is similar if one a; is positive and the others are negative.
Suppose that all four a; are positive; then, after scaling and relabelling, (3.41)
gives
Wy + Dy + W3 + e = 0. (3.43)
This suggests that 0 is in the interior of the cone generated by the ;, an unnerving

implication. Notice that any vector can be expressed as a linear combination of

three of the (linearly independent) w;:

T = c W) + co2wy + Cc3w3.
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Using (3.43), we have for ¥ > 0

T = cuwy+ iy + cas + ¥(W + W2 + W + Wy)

= (e +7)w + (e2 + 7)d2 + (ca + 1) 4 1Ps;
sure enough, any vector can be expressed as a positive combination of the w; for ¥
large enough. This means that any vector is in the interior of the cone generated
by the @, a contradiction since the cone was assumed to be convex. The argument
is similar if all four a; are negative.

The only remaining possibility is that two a; are negative and two are positive.

g

Notice that Proposition 41 also applies if we have four vectors in R™ satisfying
the key hypotheses since we could simply work in the three-dimensional subspace

spanned by the vectors.

3.3 Examples

When applying the graph theory of this chapter in the following examples, we will
never use G p( £,0),p>1. To simplify notation, we will use the label Gg( f,0)

for the case p = 1.

Example 21 (Chemical Kinetics): We return to Example 7, considering the
chemical reaction

A+ A A As,

which leads to the system of differential equations, z = f(z),

£y = —kzz,,
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332 = —-kz[.‘tg, and
T3 = +kzz).
Using the machinery of the previous chapter, we could not determine the signs of

the partial derivatives of z3(t) with respect to either z,(0) or z;(0). Let us try to
apply the work of this chapter to this problem. We have

—kzy —kz; 0
Df=| —kz;, —kz, 0
kzy kxz; O
This matrix Df + ([ has
T 0
eigenvalue [ with corresponding eigenvectors | —z, | and | 0 |, and
0 1
1
eigenvalue | — k(z; + ;) with corresponding eigenvector | 1
-1

For [ sufficiently large, the maximal eigenvalue of D f+ilist; using Theorem 39, we
know that any solid cone that is preserved by D f must contain exactly one of the
eigenvectors corresponding to eigenvalue . Since we would like to draw conclusions
on the signs of the partial derivatives of z3() with respect to either z,(0) or z(0),
our cone must include the z and y axes. After some thought (notice that the z
and y axes are mapped by Df to positive multiples of the vector (—1,—1,1)T), we
consider the proper (polyhedral) cone K with extreme rays

1 0 -1

&e=| 0 |,&=]|1 |,andéa=| -1 |,

0 0 1
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Figure 23: The proper (polyhedral) cone K for Example 21.

drawn in Figure 23. z is positive in K, which contains the =z and y axes; hence,
if K satisfies the essential hypothesis of Corollary 24 (if D f preserves K ), we will
be able to conclude that the two derivatives of interest are both non-negative. We

examine the images of the extreme rays of K under D f.

(1) =0
0 -1 | €K,
L0 \ 1)

(0 (1)

Df

k:Bz

1
\ 0 / \ 1)
~1) 1
Df| -1 | = kzi+2z)]| 1

1) -1
-1

= for [ sufficiently large ,(Df +1I)| -1 | € K.
1
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@
Figure 24: Gg(f, O) for Example 21.

D preserves the cone K! By Corollary 24, we can conclude that for ¢ > 0

a$3

3-‘1?1.0

0.1.‘3

> d
0 an 220

>0.

Now, if Df +I is K-irreducible, then the inequalities above are strict. We can use
the graph theoretic approach of Corollary 37; we draw a graph on three vertices,
with vertex g; (g2,93) representing extreme ray é, (€z,63). Figure 24 presents the
graph Gk (f, ) for this example. In this case, we can not apply Corollary 37, but
all hope is not lost.

Notice that the image of all of the extreme rays under Df lies on the line
containing €3. This means that the two dimensional cone K (K;) with extreme rays
& and &; (&; and &) is preserved by Df. The graph Gk, (f, ©) (Gk,(f, ©)) consists
of the subgraph of Gk (f,©) on the vertices g; and g3 (g2 and g3). Corollary 37
applies in each case, letting us conclude that earlier partial derivatives inequalities

are strict for £ > 0.

The cones K, and K are not solid; hence, Theorem 39 and Theorem 40 do
not apply. We can however construct a matrix representing the transformation Df
restricted to the two dimensional subspace corresponding to each cone; then the
theorems will apply. We do this for K,. The extreme rays are €, and é;. The
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images under Df are

1 -1
Dfl o = kry| -1
0 1
= kz,€3,
-1 1
Dfl <1 | = k(@i+z)| 1
1 -1
= —k(zy + z2)é3;

hence, the transformation restricted to the two dimensional subspace spanned by

0 0
A= .
( kx, —k(z;+ z3) )

A has maximal eigenvalue 0 with corresponding eigenvector [1,0]T = &, € K;. This

¢; and €3 has the form

agrees with the claims of Theorem 39; by Theorem 40, we conclude that the matrix
is not K,-irreducible, agreeing with the graph Gk, ( f.0), which is not strongly

connected. A similar check of K; can be done.

Example 22 (Chemical Kinetics): Consider again the mechanism of Example 8,
namely

k)
A+ Ay = As.

—1
This type of chain reaction was examined in [18]; elaborate arguments were required
to established the monotonicity results presented in Table 8, where ‘++’ means
positive for t > 0, ‘4’ means positive for ¢ > 0, ‘0’ means the derivative is zero

for all time, and ‘“*/+’ means the derivative is positive for z;9 < 739, 1 < 0 and
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]

z1(t) | z2(2) | s(2)
Tyo | ++ - *+
Tao| — | ++ | */+
T | + | + | ++

Table 8: Signs of concentrations with respect to changes in initial concentrations

for Example 22.

of both signs if £39 > z29. This mechanism leads to the system of differential

equations, Z = f(&),
T = —kz1T2+ ko123,

T = —kz1z2+k_123, and

£3 = +kiz1Z2 — ko173,

with Jacobian matrix

—klzz —kl.‘t]_ k..l
sz —kzy —kzy k-

k[ T2 klzl —-k.[

The matrix Df + {I has
k_.l —-kl.‘t 1
eigenvalue [ with corresponding eigenvectors 0 and kiz, |,and
kl.‘Dg 0
1

eigenvalue | — kyz; — kyz, — k-; with corresponding eigenvector 1

-1

Again, for { sufficiently large, { will be the maximal eigenvalue; hence, any cone that
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il

Figure 25: A proper (polyhedral) cone A for Example 22.
we wish to use to establish some monotonicity results will have to contain exactly
one of the corresponding eigenvectors in its interior.

The first cone we examine is the two dimensional proper (polyhedral) cone A

in R? with extreme rays

0 1
0 | and 11,
1 0

pictured in Figure 25. The images of the extreme rays under Df are easily calcu-
lated:
(o) 1) 0
Df| o kool 1 |=20Df+iD] o0 | ek, i>k
\ 1) -1 L
(1) (-1 1
DFl 1] = ki(zmi+22)| -1 | = @OF+1D | 1 | €K, llarge enough.
\ 0 / \ 1 0
This cone is preserved by D f; we can conclude that, for £ > 0,

8$[ 622 8:::3
>
Ozag ~ 0 9z30 Oz30

i

>0, and

>0.
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Using Corollary 37, we draw a graph on two vertices, with

(0 )
vertex ¢, representing extremeray | 0 | and
\1)
(1)

vertex g, representing extremeray| 1 |;

\ 0

namely

Since the graph is strongly connected, we can conclude that the above partial

derivatives are of strict sign for ¢ > 0, giving us the bottom row of Table 8.

The second cone we examine is the three dimensional proper (polyhedral) cone

K; in R? with the four extreme rays

1 1 0 0
0 [} O [} -1 9 and -1 L]
0 -1 0 1

drawn in Figure 26. We calculate the images under D f of the extreme rays.

1) —1
Df 0 = kx| -1 |,
0 ) 1

1) -1
Df 0 (kiza+ k)| -1 ],
-1 ) 1
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g T

;

y

Figure 26: A proper (polyhedral) cone A, for Example 22.

(0 ) 1

Df 1 = kx| 1 |, and
\ 0 ) -1
(o ) 1
Df| -1 | = (im+k-)| 1
\ 1) -1

"In each case, D f +II will map the extreme ray into the cone for { sufficiently large;
the cone is preserved by Df. Considering the z—axis and negative y—axis, we can
conclude that for ¢ > 0

6:1:1 axl
> <
Oz10 = ' 0z29 ~ 0

632

a.‘l:g‘o

s Oz, <0, and
33:1'0

> 0.

Using Corollary 37 and the above calculations, assuming [ is chosen sufficiently
large, we would draw a graph on four vertices with each vertex connected to the
other three. This strongly connected graph would tell us that the above partial
derivatives are all of strict sign for ¢ > 0. This gives the results in the upper left

two-by-two block of Table 8.

Finally, we consider the three dimensional proper (polyhedral) cone K3 in R?
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Figure 27: An expanding proper (polyhedral) cone A3 for Example 22.

with the three extreme rays

1 0 :L'[(t)
0 L] —1 '] a'nd —-.Z'g(t) ’
0 1 0

pictured in Figure 27. Notice that since £, = z,, this cone is expanding if £, < 0.

Once again, we calculate the images under Df of the extreme rays.

1\ -1

Df| o = kz| -1 |,
0 ) 1
0 ) 1
Df| -1 | = (hiza+k)| 1 |, and
1) -1
2(t) 0
Df —z,(t) = 0 |;
0 0

for [ sufficiently large, Df + (I maps each extreme ray into K. Since the cone is
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\

@

Figure 28: Gk, (f,O) for Example 22.

preserved by D f we can conclude that
3:83

B:z: 1,0

20,t >0,

and, by symmetry in z; and z,,
33:3

2.0

>0,t>0.

Using Corollary 37, we draw a graph on three vertices, with

(1

vertex g, representing extremeray | 0 |,

\ 0

(o

vertex ¢, representing extremeray | —1 |, and
\ -1

(-

vertex g3 representing extremeray | —z, |{;
\ 0

the graph is presented in Figure 28. The graph is not strongly connected, so

Df +1I is not K-irreducible. But vertex g, corresponding to extreme ray [1,0,0]7,

is strongly connected to all other vertices; hence, by Corollary 37, assuming &; < 0,

633
63 1,0

>0,t>0,
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(4) e

10K

Figure 29: The proper (polyhedral) cone ; for Example 23.

and, by symmetry in z; and z,
633

a.'L‘g'o

>0,t>0.

Example 23 (Epidemiology): We consider again the SIS epidemic model of
Example 9. The Jacobian matrix for this problem is
. —fz - Bz
D f _ Bz, v —Pzx; )
Bzz -7+ Pz,
The work of Chapter 2 gave us some results, but we must still prove that

8:::1 6 6
<0,t>0,~~——>0,t>0, d >0,t>0.
9z4(0) 9z,(0) 20 922(0)

Consider first the proper cone K, with extreme rays

- 1 . -1
é = and & = R

pictured in Figure 29. We calculate the images of the extreme rays under D f:

Dfé&, Bz, ( -1 ) = [z3€;, and (3.44)
1

~
‘=
]
Il

-1
(Bz2+ v — Bz1) ( . ) = (Bz2 + v — Bz1)és. (3.45)
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X,

{0

Figure 30: The proper (polyhedral) cone K; for Example 23.

K, is preserved by D f and induces the graph

which, upon applying Corollary 37, gives

8172 632
3z:(0) >0,t >0, and 322(0)

>0,t>0.

Consider second the proper cone K with extreme rays

. 0 - -1
& = and &; = ’

drawn in Figure 30. Compared to K, one extreme ray has changed. The new
extreme ray has image (—v + fz,)é;, meaning that the same graph is induced by
Df. Corollary 37 tells us that

azl
dz2(0)

<0,t>0.

Example 24 (Chemical Kinetics): We return to the Michaelis-Menten enzyme
kinetics model of Exampie 10. For ease of reference, we present the table of partial

derivative signs in Table 9. In the work of Example 10, we were only able to obtain
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z1(t) | z2(t) | z3(2) | za(t)
z(0) | + - * +
z(0) | - + + +
z3(0) | + * * +
z4(0)] O 0 0 +

123

Table 9: Behaviour of concentrations with respect to changes in initial concentra-

tions for the Michaelis-Menten system.

the signs in the bottom row of Table 9; now, we will apply the work of this chapter.

The system of ordinary differential equations for this problem is

zy(t)
2109)
z3(t)
T4(1)

—

—

——
—

Si(z, 22, 23, 24) = —k1T1z2 + (k-1 + k2)z3,
fo(zr, 22, 23, 24) = —k12122 + 123,
fa(-‘tl, T2, T3, :84) = k[:tlxg - (k-[ + k'z):l:;;, and

Ja(z1, 22, 23, 24) = K2z,

The Jacobian matrix for this problem is

Df

—kza —kzy ki +k 0 \
_ -kz2 —kiz) k_; 0
| kz kize —(kat k) O
0 0 k; 0 )

(3.46)
(3.47)
(3.48)
(3.49)

Notice that z,, z;, and z; do not depend on z,; we can consider their three-

dimensional subsystem. In this case, the 3 x 3 Jacobian matrix Df will be the

upper left 3 x 3 block of the Jacobian matrix for the full system.

Letting M, = z,(0)+z3(0) and M, = z2(0)+z3(0)+z4(0), it is easily observable
that z,(¢) < M; and zi(t) < My, i =2,3,4, Vit >0, since £; + &3 + 4 = 0 and

1.:1+i4=0.
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JH

Figure 31: A proper (polyhedral) cone A for Example 24.

Consider first the three-dimensional proper (polyhedral) cone A in R? with

extreme rays

1 1 0 0
él= 0 162= 0 1-3——“ -1 ,a.ndé4= -1 ’
0 -1 0 1

drawn in Figure 31. Notice that &, + é3 = é; + é; by Proposition 41 (and as
Figure 31 indicates), K, is a polyhedral cone. The four faces of K, are given by
Fy; = spt{&1, &}, Fi4 = spt{€1, &}, Fa3 = sp*{€2 &}, and F54 = sp*{é3,é4},
where spt denotes all non-negative combinations of the vectors listed. We calculate

the images of these extreme rays under D f + U1, for appropriate choices of /.

0
(Df +kiza)ér = ke | -1 | =kizads,
1
0
(Df + (kyzy + k-y + k) = —kyy — k- | = (kiz2 + k-1)és,

0
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D, 9)
Figure 32: Gg, (f, @) for Example 24
1
(Df +kyzi)és = kx| 0 | =kizié;, and
-1

kiza + k_y + k2
(Df-l' (kyz2 + koy + k2))Es = ~k,
0
= (k1x; + k-1 + k2)é; + kzé3.

Picking | = k(M1 + z2(0)) + k-; + k2, say, guarantees that A is preserved by
Df. Using the known face structure of K;, we conclude that Df + (I maps €, to
Fl4, & to Fy3, é3 to Fp3, and é4 to the interior of K. The associated multigraph
Gk, (f, ) is given in Figure 32. Applying Corollary 37, we can conclude that for

t>0
le

bz—l(o—)'>0, and

31!2
5] > 0.

Next consider the three-dimensional proper (polyhedral) cone K; in R® with

extreme rays
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Figure 33: A proper (polyhedral) cone K, for Example 24.

presented in Figure 33. Notice that &; + €3 = é; + é&,; by Proposition 41 (and as
Figure 33 shows), K; is a polyhedral cone. The four faces of K are given by F} 2 =
sp*t{é, &}, Fia = spt{é1,&4}, Fo3 = sp*{éz €3}, and F34 = sp*{€;,€,}, where
sp* denotes all non-negative combinations of the vectors listed. Again, calculate

the images of the extreme rays under Df + 1.

0
(Df + (kizz + k=t + k2))E1 = —kwy —koy | = (kize + ky)éz,
0
1
(Df +kiz)éz = kiz | 0 | =kiziéy,
-1
k-1 + k;
(Df + kot + kg)és = k_y = (k-1 + k2)é4 + k2é;, and
0

0
kl(zl + .'Bg) 0 = k[(.’b‘l + zz)éa.
1

(Df + k(2 + z2))és

i
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C)) ~mmm—- ()

3~ ___—>(9s)
Figure 34: Gk, (f, ) for Example 24

Picking | = ky(My + M;) + k_, + k, guarantees that Df preserves K, and, using
the face structure of K, that the image under D f + I of &, is in F) 3, the image of
é; is in F) 3, the image of €3 is in the interior of K3, and the image of é4 is in F5 4.
Gk, (f, O) is presented in Figure 34. By Corollary 37, K7 lets us conclude that for

t>0
6:!.'1

323(0) > 0.

Notice from the work with K that the two-dimensional cone with extreme rays

1 0
€ = 0 and 63 = -1
-1 0

is preserved by Df. To avoid the minus signs, consider the two-dimensional proper

(polyhedral) cone Kj; in R® with extreme rays
-1 0
0 a'nd éz = 1 1

1 0

3.1}
-
]

drawn in Figure 35. Repeating earlier work, the images under D f + I of the
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b

Figure 35: A proper (polyhedral) cone K3 for Example 24.

extreme rays are

0
(Df + (kyz2 + k-t + k2))&1 = kiy+ k-, | = (kiz2 +k-1)é, and
* 0
-1
(Df +kz1)é: = kiz| 0 | =kz:ér
1

Once again, picking [ = k(M + M3) + k_-; + k; guarantees that the extreme rays
are mapped to the relative interior of K3 by D f + (I, implying that the multigraph
Gk, (f,©) is strongly connected. Applying Corollary 37 allows us to conclude that
fort >0

Sy <O oy > O and o >0,

The partial derivative results for z, will require cones in four dimensions, adding
new difficulties because we can no longer picture things. There is future work to
be done investigating the face structure of cones in higher dimensions; we will see

where this comes in. Luckily, for this problem a simplification occurs.
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Consider the proper (polyhedral) cone Ky with extreme rays

~1 ) 0 ) 0)

0 0

-~ -

€ = ,€2 = , and &3 =

1 0 0
0 0 1)

K is a three-dimensional cone in R*. The images of the extreme rays under D f +{1

are given by

< . kl-‘l—‘z- + k_; - .
(Df+kizes+ ko +k)éy = = (k1z2 + k-1)é2 + kaé3,

0

ka )

-1 )

(Df +kizy)é; = kxy = kyz1é;, and
1
0 )
(Df)es = 0.

Pick{ = ky(M, + M;)+k_, +k; to guarantee that D f preserves K. As it turns out,
in this case we can draw the multigraph G, (f, ©) because the face structure of K
is reasonably simple to see: the three extreme rays are the one-dimensional faces;
there are three two-dimensional faces, each consisting of non-negative combinations
of a pair of extreme rays; and there is one three-dimensional face consisting of the
non-negative combinations of the three extreme rays. Gk, (f, ©) given in Figure 36.
Applying Corollary 37, we can conclude that

634

m>0, for ¢ > 0.
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\@

Figure 36: Gk, (f,®) for Example 24

9)

QD

We consider the proper (polyhedral) cone A5 with extreme rays

0 0 ) (1\ (1)
él = 0 ,égz -1 ,éa= 1 N and é4= 0

1 0 0

0

-1
1) \o) \ 1)
Notice that &, + &5 = &; + €3; by Proposition 41, K5 is a polyhedral cone. The four
faces of K are given by F), = spt{é\,&;}, Fi3 = sp*{é1,é3}, F2.4 = sp*t{é2, &4},
and F34 = sp*{és, é,}, where sp* denotes all non-negative combinations of the

vectors listed. The images of the extreme rays under D f + [I are given by

(koo + k)
N k_

(Df + k_y + k)8, = ol = (k_y + k2)é3 + k&2, (3.50)

\ k)

(1)
. . 0 - -
(Df-l-klxl)ez = kl:t; 1 =klzlc4, (3.51)

\ 1)

(Df + ki(z1 4 22))8s = ky(z1 + 22)
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(<92

Q

Figure 37: G, (f,O) for Example 24

= k[(l‘l +$2)é[, and (3.52)
0

(Df-f- kiza + ko +k2)és = (kvzz +z-y)

= (kl:tg -+ x-l)ég. (3.53)

Certainly, then, for { = ky(M; + My) + k_, + k2, K is preserved by Df. Since we
are lucky enough to know the face structure of K5, we can see that Df + I maps
€1 and é; into the relative interior of K5. D f + (I maps é; to F} 3 and maps &4 to
Faq. Gi( f, O) is drawn in Figure 37. Since K contains the z3—axis, z4 > 0 in
K, and g; is strongly connected to all other vertices in G (f, @), by Corollary 37,

we can conclude that
3.1:4

623(0)

>0, fort>0.

The final result we wish to obtain is

624
dz 1(0)

>0, t>0.
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We consider the proper (polyhedral) cone Kg with extreme rays

0 )

0 )

\ 0/

-1
0

L)

N a.ndé.;:

1)
0
1

L)

132

In this case, é, +é; = é; + €4; by Proposition 41, K is a polyhedral cone. The four

fa.ces Of I\’s are given by Fl_g = Sp+{él, éz}, F1'4 = 8p+{é[, éq}, Fg;; = 8p+{éz, 63},

and F3 4 = sp*{és, é4}. The images of the extreme rays under D f+ I are given by

(Df + kyz2)é

(Df + kzy + kg = k2)

(Df‘*' kyz1)és

(Df + kyza 4 k_y + k2)é;

i

([ o
-1
1

\ 0

kiz2

kizy + ko) + k2 \

—k,
0
k;

(krzy + k—y + k2)é1 + kzés,

1)

0
klzl
-1
L)
(kizz +z-1)

= k)1 Z7€3,

/

= klzlé4, and

(o)

-1
0

\ 1)

(3.54)

(3.55)

(3.56)

(3.57)

= (k122 + z-1)€3.(3.58)
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() -]y

(D) = (7)
Figure 38: G,(f, O) for Example 24

Again, for { = ky(M, + M3) + k_, + k2), K is preserved by D f. This time around,
we see that D f +1I maps é, to F\, &, to relint(Ks), é; to F3 4, and é, to F3 4, We
draw G, ( f,O) in Figure 38. Since A§ contains the z{—axis, z4 > 0 in K%, and
g1 is strongly connected to all other vertices in G, (f, @), by Corollary 37, we can

conclude that
324

for t .
6:1:1(0)>0’ ort>0




Chapter 4

Directions for Future Work

In [18], chain reactions of the form

ky kg ks ka1 kn
A+B=2Ci=2C =" 2 Cha =0,
kg k3 kos k_(n—1) k_a
and
ky k2 k3 ka kng1
A+B=C;.——‘Cg.——~--'=0,, - D
koy koa ka3 k_n

were analyzed. In each case, the arguments were quite lengthy and involved. It
would be interesting to attempt to apply the methods of Chapter 3 to these general

problems.

Of course, the face structure of any cones that might seem helpful for these
problems would need to be known: a second topic for future work is monotonicity
with respect to cones in higher dimensions. Understanding face structure is crucial

to the final theorems in this thesis.

At this stage, we have no sufficient conditions for strong monotonicity with

respect to non-polyheral proper cones.

134
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It would also be nice to find a necessary condition for strong monotonicity. As
we saw in Example 17, the sufficient condition that has proved useful in this work

is not necessary.
A careful proof of Proposition 35 should be developed.

There are similar graphs to those in Section 3.2.2 (G p(f, N)) in the literature
({2],[3]). An exposition of these graphs would prove interesting.
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