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Abstract 

A general framework for determining when a solution component is monotone with 

respect to changes in an initiai component value is developed. 

Conditions for monotonici ty with respect to an orthaat are formulateci graph 

theoretically, and conditions for partial strong monotonicity are given. 

Monotonicity with respect to a closed, convex cone, Ii, is also investigated. For 
, 

a system of differential equations, i = f (5 ) ,  I(0)  = Zo, I E R, the I<amke-Müller 

Theorem (1932/1927) is extendeci to closed, convex cones by imposing the essential 

hypothesis 

3 1 such that D ~ ( z )  + 11 : Ir' c, K, V îi E N, N compact. 

Strong monotonicity is achieved by further demanding that 

3 m such that ( ~ f ( 5 )  + (1 + 1)1)" : K\ {O) H inf(K),V 5 E N, 

or, more practically, through a graph theoretic formulation. Given a cone with 

n generators, ëi, a directed mdtigraph on n vertices, gi, is constmcted with a 

directed edge from g; to gj, i # j, if é is in the smalles t face of the cone containing 

( ~ f ( 5 )  + (1 + l)l)&, V 5 f N. The mdtigraph being strongly connecteci is a 

sufficient condition for strong monotonicity. 

The results of this thesis are applicable to general autonomous ODES, but the 

examples are &am mostly from chernical kinetics. 
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Chapter 1 

Introduction 

The goal of this work is to establish a general framework for the investigation of 

monotonici ty pmperties of autonomous systems of ordinary Mecentid equations. 

Eadier efforts in [lS] used very specific arguments for par t idar  problems to estab- 

lish monotonicity; there was a iimited amount of broadly applicable results. 

W e  are primarily interested in how a solution component to a geaerd au- 

tonornous system of ODES changes when a single initial component is changed. 

If a solution component with a single changed initial component is always greater 

(less) than the original solution component, then we Say that the component is 

monotone increasing (decreasing) with respect to changes in that initial component 

value. Alternatively, one can look at the sign of the partial derivative of a solution 

component with respect to an initial component value. If this derivative does not 

change sign, then the component is monotone with respect to changes in the cor- 

responding initial component d u e .  We will typicaily focus on obtaining this type 

of derivative resdt. 

Monotonicity results are of interest for several reasons, the simplest of which is 
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that non-linear ODES theory has broad application. This work adds the spice of 

graph theory and convex cones to present some surprisingly rich mathematics. 

More practically, monotonicity results can d o w  one to predict the qualitative 

behaviour of a solution cornponent relative to that same solution component with 

a changed initial value in some component; this knowledge can lead to an under- 

standing of the s tability of solutions under changes in initial values. Furthemore, 

monotonicity results can also prove usehi when deciding if a given mathematicai 

model correctly represents a physical problem of interest. For example, if exam- 

inat ion of a proposed mathematical model does no t verify certain monotonkit y 

observed in experiments, one codd conclude that the proposed model is in error. 

The work is presented in tvvo parts. This introduction is followed by a srnail 

subsection discussing the mathematical basics of chernid kinetics; it is followed by 

the two chapters of the main body. 

Chapter 2 de& with monotonicity with respect to an orthant. The Kamke- 

Miiller Theorem (1932/1927) is the key foundation upon which many of the results 

existing in the literature are built . I<amke-Müller-like results d o w  us to determine 

when the partial derivatives of interest are non-negative or non-positive. If possi- 

ble, we wiil want strict sign, or strong monotonicity, results; the graph theoretic 

approach proved essential in the pmofs of these results. Indeed, a related result in 

the Literature has an e m r  in its proof, a proof with no graph theoretic cornponent. 

Examples are distributecl throughout the chapter, with lengthier examinations of 

particular problems of interest appearing at the end. 

In Chapter 3, the theory of convex cones is merged with the theory of the or- 

thant, producing a more general approach to the problem of monotonicity with 

respect to initial conditions. After some preliminaries, the I C d e - M u e r  Theorem 



CHAPTER 1 1lVTRODUCTfON 3 

is extendeci to convex cones; this forms the foundation for a new group of tools for 

investigating monotonicity. The essential condition of this new theorem is liaked to 

several other conditions that exist in the literature. Once again, a graph theoretic 

approach proves essential as a practical tool for determining when there is strong 

monotonicity. Some seemingly strange ideas, such as expanding convex cones, are 

introduced and then showcased in the examples. After a brief discussion of condi- 

tions for hding useful cones, the bulk of the examples is presented. To highlight 

the additional power of t his more complicated approach, results obtained in the 

examples of Chapter 1 are improved upon. 

We close t his introduction by making three notational remarks. 

Throughout this work, vecton will be denoted by placing a tilde on top of their 

letter ( fa  example, 2). 

The letter I wiil have three different meanings. I (5)  will denote the positive 

interval of existence of a solution 5 (explainecl in the preliminaies of Chapter 1). 

The identity matrix of the appropriate dimension at the tirne of use wiil also be 

denoted I. In epidemiological examples, [ ( t )  will represent the infective population 

at t h e  t. It is expected that the reader wiU be able to discern, based on context, 

what role the letter I plays in a particular instance. 

N wüi have two different meanings. fi, often indexed, wiIl be used to denote 

normal vectors. N will be used to denote a neighbourhood. Once again, context 

should clarify which rneaning is in e k t .  



1.1 Chernical Kinetics 

In the framework of formal mass action kinetics, a given reaction mechanism is 

translated into a mathematical mode1 by associating a rate expression to each 

process in the reaction mechanism. We assume that the Law of Mass Action holàs 

in order to determine these rate expressions. 

Definition 1 The Law of Mass Action postulates h t  the rate ezprwrsion of a 

reaction depends on the pmduct of the concentrations of reacting spen'es rnised fo 

the power of their molecuiarity. 

[8] provides a detailed ciiscussion of the Law of Mass Action. The mass action 

type kinetic equation was first derived by Wilhelmy in 1850. We should note that 
L 

this is a macroscopic theory. Out primitive concept is an elementary reaction; we 

are not concerned with electmns, atorns, or molecules and their arrangement. We 

assume that all rates of reactions are positive constants; they couid, in reality, 

be temperature dependent, for example. We also assume that any mixtures are 

homogeneous; that is, the vat within which the reaction takes place is evenly stirred. 

A generd chemicai reaction mechanism is of the form 

n n 

where 1 = 1,. . . , m labels the reactions, the stoichiornetric coefficients ail and Bi1 

are non-negative integers, and it is assumeci that ,ûü # ail for some i. Let 

the concentration of species Ai at time t. Assuming mas action chernical 

gives 

zi(t) be 

kinet ics 

(1.2) 
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for i = 1, . . . , n. q( t )  is the rate expression for reaction 1. 

There are some technicd detaiis that merit mentioning. We use atom-Etee stoi- 

chiometry; for some discussion, see [8], page 26. Concentrations are either positive 

for d positive t ime or they are identicdy zero for ail t ime. In the second case, one 

can consider a new reaction mechaaism wbich fits the first case. This is detailed in 

[39], chapter 12. We state this as a fundamentai assumption, where O denotes the 

open positive orthant and 6 denotes its cloaure, the non-negative orthant: 

Positivity Assumption: For go E So c 6, < p t ( & ) ,  the solution to the chemi- 

cal kinetics system (1.2) with initial condition &, satisfies vt(b) E O for t > 0. 



Chapter 2 

Monotonicity With Respect to an 

Orthant 

The positive orthant in Rn, denoted 6, is given by {z i lx i  > O, i = 1, . . . , n). The 
non-negative orthant is denoted O. The results in this chapter will often involve 

inequdities between vecton. Of course, we write 2 1 9 (or i 5 5) if the inequality 

holds componentwise; P > fi (or < 5) means that the strict inequality holds 

componentwise. Geometricdy in R2, Figure 1 illustrates which vectors Z satisfy 

the two strict inequalities for a k e d  vector ij; the idea extends natually to Rn. 

W e  can aBo note that 2 > i (2 2 i )  meaos that I - jj E O (5 - i E 6). 

A fundamental theorem that is usefd when considering monotonicity of solu- 

tions with respect to changes in an initial condition is the Kamke-Miiller Theorem 

(presented with proof as Theorem 1.3.1 in 1221). 
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Figure 1: Orderings with respect to a quadrant in R2 

Definition 2 f is quasimonotone non-decreasing if V i, fi(t, ü) < fi(t, 6) for 

U i  = V i ,  Uj 5 V j ,  v j # i .  

Theorem 1 (Karnke-Müller Theorem) 

f fb  < f ( t , ~ ) ,  G(0) = Co, and & 2 f(t ,6) ,  G(0) = Go, for O 5 t 5 T, and 60 6, 
where f ( t , I )  is quasimonotone non-decremity on R c Rn, fl is open and convez, 

f is continuous on R and Cipshitz continuous wàth respect to 2 on compact subsets 

Remark: The convexity assumption in Theorern 1 is not necessary. It is necessary 

if the quasimonotone non-decreasing hypothesis is replaceci by 

Suppose we are working with a chemicai system and are interesteci in deter- 

mining the monotonicity propertiea of the concentrations of species with respect 

to changes in initial concentrations. If the concentrations of the chernical species 

satisfy the autonomous system 3 = I(w), C(0) = &, where f is quasimonotone 

non-decreasing, then we can apply the Kamke-Müller Theorem to conclude that 

ail concentrations are monotone non-decreasing with respect to changes in any hi- 

tial condition. We may equivalently conclude that the partid derivative of any 
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concentration with respect to any initid concentration is non-negative. For either 

conclusion, we say that the system induces a monotone Pow (with respect to the 

non-negative orthant ). 

Remark: A Mean Value Theorem argument shows that a solution component is 

monotone non-decreasing with respect to changes in an initial condition if and ody 

if the partial derivative with respect to that initial condition of that component is 

non-negative for aii time. Consider the system 

Denote by ui(t, Go) the it'komponent of the solution to (2.1) with initial condition 

G(0) = ü(0). Denote by ui(t, 6:) the ilh component of the solution to (2.1) with 

initial condition G(0) = ü'(0). Suppose that 
b 

u;(O) > uj(0) ,  for some j, and u ~ ( O )  = ui(0), i # f. (2-2) 

If ui(t) is monotone non-decreasing with respect to changes in ~ ~ ( 0 )  - that is, if 

we know that ui(t, Ùg) - ui(t, Go) 2 O for all time and aU pairs of vectors C(0) and 

?(O) satisfying (2.2), then we know that 

for all tirne. 

By the Mean Value Theorem, for a fixed time t we know that there is some 6(O), 

with ~ ~ ( 0 )  I v j (0 )  I u;(O) and ui(O) = vi(0), for i # j, SU& th& 

hence, if we know that 
au; -(O 2 0 

auj(0) 
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for dl time, t hen ui(t) is monotone non-decreasing with respect to changes in u j(0)- 

Furthermore, if we know that 

for d time, then ui(t) is strictly monotone increasing with respect to changes in 

uj (0) - 
For non-monotonicity, we can show by a Taylor series argument that if the 

partial derivative with respect to an initial d u e  of a solution component takes 

both signs in time, then two solution curves with that initial condition metent 

but s&ciently close will cross. The Taylor series in uj(0) for ui(t , u0) near u;(O) is 

given by 

SO, if ,$&(t, Co) is of both signs in tirne, then for u;(O) su£Eiciently close to ~ ~ ( 0 )  

we can conclude that the curves ui(t, Go) and ui(t, Go) cross. This ends the remark. 

R.ecal1 that a flow 4 for an autonomous system ;(t) = f(i) is dehed to be the 

map q5t : S2 H 51 where t/it(i) is the solution with initial value 5. We define the 

positive intenal of existence I(5) by 

Debition 3 The flow 4 is monotone if 
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Reference [12] offers a pleasant discussion of monotone flows. 

Example 1: AU monomolecular chernical reactions induce a monotone flow. Let 

Ail i = 1 , .  . . ,n, denote n ceacting substances and Let x i ( t ) ,  i = 1 , .  . . ,n ,  denote 

the concentration of Ai at time t. In a monomolecular reaction mechanism, d the 

ceactions are of the form 

Ai A Al (2.4) 

which means that all the rate expressions are hem.  Thus we obtain a Linear, 

constant coefficient system of differential equations, 

where the matrk A = (a,) satisfies: 

(2) a, 2 O V i # 3, 

(3) CL, a, = 0, and 

(4) No row of A is 6. 

All these properties follow directly from the form of the rate expressions and the 

induced DES (see [30]). Solving (2.5),  

where A is some positive number. For X sufkiently large, aIl entries in the matrix 

A + X I  are non-negative. Hence, al l  entries in 

B(t )  = (bij( t))  = e(A+A')t 



CHAPTER 2. bfONOTONICITY WITH RESPECT TO AN ORTWANT 11 

are non-negative, t 2 0. ff ow, for any i, 

and since bij( t)  2 O, Vi,  j, we get 

axi 

a(xm(0)) 
( t )  = bim(t)e-At 2 0,V t > 0,V i, m; 

aU concentrations are 

t ions. 

In [34], it is shown 

system 

to induce a monotone 

monotone with respect to changes in any initial concentra- 

that a necessary and suflicient condition for the autonomous 

flow is 

M. Hirsch discusses cooperative or competitive vector fields in [Il] and [13]. Here, 

Ycwperativen means that f i j  2 O, for i # j ,  and "competitive" means that f i j  5 0. 

for i # j. A new generaiization of a result in these papers wiii be discussed Iater. 

When we do not have a monotone flow, we can consider the possibility of t h e  

being a simple transformation to the system, which essentidy switches the signs 

of some of the components of the system, in order to produce a monotone flow. 

In this case, the original system is cded an order pnserving Jow and aJ.i solution 

components are stiii monotone with respect to changes in any solution component. 

Mathematicaily, we say that this system induces an order preserving flow with 

respect to an orthant if there is a rnatrix P ,  

P = diag[(-l)mll . . . , (-l)""], mi E {O, l), (2-9) 



such that under the coordinate transformation jj = PZ, ive obtain a monotone flow 

in i; in other words, 

Lemma 2.1 in [34] gives a necessary and sficient condition for an order pre- 

serving flow, narnely that 

ail off-diagonal entries of PD&) P are non-negative, (2.10) 

where D&) represents the n x n Jacobian matrix with fiVj as its (i, j )th entry. 

Some work fiom [1S] appears in [ZO]. It was shown that for every possible order 

preserving flow sign pattern a chemicai reaction mechanism whicli induces it can 

be constnicted and, in fact, if the mechanism is to induce an order preserving flow, 

only certain chernical reactions are dowed. 

Unfortunately, most systems (2.7) do not satisSr the restrictive conditions for mono- 

tone or order preserving flows. In [18], the monotonicity properties of several chem- 

ical and epidemiologicai models were investigated. None of the considered problems 

induced monotone or order preserving flows; so specific, and somewhat unsophisti- 

cated, methods were used to analyze each problem. More refined techniques have 

since been developed. 

To give the reader an understanding of the thought process followed in estab- 

lishing the upcoming results, we very quickly mention the theory of qualitative 

stability. The question of qualitative (or sign) stabiiity of the system 
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where A = (a,) is a constant matrix, has been solved. The system is said to be 

stable if ail of the eigenvalues of A have negative real parts. The system is said 

to be sign stable if for each matrix LI = (b,) with s i p ( b i j )  = sign(aij), V i, j, 

the correspondhg systern, i ( t  ) = 85, is stable regardless of the magnitudes of t lie 

elements bij* A graph theoretic approach proved to be essential in solving tliis 

problem (see [26], [9], [15], and [17]; the interested reader is wamecl that results 

were restated incorrectly in the literature). Upon examination of the theory of sign 

stability, it seems naturd to consider a graph theoretic approach to the problem of 

monotouicity with respect to changes in an initial condition of the nonlinear system 

of diflerential equations (2.7). 

2.2.1 A Graph Theoretic Approach 

Subsections 2.2.1 through 2.2.4 present the work containecl in [19] and [21]. 

We associate with the matrix a signed, directed multigraph. For S C Q, let 

~ ( f ,  S) be the signed, directed multigraph with vertices labeiled V I ,  . . . , un, where 
vertex vi is associated with solution component xi, constructed in the foilowing 

way : 

G-i) If fii > O,  i # j ,  at  some point of S, a positive edge, labeiled e:, 

directed from vertex vj to vertex vi is drawn in the multigraph. 

G.ü) If I, < O, i # j ,  at some point of S, a negative edge, labelled es, 

directed from vertex vj to vertex vi is drawn in the multigraph. 

G.iii) If /, = O, V 2 E S, i # j ,  no edge is drawn in the graph. 

Note: if f ,  takes both signs in S, (Gi) aod (Gii) will both apply. 
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Edges in the directed multigraph are parallel if they have the same end vertices 

and direction; edges are anti-pardel if they have the same end vertices and opposite 

directions. Duplicate edges (same sign and direction) of G(!, S) may be deletecl. 

It should be noted that there are no directed edges from a vertex to itself. Two 

distinct vertices in ~ ( f ,  S) can be connected by at most two parailel and two ant i- 

paralle1 directed edges, one edge of each sign in each direction. This leads to a 

potential difficulty in labeiIing edges, which we ded  with by including the sign in 

the edge label. An arbitrary edge of ~ ( f ,  S) wilL be denoted e:j, s E {+, -1. In 

the examples, positive edges wiIi be drawn as soiid lines and negative edges will be 

drawn as dashed lines. Note that ~ ( f ,  S) need not be connected. in the examples, 

it wiil be. 

Under H(~,s),  when DF is sign symmetric, sign(lij(i))sign( fj,i(Z)) 2 0, 

V f E S, V i # j ,  and any pardel or anti-pardel edges in ~ ( f ,  S) will have 

the same sign. We construct the signed (undirecteci) multigraph eu(F, S) by re- 

moving the directions of edges in G(J,  S) and deleting any redundant pardel edges. 

In an undirecteci graph, edges are parallel if they have the same end vertices; "te- 

dudant  pardel  edges" are pardel edges with the same sign. In (201, ~ ( j ,  S) is 

not introduced and a slightly different ~ , ( f ,  S), ailowing pardel edges of opp* 

site sign, is used. [201 shows how to appb this gaph theory directly to chernical 

mechanisms, wit hout listing the induced system of diflerential equations, making 

hypothesis ~ ( f ,  S)  u n n a t d  to implement. 
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2.2.2 Notation and Terminology 

The foliowing concepts WU be required in the upcoming graphicd discussion. 

A walk (path) in G-,(f, S) between two vertices, vi and vj, is an alternating 

sequence of vertices and edges (distinct vertices and distinct edges) beginning with 

v; and ending with 9. A diiected walk (directed path) in G(J, S) h m  vertex vi to 

vertex vj is an alternating sequence of vertices and directeci edges (distinct vertices 

and distinct directed edges) beginning with vi and ending with vj, with the edges 

being appropriately directed. A directed path (directed wak) can be described by 

a sequence of vertices and edges (distinct vertices and distinct directed edges) as 

vie$ vk, eZk2 vb, . . . et: j ~ j l  where edge ez, has tail vertex v,, and head vertex v,, 

and sr E {+, -). In a closed walk, vj = vi. 

The length of a walk (path) is the total number of edges comprising i t. 

The sign of a wak (path) is the product of the s igs  of the edges comprising it. 

Combining a path and an edge which connects the terminal vertices of the 

path creates a cycle in G , ( ~ , S ) .  A directed cyJe in G(J,  S) is a directed walk 
so Sm vieik, vk,eZh vb . . . vb- ,  ek-lt_vkm, where V ; ~ ~ ~ , V ~ ,  e $ p h  . . . U L - ~  is a directeci 

path, vi = W.,,, and sr E {+, -1. 

The vertex vi is a soume (sink) if aU incident edges are outgoing (incoming). 

We Say that the ordered vertex pair (vil vj), i # j, is stmngly connected if there 

is a directed path from vi to vj. Notice that if there is a directed waUc from vi to V, 

then there is a directed path from vi to v j  as well. The dûected graph is strongly 

connected if for each ordered pair of vertices (vi, vj) in the graph, (vi, vj) is strongLy 

connecteci. Furthermore, a strongly connected vertex pair (vil vj), i # j ,  is 

(i) positiuely (negatiuely) consktently strongly connected if di duected walks 
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from vi to vj are positive (negative), and 

(ii) inconsistently strongly connected if there is a directecl walk of each sign 

fi0m V i  t0 Vj. 

Notice that we must use "waik* above; should the wdk involve a negative directecl 

cycle, then the ordered vertex pair will be inconsistently strongly connected. 

We say (v;, v i )  is inconsistently strongly connected if ui is part of a negative 

cüsected cycle. Otherwise, we say that (vi, vi) is positiuely consistently strongiy 

connected II (vil uj) is not inconsistently strongly connected, then we say that 

(Vi l  v j )  is consistent. 

Given a connected graph, a spanning tree of this graph is a connected, spanning 

subgraph withaut any cycles. A spanning subgmph is a subgraph involving al1 of 

the vertices of the original graph. An unconnected graph ha9 a spanning forest, 

a c o k t i o n  of spannhg trees, one for each of its connecteci components. Adcling 

badr an edge from the original graph which is not in a spanni~g forest produces a 

subgraph with exactly one cycle. Separately adding each of the excludeci edges to 

a spanning forest gives a set of cycles callecl a fundamental set of cycles. Let F be 

a spanning forest in a graph G. For each edge e of G - F, there is a unique cycle Ce 

such that Ce - F = {e). For any F ,  (Ce : e E G - F) is a fundamental set of cycles. 

A fundamental set of cycles fonns a basis for the set of aii unions of edge-disjoint 

cycles in the graph; here, we are thinking of a basis in the linear algebra sense where 

the field is Zz. Let Ci = {el,. . . , e,,, &I,. . . , e,) and C2 = {el,. . . , %, e,+l,. . . , e,) 
be two unions of edge-disjoint cycles. Then the s u m  is Ci + Cz = {eptlr - . , e,). 

This is the symmetric Merence of the sets, namely Ci + C2 = (Cl - C2) U (C1 - CI 1. 
We present the following simple lemma. 
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Lemma 2 For Cl and C2 two unions of edge-disjoint cycles, 

Proof: Suppose Cl = {el,. . . , %, ~ 1 , .  . . , eq) and = {el,. . . , %, e,+l,. . . , er) 
are two unions of edge disjoint cycles. Then Ci + G = {+i,. . . , er) and 

Remark: Some treatments of elementary graph theory define cycle to include 

unions of edge-disjoint cycles. This permits the above algebra to be cleanly stated: 

the space of cycles (so defined) is cloaed under mod 2 addition. In this work, we 

find the simpler definition of cycle to be more useful. 

2.2.3 Graph Theoretic Results 

These first resuits deal with system-wide monotonicity. Theorem 5 gives a graph 

theoretical equivaient to condition (2.10) for an order presewing flow. We wiU need 

these simple observations before presenting this result. 

Lemma 3 Every closed, negative ma& contains a negative cycle. 

Proofi The proof is by induction on the length of the cl&, negative wak.  Sup 

pose the waik has length 2; then it must consist of one edge of each sign and the 

result foliows. Suppose the result is tme for a closed, negative walk of length 5 m. 

Consider a closed, negative w& of length m + 1. If the closed, negative wdk has 

no repeated vertices, then the result foilows. If the closed, negative walk has a 
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repeated vertex, then the walk is a union of two closed walks, one of each sign. The 

closed, negative w a k  in this union has length < m - t and, therefore, must contain 

a negative cycle by the induction hypothesis. CI 

Lernma 4 If f induces an order preseming pout and the gmplr G(!, il) lias a pos- 

itiue (negative) dimcted edge labeiïed e: (e,) /mm vertez vi to vertex v j ,  i # j ,  

then Pi f j  = 1 (-1) wliere P = diag[Pi] is the m a t e  associated wàth the order 

pmeroing flow. 

PCOOE Suppose the directed edge has positive sign. Then fjVi 2 O in R and fjVi > O 

at some point of 52. Since f gives an order preserving flow, there is a matrix P as in 

(2.9) S U C ~  that PjfjViPi > O. Evaluating at the point where > 0, we must have 

PjPi > O and hence = 1. The other case is argued in the same way. O 

Theorem 5 System (2.7) induces an order pieseruhg pow if  and only if the con- 

ditions ~ ( f ,  O) and +(f',j(Z))~ign( fifi)) 2 0,  ViE E Q, V i # j ,  hold and there 

are either no cycles in &(f, a) o r  every cycle in any one fundamental set of cycles 

in 4 ( f ,  R) is positive. 

Proofi We first establish that (2.7) induces an order preserving fiow if and only 

if condition ~ ( f ,  Q) holds and ~,(f, 0) contains no negative cycles. The fornard 

direction of the Theorem foiiows immediately; the other direction foilows from 

Lemma 2. 

If f induces an order preserving flow, there is a rnatrk P as in (2.9). Suppose 

that the gaph G,(J, Q )  has a negative cycle with vertices VI, ,  . . . , VI,, where VI, 

is cornecteci to VI,,, 1 5 i 5 k, with the convention vl,,, = vl,. By Lemma 4, 

Pi,&, is the siga of the edge between vii and q+,. Since the cycle is negative 
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we must have (Pl ,  P12)(P12 Pr,) - - (fi ,  Pl,) = -1, but this is a contradiction because 

(Pr,P;,)(Pr,&)*--(P, ,9,)  = (5,& -.*A,)* = 1. 

Next, we prove that if G,(!, a) has no negative cycles then we must have 

an order presewing flow. The graph ~ , ( f ,  R) consists of connectecl components 

~ t ( f ,  0). . . . , e(f, Q). Since the variables correspondhg to the vertices in two 

different subpphs  do not interact, we need only consider a connected subgraph of 

4(f, Q),  say G L ( ~ ,  Q), with n l  vertices. 

Choose any vertex vl in qJ, R). Since there are no negative cycles, evew 

vertex in the subgraph is connected to v l  by pat hs of oniy one sign. If not, then vl 

is connected to v&, say, by paths of both sign; hence, vl is part of a closed, negative 

trail (combining the two paths) and, by Lemma 3, ~ k ( f , f l )  contains a negative 

cycle, giving a contradiction. We define the disjoint sets 

Q = {vk : vl  and vk are only connected by positive paths in ~ t ( f ,  O)), and 

R = (vr : v l  and vk are only comected by negative paths in ~ t ( f ,  a)). 

In order to avoid a simple contradiction, vertices in Q can only be connected to 

each other by positive paths, vertices in 7Z can only be connected to each other 

by positive paths, and vertices in Q can only be comected to vertices in by 

negative paths. We relabel the vertices in ~ k ( f ,  R) so that v2,. . . , v, E Q and 

vq+l,. . . , vnI E R. Hence, 

For this subaystem, D! has the sign pattern given in Figure 2, where '+' means the 
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Figure 2: Sign pattern of D! after relabeiling. 

corresponding partial derivative is non-negative and '-' means it is non-positive; 

hence, choosing the matrk P = dia&, . . . , 1,-1,. . . , -11, where P has q entries 

of 1 and ni - q entries of -1, means that P ( D ~ )  P has non-negative off-diagonal 

entries. Thus, t his subsystem gives an order preserving flow. The result foilows. 0 

A version of Theorem 5 was stated informally in (341 and, later, more carefully 

in [35]; however, a careful proof has not been found in the literature. 

Remark: Let C be a fundamental set of cycles in a graph. Every cycle in the graph 

is positive if and only if every cycle in C is positive; thus, in checking for an order 

preserving flow, only a single fundamental set of cycles needs to be coasidered. The 

number of cycles in a fundamental set of cycles is bounded by the number of edges 

in the graph. The total number of cycles can be exponential in the number of edges. 

W e  may want to apply this result to the non-negative orthant. In this case, we 

will suppose that f E c'(fi). The following Limit property is necessary (see (351); 
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it extends our ordering to the non-negative orthant. 

Proposition 6 Let Q be an open, connected, convez set. Then for any 5(*), y(*) E 

fi mith PZ(*) < P$*), 3 sequences {s(~)), {$m)) E with PZ.(") 2 P G ( ~ ) ,  v rn, 
and 

Proposition 6 implies that if PZ P i  + P v t ( I )  5 Pv&) for 2, i E 0, then 

PE(*) 5 P$(*) + P&(*)) 5 pQt(y(*)). This leads us to the following result. 

Corollary 7 Suppose fi is a closed, positiuely invariant, connected, convez set. 

Systern (2.7) induces an order presedng jiow &th respect to an orthant i f  and only 

if the conditions H ( ~ , Q )  and ~ign(f i ,~( i j ( t ) )s ign( /~,~( l ) )  2 O ,  V I E R, V i # j ,  
hold and there are either no cycles in the graph of or euery cycle in uny one 

Juradamental set of cycles in the graph of D! is positive. 

As we will be focusing fiom now on on the signs of partial derivatives of corn- 

ponents with respect to initial conditions we can &op the convexity assumption on 

Q. Furthemore, it wiil s d c e  to make assumptions ody on ~ ( f ,  i'(5)) rather than 

~ ( f ,  O), where r(3) = {&(iE) : t 2 O) is the poaitive semi-trajectory. The fofi8w- 

h g  theorem shows how to determine the sigm of partial derivatives with respect 

to initial conditions when ~ ( f ,  i'(Z)) hao no negative cycles. 
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Theorem 8 Suppose that G,(F, r(5)) has no negative cycles. If ail paths connect- 

ing ui and v j  in G,(J, I ' ( t ) )  ore positive then 

a44 a4  
-(.) dg; 2 0 and -(2) asj 2 O, 

V t E I(Z). If al1 paths conneding vi and uj in G.(I, l'(5)) ore negative, then the 

derivatives are 60th non-positive. 

Proof: If ail paths connecting vi and vj in GJJ, I'(d)) a m  of one sign then vi and 

vj  must be part of a connected subgraph ~ k ( f ,  I'(5)) which has no negative cycles. 

The argument used to prove Theorem 5 then applies and gives the result. O 

These final theorems aüow us to obtain partial and strong rnonotonicity results; 

they require considering the gaph dong the solution curve. 

Theorem 9 I/ the uertez pair (vi, vi)  is positiveiy consistently strungly connected 

Furthemore, $ (vi, v j ) ,  i # j, is consistent in ~ ( f ,  QE)) then, V t E I ( I ) ,  

( = 0 if (vi, v j )  is not strongly connected in ~ ( j ,  î(Z)) 

2 0 if (vi, v j )  is positively consistently strongly connected 

in G( f ,  r(5)) 

( O if (vil v j )  is negatively consktently strongly connected 

in ~ ( f ,  I'(5)) 

Proofi Suppose (vi, vi) is consistent in ~ ( f ,  I'(I)). For any vertex ut, ( V I ,  v k )  

is eit her consistently s t rongly connected, inconsis tently s trongly connected or not 
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strongly connected. Define the disjoint sets 

Qi = { vk :  (vl ,vk) is positively consistent'ystrongly comected in ~ ( f ,  r(Z))), 

Q2 = {vt : (vl , vk)  is negativdy consistently strongly comected in ~ ( f ,  r(Z))), 

R = {vk  : (vl ,  vk) is not strongly connected in ~ ( f ,  I'(i))), and 

S = {vk : (vl ,  vk)  is  inconsistently strongly connected in ~ ( f ,  r(i))). 

We relabel the vertices so that V I , .  . . ,v,, E QI,  v,,+l,. . .,un E Q 2 ,  u,+I, . . . ,vr E 

R, and v,+l,. . . , v, E S. With the corresponding relabelling of xi,  1 5 i 5 a, the 

system (2.7) takes on the fosm 

(i) q2 + 15 j 5 r,  in which case 

(ii) 1 5 j 5 qz, and then 

W e  cari mite (2.12) as p(t) = @(t)  where Y is a qz vector and M is 
ad a q, x q2 matrix with k;- = &: and Mjk = kk. Chmhg 
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where P has ql entries of 1 and qz - ql entries of -1, means that P MP 

has non-negative off4iagonal entries. 

We let 2 = PI. Since Y(o) = Ë, then ~ ( 0 )  = Ë, where Ë = 

( , O . . . , O ) ~ .  We will prove that 2 2 O, V t  E I (Z) ,  which by the 

construction of 2 gives the remahder of the second result (wit h i = 1). 

Now, 

So, we have 

2 = ( P M P ) ~ .  

Since ( P M P ) ~  is quasimonotone nondecreasing, Z(t) 2 O, V t 1 0, by 

the I<amke-Muer Theorem. 

L 

We still need to prove the first result. Take j = 1 in the above setup. We will show 

that &(t)  > 0,V t E I(P). From (2.14), we have 

where A is chosen large enough so that N = PMP + AI 2 O. Solving for 2 in tems 

of the right-hand side, we get 

We can immediately conclude from (2.15) that Zl ( t )  > O ,  V t E I(Z). O 

Definition 4 We say that (2.7) giwes a consistent flow i / ,  for each i and j ,  either 

If (vi, v j )  " consistent in ~ ( f ,  S )  for each i and j,  w say tliat ~ ( j ,  S )  is consistent. 
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Figure 3: ~ ( f ,  0) and G,(J, $2) for Example 2. 

Thus, by Theorem 8, we get the following corollary. 

Coroiiary 10 If (2.7) giws o consistent graph ~ ( f ,  O), then (2.7) gives a consis- 

tent flow. 

Example 2: Consider the example graphs ~ ( f ,  0) and ~,(f, Q) in Figure 3. As 

mentioned earlier, we adopt the convention of positive edges being represented by 

solid iines and negative edges being represented by dashed lines. G,(!, R) consists 

of a single negative cycle and, by Theorem 5, does not induce an order preserving 

flow. Kowever, there are no inconsistently strongly comected vertices. This is 

a consistent flow and we can immediately state the sign pattern for the matrix of 

partial deridives of solution components with respect to initial conditions, namely 

where '+' means that the corresponding partial derivative is non-negative, '-' 
means that the corresponding partial derivative is non-positive, and '0' means that 

the corresponding partid derivative is identicdy zero. 

W e  can also use Theorem 8 to give partial results on the signs of partial deriva- 

tives with respect to initiai values. 
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The condition that ~ ( f , S 1 )  be consistent is a sufiicient, but not a necessnry, 

condition for a consistent flow as the foiiowing example illus t rates. 

Exampie 3: Consider 

One c m  check that Ilpz 2 O and fi,i 5 O, V 2 E R = Kt2, so the graph, G(/, R), for 

this system is as foilows: 

The vertices are inconsistently strongly comected and Theorem 8 does not apply. 

Yet, solving the system gives: 

This gives the following sign pattern for partial derivatives with respect to initial 

conditions: 

where '+' means that the corresponding partial derivative is non-negative, and '-' 

means t hat the corresponding partial derivative is non-poai tive. By defini t ion, t his 

is a consistent flow. This result could be obtained by combining the conclusions of 

Codary 7 for each of the half-planes xz 2 O and z2 < 0. 
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Theorem 11 For some t l  E I ( i ) ,  let @&) = Il; then, V t > t1 (V t > O if 

in ~ ( f ,  r(2)) and G ( ~ , I ~ )  

< O if (vil vj) is negutively consïstently strongly connected 

Proof: The proof begins in a similar way to the proof of Theorem 8. Suppose 

( V I ,  uj), j # 1, is consistently strongly connected in ~ ( f ,  i'(Z)) and in c(J, II ). 

with tl > O. Define the disjoint sets 

QI = {vk : (vl , vk) is positively consistently strongly connected in ~ ( f ,  I'(i)) 

and in W,W, 
RI = {vk : (vl, vk) is positively consistently strongly connected in ~ ( f ,  t'(Z)) 

and no t s trongly connected in ~ ( j ,  5 ) ), 

Qz = {vk : (vl, vk)  is negatively consistently stroogly connected in G(J, I'(i)) 

and in G( f,  il)), 

= {vk : (vl, vt )  is negatively consistently strongly connected in G( f,  ï ( 2 ) )  

and not strongly connected in ~ ( f ,  i l ) ) ,  and 

S = {vk : (vl, uk) is inconsistently strongly comected in ~ ( f ,  r(5)) 

or (vl, vk)  is not strongly connectecl in ~ ( f ,  r(2))). 

We relabel the vertices so that V I , .  . . , v,, E QI, vql+l,. . . , v,, E RI, v,,+L,. . . , vq2 E 

Q2, u,+l,. . . , v, E R2, and vr2+l,. . . , v, E S. Performing the comesponding 

relabelling of si, 2 < i 5 n, puts the system (2.7) in the form 
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We wili show that for t > t l ,  

For 1 5 i < r2, we proceed as in the prmf of Theorem S. We have 

W e  can write (2.16) as I(t) = h#(t) where I is 
PZ x r* matnx with Y;- = and MiVk = f&. 

an rz vector and Al is an 

Ch00sing P = diag[Pi] = 

diug[l,. . . ,1, -1, ..., -11, where P has rl entries of 1 and r2 - rl entries of -1, 

means that P MP has non-qat  ive off-diagonal entries. 

Let 2 = PY. By Themm 9, vue know that & 2 O, V t E C(2), k # 1, and 
L 

that Zi > O, V t  E 1(2). We wiU prove that Zj(t) > O, V t 2 t l ,  1 < j  5 ql and 

rl + 1 5 j < q*. Then the condusion of the theorem wouid foliow. As in the proof 

of Theorem 9, we have 

z = ( P M P ) ~ = ~ z +  

where X is chosen large enough so that 

of the right hand side, we get 

x2 = ( P M P  + X)Z = NZ, 

N = PMP+XI 2 O. Solving for 2 in terms 

The proof will now proceed by induction on the length of the shortest directed pat h 

~ ( f ,  Z1) has length 1. Then 
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Since Njl(tl) = Pjfj, l(51) Pl > O ,  we conclude that Zi(t) > O, for t 2 t t. 

Now suppose the result is true if the shortest directed path has length na. WC 

consider the case when the shortest directed path fiom vl to vj in ~ ( f , & )  lias 

length rn + 1. Suppose the intermediate vertices are vk, , . . . , vk,, with vc, adjacent 

to V I ,  q adjacent to vkl+,, 1 < 1 rn - 1, and vk, adjacent to uk,. Note that eacli 

kl satisfies either 1 < kl 5 ql or rl + 1 < kl q*. Then 

Again, Njk,,,(tl) = Pi fj,b(t.l)PL > O .  In order for a shortest directed path from 

vl to uj to have length rn + 1, a shortest path fiom vl to vk, must have tength nt; 

hence, Zk,,,(t) > O, t 2 t l ,  by the inductive hypothesis. Thus, Zj ( t )  > O, t 2 t t .  

The proof by induction is now complete. 

The case t l  = O is argueci in exactly the same way. O 

Theorem 11 requises some knowiedge of the solution trajectory in order to be 

uselul. The following corollary gives a result which does not require any information 

about the solution trajectory; it is most usefd in applications. 

CorolIary 12 If (vi, v j )  is positively ( negatively) consistently sttongly connected in 

for t > 0. 

A particular, well-known case of Corollary 12 is stated by M. EIirsch in [Il] and 

[13] : 
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Corollary 13 If f is a cooperative vector field and D ~ ( z )  i .  also irreducible for 

al1 O, then {q,) has positive deriuatives. 

R e d 1  that a cooperative vector field is one that satisfies fij(i) 2 0, V Z E 0, 

V i, j ,  i # j .  oJ(z) is irreducible means that ~ ( f ,  Q )  is strongly connecteci, that 

there is a directed path fiom any vertex to any other vertex. 

It is perhaps important to make some comments on Coroliazy 13. The proofs 

in [Il] and [13] are incorrect (verified by M. Hirsch). References to the (incorrect) 

proof penmde the literature, but a careful search reveals the following. [l] contains 

a result that can be used to establish Corollary 13. [24] contains a related cesuit 

with stricter hypotheses. [Ml refers to [13] without mentioning the incorrect proof. 

[33] and [35] contain a correct proof. [19] contains a prmf of Theorem 11 from 

which the corollary immediately follows. In [41], a generalization of Corollary 13, 

with weaker hypotheses, is given.. 

2.2.4 An Algorithm For Complicated Multigraphs 

It may be dificuit to check the conditions of the previous theorems, so we present an 

algorithm for deaüng with complicated multigraphs. We will require the foUowing 

graph theory results. 

Lemma 14 Delete the sources and sinks (and their incident edges) fmm ~ ( f ,  Il). 

Repeat th5 pmcedure on the resulting graph as long as there are sources or  sinks 

nmaining. The result is the empty graph (no uertices or edges) if and only if the 

or@nal graph hm no directed cycles. There b o directed cycle involuing some O/ 

the uertices that suMue this pmcedure. 
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Figure 4: Example graph for Lemma 14. 

Proofi See [27j, pages 18 and 332. 

Remark: Not ali vertices that survive the process outlined in Lemma 14 are nec- 

essarily involved in a directed cycle. Consider the graph in Figure 4. The graph 

contains no sources or sinks, yet neither vertex V* m r  vertex ve is involved in a 

directed cycle. 

Lemma 15 Let G be a signed, direeted, connected graph al1 of whose vertices are 

contained in the same directed cycle C. Delete one edge jmm C to obtain a diîected 

path P. In turn, add the edges in G which are not in P, producing (ignonng 

lejtover edges) either a directed cycle o r  two CO-terminal directed paths, where the 

second possililily will 6e azcalled a directed 6icycle. Let S denote the set of these 

dincted cycles and directed 6icycIes. Then the vertices in G am consistently strongly 

connected i/ and only if al1 of the dimcted c~cles and directed bicycles in S are 

positive. 

Proof: If aU of the directed cycles and directed bicycles in S are positive, then ali 

cycles in a fudamental set of cycles of the associated undirected graph Gu are pos- 

itive, imply ing t hat the vertices are consistently s trongly connecteci. If a directed 

cycle or a directed bicycle is negative, then (at least) two of the vertices of G are in- 

consis tentiy s trongly connected. Since the vertices ate s trongly comected by the di- 
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rected cycle C, it would t hen foilow that any two vertices are inconsistently strongly 

comected. 0 

A directed graph c m  be represented by an adjacency matrix. For such a graph 

with n vertices, the adjacency matrix A is an n x n matrix with i jth element oij 

where a, = 1 if there is a directed edge fiom vertex u; to vertex vj and oij = O 

otherwise. Since there are no loops (edges with the same start and end vertices), 

aii = O. 

The powers of A give information about the waks in the graph. There are 

(AP), directed walks of length p h m  vi to vj.  

W e  will need a s i d a r  matrix representation for a weighted, directed groph, a 

directed graph in which each edge h a  a value (not necessarily nurneric) associated 

with it. With this in mind, we wiil represent a weighted, directed graph by a 

matrix W which captures d of the connections and weights. For such a graph 

with n vertices, the n x n matrix W has ifh element w~ equal to the weight of 

the directed edge from vi to uj. If there is no directed edge from vi to vj, we set 

WG = O. [n a graph with no loops, tu, = 0. 

In generd, ~ ( f , f l )  can be a cornplex graph. This algorithm offers a way to 

coiiapse G ( ~ , O )  to a weighted, directed graph, G , ( ~ , R ) ,  that can be anaiyzed 

systematicdy; the analysis can then be extended back to ~ ( f ,  O). 

S tep 1: Coilapse the signed, directed multigraph ~ ( f ,  il) to a signed, directed 

multigraph wi th no directed cycles, G@ ( f ,  O). We perform the foiîowing 

iterative procedure, eliminating one directed cycle with each iteration. 

(i) Let the iteration couder be k. Let k = O to start and let 

GO(!, 0) = ~ ( f ,  fi). Each i teration produces G~+* ( f ,  O) from 

G k U ,  W. 
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(ii) Let Vk = (vi l . .  . , v,,, v?, . . . Y vO m(t ) cepcesent the vertex set of 

~ ( f ,  R) and let rnk = O to start. The notation wiii becorne 

clearer shortly. 

(fi) Find a ciirected cycle in ~ ~ ( f ,  Q), by using Lemma 14 if neces- 

sary. Let V: be the set of vertices of ~ ~ ( f ,  fi) h the directed 

cycle. If no directed cycle exists in ~ ~ ( i ,  O ) ,  then Step 1 is 

cornpleted. 

( i ~ )  GC+~ (f,  R) has vertex set Vk+l = vk \ V: + {v:). That is, the 

vertices of G* (f, 0) no t in the directed cycle remain vertices 

of G ~ + I  ( f , fl ) , but ver tices of ~ k ( f , f I )  in the directed cycle 

are cohapsed into one vertex, t$, in G ~ + ~  (f, a). 

It wiil be important to keep track of which vertices are col- 

lapsed aod which ver tices they (ultimately ) contain. 

If the vertices in ~2 are cornectecl by other edges, Lemma 15 

must be applied to determine whether the vertices are con- 

sistently strongly conneded. This is ody necessary if the di- 

rected cycle is positive and contains no negative vertices. vf 

is labeiied positive (negative) if the vertices are consis tently 

(inconsistentiy ) strongly connecteci. If the directed cycle con- 

tains a negative vertex then vf is negative. 

(v) To avoid confusion when signing the edges of G ~ + I  (J, O), we 

pick a vertex of the directed cycle, Say u; E Y:; it is sensible 
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to pick the vertex of highest degree. Now, suppose there is a 

directed edge from vi to vj in ~ ~ ( f ,  R) (vi and vj might be 

coilapsed vertices). 

(a) if v;, vj E Vk \ V: then a directed edge of the same 

sign fiom v; to vj is &am in ~ & + ~ ( f ,  Q). 

(b) if v; E K \ V: and v j  E V: then a directed edge 

from vi to v,O is drawn in Gk+i(f, R). This edge in 

G ~ + ~ ( J ,  S1) Lias the same sign as the shortest path 

from V i  to V; in ~ ~ ( f ,  O ) .  

(c) if vi E V: and vj E Vk \ V: then a directed edge 

from v: to uj is &am in G&+~(!, R). This edge in 

~~+~(f,Sl) has the same sign as the shortest path 

h m  u; to v j  in G ~ ( ! ,  Q). 

(d) if vi7 vj E v,O then *O edge is drawn in ~ & + ~ ( f ,  R). 

Edges with the same sign and direction need not be drawn 

more than once. It is interesthg to note that if the directed 

cycle is negative, one need not be careful when signing the 

edge in (b) or (c)  above since the next step of the algorithm 

wiii  erase the signa of these edges. 

(vi) Increase k by 1 and return to (ii). The process is completed 

when no directed cycle is found in G~ ( f ,  a) in (iii). 

The result of this process is in generai a signed, directed, tripartite 

(three different kinds of vertices) multigraph with no directed cycles, 

~ ~ ( f ,  a), but the only possible paralle1 edges will be edges of opposite 

sign in the same direction. 
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Step II: Traosfonn the signed, directed, tripattite multigraph produced in 

S tep 1, G,&, O) ,  into a weighted, directed, tripartite graph, ~,,,(f, Q), 

on the same vertices, using the foilowing steps in order: 

(i) Replace pardel or anti-paralle1 edges of opposite sign by a 

single edge in the same direction weighted *. 

(ü) Assign a weight of * to any edge adjacent to a negative vertex. 

This includes both incoming and outgoing edges. 

(iii) Assign a weight of +l (-1) to any positive (negative) edge. 

The * weighting is given to edges which carry an inconsistency. A 

negative vertex involves vertices of ~ ( f ,  fi) that are comected by w&s 

of both signs; hence, edges adjacent to a negative vertex in the coiiapsed 

graph cary this inconsistency in whichever direction they point. 

Step III: Making no distinction between collapsed vertices and original ver- 

tices, construct the matrix W associated with ~ , ( f ,  0). W has possible 

entries of O, +1, -1, and *. Let the vertices of G&Q) be {ül ,.-., en-). 

Step IV: W e  define 

I*I = +, 

a+* = +, a = 0, -1, l ,  *, 
a * = *, u = -l,l,*, and 

O - *  = O* 

Since G,(!, a) has no directed cycles, any directed wak can have length 

at most equal to n, - 1; hence, W n w  is the zero matrix. 
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We compare entries in lWPl and lWlp for 2 5 p n, - 1, where 

[WIij = 1 W,I. For any i # j ,  there are three possibiiities: 

(i) If IWIb = O for each p then (üi, üj) is not strongly connecteci 

in ~,,,(i, R). 

(ii) Othenvise, if 1 W I:j = (WPI, # * and sign(WP), is the same 

for each p then (Ci, Vj) is consistently strongly comected in 

~ , ( f ,  Q);  the sign of the connection can be determinecl by 

finding a directed path in the graph from vi to vj or by ex- 

amining the non-zero sign of W$ for some p, 2 5 p n, - 1. 
(iii) AU other vertex pairs (Ci, üj) are Uiconsistently strongly con- 

nected in ~ , ( f ,  f2). 

Remark: We are extendhg our eariier defitions of consistently and inconsis- 

tently strongly connectecl for G~(!, Q)  and G,(!, a). A vertex pair in ~ k ( f ,  0) 

is consistently (inconsistently) strongly comected if d directed waks are of the 

same sign and none includes a negative vertex (if there are directed walks of each 

sign or a directeci walk includes a negative vertex). A vertex pair in G,(F, R) is 

consistently (inconsistently) strongly c o m t e d  if all  directed wa.iks are of the same 

sign and none includes * weighted edges (if there are dwcted walks of each sign or 

a directed w& includes a * weighted edge). 

Before proceeding, we introduce the following lemma. 
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Proof: We proceed by induction on the counter k in Step 1 of the algorithm. 

Suppose k = 1; then, the vertices contained in v: are vertices in ~ ( f ,  0) that 

comprise a directed cycle in ~ ( f ,  $2) and we are done. 

Suppose the claim holds for k = r - 1. Consider the case of k = r. The c l a h  

h o b  for G,&, il); hence, in G,(!, $2) we need ody consider the newly added 

collapsed vertex, v,O, which corresponds to a directecl cycle in G&,R). There 

are several possibilities for two distinct vertices vi, vj E u?: 

(i) vi and v j are vertices of G,-~ ( J ,  0); t hen the clalln holds by assump t ion. 

(ii) vi and vj are contained in the same collapsed vertex of G,-~ (J, 0); then 

the daim holds by assump tion. 

(iii) vi and vj axe contained in the different collapsed vertices of ~ , - i (  f, O), 

Say up and v: respectively; then there is a directed w a k  fiom vi (vj) 

to each other vertex in vp (vp) and to vi (vj) fiom each other vertex 

in v p  (v:). Using those directed walks and the connections between v$' 

and v: in G,-~ (A  a), one can construct directed walks in each direction 

between vi and vj.  

(iv) oniy one of vi or vj  is contained in a coiiapsed vertex of G , - - I ( ~ ,  0). 

Similar reasoning to the above works in this case. 

Lemma 16 dows us to state that G ~ ( ~ , , R )  and hence G , ( ~ , o )  are unique 

for a given G(J, R), regardlas of the order in which cliredeci cycles are identxed 

in Step I(iii). Furthermore, we will see that ali vertices of G(!, 0) in a positive 

(negative) collapsed vertex of G, ( f, 0) are consistently (inconsistently ) s t mngly 
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comected. These results, clrawing conclusions on the connections in G(J, 0) from 

the connections in ~ , ( f ,  O), will be presented in the next theorem. 

For convenience, we first introduce the foiiowing notation. Let the vertices 

of ~ ( f ,  R) be {vl,. . . , un,,). If (vi, vj) is n ~ t  str~ngly connected (positively C O ~ S ~ S -  

tently strongly connecterl, negatively consistently strongly connected, inconsis tently 

stron& connected) in G(J,Q),  t h a  ~e write (vi,vj)€ S1(S2,&,S4). We will  US^ 

the same notation for vertex pairs, (Ci, V j ) ,  of Ci',(!, 52). 

The set of positive (negative) collapsed vertices in G, (f, Q )  will be denotecl by 

V+ (V-).  We let Vo = V+ U Y- and let Vo denote the set of vertices in ~ , , , ( f ,  R) 

that are dso vertices in ~ ( f ,  O). The next theorem follows from the work of this 

section: 

L 

Theorem 17 After perfonning the algorithm in Steps 1-IV, ail uertez connections 

in G,(L 52) can l e  ciassified according to the following rules: 

1. Let vi,vj E E Vo. If fil E V+(@ E V - ) ,  then (vi,vj) E S2 U Sa (&). 

In the f i t  case, ezamining the sign of a directed path h m  vi to vj in 

G(J, R) detemines whether (vi, wj) E & U SJ. 

2. Let vi E I l ,  V j  E Cm, 61 # Vm, 91, üm E Vo . If (81, Gm) E Si (SI) in 

~ , ( f ,  O), then (vi, v j )  E Sl (S4) in ~ ( f ,  0). I/ (W, ü,,,) E Sa U & in 

~ ~ ( f , f l ) ,  then (vi,vj) E Sz U S3 in ~ ( f , f Z ) .  If E V- or ij,,, E V-  

then only (vi, vj) E SI or (vi, vj) E S4 possible. 

3. Let vi = 31 E Vo, vj E ùm E Va. (ür, üm) E SI (S4) in G&, a), 
then (ui, uj) E Si (SI) in ~ ( f ,  a). If (gl, Cm) E S2 u S3 in ~ , ( f ,  a), 
then (vi, vj) E Sz U S3 in ~ ( j ,  $2). If ü,,, E V-  then only (e, vj) E Si ot 

( ~ i  , vj) E SI are possible. 
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Proofi We first observe that at each iteration of Step l(v) the consistency or 

inconsistency of pairs of vertices are rnaintained in the foliowing sense. In case (a), 

(vi, v j )  is consistently (inconsistently) strongly connected in ~ ( f ,  R) if and only 

if (v;,vj) is consistently (inconsistently) strongly connected in ~k+~(f,Sl). In case 

(b), (v;, v j )  is consistently (inconsistently) stmngly connected in G*(I, R) if and 

only if (vi, v:) is consistently strongly connected in G~+~(!, R) and v: is positive 

(inconsistentiy strongly connected, Le. either vf is negative or there axe walks of 

each sign fiom v; to v:). In case (c), (vit vj) is consistently (inconsistently) strongly 

connected in ~ ~ ( f ,  a) if and only if (v:, v j )  is consistentiy strongly comected in 

G~+I(!, SI) and v: is positive (inconsistently s trongly connecteci, i.e. ei ther v: 

is negative or there are walks of each sign from v: to v j ) .  In case (d), (vi ,vj)  

is consistently (inconsistently) strongly connected in ~ ~ ( f ,  $2) if and only if vf is 

positive (negative) . 

Case 1. We now see that only consistently strongly connected vertices of ~ ( j ,  R) 

will be contained in a positive vertex in ~ , ( f ,  0) and that ail vertices contained 

in a negative vertex in G& R) are inconsistently strongly connected. The result 

follows. 

C- 2, 3, and 4. In each case, (VI, üm) E S1 (S4) + (vi, vi) E Si (SI) follows 

immediately. (ü,, üm) E S2 U S3 + (vi, v j )  E S2 u S3 foUows as well, with the sign 

of the connection being determineci by any path from v; to v j  in ~ ( f , o ) .  This 

information may be buried in the aoilapsed vertices of ~ , ( f ,  a). 
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Findy, we can comect Theorem 17 with Theorem 9 of the previous section to 

draw conclusions on the signs of partial derivatives. 

We should no te that two inconsistently s trongly connecteci vertices could s till 

correspond to solution components which have some monotonicity with respect to 

each other. The theory of this chapter does not help us; but the next chapter mdres 

some inroads (see example 12). 

Before presenting several examples, we offer a method for determinimg when the 

positivity assumption is satisfied for a class of chemicai kinetics problems; this is 

highlighted in Example 10. 

2.3 Positivity For a Class Of Reaction Mecha- 

nisms 

In general, a careful analysis is required when seeking initial sets that satisfy the 

positivity assumption (see Section 1.1). A graph theoretic approach is given in 

[39]; it determines which concentrations will be positive for t > O when a particular 

set of species is present initialiy. For a certain class of reaction mechanisms, the 

analysis simplifie9 and we present it here in the foiiowing theorem which determines 

the smallest possible sets of species which must be present initially. Note that this 

theorem uses a different graph than the one in [39]. 

Theorem 18 Consider a reaction mechanism which involves reactions of only two 

types: 

(i) the product species are a subset of the reactant species, or 
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(ii) there is a single reactant species. 

Suppose that the reactions of type (ii) involve species Ai,. . . , A,. We ciraw a 

directed muitigaph G+ with rn vertices, V I , .  . . , v,, with vertex vi correspoading 

to species Ai. Directed edges are drawn from vertex vi to vertex v j ,  i # j, if a 

reaction of type (ii) with species Ai as a reactant produces species Ai- We c d  each 

source vertex of G+ (a vertex with no incoming edges) and each strongly connected 

subgraph of G+ with no incoming edges an initial group. 

In each initial group, at  least one species must be present initially to guarantee 

positivity of all species for t > O. In addition, if there is a species in a reaction of 

type (i) that does not occur in any of the reactions of type (ü) (as a reactant or as 

a product), it must aiso be present initially. 

Proof: (391 provides a labelling scheme to determine which species wiil be present 

for t > O given that certain species are present initiaily. The species which are 

present initiaiiy are labeiled with a O. In the h s t  step of the labelling process, 

the products of reactions with only O-labelied species as reactants are labellecl 1. 

The process continues in this manner, with unlabellecl products of reactions with 

labelleil ceactants getting the label for the curent step. At the end, ad labeiied 

species wili be present for t > O. 

In out set-up, each vertex of G+ is either in an initia group or co~ected  to 

an initial group by a directed walk £'rom the group to the vertex. The vertices of 

G+ correspond to a l l  of the species in the chernical system except for specie-s in a 

reaction of type (i) that do not occur in any of the reactions of type (ü). 

If no specia in an initial group is present initially, it is clear that none of the 

species in that group wiil ever be present. If a species in a reaction of type (i) that 
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does not occur in any of the reactions of type (ü) is not present initidy, then it is 

cIear that this species will never be present. 

If at Least one species in an initial group is present initidy, then, by the strong 

comectedness of the group in G+, ali of the species will be present for t > O. Any 

vertices that are connecteci to an initial group by a directed waik ( from the group 

to the vertex) wiU also be present for t > O. If this is the case for each initial group, 

then we need oniy additionaily insure that any species in a reaction of type (i) that 

do not occur in any of the reactions of type (ii) are also initidly present. In this 

case, ail species are present for t > 0. O 

2.4 Examples 
L 

Example 4 (Neural Networks): A standard equation to mode1 a neural network 

is 

Ii = Hi(xi,si) = E(xi,. . . , x ~ ) ,  i = t,... ,n, (2.20) 

where 

See [16] or [14] for more details. Two mathematically interesting capes are (i) 

er:citatory nets, and (ii) euen-loop nets. In case (i), wj 2 O, i # j ,  so G(P, 0) 

has ody positive edges; by Theorem 5, the system induces an order preserving 

flow (monotone flow, in this case). ln case (ü), every directed cyde in q F ,  O) is 

positive, so Theorem 5 applies again. In both cases, one can detennine whether 

partial derivatives are negative, positive, or zero fot ail time by examining G(F, SI). 

Example 5 (Chernical Kinetics): Coneider a chernical reaction mechanisrn con- 
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Figure 5: ~ ( f ,  Q) for Example 6 

sisting of reactions of the form 

It is easily seen that the corresponding signed, directed multigraph has ody positive 

edges; hence, by Theorem 5, the system induces an order preserving flow (monotone 

%ow, in t his case). By hves tigating the directed graph ~ ( f ,  Q), we can detennine 

if each partial derivative is positive or zero for ail positive time. 

Example 6 (Chernical Kinetics) : In [30], the reaction mechanism 

was considered and the signs of partial derivatives of concentrations with respect 

to initial concentrations were given without proof. This rnechanism induces the 

sys tem of differential equations, 

Figure 5 presents the multigraph ~ ( f ,  n) for this mechanism. The positivity as- 
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sumption wiil hold if Zo E & = {x l  + x2 > O). In such a situation, Table 1 s u -  

marizes the sigos of the partial derivatives, where '++' means positive for t > 0, 

'+' means positive for t > 0, and '0' means the derivative is zero for idi time. 

Table 1: Signs of concentrations with respect to changes in initial concentrations 

for Example 6. 

Example 7 (Chernical Kinetics) : Consider the simple birnolecular reaction 

which ieads to the system of differential equations 

xi = -kx1x2, 

x2 = - k z L t 2 ,  and 

k3 = +kzlz2. 

We construct the multigraph in Figure 6, where, as usual, das hed edges have nega- 

tive sign and solid edges have positive sign. It is easily seen that the graph ~ , ( f ,  0) 

consists of a single negative cycle, coofirming by Theorem 5 that the reaction does 

not induce an order preserving flow. Using Theorern 9, we can stiii conclude that if 

the pmitivity assumption is satisfied, Table 2 gives the signs of the partial deriva- 

tives of concentrations with respect to initial concentrations, where the table entries 

have the same meaning as in Example 6, with '-' meaning that the derivative is 
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Figure 6: ~ ( f ,  a) and ~ , ( f ,  Q )  for Example 7 

negative for t > O. Blank entries mean that we have not determineci the sign of the 

derivative. The positivity assumption wiii be satisfied if& E So = {xl > 0,22 > 0). 

Table 2: Signs of concentrations with respect to changes in initiai concentrations 

for Example 7. 

Exampie 8 (Chemicai Kinetics): Consider the same bimolecular reaction of 

Exarnple 7, with the reaction now being reversible: 

This mechanism leads to the system of differential equations 

and the corresponding multigraph is given in Figure 7, where dashed edges have 

negative sign and soüd edges have positive sign. As in Exarnple 7, G,(Z, 0) consists 
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Figure 7: G(J, Q )  for Example 8 

of a single negative cycle, ao the reaction does not induce an order preserving fiow. 

This time, however, we cannot h a w  any conclusions on the partial derivatives since 

every pair of vertices is inconsistentiy strongly connectecl in ~ ( f ,  fi). W e  WU return 

to this example in the next chapter. 

Example 9 (Epidemiology): Consider the foiiowing mechanism for the SIS 

epidemic mode( (see [7]) : 

This mechanism describes an epidemic in which susceptibles (S) meet infectives 

(1) to produce two iaf'tives at a positive rate of p, while infectives remver without 

immunity at a positive rate of 7. 

Let the t h e  dependent populations of susceptibles and infectives be denoted by 

the wiables xl (t) and xz(t) ,  respectively. The law of mass-action gives the system 

of dinesential equations 

zd t )  = fi(zl? ~ 2 )  = 7 ~ 2 ( t )  - ,8x1(t)zz(t), and (2.21) 

ô2(t) = f i ( ~ l i 2 2 )  = -7x2(t) +Pz1(t)5*(t). (2.22) 
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To insure that we have a non-trivial situation, we require that 240) > 0. 

This problem was analyzed in [181 and [31]; problem-specific arguments were 

needed to obtain monotonicity resuits for this model. The resuits are summarized 

in the Table 3, which gives the sign of a partial derivative of a population with 

respect to an initiai population. The */+ entry in Table 3 means that the partial 

derivative is always positive for the case zl(0) < g, and of both signs for the case 

xl(0) > B. The -/+ entry means that the pattial derivative is always positive for 

the case zl(0) < $, always negative for the case xl(0) > 8, and identically zero 

for d time in the case xL(0) = B. Before attempting to obtain the monotonicity 

- - -  

Table 3: Behaviour of populations with respect to changes in initial populations 

for the SIS epidemic model for Example 9. 

results of Table 3 using the methods of Chapter 2, we first notice that 

(i) if xl(0) c p then xl(t) < g, V t  2 O, 

(ii) Xz1(0) = $ then x l ( t )  = 8, V t  2 O, and 

(üi) if xi(0) > g then xl(t) > g, V t  2 O. 

The Jacobian matrix for this problem is 

For case (i), applying the theory of this chapter, we draw the directeci graph - O-@ 
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which consists of a single positive clirected cycle. For case (ii), applying the theory 

of this chapter, we draw the graph 

which dso contains no inconsistencies. These two graphs give us the '+' entries in 

Table 3 in the case xl(0) 5 g. For case (iii), applying the theory of this chapter, 

we draw the graph 

which consists of a single negative directed cycle. The theory of this chapter takes 

us no further. 

Example 10 (Chernical Kinetics): The Michaelis-Menten reactions of enzyme 

kinetics can be  written 

kl 
E + S =  E S %  P + E  

k-1 

where E, S, ES, and P are the enzyme, substrate, cornplex, and product, respec- 

tively. We will denote the concentrations of E, S, ES, and P by zl(t), x2(t), z3(t), 

and x4(t) ,  respectively ; mass action chemical kinetics yields the system 

This problem was analyzed in [32], using involvecl arguments that were specific to 

the system. The signs of the partial derivatives of a concentration with respect to 

an initial concentration are given in Table 4. The * entries in Table 4 mean that the 



CHAPTER 2. MûNOTONICITY WITH RESPECT TO AN ORTHANT 49 

Figure 8: ~ ( f ,  a) for Example 10 

partial derivative is of both signs. The O entries mean that the partial derivative is 

identicdy zero. The Jacobian matrix for this system is 

Table 4: Behaviour of concentrations with respect to changes in initial concentra- 

tions for the Michaeiis-Menten system for Example 10. 

Figure 8 presents the rnultigraph G( f, n) for the Michaelis-Menten system. Almost 

all ordereà vertex pairs are inconsistently strongly connecteci in ~ ( j ,  a); we can 
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only conclude that 

dz; -- -0,  i =  1,2,3, and - 3x4 az,(0) > 01 t > 0- 

Example 11 (Chernical Kinetics): We look at the compIicated mechanïsm: 

Al 1 

A4 + AS, 

442, 

&, 

AI 9 

A23 

A1 + As, 

A61 a l c l  

&- 

The corresponding system of differential equations is 

and we construct the multigraph in Figure 9, where dashed edges have negative 

sign and solid edges have positive sign. One spanning tree of the associated graph 
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Gu and the fundamental set of cycles that it induces are given in Figure 10. As 

listed, the fifth cycle is negative, confuming that the mechanism does not induce 

an order preserving flow. In fact, perforrning the algorithm of Section 4 leads to a 

coilapsed graph consisting of just one negative vertex; ail vertices are inconsistently 

s t rongly connec ted. 

Example 12 (Chernical Kinetics): Consider the reaction mechanism given by 

Al 1 

A4 + As, 

4421 

As, 

Al, 

A21 

%? 

4 

As, and 
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Figure 10: Spaming tree and fundamental set of cycles for Example 11. 
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Figure 11: ~ ( f ,  Q) for Example 12 

The corresponding multigraph is presented in Figure 11. This multigraph differs 

very Little fiom the multigraph in previous example: the dùected edge fiom vd to vl 

is now negative. Once again, we choose one spanning tree of the associated graph 

Gu and draw it and the fundamental set of cycles that it induces; see Figure 12. 

In this case1 a i l  of the cycles in the chosen fundamentai set are positive; hence, by 

Theorem 5, the systern induces an order preserving flow. 

If the positivity assumption is satisfied, Theorem 8 appiies and we can deduce 

the signs of the derivatives of the associatecl concentrations with respect to hi- 

tial concentrations. These are presented in Table 5, where entries have the usual 

meaning. 

The positivity assumption will be satisfied if Zo E & = O îl {z3 > O and 

either xa > O or +r > O or 2 5  > O or xe > O). Using Theorem 18, we see that each 

reaction in this mechanism with a birnolecular reactant piays no role when amlyzing 

positivity (every species occurs as  a reactant or as a product in the reactions with 

a single reactant). The remaining reactions correspond to the positive edges in the 
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Figure 12: S panning tree and fiindamental set of cycles for Example 12. 
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Table 5: Signs OF concentrations with respect to changes in initial concentrations 

for Example 12. 

gaph of Figure 13. There are two initial groups: {va) and (v2, v4> US, v6). The 

conclusion foilows. 

Example 13 (Chernical Kinetics): We look at the reaction mechanism: 
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Figure 13: ~ ( f ,  fl i) for Example 13 

The corresponding system of differential equations is 

which ieads to the multigraph in Figure 13, where dashed edges have negative sign 

and solid edges have positive sign. Applying Lemma 14 tells us that vertices V I  

through va in ~ ( f ,  R) are each involvecl in at least one directed cycie. We observe 

that vertices 4, va, v2, and v3 comprise a positive directed cycle. We mllapse these 

four vertices into a positive vertex iabelled V l , 6 , 2 ~  and pick vertex ul to determine 

the signs of the edges in our collapsed graph. For example, there is a negative 
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edge from vertex v4 to vertex u3 and there is a positive edge fmm vertex v3 to 

VI; hence, we wili draw a negative edge corn 714 to V I , G , B . ~ ~  in the coilapsed graph. 

Proceeding in this way leads to the leftmost multigraph in Figure 14. Vertices 

V1,6,3,3 and us obviously form a positive directed cycle; the same is tme of vertices 

V I  ,644 and VJ . W e  can coflapse bot h of t hese cycles to get the micldle multigraph in 

Figure 14. Finally, G& R) is constructeci on the right in Figure 14. Here, n, = 2 

and we need ody observe that w12 = *. We conclude that vertices vl through 

v~ are consistently strongly comected in G(J, R)  and can deduce the signs of the 

derivatives of the associated concentrations with respect to initial concentrations. 

These are presented in Table 6, where entries have the usual meaning. 
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Table 6: Signs of concentrations with respect to changes in initial concentrations 

for Example 13. 



Chapter 3 

Monotonicity With Respect to a 

Cone 

In previous work (see [30], [32], [Ml, [311), partial monotonici ty results were proven 

for several specSc chernical and epidemiological models. Solutions were only mon* 

tone with respect to initial conditions in a subset of solution space. 

The treatment of linear systems in (51 and (41 combined with our experience with 

some specific nonhear problems motivates an attempt to formulate monotonicity 

results with respect to a convex cone. In the next section, we provide an extension 

of the ICamke-Muer Theorem to closed, convex cones. 

F i t ly ,  we need to dehe  the concept of a cone in RD. 

Definition 5 A set K C Rn is defnied to be a cone i f ,  V Z E K and a 2 0, 

a5 E K .  A cone K is said to be solid i/ int(K) # 0. K is said tu be pointed iJ 
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Figure 15: A two-dimensional cone K in R3 is not solid. 

One must be carefd when discussing non-soiid cones. For example, consider the 

two-chmensional cone K in R3 presented in Figure 15. K is not solid: for any point 

in K, an arbitrarily s m d  ball in R3 around that point is not in K. Eowever, K is 

solid when we restrict ourselves to the smaliest subspace containing it (the plane 

spanned by i i and & in the example). The conels interior relative to the smdest  

subspace containing K is called the relative interior of h'; we denote it relint(l i) .  

Similady, the cone's boundary relative to the smdest subspace containing fi is 

cdled the relative boundary of K and is denoted relbdy(Ii). 

Recall that a set in Rn is convex if for any two of its points it contains the line 

segment between them. A convex cone K induces a partial ordering "S," in Rn. 

For Z,g E Rn, we write f s, y (or ij ZK 5) if and only if i - 2  E K. W e  w u  

write t <, 8 (or > K  5) if i - P E relint(K). The partial ordering induced by a 

convex cone IC is antisymmetric (6 2, 6 and W 2, i, + 6 = 6) if and only if h' 

is pointecl. 
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Figure 16: Orderings with respect to a proper cone in R2 

A pmper cone is a cone which is closed, convex, solid and pointed. A proper 

cone is generated by its extreme rays (au vectors in the cone are a non-negative. 

linear combination of the extreme rays; see page three of [q). A vector i is an 

eztreme my of I< if O 5, i <, i =t i is a non-negative muitiple of 5. The early 

pages of [5] and [43] offer an introduction to this terminology and theory. 

Geometricaliy, in R2, Figure 16 illustrates which vectors I satisfy the two strict 

inequalities for a fixed vector Y and a proper cone K. As it tums out, we will want 

to verify that a chosen cone satidies particular hypotheses in order to apply the 

upcoming results. Since proper cones are generated by their extreme rays, we need 

only check that the extreme rays satisfy the properties we demand of al l  rays in the 

cone. 

AU seems well, but we WU fiequently use polyhedral cones in practice. The cone 

in Figure 16 is a polyhedmi cone as weii as a proper cone. 

[5] offers the foliowing comments on polyhedrd cones (Theorem 2.5, page 2): 

(1) A nonempty set I +  of Rn is a polyhedral cone if and only if it is the 

intersection of a finitely many closed haif spaces, each containing the 

origin on its boundary; 

(2) A polyhedrd cone is a closed, convex cone; and 
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(3) A nonempty subset h' of Rn is a pdyhedral cone if and only if Ii* is a 

polyhedral cone. 

K* denotes the dval cone of K ,  given by 

Note that ri?* = K if and o d y  if Ii is a closed, convex cone (see [5]). 

The right, circuiar ("ice-cream") cone with vertex at the origio is a proper cone 

that is not polyhedral. It would seem that the defining difference is that proper 

cones do not necessarily have a finite number of extreme rays (or generators). Note 

that we WU use the word generators here because the notion of extreme rays wiU 

not make sense for some polyhedrai cones we consider. [t is not quite as sidple 

as one might hhpe to estabiish that polyhedral cones do have a finite number of 

generators. We WU need a srnail amount of theory. 

We need to define the concept of a fxe. Let I< and F C IC be pointed, closeci 

cones; then F is called a face of II' if 

The face F is nontrivial if F # {fi) aod F # Ir'. For example, the fa of the 

non-negative orthant 6 are of the form F j  = {Z E O : zj = O if j é J )  where 

J 1 ,  . . . , n}. This includes the two-dimensiond faces that one might think of 

naturaily, dong with the one-dimensional faces (the extreme rays of O) and the 

trivial faces (O and O). As a second example, note that the nontrivial fa<zs of the 

ice-cream cone with vertex at the otigin are of the form a5 where a > O and 5 is 

a boundary vector. The non-negative orthant has a finite number of extreme rays 

(and faces) while the right cirnilar cone has an infinite number. 
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Coroiiary 2.6.14 in [42] gives some insight into how the finite number of gener- 

ators are chosen: Euery cfosed, conuez set in Rn is the conuex Ru11 of those of its 

faces tuhich are flots or elosed haffluts. A set A E Rn is cded a flat if whenever it 

contains two points, it also contains the entire line through them. A cfosed haifPot 

is the intersection of a Bat with a closed halfspace which mets  it, but does not 

contain it. We now pcesent the resuit fiom [42] (Theorem 4.1.1) that satides our 

neecls* 

Theorem 19 A conuez cone in Rn is jînitely generated if and only iJ it is polyhe- 

dral. 

Consider the polyhedral cone K in Figure 17; IC is the cone in R3 dehed by 

((2, y, z )  : z > Iyl). Ii is polyhedral (it is the intersection of two halfspaces, each 

with the origin on its boundary); but, it is not proper (it is not pointecl). Its faces 

are two closed halfaats (the two halfplanes) and one Bat (the 2 4 s ) .  FoUowing the 

results above, its generators are 

where the last two vectors could each be chosen to be any vector in each of the 

halfplanes but not on the x-axis. Notice that neither of the final two vectors, 

however chosen, are extreme vecton. 

The foliowing results wili be usefd. 

Lemma 20 Let S 

d t s  a hyperplane 

associated with H .  

be a convez subset of Rn and let 5 E relbdy(9). Then then 

K containing 5 such that S is contained in one of the halfspaces 

We cal1 H a supporting hyperplane ut I. The uector 8 E Rn is 
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Figure 17: An unpointed polyhedral cone in R3 

a normal to H if b # 6 is orthogonal to the difference of any two vectors in H. We 

say b is nomal to S at I. Furthemore, if6 satisfies 6 - (ij - I) 5 O, V 2, E S, we 

say that b is an outtoard n o m a l  to S at i. 

For a proof of this result, see Theorem 2.7 in [4]. Books on iinear prograrnming 

(such as [IO]) also introduce this result and discuss convex cones. 

Lemma 21 Let X l e  a compact subset of Rn and K 6e a closed, convez cone Ni 

Rn with k E relint(I<). Then there is a positive constant a such that ak + Z >, 6 
for al1 t E X. 

Proof: It is sscient to show that thereexists a positive a so that &+$ E relint(K) 

for d 5 E X. Since k is a relative intecior vector of the closed, convex =one K, there 

is a b d  of radius e, for some e > O, centered at k,  containeci in reiint(K). Denote 

this bail by B,@. Then &(E)  = B , ( O ) + ~  c relint(#). Let d = maz{lil : 3 E X) 

and choose a > d. Then 5 E ~ ~ ( 6 )  for ail 5 F. X, and the conclusion follows. O 

Since we wiil want to allow non-suiid cones in applications, we need the following 

result. It guaranteea t hat a clifference of super- and sub-solut ions which begins in 
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a closed, convex cone IC stay in the smaiiest subspace containing Ii under the 

hypotheses of the key resuits in this chapter. 

Lemma 22 For Lï' a closed, convez cone in Rn, suppose ü sK /(ü), 6 zK I(w), 
and G(0) Zrz V(0)- Suppose ako that j(2) is continuously differentiuble in 5 on 

compact sulsets of Rn and that for any compact set, N ,  3 1 = 1(N) such tliat 

then 6 - V E s, where K is the srnailest subspace containing K, for t 2 0 .  

Proof: Rewrite the hypotheses, & - f (@)  E IC aod f(5) - E K ,  giving 

& - ü + f(8) - J(@) E K. (3-1) 

Now, V iu in some compact set N, E E K ,  6. E K*, 

[ ( D ~ ( G  + sk))k + ik] >i. > O, 

where we have strategicdy chosen the argument of ~f and s E [O, 11. Notice that 

if g(s) = F(G + sk), then îj'(s) = + I ) k ;  hence, if we define 

g(s) = [f(* + S E )  + sl&] k., 

then (3.2) says that g'(s) 2 0. We can conclude that g(l) 2 g(O), say. This gives 

which, upon letting ü = tü + E &G, leads to 

f (0)  - j(6) + I ( i ,  - ru)  2, O, 

/(v) - f(6) + l (ü  - tu) = a, 
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where ü E IC. So, (3.1) becornes 

t ü - i r + i ( ~ - q + a = à ~  E IL 

Let h(t) = b (6 - 6), where 6 is normal to the subspace ?r; then, 

and h(0) = O, since G(0) - û(0) E K. This impiies that h(t) = O, V t >_ 0, and the 

conclusion foilows. O 

W e  are now able to present an extension of the Kamke-Miiller Theorern to 

closed, convex cones. The results of this section wiU generaiiy be stated t > 0," 

as opposed to for ''O < t < T" or E I(2)" as in the previous chapter. W e  are 

assurning that solutions exist for d time; this will be the case in our examples. 

The results could be r e f o d a t e d  if one wanted to deal with intervals of existence. 

Theorem 23 (Extended Kamke-Müller Theorem) For Il7 a closed, conuez 

cone in Rn, suppose ü SK !(O), & Ln- j(tü), and G(0) G(0). Suppose also 

that j(i) is continuously dgerentiable in Z on compact subsets of 0, R open and 

conwz, and that for any compact set, N ,  3 1 = I (N)  such that 

Proof: Since G(O) - i r ( O )  E K ,  by Lemma 22, G(t) - C ( t )  E r for t > O, where 

n is the smdest subspace of Rn containing K.  We first suppose that 6 & f(ü), 
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k >, ~ ( z Ü ) ,  and C(0) ü(0). W e  wiU prove that G ( t )  > K  ù(t), V t 2 0. Suppose 

this is the not the case. Then 3 to > O such that G ( t )  >K ü ( t )  for O < t < to 

and G(to) - ü(to) E relbdy(lr). Let N be a compact, convex set containing both 

trajectories c( t )  and 5(t) for O 5 t < to (chwse a large enough ciosed b d  containing 

both). Let i(t) = W ( t )  - V(t). If j(to) E relint(K) then 3 tl, O tl < top such 

that t(t) E relint(K) for tl < t 5 to. Then f (t) E relint(Ir') for O < t < to 

and P(t) E relint(K) for t l  < t to give ?(to) E relint(K), a contradiction. 

Hence, f(to) 4 relint(lC). By Lemma 20, 3 a supporting hyperpiane to I< at 

( t ) .  Let h be the outward unit nomal to [il at i(to). Since i(t0) E telMy(K) 

and i(t0) relint(K) we have i ( to )  b = O and S(to) - b 2 O. Now, by the 

hypotheses, h(t) = &(t) - t ( t )  >, f(6) - f ( ~ t ) ,  V t 2 O. Evaluating at to gives 

h(to) - j(w(t0)) + j (ü(to))  > K  O. T ~ U S ,  

Now, 

Since, by assumption and by the cloaure of K,  

we have 

But 
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gives a contradiction; hence, G( t )  >,. ü(t ), V t 2 0. 

To prove the theotem, we let GC(t)  = w(t)  + seatk, where c is a s m d  positive 

parameter, k is a relative interior vector of K, and a is a constant to be chosen 

later. Then 

WC(0) = *(O) + & >, iO(0) 2, ü(0). 

Now, let X be the compact set { / ( @ ( t ) )  - f(tüc(t)) : t E [O, Tl). Lemma 21 tells 

us that for some /3 > O and for aii t E [O, Tl 

Now, choosing a = f, we have for t E [O, T] 

By the first result in this proof, we can conclude that a(t )  <, ~ ~ ( t )  = 6 ( t )  + reutk, 

for t E [O,T]. Letting a + O proves the theorem. CI 

It turns out that there is some development of this type of result in the literature 

(see (401, [37], [&], (281, and [29]). In partidar, [29] presents a result very s i d a r  

to the above, but the condition 

3 = f(N) such that 0&) + i f  : K ct K,V 5 E N, (3.3) 

is not given. Later in this chapter, we wül show how the various conditions in 

the Iiterature and condition (3.3) axe linked. When (3.3) holds, we wiU say that 

D!(%). presetves the cone K. A closeci, convex polyhedral cone is determinecl by 
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its generators. Bence, we need only investigate the effect of D ~ ( ( I )  + 11 on the 

generators. 

One might imagine the Extended I<amkeMüller Theorem being applied to two 

solutions of a system of ordinary differential equations, one with a single component 

changed initidy. When the hypotheses are satisfied, we could conclude that the two 

solution vecton maintain a partial ordering with respect to the cone us& (finding 

usefui cones is a thomy issue we wiU deal with later). Stiii, we would like to be 

able to draw conclusions on partid derivat ives wi th respect to initial conditions. 

Sol suppose we are considering the usual system of ordinary differential equations 

(2.7) and that we have found a cone Ii which satisfies condition (3.3). Apply 

Theorem 23 with ü( t )  = I( t ,&) and W ( t )  = I ( t , &  + f i ) ,  with f i  E K \ {O), and 

I ( t ,  Za) the solution to (2.7) with initial condition *(O) = Zo, Zo E, to conclude 

that W(t) 2, ü( t ) .  In other words, we conclude that 

Pi& f i  = sY E Ii \ {O}, s > O, where iï is a unit vector; then 

represents the directional derivative of P in the direction û. We have shown that 

DUI E Ir'. When ii is a standard basis vector, this gives derivatives with respect 

to an initial component as before. Upcoming examples WU iilustrate the idea. We 

state the foiiowing Coroliary for use in applications. 

Corollaty 24 Suppose that d is positioely invariant and that f(5) is continuowly 

differentia6le on d and that 3 1 s u d  that 



when K is a closed, convez cone in Rn; then 

Proot: Define the sequences {ZT) and {gg) with c," ZK j.Om, 52,iF E 0, 
b,,,,, #? = g;, and lirn,,,+- Z r  = ZÔ, with 5: E b d y ( 0 ) .  By Thwrem 23, 

i(f&') Zn. I( t ,Zr) .  Using the Limit property, I(t ,&) 2, 5(t,Z:). Now choose 

= 5r + k ,  rÉ E K \ {O); then I ( t ,  2 + &) 2,- % ( t , q ) ,  which Ieads to 

3.2 Practical Tools for Establishing Monot onicity 

For preüminary investigation, and to highiight the complexity of this approach, we 

consider a 2 x 2 cons tant matrix, 

and a general closeci, convex cone with extreme cays 6 and 6, orienteci as in Fig- 

ure 18. In order for (3.3) to hold, with M replacing D ~ ( z ) ,  MQ must lie on the 

same side of the Iine containing 6 as does GL, the vector that is rotated 90' coun- 

terclockwise h.om 6. Similady, M b and -6I mut  lie on the same side of the line 

containing 6. That is, 
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Figure 18: A 2-dimensional cone with extreme rays ü and &. 

These are conditions on the quadratic form Q(al, as) = Ma iiL. As outlined in 

[44], through a rotation of the coordinate axes the mùced term in (3.4) and (3.5) 

will be eiiminated when the form is expressed in terms of the new coordinat-. In 

these new coordinates, the form c m  be expressed as 

where Al and X2 are in fact the eigenvalues of the matrix 

ü is rotated to a new vector $, and 6 is rotated to a new vector P. With the form 

expressed as in (3.6), we require ~ ' ( 6 ' )  2 O and Q'(&') 2 O. This is possible if and 

only if Al Al 5 0; in this case, the form is cded negative semidefinite. 
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A quadratic form Ayf+Byly2+Cy~ is negative semidefinite when 4AC- B2 5 0; 

thus, we have amiveci at a necessary and sufncient condition for there to exist a 

cone presewed by the matrix M ,  namely that 

In the case AIX2 < 0, Q'(X~,  x2) = O along exactly two lines, those with siopes 

k J w  in the rotated coordinates, or Q(ai, a*) = O along iines with slope 

in the origind coordinates, for mil # O. These h e s  &vide R2 into regions where 

the form is of distinct sign. The vector ü must lie in a region of non-negative sign 

and 6 must lie in a region of non-positive sign, with the counterclockwise angle fiom 

à to & being at most 180' and determinhg the cone K. 

Example 14: Consider the simple example reaction mechanism 

From page 27 of [18], we know t hat (3.11) does not induce an order preserving flow 

if ail > al and a2 > à*. Let Al(t) and Az(t) denote the concentrations of species 

Al and Al at time t. Reaction (3.11) induces the system of differential equations 

Ài(t) = Il(&, A2) = b(& - ai)(Al(t))P1(A2(t))a2, and (3.12) 

AS@) = f2(& A2) = k(& - ~ ) ( A i ( t ) ) ~ '  (3.13) 

sub ja t  to initial conditions &(O) = Alo and A2(0) = Am, where Alo and Ale 

are positive for the positivity assurnption to hold. The 2 x 2 Jacobian matrix for 
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this system has fi,2 > O and fiVI < O, t 2 0. Applying the theory of the previous 

section, we draw the gaph 

@:----*@ 
which consists of one negative directecl cycle. The theory of the previous chapter 

gives us no conclusion. We WU try something new. 

The system admits the conservation equation 

This givea bounds on the concentrations, namely 

aii - QI 
0 l AL@) 5 &O - Al0 and 

ii2 - a2 

and so our solutions lie in a rectangle. We could conceivably use (3.14) to eiimi- 

nate A2(t) from the right hand side of (3.12); this would still leave a complicated 

differential equation for A&). As c m  be seen in [Ml, even seemingly simple mono- 

tonicity problems like this can require rather cornplicated specific arguments and 

usudy require a fair bit of insight into the physical problem. Let us try to apply 

Theorem 23 iastead. From diemical kinetics, iil > al > O and q > fi2 2 O imply 

that 

The correspondhg Jacobian matriv is 

Condition (3.7) requires that 
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Figure 19: The cone preserved by the Jacobian matrix for Example 14. 

Using (3.9) 4 3 .  IO), the lines w here the corresponding quadrat ic form vanis hes have 

dope 
aiA2(t) a2 - ( ~ 2  

pl = - 
b a2Al(t)  " = al - 

Ushg (3.14) and (3.17), we see that 

a1Azo al@) = -- I PLU) < O, V t 1 0. 
% Aro 

The quadratic form Mnishes dong à and is non-positive dong 8, V t 2 O; hence, 

the cone K with extreme rays ü and b will be preserved by the Jacobian matrix 

V t 2 O. Figure 19 shows the cone K; note that -Ii is also preserved and will lead 

to the same conclusions. With the cone K so defined, we can apply Theorem 23 

with ü(t) = A(t, A) and 6 ( t )  = A(t, A+&, with ,8 E K, and A(t, &) the solution 

to (3.12)-(3.13) with initial condition &O) = A. Then G( t )  2, ü(t),  V t  2 O.  In 

particular, choosing 4 = ëI allows us to conclude that 



CHAPTER 3. MONOTONICITY WlTH RESPECT TO A CONE 75 

These same partial derivative results, with strict inequaüties, ean in fact be obtained 

t hrough a direct argument. 

A variation of Theorem 23 which dows us to use expanding cones will prove 

usefd in the examples. The proof is very similar to the proof presented for The- 

orem 23, but it is instructive to present it in fd. The reader should realize why 

expancihg cones work and why shrinking cones do not work. 

Definition 6 A cone K(t ) mith ezireme mys that change with t is cafied expand- 

ing if IC(t i )  C I\r(t2) wheneuer t  5 tz . 

Theorem 25 Conaider a closed, conuez, solid, ezpanding cone K( t )  in Rn. Sap- 

pose $ &) &), & &, &), and @(O) &,,, B(0). Suppose also that f (5)  is 

continuowly differentiable in 5 on compact subsets of Q, 0 open and convez, and 

that for any compact set, N, 3 1 = I(N)  sudi that + II : K(t )  c, K( t ) ,  

V 2 E N .  Then @(t)  >K( t ,  Z(t), V t 2 O. 

Proof: Foiiowing the proof of Theorem 23, we first suppose that 6 &,, f(ü), 

& &), and 6 ( O )  >,, 3(O). W e  wili prove that G(t) >,,, 5( t ) ,  V t 2 O. 

Suppose this is not the case. Then 3 a first t h e  to > O such that W ( t )  >K( t )  G(t) 

for O 5 t  < to and W(to) - G(to)  E bdy(K(t0)). Let N be a compact, convex set 

containing both trajectories 6 ( t )  and ü(t) for 0 5 t  < to (choose a large enough 

closed ball containing both). Let i ( t )  = G(t)  - ü(t). If t ( to) E int(K(to)) then 3 tL ,  

O 5 ti < 4 ,  such that i ( t )  E int(K(to)) for t L  < t to (we are using the fact that 

K(t)  is expanding). Then i ( t )  E int(K(to)) for O < t < to and i ( t )  E int(K(fo))  

for tl < t  5 4 give h(to) E int(K(to)), a contradiction. Hence, $(to) $ int(K(to)). 
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By Lemma 20; 3 a supporting hyperplane to K(to)  at Z(to). Let b be the outward 

unit normal to K(t0) at i ( t0) .  Since i ( to )  E bdy(I<(to)) and int(K(to)) we 

have i(t0) - h = O and i(t0) - & 2 O. Now, by the hypotheses, i ( t )  = &(t) - t ( t )  >,,., 

( 6 )  - ( 5 )  V t O .  Evaluating at t  gives i(t) - f(zû(ta)) + f ( s ( to ) )  >K(r,,) O.  
Thus, 

we have 

But 

gives a contradiction; hence, G(t )  >,(,, o(t),  V t  2 0. 

To prove the theorem, again let lic(t) = G(t)  + ceQt&, where c is a s m d  positive 

parameter, k is an interior vector of K(0)  C K(t) ,  and a is a constant to be chosen 

later. Then 
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Now, let X be the compact set { f ( ~ ( t ) )  - / ( ~ ' ( t ) )  : t E [O, Tl} .  Lemma 21 tells 

us that for some p > O and for a l l  t E [O, T] 

since K ( t )  is expanding. Now, chooaing a = @, we have for t E [O, Tl 

By the first result in this proof, we can conclude that ü(t ) <,,,, W C ( t  ) = ~ ( t )  +ceat&, 

for t E [O, Tl. Letting + O proves the theorem. O 

Remark: Theorem 25 could be stated for non-solid cones, where we would addi- 

tionaiiy demand that the smdest subspace containing K( t )  be the same for each 

t 2 0. In our example applications, we wiii only need the result for solid cones. 

To iiiustrate that shrinking cones which satisfy the hypotheses of Theorem 25 

wiil not lead us to the conclusion of the theorem, consider the bllowing example. 

Example 15: Suppose that our systern, 5 = f(i!), is given by 

with easily calculable solutions. In this case ~f is just the identi ty matrk. Consider 

the =one K(t ) with extreme rays ii = [l, 0IT and &(t ) = [l, ë t j T ,  as illustrateci in 

Figure 20. Since ( ~ f + l l ) i i  = (l+l)Z E K ( t )  and (D/+II)&) = (l+l)%t) E K(t ) ,  

the essentiai hypothesis is satisfied. Now, let 6 ( t )  and V(t) be two solutions with 
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Figure 20: A shrinking cone K(t)  with extreme rays à and &(t). 

then the solutions satisfy 

It is perhaps interesting to note that this example sufKers from a richneas of pos- 

sibilities: ~f preserves any cone we choose! We could use the machinery of the 

previous chapter, use the machinery of this chapter wi t h  the positive quadrant as 

our cone, or just take partial derivatives of our solutions to  conclude that the matrix 

of sign patterns for the partial derivatives with respect to initial conditions is given 

in Table 7, where the entries have their usual meanings. This should highlight the 

diffidty in finding cones that yield valuable results. 

Table 7: Signs of partial derivatives with respect to initial concentrations for Ex- 

ample 15. 
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In the previous chapter on monotonicity with respect to an orthant, we saw that 

graph theory played a key role in establishing strict sign results. When dealing with 

cones, it is perhaps not al1 together obvious how to use graphs to this end or devise 

strict sign resuits some other way. We present the foliowing theorem as a f i t  step; 

it WU Lead us into a graph theoretic discussion. This theorem could aiso be stated 

for expanding cones. 

Theorem 26 Let K be a closed, convez =one in Rn. Suppose that ü 5, !(6), 

& f@), and *(O) 2, V ( 0 ) .  Suppose aiso that &) is continuously di'eren- 

tiable in I on compact sulsets o f P  and that for ony compact set, N, 3 1 = I (N)  

such that 

D J ( Z ) + Z Z :  ICH K, v t l i ~ .  

Further assume £hat for N and I chosen as above, 3 a positive integer m s u d  that 

Proof: Let N be a compact set containing both trajectories W(t) and Let N be 

a compact, convex set containing both trajectories G ( t )  and G ( t )  for O 5 t < T 

(ch- a large enough closed bail containing both), and let i ( t )  = G ( t )  - V ( t ) ;  

then Z(0) Zir O and, by Lemma 22, i ( t )  E s for t  > O ,  where r is the smaiiest 

subspace of Rn containing K .  Furthemore, 
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Choose 1 as in the hypothesis. We have 

Integrate with respect to t from t to t ,  O 5 t 5 T, to get 

Note that we are using the property that if @(t)  2, T( t ) ,  for O 5 t 5 T ,  then 

for O < to  5 t < T ,  proven with Riemann integral and cone closure under addition. 

so ? 

By the Extendeci Kamke-Muer Theorem (Theorem 23), i ( t )  E K, for O 5 t < T .  

Furthemore, if i(to) E relint(K) then (3.23) tells us that k( t )  E relint(K), to 5 

t < T ,  since M(s2)i(s2)  E IC because DI preserves K. 

We plan to apply inequality (3.23) to the z(s2) term on the right hand side of 

(3.23). We have (3.23) with to = 0: 
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This gives 

MONOTONICITY WITH RESPECT TO A CONE 

or, in other words, 

which, in turn, gives 

since M(s2)  preserves hl. So, 

We can repeatedly iterate in this way to get 

O 5 s,+l < 5 sl 5 t .  W e  consider the mth iterate, m chosen as in the final 

hypothesis of the theorem. For t sficiently small, we get 
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using the final hypothesis. This means that there is a small to, O < to < T ,  such 

that i ( to)  E relint(A). As stated earlier, (3.23) then implies f(t) E relint(IC), 

to 5 t 5 T. Since to can be chosen as s m d  as we Lüte, we conclude tbat i ( t )  E 

relint(K), O < t T .  

O 

Remark: As with earlier resuits, Theorem 26 is stated for a closed, convex cone 

K. The additional hypothesis for strong monotonicity, namely that 

( ~ f ( 5 )  + 1 I)" : li \ {O) H relint(K), 

wdi not hold for an unpointed cone. An unpointed cone wiiI contain a subspace of 

Rn; so, there WU be two vectors ë and -ë on the boundary of the  cone. It is clear 

that ( D ~ ( P )  +II)" cannot map ë to relint(Ii), since it would then map -ë to the 
L 

exterior of K. In fa& the only way for D f + I I  to map such a cone into itself is 

for the subspace to be invariant under the transformation. 

From the prwf of Theorem 26, we get the foiiowing corohry. 

Corollary 27 Under the hypotheses of Theomm 26, 

Wri t ing 

leads to the foiiowing coroLiary to Theorem 26. 

Corolliwy 28 Suppose that f(j(4) is eontinuously difJerentitzbIe in P on compact 

subsets of Ra and that for any compact set, N, 3 1 = I(N)  such that 
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where P is a closed, conuez cone in Rn. Further assume that for N and 1 ehosen 

us aboue, 3 a positive integer m such tht  

( ~ f ( ~ ) + l ~ ) ~ k ~ r & t ( K ) ,  V 2E N, 

for some uector L E K \ {O); then 

Proof: Differentiate equation (2.7) with respect to 2, to get 

which, upon dotting with k,  gives 

For convenience, let G(t) = 2; then & = D ~ ( Z ) @  a d  G(0) = &. With 1 chosen as 

in the corollary, we write 

which we solve to get 

We notice that W(to )  >*< 6 implies that 6 ( t )  >K 6,  t 2 to, since each term on the 

right hand side is in IL  As in the theorem, with to = O, we now iterate, repeatedly 

replacing the 6 on the right hand side by the entire expression, which at iteration 

m, chosen as in the comllary, gives us 
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small, we get 

since (M(o) )~L >, 0, using the second hypothesis. Applying CoroUary 27 lead to 

G(t) >r O, t > 0. u 

In applications, ~ f ( 2 )  + II may change substantially from time zero to time 

greater than zero. For example, solutions to chemical kinetics or epidemiological 

problerns may begin with some components zero, but, if the positivity assumption 

holds, a l l  components wiii be positive for positive time. Under t hese circumstances, 

it is possible that the strong monotonicity hypothesis of CoroUary 28 wiii not be 

satisfid at t = O. We formulate another coroilary that de& specXcally with the 

applications we plan to andyze. 

Corollary 29 Assume tliat O is positively invariant and that the positivity assump- 

tion holds ( I ( t )  > O for t > O ) .  Suppose that f (5)  is continuously dgerentiable on 

6 and that 3 1 such that 

where K is a closed, conuez eone in Rn. Further assume that for I chosen as aboue, 

3 a positive integer rn such that 
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for some vector hi E K \ {O); then 

WITH RESPECT ?'O A CONE 

for t > tO (t 2 tO if& >K O ) .  

Proof: From the proof of CoroUary 28, we have that 

where g( t )  E K .  

We foilow the same line of attadr as in the proof of Corollary 28, iterating to 

get 

where M(s) = ( D / ( I ( s ) )  + LI) and to 5 s,+l < - - 5 $2 5 t .  For t sufficiently 

close to to, we get 

>K 6, (3 .30) 

since ( ~ ( t 0 ) ) " k  >K Or by the second hypothesis. Apply Coroiiary 27 to conclude 

G ( t )  >, 6, t > t ( t  2 to if k >, fi). a 

Before using the ideas of Theorem 26 to motivate a graph theoretic approach to 

monotooicity with respect to general cones, we fht discuss the place of condition 

(3.3) amidst similar conditions in the literature. 
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3.2.1 A Discussion of the Cone Preserving Condition 

Having established several results involving condition (3.3), we now present several 

related conditions t hat are present in the literature: 

(VI) and (V2) are due to 

with $(I )  2 O for 2. E K. 

0 such that t SK =+ f(5) + A5 <, f((i)) + AG. 

VoUunann (see [37]); in each case $ is a functionai on Ii 

(V2) is also given in [BI. (VZ') is the analog to (V2) for 

clifferentiable fi it is not stated in Volkmann, but it follows naturdy £rom (V2). 

(Wl) is due to Walter ( s e  [40] or [29]). The research of Wdter and Voikrnann is 

abs tract, dealing wit h functionals in Banach spaces. 

To connect these conditions, we state the foilowing theorem. 

Theorem 30 For &E) continuowiy differentiable and K a closed, conva cone, 

(Vl) .u (V2) u (V2') L- (h'l) # ( W l ) .  

Proof: (KI) + (VT): Suppose that (KI) holds; then V 1 in some compact set N, 

3 f such that ~ f ( b )  +il : IC H K. For ë E re lMy(K) ,  ( D ~ ( J )  + 1I)ê fi5 1 O, 

impiying ( D ~ ( Z ) ) Z  f ig 2 0 and proving (V2'). 
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( V r )  + (V2): Suppose that (V2') holds. Choose 15 and G such that let ë = tù - ü E 

relbdy(K); then V G in some compact set N (choose N large enough to contain the 

Iine segment comecting tü and C), 

- 
Define $ ( I )  = NE - 5,  so $(W - 5 )  = O, implying $(ù) = t&). For (V2) to hold, 

we must have 

(AG) - J(q A& 2 O, 

or, using the mean value theorem, 

Evaluating (3.31) at szü + (1 - s)ù, s E [O, 11, gives 

impiying 

and proving (V2). 

(V2) + (VI): Suppose that (V2) holds; then $(6) = $(û) + 3 6 with $(CI) = 6 4 ,  

so 8 (6 - 6) = $(G - 6) = O. Since W - 6 E Li, to - O = Ci Aiü, 6; E relbdy(K), 

Cixi = 1, Ai 2 O, Ci iinearly independent, $(a) 2 O; but $(G - 5) = O i m p k  

that e(6i) = O, V i. Putting things together, 
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Continuing in this way leads to $(f(tü)) 2 +(f(ü)),  proving (VI). 

(VI) =+ (V2): Suppose that (VI) holds; since 6 - V E relbdy(K) + 6 <KG, (V2) 
holds. 

(V2) + (V2'): Suppose that (V2) holds; Choose P arbitrarily and let Z be any - 
vector in relbdy(K). Define 6 by tü - V = ci?, c > O, and choose d(f) = Nt 5. 

Then 
i 

C 

+(GU) = N ~ - ( C - o )  & - ~ ë = o ,  

implying that $(G) = +(a). Since (V2) holds, 

proving (VZ'). 

(Wi) * (KI): Suppose that (W1) holds; let fi = 5 + sk, I E K, s > O. It foilows 

from (Wl) that 

j(i) - j(5) + A(@ - Z) 2, O, 
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Letting s + O, we get 

( ~ f ( 5 ) ) k  + AL ZIG 6, 

which means t hat 

( ~ f ( 5 )  + AI)  : K- H rc, 

proving ( K1) . 

(Kl) + (Wl): Suppose that (I i l )  holds; we foliow the previous argument in reverse. 

Let k E Ii and k E I'C. (Kl) teiis us that V i in some compact set N, 

where we have strategicaily chosen the argument of D! and s E [O, 11. Notice that 

if g(s) = F(z + sk), then f(9) = DF(I + sk) k; hence, if we define 

g(s) = [ ~ ( c  + s i )  + S l k ]  k., 

then (3.32) says that ij'(s) 2 O. We c m  conclude that a(1) 1 5(0), Say. This gives 

which, upon letting = 5 + k 2, t, Leads to 

Fmdy, we prove that if K is polyhedral, then (V2') =+ (ICI): Suppose (VZ') holds. 

Since K is polyhedral, we need only consider the finite number of generators of K, 

denoted ëi, i = 1, . . . , n k .  For a given ei, there is a set of choices for ~ e i  Yéi K' 
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Figure 21: An edge cone and duai edge cone in R3. 

with ë' f i E i  = O. We label this set N(K, ëi)  and notice that it is a polyhedral 

dual edge cone of IC As the name impiies, N ( K ,  ëi) is duai to the edge cone of Ii' 

based on éi. See Figure 21. Since N(K, ëi)  is also polyhedral, we need only consider 

its finite number of generators, denoted &id,  i = 1, . . . , n ~ ,  j = 1, . . . , n e ,  since 
J 

any Ng. E IP with ë' - NEi = O is generatecl by the fi&'s. This labeiiing is not 

unique, but it suits our needs. Since (V2') holds, for each i 3 compact N, such that 

V Z E N ,  

( ~ f ( i i ) ) e ? ' -  fi& 2 O, 
* - 

where ë' NEia = O, j = 1,. . . , np. 

In order for ~ f ( 5 )  + 1 I : K H IC we need (DJ(z) + l f ) ë i  E IC for each i. This 

is true if 

for j = 1,. . . , nk; and V k; that is, if the image of éi has non-negative inner product 

with ail of the generators of K*. Expanding gives 
- 

r(Z, i ,  j, k, 1)  = Llf(5)ëi + 1ê8 NEkd. 

For k = i ,  
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by (V2'). For k # i, notice that ëi - N&, 2 O because d E I< and M& E IP. W e  

examine the two cases. 

I 
li&k = ei. b, _ max ZEN  ID&)^ 1 

gives r ( i ,  i, j, i, 1 )  2 O. 

- 5 - 
(2) Er - Nrd = O. This means t hat N+, = NEi,t for some j' = 1, . . . , nk; ; 

hence, by (V2'), r(5, i, j, i , l )  2 O. 

Upon considering all i ,  we have a finite number of values for 1, namely the liiWr; 

picking 1 = max(li,i) gives an 1 such that D ~ ( z )  +11: K » K, V I E N. t] 

To show that (V2') + (KI) in general, we present the foliowing example. 

Example 16: Consider the linear system 2 = J(i) = AZ, where 

We look at the right, circular cone K in R3 @en by r 2 d m .  The inward nor- 

mal at the point (a, 6, d a v )  on the boundary of the cone is (-a, -b, 4-1; 
condition (V2') is satisfied: 
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But, test ing condition (KI) yields 

a 

(of + i f )  b 

4iTP 

which wiU not be in # for any red 1. To see this, realize that A projects vecton 

onto the xy-plane and rotates vectors by a in the xy-plane; adding any amount 

of a boundary vector to its image under A camot push the image back into K. 

Algebraicaily, we can check the resdtant vector in the inequality that definea the 

In this case, (V2') is satisfied, but (KI) is not . (371 considers this same example as 

Beispàel5. 

Findy, we observe that the condition (V2') is in fact a necessary condition for 

order preserving flows with respect to a closed, convex cone. 

Theorem 31 If c j i  is monotone *th respect to a closed, convez cone K then 3 N 

compact sud that, V Z E N, ( ~ j ( 5 ) ) é  & 2 O, V é E relbdy(K), zohere ë NE = 0, 

Ni E K*. 

Proot: If 4 is monotone with respect to a c l d ,  convex cone K, then for ë a unit 

vector in IC and e > O 
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$(O) = D&)Z - &, 

and the desirecl result follows. 

From Theorem 30, we know that (V2') and (KI) axe equivalent for polyhedral 

cones, ao (KI) is a necessary and suflicient condition for a monotone flow with 

respect to a polyhedrd cone. 

One might ask whether the condition for strong monotonicity, namely that there 

exists in addition a positive integer rn such that 

is also necessary for polyhedral cones or what the analogous condition in the form 

of (V2') is. This final que3 tion remains unanswered. The following example shows 

t hat this condition for s trong monotonicity is not necessary. 

Example 17: Suppose that our system 1 = f (5)  is given by 

k = Y3,and 

y 1 z3; 
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satisfies D! : O w 0. This gives a monotone Bow with respect to the orthant. 

However, for any neighbourhood N containhg the origin, we have for I = 6, 

so the condition for strong monotonicity faiis. Note that solutions with initiai d u e  

away from the ongin are positive for ail positive. Using Corollary 12 of Chapter 2, 

we see that the directed multigraph for this example consists of a single directed 

cycle with two positive edges. This system induces a s trongly monotone flow even 

though our condition is not satisfieci. 

3.2.2 A Graph Theoretic Approach 

Theorem 26 gives strong monotonicity for super- and sub-solutions G(t)  and ü ( t )  

relative to a closed, convex cone Ii provided that, for any compact set N, 3 1 and 

m such that 

As remarked upon earlier, (3.34) wiU only be able to hold for pointed cones. Based 

on the case of the orthant, we might expect that strong monotonicity has something 

to do with heducibility of the matrix D J ( ~  + II. Irreducibility with respect to a 

proper cone is discussed in [5]; to avoid confusion, the terminology Ii-irreducible is 

used. [5] presents the foliowing equivalences for aa n x n matrix A: 

(i) A : K » K is K-irreducible, 

(ii) No eigenvectors of A are on the boundary of Ii, 
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(iii) Only the trivial faces of K are left inmiant by A, and 

(iv) (A + 1)"' : K \ ( O }  C) relint(K), 

where, in each case, IC is a proper cone. The final item on this list is of immediate 

interest; it is closely related to (3.34). Rewrite (3.33) and (3.34) with 1 replaced 

by 1 - 1 and let A = D ~ ( J ( E )  + ( I  - 1)1; then (3.34) implies (iv) above with rn = 

n - 1. SO, Theorem 26 achieves strong monotonicity with respect to proper cones 

by demanhg that D&) + (i - 1 ) 1  be K-irreducible. W e  could formulate our 

conditions as folIows: for any compact set N, 3 1 and m such that 

: Ii e IC, V 5 E N, and (3.35) 

: K \ (6) H relint(K), V 5 E N. (3.36) 

Of course, by picking 1 large enough, both (3.33) and (3.34) can be satisfied for the 

same 1- 

As in the case of the orthant, we can present the strict sign condition (3.34) 

graph theoreticaily. (3.34) requires that li be closed, convex, and pointed. In fact, 

the upcoming results wiiI depend on whether I< has the same number of generators 

as its dimension; when this is the case, we wiii Say that K is n-genemted. n- 

generated cones have a useful property: the non-negative span of any subset of 

generators yields a face of K. 

We will use a graph based on the faces of the cone. For k E K ,  define 

FZ= {W E K :  3 a > O  such that aii, <, k). 

FI is the smallest face containing & E K. For a pointed, polyhedral cone satisfying 

(3.33) with generators labelleci ëi, i = (1, . . . , nk), we can construct a directeci 

multigraph G Q ( ~ ,  N), where p is a positive integer, on the vertices {fi, . . . , g,) 
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as follows. For each i ,  let = ( D ~ ( ( z )  + (i f 1) 1)Pê;. Draw a directed edge from 

gi to gjt i # j, if ëj E Fhvi , V 5 E N. The foiIowing theorem gives a graph theoretic 

condition for K-irreduci bility. 

Theorem 32 Suppose that I(P) is continuousiy difirentiable in 5 on compact su60 

sets of Rn and Bat for any compact set, N ,  3 1 = i ( N )  such that 

where IC is a pointed, polyhedral cane; then V compact N 

in addition, 1,' is n-generated then 

D&) + i l  is K-irreducible V 5 E N + G ~ * ~ ( I ,  N )  is strongly connected. 

Proof: (e) We prove the contrapositive. Suppose that D ~ ( T )  + II  is Iikeducible; 

then some nontrivial face F of Ii is left invariant by it. Let Ci, i = {l, . . . , nF), be 

the generatom of F, where O < nF < n. The strongly connected subgraph on the 

vertices {gl, . . . , g,, ) has no outward edges. ~ ~ ~ ( f ,  N) is not st rongly connected. 

(+, IC n-geneiated) We prove the contrapositive. Suppose G K , I ( ~ ,  N) is not 

strongly connected; then there exists a strongly connected subgraph on the ver- 

t i m  {gi, . . . , g,, ), 1 2 ni < n, which is not strongly comected to the remainder of 

G. From the rula of constmction and because I< is n-generated, this means that 

D@) + (1 + 1) 1 : 4, . * for each i = (1,. . . , nl}; thus, D@) + (1 + 1)[ 
*@ 

and, hence, ~ f ( 2 )  + I I  leave at least one nontrivial face of K invariant and must 

be IC-redwible. O 
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Remark: The graphs in the examples wiII not change based on. N. 

We provide the foilowing example from [2] to show that the forward direction 

of the theorem does not hold when Ii is not n-generated. 

Exarnple 18: Let K be the proper cone in R4 with generators 

Let ~f be the projection onto the zlztx3 subspace foiiowing by a Linear mapping on 

the range of the projection given by é1 rt ë1+ë2, é2 C )  ë2+& and é3 H &+&; then 

D ~ I C  C sp+{él, é2, ë3). Bet ter yet, ( ~ f )  *& E int ( K )  , V i ,  so D /  is Ii-heducible. 

However, (D!+I)& = 2ë1+ë2, (D f +f)& = 2é2+é3, and (DF+I)& = 2&+ë1. II1 

GKJ (f, N), there is no path from gi to g4 say; the graph is not strbngly connected. 

Most systems wiii not be irreducible; it is desirable to have a result which gives 

us paxtial strong monotonicity with respect to convex cones. Lemma 34 leads to 

the primary result of this section. We wiii need the foilowing lemma to establish 

Lemma 33 Let &, + - , & be the generators of a closed, conuez, pointed cone IC. 

Suppose Uiot El ,  , Zm, m <_ n, genemte a face of K. Then 

Proof: (+) If Fc = sp+{éL, - , L), then the finite list of ways of expressing i, 

as non-negative combinations of the ëi must include each éi, 1 5 i 5 m, in aome 



CHAPTER 3. IWONOTONICITY WTTH RESPECT TO A CONE 98 

combination. If this i s  the not the case, then Fu. is not the smdest face containhg 

5. Adding d of the expressions for 6 and dividing by the total nurnber of such 

expressions gives 6 as a positive combination of aii of the 6. 

(+) By definition, to is in FI if there is a positive a such that ü - a6 E IL To see 

which generators of 1, are in F,, notice that 

kl 

It is clear that only Et ,  - , é, are in Fy. The result follows. 

Lemma 34 For II a pointed, pofyiiedraf cone, if the ordered vertez pair (gi, gj)  is 

strongly connected in ~ ~ ; , ~ ( f ,  N )  tlren (gi, a) is strongly connected in &-,Jf9 N), 

V p 2 1. I/ ZÇ is n-genemted then the converse Iiolds. 

Proofi The proof is by induction on p. The result is true for p = 1. Assume 

that the result holds for a particuiar p > 1. We consider the case p + 1. Since the 

resuit holds for p, we need only show t hat the ordered vertex pair (gi, gj )  is strongly 

connected in G~~ ( f ,  N) if and only if (gi, gi ) is s t rot& connecte J in G~~~~ ( ,f , N) . 
Notice that 

Suppose the generators of Fkp, are labeiied {a,, . . . , Zr,, ëi); notice that ëi must be 

one of them. This gives, using temma 33, 

generators of FbIoi 3 generators of Fgpor, U generators of F'*, U 
U generators of FiPo,, U generators of Fhti; (3.37) 

furthemore, in the multigaph ~ ~ ( f ,  N), there is a directed edge from gi to each 

Sr, - 
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(*) Using (3.37), SEj E FbSi, then ëj E Fh,,i. In fact, this means that all edges 

in G K * ~ ( ~ ,  N) exist in G I ~ , ~ ~  ( f ,  N) as  w d ;  if there is a dwcted pat h from gi to gj 

in G K , ~ ( ~ ,  N)? that same path exists in N) . The claim foilows. 

(G, fi n-generated) In this case, equality holds in (3.37). We use induction on 

the leagth of the shortest directed path from gi to gj in G~, ,+~( / ,  N). Suppose 

the shortest directed path from gi to gi in G ~ ~ ~ + ~  (f, N) has length one, that there 

is a directed edge fiom g; to gj in G~*&, N). This means that ëj E Fie,,, . 
Using (3.37), either éj E FS . or Z j  E FgPvr8 for some S. Ln the h s t  case, we are .* 

done. In the second case, there is a directed path of length two in ~~-, ,(f ' ,  N) £iom 

gi to gj, passing through gr,. We assume the claim holds for a shortest dwcted 

path of length 6. Consider a shortest directed path of length b + l on the vertices 

3, pl, . . . ? Pb, 2, in this order. To avoid a simple contradiction this means that 

the shortest directed path from i jqL to gi in ~ ~ * ~ ~ ( , f ,  N) has length b. The daim 

holds for this directed path by assumption: there is a directed path fiom g,, to  

gj in G-(!, N). We need to show that there is a directed path fiom gi to g,, in 

G ~ , ~ ( ! ,  N). Since ë,, E FkIti,  using (3.37), either ë,, E Fb. or ë,, E Fgp,,, for 

some S. In the tùst case, the edge exists in ~ ~ ~ , , ( f ,  N) and we are done. In the 

second case, thete is a ciirected path of length two in N) from gi to g,,, 

passing thmugh gr,, and we are done. The claim foilows. The lemma is proved. O 

The foliowing example shows that the converse of Lemma 34 does not hold when 

K is not n-generated. 

Example 19: Let K be the proper cone in R3 with four generators, ëi,ë2,ë3, and 4, 

where any t h  of the four generators are linearly independent and El +ê3 = ë2+4. 

Suppose t h d  DJ : El H El + ë2, : & H 3é2 + ë3, and D f : ct & + 2é3. It is 

then easy to check that ~j : 4 c, ë4. ~ ~ ~ ( f ,  N) and ~ ~ , ( f ,  N) are presented in 

Figure 22; ~ ~ , ~ ( f ,  N) contains ô connection which G ~ , ~  (f, N) does not contain. 



Figure 22: G ~ , ~  ( f, N) and G ~ ~ (  f, N) for Example 19. 

The graph theoretic approach offers an advantage over the iinear algebra a p  

proach insofar as one need not calculate powen of the rnatrix D&) + (I + 1)I. 

Consider the foilowing proposition: 

Proposition 35 ~ ~ ( f ,  N),  p > 1 ,  can le  constructed 6y wing  G ~ ~ (  f, N )  and 

the face structure of K .  

Remark: We oker no careful proof of Proposition 35. Intui tively, however, knowing 

the face structure of K and knowing in which smdest face of Ii the image of each 

generator of K under the matrix D,@) + (1 + 1 ) l  lies d o w s  us to determine where 

each generator is mapped by higher powers of the matrix. The gaphs can be 

generated induct ively from G ~ J  ( f , N) . 
We arrive at the foliowing resdt, which wiii lead us to the result we wiU use in 

the examples. 

Theorern 38 Suppose Wot f(5) is continuouîly diffenntialle in É on compact sub- 

sets of Rn and Uiat /or any compact set, N,  3 i = I(N) such Bat 

where Ii is a pointed, polyhedsal cone in Rn. Further ossume that for N and 1 

cliosen as alove, 
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for some uector k E K \ {O); then 

fort  > O  ( t  2 0  i / L g O ) .  

Coroilary 37 will prove particularly usefui in applications; we suppose that the 

key hypotheses apply to the orthant (where solutions for chemical kinetics or epi- 

dernioiogical problems iive), eliminating the need to check ail compact sets. In this 

case, the rndtigraph G~~ ( f ,  N) is r e p l a d  by G~~ ( f ,  O), where we are assuming 

that the graph hao the same structure at ail points of the positive orthant. 

Corollary 37 Assume tliat 8 LP positiuely invariant and that the positivity assump- 

tion bol& ( i ( t )  > Ô for t > O ) .  Suppose that f (5 )  is continuowly differentiable on 

6 and UIat 3 1 such that 

zuhere K is a pointed, polyhedral cone in Rn. Further assume that for 1 chosen as 

above, 

V & E Fi,gi is strongly connected to ail o h e r  vertices in ~ ~ ~ ( f ,  O),  

for some uector & E P \ { O ) ;  then 

At first glance, it may seem that Theorem 36 demands more than its analog in 

Chapter 2, since requiring that flf preserves h' demands that the system induces 
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an order presenring flow with respect to K. We had results in Chapter 2 guarantee 

ing monotonicity in some components when the system does not induce an order 

preserving flow with respect to an orthant. For the partial monotonicity results 

of Chapter 2, it is the case that there is a simple polyhedral cone with respect to 

which the flow is order preserving. Ushg the hypotheses of Coroilary 12, we state 

the following resdt. 

Theorem 38 If(ui,vj)  is positiuely (negatiuely) consistently strongly connected in 

~ ( f ,  a), then the systern is order preseming with respect to o polyhedrai cone with 

generators that are standard bus i s  uectors or the negatiue of standard bapis uectors. 

Proof: Without loss of generality, use i = 1 and, as in the prwf of Theorem 9, 

partition the system by definiog the disjoint sets 

QI = {VL : (vI, vk) is positively consistent'y strongly connected in ~ ( f ,  Q) ), 

Q2 = {vk : (vi, vk)  is negatively consistently strongiy connecteci in G(J, O ) ) ,  

'R = {ut : (v l ,  vk )  is not strongly comected in ~ ( f ,  a)), and 
S = {vr : ( v l ,  vk) is inconsistently strongly connected in ~ ( f ,  R)). 

Relabel the vertices so that 
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With the corresponding relabelling of xi ,  1 5 i 5 n, the system (2.7) takes on the 

form 
ki = h ( 2 ~ , - - * ~ ~ ) ,  1 <iI<h, 

4 = fi(xqz+l,.--,xr), q2 + l  Si sr, 
x i  = fi(xi,-.-,2;i), r + l S i < n .  

In this set ting the Jacobian matrix hao the form 

where the '+' signs represent non-negative entries, the ' -' signs represent non- 

positive entries, the zeroes represent entries which are identicdy zero, and 'un- 

kaown' is written in biocks for which we do not have sign information. The polyhe- 

dral cone K presecved by this DI has extreme rays ëit i = 1,. . . , qz + 2(n - r + l), 
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each +I or -1 times a standard basis vector, where 



CKAPTER 3. I\lûNOTONICITY WlTH RESPECT TO A CONE 

It is easy to check that this cone is preserved by DJ: 

ail images of extreme vectors axe in K.  0 

By Theorem 35, suppoaing that our system does induce some monotonicity, 

assuming that t here exists a convex cone K satisS;ig (3.33) places no additionai 

restrictions on our sys tem. 

Remark: In CoroUary 12, we concluded that the partial derivative of xi with 

respect to xi was of strict sign. This foilows in Theorem 35 as weii. With the vertices 

relabelled as in the proof of Theorem 38 and Ii so defined, ( ~ f ( l )  +(~+l ) l )~- '& E 

relint(Ii). As in the proof of Corollary 29 with & = El, it follows that the partid 

denvative of xj, 1 5 j 5 q2, with respect to XI (the relabelled x i )  is of strict sign. 

Example 20: We reconsider the problem of Example 14, the chernical reaction 

with 61 > ai and a* > ti2. The Jacobian matrix for this problem was 

The proper cone used in that example had extreme rays 

where 
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From the work of Example 12, we already know that 

Let us see if the inequalities are strict. We WU construct a graph on two vertices, 

gl corresponding to 6 and corresponding to A Now, 

- - al(& - a~)k(Al(t))~~-l(A*(t))~~ 

= a multiple of 8, 

(DA& = h ( ~ ~  (t))u1-1(~2(t))a2-1 

= a positive multiple of 6; 

hence, ~ f + l f  : 6 u Ili& l1 > 0, and D/+U : b ct relint(K) for 1 > O. Our graph 

has but a single edge: 

Since gz co~espoads to extrerne ray ël, we can conclude by Theorem 36 that the 

partid derivatives in (3.40) have strict sign for t > 0. 

Given a particular system (2.7), how does one find a cone I !  which satisfies the 

conditions of the theorems in this chapter? This is a very difncult question. The 



majority of the literature in this area is abstract with no practical focus. An 

extremely usefd contribution was made by J. Vandergraft in [36]. The backbone 

of this work is Perron-Frobenius theory. We present some results from this paper. 

Theorem 39 If K is a solid cone and A2 E EK, V I E I i ,  then 

(i) p(A), the spectral radiw of A, is an eigenvalue; 

(ii) The degne of p(A) is no srnaller than the degree of any other eigen- 

value hauing tfke same modulus; and 

(5) IC contains an eigenvector corresponding to p( A). 

Furthemore, conditions (i) and (ii) are suhient  to insure that A leaves inuariant 

a sofid cone. 

Theorern 40 A satisfying AZ E Ii, V 5 E K ,  is K-imducible for some solid cone 

Ir' 

(i) i f  and only i f  no eigenvector of A lies on the boundary of h'; 

(ii) i f  and only i f  one eigenvector lies in the interior of K;  

(iii) implies p( A) is a simple eigenvalue, any other eigenvalue with the 

same modulas is abo simple, there is an eigenvector corresponding to 

p(A) in the interior of K, and no other eigenvector lies in Ir'. 

Both of the above theorems requise that the cone Ir' be solid. This means that 

the cone mus t be of the same dimension as the space in which i t raides. As i t t u n i s  

out, we wiU often be able to obtain results from cones of lower dimension than their 
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space (for example, two-climensional cones in R3). To fiad non-solid cones, first find 

invariant subspaces of A and then restrict to these subspaces. Of course, having 

found such a cone, one can rewrite the matrix A restricted to the subspace spanned 

by the cone and verify that the conditions of the above theorems are satisfied. We 

wiU see this in the examples. 

Work on convex polytopes is applicable to the problem of finding the facial 

structure of polyhedrd cones, which is required for the strong monotonicity resdts. 

There is work on algorithms for finding the convex h d  of a set of points or the 

representation of convex polyhedra in terms of faces in (251 and [6]. [4q offen 

an advanceci discussion of the theory of convex polytopes. The discussion of face 

structure includes program code which produces a minimal system of facet-defining 

inequalities fsom a set of vertices. Facets are the faces of a polytope of one lower 
L 

dimension than the polytope. 

The following result will prove usefui in the examples. 

Proposition 41 Let VI, V2, ü3, and i4 E R3, zOith any thme of the four vectors 

leing Iinearly independent. Suppose that 

where aiaza3ad # O; then CI, ü2, i3, and ü4 genemte a polyhedral cone if and only 

if two of ai, a*, a3, and a4 are positive and two are negative. 

Proof: (e) The vectors vi can be scaled and relabelled so that (3.41) takes the 

fonn 

Cil +UZ = G3 +i4. (3.42) 

With this labeiling, when the vectors generate a polyhedral cone, the two di- 

mensional faces of the cone are FI> = sp+{iiil, &), FI,( = s p + ( W ~ ,  6 4 1 ,  F2,3 = 
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sp+(Wz,tÜ3), and FZq4 = sp+{zG2,W4). The vectors generate a polyhedral cone 

when for each face the two vectors 6; not in the face both Lie on the same sicle of 

the plane containing the faae. Suppose this is not the case: assume that W2 and t ü ~  

Lie on opposite sides of Fi3. The line segment comecting <uz and 4 must intersect 

the plane spaaned by 6, and G3. Mathematicdy, for some r, s, and t ,  O < t < 1, 

using (3.42) to eiiminate W4 gives 

Since any three of the four vectors are assumed to be Iinearly independent, this 

gives a contradiction. 

(+) Suppose that one ai is negative and the others are positive; then, after scaling 

and relabelling , (3.41) gives 

This means that Cl is an interior vector of the polyhedral cone generated by &, 

2ù3, and G4, contradicting the assumption that d four vectors are extreme rays. 

The argument is simiiar if one ai is positive and the others are negative. 

Suppose that ali four ai are positive; then, after scaling and relabeliing, (3.41) 

gives 

W ~ + ~ + G ~ + ~ ~ = O .  (3.43) 

This suggests that O is in the interior of the cone generated by the Wi, au unnerving 

implication. Notice that any vector can be expressecl as a linear combination of 

three of the (linearly independent) a: 
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Using (3.43), we have for y > O 

sure enough, any vector can be expressed as a positive combination of the 6; for y 

large enough. This means that any vector is in the interior of the cone generated 

by the <oi, a contradiction since the cone was assumeci to be convex. The argument 

is similai. if aJl four ai are negative. 

The only remaining possibility is that two ai are negative and two are positive. 

Notice that Proposition 41 also appües if we have four vectors in Rn satisfying 

the key hypotheses since we could simply work in the threô-dimensional subspace 

spanned by the vectors. 

3.3 Examples 

When applying the graph theory of this chapter in the following examples, we WU 

never use G~&, 0) , p > 1. To simplify notation, ive wiil use the label G K ( ~ ,  O) 

for the case p = 1. 

Example 21 (Chemicai Kinetics): We retuni to Example 7, considering the 

chemicd reaction 
k 

Ai +A2 - A39 

which leads to the systern of differential equations, i = f(l), 



P2 = -kzIx2,  and 

x3 = +kx1x2. 

Using the machinery of the previous chapter, we could not d e t e d e  the signs of 

the partial derivatives of x3(t) with respect to either xl (0) or ~ ~ ( 0 ) .  Let us try to 

apply the work of this chapter to this problem. We have 

This matrix ~ f '  + II has 

eigenvalue 1 w i t h corresponding eigenvecton 

eigenvalue 1 - k ( z l  + x2) with corresponding eigenvector ( j- 
For 1 sufliciently large, the maximal eigenvaiue of D!+~I is 1; using Theorem 39, we 

know that any solid cone that is preserved by DJ must contain exactly one of the 

eigenvectors corresponding to eigenvalue 1. Since we wodd like to draw conclusions 

on the signs of the partial derivatives of 24t)  with respect to either x1 (0) or ZZ(O), 

our cone must include the x and y axes. After some thought (notice that the x 

and y axes are mapped by D! to positive multiples of the vector (-1, - 1 , 1 ) ~ ) ,  we 

consider the proper (polyhedml) cone K with extreme rays 
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Figure 23: The proper (polyhedrd) cone Ir' for Example 21. 

drawn in Figure 23. t is positive in K, which contains the x and y axes; hence, 

if K satisfies the essential hypothesis of Corollary 24 (if DF preserves Li), we will 

be able to conclude that the two derivatives of interest are both non-negative. We 

examine the i m y p  of the extreme rays of I< under DF. 
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Figure 24: G&, 0) for Example 21. 

DF presemes the cone K! By CoroHary 24, we can conclude that for t 2 O 

- 2 O and - 
axi.0 

ax3 2 O* 
h . 0  

Now, if DJ+ II is IC-irreducible, then the inequalities above are strict. We can use 

the graph theoretic approach of Corollary 37; we draw a graph on three vertices, 

with vertex gl (g2,g3) representing extreme ray ë, (ë2,ë3). Figure 24 presents the 

graph G&, 0) for this example. In this case, vue can not apply Coroiiary 37, but 

all hope is not lost. 

Notice that the image of aii of the extreme rays under D! lies on the Line 

containhg ë3- This means that the two dimensional cone KI (16) with extreme rays 

éI and é3 (ë2 and é3) is preserved by DI. The graph G~ (f, O) ( G ~ ?  (fi O)) consists 

of the subgraph of G& O)  on the vertices gi and a (g2 and h). CoroUary 37 

appiies in each case, letting us conclude t hat earlier partial derivatives inequd ties 

are strict for t > 0. 

The cones Ih and Kz are not solid; hence, Theorem 39 and Theorem 40 do 

not apply. We can however constnict a matrix representing the transformation ~f 
restricted to the two dimensional subspace corresponding to each cone; then the 

theorems will apply. We do this for KI .  The extreme rays are éI and E3. The 
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images under L l f  are 

hence, the transformation restricted to the two dimensional subspace spanned by 

ël and ë3 has the form 

A has maximal eigenvalue O with corresponding eigenvector [l, O]* = El E Ih . This 
agrees with the claims of T h r e m  39; by Theorem 40, we conclude that the matrix 

is not 16-irreducible, agreeing with the graph G~~ (f, O),  which is not strongly 

connected. A sirnilar check of K2 c m  be done. 

Example 22 (Chernical Kinetics): Consider again the mechanism of Exmiple 8, 

namely 

This type of chain reaction was examineci in [18]; elaborate arguments were required 

to established the monotonicity results presented in Table 8, where '++' means 

positive for t 2 O, '+' means positive for t > 0, 'O' means the derivative is zero 

for a.ll time, and '* /+' means the derivative is positive for s l ,~ 5 x2,0, il < O and 
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Table 8: Signs of concentrations with respect to changes in initial concentrations 

for Example 22. 

of both signs if zip > 128. This mechanism leads to the system of differential 

equations, i = J(z), 

with Jacobian matrix 

The matrix D! + 1 I has 

eigenvalue I wi t h corresponciing eigenvectors (i2) rnd (:l),md 

eigenvalue 1 - k l y  - klxl  - k-i with corresponding eigenvector 

(!l)- 

Again, for I sdciently large, 1 wiil be the maximal eigenvalue; hence, any cone t hat 
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Figure 25: A proper (polyhedral) cone I !  for Example 22. 

we wish to use to establish some monotonicity results will have to contain exactly 

one of the corresponding eigenvectors in its interior. 

The first cone we examine is the two dimensional proper (polyhedrai) cone h; 

in R3 with extsme rays 

pictured in Figure 25. The images of the extreme ra LYS under D/ are eaaily calcu- 

This cone is presewed by DA we cm conclude that, for t 2 0, 

az1 - a 3 2  1 O, - az3 2 O, and - 2 O. 
az3@ az3,0 
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Using CoroUary 37, we draw a graph on two vertices, with 

vertex gi representing extreme ray (!) md 

vertex 92 representing extreme ray (3 
Since the graph is strongly connected, we can conclude that the above partial 

derivatives are of strict sign for t > O, giving us the bottom row of Table 8. 

The second cone we examine is the three dimensional proper (polyhecirai) cone 

16 in R3 with the four extreme rays 

drawn in Figure 26. We caicdate the images under D/ of the extreme rays. 
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Figure 26: A proper (polyhedrai) cone IG for Example 22. 

. In each case, D!+ l l  wili map the extreme ray into the cone for 1 sufliciently large; 

the cone is preserved by ~ f .  Considering the 2-axis and negative y-axis, we can 

coaclude that for t 2 O 

6 x 1  - 3x1 2 O, - h 2  < 0, - 5 0 ,  and - , , 
a q o  ax2 ,o -  azio 3 ~ 2 ~ 0  - 

Using CoroUary 37 and the above caidations, assuming 1 is chosen sdiiciently 

large, we would draw a graph on four vertices with each vertex comected to the 

other three. This strongly comected gaph wodd teil us that the above partial 

derivatives are ail of strict sign for t > O. This gives the results in the upprr Ieft 

tweby-two block of Table S. 

Findy, we consider the three dimensional proper (polyhedral) cone K3 in R3 
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Figure 27: An expanding proper (polyhedral) cone hj for Example 22. 

with the thtee extreme rays 

pictured in Figure 27. Notice that since xl = 12, this cone is expanding if il < O. 

Once again, we calculate the images under D! of the extreme mys. 

for 1 sufnciently large, DI + II maps each extreme ray into 16. Since the cone is 
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Figure 28: GK, (f, 0) for Example 22. 

preserved by DJ we can conclude that 

and, by symmetry in X I  and 22, 

Using Corollary 37, we draw a graph on t hree vertices, with 

vertex g2 representing extreme ray 

vertex g3 representing extreme ray 

the graph is preaented in Figure 28. The graph is not stfongly connected, so 

+ 11 is not K-irreducible. But vertex gl , corresponding to extreme ray [l, O, 0IT, 

is strongly connected to all other vertices; hcxe, by CoroUary 37, assuming I l  < 0, 
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Figure 29: The proper (polyhedrd) cone Kt for Example 23. 

and, by symmetry in X I  and xz, 

Example 23 (Epidemiology): W e  consider again the SIS epidemic mode1 of 

Example 9. The Jacobian matrix for this problem is 

The work of Chapter 2 gave us some results, but we must stiil prove that 

8x1 ax2 <Olt > 0,- >O,t>O, and az2 

W O )  a m )  az2(0) > O* t L O* 

Consider first the proper cone KI with extreme rays 

pictuseci in Figure 29. W e  calculate the images of the extreme rays under ~ f :  
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Figure 30: The proper (polyhedral) cone K2 for Example 23. 

KI is preserved by DJ and induces the graph 

which, upon applying Coroilary 37, gives 

h 2  - 8 ~ 2  >O,t >O,  and - 
8x1 (O) 

&(*) > 09 " 0- 

Consider second the proper cone ri2 with extreme rays 

drawn in Figure 30. Compared to KI, one extreme ray has changeci: The new 

extreme ray has image (-7 + /3xi)ë2, meaning that the same graph is induced by 

DE Coroilary 37 teils us that 

Example 24 (Chernical Kinetics): We retm to the Michaelis-Menten enzyme 

kinetics mode1 of Exampie 10. For eôse of reference, we present the table of partial 

derivative signs in Table 9. In the work of Example 10, we were only able to obtain 
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Table 9: Behaviour of concentrations with respect to changes in initial concentra- 

tions for the Michaelis-Menten system. 

the signs in the bottom row of Table 9; now, we WU apply the work of this chapter. 

The system of ordinary differential equations for this problem is 

The Jacobian matrix for this problem is 

Notice that X I ,  x2, and x3 do not depend on xd; we can consider their three- 

dimensionai subsystem. In this c m ,  the 3 x 3 Jacobiao matrix DJ wili be the 

upper leR 3 x 3 block of the Jacobian matrix for the full system. 

Letting MI = q ( 0 )  +x3(0) and Mz = x2(0) +x3(Û) +x4(0), it is easily observable 

that +&) 5 Mi and xi ( t )  5 M2, i = 2,3,4, V t 2 O, since x2 + ii3 + Z4 = O and 

k1 + & = 0. 
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Figure 31: A proper (polyhedra) cone ICI for Example 24. 

Consider hs t  the tkee-dimensional proper (polyhedrd) cone ICI in R3 with 

e'xtreme rays 

drawn in Figure 31. Notice that ëI + é3 = é2 + é4; by Proposition 41 (and as 

Figure 31 indicates), I& is a polyhedral cone. The four faces of k are given by 

FIv2 = sp+{&, 821, Fi,4 = sp+{&, E l ) ,  = sp+{&, &), and F3,4 = SP+{?,&),  

where s p i  denotes all non-negative combinations of the vectors Lsted. We calculate 

the images of these extreme rays under D/ + II, for appropriate choices of L. 
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Figure 32: GK, (f, 0) for Example 24 

Picking 1 = kl(M1 + x ~ ( 0 ) )  f ki + k2, say, guaranteea that h; is preserved by 

D!. Using the known face structure of KI, we conclude that ~f + II maps EL to 

FIA, ë2 to F2f ,  ë3 to &3, and 4 to the ioterior of KI. The associateci mdtigraph 

GK, (f, O) is given in Figure 32. Applying Corollary 37, we can conclude that for 

t > O 

Next consider the threedimensional proper (polyhedral) cone IC2 in R3 with 

extreme rays 
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Figure 33: A proper (polyhedral) cone 1 '  for Example 24. 

presented in Figure 33. Notice that ëI + ë3 = ë2 + ë4; by Proposition 41 (and as 

Figure 33 shows), K2 is a polyhedral cone. The four faces of h; are given by F1.2 = 

sp+{él, &), FlVr = sp+{él, é4}, F 2 j  = sp+{&, EJ), and F3A = sp+{ë3, gr},  where 

sp+ denotes d non-negative combinations of the vectors listed. Again, calfulate 
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Picking 1 = kl (Ml + hl2) + k-l + ka guaxantees that Df preserves h; and, using 

the face structure of 16, that the image under ~ j +  LI of is in F1.2, the image of 

éz is in fiw2, the image of é3 is in the interior of K2, and the image of ë4 is in Fa+ 

G~~ (f, 0) is presented in Figure 34. By Coroiiary 37, K2 lets us conclude t hat for 

Notice fiom the work with Ki that the two-dimensional cone with extreme rays 

is preserved by D f.  To avoid the minus signs, consider the two-dimensional proper 

(polyhedral) cone & in R3 with extreme rays 

drawn in Figure 35. Repeating carlier work, the images under D/ + I I  of the 
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Figure 35: A proper (polyhedral) cone 16 EOT Example 24. 

extreme rays are 

Once again, picking 1 = kl(Ml + +12) + k-l + k2 guarantees that the extreme rays 

axe mapped to the relative interior of 1i3 by llf + 11, implying that the multigraph 

(f, O) is strongly connected. Applying Corollary 37 d o w s  us to conclude that 

for t > O 

The partial derivative results for x4 wili require cones in four dimensions, adding 

new difficulties because we can no longer picture things. There is future work to 

be done investigating the face structure of cones in higher dimensions; we will see 

where this cornes in. Ludrüy, for this problem a simplification occurs. 



CKAPTER 3- IlfOhrOTONlCITY WTH RESPECT TO A CONE 

Consider the proper (polyhedral) cone h; with extreme rays 

IC4 is a thedimensional cooe in B4. The images of the extreme rays under ~ j +  1 I 

Pick 1 = kl(Mi + M2) + k-l +/Q to guarantee that DI preserves K4. As it turns out, 

in this case we can draw the multigraph G ~ ,  (f, O) because the face stnicture of & 
is reasonably simple to see: the three extreme rays are the one-dimensional faces; 

there are three two-dimensional faces, each consisting of non-negative combinations 

of a pair of extreme rays; and there is one threedimemional face consisting of the 

non-negative combinations of the three extreme rays. GK4 ( f ,  O) given in Figure 36. 

Applying Corollary 37, we can conclude that 
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Figure 36: Gn-, (f, 0) for Example 24 

We consider the proper (polyhedral) cone IC5 with extreme rays 

Notice that El  + ë4 = E2 + Z3; by Proposition 41, Kg is a p01yhedPal cone. The four 

faces of Kg are given by FlV2 = sp+{é l ,  ë2), FIJ = SP+{&, ë3), F2.4 = sp+{&, &), 

and F3,,4 = spf{ë3, ë4), where sp+ denotes d non-negative combinations of the 

vectors listed. The images of the extreme rays under + II are given by 
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[XI 
Figure 37: GK, ( f ,  6) for Example 24 

Certainiy, then, for 1 = kl(Ml + Mz) + kdL + k2, 16 is preserved by D/. Since we 

are lucky enough to know the face structure of IG, we can see that D! + II maps 

éI and é2 into the relative interior of Kg. DI + LI maps ë3 to FLt3 and maps ë4 to 

F2& GKs(J,O) is drawn in Figure 37. Since contains the z3-axis, 14 2 O in 

II&, and gz is strongly connected to d other vertices in G& (f, O), by Coroiiary 37, 

we can conclude that 
h 4  > O, foi t > 0. 

8x3(0) 

The final resdt we wish to obtain is 
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We consider the proper (polyhedrd) cone I(e with extreme rays 

, and é4 = 

In this case, éI + ë3 = ë2 + 4; by Proposition 41, & is a polyhedral cone. The four 

faces of h> are given by FI,* = @{el, ëZ ), FLt4 = s p f { ë l  y ë~), F2,3 = ~p+{&, ë3)? 

and F3,1 = spf {ë3, ë4). The images of the extreme rays under D! + 1 I ore given by 
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Figure 35: G ~ ,  (f, 0) for Example 24 

Again, for 1 = kl(Ml + M2) + k-L + b), 16 is preserved by ~ f .  This time asound, 

we see that ~ j + l l  maps ël to éz to relint(K6), ë3 to F3,(, and ë, to W e  

draw G&({, O )  in Figure 38. Since K& contains the zl-axis, z4 2 O in ZG, and 

gl is strongly comected to d ot her vertices in Grc. (l, O), by Corouary 37, ive c m  

conclude that 
3x4 > 0, for t > 0. 

q o )  



Chapter 4 

Directions for Future Work 

In [Ml, chin reactions of the form 

were analyzed. In each case, the arguments were quite lengthy and involved. It 

would be interesting to attempt to apply the methods of Chapter 3 to these general 

problems. 

Of course, the face structure of any cones that might seem helpful for these 

problems would need to be known: a second topic for hiture work is monotonicity 

with respect to cones in higher dimensions. Understanding face structure is cmcial 

to the final theorems in this thesis. 

At this stage, we have no sutncient conditions for stroag monotonicity with 

respect to non-polyheral proper cones. 
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It wouid also be nice to fmd a necessary condition for strong monotonicity. As 

we saw in Example 17, the sufficient condition that has proved usefui in this work 

is not necessary- 

A carefd proof of Proposition 35 shouid be developed. 

There me similar graphs to those in Section 3.2.2 (en;,(!, N) ) in the literature 

([2], [3]). An exposition of these graphs wouid prove interesting. 
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