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Abstract

The modeling of the soft-output decoding of a binary linear block code using a Binary Phase

Shift Keying (BPSK) modulation system (with reduced noise power) is the main focus of this

work. With this model, it is possible to provide bit error performance approximations to help

in the evaluation of the performance of binary linear block codes. As well, the model can be

used in the design of communications systems which require knowledge of the characteristics of

the channel, such as combined source-channel coding. Assuming an Additive White Gaussian

Noise channel model, soft-output Log Likelihood Ratio (LLR) values are modeled to be Gaussian

distributed. The bit error performance for a binary linear code over an AWGN channel can then

be approximated using the Q-function that is used for BPSK systems. Simulation results are

presented which show that the actual bit error performance of the code is very well approximated

by the LLR approximation, especially for low signal-to-noise ratios (SNR). A new measure of the

coding gain achievable through the use of a code is introduced by comparing the LLR variance to

that of an equivalently scaled BPSK system. Furthermore, arguments are presented which show

that the approximation requires fewer samples than conventional simulation methods to obtain

the same con�dence in the bit error probability value. This translates into fewer computations

and therefore, less time is needed to obtain performance results.

Other work was completed that uses a discrete Fourier Transform technique to calculate the

weight distribution of a linear code. The weight distribution of a code is de�ned by the number

of codewords which have a certain number of ones in the codewords. For codeword lengths of

small to moderate size, this method is faster and provides an easily implementable and methodical

approach over other methods. This technique has the added advantage over other techniques of

being able to methodically calculate the number of codewords of a particular Hamming weight

instead of calculating the entire weight distribution of the code.
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Chapter 1

Introduction and Background

In today's increasingly connected world, people are communicating more frequently, and

transmitting trillions of bits of information to one another, whether as voice, video, or

data. Transmitting and receiving this information reliably and e�ciently is very impor-

tant to the users. Without reliable communications techniques, the data transmitted may

be corrupted by noise, and the value of the information may be lost. E�cient communi-

cation techniques also tend to lower the cost of communicating for everyone. These two

quality of service requirements are met through the advent of new digital communications

algorithms and methodology and through their eventual implementation.

The communications engineer aims to provide techniques and algorithms such that

reliable communications can be realized. To this end, to gauge the reliability of a com-

munications system, the bit error probability performance of a channel code is often

used. The channel code is speci�cally designed to introduce known redundancy into the

information bit stream so that the corrupting noise does not make the transmitted code-

word unrecognizable at the receiver. However, errors in the decoding of a codeword can

still occur. Bit error performance curves depicting the bit error probability for a given

signal-to-noise power ratio (SNR) are useful in determining the reliability of a code.
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CHAPTER 1. INTRODUCTION AND BACKGROUND 2

Communications systems are complex, being comprised of many interacting compo-

nents. To better the performance of a system, knowledge of channel characteristics can

be used to better design the system components. Figure 1.1 depicts a communications

system, where the question-marked boxes are the components in the system that should

be designed with some prior knowledge of the characteristics of the channel. It would be

desirable to be able to replace the complex channel encoder, channel and channel decoding

system by a simpler model so that design engineers can concentrate on these question-

marked components of the system. An example of this would be combined source-channel

coding schemes where the source coder quantizes the incoming bit stream based upon the

characteristics of the channel.

? ?channel
channel
decoder

channel
coder

Simple Channel Model

Figure 1.1: Replacement of the Channel Model with Simpler Model

This replacement is addressed in this thesis and is the motivation for this work. This

work is completed by investigating soft-output decoding techniques and by studying the

probabilistic behaviour of the output values.

To assist the communications engineer with the design of coding systems, mathemat-

ical bounds exist that provide a rough estimate of the performance of a code without

having to actually simulate the code on computers. In many cases, the structure of the

code is required to customize the bounds. A common property that is used is weight dis-
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tribution of a code. The weight distribution of a code is a table of values of the number

of codewords of the code which have a given number of ones in them. The number of low

weight codewords is obtainable from the by the weight distribution of the code and these

codewords are more likely to be confused with other codewords in the presence of noise,

making their contribution to the error performance of a code large. A bound that is often

used in digital communications is the Union Bound. This bound takes into account the

sum e�ect of all possible errors which can occur for a code. Using the weight distribution

of a code, the Union bound can be easily calculated [1, 2].

Methods to obtain the weight distribution of a code currently involve traversing the

trellis of the code and accumulating the weight of the paths through the trellis by mul-

tiplying and accumulating polynomials representing the path weights. These methods

prove to be tedious and complicated. An easier mathematical approach to this problem

is desirable. One such approach is also presented in this thesis, based upon the raising a

modi�ed state transitionmatrix of the code to a power equal to its length, and performing

an inverse Discrete Fourier Transform.

Before the work is presented, some background information on soft-output decoding

techniques is presented as a foundation for further discussions. As well, the channel model

used for this thesis is described below.

1.1 Assumed Channel Model

Suppose codewordm is to be transmitted over a channel as presented in �gure 1.2. The

codeword is a vector of n bits of value 0 or 1. The vector nature of the codeword is

represented by the bold font of the vector name and will be consistently applied through-

out this thesis. The original codeword m is then modulated using a Binary Phase Shift

Keying modulation scheme. Essentially, this means that the zeros have been mapped to
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�1's, with the ones unchanged, producing the modulated codeword s. More informa-

tion on BPSK modulation is provided in section 2.1. The modulated codeword is then

transmitted over the channel and is disrupted by channel noise � [1, 3].

Receiver
x(t)s(t)

�(t)

fmig fm̂ig
Modulator

Decoded bitsInformation bits

Figure 1.2: AWGN Channel Model

The noise vector � is comprised of independent and identically distributed (i.i.d.)

Gaussian random samples with mean, 0, and variance, N0

2
. These facts characterize the

channel as an Additive White Gaussian Noise (AWGN) channel. The codeword x is

received at the receiver and is then decoded to obtain the decoded codeword m̂.

The probability density function of a Gaussian random variable becomes important

in discussions of the probability of bit error for the received codeword since the AWGN

channel is assumed. This probability density function is given by,

fX(x) =
1p
2��2x

exp
��(x� �x)2

2�2x

	
: (1.1)

In particular, for the noise, �, the probability density function is modi�ed with a mean

of 0 and a variance of �2� =
N0

2
to yield,

f�(�) =
1q
2��2�

exp
�� �2

2�2�

	
: (1.2)

The codewords are n bits in length, and the noise samples are independent and identi-

cally distributed with the samemean and variance. The multivariateGaussian probability
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density function is given by,

f�(�) =
1

(2�)n=2(�n� )
exp

�
�

nX
i=0

�2i

2�2�

�
=

1

(2�)n=2(�n� )
exp
n
�jj�jj

2

2�2�

o
=

1

(2�)n=2(�n� )
exp
n
�jjx� sjj

2

2�2�

o
; (1.3)

where the relationship � = x� s, in vector form, has been used from �gure 1.2.

There are many ways in which the received codeword may be decoded. A brief synopsis

of decoding practices is provided in the next section to help tie the ideas of simulations

and bit error performance to the approximation that is the main contribution of this

thesis.

1.2 Decoding and the Use of the Log Likelihood Ratio

Three main classi�cations of decoding techniques exist for the decoding of a received code-

word: hard decision decoding; soft-decision decoding; and soft-output decoding. Each of

these will be brie
y described for an understanding of decoding practices.

Hard decision decoding involves the immediate quantization of each component of the

received codeword using a threshold value of 0. A value of 0 is assigned for a negative

received component and a 1 for a positive component. This method, although simple in

implementation, does not produce the best possible results.

Soft-decision decoding can be used where the actual decisions about the received

bits of the codewords are not made until some further processing is carried out. Noting

the structure of the Gaussian distribution, to minimize the block error probability, the

further processing includes the search for a BPSK-modulated codeword which minimizes
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the squared Euclidean distance between two codewords. The squared Euclidean distance

between the received codeword x and the ith modulated codeword of the code, C, is given

by

D =

nX
j=1

(xj � cij)2

= jjx� cijj2: (1.4)

The smaller the squared Euclidean distance between two vectors, the more likely that

the codewords are the same and therefore, the more likely the received codeword will be

decoded correctly. Note that the term in the exponent of the probability density function

of (1.3) contains the squared Euclidean distance measure explicitly.

Soft-decision techniques make a hard decision at the end of processing to determine

the bit value, and these methods are known to minimize the probability of block error

rather than the probability of bit error [1]. The Viterbi algorithm is an example of such

a soft-decision decoding technique. This algorithm is applicable to any code which is

representable by a trellis. Since linear block codes are representable by a trellis [4], the

algorithm can be applied. The concatenated bits values of various joined trellis branches

constitute a path through the trellis. This method is a maximum likelihood approach

and calculates a metric along the paths and chooses the path with the minimum total

metric at the end of the trellis [1]. Therefore, this minimizes the probability of codeword

error, but not necessarily the bit probability error [4]. The soft-output Viterbi algorithm

was later developed to not only provide the maximum likely path, but also an indication

of the con�dence in this path [5].

Soft-output decoding techniques produce the probability of a given transmitted bit

being a certain value (0 or 1) and can be used as a level of con�dence in the value of the
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bit. These techniques di�er from soft-decision techniques in two key ways:

1. these techniques minimize the bit error probability of a code, rather than minimizing

the block error probability; and

2. the soft values obtained (probabilities) can be used in iterative decoding techniques,

for example, as used with turbo codes.

Bahl et al. derived an optimal soft-output decoding method (BCJR) for codes rep-

resentable by a trellis. The BCJR algorithm, which is also known as the \Forward-

Backward" algorithm, traverses a trellis and attempts to calculate the a posteriori prob-

abilities (APP) of the states and transitions in the trellis. That is, given the received

codewords, what is the probability that the bitmk of the original codeword was a value of

i (i.e. Prfmk = ijxg). This is done by traversing the trellis in the forward direction and

calculating transition probabilities based on the vector x received thus far. The multi-

variate probability density function of (1.3) is used for the transition probabilities. After

the entire vector has been received (all n symbols or bits), the probabilities are updated

backwards through the trellis to the beginning, where the APPs are �nally calculated.

With the APPs, the bits can be decoded by noting that the probability of a bit being

either a 0 or 1 is greater than 0:5.

In 1993, Berrou et al [6] used the idea of the log likelihood ratio (LLR) to shift the

decision threshold to 0, with the sign of the LLR determining the bit value. The LLR for

the kth bit of the original codeword m was de�ned as,

LLR; �(mk) = log
Pr
�
mk = 1jx	

Pr
�
mk = 0jx	 : (1.5)

Note that Pr
�
mk = ijx	; i = 0; 1, is the APP of the original bit mk . log(�) will be

assumed to be de�ned as loge(�), for this thesis unless otherwise stated.
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If the LLR is positive, then the transmitted bit was most probably a 1 since the

numerator probability is greater than the denominator; otherwise, it was most probably

a 0. The magnitude of the LLR would indicate the con�dence associated with making

such a decision

It is through the use of the LLR that the new approximation is obtained. By ap-

proximating the LLR to have a Gaussian distribution, and using its mean and standard

deviation, the soft-output decoding probability of bit error for the linear code can be

obtained. This is the focus of this thesis. The idea is presented, expanded upon, and

analyzed thoroughly in the following chapters.

1.3 Conventional Simulation Methods

Before continuing, current conventional simulation techniques must be mentioned. Today,

when a code is to be computationally simulated, the decoding algorithm processes the

noise-corrupted transmitted codewords, and produces bits it believes to be the original

bits. Using soft-output decoding techniques, this requires that a decision be made on

the LLR value of a particular bit. Any errors are detectable since what was transmitted

is known in the simulations. The bit error probability for a given SNR is calculated as

being the total number of errors detected divided by the total number of bits transmit-

ted. Throughout this thesis, this simulation method will referred to as the conventional

simulation method.

1.4 Thesis Outline

The outline of the thesis is as follows. Chapter 2 presents the soft-output technique used

to obtain a value for the LLR of a bit in the transmitted codeword. The BCJR algorithm

could have been used just as well. The chapter also reviews Binary Phase Shift Keying
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modulation, with mention of the expression for bit error probability. The expression

involves the use of the Q-function, which is well de�ned in literature [1, 3]. Next, the

LLR is expanded in powers of Gaussian variables, using a Taylor series expansion. The

Gaussian approximation is introduced and the modeling of the soft-output decoding of

binary linear codes using a BPSK modulated system is presented. A new de�nition for

coding gain is also stated and described.

With the approximation presented, the following chapters present an analysis of the

approximation based on the use of the mean and variance of the LLR values obtained via

simulation. The eventual goal is to compare the variance in the results of the conventional

simulation methods to the variance in results obtained from using the approximation, to

discuss the relative number of samples required for the each approach.

Chapter 3 presents the independence of the two estimators used for the mean and

variance of the LLR values and also presents the probability density functions of the mean

and standard deviation. With the determination of these probability density function,

the probability density function of the ratio, denoted Z, can be found1.

Chapter 4 presents an expression for the rth moments of the random variable Z which

is then used to obtain variance of the Q-function using its Taylor series expansion and

argument Z. An expression for the variance is provided.

In chapter 5, the comparison of the conventional simulation method to the Gaussian

approximation is presented, based upon the value of variances for a given bit error prob-

ability and a given number of samples. It is here that the merit of the approximation is

illustrated.

Simulations results are presented in chapter 6 and discrepancies between the approxi-

mation and the actual bit error curve obtained through conventional simulation methods

1Formulation of the mean and variance of the estimators is presented in Appendix A. Appendix B

provides the formulation of the probability density function of the ratio Z.
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are addressed.

Another contribution of this thesis is presented in chapter 7. This chapter presents the

use of the discrete Fourier transform on a weighted state transition matrix to obtain the

weight distribution of a code. The methodology is thoroughly presented, with examples.

Finally, the thesis is concluded with conclusions of the two major contributions of the

thesis in chapter 8. Possible future research directions for the two contributions are also

discussed in this �nal chapter.

The contributions made within this thesis are based upon well-known principles, how-

ever, the Gaussian approximation of the LLR, and its application to the modeling of the

soft-output decoding of binary linear codes is novel.



Chapter 2

The Gaussian Approximation for

the Log Likelihood Ratio

The Log Likelihood Ratio (LLR) was discussed as a method of determining the value of

a transmitted bit of information and providing a measure of the con�dence in that value.

The con�dence is measured through the size of the absolute value of the LLR and its

sign determines the value of the bit: positive for a 1 and negative for a 0. Therefore, a

decision on the originally transmitted bit can be easily made since the decision threshold

is simply 0.

The LLR is used extensively in decoding. The value for a particular bit position of

the received codeword can be found using the expression (1.5) from the previous chapter.

It will be shown that by using the codewords of the code C, these probabilities can be

approximated and the value of the bit can be decoded.

Consider the bit in position k of the codewords of code C. Depending on the value

of these bits, the codewords can be divided into two subsets. All the codewords in one

subset, C0, contain a 0 in that position and the other subset, C1, contains those codewords

11
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with a 1 in that same position. Subset C0 is a sub-code of code C. Subset C1 is a coset

of C0, where a coset is obtained by adding a constant vector to every codeword of the

sub-code.

Using a probability measure involving the received vector and the codewords of either

subset, the probability of the sent bit mk equaling either 0 or 1 can be emulated by

summing these measures for each subset. The summation of the measures is justi�ed since

the codewords are distinct from one another, in that only one codeword is transmitted

and received at any one time [7].

Since an AWGN channel model is considered in this thesis, the probabilities are those

of Gaussian random variables. The multivariate probability density function for a vector

of n noise samples is given in (1.3). Based upon this probability density function, one

can de�ne a probability measure incorporating the received codeword and a codeword of

C. Observing the exponential term of the distribution in (1.3), the two codewords are

seen to be related through their squared Euclidean distance, as de�ned in equation (1.4).

The squared Euclidean distance is used as a metric for the calculation of the pseudo-

probabilities. The term pseudo is used since the measure are not proper probabilities and

require normalization.

The pseudo-probabilities are calculated by exhaustively calculating the squared Eu-

clidean distance of the received codeword to all of the �1 modulated codewords in the

codebook and then dividing these quantities into two subsets based upon the bit value

of position k. Those pseudo-probabilities which are computed using a codeword that

contains a 1 in the given bit position are summed together to produce a quantity, A.

For those codewords which have a 0 in that same position, the pseudo-probabilities are

summed to form a quantity, B. By dividing A by B, and taking the log of the result, the
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LLR for that bit position is formed. Mathematically, this procedure is,

LLR(mk) = log
Pr(mk = 1jx)
Pr(mk = 0jx)

= log

P
ci �C1

exp
�� jjx�cijj2

2�2�

	
P

cj �C0
exp

�� jjx�cj jj2
2�2�

	

= log

P
ci �C1

exp
�� jjxjj2�2x�ci+jjcijj2

2�2�

	
P

cj �C0
exp

�� jjxjj2�2x�cj+jjcj jj2
2�2�

	

= log

P
ci �C1

exp
�
x�ci
�2�

	
P

cj �C0
exp

�
x�cj
�2�

	 (2.1)

= log
A

B

Note that jjcqjj2 =
nX

k=1

c2qk = n, since the codeword bits were modulated �1 for q = i; j,

and where n is the length of the codeword. The constant terms can be cancelled from

the numerator and denominator of the LLR expression.

With the LLR value for a bit, the bit error probability for that bit position can

be found through simulation of a number of transmitted codewords. The focus of this

chapter is to present a new modeling approximationmethod using the LLR and to discuss

when such an approximation is valid. The statistical nature of the LLR is investigated

to develop the model.

The remainder of the chapter is organized as follows. Firstly, Binary Phase Shift

Keying (BPSK) modulation is reviewed and the calculation of the bit error probability

of a BPSK system is discussed. With characteristics of a BPSK system established, the

approximation of the LLR as being Gaussian distributed is presented in section 2.3. This

approximation is based upon the Taylor series expansion of the LLR and is thoroughly

described. The approximation can then be used to obtain the bit error performance of a
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binary linear code. Finally, this chapter is concluded with a de�nition of new measure of

coding gain, wherein the variance of the LLR approximation is compared to that of an

equivalently scaled BPSK system. Later chapters expand upon the LLR approximation

and present the mathematics to evaluate the precision of the approximation and why it

would be a favoured method over the conventional simulation of the bit error performance

of a linear code.

2.1 Binary Phase Shift Keying (BPSK) Modulation

Modulation is the process of mapping digital information (bits or symbols) into analog

waveforms which match the characteristics of the channel. The waveforms used are

deterministic and have �nite energy. The modulated information is transmitted over

the channel and is received by the receiver. By considering a modulation method with

M possible waveform mappings, the mapping process can be described. Typically, the

mapping is performed by taking a block of k = log2M bits at a time from the information

sequence fmig and selecting one of the M = 2k waveforms fsk(t); k = 0; 1; : : : ;M � 1g
for transmission. The waveforms are generally transmitted for a symbol duration of T

seconds. This technique is widely used for transmissions over AWGN channels and is

considered to be memoryless modulation since the current waveform to be transmitted

does not depend on the previously transmitted waveforms.

Binary Phase Shift Keying (BPSK) is a modulation technique whereby the number

of possible mappings, M , is 2. With any phase shift keying type of modulation, the

information is transmitted within the phase of the signal. For BPSK modulation, the pair

of signals, s0(t) and s1(t), representing the bits 0 and 1, respectively, can be represented
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as [1]

sk(t) = Re
�
g(t)ej2�(k�1)=2 ej2�fct

�
; k = 0; 1: ; 0 � t � T

= g(t) cos
h
2�fct + �(k� 1)

i
; (2.2)

where g(t) is the signal pulse shape, which is nonzero in the interval 0 � t � T and zero

elsewhere; fc is the carrier frequency of the waveform; and, again, T is the bit duration1.

The signals both have equal energy E, i.e.,

E =

Z T

0

s2k(t)dt

=
1

2

Z T

0

g2(t)dt =
1

2
Eg: (2.3)

Noting that the two signals of (2.2) have a common basis function with unit energy

of �(t) =
p
2=Egg(t) cos(2�fct), the signals become

s0(t) =

r
Eg

2
�(t) = �

p
Eb�(t) `0'

s1(t) = �
r
Eg

2
�(t) =

p
Eb�(t) `1' (2.4)

where the substitution Eb = Eg=2 was made to simplify the expressions.

It is clear that BPSK is characterized by a one-dimensional signal space with only

one basis function required to represent both signals. The two signals are termed as

being antipodal since the waveforms di�er in their relative phase-shift by 180 degrees [3].

Signals, s0(t) and s1(t), can be represented in a signal space representation by their

amplitudes of �pEb and
p
Eb, respectively, and are denoted s0 and s1. The signal space

diagram for this modulation scheme is presented in �gure 2.1 below.

1A symbol is comprised of one bit in a BPSK modulated system.
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D0

s1

p
Eb

0�pEb

decision threshold

D1

s0

Figure 2.1: Signal Space Diagram for BPSK System

The two message points of �gure 2.1 are separated by a distance of 2
p
Eb.

The originally transmitted signals are not recovered at the receiver due to the intro-

duction of AWGN. The noise can move the signal point to essentially any point in the

signal space. To make a decision as to which bit was transmitted, 0 or 1, the signal space

must be partitioned into two regions such that the following two scenarios are accounted

for,

1. those received points more likely to be the message point at
p
Eb are decided in

favour of a 1 being transmitted, and

2. those received points more likely to be the message point at �pEb are decided in

favour of a 0.

For two signals which are equally likely, as is usually the case, the midpoint between the

two points denotes the decision region boundary as depicted in �gure 2.1. A received

signal point which is located in the decision region D1 will be decided in favour of signal

s1(t) and a signal point received in decision region D0 of the �gure will be decided in

favour of signal s0(t). It is conceivable that an error may occur though.
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Since the channel is modeled as being disturbed by AWGN, and assuming that signal

point s1 was transmitted, the received signal point r is of the form

r = s1 + � =
p
Eb + �; (2.5)

where � is the AWGN component with zero mean and variance �2� = N0

2
, as presented

in section 1.1. The received component is Gaussian with mean
p
Eb and variance N0

2
.

The decision threshold for this system is 0 (due to equally likely signals), so that the

decision rule comes down to observing r: if r > 0, decide in favour of s1 and thus a 1 was

transmitted; otherwise, decide in favour of s0.

With this system, two possible types of errors can occur. If s0 is transmitted and the

noise component is such that the received signal point falls in region D1, the receiver will

then decide in favour of s1 when in fact s0 was transmitted. The second type of error

occurs if s1 is transmitted and the received signal point falls in D0, causing the receiver to

decide in favour of s0. The probability of either error can be calculated and is presented

in the next section.

2.2 Bit Error Probability for BPSK and the Q-function

It is customary to ask with what probability these two error types occur so that the

performance of the system can be evaluated. From (2.5), it is intuitive to see that the

larger that is the variance of the noise component �, for a given deterministic value of

si; i = 0; 1, the large the variance of the received signal point r. This larger variance

translates into more possible errors as crossings of the decision threshold can occur more

frequently.

The bit error probability for BPSK will be formulated, assuming that the two signals
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s1 and s0 are equally likely, each with probability 1=2, and are as depicted in �gure 2.1.

The average bit error probability, Pe, can be found by averaging the error for the two

error scenarios discussed earlier. The two error scenarios which can occur are:

1. error occurs given that s1 was sent. This means that the received component r is

less than 0 (i.e., errorjs1 is when r < 0);

2. error occurs given that s0 was sent. This means that r is greater than 0 (i.e.,

errorjs0 is when r > 0).

Therefore,

Pe = Pr(s1) Pr(errorjs1) + Pr(s0) Pr(errorjs0)

=
1

2
Pr(errorjs1) + 1

2
Pr(errorjs0): (2.6)

To calculate the probabilities Pr(errorjsi); i = 0; 1, the conditional probability density

functions, p(rjs0) and p(rjs1), are needed. The conditional probability density functions

are formed using equation (2.5). First, the conditional probability density function p(rjs1)
is found, assuming that signal s1 was sent. By manipulating p(rjs1), the form of the

probability density function can be realized.

p(rjs1) � p(r� s1js1) (2.7)

� p(�js1) (2.8)

� p(�) (2.9)

In (2.7) above, the shift of s1 to r does not change the conditional probability density

function. Using (2.5) and solving for �, (2.8) results. Noting that the noise component

� is not dependent on the sent signal s1, the conditioning of � on s1 is not required.
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The conditional probability density function then has the form of the probability density

function of noise. Since the noise is Gaussian distributed, the probability density function

is given by (1.1).

Therefore, the conditional probability density function, p(rjs1), is

p(rjs1) = 1q
2��2�

exp
��(r � s1)2

2�2�

	
=

1p
�N0

exp
��(r � pEb)

2

N0

	
; (2.10)

where �2� = N0=2 and s1 =
p
Eb.

If r = s0+� = �pEb+�, then p(rjs0) can be shown to have the same form as p(rjs1)
in (2.10), with the only di�erence being the value of s0 is substituted for the value of s1.

Therefore,

p(rjs0) = 1p
�N0

exp
��(r +pEb)

2

N0

	
: (2.11)

If the two conditional probability density functions, p(rjs1) and p(rjs0), are superimposed

on the signal space representation of �gure 2.1, the following is observed.

0

s1

p
Eb�pEb

D0 D1

s0

Figure 2.2: Conditional Probability Density Functions of Two Signals
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Since the two signals were assumed to be equally likely, the decision threshold is

simply 0. This is seen where the two functions in �gure 2.2 intersect. Furthermore, the

mean of the conditional probability density functions, �r, is
p
Eb for p(rjs1) and �

p
Eb

for p(rjs0). This was can be seen implicitly through equation (2.5). Later in this chapter,

these facts are used to demonstrate the modeling of soft-output decoding of binary linear

codes using a BPSK system.

To calculate Pr(errorjs1) = Pr(r < 0js1), the condition on r is imposed and the

integral is calculated. Letting �r =
p
Eb and �

2
� = N0=2, this leads to

Pr(errorjs1) =
Z 0

�1
p(rjs1) dr

=

Z 0

�1

1q
2��2�

exp
��(r � �r)

2

2�2�

	
dr: (2.12)

Substituting t = r��r
��

, dt = dr=��, and appropriately changing the limits of integration,

equation (2.12) becomes

Pr(errorjs1) = 1p
2�

Z ��r
��

�1
exp
�� t2

2

	
dt

=
1p
2�

Z 1

�r
��

exp
�� t2

2

	
dt

= Q
��r
��

�
; (2.13)

where the de�nition of the Q-function has been used. The Q-function is de�ned as [1]

Q(x) =
1p
2�

Z 1

x

exp
�� t2

2

	
dt: (2.14)
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Substituting the values of �r and �� into (2.13),

Pr(errorjs1) = Q
�r2Eb

N0

�
: (2.15)

Similarly, if it is assumed that s0 was transmitted, r = �pEb+ � and the probability

that r > 0 is also given as

Pr(errorjs0) = Q
�r2Eb

N0

�
: (2.16)

Finally, the average bit error probability Pe, assuming equal probabilities for a 0 or

1, can be calculated using (2.6), and results in

Pe = Q
�r2Eb

N0

�
= Q

��r
�r

�
: (2.17)

It is interesting to note that the average probability of bit error can be found with

the Q-function, whose argument is simply the ratio of the mean of the received signal

to the standard deviation of the received signal (which is the same as the variance of

the AWGN noise). Remember, this formula can only be used for BPSK systems over an

AWGN channel, producing Gaussian distributed received signal points. Gaussian samples

are required for this calculation to be useful.

2.3 Gaussian Distributed LLR Values

Prior to this section, BPSK modulation was reviewed and the calculation of the average

bit error probability was presented. Transmission of the modulated bits over an AWGN

channel gives the received signal component, r, a Gaussian distribution. With a Gaussian

distribution, the bit error probability can be calculated using the Q-function and the



CHAPTER 2. GAUSSIAN APPROXIMATION FOR LOG LIKELIHOOD RATIO 22

ratio of the mean of the received component to the standard deviation of the received

component. Since the signal constellation of a BPSK modulated system is simple, the bit

error probability calculation is also straight forward.

It is the goal of this section to demonstrate that the LLR values can be approximated

to be Gaussian distributed. This observation leads to the modeling of the soft-output

decoding of binary linear codes by a BPSK modulation system. The Q-function is then

useful in the approximation of the bit error performance of binary linear codes.

The Gaussian nature of the LLR values is shown through a Taylor series expansion

of the LLR expression de�ned in (2.1). Since the codewords can be thought of as n

dimensional vectors, the Taylor series expansion for vectors is required.

2.3.1 General Taylor Series Expansion for Vectors

Consider a vector X and a constant vector a, each of dimensionality n. The general

Taylor series expansion of function f(X), about a, is given as [8]

f(X + a) =

1X
v=0

[(X � r)vf ](a)
v!

= f(a) +X � rf(a) + 1

2
(X � r)2f(a) + : : : ; (2.18)

where r is the gradient operator. For a vector of length n, and X̂i; i = 1; 2; : : : ; n, used

to denote unit components of the vector, r is de�ned as

r = X̂1

@

@X1

+ X̂2

@

@X2

+ X̂3

@

@X3

+ : : :+ X̂n
@

@Xn
: (2.19)

The expression of (2.18) is directly applicable to the LLR function de�ned in (2.1), thereby

yielding the Taylor series expansion of the LLR in powers of �.

Using (2.1), the LLR for a bitmk in arbitrary position k of the codeword is calculated,
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by �rst dividing the code codebook into two subsets, C1 and C0, based upon the value

of the bit in position k. Remember that the squared Euclidean distance is calculated

between the received codeword x and the �1 modulated codewords of the two subsets,

where 0 is mapped to �1 and 1 to 1. This point is crucial in order to illustrate that the

LLR is approximately Gaussian distributed. With these facts in mind, the Taylor series

expansion of the LLR is now presented.

2.3.2 Taylor Series Expansion of the LLR

The codeword vector x is obtained from the channel by the receiver. The received code-

word di�ers from the assumed transmitted modulated codeword ~c by the addition of

Additive White Gaussian Noise components to the deterministic codeword components.

This means that the received codeword x can be written as the sum of ~c and �. The n

components of the received codeword are Gaussian distributed due to components of �

being Gaussian distributed samples.

In order to facilitate the expansion of the LLR for a bit mk , the expression of (2.1)

is rewritten to separate the numerator and denominator into two similar terms using the

properties of logarithms. These functions are a function of �. De�ne function H(�) as,

H(�) = LLR(mk) = log

P
ci �C1

exp
�
x�ci
�2�

	
P

cj �C0
exp
�
x�cj
�2�

	
= log

P
ci �C1

exp
�(�+~c)�ci

�2�

	
P

cj �C0
exp
�(�+~c)�cj

�2�

	
= log

� X
ci �C1

exp
�� � ci + ~c � ci

�2�

	�� log
� X
cj �C0

exp
�� � cj + ~c � cj

�2�

	�
(2.20)

= f(�)� g(�); (2.21)
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where, ~c is the assumed transmitted codeword,

f(�) = log
� X
ci �C1

exp
�� � ci + ~c � ci

�2�

	�
(2.22)

and,

g(�) = log
� X
cj �C0

exp
�� � cj + ~c � cj

�2�

	�
: (2.23)

The assumed transmitted codeword ~c can be any codeword of the code provided it

does not alter the probability density function of the LLR for bit k. Assuming that the

probability density of the noise is symmetrical about zero, the following theorem and

proof justi�es the arbitrary choice for the transmitted codeword.

Theorem 2.1 The probability distribution of LLR(mk) is not a�ected by the choice of

transmitted codeword ~c so long as the bit k remains unchanged.

Proof: Assume the codeword ~c� is transmitted, where the value of the bit in position k

is � = 0; 1. For this proof, two properties will be used:

1. the distance invariance property of the code, and

2. the noise is symmetrical about the origin.

To show that the probability distribution of the LLR is not a�ected by a change in

transmitted codeword, keeping the value of the bit in bit position k unchanged, the terms

of (2.20) need to remain statistically unchanged. This can be realized by observing the

terms � � cj and ~c� � cj in the exponent of the expressions of (2.20), for di�erent cj �C1

or C0 and di�erent transmitted codeword ~c� .

For a given ~c�, the dot product takes on various integer values for di�erent codewords

of the sub-code C0 or coset C1. By changing the transmitted codeword ~c� such that the
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value of � is unchanged, the resulting values of the dot products are simply permuted

values of those obtained using the originally assumed transmitted codeword. This is

due to the Hamming distance pro�le between a transmitted codeword and any other

codeword of the set being similar. Therefore, for di�erent transmitted codewords with

the value of � held constant, there is a simple reordering of the values for this part of the

exponent expression. If the value of � was changed with the choice of another codeword

to be transmitted, then a di�erent Hamming distance pro�le would exist and would

not necessarily equal that of the originally assumed transmitted codeword, changing the

probability distribution of the LLR.

The noise vector in � � cj , for cj �C1 or C0, is unchanged for a given transmission

instance and codeword cj . The dot product remains unchanged for di�erent transmit-

ted codewords ~c. The association between the codewords cj and noise vector is always

maintained and results in sign changes of the components of the noise vector as dictated

by the modulated codeword cj . The independence of � � cj on the assumed transmitted

codeword presents a problem that is resolvable by the properties assumed above.

The permutation of transmitted codeword dot product values for di�erent assumed

transmitted codewords needs to correspond to a similar permutation with the noise dot

product values for the probability density function of the LLR to be unchanged. Then

the summation of di�erent exponentials still produces the same overall sum as values are

simply permuted between the exponentials. The assumption of a symmetric probability

density function about 0 helps in this respect. The signs of the noise components do not

change statistical nature of the noise. Then, the statistical nature of the exponentials do

not change with a change in the assumed transmitted codeword. The Gaussian distribu-

tion of the noise vectors is such a probability density function. Therefore, provided the

value of bit k does not change with a change in the assumed transmitted codeword, any

codeword can be assumed. �
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For the purpose of this thesis, the all-zero codeword 0 = (0; 0; : : : ; 0) is assumed to

be transmitted, for simplicity. This means that ~c = �1 is transmitted, after considering

BPSK modulation of the all-zero codeword. Therefore, for bit k, a zero is assumed to be

transmitted.

The two functions f(�) and g(�) di�er only in that the summations are carried out

over di�erent subsets of the same code, C1 and C0, respectively. The expansion involves

linear operations on the function H(�) and therefore, it is possible to carry out the

expansion for one of the functions and then tailor the results for the other function.

For the Taylor series expansion of f(�), the function is expanded about a = 0 in

powers of �. The expansion of f(�) is then,

f(� + 0) = f(�)

=

1X
v=0

[(� � r)vf ](0)
v!

= f(0) + � � rf(0) + 1

2
(� � r)2f(0) + : : : : (2.24)

The mathematics of this expansion will follow the next section, starting �rst with the

zeroth-order term, then the �rst-order term, and �nally the second-order term of (2.24).

2.3.3 Useful Theorems and De�nitions

Before continuing, a few theorems are introduced since they will be needed to simplify

and evaluate the terms of the expansion. The theorems relate to the structure of linear

codes and the multiplication of columns of bits within codebooks. The theorems are then

extended to subsets of a code since the code C is divided into C0 and C1 in the LLR

expression.

To simplify the presentation of the expressions to come, weight enumeration func-
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tions will be de�ned. Weight enumeration functions are useful in providing a means to

conveniently represent the weight distributions of a code, where the weight distribution

is a set of all weights (or number of non-zero elements) of the codewords. Using weight

distribution notation make the expressions easier to read, and make calculations of the

LLR possible based upon the structure of the code.

Theorem 2.2 In any column of the codebook of a binary linear code, there are an equal

number of ones and zeros.

Proof: The proof follows from the fact that binary linear codes form a closed group under

modulo 2 addition. The trivial case of all 0's or 1's is not considered since these columns

can be removed from the codebook without changing the properties of the code. �

Due to the original codebook being divided into two subsets for the LLR calculations,

a corollary to Theorem 2.2 is needed for the case of a coset. The case of a sub-code follows

directly from Theorem 2.2.

Corollary 2.2.1 The columns of a coset also have an equal number of ones and zeros.

Proof: The coset is formed by adding a given codeword (coset leader) to all the elements

of the sub-code. Therefore, the codewords in the coset exhibit the same properties of the

original code. �

The codewords used in the calculation of the LLR are all �1 modulated, and since

the number of 0's and 1's in a column are equal, there are an equal number of �1's and
1's in a given column, not considering the trivial cases.

Another theorem which is required is one that relates to the multiplication of columns

of the �1 modulated codebook.

Theorem 2.3 The multiplication of two columns of a �1 modulated linear codebook

yields equal numbers of �1's and 1's.
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Proof: The proof of this theorem is assisted by �gure 2.3. Consider two arbitrary columns

of a modulated code C, i and j, 1 � i; j � n. When the bits of the two columns

1

1

1 1 1 1 1

1 1

1

1

1 1

1 1

1

1

-1 -1 -1 -1 -1 -1

1

-1 -1 -1 -1

-1-1

-1 -1 -1

-1-1-1

code C

i j

: : :

Figure 2.3: Multiplication of Two Columns of a �1 Modulated Code C

are multiplied together, the following combinations are encountered: `�1;�1', `�1; 1',
`1;�1', and `�1;�1', yielding 1, �1, �1, and 1. Since the bits in any column of a code

are equally probable to be a 0 or 1, and since the combinations produce quantities �tting

this same probability distribution (equally 1 or �1), following from Theorem 2.2, there

are an equal number of �1's and 1's. �

Corollary 2.3.1 The multiplication of two columns of a sub-code or coset yields an equal

number of �1's and 1's in the resulting column.

Proof: The proof of this corollary follows from that of Theorem 2.3. If the two columns

of sub-code or coset happen to be identical, then an all-one trivial valued column results.

If one of the columns considered is comprised of all 1's or �1's, the resulting column still

maintains it's equal 1's and �1's. �
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The multiplication of two columns of a modulated code or sub-code yields an equal

number of 1's and �1's by Theorem 2.3. The resulting combinations discussed in the

proof of this theorem can be equally represented by considering the exclusive-or of the

unmodulated bits of the columns. This operation will be denoted � in later expressions.

Weight Enumeration Function De�nitions

It will be convenient to de�ne a number of weight enumeration functions to simplify later

expressions. Given an unmodulated codeword, it is known that the sum of the bits would

produce the weight of the codeword, since the number of ones would be represented by

the sum. A weight enumeration function is a convenient manner to present the weight

distribution of a code. The set of weights is presented as a polynomial in powers of a

dummy variable raised to an exponent. The exponent is the codeword weight, and the

coe�cient of the dummy variable is the number of codewords of this weight. The weight

of codeword c is commonly denoted by w.

A typical expression for the weight enumeration function of a code C, with codewords

of length n, is given by

AC(Z) =

nX
w=0

ACw Z
w (2.25)

where Z is the dummy variable and ACw is the number of codewords of C with weight w.

The codewords in the expression of the LLR and the subsequent Taylor series are all

modulated �1. To represent this fact, the weight enumeration function above is slightly

modi�ed so that the exponent of the dummyvariableZ is changed to re
ect the modulated

nature of the codewords. The integer sum of the bits of modulated codewords can range

from between �n (the all-zero codeword) to n (the all-one codeword). The weights of the

codewords can be mapped into this range by the expression 2w� n. Adjusting (2.25) as
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stated, the following expression for code C is obtained.

AC(Z) =

nX
w=0

ACw Z
2w�n : (2.26)

where ACw is the number codewords of code C with weight w. Note that this expression is

for a code C with codewords of length n. This expression can also be used for sub-code

C0 and its coset C1.

Also, a weight enumeration function that associates the weights of codewords with

the value of the bit in position p equal to � is de�ned as,

BC(Z; p; �) =

nX
w=0

BC

w(p; �)Z
2w�n : (2.27)

The coe�cients BC
w(p; �) denote the number of codewords of weight w for which the bit

in position p is equal in value to � = 0; 1. The coe�cients here are obtained from the

codebook in a similar manner to the coe�cients ACw in (2.26), however, extra care must

be taken to account for the bit value of bit position p.

The method by which the weight distribution of a linear code is found, in order to

obtain the coe�cients used in the weight enumeration function, is discussed in chap-

ter 7, where a new method of �nding the weight distribution of a binary linear code is

introduced, along with the required background material.

In the following presentation of the expansion, jCij denotes the number of codewords
in the subset Ci, i = 0; 1. With the theorems and de�nitions above, the simpli�cation of

the terms of the Taylor series expansion is made possible.
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2.3.4 Continuation of the Expansion

The function f(�) was given in (2.24) as

f(�) = f(0) + � � rf(0) + 1

2
(� � r)2f(0) + 1

6
(� � r)3f(0) + : : : :

The expressions involving the dot product of the noise vector, �, and the gradient,

r, are provided below. The noise vector, �, has components which will be labeled as

(�1; �2; : : : ; �n).

� � r = �1
@

@�1
+ �2

@

@�2
+ : : :+ �n

@

@�n

=

nX
p=1

�p
@

@�p
(2.28)

(� � r)2 = ��1 @

@�1
+ �2

@

@�2
+ : : :+ �n

@

@�n

�2
=

nX
v=1

�2v
@2

@�2v
+ 2

nX nX
p6=q; p<q�n

�p �q
@

@�p

@

@�q
: (2.29)

The expressions for the dot products obtained above, and the assumed transmitted mod-

ulated codeword ~c = �1 can be applied to f(�) to obtain the terms of the expansion.

The partial derivatives will be carried out for non-speci�c component variables initially,

e.g. �p, and then conditions, if necessary, will be placed on the variables to �t the expres-

sions above in (2.28), and (2.29). The higher-order partial derivatives of the series are

more complicated to express and no general closed form expression exists and therefore,

the series is only presented to the second-order.
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Calculating f(0)

Using the de�nition of f(�) in equation (2.22), and substituting � = 0, f(0) is,

f(0) = log
� X
ci �C1

exp
�� � ci +�1 � ci

�2�

	�??????
�=0

= log
� X
ci �C1

exp
�
0� 1

�2�

nX
v=1

civ
	�
:

(2.30)

The summation above can be rewritten as a weight enumeration function, since the

exponent is simply the modulated weights of the codewords of C1. Using the de�nition

of (2.26), the term f(0) is then

f(0) = log
� nX
w=0

AC1w exp
�� 1

�2�
(2w� n)

	�
= log

� nX
w=0

AC1w Z2w�n�
= log

�
AC1(Z)

�
(2.31)

where, Z = expf� 1
�2�
g and will be de�ned as such for the purpose of the Taylor series

expansion. The above Taylor series term is simply a constant with no random component

and would simply shift the resulting distribution of the LLR.
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Calculating
@f

@�p
(0)

For a given bit position p, 1 � p � n,

@f(�)

@�p

????
�=0

=
@

@�p

h
log
� X
ci �C1

exp
�� � ci +�1 � ci

�2�

	�i??????
�=0

=

�
1X

ci �C1

exp
�� � ci +�1 � ci

�2�

	� X
cj �C1

cjp

�2�
exp
�� � cj +�1 � cj

�2�

	��
?????????
�=0

(2.32)

=
1

�2�

X
cj �C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	

X
ci �C1

exp
�� 1

�2�

nX
v=1

civ
	 (2.33)

Again, the denominator expression of (2.33) can be rewritten below in terms of weight

enumeration function using the de�nition of (2.26). The numerator expression requires

special care due to the component of the codewords multiplied with the exponentials.

The weight enumeration function de�nition of (2.27) is suited for this situation and is

used later for the di�erent possible positions which arbitrary p can take.

@f(�)

@�p

????
�=0

=
1

�2�

X
cj � C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	

nX
w=0

AC1w Z2w�n

=
1

�2�

X
cj � C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	

AC1(Z)
(2.34)

Considering di�erent scenarios for bit position p in the codeword, the expression can
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be further simpli�ed. For example, if the bit position is one where all codewords of

the subset have the same bit value, cjp becomes +1 for C1, and further simpli�cation is

possible. However, this is a trivial case. The following expression results for bit position

p.

By Theorem 2.2 and the corollaries above, when the bits are not all identical, the

column of the subset contain an equal number of�1's and 1's. Using (2.27), the expression
is simpli�ed as,

@f(�)

@�p

????
�=0

=
1

�2�

X
cj �C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	

AC1(Z)

=
1

�2�

nX
w=0

BC1
w (p; 1)Z2w�n �

nX
w=0

BC1
w (p; 0)Z2w�n

AC1(Z)

=
1

�2�

BC1(Z; p; 1)�BC1(Z; p; 0)

AC1(Z)
: (2.35)

This expression of the coe�cient is in terms of the weight distribution of the subset,

which can be easily computed.

The �rst-order term using (2.28), and (2.35) becomes,

[(� � r)f ](0) =
nX

p=1

�p
@

@�p
f(�)

??????
�=0

=
1

�2�

nX
p=1

�
BC1(Z; p; 1)� BC1(Z; p; 0)

�
AC1(Z)

�p (2.36)

The trivial case of bit position p being one where all the bit values are identical results

in BC1(Z; p; 0) equaling 0.
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Calculating
@2f

@�p @�q
(0)

The second-order gradient term was given in equation (2.29). Again, for arbitrary bit

positions, p and q, 1 � p; q � n, the second-order partial derivative terms, starting with

(2.32), are of the form,

@2f(0)

@�p@�q
=

@

@�q

@f(�)

@�p

????
�=0

=
@

@�q

"
1

�2�

X
cj �C1

cjp exp
�� � cj +�1 � cj

�2�

	
X
ci �C1

exp
�� � ci +�1 � ci

�2�

	
#??????????

�=0

=
1

�2�

" X
ci �C1

exp
�� � ci +�1 � ci

�2�

	 X
cj �C1

cjp cjq

�2�
exp
�� � cj +�1 � cj

�2�

	
� X
ci � C1

exp
�� � ci +�1 � ci

�2�

	 �2

�

X
cj �C1

cjp exp
�� � cj +�1 � cj

�2�

	 X
ci �C1

ciq

�2�
exp
�� � ci +�1 � ci

�2�

	
� X
ci �C1

exp
�� � ci +�1 � ci

�2�

	 �2
#??????????

�=0

=
1

�4�

1� X
ci �C1

exp
�� 1

�2�

nX
v=1

civ
	�2

�

"� X
ci �C1

exp
�� 1

�2�

nX
v=1

civ
	��

c1pc1q exp
�� 1

�2�

nX
v=1

c1v
	

+ c2pc2q exp
�� 1

�2�

nX
v=1

c2v
	
+ : : :+ cjC1jpcjC1j q exp

�� 1

�2�

nX
v=1

cjC1j v
	�

�
� X
cj �C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	�� X

ci �C1

ciq exp
�� 1

�2�

nX
v=1

civ
	�#

(2.37)
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Similar to what was done in obtaining the �rst-order term coe�cients, di�erent scenarios

are considered for the bit positions p and q so that the expression of (2.37) can be

appropriately simpli�ed. In the expansion of (2.29), the second-order partial derivatives

can be seen to be for identical bit positions (i.e. p = q) or for di�erent bit positions (i.e.

p 6= q). These two cases produce di�erent results when applied to (2.37). As well, care

must be taken to include the e�ects of the case that one of the bit positions p or q is

bit position k, since the values in this bit position are all identical within the subset of

codewords. The resulting values of
@2

@�p @�q
f(0) can be found as shown below.

� p = q and p = k OR p 6= q, however all bit elements are one value (�1's or 1's):
Since all the elements are the same in the bit positions, the product of cjpcjq for

any codeword j will be 1. Also, the single coe�cients cjp and cjq will all be 1 (since

C1 is considered). Recall that the denominator term can be replaced by the weight

enumeration function of (2.26).

@2f(�)

@�2k

????
�=0

=
1

�4�

"�AC1(Z)�� X
cj �C1

1 expf� 1

�2�

nX
v=1

cjvg
�

�
AC1(Z)

�2

�

� X
cj �C1

1 exp
�� 1

�2�

nX
v=1

cjv
	�� X

ci �C1

1 exp
�� 1

�2�

nX
v=1

civ
	�

�
AC1(Z)

�2
#

=
1

�4�

"�
AC1(Z)

��
AC1(Z)

�
�
AC1(Z)

�2 �

�
AC1(Z)

��
AC1(Z)

�
�
AC1(Z)

�2
#

= 0 (2.38)

� p = q and p 6= k, OR p 6= q but columns are identical: This case involves identical

column considerations. When the columns are identical or if a column is considered
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with itself, the product of the two bits in each codeword will be 1. The corresponding

term is then

@2f(�)

@�p@�p

????
�=0

=
1

�4�

1� X
ci � C1

exp
�� 1

�2�

nX
v=1

civ
	�2

�

"� X
ci �C1

exp
�� 1

�2�

nX
v=1

civ
	��

c21p exp
�� 1

�2�

nX
v=1

c1v
	

+ c22p exp
�� 1

�2�

nX
v=1

c2v
	
+ : : :+ c2jC1j p exp

�� 1

�2�

nX
v=1

cjC1j v
	�

�
� X
cj �C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	�� X

ci �C1

cip exp
�� 1

�2�

nX
v=1

civ
	�#

=
1

�4�

1�
AC1(Z)

�2
"�
AC1(Z)

�� X
cj �C1

1 exp
�� 1

�2�

nX
v=1

cjv
	�

�
� nX
w=0

BC1
w (p; 1)Z2w�n �

nX
w=0

BC1
w (p; 0)Z2w�n

�2#

=
1

�4�

"�
AC1(Z)

�2
�
AC1(Z)

�2 �
�
BC1(Z; p; 1)�BC1(Z; p; 0)

�2
�
AC1(Z)

�2
#

=
1

�4�

"
1�

�
BC1(Z; p; 1)� BC1(Z; p; 0)

�2
�
AC1(Z)

�2
#

(2.39)

The scenario considered before this scenario is a special case of this situation.

� p 6= q, either p = k or q = k, and other column does not contain identical values:

One of the bit positions considered contains values which are all the same. This

only, at most, changes the sign of the coe�cients cipciq. By Theorem 2.2 and the

corollaries 2.2.1 and 2.3.1, the number of ones and zeros are equal in the other

column. The bit-position-dependent weight enumeration function de�nition can be
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used once again. Assuming q = k, and proceeding, these observations yield,

@2f(�)

@�k@�p

????
�=0

=
1

�4�

1� X
ci � C1

exp
�� 1

�2�

nX
v=1

civ
	�2

�

"� X
ci �C1

exp
�� 1

�2�

nX
v=1

civ
	��

c1pc1k exp
�� 1

�2�

nX
v=1

c1v
	

+ c2pc2k exp
�� 1

�2�

nX
v=1

c2v
	
+ : : :+ cjC1jpcjC1jk exp

�� 1

�2�

nX
v=1

cjC1j v
	�

�
� X
cj �C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	�� X

ci �C1

cik exp
�� 1

�2�

nX
v=1

civ
	�#

=
1

�4�

1

AC1(Z)

"�
AC1(Z)

��
c1p exp

�� 1

�2�

nX
v=1

c1v
	

+ c2p exp
�� 1

�2�

nX
v=1

c2v
	
+ : : :+ cjC1j p exp

�� 1

�2�

nX
v=1

cjC1j v
	�

�
� X
cj �C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	�� X

ci �C1

1 exp
�� 1

�2�

nX
v=1

civ
	�#

=
1

�4�

"�AC1(Z)�� nX
w=0

BC1
w (p; 1)Z2w�n �

nX
w=0

BC1
w (p; 0)Z2w�n

�
�
AC1(Z)

�2

�

� nX
w=0

BC1
w (p; 1)Z2w�n �

nX
w=0

BC1
w (p; 0)Z2w�n

��
AC1(Z)

�
�
AC1(Z)

�2
#

= 0 (2.40)

� p 6= q and p 6= k and q 6= k : Theorem 2.3 and its corollaries are used for this case.

Since the two bit positions are not the same, and the bit values of the columns

di�er, the product of the bits will produce an equal number of ones and zeros much

like the columns considered. Also, the coe�cients cip (or cjq) will exhibit a similar
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behaviour, following from Theorem 2.2 and its corollaries. It is assumed for this

case that the two positions have completely di�erent values in their columns p and

q. Therefore,

@2f(�)

@�p@�q

????
�=0

=
1

�4�

1� X
ci �C1

exp
�� 1

�2�

nX
v=1

civ
	�2

�

"� X
ci �C1

exp
�� 1

�2�

nX
v=1

civ
	��

c1pc1q exp
�� 1

�2�

nX
v=1

c1v
	

+ c2pc2k exp
�� 1

�2�

nX
v=1

c2v
	
+ : : :+ cjC1jpcjC1j q exp

�� 1

�2�

nX
v=1

cjC1j v
	�

�
� X
cj �C1

cjp exp
�� 1

�2�

nX
v=1

cjv
	�� X

ci �C1

ciq exp
�� 1

�2�

nX
v=1

civ
	�#

=
1

�4�

"�AC1(Z)�� nX
w=0

BC1
w (p� q; 1)Z2w�n �

nX
w=0

BC1
w (p� q; 0)Z2w�n

�
�
AC1(Z)

�2

�

� nX
w=0

BC1
w (p; 1)Z2w�n �

nX
w=0

BC1
w (p; 0)Z2w�n

�
�
AC1(Z)

�2 �

� nX
w=0

BC1
w (q; 1)Z2w�n �

nX
w=0

BC1
w (q; 0)Z2w�n

�
�
AC1(Z)

�2
#

=
1

�4�

"
BC1(Z; p� q; 1)� BC1(Z; p� q; 0)

AC1(Z)

�

�
BC1(Z; p; 1)�BC1(Z; p; 0)

��
BC1(Z; q; 1)�BC1(Z; q; 0)

�
�
AC1(Z)

�2
#

=
1

�4�
F: (2.41)
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In the above equation, the weight enumeration function denoted by BC1(Z; p�q; 1)
denotes that the weight of the codeword is only considered in this function if the

result of the exclusive-or of the bits of position p and position q is a 1.

In the above, F is de�ned as

F =
BC1(Z; p� q; 1)�BC1(Z; p� q; 0)

AC1(Z)

�

�
BC1(Z; p; 1)�BC1(Z; p; 0)

��
BC1(Z; q; 1)�BC1(Z; q; 0)

�
�
AC1(Z)

�2 (2.42)

for convenience.

With the second-order derivatives formulated in equations (2.38 - 2.41) and (2.42),

and using the second-order gradient term of (2.29), the complete second-order term of

the Taylor series expansion in (2.24) is,

1

2
(� � r)2f(0) = 1

2

nX
v=1

�2v
@2

@�2v
f(0) +

nX nX
p6=q; p<q�n

�p �q
@

@�p

@

@�q
f(0)

=
1

2�4�

nX
v=1;v 6=k

"
1�

�
BC1(Z; v; 1)�BC1(Z; v; 0)

�2
�
AC1(Z)

�2
#
�2v

+
1

�4�

nX
p=1

nX
q=1

p6=q;p<q�n; p;q 6=k

F �p �q (2.43)

Expression for the Expansion of f(�)

Having formulated the individual terms which ultimately form the expansion in equa-

tions (2.31), (2.36), and equation (2.43), the expansion shown to the second-order is now
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presented.

f(� + 0) = f(0) + � � rf(0) + 1

2
(� � r)2f(0) + : : :

= log
�
AC1(Z)

�
+

1

�2�

nX
p=1

�
BC1(Z; p; 1)� BC1(Z; p; 0)

�
AC1(Z)

�p

+
1

2�4�

nX
v=1;v 6=k

"
1�

�
BC1(Z; v; 1)� BC1(Z; v; 0)

�2
�
AC1(Z)

�2
#
�2v

+
1

�4�

nX
p=1

nX
q=1

p6=q;p<q�n; p;q 6=k

F �p �q + : : : (2.44)

Expression for g(�)

The expression for g(�) can be found by noting some simple changes in the derivations

of the terms of f(�) given in (2.31), (2.36) and (2.43). The di�erence between the two

functions is the subset over which the summation of the pseudo-probabilities is carried

out. This change is nicely handled by the weight enumeration functions de�ned earlier.

Therefore, the resulting expression for g(�) is,

g(� + 0) = g(0) + � � rg(0) + 1

2
(� � r)2g(0) + : : :

= log
�
AC0(Z)

�
+

1

�2�

nX
p=1

�
BC0(Z; p; 1)� BC0(Z; p; 0)

�
AC0(Z)

�p

+
1

2�4�

nX
v=1;v 6=k

"
1�

�
BC0(Z; v; 1)�BC0(Z; v; 0)

�2
�
AC0(Z)

�2
#
�2v

+
1

�4�

nX
p=1

nX
q=1

p 6=q;p<q�n; p;q 6=k

G �p �q + : : : ; (2.45)
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where, by changing the subset for the weight enumeration functions in the expression of

F in (2.42), G is de�ned to be

G =
BC0(Z; p� q; 1)�BC0(Z; p� q; 0)

AC0(Z)

�

�
BC0(Z; p; 1)� BC0(Z; p; 0)

��
BC0(Z; q; 1)� BC0(Z; q; 0)

�
�
AC0(Z)

�2 (2.46)

2.3.5 Complete Taylor Series Expansion Expression

Substituting the expressions of (2.44) and (2.45) into (2.21), the Taylor series expansion

is obtained to the second-order.

LLR(mk) = H(�) = f(�)� g(�)

= log

�
AC1(Z)

��
AC0(Z)

�
+

1

�2�

nX
p=1

�
BC1(Z; p; 1)�BC1(Z; p; 0)

�
AC1(Z)

�p

� 1

�2�

nX
p=1

�
BC0(Z; p; 1)�BC0(Z; p; 0)

�
AC0(Z)

�p

+
1

2�4�

nX
v=1;v 6=k

"
1�

�
BC1(Z; v; 1)�BC1(Z; v; 0)

�2
�
AC1(Z)

�2
#
�2v

� 1

2�4�

nX
v=1;v 6=k

"
1�

�
BC0(Z; v; 1)�BC0(Z; v; 0)

�2
�
AC0(Z)

�2
#
�2v

+
1

�4�

nX
p=1

nX
q=1

p 6=q;p<q�n; p;q 6=k

F �p �q � 1

�4�

nX
p=1

nX
q=1

p6=q;p<q�n; p;q 6=k

G �p �q + : : :
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= log

�
AC1(Z)

��
AC0(Z)

�
+

1

�2�

nX
p=1

��
BC1(Z; p; 1)�BC1(Z; p; 0)

�
AC1(Z)

�
�
BC0(Z; p; 1)� BC0(Z; p; 0)

�
AC0(Z)

�
�p

+
1

2�4�

nX
v=1;v 6=k

"�
1�

�
BC1(Z; v; 1)�BC1(Z; v; 0)

�2
�
AC1(Z)

�2 �

�
�
1�

�
BC0(Z; v; 1)�BC0(Z; v; 0)

�2
�
AC0(Z)

�2 �#
�2v

+
1

�4�

nX
p=1

nX
q=1

p 6=q;p<q�n; p;q 6=k

�
F �G� �p �q + : : : (2.47)

= K0 +
1

�2�

� nX
p=1

K1(p)�p

�
+
� 1
�2�

�2� nX
v=1;v 6=k

K2(v)�
2
v

+

nX
p=1

nX
q=1

p6=q;p<q�n; p;q 6=k

K3(p; q)�p �q

�
+ : : : ; (2.48)

where, K0, K1, K2, and K3 are constant terms dependent upon the weight distribution

of the code. Recall that �i, for i = 1; 2; : : : ; n, are Gaussian random variables with a

mean of zero and variance of �2� =
N0

2
.

2.3.6 The Gaussian Approximation

Examining the terms of the resulting expression, the Gaussian approximation can be

shown. K0 is a constant term and simply shifts the resulting distribution. The �rst-order

term of (2.47) is composed of the summation of Gaussian random variables and therefore,

this term is Gaussian distributed.

The distribution of higher-order terms is not easily observable. However, it can be
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shown that the sum of the higher-order product terms are asymptotically Gaussian dis-

tributed using the results of Hoe�ding [9]. Hoe�ding assumes i.i.d. random variables and

states theorems which are applicable to functions symmetric in their arguments. A sym-

metric function is one where interchanging the arguments does not change the expression

of the function [10]. This means that the results of [9] do not make any assumptions on

the underlying distribution to be Gaussian. Indeed, it turns out that in many cases (under

a set of mild conditions), even the assumption of independence can be removed [11{15].

This implies that Gaussian nature of the probability distribution of the LLR will be valid

for a much wider class of additive noise, not necessarily i.i.d. Gaussian.

In the following discussion, a generalization of Theorem 7:1 of [9] will be presented

for the weighted sum of symmetric functions, with non-repeating arguments. Note that

the repetition of arguments is permitted in the Taylor series expansion, and subsequently,

another theorem will generalize the results to the weighted sum of all permutations. Con-

ditions will be presented which show that if the weights of the symmetric functions are

of similar orders of magnitude, then the sum will be Gaussian distributed. Theorem 7:1

of [9] is applicable to multivariate situations as well, however, for the purposes of this

thesis, only the univariate case is considered. By properly de�ning the symmetric func-

tions, and properly including the coe�cients of the terms, this theorem can be useful

for the Taylor series expansion. It will be shown that the asymptotic Gaussian distri-

butions can be established for each of sum of terms of k = 2; 3; : : : degrees. With the

Gaussian nature determined for the expressions of di�erent degrees, using the well-known

theorem [16, Theorem 17a] that the sum of Gaussian random variables produces another

Gaussian random variable, the Gaussian distribution for the LLR is established.

The modi�ed generalization of Theorem 7:1 is presented below, along with a proof

based upon that found in [9]. Some notation needs to be de�ned before proceeding,

following from the notation of [9].
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Let X1; : : : ; Xn be n independent, identically distributed random variables. Let

x1; : : : ; xk be arbitrary �xed values or samples. De�ne

�(x1; : : : ; xk); k � n (2.49)

to be a real-valued function symmetric in its k arguments and which does not involve n.

De�ne

� = E
n
�(X1; : : : ; Xk)

o
: (2.50)

Let

�c(x1; : : : ; xc) = E
n
�(x1; : : : ; xc; Xc+1; : : : ;Xk)

o
;

c = 1; : : : ; k; (2.51)

where the expected value is taken with respect to the random variables Xc+1; : : : ; Xk,

holding x1; : : : ; xc �xed. Then,

E
n
�c(X1; : : : ; Xc)

o
= �; c = 1; : : : ; k: (2.52)

De�ne

	(x1; : : : ; xk) = �(x1; : : : ; xk)� � (2.53)

	c(x1; : : : ; xc) = �c(x1; : : : ; xc)� �; c = 1; : : : ; k; (2.54)
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and therefore, it follows that

E
n
	c(x1; : : : ; xc)

o
= 0: (2.55)

Suppose that the variance of 	c(X1; : : : ; Xc) exists, and let

�0 = 0; �c = E
n
	2
c(X1; : : : ; Xc)

o
; c = 1; : : : ; k: (2.56)

Therefore,

�c = E
n
�2
c(X1; : : : ; Xc)

o
� �2: (2.57)

As well, by Hoe�ding [9, pp. 299, (5.12)], if (�1; : : : ; �k) and (�1; : : : ; �k) are two sets of

di�erent integers, such that 1 � �i; �i � n; i = 1; : : : ; k, and c is the number of integers

common to the two sets, by the symmetry of 	,

E
n
	(X�1 ; : : : ; X�k)	(X�1; : : : ; X�k)

o
= �c: (2.58)

In applying this theorem to the Taylor series expansion expressions, care must be taken

in de�ning the functions �(X1; : : : ; Xk) for degree k. Here, the symmetric function will

be de�ned as the product of the arguments X1; : : : ; Xk, or X1X2 : : :Xk. The derivative

coe�cients found in the Taylor series will be de�ned in the function U of the theorem

below.

Theorem: Let X1; : : : ; Xn be n independent, identically distributed random variables. Let

�(x1; : : : ; xk); k � n (2.59)

be a real-valued function symmetric in its k arguments, x�, and which does not involve
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n. De�ne

U =

�
n

k

��1X0
a�1;::: ;�k�(X�1; : : : ; X�k); (2.60)

where the summation
P0 is over all subscripts such that 1 � �1 < : : : < �k � n, and

a�1;::: ;�k are real-valued coe�cients. Then, if the expected values

� = E
n
�(X�1; : : : ; X�k)

o
(2.61)

and

E
n
�(X�1 ; : : : ; X�k)

o2
; (2.62)

exist, the distribution function of
p
n(U � �0), where

�0 =
�
n

k

��1X0
a�1;::: ;�k� (2.63)

tends, as n!1, to the normal distribution function with mean 0 and variance k2C1�1,

where �1 is de�ned by (2.57), and C1 is a coe�cient based upon the normalized sum of

squared coe�cients a�1;::: ;�k.

The proof of the above modi�ed theorem follows by some generalization of Theorem

7:1 of [9, pp. 307]. Carrying through with the steps, it will be shown that the above

theorem holds, with some restrictions on the values of the coe�cients.

Proof: De�ne a new random variable Y , which is the sum of n independent random

variables, i.e.

Y =
kp
n

nX
�=1

�
n� 1

k � 1

��1X
(�)
a�1;::: ;�k	1(X�) (2.64)
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where, the summation
P

(�) is de�ned over all subscripts such that 1 � �1 < �2 < : : : <

�k � n for those functions �(X�1; : : : ; X�k) that contain X�, � = 1; : : : ; n, and 	1(x)

is de�ned by (2.54). This di�ers from the de�nition of Hoe�ding due to the inclusion of

coe�cients. The variables of the sum are made independent by taking the expectation

over all other random variables of the function with the exception of the argument of

	1(x), X�. The summation of the coe�cients represents the inclusion of the appropriate

coe�cients for each �(X1; : : : ; Xk) included in the averaging of 	1(x�). Using results of

Le Cam [17], who restates L�evy's version of the Central Limit Theorem [18], for the sum

of independent variables, the su�cient conditions for normality of Y is presented. This

theorem contains two such conditions which must be satis�ed to approach normality and

are [17, Theorem 2]:

1. Each summand that is not negligible compared to the dispersion of the entire sum

has a distribution close to Gaussian.

2. The maximum of the absolute value of the negligible summands is itself negligible

compared to the dispersion of the sum.

Therefore, as long as the summands are not too large or, if large, possess a Gaussian-

like distribution, the Central Limit Theorem can be applied. This can be applied to

the de�nition of Y above for coe�cients of similar magnitude. Using the above re-

sults, the distribution of Y tends to the normal distribution with mean 0, and variance

k2
�P

(�)a�1;::: ;�k
	2
�1.

Using Lemma 7:1 from [9, pp. 305], it will be shown that

Z =
p
n(U � �0)

=
p
n

�
n

k

��1X0
a�1;::: ;�k	(X�1 ; : : : ; X�k) (2.65)
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has the same limiting distribution as Y . By the lemma, it is su�cient to show that

lim
n!1E

�
Z � Y �2 = 0: (2.66)

Proving (2.66) requires expansion of the square as

E
�
Z � Y

	2
= EfZg2 +EfY g2 � 2EfZY g; (2.67)

and by formulating each of the expressions of (2.67), separately.

Beginning with EfZg2,

EfZg2 = nE
�
U � �0

	2
= n�2U

= n

�
n

k

��2
E
nX0

a�1;::: ;�k	(X�1 ; : : : ; X�k)
o2

= n

�
n

k

��2 kX
c=1

X(c)
a�1;::: ;�ka�1;::: ;�k

E
n
	(X�1; : : : ; X�k)	(X�1 ; : : : ; X�k)

o
(2.68)

where the summation
P(c), as de�ned by Hoe�ding, represents the summation over all

subscripts such that

1 � �1 < �2 < : : : < �k � n; 1 � �1 < �2 < : : : < �k � n: (2.69)

By (2.58), each term E
n
	(X�1 ; : : : ; X�k)	(X�1 ; : : : ; X�k)

o
is equal to �c. Hoe�ding

states that the number of terms in
P(c) is

�
k

c

��
n � k
k � c

��
n

k

�
(2.70)
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However, due to the coe�cients a�1;::: ;�k , this is a scaled sum and results in the expression

X(c)
a�1;::: ;�ka�1;::: ;�k = Cc

�
k

c

��
n� k

k � c
��

n

k

�
(2.71)

where Cc is an appropriate scaling factor for equality to hold. Using (2.58), �0 = 0,

and (2.71), in (2.68), EfZg2 becomes [9, pp. 308, (7.9)],

EfZg2 = k2C1�1 + O(n�1) (2.72)

Typically, it is desired that the variance of U to be normalized to 1 and therefore the

constraint, as n!1,

k2C1�1 = 1 (2.73)

is imposed.

Continuing with the formulation of expressions,

EfY g2 = k2

n

nX
�=1

�
n� 1

k � 1

��2hX
(�)
a�1;::: ;�k

i2
�1

= k2D1�1 (2.74)

where

nX
�=1

hX
(�)
a�1;::: ;�k

i2
= D1n

�
n� 1

k � 1

�2

(2.75)

since there are
�
n�1
k�1
�2

terms in the square of the summation;D1 is an appropriate constant

for equality.
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Finally, using (2.64) and (2.65),

EfZY g = E
np

n

�
n

k

��1X0
a�1;::: ;�k	(X�1 ; : : : ; X�k) �

kp
n

nX
�=1

�
n � 1

k � 1

��1X
(�)
a�1;::: ;�k	1(X�)

o
= k

�
n

k

��1�
n � 1

k � 1

��1X0
a�1;::: ;�k

nX
�=1

X
(�)
a�1;::: ;�k

E
n
	(X�1 ; : : : ; X�k)	1(X�)

o
(2.76)

where the summations,
P0 and

P
(�), are as previously de�ned. Using conditions found

in [9, pp. 308], the term

E
n
	(X�1 ; : : : ; X�k)	1(X�)

o
= �1 (2.77)

if

�1 = � or �2 = � : : : or �k = �; (2.78)

and is 0 otherwise, due to cross multiplication of independent variables having zero mean.

For some �xed �, the number of possible sets f�1; : : : ; �kg, such that 1 � �1 < : : : <

�k � n that satisfy (2.78) is
�
n�1
k�1
�
. As well, the number of coe�cients in the summationsPn

�=1

P
(�) is n

�
n�1
k�1
�
. De�ning B1 as the scaling factor for the summation of coe�cients,

X0
a�1;::: ;�k

nX
�=1

X
(�)
a�1;::: ;�k = B1n

�
n � 1

k � 1

�2

(2.79)

where the conditions imposed in (2.78) determine which coe�cients in (2.79) are summed.
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Substituting (2.77) into (2.76),

EfZY g = k

�
n

k

��1�
n � 1

k � 1

��1
n

�
n � 1

k � 1

�2

B1�1

= k2B1�1: (2.80)

Substituting (2.72), (2.74) and (2.80) into (2.67), the following is obtained.

E
�
Z � Y 	2 = k2C1�1 + O(n�1) + k2D1�1 � 2k2B1�1 (2.81)

and taking the limit as n!1,

lim
n!1E

�
Z � Y 	2 = k2C1�1 + k2D1�1 � 2k2B1�1

= k2�1
�
C1 +D1 � 2B1

�
(2.82)

results. For the two limiting distributions to be the same, the coe�cients C1, D1 and

B1 must combine to yield 0. Note that if the derivative coe�cients, a�1;::: ;�k , were unity,

the situation encountered in [9] would apply, and the expression of (2.82) would be 0. It

su�ces to say that if

D1 � C1 � B1; (2.83)

then EfZ � Y g2 = 0. Therefore, so long as the normalized sum of the coe�cients is of

similar order of magnitude, in the sense de�ned in (2.83), the distribution function of the

U function approaches a Gaussian distribution. �

The above conditions will be satis�ed if the coe�cient of a given degree in the Taylor

series expansion of the LLR are of similar orders of magnitude. In practice, due to

the combinatorial symmetries of linear codes, these coe�cients are approximately equal,



CHAPTER 2. GAUSSIAN APPROXIMATION FOR LOG LIKELIHOOD RATIO 53

satisfying the necessary conditions to obtain a Gaussian distribution.

The above theorem is applicable to the function U , where no repetition of the argu-

ments is allowed in the functions. This di�ers from the Taylor series terms above since

terms of multiplicity of arguments between 2 and k, the degree of the Taylor expression,

occur often. Hoe�ding addresses this issue with Theorem 7:3 of [9]. Using similar condi-

tions to those discussed previously for Theorem 7:1 it can be shown that the distribution

of the complete function including all permutations, i.e.

�(S) =
1

nk

nX
�1=1

: : :

nX
�k=1

a�1;::: ;�k�(X�1; : : : ; X�k); (2.84)

has the same asymptotic normal distribution as U . Therefore, the results from Theorem

7:1 hold for �(S) and therefore for the Taylor series expressions. Therefore, it has been

shown that the sum of weighted terms of given degree possess an asymptotic Gaussian

distribution and therefore the complete Taylor series expansion of the LLR is Gaussian

distributed.

Theorem 7:1 can be applied successfully for degrees less than the blocklength of the

code, n, however, as the degree of the term approaches the blocklength, the number

of unique functions decreases. This leads to the function U above being composed of

only a few summands and reduces the appropriateness of the theorem. Below, another

observation about the derivative coe�cients a1;::: ;k can be useful to compensate for this

shortcoming. Although the higher-order partial derivatives are di�cult to express in a

closed form, it can be shown, in Theorem 2.4, that these coe�cients approach zero as the

noise variance �2� becomes large in f(�).

Theorem 2.4 The higher-order partial derivative coe�cients in the expansion of f(�)

approach 0 as the noise variance, �2�, approaches in�nity.
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Proof: The coe�cients of the series are formed from partial derivatives and subsequently,

� = 0 is substituted. To prove this theorem, (2.22) containing f(�) is rewritten as,

f(�) = log
� X
ci �C1

exp
�� � ci + ~c � ci

�2�

	�
ef(�) =

X
ci � C1

exp
�� � ci + ~c � ci

�2�

	
(2.85)

ef(�) = A:

where, A is de�ned for the convenience of representation.

In this form, the higher-order partial derivatives are easier to calculate by the repeated

di�erentiation of the exponential function. The term on the right hand side of equation

(2.85) with � = 0 is �nite valued for block lengths which are not in�nitely long. The

exponentials are well behaved as the noise variance �2� increases (since the exponential

decreases) and the summation yields a �nite result. These arguments will be used for

higher-order partial derivatives below. The proof will be carried out by following an

inductive thought process to yield the form of the expression

Dk
m1;m2;::: ;mn

(f) =
@kf(�)

@�m1
1 @�m2

2 : : : @�mn
n

; (2.86)

where, m1+m2+ : : :+mn = k. Dk
m1;m2;::: ;mn

(f) denotes the kth-order partial derivative

of the function f .

First-order: Implicitly di�erentiating (2.85) which respect to �p, where p is a given bit
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position, the �rst-order derivative is given by

@ef(�)

@�p
=

@

@�p

� X
ci �C1

exp
�� � ci + ~c � ci

�2�

	�
ef

@f

@�p
=

1

�2�

X
ci �C1

cip exp
�� � ci + ~c � ci

�2�

	
(2.87)

@f

@�p
= e�f

@A

@�p
(2.88)

D1
m1;m2;::: ;mn

(f) =
1

�2�
Y1;

(2.89)

where, mp = 1 and mi = 0, for i = 1; : : : ; n; i 6= p.

Substituting � = 0, D1
m1;m2;::: ;mn

(A) becomes,

1

�2�

X
ci �C1

cip exp
�~c � ci
�2�

	
: (2.90)

The �rst-order partial derivative in (2.88) is a �nite number multiplied by 1=�2� and

divided by ef . It was determined above that ef is a �nite number with increasing noise

variance. The factors cip are either 1 or �1, meaning the result of dividing (2.90) by ef is

less than or equal to 1 (as they share similar components for the subset C1). Therefore,

the expression of (2.90) tends to 0 with increasing �2�. This is seen in the expression

of (2.48) with the multiplicative inverse noise variance factor. Therefore, for increasing

noise variance, the �rst-order coe�cients decrease.

Second-order: Implicitly di�erentiating (2.87) with respect to �q yields the second-
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order expression,

@

@�q

�
ef(�)

@f

@�p

�
=

@

@�q

� 1
�2�

X
ci � C1

cip exp
�� � ci + ~c � ci

�2�

	�
ef

@2f

@�p@�q
+ ef

@f

@�p

@f

@�q
=

1

�4�

X
ci � C1

cipciq exp
�� � ci + ~c � ci

�2�

	
(2.91)

@2f

@�p@�q
= e�f

@2A

@�p@�q
� @f

@�p

@f

@�q
(2.92)

D2
m1;m2;::: ;mn

(f) =
1

�4�
Y2:

(2.93)

Substituting � = 0 into D2
m1;m2;::: ;mn

(A) yields,

1

�4�

X
ci �C1

cipciq exp
�~c � ci

�2�

	
: (2.94)

The second-order partial derivative in (2.92) is comprised of the expression of (2.94) and

the terms of the �rst-order partial derivatives. Again, the above expression in (2.94)

decreases towards zero due to the 1=�4� multiplicative factor and since the summation

is again �nite (� 1) and decreasing with increasing noise variance. Therefore, the term

D2
m1;m2;::: ;mn

(A) tends to zero. It was determined above that the �rst-order partial deriva-

tives tend to zero as well with increasing noise variance. A common multiplicative term

of 1=�4� can be factored and the rate of decrease of the second-order coe�cients is greater

than that of the �rst-order coe�cients. This appears in (2.48) for the second-order term.

It can easily be veri�ed that the general second-order expression takes the form of,

@2f

@mp�p@
mq�q

= e�f
@2A

@�
mp
p @�

mq
q

� � @f
@�p

�mp
� @f
@�q

�mq (2.95)

where, mp +mq = 2.
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The coe�cients have multiplicative factors of 1=�2� to the degree for which the coef-

�cient is sought. It can be shown that this is the case for third order terms, however,

a closed expression does not exist and so it is not presented here. Given a degree k,

the resulting expression is a function of the kth partial derivative of A and the partial

derivatives of lower-orders k � 1; k � 2; : : : ; 2; 1. This was the situation encountered for

the second and third-order expressions. Using this observations, the expression for the

k + 1-order expression can be deduced.

Assume that the k-order partial derivative coe�cients approach zero as the noise

variance increases. Assume they take the form below based upon the lower-order partial

derivatives seen above.

Dk
m1;m2;::: ;mn

(f) =
@kf

@�m1
1 @�m2

2 : : : @�mn
n

=
1

�2k�
Yk (2.96)

= e�f
@kA

@�m1

1 @�m2

2 : : :@�mn
n
�Xk (2.97)

(2.98)

where, m1+m2+ : : :+mn = k and Yk is a constant expression comprised of lower-order

coe�cients expressions, and Xk is comprised of lower-order partial derivatives.

k + 1-order: To form the k + 1-order partial derivative, the expression of (2.97) is

implicitly di�erentiated. It will then be shown that the k+1-order expression is comprised

of lower-order partial derivatives and k + 1-order partial derivative of A. To facilitate

this, (2.97) is reorganized as

@kf

@�m1

1 @�m2

2 : : :@�mn
n

= e�f
@kA

@�m1

1 @�m2

2 : : : @�mn
n
�Xk

ef
@kf

@�m1

1 @�m2

2 : : :@�mn
n

=
@kA

@�m1

1 @�m2

2 : : :@�mn
n
� efXk: (2.99)
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Without loss of generality, it will be assumed that the k + 1st derivative is taken

with respect to �1 for convenience, and therefore, Dk+1
m1+1;m2;::: ;mn

(f) is sought. Implicitly

di�erentiating (2.99) with respect to �1, and solving,
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(2.100)

is obtained.

The expression on the right hand side of (2.100) is composed of the k+1-order partial

derivative of A and other lower-order partial derivatives of the function f(�) evaluated at

� = 0. The lower-order terms were assumed to tend towards zero with increasing noise

variance �2� . The �rst term of the expression contains a summations of exponentials which

is �nite and decreasing for increasing �2� . The division by ef normalizes the summation.

A multiplicative factor of 1=�2k+2� exists and diminishes this term quickly with increasing

noise variance. Therefore, the k+1-order partial derivative coe�cient tends to zero with

increasing noise variance. �

The above theorem shows that the coe�cients for the expansion of f(�) tend towards

zero with increasing noise variance. This also holds for g(�) as well, so that the combined

coe�cients of (2.48) also tend towards zero with increasing �2� . Having established that

the higher-order terms tend to zero with increasing noise variance and at a faster rate for

higher-order terms, the lower-order terms remain to produce the Gaussian distribution.
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This limits the e�ect of the terms with degree approaching the blocklength of the code.

The lower-order terms are therefore asymptotically Gaussian and their sum in the series

yields a Gaussian distribution for the LLR.

In the limit, as the noise variance values become quite large, the �rst-order terms

remain and the approximation below is obtained

LLR(mk) = H(�) = K0 +
1

�2�

� nX
p=1

K1(p)�p

�

= log

�
AC1(Z)

��
AC0(Z)

�
+

1

�2�

nX
p=1

��
BC1(Z; p; 1)� BC1(Z; p; 0)

�
AC1(Z)

�
�
BC0(Z; p; 1)�BC0(Z; p; 0)

�
AC0(Z)

�
�p (2.101)

The asymptotic approximation is comprised of �rst-order expressions in terms of the

components of �. Each are Gaussian distributed and the sum of scaled Gaussian random

variables results in a Gaussian distributed variable. At high SNR, it is expected that

the approximation will not be valid since the higher-order terms are not negligible. The

usefulness of this approximation will be seen in the following chapters and with the

simulation results in chapter 6.

2.4 LLR Approximation Comparison to a BPSK System

The LLR value is compared to the threshold value of 0 to determine whether a 0 or a 1

was transmitted. It was shown that the LLR can be approximated as a Gaussian random

variable. This variable would have a certain mean and variance which can be measured

by taking a number of samples for a given bit position. Alternately, the formula of (2.47)
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can be used directly to calculate the mean and variance of the LLR. However, for the

purpose of this thesis, simulation samples will be used. Figure 2.4 shows the distribution

of the LLR to the right of the 0 threshold. Since the zero codeword was assumed to be

transmitted, the LLR is centered about a negative mean. It was assumed throughout this

0

0 transmitted

�LLR

�LLR

Figure 2.4: LLR Distribution Approximation

analysis that a 0 has been transmitted in bit position k of the codeword. Theorem 2.1

states that any codeword can be chosen without a�ecting the probability distribution of

the LLR, provided the bit k remains unchanged. What if the bit value of 1 was assumed

for transmission? How would the distribution di�er from that of a transmitted 0? The

following theorem addresses this matter.

Theorem 2.5 The probability distribution of LLR(mk) for mk = 0 and mk = 1 are

re
ections of one another through the decision threshold of 0 (i.e., the origin).

Proof: From the expression of (2.48), it can be seen that the mean of the LLR is comprised

of K0 and since �i's have means of zero, those terms with even powers of �i's, e.g. �
2
i .

Assume the all-zero codeword 0 is transmitted. Then, the expression for K0 can be
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written as

K0(�1) = log

 P
ci � C1

exp
�

1
�2�
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P

cj �C0
exp
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1
�2�

�
�1 � cj

�	! (2.102)

Given the sub-code C0, and by adding the all-one codeword to all of the codewords in

the sub-code, the coset C1 is obtained and more importantly, the Hamming distance of

the all-zero codeword to all the codewords with a zero in a bit position k is equal to the

Hamming distance pro�le of the all-one codeword to all codewords which have a one in

that position.

Therefore, if the all-one codeword 1 is transmitted instead, and noting the change in

the subset with the addition of the all-one codeword to all the codewords of C0, the mean

of the LLR becomes

K0(1) = log
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= � log
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= �K0(�1) (2.103)

The other terms with even powers of �i's have coe�cients, which with a change in the

transmitted codeword, realize a sign change in a similarmanner due to the distance pro�le

of the code. Therefore, the transmission of a 1 in a given bit position is seen to produce

a mirror image of the distribution of the transmitted 0 through the decision threshold of

0. �
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Therefore, if the all-one codeword was assumed for transmission so that the bit in

position k was a 1, by Theorem 2.5, it would be expected that the distribution would be

mirrored in the decision threshold of 0. The distribution would appear as the dotted-line

form depicted in �gure 2.5. It can be seen that the crossover point for the distributions

would be the decision threshold of 0. The mean of the LLR distribution for a transmitted

1 is positive.

0

0 transmitted 1 transmitted

Figure 2.5: LLR Distributions for Transmitted 0 and 1

This diagram appears to be equivalent to that of the conditional distributions of

�gure 2.2 for a BPSK system. The only di�erence appears in the di�erent means and

variances for the distributions.

Since the LLR is approximately Gaussian with a measurable mean and variance, and

its decision threshold is de�ned to be 0, the soft-output decoding of binary linear codes

using LLR values can be modeled using a BPSK system. Therefore, it is conceivable that

the error probability for the bit in position k of the codeword could be approximated by

using the bit error probability expression for a BPSK system in (2.17).
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2.5 Coding Gain

With the establishment of the model, a new coding gain can be de�ned. The coding

gain is de�ned as the amount of improvement in performance that is obtained by coding

information over not coding the information. Since the soft-output decoding of a binary

linear block code has been shown to equivalent to a BPSK system, the coding gain can

be measured against a BPSK-modulated system for the uncoded words with the energy

per bit, Eb, set appropriately.

By scaling the LLR values such that the mean of them is equal to the set Eb value,

the ratio of the variance of the noise from the channel to the variance of the LLR values

can be calculated and is representative of the gain obtained from coding and soft-output

decoding. Remember that the variance of the noise samples was used in the determination

of the LLR values from (2.1) above and so the gain is from the code structure.

2.6 Chapter Summary

This chapter has presented the method by which the LLR of a given bit of a transmit-

ted codeword is calculated. As mentioned in chapter 1, the BCJR method could have

been used, but was not used for this thesis as it would have been more complicated to

implement and analyze. Before presenting the methodology used to obtain the Gaussian

approximation for the LLR distribution, a review of a BPSK modulation system was

presented as a basis for the modeling of soft-output decoding of binary linear codes.

The approximation is derived from the Taylor series expansion of the LLR function

de�ned in (2.1), in powers of Gaussian random variables. By noting that for high noise

variance values, higher-order terms become negligible and do not greatly a�ect the distri-

bution of the LLR, the remaining grouped terms of the series produce an approximately-

Gaussian distribution. The requirement that the noise variance be high for the approxi-
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mation to hold true corresponds with low SNR values. It is in this range of SNR values

which an approximation would be useful in practice. Based on the Gaussian approxi-

mation, the modeling of the LLR (from soft-output decoding) using a BPSK modulated

system was presented. A new de�nition for coding gain was presented.

In the following chapters, an in-depth study of the ratio of the mean of the LLR, M ,

to the standard deviation of the LLR, V (as used in the Q-function) is presented. The

mean and variance of the LLR is calculated using samples from simulations. Expressions

from this chapter could have been used to calculate these values using knowledge of the

weight distribution of the code, but the simulation method was chosen. With the study

of the ratio, it is possible to discuss the merits of the approximation, later in chapter 5.



Chapter 3

Mean and Variance Estimators of

the LLR

In the last chapter, it was proposed that the statistical behaviour of the log likelihood

ratio can be approximated by a Gaussian distribution. The modeling of the LLR values

using a Binary Phase Shift Keying (BPSK) system was described. This model makes

possible the use of the statistical properties of the LLR in obtaining an approximation

of the bit error performance of a code. In particular, the ratio of the mean to standard

deviation is used with the Q-function de�ned earlier in section 2.2, in the evaluation of

the bit error probability of a BPSK system.

In practice, the LLR values will be computed numerically through Additive White

Gaussian Noise (AWGN) channel simulations. Then, the mean and variance of the LLR

can be measured using sample estimators. The question then arises as to how many

samples are needed to obtain numerically stable results. Before this question can be

addressed, the sample estimators are further examined in this chapter.

This chapter will present the sample estimators, and their distributions will be dis-

65
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cussed. As well, the independence of the sample estimators will be shown, attributable

to the samples being independent and normally distributed. By obtaining the sample

mean and sample variance, the ratio of the two quantities can be found for use in the

Q-function. Using their distributions and manipulating the ratio of the two estimators,

a probability density function for the ratio will be formulated. With these facts, the

precision of the approximation and an idea of the number of samples required will be

presented in the next two chapters to follow.

3.1 Sample Estimators of Mean and Variance

The common estimators for the mean and variance of a set of samples are simple and well-

known. Suppose there are N independent and identically distributed (i.i.d.) Gaussian

samples xi ; i = 1; 2; : : : ; N , with mean � and variance �2. Then, the sample estimators

for the mean and variance are as shown in equations (3.1) and (3.2), respectively. Since

the mean and variance estimators are functions of samples of Gaussian random variables,

these estimators can be viewed as random variables. Therefore, the mean estimator will

be referred to by the random variable M , and likewise, the variance will be referred to

by the random variable V 2.

Mean M; x =
1

N

NX
i=0

xi (3.1)

Variance V 2; �2 =
1

N

NX
i=0

(xi � x)2 (3.2)

With any estimator, the more information that is available about the statistical nature

of a set of samples allows for closer estimation. Since the samples are from a population

exhibiting a Gaussian distribution, the sample estimators above are in fact maximum

likelihood estimators derived from the joint probability density function of many Gaussian
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random variables [19]. Having presented the two estimators to be used, a discussion of

their statistical nature follows in the next section.

3.2 Statistical Nature of the Mean and Variance

Estimators

In order to be able to study the statistical properties of the ratio of the mean to stan-

dard deviation for use in approximating the performance of a linear code, the statistical

properties of the estimators must be �rst analyzed. The mean and variance of the two

estimators (of the mean, M and variance, V 2 of i.i.d. normal samples) must be found

and examined for any bias. Is the mean of the sample estimator in fact equal to the

quantity to be estimated [19,20]? As well, in order to be able to obtain a probability

density function for the ratio of the estimators easily, their independence must be �rst

established.

It can be mathematically shown (see Appendix A) that the mean and variance of the

M and V 2 are as shown below [21] for i.i.d. Gaussian samples with mean � and variance

�2.

M = � V ar(M) =
�2

N
(3.3)

V 2 =
N � 1

N
�2 V ar(V 2) =

2(N � 1)

N2
�4 (3.4)

The estimator of the mean is seen to be unbiased. However, it is evident that the

estimator for the variance is not an unbiased estimator. The expected value of the

variance estimator is not equal to the variance of the samples. It is, nonetheless, an

asymptotically unbiased estimator; as the number of samples N approaches in�nity, the

estimator e�ectively becomes equal to the correct expected value of �2. To remove the
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bias, the estimator can be multiplied by an appropriate factor, but this is not expected

to be necessary for the purposes here. The number of samples that are to be dealt with

will be large. In the next section, more reason for not changing the estimator will become

evident. The biased estimator of V 2 helps in the formulation of the probability density

function of the ratio of M to V .

If the estimators are in fact independent, then the probability density function of

the ratio will be much easier to formulate. Multiplication of the two probability density

functions will constitute the joint distribution, and a variable transformation and its

Jacobian will be all that is required. It can be shown that the two estimators are in fact

uncorrelated for samples of any statistical nature. The estimators are independent for

the case of i.i.d. Gaussian samples [21], since they are uncorrelated, and for very large N ,

they become Gaussian random variables. This is presented in Appendix A. Therefore,

the task of obtaining the probability density function of the ratio is not a daunting one.

M is a Gaussian random variable; it is the normalized sum of i.i.d Gaussian samples.

Its probability density function is a Gaussian distribution with a mean and variance as

shown in the equations of (3.3). The distribution of V 2, and more importantly V , is

not so straight forward. This will require some modi�cation to the ratio to produce a

denominator with a known and recognizable distribution and will be presented in the

following section.

3.3 The Probability Density Function of the Ratio

With the establishment of the independence of the two estimators M and V 2 in the

previous section, the probability density function of the ratio of M to V can be found.
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The ratio Z is given by

Z =
M

V
=

Mp
V 2

As mentioned in the previous section, the numerator of the ratio, M , is a Gaussian

random variable. The distribution of the denominator is not so straight forward. By

modifying the numerator and denominator by a constant multiplicative factor, without

changing the overall ratio, a distribution for the denominator can also be realized.

The factor by which the numerator and denominator of the ratio is to be multiplied is
p
N
�
. This quantity is the reciprocal of the standard deviation of the random variable M

obtained from (3.3). The value of the ratio is unchanged, however, the factor allows the

denominator random variable to have a recognizable probability density function. The

results of this multiplication are

Z =
M

V
=

�p
N
�

�
M�p

N
�

�
V

=
D

S

where,

D =
�pN
�

�
M and S =

�pN
�

�
V:

The distribution of D is a scaled version of the distribution of M . The probability

density function is still Gaussian, however, rather than the mean and variance of (3.3), the

distribution now has a mean of �
p
N
� and a variance equal to 1. The Gaussian probability

density function is given in (1.1).

For the denominator, S, some mathematical manipulation is required before its dis-



CHAPTER 3. MEAN AND VARIANCE ESTIMATORS OF THE LLR 70

tribution can be recognized. Starting with the de�nition of S and expanding,

S =
�pN
�

�
V

=
�pN
�

�p
V 2

=
�pN
�

�vuut 1

N

NX
i=0

(xi � x)2

=

vuutN

N

NX
i=0

�xi � x
�

�2

=

vuut NX
i=0

X2
i (3.5)

It can be seen that the random variable S is in fact a Chi distributed random variable.

The Chi distribution is formed by square-rooting a Chi-squared distribution, which is the

sum of squared Gaussian random variables. The probability density function of a Chi

random variable is also found in literature [22,23]. The random variables Xi, which are

squared and then summed, are standard Gaussian distributed with mean 0 and variance

1. Chi and Chi-squared random variables formed of standard Gaussian random variables

are fully characterized by the degrees of freedom of the variable (i.e. the number of

squared variables which are summed), in this case N . As N approaches in�nity (i.e.

in�nite degrees of freedom), the Chi and Chi-squared variables become Gaussian. This is

where the implication of independence from Gaussian variables can be made to �nd the

probability density function of the ratio.

Having recognized the distributions of the numerator and denominator after the scal-

ing of each, the probability density function of D and S [22, pp. 417] are presented below.
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Note that the degrees of freedom of S is denoted by the subscript N .

fD (x) =
1p
2�

exp
n
�(x� �

p
N

�
)2

2

o
(3.6)

fSN (y) =
y
N�1 exp

n
�y2

2

o

2
N
2
�1�

�
N
2

� (3.7)

Therefore, the probability density function of the ratio Z can now be formulated. It

can be formed by substituting variable transformations of z = x
y and w = x into the

product of the two individual probability density functions of D and S (due to inde-

pendence) and dividing the result by the absolute value of the Jacobian of the variable

transformations. This procedure is detailed mathematically [24] as

fZW (z; w) = fDS(w;
w

z
)

1

jJ(x; y)j (3.8)

= fD(w) fS(
w

z
)

1

jJ(x; y)j (3.9)

where jJ(x; y)j is the absolute value of the Jacobian de�ned as,

J(x; y) =

������
@w
@x

@w
@y

@z
@x

@z
@y

������
:

Carrying through with this procedure, and integrating from �1 to 1 with respect to

the dummy variable, w, the resulting probability density function of the ratio is given as

fZ(z) =
exp

�� 
2

2(z2+1)

	
2
N�2
2 �

�
N
2

� 1p
z2 + 1

N+1

hbN2 cX
k=0

�
N

2k

�� 
zp
z2 + 1

�N�2k (2k)!
k!2k

i
(3.10)
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where 
 = �
p
N
�

. (The mathematics behind this result are presented in Appendix B).

3.4 Chapter Summary

This chapter presented the estimators of the mean and variance of a set of Gaussian

distributed samples. The estimators can be shown to be uncorrelated and for the special

case of Gaussian distributed samples, the two estimators are independent. This case

is encountered here due to the Gaussian approximation of chapter 2. The probability

density function of the ratio of the two quantities to be estimated (i.e., the mean to

standard deviation) was derived using their probability density functions. By adjusting

the numerator and denominator of the ratio, the distributions were recognizable as a

Gaussian distribution for the numerator and a Chi distribution for the denominator.

The independence of the two estimators was then used to obtain the probability density

function for the ratio.

With the probability density function of the ratio Z of the mean to the standard

deviation of the LLR, an analysis of the Q-function as a function of the random variable

Z can be investigated in the next chapter to obtain its variance.



Chapter 4

Analysis of the Ratio Z = D

S

It was established in the last chapter that the numerator and denominator of the ratio

D
S
are indeed independent. The independence follows from the fact that the estimators

of the numerator and denominator are uncorrelated, and since the samples are Gaussian

distributed [21]. The independence was used in the previous chapter to determine the

probability density function of the ratio.

Although the new method is only an approximation for the bit error probability

performance of a linear code, the method does possess its own merits. However, additional

expressions need to be formulated before discussing the merits in chapter 5. This chapter

will present these expressions, including the rth moment of the ratio which will later be

used to formulate the mean and variance of Q(Z), where Z = D
S . The variance of Q(Z)

can be used to discuss the precision of the approximation.

4.1 r
th Moment of the Ratio Z

The calculation of the rth moment of the random variable Z is possible using its proba-

bility density function. This would require multiplying the expression of (3.10) by zr and
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integrating with respect to z from 0 to1. This was attempted, however, the resulting in-

tegral proved to be di�cult and a simple closed form expression was not attainable [25{27].

This called for another approach to obtain a closed-form expression of the rth moment.

Using the fact of independence between the numerator random variable, D, and the

denominator random variable, S, the rth moment of the ratio can be found. It is known

that the mean of the product of two independent random variables is the product of the

means of the individual random variables [24]. This is to say that,

AB = �A �B; (4.1)

where A and B are independent random variables.

With this property, the rth moment follows,

E[Zr] = E[S�r]E[Dr]; where E[�] denotes expectation. (4.2)

Now the individual expectations from above can be formulated separately. The probabil-

ity density functions for D and S are provided in equations (3.6) and (3.7), respectively.

Recall thatD is a Gaussian random variableN
�
�
p
N
�

; 1
�
and S is a central Chi distributed

random variable.

First, E[S�r] is formulated, followed by the formulation of E[Dr].

E[S�r] =
Z 1

0

y�rfSN (y) dy

=

Z 1

0

y�ryN�1 e�
y2

2

2
N
2
�1�

�
N
2

� dy

=

Z 1

0

y(N�r)�1 e�
y2

2

2
N
2
�1�

�
N
2

� dy:
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Letting t = y2

2
, y =

p
2t, dt = y dy, and continuing,

E[S�r] =
Z 1

0

(2t)
(N�r)

2
�1 e�t

2
N
2
�1�

�
N
2

� dt
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(1
2
)
r
2
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N
2

� Z 1

0

t
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2

�1 e�t dt

=(
1

2
)
r
2
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�
1
2
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�(N

2

� : (4.3)

where �
�
x
�
=
R1
0
yx�1 e�y dy by de�nition [28]. Similarly,

E[Dr] =

Z 1

�1
xr fD (x) dx

=

Z 1

�1

xrp
2�

e�
(x� �

p
N

� )2

2 dx:

Letting t = x� �
p
N
�

, dt = dx, and continuing,

E[Dr] =

Z 1

�1

(t+ �
p
N
� )

r

p
2�

e�
t2

2 dt

=

rX
k=0

�
r

k

���pN
�

�r�k Z 1

�1

tkp
2�

e�
t2

2 dt

=

br=2cX
k=0

�
r

2k

���pN
�

�r�2k (2k)!
2kk!

: (4.4)

In the above expression, it was noted that

Z 1

�1

tkp
2�

e�
t2

2 dt = E[tk]:

E[tk] is the kth moment of a Gaussian random variable N(0; 1) and can be expressed
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as [1, 7, 24],

E[tk] =

8><>:
(2v)!
2vv! ; v = k

2 when k is even

0; when k is odd

Now, the resulting expression for E[Zr] can be formed using (4.3) and (4.4) from

above, to yield,

E[Zr] =
�1
2

� r
2 �
�
1
2(N � r)

�
�
�
N
2

� b r
2
cX

k=0

�
r

2k

���pN
�

�r�2k (2k)!
2kk!

: (4.5)

It is evident that the expression for the rth moment is a function of the ratio of the

individual expected means of the two random variables, namely � and �. Also, it is a

function of N , the number of samples used to obtain the values of D and S numerically.

Since the rth moment depends on number of samples, it can be viewed as an estimator [19].

This leads to the questions: does the �rst moment (i.e., the mean) and other moments

approach the true expected values for the ratio? Are the expressions asymptotically

unbiased? Or are they biased?

Unfortunately, the expression is not a simple function of N for general r, otherwise

the limit of (4.5) as N approaches in�nity could be taken to answer these questions.

However, the limit can be taken for predetermined values of r. For example, with r = 1,

the �rst moment is [23, pp. 513]

lim
N!1

�1
2

� 1
2 �
�
1
2
(N � 1)

�
�
�
N
2

� �
p
N

�

= lim
N!1

�N
2

� 12 ��1
2
(N � 1)

�
�
�
N
2

� �

�

� �

�
: (4.6)
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Likewise, for the second moment, r = 2,

lim
N!1

1

2

�
�
1
2
(N � 2)

�
�
�
N
2

� ���pN
�

�2
+ 1

�
= lim

N!1
1

2

�
�
1
2
(N � 2)

�
1
2
(N � 2)�

�
1
2
(N � 2)

� h�2N
�2

+ 1
i

= lim
N!1

1

N � 2

h�2N
�2

+ 1
i

� �2

�2
: (4.7)

The answers to the questions is that the expressions for the �rst and other moments are

in fact asymptotically unbiased. This was determined empirically for N very large, for

di�erent values of r. The �rst moment approaches the ratio of the expected means, �
�
, and

the second moment approaches the square of �
� as N increases, etc. The importance of

this observation is that no multiplicative factor needs to be applied to the expression; the

expressions do not drift from the true values of the ratio and therefore do not introduce

errors into the approximation.

Observing (4.6), it is seen that the �rst moment of the ratio is simply the ratio of the

�rst moments of the two quantities D and S. From (4.7), the second moment of the ratio

is seen to be equal to the ratio of the squares of the means of the estimated quantities.

The situation holds for higher moments as well and is indicative of the invariance property

of maximum likelihood estimation. This property states that the maximum likelihood

estimate of a function g with parameter �, dg(�), is equal to the function of the maximum

likelihood estimate of the parameter �, i.e. g(�̂) [19,20]. The rth moment of Z is therefore

equal to the ratio of the mean of D raised to the rth power, to the mean of S raised to

the rth power.

The ratio Z = D
S
will be used as an argument of the Q-function in the sections to

come, and since the expressions are unbiased, it is known that the estimation error will
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approach zero as N increases, without further modi�cations to the expressions.

4.2 Expansion of Q(Z)

Having formulated expressions for the rth moments of Z, focus can now be shifted to the

use of Z as an argument to the Q-function. This relates back to a main idea of this thesis

of modeling the LLR values using a BPSK modulation scheme in section 2.2.

In order to obtain the mean and variance of the function, a series expansion is used.

The Q-function can be written in terms of the complementary error function [25, 27],

erfc(�), which can be expressed by a series expansion. This yields,

Q(z) =
1

2
erfc

� zp
2

�
=

1

2

�
1� erf� zp

2

��
=

1

2
� 1

2

2xp
�

�
1� x2

1! 3
+

x4

2! 5
� x6

3! 7
+

x8

4! 9
� : : :

�????
x= zp

2

=
1

2
� zp

2�

�
1� z2

1! 3 � 2 +
z4

2! 5 � 4 �
z6

3! 7 � 8 +
z8

4! 9 � 16 � : : :

�
=

1

2
� zp

2�

� 1X
k=0

(�1)k z2k

k! (2k+ 1) � 2k
�

=
1

2
� 1p

2�

� 1X
k=0

(�1)k z2k+1

k! (2k+ 1) � 2k
�
: (4.8)

4.3 Mean and Variance of Q(Z)

With the series expansion of Q(z) above, the mean and variance can be formulated. By

taking the expectation of Q(z), the �rst and second moments of Q(z) can be calculated.

The variance can be expressed using the second moment of Q(z) and the square of the

mean. These expressions are now presented.
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4.3.1 Mean of Q(Z)

The mean of Q(Z), using the series expansion of (4.8), is given by,

E[Q(z)] =Q(z)

=
1

2
� 1p

2�

� 1X
k=0

(�1)k E[ z2k+1 ]

k! (2k+ 1) � 2k
�

=
1

2
� 1p

2�

1X
k=0

(�1)k
�1
2

� 2k+1
2 �

�
1
2
(N � 2k� 1)

�
�
�
N
2

�
k! (2k+ 1) � 2k �

b 2k+1
2

cX
i=0

�
2k+ 1

2i

���pN
�

�2k+1�2i (2i)!
2i i!

: (4.9)

4.3.2 Variance of Q(Z)

For the variance of Q(Z), the second moment of Q(Z) needs to be formulated and then

the squared-mean is subtracted. To formulate the second moment of Q(z), the series

expansion of Q(z) from (4.8) must be squared, i.e.,

Q(z)2 =

�
1

2
� 1p

2�

1X
k=0

(�1)k z2k+1

k! (2k+ 1) � 2k
�2

=
1

4
� 1p

2�

1X
k=0

(�1)k z2k+1

k! (2k+ 1) � 2k +
1

2�

� 1X
k=0

(�1)k z2k+1

k! (2k+ 1) � 2k
�2

=
1

4
� 1p

2�

1X
k=0

(�1)k z2k+1

k! (2k+ 1) � 2k +
1

2�

1X
i=0

1X
j=0

(�1)i+j �

z2(i+j)+2

i! j! (2i+ 1) (2j + 1) � 2i+j : (4.10)

Taking the expectation of the above, the second moment is obtained as a function of

various moments of Z. Substituting the moments of Z from (4.5), the second moment is
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obtained as,

E[Q(z)2] =
1

4
� 1p

2�

1X
k=0

(�1)k E[ z2k+1 ]

k! (2k+ 1) � 2k +
1
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m! 2m
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(4.11)

Taking the expressionE[Q(Z)2 ] in (4.11) and subtractingE[Q(z)]2, the variance is found.

For the sake of completeness, the expression is shown here, where Q(z) was de�ned in

equation (4.9).

V ar
�
Q(Z)

�
=E[Q(z)2 ]�E[Q(z) ]2

=
1

4
+ Q(z) � 1

2
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�1
2

�i+j+1
�

�
�
1
2

�
N � 2(i+ j)� 2
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�
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� i+j+1X
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�
2(i+ j) + 2
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���pN
�

�2(i+j)+2�2m
�

(2m)!

m! 2m
� Q(z)

2
: (4.12)

4.3.3 Comments on the Mean and Variance of Q(Z)

Examining the expressions above, it can be seen that the series are comprised of an

in�nite number of terms. It is not practical nor feasible to include a large numbers of

terms in the series expansion due to the computation time and memory requirements of
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such a task, and thus the series must be truncated. It is necessary to examine when the

individual terms become small enough so that they can be neglected. This approximation

must be done numerically as it is di�cult to analytically estimate the number of terms

required for di�erent values of N and �
�
. A good rule of thumb was found; if the number

of terms included in the series is 4 times the ratio
�
�
�

�2
, then stable results are obtained

for �
�
> 2 and N > 1000.

4.4 Chapter Summary

In this chapter, the expression for the rth moment of Z was formulated and then later

used in the determination of the mean and variance of Q(Z). With these quantities

calculated, the merits of the new approximation method can be explained in the next

chapter.



Chapter 5

Variance Comparison of

Simulation Methods

In the previous chapters, the reasoning and mathematics behind the new approximation

method for the bit error performance for linear block codes have been explained thor-

oughly. Using these arguments, the approximation can be obtained. However, the merits

of the method are not yet clear.

Conventional simulation methods tend to be a lengthy process, requiring hours of

computation time, especially for low bit error probabilities. This chapter will focus on

the merits of the method, prior to seeing any simulation results. This will be done by

comparing the number of samples required to produce the approximation to the number

required for conventional bit error performance simulations. As it will be shown, this new

method requires far fewer samples than the conventional simulation methods to obtain

the same error performance, and therefore less time.

To compare the performance of the methods, the variance in the bit error probability is

calculated and used. The variance in the bit error probability obtained from conventional

82
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simulation methods is de�ned and calculated in the next section. The expression for the

variance of the approximation method was de�ned in equation (4.12). The comparisons

are made in the last section of this chapter.

5.1 Analysis of Conventional Simulation Methods

In this analysis, a random variable E is de�ned to encapsulate the error totaling done

using conventional simulationmethods. These simulationmethods were described earlier,

in chapter 1. Suppose that a bit bi is transmitted, in position i of a bit stream, and that

the received bit in position i is decoded as b̂i. Then the random variable �i can be de�ned

as follows:

�i =

8><>: 1 when bi 6= b̂i

0 otherwise.
(5.1)

�i indicates an error event. The random variable E is de�ned as

E =
1

N

NX
i=1

�i: (5.2)

The probability of bit error, Pe, is de�ned as the number of errors that occur in a

stream of bits divided by the total number of bits transmitted in the stream. By this

de�nition, E is a random variable representing the probability of bit error.

Insight into E and therefore conventional simulation methods, can be obtained from

observing its mean and variance. The mean and variance of E are derived below.

�E =
1

N

NX
i=1

�i

= Pe; (5.3)
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and,

�2E =
� 1

N

NX
i=1

�i

�2
�
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N

NX
i=1

�i

!2

=
1

N2

h NX
i=1

�2i +

NX
i=1

NX
j=1

i6=j

��i ��j

i
� P 2

e

=
1

N2

NX
i=1

��2i +
1

N2

NX
i=1

NX
j=1

i6=j

��i ��j � P 2
e

=
Pe

N
+
N(N � 1)

N2
P 2
e � P 2

e

=
Pe

N

�
1� Pe

�
(5.4)

� Pe

N
when Pe is small. (5.5)

Note that ��i = Pe. The variance in the probability of bit error is approximately equal

to Pe
N as shown in (5.5). It is evident that the variance of E decreases as N increases.

This is expected since the inclusion of more samples reduces uncertainty in the bit error

probability for a given SNR.

5.2 Variance of Random Variable Q(Z) Revisited

The variance of the random variable was formulated in the previous chapter (see sec-

tion 4.3.2). Given the number of samples N , and the value of the ratio �
�
, the vari-

ance can be calculated by implementing equation (4.12). It can easily be veri�ed us-

ing (4.7) and (4.6) that the variance of Z approaches zero with increasing N . Therefore,

the due to the one-to-one mapping between Z and Q(Z), the variance of Q(Z) also

approaches zero.

With the value of the variance of the function Q(Z), and the variance obtained by
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conventional methods above, comparisons can be made to show the merits of the new

approximation method. However, prior to this, the relationship between �
� and Pe must

be established.

5.3 Relationship Between �

�
and Pe

Since the new approximation method is to be used for the evaluation of the performance

of linear codes in the presence of AWGN, the relationship between �
�
and Pe is a simple

and well-known one. Suppose a bit is transmitted over an AWGN channel using BPSK

modulation, with bit energy Eb and the noise power (and hence variance) on the channel

is N0

2
. The probability of bit error for this setup is [1, pp. 258],

Pe = Q
�r2Eb

N0

�
The transmitted bits are disturbed by independent Gaussian noise samples, and each

received bit has a mean amplitude, �, and variance, �2, due to noise. Considering the

ratio �
�
as a signal-to-noise ratio, the probability of bit error for a bit with energy �2,

disturbed by AWGN, with noise power �2, is then

Pe = Q
��
�

�
:

Therefore, the Pe is in fact a function of the value of �
�
via the Q-function. The value �

is seen to be equal to the signal amplitude
p
Eb and � is equal to

q
N0

2
.

With the relationship stated, the variances can be compared for di�erent values of �
�

and number of samples, N . These two quantities will be varied below in the expressions

of the variances in equations (4.12) and (5.5).
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5.4 Comparison of Variances and the Merits

The variance of Q(Z) is a complicated expression and not a simple expression of N or

�
�
. This means that the comparison must be done empirically using (4.12) and (5.5), and

not analytically. Tables 5.1 and 5.2 contain variance values obtained for varying values

of �
� and N .

�
� Pe �2E �2Q(Z) Ratio

�2
E

�2
Q(Z)

1 1.5866e-1 1.5866e-5 8.78160e-6 1.81

2 2.2750e-2 2.2750e-6 8.746385e-7 2.60

3 1.3499e-3 1.3499e-7 1.0841e-8 12.45

4 3.1671e-5 3.1671e-9 1.6355e-11 193.6

Table 5.1: Comparison of Variances, N = 10000

�
� Pe �2E �2Q(Z) Ratio

�2
E

�2
Q(Z)

1 1.5866e-1 1.5866e-6 8.7823e-7 1.81

2 2.2750e-2 2.2750e-7 8.7452e-8 2.60

3 1.3499e-3 1.3499e-8 1.0807e-9 12.49

4 3.1671e-5 3.1671e-10 1.6143e-12 196.2

5 2.8665e-7 2.8665e-12 2.9958e-16 9568.5

Table 5.2: Comparison of Variances, N = 100000

From these results, the merits of the new approximation can be presented. Using

Chebyshev's inequality [29], it can be concluded that with smaller variance, there is a

smaller chance of a large deviation from the mean value of a quantity. This relates directly

to the precision of the quantity. This precision is relevant for discussing the merit of the

approximation.

The �fth column of the tables is of most interest. The ratio of the variances, as well as
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the variances themselves, show that the variance of Q(Z) is always smaller. This means

that this method is more precise. However, another interpretation of the ratio values can

be made. If the result of the ratio of variances is equal to A, it can also be said that

in order to achieve the same Pe, the number of samples needed by the approximation

method can be reduced by a factor A. Therefore, A times fewer samples are required.

This was observed in practice. Fewer samples were needed to obtain a value of Pe

since there is less variation in the result. For example, observing the data in tables 5.1

and 5.2, for a �
� value of 3, using conventional methods, the variance of 1.35e-8 is obtained

with 100000 samples, while an even smaller variance of 1:08e � 8 can be obtained with

10000 samples using the approximation. This is a factor of 10 reduction in the number

of samples needed to obtain similar precision in the bit error probability.

Unlike the conventional method, where a large number of samples is required to

ensure a smaller variance in the resulting probability of bit error, the approximation

method requires fewer. This translates into a savings in the time required to carry out

computations. And although this method is only an approximation, it is quite close to

the actual bit error curves. This will be seen in the following chapter. So the reduced

number of samples required is the main advantage of this method, producing a good

approximation to the conventionally-simulated bit error performance curves.

5.5 Chapter Summary

The approximation using LLR values was shown to require fewer samples than conven-

tional simulation techniques to obtain the performance results of a linear code. This

merit was illustrated by comparing the variance of conventional simulations methods to

the approximation method. The variance of the Q-function, with Z as an argument, is

always smaller than the variance in the results for conventional methods for a given bit
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error probability and number of samples, N . Therefore, to obtain the same precision in

the probability of bit error, fewer samples are required.

The next chapter presents the results of simulations using the approximation and

compares it to the bit error performance of linear codes obtained through conventional

simulation methods.



Chapter 6

Simulation Results and Discussion

This chapter presents the simulations results of using the approximation that has been

analyzed in the preceding chapters. Two simple codes are simulated over an AWGN

channel, and then the LLR is calculated for each bit position using the de�nition of the

LLR found in equation (2.1). The conventional simulation method of calculating the

bit error probability was used. This method involves performing hard decisions on the

LLR values to decide upon a bit value, and the accumulation of errors determines the bit

error performance of the code. This is done for every component of the received codeword.

Then, making use of the LLR values for one bit position, the mean and standard deviation

of them are calculated and used to gauge the performance of the linear code.

Simulation results are presented for two simple codes. Comments on the approxima-

tion are made when compared to those curves of the conventionally simulated bit error

probability. The �rst-order approximations are presented using the expressions of chap-

ter 2, for both codes. The implications of the results and appropriateness of the Gaussian

approximation are discussed to conclude the chapter.

89
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6.1 Simulation Parameters and Setup

For any linear code, the parameters of the code can be represented as (n; k; d), where

n is the number of bits per codeword, k is the number of bits of information which are

encoded (i.e. the dimensionality of the code), and d is the minimum Hamming distance1

between the codewords. The Hamming distance d relates directly to the performance of

the code. The larger the value of d, the more errors that can be detected and corrected

during decoding [1, 3], yielding better performance results.

The two codes employed to illustrate the results of the approximation against the

conventionally simulated bit error performance were chosen to be the (8; 4; 4) Reed-Muller

code and the (24; 12; 8)Golay code. Both of these codes are well-documented in literature.

The two codes were chosen since they are prime examples of binary linear codes and are

easy to implement.

The generator matrix, GRM , of the Reed-Muller code that was used, is shown below.

The codebook of the code consists of 16 codewords (2k = 24). The modulated codewords

are then used in the LLR de�nition of (2.1) as code C.

GRM =

266666664

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

377777775
(6.1)

The generator matrix, GG, of the Golay code that was used is presented below. The

1The Hamming distance is de�ned as the number of bits positions in which two codewords di�er.
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Golay code contains 4096 codewords (2k = 212) in its codebook.

GG =

266666666666666666666666666666666664

I12

????????????????????????????????????????

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 0 0 0 1 0

1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

1 1 1 1 0 0 0 1 0 1 1 0

1 1 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 0 1 1 0 1 1 1 0

1 0 1 0 1 1 0 1 1 1 0 0

1 1 0 1 1 0 1 1 1 0 0 0

1 0 1 1 0 1 1 1 0 0 0 1

377777777777777777777777777777777775

(6.2)

I12 is a 12-by-12 identity matrix which contains ones only on the diagonal of the matrix

and zeros elsewhere.

Following from �gure 1.2, the codewords are �1 modulated and then transmitted.

These modulated bits were simulated over an AWGN channel with noise samples with

mean 0 and noise variance �2� =
N0

2 . The values of the noise variance were independent

parameters in the simulation, and the resulting bit error probabilities for the conventional

simulation method and the approximation method were plotted against the SNR Eb

N0
, in

dB. The results are now presented in the following section.
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6.2 Simulation Results

Based upon the simulation setup described above and the calculation of the LLR using

(2.1), the performance of the codes was simulated. First, the Reed-Muller code perfor-

mance curves are presented followed by the Golay code performance curves.

6.2.1 Reed-Muller Code Performance

Figure 6.1 presents the simulation results of the Reed-Muller code over an AWGN channel.

The solid line represents the conventionally simulated bit error probability curve while

the dotted line represents the approximation proposed by this thesis.
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Figure 6.1: Bit Error Performance Comparison for the Reed-Muller code

The �rst impression obtained from �gure 6.1 is that the approximation is remarkably
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close to the simulated bit error performance of the code, more so for lower SNR values

than higher SNR values. The close approximation at low SNR follows exactly from the

approximation made in chapter 2. The LLR values were approximated to be Gaussian in

situations of high noise variances since the higher-order terms of the expansion become

negligible. For high SNR (i.e., low noise variance), the higher-order terms become more

signi�cant, and therefore cannot be neglected. The Gaussian nature discussed earlier

breaks down. The approximation curve is seen to deviate, as expected.

For the low SNR values, which are the range of interest and of practical use in industry,

the approximation is excellent. Even for higher SNR values, the amount of divergence is

not catastrophic since the numbers in this region are small and the actual di�erences are

small.

6.2.2 Golay Code Performance

Figure 6.2 presents the simulation results of the Golay code over an AWGN channel. The

solid line represents the conventionally simulated bit error probability curve while the

dotted line represents the approximation proposed by this thesis.

Again, the approximation is seen to be remarkably close to the simulated bit error

performance of the code. The deviation in the approximation from the conventionally

simulated performance curve is consistent with that seen for the Reed-Muller code. For

higher SNR values, the approximation made in chapter 2 is not valid and therefore, the

curves separate. The approximation is excellent for low SNR values and is still good for

high SNR values.
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Figure 6.2: Bit Error Performance Comparison for the Golay code

6.3 First-Order Approximation Results

Chao et al. [30] evaluated the performance of binary block codes at low SNR values

using a series expansion for the probability of correct decoding and considering only the

�rst two terms of the series (zeroth and �rst-order). They give numerical results for

the performance of a biorthogonal code with 16 codewords. It can be shown through

a rotation of coordinates that this code is equivalent to the (8; 4; 4) Reed-Muller code

considered above. A comparison can thus be made between the two codes. The results

of �gure 1 of [30, pp. 1686] can be directly compared with the results shown graphically

in �gure 6.3. Results obtained via the approximation described in this thesis are more

precise over a wider range of SNR values. The results are shown graphically in �gure 6.3



CHAPTER 6. SIMULATION RESULTS AND DISCUSSION 95

for the Reed-Muller code.
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Figure 6.3: First-Order Approx. for the Bit Error Performance of the (8; 4; 4)Reed-Muller

code

Similar �rst-order results can be shown for the Golay code in �gure 6.4. This �rst-

order approximation deviates quicker than that of the Reed-Muller code since n is larger,

producing more higher-order groupings which appear Gaussian and contribute to the

overall approximation.

6.4 Implications of the Results

The approximation is an excellent one for low SNR; the performance of binary linear

codes can be accurately approximated for these SNR values. As was shown in the previ-
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Figure 6.4: First-Order Approx. for the Bit Error Performance for the (24; 12; 8) Golay

code

ous chapter, fewer sample LLR values are required to obtain a relatively precise bit error

probability value for a given SNR Eb

N0
. This was the result of the analysis done on Q(Z),

where Z is considered to be a random variable and was de�ned to be the ratio of mean to

standard deviation of the approximated Gaussian-distributed LLR values. The require-

ment of fewer samples was also observed in practice. Therefore, less time was required

to simulate the approximation curves. The results are quite good and comparable to the

bit error performance of the code obtained via conventional simulation methods.

The approximation is very good in the area of interest to most designers. The error

probabilities in the range of 10�3 to 10�4 are importantwhen considering the transmission

of analog signals (e.g. speech). Generally, these bit error values are associated with low
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SNR values and therefore, the approximation is appropriate for the range over which it

will be most useful.

? ?channel
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Figure 6.5: Channel Coding Components Replaced by a BPSK System

The close approximation of the bit error performance of a binary linear code justi�es

the modeling of the soft-output decoding of binary linear codes by a BPSK system. With

this model, it is possible to replace the a complex channel coder, channel, and channel

decoder by a BPSK system operating with signal points at ��LLR and noise variance

equal to �2LLR as seen in �gure 6.5. The simple BPSK system is far less complicated and

once the mean and variance of LLR values have been calculated, the original channel
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coding structure can be replaced.

This type of simpli�cation to the channel model simpli�es the life of a designer of

a system which requires knowledge of the channel's characteristics. Such is the case for

the designer of a combined source-channel coding scheme [31]. Channel characteristics

should be known such that the quantizers in the source coder can be optimized. The

simple model allows the designer to concentrate more fully on this task.

6.5 Chapter Summary

This chapter presented the results of simulations of the bit error performance of two

binary linear codes: Reed-Muller and Golay codes. The approximation described and

analyzed in the preceding chapters and the modeling of soft-output LLR values using a

BPSK system was used and compared against the conventionally simulated soft-output

bit error performance of the linear codes. The approximation is found to be excellent

for low SNR and deviates at higher SNR values. This was expected since the higher-

order terms of the Taylor series expansion cannot be neglected at higher SNR values (i.e.,

low noise variance) and the Gaussian approximation falters. The approximation method

requires fewer samples to obtain such close performance, as well.

Therefore, it was shown that complex channel coding and decoding systems can be

replaced by a simple BPSK system, thereby simplifying the system interactions and

allowing designers to concentrate on other components of the communications systems.

The BPSK system would be characterized by signal points at ��LLR and noise variance

of �2LLR.

This ends the discussion on the modeling of the soft-output decoding of linear block

codes using a BPSK system. The next chapter presents an interesting methodology for

calculating the weight distribution of a code, or the number of codewords with a given
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weight (i.e., number of ones). The weight distribution of a code can be used directly in

the expression of chapter 2, in calculating the coe�cients of the Taylor series expansion.



Chapter 7

Weight Distribution Using the

Discrete Fourier Transform

The Hamming weight of a codeword is de�ned as the number of nonzero elements in the

codeword [3, pp. 376]. For a given code, the various Hamming weights of the codewords

form the weight distribution of the code. This distribution is typically presented via a

weight enumeration function, which is a table comprised of the number of codewords

which have a certain Hamming weight. Knowledge of the weight distribution of a linear

code is important in carrying out an error performance analysis. Due to this fact, nu-

merous research works have addressed the problem of computing the weight distribution

of general or speci�c code constructions.

The techniques known for computing the weight distribution of a general linear code

are based on representing the code by a state diagram in the case of convolutional

codes [32,33], or by a trellis diagram1 in the case of block codes [2,34{38]. These methods

are based on assigning a partial weight enumeration function to the transitions of a state

1A trellis diagram di�ers from a state diagram in that a time axis is associated with the transitions.

100
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(or trellis) diagram, where the partial weight distributions are appropriately multiplied

and summed (re
ecting the concept of state in traversing the allowed paths) to yield the

complete weight distribution of the code. Similar computational techniques have been

used in conjunction with constrained coding systems as well [39].

The focus of this chapter is to present the use of the Discrete Fourier Transform (DFT)

to calculate the weight distribution of a linear block code using a modi�ed state transition

matrix. The matrix is modi�ed in such a manner as to include the contribution in weight

(by the input and output bits) for each state-to-state transition. This method can be

used to calculate the coe�cients of the terms of the Taylor series expansion of chapter 2.

With the coe�cients, the approximation of the earlier chapters can be calculated directly

using the expression of (2.47).

The chapter is organized as follows. Section 7.2 presents background information on

state transition matrices and the information they encapsulate. Section 7.3 presents the

formation of the modi�ed state transition matrix, called the weighted state transition

matrix. The use of the Fourier analysis is presented in Section 7.4 to calculate the weight

enumeration function coe�cients of a general binary linear code through examples of a

recursive convolutional code and single-parity check codes. Also, standard weight enu-

meration function notation is presented and the calculation of the weight enumeration

function of a parallel concatenated code is given. The application of the weight enu-

meration function to the calculation of a bound on bit error probability is illustrated in

Section 7.5. Once the weight distribution is known, it can directly be used in the calcu-

lation of the Union bound for the probability of error. Finally, the chapter is concluded

with a discussion of this method's advantages and disadvantages in Section 7.6.
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7.1 Notational Changes

In the discussion that follows, two key notational changes have been made from the

previous chapters of this thesis. Firstly, all bold capitalized characters in equations now

refer to matrices, rather than the lower-cased vectors of earlier chapters. Secondly, no

references are made to random variables in this chapter, as well. Thirdly, the variable

N is now the number of transitions through a trellis, and is, therefore, the number of

input bits used to produce a codeword of a given code. This is di�erent from the earlier

de�nition where N was de�ned to be the number of samples considered in �nding the

mean and variance of the LLR. Keeping these changes in mind, confusion can be avoided

in the following sections.

7.2 State Transitions Matrices

It is known that if a code can be represented by a trellis, it can equivalently be represented

by a state diagram. Using either of these forms, the state-to-state transitions of a code

with varying input, producing di�erent output, are known. Consider a trellis T with K

states, s0; : : : ; sK�1, where each transition between a pair of states (si; sj) is distinguished

by one or several input bit(s), as well as one or several output bit(s). A state transition

matrix of dimensions K �K can be de�ned for the trellis, where the existence of a state-

to-state transition denoted by a `1' in the appropriate location. The K rows of the matrix

can each represent beginning in one of the K states, and the K columns can represent

ending in any state. For instance, the element in location (1,2) of the matrix is associated

with starting in state 1 and ending in state 2.

Once the transition matrix has been formed, it is easy to obtain the number of paths

from one state to another state for a given set of N input transitions by raising this

transition matrix to the power N . The resulting matrix will contain element values
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which represent the number of paths that exist between any two states for the N input

transitions [39]. However, there is no indication of the weights associated with the bits of

these paths. Using this simple technique, and making some modi�cations, the number of

paths through a trellis of a given input weight and given parity (output) weight will be

found. The bits on each path form a codeword of the code being considered of a speci�c

input and output weight. The modi�cations to the state transition matrix produce a

weighted state transition matrix.

7.3 Weighted State Transition Matrices

As the name would suggest, each entry in the matrix would not only represent the presence

of a transition from state-to-state, but would also incorporate the weight of the associated

input and output bits of that transition. The formation of the matrix is now presented,

and the method to represent the weight of the transition is clearly explained.

By considering the trellis T, partial state transition matrices are de�ned as a set of

K �K matrices T
(k)
m;n, where the (i; j)th element of T

(k)
m;n, namely T

(k)
m;n(i; j), is equal to

the number of transitions of input weightm and output weight n between states i and j,

after k transitions. The placement of a `1' in any position of the partial matrices dictates

that a transition of that weight exists.

T
(k)
m;n, m;n = 0; 1; : : : , will be considered as two-dimensional discrete series elements.

Through the convolution of the K �K matrices, and using the two-dimensional discrete

Fourier transform de�ned below, the correctness of the method is addressed.

The number paths through the trellis after k transitions between states i and j with

input weight, m, and output weight, n, can be found using the expression,

T (k)
m;n(i; j) =

X
p

X
q

X
�

T
(k�1)
m�p;n�q(i; �)T

(1)
p;q (�; j): (7.1)
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In matrix form, the number of paths is found using the following recursive relationship.

T(k)
m;n =

X
p

X
q

T
(k�1)
m�p;n�q T

(1)
p;q : (7.2)

The operation in (7.2) involves the multiplication and accumulation of paths through

the trellis of given input and output weights, and is indeed the convolution of T
(k�1)
m�p;n�q

and T
(1)
p;q . The weighted state transition matrix, X(u; v), is de�ned as

X(u; v) =

L1�1X
m=0

L2�1X
n=0

Tm;nU
muV nv ; (7.3)

where,

U = exp

�
�j2�
L1

�
; V = exp

�
�j2�
L2

�
; j =

p�1; (7.4)

and L1; L2 are selected as arbitrary integers larger than the maximum possible input

weight and maximum possible output weight, respectively, to avoid aliasing. We usually

have L1 = L2 resulting in U = V , in which case L2 is used to represent the common value

of L1 = L2 and W to represent the common value of U = V . Note that W is a transform

variable, similar to that used in the discrete Fourier Transform [40,41](DFT). Also, note

that T
(1)
m;n and X(u; v) are related through the discrete Fourier transform, i.e.

T(1)
m;n

F ! X(u; v): (7.5)

The matrixX(u; v) contains information of the weights of transitions through a trellis,

with varying input weights u, and output weights v, and is therefore called the weighted

state transition matrix.

2N , the block length of the code, is a convenient choice for the value of L.
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Using X(u; v) de�ned above, the number of paths from one state to another state can

be found, for a given input weight, m, and given output weight, n. This is done using

an inverse type of transform similar to the inverse DFT [41] and is shown in the next

section.

7.4 Fourier Analysis to Obtain Coe�cients

It can be shown that the discrete Fourier transform of the convolutional operation in (7.2)

yields a product of the discrete Fourier transforms of the two transitions matrices. Fur-

thermore, by recursively applying this property, it can be established that

T(N)
m;n

F ! XN(u; v); (7.6)

where F denotes the discrete Fourier transform operation.

Therefore, using this property and the orthogonality property of the Fourier oper-

ator, the matrix X(u; v) is raised to the power N (to encapsulate that N transitions

have occurred) in order to compute the weight enumeration function coe�cients over N

consecutive stages of this trellis. The inverse transform is then applied to the N -raised

weighted state transition matrix. The results of this operation is a matrix Am;n, with

elements which indicate the number of paths of given weight from any starting state of

the trellis to any ending state. Am;n is computed, using the expression of (7.3), as,

Am;n =
1

L1L2

L1�1X
u=0

L2�1X
v=0

XN(u; v)U�muV �nv : (7.7)

The (i; j)th element of the K � K matrix Am;n indicates the number of paths of input

weight m and output weight n starting at state i and ending at state j after traversing

N consecutive stages of the trellis. By setting values of n and m, such that 0 � n � N
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and 0 � m � N , the number of paths of di�erent weights are obtained.

The main computational step in computing (7.7) is to raise the K�K matrixX(u; v)

to the power of N . This can be achieved easily by using an eigenvalue decomposition of

X(u; v) and raising the eigenvalues to the power of N [42].

In general, the entries of matrixAm;n have an exponential growth withN . As a result,

for large values ofN , one may encounter numerical di�culties in using (7.7). This problem

can be easily handled by performing the calculations on shorter sub-blocks, truncating

the resulting partial weight distributions, combining the results through multiplication of

the corresponding weighted state transition matrices, and �nally performing the inverse

Fourier operation on the result. Note that similar precautions are needed in any other

method used to compute the weight distribution.

For a linear block code, it is required that the trellis begins and ends in the `zero' state.

This usually corresponds to the element found in location (0; 0) of the matrixAm;n. The

element in the (0; 0) location of Am;n will simply be referred to as Am;n for the remainder

of the chapter. The other entries of the matrix provide the weight distributions of the

cosets of this linear code.

The above formulation accounts for the contributions of the input and output weights,

separately. In some situations, only the weight of the output may be of interest, in which

case the variable u can be omitted in (7.3) and (7.7), and the Fourier transform pair can

be expressed in terms of a single summation, as in the pair of equations below.

X(v) =

L�1X
n=0

T(1)
n Wnv ; (7.8)

An =
1

L

L�1X
v=0

XN(v)W�nv : (7.9)

The mathematics of the method are straightforward and the method can be easily
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implemented using commercially available software packages. The calculation of raisingX

to the N th power is not di�cult to carry out, using eigenvalue decomposition and similar

matrix properties. Again, software applications exist to do this e�ciently. Computational

complexity and memory requirements are not concerns here as the main objective of the

method is to provide for an easily-implementable methodology.

This methodology is quite versatile and can be applied to any code which is rep-

resentable by a trellis diagram, including convolutional codes, Turbo codes, and many

other linear block codes. For the case of Turbo codes, the coe�cients of conditional

weight enumeration functions can be easily calculated for the error performance analy-

sis [2]. A simple example is presented below to illustrate the formation of the partial state

transition matrices and the weighted state transition matrix of a recursive convolutional

code.

7.4.1 Weighted State Transition Matrix Formation Example

Consider the simple (5; 7)8 recursive convolutional code, where 58 represents the taps on

the memory elements for the output bits, and 78 represents the feedback taps. This is a

2 memory element code, with 4 states. The state diagram is as shown below in �gure 7.1.

From the state diagram, the following partial state transition matrices are formed as,
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Figure 7.1: State Diagram of (5; 7)8 Recursive Convolutional Code

T
(1)
0;0 =

266666664

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

377777775
; T

(1)
0;1 =

266666664

0 0 0 0

0 0 0 0

0 0 0 1

0 1 0 0

377777775
;

T
(1)
1;0 =

266666664

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 1

377777775
; T

(1)
1;1 =

266666664

0 0 1 0

1 0 0 0

0 0 0 0

0 0 0 0

377777775
:

(7.10)
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Using (7.3),

X(u; v) =

266666664

1 0 Wu+v 0

Wu+v 0 1 0

0 Wu 0 W v

0 W v 0 Wu

377777775
; (7.11)

is obtained, where,

W = exp

�
�j2�

L

�
; L > N: (7.12)

Using (7.7) and (7.11), the weight distribution of the code can be found.

The above example accounts for both the input and output weights of the paths

through the trellis. Neglecting the contributions of u, only the weights of the output bits

are found, as in the following example.

7.4.2 Simple Example of the Method

Consider a simple (N;N � 1) single-parity check code. Using the state diagram of the

code, provided in �gure 7.2, and using (7.8), the followingweighted state transitionmatrix

is obtained, considering the output weights only.

0100

1=1

1=1

0=0 0=0

Figure 7.2: State Diagram of a Generic Single-Parity Check Code
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X(v) =

264 1 W v

W v 1

375 ; (7.13)

where W is de�ned as in example 7.4.1. In (7.9), the coe�cient is calculated by raising

X(v) to the N th power and the inverse DFT is then performed. The eigenvalues of X(v),

with corresponding eigenvectors, can be veri�ed to be,

�1 = 1�W v p1 =

�
1 �1

�T
; (7.14)

�2 = 1 +W v p2 =

�
1 1

�T
: (7.15)

Therefore, with these quantities, XN can be calculated as

XN = P�NP�1 (7.16)

where, P = [ p1 p2 ] and � = diag(�1; �2). Using (7.9), the coe�cients can be

calculated for di�erent n values. Implementing this procedure for the (5; 4) single-parity

check code, the weight enumeration below is obtained.

Weight Weight coe�cient, An

0 1

2 10

4 5

The validity of this method has been veri�ed by computer calculations and by com-

paring the resulting weight distributions of various codes to those obtained by-hand cal-

culation or to those found in literature.
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7.4.3 Weight Enumeration Functions

In order to represent the function in closed form, a notation is adopted where dummy

variables are used to represent the weight of a code. These dummy variables can be

viewed as terms of a polynomial, where Am;n is the coe�cient of that term.

The conventional weight enumeration function of a generic systematic (N; k) linear

block code is given by

Aconv(H) ,

NX
d=0

AdH
d (7.17)

where Ad is the number of codewords with Hamming weight d, and H is the dummy

variable used in this representation, similar to what was de�ned in section 2.3.3. The

individual contributions of the input bits are not clearly stated.

The conventional weight enumeration function can be calculated using the methodol-

ogy above, by forming partial state transition matrices for the sum of the weights of the

transitions. The separate contributions of the input and output bits can be represented

by w in the weighted state transition matrix, taking into account for the largest possible

value of w being 2N with the de�nition of W . With this change, the inverse DFT can be

carried out with a single summation to obtain the coe�cients of the weight enumeration

function.

The separate contributions of the input and output bits are not evident with the

conventional weight enumeration function and thus prompted Benedetto and Montorsi to

de�ne the input-redundancy weight enumerating function (IRWEF) of the code, C, as,

AC(V; Z) =
X
m;n

Am;nG
mHn : (7.18)

G and H are the dummy variables for the input and output weights. Here, the overall
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Hamming weight of the path, or codeword, is therefore d = n+m. The separate contri-

butions of the input and output bits to the total Hamming weight of the codeword are

made explicit. This change was shown to be crucial for dealing with parallel concatenated

codes, such as turbo codes.

7.4.4 Weight Enumeration Function for Parallel Concatenated Codes

Since the concatenated parity bits from the constituent codes are produced by the same

input bit-stream, the enumeration functions of the constituent codes in the concatenation

must be combined in such a manner so as to re
ect this fact. This necessitated the

de�nition of the conditional weight enumeration function.

Conditional weight enumeration functions have the form

AC
m(Z) =

X
n

Am;nZ
n: (7.19)

It is conditional in the sense that the output bit weights only correspond to input bits

of weight m. Thus, for a given input weight m, the combinations for the parity bits of

the constituent codes can be found by multiplying their conditional weight enumeration

functions.

As an aside, it is interesting to note that the IRWEF can therefore be obtained from

the conditional weight enumeration as follows to obtain (7.7).

AC(V; Z) =
X
m

V mAC
m(Z) (7.20)

In the case of turbo codes, an inter-leaver is used to permute the input bits between

the two constituent recursive convolutional codes, here called C1 and C2. It was theorized

that if a uniform inter-leaver of length N was used to permute the information bits for the
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second encoder C2, then the second code is independent of the �rst code C1 [2, pp. 412].

The conditional weight enumeration function of the parallel concatenated code becomes

A
Cp
m (Z) =

AC1
m (Z) �AC2

m (Z)�
N
m

� (7.21)

where AC1
m and AC2

m are conditional weight enumerating functions of the parity check bits

produced by input words of weightm, and division by
�
N
m

�
presents the uniform nature of

the inter-leaver. With this background on the determination of the weight enumeration

functions of parallel concatenated codes (PCC), the use of the methodology presented in

this chapter above can be applied to PCCs below.

Consider a code with weighted transitionmatrixXC1(u; v) formed in the same manner

as in (7.3). By considering the inverse DFT over only the u variable, the resulting matrix

dictates the transitions of varying output weight v for a given input weight m. All the

possible output weight transitions for the weight m are described by

Ym(v) =
1

N + 1

NX
u=0

XN(u; v)W�mu (7.22)

Here, L = N was chosen for convenience and W is as de�ned in (7.12). This is the condi-

tional weight enumerating function in the transform domain. Following from (7.21), the

conditional WEF in the transform domain can be obtained for the parallel concatenation

of the two codes. This is to say that,

Y
Cp
m (v) =

YC1
m (v) �YC2

m (v)�
N
m

�
=

1�
N
m

� 1�
N + 1

�2 NX
u=0

NX
u0=0

XN
C1
(u; v)
XN

C2
(u0; v)W�m(u+u0) (7.23)

where the operator 
 calls for an element-by-element matrix multiplication. To obtain
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the number of paths (codewords) with a given input weight m and output weight n,

simply take the inverse transform of Y
Cp
m (v) for a given value of m. Assuming that the

number of output bits is equal to the number of systematic bits for each constituent code

(usually the case for turbo codes), the number of paths of weight m;n is given by

A
Cp
m;n =

1

2N + 1

2NX
v=0

Y
Cp
m (v)W�nv

=
1�
N
m

� 1

(2N + 1)(N + 1)2

2NX
v=0

NX
u=0

NX
u0=0

XN
C1
(u; v)
XN

C2
(u0; v) �

W�m(u+u0)
W

�nv : (7.24)

Here, 0 � m � N and 0 � n � 2N , and

W = exp

�
�j2�

L

�
; L > 2N: (7.25)

Obtaining the value in the (0,0) location of the matrix A
Cp
m;n yields the number of code-

words with input weight m, and output weight n for the parallel concatenated code.

7.5 Bound on Bit Error Probability and the Weight

Enumeration Function

The bit error probability of a code can be upper bounded by the Union bound. From [2],

the probability of bit error is bounded by

Pb(e) � 1

2

X
d

Dd erfc

 r
d
RcEb

N0

!
(7.26)
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where the term Dd is de�ned as

Dd ,

X
m+n=d

m

N
AC
m;n; (7.27)

Rc is the de�ned as the code rate, and Eb is the energy per bit. Note that the number of

input bits is still N . This holds for any code, C, with weight enumeration function AC
m;n.

For turbo codes speci�cally, the expression is found by combining (7.24), and the

Union bound in (7.26), with Dd de�ned in (7.27). The probability of bit error for a given

signal-to-noise ratio can be found using the resulting expression in (7.28) below.

Pb(e) � 1

2

NX
n=0

2NX
m=0

1

(N + 1)2 (2N + 1)

1�
N
n

� 2NX
v=0

NX
u=0

NX
u0=0

XN(u; v)(0;0) �XN(u0; v)(0;0) �

W�m(u+u0 )
W

�nv m

N
erfc

 r
(m+ n)Rc

Eb

N0

!
(7.28)

XN(u; v)(0;0) denotes the (0; 0) location of the matrix XN(u; v).

7.6 Advantages and Disadvantages of the DFT Method

The presented methodology works well, and produces the correct number of codewords

of a given input and output weight. The proposed method has been veri�ed by computer

simulations and the results have been compared with those found in literature. This

method has the advantage of being able to calculate the number of paths of a given

weight, without having to traverse the trellis or carry out tedious analytical work. The

number of codewords at a given distance can be helpful for determining the contribution

of low weight codewords to the probability of error. As well, the method can be used to

calculate the weight distributions of the cosets of the linear code.
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As one can see, this method involves many summations, which tend to be time con-

suming and computationally intensive for large block lengths. This methodology is well

suited for codes of shorter lengths or on shorter sub-blocks. However, since this is an

inverse DFT, it is believed that special optimized algorithms exist [40, 41] to obtain the

results quickly and is therefore not prohibitive to use.

7.7 Chapter Summary

This chapter presented a systematic method to calculate the weight distribution of a

linear block code expressed in terms of its trellis structure. By using the weighted state

transitionmatrix of the code, the number of codewords of a given input and output weight

can be found methodically using a simple implementable equation. The method not only

provides a simple methodology, but is useful to calculate the number of codewords of a

certain Hamming weight, without having to calculate the entire weight distribution of

the code, as is done currently. The proposed method is general, easy to implement, and

unlike other known methods, does not require traversing the trellis or performing tedious

analytical work.



Chapter 8

Conclusions and Future Research

Through the course of this thesis, two major concepts have been presented: the modeling

of the soft-output decoding of binary linear codes using a Binary Phase Shift Keying

(BPSK) modulated system; and a new methodology to calculate the weight distribution

was described which uses the discrete Fourier Transform on a weighted state transition

matrix of the linear code. The conclusions obtained from these works are presented in the

next two sections, followed by future research avenues made available to other researchers

using the results of this thesis.

8.1 Conclusions

8.1.1 Equivalence Between Soft-Output Decoding of Binary Linear

Codes and a BPSK System

This thesis presented the modeling of the soft-output decoding of binary linear codes

using a BPSK system. A common soft-output measure used to help in the decoding

of a received codeword is the Log Likelihood Ratio (LLR). The LLR is de�ned as the

log of the ratio of a posteriori probabilities of a given transmitted bit being 0 or 1. By

117
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obtaining the Taylor series expansion of an appropriately de�ned LLR, and generalizing

some results found in literature, the distribution of the LLR can be approximated to

be Gaussian for high noise variance values. It is seen that higher-order summations of

the products of random variables in the Taylor series expansion possess an asymptotic

Gaussian distribution, adding to the overall Gaussian approximation. With Gaussian

distributed LLR values, the soft-output decoding systems using the LLR for decoding

could be modeled as a BPSK system. The mean and variance of sample LLR values

can be calculated and then used with the probability of bit error expression of a BPSK

system to obtain an approximation to the bit error performance of the code. This involved

forming the ratio of the mean of the LLR values to the standard deviation of the LLR

values. Alternately, the expressions derived for the approximated LLR can be used to

calculate its mean and variance using the weight distribution of the code. However, the

simulation to obtain sample LLR values was the method used in this thesis.

Through an in-depth analysis of the estimators of the mean and variance, the prob-

ability density function of the ratio of the two estimators was found. This was done

by noting that the two estimators are uncorrelated, and in the special case of Gaussian

samples, the two estimators are independent. Therefore, the product of their probability

density functions and the Jacobian of the variable transformations were used to �nd the

probability density function of the ratio.

The use of the ratio in the bit error probability expression for a BPSK system required

the determination of the variance of this quantity so that a comparison with the variance

of the bit error probability obtained through conventional simulation methods could then

be made. The conventional simulation method is one where a hard decision is made on

the LLR of a bit and then the errors are totaled to obtain an estimate of the probability

of bit error for the code. The variance of the approximation method was always shown

to be smaller than that of the conventional method for a given number of samples N and



CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 119

at a given bit error probability. This implied that fewer samples were needed to obtain

the same precision in the bit error probability values. The requirement of fewer samples

translates into a time-savings in obtaining performance results, and the reduction factors

can be quite substantial.

Simulations results were shown for two codes (Reed-Muller and Golay codes) which

were remarkably close to the conventionally simulated bit error probability curves. The

curves of the two methods were closer together for the low SNR values, as was expected

due to the approximation made earlier (higher-order terms cannot be neglected with

decreasing noise variance values, i.e. at higher SNR). Although there was divergence at

higher SNR, the approximation was still quite good. Comparing this method to another

by Chao et al., this approximation provides more robust results.

With these results, complex channel coding schemes can be replaced with simpler

BPSK models with the known mean and variance of soft- output LLR values. The

designers of systems requiring knowledge of the channel characteristics can use this simple

channel coding model.

8.1.2 Weight Distribution using the DFT

Another contribution made by this thesis is the calculation of the weight distribution of

a code based upon the discrete Fourier Transform (DFT) of a weighted state transition

matrix. Each linear code can be represented by a state transitionmatrix, where a non-zero

entry in the matrix represents the existence of a transition between di�erent states of the

code. A state transition matrix was de�ned where the weights of the inputs and outputs

of the transitions are included in the representation. By performing the inverse DFT on

the matrix raised to the required length of the codeword, the number of codewords of a

given input and output weight resulted.

The advantage of such a methodology is that the number of codewords of a speci�c
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weight can be found, rather than having to calculate the entire weight distribution of

the code. Also, the methodology is straight forward and can be applied to many codes

mathematically (rather than through computer simulation of the code). This method is

better suited to codes of small to moderate length as the algorithm can require many

summations and also to avoid numerical di�culties.

8.2 Future Research

There are many possible research avenues open to researchers to pursue in relation to the

contributions made by this thesis.

8.2.1 Equivalence Between Soft-Output Decoding of Binary Linear

Codes and a BPSK System

Only the tip of the iceberg for this topic has been explored here. There are many di�erent

directions in which the research can be extended. These can include:

� the investigation into the application of the results to convolutional codes using

soft-output decoding techniques;

� use of the simpli�ed BPSK channel model in the design of systems requiring knowl-

edge of the channel. For example, in combined source-channel coding where the

channel coding structure and channel can be replaced with a BPSK channel model

with transmitted amplitude of �LLR and noise variance of �2LLR; and

� further study of the approximation obtained by truncating the Taylor series expan-

sion of the LLR and obtaining an expression to calculate the mean and variance of

the LLR based upon the truncated series.
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8.2.2 Weight Distribution using Inverse DFT

Future research which makes use of the methodology outlined for calculating the weight

distribution of a code is �rst and foremost. The applications of the method is well

suited for use in �nding bounds for codes of small length. It is also possible to use this

method in calculating the bound on error for schemes employing tailbiting schemes for

convolutional codes, where the number of paths from one state, ending in the same state

after N transitions is important. The methodology can also be adjusted to include the

e�ects of multiply collapsed sections of a trellis.

It is known that the procedure of raising a matrix to a given power can be carried out

by using the eigenvalues and eigenvectors of the matrix. Closed form expressions for the

eigenvalues and eigenvectors can be useful, and studying the e�ects of only considering

the largest eigenvalue to the power of the block length can be further explored. This may

simplify the procedure outlined in this thesis.



Appendix A

Mean and Variance of the Sample

Estimators

In this appendix, the mathematics behind the determination of the mean and variance

of the estimators is presented. The samples used, xi; i = 1; 2; : : : ; N , are independent

Gaussian samples, with mean � and variance �2.

Firstly, the mean and variance of the mean estimatorM are presented, followed by the

mean and variance of the variance estimator V 2. Lastly, the lack of correlation between

the two estimators is shown. Independence is implied due to the consideration of the

quantities as Gaussian random variables with increasing number of samples, N . Please

note that E[�] denotes taking the expectation of the argument.
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A.1 Mean and Variance of the Mean Estimator M

The mean estimator is given by equation (3.1) and is reproduced below for convenience.

M; x =
1

N

NX
i=0

xi (A.1)

The mean of (A.1), �M , is formulated below as

�M =
1

N

NX
i=0

xi

=
1

N

NX
i=0

xi

=
1

N

NX
i=0

�

= �: (A.2)

This is the expression of the mean that is found in (3.3).

The variance of (A.1), �2M , is also found in a similar manner. Forming the expression

for the variance, and solving,

�2M = E[(M � �M)2]

= E[M2]� (�M )2

=
� 1

N

NX
i=0

xi

�2
� �2

=
1

N2

� NX
i=0

x2i +

NX
i=0

NX
j=0

i6=j

xi xj

�
� �2
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=
1

N2

� NX
i=0

(�2 + �2) +

NX
i=0

NX
j=0

i6=j

xi xj �N2�2
�

=
1

N2

�
N�2 +N�2 +N(N � 1)�2 �N2�2

�
=

1

N2

�
N�2

�
=
�2

N
: (A.3)

Again, this is the expression of the variance of M found in (3.3).

A.2 Mean and Variance of the Variance Estimator V 2

The variance estimator is given by equation (3.2) and is reproduced below for convenience.

V 2 =
1

N

NX
i=0

(xi � x)2 (A.4)

The expressions for the mean and variance of the variance estimator are more com-

plicated since the mean estimator of x is needed in the determination of the variance

estimate. The mean of (A.4), �V 2 , is expressed below as

�V 2 =
1

N

NX
i=0

(xi � x)2

=
1

N

NX
i=0

�
x2i � 2xix+ x2

�
=

1

N

NX
i=0

�
x2i � 2xix+ x2

�
=

1

N

NX
i=0

�
(�2 + �2)� 2

�
xi

1

N

NX
l=0

xl
�
+
h 1
N

NX
j=0

xj

i2�

=
1

N

NX
i=0

�
(�2 + �2)� 2

N

�
�2 + �2 + (N � 1)�2

�
+

1

N2

h NX
j=0

x2j +

NX
j=0

NX
l=0

j 6=l

xjxl

i�
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=
1

N

NX
i=0

�
�2 + �2 � 2

N
[�2 + �2]� 2(N � 1)

N
�2 +

1

N2

�
N(�2 + �2) +N(N � 1)�2

��
= �2 + �2 � 2

N
(�2 + �2)� 2(N � 1)

N
�2 +

1

N
(�2 + �2) +

N � 1

N
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=
�
1� 2

N
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1

N
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�
1� 2

N
� 2(N � 1)

N
+

1

N
+
N � 1

N

�
=
N � 1

N
�2: (A.5)

This is the expression of the mean that is found in (3.4).

The variance of (A.4), �2
V 2 is also found in a similar manner. Forming the expression

for the variance, and solving,

�2V 2 = E[(V 2 � V 2)2]

= E
��
V 2
�2�� �E[V 2]

�2
= E

h� 1

N

NX
i=0

(xi � x)2
�2i � h (N � 1)

N
�2
i2

(A.6)

is obtained. Taking the �rst expression in (A.6) and expanding it separately,

E
��
V 2
�2�

= E
h� 1

N

NX
i=0

(xi � x)2
�2i

= E
h 1

N2

� NX
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N2
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n� NX
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x2i
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+
�
2x

NX
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�2
+
� NX
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(x)2
�2 � 4x

NX
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x2j

+ 2

NX
i=0

x2
NX
j=0

x2j � 4x

NX
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xi

NX
j=0

x2
o

(A.7)

is obtained. In order to simplify the notation,

NX
i

will be used to denote the summation
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of N terms over index i. This leads to the simpli�cation of

NX
i=0

NX
j=0

i 6=j

to

NX
i

N�1X
j

. The

terms are broken up in such a way such that the arguments of the summations become

independent of one another so that when the expectation is taken, the expectation of

the product of two arguments can be replaced by the product of the expectations of the

arguments. Expanding the terms of (A.7),
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+
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+
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Gathering terms and then distributing the expectation, produces

E
��
V 2
�2�

=
1

N2
E

� NX
i

x4i
�
1 +

4

N2
� 3

N2
� 2

N

�
+

NX
i

N�1X
j

x3ixj
� 16
N2
� 12

N2
� 4

N

�
+

NX
i

N�1X
j

x2i x
2
j

�
1 +

12

N2
� 9

N2
� 2

N

�
+

NX
i

N�1X
j

N�2X
k

x2i xjxk
� 24
N2
� 18

N2
� 2

N

�
+

NX
i

N�1X
j

N�2X
k

N�3X
l

xixjxkxl
� 4

N2
� 3

N2

��

=
1

N2

��N2 � 2N + 1

N2

� NX
i

x4i +
4(1�N)

N2

NX
i

N�1X
j

x3i xj

+
�N2 � 2N + 3

N2

� NX
i

N�1X
j

x2i x
2
j +

2(3�N)

N2

NX
i

N�1X
j

N�2X
k

x2i xj xk

+
1

N2

NX
i

N�1X
j

N�2X
k

N�3X
l

xi xj xk xl

�
:

(A.9)

Substituting the values of the moments for Gaussian random variables with mean � and
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variance �2 [24], and then simplifying, the following is obtained.
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�
3�4 + 6�2�2 + �4

�
� 4(N � 1)N(N � 1)

�
3�2�+ �3

�
�

+ (N2 � 2N + 3)N(N � 1)
�
�2 + �2

�2
� 2(N � 3)N(N � 1)(N � 2)

�
�2 + �2

�
�2

+ N(N � 1)(N � 2)(N � 3)�4
�

=
1

N3

�
�4
�
3(N � 1)(N � 1) + (N � 1)(N2� 2N + 3)

�
+ �2�2

�
6(N � 1)(N � 1) + 2(N � 1)(N2 � 2N + 3)

� 12(N � 1)(N � 1)� 2(N � 3)(N � 2)(N � 1)
�

+ �4
�
(N � 1)(N � 1) + (N � 1)(N2� 2N + 3)

� 4(N � 1)(N � 1)� (N � 1)(N � 2)(N � 3)
��

=
1

N3

�
�4(N3 �N)

�
=

1

N2
(N + 1)(N � 1)�4: (A.10)

Now, substituting the expression of (A.10) into (A.6), the expression for the variance of

the variance estimator V 2 is found.

�2V 2 = E
�
V 22

�� h (N � 1)

N
�2
i2

=
1

N2
(N + 1)(N � 1)�4� (N � 1)2

N2
�4

=
�4

N2

�
N2 � 1�N2 + 2N � 1

�
=

2(N � 1)

N2
�4: (A.11)
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Again, this is the expression of the variance of V 2 found in (3.4).

A.3 Independence of the Estimators

Since the samples are independent and Gaussian distributed, it can be shown that the

estimators are uncorrelated. By considering the two random variables, M and V 2, as

being Gaussian for a large number of samples, their lack of correlation implies indepen-

dence. The two estimators will be shown to be uncorrelated by calculating the correlation

coe�cient of the two estimators. The correlation coe�cient of the two estimators is given

by

�M;V 2 =
Cov(M;V 2)

�M �V 2

:

Cov(M;V 2) is the covariance between the two estimators and is de�ned as

Cov(M;V 2) = E
�
(M � �M )(V 2 � �V 2)

�
= E

�
M V 2

�� �M�V 2

= E
�
M V 2

�� N � 1

N
��2: (A.12)

If the covariance is shown to be equal to 0, then the two estimators will be uncorrelated. It

is this quantity which is formulated below and shown to equal 0. Starting with E
�
M V 2

�
and expanding,

E
�
M V 2

�
= E

n� 1

N

NX
i

xi

�� 1

N

NX
j

�
xj � 1

N

NX
k

xk
�2�o

= E
n� 1

N

NX
i

xi

�� 1

N

NX
j

�
x2j �

2

N

NX
k

xkxj +
1

N2

NX
k

NX
l

xkxl
�o
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= E
n 1

N2

NX
i

NX
j

xix
2
j �

2

N3

NX
i

NX
j

NX
k

xixjxk

+
1

N4

NX
i

NX
j

NX
k

NX
l

xixkxl

o

= E
n 1

N2

� NX
i

x3i +

NX
i

N�1X
j

x2jxi
�� 1

N3

� NX
i

x3i + 3

NX
i

N�1X
j

x2i xj

+

NX
i

N�1X
j

N�2X
k

xixjxk
�o

= E
n� 1

N2
� 1

N3

� NX
i

x3i +
� 1

N2
� 3

N3

� NX
i

N�1X
j

x2jxi

� 1

N3

NX
i

N�1X
j

N�2X
k

xixjxk

o

=
1

N2

��
1� 1

N

� NX
i

x3i +
�
1� 3

N

� NX
i

N�1X
j

x2j xi

� 1

N

NX
i

N�1X
j

N�2X
k

xi xj xk

�
=

1

N2

�
(N � 1)

�
3�2�+ �3

�
+ (N � 3)(N � 1)�(�2 + �2)

� (N � 1)(N � 2)�3
�

=
1

N2

�
�2�

�
3(N � 1) + (N � 3)(N � 1)

�
+ �3

�
(N � 3)(N � 1)� (N � 1)(N � 2) + (N � 1)

��
=

1

N2
N (N � 1)�2�

=
N � 1

N
��2: (A.13)



APPENDIX A. MEAN AND VARIANCE OF THE SAMPLE ESTIMATORS 132

Substituting the expression of (A.13) into the equation for the covariance of the two

estimators (A.12),

Cov(M;V 2) = E
�
M V 2

�� N � 1

N
��2

=
N � 1

N
��2 � N � 1

N
��2

= 0:

The covariance of the two estimators is equal to 0. Therefore, the correlation coe�cient

�M;V 2 is equal to 0. The two estimators are uncorrelated. Since M is Gaussian and for

a large number of samples (and therefore, a large number of degrees of freedom), V 2 is

Gaussian, the estimators are independent.



Appendix B

Obtaining Probability Density

Function of Z = D

S

The ratio Z was de�ned in chapter 3 as being comprised of a Gaussian random variable

D, with mean �
p
N

�
and variance 1, as the numerator and the denominator is a Chi

distributed random variable S withN degrees of freedom. The two random variables have

the probability density functions shown in equations (3.6) and (3.7) and are reproduced

below for convenience.

fD (x) =
1p
2�

exp
n
�(x� �

p
N

�
)2

2

o

fSN (y) =
y
N�1 exp

n
�y2

2

o

2
N
2
�1�

�
N
2

�

Before carrying out the actual formulation for the probability density function of the

ratio, the procedure [7, 24] to be followed is described below.

De�ne z = x
y
and de�ne a dummy variable w = x, for convenience. Referring again
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to (3.9), the transformation which will be carried out is

fZW (z;w) = fDS(w;
w

z
)

1

jJ(x; y)j
= fD(w) fS(

w

z
)

1

jJ(x; y)j: (B.1)

jJ(x; y)j is the absolute value of the Jacobian, given by

J(x; y) =

������
@w
@x

@w
@y

@z
@x

@z
@y

������
:

By integrating with respect to the dummy variable w from �1 to 1, the probability

density function of Z remains.

First, the Jacobian is determined for the variable substitutions z = x
y (i.e. y = w

z )

and w = x.

J(x; y) =

������
@x
@x

@x
@y

@

�
x
y

�
@x

@

�
x
y

�
@y

������

=

������
1 0

1
y

� x
y2

������
= � x

y2
= �z

2

w
(B.2)

The formation of the joint distribution fZW is outlined in (B.1). Substituting for the

mean of D, �
p
N
�

, by 
 for convenience and gathering terms, the following is obtained.

fZW (z;w) = fD(w) fS(
w

z
)

1

jJ(x; y)j
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=
1p
2�

exp
n
�(w � 
)2

2

o
�
�
w
z

�N�1
exp

n
�
�
w
z

�2
2

o

2
N
2
�1�

�
N
2

� � w
z2

=
w
N

zN+1

1

2
N�2
2
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2��

�
N
2
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�
�
�
w
2 � 2
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2 + w2
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�
2

�
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w
N

p
2� 2

N�2
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�
N
2
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�
�

�
w
2
�
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�� 2
w + 

2
�

2

�

=
w
N

p
2� 2

N�2
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�
N
2
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�
�
�
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2

h
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2 � 2
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1 + 1
z2

�
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1 + 1
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1 + 1
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p
2� 2

N�2
2 zN+1�

�
N
2

� exp

�
�
�
1 + 1

z2

�
2

h
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�

1 + 1
z2

�i2

+


2

2
�
1 + 1
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� � 

2

2

�

=
w
N

p
2� 2

N�2
2 zN+1�

�
N
2

� exp

�
�
�
z2+1
z2

�
2

h
w � 
z

2

z2 + 1

i2�
�

exp

�
� 


2

2(z2 + 1)

�

=
w
N exp

�� 
2

2(z2+1)

	
p
2� 2

N�2
2 zN+1�

�
N
2

� exp

�
�
�
z2+1
z2

�
2

h
w � 
z

2

z2 + 1

i2�
: (B.3)

Integrating with respect to the dummy variable w to obtain the probability density

function of Z,

fZ(z) =
exp

�� 
2

2(z2+1)

	
p
2� 2

N�2
2 zN+1�

�
N
2

�
Z 1

�1
w
N exp

�
�
�
z2+1
z2

�
2

h
w � 
z

2

z2 + 1

i2�
dw: (B.4)

In order to simply the mathematics and the presentation, let �2Z = z2

z2+1
and �Z =
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z2

z2+1
= 
�

2
Z . Making these substitutions in (B.4) and continuing,

fZ(z) =
exp

�� 
2

2(z2+1)

	
p
2� 2

N�2
2 zN+1�

�
N
2

�
Z 1

�1
w
N exp

n
� 1

2�2Z

�
w � �Z

�2o
dw

=
exp

�� 
2

2(z2+1)

	
2
N�2
2 zN+1�

�
N
2

��Z
Z 1

�1

w
Np

2��2Z
exp

��(w � �Z)
2

2�2Z

	
dw: (B.5)

In (B.5), consider the variable substitution t = w��Z
�Z

. Therefore, w = �Z t + �Z and

dw = �Zdt producing,

fZ(z) =
exp

�� 
2

2(z2+1)

	
�Z

2
N�2
2 zN+1�

�
N
2

�
Z 1

�1

�
�Z t+ �Z

�N
p
2�

expf�t
2

2
gdt

=
exp

�� 
2

2(z2+1)

	
�Z

2
N�2
2 zN+1�

�
N
2

� �
N
Z

Z 1

�1

�
t+ �Z

�Z

�N
p
2�

expf�t
2

2
gdt

=
exp

�� 
2

2(z2+1)

	
�
N+1
Z

2
N�2
2 zN+1�

�
N
2

�
NX
k=0

�
N

k

���Z
�Z

�N�k Z 1

�1

t
k

p
2�

expf�t
2

2
gdt (B.6)

The binomial expansion was used in (B.6) to obtain separate tk terms. The integral

on the right is simply the kth moment of a Gaussian random variable with mean 0 and

variance 1. As seen in chapter 4, the kth moment, E[tk], of a such a random variable

N(0; 1) is expressible [1, 7, 24] as

E[tk] =

8><>:
(2v)!
2vv!

; v = k
2
when k is even

0; when k is odd

Substituting this expression into the expression of (B.6), then substituting the expressions
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of �Z and �Z, and simplifying, the probability density function of Z is obtained in (B.7).

fZ(z) =
exp

�� 
2

2(z2+1)
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2 zN+1�

�
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2

�
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i
(B.7)

where 
 = �
p
N
�

.
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