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Abstract

In recent years, efforts have been made to deploy communication capabilities in vehi-
cles and the transport infrastructure, leading to a potential of vehicular ad hoc networks
(VANETS). In the envisioned VANET, communications among vehicles will enhance the
intelligent transportation systems (ITS) and support not only public-safety applications,
but also a wide range of infotainment applications. Urban roads and highways are highly
susceptible to a large number of vehicles and traffic jams. Therefore, the networking proto-
cols for VANETS should be scalable to support such large sized networks. Node clustering
(i.e., organizing the network into smaller groups of nodes) is a potential approach to im-
prove the scalability of networking protocols for VANETSs. However, high relative vehicle
mobility and frequent network topology changes inflict new challenges on maintaining sta-
ble clusters.

The communication links between network nodes play an essential role in determining
the VANET topology. This thesis presents a stochastic microscopic vehicle mobility model
to capture the time variations of the distance between two consecutive vehicles on a high-
way. The proposed mobility model is used to characterize the length and the duration of
a communication link connecting two nodes in the network for different vehicular traffic
flow conditions. Vehicle trajectory data from real and simulated highways are used for
performance evaluation.

In a highly dynamic VANET, vehicles join and leave clusters along their travel route,
resulting in changes in cluster structure. This thesis investigates the impact of vehicle
mobility on node cluster stability. A lumped stochastic model is proposed to describe the
temporal variations of a system of intervehicle distances, where each intervehicle distance is
represented by the proposed microscopic mobility model. Two metrics are used to measure
cluster stability: the time period of invariant cluster-overlap state between two neighbor-
ing clusters as a measure of external cluster stability, and the time period of invariant
cluster-membership as a measure of internal cluster stability. Using the proposed lumped
stochastic model, the two cluster stability metrics are probabilistically characterized for
different vehicular traffic flow conditions. Additionally, the limiting behavior of a system of
two neighboring clusters is modeled, and the steady-state number of common /unclustered
nodes between two clusters is approximately derived. To the best of our knowledge, this
is the first mathematical characterization of node cluster stability which takes account of
the effect of microscopic vehicle mobility.

In addition to the impact of vehicle mobility on node cluster stability, the notion of
cluster stability is also related to the network protocol requirements. This thesis explores
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the effect of cluster characteristics (cluster size and cluster-overlap) on minimizing the
generic routing overhead. Furthermore, using the derived cluster stability metrics, the
impact of cluster instability on intra- and inter- cluster routing overhead is investigated.

The proposed vehicle mobility model is a useful tool for mathematically analyzing the
impact of mobility and node density on the performance of network protocols in VANETS.
The node cluster stability analysis and the proposed the external and internal cluster

stability metrics provide a useful tool for the development of efficient clustering algorithms
for VANETS.

v



Acknowledgements

I would like to express my deep gratitude to my supervisor, Prof. Weihua Zhuang.
Thank you for your continuous guidance, support, and encouragement throughout my
PhD study. Without your guidance, advice, and valuable input on my research ideas and
writings, this work would have not been possible.

I gratefully acknowledge my PhD committee members, Prof. Jelena Misi¢, Prof. Bruce
Hellinga, Prof. Otman Basir, and Prof. Liang-Liang Xie for their valuable comments and
insightful suggestions that helped increase the quality of the thesis.

I sincerely thank Prof. Sherman (Xuemin) Shen and my colleagues at the Broadband
Communications Research (BBCR) group, both past and current BBCR members. T feel
lucky that I have met and worked with you all. T want to thank you for your friendship,
support, and beneficial discussions, especially in the VANET BBCR subgroup.

From the bottom of my heart, I thank my parents for their prayers, support, care, and
unconditional love. There is nothing I can do to thank you enough. So lucky, I am, that
I was born in this family. I am and will always remain in debt for you. I also want to
thank my little sister, Fatima Abboud, who owns a special spot in my heart. Gratitude
is due to my brothers and their families for their support and encouragements throughout
these years. I want to thank my sister, Zeinab Abboud, for being there for me when I
ranted and complained without making me feel that I am being judged. Once again, we
have synchronized our start and end of another education level! Good luck in your new
adventure as a graduate student.

I want to thank my dearest friend, Nosayba El-Sayed, for her thoughtfulness, support,
and encouragement throughout these years. Despite the small number of times that we
have actually met, they were enough to leave an encouraging, an enriching, and an uplifting
trace on me. I am grateful to have a friend like you.

Last but not least, I want to thank Ali-Akbar Samadani. Thank you for your love, for
your encouragement, and for being there for me during the good and the bad. I could not
ask for a better company during this PhD trip. I cherish our laughs, our own dictionary
of words, our long aimless walks, and our coffee.



Dedication

To my parents

vi



Table of Contents

List of Tables X
List of Figures xi
List of Abbreviations and Symbols XXix
1 Introduction 1
1.1 Vehicular ad hoc networks (VANETS) . . . . .. .. ... ... ... ... 1
1.2 Node clustering in VANETs . . . . .. ... .. . L. 3
1.3 Node cluster stability . . . . . . .. .. ... L 6
1.4 Vehicle mobility . . . . . . ... 7
1.5 Cluster-based routing in VANETs . . . . . . ... .. ... ... ... ... 9
1.6 Research objectives and thesis outline . . . . . . ... ... ... ... ... 11
2 System model 12
2.1 Nodeclusters . . . . . . . . . 13
2.2 Nodemobility . . . . . . . . .. 15
2.3 Summary ... oL e 17
3 Communication link characteristics 18
3.1 Microscopic vehicle mobility model . . . . . .. ..o 18
3.2 Distribution of the communication link length . . . . . .. ... ... ... 22

vii



3.3 Communication link lifetime . . . . . . . . . . .. .. 25

3.3.1 First passage time between two distance headway states . . . . .. 26
3.3.2  First passage time of the sum of distance headways . . . . . .. .. 27
3.3.3 Link disconnection events . . . . . . ... ... 27
3.3.4  Probability distribution of the link lifetime . . . . . . . . .. .. .. 29
3.4 Results and discussion . . . . . ... oL 30
3.5 SUummary .. o.o. oL e 34
Node cluster stability 36
4.1 External cluster stability . . . . . . ... ... 36
4.1.1 Time to the first change of cluster-overlap state . . . . . . .. . .. 38
4.1.2 Time period between successive changes of cluster-overlap state . . 41
4.2 Internal cluster stability . . . . .. ... ... ... 000 44
4.2.1 Time to the first change of cluster-membership . . . . . . . . . . .. 45
4.2.2 Time period between successive changes of cluster- membership . . 47
4.3 Numbers of common CMs and unclustered nodes between clusters . . . . . 48

4.3.1 Node interarrival time during an overlapping/non- overlapping period 50

4.3.2 Steady-state distributions of the numbers of common CMs and un-

clustered nodes . . . . .. ..o 52

4.4 Results and Discussion . . . . . . . ... oo 54
4.5 SUmMmMAary . . . ... e 62
Cluster-based routing overhead 63
5.1 Steady-state cluster characteristics for generic routing . . . . . . . . .. .. 64
5.1.1 Routing overhead components . . . . . . .. .. ... ... ... .. 64
5.1.2  Total cluster-based routing overhead . . . . . ... ... ... ... 67
5.1.3 Average cluster-based routing overhead . . . . . . . . ... ... .. 71
5.1.4 Numerical results . . . . . .. ..o 72



5.2 Impact of cluster instability on the routing overhead . . . . . . . . . .. ..
5.2.1 Intracluster routing overhead . . . . . . . . .. ... ... ... ..
5.2.2 Intercluster routing overhead . . . . . . . .. ... 0oL
5.2.3 Numerical results and Discussion . . . . .. ... ... ... ... ..

5.3 SUMMATY . . . . o e

Conclusions and Future work
6.1 Conclusions . . . . . . .

6.2 Future research direction . . . . . . . . . . ...

APPENDICES

A

B

C

A.1 Hop length distribution for intermediate vehicle density . . . . . . . . . ..

B.1 Proof of Theorem 1 . . . . . . . . . . . . .. .. .. ... ... ...
B.2 Proof of Corollary 1. . . . . . . . . . . ...
B.3 Proof of Corollary 2. . . . . . . . . ..

C.1 Intercluster interference due to cluster-overlap . . . . . . . . .. .. .. ..

References

X

87
87
90

90

91
91

93
93
94
95

97
97

99



List of Tables

1.1

3.1

4.1
4.2

5.1

Traffic flow state for different vehicle densities [1] . . . .. ... ..
System parameters in simulation and analysis of Chapter 3

System parameters in simulation and analysis of Chapter 4

Limiting probabilities of zero common CMs/unclustered nodes

System parameters in simulation and analysis of Chapter 5

31

54
62

83



List of Figures

1.1
1.2

1.3

2.1

3.1

3.2

3.3

3.4

3.5

An illustration of VANET infrastructure . . . . . . . . . . .. . ...

Cluster-overlap states: (a) disjoint, (b) partial overlap, (c) com-
plete overlap. . . . . . . ... ..

Clustering cost. . . . . . . . . . . . . . ..
An illustration of the clusters under consideration for k£ = 2 hops.

An illustration of the proposed discrete-time N,,..-state Markov
chain model of the distance headway . . .. ... ... ... .....

The transition probability from state j to (a) state j+ 1, (b) state
j — 1, and (c) state j, for different z; values from NGSIM and
VISSIM data for intermediate to high vehicle densities. Results
for the weighted LR fit model for (3.2) are given in the legends. .

Probability transition matrix for 100 quantized values of z;,z; €
[110,120] with L, = 0.1 meters and 7 = 0.1 seconds. The matrix is
calculated based on NGSIM data. . . . . . ... ... ... ......

Transition probability from state j to state j + 1, for different z;
values from VISSIM data for vehicle densities of (a) 9, 26, and 42
veh/km with L, = 20 meters and 7 = 2 seconds and (b) 5, 9, 16, 26,
and 42 veh/km, with L; = 2 meters and 7 = 0.2 seconds. Results
of the weighted linear regression fit model for (6) are given in the
legends. . . . . . . .

State dependency parameter, § for different D values calculated
based on VISSIM data. . . . . . . . ... ... ... ... ........

X1

14

19

23



3.6

3.7

3.8

4.1

4.2

4.3
4.4
4.5

4.6

4.7

4.8

Probability mass function of the first passage time for (a) 7 y,...,
(b) Ti4, and (c) Ty 3, with mean values of 19.8 x 10%,/1.24 x 10?, and
318.4 seconds, respectively, with parameters Npya.x = 9, L, = 20 me-
ters, 7 = 2 seconds, X,,.x = 160 meters, § = 0.66, p = 0.12, and

q=026. . . . . 27
The probability density function of the hop length for three traffic
flow conditions with vehicle densities of 9, 26, and 42 veh/km. . . 32
Probability mass function of the communication link lifetime for

D= (a)9, (b) 26, and (c) 42 veh/km. . . . . .. ... ... ... ... 33

The state space size of a Markov chain representing a system of
N Markov chains (distance headways), Xy, with Nya.x = 9 when
the system Xy is represented by (a) an N-dimensional Markov
chain, (b) a lumped Markov chain according to Theorem 1, and
(c) an absorbing lumped Markov chain according to Corollary 2
with Nth = 8 e e 40

An illustration of a lumped markov chain for N = 2, Ny, = 4, Nppax =
3. A line between two lumped states represents a non-zero two-
way transition probability in a single time step between the linked
states. There exist non-zero transition probabilities between sub-
sets of Qoyv1 and Qyovi. - - o 0 o o o 43

Illustration of the events that cause changes in cluster-membership. 45

A cluster with Ny, =3 and Xeop = {Xo, X1, Xo, X3} o o o 0000 L 46

Illustration of the alternating renewal process between overlapping
and non-overlapping time periods. . . . . . . . ... ... ... ... 49

INlustration of the events that cause a vehicle to (a) enter the
overlapping region and (b) leave the unclustered region between
neighboring clusters. . . . . .. .. ... ... 0oL, 50

The pmfs of (a) the number of nodes between two neighboring
CHs, N, and (b) the number of nodes in a cluster N¢),., calculated
from simulating a simple weighted clustering of vehicles. . . . . . . 55

The pmf, ¢, = P(I. € ), of system X. being in lumped state
Q; € Qoy at the instant when the second overlapping cluster state
OCCUTS. .« . o v vttt e et e e e e e 56

xii



4.9 The pmfs of (a) the time to the first change in cluster-overlap
state, Tp,1 (%), for I. = {0,1,1,1,1,2} € Q, when the clusters are
initially formed; (b) the time to the first change in cluster-overlap
state T,,1; and (c) the cluster-overlapping time period, 7,,, when
D=26veh/km. . . .. ...

4.10 The pmfs of (a) the time to the first change in cluster-membership,
Toan (), for Ioy = {1,1,1,1,5} € Q when the cluster is initially
formed; (b) the time to the first change in cluster-membership,
Tean; and (c) the time period between two successive cluster-
membership changes, T¢y, when D =26 veh/km. . . . . . ... . ..

4.11 The pmf of the interarrival time of nodes to the overlapping region
when N.=5and D=26 veh/km. . . . ... ... ... .. .......

4.12 The pmf of cluster-overlapping time period with vehicle density
of (a) D=9, (b) D=26,and (c) D =42 veh/km. ... .......

4.13 Average cluster-overlapping and cluster-non-overlapping time pe-
riods for different N, values with vehicle density D = 9,26, and 42
veh/km. The values of N, are those in Figure 4.7. . . . . . . . . ..

4.14 The steady-state pmfs of buffer content, i.e., the number of non-

zero nodes in the overlapping/non-overlapping period, for (a) D =
26 and (b) D=42veh/km. . . . ... ... ... 0.

5.1 TIllustration of the mapping of distance headways to three consec-
utive hops from a reference node, where H; and G;, i = 1,2,3 are
the i** hop and the i*" gap, respectively. . . . ... .. ... ... ..

5.2 Three 2-hop disjoint clusters, each with a length of L. which is
upper bounded by 4R. . . . . ... ..

5.3 Average total routing overhead in pkt/s for four generic non-
overlapping cluster-based routing protocols versus the cluster size
(in hops) for R = 250m. The average overhead is normalized by
the average number of nodes. (a) low vehicle density with D =
15veh /km and (b) intermediate vehicle density with D = 25veh/km

1

andO’Z@ ...................................

5.4  The cluster size K* that minimizes the routing overhead versus
vehicle density for R = 250meters when (a) [,=0 (b) l,=10*. . . ..

xiil

60

74



2.5

2.6

2.7

2.8

B.1

B.2

C.1

(a) Partitioning of a time frame into intercluster routing, Hello-
beaconing, intracluster routing, and Join-cluster sets. (b) Time
division into cycles each containing three consecutive frames. (c)
Spatial reuse of frames within one cycle. GWR and GWL are the
right and the left gateways of a cluster.. . . . . . . ... ... ....

An illustration of the intercluster routing overhead for a route of
length L. The route discovery process halts when two neighbour-
ing clusters are disconnected with probability 1 — Pg. . . . . . . ..

The pmfs of (a) the intracluster routing overhead for a random
node V¥,,,; and (b) the total intracluster routing overhead for
n = 10 nodes sampled randomly from the network, ¥,/,qpn. . . . . .

The pmf of the intercluster routing overhead for a route of length
L=20. . . . . e

The pmf of the time period between successive cluster-membership
changes with vehicle density (a)D =9, (b) D =26, and (b) D = 42
veh/km. . . . ..

The pmf of the cluster-non-overlapping time period with vehicle
density (a) D=9, (b) D =26, and (c¢) D =42 veh/km. . ... ...

Illustration of intercluster interference that may be caused when
clusters overlap. Collision occurs at node C, when node A and B
are allocated the same time slot during the Hello-beaconing set. .

X1v

76

82

84

85

96

96

98



List of Abbreviations and Symbols

Abbreviations

1D 1-dimensional

CCH Control channel

CCM Common Cluster member

cdf Cumulative distribution function

CH Cluster head

CM Cluster member

DSRC Dedicated Short Range Communications

ETSI European Telecommunications Standards Institute
FCC Federal Communications Commission of the U.S.
iid. Independent and identically distributed

ITS Intelligent Transportation Systems

LR Linear regression

MAC Medium Access Control

NGSIM Next generation simulation

NHTSA National Highway Traffic Safety Administration of the U.S.
pdf Probability density function

XV



pmf Probability mass function

I.v. Random variable

RREQ Route request

S.p. Stochastic process

s.t. such that

SCHs Service channels

TDMA Time Division Multiple Access
U.S. United States (of America)
UN Unclustered node

Symbols

() Sequence notation

@ Location parameter for the distribution of the inter-vehicle distance (the
minimum distance headway) in meters

e% Location parameter for the distribution of the cluster length (L.)

v The maximum relative speed between vehicles in meters per second
B State dependency parameter of the probability transition matrix

At An arbitrary time period in seconds

O Rate of cluster maintenance updates in packets per second

0; Absorbing probability of lumped state €; € Qnov

Op: Absorbing probability dg, weighted by the stationary distribution 7;

Absorbing probability of lumped state €, € Qg

Xvi



intra,n

B,

K (Nu)

Rate of inter-cluster topology updates in packets per second
Rate of intra-cluster topology updates in packets per second
Absorbing probability of lumped state £; € Q,

A constant for the truncation of the distribution of L,

A stochastic process with state space {—1,1} representing the cluster-
overlap state (s.p.)

The upper incomplete gamma function
The lower incomplete gamma function
Gamma function

Scale parameter for the mesoscopic probability distribution of the distance
headway in near-capacity traffic flow conditions

Scale parameter for the distribution of the cluster length (L.)
The v non-unit eigenvalue of M

The u'™ non-unit eigenvalue of M)

The smallest integer greater than x

The largest integer smaller than x

The set of all possible ordered J-restricted integer partitions of n
The i*h J-restricted integer partition of n, A% (n)

A matrix with each row represents a possible number of occurrences of
overhead 0,1, or 2 pkt/f for the n sampled nodes

A matrix of two columns and rows representing the frequencies of parts 2
and 3 in all possible integer partition of m into at most L parts, where each
part is either 2 or 3

The set of all J-combinations of the set {0,1,..., Ny}

xXvil



Xewmy

Xewmy,

Xeom

A set of states of the edge lumped Markov chain for system Xgjs corre-
sponding to initial state of the system

The system of distance headways between the two gateways (s.p.)
Sequence of N distance headways(s.p.)

Sequence of distance headways between two CHs at the m'™ time step (se-
quence of r.v.s)

Sequence of (Ng + 1) distance headways between the reference node and
its hop edge node (s.p.)

Sequence of distance headways of the CH and the nodes on one side of
the cluster when the first cluster-membership change occurs due to a node
entering the cluster (s.p)

Sequence of distance headways of the CH and the nodes on one side of
the cluster when the first cluster-membership change occurs due to a node
leaving the cluster (s.p)

Sequence of distance headways of the CH and the N¢jpy, nodes (s.p.)
Sequence of distance headways between two CHs (s.p.)

Stationary distribution of lumped state €2;

Mean distance headway in meters

Sum of n distance headways (r.v.)

Packet generation rate per node in packet per second

The lumped state for system X¢y,, corresponding to lumped state €2, for
Xowm

The lumped state for system X¢)s, corresponding to lumped state 2; for
Xem

The " lumped state in the lumped Markov chain.

A set of lumped states in the Edge lumped Markov chain of system Xgp
corresponding to a node entering the cluster

XVviil



QNOVl

QNOV2

Qnov

Qovi

QOV2

Qpe

Qr

bi
Coy
T

TEi

A set of lumped states in the Edge lumped Markov chain of system Xgj,
corresponding to the initial states of the cluster

A set of lumped states in the Edge lumped Markov chain of system Xgp
corresponding to a node leaving the cluster

A subset of lumped states in Qyoy that are directly accessible from lumped
states in Qoy

A subset of lumped states in Qyoy that are not directly accessible from
lumped states in Qv

A set of lumped states in the lumped Markov chain of system X, corre-
sponding to non-overlapping clusters

A subset of lumped states in 0oy that are directly accessible from lumped
states in Qyov

A subset of lumped states in oy that are not directly accessible from
lumped states in Qyov

A set of lumped states in the lumped Markov chain of system X, corre-
sponding to overlapping clusters

A set of lumped states in the fully lumped Markov chain of system Xgj,
corresponding to the hop edge node leaving the cluster

A set of lumped states in the fully lumped Markov chain of system Xep,
corresponding to a distance less than R between the CH and the hop edge
node

General matrix multiplication notation

Absorbing probability of lumped state Q; € Qo

Number of packets needed to broadcast a CH packet to a neighbouring CH
Stationary distribution of the i" state in the 1D-Markov chain

Stationary distribution of the i*® lumped state in the edge lumped Markov
chain

Xix



Ye
Yr

wf,n
\Ijinter

\Ijintra,i

lpfntra

7vblmtra

¢pp

Vpr

77pr

Yy

TF

Product notation (when used for matrices, it denotes Hadamard matrix
multiplication)

A row vector of size N’;, in which the j™ element equals 0
Clustering overhead in packets per second (r.v.)

Total cluster-based routing overhead in packets per second (r.v.)
Number of packets needed to flood a packet to n — 1 nodes

The intercluster routing overhead due to mobility per route request of length
L measured in packets (r.v.)

The intracluster routing overhead due to vehicle mobility for node ¢ in
packets per frame (r.v.)

Inter-cluster routing overhead in packets per second (r.v.)
Intra-cluster routing overhead in packets per second (r.v.)

The total routing overhead for generic proactive-proactive protocol in pack-
ets per second (r.v.)

The total routing overhead for generic proactive-reactive protocol in packets
per second (r.v.)

The total routing overhead for generic reactive-proactive protocol in packets
per second (r.v.)

The total routing overhead for generic reactive-reactive protocol in packets
per second (r.v.)

Intensity factor

Standard deviation of the distance headway in meters

Sum notation

The duration of the time step in the Markov chain model in seconds

Duration of the time frame in seconds

XX



The time interval between successive route requests of the same source-
destination pairs

The length of the i*" cluster-non-overlapping period (r.v.)

The probability transition matrix of the absorbing lumped Markov chain,
when lumped states in 2oy are merged into a single absorbing state

Probability transition matrix of the lumped Markov chain representing sys-
tem XNE

The length of the i cluster-overlapping period (r.v.)

Set notation

The j* part of the i*® J-restricted integer partition of n, A%(n)
The interarrival time between customers k — 1 and k (r.v.)

The buffer content at the beginning of the k™ cycle (r.v.)

The event that there exists at least one node within distance ! from a
reference node

The event that there are no nodes within distance [ from a reference node
(the complement of event C(1))

The coefficient of variation of T7;

The coefficient of variation of T},

Vehicle density over the highway lane in vehicle per kilometer
The expectation of random variable Y

The event that at least one of the distance headways of set Xy is in state
Ngp at the m'™ time step, resulting in a link disconnection

The event that at least J distance headways of set Xy are in states that
construct a J-restricted integer partition of an integer that is greater or
equal to Ngp with parts at most equal to Ny

The event that the link between a reference node and its hop edge node,
separated by Np nodes, disconnects given X(0)

poel



ED,V (m)

€q;2

61‘1

€i,1

€

T

€o,

€o,
Erlang(a,b)
Exp(a)

Fy (y)

fr(y)

Gi

H;

I

I,

Iom

K*

K;(Nu)

A set of events, each corresponding to set Xy being in a set of states that
construct one of the rows of V at the m™ time step, given Xy (0)

The event that a vehicle enters the leading cluster from the left side of its
CH

The event that a vehicle enters the cluster from the left side of the CH

the event that a vehicle enters the following cluster from the right side of
its CH

The event that a vehicle enters the cluster from the right side of the CH
The event that a vehicle leaves the cluster from the left side of the CH
The event that a vehicle leaves the cluster from the right side of the CH
Erlang distribution with shape parameter a and scale parameter b
Exponential distribution with parameter a

The cumulative distribution function of random variable Y

The probability density function of random variable Y

The length of the i*" gap from a reference node in meters (r.v.)

The length of the i*" hop from a reference node in meters (r.v.)

The identity matrix of size equal to that of N’

The super state of system X, when the cluster formation is finished (at the
0™ time step)

The super state of system Xy, when the cluster formation is finished (at
the 0" time step)

Cluster size parameter in hops

Cluster size parameter in hops that minimizes the average cluster based
routing overhead

The number of combinations of set {0,1,..., Ny} (the size of K;(Npg))

xxil



LHWY

Lf

M/
M)

The j*™ element of the v'" combination in the set K;(Ny)
Maximum cluster size parameter in hops

The cluster-level length of the route between a source-destination pair in
terms of number of clusters

Cluster length in meters (r.v.)

The total number of ordered J-restricted integer partitions of n (the size of
set As(n))

Length of the overlapping range between neighboring clusters in meters

(r.v.)

The overlapping factor

Overlapping factor that minimizes the average cluster based routing over-
head

The length of the range covered by each state in the 1D-Markov chain
measured in meters

Length of the highway segment in meters

The length of the path from the root node to a leaf node in the intercluster
routing overhead rooted tree model (r.v.)

Probability transition matrix of the 1D-Markov chain
The probability transition matrix of the absorbing 1D-Markov chain

The upper left (4 1) x (j + 1) portion of the probability transition matrix,
M, with ¢ =0 and r; =1

A column vector of ones with size N'j,

The probability transition matrix of the lumped Markov chain describing
the system X,

The probability transition matrix of the edge lumped Markov chain describ-
ing the system Xgpy

xx111



Ng

N
Ny ()

No(ek)

An arbitrary number of Markov chains

The number of nodes between the GWR and GWL connecting the two
neighboring clusters (r.v.)

The number of nodes between a reference node and its hop edge node at
the 0 time step

Number of CMs that are i hops away from the CH (r.v.)

The number of nodes entering the overlapping region during an arbitrary
time period, At (r.v.)

The number of nodes entering the buffer during the &** cluster-overlapping
period (r.v.)

The number of time steps at which the distance headway is in state j in the
NGSIM/VISSIM trajectory data

The number of nodes in a road segment of length [ (r.v.)

The number of nodes leaving the unclustered region during an arbitrary
time period, At (r.v.)

The number of nodes leaving the buffer during the £** cluster-non-overlapping
period (r.v.)

Number of states in the 1D-Markov chain

The integer number of the states that cover distance headways within an
arbitrary threshold value in the distance headway’s 1D-Markov chain

Number of common cluster members between two neighboring overlapping
clusters (r.v.)

Number of clusters on the highway segment
The number of CMs on the right side of a cluster (r.v.)
Number of nodes in the cluster (r.v.)

The number of nodes between two neighbouring CHs

XXiv



NHWY

The minimum integer value that causes event Ep to occur when it is par-
titioned into the state indices of the distance headways set, Xy

Number of vehicles on the highway (r.v.)

The number of transitions of a distance headway from state j to state j’
within a time step of length 7 in the NGSIM/VISSIM trajectory data

The state space size of the lumped Markov chain

The maximum number of unclustered nodes between two neighboring clus-
ters

Number of unclustered nodes between two neighboring disjoint clusters

(r.v.)

Normal distribution with mean p and variance o>

A function that maps a lumped state from edge lumped markov chain to
the corresponding one in the fully markov chain

Routing protocol optimizing factor with a value € [0, 1]

Density dependent parameter for the transition probability from state j to
j + 1 in the 1D-Markov chain

The probability that a CM’s local neighborhood changes during a cycle

transition probability from state j to state j + 1 in the 1D-Markov chain
within one time step

Parameter of the geometric approximation of the number of common/ un-
clustered nodes that depends on the cluster overlap state between neigh-
boring clusters

The probability mass function of random variable Y

The limiting probability that there is zero common CMs between neighbor-
ing clusters

The limiting probability of the randomly selected node being a common
cluster member

XXV



Pche
Pey

Pom

Pg

PHn

Pears(a,b, c)

Pois(a)

q

45

Qy(y)

The probability that a route of length L clusters is cached
The limiting probability of the randomly selected node being a cluster head

The limiting probability of the randomly selected node being a cluster mem-
ber

The probability that two neighbouring clusters are connected via gateways

The probability that none of the nodes in the cluster detect a change in
their one-hop neighborhood

The transition probability from state j to j” in the NGSIM /VISSIM trajec-
tory data

The limiting cluster-overlapping probability
The limiting cluster-non-overlapping probability

The limiting probability that there is zero unclustered nodes between neigh-
boring clusters

The limiting probability of the randomly selected node being an unclustered
node

Pearson type III distribution with scale, shape, and location parameters
a,b, and c, respectively

Poisson distribution with parameter a

Density dependent parameter for the transition probability from state j to
7 — 1 in the 1D-Markov chain

transition probability from state j to state j — 1 in the 1D-Markov chain
within one time step

The probability generating function of random variable Y
Transmission range in meters

return probability of state j back to itself in the 1D-Markov chain within
one time step

XXV1



Tewn,

Tewn,

Tean

Ton (%)

Tom

TI %

TI [2)

T

7,3’

Tnovl(Qj)

Tnov

i® state in the the 1D-Markov chain
The service time of customer k& — 1 (r.v.)
The first occurrence time of event e (r.v.)

The time period between two successive changes in node’s one-hop neigh-
borhood

First occurrence time of the first change in cluster-membership (after cluster
formation) due to a vehicle leaving and entering the cluster from the left
side of the CH (r.v.)

First occurrence time of the first change in cluster-membership (after cluster
formation) due to a vehicle leaving and entering the cluster from the right
side of the CH (r.v.)

Time for the first change in cluster-membership to occur after cluster for-
mation (r.v.)

Time for the first change in cluster-membership to occur after cluster for-
mation, given that system X¢jy is initially in state € (r.v.)

The time interval between two consecutive membership changes of a cluster

(r.v.)

The interarrival time of nodes to the overlapping region (r.v.)

Node interdeparture time from the unclustered region that causes the num-
ber of unclustered nodes to decrease (r.v.)

The first arrival time of nodes to the overlapping region (r.v.)

The first passage time of the distance headway X; to state j' given that the
distance headway is in state j at the 0" time step

The time interval from the instant that the clusters become non-overlapping
till the first time instant that the two clusters become non-overlapping, given
that system of distance headways between the two CHs, X,, is initially in
lumped state ; (r.v.)

Cluster-non-overlapping time period (r.v.)

XXVIl



Tov 1

Tovl (Qk)

Xmax

<l

erf(+)

The time interval from the instant that the clusters are initially formed till
the first time instant that the two clusters are no longer overlapping (r.v.)

The time interval from the instant that the clusters are initially formed till
the first time instant that the two clusters are no longer overlapping, given
that system of distance headways between the two CHs, X, are initially in
lumped state € (r.v.)

Cluster-overlapping time period (r.v.)
the union of the two matrices, V' and V"
The virtual waiting time (buffer content) at an arbitrary time step m (r.v.)

The v row of V

A matrix with Ng + 1 columns and rows consisting of all possible ordered
J-restricted partitions of integers Ngp + 1, Ngp + 2, ..., (Ng + 1)Ngp, each
with the largest part less than or equal to Ngp

A matrix with Ny + 1 columns and rows consisting of J-restricted partition
of Ngp and (Ng — J + 1) zeros

Arbitrary distance headway in meters (s.p.)
The distance headway between node i and node 7 + 1 in meters (s.p.)

The distance headway between node i and node i + 1 in meters at the m'"

(r.v.)

The quantized distance headway length of the j** state in the 1D-Markov
chain measured in meters

The maximum value of the distance headway in meters

Shape parameter for the mesoscopic probability distribution of the distance
headway in near-capacity traffic flow conditions

Shape parameter for the distribution of the cluster length L.

The error function

XXVIiil



/
M e

/
M'N.

The probability transition matrix of the absorbing lumped Markov chain,
when lumped states in Qyoy are merged into a single absorbing state

The probability transition matrix of the absorbing edge lumped Markov
chain, when lumped states in €17, and Qg are merged into one single absorb-
ing state

The number of states in the absorbing lumped Markov chain, when the
lumped states in 2oy are merged into one absorbing state

The number of states in the absorbing lumped Markov chain, when the
lumped states in Qyoy are merged into one absorbing state

The probability transition matrix of the absorbing lumped Markov chain,
when lumped states in 2yoy are made absorbing without merging them
into a single state

The probability transition matrix of the absorbing edge lumped Markov
chain, when lumped states in {27, and {25 are made absorbing without merg-
ing them into a single state

The probability transition matrix of the absorbing lumped Markov chain,
when lumped states in 2oy are made absorbing without merging them into
a single state

XX1X



Chapter 1

Introduction

1.1 Vehicular ad hoc networks (VANETS)

Newly manufactured vehicles are no longer the simple mechanical devices that we once
knew. Each vehicle is a smart body of various sensors that can measure different attributes.
Recently, efforts have been made to deploy communication capabilities in vehicles and the
transport infrastructure, leading to a potential of vehicular ad hoc networks (VANETS).
In 1999, the United States Federal Communications Commission (FCC) allocated 75 MHz
of radio spectrum in the 5.9 GHz band to be used for Dedicated Short Range Commu-
nication (DSRC) by intelligent transportation systems (ITS). The DSRC spectrum has
seven 10MHz channels, one control channel (CCH) and six service channels (SCHs). In
2008, the European Telecommunications Standards Institute (ETSI) allocated 30 MHz of
spectrum in the 5.9 GHz band for I'TS. In 2014, the U.S. National Highway Traffic Safety
Administration (NHTSA) announced that it had been working with the U.S. department
of transportation on regulations that would eventually mandate vehicular communication
capabilities in new light vehicles by 2017 [2]. An envisioned VANET will consist of i)
vehicles with on-board sensing and transmitting units which form the network nodes; i)
stationary road side units (RSUs) deployed on the sides of roads and connected to the
Internet; and 7ii) a set of wireless channels from the DSRC spectrum. An illustration of a
VANET infrastructure is shown in Figure 1.1.

The embedded wireless communication capabilities will enable both vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I') communications. Many new ITS applications

1V2I communications refer to the bidirectional communications between a RSU and a vehicle.
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Figure 1.1: An illustration of VANET infrastructure

will emerge with the support of V2V and V2I communications. ITS applications include
on-road safety and infotainment applications. Examples of safety applications include
emergency warning, lane changing assistance, and intersection coordination. On the other
hand, infotainment applications can provide i) drivers with information about weather,
maps, and directions to nearby petrol stations/restaurants, and i) passengers with Internet
access that includes web-surfing and multimedia applications [3].

The implementation of VANET applications is dependent on the development of net-
working protocols that can guarantee reliable and efficient V2V and V2I communications.
VANETS are susceptible to a large number of nodes, traffic’ jams, and traffic density
variations from time-to-time and from point-to-point on the same roads. Therefore, the
networking protocols for VANETSs should be scalable to support such large sized networks.

VANETS have specific characteristics that impose new challenges to the network devel-
opment and operation when compared with traditional mobile ad hoc networks (MANETS).
Unlike traditional networks, where nodes are either static or move independently with low
speeds, nodes in VANETSs move with very high speeds, causing network fragmentations
and rapid changes in the network topology. Additionally, the movement of vehicular nodes
is dependent on driver behaviors and the interaction with neighboring vehicles.

2The term traffic refers to vehicle traffic in this thesis.



1.2 Node clustering in VANET's

Node clustering is a network management strategy in which nearby nodes are grouped into
a set called cluster. In each cluster, a node is elected to manage the cluster. This node
is called cluster head (CH). The remaining nodes are called cluster members (CMs), each
belonging to one or multiple clusters. A communication between a pair of nodes in the same
cluster is referred to as intracluster communication, whereas an intercluster communication
takes place between nodes in different clusters. The CH may elect some of its CMs as
gateway nodes that facilitate the intercluster communications among neighbouring clusters.
Therefore, node clustering is a process that transforms a flat network infrastructure into
a two-tier infrastructure. The first tier consists of CHs and gateways, whereas the second
tier is composed of the CMs.

When the number of nodes increases in a network, the performance of flat-network
protocols starts degrading [4, 5]. Node clustering has been shown to be an effective strategy
to improve scalability in traditional ad hoc networks [6, 7]. For medium access control
(MAC) protocols, the CH can act as a central coordinator that manages the access of its
CMs to the wireless channel(s) [7]. For routing protocols, CHs can be made responsible
for the discovery and maintenance of routing paths, thus limiting the number of control-
message overhead in these processes [6].

There are different ways to cluster network nodes. Different clustering algorithms in
the literature have different rules that govern the CH/gateway election, the membership to
a cluster, and the type of inter-/intra- cluster communications. However, regardless of the
algorithm-specific clustering rules, the formed clusters may share some characteristics. An
important characteristic of node clusters is the cluster size. The size of a cluster is usually
defined by its coverage area. The area is represented by a radius from the reference node
(i.e., the CH). The radius covers either a single hop [8] or multiple hops [9, 10]. As a result,
the size of the cluster is directly related to the transmission range. A larger cluster size
produces a smaller number of clusters, with a larger number of nodes to manage within
each cluster. The overlapping state between neighboring clusters is another important
characteristic. The overlapping state determines the type of intercluster communication
between neighboring clusters. In the literature, the overlapping between neighboring clus-
ter takes one of three states: complete disjoint, partial overlap, or complete overlap. In
the complete disjoint state, no node belongs to more than one cluster [11]. In this case,
gateway nodes should be elected in each cluster and the intercluster communications is
done via gateway-to-gateway communications as shown in Figure 1.2(a). In the partial
overlap state, neighboring clusters share common gateway nodes [12-15]. In this case,
gateway-to-CH communications is used to connect neighboring clusters. In the complete
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Figure 1.2: Cluster-overlap states: (a) disjoint, (b) partial overlap, (c) complete
overlap.

overlap state, the neighboring two CHs are within the communication range of each other
and communicate directly.

In general, a non-overlapping clustered structure produces a relatively small number
of clusters and reduces the design complexity of the network protocols that run on the
clusters. For example, two clusters may utilize the same channel resources at the same
time if they are non neighboring clusters [16] [17]. On the other hand, a highly overlapping
clustered structure may cause complexity in the channel assignment, lead to a broadcast
storm, and form long hierarchical routes. Additional channel resources ought to be used
to prevent intercluster interference due to cluster overlapping. For example, assigning
different time frames for neighboring clusters [18] and assigning different transmission codes
to CMs located in a possibly overlapping region [19]. In developing a clustering algorithm,
the choice of cluster characteristics, such as the cluster size and the overlapping state
between clusters, should comply with the requirements of network protocols. The choice
of the cluster characteristics should balance the cost-efficiency trade-off for the supported
network protocols.

Despite the potential benefits of node clustering, the formation and maintenance of
clusters require explicit exchange of cluster-control messages [16]. In order to form clusters,
nodes must exchange some local information (e.g., node location or ID). This is done in
the form of cluster-control messages. For example, one of the basic clustering techniques is
to choose the CH with the lowest ID among its neighbors [16]. To form lowest ID clusters,
neighboring nodes must exchange their ID information. Therefore, a portion of the network
radio resources is used for cluster formation. Node clustering groups nearby nodes into
clusters; hence the proximity of CMs to the CH is very important in maintaining the
cluster structure. Changes in the relative position of CMs can alter the cluster structure.
To track cluster changes, a CH should always announce its existence to its CMs, and each
CM should continuously reply back to its CH. This signaling uses a portion of the network
radio resources.
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Figure 1.3: Clustering cost.

The node status update information can be utilized to perform local updates on the
cluster structure, such as joining a new cluster and/or re-electing new CHs or gateways.
This signaling along with the node status update messaging use a portion of the network
radio resources, i.e., the cluster maintenance cost. In some cases, the cluster changes
cannot be resolved locally; hence a re-clustering is triggered (i.e., a new cluster formation).
Frequent re-clustering consumes the network radio resources and causes service disruption
for the cluster-based network protocols. Figure 1.3 shows a flow chart of the clustering
cost, where a formation cost is paid whenever re-clustering is triggered. As the number
of cluster-control messages increases, the network bandwidth drains, leaving insufficient
available resources for implementing upper layer applications [16]. Therefore, there exists
a cost-efficiency trade-off for implementing node clustering for network protocols.

Considering the susceptibility of VANETS to a large number of nodes, traffic jams, and
variable traffic density, the network protocols should be scalable. Node clustering, just as in
traditional ad hoc networks, is a potential approach to improve the scalability of networking
protocols such as for routing and medium access control in VANETSs [11-13, 15, 18, 20—
36]. Nevertheless, forming and maintaining the clusters in VANETS is not an easy task.
In VANETS, vehicles move with high and variable speeds causing frequent changes in the
network topology, which can significantly increase the cluster maintenance cost. As a



result, cluster stability is a crucial measure of the efficiency of clustering algorithms for
VANETS.

1.3 Node cluster stability

Cluster stability is a major issue in node clustering for VANETSs. Traditional clustering
algorithms have a high maintenance cost in dynamic networks [23]. This calls for new
clustering approaches that produce long lasting clusters in a highly mobile network. The
research on clustering in VANETS [11-13, 15, 20-23] has tackled stability in the formation
and/or the maintenance stages of clustering. Existing clustering algorithms for VANETS
that tackle stability in the cluster formation stage utilize mobility information mainly in
the CH election. The basic idea is to increase the lifetime of the cluster by choosing the CH
that is more likely to have a long time connection to most of the CMs [11-15, 18, 22, 23].
Given a set of clusters, regardless of the clustering algorithm, node mobility can change
the originally formed clusters. Strategies that enhance cluster stability at the maintenance
stage are mainly a set of event-driven rules that aim to prevent or postpone triggering
re-clustering [12, 15, 23].

In a highly dynamic VANET, vehicles join and leave clusters along their travel route,
resulting in changes in cluster structure. The temporal changes in cluster structure are
either internal or external [37]. An internal change in the cluster structure is concerned
with a change inside the cluster such as when vehicles join or leave the cluster, resulting in a
change in cluster-membership. Frequent changes in the internal cluster structure consume
network radio resources and cause service disruption for the cluster-based network protocols
(e.g., in intracluster resource allocation, route discovery, and message delivery). Therefore,
analyzing the impact of vehicle mobility on the rate at which nodes enter and leave a
cluster is an important measure of internal cluster stability. This metric has been adopted
by researchers to evaluate the performance of their proposed clustering algorithms through
simulations [15, 23, 38]. A higher rate of cluster-membership changes indicates a smaller
time period of invariant cluster-membership and, therefore, lower internal cluster stability.

On the other hand, an external change in the cluster structure is concerned with the
relationship of a cluster with other clusters in a network. One metric that evaluates the
external relationship of a cluster is its overlapping ranges with neighboring clusters. The
time variations of the distance between two neighboring CHs, due to vehicle mobility, can
cause the coverage ranges of the clusters to overlap. As the overlapping range between two
clusters increases, the two clusters may merge into a single cluster [12, 15, 36]. Frequent
splitting and merging of clusters increase the control overhead and drain the radio resources



[13, 22, 38]. Although researchers have favored forming a non-overlapping (or a reduced
overlapping) clustered structure [13] [22] [12] [19], encountering overlapping clusters dur-
ing the network runtime is inevitable, especially in a highly mobile network. Overlapping
clusters have received significant attention since the work by Palla et al. [39]. It is shown
that real networks are better characterized by well-defined statistics of overlapping and
nested clusters rather than disjoint clusters. Regardless of whether or not cluster over-
lapping is preferred, characterizing the overlapping state between neighboring clusters and
its changes over time becomes crucial in the presence of node mobility. A higher rate of
cluster-overlap state change indicates a shorter time period of unchanged cluster-overlap
state and, therefore, lower external cluster stability.

Despite the importance of cluster stability as a measure of clustering algorithm ef-
ficiency in VANETS, characterizing cluster stability has taken the form of simulations
[15, 23, 38] or case studies [40] in the literature.

1.4 Vehicle mobility

Vehicle mobility is a major component of the VANET structure. The impact of node
mobility on network topology dynamics and, consequently, on cluster stability and network
protocol performance should be considered. Despite its high speed and randomness, the
vehicle movement is restricted by road topology, speed limits, traffic rules, and movement
of nearby vehicles. Therefore, based on these metrics, vehicle movement follows certain
patterns [1]. Modeling vehicle traffic characteristics has attracted great attention from
researchers in transportation engineering for many years. From the various vehicle traffic
characteristics, the distance headway and its variations over time play an essential role
in changing the network topology. The distance headway (or the intervehicle distance)
is the distance between identical points on two consecutive vehicles on the same lane. In
general, vehicle mobility models in the literature can be categorized into three (microscopic,
mesoscopic, and macroscopic) types according to the detail level of the interactions among
vehicles that the model characterizes [1, 41, 42]. A macroscopic distance headway model
describes the average distance headway over a highway. The average distance headway
is equal to reciprocal of the vehicle density. The vehicle density (D) is defined as the
average number of vehicles per lane occupying a segment of the roadway [1]. The value
of the vehicle density defines the traffic flow condition, an important metric for modelling
vehicular traffic flow. Table 1.1 lists the traffic flow conditions corresponding to different
traffic density ranges.

Mesoscopic traffic flow models describe the traffic flow with more details than macro-
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scopic models. On a mesoscopic level, the behaviors of individual vehicles are characterized
independently [1, 43]. A mesoscopic mobility model describes the distance headways of
individual vehicles by independent and identically distributed random variables [1, 44].
That is, on a mesoscopice level, the traffic appears as a snap shot over the considered
road segment. Different mesoscopic models have been proposed for different traffic flow
conditions [1].

A microscopic model specifies time variations of a distance headway according to the
driver behaviors and interactions with neighboring vehicles [1, 41]. On a microscopic level,
the details of individual vehicle behaviors are modeled. The level of details include ve-
hicular behaviors resulting from interacting with nearby vehicles. These behaviors include
accelerating, decelerating, reacting to slowing leading vehicles, decisions on changing lanes,
overpassing vehicles, etc. There are mainly two types of microscopic traffic flow models:
the car following models and the cellular automata (CA) models. Car following models
basically revolve around one simple rule: keeping a safe distance ahead.

Despite the accuracy of modelling the following-behavior of vehicles, there are several
factors that limit the generality of car following models [45]. At a long distance headway,
the interaction between vehicles is very low. In this case, vehicle behavior is not affected
by the leading vehicle and will be in a free-driving mode which is not captured by a car-
following model. Even in a highly dense situation, when the distance headway is small, a
following vehicle may desire to move at a lower speed from the leading vehicle, and hence
will not be in the following mode [45]. While car-following models are continuous models,
CA-models are discrete. A CA-model describes a single lane road as a lattice of a number
of equal sized cells [46]. The model includes a set of event-driven rules that define how
a vehicle on road changes its speed and acceleration to traverse through cells (i.e., road
segments).

In order to characterize the stability of clusters, a model that captures the time varia-
tions of distance headways need to be considered. Deterministic microscopic models (e.g.
GM car following models [1]) do not reflect the realistic randomness in driver behavior.
The two main factors that affect changes of a distance headway over time, i.e., the driver

Table 1.1: Traffic flow state for different vehicle densities [1]

Density (veh/ml/lane) Traffic flow condition
0—42 Uncongested flow conditions (low)
42 — 67 Near-capacity flow conditions (intermediate)
67 — 100 Congested flow conditions (high)




behaviors and interactions with neighboring vehicles, are both random. Furthermore, the
correlation between a distance headway and its changes over a time period is not captured
in a mesoscopic model. Therefore, to accurately model the cluster stability, a microscopic
mobility model should be used. As pointed out earlier, microscopic mobility models in the
literature include a set of deterministic and/or probabilistic rules that define how a vehicle
on road changes its speed and/or acceleration in reaction to its neighboring vehicles’ be-
haviors [1]. As such a model depends on the behaviors of neighboring vehicles over time,
the analysis tends to take the form of case studies (e.g., [44]).

1.5 Cluster-based routing in VANET's

Routing is a process of selecting paths in a network along which data is transmitted between
network entities. When a source node wants to send data packets to a certain destination, a
routing protocol is responsible for establishing and maintaining a route between the source
and the destination. A route consists of a sequence of relay nodes from the source to the
destination. Routing protocols use some path selection algorithms such as shortest path
algorithms.

Generally, in a multi-hop wireless network, source messages are relayed by intermediate
nodes in order to reach the destination. To establish a path between network entities in
a multi-hop network, many routing protocols have been proposed in the literature [47]. A
routing protocol can be proactive (table-driven), reactive (on demand), or hybrid (a mix
of both) [48] and is implemented along with a Hello protocol. In a Hello protocol, each
node periodically broadcasts its local topology information (e.g., neighbor nodes list, link
state information, and/or mobility information) to its one hop neighbors.

In a proactive routing protocol, every node shares its local topology information with
every other node in the network. Therefore, each node maintains the topology map of the
whole network and builds a table of routes to every other node in the network. Sharing
topology information is periodic or is triggered when topology changes occur. On the other
hand, a reactive routing protocol is on-demand for data transmission. Routes between
nodes are found only when they are needed to forward packets. When a source node has
data to send, a route discovery process is initiated by broadcasting a route request (RREQ)
packet throughout the network until a route to a destination is found [49].

Due to the high vehicle speeds and the frequent network topology changes in VANETS,
finding and maintaining a long route are not easy tasks. Wireless links switch between con-
nection and disconnections because of the relative speed between the nodes, thus increasing



the routing overhead associated with topology updates and route discovery processes. Ad-
ditionally, the large number of nodes in VANETSs makes flooding control messages (RREQ
and topology update packets) consume a large portion of the radio bandwidth; hence scal-

ability is another issue to be considered when developing a reliable routing protocol for
VANETS.

One way of minimizing the routing overhead is to use a hierarchical infrastructure.
In a clustered network, CHs and gateways create a virtual backbone that can be made
responsible for the discovery and maintenance of routing paths, thus limiting the number
of control-message overhead in these processes. Additionally, if a link of an established
route breaks, a CH can take the responsibility of fixing the route locally within the cluster.

In a cluster-based routing protocol, different routing strategies can be used for intra-
and inter- cluster routing. For example, if a proactive routing strategy is used for intra-
cluster communication [24, 26, 27|, each node in the cluster maintains a topology map of
the cluster. If a source node has data to send to a destination that is in the same cluster
as the source, the route information is readily available. On the other hand, if a reactive
strategy is used for intracluster routing [28], a source node floods an RREQ packet within
its cluster if the destination is within the cluster. Existing protocols in the literature differ
in the routing strategy used for intercluster communications. Some protocols use reactive
routing [24, 27], while in other protocols, CHs proactively share their cluster membership
information and hence the RREQ is flooded only among the series of clusters towards the
destination [28]. Cluster-based routing protocols proposed in the literature aim to min-
imize the routing overhead and scale to an increased node density, using various cluster
characteristics. For example, non-overlapping multi-hop clusters are considered in [24],
while single-hop possibly overlapping clusters are assumed in [27]. Cluster characteristics
have direct impact on the routing protocol performance.

Although node clustering is a potential solution for minimizing routing overhead, un-
stable clusters can increase the control signaling overhead associated with the discovery
and maintenance of routing paths. Due to vehicle mobility, a node may leave or enter a
cluster, triggering updates to the intracluster routes. Frequent changes in the internal clus-
ter structure increase the number of control messages required to establish and maintain
routes between cluster members, thus, increasing the intracluster routing overhead. On
the other hand, changes in the cluster-overlap state affect the routing overhead. A highly
overlapping clustered structure may increase the intracluster routing overhead, as common
nodes need to report to both clusters. Disjoint clusters may result in longer hierarchical
routes between CHs and a failure of route discovery processes [49]. Therefore, analyzing
the impact of cluster instability, due to vehicle mobility, on the routing overhead is crucial
for validating the effectiveness of clustering for routing in VANETSs.
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1.6 Research objectives and thesis outline

Due to the lack of mathematical basis of node cluster stability in VANETS as discussed
in previous sections, this research is a step towards building a framework for node cluster
stability in VANETSs and has the following objectives:

e to characterize the communication link in VANETS as a corner stone in determin-
ing the topology of VANET and its change over time, and to develop a stochastic
microscopic vehicle mobility model that can be utilized in analyzing the impact of
mobility and node density on network protocols in VANETS;

e to model node cluster stability in terms of the cluster’s internal relation with its CMs
and the cluster’s external relation with neighboring clusters; and

e to investigate the impact of cluster characteristics on the routing overhead, and to
employ the cluster stability model for determining the impact of cluster instability
on the routing overhead.

The rest of the thesis is organized as follows. Chapter 2 describes the system model
under consideration. Chapter 3 presents probabilistic analysis of the communication link
in VANETSs for three vehicle density ranges. Mesoscopic mobility models are utilized
to obtain the communication link length. In addition, a microscopic vehicle mobility is
introduced to describe the time variation of the distance headway on a single lane highway,
which is consistent with highway data patterns from empirical and simulated data sets
[50, 51]. Chapter 4 introduces a stochastic analysis of single-hop cluster stability in terms
of two metrics that measure external and the internal cluster stability [52, 53]. Chapter
5 first investigates the impact of cluster characteristics on generic routing overhead, then
analyzes the impact of cluster instability on generic routing overhead, where clusters are
formed using the results of the first part [54, 55]. Finally, Chapter 6 concludes this research
and identifies some further research topics.
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Chapter 2

System model

Consider a connected VANET on a multi-lane highway of length Lgyy with no on or off
ramps. We focus on a single lane with lane changes implicitly captured in the adopted
mobility model. We choose a single lane from a multi-lane highway instead of a single-lane
highway, in order to be more realistic in a highway scenario. A vehicle can overtake a
slower leading vehicle, if possible, and accelerate towards its desired speed!. Let Nywy
be the total number of vehicles on the highway. Assume that the highway is in a steady
traffic flow condition defined by a time-invariant vehicle density. Let D denote the vehicle
density in vehicle per kilometer. We consider three levels of D: low, intermediate, and high
vehicle densities as in Table 1.1. However, we do not consider the case when the vehicle
density is changing between the three levels. Additionally, we do not consider the case
of increasing/decreasing vehicle density within the same level of density. In our system
model we focus only on a single direction traffic flow. Due to large relative speeds between
vehicles flowing in opposite directions, a cluster consists of vehicles moving in the same
direction, i.e., each direction of the highway is clustered separately [23]. All the vehicles
have the same transmission range, denoted by R. Any two nodes at a distance less than
R from each other are one hop neighbours. The length of a hop is defined as the distance
to the furthest node within the transmission range of a reference node, which is upper
bounded by R. Let H; denote the i*® hop length with respect to a reference node, 7 > 1.
Assume that the transmission range is much larger than the width of the highway such
that a node can communicate with any node within a longitudinal distance of R from it?.

In a single-lane highway, the vehicle traffic gradually converges into a number of platoons lead by the
slower vehicles on the highway [56].

2Typically, the transmission range covers a circular area with a radius R centred at the node. However,
since the transmission range is much larger than the width of the road, the area covered by the transmission
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Consider a single DSRC channel which supports a high data rate of 6 — 27Mbps and a
transmission range up to 1000 meters (m). Time is partitioned with a constant step size.
Let X; be the distance headway between node ¢ and node ¢+1, 7 = 0,1, 2,.... The distance
headway is the distance between two identical points on two consecutive vehicles on the
same lane. Define X; = {X;(m),m = 0,1,2...} to be a discrete-time stochastic process
of the i*" distance headway, where X;(m) is a random variable representing the distance
headway of node i at the m'™™ time step. At any time step, X;(m) € [a, Xpax] for all
1, m > 0, where a and X, is the minimum and maximum distance headway, respectively.
Furthermore, assume that X;’s are independent with identical statistical behaviors for
all + > 0. For notation simplicity, we omit index ¢ from X; and H; when referring to
an arbitrary distance headway and an arbitrary hop, respectively. Let p and o be the
mean and the standard deviation of the distance headway in meters, respectively, where
p = 1000/D and o are constant system parameters and take different values according
to the vehicle density. Throughout this thesis, Fy(y), Py (y), fy(y), Qy(y), and E[Y] are
used to denote the cumulative distribution function (cdf), the probability mass function
(pmf), the probability density function (pdf), the probability generating function, and the
expectation of random variable Y, respectively.

2.1 Node clusters

The nodes on the highway are clustered by some clustering algorithm into possibly over-
lapping, K-hop clusters, where K is the cluster size parameter. The range of each cluster
extends K-hops on both sides of the CH. Let L. be the length of the cluster in meters. We
define L. such that the K™ hops of a cluster are of length R, in order to control overlap-
ping between clusters (more details in Subsection 5.1.2). Figure 2.1 illustrates the clusters
under consideration. Let Ngjr denote the total number of nodes in a cluster. Let Nog be
the number of clusters formed on the highway. A CH elects the hop edge node, i.e., the
furthest node within its hop, as a gateway node that is responsible to facilitate inter-cluster
communications. We refer to the side of the cluster that is following the CH as the left
side, while the leading side of the cluster is referred to as the right side. Therefore, GWR
and GWL are the right and the left gateways of a cluster, respectively, as illustrated in
Figure 2.1(a). Together the CHs and the gateways form the backbone nodes. At the end of
the cluster formation, the vehicles are distributed on the highway according to a stationary
probability distribution of the distance headways. In our analysis, the 0'" time step refers
to the time when the cluster formation has just completed. Define the cluster-overlap state

range can be approximated by a rectangular area with length 2R.

13



L]
l: k=2 hops— ,—L —1 Necw

(b)
Traffic flow direction | X 2 |
=% Cluster head Xc
®  Cluster member
> Cluster border
/7777 Overlapping range (C)

Figure 2.1: An illustration of the clusters under consideration for k = 2 hops.

between two neighbouring clusters to be i) overlapping, when the distance between the two
CHs is less than 2R; or i) non-overlapping (or disjoint), otherwise. For two neighboring
clusters, we define the following variables.

e Let L, denote the length of the overlapping range between two neighboring clusters;

e Let [, denote the overlapping fraction of the cluster length with a neighboring cluster
(i.e., l, = Lo/L.). The overlapping state between neighboring clusters is determined
by the value of [, € [0,0.5], where [, = 0 and [, = 0.5 correspond to complete disjoint
and complete overlap states, respectively;

e Let X, denote the sequence of distance headways between two neighboring CHs as
illustrated in Figure 2.1(c);

e Let Neeps denote the number of common cluster members between two neighbouring
overlapping clusters;

e Let Nyy denote the number of unclustered nodes between two neighboring disjoint
clusters (assume that Nyy = 0 at the end of the initial cluster formation).
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We assume that the clusters are initially overlapping and the CHs remain the same over
a time interval of interest. Throughout this thesis, the cluster size K and the overlap-
ping ratio [, are referred to as cluster characteristics, whereas Ney, Noowr, Le, and L, are
referred to as cluster parameters.

2.2 Node mobility

In this research, we are interested in the distance headway and the spatial distribution
of vehicles along the road. Therefore, the adopted vehicular mobility model is used to
describe the distance headway. Unless otherwise mentioned, on a macroscopic level, we
consider three different traffic flow conditions: uncongested, near-capacity, and congested.
We study each of the three traffic flow conditions separately, without considering the case of
changing traffic flow condition. Each traffic flow condition corresponds to a range of vehicle
densities according to Table 1.1 [1]. The uncongested, near capacity, and congested traffic
flow conditions correspond to low, intermediate, and high vehicle densities, respectively.
Additionally, each traffic flow condition corresponds to a unique microscopic and a unique
mesoscopic distance headway model. On a microscopic level, we propose to model the time
variations of the distance headway by a discrete-time finite-state Markov chain. Details of
the microscopic model are given in Chapter 3.

Mesoscopic mobility model

Main mesoscopic models in the literature focus on the time-headway, which is the elapsed
time of the passage of identical points on two consecutive vehicles [1]. For an uncongested
traffic flow condition, the exponential distribution has been shown to be a good approxima-
tion for the time headway distribution [1]. With a low vehicle density, interactions between
vehicles are very low and almost negligible. As a result, vehicles move independently at a
maximum speed [1]. It is reasonable to assume that, over a short time interval of interest,
vehicles move at constant velocity and do not interact with each other [57], [58]. Therefore,
for a low vehicle density, we assume that the distance headway has the same distribution
as the time headway with parameters properly scaled. The inter-vehicle distances X;’s
at any time step are independent and identically distributed (i.i.d.) with an exponential
probability density function (pdf)

fxi(x) = —e"v, x>0 (2.1)



In this case, the mean and the standard deviation of the distance headway is i = o = %.
According to the distribution, P(X; < «) > 0; however, for simplicity, we ignore the effect
of this probability?.

In the literature, the Gaussian distribution is used to model the time headway for a
congested traffic flow condition [1]. Although the time headway is almost constant for a
high vehicle density, driver behaviors cause the time headway to vary around that constant
value. Therefore, the Gaussian distribution model for the time headway characterizes
the driver attempt to drive at a constant time headway [1]. With the same argument,
we assume that the distance headways vary around a constant value with a Gaussian
distribution. The pdf of the distance headway is approximately given by

1 (z—p)?
T , x>0. (2.2)

sz(x) =

2ro
The standard deviation o for a high vehicle density is given by* o = & ;a).

For a near-capacity traffic flow condition, empirical pdfs for inter-vehicle distances
show that neither an exponential nor a Gaussian distribution is a good fit [59]. Hence, we
assume that the inter-vehicle distances follow a general distribution, Pearson type III, that
was originally proposed for time headways [1]. With an intermediate vehicle density, the
pdf of the distance headway is approximately given by

\?
sz‘ (.’E) = (.%' o a)z—le—)\(x—a)’ T2 (23)

where A and z are the scale and shape parameters of the general Pearson type I1I distri-
bution, respectively, and I'(z) = [~ u* 'e “du is the gamma function. The parameters A
and z are related to p and o according to the following relations [1]

a—— z—(”;—f)z. (2.4)

3P(X; < a) =1-e P2 For example, for D = 6 veh/km and a = 6.7 meters [1], P(X; < a) = 0.04.
The probability P(X; < «) increases with D.

4We use the same guidelines for calculating the variance of time headway as given in [1]. With o =
@, P(X; > «) =0.977 [1]. For a congested traffic flow condition (i.e., D > 42 veh/km) and o = 6.7m
[1], P(X; <0) < 2.8 x 1073,
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2.3 Summary

In this chapter, the system model under consideration in this research has been presented.
In specific, a highway VANET is considered with focus on a single lane. As this research
does not target the performance evaluation of a specific clustering algorithm, the cluster
characteristics and parameters of the formed clusters have been defined in this chapter. The
nodes on the highway are clustered by some clustering algorithm into possibly overlapping,
K-hop clusters. Furthermore, the vehicle mobility under consideration has been introduced.
Three vehicle traffic flow conditions are considered, each corresponding to a range of vehicle
densities. For each traffic low condition, we employ the associated mesoscopic distance
headway model when a snapshot of the highway traffic is studied. On the other hand,
when studying the temporal variations in the vehicle traffic, a microscopic mobility model
is used, which is presented in the following chapter.
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Chapter 3

Communication link characteristics

Unlike traditional mobile ad hoc networks, the high node mobility in VANETS can cause
frequent network topology changes and fragmentations. Moreover, VANETS are suscep-
tible to vehicle density variations from time to time throughout the day. This imposes
new challenges in maintaining a connection between vehicular nodes. The length of the
communication link and its duration between network nodes play a crucial role in deter-
mining node cluster stability. As discussed in Section 1.3, any change in cluster structure
is directly or indirectly related to the duration of communication links between network
nodes and the switching of the links between connection and disconnection. This section
presents a probabilistic analysis of the communication link in VANETS for three vehicle
density ranges. Firstly, we propose a stochastic microscopic mobility model that captures
time variations of inter-vehicle distances (distance headways). A discrete-time finite-state
Markov chain with state dependent transition probabilities is proposed to model the dis-
tance headway. Secondly, the stationary distribution of the communication link length is
derived using mesoscopic mobility models. Thirdly, the proposed stochastic microscopic
model and first passage time analysis are used to derive the probability distribution of the
communication link lifetime. Finally, we simulate highway vehicular traffic using micro-
scopic vehicle traffic simulator, VISSIM, and demonstrate that the analytical results of our
model match well with simulation results.

3.1 Microscopic vehicle mobility model

We model the stochastic process, X;, as a discrete-time finite-state Markov chain, inspired
by [59, 60]. The Markov chain, illustrated in Figure 3.1, has N,y states corresponding
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a, q, a,

Figure 3.1: An illustration of the proposed discrete-time Npyax-state Markov chain
model of the distance headway

to Npax ranges of a distance headway. The length of the range covered by each state
is a constant, denoted by L, in meters. The j™ state covers the range [z;,z; + L),
0 < j < Npax — 1, where z; = o+ jL,. At any time step, X;(m) = z; denotes that
the distance headway X; is in the j** state, for all i,m > 0, and 0 < j < Npax — 1. Let
Ng = RL—_:" be the integer number of states that cover distance headways within R. Hence,
the states with indices j € {0,1,2,...,Ng — 1,Ng, Nr + 1,..., Nax — 2, and Npay — 1}
correspond to the quantized distances z; € {a,a + Ly, + 2L, o0 + 3L, ..., + (N —
1)Ls, R, + (Ng + 1)L, ..., Xmax — Ls, and Xya}, respectively. Within a time step, a
distance headway in state j can transit to the next state, the previous state, or remain in
the same state with probabilities p;, ¢;, or rj, 0 < j < Ny — 1, respectively. Without loss
of generality, assume that probability transition matrix is a positive-definite tri-diagonal

and is given by

To Po 0 Ce . 0
G T ;M 0 :
M= 0 & r2 p 0 : , (3.1)
O cet O quax72 /r.Nmax72 meax*2
0 ... ... 0 ANpax—1 T Npax—1

The tri-diagonal structure of M is due to the fact that the values of a distance headway
at consecutive time steps are highly correlated, for a short time step, such as 7 < Ls

v
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where 7 is the maximum relative speed between vehicles!. We propose to use the following
state-dependent transition probability functions

w = o(1ms(i-52))
v =o(0(x))

o= 1-pi—q,  0<j<Naw—1,0<pgB<1 (3:2)

where p,q, and ( are constants that depend on the vehicle density. For a low vehicle
density, 3 is close to zero, and therefore the transition probabilities are independent of
the state value, z;. The value of 8 increases as the vehicle density increases, and thus
increases the dependency on the state value. Eq.(3.2) can be explained as follows. In a
low vehicle density, distance headways are relatively large. Hence, a vehicle moves freely
with a desired speed [1]. In such a scenario, the distance headway value does not affect
the driver’s choice to keep/change the speed, since the distance headway is large enough.
On the other hand, in a high vehicle density situation, distance headways are relatively
small. Hence, vehicles move with high constraints to keep a safe distance ahead. In such
a scenario, the distance headway value has a high impact on the driver’s behavior and
his/her choice to keep/change the speed (and consequently the distance headway). The
constant [ is comparable with the driver strain constant used in [41], whereas 8 = 0 in
[42]. The transition probabilities of the distance headway to neighboring states increase
with the distance headway value, when § > 0 in (3.2). This is due to the fact that a larger
distance headway results in less constraints in driving.

In order to verify the dependency of the distance headway transition probability on
its current state, we compute the transition probability matrix using i) empirical vehicle
trajectory data collected from highways provided by Next Generation Simulation (NGSIM)
community and available online [61], and ii) simulated vehicle trajectory data generated
by VISSIM microscopic vehicle traffic simulator. The vehicles in VISSIM simulator move
according to Wiedemann’s microscopic mobility model. Wiedemann is psycho-physical
car-following model that describes behaviors of individual vehicles according to their in-
teractions with neighboring vehicles, their desired relative speeds, their relative positions,
and some driver-dependant behaviors. The Wiedemann model accounts for four differ-

!Consider an i.i.d. desired vehicle speed with a mean of 100 kilometer per hour and a standard deviation
of 10 kilometer per hour, i.e., P(¢ < 36) = 0.99. In this case, the choice of 7 = 2 seconds for L, = 20
meters, reduces the transition probability of the distance headway to a non-neighboring state to less than
0.0054
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ent driving modes: free driving, approaching, following, and breaking [62]. We adopt the
Wiedemann 99 model which is designed for a highway scenario with its parameters set to
the default values suggested in [63]. We use two NGSIM data sets: [-80-Main-Data and
US-101-Main-Data, which were collected from a seven lane highway for a section of 500 and
640 meters, respectively. From the NGSIM data sets, we exclude data points associated
with vehicles 1) on an on-ramp lane, 2) on an off-ramp lane, 3) at the end of the section,
or 4) undertaking a lane change. The VISSIM data set was obtained via six 30-minute
simulations of a three-lane highway traffic for different vehicle densities. The highway is a
closed loop, and the vehicles enter the highway with a traffic flow of (3052.8, 1914.2, 854.6,
683.7, and 379.8) vehicle per hour per lane for 1000 seconds, resulting in vehicle densities
of (42, 26, 16, 9, and 5), respectively. The VISSIM data points associated with vehicles
entering the highway or changing lanes are not included in our analysis. To obtain the
transition probabilities, the NGSIM and VISSIM data sets are mapped into a sequence of
quantized state values (z;) with a predefined state length L, where z; € [0, Xyax] in meters
and 0 < 7 < Npax — 1. The NGSIM data sets is only available with intermediate-to-high
vehicle densities with X,,.x = 100 meters. For each state j, the transition probabilities for
the distance headway are determined by counting the number of occurrences of each tran-
sition. Let n;; be the number of transitions of a distance headway from state j to state
7',0 < j' < Npax — 1, within a time step of length 7, and n; = Z;.\,[ng_l n; i be the number
of time steps at which the distance headway is in state j. The transition probability from
state j to j' is calculated by p;; = nj’j/, 0<74,j < Npax — 1.

n

Figure 3.2 plots the transition probabilities (and their standard deviation) from state
J to its direct neighboring states and to itself for different x; values, with the default data
recording values: Ly = 1 meter and 7 = 0.1 seconds for the NGSIM data set, and Ly = 2
meters and 7 = 0.2 seconds for the VISSIM data set. The results show a dependency of
the transition probabilities on the z; value. The weighted linear regression (LR) is used
to fit the transition probabilities in Figure 3.2, with n,; being the weight of each p,
data point. The transition probabilities p; and ¢; increase with the quantized state value,
x;, which agrees with (3.2). The values of p,q, and § are calculated according to the
resulting weighted LR fit and are given in the figure legends. The results show that p; ;s is
smaller than 1072 for |j — j/| > 1, and is therefore neglected, which is consistent with the
tri-diagonal transition matrix assumption given in (3.1). Figure 3.3 plots the transition
probability matrix calculated from the NGSIM data for x;, z;» € [110,120], Ly = 0.1 meters,
and 7 = 0.1 seconds. It is observed from Figure 3.3 that, for a reduced value of the ratio
Lg/7, pjj increases for |j — j'| > 1. Figure 3.4 plots the transition probability to the next
state (and its standard deviation) for different z; values and different vehicle densities. The
results show that, the larger the vehicle densities, the higher the state-dependency of the
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transition probabilities. The resulting 8 values for different vehicle densities are plotted in
Figure 3.5, which shows an approximate linear relation between [ and the vehicle density.
This agrees with our proposed transition probability functions in (3.2).

It should be noted that the proposed microscopic model does not explicitly describe
how and when lane changes occur nor does it describe impacts of lane-changes on the time
variations of distance headways. However, the model implicitly captures the impact of lane
changes on maintaining the ability of the vehicles to overtake slower vehicles and accelerate
towards their desired speed. This is captured in the parameters p, ¢, and § which can be
tuned from empirical /simulated multi-lane highway trajectory data for one of the lanes as
done earlier in this section.

3.2 Distribution of the communication link length

In this section, we present the probability distribution of the communication link length
using mesoscopic distance headway models described in Section 2.2. The hop length (or
the link length), denoted by H, is the distance from a reference node to the furthest
node within the transmission range of the reference node, which is upper bounded by the
transmission range R. Given a mesoscopic model, the distance headways X,’s are i.i.d.
with probability density function fy(x) and cdf Fx(z). Let C(l) be the event that there
exists at least one node within distance [ from a reference node. The event C(l) occurs
with probability Fy(l). Let C°(l) be the complement of event C(I), i.e., the event that
there are no nodes within distance [ from a reference node. Then, the cdf of H is given by
[64]

C°(R—h),C(h))

P(C(R))

The pdf can then be calculated by fy(h) = %F (h). For a low vehicle density, the

distance headway is exponentially distributed with pdf given in (2.1). The pdf of the
corresponding hop length is given by [65]

Fy(h) = ol (3.3)

(R—h)

fah)=—"" _ 0<h<R (3.4)

p(l—e )

which is a scaled exponential distribution truncated at R. For an intermediate vehicle
density, the distance headways are i.i.d., each following the Pearson type III pdf in (2.3).
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Figure 3.2: The transition probability from state j to (a) state j+ 1, (b) state j — 1,
and (c) state j, for different z; values from NGSIM and VISSIM data
for intermediate to high vehicle densities. Results for the weighted LR
fit model for (3.2) are given in the legends.
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Figure 3.3: Probability transition matrix for 100 quantized values of x;, z; € [110,120]
with L, = 0.1 meters and 7 = 0.1 seconds. The matrix is calculated based

on NGSIM data.
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Figure 3.4: Transition probability from state j to state j + 1, for different z; values

from VISSIM data for vehicle densities of (a) 9, 26, and 42 veh/km with
Ly = 20 meters and 7 = 2 seconds and (b) 5, 9, 16, 26, and 42 veh/km,
with L; = 2 meters and 7 = 0.2 seconds. Results of the weighted linear
regression fit model for (6) are given in the legends.
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Figure 3.5: State dependency parameter, S for different D values calculated based
on VISSIM data.




The cdf for the first hop length can be derived from (3.3) and the corresponding pdf is
found to be

fx(B—h)y(z, A(h — o) + fx (W)D(2, MR — h — @)
(2 AR - a)) ’

fu(h) = a<h<R—-a (3.5)

where v(z,2) = [Jt*'e7'dt and T'(z,2) = [7"t*'e~'dt are the lower and the upper in-
complete gamma functions, respectively, and fx(-) is given by (2.3). The derivation for
fr(h) is given in Appendix A.1.

For a high vehicle density, the distance headways are i.i.d., each following the Gaussian
pdf in (2.2). Using the cdf of the Gaussian distribution, Fx(z) = 3 <1 + erf (%)), the
cdf for the hop length can be derived from (3.3) and is given by

o - o)
= e X e 202

" 2mo ' V20
_h_ Ch 2
X (1 — erf (M)) —i—e_(R 22 :

V20

(1+erf(\/_0))} 0<h<R (3.6)

where erf(-) is the error function, given by erf(z) = \/%7 I

3.3 Communication link lifetime

Consider a communication hop from an arbitrary reference node in the direction of the
vehicle traffic low. The reference node is one hop away from all the nodes within a
distance less than R (assuming that an on/off link depends only on the distance between
the nodes). Define the communication link lifetime between two nodes as the first time
step at which the distance between the two nodes is larger than or equal to R, given that
the distance between them is less than R at the 0" time step. For any node within R
from the reference node, the communication link lifetime is at least equal to the that of
the furthest node from the reference vehicle (referred to as hop edge node). A study of the
communication link lifetime of the edge vehicle from its reference vehicle is presented in
the following.
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3.3.1 First passage time between two distance headway states

Let T;;j,,O < 4,7 < Npax — 1, be the first passage time of the distance headway X; to
state j’ given that the distance headway is in state j at the 0" time step, i.e., T]?;j,

min{m > 0; X;(m) = zj,X;(0) = 2;},0 < j < Npyax — L.In the following, T} ; is used
without superscript i for an arbitrary distance headway. Let M’ be an Nyax X Npax matrix
equal to M with gy 1 =0and ry_.__1 = 1. Let {)\u}i\fi‘g"*2 be the Nyax — 1 non-unit

max max

eigenvalues of M’. The first passage time to state Nya, — 1, given that X;(0) = zy, is the

sum of Ny — 1 independent geometric random variables, each with a mean equal to ——

W
[66]. The probability generating function of Tj y,,,.—1 is given by
Nunax—2
o A=)
QTQNmax—l (U) - g |: 1 . )\u’U . (37)
Q(Tm’ (0) (m)
The pmf of Tj n,,,,—1 is then calculated by Pr, , _ (m) = —="ma=— where Qr v (0)

is the value of the m™ derivative of Qg (v) at v = 0.

Let M@ be a (j +1) x (j + 1) matrix, 0 < j < Npax — 1, equal to the upper left
(7 +1) x (j + 1) portion of matrix M with ¢; = 0 and r; = 1. The first passage time of
the distance headway to state j, given that the initial distance headway is in state 0, has a

. () .
probability generating function Qg (v) = Hf;% [%}, where )\1(5), u=20,1,...,7—1,

are the j non-unit eigenvalues of M), Note that the distance headway cannot move to

state j'(> j) before passing through state j in a birth and death process. Using Tp; =

To,; + T} 7, the passage time to state j' given that the initial distance headway is in state

J, 0 <j < j" < Npax — 1, can be calculated. The probability generating function of 7} is
E[v"0.4’ .

Qr, ,(v) = E[[UTOJ}] , and is calculated by

-1 | @a=ag")

u=0 17quv

i—1 [a=29)]
[Tuco [1453%}
Figure 3.6 plots the pmf’s of Ty n,..—1, 114 and T53 for a nine-state distance headway
model. The pmf’s are evaluated using MAPLE [67]. Figure 3.6 shows that the probability

of the first passage time, T} ;, taking on a small value decreases as the number of states,
|7/ — jl|, increases.

(3.8)

Qr, , (v) = v/

1
7] ?
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Figure 3.6: Probability mass function of the first passage time for (a) 73 n,..., (b) 114,
and (c) T3, with mean values of 19.8 x 103,1.24 x 10, and 318.4 seconds,
respectively, with parameters Nyax = 9, Ls = 20 meters, 7 = 2 seconds,
Xmax = 160 meters, g = 0.66, p = 0.12, and g = 0.26.

3.3.2 First passage time of the sum of distance headways

The distance between a reference node and its hop edge node is equal to the sum of the
distance headways between the two nodes. Let Ny be the number of nodes between a node
and its hop edge node at the 0 time step. Label the nodes with IDs: {0,1,...Ny + 1},
where the reference node has ID 0, and the hop edge node has ID Ny + 1. Therefore,
R< Zfi’é“ X;(0) < R+ Xn,+1(0). A node and its hop edge node remain connected until
SV X,;(m) > R at some time step m which is the communication link lifetime.

The sum of (Ny + 1) i.i.d. distance headways, where each headway, X;, is a birth and
death Markov chain as illustrated in Figure 3.1, is an (Ng + 1) dimensional Markov chain.
The complexity of this Markov chain is obvious especially when Ny is not small, since a
non-zero transition probability to a non-neighboring state is possible. For tractability, we
use an alternative approach as follows.

3.3.3 Link disconnection events

In this subsection, we present the set of events that cause the disconnection between a
reference node and its hop edge node at a certain time step, m. Consider a set Xy =
{Xo0, X1,..., Xn, } of (Ng + 1) distance headways (stochastic processes) between the ref-
erence node and its hop edge node, where Xy = {Xy(m),m = 0,1,2,...}. For notation
simplicity, let Xy (m) = {ko,k1,...,kn,} denote {X;(m) = z; }¥ . Furthermore, let
{s0,51,-..,5Nn, } denote the set of state indices of the (Ng + 1) distance headways at the
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0% time step, (i.e., {X;(0) = z,}), where s; € {0,1,2,. —1}, and Yz, <

Let Ep be the event that the link between a reference node and 1ts hop edge node, separated
by Ny nodes, disconnects given X(0), and let Ep(m) be the event that this disconnection
occurs at the m'® time step. When the hop edge node and the reference node are adjacent
to each other, i.e., Ny = 0, a link disconnection occurs when the distance headway X

transits to state Ng. Therefore, Ep(m) = {Xo(m) = zn,|s0} for Ny = 0.

When Ny > 0, consider first the case when o« = 0. A link disconnection occurs at time
step m if {XH(m) = {ko,k1,.. ., kny}, Z k; > NR} That is, the set {k;} % is an integer

partition of a positive integer that is greater than or equal to Ng. In number theory and
combinatorics, an ordered integer partition of a positive integer n is a sequence of positive
integers whose sum equals n. Each member of the sequence is called a part. An ordered J-
restricted integer partition of an integer n is an integer partition of n into exactly J parts.
Let As(n) = {a1(i), as(i), ..., a; (i)} =2 ™ be a set of all possible ordered J-restricted integer
partitions of n, where a;(i), 1 <j< J is the j* part of the i*" partition A% (n), and L;(n) =
(3:1) is the total number of such partitions, i.e., the size of set A ;(n) [68]. For example,
Ay(6) = {{1,5},{5,1},{2,4},{4,2},{3,3}}, where AL(6) = {1,5}, ay(1) = 1,a2(4) = 2
and Ly(6) = (571) = 5. Furthermore, let K;(Ny) = {kl(v),kg(v),...,kJ(U)}K"(NH) be
the set of all J- combinations of the set {0,1,..., Ny}, where k;(v), 1 < j < J, is the
J% element of the v*" combination, and let K;(Ny) = (N@H) be the number of such

cornbinations. We define two random events, e;(m), ea(m) at the m'™ time step as follows:

Ny

eim) = |J {Xu(m) = 2 |3 } (3.9)
ko=0
Ng+1Ly(Nep) Kj(Nu)

ea(m) = U U U {X,€1 0 (M) > Ta, ),

Xia(0) (M) = Tan(iys - - s Xy () (M) = Ta, 5

Sk1(v)> Ska(v)s - - - 7SkJ(v)} (3.10)

where Ngp = N — L%J is an integer such that if set Xy is in set of states whose
indices construct an integer partition of an integer greater than or equal to Ngp, the
communication link breaks. Note that Ngp accounts for the minimum value of the distance
headways (i.e., ), and Ngp = N for a = 0. Event e;(m) occurs when at least one of
the distance headways of set Xy is in state Ngp at the m'™ time step, resulting in a link

disconnection. Note that Ngp is the least state index required for a distance headway
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to reach in order for the link to disconnect. Event ey(m) occurs when at least J distance
headways of set Xy are in states that construct a J-restricted integer partition of an integer
that is greater or equal to Ngp with parts at most equal to Ni. Note that Ngp accounts
for the minimum value of the distance headway, i.e., o. That is, event ey(m) occurs if J
distance headways of set Xy are in states {ky, ko, ..., ks} at the m' time step such that
Zj:l k; > Ngp for any 2 < J < Ny + 1. An occurrence of event ey(m) result in a link
disconnection at the m'™ time step, because the sum Ngp + LO‘LﬂJ is equal to Np, which
indicates that the sum of the J distances is greater than or eqsual to R. Consequently,
a link disconnection occurs at the m®™ time step when either e;(m) or ey(m) occurs, i.e.,

Ep(m) = {e1(m) Ues(m)}.

3.3.4 Probability distribution of the link lifetime

The lifetime or a communication link from a reference node to its hop edge node, sepa-
rated by Ny nodes, given Xy(0), is the first passage time of event Ep(m), denoted by
T(Ep). Let T(e;) be the first passage time for the occurrence of event e;(m), i = 1,2
(i.e., T'(e;) = min{m|e;(m)}). The communication link lifetime is calculated by T'(Ep) =
min{7'(e;),T'(e2)}. For Ny = 0, this simplifies to T(Ep) = T'(e1) = Ty, Nyp. With pmf
Pr(g,)(m) which can be calculated using the m™ derivative of (3.7) and (3.8) for sy = 0
and sg > 0, respectively.

For Ny > 0, the calculation of the pmf of the link lifetime is not straight forward,
due to the obvious correlation between e;(m) and es(m). Let V = {V' |JV"} be a matrix
resulting from the union of two matrices, V' and V", with the three matrices having Ny +1
columns. Each unique row of V' consists of J elements equal to one of the partitions in
A;(Ngp) and (Ny — J + 1) zero elements, 1 < J < Ny + 1. The number of rows of V'
is equal to ]Jvff ( NZ{ JJF}H) (N ey 1). Matrix V" is constructed similarly with all possible
ordered J-restricted partitions of integers Ngp + 1, Ngp + 2, ..., (Ng + 1) Ngp, each with
the largest part less than or equal to Ngp. For example, for Ny =1, Ngp = 3, a = 0 we

have

. and V' =

N = O W
_— N WO
W N W W
W W N~ W
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A link disconnection occurs at the m'™ time step when the distance headway set Xy is
in states {uy, ua, ..., un,+1} such that {uy,us, ..., un,41} is a row in V. Let Ep y(m) =
{Xg(m) = VIXg(0)} be a set of events, each corresponding to set Xy being in a set of
states that construct one of the rows of V' at the m'" time step, given Xz (0). An event in
the set Epy(m), Epvw(m), 1 <v < |V], is the event that the set Xy is in states that
construct the v row in V' at the m'™ time step, where V] is the number of rows in V.
An occurrence of event Ep y(,)(m) results in a link disconnection at the m™ time step.
The first passage time of these events is T'(Epy) = min {m|Epy(m)}. The distribution
of T(Ep,) can be derived to be

( ) Hi\;}é M;¢+1,Ui+l7 m =

Pr m) = Nu 7 r'm m—1 N n t

(Ep,v) Hi:% Msi+1,v,~+1 - Zn:l {Hj:% MUj+1,Uj+1} ® PT(ED,v)(m - n) , M >
(3.11)

where v; is the i*" column of matrix V and M s’”_‘Hv 41 is an array with elements equal to the
(v; +1)™ entries of the (s; + 1)"™ row of the m™ power of matrix M’, 1 < i, j < Nyax, {-}*
denotes the transpose matrix operation, and the product notations ® and [] correspond
to the general and the Hadamard matrix multiplications, respectively. For m > 1, the
subtracted term in (3.11) is to guarantee that none of the Ep y events occurs before time
step m, i.e., set Xy does not reach states with indices that construct a row in V' before
time step m. Since the communication link disconnects if any of the events in Ep - occurs,
the pmf of the link lifetime is given by

v
Pr(gp)(m) =3 Prgy.y)(m) (3.12)
v=1

where |V] is the number of rows in matrix V and V (v) is the v*" row of V.

3.4 Results and discussion

This section presents numerical results for the analysis of the pdf of the communication
link length, fz(h), and the pmf of the link lifetime, Ppg,)(m). We consider three traffic
flow conditions, uncongested, near-capacity, and congested, each corresponding to a set
of parameters listed in Table 3.1. We set ¢ = % for the mesoscopic distance headway
models. The parameters for the microscopic Markov-chain distance headway model are

30



also listed in Table 3.1, where (3, p and ¢ follow the VISSIM data fitting results in Section
3.1. Without loss of generality, we set a = 0, and X,,,x = R. This is sufficient for
communication link analysis, as the link breaks if any X;’s reach state Ng. The values of
Ng and Xg(0), listed in Table 3.1, are first set to their average values. To verify the link
lifetime analysis, we compare the analytical link lifetime pmf calculated with (3.11) and
(3.12) to that calculated from simulated vehicular traffic. A three-lane highway traffic is
simulated using the microscopic vehicle traffic simulator VISSIM as described in Section
3.1. The choice of simulating a three-lane highway instead of a single-lane highway is to
achieve a more realistic vehicle mobility in which a vehicle can overtake other vehicles
and accelerate towards its desired speed. The desired speed for all vehicles is normally
distributed with mean 100 kilometer per hour and standard deviation of 10 kilometer per
hour. The pmf of the lifetime of a link with initial conditions Ny and Xy (0), is calculated
by counting the number of occurrences of link breakage at m™ time step for m > 0 and
for all links with initial conditions Ny and Xg(0). Six 30-minute simulations are obtained
for each of the three vehicle densities. The calculation of the link lifetime pmf, Prg,)(m),
from the VISSIM simulated vehicle traffic data includes the lifetime of the following: 1)
a link between a reference vehicle and its corresponding hop edge node on the same lane,
independently of changing hop edge node during the link’s lifetime as long as the initial
hop edge node remains in the link; and 2) a new link between a reference vehicle and its
new hop edge node on the same lane when its previous link breaks. A link which involves
a lane change during its lifetime is excluded from the pmf calculation. The frequency of a
link lifetime at value [ is upper bounded by TmTNS, where T, is the simulation time and
Ng is the total number of vehicles in the simulation. The frequency of I-valued lifetime
occurrences in VISSIM data is normalized accordingly in the link lifetime pmf calculation.

Figure 3.7 plots the pdfs (3.4)-(3.6) of the hop length for three vehicle densities
D = 9,26, and 42 veh/km with average hop length equal to 99.2,121.8, and 132.2 meters,
respectively. The average length of the communication link is larger for a higher vehicle

Table 3.1: System parameters in simulation and analysis of Chapter 3

Traffic flow | D(veh/km) | Ny | 8 pP,.q X (0)
condition
Uncongested 9 0 0.4 0.17 {5}
Near-capacity 26 3 0.74 0.23 {1,1,1,1}
Congested 42 5 0.94 0.35 {1,1,1,1,1,1}
R (meter) Ngr Nuyax | @ | 7 (second) | Lg(meter)
160 8 9 0 2 20
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Figure 3.7: The probability density function of the hop length for three traffic flow
conditions with vehicle densities of 9, 26, and 42 veh/km.

density, due to a larger average number of nodes between a node and its hop edge node.
Using (2.1)-(2.3), the probability for an unavailable link between two vehicles (i.e., P(X; >
R)) is 0.23,5.2 x 107, and 0 for D = 9,26, and 42 veh/km, respectively. That is, the
probability of network fragmentations is higher in an uncongested traffic flow condition
than that in a congested traffic flow condition.

Figure 3.8 plots the pmf of the communication link lifetime for the three traffic flow
conditions. The theoretical results are obtained using (3.8) for the uncongested traffic flow
condition and (3.12) for the near-capacity and congested traffic flow conditions. We use
MAPLE to calculate the m*™ derivative for the generating function in (3.8). For large val-
ues of j and/or ;" in (3.8), we use the m*™ derivative of the product rule proposed in [69].
The simulation results are calculated from the generated VISSIM vehicle trajectory data.
The simulation results closely agree with the theoretical calculations. However, there exist
slight differences between simulation and theoretical results. This is mainly due to lane
changes, which are not explicitly accounted for in our model. The effect of lane changes is
more notable in the low vehicle density simulation results, where we get zero probability
for some large link lifetime values, as shown in Figure 3.8(a). This is due to the high
probability of lane change for large link lifetimes, which is excluded from our calculations.
The average link lifetime is found to be 335.5, 88.1, and 65.9seconds for the low, interme-
diate, and high vehicle densities, respectively. Recall from subsection 3.3.3, that the link
disconnection event, Ep, depends on the initial conditions Ny and Xy(0). In order to
extend the results for different initial conditions, we conduct the following: 1) discretize
the mesoscopic distance headway models in (2.1)-(2.3); 2) using the discretized mesoscopic
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Figure 3.8: Probability mass function of the communication link lifetime for D = (a)
9, (b) 26, and (c) 42 veh/km.

distance headway models, calculate the probability, P (Xg(0) = {s;};|Ng = n), that set
Xg(0) of size n is equal to set {s;}1,, for 0 < s; < Npax; and 3) using renewal theory,
the pmf of the Ny is calculated for each of the mesoscopic distance headway models in
(2.1)-(2.3) [70]. Therefore, we extend the results for different initial conditions (i.e., Ny
and Xg(0)) for the range of values within which Ny lies with probabilities of 0.94, 0.95,
and 0.94 and X lies with probabilities 0.94, 0.97, and 0.99, for D = 9,26, and 42 veh/km,
respectively. Finally, the low of total probability is used to find the pmf of the link lifetime
over the considered set of initial conditions. The average link lifetime, over the considered
range of initial conditions, is found to be 145.50, 46.07, and 44.76 seconds for the low,
intermediate, and high vehicle density, respectively. Although, intuitively, it is thought
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that a communication link lasts longer with a higher vehicle density, our results indicate
the opposite. The reasons are: 1) the impact of a larger number of vehicles within the
link, Ny, with a higher vehicle density and therefore multiple mobility factors on the com-
munication link lifetime; and 2) vehicles tendency to move with their maximum desired
speed in an uncongested traffic flow conditions. Since the communication link disconnects
when the sum of any J < Ny + 1 distance headways is greater than R, the larger the Ny
value, the more frequently a link breakage occurs, for the same distance headway model.
Although distance headways are large in a low vehicle density scenario with free driving
(Table 1.1), this does not necessarily indicate a large probability of changing speeds (i.e.,
large p and ¢). On the contrary, vehicles are more likely to be at their maximum desired
speeds, resulting in small p and ¢ values [1]. In a congested traffic flow condition, vehicles
are more likely to undergo stop-and-go situations, in which drivers speed up whenever they
get an opportunity (i.e., large p and ¢ values). This agrees with VISSIM results shown in
Figure 3.4.

From the results shown in Figure 3.7 and Figure 3.8, we conclude the following: For a
high traffic density, there is a higher probability of link availability between two nodes (Fig-
ure 3.7); however, the link lifetime is shorter (Figure 3.8). This causes the communication
link to fluctuate between connection and disconnection more frequently when compared
to that in a low vehicle density. This is due to the stop-and-go scenario in a high vehi-
cle density. On the other hand, for a low traffic density, there is a lower probability of
link availability between two nodes (Figure 3.7); however, if a link exists, the link lasts
longer when compared to the case in a high vehicle density (Figure 3.8). Therefore, when
a communication link disconnects in an uncongested traffic flow condition, it has a smaller
probability to re-connect than that in a congested traffic flow condition.

3.5 Summary

This chapter presents a stochastic analysis of the communication link in a highway VANET
with focus on a single lane. Mesoscopic mobility models are used to derive the stationary
probability density of the communication link length for three traffic low conditions. A
stochastic microscopic model is proposed for the distance headway. The model captures
time variations of the distance headway based on a discrete-time Markov chain that pre-
serves the realistic dependency of distance headway changes at consecutive time steps.
This dependency increases with the vehicle density, which is consistent with highway data
patterns from empirical NGSIM and simulated VISSIM data sets. Further, the distance
headway model is used to analyze the communication link lifetime. The first passage time
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analysis is employed to derive the probability distribution of the communication link life-
time. Numerical results indicate that the communication hop length increases and the link
lifetime decreases with an increase in vehicle density. The link length and lifetime statistics
are essential to studying the network topology and its temporal variations in VANETSs.
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Chapter 4

Node cluster stability

This chapter presents a stochastic analysis of single-hop cluster stability. The stochastic
microscopic mobility model presented in Section 3.1 is adopted to capture the time vari-
ations of distance headways. Firstly, we propose a discrete-time lumped Markov chain to
model the time variations of a system of distance headways. Secondly, the first passage
time analysis is used to derive probability distributions of the time periods of invariant
cluster-overlap state and cluster-membership as measures of external and internal cluster
stability, respectively. Thirdly, queueing theory is utilized to model the limiting behaviors
of the external cluster stability. The overlapping region between overlapping clusters and
the unclustered region between disjoint clusters are modeled as a storage buffer in a two-
state random environment. Using G/G/1 queuing theory, the steady-state distributions of
the numbers of common and unclustered nodes are approximated. Numerical results are
presented to evaluate the proposed models, which demonstrate a close agreement between
analytical and simulation results.

4.1 External cluster stability

The cluster-overlap state is governed by the the distance between two neighboring CHs. As
this distance decreases, the CHs approach each other causing the two clusters to overlap.
On the other hand, as the distance between CHs increases, the CHs move apart from each
other causing the two clusters to become disjoint. The distance between two neighboring
CHs is equal to the sum of the distance headways between the two nodes. Label the (N.+2)
nodes with IDs 0,1, ..., N.+1, where the following CH has ID 0 and the leading CH has ID
(N, +1). For notation simplicity, let X, = (X;)~, be the sequence of distance headways
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between the two CHs as illustrated in Figure 2.1 (c), where X.(m) = (X;(m))Ns,, and
{Xc(m) € (s0,51,--.,5n, )} = {Xi(m) € s;,Vi € [0, N.]}. Consider initially overlapping
clusters, i.e., >~ X;(0) < 2R. Two neighboring CHs remain overlapping until 7% X;
(m) > 2R at some time step m. The sequence of (N, + 1) i.i.d. distance headways is an
(N, + 1)-dimensional Markov chain, where each headway, X;, is a birth and death Markov
chain as described in Section 3.1. For clarity, the term state refers to a state in the original
Markov chain, X, the term super state refers to a state in the (N.+ 1)-dimensional Markov
chain, and the term lumped state refers to a set of super states (to be discussed later in this
section). Additionally, parentheses () are used for a sequence, while curly brackets { } are
used for a set. A super state in the (N, + 1)-dimensional Markov chain is a sequence of size
N, + 1, in which the i*" element represents the state (in the one dimensional (1D)-Markov
chain) that the i*" distance headway belongs to. That is, a super state, (sq,s1, ..., Sn.),
means that distance headway X; is in state s; € [0, Nypax — 1]. The sum of (N, + 1)
distance headways representing the distance between the two CHs can be calculated from
the (N, + 1)-dimensional Markov chain. The state space size of the (V. + 1)-dimensional
Markov chain is equal to Nr(n];[fl), making it subject to the state-space explosion problem
when N, is large '. However, since we are interested in the sum of the (N, + 1) distance
headways, the state space can be reduced according to the following theorem.

Theorem 1 Let X be a discrete-time, birth-death, irreducible Markov chain with N g,
finite states, and let set X = (Xi)f\i’ol represent a system of N independent copies of
chain X. The N-dimensional Markov chain that represents the system, X, is lumpable
with respect to the state space partition Q@ = {Qy, ..., Qn, }, such that (s.t.) any two
super states in subset ; are permutations of the same set of states Vi € [0, N, — 1], where

Ny = W is the state space size of the lumped Markov chain.

The proof of Theorem 1 and following corollaries are given in the Appendix. Since a
lumped state, ; = {(so, $1,-.-,5nv-1)},0 <@ < N — 1, contains all super states that are
permutations of the same set of states, we can write the lumped state as a set of those states
Q; = {so,81,-..,Sn-1}. Since the (N, + 1)-dimensional Markov chain is irreducible, the
lumped Markov chain is also irreducible [71]. The stationary distribution of the lumped
Markov chain can be derived from the stationary distribution of the 1D-Markov chain
according to the following Corollary.

IThis problem can also be solved in similar fashion as that used to calculate the communication link
lifetime in Section 3.3. However, since the number of nodes between two neighboring CHs can be much
larger than the number of nodes between a node and its hop edge node, the computational complexity of
the recursive relation (3.11) becomes large due to the increased size of the matrix V.
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Corollary 1 Consider a system of N independent copies of a finite, discrete-time, birth-
death, irreducible Markov chain, X, with stationary distribution (m;)Nme==t. The sta-
tionary distribution of the lumped Markov chain of Theorem 1, representing the system,

X = (X;)N51, follows a multi-nomial distribution with parameters (m;)Nme==1.

4.1.1 Time to the first change of cluster-overlap state

Consider two overlapping clusters. At any time instant, the overlapping range between
two neighbouring clusters is equal to 2R — Y~ Xi(m), ¥m > 0. Therefore, according
to Theorem 1, the time variation of the overlapping range between the two clusters can
be described by a lumped Markov chain with lumped states €2, €}y, . .., Qx, 1 which rep-
resents the system, X, = (X;)Ys. Furthermore, divide the lumped states into two sets,
Qov and Qnoy. A lumped state €; = {so, $1,...,5n.} belongs to Qoy and to Qyov if
ZZ 05i < 2Np and Z =0 8i = 2NRg, respectively, Where Ng is the integer number of the
states that cover distance headways within R in the distance headway’s 1D-Markov chain.
Let the system of the distance headways between the two CHs be initially in super state
I, ie, X.(0) € I, st. I. € Q. € Qoy, 0 < k < Np — 1. Let the time period until the
clusters are no longer overlapping be T,,1(€2), given that the distance headways between
them are initially in states I, € §2;. Then, this time period is equal to the first passage
time for the system, X, to transit from the lumped state €2, to any lumped state €2/, s.t.

O € Qnov. That is, Tp1 (Q4) = min {m > 0; Xo(m) € (ko ki, - kn,), SoNe by > 2N |

X.(0) € IC}. Let My, be the transition probability matrix of the lumped Markov chain

describing X.. One way to find the first passage time is to force the lumped states in Qyov
to become absorbing, i.e., set the probability of returning to the same lump state, €,
within one time step to one V€); € Qnov. Furthermore, let all the lumped states in Q2 NOV
be merged into one single absorbing state and let it be the last (N 1 — 1) state, where Ny is
the number of states in the new absorbing lumped Markov chain. The transition probability
matrix of the new absorbing lumped Markov chain, M N., is derived from My, as follows:
MNC(Qiy Q]) = M]\Q(Qh Q]) Vi7j, s.t. Qia Qj S QOV, MNC(Qia QNL—1> = Zj MNC(Qia Qj)
Vi, j, s.t. Y € Qoy and ; € Qnoy. Let T,,1(£2) denote the time interval from the instant
that the clusters are initially formed till the first time instant that the cluster-overlap state
changes, given that the distance headways are in super state I. € Q. The cdf of Tp,1(Q%)
is given by

FTovl(Qk)(m) = MNC(QIC7 NL 1 Z MN Qk7 ) ( - ].), m Z ]. (41)

Qj EQOV
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where Fr,  (0,)(0) = 0. Equation (4.1) calculates the cdf of T5,1(€2) recursively. Since
Fr, . n(m) = > Pr..,)(m), the first term in (4.1) corresponds to the absorption
probability within one time step given that the system is initially in lumped state €2, i.e.,
Fr,.n(1) = My.(Q4, Qg, _1)- The second term in (4.1) corresponds to » ", Pr,,,(a,)(m)
which is the absorption probability within (m—1) time steps given that the system transited
from €, to Q; € Qoy within one time step.

The size of the state space of the lumped Markov chain can still be large with an
increased number of nodes between the two CHs, since N = % However,
the state space of the absorbing lumped Markov chain, needed to compute the time period
until the overlap state changes between the two neighboring CHs, is bounded according to

the following Corollary.

Corollary 2 Consider a system of N independent copies of an irreducible Markov chain
according in Theorem 1, and let the event of interest be that the sum of the states of the N
chains be larger than a deterministic threshold Ny,. The absorbing lumped Markov chain,
required to obtain the first occurrence time of the event of interest, has a state space that
is bounded by a deterministic function of Ny, when N > Ny,.

Consider the scalability of analyzing a system of N distance headways, Xy, to an in-
creased number of distance headways, N. Using the lumped Markov chain, the scalability
of analyzing system Xy is improved for: ) the steady-state analysis - The problem of
finding the stationary distribution of a system of distance headway is of constant com-
putational complexity with respect to N (according to Corollary 1); and i) the transient
analysis (i.e, the first passage time analysis) - The computational complexity of the first
passage time analysis is dependent on the state space size of the considered Markov chain.
According to Corollary 2, the state space size of the absorbing lumped Markov chain is
upper bounded by the total number of integer partitions of all integer that are less than
N as discussed in Appendix A.3. Figure 4.1 shows the state space reduction using the
proposed lumped Markov chain.

In this subsection, we focus on the time interval from the instant that two partially
overlapping neighboring clusters are formed till the time instant that they no longer overlap.
Given an initial super state of the two neighboring clusters at the end of the cluster
formation stage, consider the following: i) a proactive re-clustering procedure in which
re-clustering is triggered after a fixed period of time, say At seconds from the cluster
formation; and 4i) a reactive re-clustering procedure in which re-clustering is triggered
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Figure 4.1: The state space size of a Markov chain representing a system of N Markov
chains (distance headways), Xy, with Npax = 9 when the system Xy is
represented by (a) an N-dimensional Markov chain, (b) a lumped Markov
chain according to Theorem 1, and (c) an absorbing lumped Markov
chain according to Corollary 2 with Ny, = 8.

when the cluster-overlap state changes. In i), the probability that the overlap state changes
between the two overlapping neighboring clusters before re-clustering is triggered is equal
to Fr,, (0, (At). In i), the re-clustering period is equal to T,.1(§2;) with the cdf calculated
by (4.1). Up until now, we have considered a pair of neighboring clusters in a specific super
state when they are initially formed. In reality, the initial state of a pair of neighboring
clusters is a random variable. For a given N,, since the distance headways are stationary
when the clusters are formed, the probability that two overlapping neighboring clusters

are initially in lumped state €; is given by U; / Y. U;| where U; is given by (B.3) in

j7Qj€Qov
Appendix A.2. Using the law of total probability, the cdf of the time for the first change
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in overlap state to occur between two initially overlapping clusters is given by

J
QjEQ
FTO'Ul (m) = = Z U Y

7
Q;eQov

4.1.2 Time period between successive changes of cluster-overlap
state

In the preceding subsection, we have analysed the time interval during which two neigh-
boring clusters remain overlapping since the clusters are formed. During this time interval,
the cluster-overlap state remains unchanged. Suppose two neighboring clusters overlap
in cluster formation and the overlap state changes at time T,,; (< At) and becomes non-
overlapping. The cluster-overlap state may change again before re-clustering is triggered.
As a result, the time period between two consecutive changes of cluster-overlap state equals
i) the cluster-overlapping time period when the overlap state changes from overlapping to
non-overlapping, plus #) the cluster-non-overlapping time period when the overlap state
changes from non-overlapping to overlapping. During a cluster-overlapping or cluster non-
overlapping time periods, the cluster-overlap state remains unchanged indicating how long
the cluster remains externally stable.

Cluster-overlapping time period

The second cluster-overlapping time period may not be equal to T, since the initial state
may not be the same as that when the clusters are initially formed. We refer to this period
as cluster overlapping period, denoted by T,,.

To derive the distribution of T,,, the same approach used to find the distribution of
T,,1 can be used. Notice that the absorbing lumped Markov chain is the same as that used
to calculate the distribution of T,,;. The only difference is the distribution of the initial
state, I.. One way to find the distribution of I. at the time when the second overlapping
state occurs is as follows:

e Make the lumped states in set 2oy absorbing, without combining them into one
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absorbing state. The corresponding transition probability matrix, M” y_, is equal to
MNc with M”NC(ijQi) =0 and M”Nc<Qja Qj) = 1v7,,], s.t. Qj S QNOV;

e Calculate the absorbing probability d; for each absorbing lumped state €2; € Qnoy
by

Z Z o lim M"Y (€, ) (4.3)

m—00

iclov QkEQov

where M”%’Z)(Qi, Q) denotes the (€, Q;)™ entry of the m™ power of matrix M y,;

e Form another absorbing Markov chain by making the lumped states in set Qoy
absorbing, without combining them into one absorbing state. The corresponding
transition probability matrix, M’'y,, is equal to My, with M’y (€2;,€;) = 0 and
M’ N, (4, Q) = 1 Vi, g, s.it. Q; € Qov;

e (Calculate the absorbing probability ¢; for each absorbing lumped state €2; € Qoy by

N6 lim M9, ). (4.4)
- m—0o0
QjGQjNOV

The probability that the distance headways between the two neighboring clusters are in
state ; € Qoy at the time when the second overlapping state occurs is equal to ¢;.
Therefore, the cdf of the cluster-overlapping period is given by

Fr, (m Z GiFr, 0n(m),m=1,2,... (4.5)

QZ‘EQOV
where Fr, (o, (m) is given by (4.1). However, using this approach, we lose the advantage
of having a single absorbing state and, therefore, a bounded state space (according to

Corollary 2). We propose to approximate the distribution of the system initial state at the
time when the second overlapping state occurs, ¢;, as follows

O My, (%, 25, )
> UiM, (4, Q, 1)

1
Q,€Qov

(4.6)

i ~

The approximated ¢; for lumped state ;(€ Qpoy) is equal to its stationary probability
weighted with the absorption probability within one time step. Notice that this weight
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Figure 4.2: An illustration of a lumped markov chain for N =2, Ny, =4, Npax = 3. A
line between two lumped states represents a non-zero two-way transition
probability in a single time step between the linked states. There exist
non-zero transition probabilities between subsets of Qo1 and Qyovi.

eliminates all the lumped states 2; € Qpy that are not directly accessible from states in
Qnov. Figure 4.2 illustrates an example for a lumped Markov chain, where the directly
accessible lumped states are those connected by solid lines, i.e. Qo1 and Qyoy1. When
the overlapping state of two neighboring clusters changes from non-overlapping to overlap-
ping, the only possible states to be reached first are those in Q.

Cluster-non-overlapping time period

Consider two initially overlapping clusters, the cluster state can change to become non-
overlapping and again to become overlapping. The time period between two consecutive
changes of cluster-overlap state equals the cluster-non-overlapping time period when the
state changes from non-overlapping to overlapping. Neighboring CHs may move apart from
each other and the clusters become disjoint. This may result in disruption to intercluster
and/or intracluster communications and/or seizure of the cluster membership status from
edge CMs. This produces unclustered nodes that may create their own cluster which can
trigger re-clustering and increase the clustering cost. Let T, denote the cluster non-
overlapping time period. The same procedure used to calculate the cdf of T, can be used
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to derive the cdf of T},,,, which is given by

Fr,,.(m)= Y 6;Fr,.«)(m), m=12... (4.7)

J
Q,;€Qnov

where Fr, o,)(m) = My (9, Qg ) +> & [ My (5, %) Fr,,0 @0 (m—1)],m >

~ QreQNov
O;M' N (525, 1)
1,0, =~ L

~ , . K . . .
j SRR , and M’y is the probability transition matrix that corre-

> ]\}/L_l)
QjGQNov

sponds to the lumped Markov chain with all states in {2oy combined into one absorbing

state. That is, M} is derived from My, as follows: My (€;,€%) = My, (£2;,$%) Vi, j, s.t.

Qj,QZ’ € QNOV; MJ/VC(QJVQ]\N/’Lfl) = Zj MNC(Qj7Qi) Vi,j, s.t. Qj < QNOV and Ql < Qov.

The average cluster-non-overlapping time period is given by [72]
N
E[Th] = W (I - M]’Vc) M, (4.8)

where ¥ is a row vector of size~]\~7 ';, in which the j™ element equals §;, I is the identity
matrix of size equal to that of N’;, and M is a column vector of ones with size N’;. The
second moment of the cluster-non-overlapping time period is given by? [72]

~ ~ —2
E[T2,] = 20N}, ([ - M]’Vc> M, + E[Tpou). (4.9)

nov

4.2 Internal cluster stability

Due to relative vehicle mobility, two events result in changes to the cluster-membership: i)
a vehicle leaving the cluster, and 4i) a vehicle entering the cluster. Let e, and e, denote
the events that a vehicle leaves the cluster from the right side and the left side of the CH,
respectively. Let e; and e; denote the events that a vehicle enters the cluster from the
right side and the left side of the CH, respectively. Figure 4.3 illustrates these events.
Consider the time for the first change in cluster-membership to occur after cluster forma-
tion, and denote this time by Tops;. This time is equivalent to the first occurrence times
of one of the four events, i.e., Top = T'(e,, Ue;, Ue,, Ue;,), where T'(e) denotes the first
occurrence time of event e. Furthermore, let Top, = T'(e,, Ue;,) and Toan, = T(e, Ue;,)

2The first and the second moments of the cluster-overlapping period can be calculated similarly by
adjusting (4.8)-(4.9) to correspond to the absorbing lumped Markov chain with transition matrix My, .
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Figure 4.3: Illustration of the events that cause changes in cluster-membership.

be the first occurrence time of the first change in cluster-membership (after cluster forma-
tion) due to a vehicle leaving and entering the cluster from the right and the left side of
the CH, respectively. Therefore, Toa = min {Teo,, Tomy, b Since To, and Topg, are
independent, the cdf of the time for the first change in cluster-membership to occur after
cluster formation is given by Fr,,, (m) = 1— (1 — Frg,,,, (m))(1 — Frg,,,, (m)). Notice that
Tean, and Teop, areid.d.. Therefore, we focus on calculating only one of them, say T, -

4.2.1 Time to the first change of cluster-membership

Let Ncy, be the number of CMs on the right side of the CH, and assume that Ngpy, > 0 2.
Let Xopr = {Xi}f\icoMT be the set of distance headways of the CH and the Ny, nodes as il-
lustrated in Figure 4.4, where Xcas(m) C (50, 81, - -, Sney,, ) = [Xi(m) € 4, Vi € [0, Noag, ]
The system, Xcpy, can be represented by an (Ngyy, + 1)-dimensional Markov chain. Sup-
pose that set Xcps is in super state Icas = (ko, k1, ..., kng,, ) when the clusters are
initially formed, s.t., S0 'k < Np, SSNCMr k> Np, and Ioy € Q. Let the
time period until a node enters/leaves the cluster from one side be T, (q,), given that
Xem € Ioy € Q. Then this time period is equal to the first passage time for the sys-
tem, Xcay, to transit from super state Iops to a super state (kj, k7, ..., kA/NCJMT) such that
S Near 1 < N (ie., anode enters the cluster) or S0 "k > Np (i.e., a node leaves the

cluster). That is, Toan,(o,) = min {m > 0; Xem(m) € (ko K, kg, ) {Zﬁ%M’“ ki <
Npu S New =1 o > NR} | Xear €
low }.

3When Ncjs, = 0, the problem reduces to a single distance headway, with only the event of a node
entering the cluster causing the cluster-membership change. In this case, the first passage time analysis
for one dimensional chain can be used.
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Figure 4.4: A cluster with N¢y,. = 3 and Xopy = { X0, X1, X2, X3}

Since the change in cluster-membership occurs at the edge of the cluster, the value
of Xne,, in the system, X¢yy, is critical to identify the change. Notice that, initially,

the distance headway Xy,,, can only be in a state ky.,, € [Np — SoNe ke Ninax) -
Therefore, we propose to lump the (N¢yy, + 1)-dimensional Markov chain into partitions
(lumped states) €, €25, ... Qy, 1, such that each lumped state €2} = {(s0,51,..., 5N, )}
contains all super states that have the first Ny, states, ie., (so,51,...,5N0y, 1), as
permutations of each other?. We refer to this chain as edge lumped Markov chain. Further-
more, divide the lumped states into three sets, QI, Q; and Qpg, such that a lumped state
Q= {(50,52,---,5Noy, )} belongs to i) Qp, if Newr =l g < N, and SN s, > Np: i)
Qp, if ZNO“T_I > Ng; and i) Qp, if CMT s; < Ng. Let My,,, be the transition
probability matrix of the described lumped markov chain. The time for the first cluster-
membership change to occur, Toai, (q,), is the first passage time for system X¢ ;s to transit
from super state Ioy € Qf € ; to any state in Q, (i.e., when a node leaves the cluster)
or Qg (i.e., when a node enters the cluster). To find the distribution of Towm, (@), we force
the lumped states in 2z and )7, to become one absorbing state. Following the same steps
as in Section 4.1, the cdf of Ty, (q,) can be derived as

FTCA{IT(SZk)( ) MNCM (Qk7 - Z MNCM Q, Q )FTCer(szj)(m - 1)7 m 21

Qj EQ[
. (4.10)
where My, is the probability transition matrix of the new absorbing lumped Markov chain

4Since the (Ncas, + 1)-dimensional Markov chain is lumpable into partitions Qy,Qa,...Qn, —1, & =
{(s0,81,--,5Ney, )} contains all super states that are permutations of each other according to Theorem
1. Then, it is lumpable into partitions that are subsets of Qg, Q2,...Qn, —1.
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with N, states, such that the (N 1 — 1) state is the single absorbing state containing all
states in Q2 and Qr.

For a random initial state of Xy, the probability that Xeoj, is initially in lumped

- U; TENG M, . Noar,—1
state €2 = {(s0,52,...,5N¢,, )} is given by S X Zg;‘%lﬂk’ K;=Np—>,5""" su,
where U; is the stationary distribution of lumped state €; = {(so, S2,. .., Sng,, —1)} of the

Ncp,-dimensional Markov chain lumped according to Theorem 1. Hence, the cdf of the
time interval between the time instant when the cluster is initially formed till the first
cluster-membership change is given by

1 Z W(i’sNCMT )GiFTCer(Qp (m)
Nlnax

Z Uj i k=K, Tk
QQEQ[

FTCIMIT (m> = (4'11)

J
QjEQ[

where (i,sy,,, ) is the state index of the distance headway of the N&,, CM in the i*"
lumped state.

4.2.2 Time period between successive changes of cluster- mem-
bership

In the previous subsection, we have analysed the time interval from initial cluster formation
to the first cluster-membership change. In order to have a better measure of internal cluster
stability, we analyse the time interval between two successive cluster-membership changes
in this subsection. Let T, denote the time interval between two consecutive membership
changes of a cluster. Notice that the cluster-membership change rate, i.e. the rate at
which nodes enter or leave the cluster, is the reciprocal of T-),. We focus on one side of
the cluster in this subsection, since a similar derivation for the other side can be done.
To derive the distribution of T, the first step is to find the distribution of I-,, at
the time when the first cluster-membership change occurs. In order to do this, first we
make the lumped states in sets g and €2, of the lumped Markov chain absorbing, without
combining them into one state. The result is an absorbing markov chain and let M/,
be its probability transition matrix. Then the probability of absorption in lumped state
Q. € Qp and the probability of absorption in lumped state €2; € {2, are given respectively
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where M'(") (4, Q) denotes the (€, Q)™ entry of the m'™ power of matrix M'y,,,. Note

Nowm

that Z 0p, and Z dr, are the probabilities that the first cluster-membership change occurs
Q.€0p QleQL

due to a vehicle entering the cluster and leaving the cluster, respectively. When calculating
the time interval between successive cluster-membership changes, the examined system
changes. Let X¢yy,, and Xepy, be the systems of distance headways of the CH and the nodes
on one side of the cluster when the first cluster-membership change occurs due to a node
entering the cluster and a node leaving the cluster, respectively. For example, if system
Xear is absorbed in lumped state €2; = {(so, 51, . .. Sng,, )}, then the initial lumped state
for system Xeay, is {(so, s1, - - - SNCMT_l)} if 2; € )7, and the initial lumped state for system
XCME is {(80, S1y .. SNC]WT7SNC]WT+1)} if ©; € QE, where SNowm, +1 € [NR — ZZ%MT Si, Nma:s]-
Let Q) be the lumped state for system Xy, corresponding to lumped state €2, for Xeyy,
and let Q] be the lumped state for system X¢py, corresponding to lumped state €; for Xepy.
Additionally, let 6z equal 6, weighted by the stationary distribution (B.2) to account for
the added distance headway in the system, Xcopr,. The cdf of the time interval between
two successive cluster-membership changes is approximated by

Fro,, (m Z 08 Frypy. o, () + > 0L, Py, oy ()- (4.12)

l
QeEQE =

4.3 Numbers of common CMs and unclustered nodes
between clusters

In Section 4.1, the time for the first change in cluster-overlap state along with the cluster-
overlapping and cluster-non-overlapping time periods are studied. Despite the importance
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Figure 4.5: Illustration of the alternating renewal process between overlapping and
non-overlapping time periods.

of the change in overlap-state as a measure of external cluster stability, it is a binary metric.
A quantitative metric that describes in detail the level of external stability is desired.
One quantitative measure is the number of nodes located between the clusters. That is,
the number of nodes shared between overlapping clusters and the number of nodes left
unclustered between disjoint clusters. The number of common nodes between neighboring
clusters is an indicator of the level of intercluster communication interference that can occur
during the overlapping period. On the other hand, during the non-overlapping period, the
number of unclustered nodes between disjoint clusters is an indicator of the portion of
network nodes that are left unserved by the clustered structure.

Given initially overlapping neighboring clusters, vehicles can enter and leave the over-
lapping/unclustered region. Additionally, the cluster-overlap state may change over time.
Therefore, in this section we investigate the system of two neighboring clusters in terms the
change of the numbers of common CMs and unclustered nodes between the two clusters
along with the change in the cluster-overlap state. Since the system of distance headways
between the neighboring clusters, X., constructs a finite irreducible lumped Markov chain,
there exists an infinite sequence of cluster-overlapping and cluster-non-overlapping time
periods [72]. Therefore, the overlap state between clusters fluctuates between overlapping
and non-overlapping scenarios.

Let {n(m),m = 0,1,...} be a stochastic process with state space {—1,1}. If 37
X,;(m) < 2R, i.e., the clusters overlap, then n(m) = —1; otherwise, n(m) = 1. Denote by
(1,01,(, 05, ... the lengths of successive intervals spent in states -1 and 1, respectively,
where (1, (o, ... are i.i.d. and 0y,6,,... are i.i.d.. The process {n(m)} alternates between
states -1 and 1, as shown in Figure 4.5, which is referred to as alternating renewal process
[70]. Since we assume that the clusters are initially overlapping, then 7(0) = —1 and
G = TF, and 0, = TF | ie., k™ cluster-overlapping period and the k™ cluster-non-

overlapping period, respectively. We assume that the 7% ’s are i.i.d. with cdf (4.5) and the
T* s time periods are i.i.d. with cdf (4.7) and they are independent of one another®. The

nov

®Index k is dropped from T% and T to refer to an arbitrary overlapping and non-overlapping period,
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Figure 4.6: Illustration of the events that cause a vehicle to (a) enter the overlapping

region and (b) leave the unclustered region between neighboring clusters.

k" cycle is composed of (;, and 6y,.

4.3.1 Node interarrival time during an overlapping/non- over-
lapping period

During an overlapping/non-overlapping period, vehicles enter and leave the overlapping/
unclustered region resulting in a change in the number of common/unclustered nodes
between neighboring clusters. Consider two overlapping clusters. A vehicle can enter the
overlapping region from either of the clusters. Let T; and T}; be the first arrival time and
the interarrival time of nodes to the overlapping region, respectively. We are interested in
the arrival times that cause an increase in the number of common nodes in the two clusters.
The time for the first node entering the overlapping region is T; = min(7(e;.1), T (e;,2)),
where e; 1 is the event that a vehicle enters the following cluster from the right side of its
CH, and e;,5 is the event that a vehicle enters the leading cluster from the left side of its CH
as illustrated in Figure 4.6(a). Note that T'(e; 1) and T'(e;2) have the same probabilistic
behaviors.

respectively.
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We assume that T'(e;,.1) and T'(e;,2) are independent. The times, T'(e;.1) and T'(e;2) can
then be calculated independently by applying the first passage time analysis on two edge
lumped Markov chains, each identifying the hop edge node of its corresponding cluster,
as in Subsection 4.2.1. However, we propose to approximate the distributions of T'(e; 1)
and T'(e;2) by calculating them from a fully lumped Markov chain with the initial dis-
tribution calculated from the state space of the edge lumped Markov chain. Since the
distributions of T'(e;1) and T'(e;2) are the same, we will focus on one of them only,
say T(e;1). Let Sgp be a set of states of the edge lumped Markov chain for a clus-
ter with Neas, nodes, such that a lumped state €; = {so,51,...,5n.,, } belongs to Sg
if Sohem—ls < Np and YoM s; > Ng. Let {75} be the stationary distribu-
tion of the edge lumped Markov chain. Furthermore, divide the lumped states of the
fully lumped Markov chain representing system Xgj; into two sets, Qr and Qge. A
lumped state Q; = {so,51,...,5np,, } belongs to Qg if ZﬁicoMT s; < Ng and to Qpe
otherwise. Let T'(e; 1,€) be the first occurrence time of event e; ; given that system
Xew s initially in lumped state € € Q. Using the recursive formula (4.1), we have
FT(eithj)<m) = Mney, (ij QNL—l) + ngégR Mg, (Qj’ Qk)FT(eiTth)(m - 1)' The cdf of

T'(e;,1) is approximated by

Fre,(m)~ Y wiFre,,0)(m), m=>1 (4.13)
0,805
wherew; = ) 7, is the initial probability distribution of states Q; € Qg and O(€2;) is

O(Qz‘z):Qj
a function that maps a lumped state from edge lumped markov chain to the corresponding
one in the fully markov chain, note that w; = 0 if 3Q; € Sg 5.t.0(8Y) = 2; VQ, € Sp and
Qj € Qpg.

In order to calculate the probability distribution of node interarrival time to the over-
lapping region, the probability distribution of the state of the system when a node first
enters the cluster needs to be calculated. Consider a cluster with N¢js, — 1 nodes at time
zero. When a node enters the cluster, system Xy, representing the Neopy,, CMs can only
be in an edge lumped state €; = {so,51,...,5n¢,, } s-t. the first Neyy, states construct
a lumped state, Qi = {s0,51,...,5n0y, -1}, in a fully lumped Markov chain for system
Xcar, that satisfies 1) Q € Qg and i) My, (%, Qg, _;) > 0. That is, @, € Qg is di-
rectly accessible from a lumped state in Qzc. As a result, the node interarrival time to the

ol



overlapping region from one cluster can be approximated by

FT(efirl)(m) = Z ijFT(eiTl,Qj)(m); m 2 1 (414)
QjéQR

> MNCMfl(Qi,QNL,l)WE,i
1
where wy, = — O is the probability distribution of the initial
QjéQRO(Q’LZ):Qj
state when a node just entered the cluster, and M Nea—1 18 the probability transition ma-
trix of the absorbing lumped Markov chain that represents system {Xo, X1,..., Xng,, 1}

The cdf of the node interarrival time to the overlapping region is given by

Fr(m) =1— (1 = Fr,, ,(m))*. (4.15)

When two clusters become disjoint, vehicles enter and leave the unclustered region. Let us
consider the node interdeparture time from the unclustered region that causes the number
of unclustered nodes to decrease, denoted by T7,. Nodes can leave the unclustered region
and enter either of the two clusters. It can be concluded that the time for a node to leave
the unclustered region is equal to the minimum of two time intervals T'(e;,1) and T'(e;;2), as
illustrated in Figure 4.6(b). Notice that the events that cause the node departure from the
unclustered region during a non-overlapping period are the same as those causing the node
arrival to the overlapping region during the overlapping period. Therefore, the distribution
of T, can be calculated accordingly.

4.3.2 Steady-state distributions of the numbers of common CMs
and unclustered nodes

In this section we investigate the limiting behavior of the external cluster stability. Consid-
ering clusters initially formed to be partially overlapping, we examine the external cluster
stability under the assumption that cluster maintenance is not implemented. That is, we
want to answer two questions: After a long time, what is the probability that two neighbor-
ing clusters are overlapping (non-overlapping)? What is the probability distribution of the
number of common CMs (unclustered nodes) in the overlapping (unclustered) region?
The first question can be answered using the theory of alternating renewal process. The

limiting overlapping and non-overlapping probability is given by P,, = % and
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Poow = %, respectively [70]. For the second question, we propose to model the
problem as a storage buffer with a two-state random environment [73]. The buffer content
represents the number of nodes in the overlapping/unclustered region between neighboring
clusters. The two random states of the buffer are the overlapping and the non-overlapping
states which fluctuate according to the alternating renewal process as described earlier.
Let N;(() (N,(6;)) be the numbers of nodes entering (leaving) the buffer during the k'
overlapping period (non-overlapping period), respectively. Let N;(At) (N,(At)) be the
numbers of nodes entering (leaving) the overlapping (unclustered) region during an arbi-
trary time period, At, respectively. The numbers N;(At) and N,(At) are point processes
corresponding to the i.i.d. interrenewal periods 77; and T7,, and representing the input
process (output process) of nodes to (from) the buffer, respectively. The mean and the
variance of the input process during an overlapping period and the output process during
a non-overlapping period are given by [70]

BN = F VarlNi(@)] = 52 BTl (1.1
BINOR)] = Sl Varl 0] = i BTl (@)

respectively, where cr,, and cr, are the coefficients of variation of 77; and 77, respectively.
Consider the k" cycle. The buffer content at the beginning of the cycle is given by®
By, = [Be_1 4+ Ni(Ce—1) — No(fx_1)]". Assuming that the processes Ny(Ci—1) and N, (6x_1)
are non-decreasing for all k, the buffer content model can be associated with a G/G/1
queue [73]. In the queueing model, the service time of customer k — 1 is Sy_1 = N;((x—1)
and the interarrival time between customers k — 1 and k is Ay_1 = N,(0y_1). Then the
buffer content at the beginning of the k" cycle is the waiting time of the k' customer.
Therefore, the buffer content at an arbitrary time step, m, is equal to the virtual waiting
time (or the workload) of this G/G/1 queue [73] [74]. The virtual waiting time depicts the
remaining service time of all customers in the system at an arbitrary time step. Let V(m)
denote the virtual waiting time (buffer content) at an arbitrary time step m. The relation
between the virtual waiting time at the m'™ time step and the customer waiting time at
the beginning of a cycle is given by [73]

+
n(m)—1
V(m) = | Bum) + Snm) —m + Z Ay (4.18)
k=1
6y = [2]" is equivalent to y = max(0, z)
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where n(m) = max{k > 0: ¥ Ay <m},m>0.

To find the limiting probability distribution of the buffer content (i.e., the number of
common /unclustered nodes between two neighboring clusters) a diffusion approximation
is used. The diffusion approximation is a second order-approximation that uses the first
two moments of the service and interarrival times of the G/G/1 queue [75]. Let p =
E[Sk]/E[Ak] be the intensity factor. A steady-state distribution of the buffer content
exists if p < 1 and it is approximated by a geometric distribution with parameter equal to

(1 - Agi%xg) The approximated pmf is given by [75] [76]

A2 A2 "
1— g J >
( /\?;_2Xg) (/\52;_2X9) =0

where x, = p— 1 and A} = ];E[[j’? which can be calculated from (4.16) and (4.17). The

limiting probability distribution of the numbers of common CMs and unclustered nodes
between the two clusters can be described by the pmf (4.19) with probability F,, and
P,o, respectively. Let Pgg and Pyg denote the limiting probabilities that there are zero
common CMs and zero unclustered nodes between neighboring clusters, respectively. These
probabilities are given by Pog = P,, Py (0) + Phow, and Py = Proy Py (0) 4 Ppy.

Py(n) ~ (4.19)

4.4 Results and Discussion

This section presents numerical results for the analysis of the proposed external and inter-
nal cluster stability metrics. The external cluster stability metrics are the time to the first
change of cluster-overlap state, T,,; and the time interval between successive changes of
cluster-overlap state (cluster-overlapping period, Ty, and cluster-non-overlapping period,
Trov). The internal cluster stability metrics are the time to the first change of cluster-

Table 4.1: System parameters in simulation and analysis of Chapter 4

Traffic flow
condition | D(veh/km) | E[Ncn,] E[N]
Uncongested 9 2 3
Near-capacity 26 4 5
Congested 42 6 8
R (meter) Ninax Xc(0) Xen (0)
160 9 {0,1,1,1,1,2} | {1,1,1,1,5}
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Figure 4.7: The pmfs of (a) the number of nodes between two neighboring CHs, N,
and (b) the number of nodes in a cluster N¢);, , calculated from simulating
a simple weighted clustering of vehicles.

membership, Tep, and the time between successive cluster-membership changes, Ty
Additionally, numerical results are presented for pmfs of the steady-state numbers of com-
mon CMs and unclustered nodes between two neighbouring clusters. We consider a con-
nected VANET in three traffic flow conditions, uncongested, near-capacity, and congested,
each corresponding to a set of parameters listed in Table 4.1. For values of N. and Ngyy,
at the 0" time step, we simulate a simple weighted clustering algorithm, where CHs are
chosen with the minimum average relative speed to its one-hop neighbors, such that each
vehicle belongs to a cluster and no two CHs are one-hop neighbors (i.e., similar to the use
of mobility information for clustering in [12, 22]). The distance headways of vehicles on
the highway follow a truncated exponential, gamma, and Gaussian distributions for the
uncongested, near-capacity, and congested traffic flow conditions, respectively. The vehi-
cles’ speeds are i.i.d. and are normally distributed with mean 100 kilometer per hour and
standard deviation of 10 kilometer per hour [1]. Figure 4.7 plots the probability distribu-
tions of N, and N¢yy, for the resulting clusters from simulating the clustering algorithm.
Initially, we set N, to its average value from the cluster formation results. For D = 42
vehicles per kilometer (veh/km), we set I. and Iy, to the states with highest probability
of occurrence at the cluster formation stage. The Markov-chain distance headway model
has the following parameters: Ny.x = 9, each state covers 20 meters range of distance
headways, the time step is equal to 2 seconds, and the transition probabilities are tuned
according to the results in [51]. Based on these parameters, we generate time series of dis-
tance headway data according to the microscopic mobility model, using MATLAB. Each
simulation consists of 20,000 iterations.

Figure 4.8 compares the distribution of the state of system X., when the second over-
lapping state occurs, calculated using the exact derivation (4.4) and the proposed approx-
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Figure 4.8: The pmf, ¢; = P(I. € €;), of system X, being in lumped state Q; € Qpy at
the instant when the second overlapping cluster state occurs.

imation (4.6). The values on the x-axis represent arbitrary IDs given to the lumped states
Q; € Qoy. The results from the proposed approximation shows close agreement with the
exact and the simulation results.

Figure 4.9 plots the pmf of the time interval for the first change in cluster overlapping
state, for (a) a given initial state of X, and (b) when averaging over random initial states,
respectively. The theoretical results for the pmfs of the cluster-overlapping period are
calculated from the cdf in (4.5). The calculated pmf of T,, in Figure 4.9(c) is based
on the approximation given in Figure 4.8. The distribution of T,,;(€2) changes with I.
belonging to different lumped states 2. The distribution of T,,; describes the average time
before the first cluster-overlap change for a randomly picked cluster in the network. When
clusters overlap, the cluster-overlapping period is equal to the time period between two
successive cluster-ovelap state changes (i.e., the time period of invariant cluster-overlap
state). Note that the average time for the first change of cluster-overlap state is larger
than the average time period between successive changes of cluster-overlap state. When
the second overlapping state occurs between neighouring clusters, the clusters state is closer
to non-overlapping than that when the clusters are initially formed, on average. That is,
the clusters state can only be in the accessible lumped states (20v1 in Figure 4.2).

Figure 4.10 plots the pmf of the time period from the cluster formation till the time
step that a first change in cluster-membership occurs for (a) a given initial state Iy € Q

o6



0.015

T ! 0.08
I simulations
— Theoretical
0.06
E
s 0.04
8
o
0.02
100 200 300 400 500 600 0

m (seconds)

I Simulations
— — Theoretical

20 40 60 80 100 120 140

(@) 0.3 T T )
I Simulations
0253 —-—- Theoretical [
. 02¢
E
3 0.15

,_

o

10 20 30 40 50

m (seconds)
(©)

m (seconds)

®)

60 70 80

Figure 4.9: The pmfs of (a) the time to the first change in cluster-overlap state,
Tov1 (), for 1. = {0,1,1,1,1,2} € Qi when the clusters are initially formed;
(b) the time to the first change in cluster-overlap state 7T,,1; and (c) the
cluster-overlapping time period, 7,,, when D = 26 veh/km.
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Figure 4.10: The pmfs of (a) the time ﬁ%? the first change in cluster-membership,
Town (), for Iopr = {1,1,1,1,5} € Q, when the cluster is initially formed;
(b) the time to the first change in cluster-membership, T¢/1; and (c)
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Ten, when D = 26 veh/km.
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Figure 4.11: The pmf of the interarrival time of nodes to the overlapping region
when N. =5 and D = 26 veh/km.

and (b) a random initial state, and (c) the pmf of the time period between successive
cluster-membership changes. The theoretical results for the pmfs of T (%) and Tean
are calculated from the cdfs in (4.10) and (4.11), respectively. The pmf of the time pe-
riod between successive cluster-membership changes is calculated from the cdf in (4.12)
and is plotted in Figure 4.10. The simulation results closely agree with the theoretical
calculations. It is observed that, when the first change in cluster membership occurs after
the cluster formation, the second change in cluster membership has a higher probability
of occurring in a shorter time period. This reflects the effect of a wireless link between
a CM and CH fluctuating between connecting and disconnecting states in a short period
of time. The impact of this fluctuation can lead to frequent re-clustering that drains the
precious VANET radio resources. Some clustering algorithms for VANETSs aims to localize
the impact of this fluctuation within the clusters [12, 15, 36]7. Figure 4.11 plots the pmf of
the first arrival time of nodes into the overlapping region 7T, ,, for a near-capacity traffic
flow condition. The exact theoretical value is calculated from the edge Markov chain as
explained in Appendix A.4, whereas the approximated value is calculated from the fully
lumped Markov chain using (4.13). The results show that approximating the node-arrival
time to the overlapping/unclustered region using the fully lumped Markov chain is ade-
quate.

Figure 4.12 and (Figure B.2 in the Appendix) plot the pmfs of the cluster-overlapping,
T,,, and the cluster-non-overlapping, T, time periods for different vehicle densities when
N, is set to the average values in Table 4.1. The time interval between successive changes of

"Figure B.1, in Appendix B, plots the pmfs of the time interval between two successive cluster-
membership changes for different vehicle densities.
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cluster-overlap state is equal to T, (T},0,) When the two clusters are overlapping (disjoint).
Notice that the vehicle density has little impact on the distribution of the overlapping/non-
overlapping periods when N, is set to the average value. However, this is not true for all N..
Figure 4.13 plots the average cluster-overlapping and the average cluster-non-overlapping
time periods for different numbers of nodes between neighbouring clusters, N.. The aver-
age values are calculated using (4.8) and the values of N, are from the clustering results in
Figure 4.7. For a fixed N, the average cluster-overlapping period is larger for a larger den-
sity, whereas the average cluster-non-overlapping period is smaller for a larger density. The
reason is that, in a congested traffic flow conditions, the distance headways are small when
compared to those in an uncongested traffic flow condition. Therefore, for the same N, the
cumulative distances are smaller for a high density. It should be noted that the large values
of average cluster-overlapping time periods for N, = 1 are due to the connected network
assumption. Figure 4.13 shows that, as N, increases, the average cluster-overlapping pe-
riod reduces and the average cluster-non-overlapping period increases for the same traffic
flow condition.

To investigate the limiting behavior of the number of vehicles in the overlapping/
unclustered region, we first calculate the two parameters x, and )\!2] for the three vehicle
densities. Notice that the distributions (4.5), (4.7), and (4.15) are all conditional on the
initial cluster state in terms of N. and N¢ay. Therefore, in the calculation of x, and
A2, we use the law of total expectation to calculate E[T,,] = 3, P, (n)E[T,,(n)] and
E[TE] =", Pn.(n)E[TE(n)], where T,,(n) is the cluster-overlapping time period for two
clusters separated by N, = n nodes and T7;(n) is the node interarrival time for a cluster with
Ncy, = n nodes, respectively. The calculations are done for near-capacity and congested
traffic flow conditions only. The reason is that the diffusion approximation assumes that the
point processes N;((j) and N,(0;) are normally distributed according to the central limit
theorem. This assumption is not satisfied for an uncongested traffic flow, due to a relatively
small number of vehicles between two clusters as shown in Figure 4.7. The intensity factor
is found to be p = 1.0143 and 1.3172 for D = 26 and 42 veh/km, respectively. As a result,
the steady-state distribution does not exist. However, consider only N. > E[N,] for both
cases, we find that p = 0.33, and 0.64 for D = 26, and 42 veh/km, respectively. Figure
4.14 plots the steady-state probability distributions for the non-zero number of vehicles
in the overlapping/unclustered region when N, > E[N,] for near-capacity and congested
traffic flow conditions. The theoretical results are normalized to the value 1 — Py(0), since
the probability distributions in Figure 4.14 represent the non-zero number of common
CMs with probability P,, and the non-zero number of unclustered nodes with probability
P,o,. The simulation results closely agree with the theoretical calculations. However,
there exist slight differences between simulation and theoretical results especially at the
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Figure 4.12: The pmf of cluster-overlapping time period with vehicle density of (a)
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values of n = 5 and n = 8, for D = 26 and 42 veh/km, respectively. This is mainly
due to complete overlapping between neighboring clusters. When two clusters completely
overlap, i.e., become one hop neighbors, all the nodes between them become common
nodes, however no additional nodes can enter the overlapping region. This is not accounted
for in our model. According to many clustering algorithms, when two CHs become one
hop neighbors, they merge into a single cluster [12, 15, 23]. Figure 4.14 shows that the
simulation results excluding the complete cluster overlapping data are in closer agreement
with the theoretical results in comparison with simulation results that include the complete
cluster overlapping data. Additionally, the numerical and simulation results for the limiting

probabilities of having zero common CMs and zero unclustered nodes are given in Table
4.2.
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Table 4.2: Limiting probabilities of zero common CMs/unclustered nodes

D(veh/km) | Simulation | Theoretical
Pco 26 0.86 0.78
Peo 42 0.69 0.67
Prro 26 0.57 0.47
Pyo 42 0.52 0.56

4.5 Summary

This chapter presents a stochastic analysis of single-hop cluster stability in a highway
VANET with focus on a single lane. The time periods of invariant cluster-overlap state
and cluster-membership are proposed as measures of external and internal cluster stability,
respectively. A stochastic mobility model that describes the time variations of individual
distance headways is adopted in the analysis. The system of distance headways that govern
the changes in the overlap state and the cluster membership is modeled by a discrete-time
lumped Markov chain. The first passage time analysis is employed to derive the distribu-
tions of the proposed cluster stability metrics. The analysis provides insights about the
time periods during which a cluster is likely to remain unchanged in terms of its cluster-
membership and its overlap state with neighboring clusters. Additionally, the limiting
probability distributions of the numbers of common and unclustered nodes between neigh-
boring clusters are approximated using queuing theory and diffusion approximation. The
probability distributions derived for the proposed cluster stability metrics can be utilized
in the development of efficient clustering algorithms for VANETSs.
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Chapter 5

Cluster-based routing overhead

Node clustering is an approach to improve the scalability of routing protocols in VANETSs
as discussed in Section 1.5. Cluster-based routing protocols proposed in the literature aim
to minimize the routing overhead and scale to an increased node density. In the first part
of this chapter we analyze the impact of steady-state cluster characteristics in terms of the
cluster size and the cluster-overlap on the routing overhead. Mesoscopic vehicle mobility
models are adopted to analyze the overhead for four generic cluster-based routing protocols,
each using either proactive and reactive routing strategies for inter- or intra- cluster routing
protocols. Additionally, we calculate the steady-state cluster characteristics that minimize
the average routing overhead.

The second part of this chapter presents analysis of the impact of cluster instability
on control signalling overhead for one of the four generic routing protocols. We assume
that the clusters are formed with cluster characteristics that minimize the average routing
overhead for the considered generic routing protocol. The cluster stability model presented
in Chapter 4 is used to capture the time variations of the cluster structure in terms of
the rates of change in cluster membership and the cluster-overlap state. The probability
distribution of the intracluster routing overhead is derived using the cluster membership
change rate. Furthermore, the intercluster routing overhead is modeled as a rooted tree
with the tree-nodes representing the value of the overhead and the tree-edges weighted
by the probability of cluster-overlap state changes. Numerical results are presented to
evaluate the proposed models, which demonstrate a close agreement between analytical
and simulation results.
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5.1 Steady-state cluster characteristics for generic rout-
ing

In this section, we analyze the impact of the cluster characteristics (K and [,) and the
corresponding cluster parameters (L., Lo, Noar, and Neoepr) on the performance of generic
routing protocols on a stationary network scenario. To capture the effect of cluster charac-
teristics on the network protocol performance, we use mesoscopic vehicle mobility models.

Consider the system model described in Chapter 2. Every node generates information
packets with a constant rate of w packets per second (pkt/s) and the destination is equally
likely to be any other node in the network. We consider both generic proactive and reactive
routing strategies for inter- and intra- cluster routing protocols. For example, a protocol
that uses reactive intercluster routing and proactive intracluster routing is referred to as a
reactive-proactive cluster-based routing protocol. As a result, we have four generic cluster-
based routing protocols, i.e., proactive-proactive (pp), reactive-reactive (rr), proactive-
reactive (pr), and reactive-proactive (rp). When generic proactive routing is used in a flat
network, every node has complete information of the network topology. This is achieved
by flooding local node information with every other node in the network and maintaining
the topology information by frequent updates. The nodes send out topology updates at a
fixed rate to account for location changes. In generic flat reactive routing, a source node
initiates a route discovery process in which a route request packet is flooded throughout
the network. Let 9, denote the flooding overhead in terms of the number of packets
needed to flood a packet to n — 1 nodes, n = 2,3,..., Ngwy — 1. When a node floods a
packet to the other Nywy — 1 nodes, every receiving node regenerates and rebroadcasts
the same message until all the Ngyy — 1 nodes receive it with a flooding overhead of

77Z)f,NHWY = Nuwy paCkets.

5.1.1 Routing overhead components

We calculate the total routing overhead in terms of the number of exchanged packets per
second that are necessary for the operation of the generic routing protocols. Note that
a regenerated packet by an intermediate node contributes to the routing overhead. We
divide the total routing overhead into the following three terms: i) the clustering overhead
Y., which represents the message signaling required to maintain the clusters while the
routing protocol is in operation; i) the intracluster routing overhead vy, corresponding
to the portion of routing overhead needed within the cluster; and iii) the intercluster
routing overhead ®,ser, Which counts for the messaging needed between clusters. The
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total routing overhead has the three main components and is given by

wT = wc + wfntra + wlnter- (51)

Given a set of clusters, each CH will send a hello packet (CH-Hello) to all its CMs at the
beginning of the cluster maintenance cycle. Upon receiving a CH-Hello packet, each CM
replies with a CM-Hello packet. A CH-Hello/CM-Hello packet contains information about
node’s ID, position, speed, acceleration, and direction of movement. The exchange of hello
packets between CH and its CMs and visa versa allows every CM to know its CH and
every CH to know its CMs. No additional exchange of hello packets is required since all
the nodes will know their single-hop neighbors from the cluster maintenance messaging.
We use the same general computation for cluster maintenance overhead as in [6], where a
CH floods a CH-Hello packet within its cluster with an overhead of ¥¢ x,,, and every CM
that is 7 (< K) hops away from the CH requires i packets to deliver its CM-Hello reply
packet to its CH. Therefore the cluster maintenance overhead is given by

Ve = 8(B Nyi + 0,Noar) Nowr. (5.2)

where 9, is the rate of CH-Hello packets per CH (in pkt/s), N; is the number of nodes that
are i (< K') hops away from the CH, and o, € (0, 1] is a protocol specific optimizing factor.
A unity o, corresponds to the simple flooding overhead, o, < 1 reduces the overhead by
a factor of o, from that of the flooding overhead. The overhead calculations for ¥4
depend on the type of intracluster routing protocol used.

When a proactive intracluster routing is used, at the beginning of the topology update
cycle, every CM shares its local topology information with every other CM in the same
cluster, which requires s n,,, packets. With this exchange, every CM has the route
information to every destination in the cluster. Each cluster contributes NZ,, packets per
update cycle to the total overhead. Thus, the proactive intracluster routing overhead is
given by

7#Intrap = Op(slntraNg’MNCH (53)

where 07,44 is the intracluster topology update rate per node (in pkt/s). When a reactive
protocol is used for intracluster routing, topology control messages need not be exchanged.
However, when a source needs to transmit a packet to a certain destination, a route discov-
ery process is triggered. If the source and destination are in the same cluster, which occurs
with a probability Pr,uwe = Noar/Nawy, a route request packet is flooded throughout the
cluster only, which requires ¢ n.,, packets. Since there are wNpwy data packets to be
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transmitted per second, the reactive intracluster routing overhead is

Yrntra, = OpwNaWwy Prntra Nom - (5.4)

After the route is discovered, the information is unicasted to the source and flooding is
not required. The number of route reply packets is usually much less than the number of
packets required in the route discovery process and hence is not considered at this stage.

As for Y4, Wwhen proactive intercluster routing is used, each CH broadcasts local
cluster topology information to other CHs. Let &y denote the number of packets needed
to broadcast a CH packet to a neighboring CH. When the network is split into non-
overlapping clusters, &y = 2k + 1 packets are required to broadcast a packet from a CH
to a neighboring CH. Note that a packet is required to cross the border of the cluster to
the neighboring cluster. With the exchange of local cluster topology information among
the CHs, the cluster-level route information is available at every CH (i.e., the sequence
of clusters from the source to the destination). Hence, the proactive intercluster routing
overhead is given by

7wblnterp = Opélnterq)CHNg'H (55)

where 07,4 is the rate at which the CH exchanges local cluster topology information.
When reactive intercluster routing is used, only if the source and destination are in dif-
ferent clusters, which occurs with probability Pruier = 1 — Praira, @ route request packet is
broadcasted on a cluster level, requiring ®-yNeog packets. Thus the intercluster reactive
routing overhead is given by

wlnterr = OpWNHWYPInteTCDCHNCH' (56)

Routing overhead with overlapping clusters

Consider two adjacent clusters that share a single node; in this case, 2k packets are required
to broadcast a packet from a CH to a neighboring CH. In general, increasing the overlap-
ping between clusters (in terms of hop number, distance (L,) or node number (Nccoay))
reduces the signalling between neighboring clusters. Let £ be the overlapping gain, which
is the decrease in the number of packets needed to broadcast a packet from a CH to a
neighboring CH due to overlapping from that of the disjoint case. However, the increased
overlapping not only increases the overall number of clusters, but also increases the intra-
cluster messaging, since the common nodes in the overlapping region, Nocas, should report
back to both CHs. The number of clusters, N¢y, increases by a factor of (1 —1,)~! from
that in the disjoint case. Therefore, Noy = ﬁ The only overhead component that
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changes with the overlapping is the cluster level broadcast overhead, 1cg. Other compo-
nents are affected by the increase of Nogy only. With the increase of the I,, &y decreases
according to the overlapping gain, £, which depends on the number of overlapping hops
between clusters. The maximum allowed overlapping length between neighboring clusters
is when neighboring CHs are K hops away from each other i.e., L, = L¢/2 or [, = 0.5.
Hence, &y can be generalized to

o =2k +1—¢. (5.7)

5.1.2 Total cluster-based routing overhead

Let ¥pp, ¥rr, ¥pr, and 1,, denote the total routing overhead for proactive-proactive, reactive-
reactive, proactive-reactive, and reactive-proactive cluster-based routing protocols, respec-
tively. The total routing overhead for each of the four routing strategies can be calculated
by summing . and the corresponding intra- and inter- cluster routing overhead compo-
nents. In order to calculate the average total routing overhead, we derive the probability
distributions of the cluster parameters L. and Ngjs in the next section. The remaining
cluster parameters are functions of these two. The distributions are mapped from the
distance headway distributions, i.e, the mesoscopic vehicle mobility models.

As defined in the system model (Section 2.1), the cluster length, L., extends to K hops
on both sides of the cluster. Therefore, the probability distributions of the hops lengths are
needed to derive the distribution of L.. The length of the second hop Hs is with respect to
the node at the first hop edge (as shown in Figure 5.1), and so on. There exists an empty
gap after the i*® hop with a length G; = R — H;, where H; denotes the length of the i
hop, ¢ > 1. Given a mesoscopic model, the distance headways of vehicles are i.i.d. with
pdf fx(x) and cdf Fx(z). As discussed in Section 3.2, the pdf of H; is given by (3.4) and
(3.5) for low and intermediate vehicle densities, respectively. The pdf of the length of the
first gap, G\, is given by fa, (91) = |7 (R — g1)| fm, (R — g1) = fu, (R — g1). The length of
the second hop is dependent on the first gap since (Hs > G1). Similar to the derivation of
the first hop, the conditional cdf of the second hop length is equal to the probability that
the length of the second hop is less than a value ho, given that there exists at least one
node in the first hop h;. This can be generalized to the length of the i*" hop, i > 1 with
the following conditional cdf

P(C(R — hy),C(h; — gi—l)>'

Fuya, (hilgi) = P(C(R = gi-1))

(5.8)
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Figure 5.1: Illustration of the mapping of distance headways to three consecutive
hops from a reference node, where H; and G;, i = 1,2,3 are the i*! hop
and the *? gap, respectively.

The conditional pdfs for the i*" hop (where i > 1) are given by [65]

DeiD(thi)

1 — e~ D(R-gi-1)’

in\Gi—1 (hl |gi—1) =

0< gi—1 < h; (59)

and

g e X R A = g =)

+fX(hz - gi_l)F(z, A(R - hz - OZ))], gi—1 S hz S R — 04(5]_0)

in|Gi,1(h1‘gi71)

for low and intermediate vehicle densities, respectively. It can be shown, that the difference
between the pdfs of successive hop lengths reduce as the number of hops increase. The
reason is that the effect of the pdf of H; vanishes as we calculate the pdf of the length
of further hops. However, when the product RD is large enough, the difference between
the pdfs reduces. When RD — oo, fu,(h;) — fu,(h;) from (3.4) and (5.9) for low vehicle
density and from (3.5) and (5.10) for intermediate vehicle density. Therefore, for large
RD, the gap lengths are i.i.d. with pdfs that are approximated by (2.1) and (2.3) for low
and intermediate vehicle densities, respectively.

The cluster length is upper bounded by 2kR since the length of the hop is upper
bounded by R. The reference node for the first hop length H; is the CH. Consequently,
the reference node for the second hop Hs is the CM at the first hop edge (node A in Figure
5.2), and so on. The cluster length can be calculated by L. = 2 Zle H; + 2G g, where
H; is the length of the i*" from the CH, with conditional pdfs (5.9) and (5.10) for low and
intermediate traffic densities, respectively. The K" gap length, G, is included in the
cluster length because the range of the K*® hop in the cluster extends to R. This is added
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Figure 5.2: Three 2-hop disjoint clusters, each with a length of L. which is upper
bounded by 4R.

to control the overlapping between clusters. Since G; = R — H;, L. can be re-written as

K-1

L.=2kR-2) G (5.11)
=1

For a K-hop cluster, the distribution of the cluster length, L., depends on the distribution
of the sum of K — 1 gaps, K > 1. The length of a single hop cluster is fixed, i.e., L. = 2R.
For a low traffic density, we assume that DR is large enough such that the gaps lengths are
i.i.d. with the pdf (2.1). Given that Gy’s are i.i.d. and G; ~ Exp(D), the sum S5 ' G; is
a random variable with an Erlang distribution, having shape and scale parameters equal
to K — 1 and D, respectively, denoted by Zfi}l G; ~ Erlang(K — 1, D). From (5.11), the
pdf of the length of the cluster is given by fr. (1) = & fxg, (M) Therefore, for a K-hop

2 2
cluster, K > 1, and a low vehicle density the pdf of L. is given by

2l
)‘l

W(al —aTte Nl 9R <1 < q (5.12)
ez — .

ch(l) =

where \; = %, z1= K — 1, and oy = 2kR are the scale, shape and location parameters of

the L, distribution, respectively, and € = P(Zf;l G; < (K — 1)R) is a constant due to
truncation. On the other hand, for an intermediate vehicle density, we assume that AR
is large such that the gap lengths are i.i.d. with pdf (2.3). Using Laplace transform, the
moment generation functions of the gap length and the sum of K — 1 gap lengths are given
by Mg, (s) = e (1 4 $/x)* and szfflGi(S) = e~ K=Da(1 4 s/3)~(E=Dz yespectively.
The pdf of %' G, is the inverse Laplace transform of MZZKflGi(S% and is given by

Fsi16,(1) = R (1= (K = 1)a)K=DemlemM=(K=De) (K —1)a < | < co. That is, the

sum of K — 1 Pearson type III (A, 2;, ;) distributed random variables is a random variable

with a Pearson type III distribution and parameters (A, fol(zi), ZKﬁl(ai)). As a result,

7
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for an intermediate vehicle density the pdf of L. for a K-hop cluster, K > 1, is given by

A
['(z)

where \; = 3,2 = (K — 1)z and oy = 2kR — 2a(K — 1) are the scale, shape, and location
parameters for the distribution of L., respectively, and e = P(3Y17' G; < (K —1)(R—a))
is a constant due to truncation. According to our definition of the overlapping gain, &, in
Section 5.1.1, £ can be calculated by

l)zl—le—)\l(al—l)

ch(l) =

(oq — , 2R+2(K—1la<l<q (5.13)

O, L, < GK
f_ 1, GK§L0'< Gk + Hg ' (5 14)
) i+ Gk +Y ] Hxki <L, <Gg+ Zill Hyg_; '

K+1, L,= L2

The value of £ can be seen as the integer component of the number of cluster hops covered
by L,. The discrete nature of the overlapping gain is due to the mapping between the
number of hops and the overlapping length. The number of nodes in a cluster, Ngyy,
depends primarily on the inter-vehicle distances and the length of the cluster. Given
the length of the cluster, the distribution of Ngj; can be found by deriving the count
distribution that corresponds to the inter-vehicle distance distribution. For a low vehicle
density, the inter-vehicle distances are exponentially distributed (~ Ezp (1/p)); hence, the
corresponding count distribution is Poisson (~ Pois(D)). For a low vehicle density, the
probability mass function (pmf) of the number of CM in a cluster of L. is given by

(Dl)ne—m. (5.15)

Preyine(nll) = =
For an intermediate vehicle density, the corresponding pmf is obtained using renewal theory.
Let v, = Zfi}l X,; be the sum of n consecutive inter-vehicle distances. The variable
v, has a Pearson type III distribution (v, ~ Pears(\, nz,na)). Since the inter-vehicle
distances are i.i.d., we have a renewal process. Let N; be the number of nodes in a
road segment of length [. For a renewal process, the events N; < n and v, > [ are
equivalent, therefore, P(N; < n) = P(v, > [). Hence, the fundamental relation between
the inter-distance distribution and the corresponding count distribution is given by P(N; =

n) = F, () —F,, (1) [70]. Given the cdf of v,, ~ Pears(\, nz,na) and cdf of v, ~
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Pears(\, (n+ 1)z, (n + 1)a), the corresponding count distribution is given by

Az M= n0) A+ Dz A0~ (0t Da))
PNe=nm) = —r0 ~ T((n+ 1)) ' (5.16)

For a recurrent renewal process, the asymptotic distribution of the number of renewals in
[, can be approximated by a normal distribution N; ~ N orm(ﬁ, l;j—;) [70]. Hence, given a
cluster length L. = [, the approximated pmf is given by

o paew=?
PNCM\Lc(nll):g %6 20%0 . (5.17)

Using the derived distributions for Ngy, and L., we calculate the average and the variance
of the cluster-based routing overhead as discussed in the next Section.

5.1.3 Average cluster-based routing overhead

In this Section, we will find the average and variance of the cluster-based routing overhead
for the four generic routing protocols. To calculate the average overhead, the distributions
found in Subsection 5.1.2 are used to derive the statistical average for the overhead ex-
pressions (5.2)-(5.6). In our calculation of the averages and without loss of generality, we
assume the following: i) Nywy is independent of Noy and Ngyy; 4i) Ny’ s are i.i.d. and
are independent of Nywy, Noy and Ney; i4i) the cluster design parameters, K and [, are
constant; and v) £ is calculated using (5.14) average values. Hence, the average overhead
for the generic protocols can be calculated by

K
Elpc] = dc (E Ncu ZiNi + OpE[NCMNCH]> (5.18)
=1
Ey) = B[] + 0p01mtra E [(Nemr — Neam)*Nen) + 0p0inter®on B [NEy | (5.19)
Ely] = E[tbe] + 0,wE [NEy ] + 0,w®en (E[Nywy]E[New) — E[NcuNem])  (5.20)
EW}?T} = B[] + opwkE [NCQJM] + 0p0rnterPon B [NéH} (5.21)
Elyp) = E[tbe] + 0p01mira B [(Near — NCCM)zNCH}
+ opw®cy (E[Nuwy]E[Nen] — E[NeyuNen]) - (5.22)

We assume that the routing protocol will eliminate the redundancy in relaying topology
updates for the Nooyr = [,Ney nodes in (5.19) and (5.22). We evaluate the average
terms in the previous equations based on probability theory. For example,E [Noy Nop| =
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E[NerE [New|L] = [, iy fr.(Ddl = ;- Similarly E[NZy New| = E [NegE
[NeulLel) = iy [U—: + E(Lc)} , for an intermediate vehicle density. In the same fashion,

we can calculate the remaining averages of the product terms. Additionally, E[NZ,,] =
2

2 E[LJ +  (B(L2)), ElNen) = 15 EIL7), BN3y] = (%) BIL:?)

w 1-1, c

From (5.19)-(5.22), we notice that increasing the cluster size K increases the intraclus-
ter routing overhead due to the increased number of nodes belonging to each cluster, from
(5.3) and (5.4). On the other hand, increasing K reduces the average number of clusters
Nep and hence decreases the inter-cluster routing overhead according to (5.5) and (5.6). In-
creasing/decreasing the overlapping between neighboring clusters increases/decreases both
¢ and N¢g, which have an opposite impact on the routing overhead, based on (5.7). Hence,
the cluster characteristics that minimize the total routing overhead for the different generic
cluster-based routing protocols should be further studied.

5.1.4 Numerical results

This section presents numerical results that show the impact of the cluster size and the
cluster overlapping on the total routing overhead. We consider a single lane highway
segment of length L = 20km and a transmission range of R = 250m. The minimum
distance headway for intermediate vehicle density is chosen to be a = 10m. Without
loss of generality, we fix the topology update rate to the value proposed in [77]: dpnper =
Orntra = 0.2pkt/s. Since we focus on generic routing protocols, o, is set to unity. We also
fix the information packet generation rate and the cluster maintenance update rate at the
same value as 07,zer and O7p,40q, since our aim is to study the impact of clustering on the
performance of the protocols for steady state conditions.

Figure 5.3 (a) and (b) plot the average total routing overhead, normalized to the
average node number, versus the cluster size K for a low vehicle density of 15veh/km and
an intermediate traffic density of 25veh/km with o = %, respectively. The node densities
for different traffic low condition are chosen according to Table 1.1. The cluster size K
varies from K = 0 to K = K,,4., where K,,,, is the size of a cluster that covers the entire
road segment. Note that K = 0 and K = K,,,, correspond to Ngwy single-node clusters
and a single cluster containing Ngwy nodes on average, respectively. Hence, the four
protocols at the two extreme limits of K behave as flat routing. The values at K = 0 and
K = K, are equivalent to the overhead of a flat routing that is used in the inter- and
intra- cluster routing, respectively. However, the difference in the total overhead between
the two extremes is due to the clustering overhead .. When the network is a cluster of
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Figure 5.3: Average total routing overhead in pkt/s for four generic non-overlapping
cluster-based routing protocols versus the cluster size (in hops) for R =
250m. The average overhead is normalized by the average number of
nodes. (a) low vehicle density with D = 15veh/km and (b) intermediate
vehicle density with D = 25veh/km and o = 75

size K.z, the CH will flood a CH-Hello packet to an average of Ngyy CMs, where each
CM replies with a CM-Hello packet. On the other hand, 1. for single-node clusters (at
K =0) is equivalent to the Hello messaging overhead used in flat routing.

It is apparent that clustering reduces the total routing overhead from that in flat rout-
ing. For small clusters, the inter-cluster routing overhead is dominant, making E[¢,.,]
closer to E[t),,] than to the averages of the two other protocols, while for large clusters the
intracluster routing overhead is dominant, thus making Et,,] closer to E[i),,]. This shows
the trade-off between the inter- and the intracluster routing overheads as the cluster size
increases. Hence, there exists a K* value at which the routing overhead becomes minimum.
However, when the node density increases, the increased number of nodes within a cluster
will result in a larger intracluster routing overhead. As a result, K* can change with node
density.

Figure 5.4(a) plots the cluster size K* that minimizes the average routing overhead
versus the vehicle density for the four different protocols, for disjoint clusters. The K*
value is obtained using the low traffic flow calculations for densities < 26veh/km and the
intermediate traffic flow calculations for densities > 25veh/km. The standard deviation o
is chosen to linearly decrease from 0.5u to 0.3 [1] with the increase of vehicle density (for
the intermediate model only). This is realistic since, as the density increases, the inter-
vehicle distance approaches a constant value. The K* value decreases when the density
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Figure 5.4: The cluster size K* that minimizes the routing overhead versus vehicle
density for R = 250meters when (a) i, =0 (b) I, =I}.

increases for all the protocols. When we allow overlapping and find K* and [} that mini-
mize the average routing overhead using an exhaustive search, the average reactive-reactive
and the average reactive-proactive routing overheads are minimized with completely over-
lapping single-hop clusters (i.e., K* = 1, and [} = 0.5), regardless of the vehicle density.
On the other hand, both the average proactive-proactive and proactive-reactive routing
overheads are minimized with partially overlapping clusters when [} < 0.1, whereas K*
reduces with the vehicle density. Figure 5.4(b) plots the cluster size K* that minimizes
the average routing overhead versus the vehicle density for the four different protocols,
when the overlapping factor is [}. Although the overlapping gain (5.14) reduces the inter-
cluster reactive routing overhead, the increased number of clusters due to overlapping has a
stronger effect on the overhead for proactive inter-cluster routing protocols (by comparing
(5.5) with (5.6)). Therefore, only those protocols with reactive inter-cluster routing benefit
from complete overlap in reducing the average total overhead.

5.2 Impact of cluster instability on the routing over-
head

In this section, we focus on one of the four generic routing protocols discussed in the
previous section, which is reactive-proactive routing protocol. In a reactive intercluster
routing protocol, a route discovery process is triggered when a source node has data to
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send to a destination node outside of its cluster. The CHs and gateways are responsible
of broadcasting the route request packet. When generic proactive routing is used for
intracluster routing, every node has complete information of the cluster topology. This is
achieved by sharing local topology information with cluster nodes via the CH. The cluster
topology information is updated during the intracluster routing period whenever the local
neighbourhood of a CM changes due to mobility [78]. As a result, proactive intracluster
routing utilizes the local centralized management within the cluster, which is one of the
main advantages of the clustered structure. We assume that the nodes on the highway
are clustered by some clustering algorithm into possibly overlapping, single-hop clusters
(according to the results in Subsection 5.1.4). Under the assumption that all the nodes
have complete information about the network topology when the clusters are formed, we
focus on the portion of routing overhead that is inflicted only by mobility.

Consider the system model described in Chapter 2. We assume that nodes access
the control channel (CCH of the seven channels in the DSRC spectrum) according to a
time division multiple access (TDMA)-based MAC protocol, in which time is divided into
frames of constant duration 7 seconds, and all nodes are synchronized to the beginning
of the time frame. Each frame is partitioned into equal-duration time slots. We assume
that the number of slots in the Hello-beaconing (Join-cluster) set is equal to the maximum
number of nodes in the cluster. The time slots in a frame are partitioned into the following
five sets [18, 29, 33]: i) two intercluster routing sets, in which route request (RREQ)
packets are broadcast among clusters; i1) a Hello-beaconing set in which nodes broadcast
their Hello messages to their one-hop neighbors; i) an intracluster routing set, in which
nodes transmit their local topology update messages; and V) a Join-cluster set, during
which a newly arriving node transmit its Hello packet in order to join the cluster. Figure
5.5(a) illustrates the structure of the time frame. The time slots in the first intercluster
routing set are assigned to the two gateways of the cluster. The gateways use these slots
to relay RREQ packets, received from neighbouring clusters, to the CH. During the second
intercluster routing set, the CH transmits RREQ packets to its gateways which relay RREQ
packets to neighboring clusters. The CH builds a slot assignment table, which includes
the time slots assigned for each CM for both the Hello-beaconing and the intracluster
routing sets, and broadcasts it to its CMs during the CH Hello slot. Each cluster uses a
unique frame from the two different frames used by its neighbouring cluster. That is, the
time frame is reused every two clusters as illustrated in Figure 5.5(b)-(c). This is done
to avoid intercluster interference that may be caused when clusters overlap as discussed
in Appendix C.1. A cycle is the time period between two points in time that refer to the
same time slot of the same time frame. That is, a cycle equals 377 seconds.
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Figure 5.5: (a) Partitioning of a time frame into intercluster routing, Hello-
beaconing, intracluster routing, and Join-cluster sets. (b) Time division
into cycles each containing three consecutive frames. (c) Spatial reuse
of frames within one cycle. GWR and GWL are the right and the left
gateways of a cluster.

5.2.1 Intracluster routing overhead

At the beginning of the cluster’s time frame and in the Hello beaconing period, each CM
transmits its Hello message in the slot assigned by the CH. The CH assigns slots based
on its cluster topology information from the previous cycle. If a CM detects a change in
its local neighborhood during the cycle, the CM will broadcast a topology update message
during the intracluster routing set'. Let W, be the intracluster routing overhead for
node ¢ in packets per frame. The value of ¥;,;,,; depends on the node type. A node can
be one of four types: 1) CH; 2) CM if it belongs to one cluster; &) common cluster member
(CCM), CM that belongs to two neighboring clusters; or 4) unclustered node (UN), if it
is positioned in the unclustered region between two non-overlapping clusters.

If the node is a CM that belongs to one cluster, W;,;,,; is either one or zero, depending
on whether or not the node’s local neighborhood changes during a cycle (of 37 seconds).
Let Py be the probability that a CM’s local neighborhood changes during a cycle. A CM’s
neighborhood changes when i) a node leaves its neighborhood, leading to a disconnected
communication link from the node to the CM; or i) a node enters the CM’s neighborhood,
establishing a new link between the node and the CM. Let Ty be the time period between

LA CM detects a change in its neighborhood from the Hello beaconing period.
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two successive changes in the node’s one-hop neighborhood. The value of Ty is equal to
the minimum of the first occurrence times for event i) and event 4i). Event i) occurs when
the distance between the reference node and the hop edge node becomes larger than the
transmission range, i.e, when the sum of distance headways {Xi}ij\g{)_l becomes greater
than the transmission range, where Ny is the number of nodes between the reference node
and the hop edge node. On the other hand, event i) occurs when the sum of distance
headways of the set Xy = {Xl}fi’f) becomes less than the transmission range. Let Fr, (m)
be the cumulative distribution function (cdf) of Ty. Fr,(m) can be calculated by imple-
menting first passage time analysis on a (Ng+1)-dimensional Markov chain that represents
a system of (Ny + 1) distance headways as discussed in Chapter 4. Therefore,

b= i (-] -

If the node is a CM that belongs to one cluster, W, ; is either zero with probability 1— Py
or one packet per frame (pkt/f) with probability Py. Upon receiving the local topology
updates from its CMs, the CH updates the cluster topology information and broadcast
it to its CMs at the end of the intracluster set. Therefore, the effect of mobility on the
intracluster routing overhead can be measured by the number of topology update messages
per frame. At the end of the intracluster set, a CH broadcasts a cluster topology update if at
least one of its CMs and/or CCMs detects a change in their local neighborhood. Therefore,
for a CH with a total of n CMs and CCMs, W,y is either zero with probability (1 — Pg)™
or 1 pkt/f with probability 1 — (1 — Pg)™. Due to vehicle mobility, neighboring CHs may
move apart from each other and the clusters may become disjoint, resulting in some CMs
to become unclustered. Unclustered nodes are left without service and, therefore, they
do not contribute to the intracluster routing overhead. When a node is unclustered, it
stops receiving CH hello messages. Upon receiving a CH-Hello message, an unclustered
node joins the cluster during the Join cluster period. The intracluster routing overhead
for a common cluster member is similar to that of an ordinary CM. In the absence of
mobility, two frames are sufficient to prevent intercluster interference. However, since an
extra third frame is allocated to prevent intercluster interference that is caused by common
cluster members, the Hello beaconing generated by the common cluster members between
neighboring clusters is also considered to be mobility-induced overhead. As a result, for a
CCM, Wipipq,i is either 1 pkt/f with probability 1 — Py or 2 pkt/f with probability Py.

In a highly dynamic VANET), vehicles approach or move apart from one another, result-
ing in changes in the cluster structure. The time variations of the distance between neigh-
boring CHs, due to vehicle mobility, can cause the coverage ranges of the clusters to over-
lap or to become disjoint. During an overlapping/non-overlapping period, vehicles enter

7



and leave the overlapping/unclustered region, resulting in a change in the number of com-
mon /unclustered nodes between neighboring clusters. The number of common /unclustered
nodes between neighboring clusters affects the intracluster routing overhead. In Section 4.3,
we investigate the system of two neighboring clusters in terms the change of the numbers
of common CMs and unclustered nodes between the two clusters along with the change in
the cluster-overlap state. Assume that every two neighboring clusters are independent and
have the same statistical behaviours. That is, Tp,’s (Thow's/ Nun's/NioaS) are ii.d. for
all pairs of neighboring clusters. The steady-state pmf of the number of common cluster

members between neighboring clusters is approximated by a weighted geometric distribu-
2

- )\5792)(9
is given by (4.19) and can be re-written as

tion with parameter equal to p, = (1 ) and a weight p, = po,. The pmf of Nocys

po(1- 5) (i) n=0
Prcoy(n) = "N A7) AT (5.24)
(1_ps>+ps 1_>\!2;_—92Xg s n=>0
where xg, )\3, E[Ty), and cf,, are given in Section 4.3. The value of ps depends on the
the overlap-state between neighboring clusters. The steady-state pmf of the number of
unclustered nodes between two neighboring clusters, Py, (n), is given by (5.24) with
weight ps = Prow-

Intracluster routing overhead per node

In this subsection, we investigate the intracluster routing overhead for a randomly chosen
node from the network. Since the intracluster routing overhead varies with the node
type, we first calculate the limiting probabilities of different node types in the network.
Let Poy, Poown, Pun, and Peojy denote the limiting probabilities of the randomly selected
node being a cluster head, a common cluster member, an unclustered node, and a cluster
member, respectively. Since the number of CHs do not change in the system, Poy =

%. The value of Poepy depends on the total number of common nodes in the network

which equals ZZJ\LCIH Nceom and has a negative binomial distribution with parameters p,
and Neop (since Nocops is geometrically distributed). Using the law to total probability,

Peem =3 2,2 Ni—Pov (MNfZH*l) (1 — pg)Nerpp. Therefore,

2pov]\/vCH (1 - 5%:31)

5.25
A2Nuwy (5.25)

Poov =
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2p"°“NCH(17E]iE[TT7;7:J]> NeH 2Neu (1- B[Tov] )
— _ C _ E[Tnov]
NNy . As aresult, Poyy =1 =" Ny The

intracluster routing overhead for a random node in the network is given by

Similarly, Pyy =

Peyvi(1 — Py) + Pop Pun + Pun, m =0
Py P P, 1 — Py, + P, 1— Py), =1
Pwint'ra,i(m) = et + o ( i ) + CCM( H) m (526)
’ Peen P, m =2
0, otherwise

where Py, = >, P(Neay = i)(1 — Py)' is the probability that none of the nodes in the
cluster detect a change in their one-hop neighborhood.

Total intracluster routing overhead of a random node sample

Suppose now we want to find the total intracluster routing overhead for n nodes randomly
sampled from the network, and denote this overhead by ;4. We assume that the sam-
pling probabilities are independent of the number of nodes sampled and they equal the node

type probabilities?. Each node from the n selected nodes contributes to the total overhead
A
by Winiras DKE/E, i, either 0,1, or 2 pkt/f. Let Ag,. . = {(ao(i),a1(i), as(i)) o

be a matrix of three columns, where each row represents a possible number of occurrences
of overhead 0,1, or 2 pkt/f for the n sampled nodes. That is, as(z) nodes from the n
nodes contribute 2 pkt/f to the total overhead, with Z?:o aj(i) = nVi. The sequence
(ap(i),a1(i),az2(i)) is a 3-restricted ordered integer partition of a positive integer n. Here
we allow the part to be zero. An ordered 3-restricted integer partition of an integer n is
an integer partition of n into exactly 3 parts. Therefore, Ay, ,, . . is a set of all possible
3-restricted ordered integer partitions of n, where a;(i), 0 < j < 2, is the 5 part of the i
partition, 0 < a;(i) <n, 1 <i < |Ag,,..|, and |Ay,, .. | = ("1?) is the total number of
such partitions, i.e., the number of rows in Ay, .. .. The probability of occurrence of rows
in Ay, follows a multinomial distribution with parameters n, Py, ,,.,(0), Py, ..(1),
and Py, . ,(2). The cdf of total overhead for n nodes selected randomly from the network
can be derived to be

zntr(l,,n'

Zzno]mn 2

F\Ijintra,n (m) = Z 1—[ a ' H zntra L a] (Z) Y 0 S m S Q/n' <527)
k=0 k(

=0 Jj=

2This is true only when the number of clusters is large relative to the number of sampled nodes.



where I,,, , is the number of rows in Ay that result a total overhead of m pkt/f, given

by

intra,n

[met] m<n
Lnn =14 1,2, (5.28)

5.2.2 Intercluster routing overhead

In this section, we analyze the impact of vehicle mobility on the intercluster routing over-
head. When a reactive intercluster routing protocol is used, only if the source and destina-
tion are in different clusters, a route discovery process is initiated. The CHs and gateways
are responsible for disseminating the route request packet during the intercluster routing
sets. When the destination is found, the route information (sent back to the source node)
is composed of local cluster membership information of each cluster on the route. The data
packets are then forwarded according to local topology information within each cluster on
the route towards the destination cluster. Every CM maintains its cluster’s topology map.
The local cluster membership information changes whenever a node leaves or enters the
cluster.

Let L denote the route length between a source-destination pair, in terms of number of
clusters and W, the intercluster routing overhead per route request measured in pack-
ets®. As discussed in Subsection 5.1.1, the number of packets needed to broadcast a packet
from one CH to a neighboring CH, ®¢py, depend of the cluster-overlap state. When two
neighboring CH overlap and share common cluster members, -y = 2 packets. On the
other hand, ®¢y = 3 packets when the two clusters are disjoint and the clusters’ gateways
are one-hop neighbors. After clusters are initially formed, the clusters are connected via
gateways. However, due to vehicle mobility, clusters may move apart from each other
resulting in the breakage of the link between the two gateways and, therefore, the two
clusters become disconnected. Here, vehicle mobility imposes changes in route availabil-
ity and cluster overlap state along the route, affecting the intercluster routing overhead.
Consider two neighboring disjoint clusters in a connected network. The clusters’ gateways
are connected if and only if the distance between them is less than the transmission range.
Let Ng be the number of nodes between the two gateways. Let Xy, denote the system of
distance headways between the two gateways. The time variations of Xy, can be repre-
sented as a lumped Markov chain with a transition matrix My (Theorem 1 in Section 4.1).

3Since disseminating the RREQ depends on the sequential delivery to the next relay node, we calculate
the intercluster routing overhead in terms of packets. The spatial reuse of the time frame is irrelevant in
this case.
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Two neighboring clusters are connected if they overlap or if their gateways are connected.
According to corollary 1 (in Section 4.1, the probability that two neighbouring clusters are
connected via gateways is given by

NUN,max
Pp=pe+ Y PNyx=n)> Ui (5.29)
n=1

7
QiGQR

where Nyn max 1s the maximum number of unclustered nodes between two neighboring
cluster* and U;,,,; is the steady-state probability that the system of n + 1 distance
headways, X, 11, is in lumped state €2; € Qg, where Qg is a set of lumped states, s.t.
Qi{so,52,...,8,} € Qg, s.t. > s; < Ng. The steady-state distribution, U; 41, is a
multinomial distribution with parameters n + 1 and the stationary distribution of one-
dimensional Markov chain X (corollary 2 in Section 4.1).

Reactive routing protocols may utilize a caching process, during which past discovered
routes are stored in node’s cache and used whenever the node needs to send data to
the same destination. However, the dynamic topological changes in VANETSs can lead
to invalid caches. For example, in DSR/AODV protocol [49], a route error message is
sent in the direction of the source to eliminate the invalid cache entries, when a link in
a cached route is broken [49]. As a result, only when a cache is invalid a route discovery
process is triggered®. Let 7, denote the time interval between successive route requests
of the same source-destination pairs. The probability that a route of length L clusters
is cached is given by P = (1 — Fr.,,(7))", where Teyy is the time interval between
successive changes in cluster membership and is given by (4.12). When a source node
requests a route that is not cached, a route discovery process is triggered. At the end of
the time frame, an RREQ is broadcasted to the gateway node within the source cluster
during the second intercluster routing set. If the gateway is connected to the neighboring
cluster’s gateway /CH, it forwards the RREQ to the neighboring cluster; otherwise, a route
to the destination is not found. The RRE(Q propagation continues to the next cluster
with probability Pg, and the total intercluster routing overhead increases by 3 packets or
2 packets with probabilities Ppy and 1 — Pgg, respectively. This can be illustrated by a
probabilistic rooted tree starting at the root node representing the source cluster as shown
in Figure 5.6. Each tree-node represents the number of packets that can be added to the
total intercluster routing overhead. A link between a parent tree-node and a child tree-

4We assume that the value of 1 — Fy,,  (Nun max) is negligible
5We do not consider the control signaling overhead associated with route repairs in our calculation of
intercluster routing overhead.
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Figure 5.6: An illustration of the intercluster routing overhead for a route of length
L. The route discovery process halts when two neighbouring clusters are
disconnected with probability 1 — Pg.

node is weighted by the probability of reaching the child tree-node given that the sample
path (or realization) passed through the parent tree-node. The depth of the tree increases
with probability Pr. When the tree hits a tree-node with value zero, the route does not
exist. The height of the tree can be at most L. A leaf-node is a node that the tree stops,
i.e., a tree-node with a value zero or a tree-node at depth L. To find the distribution of
the intercluster routing overhead for a route of length-L clusters, W;,.,, the occurrence
probabilities of all possible sample paths from the root node to every leaf node in the tree
need to be found. The occurrence probability of a sample path is the product its links’
weights. The length of the path from the root node to a leaf node follows a truncated
geometric distribution and the pmf is given by

!

o) P AL ) P Y (5.30)

1 - Pg
For a path of length [, the number of tree-nodes of value 3 follow a binomial distribution
with parameters [ and Pgg. The minimum and the maximum total routing overhead
resulting from a path of length [ are 2/ and 3l, respectively. Let B,, be a matrix of two
columns. The elements in row {b,,1(7), b 2(7)} represent the frequencies of parts 2 and
3, respectively, in the 7" integer partition of m into at most L parts, where each part is
either 2 or 3. The pmf of the intercluster routing overhead per route request of length-L
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clusters is given by

Pch€7 m=20

min(| % |,L) l
(1 — PChiz Zl:[%]z PLf(l - 1) (bm,Q(l_l—%-l"l_l))
ng,2(l—fgw+1)(1 . Pco)l—bm,z(l—(%“‘l), 2<m < 3L

0, otherwise.

Py, (m) = (5.31)

The vehicle mobility effect on the intercluster routing overhead is conveyed in Py, Pry,
and Pqg.

5.2.3 Numerical results and Discussion

This section presents numerical results for the analysis of the proposed cluster-based rout-
ing overhead. Consider a connected VANET with an intermediate vehicle density of 26
vehicles per kilometer [1] and transmission range R of 160 meters. For the initial clusters,
we use a simple weighted clustering algorithm, where CHs are chosen with the minimum
average relative speed to its one-hop neighbors, such that each vehicle belongs to a cluster
and no two CHs are one-hop neighbors (i.e., similar to the use of mobility information for
clustering in [12, 22]). The vehicle speeds are i.i.d. and are normally distributed with mean
100 kilometer per hour and standard deviation of 10 kilometesetr per hour [1]. The param-
eters of the limiting behavior of the overlapping/non-overlapping period and the number
of common/unclustered nodes are set according to the results in [53] and listed in Table
5.1. Table 5.1 also lists the parameters of the Markov-chain distance headyway model and
the transition probabilities which are tuned according to the results in [51]. Based on these
parameters, we generate time series of distance headway data according to the microscopic
mobility model, using MATLAB. Each simulation consists of 20,000 iterations.

Table 5.1: System parameters in simulation and analysis of Chapter 5

Parameter | value | Parameter | value
R (meter) 160 Nen 120
TF 1 [79] T 2

Niax 9 Nowy 962
E|[Ty,) 0.71 E|(Ty;) 0.71
E[To0] 38.52 E[To,| 12.61
CQT“ 5.35 Peo 0.86

Py 0.28 Pyo 0.57
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Figure 5.7: The pmfs of (a) the intracluster routing overhead for a random node
Uintra,i and (b) the total intracluster routing overhead for n = 10 nodes
sampled randomly from the network, V;,:q p.

Figure 5.7 (a) plots the probability distribution of intracluster routing overhead per
node, Py,,,,.,. The theoretical value of Py, , is calculated using (5.23)-(5.26). The simu-
lation value of Py,,,,, ; is calculated using frequency count by taking into consideration the
type of nodes in the cluster and the frame ID to access the network. Figure 5.7 (b) plots the
intracluster routing overhead for n = 10 nodes randomly selected from the network. The
results from the theoretical calculation have close agreement with the simulation results.
Note that the theoretical calculation is based on the independent sampling probability. As
a result, the proximity between theoretical and simulation results increases as the number
of vehicles sampled from the network decreases relative to the number of clusters in the
network.

Figure 5.8 plots the pmf of the intercluster routing overhead for a route of length L = 20
clusters. The irregular shape of the pmf, Py, , , is due to the difference in the value of ®¢y
from one cluster to another along the route and the link availability due to vehicle mobility.
Consider a clustering algorithm that forms connected overlapping clusters. Without the
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Figure 5.8: The pmf of the intercluster routing overhead for a route of length L = 20.

mobility effect, the intercluster routing overhead for a route of length L is equal to 2L,
since Pog = 0 and Pg = 1. However, due to vehicle mobility, the cluster overlap state
can change and so can the connectivity of the clusters. As a result, the availability of the
cluster-level route and the value of &y between neighboring clusters change over time.
Moreover, if Pg =1, i.e., there is always a route of length L to the destination, the shape
of the pmf Py, , . becomes regular.

nter

The intracluster routing overhead results show that the increase in the total overhead
due to common cluster members is low. As a result, we can infer that two time frames can
be made sufficient for the medium access of nodes (e.g., the use of spatial node assignment
method [29]). The probability distributions of W;,sq,; and Wy, derived in this work,
provide measures for the impact of cluster instability on the routing overhead. They can be
used to determine the size of the intracluster routing set in the time frame are to determine
whether slot allocation should be contention-free or contention-based. Additionally, the
cache timeout period can be chosen such that the probability of using an out-of-date route
information is less than a desired probability threshold [49].
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5.3 Summary

In this chapter, the impact of cluster structure and vehicle mobility on generic routing
overhead is analyzed. The first part of this chapter presents a preliminary investigation on
the impact of cluster structure in terms of cluster size and cluster-overlap on the average
routing overhead when the network is stationary. Numerical results show the tradeoff
between having smaller clusters and fewer clusters. For disjoint clusters, the cluster size
that minimizes the overhead decreases when the density increases. However, when clusters
are allowed to overlap, single-hop clusters minimize the routing overhead when reactive
routing is used for intercluster routing strategy.

Considering a VANET that is clustered into possibly overlapping single-hop clusters at
the cluster formation stage. The second part of this chapter presents a stochastic analysis
of cluster instability impact on reactive-proactive routing overhead. These analysis are
concerned with the impact of microscopic vehicle mobility on the cluster-based routing
overhead, after cluster formation. The probability distributions of the rates of change in
cluster membership and cluster-overlap state are utilized as measures of cluster instability.
The limiting probability distributions of the numbers of common and unclustered nodes
between neighboring clusters are used to determine the probabilities of four node types,
which are then used to calculate the probability distribution of the proactive intracluster
routing overhead for a single node and that for n randomly selected nodes from the network.
Additionally, the intercluster routing overhead per route request is represented as a rooted
tree from which its probability distibution is derived. The probability distributions for the
cluster-based routing overhead can be helpful in the development of efficient cluster-based
routing protocols for VANETSs.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

VANETS are promising additions to our future intelligent transportation systems, which
support various safety and infotainment applications. Recent years have witnessed exten-
sive R&D activities world wide from auto companies, academics, and government agencies
that have been working to develop VANETSs on the transport infrastructure. VANETSs
are prone to large number of nodes, traffic jams, and variable traffic density. As a result,
the network protocols designed for VANETSs should be scalable. Node clustering is a po-
tential approach to enhance scalability of network protocols in VANETs. However, the
highly dynamic nature of VANETSs imposes new challenges on forming and maintaining
node clusters. The movements of vehicles with high and variable speeds cause frequent
changes in the network topology, which increase the clustering cost. The main objective
of this research is to study the effectiveness of node clustering for VANETs. To achieve

the objective, this thesis presents stochastic analysis of node cluster stability in a highway
VANET.

Due to vehicle mobility, communication links between network nodes switch between
connection and disconnection. The change in VANET topology, caused by vehicle mobility,
is a major contributor to cluster instability. To capture the changes in VANET topology,
the communication link length and its lifetime are analyzed. A microscopic vehicle mobility
model is proposed that describes the time variations of a distance headway. It models the
distance headway as a discrete-time Markov chain that preserves the realistic dependency
of distance headway changes at consecutive time steps. This dependency is consistent with
highway traffic patterns from empirical NGSIM and simulated VISSIM data sets. The
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proposed mobility model is a promising candidate vehicle mobility model to be utilized for
traceable mathematical analysis in VANETSs. The microscopic mobility model is used to
analyze the communication link lifetime between a reference node and its hop edge node.
Results indicate that on average, congested traffic flow conditions can cause communication
links to break faster than in free traffic flow conditions.

The node cluster stability model characterizes two cluster stability metrics: the change
rate in the overlap state between neighboring clusters as a measure of external cluster sta-
bility and the change rate in cluster-membership as a measure of internal cluster stability.
The proposed microscopic mobility model is mapped into a lumped mobility model that de-
scribes the mobility of a group of vehicles. The proposed lumped mobility model facilitates
the calculation of the probability distributions of the cluster stability metrics for a large
number of vehicles within a cluster (or between two neighboring CHs). Additionally, the
system of two neighboring clusters is investigated in terms of the change in the numbers of
common CMs and unclustered nodes between the two clusters along with the change in the
cluster-overlap state. The limiting behavior of this system is approximately characterized
by a simple quantitative measure of the steady-state external cluster stability.

As an application of node clustering, a clustered VANET creates a virtual backbone
that can be made responsible for the discovery and maintenance of routing paths, thus lim-
iting the amount of control signalling overhead of routing protocols. The impact of cluster
characteristics (cluster size and cluster overlap state) on the average routing overhead is
analyzed. Results show a tradeoff between having smaller clusters and fewer clusters. Ad-
ditionally, the cluster characteristics that minimize the average routing overhead are found
to be dependent on the node density and/or the strategy used for inter- and intra- cluster
routing. Furthermore, clusters formed with a structure that minimizes the routing over-
head for a stationary network are considered. Then, the impact of the cluster instability,
inflicted by node mobility, on the routing overhead is analyzed using the proposed cluster
stability metrics. While the clusters can be initially formed to minimize the routing over-
head, node mobility can change the originally formed clusters. The variation of clusters
over time increase the control overhead and thus need to be taken into account.

The results of this research will help to develop guidelines for node clustering design
in VANETSs.

Firstly, the cluster stability analysis is a candidate tool for evaluating proposed clus-
tering algorithms for VANETSs. Given the distribution of the initial clusters formed by
a clustering algorithm, the probability distributions of the cluster stability measures in
terms of the cluster’s relation with its CMs and its relation with neighboring clusters can
be found. Secondly, the probability distributions derived for the proposed cluster stability
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measures can be utilized for efficient parametrization of clustering algorithms for VANETSs.
For example, the distribution of the cluster-overlapping period can be utilized to dynami-
cally choose the value of the time threshold used to avoid frequent merging and splitting of
neighbouring clusters in VANETS [12, 15, 36]. The time period between successive cluster-
membership changes provides a lower bound on the cluster-membership duration. This can
be used to choose the time threshold value that determines when an unclustered node can
create its own cluster after it has disconnected from its CH, thus minimizing re-clustering
frequency [12, 15, 36]. Thirdly, the analysis of the impact of cluster instability on generic
routing overhead can be utilized to determine the effectiveness of node clustering for rout-
ing in VANETs. This can be done by comparing the control overhead of a flat routing
protocol with that of a cluster-based routing.

Despite the simplicity of the system model considered in this thesis, the results can
be utilized for more general systems. The thesis focuses on vehicle traffic flow in one
direction only. However, this is applicable to most clustering algorithms in the VANET
literature. To enhance cluster stability, only vehicles moving in the same direction can be
clustered together [12, 23]. Clusters on a single direction highway can be utilized for safety
applications. For example, when a sudden break or an accident occurs, safety messages
are generated by the source vehicle. Using the cluster backbone nodes, the safety message
is disseminated upstream to vehicles travelling in the same direction as the source vehicle
[80, 81]. In this case, the safety messages are only relevant to vehicles travelling in the
same direction as they are in the danger zone. Although this thesis focuses on a single
lane only, the lane is considered to be from a multi-lane highway. Therefore, the results of
this thesis account for the majority of highway traffic scenarios in reality, rather than the
limited case of a single lane highway.

This research has mainly addressed the effect of vehicle mobility, in terms of chang-
ing intervehicle distance headways over time, on communication link lifetime, on the ex-
ternal /internal cluster stability measures, and on cluster-based routing overhead. The
resulting analyses of this research can still be insightful in the early stages of VANET im-
plementation, i.e., when the penetration rate of the V2V technology is low. This is because
the effect of mobility is independent of the penetration rate of the V2V technology. For
example, the communication link between two equipped vehicles separated by a number
of non-equipped vehicles is the same as that calculated in Chapter 3.
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6.2 Future research direction

Our communication link analysis (and, therefore, the node cluster stability model) depends
only on the link distance. In reality, the communication link between two nodes depends
not only on the distance between the two nodes, but also on the communication channel
condition. Although the distance between two nodes may be less than the communication
range, poor channel conditions can result in inability of the two nodes to communicate.
Both vehicle mobility and vehicle density affect the communication channel conditions.
Additionally, as the vehicle density increases to a traffic jam situation, the network data
load increases. In this case, the communication between two nodes (and, therefore, the
link lifetime) is controlled by the network data traffic congestion rather than by vehicle
mobility. Extending our communication link analysis to account for the communication
channel condition and the network data load needs further investigation.

To date, VANET analysis and protocol design are mainly based on vehicle mobility
models and/or vehicle traffic patterns on urban roads and highways, irrespective of the
communication effect on the vehicle traffic. How VANETSs implementation affect the vehicle
traffic patterns and how to account for the changes in vehicle traffic pattern in the protocol
design is an important research topic.

In the first part of our cluster-based routing overhead analysis, the cluster structure
that minimizes the routing overhead is investigated for a stationary network. In the second
part, the cluster instability impact on the routing overhead is analyzed based on initial
clusters with structure from results of the first part. An effective cluster structure should
take account of both costs at the same time. One promising node clustering algorithm
for VANETS is evolutionary clustering, that aims to optimize a combination of a snapshot
quality and a temporal smoothness cost.
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Appendix A

A.1 Hop length distribution for intermediate vehicle

density

From (2.3), the pdf of the inter-vehicle spacing X ~ Pears(\, z, ), and the corresponding

cdf is

Letting u = Az — «),

Fx(z) = / fx(
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From (3.3), we have

P (A°(R—h)) (1 — P(A“(h)))
1—P(A4(R))

(1— Fx(R—h))Fx(h)
Fx(R) '

Substituting (A.1),

[1 _ v(zA(Hw))} [w(z,x(hfa»}
I'(z) T(2)

1A (R=a))
T'(2)

[1 _ M} (2, A(h — a))

I'(z)
72, AR = a))

Therefore, %7(?{;)}1)) = fz*l(Fh();)if(h)% (h). The corresponding pdf fy(h) = <L Fy(h),

which leads to

1
fuh) = ey VX B A=)+ fx T NB=h—a))), o <h < R-a.
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Appendix B

B.1 Proof of Theorem 1

Let My = {Mn(S;,S;)}, 0 < S;,S; < NN _— 1, be the transition matrix of the N-
dimensional Markov chain that represents the system of N independent copies of the
1-dimensional Markov chain, X, with transition matrix M = {M (u;,u;)}, 0 < w;,u; <
Niax — 1. A discrete-time Markov chain with stochastic transition matrix My is lumpable
with respect to the partition (2 if and only if, for any subsets (2; and €2; in the partition,

and for any super states S; and Sy in subset ; [71],

Z My(S1,S) = Z My (S, S). (B.1)

5e9; SeQ;

Consider the left hand side (LHS) of (B.1). Since X is a birth-death process, the super
state S1 = (ug,uq,...,un—1), 0 < u; < Npax — 1, can transit to any super state in set
A = {(ufy,u), ... uy_1)}, where state u; € {u; —1,u;, u;+1}, ie., |A] < 3Vmx, Let subsets
A =ANQ and Aj = ANy Since My (S51,5) =0VS ¢ A, the LHS of (B.1) reduces
to ZSGAj MN<51, S)

Similarly, for the right hand side (RHS) of (B.1), the super state S = (vg, v1,...,Un_1),
0 < v; < Npax — 1, can transit to any super state in set B = {(vj,v],...,vy_;)}, where
state v) € {v; — 1,v;,v; + 1}, i.e., |B| < 3Vmax, Let subsets B; = BN Q; and B; = BN Q.
Since My(Ss2,S) =0VS ¢ B, the RHS of (B.1) reduces to ZSij My (S5, S).

Consider two sequences, S; and S;, that are permutations of each other, and define
0(Si, 0;;) = S; to be the permutation operator on sequence S; under index order O;; that
gives S;, i.e., S; = (SZ(O,](k:)))!,f:”1 For example, if S; = (1,0,2) and S; = (0,2, 1), then
Oij = (2, 3, 1)
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Let 81 = (u(,u,...,uy_,) be a super state in subset A;. Therefore, My(S1,5]) =
HN ! M (u;,ut). Since 51,5’2 € );, there exists an index order Oja, s.t. 0(S1,O12) = S.
Addlmonally, 385 = (vg, v, ..., Vy_y) s.t. Sy = 0(57, O12). Note that S5 € Ba. As a result,
My (S, 5%) = HN ' M (v, z) | N 0 M(U0,s(n), Uoyy(ny)- Since the product operation is
commutative, we have My (S, 5}) = MN(Sl,S{). In general, V1, 55 € Q; s.t.0(S1,012) =
Sy and VS| € A;, 35, € By 5.t.55 = 0(51, 012) and My (52, 55) = My (S, 57). Hence,
> sea; My (Sl, ) ZSGBj MN(SQ, S), which ends the proof.

B.2 Proof of Corollary 1

Consider the tri-diagonal probability transition matrix of the Markov chain, X, as described
in Subsection 3.1. The stationary distribution of the chain, X, is given by

i—1
m=]] (p—’“) Mo, 1<i< Npax — 1 (B.2)

oo \dk+1

. -1
where 7y = [1 + ZN“‘”_I L_:lo < Pk )} . Consider the i'" lumped state Q; = {sq,s1,...,Sn}-

9k+1
Let Np be the number of distinct states in {sg, s1,...,Sy—1} in which (uy, ua, ... uy,) and
(M s My - - -y v, ) are the sequences of distinet states and their corresponding frequencies,

respectively, where 0 < u; < Npax — 1 and Z ny,, = N. Note that the size of the
lumped state is equal to the number of super states that are permutations of each other,
fe, 1 <) < N!0 <i< Np— 1. Therefore, the lumped states result from all possible
outcomes of choosing N states from Ny, different states independently, where choosing
state s; has the probability m;, 0 < s; < Ny — 1. This is a generalization of the Bernoulli
trial problem. Hence, the stationary distribution for the lumped state €2; is given by

Np

sz 1 nuk kl_[1

That is, the stationary distribution of the lumped Markov chain is multi-nomial, which
ends the proof.
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B.3 Proof of Corollary 2

Let the lumped state €2; = {so, s1,...,Sny_1} be a lumped state such that, if the system
enters this state, the event of interest occurs. Then, {sg,s1,...,sy} is an N-restricted
integer partition of an integer that is greater than or equal to Ny,. In combinatorics, an
integer partition of a positive integer n is a set of positive integers whose sum equals n.
Each member of the set is called a part. An N-restricted integer partition of an integer n is
an integer partition of n into exactly N parts. Therefore, VQ; = {s9,51,...,snv-1} € Qov,
{s0,81,-..,Sn_1} Is an integer partition of an integer that is less than Ny,. Since, an integer
Ny, can be partitioned into at most Vy, parts (i.e. when all the parts equal to one) and the
order of the N states in the lumped state is not important, the number of lumped states
€ Qoy when N > Ny, is equal to that when N = N;;,. Notice that Corollary.2 applies only
on the lumped Markov chain and not the original N-dimensional one. This ends the proof.
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Appendix C

C.1 Intercluster interference due to cluster-overlap

A node broadcasts its Hello message during the Hello-beaconing set. Nodes within two
hops from each other should be allocated different time slots. This is done to ensure that
all the nodes within a node’s one hop neighborhood receive the Hello message successfully.
CMs of the same cluster are insured to be allocated different time slots by the CH. However,
a strategy for avoiding intercluster interference should be adopted. Consider two disjoint
neighboring clusters (cluster 1 and cluster 2 in Figure C.1) that are assigned the same time
frame. One way to reduce intercluster interference is to use spatial slot assignment method
[29]. In this method, the time slots in the Hello-beaconing set are further partitioned into
a left set and a right set. The time slots of the left and the right Hello-beaconing set are
spatially sorted and are assigned by the CH according to the CMs’ positions [29]. However,
this does not insure collision-free broadcasts. For example, if cluster 1 assigns a CM on its
left the same slot assigned by cluster 2 to its left hop edge node, collision may occur at a
node located in the right side of the cluster 1. Therefore, atleast two frames are required
to ensure collision-free Hello message broadcast.

Consider three consecutive overlapping clusters (cluster 2, cluster 3, and cluster 4 in
Figure C.1, and consider two frames assigned to neighboring clusters, as illustrated in the
figure. Furthermore, assume that the spatial slot assignment method [29] is implemented.
When overlapping between clusters increase, collision may still occur. This is illustrated
in Figure C.1. If node B is allocated the same time slot in Frame 2 (by cluster 4) as node
A (by cluster 2), a collision will occur at node C. It should also be noted that the spatial
slot assignment method is sensitive to the positions of vehicles with respect to the CH
and within the same side of the cluster. This makes the slot assignment method prone to
failure in avoiding intercluster interference as discussed in this section. Since we assume

97



2 3 4

1 = 5
L —
cM Frame 1 Frame 2 1 IFrame 1 i FraniEEil Frame 1 1l
- <°'A’w"’-‘ Tl e v 00
CH B

Figure C.1: Illustration of intercluster interference that may be caused when clusters
overlap. Collision occurs at node C, when node A and B are allocated
the same time slot during the Hello-beaconing set.

a collision free environment in our study, we consider the use of three unique frames (the
minimum required).
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