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Abstract

In recent years, electrification of powertrain has gradually become the core of research

and development efforts in automotive industry. This is mainly due to the fact that elec-

trified powertrains can effectively alleviate concerns of environmental pollution caused by

internal combustion engines (ICEs) and reduce the rate of depletion of the earth’s natural

resources, while offering a higher efficiency and a better fuel economy.

One of the key components of every electric vehicle (EV)/hybrid electric vehicle (HEV)

is the Energy Storage System (ESS). An ESS provides propulsion power to the electric

drivetrain and captures regenerative braking power. Batteries and ultracapacitors are the

most well-known ESS devices for automotive applications.

In battery/ultracapacitor-based powertrains, the storage units are configured as series-

parallel arrangements of individual cells. In this thesis, the battery and ultracapacitor

units are assumed to be composed of parallel branches of series-connected cells. Optimal

sizing of the storage unit (determining the optimum numbers of the parallel branches and

series-connected cells) and the interfacing infrastructure (if any DC-DC converter exists

between the storage unit(s) and the traction motor controller) can have a significant impact

on the manufacturing cost of the electric vehicle and its fuel economy.

This thesis formulates the problem of optimal sizing of battery/ultracapacitor-based

energy storage systems in electric vehicles. Through the course of this research, a flexible

optimization platform has been developed. When solving the optimization problem, dif-

ferent constraints such as limits on state of charge, current, and power of the battery cells,

current and power of the ultracapacitor cells, voltage conversion of the DC-DC converter,

DC bus voltage, and operation characteristics of the inverter and the traction motor are

taken into account. This optimization tool is used to solve the problem of optimal sizing
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of the storage systems for two different classes of vehicles: (i) a small-size, long-range car

and (ii) a city bus. Aside from optimal sizing of the storage systems as the main objective,

the developed platform provides a proper simulation tool for analyzing the performance of

existing electric vehicles on the road.
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Chapter 1

Introduction

Concerns about environmental pollution, rapid increase in fuel cost, and depletion of fossil

fuel reserves have been the main motivations behind the movement towards transportation

electrification. Along with research sectors in the automotive industry, researchers in

academia have been playing an important role in advancing the knowledge and technology

supporting development of electric vehicles (EVs) and hybrid electric vehicles (HEVs) [1].

Although EVs and HEVs offer numerous benefits, there are some hurdles in the path of

electrification of transportation that have to be overcome. One of the main issues is the

limitations of the current technology of energy storage devices [2]. Statistical analysis

shows that customers are reluctant to purchase electric and hybrid electric vehicles unless

the performance and reliability of these types of vehicle match or exceed those of traditional

internal combustion engine (ICE)-based vehicles, at a competitive price [3].
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1.1 Motivations

A key component of every EV/HEV is the Energy Storage System (ESS). ESS consists

of a source or a combination of two or more sources, which provides electric power for

the drivetrain in an EV/HEV. Among electrical energy storage devices used in an ESS,

batteries and ultracapacitors are the most well-known ones [4, 5].

In a battery, electric power is generated via an electrochemical reaction. Each battery

cell is mainly composed of two electrodes (Anode and Cathode), an electrolyte, and a

conducting separator. In the process of generating power, anions are oxidized at the anode

and cations receive the free electrons if the circuit is closed. Batteries are known as sources

with high specific energy (or gravimetric energy density in Wh/kg). However, the specific

power (or gravimetric power density in W/kg) of batteries is normally low compared to

that of ultracapacitors [4, 6].

Ultracapacitors are devices with relatively higher specific power than that of conven-

tional batteries [4]. This makes ultracapacitors a favorable choice for relieving the battery-

based energy storage systems in conditions of harsh power fluctuations.

Due to limitations imposed by economy, time, and available resources, optimization

is a crucially important task in developing any new technology. This applies specially to

technologies developed by automotive industry. In EVs and HEVs, optimization of the

energy storage systems is important due to its impact on lowering manufacturing cost and

weight/volume of the system, enhancing fuel economy, and reducing harmful gas emissions

(in case of HEVs).

In an electric powertrain, the energy storage devices (batteries and ultracapacitor in

this study) are configured in series-parallel combinations of individual cells. These series-

parallel arrangements along with the interfacing infrastructure and control and protection
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circuits define the storage systems. The cost of storage system is a large portion of the

manufacturing price of the electric vehicle. Therefore, conducting a quantitative analysis

which determines the optimum numbers of the parallel branches and series-connected cells

and rating of the interfacing infrastructure installed in the powertrains of EVs will be

beneficial to both car manufacturers and their costumers.

1.2 Literature Review

Optimal sizing of the powertrain components in electric and hybrid electric vehicles has

been addressed in a vast body of literature. Different criteria can be used for classification

of problems of optimal sizing for energy storage systems. One classification approach is

based on the number of different types of energy sources responsible for meeting power

requirements of the vehicle. From this viewpoint, the simplest form of optimization is

when there is only one type of energy source (either battery or ultracapacitor in this

study) in the powertrain. Battery-based ESS in Tesla Roadster and ultracapacitor-based

ESS in Sinautecs electric bus are two examples [7, 8]. In this type of powertrain, control

system is much simpler than that in the case where two or more different types of energy

sources exist in the structure of powertrain. Examples are Honda Accord and Toyota Prius

hybrid electric vehicles [9]. In the case of having more than one type of energy source

installed, the control circuit requires sophisticated energy management techniques to split

the power among different sources [10]. Considering the fact that the existing sources

have different characteristics (from specific energy and specific power points of view), the

problem of optimal sizing can become more complex. The optimization problem can be

solved using different algorithms such as Linear Programming (if the system is convex and

can be represented by a set of linear functions), Dynamic Programming (both deterministic

3



and stochastic), and Evolutionary methods such as Genetic Algorithm (GA), Simulated

Annealing (SA), and Particle Swarm Optimization (PSO) [11]-[15]. It should be noted

when more than one type of energy storage devices is installed in the powertrain, the ESS

can be called a hybrid ESS or HESS (battery-ultracapacitor electric powertrain in this

study).

Another approach for classifying the optimization problems is on the basis of types of

constraints considered for solving the problem. In this regard, the easiest way of solving

the problem is based on maximum power requirement from the storage system and rated

terminal voltage on the DC bus (the voltage requirement and maximum power demand

determine the numbers of series-connected cells and parallel branches of the devices in

the storage system) [16]. The power requirement of the vehicle is normally calculated on a

specific drive cycle. The drive cycle may be a standard one, available in public domain, or it

can be generated by combining the standard drive cycles [17]. Calculating the size of storage

units based on maximum value of the power demand, though simple to implement, does not

consider behavior of the storage devices at different levels of state of charge (SoC). In other

words, performance of the storage devices mainly maximum power capability, open-circuit

voltage, and charge/discharge efficiency vary according to state of charge. Therefore, the

powertrain may not meet the power requirement of the vehicle at specific moments of time

in the course of a drive cycle. In [16], sizes of the battery and ultracapacitor units in a HESS

installed in an HEV were determined using the set points of the upper and lower voltage

limits defined for the ultracapacitors and the peak power demand. The ultracapacitor

and battery units are connected to the DC bus via bidirectional switches. Battery unit

is mainly responsible for meeting the energy requirement on the electric drivetrain during

cruising. When the vehicle is under acceleration or deceleration, the ultracapacitor unit

swap the battery unit on the DC bus. The paper did not present the models used for the
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storage devices. In addition, it did not provide any model for efficiencies of the drivetrain

components, i.e., the inverter and the traction motor.

For a more accurate analysis, a constraint on the energy requirement of the vehicle can

be added to the problem. To do this, the energy demand (the area under the curve of

power versus time) for completing a specific drive cycle is divided by a constant efficiency

(accounting for the efficiency of the powertrain) to determine capacity in kWh required

from the storage system. Using this constraint, along with maximum value of the power

demand and the DC bus voltage, the numbers of parallel branches and series-connected

cells are determined [18]. Like in the previous case, the solution obtained in this regard

does not take performance of the storage devices at different levels of SoC into account.

Reference [18] discussed design of a HESS composed of battery and ultracapacitor units

for a fuel cell vehicle, based on splitting the total energy demand among fuel cell stacks,

batteries, and ultracapacitors to successfully complete a priori known drive cycle. The fuel

cell was supposed to provide the average power of the load during specific intervals while

the battery and ultracapacitor units provided the remaining part. The paper formulated

the sizing problem in a multi-objective format using the total mass of the vehicle and

manufacturing cost of the storage units and fuel cell stacks.

To improve the accuracy of optimization, speed-versus-time profile of the vehicle under

study (drive cycle) can be discretized using a specific sampling time. Then, the job of

optimization platform is to determine the size of the storage system in such a way that

the power requirement of the vehicle is met at every sampled interval of the drive cycle

[3, 12, 19, 20].

As mentioned before, a very important issue in optimal sizing of the powertrains with

more than one type of energy source is about the energy management technique used to

split the power among the available sources. A common approach in this regard is to
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use rule-based techniques [21]. In rule-based methods, modes of operation are determined

based on some of the variables of the system such as power demand, state of charge of the

storage devices and/or velocity of the vehicle. As an example, let’s consider thermostat

control as one of the rule-based approaches. In an HEV which has ICE and battery cells

as the power sources, thermostat control keeps the engine off as long as the battery SoC

is above the predefined lower limit. This type of control is normally utilized in series HEV

[13, 14, 22, 23].

In [3], designing a HESS for installing in Chrysler Pacifia which had a parallel drivetrain

was discussed. The HESS included battery and ultracapacitor cells. A rule-based procedure

was used to determine the specifications of different components of the powertrain. Power

management between batteries and ultracapacitors was based on the power demand and

percentage of the maximum power deliverable by the cells. The behavior of the cells in

terms of variation of open-circuit voltage versus SoC and the limits on the currents and

voltages were not considered. In addition, no specific configuration of HESS in terms of

interfacing batteries and ultracapacitors using DC-DC converters was clearly discussed

when designing the powertrain components.

Reference [19] used a simple rule-based technique to determine the sizes of ICE and

traction motor for a power-split plug-in HEV (PHEV) using the efficiency maps. It was

assumed that the ICE would provide the average power demand and the rest of power would

be supplied by the ESS. ADVISOR package was used for the purpose of optimization with

three different drive cycles (UDDS, HWFET, and NEDC) being used for calculating the

average power required from the ICE.

Another rule-based approach is based on fuzzy logic. In fuzzy-based techniques, two

or more operating modes are used to control power management between different sources

of the powertrain in a fuzzy logic fashion. Therefore, transition between one mode and
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another does not occur at a specific moment of time which is the case in deterministic rule-

based methods, but in a continuous manner. Reference [24] used an intelligent fuzzy logic

controller to monitor charge of the battery cells while distributing the torque (power) in

such a way that the efficiency of the internal combustion engine was maximized. The paper

did not provide any mathematical model for representing the behavior of the components

in the electric path of the powertrain (battery, inverter, and traction motor).

In optimization-based strategies, well-known optimization techniques are used to op-

timize the system for a given drive cycle. Optimization can be carried out based on a

fixed control law (such as low-pass filtering of the power demand to generate the power

reference for battery unit) or based on arbitrary splitting of the power demand among

available sources [21, 25]. In [12], Sequential Quadratic Programming (SQP) was used

for designing the size of battery pack and flywheel in a combat vehicle. Three different

scenarios in terms of vehicle weight and harshness of the mission were considered for de-

signing the components. In the first scenario, the vehicle did not carry any gun and the

battery unit was sized based on a light-duty mission. In the second and third scenarios,

due to having two different guns onboard, the mass and size of the storage system changed

as the power and energy requirements of the vehicle’s missions became totally different

from those in the first scenario. Behavior of the storage devises in terms of variations of

efficiency and open-circuit voltage versus SoC was not considered for sizing of the cells. In

addition, efficiencies of inverter and traction motor were not modelled for the purpose of

optimization.

Reference [20] presented a detailed analysis on sizing of the battery unit for an HEV

using stochastic Dynamic Programming approach. The duration and power demand of the

drive cycle were modeled by normal (Gaussian) distribution functions. The drive cycle was

generated randomly using Markov chain to take stochastic variations of an unknown drive
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cycle into considerations. The authors designed the battery unit based on two scenarios:

(i) charge depletion (CD)-charge sustenance (CS) and (ii) blended procedure which took

both cost of electricity and fuel economy into consideration. However, the authors did

not consider the constraints on the terminal voltage of the battery bank. In addition,

efficiencies of the converter and traction motor were not modelled.

In [26], a battery-ultracapacitor HESS was designed for an electric city bus. The power

management was based on low-pass filtering of the power demand, where the low-frequency

component of the power was supplied/absorbed by the battery unit and the high-frequency

component was taken care of by the ultracapacitor unit. The authors used limits on the DC

bus voltage to determine the number of series-connected cells of the storage unit connected

across the DC bus. Two different configurations of interfacing battery and ultracapacitor

units to the DC bus were compared in terms of sizes of the storage devices. The paper

did not consider operational characteristics of the inverter and the traction motor during

optimization.

Reference [27] used Genetic Algorithm (GA) to determine the sizes of powertrain com-

ponents including the maximum powers of ICE and electric machine (EM) and the number

of battery cells in an HEV. Charge sustaining strategy was used for keeping SoC within

predefined limits. The optimization problem was formulated in a multi-objective format

for maximizing fuel economy and minimizing emissions. A deterministic approach, in

which the drive cycle (UDDS) was known ahead of time, was implemented for solving

the optimization problem. The paper did not consider any constraint on the cell current

and terminal voltage of the battery bank. In addition, efficiencies of the inverter and the

traction motor were not modelled.

In [28], the authors determined optimal size of the battery unit in a plug-in hybrid

electric vehicle. The design was based on three different types of battery cells (Li-ion,
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NiMH, and Lead-acid) on a drive cycle generated by the data collected in Winnipeg,

Manitoba, Canada, during weekdays and weekends for 30 vehicles in a 30-day period of the

month of June. This way, the drive cycle closely approximated an actual driving pattern.

Power split between the ICE and the battery pack was done based on the assumption that

the power demand was met by the electric motor up to the maximum power capability of

the electric motor. Beyond this point, the ICE took care of the remaining portion of the

power demand. The paper did not model variation of the battery cells behavior such as

power capability, efficiency, and open-circuit voltage in terms of SoC.

Reference [29] addressed the problem of optimal sizing of the HESS for an HEV using

Genetic Algorithm (GA). The author used a sigmoid function as a power management tool

between the ICE, the battery unit, and the ultracapacitor unit. The sigmoid function was

formulated in such a way that the limits on SoC of the battery and ultracapacitor cells and

power capability of the battery unit were taken into account. Depending on the number

of occurrences of certain velocities and accelerations over the drive cycle, the optimization

algorithm was run several times to find a suboptimal power management profile based

on the chosen sigmoid function. The thesis did not consider any specific arrangement for

interfacing the battery and ultracapacitor units to the DC bus and it was simply assumed

that the arrangement and interfacing infrastructure did not affect the result of optimization

significantly. Besides, operations of the inverter and the traction motor were not modelled.

In [30], problem of optimal sizing of the storage system in a plug-in hybrid electric

vehicle was solved to find the sizes of battery and ultracapacitor units which were interfaced

to the DC bus via a fully-decoupled configuration with two parallel DC-DC converters. The

output of optimization also determined the degree of hybridization between the storage

devices and the engine. The authors used MATLAB to solve the optimization problem

and implemented the corresponding system in an RTDS platform in which a flywheel, a
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generator, and a controlled load emulated the vehicle’s powertrain. The efficiencies of the

inverter and the traction motor were not modelled for the purpose of optimization.

Reference [31] addressed the problem of optimal sizing of the powertrain components

in a series plug-in hybrid electric bus. A novel heuristic method based on Pontryagin

maximum principle was used for solving the optimization problem. The storage unit,

which was composed of battery cells, was sized based on operation of the bus in pure

electric (EV), charge-depletion, and charge-sustenance modes. In the optimization results,

in addition to the optimal sizes of the components of the powertrain, the moments at

which the engine must turn on/off were determined as well. In this paper, the losses of the

traction motor and the inverter were modelled using a quadratic equation. The authors

did not consider the voltage constraints on the battery unit. In addition, efficiency of the

electric motor was not modeled in the optimization procedure.

In [32], sizes of fuel cell stacks and ultracapacitor unit were determined for an electric

powertrain. The storage units were directly connected together and interfaced to the DC

bus via a DC-DC converter. This limited functionality of the ultracapacitor unit. The

paper did not consider behavior of the ultracapacitor in term of variation of efficiency

and power capability versus open-circuit voltage and operational characteristics of the

inverter and the traction motor. Reference [33] addressed optimal sizing of battery and

ultracapacitor units and fuel cell stacks in an electric bus using Genetic algorithm. Charge

depletion-charge sustenance strategy was used for the purpose of optimization. The paper

did not consider any power electronic converter for interfacing the storage units to the DC

bus. Models of the battery and ultracapacitor cells, inverter, and traction motor were not

presented in this paper.
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1.3 Objectives of the Research

The objectives of this PhD research are:

• Having a detailed qualitative analysis on several topologies of battery/ultracapacitor-

based energy storage systems in electric powertrains.

• Developing a simulation platform which includes electrical models of powertrain com-

ponents, i.e., storage devices, DC-AC converter, and electric machine.

• Formulating the problem of optimal sizing for an electric vehicle.

• Developing an optimization tool for solving the optimal sizing problem.

• Solving the optimization problem for two different classes of vehicles: (i) a small-size,

long-range car and (ii) a city bus.

• Analyzing the performance of the electric powertrain with the optimally-sized ESS.

1.4 Contributions of the Research

This thesis provides a detailed work on optimal sizing of battery/ultracapacitor-based en-

ergy storage systems in electric vehicles. The outcome of the thesis is a flexible optimization

platform which can be used for the purpose of optimal sizing of powertrain of any electric

vehicle if the vehicle’s dimension and its driving conditions are known a priori. In formu-

lating the optimization problem, different constraints such as limits on SoC, current, and

power of the battery cells, current and power of the ultracapacitor cells, voltage conversion

of the DC-DC converter, DC bus voltage, and operation characteristics of the inverter and
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the traction motor are taken into consideration. For solving the optimization problem, a

metaheuristic population-based algorithm named Teaching-Learning-Based Optimization

(TLBO) technique is implemented in MATLAB environment. Although optimization of

the sizes of the powertrain components is the main capability of the developed platform,

it can also be used as a useful simulation tool for analyzing performance of the existing

electric vehicles on the road.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 provides schematic diagrams of

the powertrains of a battery-only electric vehicle, an ultracapacitor-only electric vehicle,

and a battery-ultracapacitor electric vehicle. A detailed qualitative analysis on different

configurations of interfacing battery and ultracapacitor units to the DC bus is presented

in this chapter as well. In addition, mathematical models of different components of the

powertrains, i.e., battery and ultracapacitor cells, inverter, and traction motor are provided.

In Chapter 3, implementation of the optimization platform including formulation of the

problem of optimal sizing and the algorithm used to solve the problem is discussed. Chapter

4 presents the results of solving the problem of optimal sizing for two different classes of

electric vehicles. Chapter 5 concludes the thesis.
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Chapter 2

Powertrain of an Electric Vehicle

In this chapter, different components of a battery/ultracapacitor-based powertrain used

in this thesis are discussed. These components include battery and ultracapacitor cells,

DC-AC converter, electric motor, and transmission system. The models discussed in this

chapter for these components are implemented in the optimization platform. The chapter

also discusses different configurations for interfacing battery and ultracapacitor units to

the DC bus in a hybrid energy storage system.

General schematic diagrams of the powertrains of a battery-only electric vehicle, an

ultracapacitor-only electric vehicle, and a battery-ultracapacitor electric vehicle are shown

in Figs. 2.1, 2.2, and 2.3, respectively. The battery unit (BU) and the ultracapacitor unit

(UC) are composed of parallel branches of series-connected battery and ultracapacitor

cells, as shown in Figs. 2.4 and 2.5, respectively. In Fig. 2.3, the interfacing bridge,

though can directly connect both the battery and ultracapacitor units to the DC bus,

normally includes one or two DC-DC conversion stages. It should be noted that charging

infrastructures are not shown in Figs. 2.1, 2.2, and 2.3. The battery unit can be charged
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Figure 2.1: Powertrain of a Battery-only Electric Vehicle

Figure 2.2: Powertrain of an Ultracapacitor-only Electric Vehicle

in two ways: onboard grid integration (for example in plug-in battery electric vehicles) and

battery swap strategy. In onboard grid integration, the battery unit is plugged into the

power grid (level-1, level-2, or level-3 charging scheme [34, 35]). In battery swap strategy,
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Figure 2.3: Powertrain of a Battery-Ultracapacitor Electric Vehicle

the discharged battery unit is swapped with a newly-charged one at a swapping station

[36]. For the ultracapacitor unit, grid integration is the only charging method currently

used in available ultracapacitor electric buses [8]. It is worth mentioning that charging the

ultracapacitor units via grid integration is only carried out in the vehicles where UC is

needed to be charged frequently like in ultracapacitor buses.

Figures 2.1, 2.2, and 2.3 also show the electric motor (EM) which is controlled by the

DC-AC converter (inverter). The electric motor transfers the mechanical power to the

wheels through the transmission system [37]. The numbers of parallel branches and series-

connected cells in each branch for the battery and ultracapacitor units (Nbp, Nup, Nbs, and

Nus) are found through an optimization process. In the case of battery-ultracapacitor HESS

configuration, if DC-DC converters are included in the interfacing bridge, an additional
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Figure 2.4: Structure of the battery unit

optimization variable accounting for the rating of one of the DC-DC converters in the

bridge (it may be the only converter installed) will be added to the optimization problem.

The result of optimization also determines ratings of the DC-AC converter and the electric

motor.

It should be noted that the configuration shown in Figs. 2.2 has limited applications in

electric vehicles. This structure cannot be implemented for a long-range vehicle. What is

meant by long range is that the vehicle must be able to complete a long drive cycle with a

single charge of the storage unit. The examples are Tesla Roadster and Nissan Leaf. Both

of these cars can complete long ranges on a single charge of their storage units (battery

packs installed). However, this objective could not be fulfilled if their storage units were

just composed of ultracapacitor cells. This is due to low specific energy of ultracapacitors

compared to that of batteries available in the market. If the optimization problem is solved
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Figure 2.5: Structure of the ultracapacitor unit

based on the assumption of having only ultracapacitor cells onboard for long-range vehicles

with a constraint to complete their drive cycles with a single charge, the optimization

algorithm cannot converge to any solution. From the viewpoint of numerical analysis,

what happens is as follows: once a random point is not found as a feasible solution due

to shortage of energy available from the ultracapacitor unit to complete the drive cycle,

the optimization algorithm examines the situation for a bigger size of the storage unit.

However, due to large mass of the ultracapacitor cells, the power profile associated with

the drive cycle will experience a significant increase as the total weight of the vehicle is

raised. This implies more energy being required from the storage unit and therefore, the

issue of meeting the energy constraint is aggravated in a positive feedback fashion. As a

result, the algorithm cannot ever converge to a feasible solution.
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2.1 Different Configurations of Interfacing Battery and

Ultracapacitor Units to the DC Bus

One of the main challenges for solving the optimal sizing problem for a battery-ultracaapcitor

HESS is how to interface the battery and ultracapacitor units to the DC bus. This concept

has received a wide coverage in the literature. In the following, a qualitative analysis is

provided on this concept.

2.1.1 Direct Connection of BU and UC to the DC Bus

Figure 2.6 shows a block diagram of direct connection of BU and UC to the DC bus. This

is the simplest way of connecting battery and ultracapacitor units to the DC bus. The

bold features of this configuration are as follows [3, 4, 10], [38]-[44]:

• This configuration is considerably easy to build and very cost-effective.

• The DC bus voltage experiences small and slow variations as the bus is directly

clamped to the terminals of BU. This is a favourable feature for the input voltage of

the DC-AC converter.

Figure 2.6: Direct connection of BU and UC to the DC bus
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• The power management is straightforward as the magnitude and direction of power

components associated with BU and UC are determined by their corresponding in-

ternal impedances and instantaneous value of the DC bus voltage.

• Since BU is directly connected to the DC bus, it can be exposed to large and fast vari-

ations of discharge/charge currents during acceleration/regenerative braking. This

can quickly deteriorate the functionality of the battery and shorten its life.

• As the terminal voltage of UC is clamped to that of the battery unit, the terminal

voltage of UC cannot vary freely and therefore, functionality of UC remains very

limited, especially during acceleration and regenerative braking.

2.1.2 Partially-decoupled Interfacing of BU and UC to the DC

Bus

In partially-decoupled configurations, either BU or UC is decoupled from the DC bus

using a bidirectional DC-DC converter where the decoupled unit is connected on the low-

voltage side. Although existence of the DC-DC converter adds to the cost and complexity

of the control circuitry, this type of HESS configuration offers some important features

to the system. Depending on whether BU or UC is connected directly to the DC bus,

two topologies can be realized in this category. In topology I, shown in Figure 2.7, UC is

connected directly to the DC bus. This configuration offers the following major advantages

over the configuration of Fig. 2.6 [38, 41], [43]-[48]:

• As BU is decoupled from the DC bus, it is immune to highly-fluctuating charge/discharge

currents as sharp rises and falls of the power demand during acceleration and regen-

erative braking events can be picked up by UC at the DC bus.
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Figure 2.7: Partially-decoupled configurations: topology I

• As the battery unit is placed on the low-voltage side of the DC-DC converter, the

number of series-connected battery cells is reduced. This makes voltage (charge)

balancing procedure an easier task to implement for the battery cells.

It should be noted that the diode shown in Fig. 2.7 is to make sure that the DC bus voltage

never falls below the terminal voltage of the battery unit installed on the low-voltage side

of the DC-DC converter.

One of the drawbacks of this configuration is that the DC bus voltage may be exposed

to wide fluctuations due to the fact that it is connected directly to UC terminals. This can

have an adverse impact on the performance of the DC-AC converter from the viewpoint of

speed control of the traction motor, especially in harsh driving conditions where UC may

experience significant voltage variations over the drive cycle. This issue can be effectively

resolved by proper voltage control of the DC-DC converter. However, stiff regulation of

the DC bus voltage limits the functionality of ultracapacitor unit.

In topology II of partially-decoupled configurations, shown in Figure 2.8, BU is directly

connected to the DC bus, while UC is decoupled from the DC bus via the bidirectional

DC-DC converter. The bold features of this topology are [41], [44]-[50]:

• The DC bus does not undergo significant voltage fluctuations as it is clamped to the
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Figure 2.8: Partially-decoupled configurations: topology II

terminals of BU.

• Using the DC-DC converter, UC can operate over a wide voltage range which im-

proves its functionality.

• Being installed directly on the DC bus, BU is exposed to large and fast-changing

charge/discharge currents. This can result in shortening the life time of battery cells.

• The DC-DC converter is rated based on the power rating of UC, which is supposed

to take care of sharp and large changes in the power demand. This necessitates using

a high-power fast DC-DC converter which implies a large and expensive DC-DC

conversion system.

• Placing the battery unit on the DC bus increases the number of series-connected

battery cells. Therefore, a more complex and expensive voltage balancing circuitry

is required compared to that of configuration of Fig. 2.7.
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2.1.3 Fully-decoupled Configurations

In fully-decoupled configurations, BU and UC are completely decoupled from the DC bus

using a power electronic-based interfacing bridge. A number of topologies fall under this

category. The simplest structure is shown in Fig. 2.9 where parallel-connected BU and

UC are decoupled from the DC bus by a DC-DC converter [3, 4, 10, 39, 40, 42]. Although

this configuration offers an advantage in terms of the number of series-connected cells of

the storage devices (from the viewpoint of voltage balancing circuits) compared to the one

shown in Fig. 2.6, it still suffers from low level of functionality of UC, as it is clamped to

the terminals of BU. In addition, battery life may be shortened due to occurrence of harsh

driving conditions.

Figure 2.10 shows a fully-decoupled configuration in which BU and UC are interfaced to

the DC bus via a multi-input DC-DC converter [44, 45]. The main drawback of multi-input

converter is the complexity of control system and isolation transformer saturation.

Cascaded topologies are shown in Figs. 2.11 and 2.12 where two cascaded converters

decouple BU and UC from the DC bus [3, 4, 10, 39, 40, 44, 45]. In topology I, shown

in Fig. 2.11, BU is connected on the lowest voltage terminals and UC is installed at the

intermediate level. This is a favorable topology as balancing the battery cells at lower

Figure 2.9: Fully-decoupled configuration with parallel connection of BU and UC
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Figure 2.10: Fully-decoupled configuration with a multi-input converter

Figure 2.11: Fully-decoupled configurations with cascaded converters: topology I

Figure 2.12: Fully-decoupled configurations with cascaded converters: topology II

voltage levels is easier and less expensive than that at higher voltage levels. In addition,

the first DC-DC converter which interfaces BU to UC is rated at the power rating of BU.

However, as the UC voltage is free to fluctuate at a higher voltage, significant care is

needed when this topology is used. This is due to critical instability problems [51, 52]. To

solve this problem, the positions of BU and UC can be exchanged as shown in Fig. 2.12.
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In this configuration, BU is connected on the intermediate voltage level and provides a

more stable voltage at the low-voltage terminals of the other converter through which BU

is interfaced to the DC bus. However, this topology has its own drawbacks as balancing

of battery cells at higher voltage levels is a more difficult and costly task. In addition, the

cost of DC-DC converters is higher compared to that of topology I in Fig. 2.11, as both

converters have to process the large and fast changes of power handled by UC.

The other fully-decoupled configuration is the parallel-converter topology shown in Fig.

2.13. This is a favorable and commonly-used topology in this category [3, 4, 10, 39, 41,

42, 45, 53]. The stability problems existing in cascaded topology are taken care of in this

configuration. Besides, the converters are required to be rated separately for BU and UC,

implying lower converter costs when compared with cascaded configurations. However,

this configuration requires a very complex, and therefore, expensive control circuitry.

Figure 2.13: Fully-decoupled configuration with parallel converters
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It should be noted that in the literature, different types of DC-DC converters have

been discussed for interfacing the storage units to the DC bus in electric and hybrid electric

vehicles. These bidirectional converters cover both non-isolated and isolated types. Some of

the main examples are: Bidirectional Buck-Boost, Half-bridge, and Full-bridge converters

[4, 39, 49, 54, 55]. The bidirectional Buck-Boost converter is the most commonly used

DC-DC converter for applications in electric and hybrid electric vehicles, and is chosen as

the interfacing bridge in the battery-ultracapacitor HESS configuration in this thesis.

2.2 Electrical Model of Battery Cell

Traditionally, rechargeable batteries have formed the building blocks of electrical energy

storage systems of EVs/HEVs. Generally, an electrochemical cell is modeled as a combi-

nation of elements such as resistors, inductors, capacitors, and a voltage source [56]. To

determine the components representing the electrical behavior of a cell, one of the most

common methods is to apply ac currents at different frequencies to the cell and study the

behaviour of the terminal voltage of the cell. If this is carried out at different operating

temperatures, the impact of temperature on the behaviour of the cell can be evaluated as

well [56, 57].

Various electrical models of batteries have been proposed in the literature [56]-[65]. In

this thesis, the circuit diagram shown in Fig. 2.14 is used as the electrical model of the

battery cells [61, 62]. This model has a variable voltage source shown as voc (open-circuit

voltage) which is a function of SoC, an effective series resistance (Rbes), and two short- and

long-transient RC branches (Rbst, Cbst, Rblt, and Cblt). The resistances and capacitances

are functions of SoC as well. It should be noted that in this thesis, temperature dependence

of open-circuit voltage, resistances, and capacitances has been neglected, assuming that
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Figure 2.14: Electrical model of a battery cell [61, 62]

battery cell temperature is maintained at a constant value. For calculating the open-

circuit voltage, it is required to determine SoC of the cell. There are different methods

for calculating SoC such as Coulomb Counting, Monitoring Specific Gravity, and Kalman

Filtering [65]-[70]. In this thesis, Coulomb Counting is used for calculating the state of

charge of the battery cells. This is one of the most-widely used methods for estimation of

SoC. To implement it, the battery current is integrated to calculate the charge transferred

and then, the result is subtracted from the initial charge of the cell. Note that positive ib

denotes battery discharging. The mathematical model of the circuit diagram in Fig. 2.14

is represented by:

voc = Fb(SoC) ib = −Qb
d(SoC)

dt

vbt = voc − vbst − vblt −Rbesib

Cbst
d vbst
dt

= ib −
vbst
Rbst

Cblt
d vblt
dt

= ib −
vblt
Rblt

(2.1)
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where Fb is the nonlinear function representing open-circuit voltage in terms of SoC, Qb

rated capacity of the battery cell, vbt the cell terminal voltage, ib the cell discharging

current, and d/dt the time-derivation operator.

2.3 Electrical Model of Ultracapacitor Cell

The concept behind an ultracapacitor is, to some extent, similar to the electrolytic capac-

itor in which charge separation creates an electric potential between the plates. However,

due to special structure of the ultracapacitors, mainly larger equivalent surface areas on

the electrodes and thinner layers of dielectric material, charge storage capacity is much

larger than that of conventional capacitors [71]. In the literature, there are several elec-

trical models for ultracapacitors [71]-[76]. In this thesis, the model shown in Fig. 2.15 is

used for the purpose of simulation and optimization [75]. This model consists of a fixed

capacitance (C0), a voltage-dependent capacitance (C1), and an effective series resistance

(Rues). Equation (2.2) formulates the model based on this circuit diagram.

vut = vu1 −Ruesiu

(
C0 + C1

)d vu1
dt

= −iu (2.2)

where

C1 = k1vu1 (2.3)
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Figure 2.15: Electrical model of an ultracapacitor cell [75]

2.4 Electrical Model of DC-AC Converter

Figure 2.16 shows the circuit diagram of a three-phase IGBT-based DC-AC converter. The

AC voltage sources represent the terminal voltages of the AC electric motor of the power-

train. Each IGBT has been represented by a switch-diode combination. Different switching

Figure 2.16: Circuit diagram of a three-phase DC-AC converter
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techniques such as square-wave, sinusoidal pulse-width modulation (SPWM), and space

vector modulation (SVM) can be applied for controlling the operation of inverter. In this

thesis, SPWM has been considered as the switching technique. To implement it, three 120-

degree phase-shifted sinusoidal modulating signals are compared to a triangular waveform.

The intersection between each sinusoidal signal and the triangular waveform determines

the instants of switching for the switches in the corresponding leg of the converter. This has

been shown pictorially in Fig. 2.17 for controlling the operation of one leg of the converter.

As seen in this figure, the sinusoidal modulating signal is intersected with the triangular

carrier signal. Whenever the control signal is larger than the triangular waveform, the top

switch of the corresponding leg is ON (the direction of load current determines whether the

switch or the diode is conducting). The bottom switch is ON whenever the control signal is

smaller than the triangular waveform. The dotted trace illustrates the widths of ON-state

intervals for the top and bottom switches. By implementing this switching scheme, the AC

voltage (with respect to the middle point N) will be a pulsed waveform fluctuating between

−0.5VDC and 0.5VDC . As the frequency of switching is increased, the low-order harmonic

Figure 2.17: PWM switching signal generation
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components of the pulsed waveform are reduced. However, it should be noted that the

switching frequency cannot be significantly high as it increases the switching losses of the

converter.

To implement a mathematical model for the inverter, each switch-diode combination

is represented by an ideal switch and an ideal diode each in series with a resistance and a

voltage source, as shown in Fig. 2.18 [77]-[79]. Under SPWM, when the AC current (ia)

is positive, the AC side voltage (va) is expressed as:

va = d
(VDC

2
−Rswia − Vsw

)
+ (1− d)

(
− VDC

2
−RDia − VD

)
(2.4)

where d is the duty ratio of S1. For the negative current (ia < 0), one has:

va = d
(VDC

2
−RDia + VD

)
+ (1− d)

(
− VDC

2
−Rswia + Vsw

)
(2.5)

Considering m = (2d − 1) as the modulating signal normalized to the peak value of the

Figure 2.18: Electrical model of one leg of the DC-AC converter
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triangular waveform, one gets:

va = m
(VDC − Vsw + VD

2

)
−
(Rsw +RD

2

)
ia−

(
Vsw + VD

2
+m

(Rsw −RD

2

)
ia

)
sgn(ia) (2.6)

where

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(2.7)

The AC-side average power of the first leg of the inverter is calculated by:

Pa =
1

2π

∫ 2π+δ

δ

(
vaia

)
dθ (2.8)

where δ is an arbitrary angle. With the switching frequency large enough and considering

linear modulation, we can assume m = M sin(θ) where M is the modulating index. Con-

sidering sinusoidal current on the AC-side of the inverter, i.e., ia = I sin(θ − φ) where I

and φ are the amplitude of the current and the angle difference between the current and

the modulating signal, respectively, the AC-side power of the first leg of the inverter is

calculated as:

Pa =
(VDC − Vsw + VD

4π

)
MI

∫ 2π+δ

δ

(
sin(θ) sin(θ − φ)

)
dθ−

(Rsw +RD

4π

)
I2
∫ 2π+δ

δ

(
sin(θ − φ)

)2
dθ−

(Vsw + VD
4π

)
I

∫ 2π+δ

δ

(
sin(θ − φ)sgn

(
sin(θ − φ)

))
dθ−
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(Rsw −RD

4π

)
MI2

∫ 2π+δ

δ

(
sin(θ)

(
sin(θ − φ)

)2
sgn
(

sin(θ − φ)
))

dθ (2.9)

Different integration terms in (2.9) are calculated as:∫ 2π+δ

δ

(
sin(θ) sin(θ − φ)

)
dθ = π cos(φ)

∫ 2π+δ

δ

(
sin(θ − φ)

)2
dθ = π

∫ 2π+δ

δ

(
sin(θ − φ)sgn

(
sin(θ − φ)

))
dθ = 2

∫ π+φ

φ

(
sin(θ − φ)

)
dθ = 4

∫ 2π+δ

δ

(
sin(θ)

(
sin(θ − φ)

)2
sgn
(

sin(θ − φ)
))

dθ =

2

∫ π+φ

φ

(
sin(θ)

(
sin(θ − φ)

)2)
dθ =

8

3
cos(φ) (2.10)

Substituting from (2.10) into (2.9), one has:

Pa =
(VDC − Vsw + VD

4

)
MI cos(φ)−

(Rsw +RD

4

)
I2

−
(Vsw + VD

π

)
I − 2

(Rsw −RD

3π

)
MI2 cos(φ) (2.11)

The output power calculated by (2.11) only includes the conduction loss of the switch-diode

combinations. There is also switching loss associated with each switch in the inverter legs.

It can be shown that during each on-off switching process, the switching loss (psw) of the

corresponding semiconductor device in Fig. 2.18 is [78, 79]:

psw = kswVDC |ia|(ton + toff )fsw (2.12)
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where ksw is a constant coefficient in the range of [1
6
, 1
2
], ton and toff the turn-on and turn-

off cross-over times, respectively, and fsw the switching frequency. Considering the fact

that the switch S1 (S2) bears the switching loss only when ia is positive (negative), and

ia = I sin(θ − φ), the average switching loss for the converter leg (Psw−a) is:

Psw−a =
ksw

(
VDCI(ton + toff )fsw

)
π

∫ π+φ

φ

(
sin(θ − φ)

)
dθ =

2ksw

(
VDCI(ton + toff )fsw

)
π

(2.13)

From (2.11) and (2.13), the total losses of the three-phase inverter is calculated to be:

Ploss = 3

((Vsw − VD
4

)
MI cos(φ) +

(Rsw +RD

4

)
I2 +

(Vsw + VD
π

)
I+

2
(Rsw −RD

3π

)
MI2 cos(φ) +

2ksw

(
VDCI(ton + toff )fsw

)
π

)
(2.14)

To calculate the Fourier coefficients for the fundamental component of the AC-side

voltage, we have:

a1 =
1

π

∫ 2π+δ

δ

(
va cos(θ)

)
dθ b1 =

1

π

∫ 2π+δ

δ

(
va sin(θ)

)
dθ (2.15)

Substituting from (2.6) into (2.15) considering m = M sin(θ) and ia = I sin(θ−φ), we get:

a1 =
(VDC − Vsw + VD

2π

)
M

∫ 2π+δ

δ

(
sin(θ) cos(θ)

)
dθ−

(Rsw +RD

2π

)
I

∫ 2π+δ

δ

(
sin(θ − φ) cos(θ)

)
dθ−
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(Vsw + VD
2π

)∫ 2π+δ

δ

(
cos(θ)sgn

(
sin(θ − φ)

))
dθ−

(Rsw −RD

2π

)
MI

∫ 2π+δ

δ

(
sin(θ) sin(θ − φ) cos(θ)sgn

(
sin(θ − φ)

))
dθ (2.16)

and,

b1 =
(VDC − Vsw + VD

2π

)
M

∫ 2π+δ

δ

(
sin(θ)

)2
dθ−

(Rsw +RD

2π

)
I

∫ 2π+δ

δ

(
sin(θ − φ) sin(θ)

)
dθ−

(Vsw + VD
2π

)∫ 2π+δ

δ

(
sin(θ)sgn

(
sin(θ − φ)

))
dθ−

(Rsw −RD

2π

)
MI

∫ 2π+δ

δ

((
sin(θ)

)2
sin(θ − φ)sgn

(
sin(θ − φ)

))
dθ (2.17)

The integration terms in (2.16) and (2.17) are calculated as:∫ 2π+δ

δ

(
sin(θ) cos(θ)

)
dθ = 0

∫ 2π+δ

δ

(
sin(θ)

)2
dθ = π

∫ 2π+δ

δ

(
sin(θ − φ) cos(θ)

)
dθ = −π sin(φ)

∫ 2π+δ

δ

(
sin(θ − φ) sin(θ)

)
dθ = π cos(φ)
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∫ 2π+δ

δ

(
cos(θ)sgn

(
sin(θ − φ)

))
dθ = 2

∫ π+φ

φ

(
cos(θ)

)
dθ = −4 sin(φ)

∫ 2π+δ

δ

(
sin(θ)sgn

(
sin(θ − φ)

))
dθ = 2

∫ π+φ

φ

(
sin(θ)

)
dθ = 4 cos(φ)

∫ 2π+δ

δ

(
sin(θ) sin(θ − φ) cos(θ)sgn

(
sin(θ − φ)

))
dθ =

2

∫ π+φ

φ

(
sin(θ) sin(θ − φ) cos(θ)

)
dθ = −2

3
sin(2φ)

∫ 2π+δ

δ

((
sin(θ)

)2
sin(θ − φ)sgn

(
sin(θ − φ)

))
dθ =

2

∫ π+φ

φ

((
sin(θ)

)2
sin(θ − φ)

)
dθ = 2 +

2

3
cos(2φ) (2.18)

Substituting from (2.18) into (2.16) and (2.17), one gets:

a1 =
(Rsw +RD

2

)
I sin(φ) + 2

(Vsw + VD
π

)
sin(φ) +

(Rsw −RD

3π

)
MI sin(2φ) (2.19)

and,

b1 =
(VDC − Vsw + VD

2

)
M −

(Rsw +RD

2

)
I cos(φ)−

2
(Vsw + VD

π

)
cos(φ)−

(Rsw −RD

3π

)
MI
(

3 + cos(2φ)
)

(2.20)

Using a1 and b1, the rms value of the fundamental component of va will be:

Va1 =

√
a21 + b21

2
(2.21)
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2.5 Electrical Model of Traction Motor

Different types of electric motors (DC and AC) have been used in variable speed drives. For

vehicular applications, AC motors are always preferred against DC motors due to reasons

such as higher efficiency, lower maintenance requirement, and higher volumetric power

density. Among different AC machines, induction and permanent magnet synchronous

motors are the most commonly-used options for electro-mechanical conversion in electrified

powertrains (examples are induction motor in Tesla Roadster and permanent magnet motor

in Nissan Leaf). In this thesis, induction machines have been considered as the traction

motors of the electric powertrains shown in Figs. 2.1, 2.2, and 2.3.

Figure 2.19 shows the electrical circuit diagram of one phase of an induction machine.

It includes the stator resistance (Rs) and leakage inductance (L`s), the magnetizing induc-

tance (Lm), the core resistance (Rc), and the rotor resistance (Rr) and leakage inductance

(L`r) referred to the stator frame [80]. In Fig. 2.19, s represents the rotor slip defined as:

s = 1− ωr
ωsy

ωsy =
4π

Np

fs ωr =
π

30
nr (2.22)

Figure 2.19: Electrical model of an induction machine
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where ωsy is the synchronous speed, ωr and nr the mechanical angular and rpm velocities

of the rotor shaft, respectively, fs the frequency of stator voltage, and Np the number of

machine poles. It should be noted that, in this thesis, following a common practice in the

analysis of the electrical model of induction machines, Rc is neglected as shown in Fig. 2.20

[80]. Let’s assume that the stator terminals are connected to a sinusoidal voltage source

with phase rms value of Vs and frequency of fs. To calculate the mechanical torque and

power of the induction machine, one can convert the circuit diagram of Fig. 2.20 to its

Thevenin equivalent model shown in Fig. 2.21, where

Rth =
Rs

(
2πLmfs

)2
R2
s +

(
2π
(
L`s + Lm

)
fs

)2

Lth =
R2
s + L`s

(
L`s + Lm

)(
2πfs

)2
R2
s +

(
2π
(
L`s + Lm

)
fs

)2 Lm

Figure 2.20: Electrical model of the induction machine neglecting Rc

37



Figure 2.21: Thevenin equivalent model of the induction machine

Vth =
2πLmfs√

R2
s +

(
2π
(
L`s + Lm

)
fs

)2
Vs (2.23)

In (2.23), Vth is the rms value of the Thevenin voltage (vth). Using the Thevenin equivalent

model, the rms value of the rotor current (Ir) is calculated as:

Ir =
sVth√(

sRth +Rr

)2
+ s2

(
2π
(
Lth + L`r

)
fs

)2
(2.24)

Using (2.24), the 3-phase airgap power (Pag), and rotor mechanical power (Pmech) and

torque (Tmech) are:

Pag =
3Rr

s
I2r =

3RrsV
2
th(

sRth +Rr

)2
+ s2

(
2π
(
Lth + L`r

)
fs

)2

Pmech = Pag − 3RrI
2
r = (1− s)Pag =

3Rrs(1− s)V 2
th(

sRth +Rr

)2
+ s2

(
2π
(
Lth + L`r

)
fs

)2
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Tmech =
Pmech
ωr

=
3RrsV

2
th

ωsy

((
sRth +Rr

)2
+ s2

(
2π
(
Lth + L`r

)
fs

)2
) (2.25)

It should be noted that in real induction machines, there always exist core, friction, and

windage losses, which affect the mechanical power and torque obtained by (2.25).

When Induction motors are used in variable speed drives (as in the powertrains of

electric and hybrid electric vehicles), they are normally controlled in three different regions

with respect to their operating frequency. Figure 2.22 shows the three regions of operation

with their corresponding torque-speed and power-speed characteristic curves. The first

region is Constant Torque in which the maximum value of the mechanical torque remains

constant. This is a great advantage of electric motors for the electric powertrains where the

vehicle can benefit from the maximum available torque during full acceleration at zero or

low speeds. It can bo shown that for every operating frequency of the stator, the maximum

torque occurs at:

smax =
Rr√

R2
th +

(
2π
(
L`r + Lth

)
fs

)2
(2.26)

Substituting for s in (2.25) from (2.26), one gets:

Tmax =
3V 2

th

2ωsy

(
Rth +

√
R2
th +

(
2π
(
L`r + Lth

)
fs

)2
) (2.27)

At fairly high values of stator frequency, the effect of stator resistance in Fig. 2.20 be-

comes negligible compared to that of magnetizing and stator leakage inductive reactances.

Therefore,

Lth ≈
L`sLm
L`s + Lm

Vth ≈
Lm

L`s + Lm
Vs

(
2π
(
L`r + Lth

)
fs

)
>> Rth (2.28)
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Figure 2.22: Regions of operation of an induction motor

Considering (2.28) and substituting for ωsy from (2.22), (2.27) can be rewritten as:

Tmax ≈

(
3NpL

2
m

(16π2)
(
L`s + Lm

)(
L`rL`s + L`rLm + L`sLm

))(Vs
fs

)2

(2.29)

During motoring operation, as the rotor speed increases, the synchronous speed, and so

the stator frequency, need to be raised in order to keep the slip positive. Equation (2.29)

shows that with an increase in the stator frequency, the amplitude of the terminal voltage

is required to go up in order to keep the maximum torque constant. This procedure is

fulfilled by controlling the DC-AC converter. Since there is always a limit on the rms

value of the stator terminal voltage (the AC-side voltage of the inverter), the maximum

torque cannot be kept constant in an unlimited frequency range. The frequency at which

the terminal voltage reaches its maximum amplitude is called the base frequency. Beyond

the base frequency, the terminal voltage bears its maximum amplitude while the speed of
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Figure 2.23: Torque-speed characteristic curves of an induction motor

machine may still increase. Figure 2.23 shows general torque-speed characteristic curves

of an induction motor for different stator frequencies. As seen in this figure, the induction

motor can deliver its maximum torque as long as the synchronous speed is below ωsy,base.

Above this point, the rms value of the stator terminal voltage is fixed and thus, the

maximum torque decreases as the rotor speed goes up. Normally, after the Constant

Torque region, the machine is controlled under Constant Power condition. The Constant

Power region is limited as the maximum power of the induction machine drops at high

frequencies due to high impedances of the stator and rotor circuits. Therefore, at very

high speeds, the induction machine is operated in a new region named Maximum Power in

which the motor can deliver its maximum available power on the rotor shaft. As the speed

of motor increases, this maximum available power drops. Since, normally, the load torque

and load power increase with the shaft speed, there is a specific velocity after which the

load power is beyond what can be delivered by the induction motor. This point refers to

maximum speed of the motor which determines the maximum speed of vehicle in electric

cars.
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To calculate the stator current and the input power factor, one needs to formulate the

stator terminal voltage (vs) in terms of is. Using KCL in Fig. 2.20, the stator current is is

expressed in terms of ir as:

is = ir +

(Rr

s
+ j
(

2πL`rfs

)
j
(

2πLmfs

) )
ir =

(
1 +

L`r
Lm
− j
( Rr

2πsLmfs

))
ir (2.30)

Defining Ar and Br as:

Ar = 1 +
L`r
Lm

Br =
Rr

2πLmfs
(2.31)

Then, one gets:

is =

(
Ar − j

(Br

s

))
ir Is =

√
A2
r +

(Br

s

)2
Ir (2.32)

Using KVL in Fig. 2.20,

vs =

(
Rs + j

(
2πL`sfs

))
is +

(
Rr

s
+ j
(

2πL`rfs

))
ir (2.33)

Substituting for ir from (2.32), one has:

vs =

(
Rs + j

(
2πL`sfs

)
+

Rr

s
+ j
(

2πL`rfs

)
Ar − j

(Br

s

) )
is (2.34)

Then, the input impedance (Zin) is defined as:

Zin =
vs
is

=

RsAr +
RrAs
s

+ j

(
2π
(
L`sAr + L`r

)
fs −

RsBr

s

)
Ar − j

(Br

s

) (2.35)
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where

As = 1 +
L`s
Lm

(2.36)

Simplifying Zin, the real and imaginary parts of the input impedance are:

Re
(
Zin

)
=
RsA

2
r +

Rr

s
+Rs

(Br

s

)2
A2
r +

(Br

s

)2 (2.37)

Im
(
Zin

)
=

RrAsBr

s2
+ 2π

(
L`sAr + L`r

)
Arfs

A2
r +

(Br

s

)2
where Re(Zin) and Im(Zin) represent the real and imaginary parts of the impedance Zin.

The input power factor (cos(φ)) is calculated using (2.37) as:

cos(φ) =
Re
(
Zin

)
√(

Re
(
Zin

))2

+

(
Im
(
Zin

))2
(2.38)

where φ is the angle difference between vs and is. The expressions for the rms value of

stator current and the power factor given by (2.32) and (2.38), respectively, are used in

determining the inverter losses and the fundamental component of the inverter AC-side

voltage discussed in Section 2.4. Note that when the induction motor is fed from a voltage

source inverter, vs is the fundamental component of the inverter output and fs is the

corresponding frequency.

2.6 Model of Transmission System

The transmission system is responsible for transferring the mechanical torque of the motor

shaft to the wheels during motoring operation and vice versa, when regenerative braking
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takes place. In this thesis, the transmission system is modelled by a constant-efficiency

gearbox with a fixed gear ratio of Ng. The mechanical torques of the motor shaft (Tmech)

and the wheels (Twh) are related by:

Twh =
(
γηg +

1− γ
ηg

)
NgTmech (2.39)

where γ assumes values of 1 and 0 for motoring and regenerative braking operations,

respectively, and ηg is the efficiency of gearbox. The torque of the wheels is calculated as

[81]:

Twh =

(
Mt

(dv
dt

+ g sin(σ) + µg cos(σ)
)

+
1

2
CdρaAf

(
v + vw

)2)
rwh (2.40)

where v is the vehicle velocity, Mt the total vehicle mass, g the gravitational acceleration, σ

the road grade, µ the friction coefficient, Cd the drag coefficient, ρa the air density, Af the

equivalent frontal area of the vehicle, vw the component of wind speed opposing vehicle’s

movement, and rwh the wheels’ radius. In this paper, friction coefficient is variable and a

function of tire pressure (Pr) and vehicle velocity as:

µ = 0.005 +
0.14696

Pr
+

(
1

5526.9

)(
v2

Pr

)
(2.41)

2.7 Summary

In this chapter, schematic diagrams of powertrains of battery-only, ultracapacitor-only, and

battery-ultracapacitor electric vehicles were discussed with a detailed qualitative analysis

provided for different topologies of interfacing battery and ultracapacitor units to the

DC bus in a configuration. The chapter also provided mathematical models for different

components of the powertrain, i.e., battery and ultracapacitor cells, DC-AC converter,

traction motor, and transmission system, used in this thesis.

44



Chapter 3

Implementation of the Optimization

Platform

To solve the problem of optimal sizing of the storage systems in powertrains of electric

vehicles, an optimization platform is required. This platform includes formulation of the

optimization problem as well as optimization technique used to solve the problem. In

the followings, implementation of this platform is discussed. It should be noted that

when discussing the optimal sizing of the storage system for a battery-ultracapacitor HESS

configuration, the problem is addressed only for the configuration shown in Fig. 2.7. The

reason is that through qualitative analysis based on literature review and considering cons

and pros of each of the existing topologies (discussed in Chapter 2), partially-decoupled

configuration (type I) is chosen as the most promising topology for interfacing the battery

and ultracapacitor units to the DC bus, taking flexibility of power control, cost of the

interfacing bridge, and life of the battery cells into account.
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3.1 Formulation of the Problem

Optimal sizing of the storage system in the powertrain of an electric vehicle is a constrained

optimization problem. Equation (3.1) presents formulation of the optimization problem in

its general form.

Minimize fobj(X, ζ)

Subject to (3.1)

He,i(X, ζ) = 0 i = 1, 2, . . . , Ne

Hine,j(X, ζ) ≤ 0 j = 1, 2, . . . , Nine

where ζ is the set of inputs, X the set of optimization variables, fobj the objective func-

tion, He,i the ith equality constraint, Hine,j the jth inequality constraint, and Ne and Nine

the numbers of equality and inequality constraints, respectively, defined in the following

subsections.

3.1.1 Set of Inputs

The inputs to the system are the speed-versus-time profile (drive cycle) for which the

storage system is being optimally sized, prices of the battery and ultracapacitor cells in

US dollars (Cb and Cu, respectively), price per kW of the DC-DC converter in US dollars

(Ccon), and the parameters required to calculate the power demand, i.e.,

Pd =
Twh
rwh

v (3.2)

where Twh is the torque on the wheels calculated using (2.40).
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3.1.2 Optimization Variables

The optimization variables vary depending on the configuration of the storage system. In

any case, they include the numbers of parallel branches of the storage devices (battery

and/or ultracapacitor) and series-connected cells in each branch (Nbp, Nup, Nbs and Nus,

respectively). It should be noted that if the powertrain includes the battery-ultracapacitor

HESS configuration, power rating of the DC-DC converter (Pcon) is also an optimization

variable.

3.1.3 Objective Function

In this thesis, for the cases of battery-only and ultracapacitor-only configurations, the

objective functions (fobj) are the numbers of battery and ultracapacitor cells, as formulated

by (3.3) and (3.4), respectively.

fobj = NbsNbp (3.3)

fobj = NusNup (3.4)

For the battery-ultracapacitor HESS, the cost of system formulated in (3.5) is consid-

ered as the objective function. It should be noted that in the cases of battery-only and

ultracapacitor-only configurations, the objective functions can also be formulated based on

the cost of storage units. However, as there is only one type of storage device in either

of these two configurations, the results of optimization do not change with the choice of

cell prices. This is due to the fact that in the battery-only and ultracapacitor-only con-

figurations, no matter what the cell prices are, the results of optimization correspond to
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minimum numbers of the cells which are required to meet the power and energy require-

ments of the vehicle, while respecting all the constraints over the course of the drive cycle.

Considering the fact that the costs of BU and UC are simply the numbers of battery and

ultracapacitor cells multiplied by the cell prices, minimum numbers of the cells found as

the optimal sizes of the storage units correspond to minimum costs of the battery and

ultracapacitor units, as well. This is not the case for the battery-ultracapacitor HESS as

the result of optimization can change depending on the values of prices considered for the

battery and ultracapacitor cells and the rating of the DC-DC converter.

fobj = NswapNbsNbpCb +NusNupCu + PconCcon (3.5)

In (3.5) Nswap is the number of battery units used when swapping strategy is considered in

solving the optimization problem. In the case where there is no battery swapping strategy,

Nswap = 1.

3.1.4 Equality Constraints

Meeting the power requirement on the DC bus between the inverter and the storage system

over the course of the drive cycle is the main equality constraint. Mathematical models of

the powertrain components presented in Chapter 2 are used for formulating the constraints.

A very important fact about the mathematical models of the battery and ultracapacitor

cells is existence of the differential equations presented in (2.1) and (2.2). To deal with

these differential equations in the optimization platform, a practical method is to discretize

the power demand using a specific sampling time Ts and convert all continuous differential

equations to their equivalent discrete forms. Choosing smaller values of Ts leads to more

accurate optimization results. Using (2.1), the mathematical model of battery cells is
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represented in discrete domain by:

ib,n = −Qb

(
S(n+1) − Sn

Ts

)

vbt,n = voc,n − vbst,n − vblt,n −Rbes,nib,n

Cbst,n

(
vbst,(n+1) − vbst,n

Ts

)
= ib,n −

vbst,n
Rbst,n

Cblt,n

(
vblt,(n+1) − vblt,n

Ts

)
= ib,n −

vblt,n
Rblt,n

(3.6)

where subscript n denotes the values of the variables at t = nTs. In a similar way, using

(2.2), (3.7) formulates the mathematical model of ultracapacitor cells in discrete domain

as:

vut,n = vu1,n −Rues,niu,n

(
C0 + C1,n

)vu1,(n+1) − vu1,n
Ts

= −iu,n (3.7)

where

C1,n = k1vu1,n (3.8)

Using the discretized equations in (3.6) and (3.7), for the battery-only and the ultracapacitor-

only configurations, power balance between the storage system and the demand on the DC

bus at t = nTs, where n represents any arbitrary sampled interval, is formulated as:

NxsNxpvxt,nix,n =

(
αn
ηm,n

+ (1− αn)ηr,n

)
Pd,n (3.9)
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where

ηm,n = ηi,m,nηe,m,nηg,m,n ηr,n = ηi,r,nηe,r,nηg,r,n (3.10)

In (3.9), x denotes the storage devices that are directly connected to the DC bus (x = b

for battery and x = u for ultracapacitor) and αn assumes values of 1 or 0 for motor-

ing or regenerative braking mode of operation, respectively, with ηm,n and ηr,n being the

corresponding efficiencies of the drivetrain. In (3.10), ηi,m,n, ηe,m,n and ηg,m,n are efficien-

cies of the inverter, electric motor, and gearbox, respectively, during motoring operation.

Similarly, ηi,r,n, ηe,r,n and ηg,r,n are the efficiencies of inverter, electric motor and gearbox,

respectively, during regenerative braking. For the battery-ultracapacitor HESS configura-

tion (partially-decoupled configuration, topology I, Fig. 2.7), the power balance on the DC

bus is formulated as:

PBU,n

(
βnηsup,n +

1− βn
ηsdn,n

)
+ PUC,n =

(
αn
ηm,n

+ (1− αn)ηr,n

)
Pd,n (3.11)

where βn assumes values of 1 or 0 for step-up or step-down operation mode of the DC-

DC converter, respectively, ηsup,n and ηsdn,n are the respective efficiencies of the DC-DC

converter in step-up and step-down modes of operation, and

PBU,n = NbsNbpvbt,nib,n PUC,n = NusNupvut,niu,n (3.12)

To split the power demand on the DC bus between BU and UC, the following rules are

implemented:

• If the value of power demand on the DC bus is positive (discharging the storage

system), the power component of the battery unit (PBU,n) is determined using the
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equality constraint given by (3.13).

PBU,n =

min

(
Pcon,

Pd,n
ηm,n

)
ηsup,n

(3.13)

• For negative value of the power demand on the DC bus (charging the storage system),

the equality constraint given by (3.14) determines PUC,n.

PUC,n = ηr,nPd,n (3.14)

3.1.5 Inequality Constraints

The inequality constraints are formulated by the limits defined for SoC and power of

the battery cells, charge/discharge current of the battery and/or ultracapacitor cells, and

terminal voltage and power of the ultracapacitor cells as:

SoCmin ≤ SoCn ≤ SoCmax

Pb,n,min ≤ vbt,nib,n ≤ Pb,n,max

Ib,min ≤ ib,n ≤ Ib,max

Vut,min ≤ vut,n ≤ Vut,max

Iu,min ≤ iu,n ≤ Iu,max

Pu,n,min ≤ vut,niu,n ≤ Pu,n,max (3.15)
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where SoCmin, Ib,min, Vut,min, and Iu,min are the minimum values of SoC, and current of the

battery cells, and terminal voltage and current of the ultracapacitor cells, respectively. Sim-

ilarly, SoCmax, Ib,max, Vut,max, and Iu,max are the maximum values of the above-mentioned

variables, respectively. In (3.15), Pb,n,min, Pb,n,max, Pu,n,min, and Pu,n,max are the minimum

and maximum values of the powers of battery and ultracapacitor cells, respectively, at the

sampled interval corresponding to t = nTs. In the case of battery-ultracapacitor HESS

configuration, the following set of equations are added to the constraints:

dmin ≤ dsup,n ≤ dmax dmin ≤ dsdn,n ≤ dmax

NbsNbp|vbt,nib,n| ≤
(

βn
ηsup,n

+ (1− βn)ηsdn,n

)
Pcon (3.16)

where dmin and dmax are minimum and maximum values of the duty ratios of the switches of

DC-DC converter (dsup,n for boost switch and dsdn,n for buck switch) which are determined

by (3.17) for step-up and step-down operation modes of the DC-DC converter.

Nusvut,n
Nbsvbt,n

= fsup(dsup,n)
Nbsvbt,n
Nusvut,n

= fsdn(dsdn,n) (3.17)

In (3.17), fsup and fsdn are the voltage conversion ratios between the high- and low-voltage

sides of the DC-DC converter for step-up and step-down operation modes, respectively.

Beside the constraints given by (3.15) and (3.16), additional constraints are considered

for the numbers of series-connected battery cells (in the battery-only configuration) by

(3.18) and series-connected ultracapacitor cells (in the ultracapacitor-only and battery-

ultracapacitor HESS configurations) by (3.19):

VDC,min ≤ Nbsvoc,1 ≤ VDC,max (3.18)

VDC,min ≤ Nusvu1,1 ≤ VDC,max (3.19)
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where VDC,min and VDC,max are the minimum and maximum values of the DC bus voltage,

respectively, defined based on the open-circuit terminal voltage of the storage unit directly

connected to the DC bus at full-charge status of the storage cells installed in the structure

of the corresponding unit. It should be noted that if at any sampled interval, current of

battery/ultracapacitor cells results in violation of any of the constraints given by (3.15)

and (3.16), then, the corresponding current is set to be equal to the border value that

respects the previously-violated constraint(s). Once the updated value of the current is

determined, the following rules are implemented:

• When the updated value corresponds to the battery current (ib,n is equal to the

corresponding border value), the new value of ib,n, (3.11), and (3.12) are used to

determine vbt,n, vut,n, and iu,n. If the new values of vbt,n, ib,n, vut,n, and iu,n respect all

of constraints given by (3.15) and (3.16), the next sampled interval of the drive cycle

is checked for respecting all equality and inequality constraints of the problem at the

corresponding sampled interval. If not, the selected point (vector of optimization

variables) is considered as an infeasible solution.

• When the updated value corresponds to the ultracapacitor current (iu,n is equal to

the corresponding border value), vbt,n, ib,n, and vut,n are calculated based on the new

value of iu,n, (3.11), and (3.12). If the new values of vbt,n, ib,n, vut,n, and iu,n respect all

of constraints given by (3.15) and (3.16), the next sampled interval of the drive cycle

is checked for respecting all equality and inequality constraints of the problem at the

corresponding sampled interval. If not, the selected point (vector of optimization

variables) is considered as an infeasible solution.

It should be noted that the rules implemented in Sections 3.1.4 and 3.1.5 indicate that in

motoring mode, priority is given to the battery unit for providing the required power on the
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DC bus taking the limits defined by (3.15) and (3.16) into account. On the other hand,

in regenerative braking mode, the priority is given to the ultracapacitor unit to absorb

the regenerated power on the DC bus while respecting the constraints given in (3.15) and

(3.16).

3.2 Optimization Algorithm

There are several factors which affect the choice of a specific algorithm for solving an

optimization problem. These include [82]:

• Nature of the objective function and constraints (linear or nonlinear, convex or non-

convex)

• Number of optimization variables (small or large)

• Type of optimization variables (discrete or continuous)

• Smoothness of the objective function and constraints (differentiable or nondifferen-

tiable).

When the objective function and constraints are convex and differentiable, the number

of optimization variables is small, and the objective function does not have considerable

number of optima, conventional derivative-based (gradient-based) algorithms such as New-

ton method can be applied to find the global optimum [82, 83]. Metaheuristic algorithms

are significantly useful when the objective function and/or constraints have nonlinearity

and the numbers of constraints and/or optimization variables are considerably large. Spe-

cially, in integer/mixed integer programming, metaheuristic methods become very popular
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as the conventional gradient-based techniques cannot be applied in most of the cases. In

computer science, a metaheuristic algorithm is a computational method that solves an

optimization problem by iteratively trying to improve a candidate solution with regard to

specific objectives [83, 84]. There are two categories for metaheuristic algorithms:

• Population-based algorithms: In population-based metaheuristic algorithms, an ini-

tial population is generated randomly and the optimization proceeds for different

members of the population in a stochastic fashion. Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO) are two well-known examples of this category.

• Trajectory-based algorithms: In trajectory-based methods, such as Simulated An-

nealing (SA), a single agent moves through the search space in a piecewise style. It

is assumed that every trajectory in the search space has a non-zero probability to

reach the global optimum [85].

The problem of optimal sizing of battery-only and ultracapacitor-only storage systems

in electric vehicle applications is an integer nonlinear programming (INLP) problem (in

the case of a battery-ultracapacitor HESS configuration, it is a mixed-integer nonlinear

programming (MINLP) problem) with quite a large number of constraints, considering

the discretized equations of the system at every sampled interval. Due to nonlinearity

of the problem, existence of integer values in the domain of solutions (the numbers of

parallel branches of the storage devices and series-connected cells in each branch), and

excessive number of constraints, a population-based metaheuristic optimization algorithm

is used for solving the problem of optimal sizing of the storage systems. This algorithm is

Teaching-Learning-Based Optimization (TLBO).

Teaching-Learning-Based Optimization (TLBO) algorithm is a metaheuristic optimiza-

tion method which is based on interactions between a teacher and the students in a class,
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and among the students, to increase the average grade of the class. Compared to other

nature-based methods such as Genetic Algorithm (GA) and Ant Colony Optimization

(ACO), TLBO benefits from lower computational effort. In addition, this method does

not require specific controlling parameters such as mutation and cross-over coefficients in

GA, which can affect the results of optimization [86]-[88]. The TLBO algorithm has two

phases: teacher phase and learner phase.

3.2.1 Teacher Phase

In teacher phase, the learners try to improve their grades through what they learn from

a high-quality teacher in the class. In this phase, the best grade in the class mimics the

teacher and the objective is to raise the other marks to get as close as possible to the best

one. Like any other population-based optimization method, TLBO algorithm starts with

an initial randomly-chosen group of solutions (learners in the class). As there are several

students in the class, their levels of knowledge are not the same. A good index representing

the general knowledge of the learners is the mean value of the grades. In teacher phase, the

teacher tries to improve the mean value of grades in the class. If at iteration k, the best

member of population is defined as Xk,teacher, the mean value of all members as Mpop,k,

and the jth particle as Xk,j, then, the temporarily-updated value of Xk,j is defined as:

Xk,j−new = Xk,j + rk,1j

(
Xk,teacher − (1 + rk,2j)Mpop,k

)
(3.20)

In (3.20), rk,1j and rk,2j are random numbers between 0 and 1. Once a member is tem-

porarily updated using (3.20), it is compared to its former value to check if the new point

results in a better position. If this occurs, then, the new position (Xk,j−new) replaces the

previous position (Xk,j) of the jth particle at iteration k. This process is repeated for every

member of the population.
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It should be noted that in constrained optimization problems, choosing the best solu-

tion among a group of points is not just fulfilled by comparing their corresponding values

of the objective function as done in unconstrained optimization problems. In the case

of constrained optimization problems, beside the objective function, the equality and in-

equality constraints must be taken into account as well. In this thesis, a tournament-based

procedure is used for choosing the best solution among two or more individuals of the

population using the following rules (for a minimization problem) [89]:

• When comparing two feasible solutions, whichever has a lower value for the objective

function is chosen as the better particle. A feasible solution is the one for which the

equality and inequality constraints are not violated.

• When comparing one feasible solution with one infeasible solution, the feasible one

is chosen as the better particle. An infeasible solution is the one for which at least

one of the constraints is violated.

• When comparing two infeasible solutions, the one with a lower degree of violation is

chosen as the better particle. For the minimization problem formulated by (3.1), for

an infeasible solution, Xinf , the degree of violation is defined as:

Degree of violation =
Ne∑
i=1

(
He,i(Xinf , ζ)

)2
+

Nine∑
j=1

(
max{0, Hine,j(Xinf , ζ)}

)2
(3.21)

3.2.2 Learner Phase

In learner phase, the participants in the class interact randomly with one another to in-

crease the public knowledge of the class. To show this mathematically, let’s assume the

jth learner is going to raise its grade at iteration k by sharing knowledge with two other
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randomly-chosen members Xk,m and Xk,w, where m 6= w 6= j. The temporary update for

Xk,j is formulated as follows:

Xk,j−new = Xk,j + rk,3j (Xk,m −Xk,w) if Xk,m is better than Xk,w

Xk,j−new = Xk,j + rk,3j (Xk,w −Xk,m) if Xk,w is better than Xk,m (3.22)

In (3.22), rk,3j is a random number between 0 and 1. After evaluating Xk,j−new, it is

compared to Xk,j to check whether the new position is better than the previous one or not.

In every phase of optimization, after any modification to the positions of the members,

the new positions are monitored to be within the specified limits associated with every

particle in the group. Figure 3.1 shows the flowchart of the TLBO algorithm. As shown

in this flowchart, the algorithm stops once the termination criteria are satisfied. The final

solution will be the best solution among the final updated population. It should be noted

that during solving the optimization problem, rk,1j, rk,2j, and rk,3j in (3.20) and (3.22) are

generated using the rand function in MATLAB.

To save time and search space required for monitoring every individual variable in a

multidimensional optimization problem, in this thesis, the positions of particles in TLBO

algorithm are modeled with angles. Using this technique, the lower and upper limits of the

new optimization variables will be −π/2 and π/2, respectively [87]. To formulate this pro-

cess, let’s consider the optimization problem to be q-dimensional, i.e., X = [x1, x2, . . . , xq].

Then, in TLBO algorithm, a variable xs (s = 1, 2, 3, . . . , q) is modeled by an angle ξs using

the following formula:

xs =
xs−max − xs−min

2
sin(ξs) +

xs−max + xs−min
2

(3.23)

where xs−max and xs−min are the maximum and minimum values of the variable xs, respec-

tively.
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3.3 Summary

This chapter provided formulation of the optimal sizing problem. The objective functions,

set of inputs, optimization variables, and equality and inequality constraints were defined.

In addition, the optimization algorithm required to solve the problem of optimal sizing was

formulated and discussed.

59



Figure 3.1: Flowchart of the TLBO algorithm
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Chapter 4

Optimization Results

In this chapter, the problem of optimal sizing of the storage system is solved for two differ-

ent classes of electric vehicles: (i) a small-size, long-range car and (ii) a city bus. For the

first case, parameters of Tesla Roadster (mass excluding the storage unit and dimensions)

are used. For this vehicle, the problem of optimal sizing is solved for the battery-only con-

figuration shown in Fig. 2.1. In the second case, a city bus is considered for the purpose of

optimization and simulation. The three configurations shown in Figs. 2.1, 2.2, and 2.3 are

studied when solving the problem of optimal sizing for the city bus. For each of these vehi-

cles, the storage system is optimally sized based on specific assumptions in terms of vehicle

parameters and driving conditions. It should be noted that as explained in Chapter 2, the

ultracapacitor-only powertrain cannot be technically used for the small-size, long-range

car. Besides, the reason behind not using the battery-ultracapacitor HESS powertrain for

the purpose of optimal sizing of the storage system for the small-size, long-range car is

due to lower level of specific energy and higher price of the ultracapacitor cells compared

to those of battery cells. Although, this powertrain is feasible to be implemented for the
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small-size, long-range vehicle from energy and power viewpoints, the cost of the resulting

system is much higher than that of the battery-only configuration. In other words, even

though both of battery-only and battery-ultracapacitor HESS configurations can complete

the required drive cycle, the storage system is much cheaper for the former case. These

issues can be resolved if the ultracapacitor unit has the option of being frequently charged

over the course of the drive cycle. That is why both of ultracapacitor-only and battery-

ultracapacitor HESS powertrains are considered for the purpose of optimal sizing of the

storage system in the case of electric city bus.

For optimal sizing of the storage systems which include battery units, Panasonic 18650

battery cells are used. These battery cells have Lithium-Iron Phosphate (LiFePO4) chem-

istry, with the data given in Table 4.1 [90]. For the electrical model of the battery cells

shown in Fig. 2.14, (4.1) gives the open-circuit voltage, resistances, and capacitances as

functions of SoC of the battery cells (S) at t = nTs [91]. It should be noted that in this

thesis, the battery cell capacity is assumed to be constant.

Voc,n = −1.031e−35Sn + 3.685 + 0.2156Sn − 0.1178S2
n + 0.3201S3

n

Rbes,n = 0.1562e−24.37Sn + 0.07446

Rbst,n = 0.3208e−29.14Sn + 0.04669

Rblt,n = 6.603e−155.2Sn + 0.04984

Cbst,n = −752.9e−13.51Sn + 703.6

Cblt,n = −6056e−27.12Sn + 4475 (4.1)

When an ultracapacitor unit is used in the storage system, Maxwell BoostCAP3000 cells

with the data given in Table 4.2, are used [92]. For the electrical model of the ultracapacitor
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Table 4.1: Data of Panasonic 18650 battery cell [90]

Parameter Value

Mass (g) 43

Rated capacity (Ah) 2.25

Nominal voltage (V) 3.7

Max discharge current (A) 11.25 (5C)

Max charge current (A) 2.25 (1C)

Table 4.2: Data of Maxwell BoostCAP3000 ultracapacitor cell [92]

Parameter Value

Mass (g) 510

Rated capacity (F) 3000

Nominal voltage (V) 2.7

Max discharge current (A) 1900

Max charge current (A) 1900

cells shown in Fig. 2.15, Rues = 0.29 m Ω, C0 = 521.441 F , and k1 = 917.985 F/V [92, 93].

For solving the problem of optimal sizing, two approaches are considered for modeling the

efficiencies of the DC-AC converter and the traction motor.

1. Approach I: In this approach, efficiencies of the DC-AC converter and the traction

motor are functions of the output powers of the DC-AC converter and the traction

motor per-unitized using the maximum ratings of these devices as the base. Tables 4.3

and 4.4 show the efficiencies of the DC-AC converter at specific loads (in per-unit)
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for inversion and rectification modes, respectively. The efficiencies of the traction

motor at specific loads (in per-unit) for motoring and regenerative braking modes

are shown in Tables 4.5 and 4.6, respectively.

2. Approach II: In this approach, the detailed models of the DC-AC converter and

the traction motor discussed in Chapter 2 are used for the purpose of optimization

Table 4.3: Efficiency of the DC-AC converter at specific loads for inversion mode

Load (pu %) 0 1.5 20 40 60 80 100

Efficiency (%) 0 59.80 81.09 88.11 91.33 93.15 94.40

Table 4.4: Efficiency of the DC-AC converter at specific loads for rectification mode

Load (pu %) 0 1.5 20 40 60 80 100

Efficiency (%) 0 55.02 78.73 87.39 91.08 93.08 94.33

Table 4.5: Efficiency of the electric machine at specific loads for motoring mode

Load (pu %) 0 1.5 20 40 60 80 100

Efficiency (%) 0 47.59 73.64 81.42 84.61 86.30 87.40

Table 4.6: Efficiency of the electric machine at specific loads for regenerative braking mode

Load (pu %) 0 1.5 20 40 60 80 100

Efficiency (%) 0 44.01 70.75 80.67 84.36 86.25 87.40
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and simulation. For the DC-AC converter, 400 V , 150 A IGBT switches with the

parameters given by (4.2) are used. In this thesis, for calculating the switching loss of

the DC-AC converter using (2.12), ksw = 0.25 is considered. In addition, it is assumed

that the switching frequency of the DC-AC converter is 21 times the fundamental

frequency of the stator current (this is to reduce harmonic distortion of the AC-side

voltage of the inverter).

Rsw = 0.0132 Ω RD = 0.016 Ω Vsw = 1.25 V VD = 0.7 V

ton = 0.09 µs toff = 0.15 µs (4.2)

When solving the optimization problem, at each iteration of the optimization, de-

pending on the number of series-connected cells of the ESS devices which are con-

nected directly to the DC bus and the power rating of the traction motor, the num-

ber of IGBT switches connected in series-parallel arrangement (to meet the voltage

and current requirements of the DC-AC converter) are determined. This way, the

equivalent parameters of the IGBT switches would be selected corresponding to the

solutions of the optimization problem. It should be noted that in addition to the

converter losses calculated using (2.14), in this thesis, 5% of the load power in both

inversion and rectification modes of operation is considered for the losses due to

harmonic components and other factors not modelled mathematically in Section 2.4.

4.1 Optimal Sizing of the Battery Unit for a Small-

size, Long-range Electric Vehicle

This section presents the results of solving the problem of optimal sizing for a small-size,

long-range EV based on specifications of Tesla Roadster. Tesla Roadster is the first electric
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sport car on the road which has used lithium-ion batteries as the storage device [94]. It

should be noted that although the parameters of Tesla Roadster, i.e., mass (excluding the

storage unit) and dimensions, are used as the inputs for solving the optimization problem,

parameters of any other passenger vehicle, such as Nissan Leaf, could have been chosen for

the purpose of optimization and simulation. The main objective in this section is to address

solving the problem of optimal sizing for a small-size vehicle which is capable of fulfilling a

long range (for instance, beyond 200 km) on a given drive cycle with a single charge of the

battery unit. In Section 4.1.1, the results of optimization based on specific assumptions for

solving the problem, are presented. Beside the optimization results, the section provides

simulation results for speed-versus-time of the vehicle (used for determining the duration

of 0 − 60 mile/h (0 − 96.6 km/h) acceleration and top speed of the car) and torque-

versus-rpm of the electric motor during full acceleration. It is worth mentioning that even

though it is shown how the limits defined by (3.18) can affect the duration of 0−60 mile/h

acceleration, this duration is not considered as a constraint when solving the optimization

problem. Section 4.1.2 studies the performance indexes of the vehicle such as duration of

0 − 60 mile/h acceleration and top speed under different conditions, and range based on

constant-speed operation and driving on well-known drive cycles.

Table 4.7 provides the parameters required for calculating power demand. When solving

the optimization problem, the following assumptions are made [94]-[96]:

Table 4.7: Parameters used to calculate power demand

Af (m2) vw (m/s) ρa (kg/m3) Cd g (m/s2) Pr (psi) rwh (m) Ng

2.086 3.5 1.202 0.35 9.81 36 0.31 8.2752
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• EPA Federal Test Procedure (FTP75) is used as the speed-versus-time profile based

on which the drive cycle required for solving the optimization problem is constructed.

FTP75 is a 17.76 km drive cycle (1, 874 s long), with the average speed of 34.11 km/h,

maximum speed of 91.23 km/h, and several acceleration and deceleration events.

Figure 4.1 shows the speed-versus-time profile of this drive cycle. It is assumed that

the vehicle is expected to travel 355.3 km on this drive cycle (20 repetition of FTP75)

with a single charge of the battery unit.

• All prices are expressed in US dollars.

• The total power loss of the traction motor due to core, friction, windage, and stray

components, is fixed and equal to 10% of the load power in both motoring and

regenerative braking modes.

• Mass of the vehicle without the battery unit is considered to be equal to 940 kg.

An additional mass of 80 kg is considered for the driver. At every iteration of the

Figure 4.1: Speed-versus-time characteristic of FTP75 drive cycle
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optimization process, for each member of population, this 1, 020 kg mass is summed

up with the mass of the battery unit corresponding to the chosen energy storage

system size to determine the total mass of the vehicle required for calculating the

power demand from speed-versus-time characteristic of the drive cycle.

• Battery cells are fully charged at the beginning of drive cycle.

• SoC of battery cells is allowed to vary between 2% and 100% over the drive cycle.

• The maximum and minimum numbers of series-connected cells on the DC bus are

determined based on the upper and lower limits of 430 V and 300 V for the DC bus

open-circuit voltage.

• The transmission system has a fixed efficiency of 96% with a gearbox of fixed gear

ratio of 8.2752 : 1.

• Temperature is constant at 25o C.

In this thesis, an analytical procedure based on targeted performance (Fig. 4.2) is used

to determine the approximate values for the parameters of the traction motor (required

for approach II) which are:

Lm = 1, 438.01 µH L`s = 38.77 µH L`r = 38.77 µH

Rs = 7.43 mΩ Rr = 4.73 mΩ ωsy,base = 667 rad/s (4.3)

Figure 4.2 shows the torque-speed characteristic curves of the traction motor calculated

based on the parameters given in (4.3). The last curve shown in red corresponds to the

maximum AC voltage on the terminals of the traction motor which is equivalent to maxi-

mum achievable AC voltage from series connection of 99 battery cells on the DC bus when
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Figure 4.2: Torque-speed characteristic curves of the traction motor used for optimal sizing

of the battery unit of the small-size, long-range EV

linear modulation is considered for the operation of DC-AC converter. It should be noted

that in Tesla Roadster, 99 battery cells are connected in series to the DC bus. As seen in

this figure, the traction motor can keep a constant torque of 370 N.m up to around 6, 400

rpm. When solving the optimization problem, the no-load DC bus voltage is calculated

based on the number of series connected cells corresponding to the position of each indi-

vidual at every iteration. Using this voltage, the base frequency of the traction motor is

calculated assuming that the ratio of the no-load voltage over the base frequency is fixed

for different traction motors used in the optimization. Once the base frequency is known,

the maximum torque of the corresponding machine is calculated using (2.27).

4.1.1 Optimization Results

Considering all constraints of the problem, the optimization results are shown in Table

4.8 based on approaches I and II. Figures 4.3 and 4.4 show SoC of the battery cells and
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Table 4.8: Optimization results for the small-size, long-range EV

cost of BU cost of BU

Number of considering $ 2 considering $ 7 Mass of

Approach Nbs Nbp battery cells as the price as the price BU

(Nbs ×Nbp) of battery cells of battery cells (kg)

($) ($)

I 101 71 7,171 14,342 50,197 308.4

II 74 83 6,142 12,284 42,994 264.1

the DC bus voltage versus time, respectively, for the whole drive cycle (20 repetitions of

FTP75), based on Approach II with Nbs = 74 and Nbp = 83. In Fig. 4.5, variations of

the power of BU and the power demand on the DC bus versus time are depicted for the

first FTP75 of the whole drive cycle. This figure shows an exact match between these two

power components. This match represents respecting the equality constraint (Equation

(3.9)) at each sampled interval of the drive cycle.

Figure 4.6 shows the speed-versus-time characteristics of the vehicle with Nbs = 74 and

Nbp = 83 during full acceleration on a flat road at vw = 0. With this size of BU, the

vehicle can reach speed of 60 mile/h in 6.06 s and achieve the top speed of 197.2 km/h.

Considering full acceleration of the vehicle with the optimally-sized battery unit, maximum

torque of the traction motor is calculated to be 276.6 N.m. Variation of torque with respect

to rpm speed of the traction motor during full acceleration of the vehicle is shown in Fig.

4.7. As mentioned before, during full acceleration, the electric motor starts operating at its

maximum torque (276.6 N.m) which is kept constant up to around 3, 760 rpm and then,

it operates under constant-power and maximum-power conditions, respectively.
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Figure 4.3: SoC of the battery cells versus time with Nbs = 74 and Nbp = 83

Figure 4.4: DC bus voltage versus time with Nbs = 74 and Nbp = 83

The maximum torque and the number of series-connected battery cells on the DC bus

have direct impact on the duration of 0−60 mile/h acceleration of the vehicle. To shorten

the duration of 0− 60 mile/h acceleration, it is required to increase the number of series-

connected cells on the DC bus and use a traction motor capable of exerting a larger torque.
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Figure 4.5: Power of battery unit and power demand on the DC bus versus time over one

FTP75 cycle with Nbs = 74 and Nbp = 83

Figure 4.6: Speed versus time during full acceleration with Nbs = 74 and Nbp = 83

As an example, if we solve the optimization problem with the assumption that the open-

circuit voltage limits of 470 V and 430 V are considered for determining the maximum

and minimum numbers of series-connected cells on the DC bus, with other assumptions
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Figure 4.7: Torque versus rpm speed of the traction motor during full acceleration with

Nbs = 74 and Nbp = 83

unchanged, the optimization results are Nbs = 106 and Nbp = 60. With this size of the

battery unit, the no-load DC bus voltage at full charge status of the battery cells is 434.9

V which can exert a maximum torque of 396.2 N.m on the motor shaft at full acceleration.

With this torque, the vehicle can reach speed of 60 mile/h in 3.95 s and attain top speed

of 237.3 km/h. The variations of speed versus time and torque versus rpm speed of the

traction motor in this case are shown in Figs. 4.8 and 4.9, respectively.

4.1.2 Analysis of the Performance Indexes

A very important fact about the performance indexes of an electric vehicle such as top

speed and duration of 0− 60 mile/h acceleration is that they are always valid for specific

conditions. These conditions can include initial SoC and maximum discharge current of

the battery cells, wind speed, and road grade. Tables 4.9 and 4.10 show variations of

the above-mentioned performance indexes for the vehicle under study with Nbs = 74 and
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Figure 4.8: Speed versus time during a full acceleration with Nbs = 106 and Nbp = 60

Figure 4.9: Torque versus rpm speed of the traction motor during a full acceleration with

Nbs = 106 and Nbp = 60

Nbp = 83 based on different values of initial SoC and maximum discharge current (Ib,max)

of the battery cells. As seen from these tables, the top speed achievable by the vehicle

decreases with lowering the initial SoC and maximum discharge current of the cells. At

lower values of initial SoC, the DC bus voltage is low and the battery unit cannot deliver
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Table 4.9: Top speed and duration of 0 − 60 mile/h acceleration with Nbs = 74 and

Nbp = 83 on a flat road when vw = 3 m/s and Ib,max = 5 C

Initial SoC (%) 20 40 60 80 100

Top speed (km/h) 184.40 185.39 187.04 189.09 192.13

Duration of 0− 60 mile/h acceleration (s) 6.66 6.57 6.46 6.31 6.11

Table 4.10: Top speed and duration of 0 − 60 mile/h acceleration with Nbs = 74 and

Nbp = 83 on a flat road when vw = 3 m/s and Ib,max = 2 C

Initial SoC (%) 20 40 60 80 100

Top speed (km/h) 165.63 166.65 167.65 169.39 170.86

Duration of 0-60 mile/h acceleration (s) 8.26 8.12 7.96 7.74 7.45

its maximum power capability. Therefore, the duration of constant torque becomes shorter

and the constant power region starts at a lower power. Consequently, the duration of 0−60

mile/h acceleration becomes longer. This is also valid for the case when the maximum

discharging current of the battery cells decreases which means that the power capability

of the battery cells is lower. The decrease in the maximum power due to lower initial SoC

and/or maximum discharging current of the battery cells has a direct impact on the top

speed of the vehicle as shown by the results of Tables 4.9 and 4.10. In Tables 4.11 and 4.12,

variations of the duration of 0−60 mile/h acceleration and top speed with respect to initial

level of SoC are given for different values of wind speed and grade of the road. At higher

values of wind speed and road grade, the opposing force against the vehicle acceleration is

larger resulting in lower top speed and longer duration of 0− 60 mile/h acceleration.
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Table 4.11: Top speed and duration of 0 − 60 mile/h acceleration with Nbs = 74 and

Nbp = 83 on a flat road when vw = 11 m/s and Ib,max = 5 C

Initial SoC (%) 20 40 60 80 100

Top speed (km/h) 171.64 172.45 174.10 176.09 179.36

Duration of 0-60 mile/h acceleration (s) 6.93 6.83 6.70 6.54 6.32

Table 4.12: Top speed and duration of 0 − 60 mile/h acceleration with Nbs = 74 and

Nbp = 83 on a road with the grade of 15 % when vw = 3 m/s and Ib,max = 5 C

Initial SoC (%) 20 40 60 80 100

Top speed (km/h) 120.55 122.30 124.29 127.42 131.74

Duration of 0-60 mile/h acceleration (s) 11.80 11.40 10.98 10.41 9.73

Another important performance index normally reported by EV manufacturers is the

range capability based on constant speeds. Figure 4.10 shows the range capability based

on constant velocities of the vehicle under study in the range of 5 − 100 km/h for four

different values of wind speed. As seen in this figure, the curves of constant-speed range

have maximum values corresponding to points in the range of 15 − 21 km/h depending

on the wind speed. The behavior of the curves in Fig. 4.10 can be better explained using

the average battery-to-wheel efficiencies shown in Fig. 4.11. To calculate this efficiency

at a constant velocity of the vehicle and a wind speed, with the optimally-sized battery

unit onboard, powertrain of the vehicle is simulated for the total permissible range of

SoC while respecting all constraints on the current and power of the battery cells. Then,

the average battery-to-wheel efficiency is calculated as the mean value of the vector of
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Figure 4.10: Range capability versus constant speed with Nbs = 74 and Nbp = 83 at four

different wind speeds

Figure 4.11: Average battery-to-wheel efficiency versus constant speed with Nbs = 74 and

Nbp = 83 at four different wind speeds

powertrain efficiency whose elements are calculated at each sampled interval over the course

of simulation. At very low values of constant speed, the battery-to-wheel efficiency is quite

low due to low efficiencies of the inverter and the traction motor at light loads. Therefore,
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most of the power of BU is lost, leading to short driving range capabilities. On the other

hand, at high values of constant speed, the battery-to-wheel efficiency is quite high. This

indicates that most of the power of the battery unit is transferred to the wheels during

constant-speed driving. However, at high speeds, the power demand is also large, resulting

in fast depletion of the storage unit. This means that the vehicle cannot travel very long

as the battery cells are discharged completely over shorter intervals. As a result, there

are always some points in-between where the constant-speed range capability becomes

maximum.

Range capabilities of EVs can be analyzed based on travelling on well-known drive

cycles. As an example, let’s consider three drive cycles as: FTP75, Highway Fuel Economy

Driving Schedule (HWFET), and New European Driving Cycle (NEDC). The time-speed

characteristics of HWFET and NEDC are shown in Figs. 4.12 and 4.13, respectively.

Different speed levels as well as acceleration and deceleration trends of these drive cycles

result in different power demands when the vehicle undergoes each of these driving patterns.

Figure 4.12: Speed-versus-time characteristic of HWFET drive cycle
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Figure 4.13: Speed-versus-time characteristic of NEDC drive cycle

Table 4.13: Comparison of range capabilities for different drive cycles

Drive cycle FTP75 HWFET NEDC

Top speed (km/h) 91.2 96.4 120

Maximum power of BU (W ) 39,444.1 33,578.8 56,056.9

Average power of BU (W ) 4,805.7 13,983.5 5,256.7

Range (km) 355.3 277.2 305.0

Table 4.13 compares the driving ranges of the vehicle under study on these drive cycles

when the wind speed is equal to 3.5 m/s, the road is assumed to be flat, and full energy

of the battery is allowed to be used over the drive cycles. As seen in the results of this

table, the vehicle travels the longest range on the FTP75 drive cycle while it has the

shortest range on HWFET. An indirect reason for these observations is very low and high

average powers of the battery unit on the FTP75 and HWFET drive cycles, respectively.
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This indicates that the battery unit is depleted much faster when the vehicle undergoes

HWFET. It should be noted that the average power of battery unit for a specific drive

cycle (FTP75, HWFET, or NEDC) in Table 4.13 is equal to the mean value of the vector

of BU power whose elements are calculated based on the power demand at each sampled

interval of the corresponding drive cycle.

An important advice from car manufacturers is not to over-charge or over-discharge the

battery units. The cycle life of battery cells is reduced when deep charge and discharge

cycles are experienced. Therefore, it is always recommended that SoC of the battery cells

is maintained within specific limits. A typical recommended example is the SoC range of

30%− 70%. Although limiting the range of SoC variation helps delay the aging process of

the battery cells, it has the disadvantage of losing range capability due to narrower span

of energy available to complete a drive cycle. Table 4.14 provides a comparison among the

ranges on FTP75, HWFET, and NEDC drive cycles for different permissible ranges of SoC.

As seen in this table, for the SoC range of 30%− 70%, the completed range is significantly

shorter than those obtained for the larger SoC ranges and full SoC range given in Table

4.13.

It should be noted that the auxiliary loads specially air conditioning power can have

Table 4.14: Comparison of range capabilities based on different permissible ranges of SoC

of battery cells

Drive cycle FTP75 HWFET NEDC

Range based on SoC variation of 10%− 90% (km) 292.9 226.4 259.6

Range based on SoC variation of 20%− 80% (km) 218.5 170.2 194.3

Range based on SoC variation of 30%− 70% (km) 144.9 112.6 129.2

80



a significant effect on the performance of the vehicle [97]. The range that an EV can

travel may vary significantly if driving is taking place in a mild whether condition or in a

very hot day in the middle of summer. Table 4.15 compares the obtainable ranges of the

vehicle under study on the selected drive cycles for different air conditioning powers in the

range of 500 − 2, 000 W . As seen in this table, depending on the air conditioning power

and driving pattern of each drive cycle, the range can be different. For example, in the

case of FTP75 drive cycle, the air conditioning power can significantly reduce the driving

range of the vehicle. The reason is that the average power of BU on this drive cycle is

quite low (4, 805.7 W ) and is comparable with the additional air conditioning power. For

instance, when the air conditioning power is 2, 000 W , the average load of the battery unit

increases by 42% which is quite significant. Therefore, the reduction in the driving range

is quite large (from 355.3 km with no air-conditioning load, Table 4.13, to 252.4 km with

the air-conditioning load equal to 2, 000 W ). In the case of HWFET cycle, the original

average load of the battery unit is 13, 983.5 W . Even when the air conditioning load is

2, 000 W , the average load of BU increases by 14%. Consequently, the effect on the driving

range, when the vehicle is on the HWFET drive cycle, is not as large as that in the case

of FTP75.

Table 4.15: Comparison of range capabilities based on different air conditioning power

Drive cycle FTP75 HWFET NEDC

Range based on air conditioning power of 500 W (km) 324.1 267.9 283.0

Range based on air conditioning power of 1,000 W (km) 297.3 258.0 261.1

Range based on air conditioning power of 1,500 W (km) 272.9 249.7 239.3

Range based on air conditioning power of 2,000 W (km) 252.4 241.4 217.6
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4.2 Optimal Sizing of the Storage System of an Elec-

tric City Bus

In this section, the problem of optimal sizing of the storage system is solved for an electric

city bus. The results of optimization are provided for the battery-only, ultracapacitor-

only, and battery-ultracapacitor HESS configurations, in Sections 4.2.1, 4.2.2, and 4.2.3,

respectively. When solving the optimization problem, the following assumptions are made

[90, 92, 95, 98, 99]:

• Daily operation of the electric bus is equivalent to travelling 240 km on EPA Urban

Dynamometer Driving Schedule (UDDS) (20 repetitions of the UDDS cycle). Figure

4.14 shows speed-versus-time profile of this drive cycle. UDDS is a 12 km city

cycle (1, 370 s long), with the average speed of 31.5 km/h and maximum speed of

91.2 km/h. In this thesis, the time difference between the starting points of two

consecutive UDDS cycles is 45 minutes which includes 1370-second length of the

cycle and the waiting period at the end-point terminals. This waiting period can be

used for swapping the battery unit and/or charging the ultracapacitor unit.

• All prices are expressed in US dollars.

• Duty ratio of the DC-DC converter interfacing BU and UC is allowed to vary between

0.2 and 0.8.

• The total power loss of the traction motor due to core, friction, windage, and stray

components, is fixed and equal to 10% of the load power in both motoring and

regenerative braking modes.
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Figure 4.14: Speed-versus-time characteristic of UDDS drive cycle

• In systems which include battery units, SoC of the battery cells is allowed to vary

between 30% and 90% over the drive cycle.

• The maximum and minimum numbers of series-connected cells on the DC bus are

determined based on open-circuit voltage limits of 200 V and 600 V on the DC bus.

• Mass of the bus without the storage system is considered to be equal to 11, 000 kg.

An additional mass of 2, 000 kg is considered for the passengers. At every iteration

of the optimization process, for each member of population, this 13, 000 kg mass is

summed up with the mass of storage system corresponding to the chosen individual

to determine the total mass of the vehicle required for calculating the power demand

from speed-versus-time characteristic of the drive cycle.

• For charging the ultracapacitor unit in corresponding stations, the efficiency of charg-

ing is 90%.
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• Charging of ultracapacitor unit is done under constant power condition. Maximum

permissible time for charging at the end-point terminals is 1, 200 s.

• The transmission system has a fixed efficiency of 96% with a gearbox of fixed gear

ratio of 9.333 : 1.

• Temperature is constant at 25o C.

Similar to Section 4.1, parameters of the traction motor (required for approach II) are

estimated through an analytical procedure based on targeted performance (Fig. 4.15) as:

Lm = 2, 034.88 µH L`s = 54.86 µH L`r = 54.86 µH

Rs = 7.43 mΩ Rr = 4.73 mΩ ωsy,base = 157 rad/s (4.4)

Figure 4.15: Torque-speed characteristic curves of the traction motor used for optimal

sizing of the storage system of the electric city bus

84



The torque-speed characteristic curves of the traction motor are shown in Fig. 4.15. The

maximum AC voltage for which the last curve (in red) has been plotted corresponds to

series connection of 149 battery cells on the DC when linear modulation is considered for

the operation of DC-AC converter. As seen in Fig. 4.15, the traction motor can keep a

constant torque of 9, 300 N.m up to around 1, 500 rpm. During solving the optimization

problem, as mentioned before, every member of population determines the number of series-

connected cells on the DC bus. Using, this number, the base frequency of the traction

motor is calculated with the assumption that the ratio of the no-load voltage on the DC

bus over the base frequency is fixed for different traction motors. This base frequency

along with other parameters of the machine are used to calculate the maximum torque of

the corresponding machine by (2.27).

To calculate the power demand, the parameters given in Table 4.16 are used. It should

be noted that an additional 30 kW of power is added to the power demand accounting for

air conditioning and other auxiliary loads in the bus [100].

4.2.1 Optimal Sizing of the Battery-only Configuration

For the battery-only configuration, two scenarios are studied for the storage unit. The first

scenario considers one battery unit installed on the powertrain of the bus responsible for

fulfilling the total driving range requirements in daily operation with a single over-night

Table 4.16: Parameters used to calculate power demand

Af (m2) vw (m/s) ρa (kg/m3) Cd g (m/s2) Pr (psi) rwh (m) Ng

7.316 2.0 1.202 0.79 9.81 120 0.95 9.333
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Table 4.17: Optimization results for the battery-only configuration

cost of BU cost of BU

Number of considering $ 2 considering $ 7 Mass of

Approach Nbs Nbp battery cells as the price as the price BU

(Nbs ×Nbp) of battery cells of battery cells (kg)

($) ($)

I 78 1,546 120,588 241,176 844,116 5,185.3

II 143 737 105,391 210,782 737,737 4,531.8

charge. To complete 240 km on the UDDS drive cycle, optimal sizes of the battery unit

based on approaches I and II are as shown in Table 4.17.

Figures 4.16 and 4.17 show variations of SoC of the battery cells and DC bus voltage

versus time for the battery-only configuration with the optimally-sized BU based on ap-

Figure 4.16: SoC of the battery cells versus time for the battery-only configuration with

Nbs = 143 and Nbp = 737
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Figure 4.17: DC bus voltage versus time for the battery-only configuration with Nbs = 143

and Nbp = 737

proach II. In Fig. 4.18, power demand on the DC bus (PDC) and battery unit power (PBU)

versus time are shown for one UDDS cycle. The exact match between these two power

Figure 4.18: Power demand and BU power versus time for the battery-only configuration

with Nbs = 143 and Nbp = 737
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components indicates that the equality constraint on the power demand is respected at

each sampled interval of the drive cycle.

In the second scenario, a battery-swap strategy is used to replace the discharged battery

unit with the newly-charged one at some of the end-point terminals. This reduces the

mass of onboard battery unit and, therefore, a smaller room is required for the storage

system. The size of storage system varies depending on the number of battery units

considered for this scenario and swap frequency during the daily operation. Tables 4.18

and 4.19 show the optimization results in terms of the number of battery replacements (with

Nswap = 2) during daily operation of the bus based on approaches I and II, respectively.

Number of replacements determines how many UDDS drive cycles must be completed

before the discharged battery unit is swaped with the charged one. The higher the number

of replacements is, the lower the optimal size of the battery unit will be. It is seen how

battery swap strategy reduces the size of onboard storage unit (the mass of onboard battery

unit without any swap is 4, 531 kg while it is almost 553 kg with 10 battery replacements,

based on approach II). However, battery swap strategy requires facilities capable of faster

charging of battery units. For example, with two participating battery units (Nswap = 2),

for ten replacements during a daily operation, the depleted battery unit must be recharged

in less than 2 × 45 minutes (1.5 hour). If constant-current scheme is used for charging

the battery unit, the battery cells must be charged at the rate of approximately 2/3 C.

In addition to the charging infrastructure requirements, battery swap strategy shortens

the cycle life of battery cells. Therefore, in long term, additional cost of purchasing new

battery units should be considered. As an example, in the case of 10 battery replacements

per day, each battery unit is charged to 90% and discharged to 30% five times during the

daily operation of the bus. If we consider the cycle life of the battery cells to be around 800

times at this depth of discharge, it means that the battery units should be permanently
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Table 4.18: Optimization results for the battery-only configuration with swap strategy

based on approach I

cost of the cost of the Mass

Number of Number of battery units battery units of the

replacements Nbs Nbp battery cells considering $ 2 considering $ 7 onboard

of BU (2×Nbs ×Nbp) as the price of as the price of battery unit

battery cells ($) battery cells ($) (kg)

2 93 607 112,902 225,804 790,314 2,427.4

4 112 249 55,776 111,552 390,432 1,199.2

10 101 126 25,452 50,904 178,164 547.2

Table 4.19: Optimization results for the battery-only configuration with swap strategy

based on approach II

cost of the cost of the Mass

Number of Number of battery units battery units of the

replacements Nbs Nbp battery cells considering $ 2 considering $ 7 onboard

of BU (2×Nbs ×Nbp) as the price of as the price of battery unit

battery cells ($) battery cells ($) (kg)

2 146 346 101,032 202,064 707,224 2,172.2

4 145 174 50,460 100,920 353,220 1,084.9

10 55 234 25,740 51,480 180,180 553.4

replaced with new ones after around 160 days, while, in the case of no replacement, the

battery unit can be used for 800 days.
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Table 4.20: Optimization results for the ultracapacitor-only configuration

cost of UC cost of UC

Number of considering $ 40 considering $ 50 Mass of

Approach Nus Nup ultracapacitor cells as the price of as the price of UC

(Nus ×Nup) ultracapacitor ultracapacitor (kg)

cells ($) cells ($)

I 222 82 18,204 728,160 910,200 9,284.0

II 218 61 13,298 531,920 664,900 6,782.0

4.2.2 Optimal Sizing of the Ultracapacitor-only Configuration

In the case of ultracapacitor-only configuration, the optimal size of the ultracapacitor

unit with its corresponding cost are given in Table 4.20 based on approaches I and II.

Figures 4.19 shows variation of the DC bus voltage versus time for two UDDS cycle with

Nus = 218 and Nup = 61. As seen in this figure, the ultracapacitor unit is charged

between the consecutive UDDS cycles with the charging power calculated to be 95.3 kW

extracted from the grid (charging time has not been shown in this figure). Unlike the

case of battery-only configuration, in the ultracapacitor-only configuration, the DC bus

experiences a large voltage variation between each two consecutive charging, which can be

a disadvantage for operation of the inverter from control point of view. In Fig. 4.20, power

demand and ultracapacitor unit power versus time are shown for two UDDS cycles. The

patterns shown in Figs. 4.19 and 4.20 are repeated 10 times during daily operation of the

city bus (20 repetitions of the UDDS cycle).

An important point to notice about the ultracapacitor-only configuration is that the
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Figure 4.19: DC bus voltage versus time for the ultracapacitor-only configuration with

Nus = 218 and Nup = 61

Figure 4.20: Power demand and UC power versus time for the ultracapacitor-only config-

uration with Nus = 218 and Nup = 61

size of UC can be reduced if more charging stations are considered over the course of the

drive cycle [8]. For example, along with charging at the end of each UDDS cycle, charging

can take place at four more points of the UDDS cycle as shown by red arrows in Fig.
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Figure 4.21: Charging points on the UDDS drive cycle

4.21 (points corresponding to t = 126, 334, 694, and 958 s). Assuming 60 s limit on the

charging time at the additional points (charging times at these points are chosen to be

much shorter than those at the end-point terminals as the bus is in the middle of its trip

over the course of each UDDS cycle) and 95.3 kW limit on charging power available from

the grid, using approach II, the optimal size of UC will be Nus = 218 and Nup = 46. It is

seen that with more charging points included, the mass of ultracapacitor unit drops from

6, 782.0 kg to 5, 114.3 kg. Table 4.21 summarizes the optimization results for the two cases

of (i) UC charged only at the end-point terminals and (ii) charging at t = 126, 334, 694,

and 958 s of each UDDS drive cycle is considered in addition to charging at the end-point

terminals.
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Table 4.21: Comparison of the optimization results for the ultracapacitor-only configura-

tion for the two cases of (i) UC charged only at the end-point terminals and (ii) charging

at t = 126, 334, 694, and 958 s of each UDDS drive cycle is considered in addition to

charging at the end-point terminals

Number of Mass of

Nus Nup ultracapacitor cells UC

(Nus ×Nup) (kg)

case (i) 218 61 13,298 6,782.0

case (ii) 218 46 10,028 5,114.3

4.2.3 Optimal Sizing of the Battery-Ultracapacitor HESS Con-

figuration

In the case of ultracapacitor-only configuration with Nus = 218 and Nup = 61, to meet

the daily operational power and energy requirements, the maximum charging power for

the ultracapacitor unit is 95.3 kW . A battery-ultracapacitor HESS configuration makes it

possible to have a limit on the charging power of UC, if it is required to do so. When a limit

is placed on the charging power of UC, the ultracapacitor cells cannot participate in meeting

energy requirement of the powertrain as in the case of ultracapacitor-only configuration.

However, this is compensated for by participation of battery cells in energy management

in the HESS configuration. Table 4.22 shows the results of optimization when the battery

unit is replaced once (with Nswap = 2) during the daily operation of the city bus (after 10

repetitions of the UDDS cycle), the limit on the charging power of UC is equal to 50 kW ,

Cb = $ 7, Cu = $ 50, and Ccon = $ 250 per kW . It should be noted that when solving
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Table 4.22: Optimization results for the battery-ultracapacitor HESS configuration with

Cb = $ 7, Cu = $ 50, Ccon = $ 250 per kW , and a single swap of BU during the daily

operation when the limit on the charging power of UC is equal to 50 kW

Total mass of

Approach Nbs Nbp Nus Nup DC-DC rating (kW) Cost ($) the onboard

storage units (kg)

I 36 941 222 32 63.224 845,263 5,079.8

II 33 795 222 31 46.430 722,997 4,637.9

the problem of optimal sizing for the battery-ultracapacitor HESS configuration, for both

approaches I and II, efficiencies of the DC-DC converter during step-down and step-up

modes of operation are calculated using Tables 4.3 and 4.4, respectively. Using Table

4.22, it can be calculated that using the HESS configuration, mass of the storage system is

reduced from 6, 782.0 kg in the case of ultracapacitor-only configuration to 4, 637.9 kg based

on approach II. Moreover, as mentioned before, the HESS configuration keeps the battery

unit immune from fast charging/discharging current (compared to the case of battery-only

configuration) when the vehicle undergoes unpredictable driving patterns.

As mentioned before, when solving the problem of optimal sizing for the battery-

ultracapacitor HESS configuration, the result of optimization can be affected by the choice

of prices of the battery and ultracapacitor cells and the DC-DC converter per kW as in-

cluded in calculating the cost using (3.5). Table 4.23 provides a comparison among the

optimization results for four different sets of prices of the storage cells and the DC-DC

converter per kW . As this table shows, when the ultracapacitor cells are not very expen-

sive compared to the battery cells (Cb = $ 2, Cu = $ 10, and Ccon = $ 100 per kW ),
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the optimal size of UC is found in such a way that the maximum charging power of the

ultracapacitor unit becomes equal to the limit set for this power component (50 kW ).

Once the ratio of the price of ultracapacitor cells to that of the battery cells gets larger,

the size of UC decreases resulting in more participation of the battery cells in meeting the

power requirements of the city bus over the course of its drive cycle. In addition, it is seen

that when such a condition occurs, the price of DC-DC converter per kW has an inverse

relationship with the size of battery unit. This has been shown in the last two rows of

Table 4.23 where Cb = $ 2 and Cu = $ 40 for both rows. In the former case, the price of

DC-DC converter is $ 250 per kW while in the latter case, it is $ 100 per kW . Therefore,

in the latter case, the optimal size of BU is larger than that in the former case indicating

more participation of the battery unit in meeting the power demand while the reduced size

of UC results in lower cost of the storage system.

Figures 4.22 and 4.23 show variations of SoC of the battery cells and the terminal

voltage of BU versus time based on approach II with Nbs = 33, Nbp = 795, Nus = 222,

Nup = 31, and Pcon = 46.430 kW . As seen in these figures, there are two identical segments.

This similarity is the result of the single battery replacement over the course of the drive

cycle. Variation of the DC bus voltage versus time is shown in Fig. 4.24 for the daily

operation of the bus (20 repetitions of the UDDS cycle). Like the case of ultracapacitor-

only configuration, as the DC bus is solidly connected to the terminals of UC, the DC bus

voltage experiences fast and wide variations. Figure 4.25 shows the power demand and BU

and UC power components versus time for one UDDS cycle.
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Table 4.23: Comparison of the optimization results for the battery-ultracapacitor HESS

configuration based on four sets of prices of the battery and ultracapacitor cells and the

DC-DC converter with a single swap of BU during the daily operation when the limit on

the charging power of UC is equal to 50 kW

Prices of Total mass Maximum

the battery cell, DC-DC of the power

the ultracapacitor cell, Nbs Nbp Nus Nup rating Cost ($) onboard required

and the (kW) storage for charging

DC-DC converter units (kg) of UC (kW)

Cb = $ 2, Cu = $ 10,

and 33 769 222 32 44.481 176,996 4,714.3 49.999

Ccon = $ 100 per kW

Cb = $ 7, Cu = $ 50,

and 33 795 222 31 46.430 722,997 4,637.9 48.712

Ccon = $ 250 per kW

Cb = $ 2, Cu = $ 40,

and 48 1,057 222 6 133.281 289,544 2,861.0 8.497

Ccon = $ 250 per kW

Cb = $ 2, Cu = $ 40,

and 46 1,316 222 1 270.008 278,025 2,716.3 1.462

Ccon = $ 100 per kW
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Figure 4.22: SoC of the battery cells versus time for the battery-ultracapacitor HESS

configuration with Nbs = 33, Nbp = 795, Nus = 222, Nup = 31, and Pcon = 46.430 kW

Figure 4.23: Terminal voltage of BU versus time for the battery-ultracapacitor HESS

configuration with Nbs = 33, Nbp = 795, Nus = 222, Nup = 31, and Pcon = 46.430 kW

4.3 Summary

In this chapter, the results of optimal sizing of the storage systems were provided for a

small-size, long-range electric car and an electric city bus. For the first case, the problem

97



of optimal sizing was solved for the battery-only configuration while the latter included the

battery-only, the ultracapacitor-only, and the battery-ultracapacitor HESS configurations.

Figure 4.24: DC bus voltage versus time for the battery-ultracapacitor HESS configuration

with Nbs = 33, Nbp = 795, Nus = 222, Nup = 31, and Pcon = 46.430 kW

Figure 4.25: Power demand and BU and UC powers versus time for the battery-

ultracapacitor HESS configuration with Nbs = 33, Nbp = 795, Nus = 222, Nup = 31,

and Pcon = 46.430 kW
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Beside the optimization results, the chapter provided simulation results for different cases

confirming how the constraints of the problem were respected.
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Chapter 5

Conclusions, Contributions, and

Future Work

5.1 Summary and Conclusions

In the following, a summary and some conclusions based on the previous chapters are

given.

• Due to the issues such as concerns about environmental pollution, rapid increase in

fuel cost, and depletion of fossil fuel reserves, Electric Vehicles (EVs)/Hybrid Electric

Vehicles (HEVs) have drawn significant attention in recent decades.

• One of the key components of every EV/HEV is the Energy Storage System (ESS).

ESS consists of a source or a combination of two or more sources (when more than

one ESS device is installed, the structure can also be called a hybrid energy storage

system or HESS), which provides electric power to the drivetrain in an EV/HEV.
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• Batteries and ultracapacitors are two major types of ESS in EVs/HEVs. Batteries are

well-known for their high specific energy while suffering from their low specific power.

Ultracapacitors have very high specific power and low specific energy. Therefore,

ultracapacitors have application in the storage systems where they can be charged

frequently over the course of drive cycle and/or hybridized with battery units in a

battery-ultracapacitor HESS configuration.

• There are different structures for hybridizing the ESS based on a battery unit (BU)

and an ultracapacitor unit (UC) and taking advantage of the best of the two worlds.

In most of the cases, Power Electronic (PE) converters are used as an interface

between BU, UC, and the DC bus. Choice of a specific configuration depends on

various factors such as cost, flexibility, and level of reliability required from the

system.

• Cost of the storage system is a significant portion of every EV. Price of an EV varies

depending on the types of ESS devices installed in the powertrain and whether PE

converter(s) exists in the interfacing infrastructure between the storage unit(s) and

the DC bus. Due to limitation of money and available resources, optimal sizing of

the storage system is a requirement which is beneficial for both EV manufacturers

and costumers.

• A quantitative analysis is required to determine the optimal size of the storage system

for an EV using the dimensions of the vehicle and driving conditions including road

parameters and speed-versus-time profile. By this analysis, the optimum numbers

of parallel branches and series-connected cells in each branch of the storage units

interfaced to the DC bus in electric powertrains are determined. In addition, in the

case of a HESS, if any DC-DC converter exists in the interfacing infrastructure, its

101



rating is also determined through the course of this quantitative analysis.

• Mathematical models of battery and ultracapacitor cells bear differential equations.

To deal with these differential equations in the optimization platform, a practical

method is to discretize the power demand using a specific sampling time and convert

all continuous differential equations to their equivalent discrete forms.

• The problem of optimal sizing of battery-only and ultracapacitor-only storage systems

in electric vehicle applications is an integer nonlinear programming (INLP) problem

(in the case of a battery-ultracapacitor HESS configuration, it is a mixed-integer

nonlinear programming (MINLP) problem) with quite a large number of constraints,

considering the discretized equations of the system at every sampled interval. Due

to nonlinearity of the problem, existence of integer values in the domain of solutions

(the numbers of parallel branches of the storage devices and series-connected cells

in each branch), and excessive number of constraints, conventional gradient-based

methods cannot be used to optimize the problem. In this thesis, a population-based

metaheuristic algorithm named Teaching-Learning-Based Optimization (TLBO) is

used for solving the problem of optimal sizing of the storage systems.

• Choice of a storage device (battery and/or ultracapacitor in this study) for installing

in the powertrain of EVs depends on the power profile of the vehicles. For small-

size, long-range vehicles, while the battery-ultracapacitor HESS is a possible choice,

battery-only configuration is the better option from economical viewpoint. It should

be noted that the ultracapacitor-only configuration cannot be used as the powertrain

of a small-size, long-range vehicle (no frequent charging considered for this vehicle)

due to low specific energy of ultracapacitor cells available in the market. For a

vehicle like an electric city bus, the scenario can be different as there is possibility of
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frequent charging for the ultracapacitor units and swapping strategy for the battery

units. Therefore, all three configurations of battery-only, ultracapacitor-only, and

battery-ultracapacitor HESS are possible candidates for this class of vehicles.

• In a battery electric vehicle, performance indexes such as duration of 0− 60 mile/h

acceleration and top speed vary with the initial SoC of the battery cells and the road

conditions including wind speed and road grade. At lower values of SoC, higher wind

speeds, and/or larger grades of the road, the vehicle can reach speed of 60 mile/h

over a longer time period with its achievable top speed reduced.

5.2 Contributions

The contributions of this research are:

• Developing a flexible optimization platform which can be used for the purpose of

optimal sizing of battery/ultracapacitor-based energy storage system of any electric

vehicle if the vehicle’s dimension and its driving conditions are known a priori; in

formulating the optimization problem, different constraints such as limits on SoC,

current, and power of the battery cells, current and power of the ultracapacitor

cells, voltage conversion of the DC-DC converter, DC bus voltage, and operation

characteristics of the inverter and the traction motor are taken into consideration.

• Implementing a metaheuristic population-based algorithm named Teaching-Learning-

Based Optimization (TLBO) technique in MATLAB environment; the implemented

technique is a powerful optimization tool that can be used for solving different types

of optimization problems (linear, nonlinear, convex, non-convex, continuous, discrete,

etc.)
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• Developing a simulation platform which includes electrical models of powertrain com-

ponents, i.e., battery and ultracapacitor cells, DC-AC converter, and Traction Motor;

the models developed for the DC-AC converter and the traction motor can also be

used for studying any induction motor-based variable-speed drive.

• Quantitative analysis of the performance of two popular classes of EV, i.e., small-size

long-range car and city bus, equipped with the optimally-sized ESS.

5.3 Future Work

This research can be extended based on the following future work:

• Inclusion of battery aging in the optimization platform.

• Studying the effect of temperature variations of the storage devices on the optimiza-

tion results.

• Including the detailed model of DC-DC converter interfacing BU and UC to the DC

bus.

• Considering the uncertainty associated with the parameters used in the modeling of

the storage devices.

• Including the control system and charge balancing circuits in the structure of storage

units in the optimization platform.

• Solving the problem of optimal sizing with other types of traction motors such as

permanent magnet synchronous machine (PMSM).
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