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                                                ABSTRACT 

Purpose 

 Previous studies have shown diurnal variation in retinal thickness in patients with diabetic 

macular edema (DME) over the course of the day but the cause, presence and magnitude of this 

variation is controversial. This study will investigate the direct effect of reclining on retinal 

thickness in diabetic patients with DME using spectral domain optical coherence tomography 

(SD-OCT). 

 

Methods 

Ten patients with DME and proliferative diabetic retinopathy (PDR) or severe non-proliferative 

diabetic retinopathy (NPDR) (mean age 57.4yrs, SD ±6.8yrs) and thirteen healthy controls (mean 

age 43yrs, SD ±13.8yrs) were recruited. Subjects reclined for two hours and retinal thickness 

using SD-OCT (Heidelberg Spectralis, model spec, Heidelberg, Germany) was measured at five 

time points; before reclining, immediately after reclining while lying on side, one hour after 

reclining while lying on side, two hours after reclining while lying on side, and immediately after 

returning back to an upright position.  

 

Results 

 Throughout the reclining period, there was a global trend for retinal thickness to change over 

time within each group (p=0.068) and a trend for there to be a greater change in retinal thickness 

over time in the diabetic group (p=0.104). In terms of the change analysis, a significant increase 
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reached its maximum after two hours of reclining (+7.2 ±13.2 µm for the diabetic group 

compared to -0.8 ±2.4 µm for the controls, p=0.044). On resuming a sitting position, the retinal 

thickness significantly reduced in the diabetic group but exhibited some residual increase (+2.1 

±3.2 µm for the diabetic group compared to -0.4 ±1.4 µm for the controls,  p=0.029). Of the 6 

macular areas / sectors assessed, the temporal macular sector showed the greatest increase in 

reclining induced DME (+21.1 ±31.1 µm for diabetic group compared to +0.8 ±4.2 µm for 

controls, p= 0.029) 

 

Conclusion 

We found a global trend for retinal thickness of the diabetic group to increase in response to 

reclining when compared to a control group. This increase was reversed close to baseline values 

immediately after returning to an upright position. Certain macular areas showed significant 

increase of retinal thickness, especially the temporal macula. The clinical implications of this 

reclining induced DME effect are discussed. 
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1 Introduction 

The prevalence of vision loss in Canada is increasing dramatically with an estimated five 

Canadians experiencing vision loss every hour1. Diabetic retinopathy, along with glaucoma, age 

related macular degeneration, and cataract, is a major cause of vision loss. According to 

Statistics Canada, there were 1.8 million Canadians with diabetes in 20112, representing an 

astounding  approximately 5% of the population. Vision loss has a profound impact on the 

individual’s quality of life and health, as well as on the cost of health and other support services. 

In 2007, approximately $16 billion were spent on vision loss treatment and services in Canada, 

which amounts to $500 per citizen. Moreover, there is an additional estimated amount of $12 

billion as a cost of suffering, long term care, special facilities, etc. Vision loss costs are predicted 

to reach $30 billion within Canada by the year of 20321. However, these figures pale in 

comparison to, for example, Saudi Arabia where more than 20% of the population have  

diabetes3,4. All diabetic individuals are susceptible to developing sight threatening diabetic 

retinopathy, unless this vascular complication is diagnosed and treated earlier. Diabetic 

retinopathy is a disease that dramatically increases the likelihood of vision loss and it can affect 

many of the retinal cells. Chronic hyperglycemia in diabetic patients will ultimately elevate 

vascular endothelial growth factor and, in turn, will result in loss of blood-retinal barrier function 

and also retinal hypoxia which can lead to several microvascular changes that result in 

permanent visual loss if not managed properly5. Neural changes are also hypothesized to play a 

role in the development of diabetic retinopathy impacting both the retinal neurons and glial cells. 

It is not known if the neural changes are induced by vascular changes or induced by diabetic 
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neuro-pathology and, in turn, whether this initiates the development of vascular changes. Both 

changes could also be developed concomitantly by separate factors6. 

One of the key factors in the progression of diabetic retinopathy is the increased permeability of 

the retinal vascular bed which is thought to be mainly attributed to the development of the blood-

retinal barrier dysfunction.  

1.1 Retinal blood supply 

The retina receives a blood supply through two vascular systems. The outer retina is supplied by 

the choroid while the inner layers are supplied by the retinal vessels6. The retinal blood flow 

contributes to only 5% of the total ocular blood flow, which is estimated to be 1 ml/min7, but it is 

characterized by a low perfusion rate and high vascular resistance6,8. On the other hand, the 

choroidal blood flow, which contributes to 65% of oxygen and nutrients supply of the retina, is 

characterized by a higher perfusion rate and low vascular resistance. The rate of oxygen 

consumption (i.e. oxygen exchange to the tissues) in the retinal vessels is significantly higher 

(35%) than in the choroidal vessels (4%). 

 

Both retinal and choroidal vascular systems are supplied by the ophthalmic artery which is 

branched from the internal carotid artery9. The retinal blood flow comes from the central retinal 

artery which is derived from the ophthalmic artery and enters the retina at the optic nerve to 

bifurcate into superior and inferior papillary arteries. These papillary arteries are further 
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branched nasally and temporally to cover the entire inner layers of the retina6,9. The retina drains 

into the retinal venules to the central retinal vein which exits the eye at the optic nerve and then 

into the ophthalmic vein. The choroid is supplied by the short-posterior ciliary arteries 

posteriorly and by the long-posterior ciliary arteries anteriorly, both of which branch from the 

ophthalmic artery. The choroidal blood supply drains into the vortex veins, with the superior 

vortex veins draining into the superior ophthalmic vein and the inferior vortex veins draining into 

the inferior ophthalmic vein. These two veins will exit via the cavernous sinus and will 

anastomose with the anterior ciliary veins. For the purposes of this thesis, I will now concentrate 

on a description of the retinal blood vessel and its relevant physiology. 

1.2 Retinal Blood Vessels 

A blood vessel is composed of three layers. The most inner layer is the intima, which consists of 

a thin layer of connective tissue enclosed internally by endothelial cells. The intima plays a 

major role in controlling the permeability of the vessel and the exchange of fluids and nutrients 

with the surrounding tissues. The outer layer is the adventitia, which consists of a connective 

tissue and binds the vessel loosely to the tissue around it. The intermediate layer is the media, 

which contains the smooth muscle cells and bordered internally and externally by the internal 

and external elastic lamina, respectively. The vascular smooth muscle controls the contractile 

status of the vessel by contraction or dilation when intravascular pressure is increased or 

decreased, respectively, in order to maintain the required blood flow and oxygen delivery to the 

retinal tissues. The structure of the blood vessels, however, is not standardised. Each blood 

vessel adapts in structure to its own specific role within the vascular tree. Capillaries, for 
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example, are where most of the exchange of oxygen(O2 ), carbon dioxide (CO2), metabolites, and 

fluids occur. To make this exchange effective and fast, the walls of the capillaries are thin and 

numerous consisting of only one layer, the endothelial layer, lined externally by a basement 

membrane with absence of media and adventitia. On the other hand, the terminal arteries and 

arterioles, which may exert a high resistance to the blood flow, are larger in diameter and lower 

in numbers and consist of a relatively thick muscular layer compared to the lumen10. 

 

The retinal vessels are similar to those of the brain in lacking a fenestration within the 

endothelial cell wall, whereas the blood vessels of the ciliary body exhibit many cell wall / 

plasma membrane fenestrations. This specialised structure of the retinal vessels helps to provide 

tight control of permeability in addition to the greatly reduced number of pinocytotic vesicles, 

which play an important role in the permeability of blood vessels. The endothelial cells, which 

are in close communication and coordination with pericytes and glial cells, are tightly joined 

together to form a “tight” inner retinal-blood barrier, while the outer blood retinal barrier is 

formed in a similar fashion by the retinal pigment epithelium cells. There are more than 40 

proteins thought to be involved in the structure and regulation of these tight junctions between 

endothelial cells. Some of these proteins are occludin, tricellulin, and the Claudine gene family. 

However, the exact involvement of each protein and the exact changes that occur to tight 

junction protein structure in diabetic retinopathy are still to be uncovered5. 
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1.3 Blood pressure (BP) 

When the blood is pumped from the heart, it travels through the vascular system to deliver 

oxygen and nutrients to the body organs and tissues via the arteries and returns to the heart via 

the veins. The main effective factor of this circulation and movement of blood is the gradient of 

blood pressure. The left ventricular muscle of the heart contracts and ejects the blood into the 

aorta with a pressure higher than the atmospheric pressure. After ejection, the ventricle relaxes 

and then fills up with oxygenated blood again. The blood pressure in the major veins is 

approximately equal to the atmospheric pressure. The difference between the arterial and venous 

pressure drives the blood through the vascular system10. 

 

The blood pressure is usually measured with a sphygmomanometer and described in mmHg 

units. The blood pressure reaches the maximum point after ventricular contraction and ejection 

of blood into the aorta. This peak point is called the systolic blood pressure (SBP) and it is 

normally close to 120 mmHg. The minimum point is reached during relaxation of the ventricle 

just before the ejection. This trough point is called diastolic blood pressure (DBP) and it is 

normally close to 80 mmHg. Blood pressure is usually recorded as SBP/ DBP mmHg10. 

1.4     Ocular Perfusion Pressure (OPP) 

The blood flow through a vessel is controlled by the inflow blood pressure, the outflow blood 

pressure, the viscous properties of the blood, and the structure of the specific blood vessel. In the 

human eye, the blood enters the eye with a blood pressure equivalent to the blood pressure in the 
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supply arteries. The blood pressure then decreases from these arteries to the capillaries by 

different resistance factors including the properties of the blood composition (i.e. viscosity), the 

total length of the arterioles and capillaries, the vascular pattern and the cross sectional area of 

the vasculature. The venules collect and transfer the blood from the capillaries to the exiting 

veins. The blood pressure is very low in the veins; however, it has to be higher than intra ocular 

pressure (IOP) before exiting the eye to permit transport of the blood back to the heart, otherwise 

the veins would collapse. IOP acts as a compressing force on the vein wall which acts against the 

blood pressure in the vein itself. If the IOP is higher than the blood pressure in a region of the 

vein, that region may eventually collapse11. The perfusion pressure in any vasculature is the 

difference between the arterial blood pressure and the venous blood pressure. The venous blood 

pressure in the eye almost equals the IOP6; the OPP is then defined as the mean arterial pressure 

MAP (calculated for the eye level since the BP is actually measured from the brachial artery in 

the arm at the level of the heart) minus the IOP. 

The mean OPP is estimated by the following formula:  

����	��� = 	 �
�
 (MAP) - IOP 

                      =  
�
�
 ( DBP + 

�
�
	( SBP - DBP)) - IOP 

 Where:     DBP =   Diastolic Blood Pressure 
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                SBP  =    Systolic Blood Pressure 

The factor “2/3” is used to compensate for the blood pressure drop at the eye level with the body 

erect, since the measurement is actually attained at the level of the heart and the blood column 

has to overcome the force of gravity to reach the eye12,13. 

1.5     Intra-Ocular Pressure (IOP) 

The pressure generated by the intraocular components against the outer surfaces of the eye is 

called the intra-ocular pressure. The main controller of this pressure is the aqueous humor 

volume while the vitreous humor volume is almost fixed and is not effectively involved in the 

control of IOP. The aqueous humor in the anterior chamber is produced at the ciliary body in the 

posterior chamber. Aqueous humor moves from the ciliary body over the surface of the 

crystalline lens, and then through the pupil to the anterior chamber. Smaller percentage of 

aqueous humor can also pass by filtration through the vessels of the anterior surface of the  iris.14 

The aqueous humour is essential for the oxygen and glucose supply to the avascular lens and 

cornea. The drainage of the aqueous mainly occurs through the trabecular meshwork and 

Schlemm's canal, while a smaller volume drains out through the uveoscleral route. The dynamic 

balance between the production and drainage of the aqueous fluid maintains the normal IOP. The 

range of normal IOP is between 10-20 mmHg15 
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The drainage tissues are thought to regulate the aqueous humour flow in order to maintain a 

relatively constant level of IOP over long time periods of days to decades as well as over short 

time periods when the pressure rapidly changes. IOP in the same individual may vary according 

to different conditions such as body posture, hydration state, time of the measurement, cardiac 

pulse wave, physical exercise, etc16. 

Several instruments with different techniques are used to measure IOP such as Goldmann 

applanation tonometer, Perkins tonometer, Tonopen, and air puff tonometry. Goldmann 

tonometry is considered as the gold standard amongst them. 

The Tonopen tonometer was used for the purposes of my thesis study. Tonopen is a small 

portable handheld instrument with a small measuring tab that measures the IOP on the corneal 

surface16. After local anaesthesia is administered, the examiner gently touches the cornea several 

times with the tip of the tonopen until a consistent IOP reading is obtained and displayed on a 

small screen. It was thought to be less accurate and less reliable than Goldmann tonometry but 

later generations of the instrument have shown good correlation with Goldmann tonometry17   

especially within the normal range values18.  In terms of relevance to this study, the portability 

and smaller size of the tonopen make it more useful for IOP measurement in different body 

postures or when the patient cannot sit at the slit lamp (Figure 1.1). 
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                          Figure  1.1:  Tono-Pen XL (Mentor)                                                                                     

1.6 Autoregulation 

The blood flow in the retina has to be relatively constant in order to maintain sufficient oxygen 

and nutrients supply to the retinal tissues. Due to the absence of a functioning sympathetic 

innervation to the retinal vessels9, vascular regulation is achieved by autoregulation which 

represents an integral adaptive mechanism that maintains the retinal blood flow at a constant 

level despite changes in the ocular perfusion pressure (OPP).The autoregulatory capacity breaks 

down at extreme levels of mean arterial pressure and intraocular pressure. These levels are found 

to be at 30%-40% increase of mean arterial pressure13 and at an IOP of 27-30 mm Hg19.  

1.6.1 Myogenic / Pressure autoregulation 

Myogenic, or pressure, autoregulation is a response that is mediated by myogenic mechanisms, 

that is stretch receptors in the smooth muscle cells of the retinal blood vessel walls. Myogenic 
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autoregulation is induced when there is a change of intraocular pressure or the mean arterial 

pressure which may result from regular life activity such as exercises, stress, diurnal variation, 

reclining, etc . The ocular perfusion pressure is changed and that will cause the retinal vessels to 

correspondingly constrict or dilate to reciprocally increase or decrease the vascular resistance in 

order to keep a constant blood flow to the retinal tissues20.  An acute elevation of systemic blood 

pressure such as that induced by isometric exercise will result in increased perfusion pressure 

and this will be autoregulated by constriction of the retinal arterioles to maintain a constant 

retinal blood flow.21. 

 

1.6.2 Metabolic autoregulation 

Metabolic autoregulation occurs when there is an change in the metabolic activities of the retinal 

tissues that requires an increase or decrease of perfusion to meet the metabolic demands of the 

retinal tissues. So, unlike pressure autoregulation which maintains a constant flow despite 

changes in OPP, metabolic autoregulation adaptively changes retinal blood flow in response to 

metabolic demand. In monkeys, an increased retinal blood flow was noticed in flickering light, 

which increased the retinal metabolism, compared to blood flow in constant light, which reduced 

the retinal metabolism22. Metabolic autoregulation, or more accurately vascular reactivity, 

associated with the change of oxygen and carbon dioxide tension in the retinal blood vessels is 

also a part of the metabolic response that in turn influences the control of retinal blood flow. 
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Increased oxygen uptake is found to cause vasoconstriction of the retinal blood vessels23, while 

increased levels of systemic carbon dioxide lead to vasodilation6,24. 

 

The endothelial layer of the retinal vessels is thought to play a major role in the regulation of the 

retinal blood flow by releasing vasoactive factors24-26 in response to the retinal need for oxygen, 

glucose, amino acids and other nutrients and to the change in the perfusion pressure. There are 

more than 10 of these vasoactive factors that have been proposed to play a regulatory role. The 

most important among them belong to one of two general groups; the endothelium-derived 

relaxing factors (nitric oxide, prostacyclin, endothelium-derived hyperpolarizing factor) and the 

endothelium-derived contracting factors (endothelin-1, cyclooxygenase products). 

1.6.3 Nitric oxide (NO) 

NO is an extremely short half-life potent vasodilator that is constantly released in the retinal 

vessels to keep the basal blood flow at a constant level26,27. The calcium dependant enzyme NO 

synthase converts the amino acid L-arginine into L-citrulline to form NO21. The endothelial cells 

usually release NO when stimulated by platelet-derived product (adenosine diphosphate, 

thrombin), hormones and autacoids (acetylcholine, bradykinin, histamine, noradrenalin), and NO 

is also released in response to excessive shear stress on the blood vessel wall. By combining with 

soluble guanylyl cyclase, NO in the smooth muscle cells and pericytes forms cMPG (cyclic 

guanosine 3’, 5’-monophosphate) which, in turn, leads to relaxation of the smooth muscle 

cells26,28. 
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1.6.4 Prostacyclin (PGI2)  

PGI2 is another vasodilator that is released by the endothelium to act in conjunction with NO. It 

is formed via the action of cyclooxygenase from arachidonic acid. PGI2 activates cyclic 

adenosine 3′, 5′-monophspate (cAMP) and leads to relaxation of smooth muscle cells26,28. PGI2 

also helps in the protection from vasospasm, ischemia, and thrombus formation because of its 

inhibitor effect on platelet function28. 

1.6.5 Endothelium-Derived Hyperpolarizing Factors (EDHF)  

EDHF are putative substances thought to motivate hyperpolarisation of vascular smooth muscles 

and pericytes thereby inducing dilation. Unlike NO and PGI2 which are more involved in the 

control of large vessels, EDHFs are more associated with smaller vessels and microvessels and 

thus they play a major role in the peripheral vascular resistance. Some of the factors that are 

thought to act as an EDHF are: eoxyeicosatrienoic acid (EET), hydrogen peroxide, potassium 

efflux, and gap junction communication between endothelial cells and smooth muscle cells26. 

1.6.6 Endothelin-1 (ET-1)  

ET-1 is a potent vasoconstrictor28 that binds with its receptors (ETA, and ETB) at the smooth 

muscle cells and pericytes to cause vasoconstriction. It also may have a vasodilator effect when 

present in very low concentration. So, ET-1 is thought to play an important role as a local 

regulator26. 
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1.6.7 Cyclooxygenase Products 

Cyclooxygenase Products are vasoconstrictive substances found in endothelial cells and 

platelets. The most effective products are thromboxane, prostaglandin, and lipid peroxides26. 

1.7     Diabetic Retinopathy 

The morphological changes of diabetic retinopathy includes many vascular and microvascular 

changes, such as the thickening of vascular endothelial basement membrane and eventual 

endothelial cell loss, loss of pericytes closely associated with the vascular endothelium, vascular 

smooth muscle cell loss, microaneurysms and capillary closure. These changes lead to break 

down of blood-retinal barrier and increase in the vascular permeability and leakage of fluids and 

plasma into the adjacent retinal tissues causing the formation of retinal edema especially at the 

macula5,6. Vascular Endothelial Growth Factor (VEGF) upregulation, secondary to Advanced 

Glycosylation End-products (AGE) formation, is thought to initiate loss of integrity of the blood-

retinal barrier and the clinical presentation of diabetic macular edema (DME). 

 

Other changes that also play a major role in the development of diabetic retinopathy are 

intraretinal hemorrhage and venous beading which reflect the progression of capillary closure 

that leads to ischemia and hypoxia5. With the presence of ischemia, the hypoxic retinal tissues 

further up-regulate angiogenic growth factors (especially VEGF)6. This ischemic driven 

upregulation of angiogenic growth factors is thought to give rise to re-canalization and formation 

of neovascularization5. 
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1.8    Classification of Diabetic Retinopathy 

Diabetic retinopathy is generally classified into nonproliferative diabetic retinopathy (NPDR) 

and proliferative diabetic retinopathy (PDR). NPDR is well defined by the presence of 

microaneurysms, intraretinal hemorrhage, hard exudates, cotton wool spots, intraretinal 

microvascular abnormalities (IRMA), and venous beading. The more advanced stage of diabetic 

retinopathy, PDR, is characterized by the occurrence of neovascularization and the sequelae of 

preretinal hemorrhage and retinal detachment. Both NPDR and PDR may accompanied by 

diabetic macular edema (DME) at any stage6. 

 

A severity scale for diabetic retinopathy has been developed based on the Early Treatment 

Diabetic Retinopathy Study (ETDRS) and the Wisconsin Epidemiologic Study of Diabetic 

Retinopathy (WESDR). It consists of six major stages (no clinically apparent retinopathy, mild-

to-moderate NPDR, moderate-to-severe NPDR, severe NPDR, very severe NPDR, and PDR, 

with the risk of sight loss dramatically increasing with progression through these groups). DME 

is classified as clinically significant diabetic macular edema (CSDME) when it threatens the 

fovea and therefore central visual acuity. According to the ETDRS, macular edema is consider as 

clinically significant macular edema if one of the following three features were present: 

1) thickening of the retina at or within 500µm of the center of the macula. 

2) hard exudates at or within 500µm of the center of the macula and associated with thickening 

of the adjacent retina. 
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3)  a zone or zones of retinal thickening 1 disc area or larger, any part of which is within 1 disc 

diameter of the center of the macula.5 

 

Clinically, biomicroscopic examination of the retina with a dilated pupil using a contact lenses is 

the gold standard method to detect the presence of DME. However, this method is highly 

dependent on the examiner experience, patient cooperation, ocular opacities, and the volume and 

extent of the DME. These factors make it a challenge sometimes to precisely detect the presence 

of DME, especially with mild cases. On the other hand, Optical Coherence Tomography (OCT) 

objectively takes images of the different layers of the retina with less dependence on the previous 

factors. Mild DME was found to be more precisely detected by OCT compared to the 

biomicroscopic examination.29 

1.9  Autoregulation / Vascular Reactivity in Diabetes 

Evidence suggests that the autoregulatory response is reduced in diabetic patients30-33.   Related 

work has also shown that retinal arteriolar vascular reactivity to isocapnic hyperoxic 

provocation, in effect an indirect indicator of autoregulatory capacity, is impaired in type 2 

diabetes and this impairment is related to the magnitude of DME34,35 and to the severity of 

diabetic retinopathy36. 
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1.10    Effect of Reclining on Retinal Blood Flow 

In order to keep oxygen and other essential elements at an optimal level, blood flow in the 

healthy retina has to remain relatively constant20. This is achieved by changing the peripheral 

vascular resistance accordingly in response to the moderate changes in transmural pressure (i.e. a 

myogenically driven response) exerted across the blood vessel walls. Physiologically, adopting a 

recumbent position is followed by increased retinal blood velocity and then vasoconstriction to 

oppose the increased ocular perfusion pressure (OPP), i.e. autoregulation, in order to return 

retinal blood flow back to baseline values. This response occurs as a result of the increase in OPP 

that occurs due to the change in the position of the eye relative to the heart when reclining.  

1.11   The Role of the Vagus Nerve 

The activities of the human body are controlled by the somatic motor nervous system and the 

autonomic nervous system. The somatic motor nervous system deals with the adjustment to the 

external environments by innervating the voluntary skeletal and striated muscles, while the 

autonomic nervous system controls the internal activities that are needed to maintain stable 

internal status by innervating the involuntary smooth muscles. The two systems interact to 

respond to the needed activities of the human body37. 

The autonomic nervous system consists of three major parts, sympathetic, parasympathetic, and 

enteric systems. Functionally, the sympathetic system controls the activities that are activated by 

the human body in response to stress and abnormal circumstances like heart beat acceleration 

and increase of blood sugar level, while the parasympathetic system acts to maintain a stable 
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normal level of resources that the body needs. The enteric system controls the gut functioning. 

Anatomically, the pre-ganglionic fibres of the sympathetic system leave the nervous system at all  

thoracic levels of the spinal cord plus L1 and L2 levels, while in the parasympathetic system the 

pre-ganglionic fibres emerge along with the III, VII, IX, and X cranial nerves and at the levels of 

S2, S3, and S4 of the spinal cord. The main neurotransmitter released by the postganglionic 

fibres of the sympathetic system is noradrenalin, while acetylcholine is released in the 

postganglionic parasympathetic system38. 

The vagus nerve is the tenth cranial nerve which travels from the brain to the thoracic and 

abdominal areas of the human body and that is why it is called vagus which means “wandering” 

in Latin. It is mostly composed of sensory fibres39 and contains three quarters of the entire 

parasympathetic nerve fibres40. Physiologically, the vagus nerves mainly represent the 

parasympathetic nervous system38,40. The vagus nerve leaves the brain at the medulla and 

innervates the heart, lungs, oesophagus, stomach, small intestine and many other visceral 

organs41. 

One of the main functions of the vagus nerve is the control of heart rate in combination with the 

sympathetic system which plays the major role in the blood circulation. Stimulation of the vagus 

nerve reduces the cardiac output that may reach zero with strong stimulation, while sympathetic 

stimulation may double the cardiac output. The two systems are stimulated reciprocally, i.e. 

when the sympathetic system is stimulated, the parasympathetic is inhibited and vice versa. The 

vagus nerve synapse at the sinoartial (SA) node and the atrioventricular (AV) node. It also 
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innervates the atrial muscle and, with much less effectivity, the ventricles and this distribution 

limits the potency of the vagus nerve to mainly reduce the heart rate with less effect on the 

contractions 41. The stimulation of the vagus nerve is regulated by the nucleus tractus solitarius 

(NTS) in the medulla. When the arterial blood pressure changes, the medulla receives signals 

from specialized receptors (baroreceptors) that are fired or inhibited when the arterial walls 

stretch or relax due to increased or decreased arterial pressure. These barorceptors are 

concentrated mainly in two locations, the carotid sinus and the aortic arch and are innervated by 

glossopharyngeal nerve and aortic nerve (which in turn combines with the vagus nerve), 

respectively. At the medulla, the stimulation of the sympathetic system and the vagus nerve is 

regulated according to the received alerts from baroreceptors. If stimulation of the vagal nerve 

occurs, the sympathetic stimulation is inhibited and vice versa42.  

An example of this regulation is when the body posture changes from the supine to the erect 

position; the arterial pressure will decrease in the head and thoracic parts of the body which 

cause increase in the firing of the baroreceptors at the carotid sinus leading to strong sympathetic 

stimulation and vagal inhibition to maintain the blood flow to the brain and upper body parts to  

prevent fainting41. 

There is no evidence of a direct effect of the vagus nerve on the retinal blood flow as there are no 

autonomic innervations to the retinal vessels. The vagus nerve, however, may have an indirect 

effect by changing the entire arterial blood pressure which consequently changes the ocular 

perfusion pressure to the retina especially during stress conditions like changing the body 
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position. Chasidy and co-workers 43 found a significant drop in mean ocular perfusion pressure 

after changing body position from supine to standing in patients with autonomic failure and 

patients with baroreflex failure.  

On the other hand, the retinal vessels are found to have cholinergic and adrenergic receptors22,43 

which raises questions about the role / function of these receptors. The autoregulation of the 

retinal blood flow has been investigated thoroughly especially over the last two or three decades. 

With the development of new research tools especially advanced ocular imaging, there might be 

a need to reconsider research on the possible presence of an autonomic role in retinal blood flow 

regulation, the nature and role of the autonomic receptors found in the retina, the substances that 

may bind with these receptors, and the effect of vagal nerve stimulation therapy on retinal blood 

flow. 

1.12    Optical Coherence Tomography (OCT) 

Optical Coherence Tomography (OCT) is an imaging technique originally developed in 199144 

to scan the posterior structures of the eye and produce a high resolution cross-sectional image of 

the retinal structures as far back as the choroid. The principle of operation of OCT is similar to 

conventional ultrasound imaging, but instead of recording a pulsed sound echo, OCT detects the 

intensity and time delay of light, back-reflected from various features within the imaged object 

resulting from spatial variations of the tissue refractive index. Original versions of OCT 

measured the time needed for light to be reflected and scattered from the different layers of the 

retina and compared the time delay to a reference beam of light. The time difference between the 
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reflected and reference beams is translated by software into a two-dimensional cross-sectional 

image. Time domain OCT (TD-OCT) requires scanning of the reference mirror, which limits the 

speed of data acquisition to less than 15 KHz and thus increases the probability of motion 

artefacts in the scan. Furthermore, the signal-to-noise ratio of TD-OCT is inversely related to the 

frequency of the reference mirror.  

Spectral-Domain OCT (SD-OCT) is a new generation of OCT which requires no scanning of a 

reference mirror. Instead, SD-OCT necessitates wavelength scanning of the optical beam either 

at the input or the output of the OCT interferometer. The reference light in SD-OCT interferes 

with the light reflected from the retina and is processed by a spectrometer that measures the 

reflected light simultaneously enabling for a larger amount of data compared to the sequential 

measurement in TD-OCT. This data is then transformed into an image in depth. So, by scanning 

a laser beam across the retina, the SD-OCT system analyses the interference pattern and 

produces depth information of the retinal layers45.  

One of the major differences between the two OCT techniques is that TD-OCT takes six radial 

scans and interpolates the areas between these six scans, while the SD-OCT consists of more 

than 65000 scans arranged using a standardized x, y spacing in a 6 mm area resulting in a much 

better spatial resolution and an improved representation of macula morphology, thereby reducing 

the chance of missing any pathology. SD-OCT has a higher axial resolution and acquisition 

speed compared to the older Time-Domain OCT (TD-OCT). This higher axial resolution (up to 

3µm for SD-OCT vs. 10-15µm for TD-OCT) and higher acquisition speed (0.07 seconds for SD-
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OCT vs. 1.7 seconds for TD-OCT) has improved the signal-to-noise ratio and reduced the effect 

of eye movements. Due to the faster processing capabilities, SD-OCT also allows for a true 3-D 

scanning of the retinal tissues. Although both SD-OCT and TD-OCT systems are reliable and 

repeatable46-49, the clear advantages of SD-OCT in terms of improved spatial and axial resolution 

provide the opportunity to detect and evaluate previously irresolvable detail and subtle changes 

in morphology associated with retinal diseases.  

 During the last decade, OCT has been widely used as a valuable tool in the evaluation and 

diagnosis of diabetic retinopathy It provides structural and quantitative information of the eye 

which was previously impossible using the traditional procedures of ocular examination, fundus 

photography, and Fluorescein  angiography.  

For the purpose of my study, I will use the Spectralis OCT (Heidelberg Engineering, Heidelberg, 

Germany) (Figure 1.2) which has a unique laser tracking system that improves the repeatability 

and reproducibility of the device. The reference laser beam tracks the eye using point-to-point 

registration and directs the scanning beam to the same position every time the images are 

taken50,51.    
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                                       Figure 1.2: Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) 

 

1.13 Diurnal / Nocturnal Variation in DME 

A number of studies have investigated the diurnal and nocturnal variation in diabetic macular 

edema52-56  with some of them suggesting a possible role of the body posture52,55 but none of 

these studies have directly investigated the effect of body posture on retinal thickness. Even for 

the studies that included reclining of the participants in their protocol52,55 , all the measurements 

were actually taken in the upright sitting position for the purpose of OCT measurement which 

may lead to missing a possible effect of reclining on the retinal thickness. In addition, most of 

the previous studies were conducted before the development of the new generation of SD-

OCT52,55,56.                 



 

23 

 

1.14      Summary 

In summary, the unique retinal vasculature is a part of the vascular system that is affected by 

changes of the blood pressure which is an important factor, along with IOP, in the control of the 

OPP. Any change in OPP that may results from changes of blood pressure or IOP is regulated in 

the retinal vessels by autoregulation to maintain a relatively constant blood supply to the retinal 

tissues. This autoregulatory response is essential to maintain a constant level of retinal blood 

flow when the mean arterial blood changes during daily activities such as reclining. When the 

human body reclines from the upright position, OPP is increased due to changing the position of 

the eye relative to the heart. In the normal retina, this increase of OPP is opposed by 

vasoconstriction to maintain the retinal blood flow constant. In patients with diabetic retinopathy, 

autoregulation / vascular reactivity is found to be impaired and this impairment is related to the 

concomitant severity of diabetic retinopathy and the magnitude of DME. In the last two decades, 

OCT was introduced as a valuable imaging device that allowed for better diagnosis and 

evaluation ofretinal diseases, such as diabetic retinopathy, and the morphological changes that 

underlie it. A new version of OCT, that is SD-OCT, provides a higher resolution and faster 

acquisition time than TD-OCT which, in turn, helps by obtaining objective imaging of the retina 

with precise quantitative values especially in cases with DME. 
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2    Rationale,  Hypotheses and Aims 

2.1    Rationale 

Retinal blood flow is autoregulated by the retinal resistance vessels that adapt to any changes in 

the ocular perfusion pressure in order to maintain blood flow at constant levels. Many studies, 

however, have shown that autoregulation and vascular reactivity is disturbed in diabetic 

patients30-33. This disturbance of retinal blood flow in patients with diabetes will result in 

insufficient vaso-constriction on changing from an up-right to a supine position and, in turn, will 

exaggerate the increase in OPP resulting from body posture change. 

The morphological retinal changes of diabetic retinopathy lead to breakdown of the blood-retina 

barrier. The compromised integrity of the blood-retina barrier will increase the permeability of 

the retinal vessels in patients with diabetes and, thus, will increase the leakage of serum 

components into the adjacent retinal tissues. This leakage of fluid across the blood-retina barrier 

into the retina is thought to be especially prominent when the perfusion pressure increases and 

consequently will increase the retinal thickness resulting in DME. Therefore, OPP manipulation 

can be used to modulate retinal thickness which, in turn, can be applied clinically to assess 

blood-retina barrier integrity. OPP manipulation and the resulting change in retinal thickness can 

be used as an early indicator of the potential development of diabetic retinopathy and the 

possible clinical formation of DME. 
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Increased ocular perfusion pressure can be simulated by adopting a reclining position. Upon 

reclining, the eyes are lowered to the level of the heart, rather than being 30cm above the heart in 

the upright position57. This change in postural position from upright to supine will result in an 

increase in OPP. 

The use of SD-OCT in this study will significantly enhance the accuracy of the retinal thickness 

measurement compared to the older generation of TD-OCT resulting in reduced measurement 

variability and improved confidence to detect change in retinal thickness as a result of change in 

body posture. In this study, however, retinal thickness measurement for the reclining position 

will be taken while the participants remain reclined. SD-OCT images will be acquired when the 

participant is sitting for the upright position, and while the participant is lying on their right side 

for the reclining position.  

Furthermore, this study will use SD-OCT methodology in the form of the Spectralis SD-OCT 

(Heidelberg Engineering, Heidelberg, Germany) for the retinal thickness measurement which, in 

addition to its accuracy and higher resolution and improved acquisition time, has a unique 

tracking system will allow the optimal registration of images, and the detection of retinal 

thickness changes, for the exact same retinal area between the various sets of images across 

upright and reclining positions. The features of the Spectralis SD-OCT also allowed for studying 

each sector of the nine ETDRS map while the previous studies were looking mainly at only the 

global macular and/or the foveal retinal thickness. 
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2.2     Hypothesis 

We hypothesize that retinal thickness will significantly increase in diabetic patients with severe 

NPDR/PDR and DME following the adoption of a reclining position when compared to control 

subjects. 

 

When adopting a reclining position, the OPP will increase for both diabetic retinopathy patients 

and healthy controls. This increase will be opposed by an increase of vascular resistance that 

reduces the retinal vessel diameter. Vasoconstriction, however, is impaired in diabetic patients 

and that reduced vasoconstriction response will exaggerate the increase in OPP in diabetic 

patients and will further enhance the leakage of serum constituents into the adjacent retinal 

tissues through an already compromised blood-retinal barrier and, hence, increase the retinal 

thickness particularly in the diabetic patients. 

2.3     Aim   

The aim of the project is to study the effect, if any, of reclining on retinal thickness in severe 

NPDR/PDR patients with DME compared to healthy controls using SD-OCT, a new non 

invasive imaging device that can accurately measure the thickness of the retina. The study 

defines the direct effect of reclining on the retinal thickness of NPDR/PDR patients compared to 

that effect in healthy controls. 
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3    Effect of Reclining on Retinal Thickness in Diabetes                                                                         

3.1     Introduction 

The inner and outer blood-retina barriers (BRB) are established to minimize vascular 

permeability to the retina and loss of integrity of this barrier plays a major role in the 

development of diabetic retinopathy and especially diabetic macular edema (DME)5 . It is 

generally accepted that inner BRB breakdown is particularly implicated in the pathogenesis of 

DME58,59, although a role for outer BRB breakdown  is also suspected60 . Despite the evidence of 

BRB breakdown in diabetic retinopathy and DME being established61,62, the clinical 

management of DME is still particularly challenging63. Clinical DME assessment utilizes contact 

lens stereo fundus biomicroscopy in order for a clinician to subjectively recognize thickening of 

the transparent retina. Consequently, it is problematic to differentiate early retinal thickening 

from normal variation in retinal thickness64 and substantial differences in defining the extent and 

location of retinal thickening in a given patient have been shown to exist between experienced 

retinal specialists65. These difficulties in the clinical assessment of DME occur especially in 

environments without advanced imaging techniques such as SD-OCT.  

Furthermore, various aspects of BRB physiology remain unexplored, including the influences of 

diurnal variation, body posture and gravity and these factors will undoubtedly result in increased 

measurement variability unless properly understood and accounted for, irrespective of the 

method of DME evaluation and quantification using advanced imaging techniques. Interestingly, 

the clinical presentation of DME is known to be exacerbated by the relatively short-term 

elevation of blood pressure and then to reverse after appropriate blood pressure treatment, 
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suggesting that ocular perfusion pressure (OPP) may be an additional factor determining the 

presentation of retinal thickening in patients with DME.  

Retinal blood flow is maintained at a relatively constant level via an intrinsic autoregulatory 

mechanism, irrespective of any physiological change in the OPP. Retinal vascular reactivity, 

however, is known to be disturbed in people with diabetes20 and the magnitude of this 

impairment is related to the magnitude of DME34,35 . Increased OPP can be achieved by reclining 

patients from an erect to a supine body posture which results in the heart no longer having to 

pump blood against the force of gravity to the eye and consequently increases the OPP. Since 

retinal vascular regulation is disturbed in diabetes, this increase in OPP will occur in the presence 

of a less effective autoregulatory mechanism that normally would drive vasoconstriction to 

minimize any increase in retinal blood flow in the reclined position.  

A few studies have reported a diurnal variation in OCT quantified DME and some have 

suggested that this effect might be related to body posture induced increase in OPP while 

reclined. However, none of these studies systematically investigated a time relationship between 

reclining and DME magnitude and all have objectively measured retinal thickness in the erect 

position, possibly allowing for at least a partial reversal of retinal thickening. In addition, most of 

the retinal thickness measurements were performed using TD-OCT which has less axial and 

spatial resolution, longer acquisition time, and therefore greater variability than the more recent 

SD-OCT which also allows for accurate tracking and follow up of the same macular area through 

consecutive measurements.  
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The development of a non-invasive functional test to challenge BRB function would represent a 

major step forward in the clinical management of diabetic retinopathy and DME. Such a test 

would allow the manipulation of the clinical presentation of DME, potentially emphasizing 

affected retinal areas that otherwise might only exhibit “sub-clinical” DME. It could be used to 

quantify the efficacy DME treatments including laser and anti-VEGF therapies and would also 

have major benefits in other retinal vascular diseases. Finally, a fuller understanding of the 

impact of reclining in patients with DME, and the associated increase in OPP, may drive changes 

in sleeping behaviour of affected patients so that they sleep propped up, especially post-

treatment. We hypothesized that retinal thickness will significantly increase in diabetic patients 

with DME following the adoption of a supine position.  

3.2    Methods 

The protocol of the study was approved by the research ethics board of the University Health 

Network, Toronto, Canada, and the University of Waterloo Office of Research Ethics. Written 

informed consent was obtained from each participant after explanation of the nature and possible 

consequences of the study. 

3.2.1    Subjects 

Two groups were recruited for the study, a healthy controls group (n=13) and a diabetic group 

with severe NPDR/PDR with macular edema (n=10). Inclusion criteria were age of 23-75 years, 

log MAR visual acuity of 0.2 or better, and type 1 or 2 diabetes for the diabetic group. Exclusion 

criteria were distance refractive error of ±6.00 DS or more and/or ±2.50 DC, any eye disease or 
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disorder other than diabetic retinopathy (diabetic retinopathy exemption did not apply to the 

control group), any clinical history of autonomic neuropathy, and any systemic medication that 

has a vasoactive effect, except medication that is used to control diabetes or hypertension.  

3.2.2    Protocol  

Participants were asked to refrain from taking any caffeine-containing drinks or food containing 

high amounts of saturated fat from the night before the day of the study. Caffeine has an impact 

on cerebral blood flow and retrobulbar hemodynamics while saturated fat may impair the arterial 

endothelial function. All participants had remained upright for at least four hours prior to the 

study. Factors such as gender, time of day of the study, light intensity were kept constant and / or 

matched across groups. The diabetic participants were examined and diagnosed by experienced 

retinal specialists at the Retina Clinics of the Department of Ophthalmology and Vision Sciences 

at the Toronto Western Hospital within a maximum of one week prior to starting the study. Upon 

arrival, each participant underwent a thorough eye exam and rested in a chair for at least 15 

minutes before starting the study. Each participant was asked to recline for two hours and retinal 

thickness of the left eye was measured using SD-OCT (Spectralis; Heidelberg Engineering, 

Heidelberg, Germany) over this period at five time points; before reclining, immediately after 

reclining, one hour after reclining, two hours after reclining, and immediately after returning 

back to upright position. Intraocular pressure (IOP) measurement by applanation tonometer 

(Tono-pen XL, Mentor), blood pressure (BP) and heart rate (HR) using the average mode (of 

three readings) in the Omron HEM-907 blood pressure monitor were obtained from each 

participant at time points 1,3, and 5 (Figure 3.1). Each participant was facing up throughout the 
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reclining period except for the time of taking the measurement where the participant was rolled 

onto their right side to facilitate imaging of the left eye. Left eye was chosen to keep the 

consistency of the protocol and to normalize the other effects that may rise from the differences 

between the two eyes. Another factor was the difficulty to obtain images of the right eye in the 

reclining position due to the limitation of the vertical movement of the OCT instrument.  

                  

Figure  3.1: Body posture and examination obtained at each time point.(OCT=Optical Coherence Topography, BP=Blood 
Pressure, HR=Heart Rate, IOP=Intra-ocular Pressure, TP1=time point 1 before reclining, TP2=time point 2 immediately 
after reclining, TP3=time point 3 after one hour of reclining, TP4=time point 4 after 2 hours of reclining, TP5=time point 
5 immediately after return to sitting)  

                           

3.2.3    OPP Calculation  

From previous studies, mean OPP in the upright position was estimated by the following 

formula: Mean OPP = 2/3 ( MAP) – IOP. That is = 2/3 (DBP + 1/3 (SBP – DBP)) – IOP, where 

MAP is the mean Arterial pressure, DBP is the diastolic blood pressure, SBP is the systolic blood 

pressure, and 2/3 is a factor used to compensate for the blood pressure drop at the eye level 
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which is neglected when calculating OPP in reclining position because the eye is almost at the 

same level of the heart. 

3.2.4 Optical Coherence Tomography (OCT) 

Retinal thickness within the central 6-mm central area of the retina was measured at each time 

point by Spectralis SD-OCT using the volume scan mode with 9 frames (9 images are averaged 

at each measurement) with 25 sections. Sections are 240µm apart. The ETDRS map was used to 

divide the macular area into Central 1mm (C), temporal 1-6mm(T), superior 1-6mm (S), nasal 1-

6mm (N), inferior 1-6 mm (I), and the global area (G) which included the entire 6mm macular 

area as shown in Figure 3.2. 

 

 

 Figure  3.2: Map of the macular area ( G= global, C= central, N= nasal, S= superior, T= temporal, I= inferior, the inner      
fovea-centered circle measures 1mm, the outer fovea-centered circle measures 6 mm)  
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For the reclining position, the map is rotated approximately 90º counter-clockwise due to 

changing the head position from upright to reclining on the right side and retinal thickness was 

recorded according to the area at that position, i.e. temporal area will be superior during reclining 

but recorded as temporal retinal thickness, and so on (Figure 3.3). 

                               

                                                             Figure  3.3: OCT image before and after reclining 

The TruTrack™ and follow up technologies of the Spectralis OCT allowed for precise alignment 

and accurate follow up between the images taken at time points 1 and 5 (up-right positions), and 

between time points 2, 3, and 4 (supine positions). 

3.2.5 Statistical Analysis 

Data was tested for normality and presented as box and whiskers plots showing change of retinal 

thickness at each time point in the erect and recumbent position. A Repeated Measures Analysis 

of Variance (re-ANOVA) was undertaken for the global retinal thickness data considering retinal 

thickness as an independent variable, and time points as the within-subject factors and group as 
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the between-subjects factor Analysis of change in retinal thickness was analyzed using One-Way 

ANOVA to identify any difference in response between the groups. 

3.3     Results 

Baseline group mean characteristics, and the group mean change in IOP, OPP and MAP over the 

course of the study are shown in Table 1. Figure 3.4 shows the group mean retinal thickness for 

each sector of the ETDRS macular grid (left eye) during the test time points. 

The results of repeated measures ANOVA showed that the global magnitude of retinal thickness 

was significantly higher in the Diabetic group (p=0.027. Figure 3.4). Although not significant, 

there was a global trend for retinal thickness to change over time within each group (p=0.068) 

and a trend for there to be a difference in change in retinal thickness over time between the 

groups (p=0.104). 

In terms of the change analysis, the change in global retinal thickness (G) reached  significance 

after two hours of reclining (+7.2 ±13.2 µm for the diabetic group compared to -0.8 ±2.4 µm for 

the controls, One-Way ANOVA p=0.044, Figure 3.5). After returning back to the sitting 

position, there was a trend for the change in global retinal thickness (G) to return to baseline 

values in the diabetic group but a significant residual difference between the groups still existed 

(+2.1 ±3.2 µm for diabetic group compared to -0.4 ±1.4 µm for the controls,  p=0.029).  
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n 
(female) 

 
 

Age 
(yrs) 

 
 

RT 
(µm) 

 
 

IOP 
 (mmHg) 

 
         
                             OPP 

( mmHg) 
                                                        

           
        

MAP 
(mmHg) 

 
 
Time 

 
 
  ------- 

 
 
 ------- 

 
 

baseline 
 

 
 
baseline 
  

 
1hr 

reclining 

 
Return 

to 
sitting 
  

 
 
baseline 

   
1hr 

reclining 

 
Return 

to 
sitting 

 
% OPP 
after  
1hr 

reclining 
 

 
 
baseline 

 
1hr 

reclining 

 
Return 

to 
sitting 

Control 
 n= 13 

  13 
(1 F) 

    43 
(±13.8) 

  311 
  (±8) 

13.8 
(±1.8) 

 13.9 
  (±2) 

 12.8 
(±2.2) 

 45.2 
  (±6) 

  65.7 
(±9.5) 

 47.2 
(±6.3) 

 + 45.4 
(±13.7) 

   88.6 
(±10.0) 

  81.8 
(±7.0) 

   90 
(±10.7) 

Diabetic 
n= 10 

  10 
(1 F) 

  57.4 
(±6.8) 

 348 
(±60) 

 14.4 
(±2.3) 

 15.5 
(±2.7) 

  15  
 (±3) 

  52.9 
(±11.8) 

 83.3 
(±14) 

55.1 
(±13) 

 + 60.4   
(±23.2) 

 101 
(±17.6) 

  99.2 
(±12.7) 

105.3 
(±17.1) 

   p 
value 

  0.007  0.039   0.482   0.12 0.058  0.055  0.002 0.066 0.066  0.045   ˂0.001 0.015 

 

Table  3-1: Group mean characteristics of the control and diabetic groups at baseline and the group mean change in 
intraocular pressure (IOP), Ocular Perfusion Pressure (OPP), and Mean Arterial Pressure(MAP) over the course of the 
study.(RT= retinal thickness, baseline= before reclining, return to sitting= immediately after returning to sitting position)  
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Figure  3.4: Group mean  retinal thickness of global, central, temporal, superior, nasal, and inferior sectors of the 
modified ETDRS grid of the two groups throughout the test time points ( 1=baseline, 2=immediately upon reclining, 3= 
after 1 hr of reclining, 4=after 2 hrs of reclining, and 5= immediately after returning back to sitting position) 

             

The change in central retinal thickness (C) was  not significant after two hours of reclining but 

there was a trend for a difference between the groups (+8.5 ±19.7 µm for diabetic group and -2.3 

±4.4 µm for controls, p= 0.068). However, there was a significant difference between the groups 

in residual increase in retinal thickness  in the central area upon returning back to sitting position 

(+3.5 ±6.8 µm for diabetic group compared to - 1.4 ±2.8 µm for the controls, p= 0.030, Figure 

3.6).  
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Figure  3.5: Group mean change in retinal thickness of the global macular area (G) over time points.  (►---) indicates the 
median. (*) shows the significant results between the two groups. 
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Figure  3.6: Group mean change in retinal thickness of the central macular sector (C) over the time points. (►---)  
indicates the median. (*) shows the significant results between the two groups. 

 

The temporal macular sector (T) showed a significant increase in retinal thickness between the 

groups after one hour of reclining (+18.2 ±28.9 µm for diabetic group compared to +1.4 ±3.9 µm 

for controls, p= 0.049) and also after two hours of reclining (+21.1 ±31.1 µm for diabetic group 

compared to +0.8 ±4.2 µm for controls, p= 0.029). Most of the increase in temporal RT resolved 

upon returning to an upright position but there still was a significant residual increase between 

the groups (+3.4 ±4.9 µm for diabetic group compared to +0.1 ±1.9 µm for controls, p= 0.040, 

Figure 3.7). 
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Figure  3.7: Group mean change in retinal thickness of the temporal macular sector (T) over time points. (►---)  indicates 
the median. (*) shows the significant results between the two groups. 

 

There was no significant change in superior retinal thickness (S) between the groups after two 

hours of reclining (+9.5±20.7µm for diabetic group compared to +3.0 ±3.8 µm for controls, p= 

0.281, Figure 3.8). 
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Figure  3.8: Group mean change in retinal thickness of the superior macular sector (S) over time points. (►---) indicates 
the median. (*) shows the significant results between the two groups. 

                                        

The nasal sector (N) showed an initial between group difference in change in retinal thickness 

with the diabetic group showing a significantly greater reduction immediately upon reclining (-

7.0 ±5.1 µm for diabetic group compared to -2.7 ±2.9 µm for controls, p= 0.018) . The decrease 

in RT resolved upon returning back to an upright position (Figure 3.9). 

The inferior area (I) showed a significant difference in change in retinal thickness between the 

groups upon returning back to an upright position. The change in retinal thickness increased in 

the diabetic group while it decreased in the control group  (+1.7 ±3.7 µm for diabetic group 

compared to -1.5  ±2.3 µm for controls, p= 0.021, Figure 3.10). 
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Figure  3.9: Group mean change in retinal thickness of the nasal macular sector (N) over time points. (►---) indicates the 
median. (*) shows the significant results between the two groups. 
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Figure  3.10: Group mean change in retinal thickness of the inferior macular sector (I) over time points. (►---) indicates 
the median. (*) shows the significant results between the two groups                                                                                                                             

 

The change in group mean ocular perfusion pressure (OPP) in response to reclining was also 

different between the two groups but was not significant (+60.4% ±23% for diabetic group 

compared to +45.4%  ±13.7%  for controls, p= 0.066). After returning to an upright position, 

both groups similarly showed a slight increase in OPP compared to baseline (+4.8 ±12.4% for 

diabetic group and +4.3 ±8.5%  for controls, p= 0.914).  
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Figure  3.11: Group mean percentage change in OPP from baseline after 1 hour of reclining and after returning back to 
an upright position. 

 

3.4    Discussion 

In this study, which compared the effect of reclining on retinal thickness in the two groups, I 

found that there was a trend for the mean retinal thickness of the diabetic group to increase in 

response to reclining, and to return back close to baseline immediately after returning to an 

upright position. This response was not seen in the control group.  The OPP increased in diabetic 

participants after reclining (60%) more than that in healthy controls (45%) but the difference did 

not reach a significant level (p=0.066). The mean baseline OPP for the diabetic group and the 

control group was 52.9 and 45.3 mmHg, respectively. In addition, when considering the change 

in retinal thickness of the diabetic group between the beginning and the end of reclining (TP2 to 
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TP4), there was a trend for a gradual increase in retinal thickness (Figures: 3.5 to 3.10), 

suggesting the accumulation of fluids over the time of reclining. Frank and co-workers (2004) 

studied the diurnal variation in diabetic macular edema and suggested a possible effect of a 

gravitational factor to explain the decrease of retinal thickness that was found in some of the 

participants through the course of the day. Polito and co-workers (2006) also found a decreased 

retinal thickness in clinically significant diabetic macular edema over the course of the day in 

some of the participants. However, these studies were not directed to the time relationship 

between body posture and DME, and all the measurements were taken objectively while the 

participants were in an upright position using a TD-OCT; this may explain why the effect was 

seen only in some of the participants. In addition, the earlier studies did not consider the change 

in OPP as a possible factor that may further explain the phenomenon of the diurnal change in RT 

of people with diabetes. Another study by Larsen and co-workers (2005) found an overnight 

increase in retinal thickness in fovea-involved diabetic macular edema which was correlated with 

the change in MAP. Polito and co-workers (2007) suggested that body posture and hydrostatic 

pressure may play a major role in the formation of CSDME. This study confirms the previous 

suggestions of a possible gravitational effect and the consequent increase of OPP. In this study, 

we found a trend for OPP to increase to greater extent for the diabetic group when reclining (p= 

0.066) . The reason for this greater increase in the diabetic group could be due to diabetic 

neuropathy, reduced autoregulatory capacity, higher blood viscosity in the diabetic group, and 

other reasons that we have not considered. The increased OPP might also be responsible for the 

slight increase of retinal thickness seen in controls. In a case study, Taibbi and co-workers have 

shown increased retinal thickness in normal retina after 30 days of bed rest with 6º head-down 

tilt position. They suggested a role of a "compensatory mechanism" against the increased IOP 
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that occur after reclining because of the inhibition of choroidal venous drainage and the 

subsequent expansion against the solid scleral tissue. They, however, did not consider the change 

in MAP and the consequent change in OPP.  

Although there was a trend of change in the global macular area which may be explained by the 

effect of gravitational shift of blood to the head and the consequent leakage of fluids into the 

retinal tissues due to the increased OPP, the characteristics of this change vary as a function of 

position within the macular region. The temporal area showed a prominent increase in retinal 

thickness while the nasal area showed reduction. The superior and inferior areas showed a slight 

but not significant increase. Hudson and co-workers (2005) found that relative nasal-temporal 

asymmetry of macular blood flow is exaggerated in diabetics with CSDME. In this study, there 

was an interaction between the different sectors when a repeated measures ANOVA test was 

performed (p=0.005 after the Greenhouse-Geiser correction). 

Among the ten diabetic participants, four participants did not receive laser and/or injection 

treatment for the macular edema prior to the study and there was no correlation found between 

the change in retinal thickness and the time since last treatment was received prior the study. 

However, the small number of cases and the varied treatments limit this aspect of the study.  

There was a correlation between baseline retinal thickness and the change in global retinal 

thickness of the two groups (i.e. data from both groups pooled) after two hours of reclining ( r = 

0.45, p=0.033, and r² = 0.20). A stronger correlation was found between baseline retinal 
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thickness and the residual change in central retinal thickness after returning back to upright 

position (r = 0.88, p= ˂0.001) which suggest that the magnitude of the pre-existing edema might 

be a factor that needs to be considered in future investigations. There was a correlation between 

the baseline OPP and the change in retinal thickness (r= 0.56, p= 0.005) for the diabetic and the 

control group data combined. 

The average age of the control group and the diabetic group was 43±13.8 and 57.4±6.8, 

respectively (p=0.007). However, age was not found to have an effect on retinal thickness66. 

Furthermore, no correlation was found between age and baseline retinal thickness of the 13 

healthy control participants of this study (Figure 3.12). 

The rotation of the macular map when adopting a recumbent position and acquiring the SD-OCT 

images with the participant on their side was a challenge. Participants were instructed to keep 

their heads as horizontal as possible at the time of the measurement to obtain approximately a 

90º counter-clockwise rotation (from the upright position) in order to achieve optimal alignment 

of the ETDRS grid sectors between the two positions. This was not an issue for the central and 

global area since they are circular in shape around the fovea which is the point of fixation at the 

time of measurement. Using a hand-held OCT might be useful in future studies of this reclining 

induced increase in DME. 
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Scatterplot of Baseline RT against Age
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                         Figure  3.12: Correlation age and baseline retinal thickness in healthy control group 

 

3.5    Conclusion and Future Directions 

In conclusion, there was a trend for change in group mean retinal thickness among the diabetic 

group after reclining for two hours, compared to the normal control group. This effect reversed 

very quickly upon returning to an upright position. The methodology of this study is anticipated 

to be developed into a clinical functional test to determine the integrity of the blood retina 

barrier. Assessment of the blood retina barrier integrity is becoming more relevant to the 

assessment and treatment of diabetic retinopathy, especially with the introduction of new 

therapeutic agents which, in turn, may help in the development of early/prophylactic diabetic 

retinopathy treatments. Further studies might be useful to investigate this effect considering the 
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different stages of diabetic retinopathy, the location and the severity of the diabetic macular 

edema, and greater periods of reclining. 
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4   Discussion  

Retinal blood flow is autoregulated, and this autoregulatory mechanism is compromised in 

diabetes. Understanding the mechanisms that lie behind the disturbance of autoregulation in 

diabetic retinopathy will be a key factor to better diagnose, manage and treat diabetic retinopathy 

and the potential formation of macular edema. Autoregulation is mainly a responsive reaction 

against changes in OPP which induce change in the transmural wall pressure of the retinal 

arterioles. When the blood pressure increases, autoregulation leads to vasoconstriction of the 

retinal blood vessels in order to keep the retinal blood flow at a relatively constant level. 

Reclining of the body is one of the non-invasive methods that could be used to increase the 

perfusion pressure in the eye. So this methodology could be used as a provocative test to 

examine the changes in vascular function and inner blood retinal barrier integrity that may occur 

due to diabetic retinopathy. Reclining induced changes in retinal thickness could be used as a 

functional indicator of a compromised blood retinal barrier. 

A few previous studies have utilized the combination of retinal thickness measurement and body 

posture to investigate the effect of diurnal and nocturnal variation on retinal thickness in 

participants with diabetes using the OCT technique. The protocols of the previous studies have 

included reclining of the participants but the measurements of the retinal thickness, however, 

were acquired in the upright position which probably will reduce the magnitude of the true effect 

of reclining induced increase in retinal thickness. In this study, measurements of retinal thickness 

were taken while the participant was still lying on their side. Contrary to previous work, the 

specific goal of this study was to investigate the effect of reclining on retinal thickness rather 
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than to observe diurnal changes of retinal thickness. In addition, most of the previous studies 

have used the old versions of time-domain OCT while this study was performed using the new 

spectral-domain OCT which has a higher axial and spatial resolution and shorter acquisition time 

which helped in reducing the variability between the measurements. Another advantage of 

applying the spectral-domain OCT in this study was the ability of accurate tracking and follow 

up of the same macular area through different measurements over time. 

The results of this study showed that retinal thickness of the diabetic group tends to increase in 

response to reclining for 2 hours when compared to the control group. Despite the differences in 

the protocols and the body posture at the time of measurement, this result effectively agrees with 

most of the previous studies that investigated the change of retinal thickness over the course of 

the day. Frank and co-workers (2003) found a reduction in retinal thickness over the course of 

the day when they investigated the effect of diurnal variation on diabetic macular edema. Polito 

and co-workers (2006) studied the diurnal variation on CSME and found a similar effect in 7 of 

the 13 participants. The absence of a significant effect of reclining in the control group in this 

study also agrees with Frank and co-workers and Polito and co-workers in their previously 

mentioned studies, although there was evidence of increased retinal thickness in a healthy control 

after 30 days of bed rest with head tilt in a case study by Taibbi and co-workers. The increased 

retinal thickness during reclining in diabetic participants in this study was also in agreement with 

the results found by Larsen and co-workers (2005) who found an overnight increased  retinal 

thickness in participants with fovea-involved diabetic macular edema. 
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Both of our study groups showed an increased OPP after reclining but there was not a significant 

difference in the amount of this increase between the two groups. However, the increase in OPP 

of the two groups after reclining supports some of the previous studies that suggested a possible 

role of the gravitational effect in the generation of reclining induced retinal edema. In this study, 

the topographical distribution of the increase in retinal edema during reclining was more 

pronounced in the temporal retina while the nasal retina showed a decrease in retinal thickness. 

This can be explained by the effect of the physiological vitreo-retinal attachments at the fovea, 

optic nerve and ora seratta. When reclining on the right side and imaging the left eye, the optic 

nerve will be inferior to the fovea. As a result, retinal edema will accumulate temporal to the 

fovea and nasal to the optic nerve head but this will only be detected in the temporal macula 

scanned area because the ETDRS map does not extend to the nasal area beyond the optic nerve 

head. Swelling of the superior and inferior retina will cause stretching of ILM between the fovea 

and optic nerve head and a resultant thinning of the retina in the nasal scanned area. In addition, 

it is worth noting that the terminal arterioles and the capillaries temporal to the fovea are the 

weakest and, therefore, are the most vulnerable vessels to compromised increase in OPP. 

The clinical implications of this work are important. The methodology adopted in this study 

could be applied as a provocative test to earlier detect and exaggerate the presence of retinal 

edema. This could lead to a more standardized assessment of the magnitude of retinal edema 

since the effect of diurnal variation would be negated. Furthermore, if this procedure reflects 

blood retinal barrier integrity, it may be applied to predict the likelihood of treatment outcome in 

diabetic patients undergoing laser and anti-VEGF treatment; the dose of anti-VEGF drugs may 
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even be related to the magnitude of reclining provoked retinal edema leading to more precise, 

predictable and cost effective treatment. 

Future work should confirm or deny the potential cause of the reclining provoked increase in 

retinal edema in diabetic patients. A first step in this respect would be to measure changes in 

retinal blood flow during prolonged reclining in both health subjects and in people with diabetes. 

The data in this thesis suggest the possibility of an effect in normal subjects and this should be 

investigated further since it may have implications for extended work in weightless 

environments, e.g. astronauts in the international space station. The possibility of generating a 

shorter protocol should also be investigated using head down reclining slopes and the impact of 

diabetic retinopathy severity should also be investigated to determine any relationship with 

reclining provoked retinal edema. Finally, the protocol may have important application in other 

eye and systemic diseases such as ARMD, glaucoma, stroke, Parkinson's disease, and 

Alzheimer's disease. 
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