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Abstract

Direct numerical and large eddy simulations (DNS & LES) of decaying and forced strati-
fied turbulence are studied in this thesis. By defining a test filter scale kc in the horizontal
and vertical directions separately, the energy transfer spectra are investigated. It is shown
that stratification affects the horizontal eddy viscosity significantly, by which the non-local
energy transfer between large and small horizontal scales are increased. This non-local
horizontal energy transfer is around 20% of the local horizontal energy transfer at the cut-
off wavenumber kc. In addition, the non-local horizontal energy transfer occurs at large
vertical wavenumbers, including the buoyancy wavenumber kb = N/urms, where N is the
buoyancy frequency and urms is the root-mean-square velocity. The non-local horizon-
tal eddy viscosity decreases and the local eddy viscosity is dominant if the value of the
test cutoff kc varies from large scales to the dissipation scales. Next, the performance of
three common subgrid scale (SGS) models, i.e. the Kraichnan, Smagorinsky and dynamic
Smagorinsky models, is investigated in stratified turbulence. It is shown that if the grid
spacing ∆ is small enough, the horizontal wavenumber spectra show an approximately
−5/3 slope along with a bump at the buoyancy wavenumber kb. Our results suggest that
there is a maximum threshold on ∆, below which the dynamics of stratified turbulence,
including Kelvin-Helmholtz instabilities, are captured. This criterion on ∆ depends on the
buoyancy scale Lb and varies with different SGS models: the Kraichnan model requires
∆/Lb < 0.47, the Smagorinsky model requires ∆/Lb < 0.17 and the dynamic Smagorin-
sky model requires ∆/Lb < 0.24. In addition, the statistics of the dynamic Smagorinsky
coefficient cs demonstrate that large shear leads to small values of cs in stratified turbu-
lence (in line with the results for isotropic turbulence). Finally, it is shown that the net
down-scale energy transfer in stratified turbulence is a combination of two large values of
upscale and downscale energy transfer mechanisms. Overall, our results suggest that strat-
ification changes the dynamics of SGS motions dramatically if the filter scale ∆ is around
the Ozmidov scale or smaller; in order to capture the dynamical features of stratified tur-
bulence, LES requires resolution of Lb. In addition, when the buoyancy Reynolds number
Reb . O(1), the kinetic energy transfer shows some spectral backscatter at intermediate
scales that is due to viscous effects and not to the turbulent mechanism.
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Chapter 1

Introduction

1.1 Overview

Turbulent flows are prevalent in atmosphere, ocean and engineering applications. In all
of these fields, turbulence shows unsteady, irregular, and chaotic behaviours, in which the
motions of different eddies are unpredictable. Turbulence may be classified by a specific
characteristic in addition to its general features. For example, turbulence may be affected
by shear, boundaries, rotation, magnetic fields, stratification, etc. These parameters com-
plicate our understanding of turbulence, and require adjustments to the classical picture
presented by Kolmogorov (1941). Turbulence includes a range of length scales: from large-
scale motions, which set the turbulence parameters like the length scale L, the velocity
scale U and the kinetic dissipation rate ε; to small scales, which mainly are Re-dependent
motions, where

Re =
UL
ν
, (1.1)

is the Reynolds number and ν is the kinematic molecular viscosity.

An important property of turbulence is the transfer of energy between different length
scales. The dynamics of the energy cascade between large and small scales depends on
the type of turbulence. For isotropic turbulence, cascade is downscale Kolmogorov (1941).
Different physical phenomena such as stratification, shear and rotation may affect the dy-
namics of the energy cascade dramatically. The objective of this thesis is studying turbu-
lence that is strongly affected by stable density stratification, namely stratified turbulence.
Stratified turbulence occurs in the atmospheric mesoscale and oceanic sub-mesoscale, at
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which scale eddies are strongly affected by stable stratification, but weakly affected by the
Earth’s rotation (e.g. Riley & Lelong, 2000). Stratification refers to the density changes
in the vertical direction, and it has a profound affect on the vertical displacement of fluid
particles.

Large eddy simulation (LES) is a numerical approach that resolves large energy contain-
ing scales and parametrizes the subgrid scale (SGS) motions. Since LES does not require
one to directly resolve the smallest scales, it allows a larger grid spacing ∆ that leads to a
decrease in the computational costs. To do this, LES defines a filter scale that is generally
the grid spacing ∆. Scales larger than ∆ are resolved directly, but sub-filter scale motions
are parametrized using SGS models. In this thesis, the actual features of SGS motions
are studied in stratified turbulence using the direct numerical simulation (DNS) approach.
Also, the performance of common SGS models are investigated in LES of stratified tur-
bulence. Since the following chapters are written to be self-contained, this introduction
presents background information on numerical approaches, stratified turbulence, LES and
SGS modelling that is not included later. More detailed background and literature review
is given in the following chapters.

1.2 Stratified turbulence

There is a long history in the stratified turbulence literature about the direction of the
energy cascade and the shape of the horizontal wavenumber energy spectrum. One point
of view, which was presented by Gage (1979) and Lilly (1983), argued for an upscale energy
transfer in the horizontal direction of stratified turbulence in analogy with two-dimensional
turbulence. However, more recent numerical studies on stratified turbulence (e.g. Riley &
de Bruyn Kops, 2003; Waite & Bartello, 2004; Lindborg, 2006; Brethouwer et al., 2007;
Waite, 2011; Kimura & Herring, 2012; Remmler & Hickel, 2012; Khani & Waite, 2013,
2014a,b) suggest a downscale energy cascade in horizontal wavenumber. In the presence
of stratification, the classical picture of the energy spectrum for isotropic turbulence needs
some modifications. Stratification introduces two new length scales: the buoyancy length
scale (e.g. Billant & Chomaz, 2001)

Lb =
U
N
, (1.2)

and the Ozmidov length scale (e.g. Lumely, 1964)

Lo =
( ε

N3

)1/2

. (1.3)
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Figure 1.1: Schematic energy spectrum based on the stratified turbulence hypothesis, where
ki, ko and kd are the initial, Ozmidov and Kolmogorov wavenumbers, respectively, and the
subscripts h and v denote accordingly the horizontal and vertical directions.

The buoyancy scale is the characteristic length scale in the vertical direction of stratified
turbulence, where the elongated horizontal motions are layered vertically with the length
scale Lb (e.g. Billant & Chomaz, 2001; Waite & Bartello, 2004). The Ozmidov scale is the
smallest scale for which buoyancy effects are important, below which isotropic turbulence
should occur (e.g. Lindborg, 2006). It is important to mention that Lb > Lo in stratified
turbulence (see below). According to the Lindborg (2006) stratified turbulence hypothesis,
the energy spectrum for scales larger than the Ozmidov scale is anisotropic in which the
horizontal and vertical wavenumber spectra have with different power laws. Nevertheless,
for scales smaller than the Ozmidov scale, the isotropic Kolmogorov cascade is assumed to
be valid (figure 1.1). As a result, setting a filter scale that is larger than the Ozmidov scale
might necessitate a SGS model which is totally different than that when the filter scale is
smaller than the Ozmidov scale. In other words, current SGS models, most of which are
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designed for isotropic turbulence, may not be relevant for cases with ∆ > Lo. Therefore,
studying SGS motions for which the filter scale is close to or larger than the Ozmidov scale
is a necessary step of research in LES of stratified turbulence.

1.2.1 The governing equations

The dynamics of stratified turbulence can be described using the Navier-Stokes equations
subjected to the Boussinesq approximation, in which the density perturbation ρ − ρ0 is
small compared to the constant reference density ρ0, as follows (following the notation of
Chung & Matheou, 2012)

∂u

∂t
+ u · ∇u = − 1

ρ0

∇(p+ ρ0gz) + ν∇2u− g

ρ0

(ρ− ρ0)ez, (1.4)

∇ · u = 0, (1.5)

∂(ρ− ρ0)

∂t
+ u · ∇(ρ− ρ0) = D∇2(ρ− ρ0), (1.6)

where u is the velocity vector which includes three components u, v and w in ex, ey and
ez directions, respectively; ρ and p are the density and pressure fields; ρ0 is a constant
reference density; and D is the mass or thermal diffusivity. We decompose the flow into
background and fluctuation components, denoted by overbar and primes, respectively.
Assuming linear background density gradient, the decomposition is written as

− g

ρ0

(ρ− ρ0) = N2z − g

ρ0

ρ′, (1.7)

u = u′, (1.8)

p+ ρ0gz = ρ0N
2z2/2 + p′, (1.9)

where N2 = −g/ρ0(dρ̄/dz) is the buoyancy frequency, which assumed to be constant.
Substituting the flow variables at (1.7-1.9) into the primary equations at (1.4-1.6), yields

∂u′

∂t
+ u′ · ∇u′ = − 1

ρ0

∇p′ − g

ρ0

ρ′ez + ν∇2u′, (1.10)

∇ · u′ = 0, (1.11)

∂ρ′

∂t
+ u′ · ∇ρ′ + w′

dρ̄

dz
= D∇2ρ′, (1.12)
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which are the main equations that we will use in our simulations of stratified turbulence.
For simplicity and clarity, we non-dimensionalize equations (1.10-1.12) with velocity scale
U , length scale L, and time scale L/U . Dropping primes, the dimensionless equations are
as follows

∂u

∂t
+ u · ∇u = −∇p− 1

F 2
ρez +

1

Re
∇2u, (1.13)

∇ · u = 0, (1.14)

∂ρ

∂t
+ u · ∇ρ− w =

1

RePr
∇2ρ, (1.15)

where F is the Froude number (see below) and Pr = ν/D is the Prandtl number. In
the atmosphere and ocean, the buoyancy frequency generally varies with height. However,
there are certain layers over which N is approximately constant. Nevertheless, the assump-
tion of constant N is common in the idealized studies of stratified turbulence (e.g. Riley
& de Bruyn Kops, 2003; Waite & Bartello, 2004; Lindborg, 2006; Brethouwer et al., 2007;
Waite, 2011).

The importance of stratification is characterized by the Froude number, which shows
the ratio of the buoyancy time scale 1/N to the turnover time L/U , written as

F =
U
NL . (1.16)

In the anisotropic part of the inertial subrange of stratified turbulence, we can define the
horizontal and vertical Froude numbers as follows

Fh =
U

NLh
, (1.17)

Fv =
U
NLv

, (1.18)

where Lh and Lv are the appropriate length scales in the horizontal and vertical directions,
respectively. If we perform a dimensional analysis on the set of equations (1.10-1.12) based
on the buoyancy time scale tb ∼ Lh/NLv, the internal wave equations result when Fv � 1
(see e.g. Riley & Lelong, 2000). However, if the advection time scale ta ∼ Lh/U is used,
the resulting equations are more appropriate for stratified turbulence when Fh � 1 and
Fv ∼ 1 (see e.g. Brethouwer et al., 2007). If Re is very high such that Reb � 1, Fz will be
∼ 1, therefore the two key parameters are Fh and Re, by which if Fh � 1 and the buoyancy
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Reynolds number (e.g. Riley & de Bruyn Kops, 2003; Hebert & de Bruyn Kops, 2006b;
Brethouwer et al., 2007; Almalkie & de Bruyn Kops, 2012; Bartello & Tobias, 2013)

Reb = ReF 2
h , (1.19)

is very high, stratified turbulence is ensured. Here, Re is defined using Lh. Using the
Taylor hypothesis (e.g. Pope, 2000) to define the horizontal length scale Lh ∼ U3/ε, we
could define an alternative approximation for Reb using the flow parameters as the following
(this is sometimes taken as the primary definition of Reb, e.g. Smyth & Moum, 2000)

Reb ∼
ε

νN2
. (1.20)

In the regime with small horizontal Froude number, the vertical lengthscale is much
smaller than the horizontal lengthscale

Lv
Lh
∼ U/NLh

≡ Fh � 1. (1.21)

Using the Taylor hypothesis, we can also get

Lb
Lo
≡ F

−1/2
h > 1. (1.22)

In this regime, Lindborg (2006) argued that the horizontal and vertical energy spectra are
solely dependent to the horizontal and vertical lengthscales, respectively, written as

E(kh) = U2LhEh(khLh), (1.23)

E(kv) = U2LvEv(kvLv), (1.24)

where Eh(khLh) and Ev(kvLv) are non-dimensional functions. Using the Taylor hypothesis
and assuming that the characteristic horizontal and vertical scales are much larger than
the Ozmidov scale, it is concluded that the horizontal and vertical wavenumber energy
spectra do not depend on the buoyancy frequency N and the kinetic dissipation rate ε,
respectively (see Lindborg, 2006). As a result, the horizontal and vertical energy spectra
in the inertial subrange of stratified turbulence could be written as follows

E(kh) ∼ ε2/3k
−5/3
h , (1.25)

E(kv) ∼ N2k−3
v . (1.26)
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A similar argument was also suggested by Dewan (1997). Using atmospheric observations,
Lindborg (2006) has estimated the critical horizontal Froude number for which motions
are dominated by stratified cascade to be

F critic
h ≈ 0.02. (1.27)

In this thesis, this criterion on Fh is considered as a characteristic for a stratified turbulence
cascade.

1.3 Numerical simulations

Turbulent flows can be studied experimentally or numerically, and both approaches have
advantages and disadvantages. In this thesis, we consider the latter and investigate strati-
fied turbulence using numerical simulations. There are two common numerical approaches
for simulations of turbulent flows: DNS and LES. In DNS, we resolve all scales from the
large energy-containing scale, which is set by the initial conditions and/or forcing, down
to the Kolmogorov scale

Ld =

(
ν3

ε

)1/4

, (1.28)

at which viscous dissipation occurs (e.g. Pope, 2000). For small and moderate Re, DNS is
the ideal choice since it directly resolves all scales without any needs for parametrizations.
However, Re in the atmosphere and ocean is around O(108) or higher (e.g. Vallis, 2006;
Waite, 2014). Such large Re are well beyond what can be captured by DNS because
of limited computational resources. For example, the DNS of stratified turbulence by
Almalkie & de Bruyn Kops (2012), which is one of the largest available DNS, includes Re
of the order 104. Recently, Piomelli (2014) argues that a numerical simulation with Re of
the order O(108) will not be possible until 2070.

LES is an alternative approach, in which the large scale motions are resolved, but
small subgrid scale features are parameterized. Hypothetically, if the Re is very large in
isotropic turbulence, there is a clear separation between large and small scales. This gap
between large and small scales, called the inertial subrange, is characterized by energy
transfer from the energy-containing range (large scales) to the dissipation range (small
scales) through a self-similar mechanisms (i.e. energy cascade, e.g. Pope, 2000). The LES
approach defines a filter scale (the grid spacing ∆) inside the inertial subrange, such that
large scales are directly resolved, but subgrid small scales are not captured. Since LES
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filters the dissipation range, we need a dissipative mechanism to model SGS eddies for
the sake of numerical stability and realistically capture the downscale cascade, e.g. the
eddy-viscosity hypothesis (e.g. Pope, 2000). There are several different types of filtering
operators and SGS models in the physical and wavenumber space (see next chapters).

1.3.1 DNS

DNS resolves all scales from the large scale L down to the Kolmogorov scale Ld. Hence, the
dissipation mechanism for DNS is molecular viscosity. Spectral methods are ideal numerical
schemes for the spatial discretization because of their high accuracy. Assuming periodic
boundary conditions, the flow variables are represented by truncated Fourier series, e.g.
for the velocity

u(x, t) =
∑
k

û(k, t)eik·x, (1.29)

where k = (k1, k2, k3) is the wavenumber and û(k, t) is the Fourier coefficient of u(x, t).
The range of k is set by the size of the domain in each direction (see below). In this
situation, the governing equations of motion (1.13-1.15) can be rewritten as

(
∂

∂t
+
k2

Re
)ûj(k, t) +

1

F 2
ρ̂(k, t)ez = −ikmPjr(k)

∑
p+q=k

ûr(p, t)ûm(q, t), (1.30)

kiûi(k, t) = 0, (1.31)

(
∂

∂t
+

k2

RePr
)ρ̂(k, t)− ŵ(k, t) = −ikm

∑
p+q=k

ûm(p, t)ρ̂(q, t), (1.32)

where k =
√
k2

1 + k2
2 + k2

3 and Pij(k) = δij−kikj/k2 is the projection tensor that is used to
eliminate the pressure term (e.g. Rose & Sulem, 1978). We have assumed that the density
perturbations are periodic. It is worthwhile to note that only the background density
gradient, and not the full background density, appears in the equations (1.10-1.12). Since
the background gradient is constant, periodic vertical boundary conditions are consistent
with our equations.

The number of physical space grid points in each direction is given by n, which deter-
mines the size of the simulation and ultimately the attainable Re in DNS. The smallest
wavenumber is defined by k0 = 2π/L and higher wavenumbers are integer multiples of k0,
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where the integer values are between −n/2 + 1 and n/2. Therefore, the largest attainable
wavenumber is

kmax =
nπ

L . (1.33)

As a result, the corresponding physical space grid spacing is

∆ =
π

kmax
. (1.34)

Using the fast Fourier transform, we can transform between physical and wavenumber space
in the cost of O(n3 log n) (e.g. Pope, 2000). To avoid aliasing errors at large wavenumbers,
we can use the two-thirds rule (e.g. Orszag, 1971; Durran, 2010), in which the largest third
of the wavenumbers are filtered, and hence the effective grid spacing is increased to

∆eff =
3

2

π

kmax
. (1.35)

It is worthwhile mentioning that the limitation of Fourier-based spectral methods is their
applicability, as these methods are mainly appropriate for use in idealized cases with peri-
odic boundary conditions.

The resolution requirements of DNS are what determine the computational costs. The
domain size L (i.e. effectively the size of simulation) should be large enough to capture the
energy-containing eddies. The grid spacing ∆ also needs to be small enough to resolve the
dissipation scale, i.e. ∆/Ld . 1. Using the Taylor hypothesis, the number of grid points
in each direction are directly related to the Re as follows (e.g. Pope, 2000)

L
Ld
∼ Re3/4, (1.36)

which demonstrates that increasedRe increases the computational costs. Since the smallest-
scale eddies are dependent on viscosity, much of this computational cost is devoted to
resolving the dissipation range. As already mentioned, the dissipation range presents uni-
versal behaviours that are independent of large scale eddies. Overall, DNS is not an efficient
computational approach for numerical simulations as Re increases.

1.3.2 LES

For large scales, the requirements of LES is similar to DNS, in which the domain size L
should be large enough to resolve the energy-containing eddies. However by contrast with
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DNS, LES does not need a grid spacing on the order of the Kolmogorov scale since this
approach does not resolve the dissipation range. Asymptotically, LES resolves turbulent
eddies in the limit of

Re→∞, (1.37)

ν → 0, (1.38)

therefore, it is applicable to neglect the molecular viscosity term in (1.10) and the diffusivity
term in (1.12); instead, we need additional terms (usually turbulent-viscosity terms) to
model the effects of unresolved small scale motions on large scale eddies. In LES, the
largest resolved wavenumber in spectral methods is defined by the grid spacing ∆ or the
cutoff wavenumber kc, which are related by

∆ =
π

kc
. (1.39)

Similar to DNS, the effective grid spacing ∆eff subjected to the two-thirds rule is written
as

∆eff =
3π

2kc
. (1.40)

In LES, the momentum equation (1.13) and the energy equation (1.15) are modified as
follows

∂ū

∂t
+ ū · ∇ū = −∇p̄− 1

F 2
ρ̄ez −∇ · τ , (1.41)

∂ρ̄

∂t
+ ū · ∇ρ̄− w̄ = −∇ · h, (1.42)

where the bar denotes filtered variables; τ and h are the SGS momentum and density
fluxes. Several approaches exist for parametrizing the SGS fluxes. In chapter 3, the
SGS fluxes are represented using Smagorinsky (1963) and Kraichnan (1976) SGS models
in the physical and wavenumber spaces, respectively. Chapter 4 considers the dynamic
Smagorinsky model (e.g. Germano et al., 1991).

1.3.3 Hyperviscosity

A different approach to avoid resolving the molecular dissipation range is to replace the
viscous term ν∇2u(x, t) in (1.10) with the hyperviscosity term

νhyp(−1)m+1∇2mu(x, t), (1.43)
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where m > 1 (e.g. Herring & Métais, 1989; Waite & Bartello, 2004; Lindborg, 2006). This
modification in wavenumber space corresponds to replacing νk2û(k, t) with

νhypk
2mû(k, t). (1.44)

A similar modification needs to be done for the density equation (1.12) as well. The
advantage of hyperviscosity is that it is simple to implement in spectral methods, and it
makes the dissipation range narrower, allowing for a longer inertial subrange than DNS at
the same resolution. As a result, hyperviscosity modifies the definition of the Kolmogorov
wavenumber, which needs to be resolved as in DNS, as follows

kd =

(
ε

ν3
hyp

)1/(6m−2)

. (1.45)

For m = 1, hyperviscosity dissipation yields the regular viscous dissipation.

1.4 Motivation

LES of stratified turbulence, where the Ozmidov scale is not necessarily resolved, is desired.
This approach would allow us to study idealized atmospheric turbulence at large Re and
with a reasonable computational costs. In addition, the anisotropic structures of stratified
turbulence can be analyzed. SGS motions, in this situation, are anisotropic and therefore
the common isotropic SGS models, such like Smagorinsky (1963) and Kraichnan (1976),
might not be appropriate. Most previous numerical work on stratified turbulence has
employed DNS (e.g. Riley & de Bruyn Kops, 2003; Brethouwer et al., 2007; Almalkie &
de Bruyn Kops, 2012) or hyperviscosity (e.g. Herring & Métais, 1989; Waite & Bartello,
2004; Lindborg, 2006), which are in the intermediate range of Re and very expensive.
Nevertheless, a few LES work have been done recently (e.g. Remmler & Hickel, 2012; Paoli
et al., 2013), in which the applied SGS models are isotropic. However, there has been
little discussion on the relation between the filter scale ∆ and the dynamics of stratified
turbulence. The typical Kolmogorov scale in the atmosphere and ocean is of order tens of
millimeters (e.g. Waite, 2014), however, the realistic maximum domain size is of the order
hundreds or thousands of kilometers (e.g. Riley & Lindborg, 2008). Therefore, DNS is
not feasible in this situation and LES is desired. Also, current LES schemes that employ
isotropic SGS models might not be proper for LES of stratified turbulence when Lo is not
resolved.
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The first step in this investigation of SGS motions in stratified turbulence is an a priori
test using DNS results. The a priori testing refers to analyzing SGS motions using the
actual DNS results. Next, we evaluate the performance of current isotropic SGS models in
stratified turbulence. Finally, we measure the local up- and downscale kinetic and potential
energy transfer in DNS to better understand dynamics around the Ozmidov and buoyancy
scales. These three steps are the basis for future work, in which an anisotropic SGS model
that captures the dynamical features of stratified turbulence is desired.

1.5 Thesis objectives

In this thesis, DNS and LES of stratified turbulence are studied. The objective of this
work is to understand subgrid dynamics in stratified turbulence and how well they are
parametrized by several standard SGS schemes, laying the groundwork for eventual devel-
opment of improved models. The four main sections of this thesis are described below.

1.5.1 Effective eddy viscosity

In chapter 2, we study the actual behaviour of effective SGS motion in DNS of stratified
turbulence. In this chapter, we perform DNS of decaying stratified turbulence for which all
scales from large energy-containing down to the dissipation scales are resolved. The DNS
results are analyzed using test filters to separate large and small scales. The test filter
scales are larger than the Kolmogorov scale and similar to or smaller than the Ozmidov
scale, to ensure that we have SGS eddies in the inertial subrange. This methodology helps
us to study directly the effects of small eddies on larger scales. Comparing stratified cases
with non-stratified simulations at different test filter scales provide comprehensive insights
about the following questions:

• How does stratification affect interactions between large and small scales in turbulent
flows?

• How different are effective SGS eddies for stratified turbulence when ∆ & Lo com-
pared to when ∆� Lo?

• When the test filter is applied separately in the horizontal and vertical directions, how
different are the interactions between large and sub-test-filter scales (i.e. anisotropy)?

• How different are the horizontal and vertical eddy viscosities in stratified and un-
stratified turbulence?
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1.5.2 Effects of buoyancy scale in LES of stratified turbulence

In chapter 3, LES of forced stratified turbulence using two common isotropic SGS models,
i.e. the Smagorinsky (1963) and Kraichnan (1976) models, are studied where ∆ > Lo.
The performance of isotropic SGS models, and the maximum resolution for which the
dynamics of stratified turbulence are fully captured, are investigated. In this chapter, we
try to answer the following questions:

• What is the maximum grid spacing for which the isotropic SGS models perform
reasonably in stratified turbulence?

• What are the important parameters that the resolution criterion depends on?

• Which SGS model is less expensive and why?

• How different are the eddy dissipation spectra in the horizontal and vertical directions
in stratified turbulence?

1.5.3 The dynamic Smagorinsky model for LES

Chapter 4 presents LES of forced stratified turbulence using the dynamic Smagorinsky
model, which is a dynamical improvement on SGS modelling, and is presented by Germano
et al. (1991); Lilly (1992). We apply the dynamic approach to the classical Smagorinsky
model to improve the performance of LES in resolving dynamics of stratified turbulence
while the total computational costs are decreased. These are some desirable inquires that
we address in this chapter:

• Does the dynamic Smagorinsky model improves the performance of the regular
Smagorinsky model in stratified turbulence in computational costs and resolving the
dynamics of the flow?

• How does stratification affect the dynamic Smagorinsky coefficient cs and its satatis-
tics?

• What is the relationship between stratification, shear and cs in stratified turbulence?
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1.5.4 The dynamics of energy transfer in DNS of stratified tur-
bulence

Chapter 5 includes a detailed analysis on the dynamics of up- and down-scale energy
transfer for both physical and wavenumber spaces in DNS of stratified turbulence. The
effective SGS kinetic and potential dissipation rate, effective SGS energy transfer spectra
and effective turbulent Prandtl number are studied subject to different test cutoffs kc. We
address the following questions:

• Is backscatter important in stratified turbulence?

• How does the local energy transfer depend on the test cutoff kc (i.e. investigation on
the direction of energy transfer and self-similarity)?

• How sensitive are the dynamics of energy transfer to the flow parameters like resolu-
tion, buoyancy frequency and the buoyancy Reynolds number?

Chapter 6 includes the concluding remarks of this thesis along with the author’s per-
spectives for future work. Chapters 2-4 are based on three published and submitted papers,
and as a result they are written to be relatively self-contained.
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Chapter 2

Effective eddy viscosity in stratified
turbulence

This chapter presents an a priori testing on DNS results of decaying stratified turbulence by
applying the test cutoff wavenumber kc in the horizontal and vertical directions. It is shown
that there is a non-local energy transfer in the horizontal direction that occurs at small
vertical scales. Overall, anisotropic features, which are due to the presence of stratification,
seem to be important when kc is around or smaller than the Ozmidov wavenumber ko.

This chapter is based on the published paper, Khani S. and M. L. Waite. Effective eddy
viscosity in stratified turbulence. J. Turbul. 14(7): 49-70 2013, c© 2013 Taylor & Francis.
Reprinted with permission.
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2.1 Introduction

The nature of turbulence in the atmosphere and the ocean is characterized by very high
Reynolds numbers. Moreover, in the atmospheric mesosphere and the oceanic sub-mesoscale
range, turbulent flows are strongly affected by stable stratification, but only weakly affected
by the Earth’s rotation (Riley & Lelong, 2000). Thus, vertical motions are restrained by
buoyancy forces and horizontal structures are elongated into anisotropic pancake-like vor-
tices (Billant & Chomaz, 2000, 2001). Such flows can have Reynolds numbers of the order
108 or higher. Performing a direct numerical simulation (DNS) at such scales, therefore,
requires that an enormous range of scales be resolved. Such resolution is not possible
because of high computational memory and time costs. Large-eddy simulation (LES) is
an alternative approach that removes the need to resolve any but the large-scale motions.
The basic idea behind LES is to explicitly resolve large scales and to model the effects of
small scales on large ones through subgrid-scale (SGS) models.

Recent advances in the understanding of geophysical turbulence have described the ap-
pearance of stratified turbulence when the buoyancy Reynolds number is sufficiently high
and the horizontal Froude number is sufficiently low (Riley & de Bruyn Kops, 2003; Lind-
borg, 2006; Brethouwer et al., 2007; Riley & Lindborg, 2008). Under such conditions, the
inertial subrange of stratified turbulence is divided into an anisotropic range at large scales
and an isotropic range at small scales. The anisotropic and isotropic parts of the inertial
subrange are separated by the Ozmidov (Lumely, 1964) wavenumber ko = (N3/ε)1/2, where
ε is the kinetic energy dissipation rate and N is the buoyancy frequency. Generally, SGS
models are used to model small-scale isotropic turbulence (Smagorinsky, 1963; Kraichnan,
1976; Chollet & Lesieur , 1981; Siegel & Domaradzki, 1994; Lesieur & Métais, 1996). In
the inertial subrange of isotopic turbulence, the energy spectrum E(k) is (Kolmogorov,
1941)

E(k) ∼ ε2/3k−5/3, (2.1)

where k =
√
k2
x + k2

y + k2
z is the total wavenumber. However, stratified turbulence includes

an additional anisotropic subrange because of stratification. According to the stratified
turbulence hypothesis (Lindborg, 2006; Brethouwer et al., 2007), the energy spectrum in
this range is proportional to different power laws in the horizontal and vertical wavenumbers

E(kh) ∼ ε2/3k
−5/3
h E(kv) ∼ N2k−3

v , (2.2)

where kh =
√
k2
x + k2

y and kv = |kz| respectively stand for the wavenumbers in the hor-
izontal and vertical directions. Although simulations are largely consistent with these
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predictions, the universality of −5/3 and −3 slopes is still under investigation (Waite &
Bartello, 2004; Brethouwer et al., 2007; Waite, 2011; Almalkie & de Bruyn Kops, 2012;
Waite, 2014). Isotropic SGS models do not seem to be the proper approach for modelling
the effects of turbulent scales in the anisotropic part of the stratified turbulence inertial
range. Since these models have been designed to represent the effects of small-scale motions
in the isotropic subrange, it is important to study in detail the features of the anisotropic
inertial subrange. One approach is to directly measure the effective spectral eddy viscosity
using DNS results. This type of fundamental analysis has already been done for the Kol-
mogorov isotropic inertial subrange (as in e.g. Domaradzki et al., 1987, 1993), but it has not
been studied for anisotropic stratified turbulence. The main aim of this paper is to study
the dynamics of energy transfer in the anisotropic inertial subrange of stratified turbu-
lence using the effective eddy viscosity point of view. A theoretical spectral eddy viscosity
model for isotropic turbulence has been suggested by Kraichnan (1976), who considered
an infinite inertial subrange. The Kraichnan eddy viscosity model includes two parts: a
constant plateau at small wavenumbers, which represents the non-local energy transfer
between SGS motions and large resolved scales, and a cusp near the cutoff wavenumber kc,
which accounts for the local energy transfer around the cutoff (Kraichnan, 1976; Bartello
et al., 1996).

In this paper, we use DNS of stratified turbulence to explicitly measure the effective
spectral eddy viscosity in the horizontal and vertical directions, following the Lindborg
(2006) hypothesis of an anisotropic cascade from large to small horizontal scales. If the
cascade to small scales is fundamentally anisotropic, the shapes of the effective eddy vis-
cosity in the horizontal and vertical directions will provide insight into the nature of this
energy transfer. We compare the results of this study to those of the original Kraichnan
eddy viscosity model (Kraichnan, 1976) and also the results of Domaradzki et al. (1987,
1993) for unstratified turbulence, and evaluate how different they are. Our objective is to
clarify the effects of stratification on SGS models. In Section 2.2 we review the literature
on stratified flows and DNS and LES of stratified turbulence. This section also describes
the governing equations of stratified flows as well as equations for measuring effective eddy
viscosity. An overview of our numerical experiments and initial conditions is presented in
Section 2.3. In Section 2.4, we present our simulation results and discuss the effects of
stratification, Reynolds numbers, and the cutoff location. Finally, conclusions are given in
Section 2.5.
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2.2 Background

Strong stratification generates horizontal motions with large vertical shear, referred to as
layered pancake structures (Gage, 1979; Lilly, 1983; Billant & Chomaz, 2001). Although
Gage (1979) and Lilly (1983) proposed an inverse energy cascade (in analogy with two-
dimensional turbulence) for these anisotropic three-dimensional structures, more recent
results point to a downscale cascade Lindborg (e.g. 2006). The vertical scale (Billant &
Chomaz, 2001; Waite & Bartello, 2004) of the pancake structures is urms/N , which yields
a vertical Froude number of O(1). This scaling for the vertical Froude number is the basis
for the stratified turbulence hypothesis (Lindborg, 2006; Brethouwer et al., 2007) in which
the inertial subrange has an anisotropic part at large scales in addition to the classical
isotropic part at small scales.

Several studies have investigated numerical simulations of stratified turbulence, both
DNS (Riley & de Bruyn Kops, 2003; Brethouwer et al., 2007; Almalkie & de Bruyn Kops,
2012; Waite, 2014) and LES (Siegel & Domaradzki, 1994; Kaltenbach, 1994; Carnevale et
al., 2001; Remmler & Hickel, 2012). The main disadvantage of the DNS approach is its
intrinsic limitation in achieving high Reynolds number flows. For example, in the DNS
study by Almalkie & de Bruyn Kops (2012), in which the spatial resolution is very high,
the maximum Reynolds number is O(104). On the other hand, the LES of Siegel & Do-
maradzki (1994) and Carnevale et al. (2001), who used spatial and spectral eddy viscosity,
respectively, neglected the effects of anisotropy in their SGS models. In addition, the
implicit LES (ILES) approach (e.g. Remmler & Hickel, 2012) uses numerical diffusion to
represent SGS, and thus very sensitive to the numerical scheme (Domaradzki & Radhakr-
ishnan, 2005). Therefore, there is a real need for better understanding of SGS motions of
stratified flows.

The non-dimensionalized Navier-Stokes equations under the Boussinesq approximation
are

∂u

∂t
+ u · ∇u = −∇p− 1

Fr`
2ρez +

1

Re`
∇2u, (2.3)

∇ · u = 0, (2.4)

∂ρ

∂t
+ u · ∇ρ− w =

1

Re`Pr
∇2ρ, (2.5)

where u is the velocity vector, and ρ and p are the density and pressure fluctuations from
their ambient values. The initial Reynolds number Re`, Froude number Fr`, and Prandtl
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number Pr are defined as

Re` =
u`

ν
, (2.6)

Fr` =
u

N`
, (2.7)

Pr =
ν

D
, (2.8)

where u and ` are the initial velocity- and length-scales, respectively, ν is the molecular
viscosity, and D is the mass diffusivity. In this work, we take Pr = 1 and assume constant
N . This latter assumption is common in idealized studies of stratified turbulence (Riley &
de Bruyn Kops, 2003; Waite & Bartello, 2004; Brethouwer et al., 2007; Riley & Lindborg,
2008; Waite, 2011, 2014).

Assuming periodic boundary conditions, a flow variable f(x, t) can be expanded in a
Fourier series as

f(x, t) =
∑
k

f̂(k, t)eik·x, (2.9)

where f̂(k, t) is the Fourier coefficient of f , and the sum is up to an isotropic cutoff
|k| < kmax. In DNS, kmax is set to be around the Kolmogorov wavenumber

kd = (
ε

ν3
)
1
4 , (2.10)

which ensures that the dissipation is resolved. Our kmax/kd is always greater than 0.5,
which, following Moin & Mahesh (1998), means that most of the dissipation is resolved.
The equations of motion (2.31-2.5) can be re-written as

(
∂

∂t
+

k2

Re`
)ûj(k, t) +

1

Fr`
2 ρ̂(k, t)ez = −ikmPjr(k)

∑
p+q=k

ûr(p, t)ûm(q, t), (2.11)

kiûi(k, t) = 0, (2.12)

(
∂

∂t
+

k2

Re`Pr
)ρ̂(k, t)− ŵ(k, t) = −ikm

∑
p+q=k

ûm(p, t)ρ̂(q, t), (2.13)

where the projection tensor Pij(k) = δij − kikj/k2 is used to eliminate the pressure term
(Rose & Sulem, 1978). If we define a test cutoff wavenumber kc, we can express the
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interactions between wavevectors with |k| > kc and those with |k| ≤ kc. Consider the
non-linear terms on the right-hand side of equations (2.11) and (2.13):

Fj(k, t) = −ikmPjr(k)
∑
p+q=k

ûr(p, t)ûm(q, t), (2.14)

J(k, t) = −ikm
∑
p+q=k

ûm(p, t)ρ̂(q, t). (2.15)

The corresponding nonlinear terms in the kinetic and potential energy equations (see Ap-
pendix A), Tk and Tp, can be obtained by multiplying equations (2.14) and (2.15) by û∗j
and (1/Fr`

2)ρ̂∗, and adding the complex conjugates (denoted by ∗) yielding (Lindborg,
2006; Rose & Sulem, 1978; Pope, 2000):

Tk(k, t) = − i
2
kmPjr

∑
p+q=k

{ û∗j(k, t)ûr(p, t)ûm(q, t)

+ ûj(k, t)û
∗
r(p, t)û

∗
m(q, t)}, (2.16)

Tp(k, t) = − i

2Fr`
2km

∑
p+q=k

{ ρ̂∗(k, t)ûm(p, t)ρ̂(q, t)

+ ρ̂(k, t)û∗m(p, t)ρ̂∗(q, t)}. (2.17)

Based on the cutoff kc, we can decompose Tk and Tp into Tk and Tp, in which the
sums in equations (2.16) and (2.17) are restricted to p and q with |p|, |q| < kc; and T sk
and T sp , in which at least one of |p| or |q| is above the cutoff kc. The quantities T sk and
T sp represent energy transfer into k from interactions with wavenumbers above kc. The
spectral eddy viscosity approach models T sk and T sp by (Kraichnan, 1976; Domaradzki et
al., 1987; Bartello et al., 1996; Pope, 2000)

T sk (k, t) = −2νe(k, t)k
2E(k, t), (2.18)

T sp (k, t) =
T sk (k, t)

Prt
= −2

νe(k, t)

Prt
k2E(k, t), (2.19)
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where νe(k, t) is the spectral eddy viscosity coefficient, E(k, t) = 1
2
ûj(k, t)û

∗
j(k, t) is the

kinetic energy in wavevector k, and Prt is the turbulent Prandtl number (usually assumed
to be constant e.g. Lesieur, 1990; Batchelor et al., 1992; Siegel & Domaradzki, 1994). The
eddy viscosity at wavenumber k can therefore be defined as

νe(k, t) = − T sk (k, t)

2k2E(k, t)
. (2.20)

Assuming an isotropic eddy viscosity, T sk (k, t) and E(k, t) in (2.20) can be integrated over
spheres of radius k to get the spherical eddy viscosity (following the Pope, 2000, notation)
as (Domaradzki et al., 1987)

νe(k|kc, t) = − T sk (k, t)

2k2E(k, t)
, (2.21)

where T sk (k, t) is the integrated energy transfer between the cutoff-resolved motions and
modes with k > kc, and E(k, t) is the integrated energy spectrum. Here, cutoff-resolved
refers to scales with wavenumbers below the test cutoff kc. This approach was introduced
by Domaradzki et al. (1987) for measuring effective eddy viscosity in DNS of isotropic
turbulence. More recently, Domaradzki & Radhakrishnan (2005) measured the effective
eddy viscosity in an implicit model of decaying turbulence. They found that without
careful choice of the numerical scheme, ILES was unlikely to successfully represent SGS
features.

Based on the Lindborg (2006) stratified turbulence hypothesis, in which there is an
anisotropic cascade from large to small horizontal scales, it seems appropriate to modify
the above approach to apply a test cutoff kc in the horizontal direction. In this case,
T sk (k, t) in (2.20) changes to T s,hk (k, t), which refers to the energy transfer between modes
with kh < kc, i.e. horizontal cutoff-resolved, and modes with kh > kc. In this situation, we
assume axisymmetric horizontal eddy viscosity, and integrate T s,hk (k, t) and E(k, t) over
shells of constants kh to find the horizontal eddy viscosity. In addition, we can also apply
the test cutoff kc in the vertical direction to define T s,vk (k, t) and integrate over kx and ky
to compute a vertical eddy viscosity. In summary, to measure the horizontal and vertical
eddy viscosity, equation (2.21) can be used if altered somewhat:

νhe (kh|kc, t) = − T s,hk (kh, t)

2k2
hE(kh, t)

, (2.22)

νve (kv|kc, t) = − T s,vk (kv, t)

2k2
vE(kv, t)

. (2.23)
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where T s,hk (kh, t) and T s,vk (kv, t) are the integrated energy transfer between cutoff-resolved
motions and modes with kh > kc and kv > kc, respectively; where kc is applied accordingly
in the horizontal and vertical directions. Moreover, E(kh, t) and E(kv, t) are the integrated
energy spectrum in the horizontal and vertical directions, respectively.

The distinctions between the horizontal, vertical, and spherical eddy viscosities are
important. These eddy viscosities are categorized based on directions in which the test
cutoff is applied. When we apply the cutoff kc in the horizontal direction, for example,
we filter at the horizontal cutoff-resolved resolution π/kc. However, the vertical resolution
remains unchanged (i.e. ∆z ∼ π/kd). Therefore, by applying the test cutoff kc in a specific
direction, the effective resolution in that direction decreases. As a result, we have a specific
eddy viscosity based on the definition of the cutoff kc in a specific direction. In summary,
the kinetic energy equation is affected by these three definitions of the test cutoff kc in the
spherical, horizontal, and vertical directions and are, respectively

∂E(k, t)

∂t
+B(k, t) = Tk(k, t)− 2νe(k|kc, t)k2E(k, t), (2.24)

∂E(kh, t)

∂t
+B(kh, t) = Tk

h
(kh, t)− 2νhe (kh|kc, t)k2

hE(kh, t), (2.25)

∂E(kv, t)

∂t
+B(kv, t) = Tk

v
(kv, t)− 2νve (kv|kc, t)k2

vE(kv, t), (2.26)

where the molecular dissipation is neglected for clarity, and

B(k, t) =
1

2Fr2
`

{ρ̂(k, t)ŵ∗(k, t) + ρ̂∗(k, t)ŵ(k, t)}, (2.27)

is the buoyancy flux, the spherical, horizontal, and vertical wavenumber spectra of which
are defined as above.

Applying the test cutoff kc in different directions (i.e. the horizontal, vertical, and
spherical) results in different influences over the triad interactions of p, q, and k in (2.16-
2.17). For example, compare the effect of defining the test cutoff in the horizontal direction
to that in the spherical one. Applying the cutoff in the horizontal direction, modes with
kh < kc are retained, but there is no restriction on kv or k. However, if we apply the cutoff
kc in the spherical direction, all large-scale modes with k < kc are included; this restriction
involves both the horizontal and vertical scales. Hence if, for example, there is an energy
exchange between large and small horizontal scales at large vertical wavenumbers, the
horizontal eddy viscosity will measure this energy transfer but the spherical eddy viscosity
will not. In this case, there is a non-local energy transfer in the horizontal direction, which
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occurs at large vertical wavenumbers. This energy transfer will therefore lead to a non-
local horizontal eddy viscosity but no spherical eddy viscosity. This behaviour could lead
to confusion for unstratified turbulence where the underlying cascade is isotropic. However,
given the overwhelming evidence for an anisotropic cascade in stratified turbulence (e.g.
Riley & de Bruyn Kops, 2003; Waite & Bartello, 2004; Lindborg, 2006; Hebert & de Bruyn
Kops, 2006b; Brethouwer et al., 2007), the separate consideration of horizontal and vertical
eddy viscosity is meaningful and important.

Stratification is characterized in our simulations by two Froude numbers: the initial
Froude number, as defined in (2.7); and a time-dependent horizontal Froude number

Frh =
urms
NLh

, (2.28)

where urms is the root-mean-square velocity and the horizontal scale Lh ≡ [urms]
3/ε is

defined using the Taylor hypothesis (Brethouwer et al., 2007). We will evaluate this ap-
proximation below in Section 2.4. In the same manner, we define the buoyancy Reynolds
number (Brethouwer et al., 2007) as

Reb =
ε

νN2
. (2.29)

When the horizontal Froude number Frh is sufficiently small (i.e. when flows are strongly
stratified), the buoyancy Reynolds number plays a similar role to the Reynolds number
in non-stratified flows. In fact, the buoyancy Reynolds number sets the magnitude of the
vertical viscous term in the Boussinesq equations (Brethouwer et al., 2007). Thus, a flow
with a smaller horizontal Froude number (stronger stratification) needs larger Reynolds
numbers to ensure turbulence. There are a variety of other Froude numbers defined in the
literature; e.g. Riley & de Bruyn Kops (2003) used the periodic buoyancy frequency to
define the Froude number 2πu/N` which differs from (2.7) by a factor 2π; the associated
buoyancy Reynolds number differs by a significant factor (2π)2.

2.3 Methodology

In this work, DNS of stratified turbulence are employed to measure the effective eddy vis-
cosity. An idealized decaying stratified turbulence test case has been considered, following
the DNS of Riley & de Bruyn Kops (2003). The initial condition consists of Taylor-Green
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Table 2.1: List of numerical simulations for DNS.
Identifier Fr` Re` n kmax/kd

F0.6 0.64 6400 768 0.73− 0.94
F0.3 0.32 6400 768 0.69− 0.84

UNST ∞ 6400 768 0.5− 1.25
F0.6R 0.64 800 256 1.21− 1.41

kc 10 20 40 80

(TG) vortices in a periodic cubic domain of size L = 4π, i.e. two TG wavelengths. The
TG vortices are designed to have horizontal structures with vertical variations:

u(x, 0) = cos(z)[cos(x) sin(y),− sin(x) cos(y), 0]. (2.30)

Low-level noise of approximately 10% of the initial energy is also added to the initial
condition (Riley & de Bruyn Kops, 2003). In our study, the random noise is distributed
isotropically, and noise is restricted to wavenumbers with kh ≤ 7/2 and |kz| ≤ 7/2. Since
the non-dimensional domain is 4π, wavenumbers spacing is 1/2.

The spectral transform method has been used to solve the governing equation with n
grid points in the x, y, and z directions. To eliminate aliasing errors, the two-thirds rule
(e.g. Durran, 2010) with spherical wavenumber truncation is applied, yielding an effective
grid spacing of ∆x = 1.5L/n. The third-order Adams-Bashforth scheme is adopted for
time-stepping of the nonlinear and buoyancy terms; the implicit trapezoidal method is used
for the diffusion terms. Simulations with two different initial Reynolds numbers Re` = 6400
and 800, and three initial Froude numbers Fr` = 0.32, 0.64, and∞ are considered. Finally,
four values of kc = 10, 20, 40, 80 are employed as test cutoffs to analyze the effective eddy
viscosity. Table 2.1 shows a list of the parameters and corresponding identifiers used in
this study.
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2.4 Results and Discussion

2.4.1 Overview of simulations

Figure 2.1 illustrates the general evolution of the energy, dissipation rates, kinetic energy
spectra, and kinetic energy dissipation spectra for two stratified and one non-stratified cases
with the same initial Re` = 6400, and one stratified case with initial Re` = 800. Figure
2.1(a) shows total (kinetic plus potential) energy versus time. The non-stratified case is
much less energetic than the stratified case for t & 10. This behaviour is also evident in
figure 2.1(b), where the total dissipation rate is much higher in the non-stratified turbulence
at early times (as in e.g. Domaradzki et al., 1993; Remmler & Hickel, 2012). Figures 2.1(c,d)
show respectively the spherical energy spectrum E(k) and the kinetic energy dissipation
spectrum D(k) = 2νk2E(k) averaged over a time range around the maximum dissipation
rates of the stratified and non-stratified cases (15 ≤ t ≤ 20 for the stratified cases with
Fr` = 0.64; 20 ≤ t ≤ 25 for the stratified case with Fr` = 0.32; and 10 ≤ t ≤ 15 for the
non-stratified case). Table 2.1 shows the range of kmax/kd for all simulations. Since we are
interested in results with large Reynolds and buoyancy Reynolds numbers, time averages
are computed around the time of maximum ε. At these times, the Kolmogorov scale is
smallest and hence closest to the grid scale, and kmax/kd reaches the minimum value shown
in table 2.1, which is still consistent with DNS (Moin & Mahesh, 1998). This resolution of
the Kolmogorov scale is similar to other recent DNS studies of stratified turbulence (e.g.
Riley & de Bruyn Kops, 2003; Hebert & de Bruyn Kops, 2006a,b; Bartello & Tobias, 2013).
It is also noteworthy that the large-scale energy increases with decreasing initial Froude
number (from Fr` = ∞ to 0.64 to 0.32), regardless of the value of the initial Reynolds
number (figures 2.1c,d).

For the non-stratified case, the approximate time for the onset of turbulence is t ≈ 10,
when the dissipation rate is maximum. However, the time of maximum εtot = ε+ εp, where
εp is the potential energy dissipation, is postponed in the stratified flows. This behaviour
can also be seen in figure 2.1(a) where the total energy is almost constant for Fr` = 0.64 up
to t ≈ 15, and for Fr` = 0.32 up to t ≈ 20. Decreasing the initial Froude number from 0.64
to 0.32, at fixed Re`, may suppress the onset of turbulence as it causes Reb to fall to around
1 (see below). Hence, in the stratified case, higher Reynolds numbers may be necessary to
accelerate the onset of turbulence as in the non-stratified case. The maximum εtot occurs
at t = 15 for Fr` = 0.64 and t = 21 for Fr` = 0.32. This behaviour demonstrates a delay in
the commencement of turbulence caused by decreasing the initial Froude number (Riley &
de Bruyn Kops, 2003; Hebert & de Bruyn Kops, 2006a) (and hence the horizontal Froude
number as well). The vertical arrows in figures 2.1(c,d) indicate values of the test cutoff
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Figure 2.1: (a) Total energy, (b) total dissipation rate, (c) time-averaged kinetic energy
spectra, and (d) time-averaged dissipation spectra. Arrows indicate values of the different
test cutoffs kc, which are presented in Section 2.4.2. See table 2.1 for the identifiers.
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Figure 2.2: Time series of (a) horizontal Froude number and (b) buoyancy Reynolds number
for the two stratified simulations withRe` = 6400. Froude and buoyancy Reynolds numbers
are computed with a horizontal length scale obtained from Taylor’s hypothesis, which may
not be valid at early times.

kc, which will be addressed in Section 2.4.2.

Figure 2.2 shows the time series of the horizontal Froude number and the buoyancy
Reynolds number for two different initial Froude numbers. Recall that the time-dependent
Lh is defined using Taylor’s hypothesis, which is not expected to be valid when the flow is
not turbulent. As a result, figure 2.2 does not necessarily yield reasonable results before
the commencement of turbulence. Therefore, for Fr` = 0.64, figure 2.2 is expected to be
valid when t & 15. Similarly, for Fr` = 0.32, it is valid when t & 20. As seen in figure
2.2(a), the horizontal Froude numbers are relatively small and fairly close to the Lindborg
(2006) threshold of value 0.02 for stratified turbulence. (Since Riley & de Bruyn Kops,
2003, defined their Froude numbers based on the periodic buoyancy frequency, the Froude
numbers in figure 2.2(a) should be multiplied by 2π to compare their results). Figure 2.2(b)
shows that the values of the buoyancy Reynolds number are O(1) for Fr` = 0.32 and O(10)
for Fr` = 0.64, suggesting that these flows are (marginally) strongly stratified turbulence.
For case Fr` = 0.32, the buoyancy Reynolds number is Reb ≤ 4, and so the vertical
viscous shear may be significant (Brethouwer et al., 2007). In the literature, simulations
with Fr` = 0.64 and Fr` = 0.32, and Re` = 6400 have been reported to be inside the
strongly stratified turbulence regime (Brethouwer et al., 2007; Hebert & de Bruyn Kops,
2006a).

Time series of the horizontal and vertical length-scales are shown in figure 2.3. These
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length-scales are calculated using the horizontal and vertical energy spectra as follows
(Lindborg, 2006):

lh =
2π
∫∞

0
E(kh) dkh∫∞

0
khE(kh) dkh

, lv =
2π
∫∞

0
E(kv) dkv∫∞

0
kvE(kv) dkv

. (2.31)

In the unstratified case, lh decreases significantly over 0 ≤ t ≤ 10. Increased stratification
leads to a much smaller decrease (or even slight increase) in lh, so the horizontal length-
scale almost retains its original length. However, the vertical scale decreases significantly
in all cases. For example, the Fr` = 0.32 case retains its initial horizontal length-scale
up to t = 15, at which time the vertical length-scale is about 30% of its initial value (see
figure 3.7b). After the onset of turbulence, the buoyancy Reynolds number decreases, and
so the simulation transitions from marginally viscous (i.e. Reb & 1) to viscosity-affected
(i.e.Reb . 1) stratified turbulence. According to figure 3.7(a), the horizontal scales increase
as Reb decreases.

There are four interesting results in figure 2.3: first of all, as seen in figure 2.3(c), using
the Taylor hypothesis to estimate lh can be a good approximation for the non-stratified
case since lh/Lh is almost constant (≈ 0.6) after the onset of turbulence. For stratified
turbulence, on the other hand, lh/Lh ≈ 0.4 at the time of maximum εtot and increases
with time. A similar trend for lh for stratified turbulence has been observed in other
experimental (Praud et al., 2005) and numerical (Hebert & de Bruyn Kops, 2006b) studies.
Secondly, the vertical length-scales for Fr` = 0.64 and Fr` = 0.32 are shown in figure
2.3(d), scaled by the buoyancy scale Lb = 2πurms/N . The factor 2π is included, following
(Waite, 2011, 2014), because it is the buoyancy wavenumber kb = N/urms that appears
in applications (e.g. Billant & Chomaz, 2000). After turbulence commences (i.e. t & 20),
lv ∼ Lb is a fairly good approximation. It is found that lv is larger than Lb for the case
with smaller Reb, in agreement with the finding that lv is set by viscosity at small Reb
(Hebert & de Bruyn Kops, 2006a; Brethouwer et al., 2007). Moreover, figures 3.7(a) and
3.7(b) also demonstrate an approximate equality of lh and lv for the non-stratified case.
And finally, for the simulation with Fr` = 0.64 and Re` = 800, we can see an almost
constant horizontal length-scale throughout the simulation (figure 2.3a) and hence a fairly
weak agreement with Taylor’s hypothesis (figure 2.3c). This behaviour is consistent with
small Reb in which the stratified flow seems to not be very turbulent.
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Figure 2.3: Time series of (a) the horizontal length-scale, (b) the vertical length-scale,
(c) the horizontal length-scale scaled using the Taylor hypothesis, and (d) the vertical
length-scale scaled by the buoyancy scale Lb.
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2.4.2 Effective eddy viscosity

This section describes the results of directly measuring the effective eddy viscosity in the
horizontal, vertical, and spherical directions. Effective eddy viscosity represents the effects
of smaller-scale motions on eddies with wavenumbers below kc. Four different cutoffs kc
have been employed in each of the horizontal, vertical, and spherical directions to analyze
the DNS results. The effective eddy viscosities have been averaged over a time range
around the maximum dissipation rates (as in figures 2.1c,d). Based on the Kraichnan
eddy viscosity model (Kraichnan, 1976), the effective cutoff kc should be inside the inertial
subrange. According to figure 2.1(d), kc = 80 is inside the dissipation range. Therefore,
we expect the measured eddy viscosity in this case to be small. All figures in this section
are plotted in terms of k+ = k/kc or k+

h = kh/kc or k+
v = kv/kc. Moreover, the values

of eddy viscosities in each figure (except figure 2.8) have been normalized by the value of
the corresponding molecular viscosity to show their effectiveness. The values of the SGS
energy transfer in figures 2.4(c,d) are normalized by those of the spherical SGS energy
transfer at the test cutoff kc = 40.

Stratification and effective eddy viscosity in different directions

First, we examine the Fr` = 0.64 case when the cutoff wavenumber kc = 40 is around
the Ozmidov wavenumber ko ≈ 35. The unstratified case is also considered for compari-
son. Figure 2.4(a,b) show the non-stratified and stratified eddy viscosities, along with the
Kraichnan theoretical eddy viscosity model (Kraichnan, 1976). The SGS energy transfer
T sk , T s,hk , and T s,vk are shown in figures 2.4(c,d). According to figure 2.4(a), the horizon-
tal, vertical, and spherical eddy viscosities are very similar for non-stratified turbulence
when k+ & 0.1. This behaviour is a sign of isotropic unstratified turbulence in which, for
kc = 40, the effective eddy viscosities are independent of direction. There are differences
in the spherical, horizontal, and vertical eddy viscosities at large scales (i.e. k+ . 0.1),
which is to be expected given the anisotropy of the initial TG vortices. The slightly nega-
tive values of the effective eddy viscosity for small k+ have also been previously reported
(Domaradzki et al., 1987; Métais & Lesieur, 1992; Domaradzki et al., 1993; Domaradzki &
Radhakrishnan, 2005). Large positive values of vertical eddy viscosity in figure 2.4(a) when
k+
v . 0.1 demonstrates a non-local energy transfer from large to small vertical scales (cf.
T s,vk in figure 2.4c). It is important to note that for measuring the vertical eddy viscosity,
we did not apply a restriction on the horizontal wavenumbers. Since the energy transfer
in the non-stratified case is likely isotropic, the non-local energy transfer in the vertical
direction may result from a local spherical transfer around kc. The same conclusions hold
for the large positive horizontal eddy viscosity as well.

30



In the stratified case, the horizontal eddy viscosity exhibits a very different behaviour:
it has a positive plateau for 0.05 . k+

h . 0.8 and a sharp cusp near kc (figure 2.4b).
This behaviour is also clear in figure 2.4(d), in which for 0.05 . k+

h . 0.8, the horizontal

SGS energy transfer T s,hk has an almost constant plateau, which has a value of 23% of the
local horizontal SGS energy transfer at the cutoff kc. However, νe is smaller overall than
in the unstratified case. The presence of stratification results in a considerable difference
between νhe and νve : it increases the non-local energy transfer and effective eddy viscosity
in the horizontal direction. A peak around k+

h = 0.05 is seen in the horizontal eddy
viscosity, which is due to the effects of the initial conditions. Moreover, when k+

v . 0.02,
the non-local vertical energy transfer is larger than the non-local horizontal energy transfer
(figure 2.4d). This behaviour suggests that there is a stronger energy transfer between large
vertical scales and small vertical ones, which is consistent with the development of layers
and small-scale turbulence with vertical wavenumbers above the cutoff kc.

In summary, figures 2.4(b,d) display two phenomena for k+ � 1 in the stratified case.
In the vertical, there is a transfer of energy from large to small scales. This large non-
local energy transfer, which yields a large vertical eddy viscosity at small kv, which is
shown through the vertical eddy viscosity, is in agreement with the layering hypothesis
of stratified turbulence (e.g. Billant & Chomaz, 2001). The other phenomenon is the
presence of a positive plateau for 0.05 . k+

h . 0.8 in the horizontal eddy viscosity and

the horizontal SGS energy transfer T s,hk . Such non-local energy exchange between large
and small horizontal scales is reminiscent of recent results in forced stratified turbulence
(Waite, 2011) and the breakdown of columnar vortices (Augier et al., 2012; Deloncle et al.,
2008).

As mentioned above, the shape of the horizontal eddy viscosity in the stratified case
shows a non-local energy transfer between large and small horizontal scales. All vertical
scales are included in the calculation of T s,hk and νhe , so it is important to know if there
is a specific vertical scale at which the non-local horizontal energy transfer occurs. In
figure 2.4(b), it is clear that there is essentially no effective eddy viscosity in the spherical
direction when 0.1 ≤ k+ . 0.8. Similarly, there is no spherical SGS energy transfer for
0.1 ≤ k+ . 0.8 (figure 2.4d). There is no sign of non-local energy transfer between small
and large k. As a result, the non-local horizontal energy transfer has to occur entirely at
large vertical wavenumbers. This means that this non-local horizontal energy transfer and
eddy viscosity correspond to a local energy transfer in the spherical direction.

We have shown that the non-local energy transfer in the horizontal direction occurs
at vertical wavenumbers which are larger than kc. Recent works (Waite, 2011; Augier
et al., 2012) have found non-local energy transfer between large-horizontal-scale motions
and the buoyancy wavenumber kb = N/urms. For Fr` = 0.64 the maximum of N/urms

31



 0

 2

 4

 6

 8

 10

 0.01  0.1  1

ν
+ e

k
+
, kh

+
, kv

+

(a) Kraichnan
spherical

horizontal
vertical

 0

 2

 4

 6

 8

 10

 0.01  0.1  1

ν
+ e

k
+
, kh

+
, kv

+

(b) Kraichnan
spherical

horizontal
vertical

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.01  0.1  1

T
+ k

k
+
 , k

+
h , k

+
v

(c)

spherical
horizontal

vertical
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.01  0.1  1

T
+ k

k
+
 , k

+
h , k

+
v

(d)

spherical
horizontal

vertical

Figure 2.4: Effective eddy viscosity for (a) the unstratified case and (b) corresponding
stratified case (runs UNST and F0.6, respectively), with kc = 40. Based on the time aver-
age over the maximum dissipation rates. The theoretical eddy viscosity for the Kraichnan
model (Lesieur & Rogallo, 1989) is given by the solid line. Here, ν+

e stands for νe/ν, νhe /ν,
and νve/ν; and k+ = k/kc, k

+
h = kh/kc, k

+
v = kv/kc in all cases. Panels (c) and (d) show

the corresponding SGS energy transfer spectra for the unstratified and stratified cases,
respectively. Values in (c) and (d) are normalized by the corresponding absolute values of
T sk (kc) for the non-stratified and stratified cases. The solid black line indicates the value
of zero.
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for 15 ≤ t ≤ 20 is about 6.5. If we normalize this value by using the test cutoff kc in
figure 2.4, which is 40, it gives kb/kc = 0.16. By contrast, the Ozmidov wavenumber has
ko/kc ≈ 1. As seen in figures 2.4(b,d), there is a wide plateau in the horizontal direction
for 0.05 . k+

h . 0.8, which illustrates a non-local horizontal energy transfer between scales
larger than the Ozmidov scale, including the buoyancy scale, and those smaller than the
Ozmidov scale. It is noteworthy that the spherical SGS energy transfer in the stratified
case is smaller than that of the non-stratified case at the cutoff kc = 40, i.e. the local
energy transfer, by a factor of around 2.

Consider the theoretical Kraichnan model, which is also shown in figures 2.4(a,b). This
model has been calculated by assuming an infinite inertial subrange (Domaradzki et al.,
1993; Métais & Lesieur, 1992) and is widely used (Lesieur & Rogallo, 1989; Briscolini &
Santangelo, 1994; Cerutti et al., 2000; Carnevale et al., 2001). It has two distinct parts: a
constant plateau for k � kc and a cusp near the cutoff kc. By contrast, the effective eddy
viscosity computed here is from DNS with a relatively short inertial subrange. Therefore,
we do not expect to measure a plateau with the same amplitude as in Kraichnan’s model.
Batchelor et al. (1992) applied a ‘zero’ plateau, while retaining the cusp parameters of the
Kraichnan model, to LES of homogeneous turbulence generated by buoyancy. They found
that this modification increases the accuracy of the mean-square velocity fluctuations in
their simulations (Batchelor et al., 1992). The long-dashed curve in figure 2.4(a) shows
the measured spherical eddy viscosity. Domaradzki et al. (1987, 1993) have measured the
eddy viscosity for a case of non-stratified decaying turbulence; our measured unstratified
spherical eddy viscosity is very similar to theirs.

Effects of different Reynolds numbers

Two simulations with the same initial Froude number Fr` = 0.64 but with different initial
Reynolds numbers Re` = 800 and 6400 have been considered to show the effects of changing
Reynolds numbers on the effective eddy viscosity. Since the Kolmogorov wavenumber for
the lower Reynolds number case is kd = 42, we have applied the test cutoff wavenumber
kc = 20 in both high and low-resolution cases to calculate the effective eddy viscosity.

Figure 2.5 shows the spherical and horizontal effective eddy viscosities normalized by
their corresponding molecular viscosities in (a,b); and normalized by just the molecular
viscosity of case Re` = 6400 in (c,d). According to figure 2.5(a), the spherical eddy
viscosity of case Re` = 800 displays an almost zero plateau for k � kc and a cusp near
kc. The effective eddy viscosity is much smaller than its corresponding molecular viscosity
for k, kh < kc. In the Re` = 6400 case, there is a more significant plateau, and the
eddy viscosity in the cusp is much larger than its corresponding molecular viscosity (i.e.
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ν+
e > 1). These two different behaviours can be explained by the critical role of the

buoyancy Reynolds number if stratified turbulence is to be ensured. The maximum value
of Reb in the Re` = 800 case is about 0.98 and the horizontal length-scale is almost constant
versus time (figure 2.3a), suggesting little if any stratified turbulence . Hence, the values
of effective eddy viscosity are almost zero even at k+ ≈ 0.7.

The horizontal eddy viscosity for case Re` = 6400 is dramatically affected by the
occurrence of stratified turbulence. The shape of the eddy viscosity shows a large non-
local horizontal eddy viscosity for kh � kc, and a sharp cusp nearby kc (figure 2.5b).
The horizontal eddy viscosity for the case Re` = 800 is correspondingly very weak and
very similar to its spherical eddy viscosity. Figures 2.5(c,d), illustrate the spherical and
horizontal eddy viscosities in both cases which are normalized by the molecular viscosity
of the case Re` = 6400. It is found that increasing the Reynolds number increases the non-
local horizontal eddy viscosity for kh � kc and decreases the cusp value near kc (figures
2.5c,d).

Effects of different Froude numbers

In this section, we study the effects of various stratifications on the effective eddy viscosity
when the initial Reynolds number is Re` = 6400 and kc = 40. Two cases – one with an
initial Froude number of 0.64 and the other with one of 0.32 – have been considered. The
horizontal eddy viscosity for case Fr` = 0.32 is clearly larger than that of case Fr` = 0.64
when k+

h . 0.7 (figure 2.6b). In other words, there is an enhanced transfer of energy
directly from large to small horizontal scales when the stratification is increased. The local
energy transfer near the cutoff kc, however, is less dependent on Fr`; the horizontal eddy
viscosity of case Fr` = 0.64 is slightly larger than that of case Fr` = 0.32 at the cusp.
By contrast, the effect of changing Fr` on the spherical and vertical eddy viscosities is
relatively minor (figures 2.6a,c).

Effects of changing the cutoff wavenumbers

To study the effects of the cutoff wavenumber kc on the effective eddy viscosity, the case
with Re` = 6400 and Fr` = 0.64 has been considered with four different cutoffs kc = 10,
20, 40, 80 (figure 2.7). As already mentioned, the Ozmidov wavenumber ko ≈ 35, so kc
ranges from smaller to larger than ko.

Following figure 2.7(a) towards 2.7(d) shows that by increasing the value of the test
cutoff kc, the horizontal eddy viscosity changes its shape by dramatically decreasing its
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non-local (kh � kc) and cusp (kh ≈ kc) values. This trend means that by increasing the
test cutoff kc at fixed Re`, non-local and local horizontal eddy viscosity (energy exchange)
decreases, with local energy transfer dominating non-local at large kc. Similar behaviour
was observed by Bartello et al. (1996) in rotating stratified turbulence. When the cutoff
kc decreases toward the initial large scales, the horizontal eddy viscosity increases due to
enhanced energy transfer between energetic horizontal motions and modes with kh > kc
(i.e. non-local horizontal energy transfer due to the elongated triads mechanism). However,
when the cutoff kc moves toward the dissipation range, modes with kh > kc exchange less
energy with energetic initial horizontal scales and more with modes with kh . kc (i.e. the
local triad mechanism). Therefore, local energy transfer dominates the non-local horizontal
transfer for increased kc (Kraichnan, 1976; Bartello et al., 1996).

According to figure 2.1(d), kc = 80 is in the dissipation range; thus, the measured eddy
viscosities using this cutoff are on the order of the molecular viscosity or less. As seen in
figure 2.7(d), at the cutoff point (i.e. k+ = 1), the value of Kraichnan’s model is less than
that of the molecular viscosity (i.e. ν+

e . 1). This finding demonstrates that the cutoff
value has been chosen inside the dissipation range in which the Kraichnan model is not
valid. Furthermore, when k+ & 0.1, the horizontal, vertical, and spherical eddy viscosities
of stratified turbulence overlap fairly well in figure 2.7(d), suggesting relative isotropy in
the dissipation range in this case.

It is also interesting to consider the potential self-similarity of the effective eddy vis-
cosity computed with different cutoffs kc. Spherical, horizontal, and vertical effective eddy
viscosities computed with four different test cutoff kc are shown in figure 2.8. For a bet-
ter evaluation of self-similarity, the vertical axes are normalized (Métais & Lesieur, 1992;
Pope, 2000) by [E(kc)/kc]

1/2. Significant changes in the structure of the horizontal eddy
viscosity (figure 2.8b) demonstrate the absence of a self-similar inertial subrange when
the cutoff kc is applied in the horizontal direction. This non-similarity in the horizontal
direction make sense because self-similarity is expected mainly when local energy trans-
fer dominates (i.e. the similarity cascade Kraichnan, 1967). By contrast, the vertical and
spherical eddy viscosities show some degrees of self-similarity in the inertial subrange when
k+, k+

v & 0.1 for kc ≥ 20, especially for kc & ko which is ≈ 35 (figure 2.8a,c).

2.5 Conclusions

Decaying stratified and non-stratified turbulence has been analyzed to measure the spher-
ical, horizontal, and vertical eddy viscosities in DNS results. As seen in previous studies,

37



 0

 10

 20

 30

 40

 50

 0.01  0.1  1

ν
+ e

k
+
, kh

+
, kv

+

(a) Kraichnan
spherical

horizontal
vertical

 0

 10

 20

 30

 40

 50

 0.01  0.1  1

ν
+ e

k
+
, kh

+
, kv

+

(b) Kraichnan
spherical

horizontal
vertical

 0

 2

 4

 6

 8

 10

 0.01  0.1  1

ν
+ e

k
+
, kh

+
, kv

+

(c) Kraichnan
spherical

horizontal
vertical

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01  0.1  1

ν
+ e

k
+
, kh

+
, kv

+

(d) Kraichnan
spherical

horizontal
vertical

Figure 2.7: Effective eddy viscosities F0.6 computed with different cutoff wavenumber
kc = (a) 10, (b) 20, (c) 40, and (d) 80. The solid red line: the Kraichnan model (Lesieur
& Rogallo, 1989). The scales of the vertical axes varies in panels (c) and (d) from (a,b).
The solid black line indicates the value of zero.

38



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0.01  0.1  1

ν
e 

[E
(k

c)
/k

c]
-1

/2

k
+

(a) kc=10
kc=20
kc=40
kc=80

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0.01  0.1  1

ν
eh  [E

(k
c)

/k
c]

-1
/2

kh
+

(b) kc=10
kc=20
kc=40
kc=80

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0.01  0.1  1

ν
ev  [E

(k
c)

/k
c]

-1
/2

kv
+

(c) kc=10
kc=20
kc=40
kc=80

Figure 2.8: (a) Spherical, (b) horizontal, and (c) vertical effective eddy viscosity F0.6
using different cutoff wavenumbers kc. Eddy viscosities are normalized (Métais & Lesieur,
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stratification decreases the total dissipation rate, and the time of peak dissipation is post-
poned. Furthermore, the energy spectrum steepens due to enhanced viscous effects when
stratification increases or the Reynolds number decreases, due to the reduction of the
buoyancy Reynolds number.

When kc = 40, the spherical, horizontal, and vertical eddy viscosities overlap fairly well
in the non-stratified case when k+ & 0.1 (i.e. small scales), but since the initial motions are
anisotropic, there are clear differences between these eddy viscosities when k+ . 0.1. In
the non-stratified case, the non-local energy transfer in the horizontal or vertical directions
may be interpreted as a local energy transfer in the spherical direction because of the
Kolmogorov cascade. The effective eddy viscosities in stratified turbulence appear very
different. When the cutoff is around the Ozmidov wavenumber, the horizontal and vertical
eddy viscosities are quite different from one another. Furthermore, the horizontal SGS
energy transfer T s,hk at k+

h � 1 is around 20% of the local horizontal SGS energy transfer
at k+ = 1. Meanwhile, T sk at k+ = 1 for the stratified case is two times smaller than that
of the non-stratified case. These behaviours show an almost constant plateau in horizontal
energy transfer for kh � kc, and a decrease in local energy transfer near kc, in the presence
of strong stratification. Positive values of the horizontal eddy viscosities demonstrate a
forward energy cascade from large to small horizontal scales in stratified turbulence, as
seen in other studies (Riley & de Bruyn Kops, 2003; Waite & Bartello, 2004; Lindborg,
2006; Brethouwer et al., 2007; Riley & Lindborg, 2008; Waite, 2011; Almalkie & de Bruyn
Kops, 2012; Waite, 2014).

These results are consistent with the findings of Augier et al. (2012) in which a colum-
nar vortex pair first transforms into layered structures at large horizontal scales. We
claim that the large positive vertical eddy viscosity of stratified turbulence at large verti-
cal scales (i.e. k+

v . 0.02) shows a non-local energy transfer from large to small vertical
scales. Moreover, we have shown that for stratified turbulence, there is energy transfer
directly from large to small horizontal scales in the range of large vertical wavenumbers,
i.e. non-local in the horizontal direction but local in the spherical direction. This finding is
reminiscent of the second stage of the vortex breakdown discussed by Augier et al. (2012),
in which secondary Kelvin-Helmholtz instabilities are generated and ultimately transition
into small-scale turbulence below the buoyancy scale. Our results show that energy may
transfer directly to horizontal scales that are even smaller than the buoyancy scale. Further
studies with a wider scale separation between the initial, buoyancy, and cutoff wavenum-
bers are needed to investigate the details of direct non-local horizontal energy transfer
between the (large) energetic scales with wavenumbers below kc, and small-scale motions
with wavenumbers above kc. However, this large separation would requires a high Re` and
Reb.
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Changing the cutoff wavenumber kc has a considerable effect on the shapes and values
of effective eddy viscosities. When the cutoff is near the scale of the initial conditions,
the values of measured horizontal eddy viscosity shows a non-local transfer for kh � kc.
However, by moving the cutoff kc towards the Kolmogorov scale, the effective eddy viscosity
decreases dramatically. This behaviour demonstrates a decrease in the non-local horizontal
energy transfer by increasing the value of test cutoff kc into the dissipation range, as
expected.

We have confirmed that stratification modifies the effective eddy viscosity qualitatively.
A stratified inertial subrange that clearly includes scales above and below the Ozmidov
scale requires very high Reynolds number. Such an inertial subrange is difficult to obtain
with a DNS approach. By contrast, LES of stratified turbulence, in which the Ozmidov
scale is not resolved, is seriously affected by anisotropic features. Kraichnan’s theoretical
model is based on the assumption that local energy transfer, near the cutoff kc, dominates
non-local energy transfer, at k � kc. This idea was also confirmed by Domaradzki et al.
(1993) in DNS results of non-stratified isotropic turbulence. However, as shown here, the
presence of stratification increases the non-local horizontal energy transfer for kh � kc,
between large energetic and SGS horizontal motions, which is significant. Therefore, an
isotropic SGS model such as the Kraichnan model (with the infinite inertial subrange)
does not seem to be a proper approach for LES of stratified turbulence. For example, in a
recent paper by Schaefer-Rolffs & Becker (2013) about large-scale atmospheric dynamics,
where stratification is important, a dynamic Smagorinsky model has been applied just to
the horizontal direction. Our future work will include investigations on how to improve
current SGS models to consider the effects of anisotropy and non-locality and hence the
effects of stratification in the horizontal direction.
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Chapter 3

Buoyancy scale effects in large eddy
simulations of stratified turbulence

In this chapter LES of forced stratified turbulence using two common SGS models, the
Kraichnan and Smagorinsky models, are studied. It is shown that if the grid spacing ∆ is
fine enough, the horizontal wavenumber energy spectrum presents an approximately −5/3
slope, along with a bump around the buoyancy wavenumber kb. Our results also suggest a
critical value for ∆, below which the dynamics of stratified turbulence are fully captured.
This criterion depends on the adopted SGS model and resolving the buoyancy lengthscale
Lb.

This chapter is based on the published paper, Khani S. and M. L. Waite. Buoyancy scale
effects in large-eddy simulations of stratified turbulence. J. Fluid Mech. 754: 75-97 2014,
c© 2014 Cambridge University Press. Reprinted with permission.
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3.1 Introduction

Stratified turbulence is characterized by very large Reynolds number Re = urmslh/ν and
sufficiently small horizontal Froude number Frh = urms/Nlh, such that the buoyancy
Reynolds number

Reb = Re Fr2
h, (3.1)

is also high (Brethouwer et al., 2007). Here, urms and lh are the root-mean-square velocity
and horizontal length scale, respectively; ν is the molecular viscosity and N is the buoyancy
frequency. According to Taylor’s hypothesis, lh ∼ (urms)

3/ε, and so equation (3.1) yields

Reb ∼
ε

νN2
, (3.2)

where ε is the kinetic energy dissipation rate (the use of Taylor’s hypothesis for stratified
turbulence is common, but may be questionable; see e.g. Hebert & de Bruyn Kops, 2006b;
Khani & Waite, 2013). The Ozmidov scale (e.g. Lumely, 1964)

Lo = 2π
( ε

N3

)1/2

, (3.3)

is the smallest scale for which buoyancy effects are important. (We include the 2π factor
in (3.3) and for other characteristic length scales because it is often the corresponding
wavenumber ko = 2π/Lo that appears in applications; e.g. Waite, 2011). Based on the
stratified turbulence hypothesis (Lindborg, 2006), the Ozmidov scale divides the inertial
subrange into two parts: an anisotropic part, from large scales down to the Ozmidov scale;

and an isotropic part, for smaller scales down to the Kolmogorov scale η = 2π
(
ν3/ε

)1/4
.

The dynamical picture of stratified turbulence is described by flat horizontal motions and
suppressed the vertical velocity, in which the vertical structure is characterized by layers
of thickness

Lb = 2π
urms
N

, (3.4)

which is named the buoyancy scale (e.g. Riley & de Bruyn Kops, 2003; Waite & Bartello,
2004; Lindborg, 2006). Previous work (e.g. Waite & Bartello, 2004; Lindborg, 2006;
Brethouwer et al., 2007; Waite, 2011, 2014) shows that resolution of Lb is necessary to
capture the stratified turbulence cascade.

Direct numerical simulation (DNS) of stratified turbulence is very challenging because
the ratio of the Ozmidov to Kolmogorov scales depends on the buoyancy Reynolds number
as follows

Lo
η

=
( ε

νN2

)3/4

∼ Re
3/4
b . (3.5)
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Since stratified turbulence has Reb � 1, and DNS requires resolution of the Kolmogorov
scale, it is necessary that the grid spacing be much smaller than the Ozmidov scale. An
alternative approach is large-eddy simulation (LES), for which large scales are resolved
but subgrid scale (SGS) motions, including the small-scale end of the inertial subrange,
are modelled. Owing to the computational costs, we are interested in performing LES of
stratified turbulence, in which the grid spacing ∆ may be larger than the Ozmidov scale
Lo. However, previous numerical studies with hyperviscosity suggest that resolution of the
buoyancy scale may be important (e.g. Waite & Bartello, 2004; Lindborg, 2006; Waite,
2011). In this paper, we investigate the performance of two common LES schemes, the
Smagorinsky (1963) and Kraichnan (1976) models, in simulations of stratified turbulence.
For both schemes, we determine the extent to which the buoyancy scale needs to be resolved
for the LES to capture the dynamics of stratified turbulence properly.

In §3.2, we review the literature of stratified turbulence, the LES approach, and the
classical SGS models. The methodology including numerical approach outlined in §3.3.
Section 3.4 includes results and their interpretations. Concluding remarks are given in
§3.5.

3.2 Background

3.2.1 Stratified turbulence

Most previous numerical studies in stratified turbulence are DNS and hyperviscosity simu-
lations. Hyperviscosity simulations are performed in the same spirit as DNS: the viscosity
and diffusion operators are modified to extend the inertial range, but the associated dis-
sipation scale is resolved (e.g. Waite & Bartello, 2004). Recent advances in the study
of stratified turbulence show that a layerwise structure emerges, in which the horizontal
lengthscale is much larger than the vertical one (e.g. Billant & Chomaz, 2001; Riley & de
Bruyn Kops, 2003; Hebert & de Bruyn Kops, 2006b; Brethouwer et al., 2007). In addi-
tion, there is a forward energy transfer mechanism from large to small horizontal scales
(e.g. Waite & Bartello, 2004; Lindborg, 2006; Brethouwer et al., 2007). For scales larger
than Lo, different kinetic energy spectral slopes have been proposed in the horizontal and
vertical directions. Lindborg (2006) argued that −5/3 in kh and −3 in kv are expected,
where kh =

√
k2
x + k2

y is the horizontal wavenumber, kv = |kz| is the vertical wavenumber,
and k = (kx, ky, kz) is the three-dimensional wavevector. When Lb is not resolved in the
vertical direction, a steeper horizontal spectrum, with a slope as large as −5, results (e.g.
Waite & Bartello, 2004). Even when Lb is resolved, deviations from the −5/3 slope have
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been reported; e.g. Waite (2011) and Kimura & Herring (2012) found slopes closer to −2.
Moreover, a priori testing shows that the horizontal and vertical effective eddy viscosi-
ties are very different when the test cutoff wavenumber kc is smaller than ko (Khani &
Waite, 2013). Finally, a non-local horizontal energy transfer from large horizontal scale to
the buoyancy scale, associated with Kelvin-Helmholtz (KH) instabilities, has been found
in forced stratified turbulence (Waite, 2011, 2014), the breakdown of columnar vortices
(Augier et al., 2012), and decaying stratified turbulence (Khani & Waite, 2013). All of
the results described above have been found when DNS or hyperviscosity simulation is the
adopted numerical approach. Despite the emphasis on hyperviscosity and DNS, some LES
studies have been investigated (e.g. Siegel & Domaradzki, 1994; Carnevale et al., 2001;
Smith & Waleffe , 2002; Remmler & Hickel, 2012; Paoli et al., 2013). We are interested
in studying LES of stratified turbulence and determining the dependence of the results on
the grid spacing ∆.

3.2.2 Large-eddy simulations

LES is based on the filtered equations of motion, where the filter applied to a variable q is
given by (e.g. Leonard, 1974; Pope, 2000)

q̄(x, t) =

∫
D

G(x− x́,x)q(x́, t)dx́, (3.6)

where q̄(x, t) is the filtered quantity, G is a filtering function, which generally depends on x
and the distance between two-correlation points, i.e. r = x−x́, andD is the spatial domain.
In practice, it is customary to work with homogeneous and isotropic filter functions that
are independent of x and r, and just depend on r = |r|. There are a few applicable
homogeneous filter functions (see e.g. Pope, 2000). For the spectral transform numerical
method, it is convenient to work with the sharp spectral filter (as applied in e.g. Germano
et al., 1991; Piomelli et al., 1991; Moin et al., 1991; Kang et al., 2003), which is defined as
follows

Ĝ(k) =

{
1 : |k| ≤ kc

0 : |k| > kc
, (3.7)

where Ĝ is the Fourier coefficient of G, k is the wavenumber vector, and kc is the cutoff
wavenumber. By applying the filter function Ĝ to variable q, we get

q̄(x, t) =
∑
k

q̂(k, t)Ĝ(k)eik·x =
∑
|k|≤kc

q̂(k, t)eik·x, (3.8)
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where Fourier modes with wavenumbers smaller than kc are maintained and the larger
modes are killed. The LES grid spacing ∆ and filter cutoff kc are related by

∆ ≡ π

kc
. (3.9)

Physical space

Applying the sharp spectral filter to the Navier-Stokes equations under the Boussinesq
approximation, which is non-dimensionalized with a velocity scale u and length scale `,
yield (following the notation of Pope, 2000)

∂ūi
∂t

+
∂

∂xj
(ūiūj) = − ∂p̄

∂xi
− 1

Fr`
2 ρ̄ez −

∂τ rij
∂xj

+ f̄i, (3.10)

∂ūj
∂xj

= 0, (3.11)

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ūj)− w̄ = −∂hj

∂xj
, (3.12)

where u, p, ρ, and f are the velocity, perturbation pressure, perturbation density, and
forcing fields, respectively; and Fr` = u/N` is the Froude number. Since we assume
large Reynolds numbers and that ∆ is much larger than the Kolmogorov scale, viscous
dissipation and diffusion are neglected. The subgrid momentum flux τ and the subgrid
density flux h are given as follows

τij = uiuj − ūiūj, (3.13)

hj = ujρ− ūj ρ̄. (3.14)

The deviatoric part of τ is defined as

τ rij = τij −
1

3
τrrδij, (3.15)

where the modified pressure p̄ absorbs the isotropic part of the subgrid momentum flux.
The filtered momentum and energy equations (3.10,3.12) are not closed because τ r and h
are not known in terms of the filtered velocity and density fields. We need to model these
unknown fluxes using the SGS models.
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Wavenumber space

Similar to physical space, we could work in Fourier space to perform LES of stratified
turbulence. Applying the sharp spectral filter Ĝ(k) to the Navier-Stokes equations under
the Boussinesq approximation in Fourier space, yields

∂

∂t
ˆ̄uj(k, t) +

1

Fr`
2

ˆ̄ρ(k, t)ez = −ikmPjr(k)
∑

p+q=k,
|k|<kc

ûr(p, t)ûm(q, t) + ˆ̄fj, (3.16)

kj ˆ̄uj(k, t) = 0, (3.17)

∂

∂t
ˆ̄ρ(k, t)− ˆ̄w(k, t) = −ikm

∑
p+q=k,
|k|<kc

ûm(p, t)ρ̂(q, t), (3.18)

where Pij = δij − kikj/k2 is the projection tensor, and k2 = k · k. Like in physical space,
non-linear terms in the right-hand side of (3.16,3.18), i.e.

Fj(k, t) = −ikmPjr(k)
∑

p+q=k,
|k|<kc

ûr(p, t)ûm(q, t), (3.19)

J(k, t) = −ikm
∑

p+q=k,
|k|<kc

ûm(p, t)ρ̂(q, t), (3.20)

are not known in terms of the filtered Fourier coefficients ˆ̄u and ˆ̄ρ. Based on the definition
of the cutoff wavenumber kc, we could divide (3.19) into a filtered term F̄ and a subgrid
term F s, such that

F̄j(k, t) = −ikmPjr(k)
∑

p+q=k,
|k|<kc

ˆ̄ur(p, t)ˆ̄um(q, t), (3.21)

F s
j (k, t) = −ikmPjr(k)

∑
p+q=k,

|k|<kc, max{|p|,|q|}>kc

ûr(p, t)ûm(q, t), (3.22)

in which F s is unknown and needs to be modelled using SGS models. In a similar way,
equation (3.20) could be divided into the filtered term J̄ and the subgrid term Js, for which
the latter is unknown and should be modelled to close the problem.
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3.2.3 SGS models

Most SGS models are based on the eddy viscosity assumption, which is based on the
turbulent-viscosity hypothesis (e.g. Pope, 2000). In this point of view, the nonlinear subgrid
terms are related to the filtered physical variables or the filtered Fourier coefficients through
an eddy viscosity term in physical or wavenumber space, respectively. We consider two
SGS models here: the Smagorinsky (1963) model, which is local in physical space and
damps resolved regions with strong rate of strain; and the Kraichnan (1976) model, which
is spectrally local and damps mainly the smallest resolved length scales.

The Smagorinsky model (physical space)

The deviatoric part of the subgrid flux τ r is related to the filtered rate of strain s̄ij =
1/2(∂ūi/∂xj + ∂ūj/∂xi) using the eddy viscosity coefficient νr, as

τ rij(x, t) = −2νr(x, t)s̄ij(x, t). (3.23)

Similarly, the subgrid density flux h is modelled by

hj(x, t) = − 2

Prt
νr(x, t)

∂

∂xj
ρ̄(x, t), (3.24)

where Prt is the turbulent Prandtl number. Smagorinsky (1963) suggested a model for
eddy viscosity coefficient for which νr is related to the grid spacing ∆ and the characteristic
filtered rate of strain S̄ = (2s̄ij s̄ij)

1/2, through the relation

νr(x, t) = (cs∆)2S̄(x, t), (3.25)

where cs is the Smagorinsky coefficient. Lilly (1967) has shown that (3.25) is an applicable
model for LES of three dimensional turbulence. An estimate of cs ≈ 0.17 was made (Lilly,
1967; Pope, 2000; Meneveau &, Katz 2000) for a Kolmogorov isotropic inertial subrange
with a sharp spectral filter.

The Kraichnan model (wavenumber space)

Kraichnan (1976) suggested the spectral eddy viscosity idea to model the nonlinear subgrid
term F s as (using the notation of Pope, 2000)

F s
j (k, t) = −νe(k|kc)k2 ˆ̄uj(k, t), (3.26)

48



where νe(k|kc) is the spectral eddy viscosity function. Similarly, the subgrid term Js is
related to the filtered Fourier coefficient ˆ̄ρ as follows

Js(k, t) = − 1

Prt
νe(k|kc)k2 ˆ̄ρ(k, t). (3.27)

Lesieur & Rogallo (1989) proposed the following equation for νe(k|kc)

νe(k|kc) = (0.15 + 5e−3.03kc/k)

√
E(kc, t)

kc
, (3.28)

where E(kc, t) is the kinetic energy spectrum at the cutoff wavenumber kc. It is important
to note that for k � kc,

νe(k|kc) ∼ 0.15

√
E(kc, t)

kc
. (3.29)

Hence, the eddy viscosity coefficient νe(k|kc) is independent of k for small wavenumbers.
By contrast with the Smagorinsky approach, the Kraichnan model has the advantage
that it preferentially damps small length scales; however, it is only practical for idealized
simulations with triply periodic spectral codes.

The turbulent Prandtl number Prt is usually assumed to be constant (e.g. Lesieur,
1990; Batchelor et al., 1992; Siegel & Domaradzki, 1994). This assumption along with the
assumption of constant buoyancy frequency N (e.g. Riley & de Bruyn Kops, 2003; Waite
& Bartello, 2004; Brethouwer et al., 2007; Waite, 2011; Khani & Waite, 2013; Waite, 2014)
will also be employed in current study.

3.3 Methodology

LES of forced stratified turbulence is studied in this paper. Idealized simulations of
vortically-forced stratified turbulence in a cubic domain with length L = 2π is consid-
ered. Random forcing of barotropic vortical modes in the wavenumber band |kh − kf | ≤ 1
is applied, where kf is the forcing wavenumber (following e.g. Herring & Métais, 1989;
Waite & Bartello, 2004; Waite, 2011). The forcing is AR(1) red noise, uncorrelated in k,
and with a correlation time scale of 10 timesteps (as in e.g. Waite & Bartello, 2004). The
forcing amplitude is a quadratic function of the horizontal wavenumber kh centred in the
forcing band. The forcing amplitude is the same for all simulations, apart from a factor
of ∆t−1/2, which leads to an approximately fixed average forcing power in all cases. The
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spectral transform method with cubic truncation is applied for discretization in space. The
two-thirds rule (e.g. Durran, 2010) is applied to eliminate aliasing errors, meaning that the
cutoff wavenumber kc is

kc = π
2n

3L
, (3.30)

where n is the number of grid points in the x, y, and z directions. We get the effective
resolution ∆ = 1.5L/n by using (3.30) in (3.9). The third-order Adams-Bashforth scheme
is employed for time stepping.

We compare our LES results with those obtained using hyperviscosity and hyperdiffu-
sivity, which are commonly employed to mimic large Reynolds number flows in place of
traditional LES schemes. These dissipation operators are of forms

Du = νm(−1)m+1∇2m, (3.31)

Db = κm(−1)m+1∇2m, (3.32)

respectively, where νm and κm are the hyperviscosity and hyperdiffusivity coefficients (see
e.g. Waite & Bartello, 2004). We set νm = κm, and use m = 4 (as in e.g. Bartello et al.,
1996; Waite & Bartello, 2004; Waite, 2011). The modified Kolmogorov wavenumber in the
hyperviscosity case is as follows

kd =

(
ε

ν3
4

)1/22

. (3.33)

For a given resolution, the hyperviscosity coefficient is chosen to be as small as possible
while still adequately resolving kd. The implicit trapezoidal method is applied for time
stepping of dissipation term in the hyperviscosity and hyperdiffusivity simulations.

Following previous studies of forced stratified turbulence (e.g. Waite & Bartello, 2004;
Waite, 2011) we spin up our simulations with relatively low resolution (n = 256) and
hyperviscosity from time 0 to 300 (corresponding to around 30 forcing time scales; see
below), and then use these low-resolution results as initial conditions for higher-resolution
LES from time 300 to 450. Resolutions from n = 256 to n = 768 are considered.

The buoyancy frequencyN ranges from 2 to 6, which are chosen to be strongly stratified;
indeed, the corresponding Froude numbers ranges from 0.0024 to 0.014, as will be presented
in the next section. Similar ranges for Froude numbers have been considered in previous
numerical studies of stratified turbulence (e.g. Riley & de Bruyn Kops, 2003; Hebert &
de Bruyn Kops, 2006b,a; Khani & Waite, 2013). These Froude numbers are a little larger
than typical values of the atmospheric mesoscale (∼ 10−4; e.g. Brune & Becker, 2013) but
meet the criteria for strongly stratified turbulence (Lindborg, 2006). The corresponding
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Ozmidov scales are not resolved in these experiments; however, previous hyperviscosity
simulations have shown and argued that it is sufficient to resolve the buoyancy scale (e.g.
Waite & Bartello, 2004; Lindborg, 2006; Brethouwer et al., 2007). The forcing amplitude
gives a typical dissipation rate of 10−4 which, when combined with the forcing wavenumber
kf , gives a forcing time scale tf ∼ 10. We use

√
〈E(t)〉 in place of urms since the vertical

kinetic energy is much smaller than the horizontal. The turbulent Prandtl number Prt = 1
for LES and the forcing wavenumber kf = 3 are also considered in this study. Tables 3.1
and 3.2 show a list of parameters and averaged variables for hyperviscosity simulations and
LES, respectively.
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3.4 Results and discussion

3.4.1 Overview of simulations

Figure 3.1 shows time series of kinetic energy and dissipation rates for the hyperviscosity
simulations (a,b), the Smagorinsky LES (c,d), and the Kraichnan LES (e,f), when 0 ≤ t ≤
450. The simulations appear to have reached statistical stationarity for 375 ≤ t ≤ 450,
which is the time period for averaging of the results that follow. The time series of the
kinetic energy dissipation rates ε(t) exhibit a discontinuity at t = 300, due to the change in
resolution and SGS mechanism at this time. Interestingly, the Smagorinsky and Kraichnan
dissipation rates are similar, and are both close to the lower-resolution hyperviscosity case
(tables 3.1 and 3.2, where the angle brackets 〈·〉 denote for time averaging). We will
discuss this dependence on SGS scheme in §3.4.2. In addition, increasing the stratification
increases kinetic energy and urms (tables 3.1 and 3.2).

3.4.2 Energy spectra

In this section, we study effects of the grid spacing in different SGS models on the energy
and dissipation spectra. In figure 3.2, averaged total, horizontal, and vertical wavenumber
kinetic energy are shown for the highest-resolution simulations. Kinetic energy spectra
in terms of total, horizontal, and vertical wavenumbers k, kh, and kv are computed by
binning over wave vectors in the usual way (e.g. Waite & Bartello, 2004; Waite, 2011;
Kimura & Herring, 2012; Khani & Waite, 2013). Hyperviscosity simulations (i.e. figures
3.2a,b) have long tails for k, kh, kv & 100, showing the hyperviscous dissipation range. The
total wavenumber energy spectra are very similar to the vertical spectra except for the
peak around the forcing wavenumber kf , hence we will focus on 〈E(kh)〉 and 〈E(kv)〉.

The averaged vertical wavenumber spectra in all cases are peaked at kv ≈ 20 for N = 2
and kv ≈ 40 for N = 6, illustrating that the peak location changes with N . This behaviour
is consistent with previous results which show that the characteristic vertical wavenumber
is the buoyancy wavenumber kb = N/urms, provided it is not in the dissipation range (e.g.
Waite & Bartello, 2004; Waite, 2011, kb is denoted by arrows in figure 3.2). The averaged
vertical wavenumber spectrum is approximately flat up to the wavenumber in which the
spectrum is peaked (as also seen in e.g. Herring & Métais, 1989; Waite & Bartello, 2004),
beyond which it decays with a slope of around −2.4, −3.4, and −2.8 for the hyperviscosity
simulation, the Smagorinsky LES, and the Kraichnan LES, respectively, when N = 2.
Similarly, the vertical wavenumber spectrum decays with a slope of around −1.2, −3.8,
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Figure 3.1: Time series of kinetic energy (left) and the kinetic energy dissipation rate
(right) for (a,b) the hyperviscosity simulations, (c,d) the Smagorinsky LES, and (e,f) the
Kraichnan LES. The gray curves over 0 ≤ t ≤ 300 are the low resolution hyperviscosity
simulations with the corresponding buoyancy frequency N .
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Figure 3.2: The averaged total, horizontal, and vertical wavenumber energy spectra with
resolution n = 768 for (a,b) the hyperviscosity simulations, (c,d) the Smagorinsky LES,
and (e,f) the Kraichnan LES, for N = 2 (left) and N = 6 (right). Spectra are averaged
over 375 ≤ t ≤ 450. Arrows correspond to the buoyancy wavenumber kb and the forcing
wavenumber is k = 3. The black solid line segments show −5/3 and −3 slopes.
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and −2 for the hyperviscosity simulation, the Smagorinsky LES, and the Kraichnan LES,
respectively, when N = 6. We use the least-squares method to measure spectral slopes
over 40 ≤ kv ≤ 100.

The averaged horizontal wavenumber energy spectra are peaked around the forcing
wavenumber kf = 3. With hyperviscosity, the slope is around −1 for N = 2 and −2 for
N = 6 (over 10 ≤ kh ≤ 30 and 10 ≤ kh ≤ 50, respectively). For the same ranges of kh,
the spectral slopes in the Smagorinsky LES are approximately −1.5 for N = 2 and −4 for
N = 6 (figures 3.2c and d). Similarly, the Kraichnan LES gives slopes of −1.4 and −1.9
for N = 2 and N = 6, respectively (figures 3.2e and f). As a result, increased stratification
steepens the spectra in the hyperviscosity simulations and the LES. In addition, at fixed
resolution and N , different SGS models give different slopes; the Smagorinsky simulations
are consistently steeper than those using the Kraichnan model. Overall, hyperviscosity
and LES give slopes that are shallower than −5/3 for N = 2. For N = 6 however, slopes
are steeper than −5/3. In addition, the averaged horizontal wavenumber energy spectra
exhibit a bump at around the buoyancy wavenumber kb (see arrows in figure 3.2) except
for the Smagorinsky LES with N = 6 (figure 3.2d).

Figure 3.3 shows the horizontal and vertical wavenumber spectra of SGS energy transfer,
i.e. eddy dissipation spectra (see Appendices B and C), for the low- and high-resolution
Kraichnan and Smagorinsky LES at t = 450. Interestingly, for both SGS models, the
maximum dissipation happens at large horizontal and small vertical scales, which show an
anisotropic energy transfer from resolved scales towards SGS motions (similar trends are
seen in the stratified SGS energy transfer spectra in DNS of Khani & Waite, 2013). As a
result, although the Smagorinsky and Kraichnan eddy viscosities are defined isotropically,
the SGS energy transfer spectra inherit the anisotropy of the resolved motions. For both
high- and low-resolution cases, the Smagorinsky LES shows a larger peak in the horizontal
wavenumber SGS energy transfer spectra, implying that the Smagorinsky model is much
more dissipative than the Kraichnan model (figure 3.3). The same conclusions hold for
the vertical wavenumber SGS energy transfer spectra as well. Meanwhile, the Kraichnan
LES shows a cusp around kc in the vertical SGS energy spectra and the high-resolution
horizontal SGS spectra, implying that the Kraichnan model is more consistent with the
DNS of Khani & Waite (2013). In addition, the horizontal and vertical SGS energy transfer
spectra for the low-resolution Kraichnan case with N = 2 are remarkably similar to those of
the corresponding high-resolution Smagorinsky LES far from the cutoff wavenumber kc. As
a result, the non-local horizontal and vertical SGS energy transfers in the high-resolution
Smagorinsky LES are very similar to those of the low-resolution Kraichnan model.

To make a quantitative comparison of the SGS terms from the two LES approaches,
the effective spectral eddy viscosity of the Smagorinsky LES at t = 450 is shown in figure
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Figure 3.3: The horizontal and vertical wavenumber spectra of SGS energy transfer for the
Smagorinsky and Kraichnan LES at t = 450. Low- and high-resolution cases are shown
in panels (a) and (b), respectively. The spectra are multiplied by wavenumber in order to
preserve area on the log-linear axes.

3.4. We compute νr(k) by diving the absolute value of the spherical SGS energy transfer
Tr(k) of the Smagorinsky LES by 2k2E(k). There is a broad range of k/kc with a plateau
of almost constant νr(k), and no cusp is seen around k = kc. The effective spectral eddy
viscosity from the Smagorinsky model is quite different from actual effective eddy viscosity
measured in high-resolution DNS of stratified turbulence, in which a cusp around the
cutoff wavenumber kc is a dominant feature (Khani & Waite, 2013). For comparison, the
Kraichnan eddy viscosity νe(k) for the case with n = 256 and N = 2 is also shown in
figure 3.4; it exhibits a lower plateau and a large cusp, in better agreement with DNS
of Khani & Waite (2013). The plateau in the low-resolution Smagorinsky case is almost
three times larger than the Kraichnan plateau. Interestingly, the low-resolution Kraichnan
plateau is very close to the plateaus of the high-resolution Smagorinsky simulations. These
results are consistent with the energy and eddy dissipation spectra, which show that the
Smagorinsky model is much more dissipative than the Kraichnan model.

Figure 3.5 shows compensated horizontal energy spectra (in which the horizontal spec-

tra are normalized by k
−5/3
h 〈ε〉2/3) for the hyperviscosity simulations and LES when N = 2,

4, and 6. As in figure 3.2, arrows show the location of the buoyancy wavenumber kb.
In figure 3.5(a), the compensated horizontal wavenumber energy spectrum for the high-
resolution hyperviscosity case is almost constant for 6 . kh . 30, which is consistent with
an inertial subrange with a slope close to −5/3. A bump is visible at kh ≈ 30, which
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Kraichnan eddy viscosity νe for the low resolution case with N = 2. For computing eddy
viscosities, results at t = 450 are used; and the horizontal axis is normalized by the cutoff
wavenumber kc.

is around the buoyancy wavenumber kb. Similar bumps have been investigated in recent
hyperviscosity simulations and DNS (Laval et al., 2003; Waite, 2011; Augier et al., 2012;
Waite, 2014). A similar constant inertial subrange and bump at kh ∼ kb are also seen in
the other simulations in figure 3.5a except for the low-resolution Smagorinsky LES. In-
terestingly, the Smagorinsky spectrum with n = 768 looks very similar to the Kraichnan
spectrum with n = 256; the inertial range slope and amplitude, and the bump near kb,
are nearly identical. In other words, the low-resolution Kraichnan simulation reproduces
the higher-resolution Smagorinsky simulation, despite having a grid spacing three times as
coarse.

The results with higher stratification are similar. For N = 4 (figure 3.5b) an almost
flat inertial subrange over 6 . kh . 50 is seen for the high-resolution hyperviscosity case,
which is followed by a bump at around kh = 60 (very close to kb). Other simulations
in this panel, except the low-resolution hyperviscosity case (i.e. h2N4) and the middle-
resolution Smagorinsky case (i.e. S5N4), show a very short inertial subrange along with
a little bump at around kb. Once again, the high-resolution Smagorinsky spectrum looks
like the low-resolution Kraichnan up to kh ≈ 30. In figure 3.5(c), the high-resolution
hyperviscosity and Kraichnan cases with N = 6 show the constant inertial subrange at
6 . kh . 60 and a bump at kh ∼ kb. However, other simulations in this panel show
a very steep compensated spectrum. Like in figures 3.5(a,b), figure 3.5(c) demonstrates
that the low-resolution Kraichnan LES looks like the high-resolution Smagorinsky LES. In
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Figure 3.5: The averaged compensated horizontal energy spectra: (a) N = 2, (b) N = 4,
and (c) N = 6. Spectra are averaged over 375 ≤ t ≤ 450. Arrows correspond to the
buoyancy wavenumber kb and the forcing wavenumber is at k = 3.
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addition, the hyperviscous simulation is more dissipative than the Kraichnan LES at very
large wavenumbers (figure 3.5). At large wavenumbers, i.e. k & 100, the effective eddy
viscosity given by the hyperviscosity νmk

2m−2 is larger than νe, hence the hyperviscosity
simulation is more strongly damped at large k. As a result, the Kraichnan LES seems to
give more reasonable results compared with hyperviscosity at very large wavenumbers. In
addition, the potential energy spectra (not shown here) also show peaks and bumps around
kb in the vertical and horizontal wavenumber spectra, respectively.

3.4.3 KH instabilities and the Richardson number

Figure 3.6 shows the y−component of vorticity ω̄y = (∂ū/∂z − ∂w̄/∂x) on the x-z plane
at y = 0.25 and t = 450 for the high-resolution Kraichnan LES. Vortices are lengthened
in the horizontal direction and layered in the vertical. For the lower stratification (figure
3.6a), intermittent instabilities and KH billows are visible between the layers. Stronger
stratification (figure 3.6b) shows a more strongly layered structure with fewer regions of
KH instability. Figure 3.7 shows ω̄y for the high-resolution Smagorinsky LES. As in the
Kraichnan LES, the lower stratification (figure 3.7a) shows a layered vertical structures
with KH instabilities. No instabilities are visible in the more strongly stratified case (figure
3.7b). According to figures 3.6 and 3.7, increased stratification at fixed resolution and SGS
scheme inhibits KH instabilities, since the thinner layers in the more strongly stratified case
are more influenced by dissipation (Hebert & de Bruyn Kops, 2006a; Brethouwer et al.,
2007). In addition, KH instabilities are inhibited in the Smagorinsky simulation relative to
the Kraichnan and hyperviscosity cases at the same stratification and resolution, suggesting
that the Smagorinsky case is the most dissipative.

The above results suggest that there is a bump around kb in the horizontal wavenum-
ber energy spectrum only when KH instabilities are visible in the vorticity plots. This
hypothesis has been proposed in several studies (Laval et al., 2003; Waite, 2011; Augier
et al., 2012; Waite, 2014). To further investigate this relationship in LES and to inves-
tigate the influence of different SGS models, we consider the Richardson number in our
simulation. The Richardson number shows the competition between stratification, which
stabilizes flow, and the vertical shear of horizontal motions, which excites instabilities. The
local Richardson number is given as follows

Ri =
N2 − g

ρ0

∂ρ̄
∂z(

∂ū
∂z

)2
+
(
∂v̄
∂z

)2 , (3.34)

in which the numerator is the buoyancy frequency squared from the total (background plus
perturbation) density; and g and ρ0 are gravity and the reference density, respectively. The
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Figure 3.6: Vorticity field in y-direction, ω̄y, on the x-z plane at y = 0.25 and t = 450
for the high resolution Kraichnan LES: (a) N = 2, and (b) N = 6. Vorticity fields are
normalized by the corresponding buoyancy frequency N .
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Figure 3.7: Vorticity field in y-direction, ω̄y, on the x-z plane at y = 0.25 and t = 450
for the high resolution Smagorinsky LES: (a) N = 2, and (b) N = 6. Vorticity fields are
normalized by the corresponding buoyancy frequency N .
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classical necessary condition for instability Ri < 1/4 is strictly applicable only for parallel
shear flow, but is nevertheless commonly employed to diagnose regions of KH instabilities
in more complicated flows (e.g. Riley & de Bruyn Kops, 2003; Augier & Billant, 2011,
which considered decaying stratified turbulence and breakdown of vortex, respectively).
As a result, we consider the structure and distribution of Ri - with the understanding that
more points with Ri < 1/4 might suggest more regions with KH instabilities. Furthermore,
Ri < 0 implies overturning. The vorticity plot shows a large-scale layered structure with
intermittent smaller-scale structures (e.g. figure 3.7a). Small-scale vorticity structures
correspond to regions with small Ri, < 0.25 and in many cases < 0 (see the Ri field in figure
3.8), consistent with KH instabilities in different stages of evolution, as has been discussed
elsewhere (e.g. Riley & de Bruyn Kops, 2003). Figure 3.8 shows the local Richardson
number in x-z plane for the high-resolution Smagorinsky simulation with N = 2 (where
the vorticity plot for that is shown in figure 3.7a). We have shown only Ri values between
−1/4 to 1. Intermittent spots with red and light-blue colours correspond to regions with
Ri < 1/4, which show high shear between the layers. This figure shows that the small-scale
disturbances in the vorticity field, many of which resemble KH instabilities, are colocated
with regions of small Ri < 1/4, including many points with Ri < 0.

For an overview of the Richardson number in all simulations, figure 3.9 shows his-
tograms of Ri for the LES at t = 450. For clarity, only the range −10 ≤ Ri ≤ 30 is shown.
Figure 3.9 presents results for different resolutions, SGS models, and buoyancy frequencies.
Decreasing the resolution from n = 768 to 256 causes the histograms to drop off rapidly for
negative Ri and causes the peak around Ri = 0 to decrease. In addition, the Richardson
number histogram show a long positive tail. Figure 3.9 shows that at fixed resolution,
increased stratification reduces the numbers of points with negative Ri and decreases the
peak around Ri = 0, e.g. see the high-resolution Kraichnan case with N = 2 (the solid
green line) versus that with N = 6 (the solid brown line), or the high-resolution Smagorin-
sky case with N = 2 (the dashed green line) versus that with N = 6 (the dash dotted
blue line). Furthermore, in the low-resolution Kraichnan case with N = 6 (i.e. K2N6),
overturning is completely suppressed because there are no points with negative Ri. As a
result, by decreasing the resolution or increasing the stratification, the number of points
with negative Ri decreases, and regions of small-scale instability and overturning are elim-
inated (e.g. figure 3.7b). In addition, at fixed resolution and buoyancy frequency, different
SGS models result in different Richardson number histograms. For example, the high-
resolution Kraichnan case with N = 2 has a larger numbers of negative Ri and a smaller
numbers of positive Ri compared with the high-resolution Smagorinsky case with N = 2,
implying that the latter case is more stabilizing than the former one. Similar behaviours
are seen in low-resolution cases with N = 2 or high-resolution cases with N = 6. It is
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Figure 3.8: The local Richardson number Ri field on the x-z plane at y = 0.25 and t = 450
for the Smagorinsky case with N = 2 and n = 768. The Richardson number values are
restricted between −0.25 and 1.
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−10 ≤ Ri ≤ 30 is shown. Histograms are normalized by bin size to give probability
distributions, and are computed with 1000 bins over −50 < Ri < 200 (∆Ri = 0.25).

interesting to mention that the Ri histograms of the low-resolution Kraichnan case with
N = 2 and n = 256 are very similar to the higher-resolution Smagorinsky cases with N = 2
and n = 512. Similarly, the Ri histogram of Kraichnan cases with N = 6 and n = 256 are
very close to that of Smagorinsky with N = 6 and n = 768. Overall, the Smagorinsky LES
seems much more dissipative than the Kraichnan model, since small-scale instabilities and
overturning is suppressed significantly.

Figure 3.10 shows the fraction of the domain with Ri < 0 as a function of kc/kb
for the Smagorinsky and Kraichnan cases. Increased kc/kb at fixed resolution leads to
more grid points with negative Richardson numbers (similar trends are also seen for the
number of grid points with 0 < Ri < 0.25; not shown). As a result, increased resolution at
fixed stratification or decreased stratification at fixed resolution generates more overturning
regions and small-scale instabilities. Even at fixed kc/kb, the overturning fractions depends
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Figure 3.10: The fraction of the domain with Ri < 0 as a function of the ratio kc/kb for
the Smagorinsky and Kraichnan LES at different resolutions.

on resolution, with higher resolution yielding smaller fractions. In addition, figure 3.10 also
demonstrates that the fraction of the domain with Ri < 0 is higher for the Kraichnan LES
comparing with the Smagorinsky case at the same resolution.

3.4.4 Discussion

In this section, we discuss the LES results inferred from §3.4.1, 3.4.2, and 3.4.3. First, we
summarize the important points from the previous sections:

• The horizontal vorticity field shows regions of small-scale instabilities and turbulence
for the high-resolution Kraichnan and Smagorinsky cases with N = 2 (figures 3.6a
and 3.7a). Increased stratification stabilizes the flows, such that no instabilities are
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seen in for example the high-resolution Smagorinsky simulation with N = 6 (figure
3.7b). In addition, these regions of instabilities correspond to regions with small or
negative Ri (figure 3.8).

• The compensated horizontal energy spectra show an approximately−5/3 inertial sub-
range along with a bump at kh ∼ kb in the high-resolution Kraichnan and Smagorin-
sky simulations with N = 2 and the high-resolution Kraichnan case with N = 2,
but not for the high-resolution Smagorinsky case with N = 6 (figure 3.5). Increasing
the grid spacing shortens the inertial subrange and seems to suppress the bump at kb.

• Larger numbers of negative Ri are seen in histograms of the local Richardson number
in the high-resolution Kraichnan and Smagorinsky simulations with N = 2 (figures
3.9 and 3.10). Increased stratification causes a rapid drop in points with negative Ri,
e.g. the high-resolution Smagorinsky case with N = 6. Increasing the grid spacing
also leads to a significant decrease in the histogram of negative Ri.

Our numerical experiments show that if the grid spacing is fine enough to capture
the bump in the horizontal wavenumber spectrum, then KH instabilities and small and
negative Ri are more likely to happen in physical space. This critical resolution seems to
depend on Lb and is different for the different SGS models. Table 3.2 shows the ratio of
kc/kb and ∆/Lb for the Smagorinsky and Kraichnan SGS simulations. According to the
energy spectra in figures 3.2 and 3.5 and the Ri histograms in figure 3.9, the Smagorinsky
LES captures small-scale KH instabilities, indicated by a spectral bump near kh ∼ kb
and points with small and negative Ri, for all cases except for the low-resolution case
with N = 2, the middle-resolution case with N = 4, and the high-resolution case with
N = 6. By contrast, the Kraichnan simulations capture this behaviour for all cases except
the low-resolution case with N = 6. For the low-resolution Kraichnan case with N = 4,
there is a visible bump in figure 3.5(b), but very few points with small and negative Ri
are seen in figure 3.9. This discrepancy could be due to sampling, since the spectra in
figure 3.5(b) are averaged over 375 ≤ t ≤ 450, while this histogram of Ri is instantaneous
at t = 450. As a result, the minimum resolution for the Smagorinsky simulations is
inside the range 0.12Lb ≤ ∆ < 0.17Lb and for the Kraichnan simulations is inside the
range 0.34Lb ≤ ∆ < 0.47Lb. Hence, the Smagorinsky LES needs to have kc/kb almost
three times larger than Kraichnan to resolve KH instabilities. We emphasize that both
SGS models have to resolve Lb to capture the dynamics of stratified turbulence, but the
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Smagorinsky model must resolve Lb almost three times better than Kraichnan. Of course,
the Kraichnan model only works with spectral methods, but for such simulations, it is a
much better choice than the Smagorinsky model.

3.5 Conclusion

LES of forced stratified turbulence with different resolutions, buoyancy frequencies, and
SGS models are studied in this paper. The averaged dissipation rates are almost identical
for the Smagorinsky and Kraichnan LES, confirming that 〈ε〉 depends on the large scales.
The averaged vertical energy spectra are flat up to a certain vertical wavenumber, which
depends on the buoyancy frequency N . The averaged horizontal energy spectra depends on
the grid spacing and if ∆ is small enough, the spectra have an almost −5/3 slope along with
a bump at kh ∼ kb. These spectra are in line with previous work on stratified turbulence
using regular or hyper- viscosity (e.g. Waite & Bartello, 2004; Lindborg, 2006; Brethouwer
et al., 2007; Waite, 2011; Augier et al., 2012; Waite, 2014). Increased resolution or decreased
stratification promotes KH instabilities between vertical layers. Stronger stratification or
smaller kc inhibits these instabilities by shrinking the layer thickness towards the dissipation
scale or by increasing the dissipation scale, respectively. These findings are reminiscent
of the Reb criterion for DNS: stronger stratification requires higher resolution, and hence
larger effective Reynolds number, to fully capture the dynamics of stratified turbulence.

We present a threshold on the grid spacing ∆ for which dynamics of stratified turbulence
are captured in LES. Our results show that the Smagorinsky LES needs much smaller (three
times) ∆/Lb compared with the Kraichnan simulations, in order to reproduce the bump
in the horizontal wavenumber spectrum and the associated regions of small and negative
Ri. In addition, at large wavenumbers, the hyperviscosity simulation is more dissipative
than the Kraichnan LES with the same resolution. Therefore, for kb close to kmax and
kc, the Kraichnan LES seems to get reasonable results compared to hyperviscosity, where
the former captures the bump in the horizontal energy spectrum but the latter does not
(e.g. low-resolution hyperviscosity with N = 4 versus low-resolution Kraichnan with N = 4
in figure 3.5b). These SGS models are isotropic and they clearly fail when ∆ > Lb where the
turbulence is strongly anisotropic. Interestingly, classical theory predicts isotropy below
the Ozmidov scale Lo rather than the buoyancy scale Lb, but nevertheless, these isotropic
SGS models work well for ∆ sufficiently less than Lb but still greater than Lo.

For future work, the performance of LES models beyond the Smagorinsky and Kraich-
nan schemes should be investigated for stratified turbulence. In particular, the dynamic
Smagorinsky model (Germano et al., 1991) in which cs is not constant, has the potential to
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improve the disappointing performance of the Smagorinsky model seen in this study. Since
the dynamics model determines cs locally and with respect to the dynamics of the structures
of flows, it might show better performance than the Smagorinsky model at low resolution,
and hence decrease the computational costs. Meanwhile, considering anisotropic eddy vis-
cosity terms, in which the horizontal and vertical deformations are considered separately,
is another potential avenue for further work. In addition, we need to ultimately perform
very high-resolution DNS of stratified turbulence that resolves a large inertial subrange to
obtain a more fundamental understanding of the energy transfer between large and small
scales.
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Chapter 4

Large eddy simulations of stratified
turbulence: the dynamic
Smagorinsky model

The dynamic Smagorinsky model for LES of forced stratified turbulence is studied in this
chapter. A minimum grid spacing criterion of ∆/Lb < 0.24 is suggested for capturing dy-
namical features of stratified turbulence using the dynamic Smagorinsky model. Our results
show that the dynamic Smagorinsky model needs a grid spacing ∆ that is approximately
twice as large as the regular Smagorinsky model to reproduce similar results. Statistics
of the dynamic Smagorinsky coefficient cs are also investigated: its distribution is peaked
around zero and its standard deviations decrease slightly with increased stratification. In
addition, it is shown that regions of increased shear favour smaller cs values.

This chapter is based on the submitted paper, Khani S. and M. L. Waite. Large eddy sim-
ulations of stratified turbulence: the dynamic Smagorinsky model. Submitted to J. Fluid
Mech. 2014.
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4.1 Introduction

An alternative approach to direct numerical simulations (DNS) is large-eddy simulations
(LES), in which scales larger than the grid spacing ∆ are resolved, but subgrid scale (SGS)
effects are parametrized. A common and practical SGS scheme is the Smagorinsky (1963)
model, in which the deviatoric part of the SGS momentum tensor τ r is expressed in terms
of the filtered rate of strain s̄ij = 1/2(∂ūi/∂xj + ∂ūj/∂xi), as follows (using the notation
of Pope, 2000)

τ rij(x, t) = −2νr(x, t)s̄ij(x, t), (4.1)

where ū = (ū, v̄, w̄) is the filtered velocity field. The eddy viscosity coefficient νr(x, t) is
defined by the following model

νr = cs∆
2S̄, (4.2)

where cs is the Smagorinsky coefficient, and S̄ = (2s̄ij s̄ij)
1/2. (Here, we define cs without

the squared power as in e.g. Germano, 1992; Ghosal et al., 1995; Pope, 2004) A constant
value of cs ≈ (0.17)2, which was suggested by Lilly (1967), did not work particularly
in complex turbulent flows; as a result, Siegel & Domaradzki (1994) investigated various
ranges of cs from (0.13)2 to (0.24)2 for different turbulent flows. Indeed, there is not a clear
approach for selecting cs in complex turbulent flows. The dynamic Smagorinsky model is
a method proposed by Germano et al. (1991), in which a time- and spatially-varying cs
is computed by applying a second filter ∆̃ and assuming a self-similar inertial subrange
between two filter scales. An improvement by Lilly (1992) yielded a method to find cs
using the resolved fields.

In the last few years, due to the high cost of DNS (e.g. Almalkie & de Bruyn Kops, 2012;
Bartello & Tobias, 2013), there has been increased interest in using LES for computational
studies of stratified turbulence (e.g. Remmler & Hickel, 2012; Paoli et al., 2013; Khani &
Waite, 2014a). In stratified turbulence, we also need to model the SGS density flux h,
which is related to the filtered perturbation density ρ̄(x, t) as

hj(x, t) = − 2

Prt
νr(x, t)

∂ρ̄(x, t)

∂xj
, (4.3)

where Prt is the turbulent Prandtl number. Khani & Waite (2014a) have investigated
the performance of two classical LES approaches, the Smagorinsky (1963) and Kraichnan
(1976) models, in LES of stratified turbulence where the filter width ∆ is larger than the
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Ozmidov scale. This study found a necessary criteria on ∆ for LES to capture the fun-
damental dynamics of stratified turbulence, including a cascade to small scales (Lindborg,
2006), and a breakdown of the layerwise structure into Kelvin-Helmholtz (KH) instabilities
(Laval et al., 2003; Waite, 2011; Khani & Waite, 2014a). These criteria are related to the
buoyancy scale

Lb = 2π
urms
N

, (4.4)

where urms is the root-mean-square velocity and N is the buoyancy frequency. As con-
cluded by Khani & Waite (2014a), the performance of the Smagorinsky model in LES
of stratified turbulence is disappointing since it requires three times the resolution com-
pared to the Kraichnan model in order to adequately capture the dynamics of stratified
turbulence (∆/Lb < 0.17 for the Smagorinsky LES versus 0.47 for the Kraichnan LES).
On the other hand, the applicability of the Kraichnan LES in limited to idealized periodic
boundary conditions, which might not be appropriate for turbulent flows near boundaries
or in complex geometries.

Despite its popularity for geophysical flows, problems with the Smagorinsky model,
including excessive dissipation near the filter scale, are widely known (Germano et al., 1991;
Ghosal et al., 1995; Meneveau &, Katz 2000; Pope, 2000). In other fields like engineering
flows, wall turbulence and boundary layers, the dynamic Smagorinsky model is much more
widely used (e.g. Meneveau &, Katz 2000; Pope, 2000; Jiménez & Moser, 2000), but its
applicability to stratified turbulence has not been investigated. In this paper, we perform
and analyze LES of stratified turbulence using the dynamic Smagorinsky model, in which
the main goal is to decrease the computational costs of the Smagorinsky model in resolving
the dynamics of stratified turbulence. We investigate the maximum filter scale ∆ that
captures the fundamental dynamics of stratified turbulence, including a cascade to small
scales and breakdown of layers into KH instabilities. Also, we investigate the anisotropy of
the SGS energy transfer, the statistics cs at different buoyancy frequencies and numerical
resolutions, and the relationship between cs and the resolved dynamics.

In §4.2, background on stratified turbulence and the dynamic Smagorinsky model are
reviewed. The numerical approach and methodology are described in §4.3. Section 4.4
presents results, and conclusions are given in §4.5.
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4.2 Background

The non-dimensional filtered Navier-Stokes equations under the Boussinesq approximation
are

∂ūi
∂t

+
∂

∂xj
(ūiūj) = − ∂p̄

∂xi
− 1

Fr`
2 ρ̄ez −

∂τ rij
∂xj

+ f̄i, (4.5)

∂ūj
∂xj

= 0, (4.6)

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ūj)− w̄ = −∂hj

∂xj
, (4.7)

where p and f are the perturbation pressure and velocity forcing fields, respectively; and
the Froude number Fr` = u/N` is defined based on a velocity scale u and a length scale
`. We neglect the molecular viscosity and diffusion because of the assumption of large
Reynolds number.

The dynamic Smagorinsky model applies a second test filter ∆̃ > ∆ to the momentum
equation (4.5). It is common to choose ∆̃ = 2∆ (e.g. Meneveau &, Katz 2000; Pope, 2000).
The test-filtered momentum equation is given by (e.g. Pope, 2000)

∂ ˜̄ui
∂t

+
∂

∂xj
(˜̄ui ˜̄uj) = −∂

˜̄p

∂t
− 1

Fr`
2

˜̄ρez −
∂T rij
∂xj

+ ˜̄fi, (4.8)

where T rij = Tij − 1/3Trrδij, and

Tij = ũiuj − ˜̄ui ˜̄uj, (4.9)

is the sub-test-filter-scale momentum tensor, which needs to be modelled due to the un-
known term ũiuj. Similar to τ r in (4.1), a closure model for T r using the Smagorinsky
approach could be defined as follows

T rij = −2cs∆̃
2S̃ ˜̄sij, (4.10)

where the Smagorinsky coefficient cs, which is now allowed to depend on position and time,
should be the same as that in (4.2) because of self-similarity and the scale-independent
assumption (see e.g. Porté-Agel et al., 2000, for the scale-dependent dynamic SGS model).
Applying the test filter ∆̃ to the SGS momentum tensor τij and its Smagorinsky model
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in (4.1), and then subtracting them from the test SGS momentum tensor Tij and its
Smagorinsky model (4.10), respectively, yield (e.g. Pope, 2000; Meneveau &, Katz 2000)

Lij = Tij − τ̃ij = ˜̄uiūj − ˜̄ui ˜̄uj, (4.11)

Mij = ∆2S̃s̄ij − ∆̃2S̃ ˜̄sij, (4.12)

which are the resolved stress tensor and the Germano rate of strain tensor, respectively,
and are related by the following equation

Lrij = 2csMij. (4.13)

Since Lrij and Mij are known from (4.11,4.12), the only unknown in (4.13) is cs and as a
result, the system of equation is extremely overdetermined. Lilly (1992) suggests a least
square approach to get cs, which gives

cs =
1

2

LrijMij

MijMij

. (4.14)

It is valuable to note the physical interpretation of (4.14), which is that cs is characterized
by amount of dissipation that is generated by projection of the resolved stress Lrij on the
Germano rate of strain Mij (e.g. Jiménez & Moser, 2000; Meneveau, 2012).

When Lrij and Mij are not coaxial, cs is negative, which might be interpreted as
backscatter (e.g. Germano et al., 1991). In this situation, any attempts to model the
stress tensor as proportional to the rate of the strain tensor will fail (e.g. Jiménez &
Moser, 2000). Indeed, negative eddy viscosity and diffusivity coefficients in (4.5) and (4.7),
respectively, inevitably lead to numerical instabilities (e.g. Domaradzki et al., 1993; Ghosal
et al., 1995; Pope, 2000; Meneveau &, Katz 2000; Remmler & Hickel, 2012). There are
two common approaches for avoiding negative cs: clipping cs by setting negative values to
a non-negative threshold (e.g. 0) and averaging cs over homogeneous directions (e.g. Lilly,
1992; Ghosal et al., 1995; Lesieur & Métais, 1996; Piomelli, 1999; Meneveau &, Katz 2000;
Porté-Agel et al., 2000; Pope, 2000; Lu & Porté-Agel, 2014). In this study, we apply the
first approach: negative cs values are set to zero, but otherwise c+

s is fully time and space
dependent, i.e.

c+
s (x, t) =

{
cs(x, t) : cs(x, t) ≥ 0

0 : cs(x, t) < 0
. (4.15)

For comparison, we will also investigate the performance of the volume averaged cs in our
simulations.
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In this work, we consider strongly stratified turbulence, i.e. with Fr` � 1, in which
the large-scale dynamics are dominated by quasi-horizontal vortical motions rather than
gravity waves (Riley & de Bruyn Kops, 2003; Waite & Bartello, 2004; Lindborg, 2006).
Such flows are known to have a layered structure with layer thickness around Lb (Waite &
Bartello, 2004) and a direct cascade of energy to small scales (Lindborg, 2006). Simulations
with isotropic resolution of Lb show that the layers break up into KH instabilities on the
buoyancy scale (Laval et al., 2003; Waite, 2011); as a result, the horizontal wavenumber
kinetic energy spectrum has an approximately −5/3 power law (Lindborg, 2006) with
possibly a bump at Lb (Waite, 2011). In order to capture the downscale cascade in DNS,
the buoyancy Reynolds number Reb = Fr2

hRe must be � 1, where Frh = urms/Nlh is
the horizontal Froude number and Re is the Reynolds number (Brethouwer et al., 2007;
Almalkie & de Bruyn Kops, 2012; Bartello & Tobias, 2013). Here, lh is the horizontal scale
that is obtained from the Taylor hypothesis. For classical LES models (Smagorinsky, 1963;
Kraichnan, 1976), it seems only necessary that Lb be sufficiently resolved (Khani & Waite,
2014a).

4.3 Methodology

Forced stratified turbulence is studied in this paper, where the forcing term is applied to the
rotational part of the horizontal velocity field (i.e. vortically forced stratified turbulence,
see Herring & Métais, 1989; Waite & Bartello, 2004; Waite, 2011; Khani & Waite, 2014a,
for more details). Idealized simulations in a cubic box of side L = 2π are considered. The
sharp spectral filter is employed, where the relationship between the cutoff wavenumber kc
and the grid spacing ∆ is given by

∆ =
π

kc
. (4.16)

Spatial derivatives are discretized using the spectral transform method, where the two-
thirds rule (e.g. Durran, 2010) is applied in each direction for the elimination of aliasing
errors. Hence, the cutoff wavenumber kc is related to the resolution as

kc = π
2n

3L
, (4.17)

where n is the number of grid points in x, y, and z directions. We can use (4.17) in (4.16)
to get the effective grid spacing ∆ = 3L/2n, which is used in the eddy viscosity equations.
For time advancement, the explicit third-order Adams-Bashforth scheme is employed.

Simulations are initialized with low-level random noise and spun up at low resolution
(n = 256) and with hyperviscosity to t = 300. Simulations are then continued at low
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(n = 256) and high (n = 512) resolution with the dynamic Smagorinsky subgrid scale
model (a similar approach is considered in e.g. Waite & Bartello, 2004; Waite, 2011; Khani
& Waite, 2014a). Additional simulations with the regular Smagorinsky model (described
in Khani & Waite, 2014a) are also considered for comparison. Four different buoyancy
frequencies of N = 2, 4, 6 and 12, along with an unstratified case (N = 0), are considered.
Froude numbers vary from 0.001 to ∞ to cover both strongly stratified (as in e.g. Riley &
de Bruyn Kops, 2003; Waite & Bartello, 2004; Lindborg, 2006; Hebert & de Bruyn Kops,
2006b; Brethouwer et al., 2007; Waite, 2011; Khani & Waite, 2013, 2014a) and unstratified
turbulence. The typical kinetic energy dissipation rate ε is around 10−4, which gives a
forcing time scale tf ∼ 10, when combined with the forcing wavenumber kf = 3. The

turbulent Prandtl number Prt = 1 and urms =
√
〈E(t)〉 (e.g. Khani & Waite, 2014a),

where the angle bracket 〈·〉 denotes time averaging over 375 ≤ t ≤ 450. Table 4.1 shows
parameters and averaged quantities for the dynamic Smagorinsky LES in this paper, where
ko is based on 〈ε〉 and kb is based on urms.

4.4 Results and Discussion

4.4.1 Buoyancy scale effects on the dynamic Smagorinsky model.

The compensated horizontal wavenumber energy spectra, in which the horizontal spectra
are normalized by k

−5/3
h 〈ε〉2/3, are shown in figure 4.1. The advantage of using the com-

pensated spectra is that constant horizontal spectra at intermediate wavenumbers suggest
an inertial subrange with the spectral slope of −5/3. The high resolution case with N = 2
shows an almost constant normalized spectrum over 6 . kh . 30 along with a wide bump
around kb ∼ 30. The lower resolution simulation with the same stratification exhibits
a steeper spectrum, in which the bump around the buoyancy scale is weakly resolved.
Increased stratification steepens the compensated horizontal wavenumber energy spectra,
to the extent that the high resolution cases with N = 4 and 6 do not clearly show con-
stant inertial subranges but resolve (small) bumps around kb ∼ 60 and 80, respectively.
In addition, the low-resolution LES with larger stratification do not seem to capture any
inertial subrange or bumps. In agreement with LES of stratified turbulence in Khani &
Waite (2014a), these results suggest that resolving a clear constant inertial subrange in
the compensated horizontal wavenumber spectrum depends on the resolution and buoy-
ancy frequency. As a result, stronger stratification may need higher resolution in LES to
capture an inertial subrange.
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Figure 4.1: The averaged compensated horizontal energy spectra. The spectra are averaged
over 375 ≤ t ≤ 450. From left to right, arrows show buoyancy wavenumbers kb that
correspond to buoyancy frequencies N = 2, 4, and 6, respectively.

79



Khani & Waite (2014a) have shown that in the Kraichnan and Smagorinsky LES,
capturing dynamics of stratified turbulence depends on the ratio ∆/Lb. Only for sufficiently
small values of ∆/Lb - below 0.47 for Kraichnan and 0.17 for Smagorinsky - were the
small-scale features of stratified turbulence, including KH instabilities and locally small
values of the Richardson number, captured. To evaluate the relevance of this criterion
for the dynamic Smagorinsky model, we consider the horizontal vorticity fields as well as
distributions of the local Richardson number in our stratified simulations.

Figure 4.2 shows the y component of the vorticity ω̄y in the x-z plane for the high-
resolution simulations with different buoyancy frequencies at y = 0.25 and t = 450. Unlike
the unstratified case (figure 4.2a), the stratified cases are layered in the vertical direction.
KH instabilities are clearly visible in figure 4.2(b), but less so in figures 4.2(c) and (d);
indeed, the increased stratification in figure 4.2(c) and (d) leads to decreasing KH billows.
For stratified simulations, increased stratification inhibits KH instabilities as the layer
thickness decreases towards the eddy dissipation scale (as in e.g. Hebert & de Bruyn Kops,
2006a; Brethouwer et al., 2007; Khani & Waite, 2014a).

There is an apparent connection between cases with no inertial subrange in figure 4.1,
and cases with no KH instabilities in figure 4.2. This connection has been noted previ-
ously in DNS (Waite, 2014) and other kinds of LES (Khani & Waite, 2014a). To further
investigate this connection with the dynamic Smagorinsky model, we consider the local
Richardson number. The Richardson number shows the ratio of total (ambient plus per-
turbation) buoyancy frequency over the square of the vertical shears of horizontal motions,
written as

Ri =
N2 − g

ρ0

∂ρ̄
∂z(

∂ū
∂z

)2
+
(
∂v̄
∂z

)2 , (4.18)

where ρ0 and g are the gravity and reference density, respectively. Small Richardson
numbers including negative values correspond to overturning and KH instabilities. Figure
4.3 shows the time-averaged histograms of the local Richardson number Ri for the high-
and low-resolution LES with different buoyancy frequencies. Histograms show long tails for
positiveRi and also rapid drops for negativeRi. It appears that by increasing the resolution
and decreasing the buoyancy frequency, the peaks in the Ri histograms move towards
negative values, i.e. more of the domain is subject to KH and gravitational instabilities. In
addition, the high resolution case withN = 2 (the black solid line) shows the largest number
of points with negative values and the smallest number of points with positive Ri. However,
the low-resolution case with N = 6 (the grey dot line) shows the largest histograms for
positive Ri and maybe just a few points with negative Ri. Consistent with the Smagorinsky
and Kraichnan LES of Khani & Waite (2014a), increased resolution at fixed buoyancy
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Figure 4.2: Vorticity field in y-direction, ω̄y, on the x-z plane at y = 0.25 and t = 450 for
the high resolution case with (a) N = 0, (b) N = 2, (c) N = 4, and (d) N = 6.
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Figure 4.3: The averaged histograms of local Richardson number Ri. Only the segment
−10 ≤ Ri ≤ 30 is shown. Histograms are normalized by bin size to give probability
distributions, and are computed with 100 bins over the given segment (∆Ri = 0.4).

frequency or decreased stratification at fixed resolution, increases the number of points with
small and negative Ri. As a result, figure 4.3 demonstrates that increased resolution or
decreased stratification more likely leads to generation of KH instabilities and overturning
(consistent with the results of figure 4.2).

Considering these findings, we can now attempt to find a threshold for ∆/Lb which
guarantees that the breakdown of the layers into KH instabilities is captured (see Khani &
Waite, 2014a, for similar thresholds in the Kraichnan and Smagorinsky LES). According
to table 4.1 and figure 4.3, if we consider cases with ∆ < 0.24Lb (i.e. kc > 2.1kb), the
averaged Ri histograms for −10 ≤ Ri ≤ 30 are above 10−6. On the other hand, if
∆ > 0.24Lb, only very few points with small and negative Ri appear. These findings
suggest that the maximum grid spacing for the dynamic Smagorinsky model should be
between 0.18Lb < ∆ < 0.24Lb. By contrast, threshold for the regular Smagorinsky LES
is in the range 0.12Lb ≤ ∆ < 0.17Lb (see Khani & Waite, 2014a). While the dynamic
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Smagorinsky values are larger – i.e. lower resolution is able to capture the basic dynamics
of stratified turbulence – these ranges nearly overlap, suggesting that the criteria for the
regular and dynamic Smagorinsky are close. In the next section, we compare these two
SGS models and show that the dynamic Smagorinsky model is clearly better.

4.4.2 The dynamic Smagorinsky model versus the Smagorinsky
model

To get a better understanding of how well the dynamic Smagorinsky model performs
in stratified turbulence simulations, we compare to results obtained with the regular
Smagorinsky model for the same stratifications and resolutions (results from Khani &
Waite, 2014a, these simulations are labeled with ‘S’ in table 4.1). Figure 4.4 shows the
horizontal wavenumber energy spectra at different resolution and fixed buoyancy frequency
for both SGS models. Clearly, the dynamic version is less dissipative than the regular
Smagorinsky model with the same resolution at large horizontal wavenumbers: at the
same resolutions, the dynamic and regular Smagorinsky results agree fairly well at large
scales but diverge at small scales, where the regular Smagorinsky exhibit a much broader
and steeper dissipation range. This is particularly pronounced at the lower resolution
(n = 256), where the regular Smagorinsky spectrum is much steeper than the dynamic
model over most wavenumbers. It is interesting that the dynamic case with n = 512 is
very similar to the Smagorinsky LES with n = 768; nevertheless, the Smagorinsky model
is still more dissipative for kh & 60. In addition, the low resolution dynamic Smagorinsky
case with N = 2 is very close to the regular Smagorinsky LES with n = 512 and N = 2.
This trend implies that the dynamic Smagorinsky LES looks like the regular Smagorin-
sky case with twice the resolution. As a result, the low resolution dynamic Smagorinsky
model yields similar results to the high resolution Smagorinsky model at fixed buoyancy
frequency. It is worthwhile to mention that at the same resolution, the dynamic and reg-
ular Smagorinsky models are almost identical at large scales: for the case with n = 256,
they are very similar for kh < 6, and for the case with n = 512, they are almost identical
up to kh = 20.

Figure 4.5 shows the horizontal and vertical wavenumber spectra of SGS energy transfer
(i.e. eddy dissipation spectra) for the stratified and unstratified dynamics model at t = 450.
For comparison, the eddy dissipation spectra of the Smagorinsky LES for the case with
n = 768 and N = 2 (see Khani & Waite, 2014a) are also shown. For unstratified cases,
the maximum eddy dissipation occurs at small scales for both the horizontal and vertical
wavenumber spectra. These trends are consistent with the isotropic dissipation picture, in
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Figure 4.4: The averaged horizontal wavenumber energy spectra for the dynamic Smagorin-
sky cases that are compared with the Smagorinsky cases at different resolutions with fixed
buoyancy frequency N = 2. The dash double-dot magenta curve shows the averaged
horizontal wavenumber energy spectra over 300 ≤ t ≤ 356 for dynamic Smagorinsky simu-
lation, in which cs values are space averaged instead of clipping negative values. The black
solid line segments show −5/3 and −3 slopes.
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which the kinetic energy is damped mainly at small scales. For stratified cases, however,
the eddy dissipation spectra are very different in the horizontal and vertical directions.
According to figure 4.5(a), the horizontal wavenumber spectra of SGS energy transfer
peaks at large scales.

Unlike the horizontal wavenumber spectra, the vertical wavenumber spectra of eddy dis-
sipation for the stratified cases peaks at small scales (figure 4.5b). Increased stratification
or decreased resolution increases the vertical SGS energy transfer spectra due to contract-
ing the thickness of vertical layers towards the dissipation scale or increasing dissipation
scales, respectively (as seen in previous hyperviscosity simulations and DNS, e.g. Waite &
Bartello, 2004; Hebert & de Bruyn Kops, 2006a; Brethouwer et al., 2007). As a result, for
an isotropic eddy viscosity model, increased stratification leads to anisotropic eddy dissi-
pation spectra due to strongly anisotropic resolved scales (see also Khani & Waite, 2014a,
for the Kriachnan and Smagorinsky models). It is worthwhile to mention that the horizon-
tal and vertical eddy dissipation spectra of the dynamic Smagorinsky LES with n = 512
and N = 2 are very similar to their counterparts in the Smagorinsky LES with higher
resolution n = 768 and the corresponding buoyancy frequency, especially when kh,v . 60
(figures 4.5). As a result, the low resolution dynamic Smagorinsky model generates almost
the same eddy dissipation as the high resolution Smagorinsky model in LES of stratified
turbulence.

In conclusion, this section shows that the maximum criterion on ∆/Lb for resolving KH
instabilities in the dynamic Smagorinsky model is definitely larger than that for the regular
Smagorinsky model. Even with half the resolution, the dynamic Smagorinsky model gives
similar results to the regular Smagorinsky model (figure 4.4).

4.4.3 The dynamic Smagorinsky coefficient cs

In this section, a detailed analysis on the dynamic coefficient cs is presented. Figure
4.6(a) shows a snapshot of the c+

s field in the x-z plane along with a few contours of the
characteristic rate of strain S̄ = (2s̄ij s̄ij)

1/2 at y = 0.25 and t = 450 for the high resolution
case with N = 4. The vertical axis is zoomed in to show around 13 vertical layers of
length 2π/kb. It is interesting that the presence of stratification leads to vertical layers
in the c+

s field. Black contours of S̄ indicate low values S̄ = 1 and 1.5. The magenta
contours on the other hand show higher values S̄ = 6 and 8. Interestingly, regions with
high straining in figure 4.6 are generally associated with zero or very small values of c+

s ,
while regions with low straining correspond with larger values of c+

s . This behaviour, which
has been investigated elsewhere in unstratified turbulence (e.g. Kleissl et al., 2006; Wan &
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Figure 4.5: The horizontal (a) and vertical (b) wavenumber spectra of SGS energy transfer
for the low resolution and high resolution cases at t = 450. The spectra are multiplied by
wavenumber in order to preserve area on the log-linear axes. For comparison, the results
of high resolution Smagorinsky LES are also shown (Khani & Waite, 2014a).

Porté-Agel, 2011), suggests that the dynamic Smagorinsky coefficient cs decreases as shear
increases in order to preserve the small-scale instabilities between vertical layers.

Figure 4.6(b) shows the probability distributions of c+
s on gridpoints restricted to dif-

ferent ranges of S̄ at t = 450. It is clear that increased straining is associated with smaller
values of c+

s . With weak straining, distributions of the dynamic Smagorinsky coefficient
c+
s show both small and large c+

s values. However, for large straining, these distributions
show small c+

s values. For example, for S̄ ≥ 7 – the solid black line in figure 4.6(b) – c+
s

values are smaller than (0.14)2. This trend is consistent with the suggestion of Deardorff
(1971) that the presence of shear implies small c+

s values. In addition, looking at c+
s fields

at different stratifications shows that increased stratification at fixed resolution leads to
vertical layers that are not fully resolved, consistent with failure to the criterion on ∆/Lb
(see figure 4.7).

The time-averaged histograms of cs at different resolutions and buoyancy frequencies
are shown in figure 4.8(a). Increased stratification leads to decreasing standard deviations,
i.e. cs values tend to get smaller (consistent with figure 4.6). Interestingly, the distribution
of negative cs (before clipping is applied) is very similar to that of positive cs (similar
trends are seen in Kang et al., 2003; Meneveau et al., 1996, for probability distributions of
local SGS dissipation, and probability distributions of cs, respectively). Since we remove
negative cs values at every timestep due to numerical stabilities, figure 4.8(a) indicates
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Figure 4.6: (a) The Smagorinsky coefficient field c+
s on the x-z plane and (b) the conditional

distribution of c+
s , for the high resolution case with N = 4 at y = 0.25 and t = 450. In

the panel (a), contours of constant S̄ = (2s̄ij s̄ij)
1/2 are overlayed on the c+

s field where
the vertical axis is zoomed in to 80/kb that includes around 13Lb. The magenta contours
present high values S̄ = 6 and 8 and the black contours show those of low values S̄ = 1
and 1.5.

Figure 4.7: The Smagorinsky coefficient field c+
s on the x-z plane for the high resolution

cases with (a) N = 2 and (b) N = 6 at y = 0.25 and t = 450, where the vertical axes are
zoomed in to 80/kb to include around 13Lb .
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Figure 4.8: (a) The averaged histograms of Smagorinsky coefficient cs and (b) the time-
space averaged cs versus ∆/Lb. In panel (a) only the segment −0.25 ≤ cs ≤ 0.25 is shown.
Histograms are normalized by bin size to give probability distributions, and are computed
with 100 bins over the given segment (∆cs = 0.005). The dashed line in panel (b) shows
the average of all 〈〈c+

s 〉〉 values.

that we lose some local information about the nature of energy transfer in the dynamic
Smagorinsky model. In addition, this plot shows that the volume averaged cs values are
very close to zero. Figure 4.8(b) shows the time-and-space average (denoted by double
angle bracket 〈〈·〉〉) of c+

s versus ∆/Lb. It is interesting that the time-space averaged c+
s

for stratified cases are around 〈〈c+
s 〉〉 = (0.25)2 (the dashed-black line in figure 4.8b) which

is only slightly larger than that of the non-stratified case with 〈〈c+
s 〉〉 = (0.23)2, and also

larger than the regular Smagorinsky constant cs = (0.17)2. This behaviour might suggest
that the presence of stratification decreases straining in turbulent flows and so the dynamic
Smagorinsky model implies larger cs in stratified turbulence to correspond with the changes
in flow dynamics as stratification appears (see also figure 4.6).

An alternative to clipping negative cs values is to use spatial averaging of cs over
the homogeneous directions, as is often done in boundary layer simulations (e.g. Pope,
2000; Meneveau &, Katz 2000; Porté-Agel et al., 2000). Here, since we are considering
homogeneous stratified turbulence, this approach amounts to taking a spatial average of cs
before evaluating the eddy viscosity (4.2). We have evaluated this approach by performing
an additional simulation with n = 256 and N = 2, in which cs values are averaged over
the entire domain instead of clipping negative cs values. Because of the lack of sufficient
dissipation at small scales, the simulation in this case blew up at around t = 356 (see
the magenta curve in figure 4.4, which clearly shows an artificial pileup of energy at large
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wavenumbers). The averaged probability distribution of cs for this simulation over 300 ≤
t ≤ 356 is also shown in figure 4.8(a), in which shorter tails and a larger peak are seen. For
this case, the standard deviation is half of that in the case with clipped negative cs values.

4.5 Conclusions

A systematic analysis on the performance of the dynamic Smagorinsky model in stratified
turbulence has been studied in this paper. Our results show that if ∆/Lb < 0.24, KH insta-
bilities and overturning are more likely fully captured in LES of stratified turbulence using
the dynamic Smagorinsky model. These criteria on ∆/Lb depend on the particular SGS
model. For example, Khani & Waite (2014a) argued that for the Smagorinsky and Kraich-
nan model ∆/Lb should be less than 0.17 and 0.47, respectively, to ensure capturing KH
instabilities in stratified turbulence. As a result, the resolution limit on ∆ in the dynamic
Smagorinsky model is 40% larger than that of the Smagorinsky model (see figure 4.4). In
addition, this study show that spectra of SGS energy transfers in stratified simulations
are significantly different in the horizontal and vertical directions, in line with other LES
models (Khani & Waite, 2014a). The maximum eddy dissipation spectra in stratified cases
occur at large horizontal and small vertical scales. This behaviour suggests that spectra of
SGS energy transfer are anisotropic in stratified turbulence. Overall, the eddy dissipation
from the dynamic Smagorinsky LES with N = 2 and n = 512 looks similar to the regular
Smagorinsky LES at the same buoyancy frequency with n = 768.

The dynamic eddy viscosity coefficient c+
s shows a layerwise field in the presence of

stratification, consistent with the familiar layered structure of stratified turbulence. This
finding implies that the dynamic Smagorinsky model can make a connection between the
SGS model and stratification and that this relation is an improvement on performance
of traditional SGS models like the Smagorinsky model in stratified turbulence. It is in-
teresting that large values of c+

s correspond to regions with weak straining. Consistently,
regions with large shears (strong vertical straining), the values of c+

s are very small. This
behaviour explains why the dynamic Smagorinsky model is overall less dissipative than
the regular Smagorinsky model. Also, the overall relationship between c+

s and shear S̄ is
similar to what has been discussed in the literature on unstratified turbulence. In addition,
local distributions of negative cs are very close to positive cs, implying that local nega-
tive dissipation (i.e. backscatter) might be important in the dynamic Smagorinsky model.
Nevertheless, negative values of cs are clipped in this study to stabilize the simulations and
ensure sufficient small-scale dissipation.

At the same resolution, the dynamic Smagorinsky model is much more expensive than
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the regular Smagorinsky model; wall clock run times are approximately twice longer. This
increase in run time is due to the significant increase in the number of fast Fourier trans-
forms (FFTs) required to compute cs. On the other hand, the dynamic Smagorinsky
model can be run at lower resolution and still give similar results to the regular Smagorin-
sky model. Decreasing the resolution by 33% (i.e. from n = 768 to n = 512) cuts the
run time by a factor of 5. Halving the resolution (i.e. from n = 512 to n = 256) cuts the
run time by a factor of 16, and still gives dynamic Smagorinsky results similar to regular
Smagorinsky. Despite the increase in FFTs, the ability to run at lower resolution implies
that dynamic Smagorinsky approach is clearly more efficient than the regular Smagorinsky.

We have now looked at three SGS models: Kraichnan, Smagorinsky and dynamic
Smagorinsky. Despite the fact that these models were designed for unstratified turbulence,
they work well for stratified turbulence when Lb is sufficiently well resolved. The interpre-
tation of “sufficiently” depends on the model. The Kraichnan model is clearly the best –
i.e. it requires the lowest resolution to give the same results – but it only works for triply
periodic spectral models. Otherwise, the dynamic Smagorinsky model is better than the
regular Smagorinsky. However, none of these models work well when Lb is not resolved.
Eliminating this barrier, i.e. running LES without fully resolving Lb, would require a major
rework. For future work, performing LES of stratified turbulence with anisotropic eddy vis-
cosity terms could be considered. In addition, considering local backscatter in the dynamic
SGS models is another potential avenue in studying stratified turbulence. Ultimately, we
need to perform a high resolution DNS of stratified turbulence to study the dynamics of
energy transfer around the buoyancy scale Lb and maybe the Ozmidov scale Lo.
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Chapter 5

Effects of the buoyancy Reynolds
number on the dynamics of energy
transfer in stratified turbulence

In this chapter, kinetic and potential energy transfer in DNS of decaying stratified turbu-
lence are studied in both the physical and spectral domains. It is shown that the effective
SGS energy transfer in physical space is a net downscale cascade, which is a combination of
large upscale and downscale energy transfers. Our results suggest that backscatter in strat-
ified turbulence depends on resolution, buoyancy frequency and the buoyancy Reynolds
number Reb. When Reb . O(1), the kinetic energy transfer spectra show negative val-
ues at intermediate scales, as reported elsewhere. We argue that this backscatter is due
to viscous effects at the test filter scale. The effective turbulent Prandtl number spectra
demonstrate that the assumption Prt ≈ 1 is reasonable for local energy transfer.
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5.1 Introduction

Large eddy simulations (LES) is an alternative numerical approach for decreasing the com-
putational costs of direct numerical simulations (DNS). In LES, the large energy-containing
eddies are directly resolved but subgrid scale (SGS) eddies are parametrized. Most SGS
models such as the Smagorinsky (1963) and Kraichnan (1976) models are designed based on
the Richardson (1922) energy-cascade hypothesis, which argued that the turbulent kinetic
energy is generated at large scales and dissipated at small scales. Richardson’s prediction
could be valid for the average kinetic energy cascade, but might not be accurate in the local
sense. Locally, the energy cascade is the net outcome of the forward scatter, i.e. the energy
transfer from large to small scales, and the backscatter, which is the reverse energy transfer
from the small to large scales. For example, Piomelli et al. (1991) and Domaradzki et al.
(1993) have shown that the forward- and backscatter are of the same order of magnitude
in turbulent channel flow and isotropic decaying turbulence, respectively.

In principal, the dynamic SGS scheme, proposed by Germano et al. (1991), has been de-
signed to improve the performance of purely dissipative SGS schemes such as the Smagorin-
sky (1963) model by considering backscatter through the negative dynamic Smagorinsky
coefficient cs, which is a time- and space-dependent function. However, averaging cs over
a homogeneous direction is often required to avoid numerical instabilities (e.g. Ghosal et
al., 1995; Pope, 2000; Meneveau &, Katz 2000). In this sense, some information about
the dynamics of the local energy transfer is lost, and in practice, the averaging procedure
removes the local effect of backscatter, because the averaged cs is usually positive (e.g.
Ghosal et al., 1995; Pope, 2000; Wan & Porté-Agel, 2011; Remmler & Hickel, 2012; Khani
& Waite, 2014b).

Stratified turbulence occurs at the atmospheric mesoscale and oceanic sub-mesoscale,
or on scales for which fluid motions are strongly affected by stratification but weakly
affected by the Earth’s rotation (e.g. Riley & Lelong, 2000). The presence of stratification
leads to the generation of anisotropic features such as pancake vortices. These in turn
leads to the development of different length scales and spectral slopes in the horizontal
and vertical directions and so forth (see e.g. Billant & Chomaz, 2001; Waite & Bartello,
2004; Lindborg, 2006; Brethouwer et al., 2007). Recently, the dynamics of energy transfer
in stratified turbulence has been studied in wavenumber space (Khani & Waite, 2013;
Remmler & Hickel, 2014). Using DNS of decaying stratified turbulence, Khani & Waite
(2013) studied the dynamics of horizontal and vertical energy transfer around the Ozmidov
scale. It was shown that the presence of stratification leads to a non-local horizontal energy
transfer (Khani & Waite, 2013). In addition, the spectral eddy viscosity based on the
vertical kinetic energy shows negative values when the flow is subjected to very stable
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stratification, and negative turbulent Prandtl numbers have also been reported (Remmler
& Hickel, 2014).

In physical space, backscatter can be calculated by filtering velocity fields in DNS, and
directly measuring the sub-filter scale (henceforth referred to as SGS) momentum tensor
τij. Following Piomelli et al. (1991), backscatter may be defined by negative values of the
effective SGS dissipation rates εSGS and εSGS, written as

εSGS = −2τijS̄ij, (5.1)

εSGS = −hj
∂ρ̄

∂xj
, (5.2)

where S̄ij is the filtered rate of strain. A similar procedure was used recently to analyze
SGS backscatter in DNS of reacting turbulence (O’Brien et al., 2014). Importantly, it is
shown that backscatter depends on the dynamics of reacting flows and hence is not just a
random and intermittent process (O’Brien et al., 2014). The dynamics of backscatter has
not been studied for stratified turbulence. Indeed, the physical mechanisms underlying the
dynamics of energy transfer are not completely understood in this context.

In this paper, the dynamics of forward and inverse energy transfer around the Ozmidov
scale in DNS of stratified turbulence is studied at different buoyancy Reynolds numbers and
using different test filters. In addition, the spectral kinetic and potential energy transfer,
and the effective turbulent Prandtl number subjected to different test cutoffs and buoyancy
Reynolds numbers are analyzed. The governing equations of motion and formulations for
analyzing DNS diagnoses are presented in §5.2. Section 5.3 presents the methodology used,
and §5.4 presents the results and discussion. Conclusions are given in §5.5.

5.2 Governing equations

For the DNS approach, the non-dimensional Navier-Stokes equations subjected to the
Boussinesq approximation are

∂u

∂t
+ u · ∇u = −∇p− 1

Fr`
2ρez +

1

Re`
∇2u, (5.3)

∇ · u = 0, (5.4)

∂ρ

∂t
+ u · ∇ρ− w =

1

Re`Pr
∇2ρ, (5.5)

where u = (u, v, w) is the velocity vector, ρ and p are the density and pressure perturba-
tions, respectively; Re`, Fr`, and Pr are the initial Reynolds and Froude numbers, and
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the Prandtl number, respectively. We can define the test-filtered variables by applying a
filtering operator to the DNS results, written as

ū(x, t) =

∫
D

G(x́,x)u(x́, t)dx́, (5.6)

where G is the filtering function and D is the spatial domain. Hence, the governing
equations (5.3-5.5) can be rewritten for the test-filtered variables as follows

∂ūi
∂t

+
∂

∂xj
(ūiūj) = − ∂p

∂xj
− 1

Fr`
2 ρ̄ez +

1

Re`

∂2ūi
∂xj∂xj

− ∂τij
∂xj

, (5.7)

∂ūi
∂xi

= 0, (5.8)

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ūj)− w̄ =

1

Re`Pr

∂ρ̄

∂xj∂xj
− ∂hj
∂xj

, (5.9)

where

τij = uiuj − ūiūj, (5.10)

hj = ρuj − ρ̄ūj, (5.11)

are the SGS momentum and density fluxes that are known since DNS resolves both the
test-filtered and sub-test-filter scales. Using the measured SGS momentum flux τij, we can
calculate the SGS dissipation εSGS through equation (5.1), which gives the rate of energy
transfer between the test-filtered scales and the sub-test-filter motions. Following Piomelli
et al. (1991), if εSGS is positive, then the kinetic energy transfers from the test-resolved to
the SGS motions (forward scatter), i.e.

ε+ =
1

2
(εSGS + |εSGS|). (5.12)

However, if εSGS is negative, kinetic energy is transferred in the opposite direction (backscat-
ter), i.e.

ε− =
1

2
(εSGS − |εSGS|). (5.13)

Similar definitions could be applied for the forward- and backscatter of the potential energy
transfer as follows

ε+ =
1

2
(εSGS + |εSGS|), (5.14)

ε− =
1

2
(εSGS − |εSGS|). (5.15)
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In the wavenumber domain, assuming periodic boundary conditions and a test filter
cutoff wavenumber kc, we can use the measured SGS fluxes in (5.10,5.11) to calculate the
kinetic and potential effective SGS energy transfer spectra as follows (using the notation
of Pope, 2000)

Tk(k|kc, t) =
1

2
〈Fj ˆ̄u∗j + F ∗j ˆ̄uj〉k, (5.16)

Tp(k|kc, t) =
1

2
〈J ˆ̄ρ∗ + J∗ ˆ̄ρ〉k, (5.17)

where Fj and J are the Fourier coefficients of the SGS fluxes ∂τij/∂xj and ∂hj/∂xj, re-
spectively. The complex conjugate is shown by ∗ symbol, and the angle bracket 〈· · ·〉k
denotes binning of the Fourier modes over spheres of constant radius k. Here, k = |k|
and k = (kx, ky, kz) is the three dimensional wavevector. In addition, the effective eddy
viscosity νe(k|kc, t) and the effective eddy diffusivity De(k|kc, t) are defined (as in Chapter
2) as

νe(k|kc, t) =
Tk(k|kc, t)
2k2E(k, t)

, (5.18)

De(k|kc, t) =
Tp(k|kc, t)
2k2Ep(k, t)

, (5.19)

where E(k, t) and Ep(k, t) are the kinetic and potential energy spectra. Meanwhile, the
effective turbulent Prandtl number can be written as

Prt(k|kc, t) =
νe(k|kc, t)
De(k|kc, t)

. (5.20)

Stratified turbulence is characterized by large Reynolds number Re = urmslh/ν and
small horizontal Froude number Frh = urms/Nlh such that the buoyancy Reynolds number

Reb = ReFr2
h, (5.21)

is also large (e.g. Brethouwer et al., 2007). Here, urms and lh are the root-mean-square
velocity and horizontal length scale, respectively; N is the buoyancy frequency and ν is
the molecular viscosity. The dissipation length scale is given by

kd =
( ε
ν3

)1/4

, (5.22)

where ε is the kinetic dissipation rate. For decaying turbulence, the maximum kd happens
at the time for which ε is maximum.
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5.3 Methodology

An idealized case study for decaying stratified turbulence is designed in a cubic domain
with triply periodic boundary conditions, as employed in Chapter 2, and the side length
L = 2π. Taylor-Green (TG) vortices, which include the horizontal structures with the
vertical variations

u(x, 0) = cos(z)[cos(x) sin(y),− sin(x) cos(y), 0], (5.23)

are considered as the initial conditions, i.e. TG vortices with period π. Also, approximately
10% of the initial energy in the form of low-level noise perturbs the initial TG vortices
isotropically. Noise is restricted to small wavenumbers k < 10. We have chosen to shrink
the domain from that used in chapter 2 to allow for higher effective spatial resolution,
which leads to a decrease in computation at time (as in e.g. Domaradzki et al., 1993).

The spectral transform method is employed for computing spatial derivatives, along
with the two-thirds rule to eliminate aliasing errors from x, y and z directions. The
number of grid points is given by n, and so the effective grid spacing is ∆ = 1.5L/n. The
explicit third-order Adams-Bashforth scheme is used for time-stepping of all terms except
the diffusion terms, for which the implicit trapezoidal method is employed. Simulations
with four different initial Reynolds number Re` = 1351, 3030, 6400 and 10900, and a range
of the initial Froude number Fr` from 0.08 to∞ are considered. Two different test cutoffs
kc = 20 and 40 are employed to study the spectral energy transfer between scales. The
horizontal length scale lh is calculated using the Taylor hypothesis, and urms =

√
E(t) and

Prt = 1. Table 5.1 shows the simulations parameters and identifiers.
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Figure 5.1: Time series of (a) total energy and (b) total dissipation rate.

5.4 Results & discussion

5.4.1 Overview of simulations

Figure 5.1 shows time series of the total energy and dissipation rates, in panels (a) and
(b), respectively. For the unstratified case, a quick drop in the total energy level and
a maximum in the total dissipation rate are visible at t ≈ 9. Increased stratification or
decreased resolution postpones the time of the energy drops and maximum dissipation. For
example, the case with Re` = 3030 and Fr` = 0.08 has only a small decrease in energy up
to t ≈ 27, while the maximum dissipation rate occurs around t = 36. These trends suggest
that by increasing stratification or decreasing the resolution, the occurrence of turbulence
is postponed (in line with Riley & de Bruyn Kops, 2003; Khani & Waite, 2013).

Figure 5.2(a) shows the horizontal component of the vorticity ωy on the x-z plane for
the high resolution case with Re` = 10900 and Fr` = 0.16 at t = 22, which is around the
time that maximum dissipation occurs. Layerwise structures along with Kelvin-Helmholtz
(KH) instabilities are visible. In addition, small-scale features are present, which seem to
correspond to the breakdown of KH billows into smaller-scale turbulence (figure 5.2a). The
time-averaged probability distribution of the local Richardson number over 20 ≤ t ≤ 24 for
the high resolution simulation with Fr` = 0.16 is shown in figure 5.2(b). The histogram
is peaked around 0 and presents a long tail for Ri > 0 and a rapid drop off for negative
Ri. The points with small and negative Richardson number suggest generation of KH
instabilities and overturning, respectively, (in line with figure 5.2a).
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Figure 5.2: (a) The horizontal component of vorticity field ωy in the x-z plane at y = 0.25
and t = 22, for the high resolution case with Re` = 10900 and Fr` = 0.16. (b) Averaged
probability distribution of the local Richardson number Ri over 20 ≤ t ≤ 24. Only the
segment −10 ≤ Ri ≤ 30 is shown. Histograms are normalized by bin size to get the
probability distribution: 100 bins over −10 ≤ Ri ≤ 30 (∆Ri = 0.4).
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Figure 5.3: (a) Time-averaged kinetic energy spectra and (b) time-averaged dissipation
spectra D(k) = 2νk2E(k). Arrows indicate the location of the test cutoff kc = 20 and 40.

The time-averaged kinetic energy and dissipation spectra are shown in figure 5.3. The
time averaging is performed over periods that εtot(t) is peaked (as shown in table 5.1).
Similar to previous studies (e.g. Riley & de Bruyn Kops, 2003; Khani & Waite, 2013),
increased stratification or decreased resolution steepens the slope of the spectra (figure
5.3). As a result, decreasing the buoyancy Reynolds number Reb leads to a delay in
the onset of turbulence and steepens the spectral power law. Arrows in figure 5.3 indicate
locations of the test cutoff kc = 20 and 40, which are used in the next sections for measuring
the energy transfer between scales.

5.4.2 Energy transfer in physical space

The forward- and backscatter components of the effective SGS kinetic and potential dis-
sipation rates εSGS and εSGS for kc = 40 are shown in figure 5.4. The maximum forward-
or backscatter happens around the time when the total dissipation rate εtot is peaked.
Increased stratification or decreased resolution decreases the amount of forward- and
backscatter, and also postpones the peaks. As a result, decreased Reb reduces forward-
and backscatter, and weakens their peak values (figure 5.4). These results demonstrate
that the presence of stratification decreases energy transfer between scales, i.e. both up-
and downscale energy transfers are reduced by increasing stratification. Figure 5.5 shows
the net kinetic and potential effective SGS energy transfers (i.e. εSGS and εSGS) subject
to the test cutoff kc = 40. Since all values in figure 5.5 are positive, this figure demon-
strates that the effective SGS energy transfer is downscale, and εSGS and εSGS are peaked
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Figure 5.4: Time series of forward- and backscatter components of the effective SGS dis-
sipation rate for kc = 40: (a) kinetic and (b) potential.

around the time that the total dissipation rate εtot is peaked. It is interesting that the
effective SGS energy transfer results from the superposition of two processes: forward- and
backscatter, for which the net values of SGS transfer are much smaller than those for ε± by
almost one order of magnitude (figures 5.4 and 5.5). Similar findings have been reported
for unstratified turbulence (e.g. Piomelli et al., 1991). In addition, our results show that
the domain fraction for backscatter is very close to forward scatter (around 50% for each)
for the high resolution case with Re` = 10900 and Fr` = 0.16. This trend suggests that the
local volume fraction of backscatter is as important as that in forward scatter in stratified
turbulence (in line with the results for isotropic turbulence, e.g. Piomelli et al., 1991).

Effects of changing the test cutoff kc

Figure 5.6 shows the effects of using different test cutoffs on the up- and downscale energy
transfer. Results from a smaller cutoff wavenumber kc = 20 (black) are compared to
results for the larger cutoff kc = 40 (grey). For early times, the forward- and backscatter
are slightly larger for kc = 20 compared to those for kc = 40. However, as time evolves
towards the turbulence commencement, the up- and downscale transfers get slightly larger
for the larger cutoff wavenumber kc = 40. Overall, the effects of changing the test cutoff kc
are negligible on time series of the forward- and backscatter in the physical space (figure
5.6). These trends might be a sign of self similarity of energy transfer in the physical space
in the spherical direction k. Similar trends in which forward- and backscatter are almost
independent to the filter width is are reported for unstratified turbulence (Piomelli et al.,
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Figure 5.5: Time series of the effective SGS dissipation rate for kc = 40: (a) kinetic and
(b) potential.

1991).

5.4.3 Energy transfer in wavenumber space

The averaged effective SGS kinetic and potential energy transfer spectra for kc = 40 are
shown in figures 5.7(a) and (b), respectively. According to our definitions in equations
(5.16,5.17) from the filtered equations of motion (5.7-5.9), positive values of 〈Tk(k|kc, t)〉
and 〈Tp(k|kc, t)〉 present downscale energy transfer from above to below the filter scale,
and negative values denote backscatter. For the unstratified simulation and the stratified
case with Re` = 6400 and Fr` = 0.64, no signs of backscatter are observed. However,
increased stratification along with decreased resolution results in the upscale transfer of
kinetic energy over 0.1 . k/kc . 0.7 (figure 5.7a). These trends suggest that by reducing
the buoyancy Reynolds number Reb to be around 1 or even smaller, backscatter emerges
in stratified turbulence over an intermediate range of wavenumbers. Such behaviours are
not seen in the effective SGS potential energy transfer spectra (figure 5.7b).

The averaged horizontal and vertical effective SGS kinetic and potential energy transfer
spectra for the case with Re` = 3030 and Fr` = 0.24 are shown in figure 5.8. It is interesting
that the upscale kinetic energy transfer, which was shown in figure 5.7(a), happens at large
horizontal and small vertical scales (figure 5.8a). To further examine this backscatter, and
in particular its dependence on Reynolds number, we have performed a series of simulations
in which the initial Reynolds number is increased at fixed initial Froude number, thereby
increasing the buoyancy Reynolds number. In particular, we consider cases with Fr` ≈ 0.1
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Figure 5.8: Averaged horizontal and vertical wavenumber effective SGS (a) kinetic and
(b) potential energy transfer spectra for the case with Re` = 3030 and Fr` = 0.24, when
kc = 40. The spherical labels show those corresponding curves that were shown in figure
5.7.

and Re` = 3030, 6400 and 10900. Interestingly, increased Reynolds number leads to
decreasing, and finally an elimination, of the backscatter (see solid green, dashed cyan and
dot-dashed blue lines in figure 5.7a). In addition, the horizontal and vertical effective SGS
potential energy transfer spectra do not show an upscale energy transfer (figure 5.8b).

At low Reb . 1, stratified turbulence has a viscously layered structure, with verti-
cal layer thickness of Lvisc = lh/

√
Re, below which viscous effects are important (e.g.

Brethouwer et al., 2007). In these three simulations Lvisc ≈ 0.04, 0.06 and 0.83 when
Re` = 10900, 6400 and 3030, respectively. As a result, test filter scales are clearly affected
by viscosity at the smaller Re, less so at the larger Re. If we compare Lvisc with the
test-filter width ∆test ∼ 1/kc, which is 0.025 for kc = 40, it is clear that as Lvisc decreases
towards ∆test with increasing Re, backscatter is eliminated. We speculate that there may
be a similar relation for the viscous scale and test-filter width in DNS of Remmler &
Hickel (2014), who have also reported backscatter in DNS of stratified turbulence. Using
lh = 2π in their strongly stratified case, we can get Lvisc ≈ 0.03, which is very close to
the test-filter width in their simulation (see Remmler & Hickel, 2014). As a result, the
upscale energy transfer in wavenumber space could be due to viscous effects rather than a
turbulent mechanism. These findings suggest that the presence of upscale energy transfer,
which is reported by Remmler & Hickel (2014), could be due to effects of the low Reynolds
number.
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Figure 5.9: Averaged effective SGS (a) kinetic and (b) potential energy transfer spectra
for kc = 20. The solid grey line indicates zero.

Effects of changing the test cutoff kc

By changing the location of the test cutoff wavenumber kc from 40 to 20, effective SGS
kinetic and potential energy transfers change dramatically (figure 5.9). The magnitudes
of effective SGS energy transfers are increased using smaller kc. In addition, the effective
SGS kinetic energy transfer presents no or very small backscatter. As a result, by moving
the test cutoff kc towards small wavenumbers, the upscale energy transfer is reduced or
avoided. For example, stratified cases with Re` = 3030 and Fr` = 0.1, 0.08, present no
backscatter when kc = 20, in contrast with the corresponding results when kc = 40 (figure
5.7a). These trends suggest that the upscale energy transfer happens from sub-test-filter
scales towards the smaller test-resolved scales (see figures 5.7 and 5.9).

5.4.4 The effective turbulent Prandtl number

Figure 5.10 shows the averaged effective turbulent Prandtl number 〈Prt(k|kc, t)〉 spectra
at different test cutoffs kc. The case with Re` = 6400 and Fr` = 0.64 shows positive
values that are between 0 and 1, for both test cutoff kc = 20 and 40 (solid purple lines
in figures 5.10a,b). However, all other cases show negative 〈Prt(k|kc, t)〉 spectra over the
intermediate range 0.1kc . k . 0.6kc. By moving kc from 40 to 20, negative 〈Prt(k|kc, t)〉
values are decreased for cases with Re` = 3030 and Fr` = 0.24, 0.12 (figures 5.10a,b).
Nevertheless, cases with Fr` = 0.08 and Re` = 6400, 3030 still show large negative values
of 〈Prt(k|kc, t)〉. It is interesting that for all cases, the averaged effective turbulent Prandtl
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Figure 5.10: Averaged effective turbulent Prandtl number spectra for (a) kc = 40 and
(b) kc = 20. The solid grey line and dashed black line indicate values of zero and 1,
respectively.

number is positive and fairly close to 1 around the test cutoff k ≈ kc. This trend might
suggest that the assumption of Prt ≈ 1 is reasonable for the local energy transfer at all
regimes of Reb (as is assumed in e.g. Siegel & Domaradzki, 1994; Khani & Waite, 2014a).
However, by decreasing Reb to be of order ∼ 1 or� 1, this assumption might not be valid
for the nonlocal energy transfer (similar behaviours are investigated by Remmler & Hickel,
2014).

5.5 Conclusion

The dynamics of kinetic and potential energy transfer in both physical and wavenumber
space for decaying stratified turbulence is studied in this chapter. The effective SGS energy
transfer εSGS is a small net energy transfer from large to small scales that is deduced from
the combination of two large energy transfer mechanisms: downscale ε+ and upscale ε−

(in line with results for unstratified simulations, e.g. Piomelli et al., 1991). Increased
buoyancy Reynolds number Reb leads to an increase in the upscale and downscale kinetic
and potential energy transfer, and hence increasing effective SGS energy transfer in physical
space. As a result, upscale energy transfer might not be just a random and stochastic
process that is independent of the flow dynamics, as is considered for modelling backscatter
in the literature (e.g. Lesieur, 1990; Chasnov, 1991; Marstorp et al., 2007; Weinbrecht &
Mason, 2008). Our results show that backscatter depends on the parameters of stratified
turbulence such as buoyancy frequency, resolution and the buoyancy Reynolds number.
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A similar idea is suggested by O’Brien et al. (2014), in which backscatter in reacting
turbulence depends on the dynamics of the flow such as the SGS Mach number and high-
speed compressibility.

In wavenumber space, the effective kinetic and potential energy transfer spectra are
positive (i.e. forward scatter) when Reb ∼ O(10). However, for Reb ∼ O(1) or smaller, the
kinetic energy transfer spectra show negative values (i.e. backscatter) when the Reynolds
number is small. We found that this behaviour occurs when the test filter scale falls below
the scale of the viscous layers that are present at small Reb. These trends suggest that the
effective kinetic energy transfer spectra are contaminated by viscous effects in the small
Reynolds number regime, for which the non-local backscatter are seen in the effective
kinetic energy transfer spectra. The effective turbulent Prandtl number spectra suggest
that the assumption of Prt = 1 is reasonable for the local energy transfer. For the nonlocal
energy transfer, however, the effective 〈Prt〉 is negative when Reb ∼ O(1) or smaller.

Performing DNS of stratified turbulence for large and small Reb, when the Reynolds
number is very large is a potential direction for future work, so that the dynamics of energy
transfer around the buoyancy and Ozmidov scales could be studied in detail, and away from
the effects of molecular viscosity.
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Chapter 6

Conclusion

6.1 Concluding remarks

In Chapter 2, we performed an a priori test on DNS of stratified turbulence to study
the dynamics of actual small-scale motions and the energy transfer around the Ozmidov
length scale. Transfers between scales larger and smaller than a test filter scale were
analyzed, and filters were applied separately in the horizontal and vertical directions. This
systematic analysis allows one to directly compare the isotropic Kraichnan eddy viscosity
with the effective eddy viscosity in stratified turbulence. Due to the layerwise structures
of turbulent flows that are subjected to strong stratification, an anisotropic framework,
involving horizontal and vertical eddy viscosities, is outlined in this chapter. It is shown
that the horizontal and vertical eddy viscosities are fairly similar in the non-stratified
case, as expected. However, the presence of stratification changes the shape of directional
effective eddy viscosity significantly, when the test cutoff kc is around or smaller than
ko. The energy transfer spectra also change in the presence of strong stratification. In
particular, the horizontal energy transfer shows a non-local contribution from large to
small horizontal scales and a short cusp. This non-local energy transfer in the horizontal
direction of stratified turbulence occurs at large vertical wavenumbers (i.e. local in the total
wavenumber direction) and is not seen in the vertical direction or in the non-stratified
cases. Changing the test cutoff wavenumber kc has a significant effect on the effective
eddy viscosity. By increasing kc towards the dissipation scale, the non-local horizontal
energy transfer decreases while the local energy transfer around kc increases. The results
of chapter 2 suggest that the current isotropic SGS models might not be a proper choice for
LES of stratified turbulence when kc . ko. For the next two chapters we evaluate current
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SGS models in the physical and wavenumber space.

Chapter 3 investigated the performance of two common isotropic SGS models (i.e. the
Smagorinsky and Kraichnan models) in LES of stratified turbulence when kc < ko. It is
shown that when the grid spacing ∆ is small enough, the horizontal wavenumber spectra
have an almost −5/3 slope along with a bump near kb. In this situation, increased strat-
ification or decreased resolution prohibits KH instabilities by shrinking the thickness of
vertical layers towards the dissipation range or by increasing the dissipation scale, respec-
tively. A threshold on ∆ is presented for which the dynamics of stratified turbulence are
captured when kc < ko. This threshold depends on the buoyancy scale Lb and changes
with different SGS models. The Smagorinsky model needs ∆ < 0.17Lb while the Kraich-
nan model requires ∆ < 0.47Lb. As a result, the Smagorinsky model is significantly more
expensive than the Kraichnan model since the former model requires grid spacing ∆ which
is three times smaller than the latter one to give the same results.

The results of chapter 3 show that, not surprisingly, isotropic SGS model definitely fail
to resolve the dynamics of stratified turbulence when ∆ > Lb. However, it is interesting
to note that these SGS models perform well if the buoyancy scale is resolved even when
kc < ko. In other words, the isotropic SGS models successfully capture the dynamics of
stratified turbulence when the cutoff wavenumber kc is larger than kb. This criteria has
significant implications for the computational costs, especially for large buoyancy frequency
N since it implies that resolving kb and not ko may be sufficient for LES of stratified
turbulence. Nevertheless, LES of stratified turbulence is expensive since it still requires
resolution of Lb, which is the layer thickness and therefore may be many times smaller
than the energy-containing scale. The question here is then: how can we improve the
disappointing performance of Smagorinsky LES, which is a common choice in applications,
in stratified turbulence? It is worthwhile to recall that the applicability of the Kraichnan
model is limited to idealized cases with triply periodic boundary conditions.

In chapter 4, the performance of the Smagorinsky model was improved using a dynamic
subgrid scale approach. In this approach, the Smagorinsky coefficient cs is not assumed
to be constant and is determined using the dynamics at resolved scales. Results show
that the criterion ∆/Lb < 0.24 is sufficient for the dynamic Smagorinsky model to capture
the basic dynamical features of stratified turbulence. This criterion suggests a larger grid
spacing may be used for the dynamic model compared to the regular Smagorinsky model.
It was shown in figure 4.4 that the dynamic SGS model improves the performance of the
Smagorinsky model by increasing the maximum grid spacing by almost a factor of two.
In addition, our results demonstrate that the cs fields show layerwise structures in the
presence of stratification. In addition, larger values of cs are corresponding to regions with
smaller shears, and also cs values are very small at regions with large shears.
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Figure 6.1: The averaged horizontal wavenumber energy spectra at different resolutions
and buoyancy frequencies for all SGS models.

The performance of all the SGS models considered here are summarized in figure 6.1,
where the horizontal wavenumber spectra at different buoyancy frequencies and resolutions
are shown. As already known, the high resolution Smagorinsky LES with N = 6 shows
the steepest slope, which is even steeper than the low resolution dynamic Smagorinsky
LES with N = 4. At the large horizontal wavenumbers (i.e. kh & 100), the Kraichnan
LES is less dissipative than the hyperviscosity simulation. For large horizontal scales (i.e.
kh . 40), the dynamic Smagorinsky LES with n = 512 and N = 2 is very similar to the
high resolution Kraichnan LES with the same buoyancy frequency. All the high resolution
cases with buoyancy frequency N = 2 show an inertial subrange with a slope close to
−5/3 along with a bump around kb. As the buoyancy frequency N increases or resolution
decreases, significant differences in small resolved scales appear. It is worthwhile to recall
that large scales seem to be robust to the choice of SGS models.

In chapter 5, we analyzed DNS results of stratified turbulence to directly measure
forward- and backscatter in both physical and wavenumber spaces. Increased stratification
or decreased resolution decreases the effective upscale and downscale SGS energy transfer
in physical space. The effects of changing the test cutoff kc are negligible on forward- and
backscatter. This trend might be a sign of self-similar up- and downscale energy transfer
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in physical space. The effective SGS kinetic energy transfer spectra may get contaminated
by viscous effects for small Reynolds numbers. As a result, the effective spectral turbulent
Prandtl number at intermediate length scales might become negative for small Reynolds
numbers. Also, our results show that the assumption of Prt = 1 is reasonable for local
energy transfer.

In summary, this thesis includes both a priori and a posteriori tests in numerical sim-
ulations of stratified turbulence. The presence of stratification has important effects on
turbulent eddies at both resolved and sub-grid scales. LES of stratified turbulence requires
resolution of the buoyancy scale to capture dynamical features of turbulent motions. Al-
though the SGS models considered here are isotropic, the eddy dissipation spectra show
anisotropic behaviours due to anisotropy in the rate of strain s̄ij, which is used in mod-
elling SGS motions. Upscale energy transfer depends on the flow parameters such as the
buoyancy Reynolds number.

6.2 Future work

DNS and LES of stratified turbulence in idealized cases are studied in this thesis where the
buoyancy frequency is constant. It would be interesting to investigate performance of LES
in conditions where N varies with height, e.g. the atmospheric boundary layer. We might
need higher resolution in the regions with larger N . Also, it is interesting to consider other
phenomena in the atmosphere and ocean such as clouds, topography and urban canopies.

In addition, resolving the buoyancy scale Lb may not be possible in some cases (at least
in the horizontal direction) because of computational expense. For example, a typical Lb
in the atmosphere is order of O(100) m (e.g. Waite, 2014), which is almost impossible to
be resolved in the horizontal direction when the domain is large. As a result, designing
an anisotropic SGS model for LES of stratified turbulence seems to be a necessary step
in reducing the computational costs of simulating more complex flows in the atmosphere
and ocean. The results of chapter 4 suggest that the dynamic SGS model could be a solid
basis for addressing the anisotropic behaviours of stratified turbulence.

Ultimately, while it is known that DNS is an expensive approach for studying stratified
turbulence, high resolution DNS are required to learn more about the dynamics of energy
transfer between large and small scales subjected to a large inertial subrange. Of course,
the a priori testing on such a high resolution DNS would be very helpful in designing a
robust anisotropic SGS model for LES of stratified turbulence.
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Appendix A

Energy budget in DNS

Let us consider the momentum and energy equations (2.11,2.13) subjected to equations
(2.14,2.15) as follows

(
∂

∂t
+

k2

Re`
)ûj(k, t) +

1

Fr`
2 ρ̂(k, t)ez = Fj(k, t), (A.1)

(
∂

∂t
+

k2

Re`Pr
)ρ̂(k, t)− ŵ(k, t) = J(k, t), (A.2)

multiply equations (A.1,A.2) by the complex conjugate of velocity and density fields, re-
spectively to get

û∗j(k, t)(
∂

∂t
+

k2

Re`
)ûj(k, t) +

1

Fr`
2 ŵ
∗(k, t)ρ̂(k, t) = û∗j(k, t)Fj(k, t), (A.3)

ρ̂∗(k, t)(
∂

∂t
+

k2

Re`Pr
)ρ̂(k, t)− ρ̂∗(k, t)ŵ(k, t) = ρ̂∗(k, t)J(k, t). (A.4)

Similarly, we can multiply ûj(k, t) and ρ̂(k, t) by the complex conjugate of (A.1,A.2),
respectively, and add them to (A.3,A.4), respectively, yielding

(
∂

∂t
+

2k2

Re`
)ûjû

∗
j +

1

Fr`
2 (ŵ∗ρ̂+ ŵρ̂∗) = û∗jFj + û∗jFj, (A.5)

(
∂

∂t
+

2k2

Re`Pr
)ρ̂ρ̂∗ − (ρ̂∗ŵ + ρ̂ŵ∗) = ρ̂∗J + ρ̂J∗, (A.6)
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where we have suppressed the dependence on k and t for clarity. Let us define the kinetic
and potential energy spectrum respectively by

Ek(k, t) =
1

2
ûj(k, t)û

∗
j(k, t), (A.7)

Ep(k, t) =
1

2Fr`
2 ρ̂(k, t)ρ̂∗(k, t), (A.8)

therefore, equations (A.5,A.6) can be rewritten as follows

(
∂

∂t
+

2k2

Re`
)Ek(k, t) +B(k, t) = T (k, t), (A.9)

(
∂

∂t
+

2k2

Re`Pr
)Ep(k, t)−B(k, t) = Tp(k, t), (A.10)

where B = 1/(2Fr2
` )(ŵ

∗ρ̂ + ŵρ̂∗) is the buoyancy flux and T (k, t) and Tp(k, t) show the
kinetic and potential energy transfer between scales. Since DNS resolves all scales from
large energy containing scale ki down to the Kolmogorov scale kd, we can conclude that

kd∑
k=ki

T (k, t)dk = 0, (A.11)

kd∑
k=ki

Tp(k, t)dk = 0, (A.12)

because they transfer kinetic and potential energy conservatively between scales.
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Appendix B

Energy budget in LES

Let us consider the momentum and energy equations (3.16,3.18) along with equations
(3.19-3.22), written as

∂

∂t
ˆ̄uj(k, t) +

1

Fr`
2

ˆ̄ρ(k, t)ez = F̄j(k, t) + F s
j (k, t) + ˆ̄fj, (B.1)

∂

∂t
ˆ̄ρ(k, t)− ˆ̄w(k, t) = J̄(k, t) + Js(k, t). (B.2)

If we multiply (B.1) and (B.2) by the complex conjugate of velocity and density fields,
respectively, we get (suppressing dependence on k and t for clarity)

ˆ̄u∗j
∂

∂t
ˆ̄uj +

1

Fr`
2

ˆ̄u∗j ˆ̄ρez = ˆ̄u∗j F̄j + ˆ̄u∗jF
s
j + ˆ̄u∗j

ˆ̄fj, (B.3)

ˆ̄ρ∗
∂

∂t
ˆ̄ρ− ˆ̄ρ∗ ˆ̄w = ˆ̄ρ∗J̄ + ˆ̄ρ∗Js. (B.4)

Let us multiply velocity and density fields to the complex conjugate of (B.1,B.2), respec-
tively, and then add them to (B.3,B.4), respectively, as follows

∂(ˆ̄u∗j ˆ̄uj)

∂t
+

1

Fr`
2 ( ˆ̄w∗ ˆ̄ρ+ ˆ̄w ˆ̄ρ∗) = (ˆ̄u∗j F̄j + ˆ̄ujF̄

∗
j ) + (ˆ̄u∗jF

s
j + ˆ̄ujF

s∗
j ) + (ˆ̄u∗j

ˆ̄fj + ˆ̄uj
ˆ̄f ∗j ), (B.5)

∂(ˆ̄ρ∗ ˆ̄ρ)

∂t
− (ˆ̄ρ∗ ˆ̄w + ˆ̄ρ ˆ̄w∗) = (ˆ̄ρ∗J̄ + ˆ̄ρJ̄∗) + (ˆ̄ρ∗Js + ˆ̄ρJs∗). (B.6)
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If we define the kinetic energy spectrum and the potential energy spectrum as in (A.7,A.8),
then equations (B.5,B.6) can be written as

∂EK(k, t)

∂t
+B(k, t) = Tr(k, t) + Ts(k, t) + Pw(k, t), (B.7)

∂EP (k, t)

∂t
−B(k, t) = TPr(k, t) + TPs(k, t). (B.8)

where

B(k, t) =
1

2Fr`
2 ( ˆ̄w∗ ˆ̄ρ+ ˆ̄w ˆ̄ρ∗), (B.9)

(B.10)

is the buoyancy flux and

Tr(k, t) =
1

2
(ˆ̄u∗j F̄j + ˆ̄ujF̄

∗
j ), (B.11)

Ts(k, t) =
1

2
(ˆ̄u∗jF

s
j + ˆ̄ujF

s∗
j ), (B.12)

are the resolved kinetic energy flux and the energy transfer to dissipation scales, respec-
tively. Similar results hold for Tpr(k, t) and Tps(k, t) in the potential energy budget. In
appendix C, we show how we can compute the eddy dissipation spectra and the spectral
effective eddy viscosity when Ts(k, t) is modelled using the eddy-viscosity hypothesis (see
chapter 3).
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Appendix C

Eddy dissipation spectra

Let us consider m̂(k, t) as the Fourier transform of the eddy dissipation term −∇·τ r(x, t)
as follows

−∇ · τ r(x, t) =
∑
k

m̂(k, t)eik·x. (C.1)

We can multiply m̂(k, t) with the complex conjugate of velocity coefficient û(k, t) and add
the result to the product of the complex conjugate of m̂(k, t) with û(k, t) as follows

Ts(k, t) = m̂i(k, t)û
∗
i (k, t) + m̂∗i (k, t)ûi(k, t), (C.2)

where T r(k, t) is the eddy dissipation in the kinetic energy budget and also shows the
amount of energy that transfers from resolved scales to the subgrid scales. The eddy
dissipation term T r(k, t) may be divided by twice the energy spectrum to get the effective
spectral eddy viscosity for LES as follows

ν(k, t) = − Ts(k, t)
2E(k, t)

. (C.3)

Equation (C.3) could be binned over constant k or kh or kv and averaged over time to get
the one dimensional effective spectral eddy viscosities

ν(k) =

∑
|k|=k〈ν(k, t)〉

k2
, (C.4)

ν(kh) =

∑
|k|=kh〈ν(k, t)〉

k2
h

, (C.5)

ν(kv) =

∑
|k|=kv〈ν(k, t)〉

k2
v

, (C.6)
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where subscripts h and v denote the horizontal and vertical directions. Similarly, we get
the one dimensional horizontal and vertical eddy dissipation spectra 〈Ts(kh)〉 and 〈T s(kv)〉
by binning the eddy dissipation spectra Ts(k, t) over constant kh and kv, respectively.
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