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Abstract

Over the years many techniques have been proposed to infer programming rules in order to
improve software reliability. The techniques use violations of these programming rules to
detect software defects. This thesis introduces an approach, NG Detection, which models
a software’s source code using the n-gram language model in order to find bugs and
refactoring opportunities in a number of open source Java projects. The use of the n-
gram model to infer programming rules for software defect detection is a new domain for
the application of the n-gram model.

In addition to the n-gram model, NG Detection leverages two additional techniques
to address limitations of existing defect detection techniques. First, the approach infers
combined programming rules, which are a combination of infrequent programming rules
with their related programming rules, to detect defects in a way other approaches cannot.
Second, the approach integrates control flow into the n-gram model which increases the
accuracy of defect detection.

The approach is evaluated on 14 open source Java projects which range from 36 thou-
sand lines of code (KLOC) to 1 million lines of code (MLOC). The approach detected 310
violations in the latest version of the projects, 108 of which are useful violations, i.e., 43
bugs and 65 refactoring opportunities. Of the 43 bugs, 32 were reported to the developers
and the remaining are in the process of being reported. Among the reported bugs, 2 have
been confirmed by the developers, while the rest await confirmation. For the 108 useful
violations, at least 26 cannot be detected by existing techniques.
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Chapter 1

Introduction

Even in mature software projects, existing bug detection techniques have shown that it is
possible to find bugs which were previously unknown [I,2]. Some approaches operate by
finding implicit programming rules in a software project. These programming rules can
then be used to find violations which has the potential to find software defects. Various
methods exist which can mine programming rules from a software project, such as mining
program source code [3—11], version histories [5, 12, 13], and source code comments or
documentation [14, 15]. Bug detection techniques will often use these mined rules in order
to detect violations as potential bugs.

1.1 Motivation

As motivation for this work, a number of existing rule-based bug detection approaches [3-5,

, 16] have obtained significant progress in finding bugs by making use of frequent itemset
mining techniques. These bug detection approaches identify frequent method calls and
variable accesses as programming rules, and then use these rules to detect violations. As
a simple example, say three methods called A, B, and C are sequentially called together
in multiple locations of the program. This would give a developer the impression that
if method A and B were called, you would then be expected to then call method C. Bug
detection tools such as PR-Miner [3] would infer the rule that calls to methods A and B
should also have a call to method C, and a violation would be the a locations where method
C is not called. This violation could then be reported as a potential bug for the developer
to evaluate.



It has recently been demonstrated that n-gram language models can capture the reg-
ularity of software, which have been used for software engineering tasks including code
completion and suggestion [17-20]. Naturally, other software engineering tasks may also
be applicable to modeling software using the n-gram language model. Therefore it would
be beneficial to leverage the n-gram language model to represent software and use it as the
basis for detecting violations in source code. This the approach presented, referred to as
NG Detection, uses an n-gram language model based bug detection technique explained in
this thesis!.

1.2 Proposed Approaches

This novel idea is to use a simple natural language processing technique in order to resolve
some of the outlined downsides with other approaches. Specifically, NG Detection utilizes
the three following techniques to complement existing rule-based bug detection techniques.

1.2.1 N-gram Language Model

Many existing techniques [3-5,7] do not consider the order of method calls. This has
potential to miss opportunities to detect bugs caused by incorrect calling order of methods.
In addition, existing frequent itemset mining based approaches [3—5, 7] do not recognize
the same method being called multiple times in the itemset. For example, if a project
contains 99 sequences of calls to methods A and B, denoted as AB, together with a single
sequence of calls to methods A, B, and B, denoted as ABB. Existing techniques represent all
100 sequences as a set {A, B}, thus fail to detect the potential bug of the ABB sequence. It
is common that certain methods, e.g., B in the example, should not be called consecutively.

NG Detection makes use of the n-gram language model [21] which provides a Markov
model for modeling tokens. The n-gram model considers the order of tokens and recognizes
multiple calls to the same method, both of which are often neglected by existing approaches.
Therefore since NG Detection uses the n-gram language model it can detect bugs that
existing techniques cannot.

IThis thesis is based off the work in a conference submission.



1.2.2 Combined Rules

Existing techniques typically infer a single frequent set or sequence as a rule, and do not
take full advantage of multiple sets or sequences, missing opportunities to detect new
bugs. For example, if a sequence of calls to methods A, B, and C, denoted as ABC, appear
49 times, and the sequence ABD appears 49 times. It would then make the two appearances
of the sequence ABE be a potential violation of the programming rule where AB should be
followed by C or D, denoted as AB(C|D). Existing techniques such as PR-Miner [3] require
the confidence for a single sequence, e.g., ABC, to be over 90% in order to avoid generating
a large number of false violations. In this example, the confidence of the sequence ABC,
which is the probability of C appearing after AB, is only m = %. Therefore, these
existing techniques would miss the two potential violations of ABE.

To address this issue, NGDetection considers multiple sequences together to infer
combined rules. The combined rule inference considers the combination of infrequent
sequences for rules. In the ABE bug example, NG Detection combines relevant sequences
and only requires the combined confidence, i.e., 4322332 = % for the two sequences ABC
and ABD, to pass a certain threshold. Our results confirm such combined rules are common
in projects, which have helped us detect 14 new bugs (Section 4). Alattin [7] infers the
combination of rules, however, it focuses on branch condition related rules. In addition,

Alattin does not use an n-gram model (a detailed discussion in Section 2).

1.2.3 Control Flow

Most approaches do not consider control flow when learning programming rules. This
results in similar sequences of method calls being considered equivalent when they are
semantically different, which causes false bugs to be detected (Section 3.2). To improve
the detection accuracy, NG Detection takes into consideration a program’s control flow
when inferring programming rules. For example, consider the following snippet of code:

1AQ);

2B ;

3if (condition) {
| cO;

5} else {

6 D();

7}




The sequence of method calls in the above code is ABCD where C is called in an if branch
and D is called in the else branch. However, it can be easily seen that the rule ABCD does
not make sense since the C and D methods will never be called in order. Instead it would
be expected to have the condition be true then execute ABC or the condition be false then
execute ABD. Intuitively, these are two separate control flow paths and should be treated
as AB(C|D) instead of ABCD. The key concept behind using control flow is that control flow
has a significant impact on semantics and should not be ignored. If ignored, it leads to
situations where patterns such as ABCD are discovered when in reality C and D are never
executed together.

1.3 Contributions

This thesis demonstrates the use of the n-gram language model on a new domain: software
defect detection and makes the following contributions:

e Proposes a new approach, called NG Detection, to model source code and extract
programming rules for detecting bugs. It differs from existing bug detection ap-
proaches by leveraging a natural language model. To the best of our knowledge, this
is the first work to leverage n-gram language model for bug detection.

e Combines n-gram models with two additional techniques to address limitations of
existing bug detection approaches. Specifically, the approach combines multiple rules
to detect new bugs that are not detected by existing techniques. In addition, it
incorporates control flow for rule inference and bug detection processes to improve
the accuracy of the bug detection. While the approach in this thesis uses these
two techniques with the n-gram model, these two techniques are orthogonal to the
approach, and are applicable to other rule inference approaches.

e An evaluation of NG Detection on 14 open source Java projects ranging from 36
thousand lines of code to 1 million lines of code. Results show that NG Detection
detects 310 violations in the latest versions of the evaluated projects, 108 of which
are useful violations—43 bugs and 65 refactoring opportunities. 32 out of the 43
bugs are reported to the developers and the rest are in the process of being reported.
Among the reported bugs, 2 have been confirmed by developers, while the rest await
confirmation. Among the 108 useful violations, at least 26 cannot be detected by
existing techniques such as PR-Miner [3].

In this thesis, Chapter 2 briefly goes into detail on the n-gram language model and
outlines various related work in programming rule based bug detection. Chapter 3 explains
the design and implementation of NG Detection as well as describing in detail about the
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tunable parameters for the technique. Chapter 4 provides information on the setup for the
experiments as well as detailed results for programming rules, bug detection, and parameter
influence. Finally, Chapter 5 summarizes the findings of this thesis, the limitations of the
current approach, and the future directions for this approach.



Chapter 2

Related Work

In this chapter, Section 2.1 details the n-gram language model and provides a natural
language example of how it can be used to predict words. In Section 2.2, an overview of
some of the related work on using statistical language models for program analysis. In
Section 2.3, details some of the related work on program rule mining and its usage for
defect detection.

2.1 Background

The n-gram language model has been used in modelling natural language [21] and solving
problems such as speech recognition [22], statistical machine translation, and other related
language challenges [23]. The n-gram language model typically consists of two components,
words and sentences, where each sentence is an ordered sequence of words. The language
model can build a probabilistic distribution over all possible sentences in a language using
Markov chains. The model contains a dictionary D, which lists all possible words of a
language, where each word is represented as w. The probability of a sentence in a language
is estimated by building a Markov chain with n — 1 words. That is, the probability of a
sentence can be calculated by using the conditional probabilities of the previous n — 1
words. Given a sentence s = wy - wo - w3 - ... - W,,. Where its probability is estimated as:

P(s) = H P(w;|hi_y)

where, the sequence h; = w;_,, - ... - w; is the history. In the n-gram language model, the
probability of the next word w; depends only on the previous n — 1 words.

6



For example, say we are given the following phrases and the number of times they occur
in a document: “I played hockey” occurred 16 times, “I played football” occurred 3 times,
and “I played tennis” occurred a single time. Then when we see the words “I played” we
would expect “hockey” to be the next word with probability of 16/20 = 80%, “football”
would be 3/20 = 15%, and “tennis” would be 1/20 = 5% of the time. Thus, we would
predict that if we saw the phrase “I played” there is an 80% chance the next word would
be “hockey”. While the n-gram model has applications in natural language processing this
approach seeks to utilize it for representing and analyzing code to find bugs. Specifically,
programming rules are mined from sequences of method calls with control flow information,
the rules are then used to detect rule violations for bug detection.

2.2 Language Models for Program Analysis

Statistical language models have been successfully used for program analysis with a wide
variety of techniques. Hindle et al. [17] first leveraged the n-gram language model to show
that software source code has high repetitiveness, and the n-gram language model can
be used in code suggestion and completion. This work laid the groundwork for using
language models to model source code and demonstrated how they could be used in
software tools. Han et al. [19] presented an algorithm to infer the next token by using
a Hidden Markov Model for code completion and demonstrated a high level of accuracy.
Nguyen et al. [20] proposed a code suggestion method named SLAMC, which incorporated
semantic information into an n-gram model. It demonstrated how tokens can be seen more
semantically instead of just syntactically. Raychev et al. [15] investigated the effectiveness
of various language models, i.e., n-gram and recurrent neural networks, for code completion.
By combining program analysis and the n-gram model, they proposed SLANG, which
aimed to predict the sequence of method calls in a software system. Allamanis et al. [24]
used the n-gram model to learn local style from a codebase and provided suggestions to
improve stylistic consistency. Other work using the n-gram language model has focused
on style [241] and code suggestion [18,20]. This work leverages the n-gram model on a new
domain—software defect detection.

2.3 Rule Mining and Defect Detection

Over the last decade many techniques have been developed for mining programming rules
and bug detection [3—141,25-30]. Many of these techniques are able to find many patterns,



where even the simple patterns show success in detecting bugs [1]. The patterns can be in
the form of simple manually written code templates which are pattern matched to parts of
a code base [1]. Other methods are more complicated and find patterns in the source code
or comments which allow for a solution that can learn new conventions. Ramanathan et
al. [31] used inter-procedural analysis to find and detect violations of function precedence.

Li et al. [3] developed PR-Miner to mine programming rules from C code and detect vio-
lations using frequent itemset mining. Benjamin et al. [5] proposed DynaMine which used
association rule mining to extract simple rules from software revision histories for Java
code and detect defects related to rule violations. Many frequent itemset mining-based
tools do not consider program control flow or the combination of mined rules. Chang
et al. [0] proposed a static bug detection approach to mine rules for detecting neglected
conditions. Their approach considered control flow by combining frequent itemset mining
and frequent subgraph mining on C code. Jeff et al. [32] proposed a sound predictive
race detection method incorporating control flow. Suresh et at. [7] presented an approach
to detect neglected conditions using different combinations of rules mined from condi-
tion check points in source code, i.e., conjunctive, disjunctive, exclusive, and disjunctive
combinations. Their evaluation shows that the conjunctive pattern of their approach pro-
duces the best performance in terms of reducing false positives. Their work focused on
detecting conditional related bugs differs from our work on control low and method calls.
NG Detection’s approach differs from the above approaches in two distinct ways. First,
the use of the n-gram language model to represent source code which enables it to use the
ordering information between method calls and handles repetitive method calls. Second,
NG Detection considers both program control flow and the combination of rules, which
are helpful for reducing false positives and detecting bugs that existing techniques cannot
detect.



Chapter 3

Approach

Figure 3.1 displays how the approach consists of two main components: (1) taking a
given software project and building the n-gram language model, and (2) using the n-
gram language model to generate programming rules and detecting code violations to
the discovered programming rules. This section first describes the challenges and key
approaches proposed to address these challenges (Section 3.1). The next section presents
how to collect high-level tokens from a project (Section 3.2), and then use the tokens to
build the n-gram language model for the project (Section 3.3). Finally, an explanation
on how to generate programming rules from the n-gram model and use the programming
rules to detect potential bugs in a project (Section 3.4), and how to prune the low quality
or invalid rules to reduce false positives (Section 3.5).

3.1 Challenges and Key Techniques

A main challenge in step 1 (Building the N-gram Model) is selecting a suitable level of
granularity for tokens when building the n-gram model. Existing work builds n-gram
models at the syntactic level using low-level tokens to suggest the next tokens for code

completion and suggestion [17,19]. For example, after seeing “for (int i=0; i<n;”, the
model would continue to suggest the following tokens “i++) {”. When building n-gram
models at this level, it is likely to only detect simple syntactic errors, e.g., missing “;” or

“i++” in a for loop, which would normally be caught by a compiler. At this level the
inferred rules are highly localized to the syntax of the code and do not provide a significant
amount of semantics about the code.



1 Tokenized N-gram
Method ( '
Source Files Tokenization cocs Model
J L Building
Building the N-gram Model | N-gram
Model
Violations Violation W ( Rule
Detection J Programming L Generation

Rules
Detecting Violations Using the N-gram Model

Figure 3.1: Overview of NG Detection

The approach aims to detect bugs at the semantic level, thus it is required to build the
n-gram model at a higher level. NG Detection selects high-level tokens to build a semantic
n-gram model for bug detection. This requires keeping certain elements while ignoring
others which mostly create noise without providing significant semantic information. Ad-
ditionally, some tokens are augmented with additional information, such as capturing the
fully qualified names for method and constructor invocations. Take the following loop as
an example:

1for (int i=0; i<n; i++) {
2 fOO(i);
3}

NG Detection will represent it with the following high-level tokens [<FOR>, foo(),
<END_FOR>], while a syntactic-level n-gram model may represent it with the following
low-level tokens [for, (, int, i, =, O, ;, i, <, n, ; i, ++, ), {, foo, (, i,
), }. The details of the selected high-level tokens are presented in Section 3.3 as well as
a detailed discussion about other possible options and considerations in Chapter 5.

As discussed in Section 1.2, control flow information can be important for the accuracy
of bug detection. Figure 3.2 shows one of 40 code snippets in Elasticsearch from which the
programming rule sequence [startArray(), value(), endArray()] can be learnt when
not considering control flow. Using this rule, the violation shown in the figure would be de-
tected because [startArray(), value()] are followed by value() instead of endArray ().
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Rule without using control flow:
[startArray(), value(), endArray()]
Example source code that follows the rule:

| startArray (name) ;

2for (Object o : var) {
3 value (o) ;

1 }

s endArray () ;

sreturn this;

Pattern of the false violation:
[startArray(), value(), value()]
False violation:

ireturn builder.startArray().value(coordinate.x)
2 .value(coordinate.y) .endArray();

Figure 3.2: Lack of control flow introduces a false violation.

However, these two code snippets are quite different semantically, thus it should be legiti-
mate for the second code snippet to call value () more than once. NG Detection adds the
control flow regarding for loop to the sequence, the rule then becomes [startArray(),
<FOR>, value(), <FOREND>, endArray()] (all 40 code snippets have the for loop
control flow), and avoids detecting the false violation shown in Figure 3.2.

3.2 Tokenization

NG Detection uses the Eclipse JDT Core! to tokenize the source files, construct the ab-
stract syntax trees (AST), and resolve the type information for the tokens. Following PR-
Miner [3], NG Detection considers methods as the main type of token, because a method
is a natural unit for developers to organize semantically related functionalities. By using
JDT’s provided AST parser, key parts of the source code can be extracted such as: con-
structors, initializers, class methods, and inner/local classes. It then allows NG Detection
to appropriately match each method call, and other control flow structures outlined below
into the appropriate locations inside of the class.

Thttps://eclipse.org/jdt /core/index.php
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As discussed at the beginning of Chapter 3, building an n-gram model requires de-
termining the right level of granularity for tokens. Instead of considering all syntactic
elements there is a focus on method calls and control flow which are:

e method calls, constructors and initializers,

e if/else branches,

e for/do/while/foreach loops,

e break/continue statements including optional labels,
e try/catch/finally blocks,

e return statements,

e synchronized blocks,

e switch statements and case/default branches, and
e assert statements

A method call, such as methodA(), is resolved to its fully qualified method name
org.example.Foo.methodA(). This is to prevent unrelated methods with an identical
name from being grouped together. It is an important aspect as it ensures the rules
and more importantly the violations found are actually related to each other instead of
simply having the same name. In addition, the type of exception in the catch clauses are
considered as they provide important context information to help infer more accurate rules.
Only knowing if a segment of code is in a catch clause does not provide enough information
about the rules relating to them. For example, a project may log all IOExceptions, but
ignore all InterruptedExceptions. Having a way to differentiate them is important for
ensuring rules are being correctly identified and the violations detected are appropriately
related.

Anonymous class definitions are resolved to their parent class where possible. While
technically each anonymous class definition is treated as a different class by the compiler,
it is not useful if they are all considered different classes. If the anonymous class definitions
are considered different, then no patterns will be found for them because the signatures
would be considered different. To further explain how tokens are extracted from projects,
see the following method definition as an example:

1public Properties loadProperties(final String name) {
> final Properties properties = new Properties();
try (FileInputStream in = new FileInputStream(name)) {
| properties.load(in);
5} catch (final FileNotFoundException e) {

6 try {
7 final File file = new File(name);
8 file.getParentFile()

12



9 .mkdirs();

10 file.createNewFile();

11 } catch (final IOException innerE) {

12 Log.error("Error creating setting file " + name, innerE);
13 }

14} catch (final Exception e) {

15 Log.error ("Error loading setting file " + name, e);

6o}

17 return properties;

The above code segment is translated into the following sequence of tokens, which are
used as input for building the n-gram model:

e <begin_method>,

e java.util.Properties.Properties,

o <TRY>,

e java.io.FileInputStream.FileInputStream,
e java.util.Properties.load,

e <CATCH java.io.FileNotFoundException>,
o <TRY>,

e java.io.File.File,

e java.io.File.getParentFile,

e java.io.File.mkdirs,

e java.io.File.createNewFile,

e <CATCH java.io.IOException>,

e org.example.Log.error,

e <END_TRY>,

e <CATCH java.lang.Exception>,

e org.example.Log.error,

e <END_TRY >,

e <RETURN>,

e <end method>.

As can be seen in the above sequence the method declaration is not included, but the
method boundaries are included. This allows for rule definitions to include the beginning
and end of a method body which is useful for the situations where a rule is defined at the
start of method, such as a null check.

13



3.3 N-gram Model Building

For every sequence of tokens extracted from a method, all of its subsequences are added
to the language model. Then for each set of sequences the conditional probabilities of
each subsequence are calculated. It is normal for n-gram models to use smoothing as it
helps with handling unknown sequences. However, since the entire source code of a project
is being used and NG Detection has the complete language of all possible sequences for a
given version. This means smoothing is unnecessary since there are no unknown sequences.

While open source software packages for building n-gram models exist, e.g., OpenNLP?,
NG Detection has it’s own implementation for building the n-gram model. This is because
it was necessary to not only build n-grams, but it also needed to use the n-grams to
generate programming rules (Section 3.4), the latter of which is not well supported by
existing software packages. In addition, the implementation was needed to be thread-safe
which is not provided by existing packages. The algorithm used to build the n-gram model
is a standard implementation, which is described in Section 2.1.

3.4 Rule Generation and Violation Detection

For step 2 of the process (Detecting Violations Using the N-gram Model), a key component
is combined rules, this infers more complex rules such as AB(C|D), which can enable
NG Detection to detect bugs not found with previous approaches. Combined rules account
for 104 out of the total 310 detected violations while only accounting for 1.7% of all rules.
This strongly suggests these rules are not as common as single rules, but are significantly
more potent. The results confirm combined rules are common in projects, which helped
detect 14 new bugs (Section 4.4).

To leverage the n-gram model for detecting bugs, programming rules are inferred
from the n-gram model, and then violations to the programming rules are detected.
NG Detection infers two types of rules: single rules and combined rules. Single rules are
single a sequence such as ABC, meaning method C should follow the sequence of calls
to method A and B. Combined rules are a combination of single sequence rules, such as
AB(C|D), meaning method C or method D should follow the sequence of calls to method A
and B.

Combined rules are an important aspect of NG Detection which allows it to find new
bugs. When determining the situations to infer a combined rule, a single rule, or no rule,

2https://opennlp.apache.org/
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the conditional probabilities and NG Detection’s thresholds are used. As an example, given
the following three sequences ABC, ABD, and ABE, each of which occurs 66%, 33%, and 1%
of the time respectively. Since the sequence ABC occurs 66% of the time, it could arguably
be considered a single rule: C must follow AB. However, this rule suggests the sequences
ABD and ABE are wrong, indicating 34% of what the developers wrote is incorrect, which
seems highly questionable. Instead, the rule AB(C|D) is inferred and ABE is considered a
violation. In general, NG Detection requires the rule probability, either single or combined,
to be at least a certain threshold, referred to as the Upper Rule Threshold (details in
Section 3.4.1). A reasonable value for the Upper Rule Threshold is 80%, which is used in
the experiments for all evaluated projects. Increasing it reduces the number of generated
rules, thus detecting fewer bugs, but also detects fewer false positives. A detailed study of
its sensitivity is presented in Section 4.5.

If the occurrences of the three sequences become 79%, 11%, and 10% respectively,
and the Upper Rule Threshold is 80%, then there is no sequence greater than the Upper
Rule Threshold. Since ABD is now in the minority at 11%, whether to consider it as part
of a combined rule is now more questionable. To address this problem, the Lower Rule
Threshold (details in Section 3.4.1) is used to filter out sequences from being combined.
If the Lower Rule Threshold is set to be 15%, then ABD will not be combined with ABC.
Thus, no rule would be inferred, which helps NG Detection avoid generating too many
false positives.

In order to generate programming rules from an n-gram model, the n-gram model needs
to keep track of parent and children sequences, as well as the source locations, for a given
sequence. A parent sequence of the sequence ABCD is the sequence ABC. A child sequence of
the sequence ABCD is the sequence ABCDE. The linking between parent and child sequences
needs to be tracked in order to find which sequences are used in order to find a violation.
The location of every sequence is added to the n-gram model as well. This allows for a
violation or a rule to be traced back to its source location so it can be analyzed by a
developer. While these are not normally part of the n-gram model, they are important
when it comes to leveraging an n-gram model for inferring programming rules and finding
bugs.

3.4.1 Parameters for Rule Pruning
There are a number of parameters to filter the generated rules. These parameters influence

each other and affect the number of generated rules and violations as well as their accuracy.
Below is a list of these parameters and a quick description of each:
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e Minimum Gram Size - The smallest length of sequences to be considered.
e Maximum Gram Size - The largest length of sequences to be considered.

e Upper Rule Threshold - The percent a single sequence or combination of sequences
must occur in order to be a rule.

e Lower Rule Threshold - The percent a sequence must occur in order to be con-
sidered part of a combined rule. Must be smaller than upper threshold.

e Anomaly Threshold - The percent limit a sequence can occur in order to be
considered a violation of a rule. Must be smaller than lower threshold.

e Minimum Method Count - The minimum number of method calls required to be
in a rule.

e Maximum Violation Count - The maximum number of violations detected by a
rule for it to be included.

3.4.2 Minimum Gram Size

This is the smallest length of sequences to be considered. The rationale for this parameter
is to prune the small grams from the data which lack utility. For example, the bigram
[<RETURN>, <end method>] would be added to the model. However, this bigram and
many others like it would occur often in a codebase. Say it happens 98% of the time,
then the 2% of the time where a <RETURN> is not followed by a <end method> would
be detected as a violation. In most situations it is clearly not a bug, thus the bigram is
not useful for finding bugs because the shear number of them would result in an infeasible
number of false positives to prune. For the evaluated projects, only grams greater than 4
elements are considered, this is based on empirical results.

3.4.3 Maximum Gram Size

This is the largest length of sequences to be considered. As the gram size increases, the
total number of n-grams increases but each gram becomes more unique. This results in a
large number of sequences which occur only a few times, and because they are so infrequent
they will rarely be able to detect violations. Rules are generated based on the frequency of
sequences and require a minimum number of occurrences before they can detect violations.
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As can be seen in Section 4.5 changing this value makes very little difference other than
changing the number of rules and the evaluation time of the tool. Due to the minor
influence of this value, it has more flexibility so long as it is large enough to capture a
large portion of the programming rules. This typically occurs around values larger than
10, based on empirical results.

3.4.4 Upper Rule Threshold

This is the percent a single sequence or combination of sequences must occur in order to
be a rule. This value is used to ensure the rules must occur often enough such that the
detected violations occur infrequently. This threshold is important for both single rules
and combined rules, for single rules the probability of the rule must simply exceed this
threshold. For combined rules, if given a set of sequences, where each one occurs 15%-20%
of the time, their sum of probabilities must exceed this threshold. Otherwise, they will not
be considered a combined rule. This is to ensure there is enough support to make a claim
that a combined rule occurs often enough to be a valid rule.

3.4.5 Lower Rule Threshold

This is the percent a sequence must occur in order to be considered part of a combined
rule. It must be smaller than the upper threshold. This value is to ensure a sequence must
occur frequently enough to be considered part of a potential combined rule. Having a large
number of infrequent sequences does not yield a viable pattern as it would tend to indicate
that no rule exists. Raising this value decreases the number of sequences considered to be
valid for a combined rule. This is the result of requiring each sequence to occur more often.
Setting this value to 15% means if a set of sequences occur 20 times, any which happen at
least 3 times are then considered part of a potential combined rule.

3.4.6 Anomaly Threshold

This is the percent limit a sequence can occur in order to be a violation of a rule. Meaning
given a known rule, a sequence will only be considered a violation if the percentage it occurs
is less than this threshold. This threshold must be smaller than the lower rule threshold.
This value is very sensitive to changes, for example keeping all other values at the defaults
and changing this value from 5% to 7% would change the number of violations in GeoTools
from 80 to 120 yet only increase the number of useful violations by 4. While there is more

17



potential for finding bugs because of the larger number of results, since the large majority
of the results are false positives it simply becomes counterproductive to evaluate all the
results as this constraint is relaxed.

3.4.7 Minimum Method Count

This is the minimum number of method calls required to be in a rule. This value is
important at ensuring the results focus on semantics. Rules that contain control flow only
or call a single method often do not provide enough information to indicate a bug. For
example, it is common to check parameters which would show up as a series of if-blocks but
since we do not look at the semantics of the conditions being checked it would be nearly
impossible to tell if a bug existed in a sequence. This value has a larger impact on smaller
n-grams compared to larger n-grams as this is an absolute value and will require smaller
n-grams to have a proportionately higher number of method calls.

3.4.8 Maximum Violation Count

This is the maximum number of violations a rule can detect. If the number of violations
detected by a rule exceeds this value we invalidate the rule. The rationale behind this
threshold is to remove rules which result in numerous violations, which is a strong indicator
the rule should not be used.

3.5 Other Rule Pruning

In addition to NG Detection’s parameters, other approaches are used to filter rules to im-
prove detection accuracy. Common class’s methods, such as Object and String’s methods,
are filtered because they tend to dominate the rules and prevent other rules from being
discovered. The ability to filter out certain classes is setup by a blacklist which can be
configured to be project specific. This enables a developer to ignore rules related to a
certain classes, methods, or constructors.

A common issue with extracting rules from source code is when repeat sets of methods
are being called. This occurs when building collections, setting various configuration
parameters, or simply checking null for a number of parameters. These cycles of method
calls tend to create rules which trigger a violation when they stop. For instance, if we call
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the method put(obj.toString(), obj) on a hashmap with a number of different objects, a
rule will emerge which indicates [put(), toString(), put(), toString()] should be
followed with a call to put (). If we instead have finished putting our data into the map
and return, this will then be flagged as a violation even though it will inevitably happen.
Thus, any cycles we encounter in rules are removed as they likely will not be useful in
detecting actual violations.

In order to avoid repeatedly detecting the same violations we remove related subrules.
For instance, if we have two rules BCDE and ABCDE, we only keep ABCDE since it is the
most specific rule. This filtering approach may remove good programming rules that can
potentially detect bugs. In the future, we would like to evaluate the impact of removing
this filtering approach.
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Chapter 4

Results

This section presents the results of applying NG Detection on the 14 evaluated projects as
well as the experimental setup. Section 4.1 describes the evaluated machine, projects, and
parameters used for the results. There are a number of aspects being evaluated, the first is
on inferring programming rules (Section 4.3), second is detecting violations (Section 4.4),
third is the sensitivity of experimental parameters (Section 4.5), and finally the execution
time of NG Detection (Section 4.6).

4.1 Experimental Setup

All the experiments are conducted on a desktop machine with a 4.0GHz i7-3930K 64GB of
memory. The JVM arguments used were “-d64 -Xms16G -Xmx16G -Xss4dm” these values
provide plenty of heap space but 4GB would have been sufficient given the set of projects
used. More details about the performance of the tool are in Section 4.6.

The values of the NG Detection parameters used:

Minimum Gram Size = 5
Maximum Gram Size = 12
Anomaly Threshold = 5%
Lower Rule Threshold = 15%
Upper Rule Threshold = 80%
Minimum Method Count = 2
Maximum Violation Count = 5
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Table 4.1:

Evaluated Projects

Project Version | Files LOC | Methods
Elasticsearch 1.4 3,130 272,261 28,950
GeoTools 13-RC1 | 9,666 996,800 89,505
Java JDK 1.8.031 | 7,714 | 1,026,063 87,901
JavaFX 1.8.0.31 | 2,496 360,021 36,524
JEdit 5.2.0 543 110,744 5,548
ProGuard 5.2 675 69,376 5,919
Vuze 5500 | 3,514 586,510 37,939
Xalan 2.7.2 907 165,248 8,965
Hadoop 2.6.0 | 4,307 596,462 46,104
Hbase 1.0.0 | 1,392 465,456 42,948
Pig 0.14.0 948 121,457 9,323
Solr-core 5.0.0 | 1,061 146,749 9,938
Lucene 5.0.0 | 2,065 293,825 18,078
Opennlp 1.5.3 603 36,328 2,954

The parameter values were chosen because they give a reasonable number of results
given empirical testing. The same set of parameters is used for all 14 evaluated projects,
showing some generality of the parameters. It is certainly possible these parameters could
be more finely tuned for specific projects in order to maximize the number of detected
violations while ensuring the violations are useful. Instead of using specific parameters
for each project, the sensitivity of the parameters for GeoTools is shown in Section 4.5 to
provide insight into the behavior of the parameters.

4.2 FEvaluated Projects

NG Detection is evaluated on 14 widely-used Java projects ranging from 36 KLOC to 1
MLOC. Table 4.1 lists their versions, numbers of files, lines of code, and number of methods.
As can be seen, there are a wide variety of projects being evaluated which are of varying
sizes and functionality. NG Detection may not be effective with all Java projects as there
are a number of features required in order to maximize the potential of finding violations.
For instance, projects should not be very small (less than 10 KLOC) as projects which are
small tend to not have a significant number of patterns in them which reduces the number
of rules. Without these patterns NG Detection will lack support to make claims about
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Table 4.2: Number of Inferred Programming Rules

Project Total Single | Combined
Elasticsearch 373,084 366,733 6,351
GeoTools 719,918 706,215 13,703
Java JDK 1,068,611 | 1,044,473 24,138
JavaFX 391,924 384,319 7,605
JEdit 171,458 168,374 3,084
ProGuard 44,283 43,176 1,107
Vuze 707,637 695,447 12,190
Xalan 138,203 135,267 2,936
Hadoop 920,527 907,380 13,147
Hbase 743,232 735,648 7,584
Pig 162,265 159,320 2,945
Solr-core 239,262 236,843 2,419
Lucene 293,306 289,434 3,872
Opennlp 44,075 43,534 541
Total 6,017,785 | 5,916,163 101,622

violations and will result in only a few violations or none at all. Another factor, which is
related to the number of patterns, is the project needs to have a number of method call
sequences which are of reasonable length. What is meant by a reasonable length depends
on the number of other control flow structures around the method calls. This is caused
by having a minimum size restriction on rules, if a project has a large number of short
methods with only a couple of method calls in each of them NG Detection will struggle to
find usable patterns as they may be excluded by simply being too short.

4.3 Programming Rule Results

Table 4.2 shows the number of programming rules generated by NG Detection. It is split
into two categories: single rules (such as ABC) and combined rules (such as AB(C|D)).
NG Detection infers a total of 6,017,785 programming rules from the 14 evaluated projects,
showing our approach can infer a large number of implicit, undocumented programming
rules.

Of the discovered rules, 5,916,163 (98.3%) rules inferred in our experiments are single
rules and 101,622 (1.7%) are combined rules. While a majority of the rules are single rules,
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Figure 4.1: Project rule sizes. In each group of bars, the left most bar is the number of rules
using bigrams, and the right most using 12-grams. The three left most bars (2,3,4-gram
rules) are in gray because they are not used in our results. White indicates the 5-gram and
12-gram boundaries for rule generation. Orange indicates the 6-gram which is typically
the maximum.

NG Detection generated a large number of combined rules, which cannot be generated by
techniques such as PR-Miner [3]. This strongly suggests that a rules such as AB(C|D) are
significantly less common than rules such as EFG. Despite the small percentage of combined
rules, a large percentage (34%) of the detected violations are found by combined rules
(Section 4.4). This suggests combined rules are more likely to be unknowingly violated
because it might be harder for a developer to realize the more complicated combined rules,
and therefore they are more likely to violate them. The results imply these combined rules
could be particularly useful because they may help detect harder-to-find bugs.

Figure 4.1 shows the breakdown of the rules by size: the number of bigram to 12-
gram rules. Interestingly, the peak number of rules are around 6-grams across all projects,
despite the large variation in project sizes, styles, and functionality. While bigrams make
up the largest number of n-grams generated, the Minimum Method Count parameter which
requires a rule to have two method calls eliminates most bigrams, since only the bigrams
which call two methods are kept. Requiring two method calls helps reduce false positives.

23



Table 4.3: Violation detection results. Bugs column is the number of bugs, RefV column
is the refactor violations, RefR column is the refactor rules. Useful column is the total
number of violations for the three types. Total column is the total number of violations
detected. S is the number detected by single rules, C is the number detected by combined
rules, and T is the total.

Bugs RefV RefR Useful Total
Project S C T S C T S C T S C T S C T
Elasticsearch | 0 0 0 5 3 8 7 1 8 12 4 16 | 24 13 | 37
GeoTools 11 5 16 5 2 7 9 0 9 25 7 32 | b7 | 23 | 80
JavaJDK 2 3 5 6 0 6 4 3 7 12 6 18 | 47 | 32 | 79
JavaFX 2 0 2 1 0 1 0 0 0 3 0 3 8 6 14
JEdit 2 0 2 1 0 1 0 0 0 3 0 3 17 6 23
ProGuard 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1
Vuze 0 0 0 1 0 1 5 0 5 6 0 6 17 | 10 | 27
Xalan 0 4 4 0 0 0 0 0 0 0 4 4 5 4 9
Hadoop 3 0 3 0 1 1 3 0 3 6 1 7 10 3 13
Hbase 3 0 3 2 0 2 1 0 1 6 0 6 7 0 7
Pig 2 0 2 0 0 0 1 1 2 3 1 4 4 2 6
Solr-core 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1
Lucene 2 1 3 1 0 1 1 0 1 4 1 5 7 3 10
Opennlp 1 1 2 0 0 0 0 0 0 1 1 2 2 1 3
Total 29 | 14 | 43 | 22 7 29 | 31 5 36 | 82 | 26 | 108 | 206 | 104 | 310

4.4 Violation Detection Results

Table 4.3 shows the number of violations detected per project as well as the category each
violation belongs to. NG Detection detected 310 violations in total across the 14 projects.
These violations are categorized into four types: Bugs, Refactor Violations, Refactor Rules,
and False Positives. Bugs are when the violation should be fixed by altering the code and
correcting its behaviour to match the rules. Refactor Violations are when the violation can
be fixed by refactoring the violation’s code to make it consistent with the rules. Refactor
Rules are when the violation and the rule should both be refactored in order to eliminate
the violation. This removes the rule and corrects the violation. Any violations that do not
fit into the above three groups are considered to be false positives.

In total, NG Detection detected 108 useful violations—43 bugs, 29 refactor violations,
and 36 refactor rules. 32 of the 43 bugs were reported to the developers and the rest
are in the process of reported. Of the reported bugs, 2 of which have been confirmed
by developers, while the rest await confirmation. As can be seen, NG Detection detected
a number of violations across many different projects of various sizes; however, smaller
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projects tend to have fewer violations than larger projects.

4.4.1 Impact of Combined Rules

Although the combined rules only make up 1.7% of all rules, they helped detect a larger
portion of true violations, e.g., 14 out of the 43 bugs, and 7 out of the 29 refactor violations.
Specifically, 206 (66%) detected violations are from single rules and 104 (34%) are from
combined rules. Among these violations, 82 (76%) useful violations were detected using
single rules and 26 (24%) using combined rules, which cannot be detected by techniques
such as PR-Miner [3] that infer single rules only. The results show on average every 72,148
single rules detects 1 useful violation, but every 3,909 combined rules detects 1 useful
violation, suggesting that combined rules provide more meaningful programming rules.
This is likely the result of them being less clear to developers since combined rules allow
developers to use different styles and procedures, or start methods with common code but
then split into different paths for special cases. As discussed earlier, these combined rules
could be useful in detecting potentially hard-to-find bugs.

4.4.2 False Positives

The false positive rates of NG Detection are comparable to existing techniques [3,0,7,20].
A main reason for false positives is the inferred rules do not always need to be followed, and
the false violations tend to deal with special cases. For example, a developer of a project
may choose to check if parameters being passed into a method are null. However, they
may have additionally checks for certain parameters in different methods such as checking
to see if a given list is empty or a string has a minimum length. These deviations from just
performing null checks will show up as violations because they are not following the pattern
of normally only checking for a null value. These deviations are not violations since they are
simply applying additional checks depending on actions the method will perform. Another
example is when if-else chains are used to split logic into various sequences depending on the
state of the parameters or fields. Different objects will contain if-else chains which check for
various aspects of a value such as: is it in a range, in a collection, null, or equal to another
value. These similar if-else chains can result in rules being defined across many different
classes, which results in violations for a class that do not perform one of these checks.
Again, these deviations may not be violations because certain fields or parameters being
checked in some classes may not even exist in a completely unrelated class. In the future,
it would be interesting to leverage this information to see if these cases can be filtered to
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reduce false positives. JEdit has a large number of false positives, this is a result of the
violations being found in generated code where NG Detection is inappropriate to apply.
This is because the code is not written by developers and therefore is not representative of
developer programming rules and refactoring the code is not helpful. While this is not true
for a majority of projects, other projects such as Xalan, also have generated code which
results in violations being detected.

4.4.3 Example Bugs

Figure 4.2 shows an example of a Bug detected by our tool from the Elasticsearch project.
This bug was reported to the Elasticsearch developers, who have confirmed this is a true
bug. In the violation the debug() log method is called instead of the warn() log method
which is normally called in this situation. This bug was found with a combined rule:
[begin method, try, sendResponse(), catch, (warn() | onFailure())]. The fix
involves the replacing the debug() log method with the warn() log method.

Figure 4.3 shows another example Bug detected by our tool from the GeoTools project.
In this example the code segments are related to closing streams and normally a common
method in the GeoPackage class which is called on a stream when it should be closed.
An instance where this method was not used was found and in the code above the finally
blocks is a TODO comment indicating it should be changed. The pattern was to call the
private static method in the current class which has a null check, closes the stream and
logs a warning message if an error occurs. However, by directly calling the close() method
on the BufferedInputStream there is no null check and no message will be logged when an
error OCCurs.

Example Refactor Violations

Figure 4.4 shows an example of Refactor Violation detected by our tool from the
Elasticsearch project. This was detected by a combined rule. The first option of the
combined rule (isValue()) was to call the isValue() method on the parsed token to
determine if a value is expected to be parsed. The second option (if) was to put an if-else
chain inside of the else block and then call the equals method on the fieldName. The third
option (if_then) was to do a check to see if the token is a special type of value. The
code segments are related to the parsing sections of Elasticsearch. For simplicity only the
code segment for the second option (if) is shown, which is most closely related to the
refactoring of the violation.
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Combined Rule:
[<begin_method>, try, sendResponse(), catch, (warn() | onFailure() )]
Example source code that follows the rule:

1 @0verride
2public void onFailure(Throwable e) {
3 try {
| channel.sendResponse(e);
} catch (Exception el) {
6 logger.warn("failed to send response for get", el);
7 }
s}

Violation pattern:
[<begin_method>, try, sendResponse(), catch, error()]
Source code that violates the combined rule:

1 @0verride
2public void onNewClusterStateFailed(Throwable t) {
try {
4 channel .sendResponse (t) ;
} catch (Throwable e) {
6 logger.debug("failed to send response on cluster state processed", e);
7 }
s}

Figure 4.2: A combined rule inferred for Elasticsearch and a true bug detected using this
rule. The bug has been confirmed by Elasticsearch developers after it was reported.

The detected violation differs from the second option by directly continuing the if-else
chain and by calling the equals() method to see if the token belongs to a field name.
The (else) and (else if) are both represented as (else_if) the difference is the (else
if) will have an (if_then) token following it whereas the (else) will not since it has no
conditional statement. This is not a bug but a deviation from the 37 other rule patterns
which do not do this. This is why it is called a refactor violation, because the program
semantics of the violation should not be changed, but the code should be changed to follow
the expected pattern to allow for the code to match the style used by the project.

27



Rule: [finally, GeoPackage.close(), end_try, finally, GeoPackage.close()]
Example source code that follows the rule:

1 finally {

2 close(ps);
3 }

 }

sfinally {

6 close(cx);

7}

Violation pattern:  [finally, GeoPackage.close(), end_try, finally, BufferedInput-
Stream.close()]
Source code that violates the rule:

i finally {

2 close(ps);
3 }

1}

sfinally {

6 bin.close();
7}

Figure 4.3: A rule inferred for GeoTools and a bug detected using this rule.

4.4.4 Example Refactor Rules

Figure 4.5 shows an example of Refactor Rule detected by our tool from the Vuze project.
In this example, the code segments are related to opening an interface element. The pattern
is to normally call openView () on the UIFunctions object inside the selected() method
of a MenuItemListener anonymous class. The detected violation differs from the pattern
by directly performing the call inside of a loop. This is not a bug but a deviation from the
25 other rule patterns which do not do this, but it does not make sense in this instance to
create a MenultemListener since the intent is to directly call openView(). This is why
it is called a refactor rule, because the program semantics should not be changed, but
the code for both the violation and the rule should be refactored into common method
as they are clones of each other. The refactor involves taking the common code (lines
1 - 4) and extracting it to a common method where the parameters to the openView()
method are passed into the new common code. By moving the code into a common method
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Rule:  [if-then, while, nextToken(), if, if-then, currentName(), if-else, (isValue() | if |
if then)]

Example source code that follows the rule:
1} else if (token == XContentParser.Token.START_OBJECT) {

String currentFieldName = null;
parser.nextToken()) != XContentParser.Token.END_OBJECT) {

2

while ((token =
XContentParser.Token.FIELD_NAME) {

| if (token ==
5 currentFieldName = parser.currentName();
6 } else {
if ("value".equals( currentFieldName) || "_value".equals(

currentFieldName)) {

Violation Pattern: [if then, while, nextToken(), if, if-then, currentName(), if-else, equals()]

Source code that violates the combined rule:

1} else if ("collate".equals(fieldName)) {
parser.nextToken()) != XContentParser.Token.END_0BJECT) {

2 while ((token =
if (token == XContentParser.Token.FIELD_NAME) {

fieldName = parser.currentName();
|| "filter".equals(fieldName)) {

} else if ("query".equals(fieldName)

Refactored code for the violating code segment:

1 oo
selse {
if ("query".equals(fieldName) ||
"filter".equals(fieldName)) {

5

o}

Figure 4.4: A rule inferred for Elasticsearch, a Refactor Violation detected using this rule,

and the suggested refactored code for the violation.

the violation will be removed and if a developer decides to change how this operation is

performed they would only have to update it in one location.
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Rule: [getUlFunctions(), if, if-then, openView(), end_if, end_method]

Example source code that follows the rule:

1 UIFunctions uif = UIFunctionsManager.getUIFunctions();
2 if ( uwif != null ){
3 uif.openView( UIFunctions.VIEW_CONFIG, "Pairing" );

I }
5}

Violation Pattern: [getUIFunctions(), if, if-then, openView(), end_if, break]
Source code that violates the combined rule:

1 UIFunctions uiFunctions = UIFunctionsManager.getUIFunctions();
2if (uiFunctions != null) {

uiFunctions.openView( UIFunctions.VIEW_DM_DETAILS, dm);
'}

s break;

Figure 4.5: A rule inferred for Vuze and a Refactor Rule detected using this rule.

4.4.5 Comparing With Existing Techniques

Existing techniques such as PR-Miner [3] and DynaMine [5] cannot automatically detect
many of the useful violations detected by NG Detection. These techniques cannot detect
the violations detected by combined rules, which combine multiple infrequent patterns
together as a rule. Of the 108 useful violations, 26 (24%) were found using combined
rules. In addition, some of the single rule violations cannot be found by other techniques.
For instance, the Refactor Rule example in the previous section which requires analysis of
keywords and control flow was found by the technique and cannot be found by examining
method calls alone or control flow sub-graphs [0].

In addition, PR-Miner [3] analyzes method calls and variables, thus fails to take into
consideration the control flow surrounding the methods and therefore cannot indicate if
a close() method is called outside or inside of a finally block. Control flow related
violations are part of 40 out of 108 useful violations detected by NG Detection. In addi-
tion, the frequent itemset mining approach used does not consider repeat method calls or
ordering information which means it cannot support situations where a method is called,
the result is checked, and if the value is null, then a method is called again. Repeated
method calls are part of 16 out of 108 useful violations detected. Our method compliments
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Table 4.4: Parameter Sensitivity of NG Detection on GeoTools

Parameter Changed Value | Rules | Bugs RefV | RefR | Useful | Total | FP %
Default Values N/A | 719,918 16 7 9 32 80 60
Minimum Gram Size 4 | 809,296 21 10 9 40 122 66
Minimum Gram Size 6 | 610,871 8 5 8 21 48 56
Maximum Gram Size 11 | 666,386 16 7 9 32 80 60
Maximum Gram Size 13 | 751,465 16 7 9 32 80 60
Upper Rule Threshold 70% | 720,913 16 8 9 33 104 68
Upper Rule Threshold 90% | 719,053 9 5 8 22 48 54
Lower Rule Threshold 10% | 720,438 16 9 9 34 91 63
Lower Rule Threshold 20% | 719,551 12 6 9 27 69 61
Anomaly Threshold 3% | 719,918 5 6 4 15 37 59
Anomaly Threshold ™% | 719,918 16 11 9 36 120 70
Minimum Method Count 1] 788,791 18 12 14 44 134 67
Minimum Method Count 3 | 580,447 2 4 5 11 32 66
Maximum Violation Count 1] 719,918 5 3 5 13 32 59
Maximum Violation Count 5| 719,918 16 8 12 36 121 70

PR-Miner [3], as both approaches are able to detect different violations. For instance, our
approach is unable to handle long distance relationships within the same method due to
the nature of n-gram; however, frequent itemset mining does not have this limitation.

DynaMine [5] uses association rule mining and does not utilize combined rules, thus
missing the 26 useful violations. The types of patterns mined are either method pairs, state
machines on a single object, complex rules involving multiple objects. DynaMine’s complex
patterns require user specification of patterns, while NG Detection is able to automatically
infer a wide variety of complex patterns involving methods or control flow.

4.5 Parameter Sensitivity

In order to clearly show the sensitivity of the seven parameters described in Section 3.4.1
one project is presented with various values. Each parameter can either be set to be more
restrictive (resulting in fewer rules and detected violations) or less restrictive (resulting
in more rules and detected violations). For each of the seven parameters, one value was
selected and tested with a value that is more restrictive and one value that is less restrictive
for this experiment. GeoTools was selected because it is a medium sized project which has
detected violations for each category.

Table 4.4 shows how changing the seven parameters of NG Detection influences the
rules and detection results. The “Value” column indicates the new value for the parameter
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to generate the set of results along that row. The “Rules” column indicates the new number
of rules generated. The “Bugs”, “RefV”, and “RefR” columns indicate the number of bugs,
refactor violations and refactor rules for the given parameter. The “Useful” column is the
sum of all three types of violations, and the “Total” column indicates the total number of
detected violations. The “FP” column shows the percentage of detected violations which
were false positives to show how the results are influenced by the parameters. The results
show that adjusting the parameters can result in noticeable changes to the quality of the
rules and detection results. For example, the total number of detected violations ranges
from 32 to 134, and the false positive rates range from 54% to 70%.

4.5.1 N-Gram Size Limits

Specifically, reducing the Minimum Gram Size to 4 increases the number of rules
generated; however, these rules help detect an additional 42 violations but only 8 are
useful violations. This results in a 6 percentage point increase (from 60% to 66%) in false
positives. While using 4-grams does yield more rules and violations, there is a loss in the
accuracy of the results. Increasing Minimum Gram Size to 6 it can be seen that the
rules drops noticeably as well as the number of violations, the false positives also decreases
slightly. Changing the Maximum Gram Size to 11 or 13 makes a noticeable difference
to the number of generated rules but makes no difference to the detected violations. This is
because most violations are detected by the smaller gram sizes, since there are fewer larger
gram rules with enough support to detect violations. Empirically, increasing the maximum
gram size beyond 12 only increases the run time of the tool with minimal benefit to the
results.

4.5.2 Rule Threshold Limits

The Upper Rule Threshold has a large influence on the results. Decreasing it to 70%
makes it less restrictive and results in more false positives. Increasing it to 90% makes
it more restrictive and reduces the violations significantly but also reduces the number
of false positives by 5 percentage points. The Lower Rule Threshold only influences
combined rules. Decreasing it to 10% makes it less restrictive and finds a few more
violations. Increasing it to 20% makes it more restrictive and reduces the number of
violations. Decreasing the Anomaly Threshold to 3% makes it more restrictive and
produces significantly fewer violations. Increasing it to 7% makes it less restrictive and
produces more violations which are mostly false positives.
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Table 4.5: Execution Time in Seconds

Project Total | Tokenization | Model Building and

Violation Detection
Elasticsearch 310 283 27
GeoTools 641 590 51
Java JDK 798 728 70
JavaFX 261 236 25
JEdit 65 56 9
ProGuard 65 63 2
Vuze 385 338 47
Xalan 90 83 7
Hadoop 516 454 62
Hbase 201 152 49
Pig 110 99 11
Solr-core 128 113 15
Lucene 230 212 18
Opennlp 54 52 2

4.5.3 Count-based Limits

Decreasing the Minimum Method Count to 1 makes it less restrictive and introduces
a large number of rules and 12 more violations. It also increases the false positive rate by
7 percentage points. Increasing the value to 3 makes it more restrictive and reduces the
number of rules and violations. The Maximum Violation Count also has significant
influence on results. Decreasing it to 1 makes it more restrictive and reduces the number
of detected violations to 32 without changing the false positive rate. Increasing it to 5 has
a large increase in the detected violations and the false positive rate.

In summary, these tunable parameters can change the results, i.e., more or less rules
or violations, but usually at a cost. The default values used in this thesis provide a
reasonable result set for all evaluated projects. While it is easy to tune parameters for
a specific project, the default values presented are a useful starting point for more fine-
grained tuning for a project.
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4.6 Execution Time and Space

Table 4.5 shows the total execution time, the time spent during the tokenization stage
(parsing and building the ASTs), time spent building the n-gram model and determining
the violations for a project. The table shows the total time varies from 54 to 798 seconds
depending on the size of the project. The VM arguments are generous for heap memory
allocation (16GB) since our largest evaluated project, Java JDK, only uses 3GB of memory.
The results suggest the tool is efficient enough to be used in practice.

Most time is spent building ASTs with type information with a fraction of the time on
building the rules and finding violations. The timing results attempt to ignore time taken
for garbage collection to run as a gc is requested after each stage. The results suggest
the performance scales linearly with the project’s LOC, thus our approach is expected
to scale to large projects. The implementation is designed so the tokenization stage can
be cached allowing for the model building and violation detection stage to be run with
different parameters for a fraction of the time. This enables a quick and iterative approach
to tuning parameters for a specific project if desired.
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Chapter 5

Conclusion and Future Work

This thesis described NG Detection, an approach which models source code using the
n-gram langauge model and extracts programming rules for detecting bugs as well as
refactoring opportunities. In addition to the n-gram language model, it utilizes control
flow elements and combined rules to detect violations to 6,017,785 programming rules
across 14 projects. Using the approach, it was able to identify 108 useful violations out
of 310 total violations. Of those useful violations at least 26 of them in the 14 evaluated
projects cannot be found automatically by existing approaches. While NG Detection uses
the n-gram language model, which is one of the simpler language models, there are other
language models which may be able to achieve a different set of results. Additionally, there
are many different ways which source code elements can be translated into tokens which
would also yield a different set of results. Future work may consider looking into different
language models and other ways of translating source code into tokens.

As with all approaches there are limitations to their performance, NG Detection is no
exception to this. Below is a list of the limitations to the current approach and some details
on how these limitations could be addressed.

e Simply knowing a violation has occurred is often not enough. The current
approach requires manual verification for each reported violation. This leads to situa-
tions where a violation has been detected but is a perfectly acceptable code sequence.
Some of these types of violations are detailed in Section 4.4.2, essentially developers
may deviate from the anticipated pattern to handle special cases or different object
types. While NG Detection is correctly identifying violations, these violations are
not useful and refactoring may not be appropriate as it would lead to more compli-
cated code. Filtering these violations automatically is very challenging without the
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tool being able to fully comprehend the semantics of the code, something the n-gram
model is simply not capable of handling.

Detected rules are highly localized. One known limitation of the n-gram lan-
guage model is its inability to identify long distance relationships. An attempt to
alleviate this limitation in the n-gram model was to use skip-grams [33], as the name
suggests it skips elements in the sequences. For instance a given sequence ABCDEF
would be translated into the following set of 1-skip-2-grams AC, BD, CE, DF, combined
with the set of bigrams. This may lead to a larger set of rules, but it removes some of
the semantic information and would not be appropriate to couple with control flow
information.

Patterns limited by method boundaries. Related to the lack of long distance
relationships, the approach only analyzes patterns inside of a method body. This is a
limitation of static analysis, but some issues could be resolved by inlining method calls
in a method body. However, this solution has limitations when dealing with abstract
classes and interfaces where the invocation is ambiguous. Other issues with this
limitation is handling calls to and from native code with Java, reflexive invocations
or instantiations, or networking done using remote procedure calls. Some of these
issues could be addressed by using dynamic analysis or a hybrid approach of mixing
the two, such as what DynaMine [5] uses.

Choice of tokens to be used during tokenization. Knowing which tokens to use
is only one part of deciding what should be considered a token. This is important
as these tokens are the input to the n-gram model. NGDetection uses method
calls, constructors, and control flow elements; however, even these elements could be
encoded in various ways. For instance, do you:

— consider fully qualified names or simple names?

— consider the scope when dealing with control flow or do you simply extract the
keyword locations?

treat foreach loops like for loops?

— provide special treatment for rarely occurring loops like do-while?

treat switch statements differently than if-else chains?

consider return types or treat them all equally? What if returning null or 07

consider the parts of the condition expression for if statements?
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— treat each part of the condition expression as a token ([<IF>, <EQ>,
<NULL>, <AND>, <NEQ>, <NULL>, <IF.THEN>]), or do you merge the
entire expression into a single token ([<IF>, <EQ_NULL_AND NEQ NULL>,
<IF_THEN>])?

— analyze the exception types in the catch blocks or treat catch blocks equally?

Each one of these questions was considered in the design, the final design was outlined
in the approach chapter (Chapter 3), but as can be seen there are a large number of
possible options to consider and each can have a large impact on the set of results.

N-gram model focuses on the last element in a sequence. While frequent
itemset mining is able to identify when an element is missing from the start of a
method, the n-gram model does not consider this since it looks at the previous n-
elements to find patterns. If one element is missing from the previous n-elements
then the violation will not be found. Example, say the sequence ABCDE occurs 100
times and ABDE occurs once, NG Detection will not detect ABDE as a violation. More
importantly the probabilities in the model are calculated based on the value of the
nth element. Thus the model is limited to focusing on when the nth element does
not match the pattern and not when one of the preceding elements is replaced with
an unusual element. Example, say the sequence ABCDE occurs 100 times and ABFDE
occurs once, NG Detection will not detect ABFDE as a violation. There are potential
solutions to this problem, such as building the n-gram model different ways:

— For example, given the sequence ABC instead of the n-gram model finding the
probability of C if the previous two tokens were AB we could instead reverse it
and ask, what is the probability of A if it is followed by BC?

— Another way to look at it is to consider the tokens which occur before and
after the token of interest. For example, given the sequence ABC what is the
probability of B if it is preceded by A and followed by C?

Naturally, combinations of these types of rules can be considered; however, they
would increase the memory requirements significantly and is closer to a different
approach known as frequent sequence mining [34].

Project size plays a dominant role. By comparing the project sizes with the
number of detected violations it can be clearly seen there is a correlation between
the two values. Larger projects tend to have more violations detected, this is ex-
pected because frequency as well as probability of programming rules plays a role in
determining rules. A side effect of this is that smaller projects tend to have few or no
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violations being detected. This can be alleviated by using more relaxed parameters
to make the thresholds more forgiving; however, this does not ensure the detected
violations are of high quality.
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