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Abstract

With the wide availability of large amounts of data and acute need for extracting
useful information from such data, intelligent data analysis has attracted great attention
and contributed to solving many practical tasks, ranging from scientific research, industrial
process and daily life. In many cases the data evolve over time or change from one domain
to another. The non-stationary nature of the data brings a new challenge for many existing
learning algorithms, which are based on the stationary assumption.

This dissertation addresses three crucial problems towards the effective handling of
non-stationary data by investigating systematic methods for sample reweighting. Sample
reweighting is a problem that infers sample-dependent weights for a data collection to
match another data collection which exhibits distributional difference. It is known as
the density-ratio estimation problem and the estimation results can be used in several
machine learning tasks. This research proposes a set of methods for distribution matching
by developing novel density-ratio methods that incorporate the characters of different non-
stationary data analysis tasks. The contributions are summarized below.

First, for the domain adaptation of classification problems a novel discriminative density-
ratio method is proposed. This approach combines three learning objectives: minimizing
generalized risk on the reweighted training data, minimizing class-wise distribution discrep-
ancy and maximizing the separation margin on the test data. To solve the discriminative
density-ratio problem, two algorithms are presented on the basis of a block coordinate
update optimization scheme. Experiments conducted on different domain adaptation sce-
narios demonstrate the effectiveness of the proposed algorithms.

Second, for detecting novel instances in the test data a locally-adaptive kernel density-
ratio method is proposed. While traditional novelty detection algorithms are limited to
detect either emerging novel instances which are completely new, or evolving novel in-
stances whose distribution are different from previously-seen ones, the proposed algorithm
builds on the success of the idea of using density ratio as a measure of evolving novelty and
augments with structural information of each data instance’s neighborhood. This makes
the estimation of density ratio more reliable, and results in detection of emerging as well
as evolving novelties.

In addition, the proposed locally-adaptive kernel novelty detection method is applied in
the social media analysis and shows favorable performance over other existing approaches.
As the time continuity of social media streams, the novelty is usually characterized by
the combination of emerging and evolving. One reason is the existence of large common
vocabularies between different topics. Another reason is that there are high possibilities
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of topics being continuously discussed in sequential batch of collections, but showing dif-
ferent level of intensity. Thus, the presented novelty detection algorithm demonstrates its
effectiveness in the social media data analysis.

Lastly, an auto-tuning method for the non-parametric kernel mean matching estimator
is presented. It introduces a new quality measure for evaluating the goodness of distribution
matching which reflects the normalized mean square error of estimates. The proposed
quality measure does not depend on the learner in the following step and accordingly
allows the model selection procedures for importance estimation and prediction model
learning to be completely separated.
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Chapter 1

Introduction

The non-stationary nature of data brings a new challenge for many existing learning algo-
rithms. How to update models that adapt to distribution changes is crucial in many data
mining tasks. This dissertation mainly addresses the non-stationarity problem in data
mining and aims at providing adaptive solutions.

This chapter introduces the research scope, summarizes the contributions being made,
and outlines the structure of this dissertation.

1.1 Motivation

Currently, the information and communication systems are characterized by continuous
generation, transfer and storage of large amounts of data. In many cases the data keep
evolving over time or change from one domain to another. For example, remote sensing
images, which are intensively used for land-use classifications, change over time due to
seasonal differences. Another example is speech recognition, which may involve a wide
variety of different accents or changes due to speaker gender.

The non-stationarity of data negatively affects the sustainability of traditional data min-
ing techniques and prevents their applicability to new domains. Meanwhile, re-collecting
and re-training models for new environments are often difficult or even impossible because
of either the time constraint or the cost of sample labeling. Therefore, we are striving for
effective adaptive solutions, which require no or very little supervision for each change of
domains.



There are numerous data analysis scenarios in which adaptive learning algorithms are
needed to deal with the dynamics of data. The following explains several well-known
examples.

Sample selection bias. The sampling bias is directly linked to the selection process of
training data collection. For example, in social science research, the survey is conducted
with extra samples that can be easily accessed by the investigators. Thus, the fitted model
with the biased samples will be suboptimal to the more general distributed populations
when put into a real application [53].

Time evolving data. This scenario is mostly linked to streaming data, in which distri-
butions keep evolving along the time axis. For example, financial data analysis is not a
static task where the underlying patterns are continuously affected by many social, polit-
ical, environmental, and economic factors [63]. The non-stationary adaptation problem is
different from incremental learning in that the first tries to fit the learning model to new
data using the previous model for old data, while the second tries to fit the model to both
old and new data starting from the previous model.

Adversarial behavior data. Some important applications involve the existence of ad-
versarial behaviors that try to work around existing learned models. The data instances of
these adversarial behaviors may appear in the test set only and generate the testing and
training data distributional difference. Online information systems are often exposed with
this type of non-stationarity, such as the task of spam filtering [15] and network intrusion
detection [132]. The adversarial relationship between the intruder and the detector defines
the nonstop evolving behavior of intrusions. Another vital application is the biomedical
related task, where new types of bacterial serovars are mutated rapidly [2]. It is impossible
to collect exhaustive training samples that cover all types of bacteria.

Cross dataset adaptation. The cross dataset is the scenario in which the training
dataset and the test dataset are collected in different contexts. Thus, their underlying
distributions demonstrate some differences due to different data collection processes and/or
equipments. This is especially true in image-based object recognition tasks, where the
acquired images show systematic difference in two setups because of the change of light
condition, sensor, and so on. We have witnessed several important investigations that
deal with cross dataset image-based object recognition [87,104] and sentiment analysis of
customer reviews for cross product category [25,50].
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1.2 Research Objective and Contributions

Most machine learning algorithms are based on an implicit assumption of identical dis-
tribution between the training and test data. Thus, the fitted model minimizes a loss
function defined on the training data that will be expected to perform well in the unseen
test data. However, the wide existence of non-stationary data mining problems are charac-
terized by the distribution divergence between the data for model fitting and for the model
to be applied to. This violates the stationary assumption and usually leads to performance
degradation of a well-trained system.

The objective of this research is to investigate systematic methods for training sample
reweighting to provide adaptive solutions for non-stationary data mining tasks. Sample
reweighting is a problem that infers sample-dependent weights for a data collection to
match another data collection which exhibits distributional difference. In the statistical
and machine learning community, this problem is formulated as the density-ratio estimation
problem [17,53, 64, 110]. This research analyzes the non-stationary data mining problem
and proposes a set of methods for effective handling of non-stationary data by developing
novel density-ratio methods that incorporate characters of different non-stationary data
analysis tasks. The contributions of this dissertation are summarized as follows.

e A novel Discriminative Density Ratio (DDR) estimation framework is developed for
domain adaptation of classification tasks. This approach emphasizes the discrim-
ination ability of classifiers in the reweighted space during the adaptation proce-
dure. The proposed DDR approach is formulated in a rigorous mathematical format
and then two algorithms are presented based on the block coordinate update opti-
mization scheme. Experiments conducted on different domain adaptation scenarios
demonstrate the effectiveness of the proposed algorithms.

e A locally-adaptive kernel density-ratio method is proposed for emerging and evolving
novelty detection. The proposed approach captures the two characteristics of novel-
ties in one formula through the construction of neighborhood-decided kernels. The
effectiveness is shown by comparing other well-known novelty detection methods.

e The locally-adaptive kernel density-ratio method is investigated in the application
to analyze the dynamics in social media. Its superiority is shown in the detection of
both emerging and evolving topics in tweets data.

e The parameter tuning mechanism for the non-parametric kernel mean matching
method is studied and a novel auto-tuning method is presented. The proposed



method assesses the quality of candidate choices from a perspective that reflects
the normalized mean squared error of estimated density ratios.

1.3 Document Structure

This document consists of seven chapters, which are organized as follows.

After the introduction chapter, Chapter 2 and Chapter 3 serve as background. Chap-
ter 2 provides an overview on the non-stationary learning problem. Chapter 3 describes
the probability density ratio estimation problem and reviews state-of-the-art algorithms.

The following three chapters are dedicated to new developments for three unique non-
stationary learning problems. In Chapter 4, a discriminative density ratio estimation
framework is developed, which aims to effectively deal with domain adaptation classifica-
tion tasks. In Chapter 5, a novel locally-adaptive density ratio method is proposed for
novelty detection tasks, which solves the occurrence of both emerging and evolving novel-
ties. In Chapter 6, the parameter tuning problem for the kernel mean matching method is
investigated.

Finally, Chapter 7 concludes this dissertation and discusses some future directions.



Chapter 2

Background: Learning From
Non-stationary Data

This chapter provides a background on the topic of adaptive learning for non-stationary
data. Section 2.1 gives an overview of different learning paradigms and the challenging
problems in machine learning and data mining research. Section 2.2 describes the details
of the non-stationary learning problem and lists the learning scenarios that cause the
dynamics. In Section 2.3, existing work is reviewed, which covers supervised learning,
unsupervised learning, and novelty detection. At the end, the positioning of the dissertation
is summarized in Section 2.4.

2.1 The Stationary Assumption of Learning Algorithms

Machine learning is the study of the development of systems that can learn from data,
rather than follow only explicitly programmed instructions. Machine learning algorithms
are employed in a wide range of computing tasks where hard-coded rule-based algorithms
are infeasible. Example applications include spam filtering, image recognition, speech
recognition, and natural language understanding. Sometimes machine learning and data
mining are used interchangeably. Machine learning focuses on the designing of generic
learning algorithms, while data mining aims at extracting patterns and knowledge from
large amounts of data with the help of machine learning methods and tools for other tasks,
such as data preparation, data management, and result visualization [58,83].



2.1.1 Machine Learning Paradigms

Depending on different learning settings and objectives, the paradigms of machine learning
algorithms can be categorized into the following cases:

Supervised learning. The task of supervised learning is to model the functional rela-
tions between the input and output based on the given collection of input and output pairs,
i.e. training samples. After a model being learned, we expect it can be used to predict
outputs for unseen inputs. Then, the objective of supervised learning is to achieve the best
performance in term of minimal generalized error [58, 119], which depends on the model’s
complexity and the joint distribution of input-output pairs.

Unsupervised learning. In unsupervised learning, outputs are not provided in the
training data. The general purpose of unsupervised learning is to extract valuable infor-
mation from the data. The exact objective and performance evaluation are varying and
determined by specific tasks, which include clustering analysis, association rule mining,
recommendation system, etc. [56,05]. Inevitably, the inferred model is decided by the data
at hand and the underlying distributional properties.

Semi-supervised learning. Semi-Supervised Learning (SSL) is a learning paradigm
that exploits the limited number of labeled data and a large number of unlabeled data to
learn a strong model. Semi-supervised learning attracts great interest in machine learning
and data mining because it can use readily available unlabeled data to improve supervised
learning tasks when the labeled data are scarce or difficult to obtain. There are many
SSL algorithms being proposed, which include mixture models, Semi-Supervised Support
Vector Machines (S3VMs), manifold learning, co-training, and some others [22,131]. These
algorithms improve generalization performance under their assumptions regarding popula-
tion distribution and model structure.

Reinforcement learning. Reinforcement learning is to learn a policy function for soft-
ware agents that maps the situations to actions, with a goal to select optimal actions in
an environment in order to maximize some notion of cumulative reward [1]. Different from
supervised learning, in reinforcement learning the correct outputs can not be obtained di-
rectly. However, it is also not like unsupervised learning because some forms of reward
information are available to the policy learner during interactions with the environment.



Usually the environment is formulated as a Markov Decision Process (MDP), and then re-
inforcement learning algorithms aim to find an optimal action-selection policy, such as the
Q-learning algorithm [121]. Reinforcement learning is particularly suitable to solve prob-
lems which include a long-term versus short-term reward trade-off, and have been applied
successfully to various problems, including robot control, game theory, and economics.

Active learning. Similar to semi-supervised learning, active learning is a learning para-
digm to deal with situations where unlabeled data is abundant but manually labeling
is expensive. In such a scenario, learning algorithms can actively query human experts
for labels. This type of iterative labeling query and supervised learning is called active
learning [102]. Since the learning algorithm chooses the examples to label, the number of
labeled examples to learn a concept can often be much lower than the number required in
normal supervised learning.

2.1.2 The Stationary Assumption

Among various challenges raised in machine learning and data mining research [30, 55,

, 127], the non-stationarity of data, in which the properties of data evolve over time
and change from one domain to another, is prominent. However, classical data mining
algorithms, including supervised learning and unsupervised learning methods, usually aim
to model the statistical characteristics from a given collection of data. The tuning and
validation of the built models are then based on some cross validation strategies [50],
such as the k-fold cross validation. When deploying these models in real environments,
they continue to perform very well on new data as long as these data belong to the same
distribution as the original data. This is related to a key assumption behind most machine
learning algorithms, which is that the test data is generated from the same distribution as
the training data.

For different learning settings, if there is a distributional mismatch between the test
and training data, the model fitted using the training data would be sub-optimal for the
test scenario. This is a challenging problem that exists in many real application scenarios.

2.2 Non-stationary Data

Today’s information and communication systems are characterized by continuous genera-
tion, transfer and storage of a large amounts of data. Many instances of these data keep
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evolving and their properties change from one domain to another. This non-stationary
nature of the data negatively affects the sustainability of traditional data mining tech-
niques over time and prevents their applicability to new domains. In the following, the
non-stationary phenomenon is examined from a statistical perspective.

2.2.1 Types of Distribution Change

Bayes’ rule describes the relationship between different probability functions over the input
variable x and the target variable y as

p(x,y) = plylx)p(z) = p(z|y)p(y) , (2.1)

where p(x,y) is the joint distribution, p(x) is the marginal distribution, p(x|y) is the class
conditional distribution, p(y) is the class prior, and p(y|z) is the posterior.

According to different types of distribution changes, these terminologies are commonly
used in the literature: covariate shift, prior change, concept drift, and mixture of changes.
The covariate shift implies that the change is in the marginal distribution while the pos-
terior remains the same [105]. The prior change means the class priors are shifted while
the class conditional distributions remain the same. This type of change is also referred
as the class imbalance problem [66,112]. In the literature, concept drift usually refers to
streaming data and the term is used diversely [90,135]. According to the definition in [91],
there are two types of concept drift. One type is the change happening in class conditional
distributions, the other type is the change happening in posteriors. For real applications,
there are cases in which several types of the distributions demonstrate changes simultane-
ously. We classify these cases into the category of mixture of change. The different types
of distribution changes are summarized in Table 2.1. All the changes are finally reflected
in the joint distribution.

The aforementioned types of changes are simplifications the realistic scenarios and they
are mainly based on the probability functions of Bayes’ rule. The actual learning settings
may cause one or several types of distribution changes simultaneously.

2.2.2 Learning Scenarios with Non-stationarity

The actual settings that cause the generation of non-stationary data have the following
typical cases.



Table 2.1: Types of distribution change. (-’ means the change in that category is theoretically

possible, but is not concerned in the case)

| Terminology | p(z) [ ply) [ pylz) | p(ly) [ plz,y) ]
Covariate shift | change - same - change
Prior change - change - same | change
Concept drift-1 - same - change | change
Concept drift-2 | same - change - change
Mixture change | possible | possible | possible | possible | change

Sample selection bias.

of training data collection |

The term sampling bias is directly linked to the selection process
|. For example, in social science research, the survey is

conducted with extra samples that are more easy-accessed to the investigators than difficult
cases. We can define a selection variable s and P (s = 1| (x,y)) as the probability of the
sample (z,y) being included in the training collection. In the case that P (s = 1| (z,y)) =
P (s = 1|z), the biased selection process is determined by the input variable z only and
potentially produces the covariate shift scenario. If P (s =1|(x,y)) = P (s = 1]y), the
biased selection process is determined by the class information and hence produces prior
change. When the biased selection process depends on both x and y, this will produce the
scenario of a mixture of change.

Time evolving data. This scenario is mostly linked to streaming data, in which dis-
tributions vary with the evolution of time [1 18, 135]. But the non-stationary adaptation
problem is different from incremental learning in that the first tries to fit the learning
model to new data using the previous model for old data, while the second tries to fit the
model to both old and new data starting from the previous model. One example is the
remote sensing applications, where the data for model-building are collected in a season.
But later the model will face the mismatch challenges due to the seasonal difference [5,73].

Adversarial behavior data. Some important applications involve the existence of ad-
versarial behaviors that try to work around the existing learned models. Accordingly, the
data instances of these adversarial behaviors appear in the test set only and generate the
testing and training data distribution discrepancy. Online information systems are often
exposed with this type of non-stationarity, such as the task of spam filtering [15] and net-
work intrusion detection [132]. The adversarial relationship between the intruder and the
detector defines the nonstop evolving behavior of intrusions. In biomedical applications,



new types of bacterial serovars are mutated rapidly. It is impossible to collect an exhaus-
tive training collection that covers all types of bacteria. On the other hand, classifying
pathogenic bacteria as non-pathogenic would have unfortunate consequences.

Cross dataset adaptation. The cross-dataset adaptation problem is the scenario in
which the training dataset and the test dataset are collected in different contexts. Their
underlying distributions demonstrate some differences, and in most cases involve one or
more types of distributions. This is especially true in the image-based object recognition
task, where the acquired images show systematic difference in two setups because of a
change of light condition, devices, and so on. Limited by labeling cost or impossibility of
obtaining labels in the target dataset, this learning scenario aims to fit a model by using the
labeled training data and the unlabeled target data. We have witnessed several important
research works dealing with the cross-dataset image-based object recognition [37,104] and
the sentiment analysis of customer reviews on different product categories [25,50].

Overall, for the realistic domain adaption tasks, the distribution changes are usually
a mixture of more than one type. The single mode of distribution change, such as the
covariate shift, is just a simplification and can fail to capture the change of other aspects.

2.3 Existing Work

Distribution discrepancies between the training and test data violate the identical assump-
tion and lead to the fitted model encountering performance degradation or even becoming
totally outdated. Due to the importance of the problem, recent years have witnessed
considerable research and development activities to propose various adaptive solutions for
non-stationary data mining. In the following, the literature review is conducted, which
covers supervised learning, unsupervised learning, and novelty detection.

2.3.1 Domain Adaptation

In supervised learning, including classification and regression, the adaptation mechanism
of learning is formally known as the Domain Adaption (DA) problem and it has received
considerable attention in the research community during the past few years [,9,27]. There
are three directions of work being proposed to tackle the domain adaptation problem:
dynamic ensemble, feature transformation, and sample reweighting.
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The ensemble method is a learning paradigm that combines a set of base components
to model a complex problem through proper decision fusion rules. It represents a compre-
hensively studied approach in the streaming data concept drift scenario [37,74, 120]. The
adaptivity is achieved by dynamic weight assignment at the decision layer. The weight of
a component in the ensemble is usually decided through evaluating its performance in the
most recent batch of data, while assuming the streaming data can continuously obtain the
labeling information. For the cross-dataset task, the AdaBoost-style algorithm for model
adaptation are proposed [29, 125]. It assumes a number of labeled samples available in the
target dataset, and uses different weighting strategies for the training data and labeled
target data in the boosting iteration.

Another approach to domain adaptation is based on the assumption of the existence of
a domain-invariant feature space. Defining and quantifying a transformation to find such
a feature space and then the adaptation can be accomplished by learning a model on the
new space. Pan et al. [92] proposed the Transfer Component Analysis (TCA) method that
learns the feature transformation to produce a set of common transfer components across
domains in a reproducing kernel Hilbert space. A similarly idea is described in [38] with
a closed-form solution. Blitzer et al. [9] proposed the Structural Correspondence Learning
(SCL) method that learns a common feature space by identifying correspondences among
features from different domains. In [25], the deep learning approach is proposed to generate
robust cross-domain feature representations using the output of the intermediate layers.
The work of [21] is on the direction of combining feature selection with the co-training
scheme, which gradually finds a subset of features that are suitable for the target domain
only, instead of good for both.

The sample reweighting approach for domain adaptation is to assign sample-dependent
weights for the training data with the objective to minimize the distribution discrepancy
between the training data and the test data in the reweighted space [53,110]. Having the
weighted training samples, the cost-sensitive learning methods can be applied to produce
a model that adapts to the test data distribution. So, the sample reweighting is a general
approach that can make use of advances in many cost-sensitive learning algorithms, ranging
from the single model such as the cost-sensitive SVM [81], to the ensemble model such as
the cost-sensitive boosting [112].

2.3.2 Unsupervised Learning of Non-stationary Data

In unsupervised learning, output values are not provided in training samples. Its general
goal is to extract valuable information from data, which includes tasks such as cluster-
ing [11], matrix factorization [122] and subset selection [13].
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To analyze the properties of non-stationary unlabeled data, different adaptive clus-
tering approaches with different inspirations have been proposed. Such as the evolution-
ary spectral clustering techniques [16,76] update learning models constrained with model
smoothness. In [99], the self-organizing map method is modified to incorporate short-term
and long-term memory that enable discovering the occurrence of new clusters and explor-
ing the properties of structural changes in data at the same time. In [17,77], incremental
clustering methods are designed with the ability to handle the dynamics in the data.

Dynamic changes in data have also gained attention in the non-negative matrix factor-
ization research. In [14], the authors proposed an incremental subspace learning scheme
that is capable of adaptively controlling the contribution of each sample to the represen-
tation by assigning different weighting coefficients to each sample in the cost function.
In the application of automatic speech recognition with highly non-stationary noisy envi-
ronments, the work of [122] applied the convoluted non-negative matrix factorization to
enhance speech signals.

2.3.3 Novelty Detection and Emerging Concept Discovery

In novelty detection, the task is to identify novel instances in the test data that differ
in some respect from a collection of training data that contains only normal data. It is
usually formulated as the one-class classification problem. Because there exists a large
number of possible abnormal modes and some of them may be evolving continuously, it
is ineffective or even impossible to model all the abnormal patterns. Beside the term of
novelty detection [91], some other related topics are also often used as outlier detection [(0]
and anomaly detection [19)].

Various approaches to novelty detection are proposed. The probabilistic-based novelty
detection method estimates the Probability Density Function (PDF) of normal data, and
assumes that the low density areas have high probability of being novel [16, 107]. The one-
class SVM method models the boundary of normal data and assumes that samples located
outside of the boundary are novel [100]. The neighborhood-based approach analyzes the
distances of k-nearest neighbors, and identifies novel instances if they are relatively far
from their neighbors [13].

In [106], Smola et al. proposed a concept of relative novelty and modified the One-class
Support Vector Machine (OSVM) to incorporate the reference densities as density ratios.
Following, Hido et al. [59] proposed an inlier-based outlier detection method and defined

the inline score by using density ratios between the normal and the test data. For the
regions that the inlier scores are small, it means the normal data density is low and the
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test data density is high. Thus, with the relative densities the novel (outlier) instance can
be identified if its inlier score is below a threshold.

Emerging concept discovery is another task related to novelty detection, which aims
to identify new concepts or classes and update models to incorporate them. In [85], both
concept drift and novel class detection are considered in streaming data scenarios with a
delayed labeling process. The concept drift problem is addressed by continuously updating
an ensemble of classifiers to include the most recent concept changes. The novel class
detection is handled by enriching each classifier in the ensemble with a novelty modeler.
In [11,61], active learning is employed to discover new categories and learn their models
while pursuing minimal labeling efforts.

2.4 Summary

This chapter introduces the challenging machine learning problem that is arisen from non-
stationary data. After analyzing different types of distribution changes and the typical
learning scenarios that demonstrate non-stationarity, a comprehensive review of the ex-
isting work is presented. The review covers the learning settings of supervised learning,
unsupervised learning, and novelty detection.

The rest of this dissertation will focus on the study of probability density-ratio estima-
tion methods and contribute to non-stationary data mining from three aspects: domain
adaptation in classification problems, novelty detection and analysis, and the parameter
selection problem in the kernel mean matching algorithm.
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Chapter 3

A Review on The Estimation of
Probability Density Ratios

Estimating the ratio of probability densities from two collections of data is a new topic
in the statistical and machine learning community. It has attracted great interest due
to its potential for solving many challenging learning problems, such as covariate shift
adaptation, outlier detection, semi-supervised learning, mutual information estimation,
and some others.

This chapter presents a review on the density-ratio estimation problem. It first describes
the formulation of the problem in Section 3.1. Then, the state-of-the-art estimation meth-
ods are reviewed in Section 3.2. Following, some applications that can employ the density
ratio techniques are discussed in Section 3.3. A summary is given at the end in Section 3.4.

3.1 The Problem Formulation

Let X C R? be a d-dimension data space. We are given m independent and identically
distributed (i.i.d.) data samples S = {z; € X|i = 1,...,m} that are from a distribution
with probability density function p(z), and another set of n i.i.d. data samples &' =
{z}, € X|i =1,...,n} that are from a different distribution with density function p'(x).
Suppose p'(z) is continuous with respect to p(z) (i.e. p(z) = 0 implies p’(z) = 0). The
Density-Ratio (DR) problem (also known as the sample importance estimation problem)
is to estimate the ratio

B(x) = piz) : (3.1)



from the given finite samples S and S’.

3.1.1 Related Topics

Radon-Nikodym Derivative

The density ratio is a special case of a function termed as Radon-Nikodym Derivative
(RND) [6], which is defined as a function of the ratio of two derivatives. Taking probability
into consideration, the derivative is a probability density. In some work the density-ratio
problem is also referred to as a RND problem [128]. But, strictly speaking the RND is a
more general term than the density-ratio problem.

Importance Weight

Another term that is used interchangeably with density-ratio is importance weight, which
takes the concept of importance sampling [17]. The intuition is from the view angle of
changing the original problem in Eq. 3.1 into S(z)p(xz) = p/(x), where the B(x) is a
sample-dependent weighting term to match one distribution to another distribution. For
most cases in this thesis, the density-ratio will be used unless being indicated explicitly.

Necessary Condition

The validity of a density-ratio requires that the support of p’(x) is contained by the support
of p(z). This is the necessary condition claimed in the problem, which assumes that p’(x)
is absolutely continuous with respect to p(z) [62, 133]. In other words, for regions in the
feature space where p(x) = 0, we implicitly imply p’(x) = 0 for applying the density-ratio
to recover the distribution of p'(z) in the learning setting.

To deal with distribution changes, such as covariate shift and sampling bias correction,
most existing approaches make use of the density ratios to reweight samples [53, ].

In fact these proposed methods ignore this necessary condition and the solution is an
approximation to some extent.
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3.2 Density-Ratio Estimation Methods

Recently a number of methods have been proposed to estimate the Density Ratio (DR) [111].
According to different optimization formulations, existing methods can be classified into
four categories: 1) Density estimation-based two-step approach; 2) Moment matching,
e.g. the Kernel Mean Matching (KMM) algorithm; 3) Density model fitting, e.g. the
Kullback-Leibler Importance Estimation Procedure (KLIEP) algorithm; and 4) Density-
ratio model fitting, e.g. the constrained Least-Squares Importance Fitting (cLSIF) and
unconstrained Least-Squares Importance Fitting (uLSIF) algorithm. Here we will review
these well-known density-ratio estimation algorithms.

3.2.1 Two-step Approach

The straightforward way to estimate the density-ratio is composed of two steps. First, the
Probability Density Function (PDF) p(x) and p/(z) are estimated from the two collections
of samples § and &’ separately. Then, the density ratio S(z) is obtained by taking the
division of them as fB(x) = ?@)/p@). Therefore, the density-ratio estimation does not
involve any more burden than estimating two density functions. The following explains two
often-used density estimation methods, the Gaussian Mixture Model and Kernel Density
Estimation.

Gaussian Mixture Model

Estimating the density function itself has a rich history. There are mainly two directions of
work on density estimation: the parametric techniques and the non-parametric techniques.
Parametric methods assume a model governing the data generation and the parameters
of the model are learned from the given data. The Gaussian Mixture Model (GMM) [97]
is a popular parametric approach, which assumes the data are generated from a weighted
mixture of Gaussian distributions as

pzlA) = Zwig(x|ui; %), (3.2)
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where w;, i = 1,... M are the mixture weights, g(z|u;,>;),7 = 1,... M are the M compo-
nent Gaussian distributions. Each component is a d-dimension Gaussian as

1 1 TS0 _
g(xlug, X5) = Wexp <—§(x — ;) X (x Z)) : (3.3)

Then the GMM is modeled by the set of M component mean vectors, component
covariance matrices, and the weights for the components, expressed as

To learn the parameters A from the training data X, Maximum Likelihood (ML) estima-
tion using the Expectation-Maximization (EM) algorithm is a well-established method [32].
The idea of the EM algorithm is to iteratively update the model A such that the likelihood
p(X|A\) = uex (p(x]A)) is maximized, i.e.

p(XAED) > p(X A0 (3.5)

Based on the estimation of p(z|A®") at t-iteration (Eq. 3.2), the posterior probability
for component ¢ is given as

wig(alu”, o)

Pr(i|z, \) = :
Sorly wig(alug, S)

(3.6)

Then, the next iteration (¢t + 1) of EM will update the GMM model parameters using
the following formulas:

1
wi = x| Z Pr(ilz, \®) ; (3.7)
zeX

LD > sex Fr(il, AD)z ) (3.8)

' > pex Pr(ilz, AW) .
T

ey _ e Prlie O (o - ul?) (o - ul?)

s+ _ _ 3.9
| 5 ox P ) &

The initial model A(® of the GMM is typically derived by using some form of vec-
tor quantization estimation. The convergence condition of the algorithm can be set by
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thresholding the changes of the model. The GMM method models the data distribution
by imposing a prior restriction on the structure of the model. On one hand, it can produce
stable and accurate estimation if the model is properly set. On the other hand, it is not
surprising that the GMM method would output a biased model if the predefined candidates
do not include any good approximation of the truth.

Kernel Density Estimation

Kernel Density Estimation (KDE) [101] is a popular non-parametric approach for estimat-
ing the PDFs. It is closely related to histograms, but is enhanced with the properties of
smoothness and continuity because of kernel functions used. For example, by using the

Gaussian kernel,
2
ky(x;x;) = exp (—M> , (3.10)

202

the kernel density estimator for a given training collection X is
. 1 1
pz) = x| Z Wka(xaxi) : (3.11)
r, €X

The parameter of KDE, such as the kernel bandwidth o, can be optimized by k-fold
cross-validation to maximize likelihood or log-likelihood [57]

max { H (ﬁ(m))} = max {Z (logﬁ(x))} . (3.12)

zeX rzeX

Because KDE does not make an assumption about the model of the density function, it
is flexible to accommodate any complex data distribution. But the flexibility may produce
unreliable estimation if there is not enough samples and the dimensionality is too high.

By using any density estimators to obtain p(z) and Jid (x) separately, then the density
ratio of them is easy to obtain by taking a division as B(x) = p'(x)/p(x). However, this
naive two-step density estimation based approach has been revealed to suffer from several
problems [62]. First, the information from the given limited number of samples may
be sufficient to infer the density-ratio, but insufficient to infer two probability density
functions. Second, a small estimation error in the denominator can lead to a large error in
the density-ratio. Lastly, the naive approach would be highly unreliable for high-dimension
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problems because of the notable ‘curse-of-dimensionality’ in density estimation. Following
the spirit of solving a problem succinctly and avoiding unnecessary steps to solve some more
general problems, there are several well-known one-step density-ratio estimation methods
being proposed, which are discussed in the following sections.

3.2.2 Kernel Mean Matching

The Kernel Mean Matching (KMM) algorithm [53,62] is a well-known algorithm for density
ratio estimation based on infinite-order moment matching. The basic idea behind KMM
is that two distributions are equivalent if and only if all moments are matched with each
other. By making use of universal reproducing kernels, the infinite order moment matching
is implicitly implemented. To be specific, it estimates density ratios by minimizing the
Maximum Mean Discrepancy (MMD) [52] between the weighted distribution p(x) and the
distribution p/(z) in a Reproducing Kernel Hilbert Space (RKHS) ¢(x) : © — F,

MMD? (F, (8,p) ,P) = || Eampe) [B(2) - ()] = Erpia [6(@)][|” - (3.13)

Theorem-1.2 and Lemma-1.3 in [53] state that if the kernel space is universal and p'(z)
is absolutely continuous with respect to p(x), the solution f(x) of Eq. 3.13 converges to

P (z) = B(z)p(z).
Using empirical means of & and S’ to replace the expectations, we can obtain a

Quadratic Programming (QP) problem as

A

B = argming [MMD p).p ]
2

. 1N

A argming Zﬁ o(x;) — - Z ¢(95;)
j=1

. 2 m n 1 n . ,

= argming Z Bik(zi, x)3; — — ZZﬁlk T, T ] Z k(z;, )
7,]1 mnl 1]1 '7j:1
1

= argming {EBTKB — kTﬁ] , (3.14)

with respect to two constraints

BiE[O,b]Z’:L...,m, and
|%ZZIIBZ_1|§€7
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Algorithm 1 KMM Algorithm [62]
Input: S={zli=1,....m}, S = {x;]j =1,...,n}, beo
T

Output: 8= (B, ..., B
Steps:

1: Compute K (Eq. 3.15);

2: Compute k (Eq. 3.16);

3: Boundary constraint: 0 < B <0l ;
4: Normalization constraint: s

| Zit
5: B+ QP _solver (K, k. e,b) (Eq. 3.14);

where K is a kernel matrix defined on S as
Ki' :]{7(1'1‘,1]]'), {ZEZ',ZE]‘ €S|Z,j: 1,...m}, (315)

and k is a vector defined on the kernel between S and S’ as

m < : :
k; = gzlk(xl,x;), {r;eSli=1,..m} {2 €S|j=1,...n}. (3.16)
J:

The first constraint that limits the boundary of B, € [0,b] is to reflect the scope of
discrepancy between p(z) and p/(z). The second constraint [= 3" 8, — 1] < € is a
normalization factor over f(x), since p/'(z) = [(z)p(x) should approximate a probability
density function, where € is a small number to control normalization precision.

For positive semi-definite kernel K, Eq. 3.14 formulates a convex QP problem with
linear constraints. Therefore its global optimum can be obtained by using any existing QP
solver [ 1]. The detailed steps of KMM are summarized in Algorithm 1.

Because the KMM outputs density ratios only at the sample points S, it does not
have out-of-sample ability for model/parameter selection. The original paper suggests a
heuristic setting, the boundary b = 1000, € = vm—1//m, and kernel bandwidth o as the
median of pairwise sample distances [53]. But generally speaking, the parameter selection
for KMM is still an open question.
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3.2.3 Kullback-Leibler Importance Estimation Procedure

The Kullback-Leibler Importance Estimation Procedure (KLIEP) [110] models the density-
ratio function as a linear combination of Gaussians as

Blx) = ank(x,z) . (3.17)

where x; are data points taken from S’ as reference points, and k(-, -) is a Gaussian kernel
function centered on these reference points. Usually for the feasibility of computation, a
subset of &’ is taken (i.e. b < n). The parameters oy, as,...,a, > 0 are to be learned
from the two collections of data S and S'.

The algorithm learning objective is to minimize the Kullback-Leibler divergence be-
tween the weighted density f(x)p(z) and the distribution density p'(x) as

KL |9/ (2)|3(z)p(zx)| = ’xlonm
peipEp@] = [raes

/ p’(x) / )
/p (x)log o) dx — /p (x)log B(x)dx . (3.18)

The first term is unrelated with respect to estimation of f(x), so minimizing the
Kullback-Leibler divergence is equivalent to maximizing the second term, defined as

J = /p’(x) log ((z)dx . (3.19)

Additional, because the B(x)p(a:) is supposed to be close to a PDF p/(z), a normalization
constraint should be applied as

/ B(z)p(x)ds = 1. (3.20)

Replacing the expectations in Eq. 3.18 and Eq. 3.20 with their empirical means, we
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Algorithm 2 KLIEP Algorithm [110]

Input: S={zli=1,....m}, S = {x;]j =1,...,n}, b0
Output: 5(z)

Steps:

1: Choose b samples from S’ as centers {z;|l = 1,...,b};
Compute Aj  k(z}, 1) ;
Compute & « L 37" k(zy, 2y);
Initialize a0 + 1;
Initialize learning step 6,0 < 6 < 1;
repeat

a+ a+dAT(1./Aa);

o a+t(1-Ea)/ (€7€);

a + max(0, a);

a+ af ()
until Convergence-of-a

L Ble) = 2y auk(w, @);

— = =
My =2

have the following optimization problem:

& = argmax{J}

arg max {Zlog (Z &lk(x;,wl)> } (3.21)

b m
1
w.r.t. - E 7 E k(x;,x;) =1
n
=1 i=1

a1, Q. .., >0 (3.22)

Q

This formulates a convex problem with linear constraints and the global solution can
be obtained through gradient searching. The KLIEP algorithm is listed in Algorithm 2.

The free parameters in KLIEP include the kernel bandwidth ¢ and the number of
reference points b. Because the density ratio is modeled as a function, KLIEP can produce
outputs for out of training samples and accordingly the parameters of the model can be
tuned by Likelihood Cross-Validation (LCV) to optimize the objective value J (Eq. 3.19).
Algorithm 3 summarizes the procedure of k-fold cross-validation for KLIEP to select an
optimal model from candidates M by splitting S’ into a section for model learning and a
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Algorithm 3 Model Selection of KLIEP Algorithm [110]
Input: S={zli=1,....m}, S = {x;]j =1,...,n}, M={my,...,ms}
Output: 5(z)
Steps:
1: Split &’ into k-fold of disjoint subsets;

. for each model m; in M do
for each fold j do

~

B(z) + KLIEP(m;, S, S'\&;);

2

3

4

5 J(0,0) o Duen, log Blo)
6: end for
7

8

9

J() =32, 4, );
: end for )
D m* < arg max,, e m {J(z)},

~

10: 5(z) < KLIEP(m*, S,S8");

@

section for model assessment.

3.2.4 Least Square Importance Fitting

Least Square Importance Fitting (LSIF) [(9] is another model-based density-ratio estima-
tion method, in which the density ratio function is also modeled as f(x) = Z?zl ak(z, x;)
(the same as Eq. 3.17).

Different from the KLIEP algorithm, LSIF learns the parameter o = (g, g, . . . ,ab)T
by minimizing the squared loss of density-ratio function fitting:

18 [0 50)] = 5 [ (5@) - 8@) pa)ts
5 [ B@rp@is — [ bewt@an+ 5 [ sappar 62

There are two variants of LSIF. One is the constrained Least Square Importance Fitting
(cLSIF), which considers the non-negativity constraint on a during the learning process.
Another variant is the unconstrained Least Square Importance Fitting (uL.SIF), which
first outputs & by ignoring the non-negativity constraint and then modifies the output
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as @ = max(0, &). Substituting the learned & into Eq. 3.17, the LSIF /uLSIF algorithm
produces a function to model the density ratios.

The uLSIF algorithm involves solving linear equations only and the solution can be
obtained analytically. So, the computation efficiency and stability of uLSIF make it well
accepted in realistic applications [54,59]. In the following we describe the details of uL.SIF
only.

The last term of Eq. 3.23 does not depend on 5’(3:), which can be ignored. Then,
substituting the model function 5(x) = 2?21 ak(z, x;), approximating expectations with
empirical means, and adding regularization term % Z?:l a} to penalize the complexity of
learned model, this leads to the following unconstrained optimization problem:

b b b
~ ) 1 A
& = argmin,, 3 Z oo Hyy — Z o h; + 5 Z ol (3.24)
LI=1 =1 =1
where
1 m
H 5= k ') k’ iy L) 325
u m ; (i, 20) k(i 20) ( )
1 n
= Z; k() xp) - (3.26)
]:

We can see Eq. 3.24 is an unconstrained convex quadratic problem, the global solution
can be computed analytically as

& = (41,49, ..., 4) = (H+X)""h. (3.27)

To avoid the negativity of output, the final result is required to modify the output of
Eq. 3.27 to
& = max(0, &) . (3.28)

Substituting the learned & into Eq. 3.17, the uLLSIF algorithm then produces a function
to model the density ratios. Its model selection is also possible through the likelihood cross-
validation, for example using k-fold cross-validation to select kernel bandwidth o and the
regularization parameter A. The details of uLSIF with cross-validation steps are presented
in Algorithm 4.
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Algorithm 4 uLSIF Algorithm [69)]

Input: S={zli=1,....m}, S = {:E;-]jzl,...,n}, b
Output: 5(z)

Steps:

1: Choose b samples from S’ as centers {z;|l = 1,...,b};
: for each (o, \) from candidates do

Proceed cross-validation:

Compute H (Eq. 3.25);

Compute h (Eq. 3.26);

& « max (0, (H + )" h);

Compute objective function LS (o, \) (Eq. 3.23);
end for
(0%, \*) <= argmin (LS (o, A));
: Compute the final H, h with selected parameters o*, \*;
: Compute the final & < max (0, (H + )7 h);

- Blr) 2?:1 ak(z, x);

— =
—= O

—_
DN

3.3 Applications

In this section, we review several important data analysis tasks in which the concept of
density ratio has potential contributions. This includes the covariate shift adaptation [105,
], outlier detection [59], safe semi-supervised learning [71,111], and some others [10,10,

,70].

3.3.1 Covariate Shift Adaptation

Covariate shift is a particular situation in the supervised learning setting of domain adap-
tation, where the test data and training data are distributed differently in the marginal
input space, referring Section 2.2.1 in Chapter 2. Usually the covariate shift happens in
biased sample selection scenarios.

Within the risk minimization framework, the general purpose of a supervised learning
problem is to minimize the expected risk of

R(h,p,l) = //l (x,y,h)p(x,y)dedy , (3.29)
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where h is a learned model, I (z,y, h) is a loss function for the problem with a joint distri-
bution p (z,y).

If we are facing the case where the training data distribution p,.(z,y) differs from the
test data distribution pss(x,y), in order to obtain the optimal model in the test domain

hi,, we can derive the following reweighting scheme:

h;ks = argminRts(h,pts(x,y),l(x,y,h))
=mmﬂx%mmm@
= argmm// z,y,h p Pus (@, ))ptr(m,y)dwdy
tr

(z,y
= arggéigRtr (h (2, 9), Pis (2, ;l(x,y, h)) : (3.30)

Pir(2,

Further, covariate shift assumes that the conditional distributions are the same across
the training and test data (i.e. ps (y|r) = pi (y|x)), but that the marginal distributions
are different. Hence A}, can be expressed as follows:

. . Dts (:E)
hts = arg g’él;[l Rtr (h,ptr(l', y), pir(l’> l(ZL', Y, h))

= arg 1%1[51 Ry (h, pir(z,y), B(2)l(x,y,h)) . (3.31)

Having the weighted training instances, there are numerous cost-sensitive learning al-
gorithms that can be applied. Instead of minimizing the loss of misclassification, the
cost-sensitive learning aims at minimizing the instance-dependent cost of wrong predic-
tion [112,129]. For example, Support Vector Machines [21] can naturally embed weighted
samples in the training process as

Nr

IIllIl— ||h||]_-+cZB z;)€(x;) , (3.32)

subject for all (x;,y;) € S

(yi, h(w:)) > 1 = &(wq), §(w3) >0,

where F is the Reproducing Kernel Hilbert Space (RKHS) associated with the kernel
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function, c is the trade off between the separation margin and the empirical error.

In comparison to the traditional SVM, the only difference in Eq. 3.32 is the weights
B(x;) being added into the training error penalty term. It treats the training samples
differently by considering their importance weights.

3.3.2 Inlier-based Outlier Detection

Hido et al. [59] proposed an inlier-based outlier detection method and defined the inlier
score by using density ratios between the normal data and the test data as

_ pre()

(@)’ (3.33)

InlierScore(z)

where py¢(z) and pis(x) are PDFs of reference normal data and the test data, respectively.

For the regions that have small inlier scores, it means the normal data density is low and
the test data density is high. Thus, using the relative densities a novel (outlier) instance
can be identified if its inlier score is below a threshold.

3.3.3 Safe Semi-supervised Learning

Semi-supervised Learning (SSL) is a learning paradigm that exploits the limited number of
labeled data and a large number of unlabeled data to learn a strong model. The SSL algo-
rithms improve generalization performance under their assumptions regarding population
distribution and model structure. But if the associated assumptions do not hold, semi-
supervised learning may even degrade estimation accuracy in comparison to supervised
learning methods that simply ignore the unlabeled data.

In [71] Kawakita and Kanamori proposed a safe semi-supervised learning algorithm by
employing a density-ratio estimator to weight the labeled samples. It is highlighted as
a safe SSL since it was proved to be no worse than the supervised learning regardless of
the model assumptions. Another work from Tan and Zhu [I14] extended the idea of safe
SSL and proposed an ensemble method by applying density ratios in the bagging manner.
They proved that the density-ratio bagging method achieves less asymptotic variance than
bagging and requires only weak semi-supervised learning assumptions.

Besides the three important tasks being discussed above, the concept of density ratio
has also been studied for other data analysis tasks, such as change point detection [30],
dimension reduction [113], and privacy preserving data publishing [10].
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3.4 Summary

In this chapter, we described the problem of sample importance weighting according to
density ratios and reviewed popular techniques for estimating density ratios. Table 3.1
summarizes the properties of these methods.

The two-step approach is the most straightforward as it follows the definition of density
ratio, which estimates two PDFs first and then takes a ratio. Gaussian Mixture Model
(GMM) and Kernel Density Estimation (KDE) are two popular methods for density func-
tion estimation. The KDE method is an especially flexible method for modeling complex
data distributions and its use is computationally efficient due to its analytical form of
solution. The model selection can be performed by k-fold likelihood cross-validation.

Instead of the two-step approach, the one-step approach is to estimate a density-ratio
without going through the explicit estimation of two density functions. It follows the spirit
of solving a problem succinctly and avoiding unnecessary steps that involve more general
problems. The KMM is a milestone method that estimates a density-ratio in one-step. The
basic idea of KMM is to use infinite-order moment matching by making use of universal
reproducing kernels. KMM minimizes the Maximum Mean Discrepancy in the reweighted
space and formulates as a quadratic convex problem. The main difficulty with KMM is the
lack of a parameter selection mechanism, because the output is the values at the sampling
points and there is no model being produced.

KLIEP, cLSIF, and uLLSIF however model the density-ratio function as a mixture of
multi-Gaussians and the mixture weights are learned by formulating different learning
objectives. Because they produce the model function of the density-ratio as output, the
density-ratio values for unseen data points can be obtained. Therefore, model selection

by cross-validation can be implemented. This is a great advantage of these methods over
KMM.

KLIEP is formulated to minimize the Kullback-Leibler divergence between the weighted
data collection and the target data collection. The objective is a convex function with linear
constraints and can be solved by gradient descent searching. Its computation is expensive
due to the non-linear objective function used during search iterations. The output of
KLIEP is not only the values at the sampling points, but also a density-ratio function.
Therefore, a variant of cross-validation can be used for selecting the parameters in the
model.

Constrained LSIF (cLSIF) and Unconstrained LSIF (uLSIF) have the objective to min-
imize the least-squared error of a density-ratio function fitting, and add a regularization
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Table 3.1: State-of-the-art methods for density-ratio estimation.

Approach Method | Objective Algorithmic Model Output
Solution Selection
GMM Maximize Expectation- Available Two density
Two-step approach o o .
log-Likelihood Maximization functions
KDE Maximize Analytic Available Two density
log-Likelihood functions
Moment matching KMM Minimize MMD | Convex Not available | Density-ratio
quadratic values at
programming sampling points
Density  function | KLIEP Minimize Gradient Available Density-ratio
fitting KL-divergence descent function
Density-ratio cLSIF Minimize least- | Convex Available Density-ratio
function fitting squared error quadratic function
programming
uLLSIF Minimize least- | Analytic Available Density-ratio
squared error function

term to penalize model complexity. Constrained LSIF incorporates the non-negative con-
straint. So its solution can be computed using convex quadratic programming, which
usually is computational demanding. Unconstrained LSIF initially drops the non-negative
constraint, then enforces non-negativity over the results as an approximation. Since uLL.SIF
is a pure quadratic problem without constraints, its solution can be analytically computed.
This greatly improves computation efficiency, and many empirical studies reveal this ap-
proximation has small effects on accuracy.

The estimation of density ratios has shown potential in various machine learning and
data mining applications. It has been applied for covariate shift adaptation, outlier detec-
tion, semi-supervised learning, and other challenging data analysis tasks.
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Chapter 4

Discriminative Density Ratio for
Domain Adaptation of Classification
Problems

Domain adaptation deals with the challenging problem that arises from the distribution
difference between training and test data. An effective approach is to reweight the training
samples to minimize the distribution discrepancy. This chapter presents a novel Dis-
criminative Density-Ratio (DDR) method for learning adaptive classifiers. This approach
combines three learning objectives: minimizing generalized risk on the reweighted training
data, minimizing class-wise distribution discrepancy, and maximizing the separation mar-
gin of the test data. To solve the DDR problem, two algorithms are presented based on
the Block Coordinate Update (BCU) method.

The chapter is organized as follows. Section 4.1 introduces the domain adaptation
problem and reviews related work. Section 4.2 presents the Discriminative Density-Ratio
(DDR) framework. Section 4.3 describes two BCU algorithms for solving the DDR problem.
The experiments and results are discussed in Section 4.4.

4.1 The Domain Adaptation Problem

There are many real world applications in which the test data exhibit distributional dif-
ferences relative to the training data. For example, when building an action recognition
system, training samples are collected in a university lab, where young people make up a
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high percentage of the population. When the system is intended to be applied in reality,
it is likely that a more general population model will be required. In such cases, tra-
ditional machine learning techniques usually encounter performance degradation because
their models are fitted towards minimizing the generalized error for the training data. So,
it is important that the learning algorithms are able to demonstrate some degree of adap-
tivity to cope with distribution changes. This necessity has resulted in intensive research
under the name of domain adaptation [7,25,30]. Some closely related work uses other terms
such as transfer learning [93, 126], concept drift [18,123], and covariate shift [31,110].

Theoretical analysis of domain adaptation divides the type of distribution changes into
covariate shift, prior change, and concept drift. However, realistic learning scenarios usually
simultaneously include more than one type of change.

4.1.1 Problem Definition

Let X C R? be a d-dimension input space and ) be a finite set of class labels. In a typical
supervised learning, given n labeled samples & = {(z;,y;)|i = 1,...,n}, we want to learn
a mapping function h : X — ) which has minimal prediction error for unseen samples.
This assumes that test data comes from the same distribution as the training data, which
defines the meaning of a domain.

In the context of domain adaptation, the same distribution assumption does not hold.
Instead, we have ny, labeled training collection Sy = (X, Vir) = {(zs,vi)[i = 1,... 0 }
which is drawn from a distribution p;.(x,y). The ny; number of unlabeled test samples
Sis = Xis = {x;| j=1,... ,nts} are from a different but related distribution pys(z,y). In
this scenario, the learning setting is exposed to two different domains: the training domain
and the test domain (sometimes they are also referred to as the source and target domains).
The domain adaptation problem aims to build an adaptive learner that can learn a model
hys to fit the test data distribution using the labeled training data S, and the unlabeled
test data Sy,.

The obvious constraint which should be satisfied is the relatedness between the training
data and test data. Formal studies reveal that the problem is intractable when the hy-
pothesis set does not contain any candidate achieving a good performance on the training
set [3], since the learner has to rely on the labeling function in the training data and then
transfer the knowledge to the test data.
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4.1.2 Related Work

Because of the importance of the problem and the need in practice, the domain adaptation
has attracted a great deal of research in recent years. In the literature there are three
directions of work being proposed: dynamic ensemble, feature transformation, and sample
reweighting.

Dynamic ensemble. The ensemble method is a learning paradigm that combines a
set of base components to model a complex problem through proper decision fusion rules.
This method represents a comprehensively studied approach in the streaming data concept
drift scenario [74,75,90]. The adaptivity is achieved by dynamic weight assignment at the
decision layer. The weight of a component in the ensemble is usually decided through
evaluating its performance in the most recent batch of data, while assuming the streaming
data can continuously obtain the labeling information. For the cross-dataset task, Dai et
al. [29] proposed an AdaBoost-style algorithm for model adaptation. It assumes a number
of labeled samples available in the target dataset, and uses different weighting strategies
for the training data and labeled target data in the boosting iteration.

Feature transformation. Another approach to domain adaptation is based on the as-
sumption of the existence of a domain-invariant feature space. This approach depends on
defining and quantifying a transformation to find such a feature space, and then the adap-
tation can be accomplished by learning a model on the new space. Pan et al. [92] proposed
the Transfer Component Analysis (TCA) method, which learns the feature transformation
to produce a set of common transfer components across domains in a reproducing kernel
Hilbert space. In [11], shared latent structure features are learned for the problem of trans-
ferring knowledge across information networks. Blitzer et al. [9] proposed the Structural
Correspondence Learning (SCL) method, which learns a common feature space by identify-
ing correspondences among features from different domains. In [25,50], the deep learning
approach is proposed to generate robust cross-domain feature representations using the
output of the intermediate layers. The work of Chen et al. [24] is along the line of feature
selection, which gradually finds a subset of features that are suitable for the target domain
only, instead of finding common features for both the target and source domains.

Sample reweighting. Sample reweighting approach for domain adaptation assigns sample-
dependent weights for the training data with the objective of minimizing the distribution
discrepancy between the training data and test data in the reweighted space. Having the
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weighted training samples, the cost-sensitive learning methods can be applied to produce
a model that adapts to the test data distribution. Considering that ensemble-based meth-
ods need labeled test domain data while feature transformation-based methods are usually
developed for a specific application, the sample reweighting is an effective and general
approach. The sample reweighting can make use of the advances in many cost-sensitive
learning algorithms, ranging from the single model such as cost-sensitive SVM [31] to the
ensemble model such as cost-sensitive boosting [112]. The sample weighting mechanism is
the core of the problem, and its estimation is formulated as the density ratio between the
probability densities of the test and training data [67,86, 109].

4.2 Discriminative Density Ratio

Existing work on using the reweighting strategy for domain adaptation is based on the
simplified assumption that py(y|z) = pi-(y|x) and on the estimation of the density ratio
of the marginal distributions as B(x) = P(®)/p.,(2). However, realistic domain adaptation
problems are more complex than the above assumption. According to Bayes’ rule, the
prior, posterior, marginal, likelihood, and joint distributions are tightly related as p(z,y) =
p(y|z)p(x) = p(z|y)p(y). The actual learning settings usually cause more than one type of
distribution change simultaneously.

Focusing on the classification tasks, the objective is to discriminatively separate the
instances into different classes. However, in the conventional weighting approach dealing
with adaptation, the distribution matching is performed on the whole input space. In
other words, the existing algorithms focus on matching the training and test distributions
without considering to preserve the separation between classes in the reweighted space.

Moreover, the effectiveness of conventional density-ratio estimation approach is limited
by another constraint, the support condition (i.e. Yz, py.(x) = 0 = ps(z) = 0) [62,91].
The model, therefore, cannot generalize well for regions where p;s(x) # 0 but p,.(z) = 0.

These two problems hold back the effectiveness of the weighting methods in the do-
main adaptation problem severely, especially for classification tasks. Several studies have
reported this problem [28,53], but none of them have presented a clear solution.

Motivated by these observations, we propose a Discriminative Density-Ratio (DDR)
approach to learn the weights of training data discriminatively by estimating the density
ratio of joint distributions in a class-wise manner to preserve the separations between
classes. The DDR model aims to achieve the objectives of 1) approximating test domain
risk with the reweighted training data according to joint distributions, 2) minimizing the
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distribution discrepancy between the training and test data in a class-wise manner, and 3)
guiding the decision boundary to the sparse regions of the test data.

4.2.1 Learning Objectives

Objective 1: Minimization of approximated test domain risk. First, we discuss
the situation of supervised learning where there is no distribution change between the
training and test data. The general purpose of supervised learning is to minimize the
expected risk

R(h,p(x,y), L(z,y,h // (z,y,h) p(x, y)dvdy (4.1)

where h is the model hypothesis, L (x,y,h) is a loss function, and p(x,y) is the joint
distribution over x and y.

Given the presence of distribution changes between the training and test data, i.e.
pes(,y) # pu(x,y), we will seek to obtain the optimal model in the test domain by
approximating the test domain risk using the following reweighting scheme:

Ris(h,pis(z,y), L(x,y,h)) = // x,y, h) pis(x, y)dedy

= Jfpees Ei:ii it
Dts

= e (hon) 2D 1) .

Pts ("E,y)

ey e have

Defining weights to reflect the joint distribution ratios w(x,y) =
Ris = Ry (h,pi(x,y), w(x,y)L(z,y,h)) . (4.3)

With ny,. observed training samples Sy = {(z;, v:)|i = 1,...,n4} from pg,.(x,y) and
using a regularized risk scheme, the test domain risk can be approximated as

Rts ~ Rtr<h78traw('r7y)L<x?y7h))
1
= — Y w(@y) L,y h) + AQ(R) | (4.4)

Uz
" (@i,y:)EStr

where (h) is the model complexity which serves as a regularizer to avoid overfitting to
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the training data, and A is the trade-off parameter.

Objective 2: Minimization of class-wise distribution discrepancy. The conven-
tional sample reweighting approach assumes that the posterior distributions are unchanged
(pes(y|z) = pir(y|x)) and simplifies the weights as the density ratio of the marginal distri-

butions of z as
o pis(z,y) — pis()

vy = ey S @)

(4.5)

Instead of aggressively reweighting training samples by the density ratios of the marginal
distributions, our approach is to preserve the separations between classes by estimating
the density ratio of joint distributions in a class-wise manner. We decompose the joint
distribution from the perspective of class likelihood and class prior as

w(z,y) = pes(2.y) _ pes(@(y)pes(y) _ pes(ly)  pes(y)
7 Ptr(I,y) ptr(x‘yh?tr(y) ptr(x|y) ptr(y> .

(4.6)

Let B(x,y) = pes(2lY) 6 the density ratio of class conditional distributions between the
per(]y)

same class, and y(y) = ;’::—EZ; be the ratio of priors. Then, Eq. 4.6 can be written as

w(z,y) = Bz, y)v(y) (4.7)

However, the fact that the test data do not have label information means that estimating
£ and v directly is not possible. The solution is to use the current model prediction on
the test data A&, to estimate § and . The details are given in Section 4.3.2. Here, the
objective is to minimize the following class-wise distribution discrepancy

DCW(ﬁ(ZL‘,y),ptr(iv,y),pts(.f),h)
= ZD [B(z,y = )per(z]y = ¢), prs(x]y = )]

ceC
= Z D [ﬂ(l‘, Yy = C)ptr(‘rky - C)7 Z%pw(gﬁ) ) (48)
ceC ts

where pys(y = c|z) and ps(y = ¢) are the posterior and prior of the test data estimated by
the current model A, and

D [/B(J;?y = c)ptr<x|y = C)7pts(x|y = C)]
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is the distribution discrepancy for class ¢ between the weighted training data B(z,y =
_ prs(y=clz)

¢)pe-(zly = ¢) and the test data pis(x|y = ¢) = o (=0 Pes(x).

With the training and test collection S;,. and A}, the empirical class-wise distribution
discrepancy can be approximated as

DCW(,@(-T, y), St?”7 Xt57 h)

pts(y - C|ZE, S th)
—STD |8, e, X! . 4.9
Z |:ﬁ ' ‘y" Zm’e?(f,s pts<y = C|I,) ' ( )

ceC

Using different measures to express the distribution discrepancies will lead to different
density-ratio estimation algorithms (see Chapter 3). For example, using Least Square Error
(LSE) as the objective function results in the uLSIF-based algorithm to solve the class-wise
density-ratio estimation.

Objective 3: Maximization of test data margin. For the shifted but unknown
distributions, we also intend to simultaneously force the classification boundary to lie at
sparse regions of the unlabeled test data. This means that it is preferable to maximize
the test data margin. Making use of this characteristic over the test data can alleviate the
model generalization limits on the unsupported regions where ps(z) # 0 but py,.(x) = 0.

Maximizing the test data margin coincides with minimizing the margin loss over the
test data. As a result, the idea of hinge loss from semi-supervised learning [68] can be used
to express the margin loss, which is defined as

MarginLoss(h, X;) = Z max (0,1 — |h(z})]) | (4.10)

J
CC;-EXtS

where h(x’;) is the decision value of the model output over the given test samples.

4.2.2 DDR Optimization Problem

Combining the aforementioned three objectives, we formulate the Discriminative Density-
Ratio (DDR) Optimization Problem as:

{hi,,w"} = argminhyﬁmw{}%ﬁ(h, S, wL(z,y, h))
+MDew (B(z,y), Ser, Xis, h) + AoMarginLoss (h, Xis)}
s.t. w = B(z,y)7(y), (4.11)
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where \; and Ay are trade-off parameters to balance the importance of the three terms.

The DDR problem is not trivial to solve since the first two terms are convex and the
last term is concave. We will present two effective solutions to the DDR problem in the
next section.

4.3 Solutions via Block Coordinate Update

Having proposed the DDR model, we need practical solutions for the complicated opti-
mization problem of Eq. 4.11. In this section, we present two effective algorithms to solve
the optimization problem using the block coordinate update method [96, 117]. Block Co-
ordinate Update (BCU) is an iterative procedure that simplifies a complex problem into
several solvable blocks.

4.3.1 Preliminaries on BCU

Consider the following general optimization problem
mingepF (1, ..., x5), (4.12)

where variable x can be decomposed into s blocks of variables © = (z1,...,xs), and the
set P is the feasible solution points.

Due to the complexity of function F', in many cases it is difficult to solve the opti-
mization problem in terms of updating all elements of x at the same time. The Block
Coordinate Update (BCU) method cyclically minimizes F' over a single block of variables
while fixing the remaining blocks at their last updated values. To be more specific, at
iteration t, the block of variables x; is updated by solving the following sub-problem:

:z;l(t) = argmin, .p, [F(xgt),...,xgt_)l,xi,xgi_ll),...,xgt_l)) ’

i=1,2,...5. (4.13)

Usually the sub-problems decomposed by BCU are expected to be computationally
feasible and efficient in comparison with the original problem. The simplicity of implemen-
tation and the advances in theoretical aspects have led to the wide use of BCU in many
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practical applications, such as sparse dictionary learning [3] and nonnegative matrix factor-
ization [125]. Our proposed DDR problem also relies on the BCU technique, as discussed
in the following sections.

4.3.2 Alternating Between Semi-supervised Learning and Class-
wise Distribution Matching

Referring to Eq. 4.11, if we choose to use the hinge loss for the test data and combine
the first and last terms together, this will create a semi-supervised learning setting. This
section describes a BCU algorithm to solve the DDR problem by alternating between the
use of a Transductive Support Vector Machine (TSVM) as the semi-supervised learner and
uLLSIF as the distribution matching method.

Semi-supervised Learning using Sample Weighted Transductive SVM
In each iteration of BCU, we first fix the sample weights w, 8,7 and try to update the

prediction model h. If using a cost-sensitive Support Vector Machine (SVM) as the learner,
the optimization of DDR can be simplified as

N ) 1
hts:argmmh[EHhHQK + o Z w; L(x, yi, h)

(x3,Yi) EStr
+ A Y max(0,1— |h(a})])] . (4.14)
J,‘;-Eth
Eq. 4.14 leads precisely to the formulation of Semi-supervised SVM (S3VM) [23]. Ad-

ditionally, it is embedded with sample-dependent weights of the labeled training samples.
S3VM is a well-known semi-supervised learning method that learns a hyperplane with max-
imized class margin while penalizing the hinge loss of labeled samples and the unlabeled
samples simultaneously. In Eq. 4.14, L(-) is the loss function defined over the training set
S;r, and w;’s are the sample-dependent weights. The parameters ¢; and Ay are the trade-
off parameters between model complexity and empirical loss on the labeled and unlabeled
data, respectively.

The Transductive SVM (TSVM) is a successful example that solves a S3VM using
a heuristic searching strategy, named simulated annealing [08]. It starts with a small
value of Ay and gradually increases its value. In comparison to a conventional TSVM,
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Algorithm 5 Sample-Weighted Transductive SVM [68, 79)]
Input: S;., X, Wi, 1, Ao

Output: hy

Steps:

1: hys = svm-train(Sy., wy,. * ¢1);

2: Yys = svm-predict(Xys, hys);

3t ¢y = 1075;

4: while ¢; <= )\ do

5 hys = svm-train((Sy., (Xis, Yis)), (e % €1, C2));
6: Vs = local-search(hys, Yys);
7 Cy = Co * 2;
8: end while
9: Return hyy;

the only difference in the formulation of Eq. 4.14 is the sample-dependent weights, which
are embedded into the loss of training samples. Algorithm 5 shows the details of the
sample-weighted TSVM algorithm.

Class-wise Distribution Matching using uLSIF

Another block of the BCU includes fixing the model h and aiming to update the weights
8,7, and w for the training samples.

7 is the ratio of class priors. Following the idea of Chan and Ng [18], v can be estimated
with the posteriors of test samples using the current model h as

o pts<y) o n%s Z:EQEXM ﬁts(ylx;)

= . (4.15)
ptr(y) n%r Z(ﬂﬁi,yi)e&r 1(% - y>

Y(y)

Now we discuss the estimation of 8 based on class-wise density-ratio estimation. In the
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case of a fixed model h, the optimization of DDR can be simplified as:

B(x,y) = argminﬂ{cl Z 6(xuyz)’7(yl)[’(xwyzah)+)\1DCW(578tT>XtSah)}

(z4,y;) EStr

. C
= arg mlnB{Z[)\—l > Bl y)v () L, vi, h)
cec (z4,y:)EStr Nyi=c
Sy =cla’ € Xy
+D[(Xt7"7ﬁ) |ytr:C7 b (y | ‘ )

Dwen, Pus(y = ')

Xisll} s (4.16)

where the second term estimates the density ratios for the training data of each class. When
we use the Least-Square-Error (LSE) [09] as the distribution discrepancy to be minimized,
Eq. 4.16 is expressed as
. €1
argming Y [~ Y (Blxi,y = )y(yi) Llxi,yi, b))
ceC "1 (2i,yi) €St Ayi=c
1 2
+m Z Bxiy = c)
tr (z4,y:)€EStrNyi=c

1
S e Piely = )

Y Iy = clap)plaly =), (417)

(c)

where n,,” is the number of training samples from class c.

Eq. 4.17 can be divided into the estimation of § for each class separately. The following
presents a quasi-uLLSIF algorithm for solving the estimation of 3 for each class by modifying
the standard uLSIF algorithm formulation. For class ¢, use the linear combination of
Gaussians for modeling f(x,y = ¢) like the standard uL.SIF algorithm:

Bla,y=c) = ak(w,a). (4.18)

Similar to uLLSIF method, the quadratic term H l(j,) has the same form as

A (e 1
Hl(,l/) == © Z k(xi,a:l)k’(xi,xl/) . (419)

nt?” (wz 7yi)estr Ny;=c

However, the linear term needs to be modified in order to include the prediction loss on
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Algorithm 6 Class-wise quasi-uLSIF
Input: S;,., Xy, h()
Output: wy,
Steps:

L p(yloes) = W(@s), Tos € Xis;

2: for c€ C do

3:  Calculate v(y = ¢) (Eq. 4.15);
Calculate H® (Eq. 4.19);
Calculate ¢'© (Eq. 4.20);
Calculate & (Eq. 4.21);
& = max(0, @);

8 Blawy=c) =K@l m)a;
9: end for
10: Return wy,. = 3 - 7;

the training samples £+ o\ (B(zi,y:)7(y:) L(zi, yi, h)) and the soft decision on

the test samples belonging to a class p;s(y = c|r’;). Therefore, define d;c) as

~lc 1 / /
QZ() = Z [pss(y = C|xj)k3(xj>$l)]

ZCU;GXt.s pts(y = Cll‘;) CE;Eth

—LY Y@Ll h) (4.20)

(24,ys)EStr ANys=c

Then, for class ¢, the coefficients of the model B(x,y = ¢) can be analytically obtained as
. -1
&= (G, G, ..., a)7 = (H(C) + Mb) §© (4.21)

Further, by enforcing the non-negativity constraint, we have the solution as & =
max(0,&). Substituting & into Eq. 4.18, the density ratios of the training samples in
class ¢ can be estimated with this quasi-uLSIF algorithm (see Algorithm 6). We demon-
strate how the class-wise density-ratio estimation can be implemented based on the uLL.SIF
metric. It is worthy to note that the same idea can be easily extended to other density-ratio
estimation methods.
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Algorithm 7 DDR Solution with TSVM (DDR-TSVM)
Input: S;,., Xy
Output: 7}, w;,

Steps:
1: Initialize:
2: t =1;
3wy (t) = 1;
4: € = small number;
5: while not-converged do
6:  h(t) = Cost-sensitive-TSVM(S,, wy,(t), Xis) (call Algorithm 1);
7. wy(t+ 1) = Class-wise-Quasi-uLSIF (S;,, Xis, h(t)) (call Algorithm 2);
8 Converge-condition = (n%r |wer(t+ 1) — wi ()] < €);
9: t=t+1; /
10: end while
11: Return hj, = h(t);
12: Return wj,. = wy,(t);

The Algorithm

With the BCU optimization procedure, we derive Algorithm 7, which alternatively updates
the model and sample weights using the two blocks: the TSVM and the quasi class-wise
distribution matching. The procedure is repeated until convergence is reached. The proof
of convergence is shown in the next section.

The initial weights for the training samples are set to one. It means that the pre-
diction performance is expected to be reasonable by applying the training domain model
to the new test domain data directly. This assumption is common for successful domain
adaptation [27].

Convergence Analysis

In order to show that Algorithm 7 is guaranteed to converge, let’s consider the two steps of
the BCU procedure. First, the cost-sensitive TSVM is guaranteed to converge. As shown
in Theorem-2 of [68], the TSVM algorithm is proved to converge in a finite number of steps.
The embedded weights on the labeled samples modify the linear term of the TSVM, but this
does not change the optimization process of the TSVM, and accordingly, the cost-sensitive
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TSVM will converge in a finite number of steps. Second, the class-wise quasi-uLSIF is a
quadratic problem and can be analytically solved to obtain a global optimum.

Theorems 2.1 and 3.1 of [32] state that the BCU procedure on quadratic problems
converges at least Q-linearly on its objective function. Since both the TSVM and quasi-
uLSIF are quadratic problems, this means that the BCU procedure of Algorithm 7 is
guaranteed to converge to a stationary point of the DDR objective function.

4.3.3 Alternating Between Supervised Learning and Class-wise
Distribution Matching with Early Stopping

In this section, we present the second solution for the DDR problem based on the BCU
procedure with an early stopping criterion. The development of this solution is motivated
by two observations: 1) the simulated annealing used for semi-supervised learning has
a high computation demand; 2) there are many learning algorithms which can not be
naturally extended to handle the semi-supervised setting.

Revisiting the DDR problem of Eq. 4.11, if we use the third term as a stopping cri-
terion for the BCU procedure, the algorithm will only optimize the first two terms which
represent the cost-sensitive supervised learning and the class-wise distribution matching.
This alleviates the computational cost of semi-supervised learning and allows for the use
of traditional classification algorithms that were previously used for the same problem.
We have shown experimentally that this algorithm still achieves very good classification
accuracies.

In order to define the stopping criterion, we use mutual information to express the
separation of classes in the test data. Mutual Information (MI) has been studied in the
context of discriminative clustering [35] and semi-supervised learning [39]. Maximizing this
criterion implicitly means that the current model’s output, py(y|’), has the least amount
of confusing labeling and classification decisions located in the sparse regions [101]. Using
the MI as the early stopping criterion is helpful because it is a smoother indicator than the
hinge loss, and therefore helps to escape the local optimum caused by the limited number
of samples.

 The Mutual Information (MI) between the test samples X}; and their estimated labels
Vs using the posterior outputs of model h is defined as

MI(h, %) = ~H(py) + — S H(p,.(sl}). (122
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Algorithm 8 DDR Solution with Early Stopping (DDR-ES)
Input: S;,., Xy

Output: 7}, w;,

Steps:

Initialize:

t=1;

wy-(t) = 1;

¢ = small number;

while not-converged do
h(t) = Cost-sensitive-Learner(Sy., we,(t));
MI(t) = Calculate-MI(h(t), X;s) (Eq. 4.22);
wy-(t + 1) = Class-wise-Quasi-uLSIF (S, Xy, h(t)) (call Algorithm 2);
Converge-condition = (n% |we-(t+ 1) — wy (2)]] < €);
t=1t+ 1;

: end while

: t-chosen = arg max,MI(t);

: Return hj, = h(t-chosen);

: Return wy, = wy,(t-chosen);

—_

el e o

where p,(y|7”;) is the posterior vector for a test sample z; using the current model’s output,
defined as

T

Ps(Wl;) = [ps(y = 1}), . pesly = claf)]” (4.23)

and p, is the class prior vector, defined as p, = % ng_ cx,. Pis(y|z}). The function H(:)
is the information entropy defined over the probability vector as

H(p,,) = — Z P15 (1) In(p, (7)) - (4.24)

Algorithm 8 presents the BCU procedure between the two blocks: the cost-sensitive
classification and the class-wise distribution matching. The early stopping criterion is
based on the objective of the third term, which uses the MI to express the margin on the
unlabeled test data.
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Convergence Analysis

The convergence of Algorithm 8 can be proved by showing that the optimization problem
is multiconvex [125]. When the third term of Eq. 4.11 is taken out as an early stopping
criterion, we have the following optimization problem to solve:

{h},,w*} = argminhﬂmw{f%tr(h,Str,w(x, y)L(x,y,h)) + M Dew (8, Sy, Xis, h)} . (4.25)

It can be shown that the supervised learning algorithm has a convex objective function
and the use of quasi-uLLSIF for distribution matching is also convex. Based on Theorem
4.1 of [117], the BCU procedure on multiconvex optimization problems is guaranteed to
converge to a stationary point.

It is worthy to mention that even though the sub-functions of the two blocks are convex
and the global optimum is obtainable at each block, the overall solution of the BCU
algorithm is typically a local optimum, because there is a common term for the two blocks
in the DDR problem.

4.4 Experiments

This section presents the results of three experiments to evaluate the performance of the
proposed DDR approach. The first experiment is conducted on a synthetic 2-class 4-
cluster dataset. The second experiment evaluates the sampling bias scenarios on different
benchmark datasets. The third experiment is a more challenging cross-dataset learning
task. In addition, empirical studies are conducted on the parameter sensitivity and the
convergence behavior of the proposed methods.

4.4.1 Illustrative Example of Synthetic Data

The first experiment is designed with samples generated from 2-dimensional Gaussian
mixture models, in which both the class priors and likelihoods exhibit changes. The 2-
class 4-cluster distributions of the training and test data are given in Table 4.1.

Fig. 4.1 illustrates the difference of importance estimation results between the un-
weighted approach, the conventional DR, and the proposed DDR methods. The figure also
shows the corresponding classification boundaries. We can observe that the conventional
DR method assigns higher importance weights to the misclassified blue points because they
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Figure 4.1: Weighted training data and classification boundaries for the synthetic data.
The plotted sizes of training samples are proportional to the logarithm of estimated density
ratios. 46



Table 4.1: The distributions of the training and test data of a synthetic 2-class 4-cluster
problem.

] [ Prior | Likelihood |
pe | class-1| 0.5 | 0.9xN ( é ,I) +0.1 x N( ;L ,I)
class-2 | 0.5 0.1><N( 1 ,I) +0.9></\/< ;L ,I)
pis | class-1 | 0.6 | 0.5 XN ( é ,I) +05 x N ( ;l ,])
class-2 | 04 |05 xN ( é ,I) + 0.5 X N< ;l ,])

lie in a dense region of test points (Fig. 4.1-b), while our proposed DDR method assigns
small importance weights to these points and, accordingly, learns a much better decision
boundary (Fig. 4.1-c). Fig. 4.1-a clearly shows that classification using the unweighted
approach is biased to training samples and that leads to a suboptimal model on the test
data.

4.4.2 Experiments on Sampling Bias Benchmark Data

This experiment evaluates the proposed DDR method on a set of benchmark datasets. The
datasets ‘breast cancer’, ‘diabetes’, ‘ionosphere’, ‘wdbc’, ‘image segmentation’, ‘mushroom’
are from the UCI Machine Learning Repository!.

The sampling bias classification tasks are formulated by using a deliberately biased
selection procedure to split the training and test data, following the setup of [28]. In
all experiments, before any further processing, all the data are normalized to the range
[~1,1]%. Then, half of data are uniformly sampled to form the testing section. The
rest of data are sub-sampled to form the biased training set with the probability of
P(s=1lx) = €"/(1+¢€"), where s = 1 means the sample is included in the training
set, v = 4 (WH(x — 7)) /0yt(,—z), and w € R is a projection vector randomly chosen from
-1, 1]d. For each run, ten values of w are randomly generated, and we select the vector w
which maximizes the difference between the unweighted method and the weighted method
with ideal sampling weights.

!These datasets are downloaded from http://archive.ics.uci.edu/ml/datasets.html
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The classifiers being used include importance-weighted Support Vector Machine (iwSVM)
[21] and importance-weighted Least-Squares Probabilistic Classifier (iwLSPC) [54]. For
iwSVM, the RBF kernel is used, and the default parameter value as adopted. For iwLSPC,
we took the same data splits generated in the iwSVM setting. The number of kernel basis
functions was set to 100 by random sampling from the test data. The other parameters
(the kernel width ¢ and regularization parameter \) were chosen by 5-fold importance-
weighted Cross-Validation (iwCV) [109]. The hyper parameters were set as \; = 1 and
)\2 - 01

We evaluated the performance of our DDR method by comparing with the conventional
density-ratio estimation methods using the same setup. The classification results using the
model learned from the unweighted training data are included as the baseline. Because of
the deliberately biased sampling selection procedure, we know that the probability of each
sample being included into the training section was P (s = 1|z). Therefore, the ideal sample
importance is the reciprocal of the probability of being selected, i.e., imp(x) = 1/P (s = 1|2).
The results of using the oracle importance weights are reported in the ‘Oracle-weight’
column in Table 4.3 and 4.4. In the KMM density-ratio method, the kernel width was set
as the median of sample pair distances. The normalization constraint was set as suggested
by the original authors [53] as € = Vrr =1/ m. The parameters of KLIEP and uLSIF
were chosen by their equipped likelihood cross-validation.

All experiments were repeated 30 times with different training-test data splits. The
significance of improvement in classification accuracy was tested using the signed rank test
and the Friedman test [33]. The results are summarized in Table 4.2, Table 4.3 and Ta-
ble 4.4. In Table 4.3 and 4.4, the results of DR method are the best among the methods
of KMM, KLIEP and uLSIF. It can be observed that the proposed DDR approach out-
performs the unweighted method and the conventional density-ratio estimator in almost
all cases. There are four cases where the accuracies are improved by more than 10%. Sig-
nificantly, the DDR approach sometimes achieved higher accuracy than the corresponding
methods even when the corresponding methods used the ideal weights. This is because the
weights are ideal in the sense of reflecting the density-ratio over x only. Comparing the two
algorithms for DDR, the early stopping method seems to perform slightly better than the
semi-supervised method. We believe that this is due to the characteristics of the sampling
bias problem, which usually does not dramatically change the classification models. This
means the initial model learned from the training data directly is located at a region near
the global optimum in the solution space. Thus, the early stopping algorithm will give
more favorable performance.
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Table 4.2: Classification accuracies of sampling bias data with density-ratio methods.
Comparing with the baseline method that uses unweighted samples, those significantly
better accuracies through the signed rank test at 5% significance level are presented in
italics.

| Dataset | Classifier | Unweighted | KMM | KLIEP | uLSIF |
breastCancer | 1WSVM [ 0.8674:£.1176 | 0.9271+.0587 | 0.9283%.0602 | 0.9300+.0603
iwLSPC | 0.8166+.1471 | 0.8744+.1367 | 0.8389+.1465 | 0.8880+.1270
disbebes iwSVM | 0.6683+.0343 | 0.7095+.0352 | 0.6714£.0366 | 0.6684=+.0345
iwLSPC | 0.7100£.0399 | 0.6775+.0467 | 0.6986+.0383 | 0.7041+.0360
onosphere | WSVM | 0.8269:+£.0305 | 0.8159+.0485 | 0.8189:+.0309 | 0.7788.0726
iwLSPC | 0.73524.0478 | 0.7362+.0743 | 0.7288+.0536 | 0.7331+£.0529
wdbe iwSVM | 0.7580+.0468 | 0.8878+.0504 | 0.7558+.0492 | 0.7522+.0493
iwLSPC | 0.91354.0301 | 0.9235+.0513 | 0.9115+.0328 | 0.9090+.0318
imageSegment |1WSVM | 085470111 | 0.8965+.0230 | 0.8633+.0198 | 0.8788+.0328
iwLSPC [ 0.91514.0212 | 0.9175+.0145 | 0.9120+.0257 | 0.9100+.0244
ushroom iwSVM | 0.9697+.0074 | 0.9751+.0178 | 0.9776+.0143 | 0.9800+.0161
iwLSPC [ 0.8360+.1223 | 0.7770£.1416 | 0.8479+.1228 | 0.7951+.1189

Table 4.3: Classification accuracies of sampling bias data with the DDR and iwSVM.
Comparing with the baseline method that uses unweighted samples, those significantly
better accuracies through the signed rank test at 5% significance level are presented in
italics. The best results (the Friedman test at a 95% confidence interval) in each group are
highlighted in bold. The results of DR method are the best among the methods of KMM,
KLIEP and uLLSIF. The ‘Oracle-weight’ is a reference and is not involved to comparison.

’ Dataset \ Unweighted \ DR \ DDR-TSVM \ DDR-ES H Oracle-weight
breastCancer | 0.8674%.1176 | 0.9500£.0603 | 0.9634+.0108 | 0.9586+.0144 0.9357+.0496
diabetes 0.6683+.0343 | 0.7095+.0352 | 0.7252+.0295 | 0.73454.0314 0.7016=£.0433
ionosphere 0.8269+.0305 | 0.8189+.0399 0.8485+.0685 | 0.85894.0455 0.8258+.0413
wdbc 0.7580£.0468 | 0.8878£.0504 0.9389+.0083 | 0.95404.0145 0.8353+.0675
imageSegment | 0.8547+.0111 | 0.8965+.0230 | 0.9053+.0500 | 0.9155+.0225 0.9183+.0310
mushroom 0.9697+.0074 | 0.9800+.0161 | 0.9767+.0098 0.9852+.0159 0.9845+.0166
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Table 4.4: Classification accuracies of sampling bias data with the DDR and iwLSPC. The
semi-supervised setting is not applicable for the iwLSPC classifier.

’ Dataset ‘ Unweighted ‘ DR ‘ DDR-ES H Oracle-weight
breastCancer | 0.8166+.1471 | 0.8880+.1270 | 0.9295+.0881 0.9250+£.0898
diabetes 0.7100+.0399 | 0.7041+4.0360 | 0.71814.0279 0.6982+.0353
ionosphere 0.73524.0478 | 0.7362+£.0743 | 0.7477L£.0348 0.7458+.0674
wdbc 0.91354+.0301 | 0.92354+.0513 | 0.9219+.0283 0.9199+.0485
imageSegment | 0.9151+£.0212 | 0.9175+.0145 | 0.91844.0255 0.9170+.0277
mushroom 0.8360+.1223 | 0.8479+.1228 | 0.9341+.0111 0.8504+.1288

4.4.3 Experiments on Cross-dataset Digits Recognition

Training a model with samples from one dataset and adapting the model to another dataset
which has been collected under different conditions is usually seen as a challenging problem.
We evaluated our DDR approach for the cross-dataset classification task using the two
handwritten digits recognition datasets: USPS and MNIST. The USPS dataset contains
9,298 handwritten digit images with the size of 16 x 16. The MNIST dataset has a total
of 70,000 handwritten digit images (the first 20,000 samples are used in our experiment).
The size of each image is 28 x 28.

Because the two datasets have different image sizes and intensity levels, a preprocessing
step was applied first: 1) resize the image size of MNIST from 28 x 28 into the same size as
USPS, 16 x 16, and 2) normalize the feature (intensity of pixel) into the range of [—1,1].
Then, we conducted two experiments: one using the USPS data for training and the MNIST
data for testing, and the other using the MNIST data for training and the USPS data for
testing. The classification method used was a SVM with linear kernels. The parameter ¢ in
the SVM is a trade-off between model generalization and training error, and its value was
chosen using 5-fold importance-weighted Cross-Validation (iwCV). The hyper parameters
were once again set as \;y = 1 and Ay = 0.1.

Because the uLSIF algorithm has been shown to outperform other density-ratio meth-
ods, such as KMM and KLIEP, we included the uL.SIF in our comparison in this series
of experiments. Table 4.5 and 4.6 present the average and standard deviations of the
classification accuracies of 30 runs for the cross-dataset tasks. Each run was based on
bootstrapping the data by randomly selecting 90% samples from the designated training
dataset and 90% samples from the designated test dataset.

The reported results show that the DDR method significantly improves recognition
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Table 4.5: Cross-dataset tasks: classification accuracies of training on the USPS dataset
and test on the MNIST dataset. For each test case, comparing with the baseline method
that uses unweighted samples, those significantly better accuracies through the signed rank
test at 5% significance level are presented in italics. The best results (the Friedman test
at a 95% confidence interval) in each group are highlighted in bold, and the second best
results are underlined.

USPS to MNIST
Test Case | Unweighted | DR(uLSIF) | DDR-TSVM | DDR-ES
Ovs1 0.8717£.0614 | 0.8879+.0631 | 0.9968+.0017 | 0.9836+.005
1vs2 0.5961£.0281 | 0.59254.0287 0.6001+£.0352 0.62534.0627
2vs3 0.73141+.0854 | 0.75754.0948 | 0.8830L£.0507 | 0.8635+.0281
3vs4 0.7898=+.0483 | 0.8284+.0288 | 0.9398+.0139 | 0.8435+.0270
4vs b 0.6254+.0574 | 0.6937+.0472 | 0.8104+£.0505 | 0.7456+.0377
5 vs 6 0.5552£.0592 | 0.50744.0313 0.5775£.0560 | 0.5978+.0692
6 vs 7 0.6219+.0857 | 0.6287+.0843 | 0.9955+.0012 | 0.65809+.0504
7 vs 8 0.6153£.0594 | 0.61394.0545 | 0.7477+.1388 0.6591+£.0677
8 vs 9 0.6965£.0743 | 0.7411£.0888 | 0.89311.0468 | 0.8335+.0309
9vs 0 0.9195+.0243 | 0.9185+.0244 0.9175+£.0040 0.9175+.0244

accuracies. Compared to the conventional DR approach, for the scenario ‘USPS to MNIST”
nine out of ten test cases achieve an improvement, and seven cases record improvement
in accuracy by increments of more than 10%. For the scenario ‘MNIST to USPS’, all ten
test cases gain an improvement in accuracy of 4% to 26%. Comparing the two algorithms
for DDR, the semi-supervised learning setting outperforms the early stopping algorithm in
most cases. For the cross-dataset tasks, the distributions between the two data collections
exhibit great differences. It is even expected that there exist regions in the test data
with no representative training data. This would lead to the initial model falling into an
unsatisfactory region in the solution space, and the early stopping solver becoming easily
trapped at a local solution far from the global optimum. In these scenarios, the algorithm
that uses the semi-supervised learning would be able to overcome this limitation and obtain
a better local-optimal solution.
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Table 4.6: Cross-dataset tasks: classification accuracies of training on the MNIST dataset

and test on the USPS dataset.

MNIST to USPS

Test Case | Unweighted | DR(uLSIF) | DDR-TSVM | DDR-ES
0vs 1 [0.9461+.0085 | 0.9499+.0089 | 0.9981+.0009 | 0.9848+.0036
1vs2 [0.9048+.0266 | 0.9161£.0279 | 0.9758+.0059 | 0.9533+.0205
2 vs 3 [ 0.6383£.0367 | 0.6561+.0308 | 0.8051+.0107 | 0.6597+.0284
3vs4 [0.7915£.0313 | 0.7767+.0318 | 0.8647+.0419 | 0.8266=+.0217
4vs 5 [0.8374£.0338 | 0.8480+.0560 | 0.8893+.0398 | 0.8836=+.0091
5vs 6 [ 0.5810£.0331 | 0.5676+.0317 | 0.7288+.0244 | 0.7382+.0359
6 vs 7 | 0.5114£.0299 | 0.51024+.0274 | 0.6103+.1528 | 0.6718+.0554
7 vs 8 | 0.6199£.0477 | 0.6097+.0412 | 0.7956+.0294 | 0.8298+.0352
8 vs 9 [ 0.8249+.0622 | 0.7934+.0628 | 0.8605+.0327 | 0.8480+.0505
9 vs 0 [ 0.6419£.1105 | 0.6735+.1598 | 0.9367+.0713 | 0.9269+.0349

4.4.4 Study on the Hyper Parameters

In this section, the results of an empirical study on the effect of the two hyper parameters
A1 and A9 in the DDR model are presented. The experiments described in this section were
conducted on the DDR-TSVM algorithm only because the DDR with early stopping is a
simplification of DDR-TSVM. We examined four cases in the ‘MNIST to USPS’ scenario:
‘Ovs 1, ‘1vs?2, 2vs3, and 5 vs 6.

First, we explored the impact of parameter A\; while fixing parameter Ay at 0.1 X ¢y.
The parameter ¢, is the cost factor in the SVM formulation, which was decided by 5-fold
cross-validation. The relative accuracy was calculated by setting the respective baseline
method as 100% for visualizing the margins of performance improvement. Fig. 4.2 plots
the relative accuracies for varying values of A; over the range Ay = [0,0.1:0.1:1,2:1:10].
Next, we studied the impact of Ay while fixing parameter A\; at 1. The performance was
calculated by varying values of Ay over the range Ay = [0,0.01 : 0.01:0.1,0.2: 0.1 : 1] X ¢;.

As shown in Fig. 4.2, the DDR algorithm performs with high stability for a wide range
of parameter selections, except for the extreme setups that Ay = 0 or Ay = 0. When
the parameter \; is set to 0, the DDR model in fact is reduced to the unweighted semi-
supervised learning that assumes the training data and the test data are from the same
distributions. When the parameter \; is set to 0, the information on the test data margin
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Figure 4.2: Relative accuracies of DDR for varying the setting of parameter A\; and Ay on
the two easy tasks (‘0 vs 17, ‘1 vs 2°) and two difficult tasks (‘2 vs 3’, ‘5 vs 67).
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Figure 4.3: The change of Aw with respect to the number of iterations shows the conver-
gence behavior of the DDR algorithm.

is ignored, and often the solution deteriorates into a worse local optima.

4.4.5 Convergence Behavior

Because the proposed DDR-based algorithms are iterative, their convergence behavior is
an important concern. Here we check the algorithm’s convergence speed empirically on the
cross-dataset recognition tasks.

Fig. 4.3 shows the change of sample weights Aw = - ||w(t + 1) — w(t)|| with respect to
the number of iterations for two easy tasks (‘0 vs 1" of ¢ MNIST2USPS’ and ‘USPS2MNIST”)
and two difficult tasks (‘56 vs 6" of ‘MNIST2USPS’ and ‘USPS2MNIST”’). As shown in the
figure, the proposed method converges in just a few iterations. The DDR algorithm is a
special case of using the block coordinate update method, in which each block of algorithms
is solved with a local optimal solution. This approach is in opposition with many general
BCU algorithms, which usually have a slow convergence rate because the updates of each
block are based on gradient searching with a small step width.
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Chapter 5

Locally-Adaptive Density Ratio for
Novelty Detection

In non-stationary environments, along with the changing of existing concepts which are
handled by domain adaptation techniques, we also face the occurrence of new concepts.
The detection of novelties is another crucial problem in non-stationary data mining. In
dynamic data there naturally exist two types of novelties: emerging and evolving. Emerging
novelties are represented by concepts which are very different from the previously seen ones,
while evolving novelties are characterized by relatively new aspects of existing concepts. In
real situations, these two types of novelties are not easily distinguishable, and sometimes a
truly novel concept does not fit perfectly under one of these categories. In this chapter, a
locally-adaptive kernel density-ratio method is proposed to capture the two characteristics
in one formula.

The chapter is organized as follows. Section 5.1 provides an overview and a motivation
example. Section 5.2 describes the details of the proposed locally-adaptive density ratio
method. Section 5.3 relates the proposed method to some previous works. Section 5.4
presents experimental results. Section 5.5 describes an application of the proposed method
to social media analysis. Lastly, computation complexity is discussed in Section 5.6.

5.1 Overview

Novelty detection is the task of identifying abnormal instances in new data that differ
in one or more aspects from a previous collection of normal data [94]. The detection of
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novel instances is a crucial task in data mining and machine learning and has a variety of

applications, such as the early detection of defects and failures in industrial systems, the

early discovery of frauds, disease outbreaks, natural crises, and learning of emerging topics

in news and online discussions. The novelty detection problem has also been addressed in

the literature under other names such as outlier detection [1,12] and anomaly detection [20),
].

A common approach to novelty detection is to first build a model for normality, and
then recognize any deviation from that model as novelty. There is no agreed-upon def-
inition of what is normal and what is novel, and different existing methods for novelty
detection capture different aspects of novelty. For instance, some methods, such as the
Local Outlier Factor (LOF) [13] and One-class SVM (OSVM) [100], focus on detecting
novel instances that emerge in new data which are completely different from previously-
seen instances. Other methods, such as relative [106] and density-ratio based [59] novelty
detection, focus on detecting instances which are not new by themselves, but their inten-
sities are considerably different from previously-seen data. We refer to these two types of
novelties as emerging and evolving, respectively. These two terms are borrowed from the
topic detection community [98], where the first term refers to absolutely new topics that
have never been seen before, and the second refers to topics that have evolved smoothly
over time.

While previous approaches for novelty detection exhibit appealing successes in specific
applications, methods that focus on detecting emerging novelties are quite limited in identi-
fying evolving novelties, and vice versa. In real situations, many of the truly novel concepts
do not perfectly fit under one of these two categories, and normally have both emerging
and evolving aspects. For instance, an online discussion about a new disease outbreak
involves reference to comparable outbreaks in the past that have had similar effects.

To address these limitations, a new approach is presented for novelty detection that
combines the strength of both categories of methods and recognizes both emerging and
evolving novelties. The basic idea behind the proposed approach is to define a novelty factor
that combines the emerging and evolving aspects of a new instance. The factor measures
how novel an instance is relative to its neighborhood structure, as well as how novel it
is relative to the reference data. Accordingly, we derive a locally-adaptive approach for
density ratio estimation and use it to measure the novelty of an instance. The use of density-
ratio provides a measure of how evolving the novelty is, while the local neighborhood
captures how emerging it is.
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5.1.1 Existing Approaches

Here we briefly review the state-of-the-art of novelty detection approaches and analyze
their strengths and shortcomings.

Due to the lack of abnormal samples and the diversity of abnormal modes, it is more
practical to construct novelty detection methods based on modeling the normal class of
data only, and identifying any deviation from that normal class as novel [19,94]. In this
research, we are mainly concerned with the novelty detection problem under the assumption
that normal data have been previously identified, and numerous examples are provided
as a reference set. This is an assumption that has been adopted in many well-recognized
works on the novelty detection task [13,59, 72,100, 106].

In the aforementioned setting, the model of normality M (x) is learned from the given
normal examples
er - {$Z|@ = 17 "'7nrf} )

as the reference collection. Then, in the test stage, previously-unseen instances

th = {ZL']|] = 1,...,nts},

are tested against the model M, and the corresponding novelty scores are calculated. The
novelty score for a test sample z, i.e. m = M (x), is compared to a decision threshold 7.
If m < 7, this instance x is classified as normal. Otherwise, the instance is classified as
novel, or abnormal.

A variety of approaches for novelty detection have been proposed with different inspi-
rations. Existing work can generally be classified into four categories, as explained in the
following sections.

Probabilistic-based approach. Probabilistic-based novelty detection methods estimate
the Probability Density Function (PDF) of the normal data, and assume that the low-
density areas have high probability of being novel [72]. A variety of PDF estimation
techniques can be employed to learn a model of the normal data. This includes Gaussian
Mixture Model (GMM) [103] and Kernel Density Estimation (KDE) methods [116]. The
GMM method is parametric and assumes the data are generated from a weighted mixture
of Gaussian distributions, while KDE is a non-parametric approach which is closely re-
lated to histograms, but enhanced with the properties of smoothness and continuity due
to the use of kernel functions. PDF-based novelty detection tends to incorrectly identify
the majority of data instances in sparse regions as novelties.
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Domain boundary-based approach. The boundary-based approaches model the bound-
ary of normal data and assume that samples located outside of this boundary are novel. Ex-
amples for these methods include the One-class SVM (OSVM) [100] and the conceptually-
similar Support Vector Data Description (SVDD) [115].

The OSVM method is an extension of the SVM algorithm that separates a data space
into inliers and outliers by modeling an inlier boundary that contains a fraction of the
training data. Formally, an OSVM formulates a quadratic optimization problem as

1
min §OzTKOz

1
s.t. 0<aq;<—fori=1,...,n
un

and Zn: o, =1,
i=1

where K;; = k(z;, ;) is the kernel matrix over the reference data, and v is the maximum
fraction of outliers.

This boundary-based approach avoids distribution estimation and is typically insen-
sitive to sampling noise. However, the performance of the OSVM and SVDD methods
depend heavily on the choice of kernel and its parameters. Furthermore, the output nov-
elty scores ignore the relative densities in different regions of the inliers. A trained OSVM
is based on the boundary of the majority of the reference data and therefore can not be
used to identify evolving novelties which overlap with the reference data.

Neighborhood-based approach. Neighborhood-based methods analyze the k-nearest
neighbors of data instances, and identify novel instances as those relatively far from their
neighbors. For example, the Local Outlier Factor (LOF) [13] is a well-known method for
detecting outliers based on this local-neighborhood analysis. LOF calculates an outlier
score for a test sample z as

Irdy, ( Nearest (7))
LOFw(@) = ¢ Z Irdy (z ’

where Nearest;(z) represents the i-th nearest neighbor of z, and Irdg(z) is the local reach-
ability density of z, defined as the inverse of the average distance from k nearest neighbors
of z. If x lies far away from a much denser region, Ird;(x) tends to be much smaller than
Irdy (Nearest; (x)). Therefore, it will result in a large value for LOF(z).
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In this formulation, LOF captures the local neighborhood of data instances while esti-
mating the novelty level, and has shown effective performance in some applications [75].
Although LOF and similar approaches are very effective in detecting emerging novelties,
they are very limited in identifying evolving novelties that overlap with reference data, due
to ignoring the relationship among these test instances.

Density ratio-based approach. Density-ratio estimation is a common approach that
has been previously employed in a variety of data mining tasks [$7]. The use of density-
ratio estimation for novelty detection has been recently explored [59,106]. The idea behind
this approach is to compare the densities of the test and reference data, and then identify
the novel instances based on the ratio between these two densities. The estimation of a
density-ratio can be done directly without estimating the density functions of test and
reference data.

Examples of this approach include the work of Smola et al. [106], who proposed the
concept of relative novelty and modified the One-class SVM formulation to incorporate
the reference densities as density ratios. This work was followed by the work of Hido et
al. [59], who defined an inlier score by using density ratios between normal data and test
data. At a test instance x, if the density of normal data is low and that of test data is
high, the instance is considered novelty and its inlier score will be small.

Since this approach depends mainly on the ratio of test and reference data densities,
it is very effective in detecting relative (or evolving) novelties. It is, however, limited in
identifying emerging novelties that are very dissimilar to the reference data.

5.1.2 A Motivation Example

In order to illustrate the limitations of existing novelty detection methods and motivate
the need for developing a new approach, we start by providing a synthetic example of 2-D
points that has emerging and evolving novelties.

As shown in Fig. 5.1a, the reference data (gray crosses) contains normal data only and
consists of three uniform regions: a dense region, a sparse region and an empty region.
The test data to be examined for novelty (blue circles) contains normal as well as novel
instances. The novel instances appear in three forms: (1) emerging novel instances that
are far away from the distribution of the reference data in the empty region, (2) evolving
novel instances that overlap with old instances but appear in a group of higher density,
and (3) the clustered instances at the bottom-right corner that include both emerging and
evolving novelties.
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We examined different state-of-the-art approaches, as well as our proposed method,
using this data. The probabilistic-based approach (Fig. 5.1b) identified all instances lying
in the sparse region as novel, which usually causes a high false alarm rate. The domain
boundary approach (One-class SVM) (Fig. 5.1c) assigned instances as novel if they are
out of the boundary of a learned normality model, and cannot distinguish relatively-novel
instances that reside within the boundary of normality. The neighborhood-based approach
(local outlier factor) compares the neighborhood structure of each test instance with the
reference instances separately, while ignoring the relationship among these test instances.
As shown in Fig. 5.1d, the occurrence of a relatively dense region in the test data (evolving
novelties) is not considered a novelty in this case. The density-ratio approach captured the
relative density difference between the reference and the test collection (evolving novelties),
while ignoring the not-high volume of emerging novelties at the boundary of the normal
data. As shown in Fig. 5.1e, a few points located at the upper-right and bottom-right cor-
ners are not identified. The proposed method, on the other hand, identified both evolving
and locally emerging novelties, as shown in Fig. 5.1f.

5.2 Locally-Adaptive Density Ratio Method

In the literature, existing techniques for novelty detection focus on either (1) detecting novel
instances that are completely different from existing instances in the reference data, or (2)
identifying a group of novel instances that are not completely new in themselves, but rather
appear with a density which is different from that of similar instances in the reference data.
As highlighted in the introduction, we refer to these two types of novelties as emerging and
evolving, respectively. The objective of this work is to identify the limitations of each of
these methods and introduce a method that is capable of identifying both emerging and
evolving novelties.

The basic idea behind the proposed method is to start with the effective kernel mean
matching method for density-ratio estimation, which has been very successful in identifying
evolving novelties (Fig. 5.1e), and to augment this method to capture emerging novelties.
By inspecting a variety of problem instances, we observed that the density ratio as a novelty
measure is very unreliable when encountering a few novelties in completely new areas of
the feature space. In this case, the density-ratio estimation depends mainly on the absolute
dissimilarity between the potentially novel instances and other reference instances, without
considering information about how these reference instances are similar to each other. We
propose to alleviate this problem by adaptively estimating the density ratio based on the
neighborhood of both the new instance as well as the reference instances.
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Figure 5.1: An illustrative example of novelty detection methods.
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In the rest of this section, we first formalize the aforementioned intuition by analyzing
the kernel mean matching algorithm for density ratio estimation and identify the different
components of the novelty score that quantify how emerging/evolving the novelty is. Then,
we analyze how the component responsible for detecting emerging novelties is inaccurate.
After that, we propose the use of a locally-adaptive kernel that results in an accurate
estimation of emerging novelty scores.

5.2.1 Differentiate Emerging and Evolving Novelties

The kernel mean matching method for novelty detection proceeds as follows. Let r(z) be a
normality score for a data point z, defined as the density ratio between the reference and
test data:

prf(x)
rla) = 22, 6.)
pts(x)
where py(z) and p(z) are the PDFs of the reference and test data, respectively. For a
data point z, if the test density is relatively higher than the reference density, then the
normality score will be very small, and this point is more likely to represent a novelty.

To derive a formula for r(x), we use the theorem of Kernel Mean Matching (KMM) [62]
and minimize the Maximum Mean Discrepancy (MMD) between the weighted distribution

r(z) * pis(z) and the reference distribution py¢(z) in a Reproducing Kernel Hilbert Space
(RKHS) ¢(z) : z — F,

MMD? (F, (r(2), pis()) , rt(@)) = || Eapra) [P() - 9(@)] = Bpopyior (@)1 - (5.2)

Using the empirical means of X, and X5 to replace the expectations, and defining
a vector r = [r(z1),...,7(z,,.)] , we can obtain the following quadratic optimization
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problem:

(5.3)
A 1 TNts 1 Nyt )
Po= argmln,,HEZr(xj)qﬁ(x]) - pREn]
$ j=1 mi=1
Nts
= argmin,| ey Zr xi)K(z, xj)r(z))
s o1
Nts  Nyf 1 Tyt
S e n) + s 3 ke,
ntsnrf =1 j—1 rf o
1 s
= argmin, TK% 2T — Tt TK% A,
2 ’ Nyt ”
where ‘
thSyxts(Z ]) - K(Ij,l‘j)’ {$i7$j € th} s
Kﬂvts,xrf( ]) = K(Iiuxj)u {xl € Xt&xj € er} 5 (54)
1=[1,.. 1.

The optimal solution of Eq. 5.3 without imposing constraints on r can be analytically

obtained as: n
N ts _
r= ths Tts
Nyt

ths »Lrf 1 :

For a test point x € X,

7(z) = fts Z K(x, ;) — Z r(x;)k(z, z;) . (5.5)

Nyt
r T, EXp x;€Xs\

This means that the normality index r(z) is the difference between two terms r; and
r9 defined as

n
r(z) = — Z Kz, x;) ,
nrf:riGer
ra(@) = Y0 rl)ne, ;).
.Z’jEth\:E

These two terms affect the novelty of = as follows: The first term r; captures the
similarity between the test instance = and all reference instances Xy (based on «(z,z;)).
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This quantifies how x is different from the previously-seen instances and, accordingly,
measures how emerging it is. If x is very dissimilar to all reference instances, then x is an
emerging novelty and the value of r; will be very small. On the other hand, if x is very
similar to many reference instances, then x is a normal instance and the value of r; will
be very large.

The second term ro captures the similarity between the test instance x and other test
instances Xis. This quantifies how x is a novelty relative to other new instances, depending
on how similar these instances are (based on x(z,z;)) and how novel they are (based on
r(x;)). This term is a key indicator for detecting evolving concepts. To understand how,
let us consider the case where a test instance x appears very close to reference data X In
this case, using r; only results in the conclusion that this point is not novel. However, if x
appears within a tight cluster of other test instances, the large score of r; will propagate
through the calculation of r for the instances of this cluster, and result in a very large value
for ry. Accordingly, ro will reduce the overall score r(z) and lead to the conclusion that x
is an evolving novelty.

5.2.2 Limitations of Density Ratio-based Measures

Although r(z) captures the emerging and evolving aspects of novelty, the score of emerging
novelty r; is very inaccurate, as it mainly depends on the absolute similarity between x
and other data instances. For instance, supposing that x has an average similarity of s to
all the reference instances, we cannot conclude anything about how novel z is unless we
learn about how similar reference instances are to each other. If s is a common similarity
in the subspace of reference instances, then x should be considered normal regardless of
the absolute value of s.

To illustrate this argument, Fig. 5.2 shows two cases for a test instance = (black cross)
and a set of reference instances (green triangles). For the two cases, the value of ry is
exactly the same. However, comparing with their neighboring structures, x should be
considered normal in Case A and novel in Case B. A similar argument was discussed by
Breunig et al. [13].

In the next section, we discuss how to address these limitations through the use of a
locally-adaptive kernel.
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Case A Case B

Figure 5.2: Two cases with identical ry.

5.2.3 Locally-Adaptive Kernel Mean Matching

Emerging and evolving novelties. We categorize novelties into emerging and evolv-
ing based on these two terms. Emerging novelties are represented by concepts which are
very different from the previously seen ones, while evolving novelties are characterized by
relatively new aspects of existing concepts. Additionally, there are novelty of clustered in-
stances, among which some are similar to previous and some are different. These differences
on novelty are listed as:

e Evolving novelty: a tightly clustered set of test instances which shows novelty due to
the relative high intensity of occurrences, but individually they are similar to previous
seen ones.

e Emerging novelty: test instances which are very different from previous seen normal
data.

e Novelty with a mixture of emerging and evolving aspects: a tightly clustered set of
instances, among which some are similar to old concepts and some are new.

Locally-adaptive kernel. In order to address the aforementioned limitations,we need
to incorporate information about the similarity of x and y to other neighboring instances
in the calculation of how novel is  with respect to y. Since the novelty score is mainly
based on the kernel function between x and y, one indirect way to modify the novelty score
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is to adjust the kernel function to reflect how z is truly dissimilar (i.e., novel) to y with
respect to their neighborhood.

For instance, in the case of Gaussian kernels, we can adjust the kernel width ¢ to be
adaptive to the local neighborhood of each pair of instances. In the rest of this section,
we will focus on developing a locally-adaptive Gaussian kernel based on this idea. The
same idea can be directly extended to other types of kernels by normalizing the value of
the kernel function k(z,y) using the kernel between = and y and other neighboring points.

The Gaussian kernel function between two samples x; and x; is defined as

o (5, 2;) = exp <—M> , (5.6)

202

where d(z;,z;) is a distance function between the two samples x; and x;, and o is the
scaling factor (bandwidth) that decides the smoothness of the kernel.

Instead of choosing one scaling factor o for measuring similarity between all data points
in the kernel space, we propose the use of a locally-adaptive kernel that captures the local
density statistics of x; and x;. One locally-adaptive kernel that was successfully used for
enhancing spectral clustering [131] is defined as:

ki(x;, x;) =exp | — Az, 7;)
e 73) p( Qd(l’uNk(xi))d(%Nk(Ij))> ’ (57)

where Ny (x;) is the k-th nearest neighbor of z;. In other words, the bandwidth of x;(z;, z;)
is the geometric mean of the k-th nearest neighbor distances for x; and x;:

7ig = s, New:))d(s, Nida))

Using this locally-adaptive kernel while calculating K, ... and K, of Eq. 5.3,
the new normality score takes into consideration two factors: relativity to normality and
relativity to neighborhood. In comparison to previous approaches, the traditional density-
ratio approach takes care of the first factor only, while the LOF method just focuses on
the second factor.

5.2.4 Approximation Using Diagonal Shifting

According to [38], a valid reproducing kernel should satisfy the following two properties:
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1. Hermitian: For finite data observations of real entries, the Gram matrix should be
Symmetric (Kl] = Kﬂ>

2. Positive Semi-Definite (PSD): For finite data observations, the Gram matrix should
be positive semi-definite.

As seen from Eq. 5.7, the local kernel satisfies the symmetric condition, i.e. r(z;, ;) =
ki(xj,z;). But, because the matrix K,,_ ., is constructed from a locally-adaptive kernel
(Eq. 5.7), the Positive Semi-Definite (PSD) of the kernel may be violated. In order to
address this issue and enforce PSD, we adopt the following approximation using diagonal
shifting [34]: )

Ky i

= th&mts + (5 + 6) ] ) (58)

where 9§ is the absolute value of the minimum negative eigenvalue, and ¢ is a small value for
compensating numerical error. Through diagonal shifting, the only changes to the kernel
matrix are elements representing self-similarity, while all other pairs of similarities are
not affected. Therefore, our intuitive idea of expressing similarity based on neighborhood
structure is still preserved in K, . ; meanwhile, the PSD and symmetry are both satisfied.

ts,Tts)
As the PSD of _f(mts’mts is held, the locally-adaptive Kernel Mean Matching (locKMM)
optimization is still a convex quadratic problem. Our implementation includes a boundary
constraint on 7 and uses the well-known ‘interior-point-convex’ algorithm in the Matlab
toolbox as the Quadratic Programming (QP) solver. The complete locKMM algorithm is

outlined in Algorithm 9.

5.3 Related Work

The concept of localized kernels has been explored in some earlier works in the research
community. For support vector machines, Génen and Alpaydin [51] proposed the use of
a weighted combination of multiple kernels which optimizes different weights for different
regions with the localized intuition. For spectral clustering, Zelnik-Manor and Perona [131]
proposed using a locally-scaling factor to construct the affinity graph for clustering pur-
poses.

Emerging concept discovery [11] is a related task which is concerned with the model-
ing of new concepts or classes into previously-learned classifiers. This task is conceptually
different from the novelty detection task as the former uses labeled data to learn a classifica-
tion model and identify deviations from learned classes as emerging concepts (or classes).
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Algorithm 9 Locally-adaptive Kernel Mean Matching
Input: X, X, k,€,b
Output: r = [r(zy),...,7(Ts,.)]
Steps:

1: 05 = \/d(z;, Ni(2;))d(x;, Ni(2;)), Vo, € X;

T

2: Kmts@rf(i,j) = ml(x,-,xj),in < th,l’j e Xt
30 Koo (1, 7) = ki, 25), YV, x; € Xig

4: if not PSD(Ky,,, .,.) then

5: viors = Rz T (6+e€) I (Eq. 5.8);
6: else

T f(xts,fbts - Kl"ts,a?ts

8: end if

9:

r < QP _solver <l~(x Kaoows € b> (Eq. 5.3).

ts,Tts )

In [85], both concept drift and novel class detection were considered in streaming data
scenarios with a delayed labeling process. The concept drift problem was addressed by
continuously updating an ensemble of classifiers to include the most recent changes. The
novel class detection was handled by enriching each classifier in the ensemble with a novelty
descriptor. In [11], active learning was employed to discover new categories based on user
feedback and learn models of them, while pursuing minimal labeling efforts.

5.4 Experiments

The empirical study to evaluate the proposed novelty detection method is considered under
two scenarios, emerging and evolving novelty detection, using two real life datasets. The
scenario that contains both emerging and evolving novelties will be described in the next
section in the context of social media analysis task.

5.4.1 Evaluation Criteria

Evaluation measures play a crucial role in assessing the novelty detection performance
and guiding the model fitting. In the literature of novelty detection, Receiver Operating
Characteristic (ROC) curves, Area Under ROC Curves (AUC), and Precision-at-t (Prec@t)

are commonly used evaluation measures.
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Receiver Operating Characteristic (ROC) curve. An ROC curve captures the
tradeoff between true positives and false alarms [15]. When a novelty detector assigns
scores for test instances, the prediction of novelty can be changed by varying the thresh-
old. Each threshold value generates a pair of measurements, False Positive rate (FPrate)
and True Positive rate (TPrate). By linking these measurements with the FPrate as the -
axis and the TPrate as the y-axis, a ROC curve is plotted. The ideal model is the one that
obtains TPrate = 1 and FPrate = 0. The ROC curve gives a summary of the performance
of a detection model.

Area Under an ROC Curve (AUC). To compare several models using ROC curves,
it is hard to declare a winner unless one curve clearly dominates the others over the entire
space. The Area Under an ROC Curve (AUC) provides a single measure on detecting
performance for evaluating which model is better on average.

Precision at t (Prec@t). The Precision-at-t (Prec@t) [100] is defined as the precision
rate among the ¢ top-ranked novel instances, where ¢ is the number of ground truth novel
instances. The Prec@t originated from the literature of ranking-based information retrieval,
where the first few results are the most important for users. The Prec@t measure depicts
the starting section of ROC curves.

5.4.2 Experimental Setup

Datasets. The USPS handwritten digits collection and the spam emails collection were
used to evaluate different novelty detection algorithms. The properties of the two datasets
are summarized in Table 5.1.

The USPS dataset is from the 1ibSVM archive!, which contains 9,298 handwritten
digit images. Each sample is of size 16 x 16 pixels with intensity levels in the range
[—1,1]. This dataset has a standard split of 7,291 training samples and 2,007 test samples.
We synthesized the novel digit detection tasks as follows. The reference data X, was
constructed from the original training set by excluding one digit in each setup, while all
2,007 samples in the test set were used as the test data AXis. Thus, the extra digit shown
in the test collection is the novel concept to be detected.

The spam email collection is from the UCI archive?. The dataset contains 4,601 samples.
Each sample is described by 57 features, representing the frequencies of particular words

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
?https://archive.ics.uci.edu/ml/datasets/Spambase
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Table 5.1: The property of datasets used in novelty detection.

’ Dataset \ # Samples \ # Feature \ Nt \ Nis \ Detection Task ‘
USPS 9,298 256 7,291 2,007 images of new digit
SPAM 4,601 57 p% | (100 — p)% spam emails

or characters. The reference data X;¢ were formed by taking a percentage p of instances
that contain only the non-spam emails. The test data X3 were formed from the remaining
instances that contain both spam and non-spam emails. The task was to detect the spam
emails with the reference non-spam collection.

Comparison methods. The following novelty detection methods were included for com-
parison. Their implementation details are set as follows.

e OSVM: One-class Support Vector Machine [100]. The LibSVM library® was used.
The Gaussian kernel was adopted, the kernel width was set to the median distance
between samples, and the parameter v was set to 0.1.

e LOF: Local Outlier Factor method [I3]. The neighborhood size k was set to 7, the
same as the locKMM method.

e KDE: Kernel Density Estimator [I16]. This method was used to estimate the PDF
of the reference data, and then the novelty indicator was derived as the inverse of
the PDF for the test data. The Gaussian kernel was used, and its width was selected
using 10-fold cross validation.

e uLSIF: unconstrained Least Squares Importance Fitting [59]. This is a well-known
density-ratio estimation method. The Gaussian kernel was used and its width was
selected using 10-fold cross validation.

e KMM: Kernel Mean Matching [62]. This is another well-known density-ratio esti-
mation method. As in [62], the Gaussian kernel was used and its kernel width was
set to the median distance between samples.

e locKMM: locally-adaptive Kernel Mean Matching. This is the proposed method.
The neighborhood size k& was set to 7. The effect of other values of k is reported in
Section 5.4.5. For KMM and locKMM, we set b = 1000 and ¢ = 1le — 10.

3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 5.2: AUC of different novelty detection methods on USPS dataset.

| TargetClass | OSVM | LOF | KDE | uLSIF | KMM | locKMM |

0 0.7545 | 0.9186 | 0.9548 | 0.8792 | 0.9463 0.9891
1 0.9120 | 0.7248 | 0.2939 | 0.7156 | 0.9147 0.9881
2 0.6422 | 0.9586 | 0.9592 | 0.7557 | 0.8303 0.9463
3 0.4820 | 0.8575 | 0.9154 | 0.6349 | 0.8365 0.9558
4 0.6989 | 0.9586 | 0.8119 | 0.7058 | 0.8599 0.9701
5 0.5585 | 0.9249 | 0.9291 | 0.6393 | 0.8121 0.9076
6 0.4607 | 0.9635 | 0.8970 | 0.6685 | 0.8226 0.9781
7 0.7419 | 0.9564 | 0.7685 | 0.6864 | 0.8484 0.9744
8 0.3040 | 0.9211 | 0.8842 | 0.5299 | 0.8104 0.9204
9 0.3469 | 0.8375 | 0.6202 | 0.5124 | 0.8336 0.9551
Avg 0.5902 | 0.9021 | 0.8034 | 0.6728 | 0.8515 0.9585
Z#Wins - 1 2 - - 7

5.4.3 Emerging Novelty Detection

Results of novel digit detection. Introducing each digit as a novel concept in the test
collection, Fig. 5.3 and 5.4 plot the ROC curves of different novelty detection algorithms.
As can be observed, the proposed locKMM method outperformed the other methods except
LOF and KDE for the digit 2, 5, and 8, for which it had tied performance. Especially, the
locKMM dominated during the beginning stage in all cases. This merit is clearly shown in
the quantitative results when evaluated with AUC and Prec@t. As listed in Table 5.2 and
5.3, the locKMM achieved the best performance in 7 cases out of 10 in terms of AUC, and
the highest Prec@t in all cases.

Results of spam email detection. This task uses non-spam emails as the reference
collection, and the emerging novelties to detect are the spam emails. The ROC detection
curves are plotted in Fig. 5.5, with changing the percentage of samples that were reserved
for the reference collection, p = 30%,50%,70%. In all the three cases, the proposed
locKMM method produced the best ROC curves.

The quantitative results of AUC and Prec@t are listed in Table 5.4. Experiments were
repeated 30 times by randomly splitting the data according to the different percentage of
the three cases. The significance of improvement was tested using the Friedman test [33].
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Figure 5.3: The ROC curves of different novelty detection methods for digit 0 to 5.

72

0.6

TPrate

0.4

0.2

0.4 0.6 0.8
FPrate

(b) Digit 1

TPrate

0.4

0.2},

0.4 0.6 0.8
FPrate

(d) Digit 3

=

0.8¢

TPrate

0.4 J

0.2

0.4 0.6 0.8
FPrate

(f) Digit 5



1
0.8 ] ]
—OSVM
0 06 —LOF © 1
8 —KDE B
o —uLSIF o
F o4 KMM - ]
/ —locKMM(proposed)
0.2 { 1 1
I
G0 0.2 0.4 0.6 0.8 1 . . R 1
FPrate FPrate
(a) Digit 6 (b) Digit 7

TPrate
TPrate

0.4 0.6 . . 0.4 0.6
FPrate FPrate
(c) Digit 8 (d) Digit 9

Figure 5.4: The ROC curves of different novelty detection methods for digit 6 to 9.
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Table 5.3: Prec@t of different novelty detection methods on USPS dataset.

| TargetClass | OSVM | LOF | KDE | uLSIF | KMM | locKMM |

0 0.5460 | 0.6351 | 0.7632 | 0.6086 | 0.7939 0.9359
1 0.4356 | 0.1174 | 0.0152 | 0.0587 | 0.6174 0.9091
2 0.2778 | 0.6768 | 0.6768 | 0.2576 | 0.4545 0.7222
3 0.0843 | 0.3072 | 0.4518 | 0.1386 | 0.5181 0.7470
4 0.2100 | 0.6650 | 0.3900 | 0.1875 | 0.5500 0.8000
5 0.1250 | 0.4750 | 0.5063 | 0.1281 | 0.4625 0.6313
6 0.0765 | 0.6647 | 0.3824 | 0.0971 | 0.3765 0.8353
7 0.1905 | 0.5782 | 0.2313 | 0.0918 | 0.3810 0.8095
8 0.0904 | 0.5120 | 0.4398 | 0.1446 | 0.3554 0.7048
9 0.0113 | 0.3277 | 0.0791 | 0.0395 | 0.3559 0.7740
Avg 0.2047 | 0.4959 | 0.3936 | 0.1752 | 0.4865 0.75869
#wins - - - - - 10

It can be observed that the proposed locKMM method consistently outperformed the other
competitors with a great advantage. The AUC is increased by at least 12% and the Prec@t
is increased by at least 14% in comparison with the second best method. This is different
from the above novel digits detection tasks. Even spam emails show abnormal concepts
with respect to normal emails, their vocabularies usually have high amounts of overlap.
The inseparability in the representation space indicates that the spam emails contain the
characteristic of both emerging and evolving novelties. Thus, the LOF method, usually a
great performer for emerging novelty detection, loses the ability to identify spam emails
effectively.

5.4.4 Evolving Novelty Detection

To explicitly evaluate the detection of evolving novelties, a set of experiments based on the
spam emails collection was organized as follows. We intentionally added a small fraction of
spam emails into the reference data. Thus, the spam emails in the test collection would not
show as being absolutely novel. Instead, a much higher proportion in the test collection
simulates the evolving novel. This may demonstrate a realistic scenario of having noisy
samples in the reference collection in training one-class classifiers for novelty detection.

With the reference/test data split as p = 50% and different fractions of spam emails
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Table 5.4: The quantitative results of spam email detection. The best performing methods
(according to the Friedman test at a confidence interval of 95%) are highlighted in bold.

[, [ OSVM

LOF

KDE

uLSIF

KMM

‘ locKMM ‘

30%

0.6074+.0140

0.7234+.0134

0.7449+.0054

0.61984.0106

0.80084.0165

0.92584.0092

50%

0.6112+.0104

0.7584+.0105

0.7592+.0055

0.6216+.0109

0.8041+.0114

0.93624.0067

AUC

70%

0.61194.0122

0.77294.0101

0.7697+.0102

0.6255%.0175

0.8023+.0156

0.93074.0088

30%

0.4651+£.0153

0.59414.0166

0.6032+.0110

0.4755+£.0137

0.68584.0206

0.82661.0146

50%

0.4661+£.0150

0.6275+.0144

0.6159+.0114

0.4765+.0142

0.6787+.0171

0.84311.0116

Prec@t

70%

0.4688+.0152

0.6410+.0143

0.6283+.0150

0.4807+£.0203

0.6611+.0184

0.83301.0148

being included into the reference collection, 7 = 1%, 2%, 5%, 10%, the results are presented
in Table 5.5. As a reference, the table also includes the results of the case of no spam emails
in the reference collection, i.e. 7 = 0. Experiments of each test case were repeated 30 times
and results were tested using the Friedman significance test.

From the table, it is not surprising that the performance of all methods declines when
increasing the fraction of added spam emails. However, we can categorize these methods
into two groups. The methods of LOF, KDE, and KMM are highly affected by the amount
of added spam email, while the methods of OSVM, uLSIF, and locKMM are more robust

to the impurity of reference data.

5.4.5 Effect of Neighborhood Size

The performance of the locKMM and LOF algorithms relies on the neighborhood size k,
which was heuristically set to 7 in all previous experiments. To examine the sensitivity of
these methods to different values of k, we varied £ in the range from 1 to 100 for the spam
email dataset with p = 50% setting. Experiments were repeated 30 times for each setup.

Fig. 5.6 plots the average AUC versus the neighborhood size k. It can be observed that
the AUC of locKMM is very stable in a wide range of k£ from 4 to 30 compared to LOF.
When £ is extremely small (k < 3), the performance degrades for both methods, as the
density ratio estimation overfits the data and it is easily affected by noisy samples. When
k is too large (k > 40), the novelty of each sample is affected by many unrelated samples
which also negatively affect both methods. This demonstrates that the proposed locKMM
method is insensitive to changes in the neighborhood size.
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Table 5.5: The performance of spam email detection with simulated evolving novelty as
7 =0,1%, 2%, 5%, 10%. The best performing methods (according to the Friedman test at
a confidence interval of 95%) are highlighted in bold.
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Figure 5.6: The performance of spam detection vs. neighborhood size.
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5.5 Application to Social Media Analysis

With the increasing popularity of social networks, a huge amount of diverse and dynamic
information is continually being generated. Mining this rich information and analyzing
the trend of topics in social media has the potential to be useful in many aspects, such
as for helping political parties and companies to understand people’s opinions, responding
to customer needs, or even discovering natural or social disasters as early as possible [39].
Accurately detecting novel content from this short text in a timely fashion is an important
task, which involves identifying novel instances that include new topics or have sudden
increases of intensity on existing topics in comparison to the past.

As the time continuity of social media streams, the novelty is usually characterized by
the combination of emerging and evolving. One reason is the existence of large common
vocabularies between different topics. Another reason is that there is a high possibility
of topics being continuously discussed in sequential batches of collections, but showing
different level of intensity. Thus, the social media data is a perfect example to examine
the presented novelty detection algorithms.

5.5.1 Semantic Representation of Very Short Text

The conventional text representation is the Vector Space Model (VSM), which represents
documents with a document-term matrix. A big disadvantage of the VSM representation
is its sparsity along with very high dimensionality. This becomes extremely severe when
dealing with short social media data. For example, the maximum length of twitter messages
is 140 characters only, with the average length being approximately 15 words per tweet [95].
In English texts, the dimension can easily reach to 10K even when the techniques of stop
word removing and stemming are employed.

To address the extreme sparse and high dimension problem in short social media data,
the application of low-rank semantic kernels is proposed. This method first builds a se-
mantic kernel based on term-term correlation [11]. Then, a Nystrom approximation [12]
is applied to extract low-rank representations. In our following experiments, the low rank
number is set to 500.

5.5.2 Tweet Data and Results

Dataset and test scenario. The tweet dataset used in this experiments is described
in [130], which includes 369K tweets spreading over 10 topics. Two test scenarios are
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Table 5.6: The tweet dataset and test scenario.

’ Scenario \ \ Topic \ Ny f \ Nys ‘
Stable fashion 1000 1000
S1 Emerging investing 0 1000
Evolving media 100~200 | 1000
Stable | music, religion, shopping 3000 3000
S2 Emerging sports, technology 0 2000
Evolving travel, video-games 200~400 | 2000

formulated to include both emerging and evolving topics, as listed in Table 5.6.

Baseline methods. To detect both the emerging and evolving novelties, the straightfor-
ward cascaded approach is formulated as baselines, that is step-1: using LOF or OSVM to
detect the emerging novelties, and step-2: using density-ratio (KMM or uLSIF) method to
detect the evolving novelties. Therefore, these combinations lead to four baseline methods
as: LOF+uLSIF, LOF+KMM, OSVM+uLSIF, and OSVM+KMM.

In addition, the four novelty detection algorithms LOF, OSVM, KMM, uLSIF are also
included for comparison. The KDE method is not included because it is not scalable for
the high dimension tweet data, even when its dimensionality is greatly reduced to 500 using
the low-rank semantic kernel representation as described above. The detection results in
terms of AUC and Prec@t on the two scenarios are presented in Table 5.7.

Further, we evaluate the detection results by precision, recall, F1, and F0.5 by thresh-
olding the novelty scores. With a contingency table (Table 5.8), defining

. tp
recision =
P tp + fp
t
recall = P ,
tp+1in

F1 is the harmonic mean of precision and recall as

1= 2 - precision - recall

precision + recall
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Table 5.7: Average AUC and Prec@t of 10 runs on the tweet data.

Test Scenario S1 S2
AUC \ Pre@t AUC \ Pre@t
LOF 0.60014.0163 0.7309=+.0080 0.5190+.0102 0.59534.0099
OSVM 0.82554+.0152 0.8100+£.0141 0.7173+.0096 0.70694.0068
uLSIF 0.8676+.0067 0.8494+.0079 0.7087+.0323 0.7018+.0231
KMM 0.81704.0083 0.8174+.0056 0.7553+.0084 0.73874.0063
LOF+uLSIF 0.7737£.0115 0.8246+.0050 0.5940+.0138 0.6477+£.0070
LOF+KMM 0.77184+.0117 0.81574.0061 0.7061=£.0106 0.7228+£.0070
OSVM-+uLSIF | 0.87494.0065 0.8511£.0063 0.73124+.0302 0.71454.0226
OSVM+KMM | 0.8332+.0101 0.8202+.0064 0.76174.0072 0.7406+.0066
locKMM 0.9339+.0043 | 0.9016+.0069 | 0.8421+.0166 | 0.7975+.0161

Table 5.8: The contingency table of prediction.

’ Ground Truth ‘

Positive

|

Negative

|

Predicted Positive

true-positive (tp)

false-positive (fp)

Predicted Negative

false-negative (fn)

true-negative (tn)

F0.5 is a measure biased to precision by setting § = 0.5 in the equation of

(1+ (%) - precision - recall
Fg =

(32 - precision + recall

Table 5.9 reports the average detection performance of 10 runs. Each method is by
varying the threshold of novelty scores and reports the best result in terms of F0.5. From
Table 5.7 and 5.9, the superiority of locKMM method is obvious, while the simple cascading
methods do not have satisfactory performance. The main reason lies in the fact that tweets
from emerging topics may also demonstrate evolving aspects, which include overlaps with
previous concepts. Another observation is that the locKMM method maintains a high
level of accuracy with reasonable recall values. This is a preferable feature in information
retrieval applications as the novelty detection. The relative low recall values mean that a
number of tweets from novel topics are not distinguishable from existing topics. This is
likely caused by the limitation of the representation model.
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Table 5.9: Detection performance in terms of precision, recall, F1, and F0.5.

Test Scenario

S1

P

|

R

|

F1

FO0.5

LOF 0.71484.0066 | 0.9179+£.0225 | 0.8036+.0108 0.7478+.0074
OSVM 0.84284.0082 | 0.7880+£.0264 | 0.81424.0153 0.83114.0094
uLSIF 0.8882+.0116 | 0.7553+.0366 | 0.8158+.0197 0.8576+.0091
KMM 0.8324+.0055 | 0.7730+£.0188 | 0.8015+£.0101 0.81974.0056

LOF+uLSIF | 0.8254+.0069 | 0.8191+£.0336 | 0.8218+£.0157 0.8239+.0060
LOF+KMM | 0.82804.0068 | 0.7756+.0219 | 0.8007+.0121 0.8168+.0072
OSVM+uLSIF | 0.8966+.0112 | 0.74484.0296 | 0.8133+.0163 0.8612+.0085
OSVM+KMM | 0.8863+.0117 | 0.6575+.0295 | 0.7546+.0202 0.8283+.0129
locKMM 0.9558+.0041 | 0.7593+.0154 | 0.8462+.0096 | 0.9087+.0052
Test Scenario S2
P R F1 F0.5

LOF 0.60034.0061 | 0.8489+£.0145 | 0.70324.0073 0.6376+.0061
OSVM 0.7258+.0089 | 0.6585+.0138 | 0.6905+£.0101 0.7112+.0089
uLSIF 0.6650+.0305 | 0.8466+.0445 | 0.7435+.0123 0.69414.0208
KMM 0.7515+.0072 | 0.6963+.0104 | 0.7228+.0066 0.7397+.0061

LOF+uLSIF | 0.62584+.0050 | 0.8569+.0543 | 0.7225+.0193 0.66114.0058
LOF+KMM | 0.72674+.0077 | 0.7092+.0106 | 0.7178+.0065 0.7231+£.0064
OSVM+uLSIF | 0.6883+.0479 | 0.8050+.0827 | 0.7372+.0233 0.7058+.0218
OSVM+KMM | 0.75184+.0067 | 0.7052+.0108 | 0.7277+.0066 0.7419+£.0058
locKMM 0.8261+.0187 | 0.7228+.0102 | 0.7710£.0133 | 0.8031+.0163
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5.6 Discussion on Computation Complexity

This section analyzes the computation complexity of the proposed locKMM algorithm and
the comparable methods. Following, the experimental running time with the tweets data
is reported.

We first setup the computational complexity for several common modules. Let n be
the number of samples and d be the dimensions. The k-NN algorithm has computational
complexity of O(nd+kn). The computation of kernel matrix has the complexity of O(n?d).
The computation of matrix inverse has the complexity of O(n?®). The convex quadratic
programming problem has the complexity of O(n3). We noticed that there are some
variances which have improved efficiency [6]. The complexities presented here act as the
worst boundaries.

Let n., nis, d be the number of samples in the reference collection, test collection, and
the dimension of the data, respectively. For the LOF algorithm, with k£ denoting the
neighborhood size the complexity for testing a single data point is O(knyd + k*nyed).
Then, for all test points the complexity is O(nn.d(k* + k)). As can be seen, if k takes
a large value the LOF method would be computationally expensive. This is due to the
recursive searching of k nearest neighbors in the LOF method.

The OSVM method includes a training phase and a test phase. In the training phase,
the kernel matrix needs a computation of O(n%d). The QP problem has the complexity of
O(n). In the test phase, by denoting n, as the number of support vectors, the complexity
to test all ny samples takes O(nysng d). Taking the worst case that ng, ~ ny, the test
complexity is O(nnyd). Then, the total computational complexity for OSVM is O(n3; +

2
nzd + ngsnyed).

The uLSIF method also includes a model training phase and a test phase. Refer to
Section 3.2.4 in Chapter 3, the computation of Hy needs O(b?nyd) and computation of
hi needs O(bn,ed), where b is the number of Gaussian bases in modeling the density-ratio
functions. The computation of & involves matrix inverse and has the complexity of O(b® +
b?). Be aware that uLSIF has its model selection process. Assume there are s candidates for
model selection, the total complexity in the training phase is O(s(b?nsd + bnged + b + b?)).
The complexity of test phase is O(n.bd). The total computational complexity for uLSIF
is O(s(b*nisd + bnygd + b° + %) + nyebd).

For the KMM algorithm, the computation of the kernel matrix K., 4., Kuy. z, 18 O(nid+
nisneed). The QP problem has the complexity of O(n?,). Then, the total computational
complexity for KMM is O(n}, + nZ.d + nnysd).
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Table 5.10: The computational complexity of different novelty detection algorithms.

Train Test Total
LOF - - O(ntsnrfd(kQ + k:))
OSVM O(n3; + nZd) O(nisnysd) O(n3; + nZd + nisnyed)
uLSIF O(s(0%nisd + brggd + 02 +62)) | O(n,1bd) O(s(b%nisd + bnyed + b2 + b2) + nyebd)
KMM - - O(ng, + nZ.d + nesnyed)
locKMM - - O3, + n&d + nisneed + (nog + nes)d + k(neg + 145))

In the proposed locKMM algorithm, there is an overhead for computing the local band-
width oy, which is O((n.g + nis)d + k(ngs + ngs)). The other components have the same
computation needs as KMM. Therefore, the total computational complexity for locKMM
is O(nd, + n2.d + neneed + (Nog + Mg )d + k(ngg + i) ).

Table 5.10 summarizes the computational complexities of these five methods. The
OSVM and uLSIF are model-based methods which include two phases, model training
and the test, while LOF, KMM and locKMM are non-parametric methods, which do not
produce explicit models. Assuming n, = O(ny) = n,b = O(/n),k = O(/n),d <<
n,s << n, the uLSIF method has the lowest complexity as O(n?), the other four methods
have the similar level of complexity as O(n?). For the four cascaded methods (LOF+KMM,
LOF+uLSIF, OSVM+KMM, OSVM+uLSIF), their computational complexities are straight-
forward, that is the sum of two corresponding algorithms.

Table 5.11 reports experimental running time of the scenario ‘S1” and ‘S2’ on the tweet
data (Section 5.5.2). The results are based on a commercial desktop using one core of its
i-7 CPU. All methods are implemented in Matlab except the OSVM. It can be seen that
these results are consistent with the above complexity analysis. The OSVM has the same
level of computational complexity as KMM and locKMM. Because OSVM is based on a
C++ implementation taken from the LibSVM library [21], the execution time for OSVM
and the cascaded methods involved with OSVM are not included for comparison.
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Table 5.11: Running time of the tweet data experiments (average of 10 runs, in seconds).

’ Test Scenario \ S1 \ S2 ‘

LOF 14.8 | 110.6
uLSTF 3.6 | 11.6
KMM 2741 172.3

locKMM 27.3 | 182.8
LOF+uLSIF | 19.1 | 123.3
LOF+KMM | 43.1 | 284.6
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Chapter 6

Parameter Tuning for Kernel Mean
Matching

Although the work on estimating density ratios in a discriminative manner considerably
enhances the performance of density-ratio estimators, the category of kernel mean matching
methods depend on the choice of a kernel whose parameters are hard to estimate. In
order to address this problem, we proposed an auto-tuning method for the kernel-based
non-parametric density-ratio estimators by introducing a novel measure for assessing the
quality of candidate choices.

The chapter is organized as follows. Section 6.1 introduces the problem of parameter
selection in the kernel mean matching density-ratio estimators. Section 6.2 presents a pa-
rameter tuning method based on the new defined Normalized Mean Squared Error (NMSE)
measure. Section 6.3 presents an empirical evaluation. Lastly, the method is examined by
extending it to polynomial kernels in Section 6.4.

6.1 Introduction

In the context of covariate shift, there is distributional divergence between the training
and test data (py-(z) # pis(z), but p-(y|z) = pis(y|z)). To match changed distributions,
the Kernel Mean Matching (KMM) method reweights sample importance by minimizing
the mean discrepancy in a Reproducing Kernel Hilbert Space (RKHS) [62].

The KMM algorithm shows elegance in theory, and is not specific to any distribution or
density-ratio model. However, KMM lacks a systematic mechanism for tuning parameters.
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The heuristic choices, such as adopting the median of sample pairwise distances as a Gaus-
sian kernel’s width has neither strong theoretical justification nor has it been supported in
practice [53, 108]. Furthermore, there does not exist a clue regarding the choices for other
types of kernels, such as a polynomial kernel.

Yu et al. [128] analyzed the convergence rate of KMM and revealed that the selection
of kernel highly affects the performance of KMM. This study concludes that in order to
maintain a certain level of accuracy on the matching results, KMM would require a huge
volume of training and test samples if the kernel does not interact well with the given data.

In order to choose a good kernel, one traditional approach is to use weighted Cross-
Validation (CV) applied to the subsequent learners. This approach, however, does not
achieve good results. The reason behind this was explored in the previous work of [110],
who have shown that in learning covariate shift adaptation systems the model selection of
importance estimation should be separated from the model selection of subsequent learners.
If combining the two steps of model selection by the weighted CV based on the final learning
system, the CV score would be estimated with bias inside the loop and accordingly the
result is highly unreliable.

In the following sections, we present a new quality measure for conducting kernel or
parameter tuning.

6.2 Proposed Auto-tuning Method

6.2.1 Parameters in KMM

For the convenience of following descriptions, we quickly review the formulation of the
Kernel Mean Matching algorithm. KMM estimates density ratios by minimizing the Max-
imum Mean Discrepancy (MMD) [52] between the weighted distribution py.(z) and the
distribution ps(x) in a Reproducing Kernel Hilbert Space (RKHS) ¢(x) : © — F,
2

MMD? (F, (8, ptr)  Pts) = || Borprr (@) 18(2) - ()] = Epeopya(a) [0(2)]]] (6.1)

Using empirical means of A}, and X, to replace the expectations, we can obtain a
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Quadratic Programming (QP) problem as
B = argming [MMD2 (F,(B,p) ,p/)}
1
= argming [§BTK,B — kTﬂ] , (6.2)
with respect to two constraints

B, €10,b]i=1,...,n, and
e 2 B — 1] <ee,

tr

where K is a kernel matrix defined on X}, as
Ki' = k’([lfi,l'j), {l‘i,ﬂfj - Xtr} , (63)

and k is a vector defined on the kernel between X, and X, as

Nts

Ny
k; = -~ > kw2, {{xi € X, @) € X} (6.4)

S ]:1

The KMM algorithm involves the following factors: the boundary b, the normalization
precision ¢, and most importantly the kernel parameters.

The boundary b. This reflects the discrepancy between the two distributions to be
matched, and acts as a constraint that limits the range of the estimation to § € [0, b].
Therefore, the parameter b is expected to be different case by case, according to the given
problem. A setting of b = 1000 is reasonable for most applications as suggested by [62].

The normalization precision €. Referring to Lemma 3 in [62], the normalization con-

Ntr

straint [ B(x)py-(x)dr = 1 is applied and the empirical estimate is used as ]i Do B —
1| < g, where the parameter ¢ reflects the normalization precision. [62] explained the con-
vergence consideration of € should be O (*//n:;), and suggested KMM to adopt the setting

as € = Wmr =1/ m

The kernel and kernel parameters. KMM uses the kernel trick k(z;, z;) to express
the moment matching concept in the kernelized space. But the choices of kernel and the
kernel parameters, which are the most important setting affecting the performance of the
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KMM algorithm, have not been well-studied in the literature. To provide a representation
of infinite moments in the kernelized space, a Gaussian kernel is the most often used kernel
type. The bandwidth of a Gaussian kernel is still not easy to decide.

6.2.2 The Limitation of Objective Function MMD

Before we start to describe a method for tuning KMM, one direct question that might be
asked: If the KMM algorithm takes MMD as its objective function, then why can’t MMD
serve as the criteria for parameter selection? We first answer this question and support
our answer with an illustrative example.

Referring to Eq. 6.1, MMD also has its own parameters, related to the choice of kernel,
to be determined, which shares the same parameters with KMM. For any defined kernel
used to calculate the MMD, the KMM which minimizes the MMD will fall into the same
kernel space and lead to the same choice. To demonstrate this difficulty, we use an illustra-
tive example. Suppose that KMM is used to match two one-dimension Gaussians, where
the distributions differ at the means from 0 to 1, and the variances are the same (02 = 1).
Fig. 6.1 shows the results of KMM and the corresponding MMD value with different kernel
widths (X-axis). We can see that using different parameters for calculating MMD will also
lead the KMM to arrive at an optimum at different bandwidths. The shared parameter
and hence the dependency between MMD and KMM imply that the MMD (i.e., the objec-
tive function of KMM) is not suitable to act as an objective criterion for KMM to process
model selection.

6.2.3 Tuning KMM Using NMSE

Inspired by the work of Kanamori et al. [09], we propose to introduce the Normalized Mean
Squared Error (NMSE) to assess the goodness of parameter settings. The key idea is that
while each KMM procedure minimizes the mean discrepancy between the weighted training
samples and the test samples, an overhead parameter selection procedure minimizes the
NMSE, which is computed from the matching results. A NMSE-based quality measure for
estimating the goodness of candidate parameter values can be derived as follows.

The NMSE between the ground-truth and approximate density ratios is defined as:
1

1 B 8@ Y
NMSE—nt%EX”<ZZE&T B(2)  Deex 5(2)> 7 (6.5)
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Figure 6.1: KMM with different kernel widths and the corresponding MMD values.

where § (z) is the ground-truth density-ratio for a training sample z, /3 (x) is the approxi-
mate density-ratio for x estimated using the KMM, A}, is the set of training samples, and
ny- is the number of training samples.

Our goal is to define a criterion based on NMSE that can be used to assess the quality
of a given parameter value, such that the best parameter value is the one that minimizes
NMSE. Without loss of generality, we can assume that § (z) and 3 (x) are normalized over

the training samples: > . B(x) = > .y B(x) = 1. In this case, the NMSE can be
calculated as:

NMSE = 3 <B (z) - B @))2 . (6.6)

n
ir rEXyy

Eq. 6.6 is the empirical average corresponding to the following integral:
ENMSE] = [ (@)~ 5(2) po(a) da
— / (32 (z) — 283 (x) B (93)) P () dx + /52 () pr(x)dex . (6.7)

The term [ 32 () py-(x)dx does not depend on the density-ratio estimation method and
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Algorithm 10 Parameter Tuning for KMM

: Input: X}, X5, M (a family of setups to be selected)
: Output: chosen parameters m*, and the estimates B*
: for each m in M do

B KMM (X, Xy, m) for @ € X

Estimate B;m) for x; € &} using RLS;

J(m) < Eq. 6.10
end for
m* < arg ming,ep J(m);

e Ao

R S B A o A i e

accordingly the choice of the method parameters. This means that the parameter values
that minimize NMSE will also lead to the minimization of a new score .J, which can be
defined as:

J = / (5’2 (z) — 2B () B (x)> P (1) d . (6.8)

Substituting with 8 (x) = pis(z)/pe (z) in Eq. 6.8, the J score can be simplified as
follows:

J= / B (2) pu () dz — 2 / B (2) pus()dz (6.9)

Using the empirical averages corresponding to the integrals, the right-hand of Eq. 6.9
can be expressed as:

J= Y B Y Bl (6.10)

TEX; TEX;s

The first section of the J score can use the estimated /3 at the training samples given
by KMM directly. The second section considers the § scores at the test samples, which
are not available. We formulate this scenario as a regression problem to model the 3 and
then deduce values at the test samples. In this work, we use the Regularized Least Square
(RLS) [109] as the regression method.

At this point, we have all the necessary components to calculate the J score of Eq. 6.10.
The parameter tuning procedure of KMM is conducted by minimizing J, as summarized in
Algorithm 10. This mechanism gives the KMM the ability to be tuned based on evaluating
the goodness of density-ratio estimation from a different perspective, which minimizes the
NMSE as the objective.
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Table 6.1: Three cases of distribution shifting.

’ ‘ DPir ‘ Dis ‘
Case-1 | N(0,1?) N(1,1%)
Case-2 | N(0, (%)2) N (0, (%1)2)
Case-3 | N(0,1%) | N(1, (%)2)

It should be noted that using the estimation of 3 at the training samples and extending
the estimation to the test samples creates another regression model with covariate shift
problem. However, we observed that since the second term (an average over B) is relatively
small compared to the first term (an average over 52), slight errors in estimating the second
term due to covariate shift is not going to affect the values of the final quality measure.
This is especially true when we have a relatively reasonable number of training samples,
referring to Theorem 4 in [128].

6.3 Experiments

In this section, first the performance of the proposed method is demonstrated using three
synthetic examples. Then, the method is evaluated on covariate shift tasks over benchmark
datasets.

6.3.1 Synthetic Data

To demonstrate the ability of the proposed parameter tuning mechanism, we use one-
dimension Gaussians and examine three distribution drifting cases as shown below. The
ground truth density-ratio 3 can be obtained using the known underlying distribution
functions. Therefore we can calculate the quality of the importance estimates 3 by the
NMSE [109], as defined in Eq. 6.5.

Table 6.1 lists three cases to be examined where the training and test distributions are
drifting either by a shifting of means, a shifting of variances, or both. In all three cases,
200 training samples and 1000 test samples are randomly generated from the distributions
as given. The KMM using a Gaussian kernel was studied regarding different settings of
kernel width.
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Figure 6.2: Case-1: the minimum J score leads to the choice of kernel width o = 10.

The J scores calculated from the matching results and the NMSE calculated from
ground-truth are plotted in Fig. 6.2, 6.3, and 6.4, corresponding to the three cases. From
these results, some general facts can be observed:

1. The optimal parameter of KMM kernel width differs in different scenarios. The
optimal parameters o for the three cases are 10, 0.3 and 2.8, respectively.

2. This infers that any predefined value of the parameter may work in some cases, while
failing in others. If we do not have a strong prior knowledge on the given tasks, an
automatic parameter tuning method is greatly needed.

3. The J scores calculated from the outputs reflect the goodness of the KMM’s matching
results to a great extent, and usually lead to a proper choice of the parameters, even
though it may not be the most optimal.

6.3.2 Covariate Shift of Benchmark Datasets

Further experiments have been conducted on ten benchmark datasets, whose properties are
summarized in Table 6.2. These frequently used datasets are from the UCI' and LibSVM?

1UCI datasets: http://archive.ics.uci.edu/ml/datasets.html
2LibSVM datasets: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. For Cod-RNA
and Adult-ala, the first 3000 samples are taken.
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Figure 6.4: Case-3: the minimum J score leads to the choice of kernel width o = 2.8.
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Table 6.2: Overview of datasets and the training test split.

’ Dataset \ #Samples \ #Features \ Ny \ Nis ‘
ImageSeg 2310 18 716 | 770
BreastCancer 683 9 283 | 228
Diabetes 768 8 266 | 256
PenDigits(6vs8) 1498 16 530 | 499
USPS(6vs8) 1508 256 483 | 503
GermanCredit 1000 24 334 | 333
Cod-RNA 3000 8 1015 | 1000
Splice 3175 60 1025 | 1058
Australian 690 14 235 | 230
Adult-ala 3000 123 1009 | 1000

archives.

In our experiments, before any further processing, all the data were normalized to the
range [—1, 1]%. The covariate shift classification tasks were formulated with the deliberately
biased sampling procedures by following the work of [28]. First, one third of the data is
uniformly sampled to form the test partition. Then, the rest of data is sub-sampled to
form the the biased training set with probability P (s = 1|z) = €' /i+e’, where P(s =
1) means that the sample x is included in the training set, and v = Ww"@=2)/5 - .
w € R? is a projection vector randomly chosen from [—1, l]d. For each run, we randomly
generate ten values of w and select the w which maximizes the difference between the
unweighted method and the weighted method with ideal sampling weights. The typical
reserved number of training samples and the number of test samples are listed in Table 6.2.

The baseline method was set as fitting a model on the training set without any modifi-
cations and predicting the test samples. The following state-of-the-art sample importance
estimation methods were included for comparison:

e KDE: Using Kernel Density Estimator [116] to estimate the training PDF and test
PDF separately, then dividing the two densities.

e KLIEP: The Kullback-Leibler Importance Estimation Procedure [110], which mod-
els density-ratio as multi-Gaussians and minimizes the Kullback-Leibler divergence.

e uLSIF: unconstrained Least Squares Importance Fitting [69], which models density-
ratio as multi-Gaussians and minimizes LSIF. The above three methods have out-
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of-sample ability, and the parameters are chosen using the likelihood 10-fold Cross-
Validation.

e KMM(med): KMM algorithm with the kernel width being set as the median of
pairwise distances of all training and test samples.

o KMM(y/d/2): KMM algorithm with the kernel width being set as \/d/2, where d
is the number of features of the data. This setup was used by [28].

e KMM (auto-tune): The proposed method with Gaussian kernels, using NMSE to
tune the parameter of kernel width, scanning kernel widths ([0.1:0.1:3,4:1:10] %
Omed, Where 0,,.q is the median of sample pairwise distances, and taking the choice

with the minimal .J score. In the above KMM methods, the other parameters are set
to e = Wner =1/ me b = 1000.

After acquiring the instance-dependent weights using the above importance estimation
methods, we trained an importance-weighted Least-Squares Probabilistic Classifier (iwlL-
SPC) [109] and evaluated its prediction accuracy on the test sets respectively. Each setup
was repeated 30 times and the average performance measures are reported.

6.3.3 Results and Discussion

Similar to previous work [110], the Normalized Error (NE) is adopted to show the effec-
tiveness of a method by considering the error of the baseline unweighted method as one
and calculate the metric as:

E metho
NEjmethod = # x 100% (6.11)
baseline

Table 6.3 reports the Normalized Error on the ten datasets by using different impor-
tance estimation methods. The significance of improvement was tested using the Friedman
test [33]. Tt shows that the KMM equipped with the proposed auto-tuning mechanism out-
performs other methods in mostly all the cases. As mentioned earlier, the KDE method
is a two-step approach of importance estimation, which has an inherent likelihood Cross-
Validation mechanism for parameter selection. In low dimensionality cases, it performs
well. But, when encountering a high-dimensional problem, the weakness of this method is
noticeable. On the other hand, the conventional heuristic setups of KMM, which uses the
median of sample pairwise distances or \/m, do not have strong evidence of effectiveness.
This is consistent with the findings of other reported results [28,53, 108].
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Table 6.3: The normalized testing error of different importance estimation methods. For
each dataset, the best performing group of methods (according to the Friedman test at a
confidence interval of 95%) are highlighted in bold. The second-best method is underlined.
The absolute error rate of the baseline is also reported in the first column.

Baseline KDE | KLIEP | uLSIF | KMM | KMM KMM
Dataset Err_abs ‘ Err_norm (med) (\/d/2) (tuned)

ImageSeg 0.1869 | 100.00 | 59.03 | 61.44 | 66.63 | 62.44 | 62.99 | 55.70

BreastCancer 0.3115 100.00 | 109.57 | 42.56 70.44 | 21.59 | 21.21 21.49

Diabetes 0.3469 | 100.00 | 98.24 | 9546 | 95.42 | 98.39 | 99.36 | 95.38

PenDigits(6vs8) | 0.0140 | 100.00 | 22.86 | 22.38 | 21.90 | 31.90 | 26.19 | 21.43

USPS(6vs8) 0.1262 | 100.00 | 81.73 | 25.98 | 36.90 | 30.50 | 30.34 | 25.30

GermanCredit | 0.3160 | 100.00 | 106.37 | 103.99 | 103.64 | 105.16 | 107.92 | 104.91

Cod-RNA 0.3316 | 100.00 | 85.81 | 89.03 | 86.65 | 86.16 | 87.52 | 83.77

Splice 0.3792 | 100.00 | 125.23 | 90.95 | 113.93 | 85.30 | 81.84 | 83.60

Australian 0.2354 | 100.00 | 93.90 | 72.60 | 79.86 | 84.73 | 86.45 79.68

Adult-ala 0.2640 | 100.00 | 118.71 | 94.38 | 100.37 | 90.49 | 96.94 | 96.72

Average 100.00 | 90.14 | 69.88 | 77.58 | 69.67 | 70.08 | 66.80

An interesting observation can be noted for the German Credit dataset. In this case,
there is no improvement in classification performance when comparing all importance
weighting methods with the simple unweighted approach. In such a scenario, the distri-
bution changes are probably far away from the decision boundaries. And any reweighting
strategy will not be effective in dealing with the shift.

6.4 Extension to Other Kernels

In this section, we extend the proposed auto-tuning method to another type of kernels, the
polynomial kernels. We observed that when using the polynomial kernel with classification
problems (in a setup as the one explored in Section 6.3.2), the classification accuracy does
not change that much with different parameter values. This however does not reduce the
usefulness of applying the auto-tuning method to polynomial kernels. This is because
KMM is essentially a method for importance estimation which could have applicability in
other machine learning tasks such as anomaly detection. Based on this observation, we
use a different approach to evaluate how the auto-tuning method works with polynomial

96



kernels. Specifically, we used the NMSE to evaluate how good the estimated density-ratio
is using different parameter values in comparison to using the auto-tuning method.

The following two commonly used polynomial kernels are to be investigated:

1. The polynomial kernel of degree 2: k(x;,x;) = (zl'x; + ¢)%

2. The polynomial kernel of degree 3: k(z;,z;) = (z]z; + ¢)>.

The parameter ¢ in these kernels is to be tuned using the proposed method.

Taking the same setup as [110], experiments were conducted based on the setup of Case-
1 listed in Table 6.1. We fixed the number of test samples as n;,; = 1000, and considered
the following two scenarios:

1. Fix the number of training samples as n,. = 200, and change the input dimension as
d=1,2,...,20;

2. Fix the input dimension as d = 10, and increase the training sample size as n;, =
100 : 10 : 300.

For each setting, the experiments were repeated 100 times. The matching quality was
evaluated by the normalized mean square error (Eq. 6.5). For the parameter tuning
method, the ¢ is automatically chosen from the range of [0, 2] with increments of 0.1.

Fig. 6.5 and 6.6 show the average NMSE when using different parameter values for
polynomial kernels of degree 2 and 3, respectively. From Fig. 6.5a, we can find that small
values of the parameter ¢ gives better matching scores for lower values of d. On the contrary,
for high dimensional cases it can be observed that large values of ¢ tend to produce better
matching results. The degree 3 kernel (Fig. 6.6a) shows its own characteristics in response
to dimension changes, but the effects of parameter ¢ demonstrate the same trend. From
these observations, we can conclude that using a fixed value for the ¢ parameter is not going
to give the best results for all dimensions, while using the auto-tuning method achieves
the best matching results for all dimensions and outperforms the performance of the fixed
values.

As observed from Fig. 6.5b and 6.6b, it is not a surprise that in general the matching
errors are shrinking as the training sample size increases. For the degree 2 kernel, the
interesting point is that large values of ¢ seem to perform better when there is a small
number of training samples. On the other hand, small values of ¢ are more suitable for large
numbers of training samples. For the degree 3 kernel, large values of ¢ tend to perform well
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with different number of training samples. Similarly, we can observe that using fixed values
for the parameter ¢ does not always achieve the best matching performance while using

the auto-tuning method achieves the best matching scores for different sizes of training
samples.

Overall, the parameter tuning method was consistently found to be effective in all the
circumstances studied.
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Chapter 7

Conclusions and Future Work

This chapter concludes this dissertation and outlines future work. Section 7.1 presents a
summary of contributions and concluding remarks. Section 7.2 discusses potential direc-
tions for extending the current study.

7.1 Conclusions

This dissertation analyzed the non-stationary data mining problem and proposed a set
of methods for reweighting the training data. The proposed algorithms advance the dis-
tribution matching scheme by developing novel density-ratio methods to solve different
non-stationary data analysis tasks differently.

For domain adaptation classification problems, this dissertation first presented a novel
Discriminative Density-Ratio (DDR) method for learning adaptive classifiers. To minimize
the discrepancy between training and test data, many methods are based on estimating
density ratios over the marginal distributions and apply to both regression and classification
problems. Although these methods work well for regression problems, their performance
on classification problems is not satisfactory. This is due to a key observation that these
methods focus on matching the sample marginal distributions without paying attention
to preserving the separation between classes in the reweighted space. The proposed DDR
method addressed the problem by estimating the density ratio of joint distributions in a
class-wise manner.

In non-stationary environments, along with the changing of existing concepts which
are handled by the domain adaptation techniques, we are also facing the occurrence of

100



new concepts. The detection of novelties is another crucial problem in non-stationary
data mining. In this dissertation, a locally-adaptive kernel density-ratio method has been
proposed that captures both the emerging and evolving aspects of novelties. Traditional
algorithms are limited to detect either emerging novel instances which are completely new,
or evolving novel instances whose distribution are different from previously-seen ones. The
proposed algorithm builds on the success of the idea of using density ratio as a measure of
evolving novelty and augments this with structural information about each data instance’s
neighborhood. This makes the estimation of density ratio more reliable, and results in
detection of emerging as well as evolving novelties.

In addition, the proposed locally-adaptive kernel novelty detection method was applied
in the social media analysis for novel concepts detection. Social media data, such as the
messages in Twitter, is characterized by extreme sparsity and high dimensionality if using
traditional document-term vector space representation. To overcome the difficulty, the
low-rank approximation based on term-term semantic kernels was adopted in the proposed
solution. The low dimensional semantic kernel representation embeds the most important
concepts in the short text. As the time continuity of social media streams, the novelty is
usually characterized by the combination of emerging and evolving novelties. One reason is
the existence of large common vocabularies between different topics. Another reason is that
there is a high possibility of topics being continuously discussed in sequential batches of
collections, but showing different levels of intensity. Thus, the presented novelty detection
algorithm demonstrated its effectiveness in the social media data analysis application.

Although the work on estimating density ratios in a discriminative manner considerably
enhances the performance of density-ratio estimators, the category of kernel mean match-
ing methods depend on the choice of a kernel whose parameters are hard to estimate. In
order to address this problem, we proposed an auto-tuning method for kernel mean match-
ing by introducing a novel measure for assessing the quality of candidate choices. The
proposed quality measure reflects the normalized mean square error between the estimated
importance weights and the ratio of the estimated test and training densities, which is a
different perspective from the objective function used by the kernel mean matching algo-
rithm. The proposed auto-tuning method does not depend on the learner in the following
step and accordingly allows the model selection procedures for importance estimation and
prediction model learning to be completely separated.

Non-stationary data is pervasive in a large number of data mining applications and
poses great challenges for many traditional learning algorithms. This dissertation focused
on the sample reweighting approach and developed a set of strategies that effectively handle
dynamic data analysis tasks.
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7.2 Future Work

The work presented in this research can be extended in different directions and applied in
many interesting applications. A short list of possible directions are highlighted as follows:

Scalable adaptation algorithms for big data platform. Large scale data is a domi-
nant characteristic in many of todays applications. We have seen platforms being proposed
to handle large scale data by using distributed storage and processing the data among clus-
ter of machines, such as the MapReduce [31] and Spark [130] framework. The presented
methods in this dissertation are based on single machine execution. How to develop opti-
mized distributed extensions to these methods is worth further investigation.

Efficient adaptation algorithms for resource limited environment. Another promis-
ing direction is to develop adaptation algorithms that can continually adapt to new data
while reducing both time and space complexities. This has important applications in the
resource limited environment. For example, intelligent sensor and sensor networks are im-
posed with many constraints, including limited accessibility of computation, storage, and
power.

Personalized data mining to achieve both efficiency and effectiveness. Most
of the algorithms for supervised and unsupervised learning are in direct interaction with
thousands or even millions of system users. The variety of users and their needs generate
a challenging aspect of non-stationarity in the data. The new data associated with a new
user or group of users can be used to adapt the learning models to perform well on these
data. This leads to personalized systems with objectives to achieve both efficiency and
effectiveness by selecting and modeling a small portion of data from the whole data space.
The personalized data mining techniques can be explored in interesting applications such
as intelligent personal assistants and personalized recommendations.

Identification and modeling of emerging and volatilizing topics in social media.
As an application case, we have presented solutions for novelty detection. The ability of
tracking both emerging and volatilizing topics in a social media stream is needed, which
can help us understanding the full view of social events.
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7.3 Publications

From the research the following publications are produced.

e Yun-Qian Miao, Ahmed K. Farahat, and Mohamed S. Kamel (2015). “Ensemble
Kernel Mean Matching”. Furopean Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases (ECML/PKDD): 15 pages.
Submitted in April 2015.

e Yun-Qian Miao, Ahmed K. Farahat, and Mohamed S. Kamel (2015). “Locally Adap-
tive Density Ratio for Detecting Novelty in Twitter Streams”. To Appear in Proceed-
ings of the 6th International Workshop on Modeling Social Media (MSM) - Behavioral
Analytics in Social Media, Big Data and the Web: 6 pages. 2015.

e Yun-Qian Miao, Ahmed K. Farahat, and Mohamed S. Kamel (2014). “A Novel Ap-
proach For Domain Adaptive Classification”. Machine Learning Journal (Springer):
27 pages. Submitted in November 2014.

e Yun-Qian Miao, Ahmed K. Farahat, and Mohamed S. Kamel (2014). “Discrimi-
native Density-ratio Estimation”. In Proceedings of the 2014 SIAM International
Conference on Data Mining (SDM), pages 830-838, 2014.

e Yun-Qian Miao, Ahmed K. Farahat, and Mohamed S. Kamel (2014). “Class-wise
Density-ratios for Covariate Shift”. The Workshop on New Directions in Transfer
and Multi-Task at the Neural Information Processing Systems (NIPS): 5 pages. -
Best Abstract Award.

e Yun-Qian Miao, Ahmed K. Farahat, and Mohamed S. Kamel (2013). “Auto-tuning
Kernel Mean Matching”. In Proceedings of the Workshop on Incremental Clustering,
Concept Drift and Novelty Detection at the IEEE 13th International Conference on
Data Mining (ICDM), pages 560-567, 2013.

e Yun-Qian Miao, Rodrigo Araujo, and Mohamed S. Kamel (2012). “Cross-Domain
Facial Expression Recognition Using Supervised Kernel Mean Matching”. In Pro-
ceedings of the IEEE 11th International Conference on Machine Learning and Ap-
plications (ICMLA ), pages 326-332, 2012.
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