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Abstract 

Despite their complexity, cities exhibit very similar fractal properties in various aspects of 

their form and function, including their social and spatial profiles. These similarities reveal 

underlying forces behind the formation and evolution of the cities that bind their interrelated 

profiles. Discovering these underlying forces is critical in order to achieve a comprehensive science 

of cities. This study proposes a process-based framework that seeks to explain some observed 

similarities in the social and spatial profiles of the cities. It hypothesizes that fractal patterns in 

physical urban form originate from a scale-free structure of socio-economic groups and 

organizations in the cities. An abstract agent-based model is developed to test the hypothesis by 

simulating the growth of a virtual city from a limited number of agents to a populated landscape 

with a fractal pattern. Results from the model analysis justify that the aggregate fractal pattern in the 

urban form can originate from a scale-free distribution of group sizes in the cities, which is in turn a 

result of preferential attachment in the human aggregation process. The model illustrates that the 

fractal dimension of the distribution of buildings varies based on the population growth rate, the 

human interaction rate, and the transportation cost. The findings of this research show that by 

measuring the fractal dimension of urban forms, we can infer the general pattern of human 

aggregation structures, including the distribution of activity groups in cities. Acknowledging this 

relationship may encourage planning and governance to approach attempts to achieve large-scale 

changes in urban form from the gateway of socio-economic structures and group formation 

processes. The thesis result motivates further investigation into the relationships between the social 

group formation process and the compactness and efficiency of cites. Future direction of this work 

studies the empirical relationships between urban structure and the structure of social networks. 
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Chapter 1:                       Introduction  

For centuries, urban scholars have been wondering what constitutes good urban form 

(Lynch, 1960). Thousands of theories and ideologies have been developed and practiced based on 

the perception of a Perfect City. Such theories vary from The Garden City to Technological Utopias 

to The New Urbanism (Pinder 2013), most of which focus on the physical form and design as their 

targets. However, achieving functional goals has always been the main challenge of most of these 

design-oriented theories. Thus, concern was shifted to understanding the extent to which urban 

planning and design are able to influence urban form and function (Fainstein 2000).  

It wasn’t until the late twentieth century that the traditional notion that explains the city as a 

machine that performs in the way we design it was replaced by the complex systems approach 

(Manson 2001; Batty & Marshall 2011). The complexity of cities implies that their form emerges 

from the bottom up as the result of interconnected variables (Batty, 1994). We now know that urban 

form is fractal, suggesting that the irregular patterns in the built environment repeat in every scale, 

and has a power law distribution of component sizes. Despite several studies that suggest theoretical 

methods that generate fractal forms (Batty 1991, White & Engelen 1993), the underlying process 

responsible for fractal patterns in evolution of urban form remains a mystery.     

Recently, the ability to obtain and analyze large-scale data on several aspects of cities has 

provided us with new insights into the spatial complexity of urban dynamics. Evidence from many 

empirical studies suggests that there is a common power law relation in the urban statistical 

properties, including both infrastructural size distribution such as roads and buildings (Batty 2008), 

as well as socioeconomic activities such as firms and organizations (Andriani & McKelvey 2009; 

Farmer & Geanakoplos 2008). Some of the more relevant studies from both built environment and 

socio-economic profiles of cities are listed in Table (1-1). The presence of a power law behavior in 
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the size distribution of elements of a system implies self-similarity in its underlying system dynamics 

(Batty & Longley, 1994). Furthermore, a power law distribution is one of the dominant 

characteristics of fractal objects, and in general complex systems.  

Although linkages between fractal urban form and city function have been explored 

(Frankhauser 2008; Bettencourt 2013), the causal associations between power-law socioeconomic 

structures and fractal urban form have not. For example, there have been attempts to derive the 

origin of this interdependence in urban properties by proposing mathematical frameworks that links 

global patterns to few basic local parameters such as population (Bettencourt, 2013). However, the 

explicit underlying chain of processes that causes similar statistical properties in socioeconomic and 

spatial urban aspects has remained unknown. 

Table&(1)1):&Power&Law&phenomena&in&social&and&spatial&profiles&of&cities&in&the&literature&

  Phenomena Source 
  Socio-Economic Profiles 

Hierarchy of social group size (Zhou, Sornette, Hill, & Dunbar, 2005) 

Job vacancies (Gunz, Bergmann Lichten, & Long, 2002) 
Social networks (Watts, 2004) 
Firm size (by revenue) (Axtell, 2001) 

Firm Size by number of employees  (Aoyama, Yoshikawa, Iyetomi, & Fujiwara, 2009) 
Built Environment 

Parcel size by area (Fialkowsky and Bitner 2008) 
Building footprint area (Batty, 2008; Samaniego & Moses, 2008) 
Length of road network (Samaniego & Moses, 2008) 

 

Identifying the origin of the linkages between different facets of the city is essential to understand 

urban dynamics, which contribute to the evolution of urban form. Such identification would also 

helps to design effective interventions. In search of this origin and by mapping the observations of 

the above studies, I propose a unified hypothesis that helps to explain why these similar patterns 

emerge. I use three simple assumptions to construct the hypothesis:   
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1) People are the essence of change; cities change because the people living in them change. 

In other words, the form of a city does not change unless human beings, their needs, and their 

actions make changes in the social and physical aspect of cities. As such, the city can be considered 

to have a sole living entity, which is the people connected together; each of its social, economic, and 

physical profiles can be interpreted as only one layer of this entity.  

2) External and internal forces: There are two sets of forces that define the next state of any 

change in the urban environment: first, internal forces, which initiate from people, their needs, 

preferences and actions, and second, external forces, which are applied from the built or natural 

environment. The reactions of human being to the potentials, threats, and constraints of the 

environment define the way the city evolves through time. Any other factor can be classified in one 

of these two groups. For example, weather conditions, proximity to geographical features, 

topography, and other environmental factors are all considered as external forces. Thus, the city is a 

reflection of its people through the lens of its environment, and these two are inseparable.  

3) Buildings are the containers of human activities. Each building in a city can be seen as a home 

to the activities of an individual or a group of people. It can either be a house for a family, a retail 

store for a group of people to shop, an office building for an organization, or a shopping mall that 

serves an urban district. The characteristics of buildings (such as function and location) reflect the 

characteristics of their users to a great extent. One of the main determinants of this reflection is the 

size match. Generally, depending on how large the number of users is, the floor area of the building 

varies. However, the degree of this reflection varies among geographical locations and cultures.  

Consideration of the relationship between building characteristics, or in more general terms, the 

characteristics of the urban physical environment and human activities, is essential to understand 

urban dynamics. For clarification, I dig into more detail about the process that leads to 

transformation of the built environment: the construction of a new building. Imagine a typical 
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building in a typical city.  Before the building is built, it had enough demand to be created and 

designed. Its design process takes place under users’ demands and budget. The users are a social unit 

that can be an individual, a family, a group, a firm, an organization or any kind of association that 

needs a space for their activities and have enough power (or resources) to own a building. For 

simplicity, I will assume that all of these possible social units that can occupy a building are each a 

kind of group; either a group of one, or a group of more than a thousand people, but I will call them 

“groups” for now. Although the formation process of these groups varies significantly from case to 

case, in general, there are two main logics involved: first, physically closer individuals or groups are 

more likely to join together compared to distant ones. Second, larger groups are more likely to 

attract new members compared to smaller ones. Based on these two basic aggregation principles, 

individuals unite gradually and form associations that will later settle in buildings.  

As the buildings are the containers of groups, larger groups require larger buildings. That is the 

size of the required building for a group is an increasing function of the size of that group (size, 

here, refers to the number of members or individuals that are associated with a particular group). 

For example, a company with 500 employees needs a larger parcel and a larger building for its 

functionalities compared to a company with 50 employees. It is important to note that the reverse 

side of this statement is not always true; that is, larger buildings are not necessarily owned by larger 

groups. In this study, we focus on the former process per se (groups with larger number of members 

need larger buildings to settle in). Furthermore, this assumption takes into account the fact that 

neither every social unit needs a building for its functions nor it attains the power to possess one1. 

                                                
1  For example, while a group of neighbors may form a community and need a community 

center for their activities, they might not succeed in achieving one. Also, a group of friends who are 
connected by social media does not even need a physical space unless they have a mission significant 
enough for investment, which leads to creating a firm or an institution accordingly. Hence, a group 
has to be sustained and stable enough to become a candidate for making a physical change in the 
built environment.  
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Thus in the model, only groups that need a space for their activities (such as employment groups) 

are modeled.  

In fact, numerous factors are involved in determining the relation between size of a building and 

size of the group that is using it. These factors include but are not limited to: activity type, frequency 

of use, zoning, density and land price. However, the existence of these factors and their role in 

defining the size of each building as a function of its users does not modify the dominant effect of 

number of members in each group, which is the first and foremost determinant of building capacity. 

Based on the above preface, I propose a integrative deductive theory of how social and 

spatial interdependencies arise.  The theory connects the social and spatial structure of cities by 

Figure&(1)1):&Conceptual&diagram&of&the&thesis&hypothesis&development.&Narrowing&down&the&social&and&
spatial&structures&of&cities&into&size&distribution&of&buildings&and&groups,&the&linkage&is&derived&theoretically. 

Hypothesis: The social behavior of people influence the 
spatial configuration of buildings in a city 
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refining each side into some measurable phenomena. As illustrated in the above diagram, the 

hypothesis is based on the similarities of size distribution of groups and buildings, each as a 

representative of a more general concept. It hypothesize that group size distribution represents the 

structure of socio-economic interactions, which in turn represents the social pattern of the city in 

general. Also, the buildings size distribution represents the spatial pattern of the built environment. 

The way I narrow down the two general social and spatial patterns and use the hypothesis to 

connect them is shown in Figure (1-1). The theory states that the same overall distribution pattern as 

in the social group sizes is also reflected in the distribution of building sizes in a city. It asserts that 

the observed power-law patterns in the distribution of building sizes are rooted in the distribution of 

associations of people who use the buildings. It also applies to the spatial configurations of building 

in the city, where larger buildings are more concentrated in areas where larger groups of people 

interact.   

The approach of this study is to model the chain of processes that lead to formation of the 

built environment and to show how scale-free patterns emerge in social systems and pass to physical 

systems. For this purpose, an agent-based model of an archetypical city is developed in Netlogo®, 

which simulates the growth of a city from a single seed in space to a large urban landscape with 

fractal properties. The processes that are modeled can be summarized in three phases: human 

interaction, group formation, and building allocation. More details on these phases and the structure 

of the model are provided in the proceeding section.  

Further, I test the model using various parameter settings to explore the effect of 

aggregation and segregation forces and present the outcome in the result section.  All model results 

support the hypothesis strongly by revealing patterns that are similar to real-world urban patterns. 

Regression analysis on the distribution of buildings in the outcome landscapes shows clear power-
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law relations with different slopes due to varying parameters. The radial distribution analysis of 

building sizes reveals characteristics similar to real-world radial distribution pattern.  

The results of this study highlight the central role that human interactions play in defining 

the way cities form and spread on landscape. They further help planners to distinguish the 

underlying driving forces of urban form by examining the patterns in the size distribution of 

buildings in a city. The proposed theory is also consistent with the principles of advocates of 

planning for people, who believe that any planning intervention should be small scale, gradual and 

based on public participation in order to be successful (Jacobs, 1961; Mumford, 1937; Robinson et 

al., 2007).  

The thesis is organized into the following chapters: Chapter 2 provides a general definition 

of fractal theory and fractal measurement methods followed by an overview of the literature that 

applies fractal measurements in urban studies. Chapter 3 is dedicated to a case study, where I used 

fractal dimension to measure the complexity of built-up areas in Kitchener-Waterloo cities. In 

Chapter 4, I construct an agent-based model to test the hypothesis discussed in the current chapter. 

The model is then implemented and the results are presented in Chapter 5 along with related 

discussions. Conclusion and future direction is discussed in Chapter 6.  
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Chapter 2:                    Literature Review 

2.1 Introduction to fractals 

The term fractal was first coined by Mandelbrot in 1975 to describe geometry of natural 

forms such as branches of trees, surfaces of mountains, and the shape of coastlines. Mandelbrot 

defines fractals as “mathematical objects, whether naturally or man-made, which can be described as 

irregular, coarse, porous or fragmented, and which furthermore possesses these properties to the 

same extent on all scales” (Mandelbrot 1975). Fractals are made up of parts that resemble the whole 

in some way, so if one zooms in on a fractal object, the same form reoccurs over and over.  

Fractal objects cannot be defined or measured using the Euclidean geometry. Mandelbrot 

referred to the example of the coastline paradox to elaborate on the property of fractal forms and 

the deficiency of classic geometry to define them. He shows that the length of the coastline of 

Britain depends on the scale of measurement, and thus coastlines do not have a well-defined length, 

as demonstrated in Figure (2-1). However, if the coastline is examined as fractal, the measurement 

paradox is resolved because the coastline curves repeat themselves in every scale and thus, the length 

Figure& (2)1):& Illustration& of& the& coastline& paradox.& From& left& to& right,& the& coastline& of& Britain& is&
measured&by&200& km,&100&km,& and&50&km&rods,& resulting& in& 2350&km,&2775&km&and& 3425&km& length&of&
coastline&respectively&(Van&de&Sande,&2004).& 
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can vary depending on the measurement scale dimension. Measuring the coastline using a fractal 

provides a constant number, which defines the shape of the coastline based on the amount of details 

it has in every scale and the way it has filled the space available to it (Mandelbrot, 1990).  

The main distinction between fractal and Euclidean geometry is the dimension in which the 

form is constructed. For example, lines, circles, and cubes, have integer dimensions of one, two and 

three respectively. They can also be described, aside from their position, by only one or two 

parameters, such as length or radius, which are a scale of length. However, fractal forms have 

dimension that is a fraction of the integer numbers and falls between classical dimensions as 

illustrated in Figure (2-2) below (Batty & Longley, 1994). For this reason, their dimension is called 

fractal dimension.  Fractal dimension is defined as the ratio between object properties of any 

consecutive scales of measurement, which is constant across varying scales. In fractal geometry, the 

fractal dimension can also be interpreted as the extent to which the form has filled the space 

available to it. In the above examples provided in Figure (2-2), the coastline of Britain has a fractal 

dimension between one and two, which exceeds the dimension of line but has not filled the space as 

Figure&(2)2):&The&dimensional&continuum&of&fractal&form&in&regard&to&dimensions&of&point,&line,&plane,&and&
three&dimensional&forms&in&Euclidean&geometry.&(Retrieved&and&modified&from&(Batty&&&Longley,&1994)) 
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much as a plane. Similarly, the computer-generated model of a tree, as in Figure (2-2), has a fractal 

dimension between two and three and will be close to three the more densely the branches are 

spaced. Fractal dimension is defined and measured differently based on the property that is being 

measured (Mandelbrot, 1990). More discussion on definition of fractal dimension and ways of 

measuring it is provided later in Section 2.3.  

2.2 Fractal Properties  

Fractal objects can be classified in two general categories: mathematical fractals that are 

generated by humans, and natural fractal forms that are observed in real world. The properties of 

fractals are slightly different in each category. I discuss the key fractal properties in the following 

sections.  

2.2.1 Irregularity 

The first and foremost property of fractals is irregularity, known as the opposite of 

smoothness, which refers to properties of broken uneven shapes that cannot be described by 

Euclidean geometry. Both natural and mathematical fractals exhibit irregular patterns at every scale 

of observation. Consequently, fractal dimension has paved the way for scientists to define and 

measure geographic features, urban boundaries, and urban footprints, despite the irregularity of their 

form. In the example of the coastline of Britain provided earlier, the irregularity of the coastline is 

the cause of measurement paradox. More specifically, each segment of the coastline needs to be 

simplified to fit the classic geometric models, such as a line, to be measurable, and thus is highly 

dependent on the scale of measurement. Although irregularity is one of the most ill-defined 

properties in mathematics, there have been some methods developed to define the irregularity of 

fractal shapes, such as perimeter-area dimension. In Section 2.2.1, the Perimeter-Area dimension, as 

an example of these methods is introduced.  
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2.2.2 Self-similarity and scale-invariance  

Fractal objects are self-similar in the way their shape resembles their parts in arbitrary scales. 

Self-similarity may be manifested as being exact, approximate, statistical, or qualitative. Exact self-

similarity, as its name suggests, refers to an object that has identical shapes in any scale. 

Deterministic mathematical fractal structures, such as the well-known Koch snowflake curve 

illustrated in Figure (2-3)-(a), exhibit exact self-similarity in every scale. However, in approximate 

self-similar objects, local patterns resemble global patterns, but are distorted in some ways. This 

property is evident in stochastic mathematical fractals such as Mandelbrot set, and most natural 

fractal structures such as trees or the shape of the coastline of Britain (Falconer, 2013).  

Self-similarity of fractal systems not only describes the spatial structures, but also, can be 

used to define the statistical and qualitative attributes of such systems. For example, statistically self-

similar objects have the same statistical properties such as frequency of components, fluctuation 

 

 

Figure& (2)3):& Self)similarity& in& fractals.& (a):& exact& self)similarity& in& the& Koch& Curve& fractal.& (b):&
approximate& statistical& self)similarity& in& fractal& pattern& of& a& coastline.& The& diagram& shows& a&
simplified&example&of&coastline&shape& in&three&scales&and&show&that&although,& the&exact&shape& is&
not&repeated& in&different& scales,& the&overall&pattern& such&as& the&number&of&bays&and&valleys&are&
approximately&resembled.&(c):&Qualitative&self)similarity&in&fractal&temporal&process&of&&heart&rate&
regulation.& (The& illustrations& are& respectively& adopted& from& Bourke& & (2003);& Annenberg&
Foundation&(2014);&Goldberg&et&al.&(2002).) 

(a) (b) (c) 
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pattern, and number of peaks and valleys across all scales (e.g. Figure (2-3)-(b)) (Falconer, 2013). 

The size distribution of buildings, parcels and roads in a city are also an example of statistical self-

similarity, as will be discussed further later in this chapter. Last, but not least, qualitative self-

similarity is referred to as a non-spatial or non-geometric series that has repeated attributes, such as 

time series (Falconer, 2007).  The fluctuation pattern of human heart rate, for example, is illustrated 

in Figure (2-3)-(c) and shows that the heart-rate variation in 300-minute period resembles the 30-

minute and 3-minute periods (Goldberg, et al., 2002). 

2.2.3 Power-Law Distribution  

  The distribution of elements or segments in a fractal set follows a power law relation, 

implying that the frequency of components of certain size scales by a constant factor as shown 

below:  

! ! = !/!!                                                                (2-1) 

Here, N referes to the number of components of size ε in the system, and α represents the 

scaling exponent. Figure (2-4),  provides an example of the distribution of element sizes of the given 

tree-like fractal structure. The X axis represents the scale size variable, usually provided in bins for 

empirical data, which have not perfectly-sized components. The Y axis represents frequency of 
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Figure&(2)4):&An&example&of&the&power)law&distribution&of&component&sizes&of&a&simple&fractal&structure. 
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components of that size. Informally, a fractal set has many small size components, some mid-range 

values and only a few extremely large values. In a more general sense, a power law distribution states 

that variable Y will decrease hyperbolically with an increased value of X (Cioffi-Revilla, 2003). Thus, 

a power-law relation is generally presented in a log-log graph to show the distribution fit into a linear 

model. The slope of the line defines the scaling factor, which is directly used to derive fractal 

dimension. It is important to note that all fractals follow a power law probability distribution, but 

the reverse side of this statement is not always true. That is, not all systems with power-law 

distributed probability are considered as fractal, because their spatial configuration may not 

necessarily have a hierarchial relationship. In general, power law or scale-free distribution is referd to 

a constant proportional relationship between entities of different sizes. If such scaling property hold 

through topological or spatial relationships in a system, then it is called fractal. The fractal dimension 

is derived from the scaling factor (α), depending on the fractal type and the context that it is studied. 

Hence, a power-law regression analysis provides priliminary evidence of fractal properties of an 

entity, but does not guarantee it (Dauphiné, 2013). The methods of calculating fractal dimension 

based on the power-law are dicussed in the next section. 

2.3 Fractal Dimension Measurement 

The definition of fractal dimension varies significantly in different disciplines depending on 

the type of fractal under study. Consequently, there is no agreement among physicists, 

mathematicians and geographers on a unified method of calculating fractal dimension. In this 

section, I focus on three categories of fractal dimension calculating methods that are common in 

analyzing urban phenomena (Dauphiné, 2013). The classification of these methods is based on the 

type of data that is explored including: black and white maps, landscape images, and frequency series 

of size, value and time. These methods include: box-counting, radial fractal dimension and rank-size 

fractal dimension.  
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2.2.1 Perimeter-Area Fractal Dimension  

One of the very first measurements to describe the irregularity of fractal objects is perimeter-

area fractal dimension (PAF). As such, PAF is calculated as the ratio of the logarithm of perimeter to 

the logarithm of area as in equation (2-2) below: 

! = !!
!!
! !!!!!!!",!!!!!!!! = 2!. !"#$!"#$!!                                                  (2-2) 

Here, !! denotes the perimeter-area fractal dimension, P refers to perimeter, A states the 

area and C is the shape constant (embedded into two-dimension).  So, the higher, the ratio of 

perimeter to area, the more irregular the shape is (Mandelbrot, 1984). Notably, PAF can only be 

used upon physical objects that have defined perimeter and area and so can’t be used to describe a 

fractal system composed of several components.  

2.3.2 Box-counting Fractal Dimension  

Box-counting is the most classic approach to calculate fractal dimension of black-and white 

maps that distinguish buildings from open space in binary form. The basic mechanism used in this 

method is that a mesh of boxes of size ε is traced over the map or image under study. Then, the 

number of boxes that intersect with the black pixels is measured. This process is repeated for 

increasing values of ε, and the numbers of pixels for each tracing are recorded. The data is then 

represented on a graph with the box size measurements on the X-axis, and number of cells counted 

on the Y-axis. In a fractal form, such graph reveals a power-law relation with slope of 

 α!= !! − !!! """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""(2%3)"
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where, !! is the Euclidean dimension of the shape (which equals to 2, in maps and images), and !! 

denotes the box-counting fractal dimension (Batty & Longley, 1994; Thomas I., 2010).  

The box-counting method can also be employed to measure the fractal dimension of 

landscape images. The image is first saved as a gray-scale image, and then, the difference between 

minimum and maximum gray-scale values is calculated for each box. Then, the data are plotted in a 

graph with box sizes in the X-axis and the differences between gray-scales values in each box in the 

Y-axis. In a fractal landscape, the structure of this graph can be estimated with a power law model. 

The fractal dimension derived from this technique is always a measure of the irregularity of the 

object, but the self-similarity needs to be verified in advance (Dauphiné, 2013). 

2.3.3 Radial Fractal Dimension  

Radial fractal dimension is another fractal measurement that deals with maps and images. 

The main application of radial fractal dimension is to examine the fractal pattern in distribution of a 

population around a central point. It has been shown that in a self-similar city with a central growth 

core, the urban density at distance r from the center is: 

Figure&(2)5):&Box)counting&fractal&dimension&of&the&coastline&of&Britain.&(Adopted&from&(Prokofiev,&2013) 
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! ! = !!!!!!!! = !!!!!!                                                (2-4) 

where !!!is the proportionality coefficient,  a refers to the scaling exponent of density distribution, d 

is the Euclidean dimension (which equals to 2 in two-dimensional maps and images), and !! 

denotes the radial fractal dimension of urban form, which should be smaller than the Euclidean 

dimension (Batty & Longley, 1994). Due to the extensive transformation of many cities from 

monocentric to polycentric structures, there have been studies that developed the radial dimension 

methods to encounter fractal patterns of polycentric cities (Chen, 2013a); however, covering these 

methods is beyond the scope of the present study.    

2.3.4 Rank-size Fractal Dimension  

In non-spatial phenomena, that there is no maps or images involved, frequential 

distributions are used to derive fractal dimension. As discussed earlier, the self-similarity or scale-

invariance property in frequential distributions is known as a power-law. Zipf’s laws and Pareto 

distributions, which are examples of power laws, are frequently used for calculating fractal 

dimension (Newman, 2005). The process of preparing data to estimate Zipf’s  or Pareto distribution 

models involves arranging the data in an increasing or decreasing order, which leads to construction 

of a rank-size graph. Depending on whether the X axis represents ranks and the Y axis represents 

the size or vise versa, this graph is regarded as Pareto or Zipf’s law. These two graphs are equavalent 

representations of power laws. Zipf’s law in particular is employed to analyse the fractal dimension 

of descrete values. Zipf’s law first became popular for analysing the distribution of cities by their 

population in the US cities. Both X and Y axes of power law graphs are expressed in logarithmic 

scales, which highlight the linearity of distribution patterns. Thus, to determine the slope coefficient 

the Zipf’s model and Pareto models are stated below in equation (2-5) and (2-6) respectively:  

log!"#$ = log! − ! log !"#$                                          (2-5) 
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log !"#$ = log! − ! log !"#$%&'(                                       (2-6) 

The slope coefficient for Zipf’s law is !, which is equal to 1/!. Zipf’s law requires that this 

coefficient needs to be close to 1. The advantage of rank-size distributions over the simple 

frequency curve is that the shape of the graph is not dependent on the choice of class intervals. The 

scaling coefficient derived from these equations can be used for fractal dimension with confidence 

(Dauphiné, 2013).  

It is important to exercise caution when analyzing empirical distribution data for power-laws. 

The reason is that unlike ideal mathematical fractals, natural fractals do not follow a power-law 

perfectly. This deficit is specifically observed in the head and tail of the distribution graph. Most 

empirical power-laws have bended heads and fat tails. These are hypothesized to be the result of 

growth limits and constraints in the fractal process underneath. For example, in case of the city size 

distribution, settlements smaller than a certain size are not possible or efficient. Also, limited 

resources as well as environmental constraints slow down the growth of cities to their maximum 

theoretically expected size. Thus, only the linear part of the rank-size distribution should be 

estimated as a power-law curve (Dauphiné, 2013).  

For clarification, I calculate the fractal dimension of the branching example provided in 

Figure (2-4). The structure is presented in more detail in Figure (2-6) below including the simplified 

process that lead to formation of such fractal form. In each iteration the form grows based on two 

main functions: first, multiplications of the initial form by n, and second, scaling of the initial 

element size by !. In fractal forms, n and ! remain the same throughout the whole growth process 

and develop self-similar structure.  
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Fractal dimension can be derived from n and !, assuming that the proportion of the two 

parameters remains constant in every scale of measurement. Thus the fractal dimension, Df, is 

calculated as the Equation (2-7) below: 

!! − !! = lim!→! log!(!) !log !                                                 (2-7) 

where Df  refers to fractal dimension and DE denotes the Euclidean dimension (which 

equals to 2 as the form is spreading on a plane). 

Obviously, this approach is only useful when working with an artificial fractal such as the 

fractal tree example above, where all the elements added in each iteration have exactly the same size. 

In natural fractals however, elements of approximately similar size are categorized in a class of size 

!!± ∆ and then, the proportion of all consecutive class sizes are measured. If power law analysis 

shows that the proportion is constant through every scale of measurement, then Equation (2-7) can 

be used to define the fractal dimension of the system.  

Figure&(2)6):&&Example&of&a&simplified&formation&process&of&a&fractal&tree.&t&refers&to&iteration&stage,&so&the&
form& develops& as& t& increases;& N& refers& to& the& number& of& branching& in& the& multiplication& process,& so& in& each&
development&stage&N&times&the&initial&number&of&&elements&is&added;&Scale&refers&to&the ratio of the new element size 
to the size of the initial element). So, in the fractal tree above,  !! − !! = !!"!→! !"#!(!) !!"# !⁄ = ! !"#!! !"#!!⁄ = 

!"#!! !"#!!⁄ = !"#!! !"#$%⁄ = !"#!!" !"#!!"⁄ = !.!". !! = ! − !. !" = !. !" 
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2.4 Fractal Application in Urban Science and Planning 

 

Fractal analysis is used as a prevailing tool for quantifying and measuring urban forms. The 

reason is that city form is mainly characterized by irregularity (as in urban boundaries), self-similarity 

(as in urban growth patterns), and scaling behavior (as in buildings size distributions (Batty & 

Longley, 1994)). In this section, a brief overview of the various applications of fractal theory in 

urban planning and the science of cities is provided. Figure (2-7) indicates a simple map of the 

literatures that are reviewed here based on their application field to help the reader to see the links 

between the applications.   

In general, studies that have employed fractal dimension as a tool to study urban phenomena 

can be classified into three categories: clustering similar urban areas based on their characteristics, 

evaluating and guiding urban design, and modeling cities. Among all different examples of 

subcategories that can be defined for each application field, key examples are selected for review in 

the following sections.  

Figure& (2)7):& Literature& map& on& fractal& applications& in& urban& planning.& This& diagram& shows& and&
example&of&each&type&of&application&that&is&covered&in&this&chapter&and&does&not&represent&all&relevant&
literature.&
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2.4.1 Urban clusters by characteristics 

Advancements in methods and tools to measure fractal dimension of geographic features 

and maps have enabled researchers in urban studies to explore the properties of urban forms from 

new angles (Gil et al., 2012, Chen, 2012; Chen, 2013a,b). The first class of research on the fractal 

properties of cities has focused on black and white maps of cities, where black represents developed 

areas, and white indicates the free and natural surrounding lands. Using the box-counting method, 

the frequency of developed land is measured at different scales and plotted on a logarithmic graph. 

If the log-log graph reveals a linear structure, and the slope of the best-fitted line falls between 1 and 

2, then the city is considered to have a fractal pattern (Batty and Longley, 1994).    

Urban Built-up Density 

This approach has been used as an instrument to describe the physical characteristics of 

cities. For example, in a study of the periphery of Brussels, Thomas et al. (2007) indicate that higher 

fractal dimension is correlated with higher density in urban built-up areas. The results of the study 

imply that for a given urban context, the higher the value of fractal dimension, the denser and more 

homogeneous the built-up area will be. Higher fractal dimension also suggests the existence of larger 

urban mass, and hence, more urbanized urban areas.  

Theoretical expectations imply a strong separation between fractal and density in the other 

direction from the one discussed above. As illustrated in Figure (2-8), areas with the same density 

can have different fractal dimensions. While both figures have the same density (64 black squares), 

the fractal dimension of (a) is more than that of (b). Thus, fractal dimension as an explanatory tool 

for density of the built-up area should be used with caution (Thomas et al., 2008).   
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Figure&(2)8):&Illustration&of&two&figures&with&the&same&density&but&different&
fractal&dimension:&D(a)=1.89,&D(b)=2.0&(Retrieved&from&Thomas&et&al.,&(2008))&&

Development Stage, Housing type, Rent and Income  

Fractal dimension has been proved to be useful to characterize the socio-economic 

properties of urban areas, such as average income and rent value of households. Keersmaecker et al. 

(2003) have studied the city of Brussels to explore whether fractal analysis can be used as a 

meaningful tool to infer intra-urban properties that are commonly used in urban planning and 

geography. For this purpose, the map of the city is divided into 25 equal windows, and for each 

window, the fractal dimension is calculated. Comparing results of all windows, the authors discuss 

that fractal dimension tells us more about the structure than does density.  

They conclude that there is a strong correlation between fractal dimension and the stage of 

the development, dominant housing type, average rent and income value. As such, fractal dimension 

declines with distance from city center, similar to the development stage of cities. This is due to the 

fact that distance plays a key factor in in the internal structure of cities (Anas et al., 1998). As 

competition for shorter distances to city center is higher, cities grow from their center, and thus the 

stage of urbanization declines as distance from CBD increases. This process also influences 

residential location choice and housing type. Anas et al. describe that locations closer to CBD are 

usually filled with apartment buildings, inner suburbs with town houses, and outer suburbs with 



 22 

detached and semi-detached houses. This also explains why the average rent and income value 

increase with fractal dimension.  

Although Keersmaecker et al. (2003) have taken a big step forward toward understanding 

the role of fractal index in distinguishing the urban morphology, caution should be observed, as 

their results are limited to the case of Brussels, which has a specific planning history. So, fractal 

dimension needs to be coupled with an adequate model associated with the historical, economical 

and geographical background of the city. 

Clustering Urban Areas Based on the Fractal Scaling Curve 

Another example of analyzing the fractality of black and white maps of cities is a study by 

Thomas et al. (2010) of 49 cities in Europe based on the fractal dimension of their built-up area. In 

the first step, by comparing the shapes of the scaling curves, they have divided the cities into groups 

of similar shape. In the next step, they have analyzed the cities in each group based on their specific 

urbanization history and planning evolution. The results show that the spatial variation of urban 

texture provides interesting information about their intra-urban characteristics. More specifically, the 

D=1 D=2 
I 

Fractal Dimension Gradient 

 (a): Cregy-Pontoise,  (b): Besancon,  (c): Lille, France 

Figure& (2)9):& The& correlation& between& fractal& dimension& and& urban& form& texture.& The& colored& bar&
represents& fractal& dimension& (D)& value& ranging& from& 1& (linear)& to& 2& (planar)& with& corresponding&
examples&of&cities&with&D&in&that&range.&(Images&retrieved&from&Thomas&et.&al.,&2010)&
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clusters with higher average fractal dimension value (more than 1.7) are mostly the classic densely 

urbanized areas that have an organic structure (Figure (2-9-c)). These areas usually consist of 

dwelling in city centers mixed with few large buildings.  Also, areas with Corbusian style design 

(Figure (2-9-b)), which are described as “tower in the park”, as well as newly planned towns in 

France with free-standing industrial or office buildings in a large area distant from each other cluster 

together based on shape of their scaling curves (Figure (2-9)-a).  

This study clearly shows that there are links between the fractal dimension of urban form 

and the internal characteristics of urbanization history and planning styles. However, the fractal 

measure can only be used as a general indicator of internal urban structure rather than a guide to 

specific information.   

Environmental Condition 

Applications of fractal dimension have also been extended to study of the environmental 

condition of cities. Wang et al. (2011) indicate that fractal dimension may explain the environmental 

condition of a city in terms of balance between built-up and green space. They argue that as larger 

fractal dimension (D) means denser built-up areas and less green open space in urban fabric, it is 

also associated with a deterioration of environmental conditions. Using Lijiang city in China as case 

study, they analyzed fractal dimension using both the box-counting and the area-radius relationship 

methods.  They showed that the areas with the highest fractal dimension are those where the 

percentage of green space is less than 12%. Accordingly, they suggest that further developments 

must stop filling the available spaces between built up areas, but rather, the city should focus on 

improving the quality and quantity of the green spaces in between. 

Limitations in Applications 

Although fractal dimensions have largely facilitated analysis in urban modeling, there exist 

several deficiencies to its application, especially associated with the growth processes. For instance, 
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as a very general indicator, fractal dimension is unable to provide accurate information in terms of 

cities’ morphology. However, in order to be applicable, it needs to be coupled with other tools and 

measures that classify similar scaling curves together, as suggested by Thomas et al. (2010). 

Obviously, further investigation is required to empower fractal analysis for use in urban analysis. 

2.4.2 Fractal Application in Visual Planning and Design 

As fractals are primarily observed in natural objects -such as mountains, trees, snowflakes, 

and crystals- they are visually pleasing to human eyes (Spehar & Taylor, 2013). Therefore, fractal 

algorithms have been widely used to generate digital images that resemble natural features. Examples 

of this type of applications include synthetic natural sceneries with mountains and trees (Batty & 

Longley, 1994). Also, mathematical fractals such as the Mandelbrot Set and the Julia Set are 

considered as aesthetic illustrations (Batty & Longley, 1994).   

The second class of fractal application in urban studies takes the reverse direction of creating 

beautiful images, that is, evaluating digital images. The role of fractal dimension in analyzing digital 

images has long been identified (Ruderman, 1997; Sato et al, 1996; Vudec, 1997; Yang and Purves, 

2003), particularly, in the context of urban design. Cooper et al. (2010) have studied the relationship 

between human perception of beauty in the street vista in Witney, UK and the fractal dimension 

using the box-counting approach. The results of the study reveal that there exists a positive 

relationship between fractal dimension and the quality of the street vistas perceived by people 

walking in those streets.  

Also, in a follow-up study comparing the effect of vegetation and fractal dimension on the 

perception of the visual quality of streets in Taiwan and UK cities, Cooper et al. (2013) show that, 

although both factors have positive effect on respondents’ perception of beauty, the fractal 

dimension shows stronger correlation. They discuss that this correlation is the result of differences 

in scaling between scenes dominated by natural environment vs. those dominated by built features. 
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Thus, fractal dimension can be used to evaluate the visual quality of urban design projects to help 

achieving more attractive and pedestrian-friendly streets.  

2.4.3 Fractal application in urban modeling 

The third class of fractal applications aims to understand how cities grow, evolve and change 

spatially and non-spatially. As fractal geometry is the closest geometry to describe city form, 

scientists have attempted to understand the underlying mechanism that is common in natural and 

built systems that lead to emergent fractal patterns. This investigation has been made possible with 

computer simulations that iterate a function over the scope of time and space. Such urban modeling 

studies can be classified in three categories: statistical models, Cellular Automata (CA) models, and 

Agent-Based models (ABM). The application of fractals and scaling in the first two classes of models 

is more evident. Thus, I focus on reviewing relevant studies developing statistical and cellular 

automata models in the following sections.  

Statistical models  

Statistical models have widely been used to explore the patterns of urban form and dynamics 

in regard to fractal properties. For example, Batty et al. (2008) have studied the internal structure of 

cities by looking in to the size distribution of buildings. More specifically, they have explored how 

geometric properties of buildings scale as they grow in size and also with respect to the distance 

from the city center. In order to build a general context for their studies, they have investigated the 

scaling behavior of world’s 200 highest buildings and compared it to London’s, Tokyo’s and New 

York’s 200 highest buildings. Their analysis reveals a strong scaling relationship consistent in all four 

databases as shown in Figure (2-10) below. On the left, the distribution plot of the world’s most 

populous cities is drawn next to the distribution of world’s highest buildings. The comparison 
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reveals that the slope of the latter is more than the former, which indicates that there is more 

competition between people for urban units than between cities.  

The comparison between distribution plots for cities on the right shows that New York has 

the steepest rank-size relationship and London has the flattest. However, there is log-normality 

evident in New York and Tokyo’s databases, which suggests that more caution is required in 

approximating urban distributions by power-law. As discussed earlier, empirical fractals do not 

follow a power law perfectly due to functional or spatial constraints or measurement methods. For 

example, the way buildings’ height is measured and the urban boundaries are defined affect the 

patterns of the rank-size distribution function to a considerable extent. The above preliminary 

analysis provides the necessary baseline for their main study by confirming the fact that, there is 

strong scaling relationship in geometric properties of buildings.   

In the main part of their study, Batty et al. (2007), explore the scaling properties of London 

buildings based on their Euclidean geometric properties: perimeter, area, height and volume. The 

rank-size distribution graphs of all four databases reveal strong linearity along all scales. This is 

consistent with a power law distribution. Also, the same analysis with respect to nine land use 

Figure&(2)10):&Initial&analysis&of&building&heights&a)&top&200&buildings&by&height&in&the&world&and&London,&and&top&
200&city&populations,&b)&top&building&heights&in&New&York,&Tokyo&and&London&(adopted&from&Batty&et&al.,&(2007)). 
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categories produced the same dramatic power-law patterns in log-log plots. The authors believe that 

the scaling pattern found in London buildings is the best among all other urban aspects such as 

roads and parcels.  

The next step of their analysis of the behavior of each geometric property with respect to 

others indicates that as the buildings grow in size, their shapes change as well. More specifically, the 

area of buildings grows less than perimeter, as expected geometrically with square power of area 

compared to single power of perimeter. They hypothesize that this is due to the fact that as area 

grows, buildings try to maximize their surface area for lighting. This is also the case for the volume 

of the buildings with regard to area.   

Lastly, Batty et al. (2007) have employed two-point correlation function to explore whether 

distribution of building locations in space is fractal. The analysis reveals that among the four 

geometric properties that are studied, only the height of the buildings is distributed in a fractal 

pattern.  

Scaling patterns have also been studied for the distribution of parcels in cities. Fialkowsky 

and Bitner (2008) have investigated the distribution of parcel sizes based on Euclidean area in 33 

different cities in US, Australia and Europe.  They demonstrated that the log-log plots of parcel sizes 

in all of these cities fit a straight line and follow a generic power-law pattern. The behavior of plots 

with changes in radius of the area under study provides a promising method to distinguish the 

urbanization level in each area. They found that the distribution function of parcel sizes in the city 

core has a power law tail with exponent of 2, it follows a log-normal pattern in suburbs and a 

power-law with exponent of 1.1 in rural areas. The methods that are used to determine the exponent 

values are based on first, calculating the slope of the linear model fitted to the log-log plot and 

second, by using the maximum likelihood estimate. The former method is dependent on the binning 

of distribution data, while the later one is free from this uncertainty and is known as the best 
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method of fitting parameters of distribution functions. Notably, both methods have returned very 

similar values for power-law exponents.  

The authors have referred to the existing literature to interpret these observed patterns in 

urban morphology. They suggest that geometric Brownian motion (GBM) can represent the 

governing mechanism for the transformation of rural areas to suburban areas, which give rise to 

lognormal distributions. GBM is a stochastic multiplicative process that accounts for both the split 

and merge of a parcel in rural to suburban transformation. The power law pattern in urban core can 

also be explained by random partitioning of the plane, which is used to model the distribution of 

human settlements in nations (Morgan & O’Sullivan 2009).  Another simple model that can possibly 

explain the regularities is the model by Marsili and Zhang (1998), which includes interacting 

individuals who migrate and aggregate to form human settlements. Their model takes into account 

the tendency of individuals toward larger cities, but also their avoidance from the undesirable 

impacts of aggregation.   

In general Fialkowsky and Bitner (2008) have contributed to finding very similar patterns in 

the distribution of parcel sizes in several cities in US and Australia. All of these cities have similar 

planning and formation history. However, the inclusion of only one old European city, Krakow, in 

the study is not sufficient to conclude that the observed pattern is generic and worldwide. The city 

of Krakow might be an exception to other European cities and does not also represent all medieval 

towns. Thus, I think it is required to extend this study to more cities in Europe and elsewhere with 

various size and planning history to generate confident results.  

Cellular Automata and Fractals 

Since Wolfram (1984) first demonstrated that CA models could generate fractal patterns, 

these models have attracted the attention of urban scientists to simulate natural dynamics of cities. 

Cellular Automata refers to computer simulations that model each land unit as a cell with a value 
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that describes the state of the land. As the model iterates, the state of the cells may change based on 

the transition function that rules the system, which take account the neighborhood relationships.  

This class of models is specifically suitable for modeling land-use dynamics, since locations can be 

explicitly modeled and each cell needs to have only one state at a time. CA models are also favorable 

for modeling neighborhood effect by taking the state of neighboring cells into account for transition 

formula (Batty and Longley, 1994). 

For the first time, CA was used to link theory to empirical realism in urban studies by White 

and Engelen (1993). The authors have modeled the growth of a hypothetical city over 40 iterations 

with four different land use states: vacant, residential, commercial, and industrial. Using very simple 

transition rules and growth rates, they show that the simulated city grows with a realistic spatial 

distribution. In particular, the log-log size-frequency plot of commercial clusters has a linear 

structure, which suggests that the cluster sizes are distributed in a fractal pattern. Their results are in 

agreement with empirical studies on a set of US cities showing that 75% of cities have fractal pattern 

in their cluster-size frequency of commercial land uses. However, the question remains why the 

fractal structure emerges only within relatively limited regions with a specific set of parameters.  

 Since the first step was made by the above study, CA continued to be favored for modeling 

and representing spatial patterns of cities (Chen et al., 2014). For example, it has been shown that 

supplementing CA with agent-level information can result in achieving more realistic urban patterns. 

In the study by van Vliet et al. (2012), the transition rules for cells representing land use are designed 

to change incrementally. As such, instead of changing suddenly from residential to commercial, for 

Figure&(2)11):&Time&series&representing&land&use&distribution&of&a&simulation&for&regular&time&
intervals.&(Retrieved&from&van&Vliet,&et.&al.,&2012)&
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instance, the land first changes from low-density residential to high-density residential and from 

there, to commercial or industrial. The model simulates an urban region with limited number of 

houses and jobs sparsely distributed in a model landscape.  After 1000 time steps, settlement clusters 

emerge in the landscape as demonstrated in Figure (2-12).  

The rank-size distribution of each land-use cluster, represented in the model, fits into a 

power-law distribution model very well. The result is aligned with the expected pattern for a system 

of cities and towns in a region as discussed by Cordoba (2008) and Gabaix (1999).  The authors 

believe that the emerging pattern is the result of two counter-acting forces in the model dynamics: 

the neighborhood effect working as a centripetal force, and the diseconomy of scale and stochastic 

perturbation working as centrifugal forces.  

The subject of both studies explained above is the system of several towns and settlements 

in a region looking at the size distribution of land-use clusters. However, the question remains: why 

does the internal distribution of buildings in a single city follow a fractal pattern and how can we 

model it? Chapter four is dedicated to exploring this gap and developing a hypothetical framework 

that explains why fractal patterns emerge in city scale distributions.   
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Chapter 3:        Kitchener-Waterloo Case Study 

In this chapter, I apply the rank-size fractal dimension calculation method that was discussed 

in Chapter 2 to the urban wards of Kitchener-Waterloo. This case study, although is not directly 

connected to the main contribution of this thesis, provides an insight into the application of fractal 

dimension as a measure of urban form. I selected Kitchener-Waterloo because, as a resident I am 

familiar with the urban context and can explore the connection between the values calculated for 

each urban district to the social, and spatial characteristics with more tangibility. First, I start with a 

small synthetic example and then proceed to the empirical study.  

3.1 Synthetic Landscapes 

For the purpose of demonstrating the method that is used in this chapter, I create a set of 

synthetic landscapes with distinct designs. The design variations are set to reflect the primary 

elements in the evolution of urban form including points of attraction (assumed as generator seed) 

and main transportation lines (assumed as axis). The four landscapes designed for this purpose are 

identical in their overall shape and area as well as the density of occupied space by their elements. 

The same idea is repeated in all four landscapes to fill the space: In each iteration, the largest 

possible circle that can fit in its available space is generated. However, the initial condition varies by 

the number and form of the initial seeds or axis (I interpret the initial seeds as the urban centers and 

the axis as the main transportation routes). Figure (3-1) shows the initial pattern-generator elements 

of each landscape. In landscape A1, the initial element is set to the minimum, one central business 

district with no transportation route. The outcome pattern generated with the idea of filling the 

available space with the largest possible circle is demonstrated in Figure (3-2). In  
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andscape C1, the initial elements are set to represent a polycentric city with four  

Figure&(3)1):&Synthetic&landscapes'&pattern)generator&elements.&

Figure&(3)2):&Synthetic&landscapes&demonstrating&different&outcome&based&on&various&initial&
conditions.&(These&landscapes&are&generated&manually&in&Auto&CAD&using&the(three+tangent(circle(command)&

Bilateral symmetry  

Quadrilateral symmetry  

Monocentric   

Polycentric   
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In landscape C1, the initial elements are set to represent a polycentric city with four 

influential city centers but no transportation route. The same process as in A1 is repeated to fill the 

spaces. A very different pattern is yielded with tighter range of size variable as demonstrated in 

Figure (3-2). 

Landscapes B1 and C2 are intend to represent main transportation routes’ effects on 

generating patterns in urban form2. In B1, the space is divided into two equal regions leading to 

automatic creation of urban centers in both sides of the route. Similarly, in landscape C2, two 

perpendicular transportation routes are modeled. The outcome pattern of this design is 

demonstrated in Figure (3-2)-C2, which is very similar to C1. In both cases, a polycentric pattern is 

generated with four influential cores. However, C1 allows for formation of broader variation of sizes 

compared to C2. More discussion is provided in the next section using distribution graphs for each 

landscape designs.  

Figure (3-3) indicates log-log graphs of the frequency-size distribution for the synthetic 

landscapes. The overall patterns in all of the graphs are linear in a log-log graph, which reveal power 

law regularity. It implies that each of the landscapes has many small-size components, some middle-

size and very few large-size components.  However, as the number of circles in the synthetic 

landscapes is too small, they do not provide sufficient number of input data for a valid regression 

analysis. If it were possible to iterate the synthetic landscape generation process more in an 

unbounded space, it would help to have a more reliable regression analysis.  

                                                
2 This assumption is based on a two-dimensional space such as a city, where the construction 

of a major transportation route such as a boulevard or highway, divides the space into two districts 
that cannot have easy access to each other as before. Such transportation route separates the urban 
development styles and functional connectivity to some extent. 
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 A1 B1 C1 C2 

Fratal Dimension (Df) 1.64 1.81 1.83 1.81 

R2 0.65 0.43 0.31 0.39 

Number of observations 105 72 81 88 

Number of iterations 9 14 15 10 

Table&(3)1):&power&law&properties&of&four&synthetic&landscapes&provided&in&
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Figure&(3)3):&Graphs&representing&log)log&power&distribution&of&element&sizes&in&each&synthetic&landscape.&
X)axis&represents&the&size&of&elements&in&landscape,&while&Y)axis&is&the&number&of&elements&in&that&size.&&
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Table (3-1) contains the regression analysis results for the landscapes. The slope of the 

regression line is the power factor in Equation (2-1), which shows how the frequency of each 

component scales with its size. The power factor equals Df - E, where Df is the fractal dimension and 

E is the Euclidian dimension of area (E=2) (Batty & Longley, 1994).  Therefore, the slope of the 

regression line equals to Df - 2.  In A1 for instance, Df equals to 1.64, which is significantly smaller 

than other landscapes. This can be explained by the lack of variation of size among circles that is 

imposed by the dominance of the large circle taking up the majority of space.  

Landscapes B1 and C2 have the same fractal dimension of 1.81. This result strongly agrees 

with the basic definition of fractal objects regarding self-similarity. Comparing the two landscapes, it 

can be noticed that the same shape is repeated in both. B1 is made up of two similar parts or 

modules, and C2 is made up of four modules that are the same as the modules of B1. Although the 

scale of these modules in B1 is larger than C2, and the modules are positioned differently, the shapes 

of the modules are exactly identical, which explains why both landscapes reveal the same fractal 

dimension. As discussed in Chapter 2, fractal dimension is independent from scale and the unit of 

measurement.  

Landscape C1 has the largest fractal dimension among all, which is equal to 1.83. The 

difference between C1 and C2 is the existence of transportation routes. Although in C2, the 

perpendicular axes have divided the landscape into four equal regions creating four urban centers as 

in C1 (notice that identical components have appeared in the first iteration in C1 and C2), in the 

next iterations the components are strictly ruled by the routes and cannot be distributed as freely in 

the space available to them as in C1.  Therefore, in C1 components are scaled down by a smaller 

exponent, allowing larger number of iterations and broader size variation to take place.  

As demonstrated in Table (3-1), the coefficient of determination (R2) for Df values calculated 

from the regression analysis does not show a good fit. This can be due to two sources of error: first, 
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the number of input data from these experiments is very small as the minimum value of size variable 

is set to 1000. That means I have not shown iteration results that generate circles smaller than the 

1000 unit area. This would not cause a problem in the case of perfect fractal generation. However, 

there exists no intention to form a fractal object in the process of generating the current landscapes. 

The second source of error is due to the way the experiments are designed. For the purpose of 

simplicity in drawing and comparison, the scale and geometry is designed to be as simple as possible. 

This means that all landscapes are drawn in rigid square boundaries of a 1600 to 1600 pixel. Thus, it 

is not expected to see ideal results in spite of these limitations.  

By performing this small-scale experiment, I came to infer that fractal dimension analysis 

using the power law distribution model is a valid method that can distinguish similar spatial patterns. 

Among landscape elements, the more the size varies between two consecutive size scales, the lower 

the fractal dimension is and the less the system fills the space available to it. Also, it can be derived 

from the experiment that spatial constrains like boundaries and transportation lead to smaller fractal 

dimension in general.  

I intend to extend the scope of this experiment in a larger size landscape with more 

iterations to have sufficient number of observations for better regression analysis in my future work. 

In the next section, the method applied in the synthetic landscapes is used to analyze scaling in the 

distribution of Kitchener-Waterloo urban morphology.  

3.2 Kitchener-Waterloo case study 

In this section, I analyze the complexity of Kitchener-Waterloo urban forms in terms of 

fractal dimension of size distributions of physical elements both in aggregate and local scales.  
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3.2.1 Maps and Data 

The morphology of physical urban elements including buildings’ footprints, roads map and 

parcels map of Kitchener and Waterloo cities form the dataset for this analysis. The data is in vector 

format created by the Region of Waterloo for 2009. Although there are more recent data available 

for some data types, for the purpose of maintaining consistency between buildings, roads and parcel 

layers, the data from the same year is selected for all layers. Unreasonably large and small data in 

each layer are removed to avoid artifacts. Examples of these data include shelters, doghouses, 

parking structures, and urban installations.  

There were two main reasons for selecting Kitchener-Waterloo as the case study. First, for 

the interpretation purposes I need to compare the analysis results to the social and historical 

characteristics of each ward. Thus, accessibility to the area and having background knowledge about 

the planning history of the cities plays an important role. Second, Kitchener-Waterloo provides a 

small-scale case study with limited number of urban wards varying from old downtown district to 

Figure&(3)4):&Kitchener)Waterloo&urban&wards&(numbers&
indicating&Neighborhood&codes)&
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new suburban developments. This experiment paves the way for larger-scale studies, which include 

various regions for better calibration.  

Figure (3-4) displays the wards within each city. Waterloo is composed of 9 wards, but only 7 

of them are eligible for the purpose of this research. The two wards that are excluded are barely 

developed and mostly consist of agricultural lands. Kitchener has 13 wards labeled from 10 to 22 as 

listed in Table (3-2). 

NCODE Neighbourhood name 
1 West Waterloo 
2 Lakeshore North/Conservation 
3 Beechwood 
4 Columbia/Lakeshore 
5 Lincoln/Dearborn 
6 Eastbridge/Lexington 
7 Central Waterloo 
8 Westvale 
9 Westmount 
10 Highland West 
11 Forest Heights/Forest Hill/Lakeside 
12 Victoria Hills/Cherry Hill/ KW Hosp 
13 Bridgeport/Breithaupt/Mt Hope 
14 Grand River/Stanely Park/Chicopee 
15 Frederick/Rosemount/Auditorium 
16 Downtown Kitchener and Area 
17 Alpine/Laurentian 
18 Southwest Kitchener 
19 Country Hills 
20 Vanier/Rockway 
21 Doon/Pioneer Park 
22 Hidden Valley/Pioneer Tower 

Table (3-2):  Neighborhood names. NCODEs 1-9 are in Waterloo and NCODs 10-22 are in Kitchener 
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3.2.2 City-scale scaling analysis 

In this section I have analyzed the three layers of data for power law distribution analysis for 

the whole city and for neighborhoods respectively. The purpose of this analysis is to provide a 

primary understanding of the distribution function of elements in each layer. If they exhibit a power 

-law distribution (with R2 greater than 0.95), I will conclude that the distribution has a scaling 

behavior and that the fractal dimension can be calculated. 

Table (3-3) summarizes the results from the regression analysis of roads’ length, parcels’ area 

and buildings’ size distributions in Kitchener and Waterloo extracted from graphs in Figure (3-5, 3-6 

& 3-7). The equations used for this purpose are provided by Batty (1994) as: 

! ! = ! ! ! = !!!!! 

 

  For length distributions where r is the scale, N(r) is the number of elements in scale r, and 

L(r) is the length for scale r. The equation is as follows for area distribution: 

! ! = ! ! ! = !!!!! 

 Figure (3-5) shows the log-log graph of frequency of roads by their length for Kitchener in 

left and Waterloo in right. The results from regression analysis indicate that the power law model 

explains at least 96% of the variations in the roads data in both cities as shown in Table (3-3).  

  

 Roads FD R2 Parcels FD R2 Buildings FD R2 

Waterloo 1.75 0.96 1.49 0.91 2.34 0.97 

Kitchener 1.74 0.98 3.80 0.99 2.51 0.94 

Table&(3)3):&Fractal&dimesnions&for&roads,&parcels,&and&buildings&in&KW&
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Figure&(3)7):&Log)log&graphs&of&building&area&frequency&in&Kitchener&(left)&and&Waterloo&(right)&

Figure&(3)5):&Log)Log&graph&of&road&length&frequency&in&Kitchener&(left)&and&Waterloo&(right)!

Figure&(3)6):&Log)Log&graph&of&parcel&area&frequency&in&Kitchener&(left)&and&Waterloo&(right)&
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The convex behavior of the graph for middle and small ranges can be due to the fact that in 

real world the sizes of roads do not fall below a certain meaningful value. Also, the irregular bends at 

the tails reflect drops in the frequency of very long road and highways, as small regions such as 

Kitchener-Waterloo do not have variety of large-scale components. This analysis reveals the 

imperfect nature of empirical data for small-scale analysis that do not exhibit an ideal frequency for 

large components.  

Unlike roads, the distribution of parcels shown in Figure (3-6) exhibits a concave curve, 

revealing the high frequency of very small and very large parcels compared to middle ranges. In 

Waterloo, the deviation is more significant. This can be due to the concentration of technological 

institutions and huge industrial land uses in the city of Waterloo. The rapid development of 

industrial and institutional uses in Waterloo has limited the natural evolution of the urban fabric, and 

thus a concave curve is observed.   

In Figure (3-7), the frequency of building areas is presented in log-log graphs. The same 

general pattern is evident for buildings as in parcels. Higher-than-expected frequencies of very large 

and very small buildings are manifested particularly in Kitchener. This is due to the fact that 

Kitchener developed earlier than Waterloo, mainly along Victoria Street and King Street, where a 

concentration of factories and industrial uses exist. However, buildings are subject to change and 

evolve easier and faster than parcels. This can explain the considerable difference between parcels 

and buildings graphs for Kitchener.    

3.2.3 Intra-urban Scaling Analysis  

In this section the same analyses as in the previous section have been applied to the 

distribution of roads, parcels and buildings in each neighborhood. In Table (3-4) and (3-5), the 

neighborhoods are represented by their ID codes and names. Three sets of information for each 

neighborhood are reported including: number of observation of roads, parcels, or buildings in that 
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neighborhood, R-squared value showing how well the distribution fits to a power law, and D, the 

fractal dimensions, which are only valid for neighborhoods with a power law distribution. 

Neighborhoods with R-squared of more than 95% are highlighted as dark green in the tables and are 

considered as power law, those with R-squared between 93% and 95% are marked as light green. 

The corresponding neighborhoods are rendered in city maps, with the same color-coding (Figure (3-

8) and (3-9). Further representation of neighborhood distributions is provided in detailed graphs in 

Appendix II.  

&

Table&(3)4):&Fractal&dimension&of&parcels'&size&distribution&in&Kitchener)Waterloo&

 

 

 

NCODE!
D!of!
parcels! R2!

Number!of!
observations!

Neighborhood!names!

1" #0.72" 0.84" 3452" West"Waterloo"
2" #0.60" 0.88" 1137" Lakeshore"North/Conservation"
3" #0.75" 0.94" 2703" Beechwood"
4" #0.11" 0.89" 640" Columbia/Lakeshore"
5" #0.58" 0.94" 2617" Lincoln/Dearborn"
6" #0.81" 0.96" 3361" Eastbridge/Lexington"
7" #0.54" 0.96" 3285" Central"Waterloo"
10" #0.46" 0.81" 2904" Highland West"
11" #0.97" 0.90" 6858" Forest Heights/Forest Hill/Lakeside"
12" #0.77" 0.90" 2908" Victoria Hills/Cherry Hill/ KW Hosp"
13" #0.90" 0.97" 4505" Bridgeport/Breithaupt/Mt Hope"
14" #1.17" 0.93" 9523" Grand River/Stanely Park/Chicopee"
15" #0.82" 0.93" 4654" Frederick/Rosemount/Auditorium"
16" #0.71" 0.92" 4930" Downtown Kitchener and Area"
17" #0.46" 0.91" 2846" Alpine/Laurentian"
18" #0.43" 0.86" 3957" Southwest Kitchener"
19" #0.72" 0.88" 4094" Country Hills"
20" #0.58" 0.86" 2412" Vanier/Rockway"
21" #0.83" 0.89" 4855" Doon/Pioneer Park"
22" #0.30" 0.94" 991" Hidden Valley/Pioneer Tower"
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NCODE!
D!of!
roads! R2!

Number!of!
observations!

Neighborhood!names!

1" #0.5217" 0.90" 291" West"Waterloo"
2" #1.0893" 0.96" 307" Lakeshore"North/Conservation"
3" #1.1346" 0.93" 421" Beechwood"
4" #1.1063" 0.92" 449" Columbia/Lakeshore"
5" #0.5633" 0.91" 382" Lincoln/Dearborn"
6" #0.9743" 0.93" 339" Eastbridge/Lexington"
7" #1.4342" 0.92" 465" Central"Waterloo"
10" #0.5386" 0.95" 170" Highland West"
11" #0.9898" 0.92" 432" Forest Heights/Forest Hill/Lakeside"
12" #0.4679" 0.91" 205" Victoria Hills/Cherry Hill/ KW Hosp"
13" #1.3333" 0.97" 505" Bridgeport/Breithaupt/Mt Hope"
14" #1.4321" 0.97" 847" Grand River/Stanely Park/Chicopee"
15" #1.4127" 0.95" 462" Frederick/Rosemount/Auditorium"
16" #1.2972" 0.90" 637" Downtown Kitchener and Area"
17" #0.7869" 0.98" 213" Alpine/Laurentian"
18" #0.6202" 0.96" 237" Southwest Kitchener"
19" #1.0333" 0.97" 375" Country Hills"
20" #0.9387" 0.91" 228" Vanier/Rockway"
21" #1.2566" 0.98" 436" Doon/Pioneer Park"
22" #0.7058" 0.95" 185" Hidden Valley/Pioneer Tower"

Figure&(3)8):&Neighborhoods&with&power)law&distribution&for&parcels&(left),&roads&(right).&Dark&green&
represents&wards&with&goodness&of&fit&of&higher&than&0.95,&and&light&green&represents&goodness&of&fit&of&
between&0.93&and&0.95&to&the&power&law&model 

Table&(3)5):&&Fractal&dimension&of&roads’&length&distributions&in&Kitchener)Waterloo&
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NCODE!
D!of!

buildings! R2!
Number!of!
observations!

Neighborhood!names!

1" #0.8153" 0.96" 3743" West"Waterloo"
2" #0.5408" 0.91" 2166" Lakeshore"North/Conservation"
3" #0.6571" 0.95" 4080" Beechwood"
4" #0.7206" 0.84" 3766" Columbia/Lakeshore"
5" #0.8216" 0.90" 4695" Lincoln/Dearborn"
6" #0.4781" 0.86" 3441" Eastbridge/Lexington"
7" #0.614" 0.92" 3348" Central"Waterloo"
10" #0.5736" 0.91" 3323" Highland West"
11" #1.0199" 0.90" 7081" Forest Heights/Forest Hill/Lakeside"
12" #0.6346" 0.97" 2990" Victoria Hills/Cherry Hill/ KW Hosp"
13" #0.7786" 0.95" 5042" Bridgeport/Breithaupt/Mt Hope"
14" #0.8447" 0.92" 10981" Grand River/Stanely Park/Chicopee"
15" #0.6716" 0.88" 4926" Frederick/Rosemount/Auditorium"
16" #1.0636" 0.93" 5688" Downtown Kitchener and Area"
17" #0.6303" 0.93" 2899" Alpine/Laurentian"
18" #0.3771" 0.91" 4589" Southwest Kitchener"
19" #0.3226" 0.89" 4847" Country Hills"
20" #0.6338" 0.89" 2498" Vanier/Rockway"
21" #0.9993" 0.96" 5179" Doon/Pioneer Park"
22" #0.2035" 0.87" 1325" Hidden Valley/Pioneer Tower"

Figure&(3)9):&Neighborhoods&with&power)law&distributed&buildings.&Dark&
green&represents&wards&with&goodness&of&fit&of&higher&than&0.95,&and&light&
green&represents&wards&with&goodness&of&fit&between&0.93&and&0.95.&&

Table&(3)6):&&Fractal&dimension&of&buildings'&size&distributions&in&Kitchener)Waterloo&
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Figure&(3)10):&Bridgeport&Neighborhood&in&Kitchener&
with&roads&and&building&footprints&

3.2.4 Discussion and Conclusion 

This chapter provided an empirical study of scaling behavior in city and neighborhood scale. 

The study is conducted in city of Kitchener-Waterloo as a whole and in individual urban wards. The 

analysis looks at how the frequency of buildings, roads and parcels vary across scale. In the city-

scale, Kitchener exhibits a better fit to the power law curve compared to Waterloo, particularly in 

the parcels’ size distribution. This can be due to the longer history of development and larger 

number of data points in Kitchener that helps us to verify the analysis. The best fit to power law is 

for Kitchener parcels’ data, which unlike other layers include enough small size parcels as well as an 

adequate number of large size parcels. However, the fractal dimension of Kitchener buildings is 

higher than expected due to the existence of higher number small-size buildings in Kitchener 

compared to Waterloo.  

For small-scale analysis, 8 out of 13 Kitchener neighborhoods fit a power law distribution 

for their road length with R-squared of at least %95. As shown in Figure (3-8)-right, these are all 

neighborhoods that contain large road segments such as highways. The reason is that the existence 
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of large-scale components (highways in this case) has made a broad enough variety of lengths to 

support scaling behavior.  

For parcel layer analysis as shown in Figure (3-8)-left, the best-fitted neighborhoods are 

mainly concentrated in the northern border of Kitchener and central Waterloo. Best-fitted 

neighborhoods for building area distribution compose an interesting pattern, illustrated in Figure (3-

9); neighborhoods that are close to Kitchener downtown and uptown Waterloo and are located 

along the King Street axis are highlighted. They include mainly the small-scale commercial and 

institutional parcels as well as small to mid-range residential buildings. They also contain few very 

large buildings such as hospitals, university buildings, big box stores and so on. The broad variety of 

sizes in these neighborhoods has made them eligible to have fractal properties.            

Overall, only one neighborhood has survived to be a good fit to the power law distribution 

model through all data layers (buildings, parcels and roads), and that is the ‘Bridgeport 

neighborhood’ in eastern Kitchener with NCODE 13. As demonstrated in Figure (3-10), this 

neighborhood contains very large segments of road belonging to the Conestoga PKWY highway, as 

well as many short length roads in residential areas in its western parts. As for parcels and buildings’ 

footprints, there are very large commercial-use parcels and buildings along Victoria Street and near 

the highway, as well as very small buildings in residential areas. This result shows that fractal 

properties of urban form are associated with mixed-use developments and settlement and 

aggregation history. As such, urban areas with variety of land uses and building sizes that has long 

history of development are more likely to have fractal properties.  

Consequently, fractal analysis of intra-urban forms using power law distribution method 

provides a valuable tool to characterize urban neighborhoods in terms of the variation of the size of 

elements. However, this method needs to be complemented with measurements of spatial allocation 

of urban built up components to be able to estimate a fractal object.  
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 Chapter 4:                  Model Framework  

In Chapter (1), I developed a hypothesis that proposes a theoretical explanation for the similar 

fractal properties in the social and spatial facets of cities. The hypothesis sketches a new description 

for the process of urban growth that includes both social and spatial evolution. The hypothesis 

suggests that the fractal pattern in the urban physical form is originated from the allocation of power 

law- structured social groups, which have in turn emerged from an aggregation process. This chapter 

is dedicated to demonstrate the method that is employed to examine the presented hypothesis.  

4.1 Goal of Modeling  

As a preliminary step in testing my hypothesis, I adopt a theoretical explanatory model. Due to 

the advancement of computer simulations in the past few decades, it is possible to test hypotheses 

with computer models and experiment with several scenarios by changing model   parameters fast 

and flexibly.  I intend to use computer simulation to model the growth of a typical town from a 

single seed in space to a large urban landscape. The goal is to test whether the proposed aggregation 

and allocation process can generate realistic patterns in the outcome landscape that resemble 

fractals. For this purpose, I designed an agent-based model of a city with growing population who 

interact with each other and form groups and buildings, respectively.  The model is composed of 

three main processes including population growth and allocation, aggregation of population into 

groups, and settlement and building allocation as shown in Figure (4-1) below. For each agent, these 

three processes are sequenced interdependently.   
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Figure&(4)1):&Model's&key&elements:&growth&process,&aggregation&process,&and&allocation&process.&

The first process represents the growth of the population based on the growth rate parameter 

and the allocation of newcomers to free lands near city center. The second process accounts for the 

aggregation mechanism in which individuals interact with each other and form groups with various 

size and location. This process forms the demand for the next step, which is allocation of a building 

for the group’s activity. The third process is responsible for supplying the group’s demand with a 

building that has the required size and location. This step takes into account spatial constraints such 

as maintaining the minimum distance to group members and also competition for space. More 

details on the model processes are provided in Section 4.3, the model design.  

4.2 Agent Based Models 

The best way to model such non-equilibrium multi-level, bottom up processes is to employ an 

agent-based model. Agent-Based Models (ABM) are a class of computational models that consists of 

autonomous agents who interact with each other and the environment (Railsback et al. 2012) and are 

widely used to model social and economic systems (Farmer & Foley, 2009). Agents are programmed 

explicitly to represent real people and firms with defined strategies and behaviors in regard to their 

environment. 

There are three main features that made ABM the best choice for this study: ability to model 

complex systems, interaction between simple actors who can move, and emergent macro-scale 
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patterns. The only rules in the model are the micro-scale behaviors of the agents that govern their 

decision-making process and interactions. It is the iteration of these simple rules that leads to the 

emergence of macro scale patterns, either in the distribution or in the configuration of spatial 

elements of the model outcome. The model is complex because the decision of each agent has 

influence on all other agents and the environment. This makes the system path-dependent and 

behaviorally unpredictable (Batty, 2007). Path-dependency refers to the patterns in systems that are 

very sensitive to slight differences the process or initial conditions. It is the result of negative or 

positive feedback in the system and can lead to unpredictable behaviors (Brown et al., 2005). As a 

result, for complex systems, an analytical model that represents the system cannot be solved and its 

solution be analyzed. Thus, an agent-based model is a reasonable tool to experiment with model of 

complex phenomena. 

Another advantage of any computer model of a city is that its parameters can be varied and 

previewed to explore the effect of such changes on the resulting spatial form. In this study, I 

investigate the effect of variations of overall model parameters including network size, 

transportation cost, growth rate, and activity rate of agents on the emergent structure of the model. 

These experiments are discussed in more details in the next sections.  

4.2.1 Netlogo®  

There are several agent-based modeling platforms available with different capabilities and 

limitations. One of the most user-friendly and widespread platforms is Netlogo® (Wilensky, 1999), 

which is employed in this study. Netlogo is an open source multi-agent programmable modeling 

environment that is Java-based. It has spatial representation that enables users to explore spatial 

patterns that emerge from interaction of interdependent agents. The especial feature of Netlogo is 

that it is user-friendly and does not require advanced programming skills. This makes the 
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communication of the model considerably easier than conventional platforms. It provides the ability 

to change parameters on the fly and preview the results in the outcome landscape.  

As Netlogo is cell-based, vector-based representations are not conveniently implemented. 

Therefore, for landscape representation of the model, I used Repast®(North et al. 2013) which is a 

more advanced open source agent-based platform with GIS capabilities. In the first step the model 

is run in Netlogo and the location and size of each building is defined in the landscape. Then, in the 

second step, the resulting landscape is transferred to Repast® and based on a weighted Voronoi 

algorithm, parcel representations are made. For this purpose, Repast® treats the building locations 

as the centers of polygons (parcels) and the building sizes as their weight. The boundaries are then 

drawn such that the area allocated to each polygon is proportional to its weight as follows: 

!! !! = !! !!  ; where, !! is the area of polygon i and !!  is the weight or size of building i. In other 

words, if 0.1% of the total model population use building i, then the area of polygon (parcel) i of the 

Voronoi map will be 0.1% of total settlement area. It is important to note that landscape 

representations in this model are very abstract and do not include transportation, and many other 

urban land-uses.  

4.3 Model design  

The model is designed to describe a process by which a new settlement might develop in a 

previously unsettled landscape. Suppose a central point in a plain landscape is the point of attraction 

for a new settlement. At each time step, which is designed to represents one year in the real-world 

scale, three consecutive phases take place: growth, aggregation, and allocation. In the first phase, a 

set of new agents is introduced to the model based on the population growth rate that is set as a 

parameter at the setup of the model. Each new agent chooses one of the closest empty cells to the 

center and establishes its singleton group. This location serves as its home-based location and affects 

the proximity calculation for mobility in the decision-making process. Initially, each agent only 
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occupies one unit of space, represented by a circle with surface area of one3. In the model landscape, 

each circle represents the footprint of a building containing a group.    

In the next phase of the same time step, all of the agents in the model make a decision whether to 

move to a new group or to stay in their current group. Programming wise, they move sequentially, 

and thus the decision of each agent has an effect on all other agent’s decisions in the time step 

(year). This mechanism is the closest representation of real-world decision-making process. 

However, I will test alternative event-sequencing mechanisms and their effect on the outcome 

pattern of the model in my future research. During each decision-making event, the active agent 

evaluates all of its possible choices based on their size and location. Each agent interacts with agents 

that are located within its vision. So, the possible destination choices are the groups to which the 

neighboring agents belong. The vision, is a parameter set exogenously at the beginning of each 

experiment, and defines the distance to which each agent can see and evaluate the environment. 

This variable along with the home-finding algorithm (in the growth process) are responsible for the 

influence of physical proximity in the evolution of the simulated city.   

The size of each group is simply the number of members inside it. The chance of growth for 

each group depends on two factors: first, the number of members, which defines the size of that 

group; and second, the proximity of the group to other groups. These two endogenous factors, size 

and proximity, comprise the attraction forces in the aggregation process of the model. When an 

active agent wants to pick a new group to move to, among the groups of the agents that are inside 

the vision-radius of the agent, the larger groups have a better chance of being picked compared to 

                                                
3A circle is selected as the shape representing building footprints for two reasons: First, a 

circle is the only uniform geometric shape that has constant distance from center to any point on the 
perimeter. Once a circle grows, the growth distributes uniformly in every direction. Second: the 
composition of circles with various sizes in a limited space can be programmed more easily than any 
other geometric shape.  Two neighboring circles (as close to each other as possible but not 
overlapping) can only have one position that is being tangent. However, the composition is more 
complex for shapes that have multiple sides and edges.  
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smaller groups. Thus, in the first time step, when all the groups have only one member, all of the 

neighboring groups of an agent have the same chance of being picked and grow. In such case, the 

agent picks a group randomly. 

In the general case, the probability of each group to be picked is directly proportional to its size.  

This part of the model is adopted from concept of Preferential Attachment (PA) or “the rich gets 

richer” process, in which a quantity is distributed among individuals based on how much they 

already have (Barabasi & Albert 1999). A combination of PA and growth, which are the two key 

ingredients of the real networks, is modeled by Barabasi and Albert (2002). They show that such 

systems generate scale-invariant properties in the network degree distribution. Their model implies 

that the more connected a node is, the more likely it is to receive new links. This general mechanism, 

with major changes forms the basis of the group formation process of my model. As such, the 

probability of any group to grow by a new member partly depends on how many members it already 

has.  

If Ai,v  is the list of all the groups within radius ! = vision of the active agent i, then the probability 

(Pi, j) of group j from list A being picked by agent i is as follows:  

!!,! = !"#$%!! ∶ !!!,! ≤ ! ,                                            (4-1) 

 !!,! =
!!
!!!

!!!
 

where, di,j  is the Euclidean distance between agent i and group j; and Sj  is the size of group j, 

which is equal to the number of members in this group. Although the distance between the active 

agent and the target group is not explicitly included in the equation above, it is inherited in the 

process, where the agent filters its choices based on distance. In fact, only the groups within certain 

distance can enter the competition to grow –the groups that are listed in list A. This list also includes 

the group in which the agent is already a member. So, in case the agent picks its owns group, it will 
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not move.  If the agent is already a member of a large group, it is very likely that it stays in its current 

group and does not move.  

It is important to note that the model is not deterministic, which means that agents do not 

compare their choices and simply select the largest one. Rather, the model is stochastic, implying 

that agents may pick any of the neighboring groups, but larger groups have a proportionally higher 

chance of being picked. This stochastic characteristic of the decision-making process ensures the 

representiveness of the model and encapsulates the random behavior in the real-world decision-

making and aggregation process. It also matches with the well-known PA concept in small-world 

networks (Barabasi & Albert 1999).  

The third phase, which is the building allocation phase, starts after all of the agents have made 

their moves. In this phase, buildings are updated based on the users’ demands. For example, imagine 

a building contains a group with certain number of users. In the decision making phase, the group 

may have lost few members but received a lot more new members. Obviously, it requires more 

space to accommodate more group activities. So, the containing building needs to grow in size as 

well. In this phase, the building grows in place so that its new area equals to the number of 

members.  

In real world growth process, generally, if the area is packed with neighboring buildings and there 

is not enough room to grow to the desired size, the building retains the floor area and grows in 

height in a way that the volume of the building approximately reflects the number of users. As the 

model landscape in Netlogo is represented in 2D, the volume cannot be represented explicitly.  For 

the purpose of the present model, I exclude the three-dimensional representation of the built 

environment and assume that activities can only take place on the two-dimensional plane. This 

implies that larger buildings necessarily have larger footprints. Inevitably, the current process of 

representing buildings updates in the model may result in slight shifts in building centroids to allow 
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its growth. However, in future versions of the model I plan to apply density representations to 

prevent unrealistic dislocations. The summary of the code structure of the model in Netlogo is 

summarized in the pseudo code block in Figure (4-2). Also, Figure (4-3) illustrates model design and 

event sequencing in a flowchart diagram4.   

                                                
4 The full code document of the model is accessible by request. 
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Figure&(4)2):&Main&pseudo&code&block&of&the&model. 
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4.3.1 Model assumptions 

As I am more interested in generating global patterns in my model rather than representing every 

real-world process specifically, I filter out unnecessary details (that are discussed later) as much as 

possible. I uphold to this strategy through out the whole model construction process in order to 

develop the simplest and most fundamental aggregation model of urban form. Once the basics are 

founded, building details can improve the representativeness of the model further. 

I made several different generalized assumptions in this model. First of all, in real cities 

population clusters in many different ways, allowing for multiple memberships in various types of 

groups. However, in my model individuals can only be involved in one activity group at a time, 

which is meant to represent their most essential association; their employment.  

Figure& (4)3):& Flowchart& summarizing& model& structure.& The& model& consists& of& three& main& processes:&
growth,& aggregation,& and& allocation& that& take& place& sequentially.& In& the& growth& process,& new& agents& are&
introduced&to&the&system&based&on&the&population&growth&parameter,&and&they&find&a&place&near&other&agents&and&
settle&down&in&a&singleton&group.& In&the&aggregation&process,&each&agent&choose&a&group&inside& its&vision&radius&
based& on& the& size& of& the& groups& such& that& larger& groups& have& a& better& chance& of& being& selected& than& smaller&
groups.&The&agent&then&check& if& the&selected&group&is& the&same&as& its&own&group,& if&not,& it&will&move&to&the&new&
group.&Finally,&in&the&allocation&process&the&model&updates&buildings&sizes&based&on&their&new&group&size.&For&this&
purpose,&groups&check& if&the&number&of&their&member&has&been&increased&or&not,& then&they&will&shrink&or&grow&
their&building&accordingly.&�
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The second generalized assumption in this model accounts for activity types. Although in real 

cities the density of population in each building depends on the land use and activity type, in the 

present model no distinction is made between different uses. I assume a standard space of one unit 

area is required for each agent regardless of location and density.   

Third, although in the real world the population growth rate varies over time, I assume a constant 

growth rate throughout model iterations. This growth rate summarizes all reproduction, mortalities, 

and migration in a city. Finally, the same generalization is made for vision value, which is considered 

constant and discrete for every agent throughout the model. This parameter represents the extent to 

which the agent feels comfortable to travel from its home location and affects the number of 

choices that it considers in its decision-making process. In real-word scenario, vision value is 

different for every person, but for simplicity I assume that it stays constant for every agent during 

each model run. In the future extensions of this model, I plan to experiment with heterogonous 

preferences. 

In the next chapter, simulation results and model landscapes are presented and analyses are 

discussed.   
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Chapter 5:                          Results  

This chapter is dedicated to the illustration of the simulation results and outcome landscapes 

from the model that was described in Chapter 4. At first, model parameters and settings are 

demonstrated. Then, a typical model landscape is established and analyzed for a fractal pattern. The 

model is verified and tested against a null hypothesis to show functional correctness. Finally, several 

experiments are performed to define the effect of model parameters on the landscape and resulting 

distributions. The chapter ends with an extensive discussion on the results and analysis.  

5.1 Initial Settings, and Model Schedule 

The model interface consists of a two-dimensional plain landscape, the exogenous parameters, 

rank-size distribution graphs, model monitors, and outputs, as demonstrated in Figure (5-1) below. 

The initial parameters include: initial number of people, initial extent of the city, population growth rate, vision, 

population limit, and number of simulation runs. The initial number of people and initial city extent define 

the setup of the landscape and are set to 50 people in a 14-unit radius from the center of the 

landscape as a default. The base case setup of the landscape is demonstrated in Figure (5-1); white 

buildings are randomly allocated in green landscape.  When the “go” button is hit, new people are 

introduced to the city based on the population growth rate and look for free sites near the city 

center. Then all the agents start to interact with their neighbors in their vision radius and join them 

to make a group. The model is set to stop when the population reaches 20,000 agents, for 

consistency of the results and validity of comparisons.    
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Model Attribute Range Base case value 

Initial number of people 1-100 50 

Population limit 20,000 The model stops when the population 
reaches 20,000 

Population growth rate 0.01 – 0.1 0.08 

Initial city extent 1-20 14 

Vision 0-100 5 

Agent activation  Random Random 

Initial condition  - All agents in singleton groups 

Table&(5)1):&Model&parameter&range&and&'base&case'&values&

 

Figure&(5)1)&:&Model&interface&in&Netlogo®&consisting&of&2D&landscape,&model&parameters,&
distribution&graphs&and&monitors. 
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The scheduling of the model is designed to approximate the real world aggregation process. In 

this way, agents take action one by one, so that the decision of each agent affects the decision of the 

next agents. By the end of each iteration, all the agents including the new ones, which have been 

born or immigrated to the system, and the old ones from last iterations have made a decision 

whether to stay in their group, or to join other groups. Then, all the monitors and graphs are 

updated to reflect the instant changes in the model variables as the time proceeds.  

5.2 Model landscape and result analysis: 

In almost all the model landscapes, a similar overall pattern emerges. In this section I 

demonstrate the outcome landscape of a typical model and provide a fractal analysis exploring the 

research hypothesis. Typically, the model generates power law distributed buildings in the landscape 

with decreasing building sizes from city center. Figure (5-2) shows the outcome landscape of the 

model with the given initial parameters in Netlogo®. The landscape size is set to be large enough in 

order not to impose any boundary effect on the landscape pattern. Each circle in the model 

Initial&settings:&
Initial)n)of)people:&22&

Initial)city)extent:&5&

Pop)growth)rate:&0.1&

Vision:&5&

Final&variables:&
Iterations:&65&

n)of)groups:&858&

n)of)agents:&about&10,000&

&

Size&distribution&&&&
of&groups:&

 

Figure&(5)2):&Model&outcome&landscape&in&Netlogo®.&Each&circle&represents&a&building&
housing&an&activity&group&with&single&floor&height.&Colors&are&random,&but&sizes&are&

proportional&to&the&size&of&the&group&using&the&building.&The&window&size&is&only&visual&
and&does&not&show&the&actual&landscape&boundaries.& 
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represents a building with a certain size that is proportional to the size of the group using it. Once 

the point location of buildings and their size is defined in Netlogo®, the data is then transferred to 

Repast® for parcel subdivisions. With the GIS capabilities of Repast®, parcel representations are 

generated in a Voronoi display. Figure (5-3) displays the parcel subdivisions in the model landscape 

based on the Weighted Voronoi Algorithm described earlier. Building locations serve as the polygon 

centroids and buildings sizes are transferred as weight in the Voronoi diagram.  

Before I move on to analysis, it is important to note that the intention of this section is not 

to look at whether the distribution of groups are consistent with that of buildings, but rather the 

goal is to examine the conformity of the outcome landscape to the real-world patterns. As discussed 

in Chapter 4, the model is designed to reflect the hypothesized process and to examine both 

statistical and spatial patterns of the outcome landscape.  

My first foray into analysis looks at scaling in the size distribution of buildings. Figure (5-4) 

indicates the log-log graph of the rank-size distribution of buildings generated by the model. There is 

very clear scaling in the data with a coefficient of determination (R2) of 0.975 to the power law 

Figure&(5)3):&Voronoi&Illustration&of&Parcel&Distribution&in&Simulated&
City&(created&in&Repast®).&Each&polygon&in&the&landscape&represents&a&
parcel&in&the&simulated&city&with&an&area&that&is&proportional&to&the&

number&of&individuals&using&the&land. 
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model. Table (5-1) summarizes the parameters of the regression analysis. The slope of the power law 

model fitted to the buildings area is 0.769, which is very close to the slope of 0.763 of the area-

distribution of buildings from all land-uses in London, UK (Batty et al., 2007).  

Secondly, I look at the spatial distribution of buildings based on their distance from the center. 

In Figure (5-4), the radial distribution analysis of parcels from Figure (5-3) is presented. In this 

graph, the parcels are classified according to their distance from the center. Then the average area of 

each class is plotted on the Y-axis. I show quite conclusively that the distribution can be 

approximated by rank-size distributions that imply power laws. However, it is important to note that 

the adjustment of the radial distribution to the power law model is less strong compared to the rank-

size graph as can be concluded from the R-squared of only 0.90. This is due to two sets of problems: 

first, as the simulated city is two-dimensional, the buildings grow on the surface with uniform 
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density, and thus the huge area covered by the few central parcels made the graph unconnected; and 

second, the number of observations, which is the distance intervals from city center, is limited. 

The overall pattern of the radial distribution graph agrees with the general observation in cities, 

where the concentration of large institutions and businesses takes place near CBD (Clapp 1980; 

Erickson and Wasylenko 1981; Lee 1982; Ihlanfeldt and Raper 1990; Shukla and Waddell 1991; 

Coffey et al. 1996; Yarish 1998; Wu 1999). There is, however, a major difference between this model 

and the land subdivision process in urban growth. In real-world cities, people compete for the lands 

near the CBD. Once all the land is occupied, further development take place in the form of further 

subdivision of the existing parcels and land-intensification in the third dimension. So, the buildings 

in the CBD do not necessarily have larger areas; but rather have larger volumes (e.g. building area 

times building height). Activities that require large building footprints (such as most industrial uses) 

move to suburbs with larger available parcels. In my model, these two processes (that is relocation 

and intensification processes) are excluded. The building footprints and parcel areas in the model 

landscape represents the building volumes. As demonstrated in Figure (5-3), as the distance to the 

center increases, the size of the parcel decreases. The radial-distribution graph in Figure (5-4) shows 

that this decline follows a power-law structure. The combination of results from the rank-size 

distribution analysis and the radial-distribution analysis confirms that the simulated landscape as a 

whole, exhibits fractal-distributed buildings.   

5.3 Model verification  

Model verification refers to ensuring that the model performs the way it is designed for. In this 

section the processes that are used to verify the model are discussed. First, the code structure and 

results are checked for the following functions through the variable monitors in the model interface: 

• Each agent can only be in one building at any time, so that the sum of building users  
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are equal to the agent population at any time. 

• Building footprints are proportional to the number of users 

• No overlapping is allowed for buildings in the landscape, so the total building footprint is 

equal to the number of agents in the model.  

Secondly, verification of the model is made by repeatedly running the model for the same set of 

parameters for 100 times, and monitoring the precision of results. Figure (5-5) and (5-6) shows the 

result of the regression analysis for all of the tests. The first graph confirms that the slope of the 

fitted line for the power-law model stays stable around the value of D = 1.27. The second graph 

(Figure (5-6)) presents the R-squared values for D values achieved for each test. R-squares are also 

stable throughout the 100 runs and show an average of R2 = 0.97. 
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5.3.1 Null Hypothesis 

In order to verify that the power law pattern that is observed in the simulation landscape is not a 

result of random distribution of variables or artifact of spatial distribution of agents, a null scenario 

is designed and tested. Unlike the model decision-making process, where the probability of each 

neighbor groups, being selected by an agent was proportional to its size, in this scenario, the 

aggregation process is based on the random selection of neighbor groups. All other functions and 

parameters in the model remain the same. Figure (5-7) demonstrates the outcome landscape of the 

null model. The radial and rank-size distributions of the buildings are represented in Figure  (5-8) 

and (5-9) respectively. It is clear that there is no significant correlation between the distance from the 

city center and the size of buildings. Also, the variation of building sizes is considerably limited 

compared to the initial model where the distribution followed a power law pattern with few very 

large buildings; some mid-size buildings and the majority were small size units.  
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Figure&(5)6):&Distribution&of&fractal&dimension&of&verification&tests&(100&run&
with&same&parameter&values),&showing&stable&values&around&D=1.27&for&all&the&tests.& 
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The result shows that the missing mechanisms were responsible for the aggregation of the 

population into larger groups and creating a large variation of group sizes in the city. The results 

highlight the importance of size in the aggregation process in cities, which means that people not 

only like to make groups with each other to live and work more efficiently, but also, they prefer to 

be in larger groups and activities. Furthermore, the preferential attachment mechanism is responsible 

for the radial distribution of buildings where the concentration of population takes place near CBD. 

The primary theories of urban evolution (Clark 1951; Stewart & Warntz 1958; Batty & Kim 1992) 

recognize the transportation cost as the key reason why the population density declines with the 

Figure&(5)7):&Simulated&landscape&from&null&hypothesis&revealing&dispersed&size&distribution.&
Each&circle&represents&a&building&in&containing&a&group.&They&are&color)coded&by&the&number&of&users&so&
that,&the&darker&the&color,&the&larger&the&number&of&users&of&that&building. 
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distance from the city center. The result of this study complements the above theory by explaining 

that the attraction to CBD is the result of the existence of larger activity groups (including 

institutions, businesses, and leisure) and better opportunities in the center; simply because the 

groups in the center have been around and developed for longer period of time. As demonstrated in 

the null model, the transportation cost by itself (represented by vision-radius in the model), creates a 

circular city shape (which is the most efficient shape in regard to distance to a point), but does not 

generate a density gradient. Further elaboration of this argument is discussed in Section 5.5.  
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5.4 Experiments 

5.4.1 Effect of Population Growth Rate on the Model Landscape 

An important component of the model mechanism is the growth dynamic, which implies 

that the number of agents in the model starts from a limited number defined at the setting and 

continues to grow by a defined growth rate as the model iterates. The dynamic property of the 

model is one of the key factors responsible for the emerging fractal pattern in the system. In this 

section I explore the effect of the population growth rate on the fractal dimension of the 

distribution of the buildings in the simulated landscapes. For this purpose, experiments with 10 

variation of the growth rate (0.01 < growth rate (GR) < 0.1) have been conducted. For clarity and 

organization purposes, the results of only five of them are presented here in Figure (5-10).  

Visual evaluation of the graphs shows that the distributions can be regarded as two parts: upper 

graphs consisting of approximately the largest 10 buildings, and lower graph made up of the 

majority of the buildings, which are smaller. The upper graphs of the experiments are more similar 

to each other compared to the lower parts, which suggest that the effect of population growth rate is 

mostly seen toward the tails of the graphs. This can be explained by the definition of the preferential 

Figure&(5)10):&Rank)size&distribution&of&buildings'&size&from&the&tests&of&different&Population&Growth&Rates&(GR) 
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attachment equation (4-1). The growth of the population by each person increases both the 

nominator and the denominator of the equation. However, the increase in the value of the 

denominator is larger than the nominator. That means the attraction force of smaller groups drops 

more significantly by growth of the population compared to larger groups. As a result, there is more 

separation between the tails than the heads.   This also explains why, among the first-rank buildings, 

the largest one belongs to the model with the lowest growth rate, and the smallest belongs to the 

model with the largest growth rate. A higher growth rate implies that in each iteration, the number 

of newcomers (and thus startup groups) to compete with large groups is larger. So, the large group 

will have less chance of growth resulting in lower maximum size in the whole system.  

Table (5-3) summarizes the experiment analysis for the variation of population growth rates. 

It shows that the fractal dimension (D) decreases with an increase in the growth rate. As discussed 

above, this behavior is due to the less competition brought about by the low growth rate, which 

increases the scaling power of size effect. Also, the results indicate that the extent (maximum radius) 

of the simulated city increases significantly with an increase in the growth rate. This increase is 

consistent with the increase in the number of buildings. It can be explained by the fact that a lower 

growth rate increases the chance for the population to aggregate in the older and larger groups, so 

the total number of groups will decrease. In general, this experiment shows that population growth 

works as a disaggregating force in the evolution of a city, which is highly consistent with real-world 

stylized result (e.g. study of urban spatial structure by Anas et al. (1998)) 

Growth!rate 
Number!of!

buildings/groups 
Max!building!size City!extent D R2 

0.01 107 5522 10.05 2.38 
0.97 

0.03 440 2553 16.56 1.81 
0.96 

0.05 806 1742 25 1.46 
0.98 

0.07 1189 2117 29.27 1.32 
0.98 

0.09! 1479" 1572" 32.76" 1.22"
0.96"

Table&(5)3):&Experiment&results&for&variation&of&population&growth&rate.&
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5.4.2 Effect of Vision-Radius on the Model Landscape 

Vision is an exogenous parameter that plays an important role in the model. It works as the 

neighborhood effect in most CA models, and defines the extent to which each agent can see, 

evaluate and move in its environment. Vision is designed to summarize two factors: first, the size of 

the agent’s primary network (dependent on spatial proximity), second, the distance in which the 

agent can move (which is dependent of the transportation cost). In this section I explore the effect 

of the vision value on the spatial distribution on the buildings in the simulated landscapes. For this 

purpose, experiments have been run with four variation of the parameter (ranging from minimum of 

10 and maximum of 70). The rank-size distribution of buildings for all experiment landscape is 

presented here in Figure (5-11). 

The visual representation of the graphs show very similar behavior in all four experiments, 

following a straight line specially in the middle and low ranks. Summaries of the model statistics are 
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Figure&(5)11):&Rank)size&distribution&of&buildings&in&the&experiment&landscapes. 
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provided in Table (5-4). The total population is similar for all experiments, as they has a growth rate 

of 0.1 and have iterated for 60 time steps. Experiment one, with vision-radius of v = 10, has the 

largest number of formed groups at the end of the simulation. This is due to the fact that it takes a 

longer time for new agents with shorter vision to aggregate. As most of new agents arrive at the 

periphery of the city, they require more steps to reach to larger groups that are mainly located in the 

CBD. So, in a given time, short-vision agents can travel shorter distances toward city center and can 

aggregate into smaller groups on average. This results in the larger overall number of groups in the 

landscape.  

 

 

 

 

 

 

The rank-size fractal dimension (D) is calculated for each landscape with very high R-squared 

values as demonstrated in the table.  The results show that the value of D increases with the increase 

in agent’s vision-radius. This effect can be due to the fact that an increase in vision value leads to a 

larger network and more interactions in each decision-making event. It increases the competition 

and chance of growth for a higher number of groups, which leads to larger power coefficient (slope) 

in the power-law model.   

Experiment!
Vision Number!of!

buildings/groups 
Maximum!building!size D R2 

1"
10 5101 2462 

1.09 
0.95 

2"
30 2994 1617 

1.13 
0.96 

3"
50 3203 1493 

1.2 
0.98 

4"
70 4498 1496 

1.13 
0.98 

Table&(5)4):&Fractal&dimension&of&simulated&landscapes&for&vision&experiments&
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According to Table (5-3), experiment 4, which has the largest vision value (v = 70), disobeys 

the trend of increased fractal dimension with increasing vision. In order to explain this behavior, the 

relationship between the values of vision-radius and the radius of the simulated city is outlined in 

Figure (5-12). In all of the experiments, the maximum radius of the simulated city at its largest state 

(t = 60) is approximately 70 units, which equals to the vision-radius of experiment 4. The diagram 

shows one of the most remote agents in the city, who lives in the periphery with 70-unit distance to 

CBD.  This agent represents newcomers in the city who occupy the smallest groups. Increasing 

vision-radius of the displayed agent, from experiment 1 to 4, increases the access domain of the 

agent to the larger number of groups. Exceptionally, experiment 4, is the only scenario that provides 

a domain for the newcomers that includes CBD, where the largest groups are located. In this 

scenario, on one hand, every agent in the city has access to CBD and on the other hand, they are 

reachable by central groups. This creates a more distributed pattern and thus, a slight decrease in the 

fractal dimension of the size-distribution in the landscape. 

Figure&(5)12):&Diagram&showing&the&experiment&vision&value&in&reference&to&CBD. 

Most 
remote 
agent 

CBD 
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V = 30 

V = 10 



 72 

5.5 Discussion  

In this chapter, the outcome patterns of the model landscapes were presented and discussed. 

The model is intended to represent the aggregation process in the evolution of urban form in the 

most abstract way. So, the validation of the model relies on the overall conformity of the size and 

radial distribution patterns of the simulated landscapes to those generally observed in the real cities. 

In chapter 2, I discussed that a power law can approximate the size distribution of buildings in most 

cities. Thus, I use a qualitative validation of the model outcome to patterns of urban form. Also, the 

effects of the model variables such as population growth rate and vision-radius on the landscape 

patterns are tested. The results show that increasing vision-radius has a positive effect on the value 

of the fractal dimension, while the growth rate of the population has a negative effect. These are the 

underlying forces that explain the fractal pattern in the system. The attraction to larger groups inside 

the vision-radius works as an aggregating force, and the space constraint and population growth play 

the segregating forces. The balance between these forces defines the slope of the power-law model 

and consequently, the fractal dimension of the system.  

The preferential attachment mechanism that is built in the model is different from that of 

Barabasi-Albert (BA) model in two main ways. First, in the BA model agents do not join together, 

but rather, they create links to other nodes in the systems. So, even after they connect to someone, 

they continue to exist as an independent node and can be selected by new agents to create links with. 

However, in my model once an agent joins a group, it leaves its previous group and place. Second, in 

the BA model, agents can make a decision only once in their lifetime, and once the decision is made, 

it cannot change; but, in my model, the agents make decision in each time step and update their 

status based on their previous status and the new environment. As power law patterns emerge in the 

aggregate distribution of the buildings in the simulated landscape, we can conclude that the fractality 

of the model is generated primarily from the recursion of the competition process between 
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aggregating and segregating forces. All other mechanism and details (such as frequency of decision-

making, spatial layout algorithm, and group to building allocation process) are secondary.  

One of the key findings of this research is to confirm that “history” plays an important role 

in modeling the urban growth dynamic. When the model starts with few agents representing the first 

settlers in a city and then grow to a desired population, the City Center and the development pattern 

emerge as the effect of the time and the place that has the longest history of interaction. In other 

words, the location of City Center or CBD is path-dependent and does not have an independent 

meaning without the history of the city. As we can see in the model, the transportation cost as the 

distance to CBD is not explicitly modeled. However, the model forms a circular pattern similar to 

that of urban growth models with an inherent function of transportation cost to CBD. This is due to 

the fact that attraction to CBD is a result of long history of the location of CBD in hosting most of 

the interactions and activities. Thus, modeling the attraction to larger groups and activities in the city 

has successfully replaced the traditional method of modeling transportation cost to CBD explicitly.  

As the model is designed to be very abstract, it includes only the fundamental mechanisms 

that are proposed to be involved in generating fractal patterns in urban landscapes. Therefore, the 

model excludes many real-world mechanisms associated with the growth process. For example, 

multiple membership processes are simplified into single memberships that represent the 

employment association of each person. Also, agents are assumed to be homogeneous in their 

preferences of group size, proximity, and frequency of decision-making. Another major 

simplification that is made in this model is in the building allocation process as listed below: 

• Groups occupy buildings that are necessarily proportional to their size (number of 

members). 

• No more than one group can use one building. 

• Buildings have uniform density and can only expand on the 2D plane.  
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• Moving of a group as a whole to a new location is not modeled.  

In order to better represent the real-world urban growth processes, the future extension of 

this model need to include the above components.  

  



 75 

Chapter 6:                          Conclusion  

 

6.1 Study Overview 

Despite all the advancements in the urban science, we still lack a comprehensive 

understanding of how cities work and how various facets of cities are intertwined. In this thesis I 

have narrowed down the scope of this question and looked at the similar patterns in the social and 

spatial properties of cities. Several studies indicate that the urban form patterns reveal fractal 

properties both in the size-distribution of buildings, parcels and roads and also in the spatial 

configuration (White and Engelen 1993; Batty & Longley 1994; Frankhauser 1994). Also, numerous 

studies in the social science suggest that the aggregate distribution of groups, firms, and 

organizations follow a power-law pattern, which is a key characteristic of fractal systems (Axtell 

2001; Zhou et al. 2005; H. Aoyama et al. 2009). According to the similarities in these observations, I 

have hypothesized that the fractal pattern in the urban form emerges as a result of human 

aggregation into activity groups over time. As buildings are the containers of human activity, the 

same overall distribution as in group sizes emerges in building distribution, with some spatial and 

temporal alterations.  

As a starting point in the examination of the proposed hypothesis, I adopted a process-based 

theoretical approach of computer simulation. A computational laboratory provides a virtual 

environment that enables researchers to explore the validity of certain abstract hypothesis 

theoretically. In particular, for processes that take place over a long period of time, where empirical 

exceeds the standard capacity and scope of individual endeavor, computer simulation are of 

particular interest. In the case of my hypothesis, since it suggests a new description for the evolution 

of urban form from human aggregation process, empirical methodologies fall short to fully examine 
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it. For this purpose, I have developed a very abstract agent-based model of a typical town that 

consists of homogeneous agents in a featureless landscape. As the model iterates, the population of 

agents grows and agents start to interact with each other and aggregate into groups of various sizes. 

The groups then start to settle into buildings that are proportional to the number of users in each. 

The simulation results were used to analyze whether the proposed hypothesis generates building 

distributions that are similar to those of real-world urban landscapes.  

Verification and validation tests were performed using a null hypothesis and fractal analysis 

respectively. The results strongly revealed fractal patterns in the size-distribution of buildings in the 

landscape, with a fractal dimension very close to that of London, UK’s buildings as calculated by 

Batty et al. (2007). The landscape also exhibits a radial distribution of building sizes that decreases 

exponentially with distance from city center. This behavior resembles the exponential decline of 

population density in real-world urban areas (Clark 1951, Batty 2007). Experimenting with the 

effects of model parameters, it is inferred quite conclusively that fractal dimension increases with 

increasing vision-radius and decreasing population growth rate. Also, the model strongly suggests 

that including two components of history and vision-radius in urban growth process can 

convincingly replace traditional transportation cost models to city center. In fact, the emerging radial 

pattern of the size-distribution of buildings, with larger sizes in the center and smaller size in the 

periphery, is the result of path dependent history of the model from interactions of agents near city 

center and their tendency to locate near already developed areas.  

6.2 Future Direction  

As the model is designed to be very abstract, to be able to show the result of the proposed 

hypothesis in isolation, several real-world processes that contribute in the evolution of urban form 

are excluded. These processes include: three-dimensional density, planning interventions (in both 

large and small scale), intra-urban network connectivity and employment mobility, group break 
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down and convergence, agent diversity of preferences, and multiple factors in the group formation 

process. The future expansion of this research needs to examine the aggregate effect of the excluded 

factors on the overall pattern of the simulated landscape. However, it is important to note that any 

computer models of urban dynamics are subject to abstraction and exclusion of some unknown 

factors. Thus, it is recommended that future studies support the model by conducting an empirical 

examination of the correlation between the aggregate pattern of group size distributions and the 

building size distributions in cities. This will shed light on the usefulness and accuracy of the model 

proposed in this research.  

Currently, I am working on improving the model to include density and display the model 

output in three-dimensional space to better represent the radial density gradient in cities. Also, for 

my PhD program, I have proposed to establish the fractal approach as a new method in urban 

studies to infer the quantity and structure of socio-economic interactions by reading patterns of 

buildings datasets. In particular, I am aiming to study the interactions that lead to agglomeration of 

individuals in space in forms of socio-economic activities, which in turn influence the individual 

location choices. I intend to use fractal dimension as a measurement to compare the distribution of 

social and spatial structures in cities. I hypothesize that the size distribution of groups, firms and 

institutions in the city indicates the rate and scope of human interactions that have led to the 

formation of groups. My approach to find the correspondence between social and spatial structures 

is to compare the distribution of buildings to the distribution of socio-economic groups. The 

originality of this approach can pave the way for future studies to use complex measurements to 

infer socio-economic profile of cities from spatial patterns. 

6.3 Planning and Policy Implications 

The development of this research project leads to the establishment of a novel theory that 

unifies the divergent views on the evolution of cities in different disciplines to one that centers on 
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the interconnectedness of people in cities.  The theory provides further support to the writings of 

pioneer advocates of planning for people such as Patrick Geddes (1949) and Jane Jacobs (1961), 

who value people as the main player in urban dynamics and believe that any planning interventions 

should be a response to the needs of citizens. This theory adds to their notion that, the different 

physical structures in urban form can be the reflection of different social structures. More 

specifically, the aggregation and segregation forces in social agglomeration process play significant 

roles in the formation of the built environment. The findings of this research encourage urban 

planners to identify the social side of aggregation and segregation forces to better plan for long-term 

changes in the built environment. For instance, in order to achieve higher fractal dimension in the 

landscape, which is correlated with intensification, planning and policy can harness the aggregation 

forces in urban dynamics including socio-economic collaboration, social capital and human 

connectivity, and employment mobility. This method will also assist to designing policies that 

encourage involvement of people in local groups and activities and improve ties to physical places in 

the city. It also supports designing mixed uses and variety of sizes to facilitate interaction of activities 

and formation of socio-economic groups. Using this bottom-up approach helps urban planning to 

achieve intensified landscapes in the long run. 

By recognizing the linkages between socio-economic structures and their effect on urban 

form, the results of this study will further accelerate the development of simulation models that aim 

at projecting urban phenomena (Batty, 2005; Benenson and Torrens, 2004; Huang et al., 2014). It 

will also help planners to project urban growth distributions with more accuracy and confidence.  
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Fractal 
Dimension Index 

Definition  Credit Applicable 
to  

Drawbacks Calculation  Illustration 

Fractal 
Dimension (D), 
(FRACT) 

fractal dimension 
indicates the extent to 
which the fractal object 
fills the Euclidean 
dimension 

Mandelbrot 
(1977, 1982) 

Single patches   
 
natural planar 
shapes 

-Only for single 
patches 
 
-dependent 
upon patch/cell 
size and/or the 
units 

log P = 1/2D*log A 
(P =perimeter, A = 
area) 
 

 
Mean Shape 
Index (MSI)  

perimeter-to-area ratio 
(PARA). 

Godron (1986)  varies with the 
size of the patch 
(improved by 
Shape index, 
Patton-1975) 

ED=E/A (E=total 
edge; A=total area) 

 
Mean patch 
fractal (MPFD) 

 FRAGSTATS     

Double log 
fractal dimension 
(DLFD) 

 FRAGSTATS     
 
 
 
 

perimeter-area 
fractal dimension 
(PAFRAC) 

describes how 
patch perimeter 
increases per unit 
increase in patch 
area 

FRAGSTATS  Not for small 
size samples 
(relies on 
regression 
method) 

A = k P2/D, where 
k is a constant 
(Burrough 1986) 

 
 
 

Appendix 1: Fractal Metrics 
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Area Weighted 
Mean Patch 
Fractal 
Dimension 
(AWMPFD) 

weighting patches 
according to their 
size 

(Krummel, 
1987) 

Class and 
landscape 
level 

   

medial axis 
transformation 
(MAT) 

derived from a 
depth map of the 
patch, where each 
pixel value 
represents the 
distance (in pixels) 
to the nearest edge 

(Gustafson 
and Parker 
1992) 

Coupled with 
linearity index 
(LINEAR) 

   

Related 
circumscribing 
circle (CIRCLE) 

uses smallest 
circumscribing 
circle instead of the 
smallest 
circumscribing 
square 

FRAGSTAT Simpler to 
implement  
 
Applicable for 
vector data 

   

Deterministic 
Leapfrogging 
Fractality 

fractal that is a 
result of growth 
process by 
leapfrogging 
at several scales 

(Benguigui, 
2004)  

Applicable for 
vector data 

 D= Ln[(b/c)2+ 
n]/Ln(1/c) 
 
D is the fractal 
dimension of the 
deterministic 
fractal and it has 
the typical 
fractal relation 
N(lk)= lk-D 
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Appendix 2: Size-Distribution of Urban Form in Kitchener-
Waterloo  
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