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Abstract

3-D ultrasound imaging offers unique opportunities in the field of non-destructive test-
ing that cannot be easily found in A-mode and B-mode images. To acquire a 3-D ultrasound
image without a mechanically moving transducer, a 2-D array can be used. The row col-
umn technique is preferred over a fully addressed 2-D array as it requires a significantly
lower number of interconnections. Recent advances in 3-D row-column ultrasound imaging
systems were largely focused on sensor design. However, these imaging systems face three
intrinsic challenges which cannot be addressed by improving sensor design alone: speckle
noise, sparsity of data in the imaged volume, and the spatially dependant point spread
function of the imaging system. There is no characterization model that describes these
intrinsic challenges.

In this research, we will propose a characterization framework for ultrasound imaging
systems that are based on the row column method. The proposed framework will include
a joint statistical image formation and noise modeling and characterization as well as a
characterization of the system’s beam profile using a spatially-variant point spread function.

Our proposed framework has many potential applications including building a more
adequate image reconstruction model, providing a better metric for comparison of dif-
ferent row column systems, allowing for a better optimization of a row column system’s
performance, and giving us a better understanding of images acquired from row column
systems.
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Chapter 1

Introduction

1.1 Motivation

This section will detail the motivation behind this thesis. First we will show the value of
three dimensional ultrasound imaging in different applications, and then we will discuss
why the row-column method is ideal for three dimensional ultrasound imaging.

1.1.1 Three Dimensional Ultrasound

Ultrasound imaging is a valuable tool in non-destructive testing (NDT), with applications
ranging from detection of material defects to object and foreign body detection. Three
dimensional ultrasound imaging offers the possibility of accurately generating certain ma-
terial properties that could be useful to material scientists [27]. Three dimensional ultra-
sound imaging could also be useful in medical imaging: to image the same slice in two
dimensions for the purpose of follow up studies is difficult, and viewing of anatomy using
a two dimensional imaging device requires a great deal of skill and experience [29].

When designing three dimensional ultrasound imaging systems, electronic beam-steering
with a fixed transducer is preferred over a mechanically moving one, as mechanical motion
introduces unwanted artifacts and increases image acquisition time [22]. A mechanically
fixed two dimensional array of transducers is capable of acquiring a three dimensional ul-
trasound image [29]. However, in a fully addressed two dimensional array, the total number
of elements scales with the square of the number of elements in each dimension [22]. This
leads to an impractical number of interconnections (since every individual element needs to



be addressed) and significant amount of data to handle, posing a challenge both in terms
of real time data processing and the actual fabrication of connections.

1.1.2 Row-Column Method

In this method, a pair of orthogonally positioned one dimensional arrays of rows and
columns, where one is responsible for transmit beamforming and the other for receive
beamforming, is used. Just like the fully addressed two dimensional array, this method
does not require mechanical motion. However, the number of connection is significantly
less when compared to the fully addressed array.

Since row-column only focuses in azimuth for transmit and elevation for receive, beam-
forming relies on natural focusing for elevation during transmit and azimuth during receive
[29]. Therefore, the focusing power for row-column beamforming scheme is limited. Pres-
sure near the transducer significantly varies as sound emitted from different parts of the
transducer interferes constructively and destructively. The variation in pressure decreases
as sound travels away from the transducer, creating a varying beam profile that changes
the response of the imaging system with depth. This varying beam profile poses a chal-
lenge when it comes to image reconstruction, as it will require incorporating a spatially
dependant point spread function into the reconstruction framework.

Three dimensional reconstruction of ultrasound images poses some other interesting
challenges. Real-time three dimensional imaging requires finite transmit events, meaning
that the readings of the scanner are inherently sparse; what needs to be done is recover the
full three dimensional image of the target object from incomplete data. Another challenge
is the nature of speckle noise that is inherent to ultrasound images, and how it should be
modeled. While the issue of sparsity and noise have been addressed in the literature [10, 18],
the problem with spatially dependant point spread function for row-column ultrasound
imaging has not been fully explored.

Having a characterization framework for these challenges (data sparsity, speckle noise,
and spatially dependant point spread function) can be very helpful for the row-column
method. This framework can provide a strong basis for a powerful compensated recon-
struction model for three dimensional ultrasound imaging systems that use the row-column
method, give us a more accurate metric for comparison of different row-column ultrasound
imaging systems, allow of better optimization of row-column ultrasound imaging systems,
and give us a better understanding of the images we get from row-column ultrasound
imaging systems.



1.2 Thesis Contributions

The ultimate goal of this thesis is to provide a mathematical characterization framework
specifically for row-column imaging systems. By understanding how an image from a row-
column system is formed, studying the speckle noise, and studying the varying beam profile
of row-column systems, we hope to create a strong characterization framework to be later
used as the basis of a three dimensional row-column image reconstruction model as well
as to be used to build an evaluation method for the comparison of different systems. Such
a framework would also help with the optimization of the imaging system’s performance,
and would help us better understand the images produced. The thesis contributions are:

e We will formulate a mathematical expression of how an image is formed in a row-
column system. This will help with the understanding of the sparsity of data in a
three dimensional ultrasound image.

e We will find the optimal noise model for ultrasound speckle noise from data acquired
with row-column systems.

e We will formulate a mathematical expression of the row-column’s varying beam pro-
file and use it as a basis for estimating the point spread function (PSF) of the row-
column system.

1.3 Thesis Outline

e Chapter 2: discusses background information on ultrasound imaging with a focus on
the row-column system. It will contain a brief history of ultrasound, a mathematical
formulation of the physical properties of ultrasound, and a brief overview of the
row-column sysstem.

e Chapter 3: provides mathematical formulation of how an image is formed as well as
a mathematical formulation of speckle noise in ultrasound

e Chapter 4: discusses characterization of row-column beam profile

e Chapter 5: concludes this thesis by providing a summary of what was discussed and
give suggestions for future work



Chapter 2

Background

This chapter provides fundamental information on the row-column imaging system. First
we give a brief overview of the history of ultrasound, next we discuss the main physical
properties of ultrasound: acoustic wave propagation and wave attenuation. Finally, we
discuss the generation and reception of ultrasound waves from one dimensional arrays to
the full row-column addressing scheme, which will be the focus of this thesis.

2.1 History of Ultrasound

The science of sound dates as far back as the 6th century BC when Pythagoras wrote
mathematical properties of stringed instruments. The use of sound as a diagnostic tool
was first foreseen by English scientist Robert Hooke (most notably know for the theory of
elasticity) when he wrote [29]:

“It may be possible to discover the motions of the internal parts of bodies,
whether animal, vegetable, or mineral, by the sound they make; that one may
discover the works performed in the several offices and shops of a man’s body,
and thereby (sic) discover what instrument or engine is out of order, what
works are going on at several times, and lie still at others, and the like. I could
proceed further, but methinks I can hardly forbear to blush when I consider
how the most part of men will look upon this: but, yet again, I have this
encouragement, not to think all these things utterly impossible”



However, the first attempt at a technological application of ultrasound was inspired by
the Titanic tragedy. In 1913, one month after the Titanic hit the iceberg, British scientist L.
F. Richardson filed patents to use underwater echo-ranging to detect icebergs. Ultrasound
imaging has since evolved to be used in applications ranging from detection of material
defects and foreign body detection in non destructive testing to medical diagnostics.

All ultrasound imaging systems follow the same basic principle: a sound pulse is gen-
erated by a transducer, this sound pulse is transmitted into a medium which contains an
object of interest, at those different boundaries echoes will be reflected, and these reflected
echos will be received by a transducer to form an ultrasound image.

2.2 Physical Properties of Ultrasound

2.2.1 Acoustic Wave Propagation

Just like all sound waves, an ultrasound wave propagates in a similar manner to a wave
of mechanical vibrations. Pressure disturbances created from the ultrasound source cause
local oscillatory movements from one group of atoms to the next along the direction of the
wave’s travel. Although wave propagation for ultrasound falls under one of three types:
plane, spherical, or cylindrical (shown in Figure 2.1), the shape of the wave will generally
change in more complicated ways. However, to be able to characterize ultrasound systems,
we must write down mathematical equations for such propagations.

Wave Equations for Fluids and Solids

Fluid waves are longitudinal in nature: one that travels along its propagation direction
while making the particles move back and forth in a sinusoidal motion. If we can define u
as the displacement of particles from their equilibrium state at particle velocity v as the
wave passes through the medium, and if we define p as the local pressure disturbances
resulting from the passage of such waves, we can come up with a set of equations that
characterize wave motion in fluids.

In an ideal fluid, one that has no or negligible viscosity, particle velocity v can be
expressed in terms of displacement as:

_Gu

=& (2.1)
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(a) Plane Wave (b) Spherical Wave (¢) Cylindrical Wave

Figure 2.1: Possible types of ultrasound wave propagation [29]

For convenience, we define a velocity potential ¢, and equation 2.1 can be rewritten as:

v=Vg¢ (2.2)
Pressure can then be defined as:
0¢
= —p— 2.3
p P ot (2.3)

where p is the density of the fluid at rest. If we set the direction of the wave along the
z axis, the equation (in Cartesian coordinates) that governs one dimensional wave travel
can be written as:

?¢ 1 0%

T _ 7 2.4

022 2 ot? (24)
where ¢y, is the longitudinal speed of sound, which is defined by the fluid’s specific heat -,
density pg, and isothermal bulk modulus By following the equation:

vBr

- (2.5)
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One interesting property to take into account is the specific characteristic impedance
(sometimes referred to as the specific acoustic impedance) often denoted by Z, and is
defined as the ratio of a forward travelling pressure wave to the particle velocity of the
fluid:

ZL = £ = pPoCL (26)
vr

The plane wave equation (2.4) can be generalized to three dimensions through intro-
ducing the notation ¢y as:

1
V3¢ — g@t =0 (2.7)
where ¢;; simply:
0?¢
Pre = ) (2.8)

Following this, the spherical wave equation can be expressed as:

2 1
(brr + ;(br - §¢tt =0 (29)

and the cylindrical wave equation can be expressed as:

1 1
(brr + _¢r - _2¢tt =0 (210)
r c
where r is the radial distance.

The general solution to the plane wave equation (2.4) is given by:

é(z,1) = g(t — é) ot + é) (2.11)

where ¢ is the term representing waves that are traveling along the positive z axis, and h
represents waves traveling along the negative z axis.

The general solution to the spherical wave equation (2.9) is given by:

oz 1) = gt — =) N h(t+ Z)

. " (2.12)




For the cylindrical wave equation (2.10) the only estimated solution is available is for
large distances r, given by:

gt —=) ht+ =
( L) + ( L) (2.13)
VT VT
Although fluids only support longitudinal waves, solids are capable of supporting shear
waves as well as longitudinal ones. However, for the majority of applications that use
ultrasound, longitudinal waves are of the main interest.

o(z,t) ~

As far as mathematical formulation goes for longitudinal waves in solids, stress replaces
pressure in the equations (2.1) through (2.4), and the basic relationships are the same.

One Dimensional Wave Reflection off Boundries

Since most objects have rough boundaries and not ideal plain ones, the pattern of reflected
waves from most objects is very complex. Most of these waves do not return to the
receiver, the detected “back-scatter” is simply a fraction of the total information present
in the ultrasound field.

To formulate some kind of relationship between the transmitted and reflected compo-
nent of the wave, we will consider an ideal medium with an acoustic impedance Z; that a
plane wave is propagating through and it bounces of an ideal plain boundary of an acoustic
impedance of Z,. The pressure at the boundary can be formulated in a manner analogous
to a voltage drop across Zs:

p2 = po(l + RF) (2.14)

where pg is the pressure of the transmitted wave, and RF is the reflection coefficient: a
factor that describes how much of the pressure wave is reflected by the impedance difference.

The particle velocity can be expressed in a similar way to the sum of currents flowing
in a transmission line in the opposite direction:

(1—RF)po

7 (2.15)

Vo =

The acoustic impedance (measured in Rayls) can be found using equation 2.6:



7 = 2.16
2 (%) 1 - RF ( )
Rewriting equation 2.16, we can find an expression for RF:
Zy — 74
RF = —/——~ 2.17
Zy+ 74 ( )

2.2.2 Attenuation

Ultrasound waves encounter losses as they propagate through real media. Pressure waves
lose energy to the surrounding medium just as forces encounter friction, which often results
in local heating. These losses are referred to as “attenuations” and are most commonly
formulated using exponential expressions with distance. For an ultrasound wave with
center frequency f., its amplitude as a function of distance and time can be expressed as:

A(z,t) = Agexp (i(2m fot — kz)) exp (— az) (2.18)

where « is the attenuation coefficient, usually expressed in nepers per centimeter, and £ is
the wavenumber.

Time Gain Compensation

Imaging systems incorporate a method called Time Gain Compensation to account for the
affects energy loss in media. By knowing the penetration depth of the imaging system
beforehand, the depth dimension of the image can be divided into strips connected to
separate amplifier stages. These amplifiers are adjusted to boost amplitude with depth in
an effort to counteract the affects of attenuation.

2.3 Ultrasound Wave Generation and Reception

2.3.1 Transducers

The transducer is the part of the ultrasound imaging system responsible for the transmis-
sion and reception of ultrasound waves. Although the majority of commercially available
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Figure 2.2: The simplest form of a piezoelectric transducer. V is the applied voltage
impulse, d is the thickness of the transducer, A is the cross sectional area of the transducer.

[29]

systems use piezoelectric transducers, an emerging generation of transducers called capaci-
tive micromachined ultrasonic transducers (CMUTSs) has shown great potential that could
replace them. Both piezoelectric transducers and CMUTs will be discussed.

Piezoelectric transducers

Piezoelectric crystals are materials that exhibit a strain when placed under an electric
potential. When a voltage pulse is applied across a piezoelectric crystal, a wave pressure
will be released into the surrounding medium as a result of the crystal’s contraction and
expansion. This crystals will also output a voltage potential when it experiences strain
from an incoming wave pressure, which can then be amplified and measured.

Figure 2.2 shows the simplest piezoelectric transducer. It consists of a piezoelectric
crystal with electrodes at the top and bottom. The transducer has a thickness d and
across section A, both of which govern the clamped capacitance according to the equation:

Co=e" (2.19)

WIS

where € is the clamped dielectric constant.

When a voltage impulse V' is applied across the transducer’s electrodes, the force at
the top and bottom of the transducer generated by the piezoelectric effect is given by:

10



F(t) = (%COV) — () +0(t — Cgl) (2.20)

where ¢ is the piezoelectric constant.

The transducer’s fundamental resonant frequency is dependant on the thickness:

C

= — 2.21
fo= (2.21)
where ¢ is the speed of sound between the two electrodes, given by:
OD
c=4— (2.22)
p

where C'P is the elastic stiffness constant.

When operating at a frequency near to a piezoelectric material’s resonant frequency,
these materials are capable of generating an ultrasound wave with a relatively large ampli-
tude power. Since the thickness of the piezo layer determines its resonance frequency (equation
2.21), a piezoelectric transducer must be chosen with care to work at the desired frequency,
this limits the operation of that transducer at range close to that frequency.

One of the drawbacks of using piezoelectric materials as transducers is their high acous-
tic impedance when compared to that of the medium. Most transducers have an acoustic
impedance of around 30 MRayl, while water and air have an acoustic impedance of 1.5
and 400 MRayl. Another drawback stems from the relationship between frequency and el-
ement pitch in phased arrays, where there is a tight tolerance when high frequency element
arrays (both one and two dimensional) are fabricated. The necessary cuts that must to
be made to each individual element (particularly in two dimensional ones) greatly reduce

the active area of the element. These drawbacks were the some of the main motivations
behind CMUTs.

Capacitive Micromachined Ultrasonic Transducers
The idea of generating and receiving sound through electrostatic means was first demon-

strated by Edison Dolbear in the late 19th century. Electrostatic based ultrasound trans-
ducers, termed CMUTs, have generated great interest in the mid 1990s.

11



Top Electrode

Vacuum

Bottom Electrode

Figure 2.3: A schematic of the cross section of a simple CMUT cell.

The basic CMUT unit (often referred to as “cell”) is shown in Figure 2.3. It consists
of a thin membrane suspended over a shallow cavity, with a patterned electrode on its top
and a fixed electrode at the bottom.

CMUT’s actuation is quite similar to that of its piezoelectric counter part. When a
voltage pulse is applied, the membrane vibrates as electrostatic forces begin to be released.
Some of the energy escapes into the surrounding media as pressure waves. Conversely, when
an incoming pressure wave hits the membrane and causes it to vibrate, the capacitance
of the cell will change which induces a current. This can be understood through the
relationship:

q
= L 2.2
c=2 (2.23)

where C', ¢ and V' are the capacitance, charge and voltage respectively.

However, one difference between the actuation of CMUTSs and piezoelectric transducers
is that CMUTs need a DC bias across the capacitor, both at transmit and receive. Because
of this DC bias, the potential is fixed.

The main advantage CMUTSs have over piezoelectric transducers is the way they are
fabricated. With currently available microfabrication techniques, it is possible to achieve
sub-micron feature sizes. Defining accurate element layout and repeatedly manufacture
arrays with those elements is made very easy. This is particularly ideal for high frequency
two dimensional arrays as element size needs to be small (CMUTSs piezoelectric coun-
terpart relies on the conventional dice-and-fill, which makes reliable layout definitions of
elements very challenging). Parallel processing techniques for semiconductor fabrication
enable the production of thousands of devices simultaneously, which greatly reduces the
cost of fabrication.

12



Beam axis

»Z

Elevation

Figure 2.4: A series of elements arranged across the z-axis to form a one dimensional array.

Another advantage CMUTs have is the ease with which CMUTs can be integrated
into electronic circuitry of the imaging system as compared to piezoelectric transducers,
particularly when size and electrical optimization is critical to the application (endoscope
and catheter based imaging, for example). A third advantage is the high depth resolution
CMUTSs have due to their broader bandwidth. [15]

Arrays are a combination of many small transducers that are excited to steer and focus
an ultrasound beam at a certain point. This is achieved by controlling the signal delay and
weight of each element to electronically focus beams at the desired depths.

2.3.2 One Dimensional Arrays

Figure 2.4 shows an example of a one dimensional array. It consists of a series of elements
(typically between 32 to 300 elements), arranged across the z axis. In this particular
example, the array is capable of electronic beam steering the the xz plane (often referred
to as the azimuth). An acoustic lense helps maintain a certain focal length in the yz
plane (often referred to as the elevation). The z axis is referred to as the nominal beam
axis. Through beam steering as well as focusing with this one dimensional array, a two
dimensional scan of the xz plane is possible.

13



Variable time delays Arra/y:element

B[a]nfa]na[n]}

! ‘l\\
shifted transmit pulses

Figure 2.5: Applying time delays to achieve beam steering.[29)]

Beam steering is possible by placing a linear phase across the array elements. With a
linear phase at an angle 6, from the z axis, a beam can be steered at an angle of #,. This
is illustrated in Figure 2.5.

Beam focusing can be achieved by adding time delayed pulses in a manner simulating
the effect of a lens. This is illustrated in Figure 2.6. The time delays 7, to focus each
element n are:

_ 2 _ 2 2
T, = r \/(xr T, + zr) + 1 (224)
c
where c¢ is the speed of sound, and r is the distance from the origin to the desired focal

point:

r=\/x2+ 22 (2.25)

x, is the distance from the origin to the center of element n and t; is a constant delay
added to avoid negative delays (since they are physically unrealizable).

2.3.3 Two Dimensional Arrays

While one dimensional arrays are only capable of focusing/steering in azimuth and are
therefore limited to scanning in two dimensions, a two dimensional array is capable of

14
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Figure 2.6: Applying time delays to achieve beam focusing. [29]

focusing and steering in three dimensions.

Figure 2.7 shows the geometry of a two dimensional array. The directions to the field
point shown are v and v, and the steering directions can be written as:

us = sin g cos ¢g (2.26)

v, = sin 0, cos ¢y (2.27)

where 0y, 65, @9, and ¢4 are the initial azimuthal angle, the steered azimuthal angle, the
initial polar angle, and the steered polar angles respectively.

Focusing and steering is achieved in the same way it’s done with one dimensional arrays:
by introducing the appropriate time delay for each element. The time delay 7,,, needed to
focus each element mn is given by:

2 2
P T {1 _ \/ [(M) N (w) +cos? 90} _ to] (2.28)
c r r

where the focal point is defined by r as well as cos uy and cos vg.

Fully addressed two dimensional arrays present a challenge when it comes to fabrication.
While a typical one dimensional array may have 64 elements, a two dimensional array may

15



Figure 2.7: Geometry of the most basic two dimensional array. [29]

have 642 elements. An array with that many elements will require 4096 voltage pulsers
and 4096 pre-amplifiers, which can be challenging to fit into a relatively small device.

There are many ways to simplify the design of two dimensional arrays if one is willing
to compromise on image quality. By using a ring array, a sparse array, synthetic phased
array, or a row-column addressing, the element design can be greatly simplified.

A ring array is a set of individually addressable elements (usually 64 or 128) arranged
in a ring. Since the elements are arranged in two dimensions, a three dimensional scan is
possible. The area used for transmission and reception of ultrasound waves is relatively
small, and therefore this method suffers from lower signal to noise ratio (SNR).

In a sparse array, only a subset of the total elements is used to transmit and receive
ultrasound waves. By reducing the number of elements, the system as a whole is simplified.
The selection of the right elements to use is important as it will determine the width of the
beam as well as the pitch and grating lobes. Although it usually presents with a higher
SNR than a ring array, it still faces the same issue of having a relatively lower SNR due
to less area beig used to transmit and receive ultrasound waves.

Synthetic phased array imaging is achieved by transmitting and receiving ultrasound
from individual elements sequentially. By getting data from each element as it transmits
an ultrasound signal and receives its own wave’s reflection, it is possible to use this data to

16



reconstruct an image. The transmit power for this method is greatly reduced and therefore
the SNR is reduced. Data acquisition is more time consuming in this method.

2.3.4 Row-Column Overview

This method was proposed by Morton [19], where a pair of orthogonally positioned one di-
mensional arrays of rows and columns (Figure 2.8) are used instead of the fully addressed
two dimensional array. One set of one dimensional arrays was responsible for transmit
beamforming and the other for receive beamforming. A line of focus, adjustable in both
depth and azimuth, is generated in a manner similar to one dimensional transmit beam-
forming by the column array. Receive beamforming is achieved when the sound reflected
from the object being imaged is received by the row array. Receive one dimensional array
performs software beamforming so a B-mode image can be reconstructed in each transmit
event, forming a complete three dimensional images after the final transmit event.

An N x N two dimensional array can be designed with only 2N connections when this
row-column technique is used, as opposed to N? connections with the fully addressed one.
Furthermore, according to Rasmussen [22], for any fixed number of active elements, the
row-column addressing scheme produces higher quality ultrasound images as compared to
the fully addressed one.

Since row-column only focuses in azimuth for transmit and elevation for receive, beam-
forming relies on natural focusing for elevation during transmit and azimuth during receive.
Therefore, the focusing power for row-column beamforming scheme is limited. Pressure
near the transducer significantly varies as sound emitted from different parts of the trans-
ducer interferes constructively and destructively. The variation in pressure decreases as
sound travels away from the transducer, creating a varying beam profile that changes the
response of the imaging system with depth.
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Chapter 3

Joint Image Formation and Noise
Modeling and Characterization

Although the row-column method was proposed more than a decade ago [19], there has
been no formal attempt at working out a mathematical model for a joint image formation
and noise model of row-column systems. This chapter will establish a mathematical model
for characterizing the image formation and noise aspects of row-column systems. First we
will provide a mathematical formulation of how an image is formed. We will then formulate
a statistical model for the speckle noise component of the image formation model. We will
then validate our choice by quantitatively evaluating how well our proposed statistical
model fits a real data sample as opposed to other models from literature.

3.1 Image Formation

Equation 3.1 describes how a true image is observed when the row-column technique is
used:

where r, 6, and ¢ denote the radial distance, the azimuthal angle, and the polar angle
respectively. The term g(r, 0, ¢) is the observed image, M(r, 0, ¢) is the sampling function,
f(r, 0, ¢) is the tissue reflectivity function, h(r, @, ¢) is the spatially dependent point spread
function (PSF); a function that describes the response of an imaging system to a point
source, u,(r, 0, ¢) is the multiplicative noise, u,(r, 8, ¢) is the additive noise, and x* is the
convolution operator.
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To express (3.1) in the more common Cartesian form, the spherical coordinates are
converted using the equations:

x = rsin(f) cos(¢)

y = rsin(6) cos(¢) (3.2)
z = rcos(f)

where z, y, and z are the Cartesian coordinates.

Using (3.2), (3.1) can be expressed as:
9(x,y, 2) = M(z,y, 2)[f (2,9, 2) % h(2,y, 2)um (2, Y, 2) + a2, y, 2)]- (3.3)

The observed image g from a row-column scan is a series of fan-beams of ‘readings’,
originating from the ultrasound source, in a three dimensional black box (the region of
interest). Figure 3.1 shows a visualization of these fan-beams and how they result in image
formation. The sampling function M determines how the continuous space in the region
of interest is reduced to a discrete volume. The tissue reflectivity function f describes
the studied object’s reflection response to acoustic waves. The point spread function h is
analogous to the impulse response in linear systems, it describes the response of an imaging
system to a point source (this will be discussed more in Chapter 4). Multiplicative noise
u,, and additive noise u, will be discussed in the next section.

3.2 Noise in row-column Ultrasound Imaging

There are two types of noise represented in the image formation model (3.1): multiplica-
tive and additive noise. Multiplicative noise is due to coherence interference that causes
the pattern referred to as speckle noise [29]. Additive noise is mostly due to sensor noise.
The effect of additive noise on the tissue reflectivity function is not as significant as mul-
tiplicative noise and is therefore often ignored [18]. This section will focus on speckle
noise.

3.2.1 Speckle Noise

Scans from all coherent imaging modalities present with speckle noise. This noise is a
byproduct of the interfering echoes of a transmitted waveform reflected from the studied
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Figure 3.1: Visualizations of fan-beams. The circles represent the real image. The black
squares represent the observed image. The white squares represent the observations outside
the fan-beam that are not taken into consideration.

object’s heterogeneities. This intricate pattern usually results from the superposition of
ultrasound echoes coming with random phases and amplitudes, and scales from zero to a
maximum whether the interference is constructive or destructive. [1]

There is little relationship between between speckle and macroscopic properties of the
studied object, which is a distraction when ultrasound is used as a diagnostic tool. Al-
though the random process of speckle is undesirable most of the time, it can still give
useful information. In medical diagnostics for example, the statistics of speckle can pro-
vide information on tissue composition or type since these statistics generally depend on
the microstructure of tissue paranchyma [29]. However, the fact that speckle tends to re-
duce image contrast and obscure some image details which in turn effects the readability
of ultrasound images are major reasons why speckle noise is unwanted.

Research into the use of statistical analysis of speckle as a tool for speckle removal

was given a great push by Goodman’s paper [31], where statistical mechanism of laser
speckle formation was first presented. This study was then revised by other researchers to
specifically account for speckle in ultrasound [15]. These studies recommended the use of

linear filters to reduce speckle noise.

Many more filtering techniques were proposed, each improves upon the drawbacks of
the previous one but still comes at a cost. Jane proposed an algorithm where they applied
logarithmic transformation to convert the multiplicative nature of speckle into additive
noise, applying Wiener filter on the transformed image and ending with an exponential
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transformation [3]. This algorithm had the advantage of being extensive in the sense that
any filter besides Wiener filter can be used.

The discovery of the Wavelet transform gave rise to a wide variety of tools for image
despeckling [18]. In particular, techniques that adopted Jane’s algorithm structure of
replacing the Wiener filter with wavelet denoising, have shown considerable success [18].
These are referred to as homomorphic wavelet despeckling (HWDS) methods.

Michailovich’s study, however, showed that proper statistical analysis of speckle noise
provides the best basis for ultrasound image despeckling techniques [18]. They have shown
that the general assumption, ubiquitous in all these techniques, that consider the log trans-
formed noise to be white-Gaussian noise tends to oversimplify the despeckling framework
and leads to inadequate performance of these methods.

According to the study done by [15], there are three main cases that can help determine
which statistical model is a better fit for speckle noise. If a background of relatively weak
scatterers has a structure of specular reflectors superimposed on it, the noise will most
likely follow Rician distribution. If there is a large number of independent scatterers, then
noise will most likely follow the Rayleigh distribution. If the number of scatterers is low
or the spatial locations of scatterers are not independant, which is often the case, then the
noise distribution will likely deviate from the Rayleigh distribution.

A number of distributions were proposed for the third case - when the number of
scatterers is low or the spatial locations of scatterers are not independent - including the
Nakagami distribution, the Weibull distribution, and the generalized gamma distribution.
We will investigate the best fit distribution using data generated from a row-columnn
ultrasound system designed and built by the Advanced Micro-/Nano- Devices Lab at the
University of Waterloo.

3.2.2 Generalized Noise Model

To better understand speckle noise, we will derive a generalized model for it and try to
find a statistical description for said model. First, we will simplify the image formation
model from (3.3) to:

where g(x,y, 2) is the noisy observation, f(z,y,z) is the noise-free image, wu,,(z,y, z) is
the multiplicative noise due to coherent interference, and w,(x,y, 2) is the additive noise
(sensor noise, etc.).
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The effects of additive noise are considerably smaller than multiplicative noise [18].
Therefore, the additive noise term can be removed from (3.4) and g(z, y, z) can be expressed
as:

Taking the log of (3.5) would turn the multiplication into a simple addition problem:

log (9(z,y, 2)) = log (f(z,y,2)) + log (um(z,y,2)) . (3.6)

3.2.3 Statistical Modeling and Characterization of Noise in row-
column Measurements

As previously mentioned, the mechanisms of the speckle formation in laser imaging [31]
and ultrasound imaging are similar, and the tissue composition and type of the studied
object generally define the statistical description of speckle [18]. We will test a number of
statistical distributions proposed in the literature on a set of raw data acquired using the
row-column system designed and built by the Advanced Micro-/Nano- Devices Lab.

The data was acquired by a customized imaging system built using the PCI eXtensions
for Instrumentation (PXI) platform. A row-column addressing capacitive micromachined
ultrasonic transducers array (RC-CMUTSs) was used. The 32 by 32 two dimensional array
has a center frequency of 5.9MHz, an aperture size of 4.8mm by 4.8 mm with a 150um
pitch. The phantom imaged was a set of four wires 644 pm in diameter arranged in a way
to allow for a scan of their cross sections.

Five different regions of the captured measurements (shown in Figure 3.2) were used
to find the best distribution that fits row-column measurements. Model fitting was done
through MATLAB, and the log likelihood function was used as a quantitative metric to
evaluate the best fit. Figures 3.3 through 3.7 show the results of fitting Nakagami, Rayleigh,
Weibull, generalized gamma, and exponential distributions into the five different regions.
Table 3.1 summarizes the log likelihood of each fit.

Visual analysis of the model fitting shows that Nakagami and generalized gamma pro-
vide the closest fit to all five regions, and exponential giving the worst fit. This is also
supported by quantitative analysis, with Nakagami and generalized gamma having the
highest log likelihood and exponential having the lowest. However, in four out of five re-
gions, the generalized gamma distribution had a higher log likelihood, and so we will build
our noise statistical model based on the assumption that noise follows the generalized
gamma distribution.
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Figure 3.2: Chosen regions from the row-column measurements that were used to perform

statistical modeling.
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Figure 3.3: A fit of Nakagami, Rayleigh, Weibull, generalized gamma, and exponential

distributions on the first region.
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Figure 3.4: A fit of Nakagami, Rayleigh, Weibull, generalized gamma, and exponential
distributions on the second region.
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Figure 3.5: A fit of Nakagami, Rayleigh, Weibull, generalized gamma, and exponential
distributions on the third region.
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Figure 3.6: A fit of Nakagami, Rayleigh, Weibull, generalized gamma, and exponential
distributions on the fourth region.
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Figure 3.7: A fit of Nakagami, Rayleigh, Weibull, generalized gamma, and exponential
distributions on the fifth region.
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Table 3.1: Log likelihood of different distributions fit to the five chosen regions. Higher
values of log likelihood indicate better fit.

Distribution Region 1 | Region 2 | Region 3 | Region 4 | Region 5
Nakagami 31074 11732 12903 16547 14873
Rayleigh 15530 5153 4646 7292 7672
Weibull 23460 10942 11979 14768 10742

Generalized gamma | 33164 11747 12878 16556 16633

Exponential -3449 =773 -617 -1395 -1776

The pdf of the generalized gamma distribution is given by:

(yv-1)
p.(2) = i exp (— (E)A’), z2>0,a,v,7>0 (3.7)

aT(v) «

where I'(+) is the gamma function, an extension of the factorial function with the argument
shifted by one. For integers, the gamma function is given by:

I(n)=(n—1)! (3.8)
and for all complex numbers with positive real parts, it is define as:
I'(v) :/ ' exp (—x)dx (3.9)
0
This distribution is very appealing as it contains several distributions as special cases,

this is summarized in Table 3.2. Following the Generalized Gaussian assumption, the noise
samples of the logarithmic transformed speckle in Equation 3.6 is given by the pdf:

Y
o) = s ex [ty ~ o) = exp 1y~ o)) (3.10)
To put this in context of the three dimensional row-column imaging system, we propose
the following noise model to characterize the log-transformed speckle noise:
pre(I(x,y,2)) = 2exp {(2[(:1:,34, z) —In20”) —exp [2I(z,y,2) — In 202]} (3.11)

where I(z,y, z) denotes voxel intensity at point (x,y, z), and o is the standard deviation
of voxel intensities.
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Table 3.2: List of distributions that are special cases of the generalized gamma distribution

~ value | v value | Distribution
2 1 Rayleigh
1 1 Exponential
2 v Nakagami
¥ 1 Weibull
¥ v — 00 | log-Normal

3.3 Summary

In this chapter, we developed a mathematical model for a joint image formation and speckle
noise in row-column systems. We proposed an expression for how an image is observed
in a row-column system, taking into account the system’s point spread function as well
as speckle noise. We then gave a brief overview of speckle in literature with a focus on
the importance of proper statistical modeling of speckle to speckle removal. After that we
used the proposed image formation expression to come up with a generalized noise model,
and using real ultrasound data from a row-column based system we defined a statistical
model for both speckle noise and the log transformed speckle noise. Now that we have a
mathematical model for a joint image formation and speckle noise for ultrasound imaging
systems based off of the row-column method, we will now find a mathematical derivation
of the beam profile for these systems.
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Chapter 4

Beam Profile Modeling and
Characterization

Given the image formation model for row-column imaging systems presented in Equation
3.1, and the noise model and characterization arrived at in Equation 3.11, the last com-
ponent that remains to be modeled and characterized is the point spread function h. The
point spread function of a row-column ultrasound imaging system h describes the system’s
beam profile and has a tremendous impact on the performance of the system; hence, it is
important to have a better understanding and quantitative characterization of the point
spread function. The goal of this chapter is to provide a mathematical derivation for mod-
eling and characterizing a row-column system’s beam profile, as well as study a row-column
system’s beam profile characteristics at different imaging depths through simulation.

4.1 Linear Systems Theory and Acoustic Systems

A common practice in electrical engineering is to fully characterize a linear electrical system
by its impulse response. Applying a delta function as an input to a system will result in
the system’s impulse response h(t) as output. Given this characteristic impulse response,
estimating a system’s output y(¢) with input x(¢) using basic linear systems theory is
possible [9]. The relationship between the input z(t), output y(¢), and impulse response
h(t) is given by:

y(t) = h(t) xxz(t) = /OO h(0)x(t — 0)do (4.1)



Baffle

- Field. point

Figure 4.1: Basic setup of an ultrasound system [11].

where * denotes time convolution.

Linear acoustic systems can be characterized in a similar manner [14], where the impulse
response is referred to as the point spread function. For ultrasound imaging systems, this
point spread function characterizes the system’s beam profile. Given the basic setup for
an ultrasound system 4.1, the position of the baffle will be denoted by 7%, the position of
the hydrophone that will measure the acoustic output of the transducer (the ’field point’)
will be denoted by 77, a medium with density py, and a constant speed of sound c.

Using Huygens’ principle [9], where every point on the radiating surface is the origin
of an outgoing spherical wave, we can get a perception of the sound field at a fixed time
instance. Each of the spherical waves are given by:

SP(7) = 6(t — M) (4.2)
c
where t is the time for the snapshot of the spatial distribution of the pressure.

By observing the pressure waves at a fixed point in space over time and summing all
waves that pass through that point, the beam profile of a linear acoustic system can be
found.

A formal derivation of the beam profile will be formulated in the next section.

30



4.2 Mathematical Derivation

Building on the Huygens’ principle assumption and equation 4.2 from the previous section,
the pressure field generated by an aperture with geometry S can be expressed as:

un (7 t— @)

p@ﬁ—ﬂ/——ﬁ——% (4.3)
S

- 2 |7?1 — F2|
where v, is the velocity normal to the transducer surface [9].

The derivation in (4.3) assumes linearity and propagation in a homogeneous medium.
The radiating aperture is also assumed to be flat, meaning no re-radiation from scattering
and reflection takes place [11].

Exchanging the integration and partial derivative, equation 4.3 can be rewritten as:

vn (7 t— 112720
_ &afs 7 —7%]
2m ot

p(71,t) ds. (4.4)

Given the relationship between pressure and velocity potential from Chapter 2, the
velocity potential can be expressed as:

n _)71’-_
\I](Flat) = / - (T2
S

2W’F1 — FQ’

— —

\ 1*T2|)
C

ds (4.5)

We can then separate the excitation pulse from the transducer geometry by introducing
a time convolution with a delta function:

. |

(7, )0 (t — tg — =12
W&w://vaﬂ( 2 chmw (4.6)
SJT

27T|F1 _FQ‘

where ¢ is the Dirac delta function.

If we assume that the surface velocity is uniform (i.e. it is independent of ) over the
aperture [11], then (4.6) becomes:

1S
—
3L
~
N—

I

B L 1
vn(t)*/sé(t—c)dS (4.7)

27T|F1 —7?2’
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where * denotes deconvolution.

The integral in equation 4.7 is the point spread function from equation 3.1:

27T’F1 — 77‘2’

and characterizes the three dimensional beam profile of an ultrasound system for a partic-
ular transducer geometry S.

From equation 4.8, the beam profile is spatially dependant, which is consistent with the
varying pressure field emanating from a transducer according to equation 4.3. Pressure near
the transducer significantly varies as sound emitted from different parts of the transducer
interferes constructively and destructively, and this variation decreases as sound travels
across the medium. Therefore, to have a beam profile that varies with depth makes sense.

4.3 Simulation

Deriving a full mathematical expression for the beam profile of a row-column system is
incredibly complex, and as seen in (4.8), beam profile is directly dependant on the trans-
ducer geometry. However, it is possible to simulate a row-column system’s beam profile
using computer modeling.

To numerically model and characterize the beam profile characteristics of the row-
column system, the Field II simulation toolkit [10] was used here as it is a widely used
toolkit in research literature for simulating ultrasound system characteristics. For illus-
trative purposes, it is used here to characterize and estimate the beam profiles of the
row-column system with a 5mm x 5mm, 32x32 element row-column array at three differ-
ent depths away from the transducer: 5mm, 10mm, and 20mm.

To estimate the beam profile of a row-column system at a particular point in space, the
transducer aperture and geometry are first defined. Apertures for emission and reception
were set, and a point phantom at the required depth (analogous to field point denoted by
7 earlier) is created. A linear sweep is then made, followed by the generation of a point
scatterer. The beam profile is then found using the same mathematical basis presented in
equation 4.8.
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4.4 Results

Figures 4.2 and 4.3 show the output of the Field II testing done in MATLAB, where the
simulation of the beam profile of a 5mmx5mm, 32x32 element row-column array at three
different depths away from the transducer: 5mm, 10mm, and 20mm.

Looking at Figure 4.2, we can see that the profile spike gets wider as we move away
from the transducer. This is consistent with the discussion at the end of Section 4.2: the
pressure waves weaken as sound travels away from the transducer and the ability to focus
becomes more difficult.

Figure 4.3 shows the reduction of beam focus in more detail. The -6dB resolution
weakens in spot size from 0.5mm to 0.9mm as we move from S5mm to 20mm away from
the transducer. The effects of interference of pressure waves decrease as it weakens the
farther you are from the transducer, and so focusing becomes more challenging. Looking
at the profiles in Figure 4.3 also reveals the set of side lobes below -30dB getting larger
is we move away from the transducer, an indicator of the reduction of natural focus with
depth.

The side lobes shape shown in Figure 4.2 is consistent with the beam profile of a
typical row-column array [29], since this shape is highly influenced by the natural focusing
tendency of the row-column’s beamforming method [9].

4.5 Summary

In this chapter, we used Huygens’ principle assumption and linear systems theory to derive
a mathematical expression for the row-column system’s spatially varying point spread
function which describes the system’s beam profile. We used Field I MATLAB toolkit
to perform some beam profile simulations to see if our formulation is consistent with
literature on beam profiles. With the formulations from chapter 3, we now have a complete
characterization model. The next chapter will conclude this thesis.
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Figure 4.2: Results of Field II MATLAB simulations.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, we proposed a characterization framework for ultrasound imaging systems
that are based on the row-column method.

In Chapter 3, we developed a mathematical model for a joint image formation and
speckle noise in row-column systems. We proposed an expression for how an image is
observed in a row-column system, taking into account the system’s point spread function
as well as speckle noise. We then gave a brief overview of speckle in literature with a focus
on the importance of proper statistical modeling of speckle to speckle removal. After that
we used the proposed image formation expression to derive a generalized noise model, and
using real ultrasound data from a row-column based system we defined a statistical model
for both speckle noise and the log transformed speckle noise.

In chapter 4, we mathematically derived a characterization of a row-column system’s
beam profile. First we briefly introduced acoustic systems in context with linear system
theory. Then, using Huygens’ principle assumption, we arrived at a mathematical expres-
sion that characterizes the three dimensional beam profile of row-column systems. We
performed simulations using the toolkit Field II to estimate the beam profile of a row-
column system at different depths and discussed the results.
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5.2 Future Work

The characterization model developed in this research for row-column based ultrasound
systems has many potential applications that can be pursued in the future:

e Build a more adequate image reconstruction model from data acquired
with row-column based ultrasound imaging systems. Having a mathemati-
cal representation of image formation, proper statistical model of ultrasound speckle
noise, and mathematical representation of the system’s beam profile would give us
ample information to better compensate for the effects of the systems intrinsic im-
perfections.

e Create a better metric for the comparison of different row-column based
ultrasound imaging systems. Having a mathematical representation of image
formation as well as a mathematical representation of the system’s beam profile
would give us a more convincing metric for comparing the performance of different
systems.

e Allow for better optimization of the performance of row-column based
ultrasound imaging systems. Having a mathematical representation of image
formation, proper statistical model of ultrasound speckle noise, and mathematical
representation of the system’s beam profile would give use enough information about
a system’s performance and make it easier to then optimize it.

e Give us a better understanding of images acquired from row-column based
ultrasound imaging systems. Having a mathematical representation of image
formation, proper statistical model of ultrasound speckle noise, and mathematical
representation of the system’s beam profile would give us a better understanding of
the acquired images.
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