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Abstract 

The integration of services is the driving force behind the design of the high speed 

data networks of today and tomorrow. These networks mnst be able to deliver a 

broad range of services and be capable of carrying diverse classes of t r a c  with very 

différent source charactaistics. In the case of data trafiic, some delay is tolerable, 

however the loss of information is not. At the other extreme, some loss is tolerable 

for voice trafic, however delay is not. In the middle is broadcast quality video 

trafic, which is sensitive to botk delay and loss. 

In the case of Asynchronous aansfer Mode networks, the solution of these con- 

flicting requirement s is to nego tiate a TkfEc Contract a t  the User-Ne twork Inter- 

face, which spedes  a Quality of Service level and the characteristics of the source. 

Tkese characteristics are used by C d  Admission Control and Usage Parameter 

Control to protect exis ting connections. 

Unfortunately, the determination of source characteris tics by either the user or 

network provider is difficult, or impossible in some situations. The usual statistical 

methods of identi@ing trafic sources do not scale well to high speed networks, 

nor are they applicable to all trafic types. In addition, they cannot be used to 

ident* the trafEc streams emerging &om applications not envisioned when these 

identification techniques were developed. Thus, t h a e  is a need for a method that 

can accurately provide a description of tr&c streams in a timely mannes. Three 

contributions are presented in order a satisfy these needs. 

The proposed tr&c primitive classifier c m  be used to classify unknown traffic 

s treams . This is accomplished by defining simple, deterministic characteris tics of 

vii 



trafic streams which are collectively called t r a c  primitives These trafnc primitives 

are nsed to define training vectors ki order for a neural nehrork to leam the clas- 

sification problem. The tr&c classification resdts show that the neural networks 

not only can classify deterministic sources from which they are trained, but also 

they can classify a wide range of random sources, s u c h  as the class of on-off sources. 

Wi th the additionai functionaiity of T r a c  Primitive His togram Identificaf ion and 

Stream Transition Tracking, the primitive classifier can be applied to ckaracterize 

sources which are not on-off in nature. As wd, the primitive classifier can be in- 

t egrated into a policer to perform more complex policiag actions, and to monitor 

tr&c streams for a given set of occurrences. 

In addition to the trafnc primitive classifier, two additional contributions corne 

in the form of two t r a c  shapers, the Minimized Variance shaper and the Burst- 

onented shaper. Both shapers have the ability to produce near deterministic 

streams, given appropriate sources are shaped, at  fairly low costs in delay and 

b&er size at the shapers. In the case of the Minimized Variance shaper, source 

iilformation is utilized in order to find an optimal shaping parameter that Las the ef- 

fect of minimizing the interdeparture t h e  variance of the stream exiting the shaper. 

For the case of the Burst-oriented shaper, source information is not required since 

it assumes that bursts and silences emerge fiom the ATM Adaptation Layer, and 

so it attempts to spread a burst into the immediately following silence period. By 

doing so, it has the ability to define an unshaping parameter, which when embed- 

ded into the tr&c stream, can be used to unshape the source at the destination 

User-Network Interface. This has the dual benefits of offering the network provider 



an ability to characterize sources and hence improve network efkiency, and &O to 

d o w  users to treat the network as a transparent connection. 
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Chapter 1 

Introduction 

The integration of services, required by increasingly complicated cornputer and 

uetwork applications, is the driving force behind the design and analysis of the 

present and future high speed data networks. While there is not yet a single network 

wliich carries an ubiquitous range of services, present day networks are already 

starting to mage, directed by the demand for new s e ~ c e s :  data is carried over 

voice networks via modem connections; telephony software allows voice to be carried 

by data networks; audio and video applications are carrieci over data networks; aiid 

cable providers will soon support a meclianism for data applications to operate 

over the cable (television) networks, starting simply with Inteniet access. Thus, 

wkereas in the past it could be said that networlt techno1ogy was the propelling 

force behind network services and applications, changes are occurring such that 

network applications are now driving the technology. The common thread in the 

exis ting and emerging applications is the requirement for fas ter transmission speeds 

and increased bandwidth. In addition, a more flexible delivery of bandwidth is 
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desired, such as "bandwidth on demand." Bence the need for 'kmarter," more 

flexible high speed networks. In particular, this thesis will consider the example 

of Asynchronous Tkansfer Mode (ATM) networks, which are currently considered 

by many to be the solution to the existing problems of service integration. Much 

of this work, however, is applicable to other high speed networks with properties 

similar to ATM. 

One of the major problems associated with the integration of services into a 

single high speed network, such as an ATM nehvork, is that of cell-level congestion. 

Cell-level congestion arises fiom two important aspects of modem networking: net- 

work utility, and banclwidtk efficiency. For the case of network utility, one basic 

premise of modern data networks is that they are transparent to the user. Tkat 

is, data networks should be as easy to use as telephone networks - simply make 

a c d .  In this light, the network shodd appear to the user as a high speed pipe 

though which data dows. The destination user shodd see the same t r a c  stream 

exit the network as that which entered. In addition, the t r a c  streams of other 

users of the network, including f i t u ~ e  users, shodd have no affect whatsoever on a 

given connection. Much of the justification for studying trafic shaping is contained 

in the idea of congestion avoidance, and the presentation to the destination the 

same traflic stream that is input to the network. 

For the case of bandwidth efficiency, the problem is studied from the corre- 

sponding perspective of the network service provider. From the network provider's 

point of view, the network must be optimized in order to maximize revenues. This 

is achieved, d other things being equal, by avoiding congestion. In order to ac- 
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this thesis. The reader may wish to perme this section first , or refer to it from time 

to t h e ,  if d'sr terminoIogy or notation is encountered. 

Chapter 2 contains much of the work pedonned, namely the design and im- 

plementation of tr&c classification. Section 2.1 describes trafic pn'mitives, which 

are integral to the neural network based trafic primitive classifier. Following this, 

Section 2.2 describes the neural nehnork used to c lasse  these primitives, as well 

as the neural network training methodology. The r e d t s  of this training are given 

in Section 2.3. More importantly, Section 2.4 offers results of the operation of 

the neural network based primitive classifier when it is presentecl with Iieretofore 

unobserved trafic stceams- 

Two applications of trafic classification are given in Chapter 3, TrafEc Prim- 

itive Histogram Identification in Section 3.1, which is a method of source charac- 

terization. In Section 3.2, Stream Transition Tracking can be used to monitor the 

behavior of a given source. 

Two t r a c  shapers are proposed in Chapter 4, the Minimized Variance shaper in 

Section 4.1 and the Burst-oriented shaper in Section 4.2. The Minimized Vatiance 

shaper reqnires knowledge of the type of tr&c on which it is operating, and thus 

c m  be considered to be another application of t r a c  classification. The Burst- 

onented shaper is developed from insights gained in trafic classification, and thus 

does not depend on this knowledge. It does. however, sport the feature of beiiig 

able to "unshape" trafnc streams at a source's destination, by way of an ~mnshaper. 

In both cases, the goal of shaping is to aeate a deterministic trafic stream. 

Finally, this thesis concludes with Chapter 5, which provides a snnunary of the 



contributions of this work, as well as pointing towards friture work. 
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1.1 A Brief Background in Modern Networking 

To consider the history of modern networking, one must start with the origins of 

telephony, which gained popularity in the early 1900's. However, as stated, the 

purpose here is not to give an in-depth review of teiecommunications. Rather, 

since the reader is undoubtably familiar with a telephone, the only background of 

telephony reqnired is to realize that telephone networks employ connection-onented 

circuit switching, wliereas the data networks which began to appear in the 1960's 

employ connectionless packet switdiing [BCSI, BG92, Cha83, Sch87, S ta94, Tan881. 

The following section gives an ovenriew of the origin of modern data networks. witk 

emphasis on Iiow they Iead to the integration of services and thus ISDN, which is 

the subject of Section 1.1.2. In t a ,  the integration of services demands increasing 

amounts of bandwidth. The answer to this is B-ISDN, of which an overview is 

given in Section 1.1.3. 

1.1.1 Telephone and Data Networks 

In the acisting analog telephone network, or POTS (Plain Old Telephone Service), 

before information can be exchanged a connection must be established between the 

users. However, once a connection kas been established, it is dedicated to the two 

users at its end points. Information transferred over this connection always takes 

the same route through the network. Contrast this to a data network offering data- 

gram service, which is connectionless and employs packet switching. In this case, 

no connection between the sender and receiver is made prier to the transmission of 

the information. Instead, the information to be exchanged between sender and re- 
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ceiver contains the address of the recipient. In this sense, a connectionless network 

is similar to the postal system [Tan88]. Additiondy, it is possible for messages 

between the same pair of users to take completely different routes tlrrougli the oet- 

work. &O of impor tance, since there is no end-teend connection established. t here 

is no bandwidth dedicated to a given connection. Therefore, instead of bandwidth 

being wasted if a connection becomes idle, as occurs in telephone networks, in data 

networks messages from another pair of users may utilize this bandwidth.' These 

dis tinc tions between connectionless and connection-oriented, &cuit swit ched and 

packet switched networks (and services) play an important role in present day high 

speed networks, since these networks are designed to carry very different - one 

This brief history of modern networking, as it relates to Asynchronous Ransfer 

Mode, begins in the early 1970's. This t h e  witnessed the establishment of the 

public, government and private wide area networks (WANs). Some North Ameri- 

can examples of these first data networks are ARPANET,' TYMNET. MILNET. 

USENET, CSNET and BITNET, and SNA [BG92, Gre84, Sta94, Tan88). In addi- 

tion, many standards were established by organizations such as International Stan- 

dards Orgaaization (ISO), Comité Consultatif International de Télégraphique et 

Téléphonique (CCITT),3 and the Internet Engineering Task Force (IETF). ARPA- 

NET evolved into the GRPA internet [HHSS3], and is commonly referred to as 

IThis is referred to as statisticai multiptezing, and will be discussed in Section 1.2.1. 

'These acronyms are explained in the teferences, howevet the exact names of these data net- 
works are not pertinent to tbis discussion. 

3This standards organixation is a part of the International Telecommunication Union (ITU). 
and has recently been renamed ITU-T. 
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"the Internet" today. The importance of mentioning these networks is that as they 

became established and allowed the development of us& network applications, 

they quickly became indispensable. Data networks were (and still are) employed 

for the obvious uses such as resonrce sharing and reliability [BG92, Tan881. The 

sharing of resources is important in tao  ways: cost and interface. If an organization 

reqnires an expensive computer or piece of hardware, it is much more cost effective 

to connect many users to that computer via inexpensive "dumbn terminals than to 

purchase each user the expensive cornputer. The same reasoning holds for expen- 

sive software that runs on the expensive computer systems. Again, it is much more 

cost effective to purckase additional software licenses than to purchase cornpletely 

new copies of the sofhnrare. In addition to the cost of the hardware and software. 

there is the human factor of interacting with said hardware and sofhirare - namely 

the intedace. It is much easier for a human if, no mat ter which terminal is used in 

an organization to connect to the cornpater system, a constant set of interactions 

is presented. A common interface can also be considered as a rednction in cost, 

since training and maintenance costs can be reduced. As for reliability, it should be 

clear that Iiaving redandant hardware and software systems is imperative in certain 

organizations . 

While these aspects of modern networking developed from the main-fiame en- 

vironment of the 1960's and 1970's, they apply equally well to a distributed data 

network environment [LidSO]. In addition to the economies of scale mentioned above 

in resource sharing, firther economies became a d a b l e  in transmission bandwidth 

[B G921. For example, while a 1.544 Mbps link contains twenty-four 64 Kbps chan- 



nels, its cost is only a few multiples of that of a single 64 Kbps channel.' As w d ,  

transmission costs increase with distance, but at less than a one to one ratio. Hence 

data networks, proving themselves to be cost effective, created the need for applica- 

tions which were network based. An organization with a geographicaily distributecl 

opaation requizes networks in order to coordinate its operations. Thus, for exam- 

ple, the need for remotely updating a data base gave rise to the field of distribnted 

systems [CD88]. Another example is the now common automated t d e r  machine, or 

banking machine. The interconnection of cornputers also lead to the development 

of completely new applications, such as electronic mail, facsimile, and those that 

make use of audio and video [PT90, WT901. 

1.1.2 The Emergence of ISDN 

Witk data networks M y  entrenched, and network applications requiring more and 

more bandwidth, in 1984 CCITT adopted the recommendations for the Integratrtl 

Services Digital Network (ISDN) [BAF+88. Bla95, Onv94, SHP91, Tau881. ISDN 

represents a world-wide attempt to replace the existing analog telephone networks 

with a digital system. In fact, ISDN is based on a digitized telephone network, that 

is 64 Kbps channels. Because of this, it is inherently a circuit switched network 

wkick also dows packet switching. Thus, ISDN is envisioned to support a broad 

range of voice and non-voice services, such as images and video, by integrating 

"Note, however, that for the reasons of large distances and sparsely populated areas, this does 
not hold true in Canada. For example, in the United States, a tnuik iine fiom New York to Los 
hgeles  would pass through many urban centers containing many users who may wish to use a 
portion of the tnink covering only a mal1 distance. Thus the cost of the t d  line is borne by 
more users than just those located at the end points of the line. Compare this with a t d  line 
from Toronto to Vancouver, which passes through oniy a few (relatively srnall) ruban centres. 
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telephone and data networks. In 0th- words, ISDN combines the fnnctionality of 

circuit switched and packet switched networls. 

Two access intedaces are defined: basic and primary. The basic service con- 

sists of two 64 Kbps data channels and a 16 Kbps signaling channei, for a total 

of 144 Kbps. The primary service consists of twen&three 64 Kbps data chana& 

and a 64 Kbps signalling channel, for a total of 1.544 M b p ~ . ~  The data channels 

can be used together, in order to form higher bandwidth connections. Thus, ISDN 

supports multiple independent channeis which are Literleaved using Synchronous 

Transfer Mode (STM)? Unfortunately, even with a primary service bandwidtk of 

1.544 Mbps, video and image applications are poorly supported by ISDN. This 

observation is aggravated by the fact that the primary service is intended for busi- 

ness users, and the basic for home u s a s .  With ody  144 Kbps available, broadcast 

quality video is intolerable. Hence, the emergence of Broadband-ISDN (B-ISDN) . 

1.1.3 ISDN Ieads to B-ISDN and ATM 

B-ISDN is being developed to support high bandwidth applications such as image 

retrieval and video, as mentioned above, and &O the interconnection of Local Area 

Networks (LANs) [BAFf 88, BG92, OLt94, Onv94, SHP911. Like ISDN, B-ISDN 

is intended to be an Uall-purposen network. As such, B-ISDN must be able to 

support: traffic streams with a large range of characteristics, such as constant or 

'In Europe, primary seMce consists of thirty 64 Kbps data channeis and a 64 Kbps s ignahg 
charnel, for a total of 2.048 Mbps. This is due to the fact that the European telephone net- 
works are based on an E l  scheme, as opposed to the Tl scheme in North America (and Japan). 
Henceforth, o d y  the Tl scheme is considered. 

6For a discussion of STM, refer to [BG92, Tan88J. 
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variable bit rates and bursty traf6c; a variety of network configurations. such as 

connection-oriented or connectionless links, point-to-point or point-to-multipoint 

connections; and a wide variety of transmission rates, with the ability to parantee 

service levels. Since its Iuilrs are op tical fiber, B-ISDN has the reqnired bandwidth 

and low bit error rates to fiiUill the aforementioned intention. 

It is amusing to note that there are about as many meanings for the term 

broadband in computer networking as there are people using the term. In B-ISDN, 

broadband refers to &a lot of bandwidth," which should be taken to mean more 

that 2 Mbps. Eence by employing op tical fiber, B-ISDN is able to satisfy the needs 

of bandwidt h-hungry applications. 

With plans for B-ISDN sys tems to employ links with transmission rates between 

100 Mbps and 600 Mbps, questions arose as to the wisdom of simply "beeftig up- 

the existing STM-based ISDN system. STM employs circuit switching, aiid becausr 

of tlus does not benefit from statistical multiplexing. Since many of the current 

applications that will use B-ISDN networks, such as voice, have low bit rates when 

compared to the proposed link rates, mu& of the bandwidth allocated to a low 

rate connection would be wasted. In addition, the srnailest rate available to an 

application using this STM-based network is 64 Kbps, which is very idexible. 

Continuhg the example of a voice connection and considering advances in voice 

coding [Hay88], for example by using Adaptive Sub-band Coding (ASBC), only 

16 Kbps is required for this connection [Dau82, Jay861. 

Therefore, in order to increase bandwidth utilization, and for reasons of switch- 

ing and local loop complexity, STM was abandoned in favor of an asynchronous 
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packet switching mode. In this context, asynchronous refêrs to the fact that user 

information can appear at irreguiar intemals over a network link, or in other words 

idormation is transmitted over the network based on the needs of user applications, 

not on timing considerations of the network. And thus for brevity, not mention- 

ing many considerations taken by the standardkation bodies, ATM? was chosen 

as the transport, network and data Iink 1ayer pG92, Tan881 protocol for B-ISDN. 

Since ATM is to replace the functionality of STM in ISDN, its standard speafies a 

pkysical layer, namely the Synchronous Optical Network (SONET) [BC89]. 

At this point, this brief history of modern networking cornes to a close. Further 

discussion on general technical aspects of ATM, such as signalhg and fkaming with 

respect to SONET, while important, are not germane to this work. For more 

information, the reader should r& to [BG92, Bla95, Com94, Com95, HHS94, 

MS95, Par94 Nonetheless, a more detailed ovemiew of certain aspects of ATM 

w&& are important d e n  c o n s i d e ~ g  t r a c  elassification and shaping is @en in 

the following section. 

7 ~ T ~  has also b e n  referred to as Fast Packet Switching (FPS) and Dynamic Time Division 
Multiplexing (DTDM). 
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1.2 Asynchronous Transfer Mode (ATM) 

This section focuses on the aspects of ATM which are pertinent to the work of this 

tkesis. Recall fkom the previous section that since ATM is the protocol which is 

used to implement B-ISDN, it inherits many of the properties of B-ISDN. ATM 

is a high speed, conneetion-oriented, packet switched data network, intended to 

operate over optical fiber links whieh have inherently low bit enor rates. While 

it is comection-oriented, it supports connectionless services, and due to its asyn- 

chonous packet-oriented mnltiplexing bekavior, it is well snited to bursty applica- 

tions. ATM integrates the features of packet switched and circuit switched networks 

[BG92, Bla95, Com94, HHS94, MS95, Oht94, Onv94, Par94, Sai941. 

Section 1.2.3 introduces the User-Network Interface: which specifies how cou- 

iiectious are made to an ATM network. Then, the important features of the User- 

Network Interface, as they pertain to traf£ic classification and shaping, namely C d  

Admission Control and Usage Parameter Control are discussed in Sections 1.2.3.1 

and 1.2.3.2, respectively, followed by an overview of trafic shaping in Section 1.2.3.3. 

Before discussing these aspects of ATM, it is important to be aware of two of the 

driving forces behind them: s tatistical muhiplexhg and its side effect , congestion, 

discussed in the following section, and Quality of Savice and the Traffic Contract, 

discussed in Section 1.2.2. 

1.2.1 Statistical Multiplexing and Congestion 

As mentioned in Section 1.1.1, in order to more efficiently use the available band- 

widt h, st atistical multiplexing is performed. S tatis ticai multiplexing is saicl t o 



occur when two or more connections use a link in such a way that the link ca- 

pacity is l e s ~  than the aggregate peak capacity requirements of the connections 

[JaiSO, MS95, Par94, Sai941. Note then, as Figure 1.1 shows, that if all the connec- 

tions desire to use the link at the same instant, not enough capacity is available. 

This occurrence is refmed to as burst-level congestion: or simply congestion. The 

bit rate 
Sum of peak bit 
rates of ail 
connections 

A Lin k capacity 

Peak bit rate of 
a connection 

Mean bit rate of 
a connection 

O *  - - 
time 

Figure 1.1: S tatistical Multiplexing Gain 

label statistical in statistical multiplexing, hence, indicates that this occurrence is 

unusual. That is, on average congestion will not occur, since the average aggre- 

%ont ras t this to cd-level and ceii-level congestion Pui88J. While important, d- leve l  con- 
gestion is not considered here. 
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gate rate of the network connections is less than the link capacity, as Figure 1.1 

shows. Statistical mdtiplexing is essentidy the difference between STM and ATM. 

IR STM bandwidth is assigned to a given connection, even if there is no data to 

transmit, whereas in ATM there is no bandwidth assignation, and so a connection 

uses the link only when it requires. 

Even with the large a m t  of bandwidth adable  in ATM networks, conges- 

tion must be controlled becaese as previously stated, ATM guarantees a certain 

level of service to connections. Note that congestion may also occnr even if there 

is ample bandwidth available for the connections, as Figure 1.2 shows, due to ce[[- 

banching, referred to as contention. In this case, two or more connections desire to 

Connections ( / 

Network Link 

Figure 1.2: Cd-level Contention at a Multiplexer (MUX) 

transmit at the same point in t h e ,  and even though there is sdicient link capacity 

for all the connections, only one c m  use the link at a given tirne. This, of course, 

is due to the fact the that a mdtiplexer is a multiple-access device [B GSS, Tan881. 

In the literature, there are in general two ways to solve the problems associ- 

ated with congestion: preventive congestion control and reactive congestion control 



[WRRSS]. Preventive congestion control madests itselfin the User-Network Inter- 

face of ATM networks as admission controI., and reactive as bandwidth enforcement. 

These methods wiJl be discussed in Sections 1.2.3.1 and 1.2.3.2. Both of these, how- 

ever, require Jmowledge of not only the trafnc stream that is to be admitted to the 

network, but also of the existing connections. Thns, before a connection c m  take 

place. the user and network provider must agree upon the characteristics of the 

source and &O the Quality of Service the user can expect fiom the network. wLi& 

takes the form of a Traffic Contract, discussed next. 

1.2.2 Quality of Service and 'Ikaf£ic Contracts 

Section 1.1.3 stated that one of the important feattues of B-ISDN, and thns ATM, 

is the ability for the network to guarantee a level of savice to the user. In the 

language of ATM networks, this is referred to as Quality of Service (QoS) [Com94, 

Kur93, LP91, MS951. Some examples of service guarantees indude cell loss rate, 

nlinimum bandwidth and maximum end-to-end delay. While much work has been 

performed and is ongoing concerning methods to guarantee a level of QoS, for this 

work it is sufncient to realize that source information is required to adiieve tkis 

guarantee. 

A nnmber of QoS classes have been dehed, such as best effort, constant bit 

rate, variable bit rate, connection-oriented and connectionless. QoS classes are of 

great importance in an ATM network, since it is intended to carry a wide d t y  

of trafic streams as a result of service integration. A data source, for example, is 

extremely loss sensitive but delay insensitive. On the other hand, a voice source 
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is more sensitive to delays than losses. And video sources are both delay and 

loss sensitive. Thus, différent actions and thus service guarantees are required 

when different applications wish to c o ~ e c t  to the network. This information is 

exchanged via the Tkafic Contract. 

A Tkafüc Contract represents an agreement between the network provider and 

a user of the network. It specifies the QoS of the connection, the characteristics 

of the t r a c  stream, d e s  for determinhg whether a connection is complying with 

the Tk&c Contract, and the definition of cornpliance itself. The importance of 

the Traffic Contract here is the requirement for characteristics of the tr&c stream. 

a d  thus a ruethod to obtaùi these characteristics. Since TMEc Contracts are 

negotiated at the User-Network Interface, it is described next. 

1.2.3 Overview of the User-Network Interface 

W e  much research has been performed and is continuing concerning the inter- 

na1 operations of an ATM network, such as switching, routing and management 

functions to name a few, the focus of this work occurs at the User-Network Inter- 

face (UNI).' Figure 1.3 gives a simple overview of this feature of an ATM network. 

It is generdy assumed that due to the relatively high bandwidth of ATM links, 

compared to mos t existing applications, that mu l t ip ldg  will occur at the source 

of Figure 1.3 (and demdtiplexing at the destination). For example, a group of 

ternllnals, user applications, or LANs are multiplexed to share access to the ATM 

' ~ o t e  that ATM networks have been speciiied in many ATM Forum documents. see 
ht tp  ://m. atmforum. corn, but the document most applicable to this work is the User-Network 
Interface (UNI) Specification, Version 3.1 [Com94]. 



. . 
Source : : Destination 

Source UNI Destination UN I 

Back-bone ATM Network 

Figure 1.3: A General ATM Network, showing Some and Destination 

network. Of course, an application with high bandaidth requirements may be con- 

nected directly, but for the present this is dikely. Inside the badr-bone ATM 

network, two network service providers may need to interface with each other. 

This point is called the Nefxork-Netarork Interface (NNI), but does not concexn 

this work. 

Zooming in on the source UNI, then, Figure 1.4 depicts the portions of the UNI 

which are germane to this thesis. As the figure shows, the UNI consists of t h e e  

basic elements: the C d  Admission Control (CAC) function, the Usage Paramet er 

Control (UPC) hinetion, and the ATM switch, which performs cd-level, possibly 

priority-based scheduling. In addition, a fourth optional element is that of trafnc 

shaping, witk possible locations SI-S4 as shown in Figue 1.4. A discussion of 

trafic shaping is def'ed to Section 1.2.3.3. The existing network connections are 

sliown by the shaded ellipse, and the single c d  discussed in this overview is shown 

at the bottom of Figure 1.4. 
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Source Traffic 

1 1 . u  u 

Cali Rejected Cell Dropped - L-F 
Figure 1.4: Overview of the ATM User-Network Interface (UNI) 

There are two basic bc t ions  that occur at the UNI. First, the network provider 

must make a decision to either accept or reject the call, which is performed by CAC. 

Second, once a call is accepted to the network, this connection mnst be monitored 

to ensure cornpliance to the 'R&c Contract, which is performed by UPC. Lt is 

important to state again that both CAC and UPC reqnire accurate and timely 

source characteris tics in order to perform their respective fùnctions . While t ke 

concepts of QoS, CAC and UPC are usudy treated as separate entities in the 

Li terature, they are nonet heless tightly intertwined by t heir mutual requiremeuts 

for traffic stream characteristics. The requirements for these characteristics are 

emphasized in the following two sections. 
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1.2.3.1 Ovenriew of Cal1 Admission Control 

CAC determines whether or not a connection may be admitted to the network. 

Since the network provider and the user "sign" a Ilcafnc Contract at connection 

setup, the network guarantees the agreed upon QoS while the user makes a corn- 

mitment to conform to a given tr&c type, characterized by employing tr&c pa- 

rameters. 

Traffic parameters inchde aspects of a t r a c  stream sach as peak cell rate, 

sustainable ce11 rate, burst tolerance, but they may also be qualitative, such as a 

telephone or video source [Com94]. A subset of these parameters, the source trafic 

descriptor, can be used to describe the traffic stream characteristics of a given 

source. Once the connection request has been accepted, CAC has the source t r a c  

descriptor, as well as routing and resource allocation information in hand. 

IR order to accept a connection, the network provider must make an estimation 

as to whether dowing the source access to the network wodd violate the source 

QoS and the QoS of existing connections. Given a source trafic descriptor, a n u -  

ber of methods have been suggested to accomplish this [DTWgO, ELLSO, GANSI. 

GRF89, Hui88, JDSZ95, JV89, MSST91, Sai92, SS91, Tur92, WH911. These meth- 

ods indude parametric models (statistical and fluid flow) and, or real t h e  mea- 

surement based models, such as gaussian approximation, fast buffer reservation, 

class related d e s ,  equivalent capacity and Sigma rule. While greatly enhancing 

net work utilizatioa by allowing statistical multiplexing, however, these methods ei- 

t her make assamp tions about the source characteristics for tractability or require 

s t atis tical measurements . As is discussed in Section 1.3, this creates difüculties 
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when pdorming CAC. 

1.2.3.2 O v e ~ e w  of Usage Parameter Control 

After a source has been admitted to the network, its data enters the UNI and the 

connection is monitored by UPC. The purpose of UPC is to ensure that the QoS 

of existing connections is not affected by the misbehavior of the source, this misbe- 

Lavior being possibly malicious or unintentional [Com94]. Comection monitoring 

is performed by comparing the m e n t  h-&c stream characteristics to the source 

tr&c descriptor agreed upon during CAC and the negotiation of the T r a c  Con- 

tract. Hence, as Figure 1.4 shows, the source trafnc descriptor is passed fkom CAC 

to UPC. If the Traftic Contract is violated, c& are dropped.'* Cells wkich conforru 

to the specifications of the Trafic Contract are passed on to the ATM switch which, 

according to its scheduling scheme, duly injects the cells into the back-bone ATM 

network. 

UPC usually takes the form of a policer, since it is the "enforcement arm3 of 

the UNI. Some of the methods proposed for perfor-g UPC indude: the leaky 

bucket ; jumping, sliding, moving and exponential windows; ce11 spacing; UP C flag 

cell; fkaming; and input rate regdation [BGSC92, BS91, GRF89, HH91, MGF91. 

00M91, Rat91, TG92, Ttir86, WRR88]. The drawbacks to most of these methods 

is discussed in Section 1.3. Just as the UNI has an inter-network analog, the NNI. 

mentioned in Section 1.2.3, W C  also has an inter-network analog, namely Network 

''Note that, at the network provider's discretion, violating cells can be tagged and admitted to 
the network. If a tagged cell is present at a network node where congestion exists, it is dropped 
before any non-violating cells are dropped [Corn94 Sai941. 



Parameter Control (NPC). NPC perfoms policing on the t r a c  streams of network 

lùiks. As with the NM, NPC is not considered in this work. 

1.2.3.3 Overview of Shaping 

It is generdy accepted that cd-space shaping, or simply shaping, is an integral 

part of the UNI in ATM networks [Com94]. Shaping is the act of intedering with 

individual cells of a tr&c stream, sach as delaying th& transmission, to achieve 

a certain result.ll Usually this is to reduce barstiness or C d  Delay Variation 

(CDV) and jitter [Com94, RVFSla], or to help define the source characteristics 

(Com94, MS95, Onv94, Par94, Sai94j. Shaping operates on a tr& stream with 

poorly defined or unknown characteristics with the p q o s e  of defining them better. 

This has the triple efFect of reducing the complewity of CAC and UPC schemes: 

since trafnc characteristics are more readily availabk, and increasing the network 

efficiency at network mdtiplexing points, since cell-level congestion and contention 

can be mitigated. 

Additiondy, there is a consensus that t r a c  shaping should be applicable to a 

wide range of t r s c  types (ideally all t r a c  types), make trafnc streams easier to 

describe a t  the UNI, and should simplify policing of a shaped stream. A final advan- 

tage of shaping is that given that a network user has knowledge of how the network 

provider characterizes and polices trafne streams, this allows the "pre-shaping" of 

streams so that Thffic Contracts are easier to negotiate and violations are min- 

imized. There are tao major drawbacks of shaping: first, buffering is required 

"Of course, the cell otder of a t r a c  stream must be preserved. 
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to perform shaping introdaces delay into t r a c  streams; and second, additional 

complexity (hardware) is reqnired for each stream connected at the UNI. However, 

these costs may seem smail when cornpared to the reduction in complexity of CAC 

and UPC, and the benefits of increased network efficiency. 

There are many proposed methods in the Iiteratnre to perform t r a c  shaping 

[BGSCSS, Bro92, BS91, Cha91, Go190, GRF89, Kua94, MOSM89, Nie9O. Nie93. 

OLT92, Rat91, RF91, RVFSlb, SLCG89, Tur86, WM93, WRR881, which indude: 

leaky buckets; token buckets; buffering; ( r ,T )  smoothing; smootlùng filters: c d -  

spacing; Wtuai scheduling; peak rate. source rate and burst length limiting: pri~rity 

queueing; and framing. Perhaps dortunately, much of the work on t r d c  shaping 

has also associated it with policing. This is easy to understand, considering that 

once an offending source is detected, something should be done to correct the 

situation. Thus many of the methods cited to accomplish policing in Section 1.2.3.2 

are easily turned into trafic shapers. 

It is the contention kere that the roles of traffic shaping and policing should be 

separated. Therefore, a trafFic shaper is a device which manipulates cell interarrival 

times to some end, but does not drop or tag any cells, whereas a policer is a device 

which monitors t r a c  streams, dropping or tagging cells as required, but which 

does not affect the ceil interarriva1 times. This dows the shapkig of tr&c streams 

without the usual constraints associated with the c d  loss rate. Further. if the 

shaper is placed at the output ports of switches in the interior of an ATM network. 

this could greatly simplify the scheduling hc t ion  of downstream nodes. Mark 

that tbis is now feasible if the smoothing and policing b c t i o n s  are separated. 
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Current shaping devices, such as a leaky bncket, placed at the output of an ATM 

switch wodd additiondy pedorm some sort of rate regdation, which rnay not be 

desirable. 

There are a number of points dong the route of a trafic stream through the 

network where shaping can take place, as shown by SI44 in Figure 1.4. The 

network provider may choose to perform shaping at any of these locations, perhaps 

multiple locations, or none. As stated in [Com94, section 3.6.3.2.51, '''Rafiic shaping 

is an optional function." Thus, there is some question as to the best location of 

the trafic shaper. Whde the position of the shaper is important, it is its operation 

whick is the concern of a large portion of this thesis. Nonetheless, some pros and 

cons of locating the shaper at the four points spewfied are discussed next. 

At position SI, the user's premises, the shaper is incorporated into the user 

eq"pment. It is iirilikely that ceils are dropped here, since the user most likely 

will purehase bders  large enough for applications, or perhaps employ a send-and- 

wait strategy. The network provider does not need to provide this bufFering, and 

thus costs to the provider are reduced at the expense of the user. Howeva, less 

buffering in the netarork has the d e c t  of reducing nehivork delays. In effect, the 

network bufférs are "distributed" to the users' premises. If the user knows the exact 

nature of the ceU buffesing in the shaper, it is more likely that applications take 

this into account. 

A very similar situation occurs at S2, which is at the UNI but before CAC. In this 

case, however, the network provider must supply the bdering. The bandwidth- 

delay aspect of Iùgh speed networks may be a problem if the distance fiom the 



1.2. ASYNCHRONO US TRANSFER MODE (ATM) 25 

user to the UNI is large, and, or the source to UNI link is fast. A send-and- 

wait strategy canaot be used. More importantly, at both positions S1 and S2, the 

shaping is pedormed before CAC, and so the characteristics of a trafic stream 

will be translated into a possibly much dinerent source tratnc descriptor. This has 

a great effect on the operation of both CAC and UPC, as the previoas sections 

implied. In effect, the shaper attempts to remove the fluctuations or burstiness 

fkom the traffic stream, and thus the operation of the UNI is siniplified. However. 

the network is no longer transparent to the user, which is at odds witk a basic 

premise of ATM networks. 

Position S3, after CAC is pdormed, may at first glance be thought to be the 

same as S2, since after a source is connected to the network, CAC "disappears" 

fkom subsequent activities. However, position S3 represents a sub tle difference in 

how t r a c  streams are perceived. In this case, trafic streams are observed during 

CAC unshaped, and so the methods of Section 1.2.3.1 operate on sources which most 

likely are difEcult to characterize. Thus, if a source violates its TrafEc Contract, the 

shaper may affect the trafic stream such that it returns to a state of conformance. 

In this case policing and thus UPC are very simple, and perhaps c m  be deleted. 

On the other kand, one may question the wisdom of shaping violating cells, since 

they skould be dealt with by the policer. 

Placing the shaper at  position S4, after UPC (and CAC), appears to have limited 

appeal. Here, a network copnection is aheady established and any violating cells 

have been dropped, and so the trafic stream is conforming to the t r a c  contract. 

Hence, no reductions in the complexity of CAC or UPC can be obtahed. However, 



since a shaper affects a stream at the cell level, it may be possible for the shaper 

to act as a pre-muitipiezer. Since the ATM switch has knowledge of its schednling 

sclieme, contention problems that arise at  the muitiplexer of the switch can be 

reduced or even eliminated if the switch guided the shaping. That is, cells on each 

link to the switch can arrive in such a fashion as to alleviate contention and thus 

simplify schednllig. Similady, the network provider rnay aish to shape network 

Links in order to avoid congestion interna1 to the network. Thns an additional 

location, S5, could be placed on each ontgoing U s  of the ATM switch of Figare 

1.4. 

Considering the pros and cons of each position, and the scope of this work, it 

is euvisioned that shaping should take place a t  position S2. This allows reductions 

in the complexity of both CAC and W C .  In addition, it allows shaping and thus 

atly improvements in shaping algorithms to be Sected by the network provider. If 

a user wiskes to by-pass skaping, this can be negotiated in the Trafic Contract. 

In any case, the effects of the skaper shodd be transparent to the user. That is. 

any delays introduced into the trafic stream by shaping should be removed at the 

destination UNI. This is one of the basic features of the Burst-oriented shaper. 

With the discussion of the major elements of the UNI complete, this brief overview 

of ATM cornes to a close. The next section discusses some of the problems that 

occur at the UNI, which result due to the need for source characteristics. 
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1.3 Problems in CAC and UPC 

It should be clear to the reader fiom the discussion of the previms section that the 

network provider requires information about the sources that wish to connect to 

the network so that C d  Admission Control and Usage Parameta Control can be 

performed in order to parantee a Quality of Service. The difference in ATM as 

opposed to traditional data networks is the broad range of services offered. This 

means that the User-Network Interface must be able to deal with a wide rage: of 

sources. For example, a Variable Bit Rate (VBR)" source may vary its transmission 

rate fiom a few kilobits per second to tens of megabits per second, and still be true 

to its source t r a c  descriptor. In contrast, another snch as a Constant Bit Rate 

(CBR) source does not vary its transmission rate at all. Yet o t h a  sources, such as 

Available Bit Rate (ABR) and Unspecified Bit Rate (UBR) can vary thek tr&c 

type. Thus at the UNI, CAC and UPC must be able to handle sources with varying 

characteristics which are stU in the same QoS c h .  It is these problems which 

lead to the work of this thesis, traffic classification and traffic shaping, about which 

more is presented in the foliowing section and Section 1.3.2. Then, the goals of tkis 

work are stated in Section 1.4. 

1.3.1 The Case for Tkafnc Classification 

In general, the speeification of source characteristics is not an easy task. The 

literature is replete with methods and models for charscterizing sources and th& 

parameters, some of which can be fonnd in [CLG95, C0091, Des91, DM93, FMH93, 

12Definitions of VBR, CBR, ABR and UBR sources can be found in [Com95]. 
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FM94, Gus90, HL86, LTWW94, MASf 88, MH87, NF089, Oht94, Onv94, RWSO, 

SAG94, Sai94, Sch96, SMRA89, SW86, TGPM78, VP89, YSSI], where much work 

kas been performed in the measurement and modeling of data, voice and video 

sources. Unfortunately, it may not be possible to estimate source eharacteristics, 

especidy if the source type is unknonn (to the user). In this case it is the net- 

work provida's responsibility to characterize a trafic stream since a source trafEc 

descriptor is required by CAC and UPC. In fact, since the network must perform 

UPC, it may be advisable for the provider to "second guessn the source character- 

istics, regardless of the source traflic descriptor given in the Tk&c Contract. This 

would be especially us& in the case of misbehaving sources. 

Note that ifsome the methods cited above are performed off-line, then the source 

information may not be accurate, and if performed on-line, then this information 

may not be timely. Since ATM networks operate at snch high rates, short terni 

sonrce statistics may be important to these methods and thus congestion eontrol. 

In general, however , s t atis tical methods observe "longer term" trends in sources, 

t hus po tentially missing these "high fkeqnencyn source fluctuations. And of course, 

parametric or model-based methods do not d o w  for the possibility of new tr&c 

types for applications or services not yet adable. 

Therefore there is a need for a method that can accurately and quickly determine 

the trafic class of a given t r a c  stream, without information of its statistics; this is 

a nonparametric approach. For the best range of application, it should be able to be 

used off-line when t r a c  streams are a d a b l e  before hand, and on-line when t r d c  

streams are too non-stationary or unknown. In addition, for best performance of 
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the CAC and UPC, it should be able to i d e n t e  short tenu fluctuations aithout 

losing sight of the longer term characteristics of the t r a c  stream. Herein lies the 

basic idea of this thesis. 

The trafic classification method proposed can be thought of as a transformation 

operator, fiom the statistical domain to the trafic prirniti~e'~ domain. That is. 

usudy  tr&c streams are thought of in t m s  of their statistics, such as first and 

second order moments. Using the statistical tools of the above citations: various 

characteristics of sources can be observed, and thus the sources can be classified. 

Some of these classifications lead to famiüar sources, such as geometic, Intemipted 

Bernoulli process (IBP) or Markov-moddated Bernoulli process (MMBP), to name 

a few. However, these "statistically well knownn sources are w d  known simply 

because they provide tractability in anaiytical methods. Unfortunately, they do 

not appear with any regularity in most of the "real" [LTWW94] and anticipated 

ATM trafiic s treams. 

The novel approach used in tkis work, however, does not rely on traditional 

statistical measures. Instead, t r a c  streams are considered to consist of a smaU 

group of well known t r a c  objects! termed t r a c  primitives. It is conjectured 

t kat these primitives contain information equivdent to the "traditional st atis tical 

informationn of the methods of the citations. However, the information that traffc 

primitives provide is much easier to use, mainiy becanse they can be obsetved on a 

relatively s m d  time scale, that is cd-Ievel as opposed to bnrst-level or cd-Ievel. 

Yet, by considering sequences of traffic primitives, longer term relationships can be 

13TrafEc primitives are the basic object of t r a c  classification, and will be described in detail 
in Chaptet 2. 



considered. 

1.3.2 The Case for ~ a f 3 c  Shaping 

Many of the reasons for performing t r a c  shaping at the UNI of ATM networks are 

mentioned in Sections 1.2.3.3 and 1.3.1. To reiterate, shaping is required so that 

unknown tr&c streams can be characterized, and so that polihg can be simplified. 

This shaping could take place at the the UNI, Say at position S2 of Figure 1.4. It is 

interesting at this point to discnss the Ideal Shaper (1s) and Ideal Unshapa (IW) 

of Figure 1.5. The IS, shown in Figure 1.5(a), is a device which acts upon any 

tr&c stream to produce a desked result, for example transforming a probabilistic 

streun into a deterministic one, but which is also transparent to the source and 

destination of the stream. Call the action that the IS pexforms on a trafic stream 

the Ideal Shaper fanction, denoted r. Now, if 4 is the set of all trafnc streamsL4 

and 90 the set of all deterministic tr&c streams that resdt after ideal shaping, 

and noting that Bo C B, then the IS performs the mapping I' : 9 -+ This 

leads to a test of ideal shaping: if $ E O, +' E @ D ,  and I' (ql t)  = yY, then the action 

of the shaper in question is ideal. As would be expected, the IU of Figure 1.5(b) 

performs the opposite action of the IS, in effect attempting to "undon the &ects 

of shaping the stream. If I'-' is the inverse of r, then it perfoms the mapping 

r 1  : 4 . Hence, idedy, r-l (é') = 11, is the action of the IU. Note that 

unshaping is not attainable using the usual shaping methods in the literature due 

to the fact that information such as intra-cd spacing is discarded. 

l'For a more complete definition of t r a c  streams, refer to Sections 1.6.5 and 1.6.6 contained 
in Section 1.6, Notation and Terminology. 
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Random Input 1 1 Deterministic Output 

(a) Creating a Determ-tic Tr&c Stream 

Deterministic Output Reconstructed Input 

(b) Reconstructing the Original 17taffic Stream 

Figure 1.5: The Ideal Shaper and the Ideal Unshaper 

Of course, designhg the ideal shaper is not statisticdy possible, bat a near ideal 

shaper may be. If such a device is implemented at each user source to produce a 

near deterministic traffic stream, then the job of the multiplexer at the ATM switçh 

would be trivial. It would pedorm near detenninistic multiplexing. As discussed in 

the preceding sections, this is also beneficial for CAC, UPC and further downstrearn 

ATM switches. Similady, designing the ideal unshaper is not possible either, since 

statistical information is removed fkom the unshaped trafic stream II, in order to 

produce gD. However, if this information is somehow stored within the shaped 

stream 4 1 > ~ ,  then an ideal nnshaper coald be approximated. This functionality is 

included in the proposed Bnrst-oriented shaper. 

Some of the sliaping algorithms mentioned in Section 1.2.3.2 have the problems 



of reaction time and range of application. The reaction t h e  of the leaky bucket aucl  

window algorithms is limited to the bucket size and window size, respectively. O ther 

methods require statistical measnrements of the t r a c  stream. Since these methods 

are usuaily designed to operate with aiiy source type, they cannot benefit 6rom 

knowledge of given characteristics of a specific source comected to the network. 

For example, if it is hown that the leaky bucket is operathg on a certain type of 

voice source, then the optimum (in some sense) le* bucket buf'Fer size may be, 

Say, B x  On the other hand, if the source is, Say, a certain type of video stream, 

then it  may be betterif the leaky bucket bder size was set to By- The point is that 

by attempting to be applicable to all traffic sources, m e n t  methods cannot use 

specXc knowledge of sources. However, if trafnc streams could be identified, then 

the shaper could take action tailored to that stream. This feature is iniplemented 

in the proposed Variance Minimized skaper. Both of the shapers mentioned in this 

section, as well as traffic classification result hom the go& of this research, which 

are stated in the following section. 
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1.4 Research Goals 

The reqairement for t r a c  characteristics in ATM networks has been emphasized 

in Section 1.3. It is the goal of this tesearch to provide timely and accurate trafic 

information to the elements of the UNI by paforming t r a c  classification and 

skaping . The following section discusses the motivation for using neural networks . 

Section 1.4.2 presents the goal of trafnc classification, and Sections 1.4.3 and 1.4.4 

present the goals of their respective trafüc shaper. As opposed to the g e a t  amount 

of work in the liteiature that employs shapers to reduce CDV and jitter, the goal 

of both shapers here is to produce as deterministic a tr&c stream as possible, that 

is to paform as dose to the Ideal Shaper of Section 1.3.2 as possible. As a result, 

the funetions of the UNI shodd be simplifie& 

1.4.1 Motivation 

This work was begun with the intention of training a neural network to perform 

the actions of CAC, UPC, and shaping that take place at the UNI. Three neural 

networks would be trained, as shown in Figure 1.6 and loosely based on [Hugo], 

with t h  possibility of merging them into a single neural network, using established 

neural network techniques. However, as the work evolved, it was discovered that if 

attention was concentrated on shaping, then CAC and UPC would be simpMed as 

a result of these efforts. This is true due to the fact that if it is possible to perfom 

ideal shaping, policing would not be required since the source would dways conform 

to its TrafEc Contract (negotiated with shaping in mind). 

Nonetheless, it should be noted that there has been quite an amount of work 



CKAPTER 1. INTRODUCTION 

UNI 
Existing 

Connections 

Source i 

I 
I 
I lntegrated Neural Network (NN) , L- 
C I I I I I I I I I I I I I C I I I A  

Figure 1.6: A Neural Network UNI Control Scheme 
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performed, some of which includes [CL91, E 9 0 ,  -91, LD97, TGG92, THS94], 

that attempts to tackle each component of Figure 1.6. Combining some of the 

functionality of these methods would not be a trivial ta&; bat it would be possible. 

WWe the idea of having only one control mechanism at the UNI is appealing, 

drawbacks such as scalabilib and maintainability &st. The control scheme of 

Figure 1.6 should be considered fnrther, but it is not a topic of this thesis. 

Additionally, as work on traffic shaping progressed, it became apparent that 

it would be usefbl to be able to directly detect t r a c  types, instead of inclirectly 

though a shaper. This would allow the CAC and UPC to operate witkout any 

dependence on trafic shaping. This is important since it is realized that ideal 

traffic shaping is not realizable, and also many sources, such as broadcast quality 

video, are intolerant to delays. Hence, the primitive elassifier is developed, as well 
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as the Minimized Variance and Burst-oriented shapers. 

1.4.2 The Primitive Classifier 

The key idea of the primitive classifier is to treat a t r a c  stream as an object, or 

more precisely as a string of s m d ,  simple objects, instead of viewing it in terms of 

its statistics. With this in mind, one can devise a method that attempts to recognize 

these objects or patterns in the stream, whïch can then be used to classe and thus 

ident* the stream. This is the uderlying principle of the primitive classifier and 

thus the method of t r a c  classification proposed in this thesis. Aspects of work 

were presented at [LM96]. 

An ideal way to recognize patterns is to use neural networks. Neural networks 

Lave the ability to generalize, are noise tolerant, and are able to kandte non- 

stationary data [RBW86, Hay941. As well, once trained a neural network operates 

very fast, since it is a massively pardel device, and so its classiiïcations should 

arrive in a tirnely manner even at ATM speeds. That is, compared to conventional 

(statistical) control mechanisms, all of the computational time that is required in 

estimating parameters is performed "upfiont," during the off-line training of the 

neural network. In addition, if training is saccessfd, these classifications are very 

accurate. Note that the current work is concerned with using neural networks to 

perform t r a c  classification, not with the theory of neural networks themselves. 
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1.4.3 The Minimized Variance Shaper 

Once a t r a c  stream has been dassified into a given t r a c  type using the primitive 

classifier, the Minimized V&ce shaper (MVS) uses information s p e d c  to that 

source to attempt to shape the t r a c  stream to as nedy deterministic as possible. 

This is achieved by attempting to minimize the interdepartme time variance of the 

ceUs of the t r a c  stream exiting the MVS. That is to Say, the inter-cd variance of 

a cleterministic traftic stream is zero, and so this should be the goal of the shaper. 

Aspects of this work appear in [LM94]. 

1.4.4 The Burst-oriented Shaper 

The Burst-onented shaper (BOS) is developed from insights gained in the work on 

tr&c classification. It attempts to isolate a hafEc pattern that should be common 

in ATM networks, namely a period of contiguous cells followed by an idle period. 

It then simply attempts to spread the cells over the entire burst and idle period in 

a d o r m  fashion, again to achieve a deterministic output fiom the shaper. Since 

it contains some of the basic ingredients of traffic dassification, it does not require 

knowledge of the tr&c type, and should be considered an alternative to performing 

primitive classification. 

An important feature of the BOS that sets it apart fiom existing shapers is that 

since it acts on a burst and idle period, it has knowledge of tkeir respective lengths. 

By senclhg this information to the destination UNI which contains an unshaper, 

it is possible for the t r a c  stream to be presented to the destination exactly as 

it entered the network - barring any network problems. This has the desirable 
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effect of using shaping to alleviate the problems at the UNI while presenting the 

oser witk a network connection that is transparent. The next section gives a brief 

overview of neural networks as they pertain to this work. It should be reiterated 

that no contributions are made in the theory of neural networks; they are simply 

applied as a usefüi tool in order to perform trafic classification. 
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1.5 Overview of Neural Networks 

Neural networks have been the topic of research for almost f&y years. They have 

been applied to problems such as adaptive control, pattern recognition and system 

identification, to name a few Pay94, Lip87, M.88,  Was89, WLSO] .15 Enumerating 

these applications. however, would fill many pages and is not constructive for this 

work. Suffice it to Say, neural networks have regained their initial popularity in the 

past decade. 

The main advantages of neural networks is theh parallelism and ability to gener- 

alize. Since they have many computational units which act in pardel, they operate 

very fast. Th& ability to generalize means that they behave well in the presence 

of noisy inputs. If they are confronted with a situation that was not planned for in 

training, they will attemp t to take the action that results in a similar situation for 

which they were trained. Thus, the idea that neural networks can learn. 

Neural networks corne in many fiavors, such as cornpetitive learning and self- 

organization, Adaptive Resonance Theory (ART), feature maps, Eopfield models, 

Biclirectional Associative Memory (B AM), and the Boltzmann Machine [Gro76a. 

Gro76b, Hop82, HS86, Koh82, Kos871. However, arguably the most popular neural 

network paradigm is Backpropagation [RFIWSG], and it is employed in this work. 

Appendix A gives a fidl description of the operation and training of multilayered 

neural networks, and the Backpropagation training algorithm. The reader u n f d -  

iar with neural networks may aish to r e k  to this appendix now. 

l5These few citations contain many references, and the reader is encouraged 
for more applications of neural networks. 

to consuit thern 



The Backpropagation training algorithm is easy to implement, and under most 

circumstances convergence is probable. Unfortunately, as wif h mos t neural network 

paradigms used, there is no mathematical guarantee that convergence will occur 

in a finite amount of time. Another problem of the algorithm is the time requked 

to train the network. The Backpropagation training algorithm is a supervised 

training method, which requires training vectors. A training vector is simply a way 

of describing to the neural network the problem which it must learn. It consists 

of an input to the neural network and its associated desired output. When an 

input is presented, the neural network output is compared to the desired output, 

the difF'ence of which is used to update the weights of the neural network via the 

Backpropagation algorithm. 

Nenral networks have a wide range of application in communications in general 

[Hay94], as well as specificdy in ATM networks , most notably in CAC, congestion 

control, routing and network design and management [CL91, DTW94. FDD97. 

Hir90, Hir91, KM91, LD97, Mor91, MTG93, OAT94, TGG92, THS94, YHS96J. 

These citations represent only a tiny sarnpling of the a d a b l e  publications. Thus 

the idea of using neural networks to leam ATM related input-output relationships 

is generally accepted in the literature. 



1.6 Notation and Terminology 

Terminology and notation, especially the free use of acronyms, can cause serious 

prob1ems for the reader of technical subjects. This section attempts to prevent this 

situation by discussing or definhg important aspects of what has been presented in 

previous sections, and also of what is to corne. The reader may wish to examine the 

fouowing sections now, or refer back to them as the need mises. Highlights indude 

the definition of ATM cells and dots in Section 1.6.3, cellization in Section 1.6.4. 

trafic streams and the definition of sources in Section 1-6.6. Some of the sections 

are included for completeness, for example Section 1.6.5 on cell spacing. While 

these concepts and notation are not used directly in the chapters which follow, 

t hey were instrumental in developing the contrïbntions of this thesis. 

1.6.1 Notation 

Z+: the positive integers; Zf = {O, 1,2,. . .). 

W+: the positive reals; B+ = [O, 00). 

x: an emboldened variable represents a column vectos. 

1.6.2 Link Rate and Effective Rate 

The link rate, CL, is the transmission speed of the ATM backbone Link, in bits per 

second (bps). It is the maximum speed at which data can be transmitted by the 

network provider. The effective rate, C, is the maximum speed at which a user 

may transmit data. Note that C < CL due to protocol overhead. Unless stated to 
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the contrary, the terms lùik capacity or simply capacity refer to t h  effective Iuik 

rate. 

1.6.3 ATM Cells and Slots 

The ATM c d  format is speded in (Com94, Section 31. Here, however, it is suf- 

ficient to realize that an ATM cell, or simply c d ,  has a &xd size of 53 bytes; 48 

bytes of data, and 5 bytes of header. Figure 1.7(a) depicts an ATM c d ,  where 

the header and data portion of the c d  are drawn to scaie. The exact structure of 

ATM cell - 
header 

(a) Overview of an ATM Ceil 

ATM cell 
data 

- Slots -Y 

(b) Cells and Slots 

Figure 1.7: The ATM C d  Layout and ATM Slots 

the cell is not important to tus  work, rather the fact that the cell has a îuced size. 

The concept of a c d  is so important to B-ISDN, and tkus ATM, tkat it is defiriaci 
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in ITU-T Recommendation 1.113 PTUSla] as 'A c d  is a block of fixed length. 

It is identified by a label at the ATM layer of the B-ISDN PRM."" In addition, 

ITU-T Recommendation 1.321 [ITUSlb] goes on to define cell types. Of these, at 

the ATM layer [Corn941 are assigned and unassigned cells. However, delving into 

the standards to this degree does not help to dari@ that which wiU be discussed in 

the ckapters that folIow. Thus, a generalized definition of a cell is given here that 

incorporates several aspects of ATM cells as they are defined in the standards, with 

the realization that this has a simplifying d e c t  for the purposes of this thesis. 

DEFINITION 1.6.1 (ATM CELL) 

A cell is a unit consisting of 48 bytes of data. The t h e  required to transmit a c d  

is 

53 x 8 
TL = - seconds. 

CL 

This transmission time corresponds to a c d  transmission rate of RI, = cells per 

second. Note that due to the five byte overhead in an ATM cell, the highest possible 

tliroughput a user can achieve is C = g R L  cells per second. Since an ATM cell 

has a fixed size, it is convenient to tliink of channel time in ATM links as sbtted, 

witk dot time TL seconds. A slot can be assigned, in which case it contains a cell, 

or unassigned, in which case it is empty, as Figure 1.7(b) indicates. As mentioned, 

since the exact structure of the ATM c d  is animportant in this work, the ATM 

cells in Figure 1.7(b) no longer make the distinction between header and data; this 

convention will be used from this point. 

16Protocol Reference Model. 
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The c d  stream shown in Figure 1.7(b) consists of a c d  foIlowed by three 

consecutive empty slots,17 two consecutive cells f o h e d  by a dot, a c d  followed by 

two consecutive dots, and finaily four consecutive c&. As can be seen, spec+g 

streams of cells in this manna is very verbose, espeudy for long stxeams. Section 

1.6.4 inhoduces a short form for specifykg c d  streams, and Section 1.6.6 gives a 

formal defmition of streams of c&- 

Due to the s m d  size of an ATM cell, it is &ely that any applications will produce 

a t r a c  stream that is made up of cells. More likely, packets fiom applicatious ur 

LANs will make up trafEc streams. And since ATM is a packet swi tchg nrtwurk. 

a mechanism is reqaired to break these larger data units into cells before they 

enter the ATM network, and then reconshct them again as they leave. This 

functionality is performed by the ATM Adaptation Layer (AAL) [Com94], shown 

in Figure 1.8. Its pupose, in the contact of this work, is that the AAL perfonns the 

h c t i o n  of cellization, coined here for ATM networks. 

DEFINITION 1.6.2 (CELLIZATION) 

Cebation is the process by wlu'ch packets of data fiom users, applications and 

other networks is encapsulated into ATM cells. 

In general. the packets will consist of keader and data information, of variable 

length. These packets are expected to be much larger than an ATM cell. Cellization 

is analogous to packetization in traditional networks [BGSZ, Tan881. It is couveuieiit 

 o or the remainder of this thesis, the term slot is used to signify an empty dot. 
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Application Packet 7 

I ATM Adaptation Layer (AAL) 

Unassigned slot a ~ s s i ~ n e d  slot (cell) 

Figure 1.8: Trafic Partitioning at the ATM Adaptation Layer 

then, after cellization, to represent a t r a c  stream as a string of "1's" or "0's." 

where a "1" indicates a c d ,  and a "On a slot. With this notation, the cellized data 

of Figure 1.8 can be represented as "11111100011111111." 

The salient feature of cebation, as it pertains to t r a c  primitive classification 

which is the subject of Section 2.1, is that a data packet is, most likely, transformed 

into a number of contiguons c&. Thus, a stream of packets is trandormed into 

a group of ceils f o h e d  a group of slots, and so on as the tr&c stream passes 

tlirougli the AAL. In other words, the t r a c  stream departing the AAL can be 

described as a packet train [JR86]. This fact is paramount in the definition of the 

traffic primitives. 



1.6. NOTATION AND TERlMINOLOGY 

1.6.5 Cell Spacing and Cell Bursts 

In order to aid in the development of tr&c classification and shaping, it is necessary 

to define c d  spacing. This section and portions of the following are indnded for 

completeness, so that the reada has some indication of the path foilowed in this 

work. 

DEFINITION 1.6.3 (CELL SPACING, T )  

CeIl spacing, or intra-cell spaciog, r ,  is the namber of consecutive dots between 

two ce&. 

Note that since tkere can be zero or more dots between two cells. T E ZC. Fi,prr 

1.9 gives two examples of ceil spaeing. Figure 1.9(a) shows a case where the iiitra- 

A T +  
(a) T = 3 

-4-r 
(b) 7 = 0 

Figure 1.9: Two Examples of Cell Spacing 

c d  spacing is r = 3, whereas Figure 1.9(b) shows the case for a burst, that is T = 0. 

This example leads nat urdy to the next definition. 

DEF~NITION 1.6.4 (BURST) 

A burst is the situation that occurs when the ceII spacing between two cells is zero. 

that is T = 0. 

A result of this definition is that it requires two or more consecutive cells to create 

a burst; a single c d  is not a burst. 



1.6.6 Tkaffic Streams 

The definition of c d  spacing of the previous section is used here to define a trafnc 

stream, and this definition can then be used to specify different types of t r a c  

streams, such as constant bit rate, packet train and on-off, as is done in Sections 

1.6.6.1-1.6.6.3. Finally, a more general trafic stream definition is given in Sec- 

tion 1.6.6.4, which forms the basis of the description of tr&c sources nsed in the 

following chap tas. 

As a trafûc stream is passed to the AAL, it experiences cellization into ATM 

ceils, as discussed in Section 1.6.4. As su&, it can be described as a finite sequence 

of cells separated by a possibly time varying but undonbtably random cell spacing, 

T;, as introdticed in Section 1.6.5. Here, i denotes the length of the ith intra-cd 

tirne, in slots, between the ith and ((i + 1)"' cells in the stream. Therefore, it is 

possible to describe tLis trafnc stream not in t a n s  of its c d  arrival times, but 

rather by a finite sequence of its intra-ceil spacing. 

For example, consider Figure 1.10, which is the same cell stream as in Figure 

1.7(b). It depicts a t r a c  stream of eight cells and six slots. Using the above 

1 - 7 1 4  + 3 H  74 k 
Figure 1.10: Specifying a Rafnc Stream 

notation, this stream can be described by the cell spaOng sequence TI = 3, 7 2  = 
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0, T3 = 1, = 2, 7 5  = O, TB = O, TT = O, or eqnivalently gl, = (3, 0, 1, 2, 0, O, O), 

where $ is a cell spacing sequence variable. More generally, let 

be a finite sequence of N elements, ri E Z+, N E Z+, and let O denote the set of 

ail such finite sequences, that is 

= {d finite sequences whose elements Ti are drawn fÏom z +) . 

(1-3) 

This leads t O the following definition. 

DEFINITION 1.6 -5 (TRAFPIC STREAM) 

A traffic stream + is a partidar realization of a finite c d  spaciag sequence dram 

fiom 9, that is ?,ù E !P. 

With this definition, the notation q5N denotes a traf6c stream with N c d  spacing 

elements. Using this notation, it is possible to defme some common traffic streams, 

as follows. 

1.6.6.1 Deterministic or CBR Streams, !PD 

A detenninistic or Constant Bit Rate (CBR) stream is one which does not have 

any variation in the intra-cd spacing; that is, it has no random component. Refer 

to Figure 1.11, which gives an example of a CBR stream utilking 50% of the l i .  

capacity, C . Since the tenn CBR is used most commonly in the literature to denote 



CHAPTER 1. INTRODUCTION 

Figure 1.11: An Example of a Constant Bit Rate (CBR) Traffic Stream 

a deterministie source, the t a m  deterministic stream wdl  no longer be employed. 

DEPINITION 1.6.6 (CBR STREAMS, @*) 

CBR traffic streams, 8D C 8, is the set of d finite seqnences such that each 

element of the ce11 spacing sequerice lias the same value, that is 

The particular realization of the CBR trafic stream of Figure 1.11 can be described 

as 10101O101010101. or (1 ,1 ,1 ,1~  1,1,1), using the present notation. More gener- 

dy. any sub-multiple of the link capaùty can b e  given by 

$;(K) = (K,K, ... , r ~  = K), ( 1.5 ) 

wlJ& represents a CBR trafic stream, length N (K + 1) +1 cells, with a c d  arriva1 

rate S- cells per second. K+l 

1.6.6.2 Padcet Pain (PT) Streams, qpT 

A packet train (PT) stream, Like the CBR stream, does not contain any random 

component. Cells arrive in w d  defmed groups, or packets, witk equal spacing 

witliki and between the groups. The number of ceils in each group is the same. as 
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is the number of slots betaeen each group. The example depicted in Figure 1.12 

shows a PT stream, where taro cells arrive side by side, foilowed by two slots, and 

can be written as (0,2,0,2,0,2,0) = 11001100110011. It &O ntilizes 50% of the 

Figure 1.12: An Example of a Packet I'rain (PT) Trafic Stream 

link capaUty. This leads to the following definition. 

DEFINITION 1.6.7 (PT STREAMS, !@rn) 

PT trafllc streams, !Pm c @, is the set of al1 finite sequences such t6at at least 

two contiguous ce& are followed by at least one dot, repeatkig, that is 

Note that for a stream to be considered a PT stream, it must have at least two cells 

side by side, followed by at least one dot, and that it ends with a burst of cells. 



From this definition, a general PT stream can be written as 

which represents a PT t r a c  stream wïth bnrst size i + 1 cells in length and idle 

size K slo ts in length, for a to ta1 s tream length of (E) (K + i + 1) + i + 1 tells, 

1.6.6.3 On-Off Streams, 800 

An on-off stream has the same overd structure as the packet train, in that groups 

of cells arrive together, however the number of c d s  in a group, as well as the 

intr a-group and inter-group spacings are random. The randomness , of course, is 

defîneci by some underlying probability distribution. Since it is M c d t  to show 

a distribution with only a few cells, Figure 1.13 gives an example of an on-off 

stream whose "on-period" is deterministic of size six cells, whose "off-periodn is 

Figure 1.13: An Example of an On-off 'Ikaffic Stream 

detenninistic of size four slots, and with the on-period distributed as the CBR 

stream of Figure 1.11. This stream utilizes 40% of the link capacity. 

DEFINITION 1.6.8 (ON-OFF STREAMS, 900)  

The set of On-off trafnc streams, Boa c B, is a set of all finite sequences suck 

thaf an on-period is followed by an off-period, repeatuig. Define 0 to be the 
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set of ail possible dismete probabdity distributions, inclnding the dettzmhüstic 

"distribution. " The Iength of the on-period is a random variable taken &om some 

distribution in fi, and the length of the off-period is a random variable taken fiom 

a possibly different distribution in Q. W i t h  the on-period, the inter-cd spacing 

is a random vaRable taken fkom a possibly third distribution in fi. Once the t k e e  

distributions have been chosen, they are in-mt. 

As can be seen fÏom the previous two sections, this cell-level notation is not 

amenable for traffic streams with elements taken fkom probabilify distributioiis. 

The stream notation is used for developing the primitive ciassifier and trafEc shapers, 

and is not intended for this level of complexity. Thus, as is introduced in the next 

section, a more efficient notation c m  be osed, based on this definition of an on-off 

t r a c  stream. 

1.6.6.4 General On-off Tkaffic Sources 

Pursuant to the discussion of the previous section, the definition of a general on- 

off traffic source follows. It can be used to characterize dl of the sources of trdic 

streams rnentioned in the previous sections, namely CBR, PT and, of course, on-off. 

DEFUU~TION 1.6.9 (ON-OFF TRAFFIC SOURCE, (O, C, p)) 

An on-off trafic source, ( ~ r ,  c, p), is a tr&c source of alternathg periods where 

the source is either "onn or "off, " as sliown in Figure 1.13. The distribution of the 

lengtli of the on-period is given by a and the distribution of the off-period by C; 
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the inter-cell distribution wîthin an on-period is given by p, where 

where 

Z) (x) : indicates a deterministic distribution, where the outcome is always x. 

U (2): indicates a d o r m  distribution, where the outcome is Miformly dis- 

tributed between 1 and x. 

B ( p ) :  indicates a Bernoulli distribution, with parameter p, 

G ( p ) :  indicates a Geometric distribution, with parameter p, 

3L (x, p): indicates a general discrete dishibution, where the probability of outcome 

xi E x is given by the corresponding pi E pl 

0: indicates the null distribution, which has no outcorne. 

Note that if a certain distribution is not required, for example a CBR source does 

not have an off-period, then the convention is to use the n d  distribution, which 

iniplies that c is not required. 

Using this new notation, the CBR source of section 1.6.6.1 can be represented 

by CBR (x) = !Poo (D (l), 2) (x), @), which utilizes & of the link rate. Thus. the 

1 1010101 source is given by CBR (1) and utilizes 5 of the link rate. Similady, a 
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1001001 source can be represented by CBR(2). The paclcet train source of Sec- 

tion 1.6.6.2 is, in general, given by PT (z, y) = Ooo (23 (z), 0, ?) (y)). Thus, the 

PT source of Figure 1.12 can be expressed as PT (2,2). Since on-off sources are 

considerably more complicated, they WU be defined as required. 

Witk a generalized on-off source defined, tkis section on notation draws to a 

close, as does the Introduction. The following chapter describes a major coutribu- 

tion of this thesis, the primitive classifier. 





Chapter 2 

Traffic Classification 

The novel idea of the tr&c classification method proposed is to view t r a c  streams 

as collections of objects, wkich represents the core of this research. As introduced 

extensively in Chapter 1, traffic classification is required in order to determine 

source characteris tics. 

In this chapter, Section 2.1 introduces the concept of the trafnc primitives. and 

&scusses both the characterization of generai traffic streams and tlieir partitionhg 

into broad groups. Doing so allows the spedcation of traffic primitives and finally 

the t r a c  primitive classifier. This section closes with a brief word on the scalability 

of this neural network based tr&c dassification method by briefly mentioning the 

compound classifier. In Section 2.2, the training methods employed are discussed, 

and as well the validity of the training. Section 2.3 shows the resdts of training 

three different primitive classifiers using 10-35-35-9, 15-80-80-10 and 20-200-200- 

11 neural networks. The remainder of this chapter, Section 2.4, discusses the results 

of operating the primitive classifier witk trafic streams not presented to the neural 
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networks during training. This shows a neural nehaork's ability to generalize, and 

thus the wide range of applicability of this method. 



2- 1- CLASSIFICATION OF TR4FFZC PRlMITNES 

2.1 Classification of TrafEc Primitives 

Tr&c classification is based on the premise that a trafic stream can be broken down 

into a few basic trafnc objects, called tru& primitives. When these primitives arc: 

arranged in certain patterns, they can describe more complicated sources. Thus. 

with the correct choice of the ordering of strings of trafic primitives, it should be 

possible to create a "recipe" which describes how to reproduce a given stream. If 

one considers a wide range of t r a c  streams, they invariably consist of groups of 

data and ide  periods interspersed in some manner. Thns, the tr&c primitives 

should be chosen to simply mimic this observation. In an ATM setting, groups of 

data are represented by cells, and idle periods by slots, as deflied in Section 1.6.3. 

The following Section 2.1.1 discusses how streams of data, or t r a c  streams, can 

be observed and characterized so that features of the stream c m  b e  detected. Once 

certain features of an Mknown trafic stream are observed, they can be compared 

to tkose of known traffic streams. In this way, unknown sources cau be classified. 

While this tecknique is not new, the novel approack of this work employs iieural 

networks to perform the feature cornparison and thus classification. Section 2.1.2 

takes the insights gained by considering the eharacteristics of trafnc streams and 

applies them s p e d c d y  to the c d  streams which exit the ATM Adaptation Layer. 

Due to the defined behaviot of ceb and slots after ~ellization,~ this knowledge can 

be used to partition tranic streams into basic groups, or trafbc types. Ekom these, 

as mentioned above, it is envisioned that more complicated tranic streams can be 

classified. The characterizhg and partitioning of t r a c  streams wïU form the basis 

'Cellization is defined in Section 1.6.4. 



for the definition of t r a c  primitives in Section 2.1.3. Section 2.1.4 then introduces 

the neural network based classifier which will detect features of an nnlniown trafEc 

stream by comparing them to features of streams it has ben trained to recognize. 

The classifier then outputs which trafnc primitives it recognizes in the stream. 

Section 2.1.5 makes an analogy between t r a c  primitives and Optical Character 

Recognition, and finaUy Section 2.1.6 discusses the scalabiüty of the classifier by 

introducing the Compound Primitive Classifier. 

2.1.1 Characterizhg rLiraf6c Streams 

In this section, an atypical traflic stream wiU be examined in order to discuss various 

characteristics of ATM tr&c, This somewhat contrived stream, which could be 

a video source, for example, is shown in Figure 2.1. It is simply devised to help 

Figure 2.1: Ident+g Primitives in a 'ItSc Stream 

explain the concept of t r a c  primitives, since it is rich in the types of features 

upon which the primitive dassification is based. The stream of Figure 2.1 can be 

subdivided into three sections, labeled A, B and C, where in each section the stream 

takes on a certain "character." One could say that in section A the stream more or 

less is "all on," that is, it utilizes the entire transmission link capacity. In section 

B, its character is that of a constant bit rate source that utilizes half of the link 
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capacity. Lastly, in section C the stream resembles a packet train source. utiliziug 

about 40% of the link. Depending on the amount of the stream an observer wiskes 

to consider, the boundaries of these three sections - and thas the daracter of 

the traffic stream - may change. For example, by shifting the boundary between 

sections A and B to the right, the character of the stream in section A changes 

from “ail on" to "half on," or perhaps even to resemble a packet train. Hence, the 

specification of tr&c primitives is contingent on the fiame of refaence, or the size 

of the "window" the observer looks through to see a portion of the h&c stream. 

The smdest objects of a stream, in the context of trafic primitives, 

are the c d  and the slot. If the window through which an observer examines a 

traffic stream was only one dot  large, then the observer codd only Say that a c d  

or slot is present; no other information about the stream could be infemed. As 

the window through which the observer sees the trafic stream is eulargecl. mure 

stream characteristics become apparent. In fact, the namber of distinctions in 

trafnc character that can be made when utilizing a window of size W is 2W. To 

justify this, consider a window of size W = 1. The observer will see either a c d  

or a slot, and nothing else. If the window is of size W = 2, the observer d l  

see either two cells, two slots, a c d  and a slot, or a dot and a cd, as show in 

Figure 2.2. Representing a slot with a O and a cell with a 1, as in Section 1.6.4, 

Figure 2.2: Possible Observations fiom a Window of Size W = 2 



these distinctions can be expressed as the set (11, 00, 10, 01). For a window shed 

W = 3, the set of distinct trafüc patterns that can be observed through the window 

becomes (000, 001, 010, 011, 100, 101, 110, 111). Accordïngly, one can deady 

see the reasoning for 2W througk elementary set th-: the namber of distinctions 

that can be observed through a window of size W is equivalent to the namber of 

elements in the power set2 of a set of W elements. In this case, each element is a 

trafEic stream position which can be observed through the window, and in which 

either a cell or a slot can be placed. This property of increasing distinctiveness as 

the observation window size increases is analogous to st atistical methods, in that 

the more observations of a t r a c  stream are made, the more accurate become the 

statistical measures of the stream. At the extreme, the window could encompass 

t b  entke stream, at which point the observer wodd have complete knowledge 

of the source. However, performing this is as impractical when employing tr&c 

primitives as it is when employing s tatistical measures. 

Tu order to show more clearly the d e c t  of different window &es and their rel- 

ative positions on the trafnc characteristics observed in the given t r a c  stream, 

sections A, B and C of Figure 2.1 are reproduced in Figures 2.3(a)-2.3(c), respec- 

tively. Consider section A of Figure 2.1, which is reproduced three times in Figure 

2.3(a). The dashed boxes represent four possible sizes and positions of the window 

th~ough which the observer views the t r a c  stream. As discussed above, a window 

of size one slot does not produce very interesting information, so the first window 

of Figure 2.3(a), W1, is taro slots wide. With the amount of trafic stream observed 

 or the definition of the power set, see [Gii76,2.01 Definition], and for the number of elements 
in a power set, see [Gil76, 2.06 Theored. 
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(a) Reproductions of section A 

(b) Reproductions of section B 

Figure 2.3: Effect of Window Size and Position on Stream Identification 

through window W1, the observer may conclude that the transmission link is M y  

utilized, since the portion of the stream seen through this window contains only 

cells. For two cell arrivais, or as the window W1 is slid c d  by c d  towards window 

position W2, the observa could conclude the same. As the window is slid once more 
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to the right to include the k s t  slot, the observer may aish to change this observa- 

tion to report that only half of the link is being ntilized. At W2, the observation 

could now be that the link is ide. These quickly changing observations are due to 

the fact that the observation window is quite smd.  In order to make fewer, more 

stable observations, and to increase the nnmber of traffic characteristics which can 

be observed, window W3 is twice the size of W1. As can be seen? it encornpasses 

the entire "on" period of this section of the t r a c  stream. The observer could now 

state with more confidence that the stream utilizes the fidl link rate, since more of 

the stream is being obserred. However, as window W3 is slid to the right towards 

the position of window W4, the observer may wish to change this statement. At 

position W4, it now appears that the link capacity is only 50% ntilized. Even with 

only one shift to the right, that is after only one additional observation, the observer 

may start to doubt the initial characterization of the stream. 

Figure 2.3(b) reproduces, once again three times, section B of Figure 2.1, the 

section of the traffic stream which has the characteristics of a constant bit rate 

source utilizing 50% of the Link capacity. As in Figure %.3(a), using a window size 

of W = 2 and observing the trafic stream through window positions starting at 

W5 and sliding towards W6 on a c d  by c d  or slot by slot basis, it can be seen that 

the observer could make the characterization that the tr&c stream is made up of a 

ceil and a slot, in an alternating fashion. Using the notation introdnced in Section 

1.6.6.4, c d  this t r a c  stream type CBR(1). It would appear that for this type of 

trafic stream, a window size of W = 2 is sufncient to capture its characteristics. 

However, this window size does not fare as well when used to characterize the 
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stream shown in Figure 2.4, which differs fiom that of Figure 2.3(b) by only one 

dot between each c d  pair; c d  this tr&c type CBR (2). With this stream, window 

positions X1 and X3 characterize the stream as type CBR(1), which it is not, and 

position X2 indicates that the stream does not ntilize any of the liaL capacity, which 

it dearly does. Thadore, while a window size W = 2 can be used to capture the 

features of the constant bit rate stream of Figure 2.3(b) that atilizes half of the link 

capacity, it c an~o t  be used to characterize the constant bit rate stream of Figure 

2.4 which utilizes one third of the linL capacity. As was suggested above when 

discussing Figure 2.3(a), larger window sizes are requked. Referring back to Figure 

2.3(b), window W7 is now six dots long. In addition to being able to characteririÿt: 

Figure 2.4: The Requirement for larger Window Sizes 

the CBR (1) stream, this window can also be used to characterize the t r a c  stream 

of Figure 2.4 (window X4) as CBR (2), not CBR (1). This is another example of 

kow increasing window size can be used to increase the distinctions that c m  be 

observed, and thus the namber of traffic stream types. Unfortunately, as can be 

seen from window position W8 of Figure 2.3(b), it is still possible for the observer 

to question the characterization. In this case, the observer may wish to say that 

the stream is "closen to that of stream type CBR (l), since it M e r s  by only one 

slot. This idea wiU be revisited in later sections. 
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As the final example of the d e c t  of window size and position in observing 

characteristics or features in a tr&c stream, Figure 2.3(c) reproduces, four times, 

section C of Figure 2.1. As can be seen, section C resembles a packet train, with 

two contiguous cells followed by three contiguous slots. To help this discussion, c d  

tkis traffic type PT (2,3), again using the notation of Section 1.6.6.4. As c m  be 

seen fkom windows W9 and WlO of Figure 2.3(c), a window size of W = 2 does 

not correctly capture the featnres of this stream. The observer may report that 

the traffic stream otilizes all of the linlr capacity, or none, or that the stream is 

type CBR(1). In order to capture the characteristics of this tr&c stream, the 

wkidow size must be increased. Accordingly, windows W11, W12 and W13 are five 

slots long. Window W11 obviously allows the observation of the features of the 

PT (2,3)  stream: two cells followed by three slots, the "definition" of this traffic 

type. However, it should be noted that the c d  and slot patterns obsenred through 

windows W12 and W13 also show the features of this trafic type; the window W11 

kas simply been shined along the t r a c  stream. This is an extremely important 

point to consider when deciding which traffic m e s  are being obsemed: not only the 

ce11 and slot pattern of the definition of a trafic stream type must be considered, but 

also any other patterns that are produced when shifing the window along the defming 

trafic stream. The reason for this W e "  is for stability in malring observations; 

that is, if the trafic stream observed does not change in character, then neither 

should the trafnc stream type. If the observer is presented a t r a c  stream which 

is a true PT (2,3) stream, then for all window positions and thus all observations 

of this stresm, the observer should report that the stream is type PT (2,3). If, on 
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the 0th- hand, the observer sees the c d  and slot pattern of, Say, window W13 

of Figure 2.3(c), and reports that this is trafnc type, Say, "XJS-12," then the 

definition of a pare PT (2,3) stream, based on its trafne patterns, becomes unddy 

complicated. In o tha  words, it wodd be possible not to foUow the above d e ,  

but it wodd ody  obfascate the determination of the t r a c  stream type. Summing 

up, some featareç of certain tr&c streams may have more than one cell and slot 

pattern, or morphisn, as will be discussed in Section 2.2.1. 

Bringing the ideas of this section together, it can be seen that as the window 

size W used to observe a tr&c stream increases, so does the number of features or 

characteristics that can be picked out of the stream. The window can be thought of 

as a Iow pass filter, where the large the window is, the more high kequency features 

are Wtered out." Since more of the stream is observed through a larger wiridow, 

a single statement pertaining to the traffic stream's long-term characteristics can 

replace more frequent statements regarding the stream's short-term featnres. That 

is, a larger W decreases the chances of observing a stream with characteristics, Say, 

that it utilizes the fidl link capacity, then half, then none, then back to half, then 

back to fûll, and so on, with the single observation that the stream is of t r a c  

type, Say, CBR (2). The choice of window size also impacts on the definition of 

the trafic stream types that can be used to specify the observations. A s m d  

window size b i t s  the number of stream types which can be defined to zW. For 

example, with a window size W = 5, ody  Z5 = 32 different trafEc characteristics 

can be differentiated. While tkis may be sdc ien t  for determining whether a ttaffic 

stream is, Say, CBR (S), it is not possible to defuie a safncient number of features for 



making more complicated classfications, such as the CBR (2) stream has become a 

PT (2,3) stream. Making observations sach as this, of course, is a nsefnl application 

of tr&c classification. 

Also, many of the cell and slot patterns, or tr& patterns, observed through the 

window must be associated with the same t r a c  type in order to ensure stability 

in the observations made. These points tend to recommend that the window be 

made as large as possible, and theoreticdy, this would be ideal. On the O ther hand, 

too large a window can d o w  too much idormation about the traffic stream to be 

O bserved, thus making stream characterization difficult. In addition, the large the 

window is, the more time will be requked in m a h g  an informed decision about 

traffic type, since more data must be collected. The size of aindow chosen, then, 

represents a tradeoff between accnracy of observation and delay in making that 

observation. As wiU be seen in Section 2.1.4, practical problems that anse when 

training neural networks also have a limiting efFect on the window size. 

2.1.2 Partitioning of D a c  Streams 

The discussion of Section 2.1.1 introduced the concept of the tr&c primitive. Traf- 

fic primitives are based on featnres or characteristics observed in a given t r a c  

stream. In addition, their speciiication depends on the size of the window through 

which the stream is observed. This section wdl serve as a link between the charac- 

terization of trafEc streams and the formal specification of tr&c primitives which 

will appear in Section 2.1.3. The determination of the window size W will  be 

~ o s t ~ o n e d  until Section 2.1.4. 



I t  is beneficial for the specification of the tratae primitives in an ATM set ting 

to attempt to partition, or broadly pre-ciassi. from the set of all possible c d  and 

slot patterns q, the traffic streams antiupated in the network into classes of t r a c  

types. The partitions defmed shodd have general properties of the streams con- 

tained therein. This partitioning, howeva, should not be so speufic as to predade 

the classification of new t r a c  types as they should arise - most Iikely from com- 

pletely new applications.3 For more speeific properties of the streams in a &en 

partition, t r a c  primitives mnst be defined. Nonetheless, as much as possible a 

priori knowledge of the system at hand should be employed in order to make the 

best partitioning decisions. In a general high speed network setting, an obvious 

choice for partitioning trafnc streams is by the t r a c  types forseen to be prevalerit. 

The drawbaek of tkis, of course, is the problem of new traffic types, as ailudeci 

to above. This problem may be avoided in an ATM network, however, due to its 

slotted nature, which tends to unormaiken the features of t r a c  streams. In an 

ATM network, before a data stream entas the backbone network, it passes through 

the ATM Adaptation Layer, introduced in Section 1.6.4. As discussed, regardless 

of the nature of the trafnc stream entering the AAL, it will exit as groups of cells 

(bursts) and groups of slots (idle periods) [LTWW94]. Only rarely will a single c d  

or slot appear, except of course as an integral part of a given t r a c  type, such as 

a constant bit rate stream. Considering this, the contrived source shown in Figure 

2.1 of the previous section foreshadows the trafiic classes which will result after 

partitioning. 

3For example, the use of the Internet (a data network) for voice applications was most iikely 
comple tely unanticipated by the Internet's designers. 
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To specify a partition, it is easiest to consider the c d  patterns that can be 

present after the AAL. S tarting with simple patterns aad increasing their complex- 

ity, there could be: all cells; all slots; a ceIl foilowed by a slot, repeating; a ce11 

followed by two slots, repeating; a cell followed by N slots, repeating; two cells 

followed by a siot, repeating; h o  cells followed by two slots, repeating; two cells 

followed by N slots, repeating; and in general, M cells followed by N slots, re- 

peating. Thus, by simply fixing the number of cells and dots a broad partition 

can be made of the features of t r a c  streams emitted by the AAL. Call this the 

deterministic partition. Another partition can be made dong similar lines, where 

instead of a constant number of M cells are foilowed by N slots, repeating, the 

number of cells and slots are given by probability distributions. Since an ATM 

network is slotted and thns c d  arrivah occur only at discrete times, this partition 

woulcl contain t r a c  streams specified by discrete distributions. This may include, 

but is not limited to, Interrnpted Bernoulli Processes (IBP), packet traius with on 

and off periods speded by, Say, uniform or geometric distributions, and Markov- 

modulated Bernoulli processes (MMBP), as cited in Section 1.3.1. C d  this the 

distribution partition. S pecifying t hese two partitions encompasses many common 

t r a c  streams. A final partition should be specified which contains extremely rare 

sources, or more precisely c d  and slot patterns which are sporadic or occur as 

a result of other (unanticipated) events. For example, a strearn which contains 

ody slots except for a single c d ,  or two cells foliowed by three slots followed by 

three cells, not repeating. Another group of streams wodd be those memoryless 

streams which can be represented by a geometric distribution; fortuitously, due to 



the action of the AAL, streams with this characteristic should be extremely rare. 

C d  this the degenerate partition. It codd be argued that a fourth partition should 

be d e h e d  which contains al1 tr&c streams not yet defined. However, it is hoped 

that by judicionsly partioning known trafnc streams and thus by speufying the 

tr&c primitives properly, new trafic strearns wil l  consist only of traftic primitives 

akeady specified. In this way, the problems associated with previously unknown 

traffic streams will be circumvented. 

It must be uderstood that these broad partitions are made as a consequence 

of the foreknowledge that ail streams must pass through the AAL before beiiig 

aclnitted to the backbone of an ATM network. In high speed networks other 

than ATM, the partitioning may be completely dinetent, and hence the resdtiug 

spedication of the tr&c primitives. In these cases the t r a c  classification may 

yield merent  results, yet the method employed here can remain the same. 

The nnmber of traffic streams encompassed by each partition may be very large, 

and mos t likely countably infinite. It is impossible to train a neural network to learn 

an infinite ntunber of training patterns, however, since this wi l l  take an infinite 

amount of training tirne. In addition, attempting to train a neural network with 

"random" inputs will also be Micult, since neural networks leam input-output re- 

lationships. If the input-output relationskips are not static, then on each training 

pass the neural network wiU attempt to remember the new relationship. Tlius. 

the newd network training patterns are chosen only from the deterniiiùstiç atid 

degenerate partitions. The guiding idea here is that the neural network will gener- 

alize fkom the deterministic patterns and be able to classify tr&c streams fiom the 
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distribution partition. In fact, it is planned that variations fiom the deterministic 

partition trafic streams will be interpreted as "noise," and thns generalization will 

take place, as discussed in Section 1.5. For example, a packet train source with uni- 

formiy distributeci periocl of mean h o  cells and uniformly distributed "off 

period of mean t k e e  slots should be  dassified, with a hi& degree of probability, as 

a PT (2,3) (deterministic) trafic stream. However, it is anticipated that some of 

the classifications of this "noisyn PT (2,3) source wül &O result in the observation 

of t r a c  types such as PT (3,3), PT (4,2), PT (5, l), for example. These tr&c 

types are very similar to PT (2,3), and so the randomness in ceIl amivals of this 

d o r m l y  distnbuted source may lead to observations of a variety of trafEc types. 

From this one rnay conclude that this stream wiU be classified poorly. This would 

be the case if only these initial Jassifications were used. For distribution parti- 

tion t r a c  streams, however, fnrther classification is reqnired, where patterns in 

t ke tr&c primitives mus t be O bsenred. As mentioned previously, the classification 

of traffic streams is kighly dependent on the classifications required. That is, if 

a network provider knows tkat only deterministic partition trafic streams will be 

present in a certain situation, then only an initial classification would be required. 

This will be discussed hirther in Section 2.1.6 and Chapter 3. 

As a final note, the degenerate partition is included for those few sources that 

uay require a special traffic class, for example all slots (an idle Mc). With the par- 

titioning of tr&c streams completed, it is now possible to characterize individual 

trafic classes withi.  the partitions, and thus spe* the trafic primitives. 



2.1.3 Specification of the Tkaffic Primitives 

The specification of the t r a c  primitives is dependent not only on the trafic stream 

partitions, bat &O the size of the training nindow. As a backdrop to this, and 

perhaps more importantly, the trafic primitive specincation is intimately tied to 

the desires of the network senrice provider. As mentioned earlier, the network 

provider most likely wishes to maximize revenue, which corresponds to utilizing 

the network bandwidth in the most efficient manner. Thus the traffic primitives 

skould be chosen to adiieve tLis goal. Then, by way of some control me<:hauisiu. 

one method to maJBmize efnciency codd be to simply detect what trafic primitive 

is present. Another method codd be to assume that a given trafFic stream is 

present, and watch for deviations fiom this type. These applications of primitive 

classification will be discussed fiuther in Chapter 3. In any case, it is important 

to realize that the desired outcome of primitive classincation has a great impact in 

the specification of these same trafic primitives. 

Working with this in mind, the trafic primitives s p e d e d  here are chosen with 

some trepidation. Instead of tying the specification to the desires of some imaginary 

network service provider where assumptions mnst be made about the provider's 

goals, the traf£ic primitives were chosen to showcase their usefulness, applicability 

to an ATM set ting, and scalability. As a result, if one questions the valiclity of a 

certain trafüc class, it skould be understood that the dass can easily be cliauged t u  

suit other traffic strearns or situations, or at least 0th- t r d c  classes c m  be defmed. 

Also note that the size of the t r a c  window W is kept variable in this section, and 

will be determined in Section 2.1 -4. While the trafFic primitives specified depend 



on W, this dependency is in a relative sense, not absolute. 

The t r a c  primitives chosen are Constant Bit Rate (CBR), CBR with Rate 

Changes (CBR-RC) and Determiaistic Packet nain (PT) from the deterniinistic 

partition, and Degenerate (DG) fiom the degenerate par tition. The foilowing sec- 

tions specify the base primitives for these four primitive ~ lasses .~  As the rule in 

Section 2.1.1 duded  to, most tr&c primitives have more than one morphism, 

based upon the lengtk of the primitive itself and the window size W. Since the 

morphisms are not important to the specikation of the (base) traftic primitives, 

and since the question of window size is answered in the next section, only the 

base trafic primitives are discussed here. In fact, the tr&c primitive morphisms 

require consideration ody  during neural network training, and so th& specification 

is delayed until Section 2.2. 

2.1.3.1 CBR (Constant Bit Rate) 

CBR t r a fk  primitives are those wkch result fkom the c d  and slot pattern of a 

traffic stream that has a rate w h i d  is a constant integer &action of the linL rate 

C, and are still unique. That is y, where 1 5 i 5 W - 1 (for i 2 W, see Section 

2.1.3.4). This definition dows base primitives corresponding to a trafllc stream 

rate of C, $, $, . . . . . - w-L* This primitive class is chosen so that CBR trafEc 

streams can be recogirized directly, as discussed in Section 2.1.1, Figure 2.3(b). It 

should capture most t r a c  streams with the characteristic of a single c d  followed 

by N slots, repeating. In addition, as an example of how Werent traaic streams 

4The reader may wish to refer to Figues 2.9-2.12 of Section 2.2.1, which depicts these base 
primitives as well as their morphisms for a window size of W = 10. 
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can be detected as a single d s s ,  these t r a c  primitives do not spe* the rate of 

the traffic stream. That is, all CBR haflic streams of rate y, 1 5 i < W - 1, or 

CBR (O) through CBR (W - 2) (using the notation of Section 1.6.6) are classified 

simply as a CBR stream. As mentioned above, however, a network provider would 

most WEely wïsh to have rate idormation. To reiterate, the k&c primitives here 

are chosen not for a s p e d c  ATM network situation, rather to show the utility of 

neural network based trafEic classification. 

2.1.3.2 CBR-RC (CBR with Rate Changes) 

These traffic primitives are speded kom the characteristics which result when a 

trafEc stream changes rate from one constant integer &action of the Link rate C to 

another; that is $ -t 4,  i # j, where 1 5 i, j < W - 1. This definition corresponds 

to a source CBR (O) through CBR(W - 2) changing to a source CBR (O) through 

CBR (W - 2), and of course realivng that a change fkom CBR (i) to CBR (i) is no 

change at all. This trafnc primitive dass is chosen with a specific application of 

traftic classification in mind, namely the detection of a CBR trafic stream which 

Iias broken its t r a c  contract. Again, as previously stated, while this class may 

not be useful to a specific network provider, it does show how t r a c  primitives can 

be employed. 

The PT t r a c  primitives make up the majority of the neural network training 

vectors that are a consequence of tr&c primitive specification. They characterize 

the packet train streams of the deterministic partition, and should &O be u s a  



for generalizing to many of the trafic streams in the distribution partition. The 

base trafic primitives result when two or more cells are followed by one or more 

slots. This corresponds to the sources PT ( 2 , l )  through PT (2. W - 2) througi1 

PT (W - 1, W - 2) through PT (W - 1,l). Since the AAL is expected to produce 

s treams that fd into this primitive class, this dass is integral to good t r a c  classi- 

fication. Again, as in the CBR case, all of the different packet train base primitives, 

ancl th& morphisms, will result in the same trafiic classification. Hence, a traf- 

fie stream which is of type PT (2,3) and one which is PT (3,5) will result in the 

same t r a c  primitive, namely PT. If an application of traffic classification requires 

greater resolution, then more specific packet train classes can be dehed. 

2.1.3.4 DG (Degenerate) 

Tkese t r a c  primitives could belong to eitker of the CBR. CBR-RC or PT prinll- 

tive classes, and are placed in this dass to keep the 0th- primitives For 

example, trafnc streams with rates 5 or less, that is 9, k 2 W, are indistinguish- 

able when viewed fkom a window of size W; when observed, these streams appear 

as either all slots, or a singie c d  and all slots. In general, this primitive dass rep- 

resents sources CBR(W - 1) through CBR(oo). This class also contains unique 

occurrences, such as the primitive which represents an idle link. Note however, that 

a window completely filled with cells is equivalent to a transmission rate of F, a 

CBR(0) source, wkick is defined to be a CBR primitive. Again, tkis is somewhat 

5NeuraI network training vectors must be unique in the following sense: a neural network can 
learn a many to one input-output mapping, but not a one to many. Thus, for ony given input to 
the neural network, only one output is possible. 
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arbitrary, and codd be changed to be a PT primitive, for example. 

2.1.4 The Primitive Classifier 

With the tr&c primitives defined, the primitive classifier is introduced in this 

section. In addition, the size of the "trafEic window," W, that is the size of the 

window through which the traffic stream is observed by the neural network. is also 

determined. Figure 2.5 depicts a cellized trafic stream as it is presented to the 

c 
Traffic Stream Primitive Classification 

"Trafic Window." size W 

Figure 2.5: The TkafFic Primitive Classifier 

primitive classifier, whiek then ontputs the tr&c primitive recognized. As shown, 

the engine of the classifia is a neural network. As a t r a c  stream is presented to 

the network access point, it undergoes cellization at the AAL. This is represaiitrcl 

by the t r a c  stream in Figure 2.5. Each trafic window of cellized t r a c  stream 

presented to the neural network causes a classification to be made which results in 

a t r a c  primitive at the neural network's output. As a new c d  or slot &ts the 

AAL, the t r a c  window is updated by dropping the oldest c d  or slot observation 

and adduig the newest, in a shift-register fashion. If the cellized trafic stream 

is represented by a string of 1's and O's, as discussed in Section 1.6.4, then the 



input to the neural network is a window consisting of 1's and 0's. The fact that 

the inputs are discrete reduces the neural network tr;iining time. As can be seen, 

the neural network based primitive classifier is very simple. Contrast this to a 

conventional (s tatis tical) control scheme, which would require the cdcuktion of 

statistical meames taken on the trafic stream, and then a complicated control 

dgorithm, as mentioned in Section 1.3. Of course, it must be noted that much of 

the complexity is  now within the neural network. 

The determination of the size of the trafic window, W. is not as simple. Much 

Lias aheady been said about the the effect of the window size on classificatiou iu 

Sections 2.1.1 and 2.1.3. To recap, the salient point is that the t r a c  w i d o w  

size represents a tradeoff between accuracy of ciassification and reaction t h e  of 

the primitive classifier based control mechanism. On the one hand, the smder 

the window size the fasta the reaction to changes in the traffic stream, as well 

as the smaller the initial delay in füling the tr&c window. On the 0th- hand, 

the smaller the window size, the fewer the number of trafEc primitives that can be 

deftied, which is limited to ZW. 

If these are the only considerations, then the dtimate choice of W is determined 

by the trafnc streams a network provider plans to classifjr and thus d o w  kit0 the 

iietwork. For streams wliich change character more frequently, larger window sizes 

are warranted. This results in greater observation stability at the cost of more com- 

pliçated t r a c  primitives and classes. For streams wluck do not change character 

often, then smder  windows can be employed, since fewer trafic distinctions are 

present. A window sized W = 100 represents about 0.24 ms of a source transmit- 



ting at CL = 155 Mbps. For an MPEG6 t r a c  strearn with mean rate 1.5 Mbps 

[LeGSl], the same window size represents about 0.02 ms. Thos, for "lower" rate 

trafic streams, or additiondy for dday insensitive traffic s treams, large window 

sizes are reqaired. 

However, while the tradeoff between the two factors above is important, it is 

moot in light of the greater consideration when dealiag with neural networks: train- 

ing time. A Iarger window size implies that a greater number of more complicated 

traffic primitives need to be learned by the neural network. This necessitates larger, 

more complicated neural networks, which in hira means more presentations of the 

training vectors wiU most likely be required before training is successfid. Thus, 

while a traftic window sized W = 100 may be nsable when considering the time 

scale of t r a c  streams to be classified, it may be prohibitive when consideriiig the 

training time reqnired. This is the case here. Due to the limits imposed by the 

computing power available, the largest window size that was trainable in this work 

is W = 20. This window size represents about 47 ps of a source using the entire 

link rate, and about 4.9 ms or % of a fiame of the MPEG source mentioned above. 

The details of the neural network training, includuig training times are discussed 

in Section 2.2. Before this, thongh, the foilowing section describes t r a c  primitives 

with an analogy to optical character recognition. 

6 ~ o t i o n  Pictures Expert Group. 
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2.1.5 TkafBc Primitives as cc'Ih.fEic Charactersn 

It may be interesting for the reader f d a r  with Optical Character Recognition 

(OCR) [Guygl, LBDf 89, Pao891, one of the most well known uses for neural net- 

works in general and Backpropagation in par t idar ,  to consider the following anal- 

ogy. Trafic primitives can be thought of as "trafEc characters" to be recognized by 

aii OCR system. In such, the nenral network is presented with the character to be 

recogirized, as well as any allowabie urnorphismsn of that character, such as shifts 

and rotations. Once the neural network learns aIl the characters to be reçognized. 

as well as their morphisms, it can then be expected to correctly recognize and then 

classi& characters which it Learned - even in the presence of noise. The left haad 

side of Figure 2.6 shows an example of this for the character "T." The top box 

depicts the base character, superimposed on a grid of 100 pixels which are either 

-on" (grey) or (white). The middle grid shows the 'Tn character shifted one 

pixel ta the right; this is but one of many possible morphisms of the base character. 

The bottom grid gives an example of some noise on the pixel grid. After successfnl 

training, all t h e e  of the pixel grids on the left side of Figure 2.6 produce the same 

output, namely a 'Tn is present at the input of the neural network. 

Similady, the right hand side of Figure 2.6 shows an example of a possible t r s c  

primitive. For iliustrative purposes only, a packet train t r a c  stream consisting of 

two cells foIlowed by three slots, repeating, is depicted; that is PT (2,3)  as cliscusseci 

in Section 2.1.1. While in the O CR case the underlying grid is made up of pixels, for 

the trafic primitive case the grid is made up of (ATM) cells and slots. If there is a 

cell present, then the grid square is grey, whereas if a slot is present, the grid square 



OCR Characters Trafîic "Characters" 

Figure 2.6: 'Ikafnc Primitives as OCR Objects 

is white. Aiso note that the dots are placed on the grid fkom lefi to right and koni 

top to bottom, as the arrows on the figure inciicate. Hence, the top grid on the right 
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hand side of Figure 2.6 defines the LOO c d  and dot7 version &base character" of this 

PT (2,3) base t r s c  primitive. One possible morphism of this primitive is given in 

the middle right hand grid of the figare, which is the base primitive "shi.fkedn to the 

right by one c d .  After some inspection the reader shodd realize that this tr&c 

primitive has three other unique morphisms. Also realize that this 100 ceil and 

dot grid is equivalent to a trafic window, as discussed previously, of size W = 100. 

The window kas simply been rearranged in order to show t r a c  classification in a 

manner comparable to OCR. Findy, the bottom grid shows the t r a c  primitive iu 

the presence of "noise." To complete the analogy, the trafnc characteis on the right 

Land side of Figure 2.6, &er successfnl training, will prodnce the same output, 

namely a PT (2,3) traffic stream is present at the input of the neural network. 

The fact that neural networks can operate in the presence of noise is w d  known, 

arid indeed this ability plays a prominent role in the concept of this research, that is 

the treatment of t r d c  streams as strings of objects rather than in a statistical sense. 

From an ATM network control point of view, it is undesirable for the identification 

method of t r a c  streams to be too sensitive to a few cells being "out of place," or to 

be so insensitive that two dissimilar streams are classified as being identical. Thus, if 

the trafic stream dianges character for very short durations, these fluctuations can 

be thought of as a noise component on the "stationary" trafic stream. Hence. the 

neural iietwork primitive classification, whick is inherently robust in the preseuçe 

of noise, will no t change. This aeates a level of sensitivity and stability which may 

not be attainable by statisticai methods. 

' ~ e a d  pixel. 
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2 . l .6 Scalability of the Ckssiiler: The Compound Classifier 

With the appropriate choice of t r a c  primitives, a great many t r a c  streams are 

classifiable. Others, however, may reqaire using two or more primitives in a certain 

order to identify the stream, which wodd define a trafic compound. WUe it 

could be argued that trafûc compounds are unnecessary since increasing the size 

of W dows the definition of more primitives, due to the exponential nature of 

neural network training time with the nnmber inputs and thus weights in the neural 

network, it is better to train two networks with N weights than one network with 

2N weights. Thus a device such as that of Figure 2.7 can be employed. The traffic 

compound classifier operates in much the same way as the primitive classifier of 

gf2F Nehrvork 

Traffic Cornpound 
Classification 

Primitive Classifier Primitive Window 

Figare 2.7: T h  'Raffic Compound Classifier 

Figure 2.5, but instead of observing the t r a c  stream directly, it observes a sequence 

of traffic primitives. Its job is to look for patterns or identifying features in the 

trafic primitives and further class3y the t r a c  stream into trafnc classes which 

encompass more complicated streams. In addition, using a series of compound 

classifiers, certain non-stationary features of a t r a c  strearn can be detected or 
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special situations can be identified, 

For the neural network purist, it is noted that the trafic primitive and compound 

classifier can be combined to form one neural network of approximately the same 

size. This is not attempted here, however, since it obscures the basic idea of this 

work. In addition, this combination is highly dependent on the traftic streams 

to be classified and the intended use of the classifications, as discussed in Section 

3. Therefore, since the training and operation of the compound classifier is very 

sindar to that of the primitive classifier-witk the trafic stream replaceci by a 

sequence of t r a c  primitives and the t r a c  primitive classifications replaced with 

tr&c compound classifications-the compound dassiiier is not implemented. 



2.2 Neural Network Training 

A basic, da-flavored, Backpropagation training algorithm [Hay94, -861, as 

daivecl in Appendix A, is implemented on a M y  connected neural network. as 

skown in Figure 2.8. The neural network training and simulation software suite 

is all original, first written in C and then ported to C++. The choice of the 

Figure 2.8: Neural Network Topology 

neural network topology is very problem specific, and mu& of the literature deals 

witk just this problem. As stated, however, it is not the intention of this work 

to make contributions in the field of neural network training. Thus, this simple 



My-comected network is choseo. 

Generally, the layoat of the neural network to be trained is very much deter- 

mined by the number of inputs and oatpnts desired, which in itself is determined 

by the problem at hand. With the case of primitive classification, the n d a  of 

inputs to the neural network is determined by the size of the traffic window, W, 

of the primitive classifier of Figure 2.5. As mentioned in Section 2.1.4, the choice 

of W is highly dependent on the t r a c  streams to be classified and the type of 

classification to be performed. Recall, though, that the time required to train the 

neural network must also be taken into consideration. 

Tkerefore W = 10 is chosen, since it allows the definition of a fairly large number 

of trafic primitives fiom the observable stream characteristics, namely 2W = 1024 

as discussed in Section 2.1.1, but more importantly since it allows the training of 

the neural network with the computational power adable.' It is acknowledged, 

tliough, that such a small window size may not be large enongh to capture the 

char acteris tics of complicated sources. In order to form points of cornparison as to 

the effect of the tr&c window size on t r a c  classification, two additional neural 

networks are trained, one with W = 15, and the 0th- with W = 20, These d o w  

t ke observation of 215 = 32,768 and 220 = 1,048,576 traffic stream characteristics. 

respectively, and so permit the definition of many more primitives. The training 

time of the neural network with twenty inputs, as will be seen, is enormous. 

To determine the number of neural network outputs, each of the tr&c prinii- 

8For the reader unfamiliar with training n e d  networks, it must be realized that a neural 
network cannot simply be trained once. Many training sessions must be performed in order to 
"tweak3 the training parameters with respect to the situation at hand. Thus, the training of a 
single Iarge neural network represents a vast investment in computation tirne. 



tive classfications desired is given an unique binary code. For example, the CBR 

primitives of Section 2.1.3.1 represent one classification, as do the PT primitives of 

Section 2.1.3.3 and the DG primitives of Section 2.1.3.4. However. since it is the 

aim of the CBR-RC primitives to show that the dassifier can detect chauges iI< a 

trafnc stream, the CBR-RC primitives of Section 2.1.3.2 represent many ciassifica- 

tions. The number of binary codes requked, then, is determined by generating the 

desired t r a c  primitives and observing the number of classincations they represent. 

This is performed via the software wiitten, using an exhaustive search of all pos- 

sible bkiary codes, given the window size W. In addtion, Section 2.2.1.2 describes 

how the numba of binary codes can be estimated, and thus the nnmber of neural 

network outpnts. Summarizing the numbers here, the ten input neural network 

requires nine output neurons, and the fifteen and twenty input neural networks re- 

quke ten and eleven outputs, respectfdly. To complete the statement of the neural 

network topology, ody the number of Lidden layers and the number of neurons in 

each hidclen Iayer are required- 

The number of hidden layers and nenrons, as is the usual method of the litera- 

ture, is determined in a heuristic manna, and is summarized in Appendix B. First, 

s m d  neural networks are trained, with one hidden layer and but a few neurons. 

When they fail to converge, the number of nenrons and, or, hidden layers are in- 

aeased mtil training convergence occurs. As more results are obtained, experience 

with the training problem is gained. This leads to the decision that two hidden 

layers are required by the neural networks, with tkty-five, eighty and two handred 

neurons in each hidden layer of the ten, fifteen and twenty input neural networks, 
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respec tively. 

Using the notation developed in Section A.1.3 of Appendix A, then, the preced- 

ing discussion a 10-35-35-9, a 1!5-80-80-10 and a 20-200-200-11 neural network. 

The following section describes the training vectors employed to train these neural 

networks to perfonn traffic elassification. In order to speed-up the convergence in 

training, Section 2 -2.2 briefly describes some of the methods incorporated into the 

sofiware written. Finally Section 2.2.3 presents the results of training, including 

training error and training times. 

2.2.1 Specification of the Training Vectors 

The number of t r s c  vectors reqnired depends on the nnmber of t r a c  primitives 

as dehed  in Section 2.1.3, wkich in turn is determined by the size of the trafnc 

window, W. As discussed in the previous section, the number of trafnc primitives 

also determines the number of distinct trafnc classifications, and thus the output 

size of the neural network. For the cases of PT and DG primitives, determining the 

riunber of trafic primitives tkat result fiom a trafne window size W is relatively 

straigktforward. However, to determine the number for the CBR and CBR-RC 

primitives, tkeir morphisms must be considered, and also the preservation of the 

uniqueness of the training vectors. 

As duded  to in Section 2.1.3.4, a neural network can perform a many to one 

uiapping, but not a one to many. Thus, while it is possible to train a neural network 

to give the same output for two different inputs, it is not possible for a neural 

network to give two different outputs for one input. Hence, if the same trafic 
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primitive resdts in two Merent classifications, the neural network training wi. 

uot converge. In other words, the traffic primitive classifications must be mutudy 

exclusive. 

The numba of haSc primitives that can be ciefiued is limited by the n u b e r  

of t r a c  characteristics that can be observed t h m g h  a whdow of size W, which is 

ZW as discussed. Howeva, the number of trafic primitives defined should be much 

less. If not, as mentioned in the literature and Appendir A, the neural network wiU 

operate as a look-up table and fd to generalize, abrogating its major advantage. 

Section 2.2.1.1 gives some examples of the primitives used to train the ten input 

neural network. At this point, the training vectors themselves should be presented. 

However, using the definitions of the primitives in Section 2.1.3, t h a e  are 435 

training vectors for the 10-35-35-9 neural network, 2,004 for the 15-80-80-10 

and 5,996 for the 20-200-200-11 neural networks, respectively, as skown in Table 

2.1. In addition, the table shows the maximum possible observations. 2 atid the 

percentage of this value that the total uumber of training vectors represents. WWe 

the caldat ion for the s p e d c  types of training vector shown in the table is discussed 

in Section 2.2.1.2, since specifykig the training vectors for the fifteen and twenty 

Table 2.1: Number and Type of Xhinhg Vector for the Three Neural Net- 
works Trained 

Neural Network 'RaLiing Vectors Pet Primitive Total 2W % of 
DG r CBR I PT I CBR-RC 2W 
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input neural networks-in a humamseadable format-wodd reqaize approximately 

h o  hundred pages, only the training vectors for the ten input neural network are 

given. The reader should rest assured that the training vectors not induded are 

very similar to tkose of the ten input n e d  network, the only difference being the 

number of neural network inputs and outputs, and the fact that there are a lot 

more training vectors for each type of trafnc primitive. 

The 435 training vectors for the 10-35-35-9 neural netaork are tabulated in 

Appendix C. As can be seen, binary inputs are used since the primitives repre- 

sent c d  and dot patterns derived from cellization, as introduced in Section 1.6.4. 

As well, the desired output of the neural network for each input is also shown. 

The outputs correspond to the classifications designed. RSemng to Table C.1 in 

Appendix Cl the eleven DG training vectors represent a single classification. The 

twenty-five CBR training vectors of Table C.2 and the 156 training vectors of Ta- 

ble C.3 correspond to two more classifications, respzctively. FinaUy, each of the 

243 CBR-RC training vectors of Table C.4 represents a single classification. Thus, 

the total number of ciassifications of the 10-35-35-9 n e 4  network is 246, which 

requires an eight digit binary code.gJ0 Since the CBR-RC trafnc primitives specify 

when a t r d c  stream changes its CBR rate, as defined in Section 2.1.3.2, the fol- 

"The number of digits required, i9, is &en by 2d = 246, or 19 = 7.943, which requires 

eight digits. 

LOThe reason the 10-35-35-9 neural network was chosen over the 10-35-35-8 that is specified 
by the 246 classifications stems fiom the fact that this work is experimentaily based. In order 
to experiment with the classifications, the number of neural network outputs chosen should aliow 
each of the 435 training vectors to have its own classification, Thus the required digits ïs 6 = Lw , 8.765, which requires nine digits. This is &O tnie for the füteen and twenty input neural 

networks. 
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lowing notation is used. The hafEic primitive RC 5 -P spedes  that a stream 
3 

has changed its rate from 7 to $ of the link rate. Thus RC -t s p e d e s  that 

the source in question has inaeased its transmission rate kom one quarter to one 

half of the Link rate. 

The foilowing section gives a few examples of the tratllc primitives used to define 

the training vectors, and Section 2.2.1.2 discusses the calculation and estimation of 

the number of training vectors required for neural networks. 

2.2.1.1 Example Xkaining Primitives for the Ten Input Neural Network 

Figures 2.9-2.12 present a few examples of the t r a c  primitives used to define 

the training vectors of the 10-35-35-9 neural network, and thus W = 10. It is 

important to keep the traffic window size in mind, since it l i m i t s  the number of 

trafic primitives that need be dehed. Figure 2.9 depicts the base tr&c primitive 

and its morphisms for a CBR source transmittiug at a rate f - A portion of this 

Morphism 1 u m I E E m  
Morphism2 1 1 1  

Figure 2.9: An Example CBR Primitive and its Morphisms 

trafnc s tream is show at the top of the figure. As can be seen, including the base 

primitive and morphisms, this definition gives rise to the three t r a c  primitives 

shown. The two morpkisms are obtained by simply s l i h g  the tr&c window 



towards the right dong the hanie stream. 'haflic primitives of this type can be 

used to detect constant bit rate sources CBR(0) through CBR(8), that is sources 

transmitting a t  the fidl luik rate C to those transmitting at a rate of g. 
Figure 2.10 shows an example of a PT base primitive definition, in pa r t i da r  a 

PT (2,3) source. Again, sliding t h  trafnc window to the right four tirnes specifies 

Traffic Stream ...-mi... 

Figure 2.10: An Example PT Primitive and its Morphisms 

the four trafic morpkisms. Packet train trafic sources fkom fkom PT (2,l) through 

PT (2.8) through PT (9,8) through PT ( 9 , l )  can be detected fkom the definition 

of these primitives. 

Figure 2.11 depicts the complete set of DG primitives for W = 10. These can 

be used to indicate that a low rate source is present, such as one that transmits at  

a rate of 5, or less. In addition, a source which becomes idle can also be detected. 

Finally, Figure 2.12 shows the CBR-RC base primitive and morphisms that 

arise wken a CBR source changes its transmission rate f?om $ to 9, that is from 

a CBR (1) source to a CBR(2) source, which corresponds to the RC 5 -t f traflic 

primitives. As the figure attempts to show, in order to generate all the morpkisms, 

one must consider transitions 60m the base primitive and morphisms of a CBR (1) 



Figure 2.11: The DG Primitives for W = 10 

CBR Base PrîmitIve Ci2 to CBR Momhism 1 Ci2 ta 

CBR Base Primitive C/2 to 

Base C/2 rate to Morphism 2 C/3 
rate, Morphism 1 C/2 rate b 
Morphlsm 1 Ci3 rate, and 
Morphism 7 Ci2 rate IO 

Morphsim 2 C/3 rate produce 
duplkates of the transittons 
shown h m .  

Figure 2.12: An Example CBR-RC Primitive and its Morphisms 

source to the base primitive and morphisms of a CBR (2) source, including all pos- 

sible window positions dong the transition. Since there are two primitives specified 

by the CBR(1) source and thee primitives speufied by the CBR(2) source. and 



since the transition of these two sources aeates the need to consider 2W slots, there 

can be 120 morphisms of this primitive. Fortunately, most of these are repetitions 

of each other, as Figure 2.12 indicates. 

As will be discussed in the following section, the number of RC % -t $ primitives 

can be reduced farther, since the CBR-RC primitives are given the lowest "priority" 

when tkey are used to define the training vectors. 

2.2.1.2 BafBc  Primitives and Thek Morphisms 

The concept of a trafnc primitive morphism has aLeady been introduced in Sectiou 

2.1.1. when cliscussing the pros and cons of trafnc window positions and sizes. autl 

the "rule" stated. Simply, a t r a c  morpkism results when a t r a c  stream with 

a constant set of featnres is observed îkom different points. Referring to Figure 

2.3(c), windows W11, W12 and W13 ail give different observations of the same 

traffic stream. Hence, these observations and the traffic primitives they define 

are terniecl morphisms. Since the training vectors are defined directly fkom trafüc 

primitives and their morphisms, knowing the number of tr&c primitives specifies 

the number of training vectors. 

With the above definition, the reader may also note that since the DG, CBR and 

PT primitives each give a single trafbc classXcatiou, they could also be consideren 

to be morpliisms. For example, ten of the DG training vectors of Table C.l in 

Appendix C are defined from the ten morphisms of the cell and slot pattern of a 

single cell arriva1 when observed through a window of size W = 10 and skown in 

Figure 2.11. The eleventh DG training vector results fiom a window fUed with 

all slots, which is part of the definition of the DG t r a c  primitives (see Section 



In addition, since the training vectors must be Mique with respect to their 

dassifications, as discussed in Section 2.2.1, then as training vectors are defined by 

the trafEc primitives, they must be checked with the vectors previously s p e d e d  

in order to ensure that they result in mutudy exclusive classifications. However. 

as discussed in Section 2.1.1, different tr&c sstreams may appear to be the same, 

dependhg on the position and size of the trafEc window. This leads to an interesthg 

situation for the specification of the training vectors. Depending on the purpose 

of performing t r a c  classification that the network provider has in rnind, priority 

should be given to the trafic primitives of the trafnc class or classes that the 

network provider wishes to detect. In this context, priority refers to which set 

of traffic primitives is used to f is t  d e h e  training vectors. For example. if the 

training vectors for PT t r a c  primitives are defined before any otLer, tken the 

base primitives or morphisms of another dass of trafnc primitives, Say CBR. wLck 

wodd cause an intersection of the PT and CBR classifications, would not d e h e  

a training vector. This situation is shown in Figure 2.13. A packet train source 

with on-period of two cells and off-period of eight cells, or PT (2,8), is shown in 

Figure 2.13(a), and a constant bit rate source which ntilizes one ninth of the link 

rate, or CBR(8), is shown in Figure 2.13(b). As can be seen, for a tr&c window 

of size W = 10, the relative positions of window Y1 on the PT stream and Y2 on 

the CBR stream lead to the same t r a c  primitive. Thus, if the PT primitives are 

given pnority over CBR primitives, the trafnc primitive of window Y1 would give 

rise to a training vector whereas the primitive of window Y2 would not. 



(a) Packet Train Stream, PT (2,8) 

(b) Constant Bit Rate Stream, CBR (8) 

Figure 2.13: The Need for Priority amongst Traffic Primitives 

For the training vectors chosen here, priority is given to DG, then CBR, then 

PT and f indy  CBR-RC. Hence, the potential training vector of any CBR-RC base 

primitive or morpkism is checked against all the existing training vectors defined by 

the DG, CBR and PT primitives before it is added to the trahhg set. In order not 

to be caught up with imagkiary requirements of some fictitious network provider, 

the reason for this priority is simply that it follows fkom the actions of the AAL, 

described in Sections 1.6.4 and 2.1.2. The DG primitives are given the highest 

priority since they indicate streams wkich cannot be distinguished, the CBR follow 

simply because peak rate allocation is likeIy to be the f t s t  mode of operation of 

CAC in ATM networks, then PT primitives since they should be the most common, 

and thus the "defadt" source. The CBRRC primitives, as mentioned, are dehed 

with the CBR rate discrimination task in mind. 



Once the trafnc window size W is chosea, it is relatively easy to spe* the 

number of DG and CBR t r a c  primitives that result fkom the definitions of Section 

2.1.3. Since there is one DG primitive for each dot of the traffic window, plus the 

window completely filled with dots, the number of DG training vectors. NDc that 

are defined by the DG trafEc primitives is 

Therefore, for the ten, fifteen and twenty input neural networks trained, there are 

eleven, sixteen and twenty-one DG training vectors. 

For the CBR primitives, if one shifts about a few CBR streams in a window. it 

can be seen that the midpoint of the window can be used to dednce the number of 

trafic primitives and thus training vectors. Defme Y as the smallest integer wlucli 

divides the window size W in lialf, that is 

where rzl denotes the ceiling of x, that is the srnailest k E Z+ such that k 2 x. 

Then the number of CBR training vectors, NCBR, is given by 

C (i + 1) for 1 < i 5 Y, 

where i should be considered to be a dummy variable. Bringing these two cases 
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toge t her yields 
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A special case occurs if T = 5. Then NCBR = 1. Thus, for the ten, fifteen and 

twenty input neural networks, there are twenty-five, fifty-six and one hundred CBR 

training vectors. 

Attempting to calculate the number of training vectors for PT and CBR-RC 

primitives soon breaks down, due to the number of non-unique base primitives and 

morphisms generated. For example, the total number CBR primitives given by the 

definition of Section 2.1.3.3 is 

but this would lead to many training vectors which would cause intersecting clas- 

sifications. It is discovered fiom experience that Equation (2.6) overestimates the 

number of PT training vectors by a factor of almost h o ,  and the larger the window 

size the suider the error. Thus, the total number of PT training vectors. NPT. for 

a trafic window of size W is 

This approximation is compared with the actual nnmber of training vectors required 

for various sizes of W in Table 2.2, showing the factor of underestimation. Since 
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Table 2.2: Estimating NpT for Various Values of W 

andytical methods for determining the number of training vectors required are not 

easily devised for the PT and CBR-RC primitives, the nnmber of PT and CBR-RC 

training vec tors repor ted are determined using algorithms implemented in software, 

as previoudy mentioned, using a "brute forcen binary enmeration metkod. Also 

Window Size 
W 
10 
15 
20 
25 
30 

given earlier, Table 2.1 in Section 2.2.1 sununarizes the number and type of trainhg 

vectors for the thee  neural networks studied. 

Before the results of training the thee  neural networks is given in Section 2.3. 

the following section discusses some of the speed-up methods employed in the train- 

ing of the neural networks, and Section 2.2.3 presents the training error and training 

times. 

Es timate 
Factor 

0.885 
0.917 
0.935 
0.946 
0.955 

NPT 

2.2.2 Neural Network Tkaining Speed-up 

Actual 
156 
546 

1,311 
2,576 
4,466 

While it is not the intent here to give a full account of the different training methods 

used, it may be interesting to some readers to know the effect of some of the 

training speed-up methods employed. A description of these methods can be found 

Estimate 
138 
501 

1,226 
2,438 
4,263 



98 CRAPTER 2. TRAFFIC CLASSIFICATION 

in [Hay94], which contains farther references. 

Two speed-up methods are incorporated into the sohare suite: training vector 

reordering and asymmetnc activation fanction. With training vector reordering, 

as the name implies, the training vectors are d o r m l y  reordered after the entire 

training set is presented to the neural network. Hence, if the training set is presentecl 

to the neural network one hundred times, then the training vectors are reordered 

one hundred times. This speed-up method has a considerable dec t  on the training 

problem at Iiand, decreasing the training time by a factor of about one half. 

The speed-np method of using an asymmetric activation fùnction requires the 

use of a function such as out = 1.716 tanh ($net) instead of the logistic (non- 

symmetric) activation function of Equation ( A 4  in Section A.1.2 of AppendDr A. 

When the asymmetnc activation fnnction is employed the zems of the training vec- 

tors are changed to negative ones, that is "1 O 1 O 1 O 1 0 1 O" becomes -1 1 

-1 1 -1 1 -1 1 -1." Also, the synaptic weigkts and threshold values of neurons are 

initialized with respect to the fan& of a given neuron, ZULifody distributed over 

the range (-$? +%) y w k e  FL repreoents the fan-in of m o n  rn in Lidclru 

layer l ,  following the notation in Section A.1.3. In this context, the fan-in of a given 

neuron is equal to the number of synapses which terminate on the neuron. Unfor- 

tunately, this speed-up method does not reduce the training tirne by an appreciable 

amount, nor does it reduce the complexity of the neural network used to learn the 

given problem. The next section discusses the amount of cornputer time required 

t O train the three neural networks presented, and shows the training error. 



2.2.3 Tkaining Error and Training Times 

This section briefly disnisses the training error and training times of the 10-35-35- 

9,15-80-80-10 and 20-200-200-11 neural nehrrorks. As stated, the netual networks 

are trained using the Backpropagation algorithm derived in Section A.2 of Appendix 

A. The training methodology used, incladhg a description of the measnre Mean 

Squared Error, is sammarized in Appendix B. Rom the previous section, both 

speed-up methods of training vector reordering and asymmetric activation h c t i o n  

are employed. The number of training vectors for each of the three neural networks 

is summarized in Table 2.1 of Section 2.2-1. 

The Mean Squared Error of the Backpropagation training algorithm is plotted 

versus the training epocli iii Figure 2.14 for the three neural networks in ques- 

tion. As can be seen, the training of the t h e e  nehorks converges in about 3.000 

presentations of their respective training sets. This level of training represents ap- 

proximately zero classification errors, as summarized in Table B.1 in Section B.1 

of Appendix B. The reader may note the sudden drop in training error of the 

20-200-200-11 neural network after training epoch 2,000. This corresponds to a 

change in the training parameters of acceleration and momentum (see Appendix 

A). In efFect , the training discovers a (local) minimum in the training vector error 

surface function. 

As far as training tirnes are concerned, the 10-35-35-9 and 15-80-80-10 neural 

networks require a reasonable amonnt of time to train-approximately two hours 

ancl two days, respectively. Unfortunately, the 20-200-200-11 neural network re- 

quires in excess of a month to train, which makes investigation and experimentation 
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500 LOO0 1500 2000 2500 3000 
Number of presentations of 435 Training Vectors 

Figure 2.14: Training Error for the 10-35-35-9, 15-80-80-10 and 20-200- 
200-11 Neural Networks 

ctifficult at best . For further stndies to be continued dong these lines, this problem 

wiU require attention. A more complete discussion of the training tirnes, including 

the machines used, appears in Section B.3 of Appendix B. 

With the training vectors specified and the neural networks trained, all that 

remains is to validate their training. This is performed in the next section. Then. 

Section 2.4 describes the operation of the primitive classifier on trafic streams not 

encountered during training. 



2.3 Primitive Classifier Training Results 

In this section the training of the primitive classifier based on the 10-35-35-9, 

15-80-80-9 and 20-200-200-11 neural networks is validated. Since vaiidating the 

entire training set wodd require a multitude of figures, only a few examples of 

each traffic dass is given. Section 2.3.1 shows that the primitive classifier is able 

to detect CBR streams. Since DG primitives are deftied to occm when sources 

transmit at low rates, this is also shown in this section. Next, a few CBR-RC 

primitive classifications are plotted in Section 2.3.2. Findy, Section 2.3.3 shows 

that the primitive classifier can detect streams fkom the PT traffic class. 

As discussed in Appendix B, since aU possible t r a c  primitives &om the cbscrete 

partition described in Section 2.1.2 are used to define training vectors in the traiiritig 

set, it is not possible to defme a validation set as is usual in the literature. Tlius. 

to validate the training, the neural networks wiU be presented wit h deterrninis tic 

trafEc streams of the appropriate type. 

Before the results are presented, a note should be made about the output of 

the classifier. As stated in Section 2.2.1 and presented in Appendix C, the output 

is binary encoded, which is not very hnman-readable. Hence, considering the 10- 

35-35-9 neural network based primitive classifier, for each primitive class of the 

training vectors listed in Tables C.1-C.4 in Appendix C, a number is assigned, whick 

is shown in Table C.5. While the training vectors are not listed, the classiiications 

for the 15-80-80-10 and 20-200-200-11 neural networks are &O assignecl numbers. 

which are displayed in Tables C.6 and C.7. It is tkis number which is on the y-axis 

of the figures to follow. However, wherever possible, text is inserted. 
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Due to the fact that the training vectors for the 10-35-35-9 neural network 

based primitive classifier are made available ia Appendix C, this neural network 

is studied in more detail than elassifiers based on the h o  large neural networks 

trained. Nonetheless, in most cases comparisons are made as to the efEect of the 

t r a c  window size W on the classifications. 

2.3.1 CBR T r d c  Sources 

In this section the resdts of presenting the three classifiers with CBR sources of 

various transmission rates are reported. Most of the resdts are discussed with 

respect to the classifier with the trafEic window of size W = 10, in the next section. 

Then, in Sections 2.3.1.2 and 2.3.1.3, ody  comparisons are made to the classifier 

with larger window sizes. 

2.3.1.1 TrafEc Window Size W = 10 

As showil in Figures 2.15-2.19, the neural network successfdly learns to detect 

CBR streams. Thus, in order to make the validation a little more interesting, and 

to give examples of LOW tr&c classitiCation might react at boundary conditions, 

i t is assumed that the CBR sources are jnst starting transmission. Hence, initidy, 

t lie trafnc window is füled with slots. Then after t k t y  slot times, the CBR source 

starts transmission at its specified rate. 

Examining Figure 2.15 for the case of the CBR(0) source, it c m  be seen that 

for the first thirty slots the primitive classifier correctly classifies this source as 

type DG. This behavior is normal, since as defined in Section 2.1.3.4, an ide iink 
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Figure 2.15: Classification of the CBR (O) Source for the 10-35-35-9 Neural 
Network Based Primitive Classifier 

is in the DG primitive class. Then, atter two c d  arrivais fkom the source which is 

now transmitting at the link rate, the classification changes to PT. Again, this is as 

expected, since the traaic window consists of the "0000000011" slot and c d  pattern. 

This is a morphism of the PT (2 ,8)  packet train class, as defined in Section 2.1.3.3 

and presented in Table C.3 of AppendBc C, and so again the classifier is bekaviiig 

properly. At slot number thirty-nine, the window consists of "011111111 10" wluck 

is a morphism of the PT (9 , l )  packet train primitive class. Finally, after the arrivai 
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of a ceIl in slot forty, the classification changes to CBR and rernains there. Now the 

window contains all cells, which is d e k e d  to a CBR source. Hence, d e r  an initial 

transient period of ten slots, whieh happens to be the size of the tr&c window for 

the primitive classifier employing the 10-35-35-9 neural network. the classification 

is as expected. Note that if the source starts to transmit immediately at the hill link 

rate instead of being initially idle, the transient period would vanish. As stated. tkis 

transient period is included so that the validation contains meaningfnl examples of 

tlie classifier operation. 

Figure 2.16 shows the classifier operation for the CBR (1) source which transmits 

at kalf the link rate. After a short, six slot transient period during which the source 

niakes its transition fiom tlie ide state, the primitive classifier correctly detects the 

source to be CBR. At slot thirty-three, the dassifier makes an error. This is the 

o d y  error the dassifier can make, since the neural network training resulted in 

o d y  one error-and this is it. With the trafüc window containing "0000000101," 

wLeh is d e h e d  to be a RC g -t $ primitive as tabulatecl in the very last row of 

Table C.4 of Appen& C, the neural network outputs the binary code '110000000." 

TLs does not correspond to any of the defmed classes. Since only one error results 

after training, and considering the desire to keep the neural network srnaIl, it is felt 

that this is acceptable. Corrective action could be taken in additional hardware or 

software extemal to the neural network. 

The following classifications of Figure 2.16, as the tr&c window 6.b with the 

ceIl and slot pattern of the CBR(1) source, show a definite pattern in the tran- 

sition. This was designed into the classifier by defming and assigning priority to 
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Figure 2.16: Classification of the CBR(1) Source for the 10-35-35-9 Neural 
Network Based Primitive Classifier 

the CBR-RC primitives in a certain mamer. For this work, the RGCBR primi- 

tives leacl to training vectors which favor transitions kom low link utilizations to 

higlier utilizations. In this manner, if a source attempts to renege on its Trafic 

Contract, these actions wliich codd be harmful to other users are deteçtecl first. 

Other schemes indude transitions fiom higher to lower link utilization. or transi- 

tions which deviate from a set CBR sources. As seen from the figure, &es the nine 

dots of transition, the classifier behaves as expected. 
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The classification of the CBR (2) shown ùi Figure 2.17 behaves in a very sim- 

ilar faskion to the CBR(1) of Figure 2.16, and thus does not require additional 

comment, except to state that the transitional perîod again is nine slots. 

The transition of the CBR (4) source shown in Figure 2.18 is much more gracefd 

than the previous ones. This is due to the fact that a CBR source transmitting 

at one fXth the link rate is relatively sparse when viewed through a aindow ten 

slots long; its base primitive is ''1000010000." Thus, at dot thirty-five, the trafic 
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Figure 2.17: Classification of the CBR (2) Source for the 10-35-35-9 Neural 
Network Based Primitive Classifier 
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Figure 2.18: Classification of the CBR (4) Source for the 10-35-35-9 Neural 
Ne twork Based Primitive Classifier 

window contains "0000010000," wkick is in the DG class. Then, starting with slot 

thirty-six the window contains "0000010001," or one of its morphiams. whicli is 

defined to be part of the CBR class. 

Figure 2.19 shows the resuits of classïfjing the CBR (9) source. As can be seen. 

and as anticipatecl in the definition of CBR primitives in Section 2.1.3.1, only CBR 

sources of rate CBR(W - 1) and higher can be classified with a trafEc window of 

size W. Hence, the classification is DG, since the trafnc window is filled with either 



Figure 2.19: Classification of the CBR (9) Source for the 10-35-35-9 Neural 
Network Based Primitive Classifier 
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ai l  slots or a c d  and ali slots. This source has been induded for cornparison to 

the primitive classifiers with larger t r a c  windows, discussed in the following h o  

sections. 
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The classification results of the above CBR sources, exduding the CBR (14) 

source, are summarized in Figure 2.20. The way the t r a c  primitives are designed, 

sources with higher activity make further "excursions" away from the "knownn 

source classes of CBR, PT and DG, and in general "stay away" for longer periods. 
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Figure 2.20: Cornparison of the CBR Classification Results for the 10-35- 
35-9 Neural Network 

Tkese excursions corne in the form of CBR-RC trafic primitives. Thus, the CBR (1) 

source which utilizes one half of the luilr rate makes the largest excursion RC 5 + 
C, whereas the CBR (4) does not make any excursions at all. These results are now 

compared with the two larger window sizes, in the following two sections. 



2.3.1.2 'baffic Window Size W = 15 

The validation resdts for the primitive ciassifier based on the 15-80-80-10 neural 

networlc do not differ substantially from those given in the last section. The only 

major ciifference is that since W = 15 in this case, the transition period as the 

CBR sources change th& rate fiom idle to the appropriate Ievei is, in general, five 

slots longer. For example, Figure 2.21 shows the case of the CBR(1) source. The 

y-axes of Figure 2.21 and the h o  foliowing figures contain the number associated 

40 50 60 70 80 90 100 
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Figure 2.21: Classification of the CBR (1) Source for the 15-80-80-10 Neural 
Network Based Primitive Classifier 
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with the classification, the haman-readable format of which which can be found in 

Table C.6 of Appendùr C. To the left of the "transition peak" of Figare 2.21, the 

classification output is one, which corresponds to the DG class. To the Oght of 

the peak, the output is two, or CBR, the desked classification. At the peak of the 

transition period, the output is ninety-three, that is a RC -t classification. 

Note that the length of the transition period is eleven slots, five more than in the 

W = 10 case, whicli corresponds to the increase in size of the t r a c  window. In 

addition, while the excursion to the highest point in the peak cornes as a single 

step. as in the case Mth W = 10 of Figure 2.16, the "fd" fkom the peak is more 

gentle, and goes througli more classifications. ln other words, this larger window 

size is able to make more, or b e r  classifications than the smaller window. Thus, 

the results support the design discussion of Section 2.1.1. Finally, note that since 

the 15-80-80-10 neural network completed training with zero enors on the training 

set, the mistake that was observed in Figure 2.16 is not present in Figure 2.21. 

The classification results for the same sources that are presented in the previous 

section appear for the present case in Figure 2.22. The same transition patterns 

are observed, except as noted they have increased in lengtk and accuracy, or "char- 

acterizability." Also note that the CBR(9) source which was classified as DG in 

Figure 2.19 for W = 10 of the last section is now classified correctly as CBR. As a 

point of interest, for W = 15, it is now the source with the most graceful transition. 

2.3.1.3 Tkaffic Window Size W = 20 

Finally, a snmmary of the validation results of the CBR sources for the 20-200-200- 

11 neural network based t r a c  classifier is shown in Figure 2.23. As can be seen, 
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Figure 2.23: Cornparison of the CBR Classification Results for the 20-200- 
200-11 Neural Network 

While this section is intended to discuss the neural network training validation 

results of CBR sources, due to the design of the traffic primitives, this section also 

included all that needs to be stated about the DG class and much about the CBR- 

RC class. The following section makes a few more points about the training results 

of the CBR-RC sources, and Section 2.3.3 briefiy presents the resdts of the PT 

sources. 



CaAPTER 2. TRAFFIC CLASSLFKATION 

2.3.2 CBR-RC T r a c  Sources 

In addition to the discussion of the CBR source "transitions" of the previous section, 

a few points regarding the training validation results are made here. The reader 

sliould be aware that the CBR source transitions are nothing more than a sequence 

of CBR-RC classifications, as the figures of the previons section show. This is not 

surprising, naturally, since by definition the CBR-RC primitives are designed to 

cletect the o c m e n c e  of a CBR sonrce changing its rate. In the previoas section, 

the transition is fiom an ide link to the transmission raté of the CBR source. 

As shown, many CBR-RC classifications are generated as the sources make thek 

transition to their transmission rate. The last section also shows the effect of the 

trafic classifier window size: the ciassification accuracy increases as the wuldow 

size increases, as seen by the gentler fall fkom the peak excursion thougli more 

classifications, but this cornes at the cost of increased reaction t h e  of classification, 

sirice the transitions occur over a larger nuxnber of slots. As discussed in Section 

2.1.1, this is the expected behavior of the trafic elassifier. 

In order to validate specific CBR-RC transitions, a single snap-shot of a traffic 

stream is presented to the classifier. For example, if "0101011111" is presented 

to the W = 10 classifier, the classification is RC $ -t C, as expected. If this is 

continued with the remainder of the CBR-RC primitives, only one mistake will be 

niade: as cliscnssed in the previous section. The W = 15 classifier does not make 

aliy mistalces, and the W = 20 makes nine. Since the CBR-RC classifications are 

ctesigned to detect changes in CBR sources, fùrtlier results appear in Section 2.4. 
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2.3.3 PT Daf3c Sources 

Since all the PT training vectors axe 1eanied pedectly for all three &es of neural 

network, validation results are difficuit to present; the figures d consist of straight 

lines indicating the output of the classifier is PT for any trafEc stream that has the 

characteristics of the PT (x, y) source defined in Section 1.6.6.4. Of course. this is 

true only for PT sources which are ckaracterized by the PT primitives of Section 

2.1.3.3; that is, any PT source which is completely contained within the traffic 

window. This idea is discussed next- 

Two interesting figures are presented which illustrate a concept that is as& 

in Section 4.2 of Chapter 4. Consider Figure 2.24, whkh represents the output 

of the W = 10 classifier when presented with thirty slots, and then a PT (10,10) 

source. After the first thirty slots, the first classification made is DG, since as the 

burst of this PT source enters the trafic window, a DG trafnc primitive results, 

uamely "0000000001." Then, for the next nine slots, the classification is PT, since 

the trafic window is Wed with morphisms of various PT tr&c primitives. Note, 

however, due to the definition of the PT primitives, there is no PT (10,lO) t r a c  

primitive for W = 10. Thus, at slot thirty-nine, the t r d c  window is "0111111111." 

At dot forty, a CBR classification is made, since the trafnc stream now resembles 

the CBR (O) source. At slot forty-one, the output is once again PT and this cycle 

repeats every twenty slots. In a similar fashion, at slot fifS, the trafic wi~dow 

contains only slots, and so the classifier output is DG, and this obsemation is also 

repeated every twenty slots. Hence, as anticipated in Section 2.1.1, the abïiity of 

the primitive classifier to discern featnres in a trafic stream is directly rdated to 
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Figure 2.24: Classification of the PT (10,lO) Source for the 10-35-35-9 Neu- 
ral Network B ased Primitive Classifier 

its trafüc window size. As well, the continuity of classifications over time, that is 

as a new c d  or slot entas the traffic window, is also related to the definition of 

the traffic primitives. In this case, if the t r a c  primitive '1111111111" is defined 

to be PT instead of CBR, and ''0000000000" is defined to be PT instead of DG, 

then these results would not be observed. As mentioned before, the results of tr&c 

classification are very much dependent on the desires of the designer of the trafic 

primitives, that is, the network provider. 



This situation is farther illustrated in Figure 2.25, which shows the results of 

the PT (30,30) source which kas mach larger bursts and silence periods than the 

previous source. As can be seen, this only exacerbates the problem, since now the 

trafic window is completely füled with all c& or dl dots for longer periods of time. 

This problem could be solved by presenting the same stream to trafüc classifiers 

wit k larger windows, however tLis represents a large inves tment in neural network 

training tirne, as cliscussed in Section 2.2. 
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Figure 2.25: Classification of the PT (30,30) Source for the 10-35-35-9 Neu- 
ral Network Based Primitive Classifia 



This completes the discussion concerning the validation of the training of the 

traffic primitives. As can be seen, for id three sizes of neural nehvork, the training 

is successfd, and the t r a c  classifier based upon these neural networks operates 

as intended. The following section shows the resdts of the conhibution of trafic 

classification, that is classifying sources which are not presented to the n e d  net- 

works during training. The above discussion &O foreshadoas the introduction of 

the Burst-oriented shaper in Chap ter 4, since its design is based on this concept of 

bursts and silences being contained by the trafic window. 
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2.4 Primitive Classifier Operation 

This section applies the resuits of training the t r a c  classifier to trafnc streams 

whicti its neural network had not been exposed to dnring training. Since for a 

given trafic window size W ail the deterministic partition traffic primitives are 

translated into training vectors and used to train the neural network. ttiis iniplies 

that a l l  the trafic sources discussed below are drawn from the distribution partition. 

This represents an important contribution of this thesis: asing a neural network 

that has leanied only deterministic haf l ic  streams to detect features in probabzstic 

streams. And hence the justification for employing a neural network instead of a 

more conventional classXcation scheme. Since the power of a neural network is its 

ability to generalize, by training it to classify deterministic strearns it should be 

able to generalize to probabilistic streams. 

The following thee  sections discnss three su& sources of probabilistic tr&c 

streams. First, in Section 2.4.1. general on-off t r a c  sources and th& subset. 

packet train, are considered. These should be classified wd, since in the desigri of 

the primitive classifier prionty is given to the training of PT primitives in mtici- 

pation of the interaction of the classifier and the AAL. Next, Section 2.4.2 briefly 

examines the performance of the classifier in the face of t r a c  which, in a way, is 

the exact opposite of that it leanied to recognize. Since the geometric distribution 

is memoryless, it should pose a serious problem for the primitive classifier. Fortu- 

uately, this trafic ckss  is not anticipated after eellization as described in Section 

1.6.4, however if the primitive classifier is to have a wider application, this traffic 

type requires consideration. Finaily, Section 2.4.3 presents the results of at temp t- 



ing to classify a source with characteristics similar to a geometric source, but witk 

the memoryless property no longer holding; in pat t idar ,  an MMBP source. 

2.4.1 On-off and PT lkaf3c Sources 

As a t t s t  example, consider the on-off source which has its on-period d o r m l y  

clistributed with mean five cells, and its off-period d o r m l y  distnbuted with mean 

five cells. Using the notation of Section 1.6.6.4, define the d o r m l y  distributed 

packet train source as PTçr ( x ,  y) = (24 (x) ,O, U (y)), so that the on-off source 

just described can be denoted by PTV ( 5 ,5 ) .  The result of classifuing this source 

appears in Figure 2.26. The e s t  two hundred slots are shown for this source. 

and the classifier output. As can be seen, most of the classifications are PT, as 

is desired. Hence, the neural network las genaalized as planned. The CBR and 

DG classifications &se due to the fact that some of the burst lengths are longer 

than the traf6c window, and that some of the silence lengths similady are also 

longer, as discussed in Section 2.3.3. In addition, there are a number of CBR- 

RC primitives, which are undesirable. They arise due to the characteristics of the 

PTo ( 5 , 5 )  source; it is possible for one c d  to appear in a 'burst," and one slot 

in a "silence." However, a pattern such as tkis is defined to be CBR, and thus as 

it traverses the trafic window it is inevitable that a CBR-RC pattern is formed. 

Anotker source of the CBR-RC classifications could be "boundary conditions." 

What is meant by this is that as an old burst skifts out of the traffic window as a 

new burst shifts in, the pattern may in fact resemble a CBR-RC, especiaily with 

one or two single cells near the center of the window. Thus, owing to the nature of 
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Figure 2.26: Source: PTV (5.5). Classification Results using the 10-35-35-9 
Neural Network based Primitive Classifier 

the t r a c  primitives, a certain amount of incorrect classification can be expected 

and thus should be tolerated. Also note that since the 10-35-35-9 neural network 

is employed, mistakes can occur. In order to better quant% the classifications, 

Figure 2.27 plots a histogram of the classifications made. The figure shows that 

about 86% of the classifications are PT, which certainly does not seem to be the case 

kom the misleadhg Figure 2.26. In addition, less than 0.1% of the classifications 

are CBR and DG combined. However, 2.7% of the classifications are mistakes. 
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Figure 2.27: Source: PTrr (5,5). Histogram of Classification Results asing 
the 10-35-35-9 Neural Network based Primitive Classifier 

Tkus, perhaps this neural network should "go back to schooln in order to leam the 

single training vector whch causes tkese mistakes. The remaining ten percent is 

spread amongst the CBR-RC primitives, with no single one representing more tkan 

0 .O 1% of the classifications. Therefore, no twitlis tanding the training error, i t can 

be said tkat the primitive classifier operates excep tionally well, correctly discerning 

a PT cell stream h m  a somewhat raudom on-off stream, 

A more random on-off source is given by one which has geometncally distnbuted 
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on and off periods. Define such source as PTo (2, y) = qoo (Ç (x), 0, Ç (y)). The 

dassification of a PTG (5,5) source is shown in Figure 2.28, and its correspond- 

ing classification histogram in Figure 2.29. As can be seen fkom the dassification 

output, there are some very interesting features, but as the histogram shows. the 

excursions into CBR-RC classifications do not have a high probability mass. In 

tkis case, only 63% of the classifications are PT, whereas CBR and DG classifica- 

tions occur 11% and 16% of the tirne, respectively. The mistakes o c m e c i  5.7% 
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RC C/3 to C/6 - 
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Figure 2.28: Source: PTo (5 ,5 ) .  Classification Results using the 10-35-35-9 
Neural Network based Primitive Classifier 
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of the tirne. In addition, the excursion into the CBR-RC primitives is not as far 

as in the case of Figure 2.26. Thus, while the chsification of this source as PT is 

no t as accnrate as with the PTu (5,5) source, one could make the argument that 

a PTo (5,5) has moved away somewhat fkom a hne packet train source. Hence, 

perhaps it should not be classified as on-off in the first place. While plots for the 

larger trafüc window size classifiers are not &en, the preceding discussions help 

to develop some intuition. If the burst and silence lengths of a source are small 

O 5 10 15 20 25 30 35 
Rimitive Classifier Output 

Figure 2.29: Source: PTo (5,5). Histogram of Classification Results using 
the 10-35-35-9 Neural Network based Primitive Classifier 



relative to the window size, then the larger shed aindows do classe the sonrce 

better, since they observe more of the stream and thus have a higher chance to 

make a more 'accuraten classification. In partidar, the DG and CBR classinca- 

tions are eliminated, but fewer PT classifications are also made. Hence, the larger 

window size allows more of the stream to be observed, and aiso allows more diverse 

t r s c  characterization. However, if the relative barst and silence lengths are large, 

then the trattic window does not contain enough characteristics for a good classi- 

fication to take place. Test resdts (not included here) indicate that the window 

size should be on the same order as the sum of the mean burst and mean silence 

lengtks expected. 

T b  PTc(5,5) source resembles a PT stream much less than the PTU(5,5) 

source. In the following section, a source type which does not resemble a packet 

train at ail is presented to the primitive dassifier. 

2.4.2 Geometric Tkaffic Sources 

This section shows the results of class*g two geometric sources, with fairly dif- 

ferent mean &val rates, in order to show that a high arriva1 rate geometric source 

appears to be behave as a PT source, whereas a low arrivai rate geometric source 

appears more Wre a DG source. This could be of appeal to an analyst who must deal 

with PT sources, but wishes to apply the simplifying assnmptions of a memoryless 

distribution. As defined in Section 1.6.6.4, define two geometric sources, one with 

mean interanival time of h o  cells, Ç (0.5), and the other witk mean interarrival 

time of five cells, Ç (0.2). In Figures 2.30 and 2.31, the classification output of the 
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Figure 2.30: Source: 

100 
Slot Numbcr 

Ç (0.5). Classification Results using the 10-35-35-9 
Neural Network based Primitive Classifier 

high rate geometric source is shown, dong with the classification histogram. As 

can be seen, a geometric source of this rate appears to resemble a PT source and, 

in fact, about 30% of the time the classifier does make that judgement. On the 

otker hand, Figures 2.32 and 2.33 show tkat the low rate source does not resemble 

a PT source at 4, since almost kalf of the time it appears as a DG source. Of 

course, since the mean interarrival time is five cells, its "silence" period is starting 

to approach the size of the trafic window, as discussed previously, the classifier 
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Figure 2.31: Source: Ç (0.5). Histogram of Classification Results using the 
10-35-35-9 Neural Nehork based Primitive Classifier 

may not be  able to observe enough of the c d  stream to make a good classification. 

The result of this section is that while the primitive classifier, as designed, is 

poorly suited for classïfying memoryless sources, such as geometric, it may be u s a  

to distinguish between h o  types of the same source, as will be discussed in Chapter 
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Figure 2.32: Source: Ç (0.2). Classification Resdts asing the 10-35-35-9 
Neural Network based Primitive Classifier 

2.4.3 MMBP Tkaf8c Sources 

As a las t example of traffic classification, Figures 2.34 and 2.35 show the results of 

classifying an MMBP t r a c  source, with rate transition matrix 
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Figure 2.33: Source: (0.2). Histogram of Classification Results using the 
10-35-35-9 Neural Network based Primitive Classifier 

and arriva1 rate vector 

As expected, the figures show that while this source has some properties of the 

geometric source, it bekaves more like a PT source tkan the geometric does. About 

50% of the classifications are PT, compared with the 30% of the high rate geometric. 



Figure 2.34: Source: MMBP. Classification Resdts using the 10-35-35-9 
Neural Network based Primitive Classifier 

This concludes the discussion of the operation of the t r a c  classifier on proba- 

bilistic streams. It is shown that for sources that somewhat resemble a PT source. 

the classifier operates very well. However, for memoryless and other sources, it does 

not. Since the underlying assmnption of the shaper is to observe a PT stream, this 

is not surprising. It is difIicult to classify a stream as PT if it does not have any 

characteristics of a PT stream. Nonetheless, the next chapter introduces a few ideas 
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Figure 2.35: Source: MMBP. Histogram of Classification Results using the 
10-35-35-9 N e d  Network based Primitive Classifier 
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Chapter 3 

Traffic Classifier Applications 

This chapter htroduces two novel applications of t r a c  classification: Trafnc Prim- 

i tive Histogram Identification (TPHI) and Stream Transition Tracking ( STT ). Bot li 

of tliese stem fiom the observations made in Sections 2.3 and 2.4. TPHI is a methud 

by which traf6c classifications are made, and stored in a histogram. In this way. a 

source can be characterized, not by its c d  statistics, but rather by its t r a c  prim- 

itive statistics. The idea is that if the neural network of the primitive classifier is 

trained properly, then it is able to discern pat terris in a t r a c  stream that wodd not 

be readily apparent to a more conventional metho d, or simply casual observation. 

Hence, allowing the neural network to detect features, which may correspond to 

kigh-order s t atis tics which are dinicult to calculate, and then keeping a his togram 

of these features allows the ckaracterization of iinknown sources, As mentioned in 

Sections 1.3 and 1.4, tkis is one of the key motivations in ATM networks. The 

TPHI method is described in Section 3.1. 

In Section 3.2, the STT method is introduced. This is a direct result of training 
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the neural network to recognize CBR-RC primitives. This method observes a c d  

stream and awaits changes that may occur. Depending on the type of change and 

its duration, certain actions can be taken. 

Both of these applications of trafic classification provide information about 

trûfnc streams. As such, they can be of use to the elements of the UNI, namely 

CAC, UPC and t r a c  sliaping. 
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3.1 T r a c  Primitive Hist ogram Identification 

There are two methods in which the TPHI scheme can operate: off-line and on- 

line. Each has advantages and disadvantages. First, since both methods fundion 

in much the same way, the concept of traffic primitive histograms is introdnced. 

Histograms of t r a c  primitives have aheady been presented in Section 2.4. The 

reader is encouraged to refer to the figures of that section, however, Figure 2.31 

is reproduced here as Figure 3.1. R e d  that Figure 3.1 shows the histogram of 

5 10 15 20 25 30 35 
Primitive Classifier Output 

Figure 3.1: Source: Ç (0.5). Histogram of Classification Results uskig the 
10-35-35-9 Neural Network based Primitive Classifier 
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primitive classifications of a source with interarrivai times geometrically distributed, 

with mean 2 cells. In the last chapter, PT soutces and sources which behave like 

packet trains are identified directly by the shaper. However, other sources like 

(0.5) wkich are not encompassed in the haflic primitives requke either additional 

classification, as mentioned in Section 2.1.6, or a metkod such as TPHI to help 

identify them. 

Thus, with the ability to obtain trafEc primitive histograms, this method is quite 

simple. As traffic classification is performed on a given c d  stream, a histogram of 

these observations is kept. Then, fiom time to tirne, this histogram is compared 

witk a "libraryn of kistograms that the network provider must develop. This li- 

brary is built up from previously known sources, whose characteristics have been 

ideiititied. For example, an MMBP source is well loiown. However, to chasacterize 

an unknown MMBP source is not trivial. Worse still is attempting to identify that 

the source is MMBP to begin with. However, with TPHI this problem is simplified. 

Two methods tkat can be nsed to decide whether the primitive histogram of 

a source in question matches one of the known sources in the library is to use a 

sectioning method, or a correlation method. Referring to Figure 3.1, it can be seen 

that the distribution of CBR-RC primitives observed takes on a definite periodic 

pattern. This can be observed in all the histograms of Section 2.4, and is most likely 

due to the priority assigned ta individual haflic primitives as the training vectors 

are generat ed, as discussed in Section 2.2.1. Unfortunately, a dkect relationship 

lias proven to be elusive. Nevertheless, if each of these groupings of primitives is 

considered to be in a given section, then a simple method is to compare the total 



3.1. TRAE'FIC PRIlMITlVE IZlST0GRA.M WENTLFICATION 137 

probability in each section of an iinlrnown source to the corresponding section of 

a known source. If the values agree within some threshold, then the sources are 

considered to be of the same ekFs or type. 

The correlation method entails simply multiplying the probability miss of each 

trafnc primitive histogram observation of a h o m  source with that of the source in 

question, and then summing these products to produce a measure. This measure 

is then compared to a benclunark measure obtained by performing the correlation 

of the library histograrn witk itself. If the correlation measure obtained is within 

some threshold value of the benchmark measure. theri the source iii qutstioii is 

considered to be of the same type as the library source. 

This method can be performed both off-line and on-line. In the off-Line method, 

usas  or the network provider can run trials on new or poorly characterized sources, 

and compare the resdts with the Iibrary his tograms. In this way, new sources can be 

identified, and the library of known source histograms can expand. The drawbadc, 

of course, is that a user may still violate a Trafic Contract even thongh source 

identification has taken place. 

In the on-line method, tranic streams are continuously or periodically charac- 

terized, to ensure that they are still within the same traffic class. This has the 

a d ~ n t a g e  of providing timely and up-to-date information to the UNI, however at 

the cost of increased complexity. Since the primitive classificatiou utilizes ueural 

networks, at l e s t  the updating of the trafic primitive histogram can be considered 

to be negligible. It is the Listogram cornparison with library histograms at which 

a bot tleneck c m  form. 
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At tkis point it should be noted that work ha9 already been perfonned on 

another histogram-based method [SSD93]. This scheme proposes a model for video 

trafic which is independent of video type and coding. A bit rate histogram is 

built, conditioned upon which video source in a given set is present at an ATM 

node. The assumption is also made that during any given frame of a video source. 

the cell arrivai process is approximately Poisson. The main thrust of this p a p a  

is to use these histograms to model video trafEic, which is then used to predict 

buffer occupancy and system performance at the ATM node. h addition, the 

video trafic studied is an aggregate of individual video sources. These two facts 

make cornparison of the resdts given in the paper and the TPHI method d i f i d t .  

In addition, the goals of the cited work and TPHI differ in that the TPHI method 

is applicable to, ideally, all traffic sources, not just video sources. Nevertheless, it 

may be possible to improve on the resdts of this work if, instead of employîng the 

lustogram method cited, the TPM metkod based on trafnc primitives is used. This 

could allow much of the node performance analysis to be applied to more general 

traffic sources. 

As a fuial note, since the Trafic Primitive Histogram Identification method 

can be used to characterize sources, it can be used by every element of the UNI, 

including shaping. In fact , one of the shaping methods proposed in Chapter 4 relies 

on the fact that the source type is Lnown and characterized. The next application 

of primitive classification does not charactaize sources per se, instead it is more 

useful in monitoring their actions, and thus can be employed by UPC. 



3.2. STREAM TRANSITION TRACKING 

3.2 Stream Tkansition Tracking 

From the discussion of the design of the h&c primitives in Section 2.1.3, especially 

the CBR-RC primitives, and from their properties as shown in the validation of the 

CBR and CBR-RC primitives of Sections 2.3.1 and 2.3.2, it can be seen that they 

are well suited for observing when a cell stream changes its charaeter. For example, 

in Section 2.3.1, when a CBR source starts transmission after an initiai tfiirty dots. 

i t could be considered tkat the source clianged its characteris tics from au ide suurçe. 

DG, to a CBR source. 

As described, a sequence of classifications, usually CBR-RC, are emitted by the 

primitive classifier during the transition period. The idea of the STT is to monitor 

the classification sequence of a cell stream, and if a partidar pattern is observed, 

then take some action. For example, Table 3.1 contains an example of the primitive 

sequence that occurs when a CBR source changes its rate from 5 to 5, which in 

general would have a detrimental effect on other users, and hence source policing 

should be performed. Of course, more compiicated transitions can be allowed, such 

as the transition ffom a CBR to PT source, or the transition that occurs when an 

MMBP source transmits above its average rate. 

However, due to the number of incorrect classifications observed in Sections 2.3 

aiid 2.4, the STT requkes some hysteresis to avoid making incorrect decisious as 

to whether a transition has occurred. Unfortunately, the specification of this can 

ody be accomplished through the experience gained in operating the sys tem. 

One may wonder if a transition sequence is unique. Due to the way in which 

the training vectors are designed, &er some thoaght the reader should rest assured 
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Table 3.1: CBR-RC Primitives Produced by a Rate Change from 5 to $ by 
a CBR Source 

Slo t Number Primitive Classification 
1 CBR 
2 CBR 
3 CBR 

- 
9 R C ~  ++ 
10 CBR 

that the transition sequenees are in fact unique. If they were not, then a one to 

many neural network training vector mapping wodd exist. However. the training 

vectors are designed so tkat tlus cruuiot happen, and thus all transitions are unique. 

Hence, the STT method could be employed by a smart policer to determine 

tkat a change has occurred in the traffic stream, and what that change implies. 

For example, if the source increases its rate by a small fraction, these cells can be 

tagged. However, if the rate increase is substantial, then these cells can be dropped. 

This concludes this short chapter on the applications of trafnc shaping. The 

next chapter introduces two shapers in detail, the Minimized Variance shaper which 

utilizes source characteristics in order to improve shaping, and the Burst-oriented 

sliaper. which has the ability to unshape the shaped t r a c  stream at the destination 

UNI. 



Chapter 4 

Traffic Shaping 

This chapter presents two shaping algorithms. As discussed in Section 1.3, C d  

Admission Control and Usage Parameter Control which occur at the User-Network 

Interface can be simplified if trafic shaping is performecl. In addition, it is expected 

that nefxork efficiency wdl increase, since cell schednling at the multiplexer of ATM 

switches in the network can also be simpiified. 

First, the Variance Minimized shaper (MVS) is introduced in Section 4.1. This 

skaper attempts to minirnize the interdeparture time variance of cells exiting the 

shaper, in an attempt to approximate the Ideal Shaper discussed in Section 1.3.2. 

If the interdeparture tirne variance is reduced to zero, tken ideal shaping results. 

The approach taken to achieve this goal is to use knowledge specific to a given 

source. Therefore, the source type or traffic class must be known before shaping 

can proceed. Fortunately, Chapter 2 presented a method to accomplish this. The 

MVS could be thonght of as another application of tr&c classification and inchded 

with those presented in Chapter 3, however the importance of trafEc shaping in 



ATM networks warrants tkis specid attention and hence tkis chapter. After the 

continuous and discrete thne MVS models are presented in Sections 4.1.1 and 4.1.2? 

some results of shaping a few trafic classes are presented and discussed in Section 

4.1.3. Aspects of this work are reported in [LM94]. 

Second, the Burst-oriented shaper (BOS) is introduced in Section 4.2. Like 

the M V S ,  and as mentioned in Section 1.4, the goal of the BOS is to reduce the 

interdepartue tirne variance of cells leaving the shaper to zero. Unlilre the MVS, the 

BOS cloes not requïre knowledge of the tratnc type. In this way, it is similar to some 

of the shapers in the Iiterature, cited in Section 1.2.3.3. However, the novel approach 

used here stems from the insights gained in the development of trafnc classification 

of Chapter 2 whidi lead to the contribution of this skaper. the concept of Ide$ 

Unskaping, as discussed in Section 1.3.2. In addition to attempting to generate 

a deterministic trafnc stream at its output, the BOS &O provides information 

embedded in the sbaped c d  stream to an unshaper at the destination UNI, as 

depicted in Figure 1.3. In this way, a stream with the exact same characteristics is 

presented to the end user as the one which entered the source UNI. This c m  be very 

important to certain sources which are sensitive to delays witbia their c d  stream 

caused by either shaping or network congestion. This information could also be of 

value to intermediate network nodes, since it characterizes the trafnc stream. The 

BOS mode1 is presented in Section 4.2.1, and the shaping and unshaping algorithms 

in Sections 4.2.2 and 4.2.3, r e s p e c ~ y .  Finally, the results of shaping a few trafic 

types are provided in Section 4.2.5. 

It should be reiterated at this point tkat nnWre most skapers in the literature. 



the two to be discassed attempt to create deterministic haflic sfxeams kom prob- 

abdistic streams. This, as mentioned, is beneficial at the UNI. In addition, if all 

traffic streams flowiag throagh an ATM network were deterministic, deterministic 

sclieduling and multiplexing at the switches would resdt, and so congestion wouid 

be avoided. It is acknowledged, however, that due to delay and other constraints. 

that some sources cannot be shaped. 



4.1 Minimized Variance Shaper 

The proposed cell-space shaper is modeled as a FIFO1 queue and semer. The 

service time is dependent on the c d  interarrival times of the arrival process of 

a given t r a c  stream, and on whether the shaper system is empty upon a c d  

arrival. The service time is optimized, assnming the shapa is empty, so that the 

interdeparture time variance of cells leaving the shaper is minimized. In order to 

lkùt the size of the shaper queue, a heuristic is included in the optimization. 

The shaping dgorithms of [Bro92, ChaSl] are somewhat similar to that pre- 

sented here; however, in this work it is assumed tkat the skaper has knowledge 

of the type of traffic presented to it, so tkat the shaping can be tailoreci to the 

char acteristics of a parti& c d  stream. This information can be obtained via the 

t r a c  classification method of Chapter 2. Note that while the MVS is presented in 

the context of ATM networks, it is applicable to any packet switching network. 

In order to shape sources where the c d  a r r i d  process is known and is analyt- 

i c d y  tractable, a continuous time shaper model is discussed in Section 4.1.1. On 

the other kand, for cases when the c d  amival process is intractable, or only a cell 

interarriva1 Iustogram is available, a dismete time version of the shaper model is 

cliseussed in Section 4.1.2. To complete the study of the MVS, some examples of 

its operation appear in Section 4.1.3. 

IF-mt in, first out. 



4.1.1 Continuous Tirne Shaper Mode1 

Consider a cd-space shaping device that delays a cell if its interatTival time,2 

1. E R+, is below a certain threshold, and d o n s  the c d  to pass if its interarrival 

time is above the threshold; c d  this threshold the shaping parameter K. Also. 

denote the interdeparture t h e 3  of a c d  leaving the shaper as Di. The problem is 

how to choose K such that the c d  interdeparture time variance of a given traffic 

stream is minimized- 

The shaper can be represented as a queue and server, as shown in Figure 4.1. 

Rom the figare, it can be seen that Di = li + Zi ( I . ) ,  where V (1;) represents the 

"service then  or delay as a cell passes through the shaper. In general, the haflic 

shaper implements the delay function 

where K is yet to be detennined. Idedy, if a cell is delayed no further amivals occur 

until that c d  has left the server; in other words, no queueing takes place. But very 

few. if any, sources behave in this manner. Due to the fact that this service time is 

dependent on the c d  interanival time, methods utilizing embedded Markov chains 

cannot be applied [LCle75, WolSg]. Based on the short tenn arriva1 characteristics 

of the cell trafic, the shaping can be either "soft" or "hard," as described below. 

'The cell interarrival time is defined as the amount of tirne that has elapsed between the &val 
time to the shaper of the c d  in question and that of the previous ce11 arrivai. 

' ~ h e  ceU interdeparture time is analogous to the cell interanival time, except c d  are leaving 
the shaper instead of arriving. 
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Buffer 

Arrivals '0 (r i )  Departu res 
ri Di 

Figure 4.1: Continuons Time Shaper Mode1 

If cell interarrival times are large relative to the shaping parameter, that is 

Ii >> K, Little or no shaping takes place. In this case, the shaping can be desaibed 

as beiiig soft, that is the probability that the shaper delays a ceil  is low. In this 

case, D (1.) = O V i. At the other extreme, if c d  interanival tinies are s m d  

relative to the shapiug parameter, that is li << K, kard shapiug is said to take 

place. The probability that the shaper delays a celi is hi& since K  enc compas ses" 

most interarrival times. In this case, V ( I i )  = K V i. This, nnfortunately, implies 

an infinite shaper queue if c d  arrivais occur while previously e e d  ceils are being 

delayecl. 

Hence, V (ri) cari be thought of as an "asymptotic" value of dday as the shaper 

changes its characteristics between soft shaping and hard shaping. As shaping 

becomes soft, the "trivial" solution for the shaping parameter resdts in V (1;) = 0, 

in wkich case shaping no longer occurs. The interdeparture tirne variance is the 

sarue as the interarrival tirne variance, with no queueing at the shaper. As the 

shaping becomes hard, the trivial solution is V ( I i )  = W. This Lias the effect of 

reducing the interdeparture time variance to zero, but it requires an infinite length 

queue. 



4.1.1.1 The Continuous Time MVS Algorithm 

In order to bring these hro conflicting solutions together, a compromise must be 

made between hard and soft shaping. Thus, if the shaper is empty, cells are deiayed 

an amount of time equal to D (li) given in Equation (4.1). If a cell arrives at the 

shaper to find another c d  being delayed, or cells qneued, it is enqueued and its 

delay set to 'D (ri) = K. The delay function now becomes 

K - I i  i fTi<K 
if the shaper is empty, 

if Ii > K 

I K  if the shaper is non-empty. 

As a result, when cells amve with intervening gaps the shaper operates in the soft 

mode, atternpting to make Di = K, and when cells arrive in bunches the shaper 

operates in the kard mode with Di = K. The underlying assumption is that ceils 

wluch arrive during hard shaping are "spreadn into areas of the ceIl stream which 

wo.uld have been skaped in the soft shaping mode. This may cause an increase in 

queue length, and so the reason for the compromise: it is necessary to develop a 

strategy to bound the queue growth. One such strategy is to introduce a heuristic 

to allow the user to spe* a maximum allowable increase in mean interdeparture 

time. AU that remains is to determine the d u e  of K. 

4.1.1.2 Determination of K 

Consider a user tranic stream which can be characterized by a cell interarrival t h e  

process with probability density function (pdf) i ( t )  and cumulative dishibution 



function (CDF)' I ( t ) .  Af'ter passing through the shaper, the c d  interdeparture 

time variance Voi is given by 

= E [(Di - E [ D ; ] ) ~ ]  

K 2 

= 1" K2i  ( t )  dt + La tZi ( t )  dt - [ I /  Ki (t)  dt + ln ( t)  dt] 
(4-3) 

assuming that ceils always find the shaper empty; in 0 t h -  words, sofk shaping mode. 

in which no queueing takes place. The implicit error of this assumption has to do 

witk the J ' t i ( t )  dt and $; t 2 i ( t )  dt terms in Equation (4.3). These terms deal 

witk the interanival times of cells such that 1; > K, but the shaper is operating in 

soft mode instead of hard mode, by the above assumption. Since some of these c& 

encounter a non-empty shaper queue, they are, in effect, bard shaped. Thus, these 

terms in Equation (4.3) are too large and the terms SOC K2i ( t )  dt and 1: Ki ( t )  dt 

are too small. Hence, this expression for the interdeparture t h e  variance &om the 

skaper is an upper bound. 

Now consider an optimization problem wherein the c d  interdeparture time 

variance VDi of the stream leaving the shaper is to be minimized, subject to the 

constraint that the meau interdeparture tirne, is to be less than sorne multiple 

'For definitions of the pdf and CDF, refer to [Pap84]. 
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7 of the c d  mean interarrivai tirne, i. The optimization problem can be stated as 

min {VD,) such that 
K2o 

The solution of this problem is dependent upon the characterization of the traffic 

stream. ln the following section, this is performed for a Poisson source. and for a 

on-off source in Section 4.1 -1.4. 

4.1.1.3 Mmuxuz O . .  ation of Voi for a Poisson Source 

If the trafnc source is Poisson, then c d  interarrival times are exponentially dis- 

tributed with 

for O 5 t 5 W. After shaping, the interdeparture time variance VDi is given by 

the following equation, wkich is obtained by substituting Equations (4.5) and (4.6) 

into Equation (4.3), 
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In order to d o w  the specification of a macimm tolerable dday added by shaping, 

the mean interdepartare time & of cells leaving the shaper can be bounded by, Say 

ri, where 

Therefore the problem of Equation (4.4) can be set up as a constraint optimization 

with objective fnnction 

where p is an arbitrary Lagrangian multiplier. Taking the first order partial deriva- 

tives gives 

Setting Equation (4.10) to zero yields 



which is the solution for the shaping parameter K. Bear in mind that Equation 

(4.12) requkes a numerical solution. Setting Equation (4.11) to zero r e d t s  in 

p = Ze-= A and K # O. Observe that the constraint will be active only if p > 0. 

which kolds mie for all K. Hence the constraint is always active and the solution 

of Equation (4.12) minimizes VDi . Notice that at K = oo, p = O, so the constraint 

becomes inactive. This solution is in agreement with the intuition developed under 

hard shaping. 

4.1.1.4 Minimization of VDi for an On-off Source 

The on-off t r S c  source described here is the same as that presented in [SW86]. It 

can be cliaracterized by5 

i ( t )  = (1 - aA) b (t - A) -t cr~pe-@('-') U ( t  - A) (pdf) (4.13) 

wliere a is the mean length of the geometrically distributed on period, P is the mean 

length of the exponentially disfxibuted off period, and A is the (deterministic) time 

between c d  arrivals in the on state- 

After shaping, the interdepartme tirne variance is &en by 

5Note that d ( 0 )  represents the impulse function, and U ( 0 )  represents the unit step function. 
For definitions, refer to [PapaO]. 



= LK K2i ( t )  dt + /K t2i ( t )  d - [lK Ki ( t )  1 + Lw ti ( t )  dt] . 

The Iower lLnit of the integals is A since K < A implies that no shaping takes 

place. Evaluating, 

and, as well, 

Solving Eqnation (4.4), as in section 4.1.1.3 by talchg derivatives of the objective 
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function, Equation (4.9), produces 

Setting Equations (4.18) and (4.19) to zero yields 

whidi upon numerical solution, gives the optimum value for K. The constraint is 

1 active for A 5 K < W. With an on-off source, recognize that X = W .  

4.1.2 Discrete Tirne Shaper Mode1 

The discrete time modd is analogous to the continuons time mode1 of Section 4.1.1. 

However, in this case the pdf of the c d  interarrival distribution need not be con- 

tinuous nor analyticdy tractable; in fact, the network provider can reqnire only 

a c d  interarrival histogram. This is usefd for sources where the arrival distribu- 

tions are either cLifEcult to obtain or unknown, such as those anticipated for future 

applications. 

Consider a cell generating process in which c d  interarrival t h e  is the random 

variable, IN E W+, where the subscript N emphasizes the fact that the interamival 

time can take on only N discrete values. Thus, a given realization of an interamival 
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time, Ii(N), is taken fkom the interarrival time set 

{&(NI 1 ['(N) E B+, 1 5 i < N, and li(N) < I j (N) ,  i < j )  . 

Note that the interarrivai times are ordered in inmeashg value? with I l (N) the 

smallest in value, and I N ( N )  the largest. I f  IN (IN) is taken to represent the CDF 

of the random variable IN, and if p~ (Ii(N)) represents the probability that the 

interamival time Ii(N) occurs, t hen 

Thus the p~ ( Ic (N)) ,  i = 1, 2, 3, . . . , N, speWfy the probability distribution6 of IN. 

Figures 4.2(a) and 4.2(b) illustrate this. IR order to provide a point of cornparison 

between the continuous time model of Section 4.1.1 and the discrete time model 

of this section, consider a source with exponential interarrival times, such as that 

of Equations (4.5) and (4.6). If the CDF of Equation (4.6) is partitioned into m 

"sections," that is discretized as shown in Figure 4.3, this would give rise to m + 1 

interamival times, Il(N), 12(N) . . . , I,+,(N), wliere I.+&V) = IN(N). 

The reader should note that most continuous interamival distributions are de- 

fined for all positive times, that is fi E W. However, fiom Equation (4.21), tkis 



(a) Probability Distribution, p~ (IN), of the Disaete Ran- 
dom Variable IN 

(b) Cumulative Distribution hinetion (CDF), IN (IN) of  the Dis- 
crete Random Variable IN 

Figure 4.2: Probability Distribution and C d t i v e  Distribution Function 
(CDF) for the kiterarrival Time Random Variable IN. 



W+7 ri(N) h ( W  

Figure 4.3: A Discretized Exponentid CDF 

dismete interarrival time distribution has a clearly defined maximum value, namely 

I ~ J (  N). Tkus, in order to more accnrately compare the results of the discrete model 

and continuous model shapers, the continuous exponential source needs to be "trun- 

cated" at a suitable value. For example, if ( is defmed to be the truncation factor in 

terms of probability, then the maximum value of a truncated CDF is I N ( N ) ,  that is 

Pr ( I N  5 I N ( N ) )  = 1 - (. If î (t) represents the truncated version of the pdf i ( t ) ,  

tken in order to keep the total probability in a truncated distribution unity, tliat is 

S,'N(~) î ( t )  dt = 1, i ( t )  must be scaled. Thns, the truncated versions of Equations 

(4.5) and (4.6) are 



The untruncated CDF Z ( t )  and m&nm probability of 1 - ( can be employed to 

obtain an expression for the maximum value of the trnncated distribution, 

and so 

Further, assume that the m sections of Figure 4.3 occur 

(4.23) 

with equal probability, 

except for the las t section which kas ( less probability, and so 

In general, given a truncation factor c, truncated pdf and CDF î ( t )  and Î ( t ) ,  and 

an underlying continuous distribution divided into m sections of equal probability 

PN ( I i (N))  = $, except for p~ ( I N ( N ) )  = 2 - (, then the N = m + 1 discrete 

interarriva1 times are given by Ii (N) = ZN' (c:,, p~ (lj(N))), i = 1. 2, . . . : N-1: 

and I N ( N )  = ZN' (1 - c) ,  where Z'' represents the inverse of f ( t ) .  



The c d  spacing mode1 is almost exactly the same as that for the continnous 

time sources of section 4.1.1, as Figure 4.4 shows. The only diEefence cornes in a 

slight change in notation due to the "sectioningn of the source interarrivals. Hence, 

the discussion of section 4.1.1 applies equally w d  here. As with the continnous 

time case, treating the shaper as a queue and server, the discrete time equivalent 

of Equation (4.2) is given by 

K(N,m)-Ii(N) ifi=l,2,..-,m-1 if the shapcr 

( L ( N ) )  = O i f i=m,  m+1, ... , N 
is ernpty, 

if the shaper 

is non-empty. 

In tkis case, D ( l i ( N ) )  is the discrete time equivalent of 2) ( I i ) ,  and K (N,m) is the 

shapkig parameter yet to be determinen. In addition, be aware that K (N, n) is 

dependent not only on the total number of sections N, but it will lie within one 

particular section, m, as weli. 

B uffer 

Arrivais (UN)) -N Departures 
I i (N)  Di (N, m) 

Figure 4.4: Discrete Time Shaper Mode1 



4.1.2.1 Determinationof K ( N , m )  

With the discrete time source characterized, it can be seen that after the c e h  pass 

through the shaper, the interdepartnre time variance VDi(N,m) is 

assuming that cells always find the shaper empty, that is a soft shaper. In order to 

converiiently write these equations, define 

and 

Keeping in mind the same optimization problem as in the continuous t h e  case. 
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where the mean interdepartme time Di (N, m) is bound by rf, prodnces 

which gives the optimum K ( N , m )  for a given N, for all m. Ln addition. it can also 

b e  shown that 

Forming the Lagrange equation results in 

where pl, pz, p3 are arbitrary Lagrangian multipliers. Taking the partial deriva- 

tives results in 

âL 
aK (N? m) 

= 2a (N, rn) a' (N, rn) - 2a ( N ,  m) Y ( N ,  m) 



Setting these four eqnations to zero and evaluating the cases which mise from the 

possible combinations of activity and inactivity of the three constraints results in 

the general solution for K (N, rn) as follows: 

if a ( N , m )  (af ( N ,  m) I,-i(N) - Y (N, m ) )  2 0, 

M N )  if a ( N ,  m) (Y (N, m) - a' (NT m) I,(N)) 2 O, 

&(N,m) -0 (N,rn)* f - i f b r ( N , r n )  - af(~,m)(~(~.m)+.r A ) 
u(N,m) 4 N . m )  2 0, (4.37) 

otherwise. 

The conditions must be checked in the order given for the constraints to be satisfied. 

Unlike the continuous time case, this is as far as the derivation can proceed for 

the discrete t h e  mode1 without being given the p;(N) and I ; (N) .  The following 

section presents results of shaping a few example sources. 

4.1.3 Results 

This section gives the resulks of the Continuous Time MVS (CT-MVS) in some 

detail? since it is analyticdy tractable. In Section 4.1.3.1, sources that can be 

characterized by the exponential distribution are studied, however some comments 

are made about the on-off source introduced in Section 4.1-1.4 as weil. Section 

4.1.3.2 begins by comparing the results of the Discrete T h e  MVS (DT-MVS) 

operating on a discretized version of an exponential source presented in Section 



4.1.3.1. Then, the more interesting cases of an MMBP, and PT sources follow. 

A software suite, written in C, is utilized to calculate the optimum value of 

K and K (N, m). Then, c d  arrivais of the appropriate distribution are generated 

ancl the operation of the shaper is simulated. In all the following, ten rnns are 

perfonned in order to obtain confidence intervals. However, in ody the worst cases 

are the intervals as large as five percent of the value in question. In addition, the 

intervals do not increase. Hence, for darity, confidence intervais are not included 

on the graphs that foilow. In addition, there are 10,000 arrivals per simulation ~ u .  

The arrival rates are measured in cells per unit t h e .  Since both MVS algonthms 

are concerned with interarrïval time distributions and not actud interamival times, 

any time scale snfnces. Thus, an arrival rate of = 1.0 can be intqreted as, on 

average, one c d  arrives during a "normaiizedn Mit of tirne. An example unit could 

be one hundred ATM slots. 

4.1.3.1 Continuous Tirne M V S  

Figures 4.5-4.7 show how the shaper can dectively shape sources with exponen- 

t i d y  dis tributed in t e rdva l  times. In Figure 4.5, the increase in mean delay is 

constrained to be one percent of the mean interarrival tirne, t h t  is = 1.01, since 

= 1.0. This does not leave much room in which the skaper can operate. and as 

can be seen, only about 17% of the c d  anïvals are skaped to the optimum value of 

the shaping parameter, K = 0.145 (tirne nnits). For the case where the mean delay 

is allowed to increase to fifteen percent skown in Figure 4.6, the shaper operates 

much bet ter, with over 45% of the c d  arrivals shaped. This means that aknost half 

of the t h e  this stream resembles a deterministic sfxeam, with a constant interval 



intenrrival Tirne pdf - 
Interdepilrture Time Histogram - 

0.5 1 15 2 2 5  3 35 4 
Nomialized Interarrivai and ïnterdeparnire Time 

Figure 4.5: Poisson Source: f = 1.0, 7 = 1.01, K = 0.145 

of K = 0.602. As can be seen from the figure, approximately 0.1% of the ceU 

interdeparture times are less that K. These represent cells at the tail end of a long 

interarrival time in the c d  stream which arrive at the shaper K time units or less 

after the shaper has become idle. 

When c& are queued in the shaper during one of these long interamival times, 

they depart spaced equally with intenml K. This has the &ect of spreading cells 

whick arrive in bnnclies into the long interarrival times. However, for tLis s m d  

percentage, the interanival time is just long enough so that the queue emp ties, aiid 

the skaper becomes idle. The c d  arrival "just misses" encomtering a non-emp ty 

skaper by an amount of time less than K. Since a c d  that encounters an empty 



0 5  1 1 5  2 2 5  3 3 5  4 
Normaiized Interarrivai and hkfdeprirwe Time 

Figure 4.6: Poisson Source: X = 1.0, 7 = 1.15, K = 0.602 

shaper witk Ii > K is not shaped, as Equation (4.2) dictates, the interdepartme 

time is this d u e  less than K. 

On the other hand, for the approximately 50% of the remaining interarrival 

times, the interamival tirne is so long that it is mu& greater tkan K. Nonetkeless. 

as sliown by the interarriva1 times just to the right of K in Figure 4.6, since the 

interdepartare tirne histogram values are less than the unshaped interatrival time 

pdf values, some of the long interarrival times are shortened by the ce11 spreading 

mentioned above. In fact, the area between the interarrival time pdf and the 

interdeparture time histogram is a measare of the cell spreading. 

Findy, Figure 4.7 shows the case where the mean delay is allowed to increase 
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by t k t y  percent. In this case, almost 80% of the stream has an inter-cd spaJng 

of K = 0.888, and so perhaps this stream could be called pseudo-detenninistic. 

I Uitenrrival r i  pdf -c- 

Interdeparture T i  Ristogfam - 

0.5 1 1 5  2 2 5  3 3.5 4 
Normsilized Intenrrivai and Interdeparme T ï e  

Fignre 4.7: Poisson Source: A = 1.0, 7 = 1.3, K = 0.888 

Hence, for sufficiently large 7, the shaper behaves as designed, and approximates 

the Ideal Shaper. Additional information is summarized in Table 4.1 for each of 

the three figures. Included is the shaping parameter K calculated, the squared 

coefficient of variation7 of the unshaped and shaped arrival stream, CV2 and CV; 

respectively, the decrease in the interdepartme time variance VDi and increase in 

the mean interdeparture t h e  of cells leavlig the shaper and the overall increase 

in length of the cell stream that passes through the shaper. Also, varions simu- 



lation results pertaining to the shapa queue are tabdated, and as stated above, 

al1 of these entries are over ten simulation runs. The table shows that for higher 

Table 4.1: Suxnmary of Simulation Results for Poisson Source, X = 1.0 

I Observation 

. , 
Decrease in VD.. (%) 

I 1 1 

1 1.941 1 29.535 1 70.696 1 

1 7 = 1.01 
] K 1 0,145 

Y 

7 = 1.15 
0.602 

0.699 
29.540 

. 

- L I ,  

' Increase iP Di (%) 
Inaease in Stream Length (%) 
Mean Queuing Time 

values of dowable mean clelay increase, the shaper very effectively reduces 

the interdeparture t h e  variance of the cell stream at an almost negligible cost of 

increase in the mean iiiterdeparture tirne. In fact, the lengtk of the traffic streaur 

Liardly increases. This shows that the shaper is acting as planned, in that cells tkat 

arrive in bunches are spread into areas of the stream that have long interarrival 

times. Hence, for exponential interarrivai times, the shaper is very effective. The 

cost does show up, however, in queuing time and queue size. While the cell streani, 

as a wliole, does not increase in length, individual cells can be delayed as much as 

34 time units for the case of 7 = 1.30. Nonetheless, for a corresponding shaper 

b a e r  of maximum size 38 cells, this is not very large. 

7 = 1.30 
0.888 

A 

0.291 
70.700 

C - 
Maximum Queuing Time 
Mean Queue Size 
Mean M k u m  Queue Size 
Maximum Queue Size 

C G  
Decrease in CVZ (%) 

0,000 
0.000 
0.001 

O -995 
1.940 

0.001 
0.001 
0,143 

33.753 
3.762 

32,600 
38.000 

I 

0.011 
0.006 
2.435 

0.690 
0.060 
3,100 
5.000 

7.401 
0.653 

10.500 
13.000 
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The reader should note that as anticipateci in Eqaation (4.3) of Section 4.1.1.2. 

the two integral terms mentioned are overestimated, and thus the allowable meau 

delay increase specified by 7 is overly pessimistic. This is caused by the assumptions 

made when designhg the MVS. 

In considering implementation issues, a look-op table of f , 7 and their corre- 

sponding value of K can be caldated off-Line and accessed as the shaper operates. 

This kas the added advantage of allowing the network provider some flexibility as 

experience is gained over time as the network (UNI) operates. 

To complete the discussion of exponential interamival times, refer to Figures 

4.8-4.10. The first shows how the interdeparture time variance VDi decreases with 

bterdeparture Tune Variance t- 
Mean ln terdeparture Time + / i 

1 .O0 1 .O5 1-10 1.15 1.20 1.25 1.30 
AUowabte increase in M a n  Delay 

Figure 4.8: Poisson Source: X = 1.0 



increasing dowable delay, 7i.  The corresponding increase in mean intermival 

tirne is also plotted, but is almost zero throughout. As can be seen, for even 

modest inmeases in dowable delay, VDi can be decreased 3 W O % ,  which could be 

very beneficial in certain ATM network situations. Figure 4.9 shows the cost of 

tliis variance reduction in terms of the mean maximum queue length observed at 

1-05 1-10 1-15 1.20 1 .25 1 -30 
ALlowable increase in Mean Delay 

Figure 4.9: Poisson Source: X = 1.0 

the skaper over the ten simulation rus .  Findy, Figure 4.10 plots the decrease 

in VDi versus the mean maximum buffer size, showhg that it is an approximately 

linear fimction. For a unit increase in mmcimum buffer size, the interdepartnre time 

variance is decreased about two and a half percent. 

Moving on to the case of the on-off voice source given by Equations (4.13) and 
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Mesui Maximum Buffer Sue 

Figure 4.10: Poisson Source: A = 1.0, 7 = 1.01-1.30 

(4.14), r e h  to Figures 4.11-4.14. The on-off source used corresponds to that in 

[SW86], and so the parameters used are (a~)-' = 22.0, A = 16 ms and P-' = 

650 ms. Figure 4.11 shows the interarrival tirne pdf to consist mainly of an impulse 

of probability at A, w W  is the output of a voice burst fiom the codec discussed in 

the reference. The silence penod between the bursts is exponentially distributed, 

but of such a low probability that it does not show up on the graph. Nonethelesso 

it represents an area in the cell stream into whieh the cells can be spread. After 

K = 0.032 rns is calculated, the interdepartme time histogram is as shown in the 

figure. Only a few more percentage points are gained, so the shaped cell stream 

is somewhat more deterininistic. WLile the mean queueing t h e  aud maximuni 



Figure 4.11: On-off Source: (a~)-' = 22.0, A = 0.016, /?-' = 0.65, 7 = 1.3 

* . interarrivai Ti pdf - 

queueing time are only 0.724 ms and 6.924 ms, respectively, the mean queue size 

is 23.347, the mean maximum queue size is 173 and the maximluzz queue size is 

21 7. Tkus t his seemingly minor increase in the determinis tic nature of the s tream is 

corning at a kigh cost in queue sizes, and queueing time. Ln fact, the mean queueing 

time represents about two times the average length of the burst period, a-' = 

352 ms, and the miLlLimum queueing time approximately twenty times. Hence, this 

source most likely will not react well to being shaped. Nevertheless, examining 

Figure 4.12 indkates that the VDi is greatly reduced even for a small increase in 

the dowable mean delay, whereas the inmeases negligibly. This shows that the 

shaper is operating as expected. However, as Figure 4.13 shows, this cornes at high 
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Figure 4.12: On-off Source: (ah)-' = 22.0. A = 0.016. /3-' = 0.65 

cost in bnffer size, especidy for larger decreases in the variance. Lastly, Figure 

4.14 indicates that the decrease in variance diminishes past 7 = 1.58. This is not 

surprising, since the mean queuiiig time is 9.41 seconds, which represents many 

multiples of the bnrst and silence periods. There is no doubt that this would cause 

the voice decoder at the destination to fail in reproducing the andog voice signal. 

Hence, this particular on-off voice source is a good example of those sources which 

are not amenable to shaping. 

This completes the presentation of results for the CT-MVS. Next, results of the 

DT-MVS are presented. Since the DT-MVS shaper sources are nonparametic in 

nature, a complete study as performed for the CT-MVS shaper and the exponentid 
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Figure 4.13: On-off Source: (cr0)-' = 22.0, A = 0.016, P-' = 0.65 

and on-off source is not possible. Hence, only a few interesthg examples are given, 

since in a simulation study, there are an infinite possibilities to b e  considered. 

4.1.3.2 Discrete T h e  M V S  

Before the main DT-MVS source examples are presented and in order to give an 

example of mincating and discretizing a continuous time case, shaping resdts are 

shown in Figure 4.15 which correspond to the discrete time case of Figure 4.6. As 

with the continuous tirne case, X = 1.0, the interarrival and the interdepartue times 

are given by a histogram in Figure 4.15. While the interarrival tirne histogram line 

does not resemble the correspondhg one in Figure 4.6, rest assured that it is a 
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Figure 4.14: On-off Source: (a~)-' = 22.0, A = 0.016. Pd' = 0.65. 7 = 1.3- 
1.63 

valid distribution, tkat is the probability s u s  to one. The Merence arises from 

the fact that in the continuoas case, the pdf is plotted as a function, while in the 

discrete case it is plotted as a histogram, and thus the factor of the sampling rate 

must be taken into account. In addition, the pdfis truncated at a normalized 

interarrival tirne of approximately 9.210, which represents 99.99% of the original 

pdf. As expected, the results are nearly identical. IR fact , the corresponding entry 

in Table 4.1 for 7 = 1.15 is accurate to at least one decimal place. While the 

CT-MVS calculates K = 0.602, the DT-MVS calculates K (5000,2264) = 0.603. 

Recalling the notation of Section 4.1.2, tkis indicates that the optimum shaping 

parameter value of 0.603 is obtained in section 2,264 of the discretized CDF that is 
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Figure 4.15: Discretized Poisson Source: A = 1.0, 7 = 1.15, K (N, m) = 
0.603, = 0.0001 

divided into 5,000 sections. As intuition implies, the larger the number of sections 

N into which the CDF is divided, the more accurate the calcdation of K (N, rn) . 

To close t ù i s  section, two more shaping examples are briefly presented. The fûs t 

is an MMBP source, with two states. The mean arriva1 rate of c& iii states one 

and two are Al = 0.01 and Xz = 20.8, respectfidly. The normalized holding tMes 

are Hl = 1.0 and H2 = 0.05. This gives an overail mean arrival rate of A = 1.0. 

The interamival and interdepartme time histograms are shown in Figure 4.16. The 

optimum value of the shaping parameter is calcdated to be (1000,22) = 0.603. 

Since MMBP sources are similar in nature to poisson sonrces, it is not surprishg 

to see the DT-MVS shaper pedorm as well as in the case of the poisson source of 
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Figure 4.16: MMBP Source: Al = 0.01, Xa = 20.8, Hl = 1.0, Ha = 0.05. 
7 = 1.3, K ( N , m )  = 0.573 

Figure 4.7, wkich &O has X = 1.0 and 7 = 1.3. However, since the MMBP source is 

burs tier, the shaping algorithm takes this into account by observing the interarriva1 

tirne liistogram, and reduces the optimum value fiom K = 0.888 as cdculated in 

the continuous time case. Sllmmarizing the simulation results, the interdeparture 

tirne variance is reduced 46.11% with an increase in the mean interdeparture tirne 

of 0.003%. This cornes at a cost of mean and m&um queuing times of 1.143 and 

23.455, witk mean queue size, mean maximum queue size and maximum queue sizes 

of 2.806, 30.8 and 41, respectively. Again, note that over 70% of the cell arrivals 

now leave the shaper witk a deterministic c d  spacing. AIso, the increase in streaui 

length is a negligible 0.00 1%. Hence, the MMBP source with widely different arriva1 



rates and holding times of its two states is shaped to a near deterministic source. 

The final results presented are those pertaining to a packet train source, in par- 

ticdar one with geometncally distributed on and off pexiods. Using the notation 

of Section 1.6.6.4, define PTG (x, y) = Qoo (Ç (x), 0, C (y)). In particuiar. the in- 

teranival time and interdepartme time distributions of a PTc (2,2) c d  stream is 

skown in Figure 4.17. For this source, the maJcimum interamival time is seventeen 

O 1 2 3 4 5 
htermiv ai and Interdeputue Time 

Figure 4.17: PTo (2,2) Source: Mean burst size 2, mean silence size 2, 7 = 
1.3, K (N, m) = 0.451 

cells, which implies eighteen sections in the optimization of K (N, m). As a result, 

(18,2) = 0.451, which as can be seen inmeases the amount of determinïstic c d  

spacing fsom just over 65% to about $O%, corresponding to a 62.62% decrease in 

the interdepartme t h e  Mnance with just a 0.5% inincase in the mean. The cost 



is a mean and maximum queueing times of 1.685 and 15.104, and a mean, mean 

maximum and maximum b&er size of 4.589,23.5 and 34, respectively. Thas, since 

this source is burstier stïll than the MMBP the interdepartme time variance is 

reduced more, with similar results at the shaper b d a .  

Summarizing the resdts, then, of the Minimized Variance shaper, it can be 

said tkat it is an effective tool in attempting to create a deterministic c d  stream 

fkom a probabilistic one. In particular, poisson, MMBP and PT sources are likely 

candidates for this shaping scheme. In all t k e e  cases the original source is shaped 

into a nearly detenninistic source with interarrival tkneç K or K ( N . m ) .  Of course. 

the skaping Las corne at a price of the size of the buffer of the shaper, and the 

slight increase in interarriva1 times. Both these can be increased or reduced by 

Miying 7. On the other hand, the voice source did not fair well when shaped, and 

thus this method shodd not be employed in these cases. One interesthg side-bar 

that arises fkom the shaping of the on-off voice source is that shaping a near- 

deterministic stream resdts in another near-deterministic stream. This intuitive 

statement implies that after a point, fnrther shaping resdts in dimuiishing retnriis, 

especidy with respect to the increased costs of queueing delays and b d e r  sizes at 

the shaper. 

4.1.3.3 Cornparison with Other Shapers 

For completeness, an attempt is made to compare the results of the MVS to other 

methods found in the literature. However the cornparisons made are necessarily 

relative, since as previously stated, the goal of the M V S  is to reduce the inter-cell 

variance in a trafic s trearn to zero, whereas often the goal of shaping in the literature 



is to lunit C d  Delay Variation (CDV). Other diftidties in comparison arise due 

to the fact that no standard traffic stream is used as a point of comparison. and so 

the recreation of the exact ceil streams other methods employ is usually impossible. 

Considering the results given in [Bro92], it can be seen that a direct comparison 

is impossible due to the fact that the results are norrnabed by the shaping param- 

eter used. This is reasonable in the context of this work, since no optimization on 

the shaping parameter is performed. In addition, the t r a c  stream shaped is an ag- 

gregrate of on-ofï voice sources and data sources wïth c d  &vals obeying a Poisson 

distribution. Unfortunately, a cell interarrival t h e  histogram is not &en. Hence, 

the results of the MVS with respect to the shaping of a Poisson source are most 

likely similar. Therefore, refer to the results given in Table 4.1. Considering the 

best results of [Bro92], C V ~  is reduced by approximately 85% at a cost of inmeas- 

ing the stream length by about 7%. This seems to arise hom the fact that t h e  

is an increase in mean interdeparture time of about 5%, a d  the menu quauring 

time is just under 1 ms, wliich represents 365 cells at CL = 155 Mbps. Therefore. 

it appears that the MVS compares quite favourably to this shaping method, since 

CV* is reduced only 15% less at no cost with respect to the increase in stream 

length. 

Cornparison to the results of [BGSC92] is somewhat easier, since interarrival and 

interdeparture time Iiistograms are given (Figures 9 and 10). In this case seven CBR 

traffic streams are perturbed by other arriva1 processes at a series of five nodes, and 

then the aggregate of these processes is shaped at a sixth common node. Since the 

perturbation is Bernoulli whick results in an interarrival time histogram which has 



the characteristics of a Normal distribution, the Poisson source results of the MVS 

are somewhat comparable. Because a Normal distribtltion can be considered to be a 

"two sidedn exponential distribution, there is a larger proportion of long interarrival 

times in the case of the MVS resdts of, for example, Figure 4.7. Since a reduction 

of long interarrïval times and an increase in short interarrivai times implies a move 

from hard shaping to soft shaphg, the MVS results for a Poissou source can be 

considered to be a lower bound to the results for a Normal source. Figure 10 of 

(BGSC921 shows that this shaping metkod is able to produce a deterministic source 

just over 70% of the tirne, as compared to almost 80% of Figure 4.7 for the MVS. 

Thus the MVS again compares very favourably, espeeially considering, as discussed 

above, that the MVS results are even better when shaping the type of source used 

in the citation. Udortuantely, no other performance resdts are given. Therefore, 

it can be stated with some confidence tiiat the resdts of the MVS compare quite 

favourably with some of the more established methods of the Iiterature. 

The foIlowing section presents the algorithm of a shaper which has the same goal 

as the MVS, namely to create as deterministic a c d  stream as possible. However, 

its method for achieving this goal is quite dissimilar fkom that discussed in the 

preceding sections. In addition, the Burst-oriented shaper has the ability to unshape 

c d  streams. 



4.2 The Burst-Oriented Shaper 

T h e  are two main goals of the Bilrst-Oriented Shaper (BOS). The fmt is to take 

an arbitrary on-ofE c d  stream and shape it to as near a deterministic cell stream 

as possible. If traf6c streams presented to the network are near deterministic, the 

provisioning of downstream network devices is simplified, as mentioned in Section 

1.3.2, since the inputs to these devices are well defined. As rnentioned, this shouid 

ease network management, since CAC, UPC and c d  scheduIing at ATM switches 

is &O simplified. 

The second goal of the BOS is to provide the user witk a network connection 

wliich is as transparent as possible. Thus, the BOS presents the destination UNI'S 

AAL with. ideally, the same bursty on-off traffic stream created by the segmentatioii 

at the AAL of the source UNI. ki other words, the BOS algoritkm is designeci to 

both sliape and unshape the stream. By doing so, the problems encountered due 

to C d  Delay Variation (CDV) are reduced. That is, since the destination AAL 

presents higher network layers the same bursty stream that is shaped, any delays 

caused by contention at ATM switches or shaping itself may be deviated. 

It skould be noted that since the BOS is designed to operate a€ter cellization of 

the traffic stream at the AAL, as described in Section 1.6.4, it will most surely op- 

erate only on on-off or packet train c d  streams. This idea is basic to the operation 

of the BOS, since it is based on a simple premise: if every burst can be uniformly 

spread into the silence which follows it, then the trafnc stream d l  be completely 

deterrninistic, and so the BOS will behave like the Ideal Shaper. 
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4.2.1 The Shaper Mode1 

In order to achieve the first goal mentioned in the previous section, the BOS at- 

temp ts to maintain the shaped traffic Stream at a target rate, RT c& per unit tirne, 

for as long as possible. This is accomplished by "spreading outn a burst into the 

silence period which immediately follows it. Since the trafnc stream to the shaper 

is unknown, in order to determine where a burst starts and ends, a reference point 

is required. This reference is implemented in the form of a "windown superimposed 

on the traffic stream, as shown in Figure 4.18. Note tkat this is completely analo- 

gous to the trafic window used in t r a c  classification, introduced in Section 2.1.4. 

.................................. 
+ Window Size, W + 

Figure 4.18: The Bwst-oriented Shapes Window 

As mentioned at the beginning of this chapter, the experience gained with tr&c 

classification is &ectly applied to the BOS. In fact, since the idea of spreading 

a burst into the following silence is based on an implied PT trafic primitive, one 

could Say that the BOS has trafic classiiication ubuilt in." This is the reason the 

BOS does not reqnire information about the type of trafic class it is operating 

on: there is only one class, namely on-off. The window is "parsed" to locate the 

first burst and the silence which immediately follows it. Of couse, in order for the 

window to be parsed, the cells contained in the aindow rnust have already arrived 



to the shaper; these cells are stored in the shaper's queue. 

To ackieve the second goal, the BOS embeds nnskaping information into the 

shaped trafnc stream. This takes the form of an unshaping parameter, A. Thns, the 

transmission of the nnshaping parameter is overhead to the data transmission inside 

the network. Figure 4.19 zooms in on the shaping nindow of Figure 4.18 in order 

Figure 4.19: Burst-oriented Shaper Parameters 

to depict the parameters that are employed by the BOS skaping aud unshaping 

algorithms. The parameters are defined as follows. 

B: The size of the f ist  burst of the window, where the burst is defined to start at 

the Mt-hand-side (LHS) of the window. 

S: The size of the first silence period of the window, where the silence p e o d  is 

defined to start immediately after the first burst, B. 

K: The shaping period, usnally K = B + S 5 W. 

S': The size of the first silence period of the window, when the silence period starts 

at the LHS of the window; that is, before the fist burst. Note that S* 5 W. 

W: The size of the shaping window. 
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A: The unshaping parameter. For shaping period i, &- = (Bi, Si) is a doublet 

representing the size of the barst and silence period of the unshaped (original) 

traf6c stream. This is utilized by the unshaping algorithm to restore the t r a c  

s tream. 

RT: The target rate at which to shape the t r a c  stream, in cells per mit  tirne. 

Q: The numbe. of c d s  queued at the shaper. 

If the payload field of an ATM c d  is used to represent A, and assumirig eight bytes 

are reserved for intenial use by the BOS, then evenly dividing the reniainhg 40 

bytes between the representation of B and S d allow a rnacimum window size 

of W = 2 * O X 8  = 1, 048,576, which is greater than any window sized envisioned. If 

CL = 150 Mbps, this represents a maximum burst length of about 2.68 seconds, 

which is a very long time - even far a low rate voice source. Additiondy, one of 

these unskaping parameter cells is required approxïmately every W cells, since in 

general K 5 W. Thus, the larger the shaping window size, the lower the ovahead 

of the algorith, which can be approlrimated by &. 

4.2.2 The Shaping Algorit hm 

Algorith 4.2.1 states the Burst-oriented shaping method. Initidy, the sliaper 

stores cells in its queue as it fills the shaping window, W, as shown in Figure 4.19. 

As bursts and silence periods are parsed and the t r a c  stream shaped, and as new 

cells arrive to the shaper as desaibed in Step 2 of Algorithm 4.2.1, the shaping 

window is updated to reflect these changes. In other words, the shaper keeps a 



*sliding window snapshot" of the traffic stream. 

Algorithm 4.2.1 The BOS Shaping Algorithm. 

(a) Detemine  the rate at which the trafic s t~eam is to Le shaped? RT, frOm 
UPC. 

(b) Delay the traf ic  stream a minimum of K and a rnazimum of W cells, 
storing the celk in the shaper queue, Q.  

(c) Initialize the shaping pefiod counter, i = 1. 

(d) Parse the shaper window tu determine the shaper state, and thus the 
vnshaping parameter for the first shaping period, Al = ( B I ,  SI). 

2. Shaper operation. 

(a)  Output the ,unshaping parameter for this shaping period, & = (Bi, Si). 

( b )  Output queued celh at rate RT for K cell times, while Q > O .  When 
Q = O ,  generate slots until time K cell times have elapsed. Store ar~y 
newlg arriued cells in the shaper queue. 

(c) Shift the shaper window along the trafic strearn by K cells. 

(d )  hcrement  the shaping period, i = i + 1. 
(e) Parse the shaper window to determine the shaper state, and thw the 

unshaping parameter, &- = (Bi,  Si). 

3. Repeat step 2. until the trafic stream ends. 

4. Output cells at rate RT until Q = O ,  i f  necessaq. 

5. Transmit the end-O f-shaping rnarker. 

The action of the shaper is to wait until a bnrst starts at the LHS of the shaping 

window, and then compute B, S, and K. It then outputs the unshaping parameter 

A before outputting the shaped burst. In order to better desu-ibe the operation of 

the basic shaper, there are five states in which the shaper can be, enurneratecl below 



and depicted in State Diagram 4.2.1. Assume W = 10 in the following, and the 

usual "ln and UO" notation introduced Li Section 1.6.4. In each state, the shaper 

outpnts ceils at  the target shaping rate RT tmtil Q = O, at which point the shaping 

"breaks." That is, since no new cells have arrived and the shaper has exhausted 

its supply of cells stored in the queue, the BOS has no choice but to allow a long 

interdepartare time resdt. 

State 1: Burst B and silence S clefined. This is the "normal" or planned state of 

operation of the skaper. The skaper outputs at rate RT for K = B+S < W 

c d  times. Q may increase or decrease. Example window: 1111000110. 

The nnshaping parameter is A = (B, S) . 

State 2: B defhed, S undefined. In this case the silence paiod is set to S = W - B, 

and K = W .  Q may increase or demease. Example window: 1111000000. 

A = ( B , W - B ) .  

State 3: B undefined, S deftied. Here B = W and S = O. In order to ensure 

that the next shaping period starts with a burst, K = W - I (instead 

of K = W 7  as one might expect fiom the preceding two states). Q will 

increase. Example window: 1111111111. A = (W - 1, O). 

State 4: B mdefined, S undefmed. In this case B = O and S = W, and so K = W. 

Q will decrease. Example window: 0000000000. A = (O, W). 

State 5: Due to the actions of States 2 and 4, the window may not start with a 

burst, as required, and so this state simply corrects the situation. K is 



set to S*, the time requked for the next barst to start at the LHS of the 

window. Q wiU decrease. Example window: 0001111000. A = (O, S*). 

State Diagram 4.2.1 State Diagram for the BOS 

Once the trafic stream cornes to an end, the shaper maintains the transmission of 

cells stored in its queue at the target rate RT, until the queue is empty. Then it 

transmit an "end of shaping" marker in order to inform the destination nnshaper 

tkat the stream bas ended. 

4.2.3 The Unshaping Algorit hm 

The operation of the unskaper is quite simple, as Algoritlm 4.2.2 shows. Once the 

unshaping parameter is received, the unshaper waits untd Bi cells are queued and 
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t hen presents them to the AAL, followed by Si slots. If ceIls statt to arrive before the 

unshaping parameter, then the unshaping parameter has been losk8 In this case, 

the best course of action is for the unshaper to presents cells to the destination 

AAL as tkey are received. W e  a multitude of methods codd be devised, such as 

repeating the last A until the a new one is received, the reasoning here is that if 

the correct source information is lost, it is better not to make assumptions about 

the source characteristics. Also, note that in W dot times- another unshaping 

parameter sliodd arrive, and so this situation d l  no t continue inclefinitely. Hence. 

the unshaping algorithm is quite robust in the face of lost unshaping parameter 

cells, since each A applies to at  most only W cells. 

Algorit hm 4.2.2 The BOS Unshaping Algorithm. 

1. h s h a p e r  setup. 

(a) Initiulize the uwhaping period counter, i = 1. 

2. Umhaper operation. 

(a) Receive the unshaping parameter for this unshaping period, & = (Bi, Si). 
If cells am-ve insteud of A, then the A hm been lost. P ~ e s e n t  the cell 
stream "as ïs" to the AAL, until a A arrives. Cal1 th6 &. 

(b )  Wait  un td  Bi celk have been queued. 

(c) Present a bumt  o f s i z e  Bi celk followed by Si slots to  the AAL. 

(dl Increment the shaping period, i = i + 1. 
Y. Repeat step 2. until  the end of shapzng marker has been received. 

The unshaping period i allows the use of sequence numbers for A, but this is not 

'The ceils cannot arrive out of order, since ATM offers comection-oriented service. 



necessary. As can be seen fiom Algorithm 4.2.2, after the loss of a A the method is 

self-correcting. In addition, it is assumed that the transmission media in an ATM 

network provides W t u d y  error fkee transmission, as is the asual practice in the 

Iiterature, and so the only way that the nashaping parameters can be lost is due 

to congestion at network nodes. In order to avoid this occurrence, the eight bytes 

of the unshaping parameter c d  reserved, as stated in Section 4.2.1, could be used 

to identify the A cell as a high priority trafic management cd. The following 

section discusses how the shaping window size W can be determined, and proposes 

an algonthm based on t r a c  characteristics at the AAL to do so. 

4.2.4 Determination of Window Size, W 

As stated in Section 4.2.1, since the BOS is developed fkom the insights gained in 

traffic classification, many of the factors determinlig the size of the traffic window 

of the primitive classifier hold. Thus, recall the discussions of Sections 2.1.1 and 

2.1.4, wkich state, in the case of the BOS, that the shaping window size represents 

a trade-off between the ability to shape and the delay introduced into the trafnc 

stream. One major ciifference, however, is the consideration of training t h e .  Since 

the BOS does not use neural networks, W can be much larger than is the case with 

the primitive classifier. Ultimately, an upper b o n d  on the length of the shaping 

window is the desire to store the unshaping parameter A (B, S) within one c d ,  

as ruentioned at  the dose of Section 4.2.1. Perhaps a more telling bound is the 

amount of computational power required to parse the shaping window. While it is 

uot in the scope of this thesis to make accurate judgements about the feasibility 



4.2- THE BURST-ORXENTED SHAPER 189 

of implementing the BOS on a Very Large Scale Integration (VLSI) chip, it does 

seem reasonable that very large shaping windows can be supported. Since the 

BOS is divided into five states, separate modules codd be implemented for each 

state, with a sixth module for controlling logic, which determines the murent state. 

For example, to determine tlie length of the burst which starts at the LHS of the 

shaping window, the module can be implemented with a cascade of AND gates. In 

fact, all the parameters of the BOS can be determined in th s  way. Tkerefore. it 

may well be that implementation issues do not limit the size of W. Thus, another 

limit is required. 

One such limit results fiom the fact that as long as W contains a complete burst 

and silence period, as a consequence of the shaping algorith, it need be no larger. 

Thus it is possible, &en knowledge of tlie source, to Iimit W in a statistical sense, 

as follows. Given a mean burst length and mean silence length, this information 

can be converted into a mean number of ATM cells in a burst and slots in a silence 

period, d e r  cellization at the AAL. With this information, the shaping window 

can be dimensioned so tkat a property such as the following holds tme, 

Pr {burstlengtk + silencelengtk > W) < 0.01. (4.38 ) 

In other words, this equation states the desire of the network provider to capture 

99% of all burst and silence periods within the shaping window W. 

To evaluate Equation (4.38) requires intimate experience with the AAL, since 

burst and silence length distributions or at least histograms are required. Nonethe- 

less, keeping these values variable, a method which can estimate the upper bound 



is given next, based on a burst and silence length histogram being available. Now. 

Pr {burst length +silence length > W) 

= 1 - Pr {burst length + silence length < W) 

= i - (W - 1) C PT {burst length = i )  Pr {silence length = W - i - 1)  

+ w ( C ~r (silence length = j )  Pr {burst length = W - j )  

(4.39) 
(silence length = k) PT {burst length = i) 

PT (silence length = W - h - il]) 

wliich accounts for all tkree cases of a burst starting a window followed by a silence 

period. a silence period starting the window foIlowed by a burst, and a silence period 

starting the window followed by a burst and yet another silence period. After some 

thought, the reader should realize that these three situations are a result of the 

states of State Diagram 4.2.1. Completing the method, begin with W = 3, or some 

otker suitably s m d  number, based on the expected size of the shaping window. 

Iterate Equation (4.39) until it evaluates to less than 0.01, incrementing W &er 

each iteration. 

The following section cliscusses some of the results of shaping various sources 

usiiig the BOS. 
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4.2.5 Results 

This chapter condudes with a discussion of the r e d t s  of the BOS. A software suite 

written in C++ is used to implement the BOS shaping algorithm. As in Section 

4.1.3, confidence intervals are omitted for clarity. For each simtdation ron, there are 

1,000,000 c d  arrivais. The BOS unshaping algorithm is no t implemented, for two 

reasons. Firstly, if the network does not drop any A, then the a lgor i th  will operate 

as designed. Thus, the shaped and unshaped c d  streams are the sanie. One way 

of measnring this could be by using the cross-correlation fnn~ t ion .~  Secondly. if 

the network delays or drops A, or delays the cells of the shaped stream itself, then 

obviously the unshaped c d  stream will difFer fkom the original. However, this is 

an extemal efFect on shaping, which all shapers mnst contend with, and thus is not 

germane to t his discussion. 

Since the BOS is designed to shape on-off t r a c  streams, those with on and off 

distributions which are geometricdy distributed are presented. The general on-off 

sources chosen are of the type PTc (x, y) = !koo (Ç (x), 0, Ç (y)), asing the notation 

of Section 1.6.6.4. The results appear in Figures 4.20-4.23. For these results. the 

shaping window size is W = 10 and the target shaping rate is RT = 0.5. that is a 

cell followed by a space, or '101010101," using the notation of Section 1.6.4. In ad- 

dition, for the four figures mentioned, the mean on burst length and mean off burs t 

length, or mean silence length, of the on-off sources is increased equdy, so that 

the mean arriva1 rate is kept constant. In particular, the PTG (5,5), PTo (10, IO), 

PTG (15,15), PTG (20,20), PTG (25,25) and PTc (30,30) on-off sources are stud- 

'The cross-correlation huiction, Cxy (x, y), measures the "sameness" of t ao  stochastic pro- 
cesses, X and Y. Refer to [Hay88] for a definition. 
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Figure 4.20: Effect of Increasing Unshaped Burst and Silence Lengths on 
C v 2  and Maximum Shaped Silence Lengtk, W = 10. RT = 0.5 

ied. Figure 4.20 shows the &ect on the squared coefficient of variatio~,'~ CV', 

when the mean on burst length and mean off silence period of the sources to be 

shaped are increased. Note that when the mean is low relative to the shaping win- 

dow size, as with the PTo ( 5 , 5 ) ,  h o s t  ideal shaping occurs. The value of cV' is 

reduced to ahost zero. Also shown in the figure, the mean off burst length is de- 

creased by 70%. Since the goal of the BOS is to spread bursts into silence periods, 

the decrease in the mean silence length that results after shaping is a good mea- 

sure of performance. Figure 4.21 shows the efEect of the BOS on the burst length 

1°See Section 4.1.3 for the definition of CV'. Note that CV' is denoted as SCV in Figure 4.20. 
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Origiiüil Silence Length Histogram - 
Shaped Siience Length HIstogam - 
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Figure 4.21: PTc (5,5) Source: Original and Shaped Silence Length Distri- 
butions, W = 10, RT = 0.5 

distribution of the original" and skaped c d  streams. As can be seen fkom the 

figure, the results indicate that 99.98% of the silence periods are shaped to a value 

of one, whch indicates that the target sliaping rate is satisfied. Thus. the shaped 

cell stream is almost one hundred percent deterministic, with intercell spachg of 

one slot. Note that this result holds mie  for the other sources as well: in no cases 

do the shaped silence length distributions have less than 99.9% of the probability. 

This, however, must corne at some cost. Figure 4.22 shows the efFect of increasing 

the mean on burst length and mean silence length on the overd c d  stream length. 

"In this contut, original is used instead of the usud unshaped, since uashaping has a particuiar 
rneaning 6 t h  respect to the BOS. 
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Figure 4.22: Effect of Increasing Unshaped Burst and Silence Lengths on Cell 
Stream Length, W = 10, RT = 0.5 

As c m  be seen, the cell stream leiigtli is W t u d y  unafEected by shaping, increas- 

ing a modest 0.15% at most. Thus, the cost of shaping must appear elsewhere in 

the BOS system. Finally, Figure 4.23 shows that f&ly heavy queuing occurs at 

the BOS, in terms of the maximum queue length, Q. The higher values may be 

prohibitive for some applications. 

Referring again to Figure 4.20, it is interesthg to see the diminishing returns in 

terms of cV* and maximum silence length, as the mean burst and silence lengths 

of the original cell streams increase. This is counterintuitive, because as stated 

above, the silence length distributions of the sources have almost al1 of their prob- 

ability m a s  at one. Nonetheless, the cliscussion of the sizing of W in Section 4.2.4 
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Figure 4.23: Effect of Increasing Unshaped Burst and Silence Lengths on 
Mzucimum Shaper Queue Length, W = 10, RT = 0.5 

anticipates this result . The explanation is as folIows, cornparhg the PTc ( 5 , 5 )  and 

PTc (30,30) source results. As the mean burst and silence lengths of c d  stream 

entering the skaper increase with respect to the shaping window size W, the shaper 

tends not to operate in State 1, as described in Section 4.2.2, but ratlier in States 

3, 4 and 5. This implies that the shaper is no longer operating as intended. During 

the long bursts, the queue increases quickly, and during long silences, the queue 

empties quickly - this is the heart of the problem. Notwithstanding the fact that 

the queue is larger in the case of the PTo (30,30) source than in the case of the 

PTG (5,5) source, since the mean silence length is six times larger for PTc (30,30) 

source, there is a mu& higher chance of the queue emptying during a very long 



silence period; the mean maximum silence length of the PTo (30,30) source is 179. 

or almost eighteen times W, wliereas for the PTG (5,5) source, it is only 20. or 

two times W. And herein Lies the reason for the increase in shaped silence length 

variance as the original silence length inmeases relative to W. In other words, the 

variance in shaped silence length inmeases, even though the maximum queue size 

is very large. The results bear this out. For the PTG (5,5) source, the mean shaped 

silence length is 1.00097 as expected, and the Mnance is low, at 0.00776. However, 

for the PTc (30,30) source, the mean is also 1.00417 as expected but the variance 

has increased to 0.271835, a thirty-five fold increase. The conclusion is this: for 

best operation of the BOS, the shaper window size W must be at least on the same 

order as the original mean burst length plus the original mean silence length, as 

Equation (4.38) implies. 

To verify tkis, additional simulation runs are performed in whch only one source 

type is used, PTc (5,5), but the shaping window is Mned in the fashion of W = 

5. 10, 15, 20, 50, 100, 200. The resdts can be summarized as follows; no figure is 

necessary, since the output from the different cases is virtually identical. hcreasing 

the window size from W = 5, 10, 15 caused an increase in rnacimum queue length 

of Q = 268, 270, 272, afta which forther increases in W have no more &ect on Q. 

This is an expected result, since as explained above, as long as the shaping window 

can capture a burst and silence period of the cd stream, the shaper operates in 

State 1. Therefore, aU else being equal, an increase in the shaping window size 

sliould have no &ect on the skaped c d  stream, as the results show. There is only 

the minor variation in maximum shaper queue size, wliich occurs due to the fact 



that larger windows have the ability to shape larger barsts, sime they now occur 

during State 1, whereas with a smaller window they would have occarred during 

State 3. 

4.2.5.1 Cornparison with Other Shapers 

Due to the faet that the BOS is designed to shape specifically PT sources, it is not 

possible to compare the results Lere with any cited in the litmature. 

This section concludes the discussion and presentation of the Burs t-oriented 

skaper. as weil as this chapter pertaining to tr&c skaping. The next and final 

chapter of this thesis reiterates the contributions of this work, as well as pointing 

the reader in a few directions dong which the contributions can be extended. 





Chapter 5 

Contributions and Future Work 

The integration of services is the driving force behind the design of the high speed 

data networks of today and tomorrow. These netwmks must be able to deliver a 

broad range of services and be capable of cafiying diverse classes of traffic with 

very different source characteristics. In the case of ATM networks, the solution of 

these conflicting requirements is to negotiate a %affic Contract at the UNI, wkch 

specifies a QoS level and the characteristics of the source. These characteristics are 

used by CAC and UPC to protect exïsting connections. 

Unfortunately, the determination of source characteris tics by either the user 

or network provider is difncult, or impossible in some situations. One nietkod to 

characterize sources it to employ traffic skapers, which have the benefit of creatkig 

a more easily definable t r a c  stream at the cost of injecting delay into said streasi. 

Thus, there is a need for a method that can acenrately provide a description of 

traffic streams in a timely manner. Three contributions have been presented in this 

thesis in order a satis@ these needs. 
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The proposed trafic primitive classifier can be nsed to classify uaknown traffic 

streams. This is accomplished by defining characteristics t r a c  streams, assuming 

they have undergone cellization at the A U .  The characteristics of the streams 

identified are collectively cded traflic primitives, and are ased to define training 

vectors in order for a n e d  network to leam the classifwation problem. The justifi- 

cation for using neural networks over conventional methods is due to th& ability to 

generalize and their speed. Th& generalization abilïty allows the training vectors 

to be simple and deterministic, and still d o w  the classification of probabilistic traf- 

fic streams. Their speed allows the classifications of the t r a c  primitive classifier 

to be usefd at the control points of kigk speed networks, such as ATM. 

The traffic classification results presented show that the neural networks not 

ody can classify deterministic sources fkom which they are trained, that is DG! 

CBR, CBR-RC and PT sources, but &O they can classe  a wide range of ran- 

dom sources, such as the ckss of on-off sources. With the additional funetionality 

of Tr&c Primitive Estogram Identification and Stream Transition Ztacking, the 

primitive classifier can be applied to characterize sources which are not on-off in 

nature. As w d ,  the primitive classifier can be integrated into a policer to perform 

more complex policing actions, and to monitor t r a c  streams for a given set of 

occurrences. These contributions make the primitive classifier and its application 

usefd at the source UNI, for CAC, UPC and shaping. 

In addition to the t r a c  primitive classifier, two more coutributions corne in the 

form of two trafiic shapers, the Minimized Variance shaper and the Burst-oriented 

shaper. Both shapers have the ability to produce near deterministic streams, given 



appropriate sources are shaped, at favly Ion costs ki delay and bntfa size at the 

shapers. In the case of the MVS, source information is otilized in order to find 

an optimal shaping parameter that has the &ect of minimïzing the interdeparture 

time variance of the shaped stream. In addition, two versions of the MVS are 

proposed, one tkat operates on t r a c  sources with known and analytic pcLfs. aiid 

another which requires only an interamival time histogram of the source. 

On the other hand, the BOS does not require source information, since it as- 

sumes that bursts and silences emerge from the AAL, and so it attempts to spread 

a burst into the immediately foUowing silence period. By doing so, it has the 

ability to define an unshaping parameter, which when embedded into the trafic 

stream, can be used to unshape the source at the destination UNI. This has the 

dual benefits of offering the network provider an ability to characterize sources and 

also improve network efficiency, but also to allow users to treat the network as a 

transparent connection. This is of importance to tr&c sources which do not react 

well to shaping delays within tkeir ceIl stream. 

As far as future work is concerned, there are a multitude of directions in whch 

this work can be extended and improved. In the case of primitive classification, 

it would be interesthg to define a different set of trafic primitives, perhaps based 

on the requitements of an operating ATM network. It may be discovered that 

certain of the existing primitives are usefid, bat others should be ddeted. As wd, 

as uoted nom the results, while a underlying trafic pattern is valid, it should be 

included in another primitive class in order to improve the sensibility of a sequence 

of classifications. For the engine of the primitive classifier, the Backpropagation 
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neural network, more speed-up methods shodd be investigated in order to d o w  the 

training of larger networks. This wodd allow primitive classifiers with larger t r a c  

wiudows to be implemented. In addition, the neural networks codd be praned, 

or be r e m e n t ,  or 0 t h  methods codd be employed to improve convergence and 

thus reduce training time. The faactionality of the UNI can be combined into 

one control scheme, using nearai networks, and thus the idea of Figure 1.6 in 

Section 1.4.1 shodd be explored. As for the applications of t r a c  classification. the 

two stated could be studied in more detail, and perhaps their feasibility studied. 

especially the primitive histogram comparing method. Also, other applications 

could be developed. 

The MVS algorithm shodd be modified in order to take into account the overly 

pessimis tic estimation of the maximum dowable increase in interdepartute tirne 

delay. Thus, the variance equation requLes modification to take into account the 

cell arrivah that encounter the shaper with a non-empty queue. 

In the case of the BOS, its robustness in terms of its ushaping parameta should 

be studied. It  would be interesthg to see how mach the original and shaped ceil 

s tream M e r  when afEected by loss or delay of the unshaping parameter, as well 

as delays of the cells of the shaped stream, that is c d  delay variation. Additional 

goals of the BOS can be stuclied. For example, instead of shaping to a target cell 

spacing rate, the BOS could space cells so that the instantaneous rate of the stream 

observed in the shaping window is maintained. Also, heuristics should be added to 

bound the growth of the shaper queue, for example defining multiple shaping rates. 

In any case, fùrther investigation should be performed to obtain an optimal size of 



the shaping window over a wide range of tr&c types. 

With this, tkis thesis cornes to a dose. The author wodd like to thank the 

reader for the time taken to examine the results of many years of original research. 





Appendix A 

Neural Network & 

Backpropagation Primer 

This appendk begins with a brief overview of multilayer feedforward neural n e t  

works. The advantages of neural networks over classical coutrol scliemes is sketclied 

in Section A.1.1. Section A.1.2 introcluces the basic building block of any neural 

network, the nenron, and Section A.1.3 describes the result of interconnecting mmy 

neurons, namely a neural nehvork. Finally, the Appendix doses with the presenta- 

tion of the Backpropagation algoritkm in Section A.2. 

A. 1 Mult ilayer Feedforward Neural Networks 

Neural networks, as th& name implies, are a collection of entities cded neurons, 

wbch are comected in a higlily pardel manner. Both the neoron units and tkek 

interconnections, biologically referred to as synapses, are loosely based on their 



206 APPENDIX A. NEURAL NETWORK & BACKPROPAGATION PRlMER 

counterparts in the haman brain. The term "Ioosely" is used hae ,  not because the 

neural connections in the brain are too simple, bat rather becawe those connections 

are too cornplex! It is thought that the human brain contains on the order of 10" 

neurons with 1015 synapses hterconnecting them [Was89]. In fact, most of the 

neural network paradigms use ody the simplest, most basic models of the neurons 

in the brain. 

Despite the simpliuty of the nenron mode1 employed in the neural network field, 

some very impressive results have been aehieved. Applications include speech and 

pattern recognition, weather forecas ting, adap tive control, adaptive signal process- 

hg, expert systems, system identification, decision making, and many others. An 

extensive list of refèrences can be found in (Hay94, Lip87, WLSO]. These results are 

made possible due to the fact that neural networks consist of compntational units 

which are connected in a massively pardel manner. 

A . l . l  Classical and Neural Network Controllers 

Neural networks have a number of important advantages over classical control 

sckemes. Bo th perform an input mapping hc t i on ,  however the classical controller 

specifies the input-output relationship wkereas the neural network l e a m  it. 

A. 1.1.1 The Classical Controiler 

In classical control problems, where the mapping fanction may be very complicatecl 

and computationally expensive, especiaily when the number of inputs is large, a 

real time controller may not be realizable. In order to overcome the problems of real 
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time input mapping, classical controilers can ca lda t e  a look-up table. A look-up 

table consists of the set of input-output relationships that the controller rnaps. By 

caldating the required output for a given input off-line, computationdy expensive 

control h c t i o n s  can be paformed. This is best snited for binary inputs to the 

controlla. However, if the number of inputs are large, or the inputs are real, then 

the look-up table will be prohibitively large. Therefore in many situations classicd 

controllers are unsuit able. 

A.1.1.2 A Neural Network as a Controller 

A neural network is essentially an input transformation device. Figure A.1 shows 

a neural network as a "black boxn tkat accepts a numba of inputs and maps theni 

Networù Neural 
Inputs Netwo rk Outputs r 

Figure A. l: The Neural Network Control Device 

into a number of outputs. There is no theoretical constraint on the nnmba of inputs 

t int  can map into a number of outputs. Inputs presented to the network are fed 

forward fkom one layer of neurons to the next. As the inputs traverse the network, 

they are transformed into the desired output mapping. This transformation is the 
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topic of Section A. 1.3. However, before a neural network can map a given input h t o  

a desired output, it must leam the mapping fnnction; when the network has learnt 

the mapping fùnction, it is said to be trained. Eow a n e d  network is trained is 

the topic of Section A.2. 

A.1.1.3 The Neural Network Advantage 

There are two major reasons for choosing a neural network controller over a classical 

controller: parallelism and generalization. Neural networks, as mentioned earlier. 

are a collection of neurons connected in a massiveiy purallei manner. They can 

perform the same computation for different inputs simultaneozr~ly. Due to their 

layered structure, these many computations are made a d a b l e  at the same time 

fkom one layes to the next. For conventional von Neumann cornputers, which 

compute sequentially, tbis type of problem is computationaily expensive. As a 

result, the neural network structure c m  be mach more efficient for some problems. 

In addition to their parailelism, neural networks have the ability to gene~alize.  

Consider a situation in wLi& a mapping h c t i o n  has been learnt by a neural 

network. If an input is presented to the network for which no output has been 

specified, the neural network acts to generalïze the input to the nearest l e n t  

input, and produces a well behaved interpolated or extrapolated output. On the 

otker hand, while a classical controller may have this ability, it is more Like1y tkat 

some random, "uneducated" output will be produced. In addition, if the classical 

controller is implemented in software, then any unexpected inputs will most likely 

be treated the same way, or may cause the controller to fail. With this brief 

discussion of the advantages of n e d  networks over classical controllers complete, 
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the next section WU describe the basic building block of a neural network. 

A.1.2 The Neuron Model 

The neuron is the basic building block of a neural network. Consider the neuron 

mode1 of Figure A.2. Tt consists of a summation unit and a nonlinearity. The 

Figure A.2: A Simple Nenron Model 

w2 net 

summation unit is the terminus for a number of network connections. The connec- 

tions represent synapses, and each has an associated weight wi.' The origin of each 

connection is a network input zi- 

The weights are variable, which d o w s  neural networks to leam, or adapt. Ac- 

cordingly, t he snmmation block of Figure A.2 is sometimes referred to as an adaptive 

linear combiner. It is adaptive, since the weights are variable, and it is linear, skice 

'Note &O that there is a bias "weight," wo, which is considered to be a connection as welt. 
Imagine it is coanected to an input that is always "on." 

1 

Nonlinearity 
F 

out 
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it performs a sum. The sum that the neuron model performs is given by 

where it is assurned that tkae  are N inputs to the combiner. Hence net represents 

the weighted sum of the network inputs to this parti& neuron. This sum also 

ç a  be represented very compactly in vector notation. If the inputs are given by 

the row vector2 

xT = [zI zz --• z,] and the weights are given by the row vector wT = 

[wl w~ - w,], then the output of the combiner is 

T net = w x+wo.  

The neuron model of Figure A.2 also contains a nonlinearity, denoted by the fane- 

tion F. This function is usudy refmed to as an activation fvnction. Figure 

A.3 depicts two popular activation functions, a threshold function and a sigmoidal 

function. The threshold fnnction performs 

whereas the sigmoidal hinction pdorms 

'A vector a is assumed to be a column vector. Therefore, aT is a row vector. 
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Figure A.3: TWO Activation Functions 

The form that the activation function takes, for the most part, determines the 

nature of the neuron. For example, if the activation fimction is a thesholcl. tlien 

the neuron is ref'erred to as a perceptron. 

A A 

Perceptron neural networks were studied as early as the 1940's. The networks 

consisted of just a single perceptron or just one Iayer of perceptrons. Initially, it 

was thought that perceptron networks would have a aide range of applicability, 

kowever as research continued they were found to be unsnitable for solving some 

very simple problems v88]. The major problem is that of h e u r  separability. 

Since the perceptron performs a threshold on the weighted s u m  of its inputs, it is 

in fact separating its inputs with a straight line. lf the inputs cannot be separated 

with a straight line, then the perceptron will not be able to leam the input-output 

relationships presented to it. Mu& work kas been performed to overcome the 

< - net 
O 

- 1 

3 net 

v 
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linear separability problem, such as mapping the inputs throagh nonlinearities and 

combining the output of two separate perceptrons (with the same inputs) [Was89, 

WL901, but this work leads to multilayered netarorks. Nonetheless, perceptrons are 

still an important topic in neural network research, and have laid the fotmdations 

for multilayaed feedforward nehnrorks. 

The sigmoida13, activation h c t i o n  of Figure A.3 has more ntility than the 

tkreshold fimction for h o  reasons: it acts to scde the inputs, and it is continu- 

ously différentiable. If inputs to the network are botk very srnaIl and very large. the 

very large inputs will "swampn the very small. To overcome this problem a gain is 

required for the s m d  inputs whereas no gain is required for the large inputs; the 

sigmoidal h c t i o n  provides this. S m d  inputs pass tkough the linear portion of 

t ke sigrnoidal, while very large inputs are "clipped." The second reason for the sig- 

moidal activation bct ion 's  utility is the fact that it is continuously differentiable. 

The derivative of the threshold h c t i o n ,  on the other hand, contains an impulse. 

The importance of tlUs observation will be made clear in Section A.2, where the 

Backpropagation method of neural network learning d be discussed. 

A.1.3 The Neural Network 

While a single neuroii can pedorm some astonisking tasks, such as pattern recog- 

nition, the neuron model's real potential can be observed when many ueurons are 

connected into networks. Once again, the motivation for multilayered networks 

is based on observations of th& biological connterparts, the human brain. Until 

3The sigmoidal furiction is &O hown as the logistic or squashing function in the literature. 
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recently, these networks were limited to a single layer of nenrons because methods 

needed to train multilayered networks did not exist. 

Consider the neural network of Figure A.4. This network is made up of one input 

layer and two layers of neurons, and can be referred to as a two layer n e t ~ o r k . ~  

Fleumn 1 Neumn 1 

Noumn 2 

Input Layer Hidden Layer Output Layer 

(Layer O )  (Layer 1 ) (Layer 2) 

Figure A.4: A Two Layer Neural Network 

The first layer, or input layer, contains three input nni ts  to which the inpnts to 

the network are applied. The second layer, because it is "sandwiched" between 

the k s t  and thkd layers, is called a hidden Iayer. In the network of Figure A.4, 

tkre  is only one hidden layer containing three nenrons. The third layer, or output 

'Much of the iiterature would refer to the network of Figure A.4 as a UItee layer network. This 
would seern intuitively pleasing at k t  glance, however it does not correctly describe the network. 
The fust layer does not contain any neurons at ali, and so should not be considered in the narning 
convention. If the first Iayer is to be considered, it would be more correct to count the "layers of 
connections," which would still resdt in a two Iayer network. 



layer, contains three output neur0n.s. It is possible for a neural network to contain 

any number of hidden layers, however there is only one input layer and one output 

layer. Naturally, there is no constraint on the numba of neurons in any layer or 

inputs to the network, nor are there constraints on the number of connections a 

neuron can t erminate or initiate, 

The input units are not really neurons. They are used to distribute the inputs 

to the network to Miious neurons in the network; they do not perforrn any neural 

computation, as described in Section A.1.2, of tkeir own. Note also tkat the output 

neurons, while they do perform computation, do not initiate any connections to any 

neurons in the network.' Each layer in Figure A.4, except for the input layer, has a 

connection from every unit in the preceding layer. For example, output layer neuron 

one has a connection fkom eadi of hidden layer nenrons one, two, and three. This 

special type of network has been aptly named a fvlly connected network. Due to the 

fact that there is very little theory on the ntunber of connections required from one 

layer to another, or for that matter on the number of layers reqnired or the rider 

of newons required in each layer, the fuJly connected network is widely used? Each 

neuron in Figure A.4 Las the exact same structure as the basic neural building block 

of Figure A.2, namely a summing mit with a bias value and a sigrnoidal activation 

function. The net and n t  values are cdculated in the same manner. However. 

since the weights can connect to niore than one neuron, and since tkere is more 

'If they did have connections badr into the network, this would be called a mcumnt neural 
network. If they had connections between each other, oc any other neurons for that matter, then 
this network wouid contain cornpetition, 

61t t m s  out that, after training, connections between neurons that are not required will 
iisually have a very low weight wi, and so they could be deleted. The network resulting after the 
connection deletions must then be retrained. 



than one set (layer) of weights, a new naming scheme must be developed. Label 

a general connection weight w ! ~ ,  where i represents the neuron at the origin of 

the connection, j represents the neuron at the terminus of the connection, and 1 

represents the layer of the neuron at the terminus of the connection. As an example. 

the weight connecting neuron one in the hidden layer to neuron two in the output 

layer is denoted as w:,. In a similar manner, the quantities net and out are named 

accordhg to th& network layer and th& specific neuron. Howeva, since net and 

out also depend on the input vector x, and since any usefd network has more than 

one input vector, the naming scheme shodd be augmented to allow different input 

vectors. Assume a possible network input vector x is chosen from a finite set of 

P vectors. A particular inpnt vector is denoted by q,, where p = 1, 2, . . . , P. 

Therefore net:p and out:p denote the net and out values, respectively, for neuron i 

in layer 1 when the input vector x, is presented to the network. The net and out 

values for the third neuron in the output layer when input vector x, is presented. 

for example. are denoted as rretip aud respectively. Some of these quantities 

are shown in Figure A.4. 

Figure A.4 is an example of a 3-3-3 n e d  network. The shorthand notation "3-3- 

3" indicates that this neural network hasi three input nnits, one hidden layer with 

three neurons, and three output neurons. I t  is tmderstood that the network is fully 

connected. If a M y  connected network under consideration had two hidden layers 

witk six and four neurons, respectively, and with the same number of input units as 

above but only one output neuron, tken its shorthand notation wouid be 3-6-44. 



With the naming terminology completed, expressions for the output of the net- 

work can be obtained. Observing Figure A.4, the values net and art for the hidden 

layer are 

3 
1 net:, = CW~',X~~ +w,, 

i-1 

out:, = F (net:,) 
3 

net:, = C w;~x+ + w:, 
id 

outh = F(netiP) 
3 

,&et& = Cw&zip +w& 
i=l 

mtjp = F(netjp), 

and the net and out values for the output layer are 

2 net:, = 2 + wol 
i=l 

out :, = F (net :,) 

2 net:, = 2 ui;,mrt:, + wO2 
i-1 

out:, = F(net;,) 
3 

2 2 net* = C w;-out& + w,, 
i-1 

out;* = F(net;,), 

where wi j  represents the bias value for neuron j of layer 1, p ranges over all possible 

input vectors, and F is the sigrnoidal activation hinction given in Section A.1.2. 
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Again, as in Section A.1.2, these snms can be conveniently written in vector 

notation. Referring to Figare A.4, the row vectors of the weights that terminate 

on nenrons one, two and three in the hidden layer are 

respectively. A weight m a k  of these three weight vectors can be constructeci by 

Using a similar constniction, the weight matrix for the output layer netuons is 
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The neuron biases can also be written in vector notation as 

Findy, the net and out vectors for eack layer of neurons in Figore A.4, anci 

for each input vector q, can be written 

= [net:, net:, net&] 

= [out:, out;, mt&] 

net:= = [net:, net:, net:] 

2T 
out, = [out:, art:, ,tgp], 

where 

net: = wlTX, + e1 

out: = F(neti) 

net: = w2=out; + e2 

out: = F(neti). 

A. 1.3.2 The General Network: N~-( (N&- , ) ) -  N~ 

The expressions for net and art of Section A.1.3.1 c m  be applied to any general 

neural network. Consider a network that has M layers of neurons, where the 
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input layer is layer 1 = O, there are M - 1 hidden layers, and the output layer is 

layer Z = M. Each layer consists of Nf neurons, where No denotes the nuniber 

of inputs to the network, not neurons. Thus, the shorthand notation for a M y  

connec ted general network is NO-((N&_,))-N~, where No represents the number 

of input units, ((Nh-l)) represents the nurnba of nearons in each of the M - 1 

hidden layers, and IVM represents the number of output layer nenrons. Now, if the 

network inputs x+ are renamed art&, then general net and out equations can be 

stated as 

In general, the weight matrix W' for layer 1 is of the order N'-' x N'. the net:. 

out; and 8' vectors are of the order NI. The following iterative mat& equatiuiis 

represent the operation of the neural network: 

net; = wiTout;-' +el 1 = 1 , 2 , . . . ,  M 

out; = F(netk) p = 1, 2, ... P, 
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where 

and 

net& 

1 net, = 0' = 

Observing the set of matrix Eqaations A.3, it can be seen that the output of neurons 

in a given layer 1 can be caldated only &er the output of neurons in layer 1 - 1 has 

been deter~nined.~ In this sense, the output of the previous layer feedg the inputs 

of the current layer, and hence the term feedfonvard neural network. 

This concludes the discussion of how inputs are transformed into outputs in 

a f d y  connected feedforward neural network. Equation ( A 4  gives the iterative 

matrix equations to perform the required mapping function. The next section 

describes how the connection weights w:j can be varied so tkat the neural network 

lecms the required input-output reiationships. 

- - 
4 1  
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A.2. THE BACKPROPAGATIûN ALGORITHM 

A. 2 The Backpropagation Algorithm 

Section A. 1.3 described how inputs propagate fiom one layer of neurons to the next. 

and finally arrive as ontputs. The connection weights of the varions layers in the 

network perform the transformations required to map a given input into a desired 

output, as was discussed in Section A.1.1. ln this section, the Backpropagation 

algoritkm required to "teachn the mapping h c t i o n  to the neural network is p r e  

sented. The Backpropagation algorithm for mdtilayered feedforward networks with 

sigmoidal activation fanctions is a relatively new development [RtfW86]. It involves 

presenting an input to the network, observing the output the network produces, 

comparing this output to the desired output, and tken rno-g the connection 

weights wfj in such a way as to minimize the sqvared difference between the network 

output and the desired output. The following presentation of the Backpropagatiou 

algoritkm follows that given in [Hay94. RBW861. 

A.2.1 Statement ofthe Algorithm 

The Backpropagation learning d e  is a generalization of the Delta Rule or the 

Widrow-Hoff Rule [WLSO] . The delta rule is a simplification of the classical Hebbian 

learning rule. Using the same notation and definitions as in Section A.1.3, the 
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B ackpropagation leaming d e  can be stated as 

l 
i = O, 1, ..., ~ ' - 1  

j = 1, 2, * . . ,  N1 

~ , u i : ~ ( n )  = qdiP(n) [1 + (1 - S ( i ) )  (out:i1(n) - 1)] l = 1 , 2 , . . . , M  

p = 1,  2? . * . , P (A941 
n = 1,2, ..., 

where ~ , w b ( n )  is the change in conneetion weight from neuron i in the previous 

layer to nenron j in layer 1, r) is the learning rate, J&(n) is the imtantaneous square 

e r r o i  derivative of the network output enor with respect to the net value of neuron 

j in layer I ,  and artgl(n) is the output of nearon i in layer 1 - 1. The index n 

represents the iteration step of the algorithm; after all the network weights have 

been updated. n is incremented. 

The learning rate r )  is simply a constant coefficient which determines how fast 

the neural network will learn the input-output relationships presented. If r )  is large, 

then the network will learn quickly, but there will be a lrigher chance that the weight 

changes osciuate. If r)  is smaü, the chance of weight oscillations wilI be decreased, 

kowever the training t h e  will increase. Typically, 0.1 5 q 5 1.0. The squared 

error derivative, 6, is calculated differently depending on whether the neuron in 

question is an output layer neuron or a hidden layer newon. For an output layer 
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neuron, 1 = M, 

and for a hidden layer 1 neuron, 

~ 1 + 1  1 = M-1,  M-2T - - . T 2 ,  1 
b;Jn) = $' (ir)ut'j:l (n) F' (net; (n) )  

k=l p = 1, 2, ... , P 
( A 4  

In Equation (A.5) for the output layer, tjp represents the desked network output of 

neuron j in the output layer when the input to the network is +. In botk Equatious 

(A.5) and (A.6), Fr denotes the derivative of the activation funetion F with respect 

to the appropriate net value. Also note that the quantities netiJn) and art&(n) 

are calculated with the same method given by Equation (A.2); th& dependency 

on n simply reflects the fact that they are calculated using weights ~ ! ~ ( n )  which 

are updated after every iteration. 

The bounds on 1 in Equation (A.6) stress the fact that the weight changes 

specified by the Backpropagation algorithm start fkom the output layer and back- 

propagate through the network to the first hidden layes. In fact, this was the major 

breakthrough that allowed multilayered feedforward neural networks to be trained. 

The error observed at the output layer is used to train not only the weights ter- 
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minating on the output layer, but &O aU other weights in the network. This is 

accomplished by propagating the squared error derivatives caldated at each output 

neuron bock tkough the conneetion weights to ail netxrons in the network. 

With the learning d e  deftied, which specifies the changes to the weights, the 

Backpropagation algorithm can be stated 

In the above, the iteration step n is incremented after all weights w!j in the network 

have been updated. Two methods of updating nehRork weights are generally used 

in the literature. The first method simply updates all the network weights after 

a given input vector x, has b e n  presented to the network. This is the method 

that Equation (A.?) describes. A second method involves summing all  the weight 

updates calculated for each input vector, and then applying a singie update to the 

network weights d e r  the entke training set has been presented. In this case, the 

Backpropagation algorithm is mocüfied to be 



While Equation (A.8) is doser to the mie gradient descent method, it is seldom 

used in practice, especidy if the training set P is large. The assumption that the 

error surface E in weight space is linear in the area of wij is justified if the learning 

rate rl is small. As a result, Equation (A.7) is prefimed over Equation (A.8). The 

fouowing section verdies that the Backpropagation of the squared e r r a  derivatives, 

through the connection weights, m;nimize the output error in a s m  square sense. 

A.2.2 Derivation of the Algorithm 

The Backpropagation algorithm is essentially a gradient descent method in connec- 

tion weight space. It  acts to minimile the overall network output error, E, which 

is defined over all input vectors x, as 

The output error of the network for a given input vector x, is defined as 

for ail  p = 1, 2, . . . , P and n = 1, 2, . . . . The quantity t jp  represents the desired 

output of neuron j in the output layer when the input to the network is 4. If 

the values of t jp  for all  output neurons are assembled into a vector, this vector is 

referred to as the training vector tP, where tp = [tlp tZp - t N M p l T .  Hence, a given 

input vector x, has a corresponding training vector t,. Together, these two vectors 

make up a training pair. As a resdt, to train a network to learn P input-output 
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relationships requïres P training pairs, which are c d e d  the training set.' T h d o r e ,  

E,(n) represents the sum square error of the output of the network with respect to 

a particular training pair p, whereas E(n) represents the s u m  square error of the 

output of the network over al2 training pairs. The following tao sections will show 

that the Backpropagation algorithm performs a gradient descent in E(n);  that is 

the overall network output enor will  be minimined with respect to the weights in 

the network. 

In order to show that the Backpropagation algonthm (generalized delta d e )  

minimises the output error of the network with respect to the network weights in 

a sum square sense, it must be shown that the derivative of the overd network 

error E(n)  is proportional to the weight &anges specified by the Backpropagation 

algorithm of Equation ( A 4 ,  with a negative coefficient of proportionality. Since 

W n )  - - - d 
awg & EP(4 ) 

P minimizing Ep(n) minimizes xp-l - Ep(n) which is equivalent to rninimizing E(n).  

Therefore, it must be shown that 

'In fact, more than P training pairs are required. After the network has learnt the P input- 
output reIationships, the training is usuaily d d a t e d  using another set of V training pairs, Xe 
and v,, v = 1, 2, . . . , V, which is refened to as the validation set, 
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for all p = 1, 2, ... , P. Due to the fact that hidden layer neurons do not 

obtain direct feedback of the output error Ep(n) , two measures of the instantanmus 

squared error derivative cf result: one for the output layer neurons, and one for the 

hidden layer neurons. 

A.2.2.1 6 for an Output Layer Neuron 

To showg that the Backpropagation aigorithm minimizes the netaork output error 

with respect to the wejghts that terminate on the output layer neurons, that is 

2 = M, we note that when attempting to calculate 3 the error Ep does not 
i j 

depend directly on the weights w$. hoking the chah rule resdts in 

This gives an expression for the change in network error with respect to changes 

in the weights terminating on neurons in the output layer, in terms of the change 

in network error with respect to changes in the output of neurons in the output 

layer and the change of the output of neurons in the output layer with respect to 

changes in the weights terminating on neurons in the output layer. Unfortunately, 

artg does not depend directly on wifi, bat it does depend directly on net:. Ushg 

the dain rule once more gives 

'For clarity, in this and the following section the dependence of the variables on the iteration 
step n wiii be suppresed, Since the fonn of the Backpropagation learning rule does not depend 
on the iteration step n, tbere is no loss of generality. 



and so 

Using Equation (A.9) the fmt  partial derivative on the right L a d  side of Equation 

(A.10) can be calculated as 

for j = 1, 2, . . . , N~ and p = 1, 2, . . . , P. Using Equation (A.l) and the en- 

pression for outg in Equation (A.2) the second partial derivative can be cdculated 



for j =  1, 2, ... , N~ and p = 1, 2, . . . , PT and where the following relationsLips 

were used 

As mentioned in Section A.1.2, it c m  be seen that for F' to exist,  F must be 

continuonsly differentiable. This contributed to the reasons why the Backpropaga- 

tion algonthm was not developed earlier. In the 1960's, almost all neural network 

research dealt with neurons witL the threshold activation fünction of Figure A.3. 

which is not continuously differentiable. 

Lastly, using the expression for ne% in Equation (A.2), and the definitions of 

Equation (A.3), the third partial derivative of Equation ( A M )  can be calculated 

for i = O, 1, ... , N*-', j = 1, 2, . . . , lV", and p = 1, 2, . . . , P. Bringiiig 

the expressions for the partial derivatives of the right hand side of Equation (A.10) 
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toge t her gives 

a = 0, 1, ..., NM-1 

j = 1, 2, -.., NM 

p = l , 2  ,..., P. 

Now. for convenience, define 

aiid is called the instantaneous squared error derivative, for newons in the output 

layer, as was introduced in Section A.2.1. This gives 

- - - -SE [1+ (1 - S ( i ) )  (art, 
a w g  lu-= - 1)] , 

a EP 6: [1+ (1 - H(i))  (art$-' - l)] = -- 
dwf ' 
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for i = 0, 1, . . . , NM-'. Therefore, this shows that 

and so h d y  

where q is a constant coefficient of proportionality. 

This completes the verification of the Backpropagation algorithm for the neu- 

rons in the output layer, that is 2 = M. The next section will briefly repeat tlus 

verification for the remainder of the neurons in the network, namely those in Iudderi 

layers 2 = 1, 2, . . . , M - 1. 

A.2.2.2 6for a Hidden Layer Neuron 

The verification of the Backpropagation algorithm for the hidden layer nenrons is 

similar to that for the output layer neurons. Reconsider the equation 

which gives an expression for the change in network error with respect to changes 

in the weights terminating on the neurons in the output layer. Also, rder to neuron 

one in the hidden layer of Figure A.4. That is, consider the second to last layer in 



tlie network, the last hidden layer, layer 1 = M - 1. The error Ep does not depend 

dkectly on wg-' (wtj in Figure A.4) since the weights wt- '  that terminate on 

the hidden layer are not connected to the outpnt layer. However, Ep does depend 

M 1 diEectly on outjp- , j = 1, 2, . . . . N~-', since the outpnts of the Lidden layer 

neurons affect the ontputs of the netwotk, narneiy ou%, k = 1, 2, . . . , NM. 

Rewriting the above partial difkrential equation for weights in the las t hidden 

layer gives 

The partid derivative .*, represents the change in error given by a diange iu 
saut jp 

the output of neuron j in the hidden layer, and this output is aEected by changes to 

M-1 tlie weights that neuron j terminates. That is, changes in wf-' wilI affect outjp . 

But since art$-' affects the net values to, and thas the art values tkom, every 

newon in the output layer througli the weights u#, it can be seen that ,%. 
Boutjp- 

must take into consideration ali of the neurons in the output layer. Expressing this 

mat kematically, 



Substituting this into the above equation gives 

where i = 0, 1, . . . , N~-', and where some relations of Section A.2.2.1 were used 

to arrive at the last line. 

Now notice that the outputs art$-' of the Hdden layer depend directly on the 

output of the previous hidden layer out:-? through the weights WU-'. Tkerefurr. 

tkrough the weights a recnrsive relationship can be formed. In the general case, for 

hidden l a y e  f 

ln Section A.2.2.1, the definition for the instantaneous squared error clenvative 

ûE of neurons in the output layer, 6g = -Tane5, was made. In a similm vein, dip, 
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the instantaneous squared error derivative for nearons in the hidden layers can be 

defined as 

Thus, Equation (A. 11) becomes 

for i = 1, 2, . . . , Ni-'. Notice that 

so tkat a recursive equation in d can be fonned by 

Observing this last equation, it can be seen that the instantaneous squared 

error derivatives for netuons in a hidden layer depend on the instantaneous squared 

error derivative for neurons in subsequent hidden layers, and ultMately of the 

instantaneous squared error derivatives for neurons in the output layer. To condude 

the verification, as in Section A.2.2.1, 
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for i = 1, 2, . . . , ATL-', and induding a constant coefficient of proportionality, 7,  

completes the verification, 





Appendix B 

Neural Network Training 

Met hodology 

This appendix sammarizes the methodology used to train the t k e e  neural networks 

that implement the primitive classifier of Chapter 2. The method used to determine 

the number of hidden layers and the number of neurons in each hidden layer is 

lieuristic, and strongly based on experience gauied fkom training smaller sized neural 

networks than those eventually used. However, some guidance is provided in the 

literature, for example [Guy911 . The reason for starting with relatively small neural 

networks is that, besicles the obvious reason of requirkig less time to train, it is 

desirable in order to avoid problems of overtraining. Hence. the smder the neural 

network the better. 

UnWce the usud neural network training methods wliere the training vectors cim 

be divided into a training set and a validation set, this cannot be performed here. 

Once the neural network is trained so that it has a sufEciently low classification 



error rate on its training vectors, it cannot be presented with more PT vectors, 

for example, since all the possible PT training vectors are specïfied in the training 

set. This is due to the fact the the primitive classifier is designed to detect trafic 

primitives of t r a c  streams fiom the probabilistic partition, as discussed in Section 

2.1.2. Hence, for the three neural networks introduced in Section 2.2, they are 

verified using the training set in Section 2.3, but the real test is how they perform 

with unknown, probabilistic sources in Section 2.4. 

The following section gives some results of attempting to train a few neural 

networks, from whick experience is gained with the training problem at hand. The 

results of training neural networks of various sizes is provided in Table B.1. Section 

B.2 develops a heuristic based on this experience which can be used to estimate the 

number of neurons required for convergence in the larger neural networks which are 

required to learn the t r a c  classification problem. Finally, Section B.3 concludes 

tliis appendix witk Table B.2, which shows the cornputer tirne involved in training 

the three neural networks of Chapter 2. 

B.1 Some Training Examples 

In the foIIowing examples, the nnmber of inputs and outputs of the neural network 

are ten and nine, respectively, and the training vectors given in Tables (2.1-C.4 

of Appendix C are used. In addition, one of the criterion for deciding if a neural 

network is trained suficiently is the value of the Mean Squared Error (MSE) over 

its training set. The expression for calculating the MSE in Backpropagation neural 

networks is given by Equation (A.9) in Section A.2.2 of Appendix A. Another test 



of convergence is the number of incorrect classification that the neural network 

makes over its training and validation sets. 

First, a smail neural network is trained, with one hidden layer. As can be seen 

£ion Figure B.1, this 10-10-9 neural network does not even begin to converge. 

After 5000 presentations of the training set, the neural network misclassifies 71% of 

O 500 10û) 1500 uwlo 2500 3000 3 5 0  4000 4500 5000 
Number of presentations of 435 Training Vectors 

Figure B.1: Mean Squared &or for the 10-10-9 N e d  Network 

its training vectors. In order to increase the ability of the neural network to learn, 

more neurons are added to the hidden layer. One training resdt ui this process. 

Figure B.2, shows the MSE of training a 10-50-9 neural network. In tbs case the 

MSE has been reduced fiom its initial level, but as in Figure B.1 the training bogs 

down. However, after 5000 presentations the -or rate is reduced to Il%, witk 

approximately the same level of MSE. This shows the reasoning of adding more 
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Figure B.2: Mean Squared &or for the 10-50-9 Neural Network 

neurons to a neural network in order to inaease its learning ability. Nonetlieless. 

this error rate is still too hi&. 

After farther experimentation, it is discovered that an additional hidden layer 

is required for the neural network to converge. For example, Figure B.3 shows the 

training performance of the 10-10-10-9 neural network. As can be seen, the same 

training point is reached as with the b o  previous cases. As well, the dassification 

error lias increased to 39%. However, this is not surprising when compared to 

the 10-50-9 neural network, for it is considexably larger. Finally, if the number 

of neurons are increased drastically, as with the 10-100-100-9 neural network, the 

training results of which are shown in Figure B.4, the MSE breaks through the 

barrier and the neural network trains successfully, that is 0% ckssüication error of 
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Figure B.3: Mean Squared Error for the 10-10-10-9 Neural Network 

1.10 1 1 , I , 1 . I L I 
O 500 LOO0 1500 2000 2500 3000 3500 4000 4500 5000 

Number of presentations of 435 Training Vecturs 

the training set. As the figure shows, this occurs in five times fewer presentations 

of the training vectors than in the three previons cases. 

These resdts and others are summarized in Table B.1. It tabulates the total 

number synapse weights and biases in a neural network of the given size, the ratio 

of tkis number to the number of training vectors in the training set, and finally the 

classification error after training is thougkt to be complete. For the first portion 

of the table giving the results for ten input neural networks, there is 435 traùliiig 

vectors. For the second and last portions, for fifteen and twenty input neural 

networks, there are 2,004 and 5,996 training vectors, respectively. It  is from the 

fust third of data in the table that a heuristic is developed to help determine the 

number of hidden layer neurons for larger neural networks. 
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LOO 200 300 400 500 600 700 800 900 1OOO 
Number of presentations of 435 Training Vectors 

Figure B.4: Mean Squared Error for the 10-100-100-9 Neural Network 



B.1. SOME TRAI?VIIVG EXAMPLES 

Table B.l: Training Resdts for Various Sizes of Neural Network 

Neural Number of Weights Weights and Biases Classification 

Ne twork and Biases per Tkaining Vector Error (%) 
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contiaued fiom previous page 

Neural Number of Weights 

Network and Biases 

10-15-20-9 674 

W ~ g h t s  and Biases Classification 

per mainhg Vector Error (%) 

B.2 A Neuron Estimating Heuristic 

Since mach of the literature, for example [BHSg, Hay941, attempts to relate the 

size of the neural network to the number of training vectors required to a specified 



classikation error level,' the same type of reasoning is used in the heuristic pre- 

sented next. Consider the enhy for the 10-35-35-9 neural network. This is the 

fist ten input two hidden layer neural network in whidi training is successfd. The 

ratio of the number of synapse weights and biases in the neural network (its size) 

to the number of training vectors is enumerated, simply, by counting the weights 

and biases and dividing by the number of training vectors. Progressing from input 

layer to output laya, 

with nnits of "weights and biases per training vector." Now, since this size neural 

network converges with an acceptable classification error, if this ratio of network 

size to training vectors is maintained, it stands to reason that larger neural networks 

should &O converge. Thus, the foIlowing quadratic equation is formed in estimat- 

ing the number of neurons required in a fifteen input, two hidden layer and ten 

output neural network witk 2,004 training vectors, where z represents the number 

of neurons sought. 

LUnfortunateIy, these "ruies of thumb" do not help in this particular situation, due to assump- 
tions which do not hold. 
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resulting in the solutions, 

21 = 82.64 and z2 = -109.64 

This Leads one to expect that a 15-80-80-10 neural network ~resented aith 2,004 

training vectors based on the t r a c  primitives of Section 2.1.3 will converge, and 

as show by the second portion of Table B.1, it does. Tao other training results are 

shown in the table for fifteen input neural networks. 

Using a s d a r  sttategy for estimating the number of neurons required in a 

twenty input, two hidden layer and eleven output neural network, with 5,996 train- 

ing vectors gives 

resulting in the solutions, 

z3 = 149.03 and x4 = -182.03 

This leads one to expected that a 20-180-180-11 neural network wodd converge. 

However, from experience with the meen input neural networks, and considering 

the vast amouut of time required to train a neural network of this size, the 20-145- 

145-11 neural network is trained. The results for this and a 20-200-200-11 neural 

network are stated in the third portion of Table B.1. 
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One may ask why the namber of neurons in each hidden layer is the same. As 

can be seen in Table B.1, for the smder networks some experimentation on +g 

this number is perfomed. However, the î î r s t  two hidden layer neural network to 

converge contained the same number of neurons in each layer, and since this ailows 

the quadratic expressions above, the convention was adopted. As will be seen in the 

next section, experiments in varying the number of neurons in the hidden layers of 

larger sized neural networks becomes extremely costly in t e r m s  of computer tirne. 

B.3 The Training Times 

The training times of only the three n e 4  networks studied are given in Table B.2. 

The computer time is measured on a Iightly loaded2 Sun Sparc 20171, operating 

in multi-user mode. These times are based on 3,000 presentations of the training 

vectors to their respective neural network. As can be seen for the h o  smaller neural 

Table B.2: 'Ikaining Times for the Three Neural Networks Studied 

networks, the training times are tolerable. However, for the larger neural network, 

9 

*I,ightly loaded should be taken to mean that the SunOS 4.1.3 command rup returns a load 
average of 1.0 for most of the training session. The training jobs nui with a nice levd of 19. 

Neural Network , 
Cornputer Time 

Seconds 1 Hours 1 Days 

i 
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due to the exponentid increase of weights with size, the training times prohibit 

much study of the 20 input case. 

As a matter of interest, if a twenty-five input neural network i s  to be trained, the 

corresponding W = 25 would defme 14,122 training vectors, which would require 

fourteen neural network outpnts. Using the heuristic of the previous section, this 

implies that approxirnately 233 neurons are required. If this Urformation is nsed to 

layout a 25-230-230-14 neural network, then the training t h e  can be estimated 

to be a minimum of 9,480,205 seconds, or 109.72 days if the training converges 

within 3,000 training epods. 



Appendix C 

Training Vectors and Primitive 

Classification Numbers 

This appendix contains the training vectors for the 10-35-35-9 nemal network. 

Tables C.1-C.4 show the training vectors for the DG, CBR, PT and CBR-RC tr&c 

primitives, respectfdly. Table C.5 summarizes the classifications performed by this 

primitive classifier, whicli is a usefid reference when considering the output of the 

neural network. In addition, Tables C.6 and C.7 gives the primitive dassification 

numbers for the primitive classifier based on the 15-80-80-10 and 20-200-200-11 

neural networks, respectively. 

The training vectors for the DG, CBR and PT t r a c  primitives are fairly 

straight forward, since they result in only one t r a c  classification each. In the 

case of DG primitives, the output desired from the neural nehnork is the vector 

"000000000," using the notation introduced in Section 1.6.4. 
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Table C.1: Degenaate Baining Vectors (11) for the 10-35-35-9 Neural Network 

Primitive Input Output Primitive hput Output 

DG 1000000000 000000000 DG 0100000000 000000000 
1\ 

The classification desired for the CBR primitives is '010000000." 

Table C.2: Constant Bit Rate Training Vectors (25) for the 10-35-35-9 Neural 

Network 

CBR / 0101010101 ( 010000000 1 CBR ( 1001001001 ( O ~ O O O O O O O  

CBR 010010010û OlOOOOOOO CBR 001Ooi0010 OiOO00000 

CBR 1000100010 010000000 CBR 010001000i O ~ O O O O O O O  
r 

Primitive 

CBR 

Primitive 

CBR 

input 

1 1 1 1 ~ 1 1 1 1 1  

L 

Output 

010000000 

Input 

1010101010 

CBR 

CBR 

CBR 

CBR 

CBR 

Output 

010000000 

CBR 

CBR 

II CBR 1 1000000001 1010000000 1 1 1 11 

0000L00001 

0 1 0 0 0 0 0 ~ 0 0  

0001000001 

0100000010 

~ O O O O O O O l O  

1000010000 

0010000100 

OL0000000 

010000000 

010000000 

010000000 

010000000 

010000000 

010000000 

CBR 

CBR 

CBR 

CBR 

CBR 

L 

010000000 

01OOOOOOO 

1 

lOOOOO1OOO 

0 0 1 0 0 ~ 0 0 1 0  

1000000100 

0 0 1 0 0 0 ~ 0 0 1  

OlOoOO000i 

CBR 

CBR 

010000000 

010000000 

O10000000 

010000000 

OiûOOOOOO 

0100001000 

OOOlOOOOlO 



The classification desired for the PT primitives is "100000000." 

Table C.3: Packet Train Training Vectors (156) for the 10-35-35-9 Neural Nehrork 

1) Primitive ( kput 1 output 1  nitir ire 1 input 1 output 11 

100000000 PT 11000 11000 100000000 

100000000 PT o o o r i o o o i r  l o o o o o u u u  

100000000 PT 01L0001100 l O O 0 0 0 ~ û O  

. 

conti~ued on next page 





i o o o o o o o o  i PT 1 o i l i i l i r i o  1 i o o o o o o o o  

For the case of CBR-RC trafic primitives, instead of all the training vectors 

returning the same classification, a group of CBR-RC morphisms return individual 

classifications. For example, the fmst t h  rows of Table C.4 show six inputs to 

the neural network which correspond to the situation which occurs when a source 

transmit ting at the fnll link rate C begins to transmit at half the link rate, $. This 

transition is represented by the RC C -t t r a c  primitive, and given by a neural 

network output of "110000001." 

,, 

1 continuecf fkom previous page 

,, 

Primitive 

PT 

PT 

PT 

PT , 

Input 

0 ~ 1 1 ~ ~ 0 o o ~  

l O O O O l l l l 1  

O1 1 1 1 1 0 0 0 0  

0 0 0 0 0 1 1 1 1 1 ,  

Output 

~ O O O O O O O O  

1 0 0 0 0 0 0 0 0  

1 0 0 0 0 0 0 0 0  

1 0 0 0 0 0 0 0 0 ,  

Primitive 

PT 

PT 

PT 

PT , 

Input 

1 1 1 1 1 0 0 0 0 1  

O O O o i l i i l O  

l l l l 1 0 0 0 0 0  

1 1 1 1 1 1 0 1 1 1 ,  

Output 

~ o o o o o o o o  
1 0 0 0 0 0 0 0 0  

1OOOOOOOO 

1 0 0 0 0 0 0 0 0  
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Table C.4: CBR Rate Change 'Ik;iining Vectors (243) for the 10-35-35-9 Neural 

Network 

Primi tivc Input Output 

R C C +  i i i i i i i o i o  L ~ O O O O O O ~  

R C C + ~  1111101010 ~ I O O O O O O ~  

R C C +  ~ l i o l o ~ o i o  ~ I O O O O O O I  

R C C + $  ~ l l l l l o o l o  ~ ~ O O O O O ~ O  

R C C + $  1111001001 ~ I O O O O O ~ O  

R C C + $  i i o o i o o i o o  i ~ o o o o o ~ o  

Primitive Input Output 

R C C - ~ ~  i i i i l i 0 1 0 1  i 1 0 0 0 o o o i  

R C C +  i i i i 0 1 0 1 0 1  ~ L O O O O O O ~  

RCC-+$ ~ ~ o ~ o ~ o 1 0 ~  1 1 0 0 o o o 0 1  
R C C + $  t i i i i o o ~ o o  ~ L O O O O O ~ O  

R C C - , ~  l i l ~ ~ i ~ ~ i o  ~ ~ O O O O O ~ O  

R C C +  r i i i i ~ o r o o  i i o o o o o i o  
- -  - 

R C C + $  l 1 i 1 1 0 1 0 0 1  ~ ~ O O O O O ~ O  R C C + $  ~ L ~ ~ O I O O ~ O  Z ~ O O O O O I O  

R C C + ~  l ~ i o 1 0 0 1 0 0  1 1 0 0 0 0 0 1 0  R C C + %  i i o i o o i 0 0 1  ~ ~ O O O O O ~ O  

RCC+$ i o i o o i o o i o  i i o o o o o i o  R C C + ~  i i i i i o o o i o  i r o o o o o i i  .- 
R C C + +  1 1 1 1 0 0 0 1 0 0  1 1 0 0 0 0 0 1  1  R C C - t $  l l i 0 0 0 l 0 0 0  i 1 0 0 0 0 O l l  

R C C + $  L ~ O O O ~ O O O I  ~ ~ O O O O O ~ ~  R C C + $  i l l i l o ~ o o o  1 1 0 0 0 o o 1 ~  

R C C + $  r 1 r i o i o o o i  i i o o o o o i r  R C C + ~  i i i o ~ o o o r o  ~ i o o o o o i i  

- - - -- -- - -- - - 
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The output of the primitive classifier is a binary coded classification, and hence 
is not in a very human-readable format. Thus, eadi classification is given a number, 
as siinimarized in Table C.5 for a classifier based on the 10-35-35-9 neural network. 
This table is u s a  when O bserving the output graphs of the primitive classifier. 

Table C .5 : S ummary of Primitive Classifications, including Classification Number 

for the 10-35-35-9 Neural Network 

The trafnc primitive classifications are enumerated in Table C.6 for the 15-80- 
80-10 neural network based primitive classifier. This table is usehl when observing 
the output graphs of the classifier. 

' 

_L 

Classification 

Number 

1 

4 

7 

10 

13 
- -  -- 

16 

19 

22 

25 

28 

31 

34 

37 

Corresponding 

Primitive 

DG 

R C C - c g  

R C C + ~  

RC c 4 5 
R C $ 4 5  
- 

RC 5 4 $ 
RC 5 + (i: 
R C S - b s  

RC 5 4 

RC 5 4 5 
RC $ 4 5  
RC 9 -c 5 
RC 5 -b c 7 

Clsuification 

Number 

2 

5 

8 

LI 

14 
- 

17 

20 

23 

26 

29 

32 

35 

Corrsponding 

Primitive 

CBR 

R C C - r S  

R C C - P ~  

~ c 5 - t ~  
RC 5 + $ 

- - 

RC $ + % 
RC 5 + 5 
RC f + $ 
RC + 5 
RC $ -r C 

RC 4 $ 

RC $ + 5 

Conapondùy 

PNni tive 

PT 

R C C + $  

R C C + $  

RC f -+ 5 
R C s + $  

- - . - 

RC $ + C 

R C g + $  

RC $ -+ C 

RC % 4 5 
RC 5 + $ 
RC + C 
RC f + C 

Ciaasiiication 

Number 

3 

6 

9 

12 

15 
. - - - - - 

18 

21 

24 

27 

30 

33 

36 

1 

- 



Table C -6: Summary of Primitive Classifications, including Classification Number 

for the 15-80-80-10 Neural Network 
C 

Classification 

Number 

1 

4 

7 

10 

13 

Corrcsponding 

Primitive 

DG 

R C C + Q  

R C C + $  

R C C - ~ :  

R C C + ~  

16 

19 

22 

25 

28 

31 

M 

37 

40 

43 

46 

49 

52 

55 

58 

61 

64 

67 

?O 

73 

76 RC $ + $ 77 RC f + f: 78 RC 5 4 5 
79 RC 5 -+ $ 80 RC 5 + C 81 R C s + $  

82 RC 5 + 5 83 RC 6 + $ 84 RC $ -r 5 
continued on next page 

RC f - t f  

RC+g 

RC $ + 5 
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RC f 4 $ 
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RC $ + 5 
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RC f + 

R C ~ + +  
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Classification 

Number 

2 

5 

8 

11 

14 

RC f + C 
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R C $ + e  

RC $ -t 6 
RC $ -+C 

R C $ + G  

~ c f - t f  
RC 5 + J 
RC $ + 6 
RC $ + 5 
RC 5 + 5 
~ c s - r c  

RC f 4 f 
RCg+$ 
RC $ + C  

RC $ + 

R C $ + g  

RC + 5 
RC 5 3 $ 
RC + 5 

IS 

21 

24 

27 

30 

33 

36 

39 

42 

45 

48 

51 

54 

57 

00 

63 

66 

69 

72 

75 

17 

20 

23 

26 

29 

32 

35 

311 

41 

' ~ 4  

47 

so 

53  

56 

59 

62 

65 

ss 

71 

74 

RC $ + q  
RC +++ 
RC 5 + 5 
RC + 5 
RC $ + 5 
RC 5 + 5 
RC 1 + $ 
RC (+ c 

RC 5 + f 
RC 5 + 4 10 

RC f + 5 
R C ~  + f  

RC f 4 f 
RC f + $ 
RC%+$ 

RC $ + 5 
R c  $ + C 

RC 5 4 

RC $ + 5 
RC S 4 f 

Comspoadmg 

Primitive 

Cocrcsponding 

Primitive 

Chdication 

Number 

CBR 

R C C + $  

R C C + $  

R C C + ~  

RC c + 

3 

6 

9 

12 

' PT 
RCC-5 
R C C - ?  

R C C - , ~  

1s R C C + $  
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The traffic primitive classifications are enumerated in Table C.7 for the 20- 
200-200-11 neural nehvork based primitive classifier. This table is usehil when 

- 

continueci fkom previous page 

observing the output graphs of the classifier. 

CIessifiartion 

Number 

85 

88 

91 

Table C. 7: Summary of Primitive Classifications, induding Classification Nuniber 

for the 20-200-200-11 Neural Network 

Corrcsponding 

Primitive 

R C $ + C  

RC 6 + 5 
R C g + q  

Classiâcatioo 

Numbtx 

86 

89 

92 

- 
Classification 

Number 

L 

4 

7 

10 

13 

16 
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22 

25 

28 

31 

34 

37 

40 

43 

46 
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52 

Cocresponding 

Primitive 

RC 5 + 9 
R C g - r S  

RC 9 -r $ 
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Primitive 

RC 6 + 6 
RC 5 + C 

R C g + C  

Corresponding 

Primitive 

DG 

RCC++ 

RCC+% 

RC c + 5 
RcC + 5 
RC C 4 5 
RC C + 5 
RC $ -b $ 
RC 5 -b $ 
RC $ 4  $ 
R C $ + s  

RC f 4 5 
RC $ -b $ 
RC 5 4 

RC 5 4 5 
RC 5 4 $ 
RC 5 -t 6 
R C f - r f  

CiausScation 

Number 

87 

W 

93 

Classification 

Number 

2 

5 

8 

11 

14 

17 

20 

23 

26 

29 

: 32 

35 

38 

41 

47 

50 

53  

Cortcaponding 

Primitive 

CBR 

R C C + $  

R C C - b S  

R C C + %  

R C C + f I  

RC C + $ 
RC C + 5 
RC 5 + 5 
RC q -+ $ 
RC + $ 

RC 5 + $ 
RC 5 + 6 
RC f -+ C 

RC 5 + f 
R C $ + %  

RC 5 + $ 
RC + 

RC 5 -t f 

Classification 

Number 

3 

6 

9 

12 

15 
- - 

18 

21 

24 

2 7  

30 

33 

36 

39 

42 

45 

48 

5 1  

54 

continued 
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Pnmi tive 

PT 
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R C C + F  

R C C + ~  

R C C + s  
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RC 5 4 ff 
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Classificstion 
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55 

fiom previous 
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Primitive 

R C f - b a  

RC 5 4 5 
RC $+% 
R C S 4 5  

RC 5 4 f 

R C F + s  
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RC $ + 5 
RC 4 $ 
RC 6 + 

1 

58 

61 

64 

67 

70 

73 

76 

79 

82 

85 

88 

91 

94 
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118 
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130 
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page 
Classification 

Numbcr 

56 

59 

62 

65 

68 

71 

74 

17 

80 

83 

86 

89 

92 

95 

98 
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96 

99 
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