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Abstract

The integration of services is the driving force behind the design of the high speed
data networks of today and tomorrow. These networks must be able to deliver a
broad range of services and be capable of carrying diverse classes of traffic with very
different source characteristics. In the case of data traffic, some delay is tolerable,
however the loss of information is not. At the other extreme, some loss is tolerable
for voice traffic, however delay is not. In the middle is broadcast quality video
traffic, which is sensitive to both delay and loss.

In the case of Asynchronous Transfer Mode networks, the solution of these con-
flicting requirements is to negotiate a Traffic Contract at the User-Network Inter-
face, which specifies a Quality of Service level and the characteristics of the source.
These characteristics are used by Call Admission Control and Usage Parameter
Control to protect existing connections.

Unfortunately, the determination of source characteristics by either the user or
network provider is difficult, or impossible in some situations. The usual statistical
methods of identifying traffic sources do not scale well to high speed networks,
nor are they applicable to all traffic types. In addition, they cannot be used to
identify the traffic streams emerging from applications not envisioned when these
identification techniques were developed. Thus, there is a need for a method that
can accurately provide a description of traffic streams in a timely manner. Three
contributions are presented in order a satisfy these needs.

The proposed traffic primitive classifier can be used to classify unknown traffic

streams. This is accomplished by defining simple, deterministic characteristics of



traffic streams which are collectively called traffic primitives These traffic primitives
are used to define training vectors in order for a neural network to learn the clas-
sification problem. The traffic classification results show that the neural networks
not only can classify deterministic sources from which they are trained, but also
they can classify a wide range of random sources, such as the class of on-off sources.
With the additional functionality of Traffic Primitive Histogram Identification and
Stream Transition Tracking, the primitive classifier can be applied to characterize
sources which are not on-off in nature. As well, the primitive classifier can be in-
tegrated into a policer to perform more complex policing actions, and to monitor

traffic streams for a given set of occurrences.

In addition to the traffic primitive classifier, two additional contributions come
in the form of two traffic shapers, the Minimized Variance shaper and the Burst-
oriented shaper. Both shapers have the ability to produce near deterministic
streams, given appropriate sources are shaped, at fairly low costs in delay and
buffer size at the shapers. In the case of the Minimized Variance shaper, source
information is utilized in order to find an optimal shaping parameter that has the ef-
fect of minimizing the interdeparture time variance of the stream exiting the shaper.
For the case of the Burst-oriented shaper, source information is not required since
it assumes that bursts and silences emerge from the ATM Adaptation Layer, and
so it attempts to spread a burst into the immediately following silence period. By
doing so, it has the ability to define an unshaping parameter, which when embed-
ded into the traffic stream, can be used to unshape the source at the destination

User-Network Interface. This has the dual benefits of offering the network provider



an ability to characterize sources and hence improve network efficiency, and also to

allow users to treat the network as a transparent connection.
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Chapter 1

Introduction

The integration of services, required by increasingly complicated computer and
network applications, is the driving force behind the design and analysis of the
present and future high speed data networks. While there is not yet a single network
which carries an ubiquitous range of services, present day networks are already
starting to merge, directed by the demand for new services: data is carried over
voice networks via modem connections; telephony software allows voice to be carried
by data networks; audio and video applications are carried over data networks; and
cable providers will soon support a mechanism for data applications to operate
over the cable (television) networks, starting simply with Internet access. Thus,
whereas in the past it could be said that network technology was the propelling
force behind network services and applications, changes are occurring such that
network applications are now driving the technology. The common thread in the
existing and emerging applications is the requirement for faster transmission speeds

and increased bandwidth. In addition, a more flexible delivery of bandwidth is
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desired, such as “bandwidth on demand.” Hence the need for “smarter,” more
flexible high speed networks. In particular, this thesis will consider the example
of Asynchronous Transfer Mode (ATM) networks, which are currently considered
by many to be the solution to the existing problems of service integration. Much
of this work, however, is applicable to other high speed networks with properties
similar to ATM.

One of the major problems associated with the integration of services into a
single high speed network, such as an ATM network, is that of cell-level congestion.
Cell-level congestion arises from two important aspects of modern networking: net-
work utility, and bandwidth efficiency. For the case of network utility, one basic
premise of modern data networks is that they are transparent to the user. That
is, data networks should be as easy to use as telephone networks — simply make
a call. In this light, the network should appear to the user as a high speed pipe
through which data flows. The destination user should see the same traffic stream
exit the network as that which entered. In addition, the traffic streams of other
users of the network, including future users, should have no affect whatsoever on a
given connection. Much of the justification for studying traffic shaping is contained
in the idea of congestion avoidance, and the presentation to the destination the

same traffic stream that is input to the network.

For the case of bandwidth efficiency, the problem is studied from the corre-
sponding perspective of the network service provider. From the network provider’s
point of view, the network must be optimized in order to maximize revenues. This

is achieved, all other things being equal, by avoiding congestion. In order to ac-



complish this, information regarding the traffic streams to be admitted or already
connected to the network is required. The bulk of this thesis proposes a novel
method, employing neural networks, that can be used to classify unknown traffic

streams.

It is not the purpose here to give an in-depth historical account of the evolution
of telephony and packet networks. Nonetheless, a sense of history regarding the
origins of these networks is required in order to understand their present state, and
to justify their future form. With this in mind, Section 1.1 introduces and discusses
the historical aspects of circuit switched and packet switched networks, and the
desire for service integration, which has lead to the development of the Integrated
Services Digital Network (ISDN) and Broadband-ISDN (B-ISDN ), which employs
ATM as its transport mode. Section 1.2 will then introduce the salient features of
ATM as they pertain to this work, including statistical multiplexing and congestion,
Quality of Service and the Traffic Contract, and the User-Network Interface. After
these few sections of background of ATM networks, Section 1.3 brings together
the discussion and presents a hurdle to be overcome: timely and accurate source
information. The requirement for source information gives rise to the need for

traffic classification and shaping.

With traffic classification and shaping introduced, Section 1.4 states the aim
of this research: to classify unknown traffic streams using neural networks, and to
use the source information gained via classification to improve network efficiency.
Since some readers may be unfamiliar with neural networks, Section 1.5 gives a

brief overview. Finally, Section 1.6 defines some terms that are used throughout
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this thesis. The reader may wish to peruse this section first, or refer to it from time

to time, if unfamiliar terminology or notation is encountered.

Chapter 2 contains much of the work performed, namely the design and im-
plementation of traffic classification. Section 2.1 describes traffic primitives, which
are integral to the neural network based traffic primitive classifier. Following this,
Section 2.2 describes the neural network used to classify these primitives, as well
as the neural network training methodology. The results of this training are given
in Section 2.3. More importantly, Section 2.4 offers results of the operation of
the neural network based primitive classifier when it is presented with heretofore

unobserved traffic streams.

Two applications of traffic classification are given in Chapter 3, Traffic Prim-
itive Histogram Identification in Section 3.1, which is a method of source charac-
terization. In Section 3.2, Stream Transition Tracking can be used to monitor the

behavior of a given source.

Two traffic shapers are proposed in Chapter 4, the Minimized Variance shaper in
Section 4.1 and the Burst-oriented shaper in Section 4.2. The Minimized Variance
shaper requires knowledge of the type of traffic on which it is operating, and thus
can be considered to be another application of traffic classification. The Burst-
oriented shaper is developed from insights gained in traffic classification, and thus
does not depend on this knowledge. It does, however, sport the feature of being
able to “unshape” traffic streams at a source’s destination, by way of an unshaper.

In both cases, the goal of shaping is to create a deterministic traffic stream.

Finally, this thesis concludes with Chapter 5, which provides a summary of the



contributions of this work, as well as pointing towards future work.
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6 CHAPTER 1. INTRODUCTION

1.1 A Brief Background in Modern Networking

To consider the history of modern networking, one must start with the origins of
telephony, which gained popularity in the early 1900’s. However, as stated, the
purpose here is not to give an in-depth review of telecommunications. Rather,
since the reader is undoubtably familiar with a telephone, the only background of
telephony required is to realize that telephone networks employ connection-oriented
circuit switching, whereas the data networks which began to appear in the 1960’s
employ connectionless packet switching [BC84, BG92, Cha83, Sch87, Sta94, Tang8].
The following section gives an overview of the origin of modern data networks. with
emphasis on how they lead to the integration of services and thus ISDN, which is
the subject of Section 1.1.2. In turn, the integration of services demands increasing
amounts of bandwidth. The answer to this is B-ISDN, of which an overview is

given in Section 1.1.3.

1.1.1 Telephone and Data Networks

In the existing analog telephone network, or POTS (Plain Old Telephone Service),
before information can be exchanged a connection must be established between the
users. However, once a connection has been established, it is dedicated to the two
users at its end points. Information transferred over this connection always takes
the same route through the network. Contrast this to a data network offering data-
gram service, which is connectionless and employs packet switching. In this case,
no connection between the sender and receiver is made prior to the transmission of

the information. Instead, the information to be exchanged between sender and re-
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ceiver contains the address of the recipient. In this sense, a connectionless network
is similar to the postal system [Tan88]. Additionally, it is possible for messages
between the same pair of users to take completely different routes through the net-
work. Also of importance, since there is no end-to-end connection established. there
is no bandwidth dedicated to a given connection. Therefore, instead of bandwidth
being wasted if a connection becomes idle, as occurs in telephone networks, in data
networks messages from aenother pair of users may utilize this bandwidth.! These
distinctions between connectionless and connection-oriented, circuit switched and
packet switched networks (and services) play an important role in present day high
speed networks, since these networks are designed to carry very different — one
could say diametric — services.

This brief history of modern networking, as it relates to Asynchronous Transfer
Mode, begins in the early 1970’s. This time witnessed the establishment of the
public, government and private wide area networks (WANs). Some North Ameri-
can examples of these first data networks are ARPANET,> TYMNET. MILNET.
USENET, CSNET and BITNET, and SNA [BG92, Gre84, Sta94, Tan88). In addi-
tion, many standards were established by organizations such as International Stan-
dards Organization (ISO), Comité Consultatif International de Télégraphique et
Téléphonique (CCITT),® and the Internet Engineering Task Force (IETF). ARPA-
NET evolved into the ARPA internet [HHS83], and is commonly referred to as

LThis is referred to as statistical multiplezing, and will be discussed in Section 1.2.1.

*These acronyms are explained in the references, however the exact names of these data net-
works are not pertinent to this discussion.

3This standards organization is a part of the International Telecommunication Union (ITU),
and has recently been renamed ITU-T.
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“the Internet” today. The importance of mentioning these networks is that as they
became established and allowed the development of useful network applications,
they quickly became indispensable. Data networks were (and still are) employed
for the obvious uses such as resource sharing and reliability [BG92, Tan88]. The
sharing of resources is important in two ways: cost and interface. If an organization
requires an expensive computer or piece of hardware, it is much more cost effective
to connect many users to that computer via inexpensive “dumb” terminals than to
purchase each user the expensive computer. The same reasoning holds for expen-
sive software that runs on the expensive computer systems. Again, it is much more
cost effective to purchase additional software licenses than to purchase completely
new copies of the software. In addition to the cost of the hardware and software,
there is the human factor of interacting with said hardware and software — namely
the interface. It is much easier for a human if, no matter which terminal is used in
an organization to connect to the computer system, a constant set of interactions
is presented. A common interface can also be considered as a reduction in cost,
since training and maintenance costs can be reduced. As for reliability, it should be
clear that having redundant hardware and software systems is imperative in certain

organizations.

While these aspects of modern networking developed from the main-frame en-
vironment of the 1960’s and 1970’s, they apply equally well to a distributed data
network environment [Lid90]. In addition to the economies of scale mentioned above
in resource sharing, further economies became available in transmission bandwidth

(BG92]. For example, while a 1.544 Mbps link contains twenty-four 64 Kbps chan-
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nels, its cost is only a few multiples of that of a single 64 Kbps channel.* As well,
transmission costs increase with distance, but at less than a one to one ratio. Hence
data networks, proving themselves to be cost effective, created the need for applica-
tions which were network based. An organization with a geographically distributed
operation requires networks in order to coordinate its operations. Thus, for exam-
ple, the need for remotely updating a data base gave rise to the field of distributed
systems [CD88]. Another example is the now common automated teller machine, or
banking machine. The interconnection of computers also lead to the development
of completely new applications, such as electronic mail, facsimile, and those that
make use of audio and video [PT90, WT90].

1.1.2 The Emergence of ISDN

With data networks firmly entrenched, and network applications requiring more and
more bandwidth, in 1984 CCITT adopted the recommendations for the Integrated
Services Digital Network (ISDN) [BAF+88, Bla95, Onv94, SHP91, Tan88|. ISDN
represents a world-wide attempt to replace the existing analog telephone networks
with a digital system. In fact, ISDN is based on a digitized telephone network, that
is 64 Kbps channels. Because of this, it is inherently a circuit switched network
which also allows packet switching. Thus, ISDN is envisioned to support a broad

range of voice and non-voice services, such as images and video, by integrating

*Note, however, that for the reasons of large distances and sparsely populated areas, this does
not hold true in Canada. For example, in the United States, a trunk line from New York to Los
Angeles would pass through many urban centers containing many users who may wish to use a
portion of the trunk covering only a small distance. Thus the cost of the trunk line is borne by
more users than just those located at the end points of the line. Compare this with a trunk line
from Toronto to Vancouver, which passes through only a few (relatively small) urban centres.
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telephone and data networks. In other words, ISDN combines the fanctionality of
circuit switched and packet switched networks.

Two access interfaces are defined: basic and primary. The basic service con-
sists of two 64 Kbps data channels and a 16 Kbps signaling channel, for a total
of 144 Kbps. The primary service consists of twenty-three 64 Kbps data channels
and a 64 Kbps signalling channel, for a total of 1.544 Mbps.® The data channels
can be used together, in order to form higher bandwidth connections. Thus, ISDN
supports multiple independent channels which are interleaved using Synchronous
Transfer Mode (STM).® Unfortunately, even with a primary service bandwidth of
1.544 Mbps, video and image applications are poorly supported by ISDN. This
observation is aggravated by the fact that the primary service is intended for busi-
ness users, and the basic for home users. With only 144 Kbps available, broadcast
quality video is intolerable. Hence, the emergence of Broadband-ISDN (B-ISDN).

1.1.3 ISDN leads to B-ISDN and ATM

B-ISDN is being developed to support high bandwidth applications such as image
retrieval and video, as mentioned above, and also the interconnection of Local Area
Networks (LANs) [BAF*88, BG92, Oht94, Onv94, SHP91|. Like ISDN, B-ISDN
is intended to be an “all-purpose” network. As such, B-ISDN must be able to

support: traffic streams with a large range of characteristics, such as constant or

In Europe, primary service consists of thirty 64 Kbps data channels and a 64 Kbps signalling
channel, for a total of 2.048 Mbps. This is due to the fact that the European telephone net-
works are based on an El scheme, as opposed to the T1 scheme in North America (and Japan).
Henceforth, only the T1 scheme is considered.

SFor a discussion of STM, refer to [BG92, Tan88].
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variable bit rates and bursty traffic; a variety of network configurations, such as
connection-oriented or connectionless links, point-to-point or point-to-multipoint
connections; and a wide variety of transmission rates, with the ability to guarantee
service levels. Since its links are optical fiber, B-ISDN has the required bandwidth

and low bit error rates to fulfill the aforementioned intention.

It is amusing to note that there are about as many meanings for the term
broadband in computer networking as there are people using the term. In B-ISDN,
broadband refers to “a lot of bandwidth,” which should be taken to mean more
that 2 Mbps. Hence by employing optical fiber, B-ISDN is able to satisfy the needs

of bandwidth-hungry applications.

With plans for B-ISDN systems to employ links with transmission rates between
100 Mbps and 600 Mbps, questions arose as to the wisdom of simply “beefing up”
the existing STM-based ISDN system. STM employs circuit switching, and because
of this does not benefit from statistical multiplexing. Since many of the current
applications that will use B-ISDN networks, such as voice, have low bit rates when
compared to the proposed link rates, much of the bandwidth allocated to a low
rate connection would be wasted. In addition, the smallest rate available to an
application using this STM-based network is 64 Kbps, which is very inflexible.
Continuing the example of a voice connection and considering advances in voice
coding [Hay88], for example by using Adaptive Sub-band Coding (ASBC), only

16 Kbps is required for this connection [Dau82, Jay86].

Therefore, in order to increase bandwidth utilization, and for reasons of switch-

ing and local loop complexity, STM was abandoned in favor of an asynchronous
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packet switching mode. In this context, asynchronous refers to the fact that user
information can appear at irregular intervals over a network link, or in other words
information is transmitted over the network based on the needs of user applications,
not on timing considerations of the network. And thus for brevity, not mention-
ing many considerations taken by the standardization bodies, ATM’ was chosen
as the transport, network and data link layer [BG92, Tan88] protocol for B-ISDN.
Since ATM is to replace the functionality of STM in ISDN, its standard specifies a
physical layer, namely the Synchronous Optical Network (SONET) [BC89].

At this point, this brief history of modern networking comes to a close. Further
discussion on general technical aspects of ATM, such as signaling and framing with
respect to SONET, while important, are not germane to this work. For more
information, the reader should refer to [BG92, Bla95, Com94, Com95, HHS94,
MS95, Par94] Nonetheless, a more detailed overview of certain aspects of ATM
which are important when considering traffic classification and shaping is given in

the following section.

7ATM has also been referred to as Fast Packet Switching (FPS) and Dynamic Time Division
Multiplexing (DTDM).
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1.2 Asynchronous Transfer Mode (ATM)

This section focuses on the aspects of ATM which are pertinent to the work of this
thesis. Recall from the previous section that since ATM is the protocol which is
used to implement B-ISDN, it inherits many of the properties of B-ISDN. ATM
is a high speed, connection-oriented, packet switched data network, intended to
operate over optical fiber links which have inherently low bit error rates. While
it is connection-oriented, it supports connectionless services, and due to its asyn-
chronous packet-oriented multiplexing behavior, it is well suited to bursty applica-
tions. ATM integrates the features of packet switched and circuit switched networks
[BG92, Blad5, Com94, HHS94, MS95, Oht94, Onv94, Par94, Sai94].

Section 1.2.3 introduces the User-Network Interface, which specifies how con-
nections are made to an ATM network. Then, the important features of the User-
Network Interface, as they pertain to traffic classification and shaping, namely Call
Admission Control and Usage Parameter Control are discussed in Sections 1.2.3.1
and 1.2.3.2, respectively, followed by an overview of traffic shaping in Section 1.2.3.3.
Before discussing these aspects of ATM, it is important to be aware of two of the
driving forces behind them: statistical multiplexing and its side effect, congestion,
discussed in the following section, and Quality of Service and the Traffic Contract,

discussed in Section 1.2.2.

1.2.1 Statistical Multiplexing and Congestion

As mentioned in Section 1.1.1, in order to more efficiently use the available band-

width, statistical multiplexing is performed. Statistical multiplexing is said to
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occur when two or more connections use a link in such a way that the link ca-
pacity is less than the aggregate peak capacity requirements of the connections
[Jai90, MS95, Par94, Sai94]. Note then, as Figure 1.1 shows, that if all the connec-
tions desire to use the link at the same instant, not enough capacity is available.

This occurrence is referred to as burst-level congestion,® or simply congestion. The

bit rate
A Sum of peak bit
rates of all
connections
Link capacity

{ Sum of mean bit
rates of all
connections

Peak bit rate of
a connection

Mean bit rate of
a connection
0 >

time

Figure 1.1: Statistical Multiplexing Gain

label statistical in statistical multiplexing, hence, indicates that this occurrence is

unusual. That is, on average congestion will not occur, since the average aggre-

8Contrast this to call-level and cell-level congestion [Hui88]. While important, call-level con-
gestion is not considered here.
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gate rate of the network connections is less than the link capacity, as Figure 1.1
shows. Statistical multiplexing is essentially the difference between STM and ATM.
In STM bandwidth is assigned to a given connection, even if there is no data to
transmit, whereas in ATM there is no bandwidth assignation, and so a connection
uses the link only when it requires.

Even with the large amount of bandwidth available in ATM networks, conges-
tion must be controlled because as previously stated, ATM guarantees a certain
level of service to connections. Note that congestion may also occur even if there
is ample bandwidth available for the connections, as Figure 1.2 shows, due to cell-

bunching, referred to as contention. In this case, two or more connections desire to

==

Connections

Figure 1.2: Cell-level Contention at a Multiplexer (MUX)

transmit at the same point in time, and even though there is sufficient link capacity
for all the connections, only one can use the link at a given time. This, of course,
is due to the fact the that a multiplexer is a multiple-access device [BG92, Tan88|.

In the literature, there are in general two ways to solve the problems associ-

ated with congestion: preventive congestion control and reactive congestion control



16 CHAPTER 1. INTRODUCTION

[WRRS88]. Preventive congestion control manifests itself in the User-Network Inter-
face of ATM networks as admission control, and reactive as bandwidth enforcement.
These methods will be discussed in Sections 1.2.3.1 and 1.2.3.2. Both of these, how-
ever, require knowledge of not only the traffic stream that is to be admitted to the
network, but also of the existing connections. Thus, before a connection can take
place. the user and network provider must agree upon the characteristics of the
source and also the Quality of Service the user can expect from the network. which

takes the form of a Traffic Contract, discussed next.

1.2.2 Quality of Service and Traffic Contracts

Section 1.1.3 stated that one of the important features of B-ISDN, and thus ATM,
is the ability for the network to guarantee a level of service to the user. In the
language of ATM networks, this is referred to as Quality of Service (QoS) [Com94,
Kur93, LP91, MS95]. Some examples of service guarantees include cell loss rate,
minimum bandwidth and maximum end-to-end delay. While much work has been
performed and is ongoing concerning methods to guarantee a level of QoS, for this
work it is sufficient to realize that source information is required to achieve this
guarantee.

A number of QoS classes have been defined, such as best effort, constant bit
rate, variable bit rate, connection-oriented and connectionless. QoS classes are of
great importance in an ATM network, since it is intended to carry a wide variety
of traffic streams as a result of service integration. A data source, for example, is

extremely loss sensitive but delay insensitive. On the other hand, a voice source



1.2. ASYNCHRONOUS TRANSFER MODE (ATM) 17

is more sensitive to delays than losses. And video sources are both delay and
loss semsitive. Thus, different actions and thus service guarantees are required
when different applications wish to connect to the network. This information is
exchanged via the Traffic Contract.

A Traffic Contract represents an agreement between the network provider and
a user of the network. It specifies the QoS of the connection, the characteristics
of the traffic stream, rules for determining whether a connection is complying with
the Traffic Contract, and the definition of compliance itself. The importance of
the Traffic Contract here is the requirement for characteristics of the traffic stream,
and thus a method to obtain these characteristics. Since Traffic Contracts are

negotiated at the User-Network Interface, it is described next.

1.2.3 Overview of the User-Network Interface

While much research has been performed and is continuing concerning the inter-
nal operations of an ATM network, such as switching, routing and management
functions to name a few, the focus of this work occurs at the User-Network Inter-
face (UNI).? Figure 1.3 gives a simple overview of this feature of an ATM network.
It is generally assumed that due to the relatively high bandwidth of ATM links,
compared to most existing applications, that multiplexing will occur at the source
of Figure 1.3 (and demultiplexing at the destination). For example, a group of

terminals, user applications, or LANs are multiplexed to share access to the ATM

9Note that ATM networks have been specified in many ATM Forum documents, see
http://www.atmforum.com, but the document most applicable to this work is the User-Network
Interface (UNI) Specification, Version 3.1 {Com94].
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Source Destination

Source UNI Destination UNI

Back-bone ATM Network

Figure 1.3: A General ATM Network, showing Source and Destination

network. Of course, an application with high bandwidth requirements may be con-
nected directly, but for the present this is unlikely. Inside the back-bone ATM
network, two network service providers may need to interface with each other.
This point is called the Network-Network Interface (NNI), but does not concern
this work.

Zooming in on the source UNI, then, Figure 1.4 depicts the portions of the UNI
which are germane to this thesis. As the figure shows, the UNI consists of three
basic elements: the Call Admission Control (CAC) function, the Usage Parameter
Control (UPC) function, and the ATM switch, which performs cell-level, possibly
priority-based scheduling. In addition, a fourth optional element is that of traffic
shaping, with possible locations S1-S4 as shown in Figure 1.4. A discussion of
traffic shaping is deferred to Section 1.2.3.3. The existing network connections are
shown by the shaded ellipse, and the single call discussed in this overview is shown

at the bottom of Figure 1.4.
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Figure 1.4: Overview of the ATM User-Network Interface (UNI)

There are two basic functions that occur at the UNI. First, the network provider
must make a decision to either accept or reject the call, which is performed by CAC.
Second, once a call is accepted to the network, this connection must be monitored
to ensure compliance to the Traffic Contract, which is performed by UPC. It is
important to state again that both CAC and UPC require accurate and timely
source characteristics in order to perform their respective functions. While the
concepts of QoS, CAC and UPC are usually treated as separate entities in the
literature, they are nonetheless tightly intertwined by their mutual requirements
for traffic stream characteristics. The requirements for these characteristics are

emphasized in the following two sections.
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1.2.3.1 Overview of Call Admission Control

CAC determines whether or not a connection may be admitted to the network.
Since the network provider and the user “sign” a Traffic Contract at connection
setup, the network guarantees the agreed upon QoS while the user makes a com-
mitment to conform to a given traffic type, characterized by employing traffic pa-

rameters.

Traffic parameters include aspects of a traffic stream such as peak cell rate,
sustainable cell rate, burst tolerance, but they may also be qualitative, such as a
telephone or video source [Com94]. A subset of these parameters, the source traffic
descriptor, can be used to describe the traffic stream characteristics of a given
source. Once the connection request has been accepted, CAC has the source traffic

descriptor, as well as routing and resource allocation information in hand.

In order to accept a connection, the network provider must make an estimation
as to whether allowing the source access to the network would violate the source
QoS and the QoS of existing connections. Given a source traffic descriptor, a num-
ber of methods have been suggested to accomplish this [DTVV90, ELL90, GAN91,
GRF89, Hui88, JDSZ95, JV89, MSST9I1, Sai92, SS91, Tur92, WHI1|. These meth-
ods include parametric models (statistical and fluid flow) and, or real time mea-
surement based models, such as gaussian approximation, fast buffer reservation,
class related rules, equivalent capacity and Sigma rule. While greatly enhancing
network utilization by allowing statistical multiplexing, however, these methods ei-
ther make assumptions about the source characteristics for tractability or require

statistical measurements. As is discussed in Section 1.3, this creates difficulties
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when performing CAC.

1.2.3.2 Overview of Usage Parameter Control

After a source has been admitted to the network, its data enters the UNI and the
connection is monitored by UPC. The purpose of UPC is to ensure that the QoS
of existing connections is not affected by the misbehavior of the source, this misbe-
havior being possibly malicious or unintentional [Com94]. Connection monitoring
is performed by comparing the current traffic stream characteristics to the source
traffic descriptor agreed upon during CAC and the negotiation of the Traffic Con-
tract. Hence, as Figure 1.4 shows, the source traffic descriptor is passed from CAC
to UPC. If the Traffic Contract is violated, cells are dropped.!® Cells which conform
to the specifications of the Traffic Contract are passed on to the ATM switch which,
according to its scheduling scheme, duly injects the cells into the back-bone ATM
network.

UPC usually takes the form of a policer, since it is the “enforcement arm” of
the UNI. Some of the methods proposed for performing UPC include: the leaky
bucket; jumping, sliding, moving and exponential windows; cell spacing; UPC flag
cell; framing; and input rate regulation [BGSC92, BS91, GRF89, HH91, MGF91,
OOM391, Rat91, TG92, Tur86, WRRS88|. The drawbacks to most of these methods
is discussed in Section 1.3. Just as the UNI has an inter-network analog, the NNIL.

mentioned in Section 1.2.3, UPC also has an inter-network analog, namely Network

10Note that, at the network provider’s discretion, violating cells can be tagged and admitted to
the network. If a tagged cell is present at a network node where congestion exists, it is dropped
before any non-violating cells are dropped [Com94, Sai94].
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Parameter Control (NPC). NPC performs policing on the traffic streams of network

links. As with the NNI, NPC is not considered in this work.

1.2.3.3 Overview of Shaping

It is generally accepted that cell-space shaping, or simply shaping, is an integral
part of the UNI in ATM networks [Com94]. Shaping is the act of interfering with
individual cells of a traffic stream, such as delaying their transmission, to achieve
a certain result.'! Usually this is to reduce burstiness or Cell Delay Variation
(CDV) and jitter [Com94, RVF91a], or to help define the source characteristics
[Com94, MS95, Onv94, Par94, Sai94]. Shaping operates on a traffic stream with
poorly defined or unknown characteristics with the purpose of defining them better.
This has the triple effect of reducing the complexity of CAC and UPC schemes,
since traffic characteristics are more readily available, and increasing the network
efficiency at network multiplexing points, since cell-level congestion and contention
can be mitigated.

Additionally, there is a consensus that traffic shaping should be applicable to a
wide range of traffic types (ideally all traffic types), make traffic streams easier to
describe at the UNI, and should simplify policing of a shaped stream. A final advan-
tage of shaping is that given that a network user has knowledge of how the network
provider characterizes and polices traffic streams, this allows the “pre-shaping” of
streams so that Traffic Contracts are easier to negotiate and violations are min-

imized. There are two major drawbacks of shaping: first, buffering is required

Y110Of course, the cell order of a traffic stream must be preserved.



1.2. ASYNCHRONOUS TRANSFER MODE (ATM) 23

to perform shaping introduces delay into traffic streams; and second, additional
complexity (hardware) is required for each stream connected at the UNI. However,
these costs may seem small when compared to the reduction in complexity of CAC

and UPC, and the benefits of increased network efficiency.

There are many proposed methods in the literature to perform traffic shaping
[BGSC92, Bro92, BS91, Cha9l, Gol90, GRF89, Kua94, MOSMS89, Nie90, Nie93.
OLT92, Rat91, RF91, RVF91b, SLCG89, Tur86, WM93, WRR88|, which include:
leaky buckets; token buckets; buffering; (r,7T) smoothing; smoothing filters: cell-
spacing; virtual scheduling; peak rate, source rate and burst length limiting; priority
queueing; and framing. Perhaps unfortunately, much of the work on traffic shaping
has also associated it with policing. This is easy to understand, considering that
once an offending source is detected, something should be done to correct the
situation. Thus many of the methods cited to accomplish policing in Section 1.2.3.2

are easily turned into traffic shapers.

It is the contention here that the roles of traffic shaping and policing should be
separated. Therefore, a traffic shaper is a device which manipulates cell interarrival
times to some end, but does not drop or tag any cells, whereas a policer is a device
which monitors traffic streams, dropping or tagging cells as required, but which
does not affect the cell interarrival times. This allows the shaping of traffic streams
without the usual constraints associated with the cell loss rate. Further. if the
shaper is placed at the output ports of switches in the interior of an ATM network,
this could greatly simplify the scheduling function of downstream nodes. Mark

that this is now feasible if the smoothing and policing functions are separated.
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Current shaping devices, such as a leaky bucket, placed at the output of an ATM
switch would additionally perform some sort of rate regulation, which may not be

desirable.

There are a number of points along the route of a traffic stream through the
network where shaping can take place, as shown by S1-S4 in Figure 1.4. The
network provider may choose to perform shaping at any of these locations, perhaps
multiple locations, or none. As stated in [Com94, section 3.6.3.2.5], “Traffic shaping
is an optional function.” Thus, there is some question as to the best location of
the traffic shaper. While the position of the shaper is important, it is its operation
which is the concern of a large portion of this thesis. Nonetheless, some pros and

cons of locating the shaper at the four points specified are discussed next.

At position S1, the user’s premises, the shaper is incorporated into the user
equipment. It is unlikely that cells are dropped here, since the user most likely
will purchase buffers large enough for applications, or perhaps employ a send-and-
wait strategy. The network provider does not need to provide this buffering, and
thus costs to the provider are reduced at the expense of the user. However, less
buffering in the network has the effect of reducing network delays. In effect, the
network buffers are “distributed” to the users’ premises. If the user knows the exact
nature of the cell buffering in the shaper, it is more likely that applications take

this into account.

A very similar situation occurs at S2, which is at the UNI but before CAC. In this
case, however, the network provider must supply the buffering. The bandwidth-

delay aspect of high speed networks may be a problem if the distance from the
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user to the UNI is large, and, or the source to UNI link is fast. A send-and-
wait strategy cannot be used. More importantly, at both positions S1 and S2, the
shaping is performed before CAC, and so the characteristics of a traffic stream
will be translated into a possibly much different source traffic descriptor. This has
a great effect on the operation of both CAC and UPC, as the previous sections
implied. In effect, the shaper attempts to remove the fluctuations or burstiness
from the traffic stream, and thus the operation of the UNI is simplified. However.
the network is no longer transparent to the user, which is at odds with a basic

premise of ATM networks.

Position S3, after CAC is performed, may at first glance be thought to be the
same as 52, since after a source is connected to the network, CAC “disappears”
from subsequent activities. However, position S3 represents a subtle difference in
how traffic streams are perceived. In this case, traffic streams are observed during
CAC unshaped, and so the methods of Section 1.2.3.1 operate on sources which most
likely are difficult to characterize. Thus, if a source violates its Traffic Contract, the
shaper may affect the traffic stream such that it returns to a state of conformance.
In this case policing and thus UPC are very simple, and perhaps can be deleted.
On the other hand, one may question the wisdom of shaping violating cells, since

they should be dealt with by the policer.

Placing the shaper at position S4, after UPC (and CAC), appears to have limited
appeal. Here, a network connection is already established and any violating cells
have been dropped, and so the traffic stream is conforming to the traffic contract.

Hence, no reductions in the complexity of CAC or UPC can be obtained. However,
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since a shaper affects a stream at the cell level, it may be possible for the shaper
to act as a pre-multiplezer. Since the ATM switch has knowledge of its scheduling
scheme, contention problems that arise at the multiplexer of the switch can be
reduced or even eliminated if the switch guided the shaping. That is, cells on each
link to the switch can arrive in such a fashion as to alleviate contention and thus
simplify scheduling. Similarly, the network provider may wish to shape network
links in order to avoid congestion internal to the network. Thus an additional
location, S5, could be placed on each outgoing links of the ATM switch of Figure
1.4.

Considering the pros and cons of each position, and the scope of this work, it
is envisioned that shaping should take place at position S2. This allows reductions
in the complexity of both CAC and UPC. In addition, it allows shaping and thus
any improvements in shaping algorithms to be affected by the network provider. If
a user wishes to by-pass shaping, this can be negotiated in the Traffic Contract.
In any case, the effects of the shaper should be transparent to the user. That is,
any delays introduced into the traffic stream by shaping should be removed at the
destination UNIL. This is one of the basic features of the Burst-oriented shaper.
With the discussion of the major elements of the UNI complete, this brief overview
of ATM comes to a close. The next section discusses some of the problems that

occur at the UNI, which result due to the need for source characteristics.
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1.3 Problems in CAC and UPC

It should be clear to the reader from the discussion of the previous section that the
network provider requires information about the sources that wish to connect to
the network so that Call Admission Control and Usage Parameter Control can be
performed in order to guarantee a Quality of Service. The difference in ATM as
opposed to traditional data networks is the broad range of services offered. This
means that the User-Network Interface must be able to deal with a wide range of
sources. For example, a Variable Bit Rate (VBR)!? source may vary its transmission
rate from a few kilobits per second to tens of megabits per second, and still be true
to its source traffic descriptor. In contrast, another such as a Constant Bit Rate
(CBR) source does not vary its transmission rate at all. Yet other sources, such as
Available Bit Rate (ABR) and Unspecified Bit Rate (UBR) can vary their traffic
type. Thus at the UNI, CAC and UPC must be able to handle sources with varying
characteristics which are still in the same QoS class. It is these problems which
lead to the work of this thesis, traffic classification and traffic shaping, about which
more is presented in the following section and Section 1.3.2. Then, the goals of this

work are stated in Section 1.4.

1.3.1 The Case for Traffic Classification

In general, the specification of source characteristics is not an easy task. The
literature is replete with methods and models for characterizing sources and their

parameters, some of which can be found in [CLG95, CO0Q91, Des91, DM93, FMH93,

12Definitions of VBR, CBR, ABR and UBR. sources can be found in [Com95].
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FM94, Gus90, HL86, LTWW94, MAS+88, MH87, NFO89, Oht94, Onv94, RW90,
SAG94, Sai%4, Sch96, SMRA89, SW86, TGPM78, VP89, YS91], where much work
has been performed in the measurement and modeling of data, voice and video
sources. Unfortunately, it may not be possible to estimate source characteristics,
especially if the source type is unknown (to the user). In this case it is the net-
work provider’s responsibility to characterize a traffic stream since a source traffic
descriptor is required by CAC and UPC. In fact, since the network must perform
UPC, it may be advisable for the provider to “second guess” the source character-
istics, regardless of the source traffic descriptor given in the Traffic Contract. This

would be especially useful in the case of misbehaving sources.

Note that if some the methods cited above are performed off-line, then the source
information may not be accurate, and if performed on-line, then this information
may not be timely. Since ATM networks operate at such high rates, short term
source statistics may be important to these methods and thus congestion control.
In general, however, statistical methods observe “longer term” trends in sources,
thus potentially missing these “high frequency” source fluctuations. And of course,
parametric or model-based methods do not allow for the possibility of new traffic

types for applications or services not yet available.

Therefore there is a need for a method that can accurately and quickly determine
the traflic class of a given traffic stream, without information of its statistics; this is
a nonparametric approach. For the best range of application, it should be able to be

used off-line when traffic streams are available before hand, and on-line when traffic

streams are too non-stationary or unknown. In addition, for best performance of
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the CAC and UPC, it should be able to identify short term fluctuations without
losing sight of the longer term characteristics of the traffic stream. Herein lies the
basic idea of this thesis.

The traffic classification method proposed can be thought of as a transformation
operator, from the statistical domain to the traffic primitive!® domain. That is.
usually traffic streams are thought of in terms of their statistics, such as first and
second order moments. Using the statistical tools of the above citations, various
characteristics of sources can be observed, and thus the sources can be classified.
Some of these classifications lead to familiar sources, such as geometric, Interrupted
Bernoulli process (IBP) or Markov-modulated Bernoulli process (MMBP), to name
a few. However, these “statistically well known” sources are well known simply
because they provide tractability in analytical methods. Unfortunately, they do
not appear with any regularity in most of the “real” [LTWW94] and anticipated
ATM traffic streams.

The novel approach used in this work, however, does not rely on traditional
statistical measures. Instead, traffic streams are considered to comsist of a small
group of well known traffic objects, termed traffic primitives. It is conjectured
that these primitives contain information equivalent to the “traditional statistical
information” of the methods of the citations. However, the information that traffic
primitives provide is much easier to use, mainly because they can be observed on a
relatively small time scale, that is cell-level as opposed to burst-level or call-level.

Yet, by considering sequences of traffic primitives, longer term relationships can be

13Traffic primitives are the basic object of traffic classification, and will be described in detail
in Chapter 2.
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considered.

1.3.2 The Case for Traffic Shaping

Many of the reasons for performing traffic shaping at the UNI of ATM networks are
mentioned in Sections 1.2.3.3 and 1.3.1. To reiterate, shaping is required so that
unknown traffic streams can be characterized, and so that policing can be simplified.
This shaping could take place at the the UNI, say at position S2 of Figure 1.4. It is
interesting at this point to discuss the Ideal Shaper (IS) and Ideal Unshaper (IU)
of Figure 1.5. The IS, shown in Figure 1.5(a), is a device which acts upon any
traffic stream to produce a desired result, for example transforming a probabilistic
stream into a deterministic one, but which is also transparent to the source and
destination of the stream. Call the action that the IS performs on a traffic stream
the Ideal Shaper function, denoted I'. Now, if ¥ is the set of all traffic streams*
and ¥p the set of all deterministic traffic streams that result after ideal shaping,
and noting that ¥p C ¥, then the IS performs the mapping I' : ¥ — ¥p. This
leads to a test of ideal shaping: if ¥ € ¥, ¥’ € ¥p, and ' (¢) = ¢, then the action
of the shaper in question is ideal. As would be expected, the IU of Figure 1.5(b)
performs the opposite action of the IS, in effect attempting to “undo” the effects
of shaping the stream. If I'"! is the inverse of I, then it performs the mapping
[~!: ¥p — ¥. Hence, ideally, [~ (¢') = 9 is the action of the [U. Note that
unshaping is not attainable using the usual shaping methods in the literature due

to the fact that information such as intra-cell spacing is discarded.

For a more complete definition of traffic streams, refer to Sections 1.6.5 and 1.6.6 contained
in Section 1.6, Notation and Terminology.
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Figure 1.5: The Ideal Shaper and the Ideal Unshaper

Of course, designing the ideal shaper is not statistically possible, but a near ideal
shaper may be. If such a device is implemented at each user source to produce a
near deterministic traffic stream, then the job of the multiplexer at the ATM switch
would be trivial. It would perform near deterministic multiplezing. As discussed in
the preceding sections, this is also beneficial for CAC, UPC and further downstream
ATM switches. Similarly, designing the ideal unshaper is not possible either, since
statistical information is removed from the unshaped traffic stream 3 in order to
produce ¥p. However, if this information is somehow stored within the shaped
stream ¥p, then an ideal unshaper could be approximated. This functionality is
included in the proposed Burst-oriented shaper.

Some of the shaping algorithms mentioned in Section 1.2.3.2 have the problems
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of reaction time and range of application. The reaction time of the leaky bucket and
window algorithms is limited to the bucket size and window size, respectively. Other
methods require statistical measurements of the traffic stream. Since these methods
are usually designed to operate with any source type, they cannot benefit from
knowledge of given characteristics of a specific source connected to the network.
For example, if it is known that the leaky bucket is operating on a certain type of
voice source, then the optimum (in some sense) leaky bucket buffer size may be,
say, Bx. On the other hand, if the source is, say, a certain type of video stream,
then it may be better if the leaky bucket buffer size was set to By. The point is that
by attempting to be applicable to all traffic sources, current methods cannot use
specific knowledge of sources. However, if traffic streams could be identified, then
the shaper could take action tailored to that stream. This feature is implemented
in the proposed Variance Minimized shaper. Both of the shapers mentioned in this
section, as well as traffic classification result from the goals of this research, which

are stated in the following section.



1.4. RESEARCH GOALS 33

1.4 Research Goals

The requirement for traffic characteristics in ATM networks has been emphasized
in Section 1.3. It is the goal of this research to provide timely and accurate traffic
information to the elements of the UNI by performing traffic classification and
shaping. The following section discusses the motivation for using neural networks.
Section 1.4.2 presents the goal of traffic classification, and Sections 1.4.3 and 1.4.4
present the goals of their respective traffic shaper. As opposed to the great amount
of work in the literature that employs shapers to reduce CDV and jitter, the goal
of both shapers here is to produce as deterministic a traffic stream as possible, that
is to perform as close to the Ideal Shaper of Section 1.3.2 as possible. As a result,
the functions of the UNI should be simplified.

1.4.1 Motivation

This work was begun with the intention of training a neural network to perform
the actions of CAC, UPC, and shaping that take place at the UNI. Three neural
networks would be trained, as shown in Figure 1.6 and loosely based on [Hir90],
with the possibility of merging them into a single neural network, using established
neural network techniques. However, as the work evolved, it was discovered that if
attention was concentrated on shaping, then CAC and UPC would be simplified as
a result of these efforts. This is true due to the fact that if it is possible to perform
ideal shaping, policing would not be required since the source would always conform
to its Traffic Contract (negotiated with shaping in mind).

Nonetheless, it should be noted that there has been quite an amount of work
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Figure 1.6: A Neural Network UNI Control Scheme

performed, some of which includes [CL91, Hir90, Hir91, LD97, TGG92, THS94|,
that attempts to tackle each component of Figure 1.6. Combining some of the
functionality of these methods would not be a trivial task; but it would be possible.
While the idea of having only one control mechanism at the UNI is appealing,
drawbacks such as scalability and maintainability exist. The control scheme of
Figure 1.6 should be considered further, but it is not a topic of this thesis.
Additionally, as work on traffic shaping progressed, it became apparent that
it would be useful to be able to directly detect traffic types, instead of indirectly
through a shaper. This would allow the CAC and UPC to operate without any
dependence on traffic shaping. This is important since it is realized that ideal
traffic shaping is not realizable, and also many sources, such as broadcast quality

video, are intolerant to delays. Hence, the primitive classifier is developed, as well



1.4. RESEARCH GOALS 35

as the Minimized Variance and Burst-oriented shapers.

1.4.2 The Primitive Classifier

The key idea of the primitive classifier is to treat a traffic stream as an object, or
more precisely as a string of small, simple objects, instead of viewing it in terms of
its statistics. With this in mind, one can devise a method that attempts to recognize
these objects or patterns in the stream, which can then be used to classify and thus
identify the stream. This is the underlying principle of the primitive classifier and
thus the method of traffic classification proposed in this thesis. Aspects of work

were presented at [LM96].

An ideal way to recognize patterns is to use neural networks. Neural networks
have the ability to generalize, are noise tolerant, and are able to handle non-
stationary data [RHWS86, Hay94]. As well, once trained a neural network operates
very fast, since it is a massively parallel device, and so its classifications should
arrive in a timely manner even at ATM speeds. That is, compared to conventional
(statistical) control mechanisms, all of the computational time that is required in
estimating parameters is performed “up-front,” during the off-line training of the
neural network. In addition, if training is successful, these classifications are very
accurate. Note that the current work is concerned with using neural networks to

perform traffic classification, not with the theory of neural networks themselves.
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1.4.3 The Minimized Variance Shaper

Once a traffic stream has been classified into a given traffic type using the primitive
classifier, the Minimized Variance shaper (MVS) uses information specific to that
source to attempt to shape the traffic stream to as nearly deterministic as possible.
This is achieved by attempting to minimize the interdeparture time variance of the
cells of the traffic stream exiting the MVS. That is to say, the inter-cell variance of
a deterministic traffic stream is zero, and so this should be the goal of the shaper.

Aspects of this work appear in [LM94].

1.4.4 The Burst-oriented Shaper

The Burst-oriented shaper (BOS) is developed from insights gained in the work on
traffic classification. It attempts to isolate a traffic pattern that should be common
in ATM networks, namely a period of contiguous cells followed by an idle period.
It then simply attempts to spread the cells over the entire burst and idle period in
a uniform fashion, again to achieve a deterministic output from the shaper. Since
it contains some of the basic ingredients of traffic classification, it does not require
knowledge of the traffic type, and should be considered an alternative to performing
primitive classification.

An important feature of the BOS that sets it apart from existing shapers is that
since it acts on a burst and idle period, it has knowledge of their respective lengths.
By sending this information to the destination UNI which contains an unshaper,
it is possible for the traffic stream to be presented to the destination exactly as

it entered the network — barring any network problems. This has the desirable
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effect of using shaping to alleviate the problems at the UNI while presenting the
user with a network connection that is transparent. The next section gives a brief
overview of neural networks as they pertain to this work. It should be reiterated
that no contributions are made in the theory of neural networks; they are simply

applied as a useful tool in order to perform traffic classification.
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1.5 Overview of Neural Networks

Neural networks have been the topic of research for almost fifty years. They have
been applied to problems such as adaptive control, pattern recognition and system
identification, to name a few [Hay94, Lip87, MP88, Was89, WL90].!®* Enumerating
these applications, however, would fill many pages and is not constructive for this
work. Suffice it to say, neural networks have regained their initial popularity in the
past decade.

The main advantages of neural networks is their parallelism and ability to gener-
alize. Since they have many computational units which act in parallel, they operate
very fast. Their ability to generalize means that they behave well in the presence
of noisy inputs. If they are confronted with a situation that was not planned for in
training, they will attempt to take the action that results in a similar situation for

which they were trained. Thus, the idea that neural networks can learn.

Neural networks come in many flavors, such as competitive learning and self-
organization, Adaptive Resonance Theory (ART), feature maps, Hopfield models,
Bidirectional Associative Memory (BAM), and the Boltzmann Machine [Gro76a.
Gro76b, Hop82, HS86, Koh82, Kos87]. However, arguably the most popular neural
network paradigm is Backpropagation [RHWS86], and it is employed in this work.
Appendix A gives a full description of the operation and training of multilayered
neural networks, and the Backpropagation training algorithm. The reader unfamil-

iar with neural networks may wish to refer to this appendix now.

15These few citations contain many references, and the reader is encouraged to consult them
for more applications of neural networks.
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The Backpropagation training algorithm is easy to implement, and under most
circumstances convergence is probable. Unfortunately, as with most neural network
paradigms used, there is no mathematical guarantee that convergence will occur
in a finite amount of time. Another problem of the algorithm is the time required
to train the network. The Backpropagation training algorithm is a supervised
training method, which requires training vectors. A training vector is simply a way
of describing to the neural network the problem which it must learn. It consists
of an input to the neural network and its associated desired output. When an
input is presented, the neural network output is compared to the desired output,
the difference of which is used to update the weights of the neural network via the
Backpropagation algorithm.

Neural networks have a wide range of application in communications in general
[Hay94], as well as specifically in ATM networks , most notably in CAC, congestion
control, routing and network design and management [CL91, DTW94. FDD97.
Hir90, Hir91, KM91, LD97, Mor91, MTG93, OAT94, TGG92, THS94, YHS96].
These citations represent only a tiny sampling of the available publications. Thus
the idea of using neural networks o learn ATM related input-output relationships

is generally accepted in the literature.
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1.6 Notation and Terminology

Terminology and notation, especially the free use of acronyms, can cause serious
problems for the reader of technical subjects. This section attempts to prevent this
situation by discussing or defining important aspects of what has been presented in
previous sections, and also of what is to come. The reader may wish to examine the
following sections now, or refer back to them as the need arises. Highlights include
the definition of ATM cells and slots in Section 1.6.3, cellization in Section 1.6.4.
traffic streams and the definition of sources in Section 1.6.6. Some of the sections
are included for completeness, for example Section 1.6.5 on cell spacing. While
these concepts and notation are not used directly in the chapters which follow,

they were instrumental in developing the contributions of this thesis.

1.6.1 Notation
Z%: the positive integers; Z* = {0,1,2,...}.
R*: the positive reals; Rt = [0, 00).

x: an emboldened variable represents a column vector.

1.6.2 Link Rate and Effective Rate

The link rate, Cr, is the transmission speed of the ATM backbone link, in bits per
second (bps). It is the maximum speed at which data can be transmitted by the
network provider. The effective rate, C, is the maximum speed at which a user

may transmit data. Note that C < Cr due to protocol overhead. Unless stated to
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the contrary, the terms link capacity or simply capacity refer to the effective link

rate.

1.6.3 ATM Cells and Slots

The ATM cell format is specified in {Com94, Section 3]. Here, however, it is suf-
ficient to realize that an ATM cell, or simply cell, has a fized size of 53 bytes; 48
bytes of data, and 5 bytes of header. Figure 1.7(a) depicts an ATM cell, where

the header and data portion of the cell are drawn to scale. The exact structure of

ATM cell
data

ATM cell
header

(a) Overview of an ATM Cell

Cells

P B R

L{i———-—- Slots

(b) Cells and Slots

Figure 1.7: The ATM Cell Layout and ATM Slots

the cell is not important to this work, rather the fact that the cell has a fixed size.

The concept of a cell is so important to B-ISDN, and thus ATM, that it is defined
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in ITU-T Recommendation 1.113 [ITU91a] as “A cell is a block of fixed length.
It is identified by a label at the ATM layer of the B-ISDN PRM.”!® In addition,
ITU-T Recommendation 1.321 [ITU91b] goes on to define cell types. Of these, at
the ATM layer [Com94| are assigned and unassigned cells. However, delving into
the standards to this degree does not help to clarify that which will be discussed in
the chapters that follow. Thus, a generalized definition of a cell is given here that
incorporates several aspects of ATM cells as they are defined in the standards, with
the realization that this has a simplifying effect for the purposes of this thesis.
DEFINITION 1.6.1 (ATM CELL)

A cell is a unit consisting of 48 bytes of data. The time required to transmit a cell
is

_53x8
=G

T, seconds. (1.1)

This transmission time corresponds to a cell transmission rate of Ry = 7.1: cells per
second. Note that due to the five byte overhead in an ATM cell, the highest possible
throughput a user can achieve is C = 33 Ry cells per second. Since an ATM cell
has a fixed size, it is convenient to think of channel time in ATM links as slotted,
with slot time T seconds. A slot can be assigned, in which case it contains a cell,
or unassigned, in which case it is empty, as Figure 1.7(b) indicates. As mentioned,
since the exact structure of the ATM cell is unimportant in this work, the ATM
cells in Figure 1.7(b) no longer make the distinction between header and data; this

convention will be used from this point.

16protocol Reference Model.
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The cell stream shown in Figure 1.7(b) comsists of a cell followed by three
consecutive empty slots,'” two consecutive cells followed by a slot, a cell followed by
two consecutive slots, and finally four consecutive cells. As can be seen, specifying
streams of cells in this manner is very verbose, especially for long streams. Section
1.6.4 introduces a short form for specifying cell streams, and Section 1.6.6 gives a
formal definition of streams of cells.

1.6.4 Cellization

Due to the small size of an ATM cell, it is unlikely that any applications will produce
a traffic stream that is made up of cells. More likely, packets from applications or
LANs will make up traffic streams. And since ATM is a packet switching network.
a mechanism is required to break these larger data units into cells before they
enter the ATM network, and then reconstruct them again as they leave. This
functionality is performed by the ATM Adaptation Layer (AAL) [Com94], shown
in Figure 1.8. Its pupose, in the context of this work, is that the AAL performs the
function of cellization, coined here for ATM networks.

DEFINITION 1.6.2 (CELLIZATION)

Cellization is the process by which packets of data from users, applications and
other networks is encapsulated into ATM cells.

In general, the packets will consist of header and data information, of variable
length. These packets are expected to be much larger than an ATM cell. Cellization

is analogous to packetization in traditional networks [BG92, Tan88]. It is convenient

17For the remainder of this thesis, the term slot is used to signify an empty slot.
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Figure 1.8: Traffic Partitioning at the ATM Adaptation Layer

then, after cellization, to represent a traffic stream as a string of “1’s” or “0’s.”
where a “1” indicates a cell, and a “0” a slot. With this notation, the cellized data

of Figure 1.8 can be represented as “11111100011111111.”

The salient feature of cellization, as it pertains to traffic primitive classification
which is the subject of Section 2.1, is that a data packet is, most likely, transformed
into a number of contiguous cells. Thus, a stream of packets is transformed into
a group of cells followed a group of slots, and so on as the traffic stream passes
through the AAL. In other words, the traffic stream departing the AAL can be
described as a packet train [JR86]. This fact is paramount in the definition of the

traffic primitives.
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1.6.5 Cell Spacing and Cell Bursts

In order to aid in the development of traffic classification and shaping, it is necessary
to define cell spacing. This section and portions of the following are included for
completeness, so that the reader has some indication of the path followed in this
work.

DEFINITION 1.6.3 (CELL SPACING, T)

Cell spacing, or intra-cell spacing, 7, is the number of consecutive slots between

two cells.

Note that since there can be zero or more slots between two cells. 7 € Z*. Figure

1.9 gives two examples of cell spacing. Figure 1.9(a) shows a case where the intra-

n_u .
~ U

(a) r=3 by r=0
Figure 1.9: Two Examples of Cell Spacing

cell spacing is 7 = 3, whereas Figure 1.9(b) shows the case for a burst, that is 7 = 0.
This example leads naturally to the next definition.

DEFINITION 1.6.4 (BURST)

A burst is the situation that occurs when the cell spacing between two cells is zero.

that is 7 = 0.

A result of this definition is that it requires two or more consecutive cells to create

a burst; a single cell is not a burst.
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1.6.6 Traffic Streams

The definition of cell spacing of the previous section is used here to define a traffic
stream, and this definition can then be used to specify different types of traffic
streams, such as constant bit rate, packet train and on-off, as is done in Sections
1.6.6.1~1.6.6.3. Finally, a more general traffic stream definition is given in Sec-
tion 1.6.6.4, which forms the basis of the description of traffic sources used in the
following chapters.

As a traffic stream is passed to the AAL, it experiences cellization into ATM
cells, as discussed in Section 1.6.4. As such, it can be described as a finite sequence
of cells separated by a possibly time varying but undoubtably random cell spacing,
7i, as introduced in Section 1.6.5. Here, ¢ denotes the length of the ** intra-cell
time, in slots, between the i** and (i + 1)* cells in the stream. Therefore, it is
possible to describe this traffic stream not in terms of its cell arrival times, but
rather by a finite sequence of its intra-cell spacing.

For example, consider Figure 1.10, which is the same cell stream as in Figure

1.7(b). It depicts a traffic stream of eight cells and six slots. Using the above

Te
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Figure 1.10: Specifying a Traffic Stream

notation, this stream can be described by the cell spacing sequence 1, = 3, ™, =
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0,mm=171=2,715=0,17 =017 =0, or equivalently ¥ = (3, 0, 1, 2, 0, 0, 0),

where 9 is a cell spacing sequence variable. More generally, let

(Th T2, 73y - -+, TN) (1.2)

be a finite sequence of N elements, ; € Z*, N € Z*, and let ¥ denote the set of

all such finite sequences, that is

¥ = {all finite sequences whose elements 7; are drawn from Z*} .

(1.3)

This leads to the following definition.

DEFINITION 1.6.5 (TRAFFIC STREAM)
A traffic stream 1 is a particular realization of a finite cell spacing sequence drawn
from ¥, that is ¢ € .

With this definition, the notation ¥V denotes a traffic stream with N cell spacing
elements. Using this notation, it is possible to define some common traffic streams,

as follows.

1.6.6.1 Deterministic or CBR Streams, ¥p

A deterministic or Constant Bit Rate (CBR) stream is one which does not have
any variation in the intra-cell spacing; that is, it has no random component. Refer
to Figure 1.11, which gives an example of a CBR. stream utilizing 50% of the link

capacity, C. Since the term CBR . is used most commonly in the literature to denote
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Figure 1.11: An Example of a Constant Bit Rate (CBR) Traffic Stream

a deterministic source, the term deterministic stream will no longer be employed.

DEFINITION 1.6.6 (CBR STREAMS, ¥p)
CBR traffic streams, ¥p C ¥, is the set of all finite sequences such that each

element of the cell spacing sequence has the same value, that is
¥p = {all finite sequences with elements ;=K € Z*} . (1.4)

The particular realization of the CBR traffic stream of Figure 1.11 can be described
as 101010101010101, or (1,1,1,1,1,1,1), using the present notation. More gener-

ally, any sub-multiple of the link capacity can be given by
¢‘g(K)=(K,K,...,TN=K), (1.5)

which represents a CBR traffic stream, length N (K + 1) +1 cells, with a cell arrival

c

%7 cells per second.

rate

1.6.6.2 Packet Train (PT) Streams, ¥pr

A packet train (PT) stream, like the CBR stream, does not contain any random
component. Cells arrive in well defined groups, or packets, with equal spacing

within and between the groups. The number of cells in each group is the same, as
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is the number of slots between each group. The example depicted in Figure 1.12
shows a PT stream, where two cells arrive side by side, followed by two slots, and

can be written as (0,2,0,2,0,2,0) = 11001100110011. It also utilizes 50% of the

Il BN BN e

Figure 1.12: An Example of a Packet Train (PT) Traffic Stream

link capacity. This leads to the following definition.

DEFINITION 1.6.7 (PT STREAMS, ¥pr)
PT traffic streams, Ypr C ¥, is the set of all finite sequences such that at least

two contiguous cells are followed by at least one slot, repeating, that is

U pr ={all finite sequences with elements

Ty T20 - - - s Ty T55 Ti 10 Ti425 - o+ s Tidkjy T25: T25415 T25425 - - -+ Tig27y T35
T3541, 35425+ -+ s Tit35y -« -
such that
MI=T2= =T =T34 = Tipe = > = Tigj = Toj41 = Toj42 = 00 = Tig2j
=T34l = Taj42 = o0 = Tigaj = --- =0,
andi>1, j=i+1, 1=K >0, KeZ"}. (1.6)

Note that for a stream to be considered a PT stream, it must have at least two cells

side by side, followed by at least one slot, and that it ends with a burst of cells.
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From this definition, a general PT stream can be written as
¢gT(iaK)=(0101H-t1-i=01'ri+l=Kv'-° 1TN=0>1 (1“7)

which represents a PT traffic stream with burst size i 4+ 1 cells in length and idle
size K slots in length, for a total stream length of (%—?) (K+i+1)+i+1 cells,

and a cell arrival rate of > Jggfﬂ(fj_‘%{‘&_a cells per second.

1.6.6.3 On-Off Streams, ¥po

An on-off stream has the same overall structure as the packet train, in that groups
of cells arrive together, however the number of cells in a group, as well as the
intra-group and inter-group spacings are random. The randomness, of course, is
defined by some underlying probability distribution. Since it is difficult to show
a distribution with only a few cells, Figure 1.13 gives an example of an on-off

stream whose “on-period” is deterministic of size six cells, whose “off-period” is

EAEN @ _ENEE

Figure 1.13: An Example of an On-off Traffic Stream

deterministic of size four slots, and with the on-period distributed as the CBR
stream of Figure 1.11. This stream utilizes 40% of the link capacity.

DEFINITION 1.6.8 (ON-OFF STREAMS, ¥o0)

The set of On-off traflic streams, Yoo C ¥, is a set of all finite sequences such

that an on-period is followed by an off-period, repeating. Define 0 to be the
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set of all possible discrete probability distributions, including the deterministic
“distribution.” The length of the on-period is a random variable taken from some
distribution in §2, and the length of the off-period is a random variable taken from
a possibly different distribution in Q. Within the on-period, the inter-cell spacing
is a random variable taken from a possibly third distribution in Q. Once the three

distributions have been chosen, they are invariant.

As can be seen from the previous two sections, this cell-level notation is not
amenable for traffic streams with elements taken from probability distributions.
The stream notation is used for developing the primitive classifier and traffic shapers,
and is not intended for this level of complexity. Thus, as is introduced in the next
section, a more efficient notation can be used, based on this definition of an on-off

traffic stream.

1.6.6.4 General On-off Traffic Sources

Pursuant to the discussion of the previous section, the definition of a general on-
off traffic source follows. It can be used to characterize all of the sources of traffic

streams mentioned in the previous sections, namely CBR, PT and, of course, on-off.

DEFINITION 1.6.9 (ON-OFF TRAFFIC SOURCE, Yoo (w,5,¥))
An on-off traffic source, $oo (@, <, @), is a traffic source of alternating periods where
the source is either “on” or “off,” as shown in Figure 1.13. The distribution of the

length of the on-period is given by w and the distribution of the off-period by ¢;
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the inter-cell distribution within an on-period is given by ¢, where

w, <, ¢ € {all possible discrete distributions, including deterministic}

={D(I),B(p),g(p),u(z),ﬂ(x,p),...,0} (1.8)
=Q,

where

D(z): indicates a deterministic distribution, where the outcome is always z.

U(z): indicates a uniform distribution, where the outcome is uniformly dis-

tributed between 1 and z.
B (p): indicates a Bernoulli distribution, with parameter p,
G(p):  indicates a Geometric distribution, with parameter p,

H (x, p): indicates a general discrete distribution, where the probability of outcome

z; € X is given by the corresponding p; € p,
0: indicates the null distribution, which has no outcome.

Note that if a certain distribution is not required, for example a CBR source does
not have an off-period, then the convention is to use the null distribution, which
implies that ¢ is not required.

Using this new notation, the CBR source of section 1.6.6.1 can be represented
by CBR(z) = %00 (D(1), D (z),0), which utilizes 15 of the link rate. Thus. the

1010101 source is given by CBR.(1) and utilizes i of the link rate. Similarly, a

2
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1001001 source can be represented by CBR.(2). The packet train source of Sec-
tion 1.6.6.2 is, in general, given by PT (z,y) = %00 (D (z),0,D(y)). Thus, the
PT source of Figure 1.12 can be expressed as PT (2,2). Since on-off sources are
considerably more complicated, they will be defined as required.

With a generalized on-off source defined, this section on notation draws to a
close, as does the Introduction. The following chapter describes a major contribu-

tion of this thesis, the primitive classifier.






Chapter 2

Traffic Classification

The novel idea of the traffic classification method proposed is to view traffic streams
as collections of objects, which represents the core of this research. As introduced
extensively in Chapter 1, traffic classification is required in order to determine
source characteristics.

In this chapter, Section 2.1 introduces the concept of the traffic primitives, and
discusses both the characterization of general traffic streams and their partitioning
into broad groups. Doing so allows the specification of traffic primitives and finally
the traffic primitive classifier. This section closes with a brief word on the scalability
of this neural network based traffic classification method by briefly mentioning the
compound classifier. In Section 2.2, the training methods employed are discussed,
and as well the validity of the training. Section 2.3 shows the results of training
three different primitive classifiers using 10-35-35-9, 15-80-80-10 and 20-200-200-
11 neural networks. The remainder of this chapter, Section 2.4, discusses the results

of operating the primitive classifier with traffic streams not presented to the neural

85
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networks during training. This shows a neural network’s ability to generalize, and
thus the wide range of applicability of this method.
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2.1 Classification of Traffic Primitives

Traffic classification is based on the premise that a traffic stream can be broken down
into a few basic traffic objects, called traffic primitives. When these primitives are
arranged in certain patterns, they can describe more complicated sources. Thus,
with the correct choice of the ordering of strings of traffic primitives, it should be
possible to create a “recipe” which describes how to reproduce a given stream. If
one considers a wide range of traffic streams, they invariably consist of groups of
data and idle periods interspersed in some manner. Thus, the traffic primitives
should be chosen to simply mimic this observation. In an ATM setting, groups of
data are represented by cells, and idle periods by slots, as defined in Section 1.6.3.

The following Section 2.1.1 discusses how streams of data, or traffic streams, can
be observed and characterized so that features of the stream can be detected. Once
certain features of an unknown traffic stream are observed, they can be compared
to those of known traffic streams. In this way, unknown sources can be classified.
While this technique is not new, the novel approach of this work employs neural
networks to perform the feature comparison and thus classification. Section 2.1.2
takes the insights gained by considering the characteristics of traffic streams and
applies them specifically to the cell streams which exit the ATM Adaptation Layer.
Due to the defined behavior of cells and slots after cellization,’ this knowledge can
be used to partition traffic streams into basic groups, or traffic types. From these,
as mentioned above, it is envisioned that more complicated traffic streams can be

classified. The characterizing and partitioning of traffic streams will form the basis

1Cellization is defined in Section 1.6.4.
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for the definition of traffic primitives in Section 2.1.3. Section 2.1.4 then introduces
the neural network based classifier which will detect features of an unknown traffic
stream by comparing them to features of streams it has been trained to recognize.
The classifier then outputs which traffic primitives it recognizes in the stream.
Section 2.1.5 makes an analogy between traffic primitives and Optical Character
Recognition, and finally Section 2.1.6 discusses the scalability of the classifier by

introducing the Compound Primitive Classifier.

2.1.1 Characterizing Traffic Streams

In this section, an atypical traffic stream will be examined in order to discuss various
characteristics of ATM traffic. This somewhat contrived stream, which could be

a video source, for example, is shown in Figure 2.1. It is simply devised to help

Ao s c

Figure 2.1: Identifying Primitives in a Traffic Stream

explain the concept of traffic primitives, since it is rich in the types of features
upon which the primitive classification is based. The stream of Figure 2.1 can be
subdivided into three sections, labeled A, B and C, where in each section the stream
takes on a certain “character.” One could say that in section A the stream more or
less is “all on,” that is, it utilizes the entire transmission link capacity. In section

B, its character is that of a constant bit rate source that utilizes half of the link
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capacity. Lastly, in section C the stream resembles a packet train source. utilizing
about 40% of the link. Depending on the amount of the stream an observer wishes
to consider, the boundaries of these three sections — and thus the character of
the traffic stream — may change. For example, by shifting the boundary between
sections A and B to the right, the character of the stream in section A changes
from “all on” to “half on,” or perhaps even to resemble a packet train. Hence, the
specification of traffic primitives is contingent on the frame of reference, or the size

of the “window” the observer looks through to see a portion of the traffic stream.

The smallest objects of a traffic stream, in the context of traffic primitives,
are the cell and the slot. If the window through which an observer examines a
traffic stream was only one slot large, then the observer could only say that a cell
or slot is present; no other information about the stream could be inferred. As
the window through which the observer sees the traffic stream is enlarged. more
stream characteristics become apparent. In fact, the number of distinctions in
traffic character that can be made when utilizing a window of size W is 2%. To
justify this, consider a window of size W = 1. The observer will see either a cell
or a slot, and nothing else. If the window is of size W = 2, the observer will
see either two cells, two slots, a cell and a slot, or a slot and a cell, as show in

Figure 2.2. Representing a slot with a 0 and a cell with a 1, as in Section 1.6.4,

. ... R, _ B

Figure 2.2: Possible Observations from a Window of Size W = 2
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these distinctions can be expressed as the set {11, 00, 10, 01}. For a window sized
W =3, the set of distinct traffic patterns that can be observed through the window
becomes {000, 001, 010, 011, 100, 101, 110, 111}. Accordingly, one can clearly
see the reasoning for 2% through elementary set theory: the number of distinctions
that can be observed through a window of size W is equivalent to the number of
elements in the power set? of a set of W elements. In this case, each element is a
traffic stream position which can be observed through the window, and in which
either a cell or a slot can be placed. This property of increasing distinctiveness as
the observation window size increases is analogous to statistical methods, in that
the more observations of a traffic stream are made, the more accurate become the
statistical measures of the stream. At the extreme, the window could encompass
the entire stream, at which point the observer would have complete knowledge
of the source. However, performing this is as impractical when employing traffic
primitives as it is when employing statistical measures.

In order to show more clearly the effect of different window sizes and their rel-
ative positions on the traffic characteristics observed in the given traffic stream,
sections A, B and C of Figure 2.1 are reproduced in Figures 2.3(a)-2.3(c), respec-
tively. Consider section A of Figure 2.1, which is reproduced three times in Figure
2.3(a). The dashed boxes represent four possible sizes and positions of the window
through which the observer views the traffic stream. As discussed above, a window
of size one slot does not produce very interesting information, so the first window

of Figure 2.3(a), W1, is two slots wide. With the amount of traffic stream observed

*For the definition of the power set, see [Gil76, 2.01 Definition}, and for the number of elements
in a power set, see [Gil76, 2.06 Theorem].
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(a) Reproductions of section A

{b) Reproductions of section B
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{c) Reproductions of section C

Figure 2.3: Effect of Window Size and Position on Stream Identification

through window W1, the observer may conclude that the transmission link is fully
utilized, since the portion of the stream seen through this window contains only
cells. For two cell arrivals, or as the window W1 is slid cell by cell towards window

position W2, the observer could conclude the same. As the window is slid once more
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to the right to include the first slot, the observer may wish to change this observa-
tion to report that only half of the link is being utilized. At W2, the observation
could now be that the link is idle. These quickly changing observations are due to
the fact that the observation window is quite small. In order to make fewer, more
stable observations, and to increase the number of traffic characteristics which can
be observed, window W3 is twice the size of W1. As can be seen, it encompasses
the entire “on” period of this section of the traffic stream. The observer could now
state with more confidence that the stream utilizes the full link rate, since more of
the stream is being observed. However, as window W3 is slid to the right towards
the position of window W4, the observer may wish to change this statement. At
position W4, it now appears that the link capacity is only 50% utilized. Even with
only one shift to the right, that is after only one additional observation, the observer

may start to doubt the initial characterization of the stream.

Figure 2.3(b) reproduces, once again three times, section B of Figure 2.1, the
section of the traffic stream which has the characteristics of a constant bit rate
source utilizing 50% of the link capacity. As in Figure 2.3(a), using a window size
of W = 2 and observing the traffic stream through window positions starting at
W5 and sliding towards W6 on a cell by cell or slot by slot basis, it can be seen that
the observer could make the characterization that the traffic stiream is made up of a
cell and a slot, in an alternating fashion. Using the notation introduced in Section
1.6.6.4, call this traffic stream type CBR (1). It would appear that for this type of
traffic stream, a window size of W = 2 is sufficient to capture its characteristics.

However, this window size does not fare as well when used to characterize the
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stream shown in Figure 2.4, which differs from that of Figure 2.3(b) by only one
slot between each cell pair; call this traffic type CBR (2). With this stream, window
positions X1 and X3 characterize the stream as type CBR.(1), which it is not, and
position X2 indicates that the stream does not utilize any of the link capacity, which
it clearly does. Therefore, while a window size W = 2 can be used to capture the
features of the constant bit rate stream of Figure 2.3(b) that utilizes half of the link
capacity, it cannot be used to characterize the constant bit rate stream of Figure
2.4 which utilizes one third of the link capacity. As was suggested above when
discussing Figure 2.3(a), larger window sizes are required. Referring back to Figure

2.3(b), window W7 is now six slots long. In addition to being able to characterize

- - -— - - - - e e o e -
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Figure 2.4: The Requirement for larger Window Sizes

the CBR (1) stream, this window can also be used to characterize the traffic stream
of Figure 2.4 (window X4) as CBR (2), not CBR (1). This is another example of
how increasing window size can be used to increase the distinctions that can be
observed, and thus the number of traffic stream types. Unfortunately, as can be
seen from window position W8 of Figure 2.3(b), it is still possible for the observer
to question the characterization. In this case, the observer may wish to say that
the stream is “close” to that of stream type CBR (1), since it differs by only one

slot. This idea will be revisited in later sections.
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As the final example of the effect of window size and position in observing
characteristics or features in a traffic stream, Figure 2.3(c) reproduces, four times,
section C of Figure 2.1. As can be seen, section C resembles a packet train, with
two contiguous cells followed by three contiguous slots. To help this discussion, call
this traffic type PT (2, 3), again using the notation of Section 1.6.6.4. As can be
seen from windows W9 and W10 of Figure 2.3(c), a window size of W = 2 does
not correctly capture the features of this stream. The observer may report that
the traffic stream utilizes all of the link capacity, or none, or that the stream is
type CBR(1). In order to capture the characteristics of this traffic stream, the
window size must be increased. Accordingly, windows W11, W12 and W13 are five
slots long. Window W11 obviously allows the observation of the features of the
PT (2,3) stream: two cells followed by three slots, the “definition” of this traffic
type. However, it should be noted that the cell and slot patterns observed through
windows W12 and W13 also show the features of this traffic type; the window W11
has simply been shifted along the traffic stream. This is an extremely important
point to consider when deciding which traffic types are being observed: not only the
cell and slot pattern of the definition of a traffic stream type must be considered, but
also any other patterns that are produced when shifting the window along the defining
traffic stream. The reason for this “rule” is for stability in making observations;
that is, if the traffic stream observed does not change in character, then neither
should the traffic stream type. If the observer is presented a traffic stream which
is a true PT (2,3) stream, then for all window positions and thus all observations

of this stream, the observer should report that the stream is type PT (2,3). If, on
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the other hand, the observer sees the cell and slot pattern of, say, window W13
of Figure 2.3(c), and reports that this is traffic type, say, “XJS—12,” then the
definition of a pure PT (2, 3) stream, based on its traffic patterns, becomes unduly
complicated. In other words, it would be possible not to follow the above rule,
but it would only obfuscate the determination of the traffic stream type. Summing
up, some features of certain traffic streams may have more than one cell and slot

pattern, or morphism, as will be discussed in Section 2.2.1.

Bringing the ideas of this section together, it can be seen that as the window
size W used to observe a traffic stream increases, so does the number of features or
characteristics that can be picked out of the stream. The window can be thought of
as a low pass filter, where the larger the window is, the more high frequency features
are “filtered out.” Since more of the stream is observed through a larger window,
a single statement pertaining to the traffic stream’s long-term characteristics can
replace more frequent statements regarding the stream’s short-term features. That
is, a larger W decreases the chances of observing a stream with characteristics, say,
that it utilizes the full link capacity, then half, then none, then back to half, then
back to full, and so on, with the single observation that the stream is of traffic
type, say, CBR(2). The choice of window size also impacts on the definition of
the traffic stream types that can be used to specify the observations. A small
window size limits the number of stream types which can be defined to 2¥. For
example, with a window size W = 5, only 2° = 32 different traffic characteristics
can be differentiated. While this may be sufficient for determining whether a traffic

stream is, say, CBR (2), it is not possible to define a sufficient number of features for
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making more complicated classifications, such as the CBR.(2) stream has become a
PT (2, 3) stream. Making observations such as this, of course, is a useful application
of traffic classification.

Also, many of the cell and slot patterns, or traffic patterns, observed through the
window must be associated with the same traffic type in order to ensure stability
in the observations made. These points tend to recommend that the window be
made as large as possible, and theoretically, this would be ideal. On the other hand,
too large a window can allow too much information about the traffic stream to be
observed, thus making stream characterization difficult. In addition, the larger the
window is, the more time will be required in making an informed decision about
traffic type, since more data must be collected. The size of window chosen, then,
represents a tradeoff between accuracy of observation and delay in making that
observation. As will be seen in Section 2.1.4, practical problems that arise when

training neural networks also have a limiting effect on the window size.

2.1.2 Partitioning of Traffic Streams

The discussion of Section 2.1.1 introduced the concept of the traffic primitive. Traf-
fic primitives are based on features or characteristics observed in a given traffic
stream. In addition, their specification depends on the size of the window through
which the stream is observed. This section will serve as a link between the charac-
terization of traffic streams and the formal specification of traffic primitives which
will appear in Section 2.1.3. The determination of the window size W will be

postponed until Section 2.1.4.
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It is beneficial for the specification of the traffic primitives in an ATM setting
to attempt to partition, or broadly pre-classify from the set of all possible cell and
slot patterns ¥, the traffic streams anticipated in the network into classes of traffic
types. The partitions defined should have general properties of the streams con-
tained therein. This partitioning, however, should not be so specific as to preclude
the classification of new traffic types as they should arise — most likely from com-
pletely new applications.?> For more specific properties of the streams in a given
partition, traffic primitives must be defined. Nonetheless, as much as possible a
priori knowledge of the system at hand should be employed in order to make the
best partitioning decisions. In a general high speed network setting, an obvious
choice for partitioning traffic streams is by the traffic types forseen to be prevalent.
The drawback of this, of course, is the problem of new traffic types, as alluded
to above. This problem may be avoided in an ATM network, however, due to its
slotted nature, which tends to “normalize” the features of traffic streams. In an
ATM network, before a data stream enters the backbone network, it passes through
the ATM Adaptation Layer, introduced in Section 1.6.4. As discussed, regardless
of the nature of the traffic stream entering the AAL, it will exit as groups of cells
(bursts) and groups of slots (idle periods) [LTWW94]. Only rarely will a single cell
or slot appear, except of course as an integral part of a given traffic type, such as
a constant bit rate stream. Considering this, the contrived source shown in Figure
2.1 of the previous section foreshadows the traffic classes which will result after

partitioning.

3For example, the use of the Internet (a data network) for voice applications was most likely
completely unanticipated by the Internet’s designers.
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To specify a partition, it is easiest to consider the cell patterns that can be
present after the AAL. Starting with simple patterns and increasing their complex-
ity, there could be: all cells; all slots; a cell followed by a slot, repeating; a cell
followed by two slots, repeating; a cell followed by N slots, repeating; two cells
followed by a slot, repeating; two cells followed by two slots, repeating; two cells
followed by N slots, repeating; and in general, M cells followed by N slots, re-
peating. Thus, by simply fixing the number of cells and slots a broad partition
can be made of the features of traffic streams emitted by the AAL. Call this the
determanistic partition. Another partition can be made along similar lines, where
instead of a constant number of M cells are followed by N slots, repeating, the
number of cells and slots are given by probability distributions. Since an ATM
network is slotted and thus cell arrivals occur only at discrete times, this partition
would contain traffic streams specified by discrete distributions. This may include,
but is not limited to, Interrupted Bernoulli Processes (IBP), packet trains with on
and off periods specified by, say, uniform or geometric distributions, and Markov-
modulated Bernoulli processes (MMBP), as cited in Section 1.3.1. Call this the
distribution paertition. Specifying these two partitions encompasses many common
traffic streams. A final partition should be specified which contains extremely rare
sources, or more precisely cell and slot patterns which are sporadic or occur as
a result of other (unanticipated) events. For example, a stream which contains
only slots except for a single cell, or two cells followed by three slots followed by
three cells, not repeating. Another group of streams would be those memoryless

streams which can be represented by a geometric distribution; fortuitously, due to
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the action of the AAL, streams with this characteristic should be extremely rare.
Call this the degenerate partition. It could be argued that a fourth partition should
be defined which contains all traffic streams not yet defined. However, it is hoped
that by judiciously partioning known traffic streams and thus by specifying the
traffic primitives properly, new traffic streams will consist only of traffic primitives
already specified. In this way, the problems associated with previously anknown

traffic streams will be circumvented.

It must be understood that these broad partitions are made as a consequence
of the foreknowledge that all streams must pass through the AAL before being
admitted to the backbone of an ATM network. In high speed networks other
than ATM, the partitioning may be completely different, and hence the resulting
specification of the traffic primitives. In these cases the traffic classification may

yield different results, yet the method employed here can remain the same.

The number of traffic streams encompassed by each partition may be very large,
and most likely countably infinite. It is impossible to train a neural network to learn
an infinite number of training patterns, however, since this will take an infinite
amount of training time. In addition, attempting to train a neural network with
“random” inputs will also be difficult, since neural networks learn input-output re-
lationships. If the input-output relationships are not static, then on each training
pass the neural network will attempt to remember the new relationship. Thus,
the neural network training patterns are chosen only from the deterministic and
degenerate partitions. The guiding idea here is that the neural network will gener-

alize from the deterministic patterns and be able to classify traffic streams from the
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distribution partition. In fact, it is planned that variations from the deterministic
partition traffic streams will be interpreted as “noise,” and thus generalization will
take place, as discussed in Section 1.5. For example, a packet train source with uni-
formly distributed “on” period of mean two cells and uniformly distributed “off”
period of mean three slots should be classified, with a high degree of probability, as
a PT (2,3) (deterministic) traffic stream. However, it is anticipated that some of
the classifications of this “noisy” PT (2, 3) source will also result in the observation
of traffic types such as PT (3,3), PT (4,2), PT (5,1), for example. These traffic
types are very similar to PT (2,3), and so the randomness in cell arrivals of this
uniformly distributed source may lead to observations of a variety of traffic types.
From this one may conclude that this stream will be classified poorly. This would
be the case if only these initial classifications were used. For distribution parti-
tion traffic streams, however, further classification is required, where patterns in
the traffic primitives must be observed. As mentioned previously, the classification
of traffic streams is highly dependent on the classifications required. That is, if
a network provider knows that only deterministic partition traffic streams will be
present in a certain situation, then only an initial classification would be required.

This will be discussed further in Section 2.1.6 and Chapter 3.

As a final note, the degenerate partition is included for those few sources that
may require a special traffic class, for example all slots (an idle link). With the par-
titioning of traffic streams completed, it is now possible to characterize individual

traffic classes within the partitions, and thus specify the traffic primitives.
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2.1.3 Specification of the Traffic Primitives

The specification of the traffic primitives is dependent not only on the traffic stream
partitions, but also the size of the training window. As a backdrop to this, and
perhaps more importantly, the traffic primitive specification is intimately tied to
the desires of the network service provider. As mentioned earlier, the network
provider most likely wishes to maximize revenue, which corresponds to utilizing
the network bandwidth in the most efficient manner. Thus the traffic primitives
should be chosen to achieve this goal. Then, by way of some control mechanism.
one method to maximize efficiency could be to simply detect what traffic primitive
is present. Another method could be to assume that a given traffic stream is
present, and watch for deviations from this type. These applications of primitive
classification will be discussed further in Chapter 3. In any case, it is important
to realize that the desired outcome of primitive classification has a great impact in

the specification of these same traffic primitives.

Working with this in mind, the traffic primitives specified here are chosen with
some trepidation. Instead of tying the specification to the desires of some imaginary
network service provider where assumptions must be made about the provider’s
goals, the traffic primitives were chosen to showcase their usefulness, applicability
to an ATM setting, and scalability. As a result, if one questions the validity of a
certain traffic class, it should be understood that the class can easily be changed to
suit other traffic streams or situations, or at least other traffic classes can be defined.
Also note that the size of the traffic window W is kept variable in this section, and

will be determined in Section 2.1.4. While the traffic primitives specified depend
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on W, this dependency is in a relative sense, not absolute.

The traffic primitives chosen are Constant Bit Rate (CBR), CBR. with Rate
Changes (CBR-RC) and Deterministic Packet Train (PT) from the deterministic
partition, and Degenerate (DG) from the degenerate partition. The following sec-
tions specify the base primitives for these four primitive classes.* As the rule in
Section 2.1.1 alluded to, most traffic primitives have more than one morphism,
based upon the length of the primitive itself and the window size W. Since the
morphisms are not important to the specification of the (base) traffic primitives,
and since the question of window size is answered in the next section, only the
base traffic primitives are discussed here. In fact, the traffic primitive morphisms
require consideration only during neural network training, and so their specification

is delayed until Section 2.2.

2.1.3.1 CBR (Constant Bit Rate)

CBR traffic primitives are those which result from the cell and slot pattern of a
traffic stream that has a rate which is a constant integer fraction of the link rate
C, and are still unique. That is £, where 1 <i < W —1 (for i > W, see Section
2.1.3.4). This definition allows base primitives corresponding to a traffic stream
rate of C, %, %, Wc_‘f This primitive class is chosen so that CBR traffic
streams can be recognized directly, as discussed in Section 2.1.1, Figure 2.3(b). It
should capture most traffic streams with the characteristic of a single cell followed

by N slots, repeating. In addition, as an example of how different traffic streams

*The reader may wish to refer to Figures 2.9-2.12 of Section 2.2.1, which depicts these base
primitives as well as their morphisms for a window size of W = 10.
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can be detected as a single class, these traffic primitives do not specify the rate of
the traffic stream. That is, all CBR traffic streams of rate £, 1 <i < W -1, or
CBR (0) through CBR (W — 2} (using the notation of Section 1.6.6) are classified
simply as a CBR stream. As mentioned above, however, a network provider would
most likely wish to have rate information. To reiterate, the traffic primitives here
are chosen not for a specific ATM network situation, rather to show the utility of

neural network based traffic classification.

2.1.3.2 CBR-RC (CBR with Rate Changes)

These traffic primitives are specified from the characteristics which result when a
traffic stream changes rate from one constant integer fraction of the link rate C to
another; that is —? — —f.-, i1 # 7, where 1 <i,57 < W — 1. This definition corresponds
to a source CBR (0) through CBR (W — 2) changing to a source CBR (0) through
CBR (W — 2), and of course realizing that a change from CBR (i) to CBR (z) is no
change at all. This traffic primitive class is chosen with a specific application of
traffic classification in mind, namely the detection of a CBR. traffic stream which
has broken its traffic contract. Again, as previously stated, while this class may
not be useful to a specific network provider, it does show how traffic primitives can

be employed.

2.1.3.3 PT (Deterministic Packet Train)

The PT traffic primitives make up the majority of the neural network training
vectors that are a consequence of traffic primitive specification. They characterize

the packet train streams of the deterministic partition, and should also be useful
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for generalizing to many of the traffic streams in the distribution partition. The
base traffic primitives result when two or more cells are followed by one or more
slots. This corresponds to the sources PT (2,1) through PT (2. W — 2) through
PT (W — 1, W — 2) through PT (W —1,1). Since the AAL is expected to produce
streams that fall into this primitive class, this class is integral to good traffic classi-
fication. Again, as in the CBR case, all of the different packet train base primitives,
and their morphisms, will result in the same traffic classification. Hence, a traf-
fic stream which is of type PT (2,3) and one which is PT (3,5) will result in the
same traffic primitive, namely PT. If an application of traffic classification requires

greater resolution, then more specific packet train classes can be defined.

2.1.3.4 DG (Degenerate)

These traffic primitives could belong to either of the CBR, CBR-RC or PT primi-
tive classes, and are placed in this class to keep the other primitives unique.® For
example, traffic streams with rates % or less, that is %, k > W, are indistinguish-
able when viewed from a window of size W; when observed, these streams appear
as either all slots, or a single cell and all slots. In general, this primitive class rep-
resents sources CBR (W — 1) through CBR (o0). This class also contains unique
occurrences, such as the primitive which represents an idle link. Note however, that
a window completely filled with cells is equivalent to a transmission rate of %, a

CBR (0) source, which is defined to be a CBR primitive. Again, this is somewhat

$Neural network training vectors must be unique in the following sense: a neural network can
learn a many to one input-output mapping, but not a one to many. Thus, for any given input to
the neural network, only one output is possible.
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arbitrary, and could be changed to be a PT primitive, for example.

2.1.4 The Primitive Classifier

With the traffic primitives defined, the primitive classifier is introduced in this
section. In addition, the size of the “traffic window,” W, that is the size of the
window through which the traffic stream is observed by the neural network. is also

determined. Figure 2.5 depicts a cellized traffic stream as it is presented to the

o m S e
[~ Network _P—-t—’
— -] rimitive
Traffic Stream N Classification

“Traffic Window,"” size W

Figure 2.5: The Traffic Primitive Classifier

primitive classifier, which then outputs the traffic primitive recognized. As shown,
the engine of the classifier is a neural network. As a traffic stream is presented to
the network access point, it undergoes cellization at the AAL. This is represented
by the traflic stream in Figure 2.5. Each traffic window of cellized traffic stream
presented to the neural network causes a classification to be made which results in
a traffic primitive at the neural network’s output. As a new cell or slot exits the
AAL, the traffic window is updated by dropping the oldest cell or slot observation
and adding the newest, in a shift-register fashion. If the cellized traffic stream

is represented by a string of 1’s and 0’s, as discussed in Section 1.6.4, then the
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input to the neural network is a window consisting of 1's and 0’s. The fact that
the inputs are discrete reduces the neural network training time. As can be seen,
the neural network based primitive classifier is very simple. Contrast this to a
conventional (statistical) control scheme, which would require the calculation of
statistical measures taken on the traffic stream, and then a complicated control
algorithm, as mentioned in Section 1.3. Of course, it must be noted that much of

the complexity is now within the neural network.

The determination of the size of the traffic window, W . is not as simple. Much
has already been said about the the effect of the window size on classification in
Sections 2.1.1 and 2.1.3. To recap, the salient point is that the traffic window
size represents a tradeoff between accuracy of classification and reaction time of
the primitive classifier based control mechanism. On the one hand, the smaller
the window size the faster the reaction to changes in the traffic stream, as well
as the smaller the initial delay in filling the traffic window. On the other hand,
the smaller the window size, the fewer the number of traffic primitives that can be

defined, which is limited to 2%.

If these are the only considerations, then the ultimate choice of W is determined
by the traffic streams a network provider plans to classify and thus allow into the
network. For streams which change character more frequently, larger window sizes
are warranted. This results in greater observation stability at the cost of more com-
plicated traffic primitives and classes. For streams which do not change character
often, then smaller windows can be employed, since fewer traffic distinctions are

present. A window sized W = 100 represents about 0.24 ms of a source transmit-
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ting at C, = 155 Mbps. For an MPEG?® traffic stream with mean rate 1.5 Mbps
[LeGY1], the same window size represents about 0.02 ms. Thus, for “lower” rate
traffic streams, or additionally for delay insensitive traffic streams, large window

sizes are required.

However, while the tradeoff between the two factors above is important, it is
moot in light of the greater consideration when dealing with neural networks: train-
ing time. A larger window size implies that a greater number of more complicated
traffic primitives need to be learned by the neural network. This necessitates larger,
more complicated neural networks, which in turn means more presentations of the
training vectors will most likely be required before training is successful. Thus,
while a traffic window sized W = 100 may be usable when considering the time
scale of traffic streams to be classified, it may be prohibitive when considering the
training time required. This is the case here. Due to the limits imposed by the
computing power available, the largest window size that was trainable in this work
is W = 20. This window size represents about 47 us of a source using the entire
link rate, and about 4.9 ms or % of a frame of the MPEG source mentioned above.
The details of the neural network training, including training times are discussed
in Section 2.2. Before this, though, the following section describes traffic primitives

with an analogy to optical character recognition.

SMotion Pictures Expert Group.
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2.1.5 Traffic Primitives as “Traffic Characters”

It may be interesting for the reader familiar with Optical Character Recognition
(OCR) {Guy91, LBD*89, Pao89], one of the most well known uses for neural net-
works in general and Backpropagation in particular, to consider the following anal-
ogy. Traffic primitives can be thought of as “traffic characters” to be recognized by
an OCR system. In such, the neural network is presented with the character to be
recogunized, as well as any allowable “morphisms” of that character, such as shifts
and rotations. Once the neural network learns all the characters to be recognized.
as well as their morphisms, it can then be expected to correctly recognize and then
classify characters which it learned — even in the presence of noise. The left hand
side of Figure 2.6 shows an example of this for the character “T.” The top box
depicts the base character, superimposed on a grid of 100 pixels which are either
“on” (grey) or “off” (white). The middle grid shows the “T” character shifted one
pixel to the right; this is but one of many possible morphisms of the base character.
The bottom grid gives an example of some noise on the pixel grid. After successful
training, all three of the pixel grids on the left side of Figure 2.6 produce the same

”

output, namely a “T” is present at the input of the neural network.

Similarly, the right hand side of Figure 2.6 shows an example of a possible traffic
primitive. For illustrative purposes only, a packet train traffic stream consisting of
two cells followed by three slots, repeating, is depicted; that is PT (2, 3) as discussed
in Section 2.1.1. While in the OCR case the underlying grid is made up of pixels, for
the traffic primitive case the grid is made up of (ATM) cells and slots. If there is a

cell present, then the grid square is grey, whereas if a slot is present, the grid square
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OCR Characters Traffic “Characters”

Figure 2.6: Traffic Primitives as OCR Objects

is white. Also note that the slots are placed on the grid from left to right and from

top to bottom, as the arrows on the figure indicate. Hence, the top grid on the right
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hand side of Figure 2.6 defines the 100 cell and slot? version “base character” of this
PT (2, 3) base traffic primitive. One possible morphism of this primitive is given in
the middle right hand grid of the figure, which is the base primitive “shifted” to the
right by one cell. After some inspection the reader should realize that this traffic
primitive has three other unigue morphisms. Also realize that this 100 cell and
slot grid is equivalent to a traffic window, as discussed previously, of size W = 100.
The window has simply been rearranged in order to show traffic classification in a
manner comparable to OCR. Finally, the bottom grid shows the traffic primitive in
the presence of “noise.” To complete the analogy, the traffic characters on the right
hand side of Figure 2.6, after successful training, will produce the same output,

namely a PT (2,3) traffic stream is present at the input of the neural network.

The fact that neural networks can operate in the presence of noise is well known,
and indeed this ability plays a prominent role in the concept of this research, that is
the treatment of traffic streams as strings of objects rather than in a statistical sense.
From an ATM network control point of view, it is undesirable for the identification
method of traffic streams to be too sensitive to a few cells being “out of place,” or to
be so insensitive that two dissimilar streams are classified as being identical. Thus, if
the traffic stream changes character for very short durations, these fluctuations can
be thought of as a noise component on the “stationary” traffic stream. Hence. the
neural network primitive classification, which is inherently robust in the presence
of noise, will not change. This creates a level of sensitivity and stability which may

not be attainable by statistical methods.

"Read pixel.
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2.1.6 Scalability of the Classifier: The Compound Classifier

With the appropriate choice of traffic primitives, a great many traffic streams are
classifiable. Others, however, may require using two or more primitives in a certain
order to identify the stream, which would define a traffic compound. While it
could be argued that traffic compounds are unnecessary since increasing the size
of W allows the definition of more primitives, due to the exponential nature of
neural network training time with the number inputs and thus weights in the neural
network, it is better to train two networks with N weights than one network with
2N weights. Thus a device such as that of Figure 2.7 can be employed. The traffic

compound classifier operates in much the same way as the primitive classifier of

.........................

Neural I
Network : Neural
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Figure 2.7: The Traffic Compound Classifier

Figure 2.5, but instead of observing the traffic stream directly, it observes a sequence
of traffic primitives. Its job is to look for patterns or identifying features in the
traffic primitives and further classify the traffic stream into traffic classes which
encompass more complicated streams. In addition, using a series of compound

classifiers, certain non-stationary features of a traffic stream can be detected or
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special situations can be identified.

For the neural network purist, it is noted that the traffic primitive and compound
classifier can be combined to form one neural network of approximately the same
size. This is not attempted here, however, since it obscures the basic idea of this
work. In addition, this combination is highly dependent on the traffic streams
to be classified and the intended use of the classifications, as discussed in Section
3. Therefore, since the training and operation of the compound classifier is very
similar to that of the primitive classifier—with the traffic stream replaced by a
sequence of traffic primitives and the traffic primitive classifications replaced with

traffic compound classifications—the compound classifier is not implemented.
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2.2 Neural Network Training

A basic, vanilla-flavored, Backpropagation training algorithm [Hay94, RHWS86], as
derived in Appendix A, is implemented on a fully connected neural network. as
shown in Figure 2.8. The neural network training and simulation software suite

is all original, first written in C and then ported to C++. The choice of the

Figure 2.8: Neural Network Topology

neural network topology is very problem specific, and much of the literature deals
with just this problem. As stated, however, it is not the intention of this work

to make contributions in the field of neural network training. Thus, this simple
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fully-connected network is chosen.

Generally, the layout of the neural network to be trained is very much deter-
mined by the number of inputs and outputs desired, which in itself is determined
by the problem at hand. With the case of primitive classification, the number of
inputs to the neural network is determined by the size of the traffic window, W,
of the primitive classifier of Figure 2.5. As mentioned in Section 2.1.4, the choice
of W is highly dependent on the traffic streams to be classified and the type of
classification to be performed. Recall, though, that the time required to train the
neural network must also be taken into consideration.

Therefore W = 10 is chosen, since it allows the definition of a fairly large number
of traffic primitives from the observable stream characteristics, namely 2V = 1024
as discussed in Section 2.1.1, but more importantly since it allows the training of
the neural network with the computational power available.® It is acknowledged,
though, that such a small window size may not be large enough to capture the
characteristics of complicated sources. In order to form points of comparison as to
the effect of the traffic window size on traflic classification, two additional neural
networks are trained, one with W = 15, and the other with W = 20. These allow
the observation of 2!% = 32, 768 and 22° = 1,048,576 traffic stream characteristics.
respectively, and so permit the definition of many more primitives. The training
time of the neural network with twenty inputs, as will be seen, is enormous.

To determine the number of neural network outputs, each of the traffic primi-

8For the reader unfamiliar with training neural networks, it must be realized that a neural
network cannot simply be trained once. Many training sessions must be performed in order to
“tweak” the training parameters with respect to the situation at hand. Thus, the training of a
single large neural network represents a vast investment in computation time.
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tive classifications desired is given an unique binary code. For example, the CBR.
primitives of Section 2.1.3.1 represent one classification, as do the PT primitives of
Section 2.1.3.3 and the DG primitives of Section 2.1.3.4. However, since it is the
aim of the CBR-RC primitives to show that the classifier can detect changes in a
traffic stream, the CBR-RC primitives of Section 2.1.3.2 represent many classifica-
tions. The number of binary codes required, then, is determined by generating the
desired traffic primitives and observing the number of classifications they represent.
This is performed via the software written, using an exhaustive search of all pos-
sible binary codes, given the window size W. In addtion, Section 2.2.1.2 describes
how the number of binary codes can be estimated, and thus the number of neural
network outputs. Summarizing the numbers here, the ten input neural network
requires nine output neurons, and the fifteen and twenty input neural networks re-
quire ten and eleven outputs, respectfully. To complete the statement of the neural
network topology, only the number of hidden layers and the number of neurons in

each hidden layer are required.

The number of hidden layers and neurons, as is the usual method of the litera-
ture, is determined in a heuristic manner, and is summarized in Appendix B. First,
small neural networks are trained, with one hidden layer and but a few neurons.
When they fail to converge, the number of neurons and, or, hidden layers are in-
creased until training convergence occurs. As more results are obtained, experience
with the training problem is gained. This leads to the decision that two hidden
layers are required by the neural networks, with thirty-five, eighty and two hundred

neurons in each hidden layer of the ten, fifteen and twenty input neural networks,
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respectively.

Using the notation developed in Section A.1.3 of Appendix A, then, the preced-
ing discussion a 10-35-35-9, a 15-80-80-10 and a 20-200-200-11 neural network.
The following section describes the training vectors employed to train these neural
networks to perform traffic classification. In order to speed-up the convergence in
training, Section 2.2.2 briefly describes some of the methods incorporated into the
software written. Finally Section 2.2.3 presents the results of training, including

training error and training times.

2.2.1 Specification of the Training Vectors

The number of traffic vectors required depends on the number of traffic primitives
as defined in Section 2.1.3, which in turn is determined by the size of the traffic
window, W. As discussed in the previous section, the number of traffic primitives
also determines the number of distinct traffic classifications, and thus the output
size of the neural network. For the cases of PT and DG primitives, determining the
number of traffic primitives that result from a traffic window size W is relatively
straightforward. However, to determine the number for the CBR and CBR-RC
primitives, their morphisms must be considered, and also the preservation of the
uniqueness of the training vectors.

As alluded to in Section 2.1.3.4, a neural network can perform a many to one
mapping, but not a one to many. Thus, while it is possible to train a neural network
to give the same output for two different inputs, it is not possible for a neural

network to give two different outputs for one input. Hence, if the same traffic
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primitive results in two different classifications, the neural network training will
not converge. In other words, the traffic primitive classifications must be mutually
exclusive.

The number of traffic primitives that can be defined is limited by the number
of traffic characteristics that can be observed through a window of size W, which is
2" as discussed. However, the number of traffic primitives defined should be much
less. If not, as mentioned in the literature and Appendix A, the neural network will
operate as a look-up table and fail to generalize, abrogating its major advantage.

Section 2.2.1.1 gives some examples of the primitives used to train the ten input
neural network. At this point, the training vectors themselves should be presented.
However, using the definitions of the primitives in Section 2.1.3, there are 435
training vectors for the 10-35-35-9 neural network, 2,004 for the 15-80-80-10
and 5,996 for the 20-200-200-11 neural networks, respectively, as shown in Table
2.1. In addition, the table shows the maximum possible observations. 2% . and the
percentage of this value that the total number of training vectors represents. While
the calculation for the specific types of training vector shown in the table is discussed

in Section 2.2.1.2, since specifying the training vectors for the fifteen and twenty

Table 2.1: Number and Type of Training Vector for the Three Neural Net-
works Trained

Neural Network Training Vectors Per Primitive Total oW % of

DG |CBR| PT | CBR-RC 2W
| 10-35-35-9 11 25 156 2431 435 1,024 | 42.48
| 15-80-80-10 16 56 | 546 1,386 | 2,004 32,768 | 6.12
| 20-200-200-11 21| 100} 1311 4,564 | 5,996 | 1,048,576 | 0.57 |
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input neural networks—in a human-readable format—would require approximately
two hundred pages, only the training vectors for the ten input neural network are
given. The reader should rest assured that the training vectors not included are
very similar to those of the ten input neural network, the only difference being the
number of neural network inputs and outputs, and the fact that there are a lot

more training vectors for each type of traffic primitive.

The 435 training vectors for the 10-35-35-9 neural network are tabulated in
Appendix C. As can be seen, binary inputs are used since the primitives repre-
sent cell and slot patterns derived from cellization, as introduced in Section 1.6.4.
As well, the desired output of the neural network for each input is also shown.
The outputs correspond to the classifications designed. Referring to Table C.1 in
Appendix C, the eleven DG training vectors represent a single classification. The
twenty-five CBR. training vectors of Table C.2 and the 156 training vectors of Ta-
ble C.3 correspond to two more classifications, respectively. Finally, each of the
243 CBR-RC training vectors of Table C.4 represents a single classification. Thus,
the total number of classifications of the 10-35-35-9 neural network is 246, which
requires an eight digit binary code.?'!? Since the CBR-RC traffic primitives specify

when a traffic stream changes its CBR rate, as defined in Section 2.1.3.2, the fol-

9The number of digits required, 9, is given by 2% = 246, or ¥ = l‘?‘?{%?l = 7.943, which requires
eight digits.

10The reason the 10-35-35-9 neural network was chosen over the 10-35-35—8 that is specified
by the 246 classifications stems from the fact that this work is experimentally based. In order
to experiment with the classifications, the number of neural network outputs chosen should allow
each of the 435 training vectors to have its own classification. Thus the required digits is ¥ =
1_:;%%51 = 8.765, which requires nine digits. This is also true for the fifteen and twenty input neural

networks.
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lowing notation is used. The traffic primitive RC g — % specifies that a stream
has changed its rate from % to % of the link rate. Thus RC % — £ specifies that
the source in question has increased its transmission rate from one quarter to one
half of the link rate.

The following section gives a few examples of the traffic primitives used to define
the training vectors, and Section 2.2.1.2 discusses the calculation and estimation of

the number of training vectors required for neural networks.

2.2.1.1 Example Training Primitives for the Ten Input Neural Network

Figures 2.9-2.12 present a few examples of the traffic primitives used to define
the training vectors of the 10-35-35-9 neural network, and thus W = 10. It is
important to keep the traffic window size in mind, since it limits the number of
traffic primitives that need be defined. Figure 2.9 depicts the base traffic primitive

and its morphisms for a CBR source transmitting at a rate £. A portion of this

Traffic Stream ©9@ -:[:.j:] oo
Base Primitive . l [ I IL .
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Figure 2.9: An Example CBR Primitive and its Morphisms

traffic stream is shown at the top of the figure. As can be seen, including the base
primitive and morphisms, this definition gives rise to the three traffic primitives

shown. The two morphisms are obtained by simply sliding the traffic window
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towards the right along the traffic stream. Traffic primitives of this type can be
used to detect constant bit rate sources CBR (0) through CBR (8), that is sources
transmitting at the full link rate C to those transmitting at a rate of <.

Figure 2.10 shows an example of a PT base primitive definition, in particular a
PT (2,3) source. Again, sliding the traffic window to the right four times specifies

Traffic Stream ".m.oo
Base Primitive - I _ I [ I

Morphism 1
e

Morphism 4

Figure 2.10: An Example PT Primitive and its Morphisms

the four traffic morphisms. Packet train traffic sources from from PT (2, 1) through
PT (2,8) through PT (9,8) through PT (9,1) can be detected from the definition
of these primitives.

Figure 2.11 depicts the complete set of DG primitives for W = 10. These can
be used to indicate that a low rate source is present, such as one that transmits at

a rate of €. or less. In addition, a source which becomes idle can also be detected.

10°?

Finally, Figure 2.12 shows the CBR-RC base primitive and morphisms that
arise when a CBR source changes its transmission rate from %— to %, that is from
a CBR (1) source to a CBR (2) source, which corresponds to the RC % — £ traffic
primitives. As the figure attempts to show, in order to generate all the morphisms,

one must consider transitions from the base primitive and morphisms of a CBR (1)
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Figure 2.12: An Example CBR-RC Primitive and its Morphisms

source to the base primitive and morphisms of a CBR (2) source, including all pos-
sible window positions along the transition. Since there are two primitives specified

by the CBR (1) source and three primitives specified by the CBR.(2) source. and
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since the transition of these two sources creates the need to consider 2W slots, there
can be 120 morphisms of this primitive. Fortunately, most of these are repetitions
of each other, as Figure 2.12 indicates.

As will be discussed in the following section, the number of RC £ — < primitives
can be reduced further, since the CBR-RC primitives are given the lowest “priority”

when they are used to define the training vectors.

2.2.1.2 Traffic Primitives and Their Morphisms

The concept of a traffic primitive morphism has already been introduced in Section
2.1.1, when discussing the pros and cons of traffic window positions and sizes. and
the “rule” stated. Simply, a traffic morphism results when a traffic stream with
a constant set of features is observed from different points. Referring to Figure
2.3(c), windows W11, W12 and W13 all give different observations of the same
traffic stream. Hence, these observations and the traffic primitives they define
are termed morphisms. Since the training vectors are defined directly from traffic
primitives and their morphisms, knowing the number of traffic primitives specifies
the number of training vectors.

With the above definition, the reader may also note that since the DG, CBR. and
PT primitives each give a single traffic classification, they could also be considered
to be morphisms. For example, ten of the DG training vectors of Table C.1 in
Appendix C are defined from the ten morphisms of the cell and slot pattern of a
single cell arrival when observed through a window of size W = 10 and shown in
Figure 2.11. The eleventh DG training vector results from a window filled with
all slots, which is part of the definition of the DG traffic primitives (see Section
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2.1.3.4).

In addition, since the training vectors must be unique with respect to their
classifications, as discussed in Section 2.2.1, then as training vectors are defined by
the traffic primitives, they must be checked with the vectors previously specified
in order to ensure that they result in mutually exclusive classifications. However,
as discussed in Section 2.1.1, different traffic streams may appear to be the same,
depending on the position and size of the traffic window. This leads to an interesting
situation for the specification of the training vectors. Depending on the purpose
of performing traffic classification that the network provider has in mind, priority
should be given to the traffic primitives of the traffic class or classes that the
network provider wishes to detect. In this context, priority refers to which set
of traffic primitives is used to first define training vectors. For example. if the
training vectors for PT traffic primitives are defined before any other, then the
base primitives or morphisms of another class of traffic primitives, say CBR. which
would cause an intersection of the PT and CBR. classifications, would not define
a training vector. This situation is shown in Figure 2.13. A packet train source
with on-period of two cells and off-period of eight cells, or PT (2, 8), is shown in
Figure 2.13(a), and a constant bit rate source which utilizes one ninth of the link
rate, or CBR (8), is shown in Figure 2.13(b). As can be seen, for a traffic window
of size W = 10, the relative positions of window Y1 on the PT stream and Y2 on
the CBR stream lead to the same traffic primitive. Thus, if the PT primitives are
given priority over CBR primitives, the traffic primitive of window Y1 would give

rise to a training vector whereas the primitive of window Y2 would not.
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(b) Constant Bit Rate Stream, CBR (8)

Figure 2.13: The Need for Priority amongst Traffic Primitives

For the training vectors chosen here, priority is given to DG, then CBR, then
PT and finally CBR-RC. Hence, the potential training vector of any CBR-RC base
primitive or morphism is checked against all the existing training vectors defined by
the DG, CBR and PT primitives before it is added to the training set. In order not
to be caught up with imaginary requirements of some fictitious network provider,
the reason for this priority is simply that it follows from the actions of the AAL,
described in Sections 1.6.4 and 2.1.2. The DG primitives are given the highest
priority since they indicate streams which cannot be distinguished, the CBR. follow
simply because peak rate allocation is likely to be the first mode of operation of
CAC in ATM networks, then PT primitives since they should be the most common,
and thus the “default” source. The CBR-RC primitives, as mentioned, are defined

with the CBR rate discrimination task in mind.
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Once the traffic window size W is chosen, it is relatively easy to specify the
number of DG and CBR traffic primitives that result from the definitions of Section
2.1.3. Since there is one DG primitive for each slot of the traffic window, plus the
window completely filled with slots, the number of DG training vectors. Npg that

are defined by the DG traffic primitives is
Npec=W +1. (2.1)

Therefore, for the ten, fifteen and twenty input neural networks trained, there are
eleven, sixteen and twenty-one DG training vectors.

For the CBR primitives, if one shifts about a few CBR. streams in a window. it
can be seen that the midpoint of the window can be used to deduce the number of
traffic primitives and thus training vectors. Define T as the smallest integer which

divides the window size W in half, that is

) W
(1)

where [z] denotes the ceiling of z, that is the smallest k£ € Z* such that k¥ > z.

Then the number of CBR training vectors, Ncgg, is given by

T
Y E+1) for1<i<T, (2.3)
=1

w

Y W-i-1) faT<i<W, (2.4)

i=T+1

where 2 should be considered to be a dummy variable. Bringing these two cases
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together yields
Ncar = % [Wz +2T? —2WT —3W + 6T — 4] . (2.5)

A special case occurs if T = % Then Ncpr = @. Thus, for the ten, fifteen and
twenty input neural networks, there are twenty-five, fifty-six and one hundred CBR

training vectors.

Attempting to calculate the number of training vectors for PT and CBR-RC
primitives soon breaks down, due to the number of non-unique base primitives and
morphisms generated. For example, the total number CBR primitives given by the

definition of Section 2.1.3.3 is

W-1 W-1i

DY G+d)=

=2 j=1

[2W*° — 3W? — 5W + 6], (2.6)

(=N

but this would lead to many training vectors which would cause intersecting clas-
sifications. It is discovered from experience that Equation (2.6) overestimates the
number of PT training vectors by a factor of almost two, and the larger the window
size the smaller the error. Thus, the total number of PT training vectors. Npr. for
a traffic window of size W is

1

Npr S
PTR 15

[2W* — 3W? — 5W + 6] . (2.7)

This approximation is compared with the actual number of training vectors required

for various sizes of W in Table 2.2, showing the factor of underestimation. Since
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Table 2.2: Estimating Npy for Various Values of W

Window Size Npr Estimate
14 Actual | Estimate | Factor
10 156 138 0.885
15 546 501 0.917
20 1,311 1,226 0.935
25 2,576 2,438 0.946
30 4,466 4,263 0.955

analytical methods for determining the number of training vectors required are not
easily devised for the PT and CBR-RC primitives, the number of PT and CBR-RC
training vectors reported are determined using algorithms implemented in software,
as previously mentioned, using a “brute force” binary enumeration method. Also
given earlier, Table 2.1 in Section 2.2.1 summarizes the number and type of training
vectors for the three neural networks studied.

Before the results of training the three neural networks is given in Section 2.3.
the following section discusses some of the speed-up methods employed in the train-
ing of the neural networks, and Section 2.2.3 presents the training error and training

times.

2.2.2 Neural Network Training Speed-up

While it is not the intent here to give a full account of the different training methods
used, it may be interesting to some readers to know the effect of some of the

training speed-up methods employed. A description of these methods can be found
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in [Hay94], which contains further references.

Two speed-up methods are incorporated into the software suite: training vector
reordering and asymmetric activation function. With training vector reordering,
as the name implies, the training vectors are uniformly reordered after the entire
training set is presented to the neural network. Hence, if the training set is presented
to the neural network one hundred times, then the training vectors are reordered
one hundred times. This speed-up method has a considerable effect on the training

problem at hand, decreasing the training time by a factor of about one half.

The speed-up method of using an asymmetric activation function requires the
use of a function such as out = 1.716 - tanh (2net) instead of the logistic (non-
symmetric) activation function of Equation (A.1) in Section A.1.2 of Appendix A.
When the asymmetric activation function is employed the zeros of the training vec-
tors are changed to negative ones, that is “1 0101010 1 0" becomes “1 -1 1
-11-11-11-1." Also, the synaptic weights and threshold values of neurons are

initialized with respect to the fan-in of a given neuron, uniformly distributed over

the range (""1'312"4:’ +E?I'§‘ ) , where FI', represents the fan-in of neuron m in hidden
layer [, following the notation in Section A.1.3. In this context, the fan-in of a given
neuron is equal to the number of synapses which terminate on the neuron. Unfor-
tunately, this speed-up method does not reduce the training time by an appreciable
amount, nor does it reduce the complexity of the neural network used to learn the

given problem. The next section discusses the amount of computer time required

to train the three neural networks presented, and shows the training error.
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2.2.3 Training Error and Training Times

This section briefly discusses the training error and training times of the 10-35-35-
9, 15-80-80-10 and 20-200-200—-11 neural networks. As stated, the neural networks
are trained using the Backpropagation algorithm derived in Section A.2 of Appendix
A. The training methodology used, including a description of the measure Mean
Squared Error, is summarized in Appendix B. From the previous section, both
speed-up methods of training vector reordering and asymmetric activation function
are employed. The number of training vectors for each of the three neural networks

is summarized in Table 2.1 of Section 2.2.1.

The Mean Squared Error of the Backpropagation training algorithm is plotted
versus the training epoch in Figure 2.14 for the three neural networks in ques-
tion. As can be seen, the training of the three networks converges in about 3. 000
presentations of their respective training sets. This level of training represents ap-
proximately zero classification errors, as summarized in Table B.1 in Section B.1
of Appendix B. The reader may note the sudden drop in training error of the
20-200-200-11 neural network after training epoch 2,000. This corresponds to a
change in the training parameters of acceleration and momentum (see Appendix
A). In effect, the training discovers a (local) minimum in the training vector error

surface function.

As far as training times are concerned, the 10-35-35-9 and 15-80-80-10 neural
networks require a reasonable amount of time to train—approximately two hours
and two days, respectively. Unfortunately, the 20-200-200-11 neural network re-

quires in excess of a month to train, which makes investigation and experimentation
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Figure 2.14: Training Error for the 10-35-35-9, 15-80-80-10 and 20-200-
200-11 Neural Networks

difficult at best. For further studies to be continued along these lines, this problem
will require attention. A more complete discussion of the training times, including
the machines used, appears in Section B.3 of Appendix B.

With the training vectors specified and the neural networks trained, all that
remains is to validate their training. This is performed in the next section. Then,
Section 2.4 describes the operation of the primitive classifier on traffic streams not

encountered during training.
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2.3 Primitive Classifier Training Results

In this section the training of the primitive classifier based on the 10-35-35-9,
15-80-80-9 and 20-200-200-11 neural networks is validated. Since validating the
entire training set would require a multitude of figures, only a few examples of
each traffic class is given. Section 2.3.1 shows that the primitive classifier is able
to detect CBR streams. Since DG primitives are defined to occur when sources
transmit at low rates, this is also shown in this section. Next, a few CBR-RC
primitive classifications are plotted in Section 2.3.2. Finally, Section 2.3.3 shows

that the primitive classifier can detect streams from the PT traffic class.

As discussed in Appendix B, since all possible traffic primitives from the discrete
partition described in Section 2.1.2 are used to define training vectors in the training
set, it is not possible to define a validation set as is usual in the literature. Thus.
to validate the training, the neural networks will be presented with deterministic

traffic streams of the appropriate type.

Before the results are presented, a note should be made about the output of
the classifier. As stated in Section 2.2.1 and presented in Appendix C, the output
is binary encoded, which is not very human-readable. Hence, considering the 10-
35-35-9 neural network based primitive classifier, for each primitive class of the
training vectors listed in Tables C.1-C.4 in Appendix C, a number is assigned, which
is shown in Table C.5. While the training vectors are not listed, the classifications
for the 15-80-80-10 and 20-200-200~11 neural networks are also assigned numbers.
which are displayed in Tables C.6 and C.7. It is this number which is on the y-axis

of the figures to follow. However, wherever possible, text is inserted.
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Due to the fact that the training vectors for the 10-35-35-9 neural network
based primitive classifier are made available in Appendix C, this neural network
is studied in more detail than classifiers based on the two larger neural networks
trained. Nonetheless, in most cases comparisons are made as to the effect of the

traffic window size W on the classifications.

2.3.1 CBR Traffic Sources

In this section the results of presenting the three classifiers with CBR sources of
various transmission rates are reported. Most of the results are discussed with
respect to the classifier with the traffic window of size W = 10, in the next section.
Then, in Sections 2.3.1.2 and 2.3.1.3, only comparisons are made to the classifier

with larger window sizes.

2.3.1.1 Trafic Window Size W = 10

As shown in Figures 2.15-2.19, the neural network successfully learns to detect
CBR streams. Thus, in order to make the validation a little more interesting, and
to give examples of how traffic classification might react at boundary conditions,
it is assumed that the CBR sources are just starting transmission. Hence, initially,
the traffic window is filled with slots. Then after thirty slot times, the CBR source
starts transmission at its specified rate.

Examining Figure 2.15 for the case of the CBR (0) source, it can be seen that
for the first thirty slots the primitive classifier correctly classifies this source as
type DG. This behavior is normal, since as defined in Section 2.1.3.4, an idle link
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Figure 2.15: Classification of the CBR (0) Source for the 10-35-35-9 Neural
Network Based Primitive Classifier

is in the DG primitive class. Then, after two cell arrivals from the source which is
now transmitting at the link rate, the classification changes to PT. Again, this is as
expected, since the traffic window consists of the “0000000011” slot and cell pattern.
This is a morphism of the PT (2, 8) packet train class, as defined in Section 2.1.3.3
and presented in Table C.3 of Appendix C, and so again the classifier is behaving
properly. At slot number thirty-nine, the window consists of “0111111111," which
is a morphism of the PT (9, 1) packet train primitive class. Finally, after the arrival
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of a cell in slot forty, the classification changes to CBR and remains there. Now the
window contains all cells, which is defined to a CBR source. Hence, after an initial
transient period of ten slots, which happens to be the size of the traffic window for
the primitive classifier employing the 10-35-35-9 neural network, the classification
is as expected. Note that if the source starts to transmit immediately at the full link
rate instead of being initially idle, the transient period would vanish. As stated. this
transient period is included so that the validation contains meaningful examples of

the classifier operation.

Figure 2.16 shows the classifier operation for the CBR (1) source which transmits
at half the link rate. After a short, six slot transient period during which the source
makes its transition from the idle state, the primitive classifier correctly detects the
source to be CBR. At slot thirty-three, the classifier makes an error. This is the
ouly error the classifier can make, since the neural network training resulted in
only one error—and this is it. With the traffic window containing “0000000101,”
which is defined to be a RC % — £ primitive as tabulated in the very last row of
Table C.4 of Appendix C, the neural network outputs the binary code “110000000.”
This does not correspond to any of the defined classes. Since only one error results
after training, and considering the desire to keep the neural network small, it is felt
that this is acceptable. Corrective action could be taken in additional hardware or

software external to the neural network.

The following classifications of Figure 2.16, as the traffic window fills with the
cell and slot pattern of the CBR (1) source, show a definite pattern in the tran-

sition. This was designed into the classifier by defining and assigning priority to



2.3. PRIMITIVE CLASSIFIER TRAINING RESULTS 105

RCC/7woC T T T T ™ T T Y T
CBR(1) —

RCC5wCR -
RCC/510C3 -

RCC/4t0C t 4
RCC/410C2

RCCABtoC - -

RCCRw0CA P -

Mistake 1 1 1 1 1 1 L 1 4
0 10 20 30 40 50 60 70 80 9% 100

Slot Number

Figure 2.16: Classification of the CBR (1) Source for the 10-35-35-9 Neural
Network Based Primitive Classifier

the CBR-RC primitives in a certain manner. For this work, the RC-CBR. primi-
tives lead to training vectors which favor transitions from low link utilizations to
higher utilizations. In this manner, if a source attempts to renege on its Traffic
Contract, these actions which could be harmful to other users are detected first.
Other schemes include transitions from higher to lower link utilization. or transi-
tions which deviate from a set CBR sources. As seen from the figure, after the nine

slots of transition, the classifier behaves as expected.
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The classification of the CBR (2) shown in Figure 2.17 behaves in a very sim-
ilar fashion to the CBR (1) of Figure 2.16, and thus does not require additional

comment, except to state that the transitional period again is nine slots.

The transition of the CBR (4) source shown in Figure 2.18 is much more graceful
than the previous ones. This is due to the fact that a CBR source transmitting
at one fifth the link rate is relatively sparse when viewed through a window ten

slots long; its base primitive is “1000010000.” Thus, at slot thirty-five, the traffic
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Figure 2.17: Classification of the CBR (2) Source for the 10-35-35-9 Neural
Network Based Primitive Classifier
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Figure 2.18: Classification of the CBR.(4) Source for the 10-35-35-9 Neural
Network Based Primitive Classifier

window contains “0000010000,” which is in the DG class. Then, starting with slot
thirty-six the window contains “0000010001,” or one of its morphisms. which is
defined to be part of the CBR class.

Figure 2.19 shows the results of classifying the CBR (9) source. As can be seen,
and as anticipated in the definition of CBR. primitives in Section 2.1.3.1, only CBR
sources of rate CBR (W — 1) and higher can be classified with a traffic window of
size W. Hence, the classification is DG, since the traffic window is filled with either
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Figure 2.19: Classification of the CBR (9) Source for the 10~35-35-9 Neural
Network Based Primitive Classifier

all slots or a cell and all slots. This source has been included for comparison to
the primitive classifiers with larger traffic windows, discussed in the following two

sections.

The classification results of the above CBR sources, excluding the CBR (14)
source, are summarized in Figure 2.20. The way the traffic primitives are designed,
sources with higher activity make further “excursions” away from the “known”

source classes of CBR, PT and DG, and in general “stay away” for longer periods.
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Figure 2.20: Comparison of the CBR Classification Results for the 10-35-
35-9 Neural Network

These excursions come in the form of CBR-RC traffic primitives. Thus, the CBR. (1)
source which utilizes one half of the link rate makes the largest excursion RC % —
C, whereas the CBR. (4) does not make any excursions at all. These results are now

compared with the two larger window sizes, in the following two sections.
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2.3.1.2 Traffic Window Size W =15

The validation results for the primitive classifier based on the 15-80-80-10 neural
network do not differ substantially from those given in the last section. The only
major difference is that since W = 15 in this case, the trausition period as the
CBR sources change their rate from idle to the appropriate level is, in general, five
slots longer. For example, Figure 2.21 shows the case of the CBR (1) source. The

y-axes of Figure 2.21 and the two following figures contain the number associated
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Figure 2.21: Classification of the CBR (1) Source for the 15-80-80-10 Neural
Network Based Primitive Classifier
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with the classification, the human-readable format of which which can be found in
Table C.6 of Appendix C. To the left of the “transition peak” of Figure 2.21, the
classification output is one, which corresponds to the DG class. To the right of
the peak, the output is two, or CBR, the desired classification. At the peak of the
transition period, the output is ninety-three, that is a RC % — % classification.
Note that the length of the transition period is eleven slots, five more than in the
W = 10 case, which corresponds to the increase in size of the traffic window. In
addition, while the excursion to the highest point in the peak comes as a single
step, as in the case with W = 10 of Figure 2.16, the “fall” from the peak is more
gentle, and goes through more classifications. In other words, this larger window
size is able to make more, or finer classifications than the smaller window. Thus,
the results support the design discussion of Section 2.1.1. Finally, note that since
the 15-80-80-10 neural network completed training with zero errors on the training
set, the mistake that was observed in Figure 2.16 is not present in Figure 2.21.
The classification results for the same sources that are presented in the previous
section appear for the present case in Figure 2.22. The same transition patterns
are observed, except as noted they have increased in length and accuracy, or “char-
acterizability.” Also note that the CBR (9) source which was classified as DG in
Figure 2.19 for W = 10 of the last section is now classified correctly as CBR. As a

point of interest, for W = 15, it is now the source with the most graceful transition.

2.3.1.3 Traffic Window Size W = 20

Finally, a summary of the validation results of the CBR sources for the 20-200-200-

11 neural network based traffic classifier is shown in Figure 2.23. As can be seen,
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Figure 2.22: Comparison of the CBR. Classification Results for the 15-80-
80-10 Neural Network

the transition period has spread out once again, by five slots over the W = 15 case
and ten slots over the W = 10 case. In addition, the classifications have become
even finer, with over 160 possible. In this case, the CBR.(9) has retained its graceful
transition characteristics, and is now joined by the CBR (14), which is not plotted.
However, they have different lengths of transition period. Finally, note that since
this neural network trained with nine mistakes, one of these has been encountered

by the CBR (4) source.
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Figure 2.23: Comparison of the CBR Classification Results for the 20-200-
200-11 Neural Network

While this section is intended to discuss the neural network training validation
results of CBR sources, due to the design of the traffic primitives, this section also
included all that needs to be stated about the DG class and much about the CBR-
RC class. The following section makes a few more points about the training results

of the CBR-RC sources, and Section 2.3.3 briefly presents the results of the PT

sources.
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2.3.2 CBR-RC Traffic Sources

In addition to the discussion of the CBR source “transitions” of the previous section,
a few points regarding the training validation results are made here. The reader
should be aware that the CBR source transitions are nothing more than a sequence
of CBR-RC classifications, as the figures of the previous section show. This is not
surprising, naturally, since by definition the CBR-RC primitives are designed to
detect the occurrence of a CBR source changing its rate. In the previous section,
the transition is from an idle link to the transmission rate of the CBR. source.
As shown, many CBR-RC classifications are generated as the sources make their
transition to their transmission rate. The last section also shows the effect of the
traffic classifier window size: the classification accuracy increases as the window
size increases, as seen by the gentler fall from the peak excursion through more
classifications, but this comes at the cost of increased reaction time of classification,
since the transitions occur over a larger number of slots. As discussed in Section

2.1.1, this is the expected behavior of the traffic classifier.

In order to validate specific CBR-RC transitions, a single snap-shot of a traffic
stream is presented to the classifier. For example, if “0101011111” is presented
to the W = 10 classifier, the classification is RC £ — C, as expected. If this is
continued with the remainder of the CBR-RC primitives, only one mistake will be
made, as discussed in the previous section. The W = 15 classifier does not make
any mistakes, and the W = 20 makes nine. Since the CBR-RC classifications are

designed to detect changes in CBR sources, further results appear in Section 2.4.
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2.3.3 PT Traffic Sources

Since all the PT training vectors are learned perfectly for all three sizes of neural
network, validation results are difficult to present; the figures all consist of straight
lines indicating the output of the classifier is PT for any traffic stream that has the
characteristics of the PT (z,y) source defined in Section 1.6.6.4. Of course, this is
true only for PT sources which are characterized by the PT primitives of Section
2.1.3.3; that is, any PT source which is completely contained within the traffic

window. This idea is discussed next.

Two interesting figures are presented which illustrate a concept that is useful
in Section 4.2 of Chapter 4. Consider Figure 2.24, which represents the output
of the W = 10 classifier when presented with thirty slots, and then a PT (10, 10)
source. After the first thirty slots, the first classification made is DG, since as the
burst of this PT source enters the traffic window, a DG traffic primitive results,
namely “0000000001.” Then, for the next nine slots, the classification is PT, since
the traffic window is filled with morphisms of various PT traffic primitives. Note,
however, due to the definition of the PT primitives, there is no PT (10, 10) traffic
primitive for W = 10. Thus, at slot thirty-nine, the traffic window is “0111111111.”
At slot forty, a CBR classification is made, since the traffic stream now resembles
the CBR (0) source. At slot forty-one, the output is once again PT and this cycle
repeats every twenty slots. In a similar fashion, at slot fifty, the traffic window
contains only slots, and so the classifier output is DG, and this observation is also
repeated every twenty slots. Hence, as anticipated in Section 2.1.1, the ability of

the primitive classifier to discern features in a traffic stream is directly related to
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Figure 2.24: Classification of the PT (10, 10) Source for the 10-35-35-9 Neu-
ral Network Based Primitive Classifier

its traffic window size. As well, the continuity of classifications over time, that is
as a new cell or slot enters the traffic window, is also related to the definition of
the traffic primitives. In this case, if the traffic primitive “1111111111” is defined
to be PT instead of CBR, and “0000000000” is defined to be PT instead of DG,
then these results would not be observed. As mentioned before, the results of traffic
classification are very much dependent on the desires of the designer of the traffic

primitives, that is, the network provider.



2.3. PRIMITIVE CLASSIFIER TRAINING RESULTS 117

This situation is further illustrated in Figure 2.25, which shows the results of
the PT (30, 30) source which has much larger bursts and silence periods than the
previous source. As can be seen, this only exacerbates the problem, since now the
traffic window is completely filled with all cells or all slots for longer periods of time.
This problem could be solved by presenting the same stream to traffic classifiers
with larger windows, however this represents a large investment in neural network

training time, as discussed in Section 2.2.
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Figure 2.25: Classification of the PT (30, 30) Source for the 10-35-35-9 Neu-
ral Network Based Primitive Classifier
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This completes the discussion concerning the validation of the training of the
traffic primitives. As can be seen, for all three sizes of neural network, the training
is successful, and the traffic classifier based upon these neural networks operates
as intended. The following section shows the results of the contribution of traffic
classification, that is classifying sources which are not presented to the neural net-
works during training. The above discussion also foreshadows the introduction of
the Burst-oriented shaper in Chapter 4, since its design is based on this concept of

bursts and silences being contained by the traffic window.
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2.4 Primitive Classifier Operation

This section applies the results of training the traffic classifier to traffic streams
which its neural network had not been exposed to during training. Since for a
given traffic window size W all the deterministic partition traffic primitives are
translated into training vectors and used to train the neural network, this implies
that all the traffic sources discussed below are drawn from the distribution partition.
This represents an important contribution of this thesis: using a neural network
that has learned only deterministic traffic streams to detect features in probabilistic
streams. Aund hence the justification for employing a neural network instead of a
more conventional classification scheme. Since the power of a neural network is its
ability to generalize, by training it to classify deterministic streams it should be

able to generalize to probabilistic streams.

The following three sections discuss three such sources of probabilistic traffic
streams. First, in Section 2.4.1, general on-off traffic sources and their subset.
packet train, are considered. These should be classified well, since in the design of
the primitive classifier priority is given to the training of PT primitives in antici-
pation of the interaction of the classifier and the AAL. Next, Section 2.4.2 briefly
examines the performance of the classifier in the face of traffic which, in a way, is
the exact opposite of that it learned to recognize. Since the geometric distribution
is memoryless, it should pose a serious problem for the primitive classifier. Fortu-
nately, this traffic class is not anticipated after cellization as described in Section
1.6.4, however if the primitive classifier is to have a wider application, this traffic

type requires consideration. Finally, Section 2.4.3 presents the results of attempt-
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ing to classify a source with characteristics similar to a geometric source, but with

the memoryless property no longer holding; in particular, an MMBP source.

2.4.1 On-off and PT Traffic Sources

As a first example, consider the on-off source which has its on-period uniformly
distributed with mean five cells, and its off-period uniformly distributed with mean
five cells. Using the notation of Section 1.6.6.4, define the uniformly distributed
packet train source as PTy (z,y) = Yoo (U (z),0,U (y)), so that the on-off source
just described can be denoted by PTy (5,5). The result of classifying this source
appears in Figure 2.26. The first two hundred slots are shown for this source.
and the classifier output. As can be seen, most of the classifications are PT, as
is desired. Hence, the neural network has generalized as planned. The CBR and
DG classifications arise due to the fact that some of the burst lengths are longer
than the traffic window, and that some of the silence lengths similarly are also
longer, as discussed in Section 2.3.3. In addition, there are a number of CBR-
RC primitives, which are undesirable. They arise due to the characteristics of the
PTy (5,5) source; it is possible for one cell to appear in a “burst,” and one slot
in a “silence.” However, a pattern such as this is defined to be CBR, and thus as
it traverses the traffic window it is inevitable that a CBR-RC pattern is formed.
Another source of the CBR-RC classifications could be “boundary conditions.”
What is meant by this is that as an old burst shifts out of the traffic window as a
new burst shifts in, the pattern may in fact resemble a CBR-RC, especially with

one or two single cells near the center of the window. Thus, owing to the nature of
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Figure 2.26: Source: PTy (5, 5). Classification Results using the 10-35-35-9
Neural Network based Primitive Classifier

the traffic primitives, a certain amount of incorrect classification can be expected
and thus should be tolerated. Also note that since the 10-35-35-9 neural network
is employed, mistakes can occur. In order to better quantify the classifications,
Figure 2.27 plots a histogram of the classifications made. The figure shows that
about 86% of the classifications are PT, which certainly does not seem to be the case
from the misleading Figure 2.26. In addition, less than 0.1% of the classifications

are CBR and DG combined. However, 2.7% of the classifications are mistakes.



o e —

122 CHAPTER 2. TRAFFIC CLASSIFICATION

0.9
0.8 1
0.7 -
0.6 1
0.5 1

0.4 -

Probibility

0.3 1
0.2 1

0.1 1

0 Ill lAQ N —

! 4

0 5 10 15 20 25 30 35
Primitive Classifier Output

Figure 2.27: Source: PTy (5,5). Histogram of Classification Results using
the 10-35~35-9 Neural Network based Primitive Classifier

Thus, perhaps this neural network should “go back to school” in order to learn the
single training vector which causes these mistakes. The remaining ten percent is
spread amongst the CBR-RC primitives, with no single one representing more than
0.01% of the classifications. Therefore, notwithstanding the training error, it can
be said that the primitive classifier operates exceptionally well, correctly discerning

a PT cell stream from a somewhat random on-off stream.

A more random on-off source is given by one which has geometrically distributed
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on and off periods. Define such source as PT¢ (z,y) = oo (G (z),0,G(y)). The
classification of a PTg (5,5) source is shown in Figure 2.28, and its correspond-
ing classification histogram in Figure 2.29. As can be seen from the classification
output, there are some very interesting features, but as the histogram shows. the
excursions into CBR-RC classifications do not have a high probability mass. In
this case, only 63% of the classifications are PT, whereas CBR and DG classifica-

tions occur 11% and 16% of the time, respectively. The mistakes occurred 5.7%
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Figure 2.28: Source: PT¢ (5,5). Classification Results using the 10-35-35-9
Neural Network based Primitive Classifier
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of the time. In addition, the excursion into the CBR-RC primitives is not as far
as in the case of Figure 2.26. Thus, while the classification of this source as PT is
not as accurate as with the PTy (5,5) source, one could make the argument that
a PT¢ (5,5) has moved away somewhat from a true packet train source. Hence,
perhaps it should not be classified as on-off in the first place. While plots for the
larger traffic window size classifiers are not given, the preceding discussions help

to develop some intuition. If the burst and silence lengths of a source are small
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Figure 2.29: Source: PT¢ (5,5). Histogram of Classification Results using
the 10-35-35-9 Neural Network based Primitive Classifier
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relative to the window size, then the larger sized windows do classify the source
better, since they observe more of the stream and thus have a higher chance to
make a more “accurate” classification. In particular, the DG and CBR classifica-
tions are eliminated, but fewer PT classifications are also made. Hence, the larger
window size allows more of the stream to be observed, and also allows more diverse
traffic characterization. However, if the relative burst and silence lengths are large,
then the traffic window does not contain enough characteristics for a good classi-
fication to take place. Test results (not included here) indicate that the window
size should be on the same order as the sum of the mean burst and mean silence
lengths expected.

The PTg (5,5) source resembles a PT stream much less than the PTy (5,5)
source. In the following section, a source type which does not resemble a packet

train at all is presented to the primitive classifier.

2.4.2 Geometric Traffic Sources

This section shows the results of classifying two geometric sources, with fairly dif-
ferent mean arrival rates, in order to show that a high arrival rate geometric source
appears to be behave as a PT source, whereas a low arrival rate geometric source
appears more like a DG source. This could be of appeal to an analyst who must deal
with PT sources, but wishes to apply the simplifying assumptions of a memoryless
distribution. As defined in Section 1.6.6.4, define two geometric sources, one with
mean interarrival time of two cells, G (0.5), and the other with mean interarrival

time of five cells, G (0.2). In Figures 2.30 and 2.31, the classification output of the
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Figure 2.30: Source: G (0.5). Classification Results using the 10-35-35-9
Neural Network based Primitive Classifier

high rate geometric source is shown, along with the classification histogram. As
can be seen, a geometric source of this rate appears to resemble a PT source and,
in fact, about 30% of the time the classifier does make that judgement. On the
other hand, Figures 2.32 and 2.33 show that the low rate source does not resemble
a PT source at all, since almost half of the time it appears as a DG source. Of
course, since the mean interarrival time is five cells, its “silence” period is starting

to approach the size of the traffic window, as discussed previously, the classifier
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Figure 2.31: Source: G (0.5). Histogram of Classification Results using the
10-35-35-9 Neural Network based Primitive Classifier

may not be able to observe enough of the cell stream to make a good classification.

The result of this section is that while the primitive classifier, as designed, is
poorly suited for classifying memoryless sources, such as geometric, it may be useful

to distinguish between two types of the same source, as will be discussed in Chapter

3.
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Figure 2.32: Source: G(0.2). Classification Results using the 10-35-35-9
Neural Network based Primitive Classifier

2.4.3 MMBP Traffic Sources

As a last example of traffic classification, Figures 2.34 and 2.35 show the results of

classifying an MMBP traffic source, with rate transition matrix

0.7 0.3

05 0.5
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Figure 2.33: Source: G (0.2). Histogram of Classification Results using the
10-35-35~9 Neural Network based Primitive Classifier

and arrival rate vector

0.9
0.01

As expected, the figures show that while this source has some properties of the
geometric source, it behaves more like a PT source than the geometric does. About

50% of the classifications are PT, compared with the 30% of the high rate geometric.
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Figure 2.34: Source: MMBP. Classification Results using the 10-35-35-9
Neural Network based Primitive Classifier

This concludes the discussion of the operation of the traffic classifier on proba-
bilistic streams. It is shown that for sources that somewhat resemble a PT source.
the classifier operates very well. However, for memoryless and other sources, it does
not. Since the underlying assumption of the shaper is to observe a PT stream, this
is not surprising. It is difficult to classify a stream as PT if it does not have any

characteristics of a PT stream. Nonetheless, the next chapter introduces a few ideas
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Figure 2.35: Source: MMBP. Histogram of Classification Results using the
10-35-35-9 Neural Network based Primitive Classifier

that can use the output of the traffic shaper to attempt to classify these streams.






Chapter 3

Traffic Classifier Applications

This chapter introduces two novel applications of traffic classification: Traffic Prim-
itive Histogram Identification (TPHI) and Stream Transition Tracking (STT). Both
of these stem from the observations made in Sections 2.3 and 2.4. TPHI is a methud
by which traffic classifications are made, and stored in a histogram. In this way, a
source can be characterized, not by its cell statistics, but rather by its traffic prim-
itive statistics. The idea is that if the neural network of the primitive classifier is
trained properly, then it is able to discern patterns in a traffic stream that would not
be readily apparent to a more conventional method, or simply casual observation.
Hence, allowing the neural network to detect features, which may correspond to
high-order statistics which are difficult to calculate, and then keeping a histogram
of these features allows the characterization of unknown sources. As mentioned in
Sections 1.3 and 1.4, this is one of the key motivations in ATM networks. The
TPHI method is described in Section 3.1.

In Section 3.2, the STT method is introduced. This is a direct result of training

133
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the neural network to recognize CBR-RC primitives. This method observes a cell
stream and awaits changes that may occur. Depending on the type of change and
its duration, certain actions can be taken.

Both of these applications of traffic classification provide information about

traffic streams. As such, they can be of use to the elements of the UNI, namely

CAC, UPC and traffic shaping.



3.1. TRAFFIC PRIMITIVE HISTOGRAM IDENTIFICATION 135
3.1 Traffic Primitive Histogram Identification

There are two methods in which the TPHI scheme can operate: off-line and on-
line. Each has advantages and disadvantages. First, since both methods function
in much the same way, the concept of traffic primitive histograms is introduced.
Histograms of traffic primitives have already been presented in Section 2.4. The
reader is encouraged to refer to the figures of that section, however, Figure 2.31

is reproduced here as Figure 3.1. Recall that Figure 3.1 shows the histogram of
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Figure 3.1: Source: G (0.5). Histogram of Classification Results using the
10-35-35-9 Neural Network based Primitive Classifier
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primitive classifications of a source with interarrival times geometrically distributed,
with mean 2 cells. In the last chapter, PT sources and sources which behave like
packet trains are identified directly by the shaper. However, other sources like
G (0.5) which are not encompassed in the traffic primitives require either additional
classification, as mentioned in Section 2.1.6, or a method such as TPHI to help

identify them.

Thus, with the ability to obtain traffic primitive histograms, this method is quite
simple. As traffic classification is performed on a given cell stream, a histogram of
these observations is kept. Then, from time to time, this histogram is compared
with a “library” of histograms that the network provider must develop. This li-
brary is built up from previously known sources, whose characteristics have been
identified. For example, an MMBP source is well known. However, to characterize
an unknown MMBP source is not trivial. Worse still is attempting to identify that

the source is MMBP to begin with. However, with TPHI this problem is simplified.

Two methods that can be used to decide whether the primitive histogram of
a source in question matches one of the known sources in the library is to use a
sectioning method, or a correlation method. Referring to Figure 3.1, it can be seen
that the distribution of CBR-RC primitives observed takes on a definite periodic
pattern. This can be observed in all the histograms of Section 2.4, and is most likely
due to the priority assigned to individual traffic primitives as the training vectors
are generated, as discussed in Section 2.2.1. Unfortunately, a direct relationship
has proven to be elusive. Nevertheless, if each of these groupings of primitives is

considered to be in a given section, then a simple method is to compare the total
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probability in each section of an unknown source to the corresponding section of
a known source. If the values agree within some threshold, then the sources are

considered to be of the same class or type.

The correlation method entails simply multiplying the probability mass of each
traffic primitive histogram observation of a known source with that of the source in
question, and then summing these products to produce a measure. This measure
is then compared to a benchmark measure obtained by performing the correlation
of the library histogram with itself. If the correlation measure obtained is within
some threshold value of the benchmark measure. then the source in question is

considered to be of the same type as the library source.

This method can be performed both off-line and on-line. In the off-line method,
users or the network provider can run trials on new or poorly characterized sources,
and compare the results with the library histograms. In this way, new sources can be
identified, and the library of known source histograms can expand. The drawback,
of course, is that a user may still violate a Traffic Contract even though source

identification has taken place.

In the on-line method, traffic streams are continuously or periodically charac-
terized, to ensure that they are still within the same traffic class. This has the
advantage of providing timely and up-to-date information to the UNI, however at
the cost of increased complexity. Since the primitive classification utilizes neural
networks, at least the updating of the traffic primitive histogram can be considered
to be negligible. It is the histogram comparison with library histograms at which

a bottleneck can form.
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At this point it should be noted that work has already been performed on
another histogram-based method [SSD93]. This scheme proposes a model for video
traffic which is independent of video type and coding. A bit rate histogram is
built, conditioned upon which video source in a given set is present at an ATM
node. The assumption is also made that during any given frame of a video source.
the cell arrival process is approximately Poisson. The main thrust of this paper
is to use these histograms to model video traffic, which is then used to predict
buffer occupancy and system performance at the ATM node. In addition, the
video traffic studied is an aggregate of individual video sources. These two facts
make comparison of the results given in the paper and the TPHI method difficult.
In addition, the goals of the cited work and TPHI differ in that the TPHI method
is applicable to, ideally, all traffic sources, not just video sources. Nevertheless, it
may be possible to improve on the results of this work if, instead of employing the
histogram method cited, the TPHI method based on traffic primitives is used. This
could allow much of the node performance analysis to be applied to more general
traffic sources.

As a final note, since the Traffic Primitive Histogram Identification method
can be used to characterize sources, it can be used by every element of the UNI,
including shaping. In fact, one of the shaping methods proposed in Chapter 4 relies
on the fact that the source type is known and characterized. The next application
of primitive classification does not characterize sources per se, instead it is more

useful in monitoring their actions, and thus can be employed by UPC.
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3.2 Stream Transition Tracking

From the discussion of the design of the traffic primitives in Section 2.1.3, especially
the CBR-RC primitives, and from their properties as shown in the validation of the
CBR and CBR-RC primitives of Sections 2.3.1 and 2.3.2, it can be seen that they
are well suited for observing when a cell stream changes its character. For example,
in Section 2.3.1, when a CBR source starts transmission after an initial thirty slots.
it could be considered that the source changed its characteristics from an idle source.
DG, to a CBR source.

As described, a sequence of classifications, usually CBR-RC, are emitted by the
primitive classifier during the transition period. The idea of the STT is to monitor
the classification sequence of a cell stream, and if a particular pattern is observed,
then take some action. For example, Table 3.1 contains an example of the primitive
sequence that occurs when a CBR source changes its rate from % to %, which in
general would have a detrimental effect on other users, and hence source policing
should be performed. Of course, more complicated transitions can be allowed, such
as the transition from a CBR to PT source, or the transition that occurs when an
MMBP source transmits above its average rate.

However, due to the number of incorrect classifications observed in Sections 2.3
and 2.4, the STT requires some hysteresis to avoid making incorrect decisions as
to whether a transition has occurred. Unfortunately, the specification of this can

only be accomplished through the experience gained in operating the system.

One may wonder if a transition sequence is unique. Due to the way in which

the training vectors are designed, after some thought the reader should rest assured
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Table 3.1: CBR-RC Primitives Produced by a Rate Change from % to £ by
a CBR Source
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that the transition sequences are in fact unique. If they were not, then a one to
many neural network training vector mapping would exist. However, the training
vectors are designed so that this cannot happen, and thus all transitions are unique.

Hence, the STT method could be employed by a smart policer to determine
that a change has occurred in the traffic stream, and what that change implies.
For example, if the source increases its rate by a small fraction, these cells can be
tagged. However, if the rate increase is substantial, then these cells can be dropped.

This concludes this short chapter on the applications of traffic shaping. The
next chapter introduces two shapers in detail, the Minimized Variance shaper which
utilizes source characteristics in order to improve shaping, and the Burst-oriented
shaper, which has the ability to unshape the shaped traffic stream at the destination
UNIL.



Chapter 4

Traffic Shaping

This chapter presents two shaping algorithms. As discussed in Section 1.3, Call
Admission Control and Usage Parameter Control which occur at the User-Network
Interface can be simplified if traffic shaping is performed. In addition, it is expected
that network efliciency will increase, since cell scheduling at the multiplexer of ATM
switches in the network can also be simplified.

First, the Variance Minimized shaper (MVS) is introduced in Section 4.1. This
shaper attempts to minimize the interdeparture time variance of cells exiting the
shaper, in an attempt to approximate the Ideal Shaper discussed in Section 1.3.2.
If the interdeparture time variance is reduced to zero, then ideal shaping results.
The approach taken to achieve this goal is to use knowledge specific to a given
source. Therefore, the source type or traffic class must be known before shaping
can proceed. Fortunately, Chapter 2 presented a method to accomplish this. The
MVS could be thought of as another application of traffic classification and included

with those presented in Chapter 3, however the importance of traffic shaping in
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ATM networks warrants this special attention and hence this chapter. After the
continuous and discrete time MVS models are presented in Sections 4.1.1 and 4.1.2,
some results of shaping a few traffic classes are presented and discussed in Section

4.1.3. Aspects of this work are reported in [LM94].

Second, the Burst-oriented shaper (BOS) is introduced in Section 4.2. Like
the MVS, and as mentioned in Section 1.4, the goal of the BOS is to reduce the
interdeparture time variance of cells leaving the shaper to zero. Unlike the MVS, the
BOS does not require knowledge of the traffic type. In this way, it is similar to some
of the shapers in the literature, cited in Section 1.2.3.3. However, the novel approach
used here stems from the insights gained in the development of traffic classification
of Chapter 2 which lead to the contribution of this shaper, the concept of Ideal
Unshaping, as discussed in Section 1.3.2. In addition to attempting to generate
a deterministic traffic stream at its output, the BOS also provides information
embedded in the shaped cell stream to an unshaper at the destination UNI, as
depicted in Figure 1.3. In this way, a stream with the exact same characteristics is
presented to the end user as the one which entered the source UNL. This can be very
important to certain sources which are sensitive to delays within their cell stream
caused by either shaping or network congestion. This information could also be of
value to intermediate network nodes, since it characterizes the traffic stream. The
BOS model is presented in Section 4.2.1, and the shaping and unshaping algorithms
in Sections 4.2.2 and 4.2.3, respectfully. Finally, the results of shaping a few traffic

types are provided in Section 4.2.5.

It should be reiterated at this point that unlike most shapers in the literature,
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the two to be discussed attempt to create deterministic traffic streams from prob-
abilistic streams. This, as mentioned, is beneficial at the UNL. In addition, if all
traffic streams flowing through an ATM network were deterministic, deterministic
scheduling and multiplexing at the switches would result, and so congestion would
be avoided. It is acknowledged, however, that due to delay and other constraints.

that some sources cannot be shaped.
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4.1 Minimized Variance Shaper

The proposed cell-space shaper is modeled as a FIFQ! queue and server. The
service time is dependent on the cell interarrival times of the arrival process of
a given traffic stream, and on whether the shaper system is empty upon a cell
arrival. The service time is optimized, assuming the shaper is empty, so that the
interdeparture time variance of cells leaving the shaper is minimized. In order to

limit the size of the shaper queue, a heuristic is included in the optimization.

The shaping algorithms of [Bro92, Cha9l] are somewhat similar to that pre-
sented here; however, in this work it is assumed that the shaper has knowledge
of the type of traffic presented to it, so that the shaping can be tailored to the
characteristics of a particular cell stream. This information can be obtained via the
traffic classification method of Chapter 2. Note that while the MVS is presented in

the context of ATM networks, it is applicable to any packet switching network.

In order to shape sources where the cell arrival process is known and is analyt-
ically tractable, a continuous time shaper model is discussed in Section 4.1.1. On
the other hand, for cases when the cell arrival process is intractable, or only a cell
interarrival histogram is available, a discrete time version of the shaper model is
discussed in Section 4.1.2. To complete the study of the MVS, some examples of

its operation appear in Section 4.1.3.

LFirst in, first out.
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4.1.1 Continuous Time Shaper Model

Consider a cell-space shaping device that delays a cell if its interarrival time,’
I; € R*, is below a certain threshold, and allows the cell to pass if its interarrival
time is above the threshold; call this threshold the shaping parameter K. Also.
denote the interdeparture time® of a cell leaving the shaper as D;. The problem is
how to choose K such that the cell interdeparture time variance of a given traffic
stream is minimized.

The shaper can be represented as a queue and server, as shown in Figure 4.1.
From the figure, it can be seen that D; = I; + D ([;), where D (I;) represents the
“service time” or delay as a cell passes through the shaper. In general, the traffic

shaper implements the delay function

K-I, f[<K
D(L) = (4.1)

0 if ; > K,

where K is yet to be determined. Ideally, if a cell is delayed no further arrivals occur
until that cell has left the server; in other words, no queueing takes place. But very
few,n if any, sources behave in this manner. Due to the fact that this service time is
dependent on the cell interarrival time, methods utilizing embedded Markov chains
cannot be applied [Kle75, Wol89]. Based on the short term arrival characteristics

of the cell traffic, the shaping can be either “soft” or “hard,” as described below.

2The cell interarrival time is defined as the amount of time that has elapsed between the arrival
time to the shaper of the cell in question and that of the previous cell arrival.

3The cell interdeparture time is analogous to the cell interarrival time, except cells are leaving
the shaper instead of arriving.
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Buffer

Arrivals _____ @ Departures
L D;

Figure 4.1: Continuous Time Shaper Model

If cell interarrival times are large relative to the shaping parameter, that is
I; > K, little or no shaping takes place. In this case, the shaping can be described
as being soft, that is the probability that the shaper delays a cell is low. In this
case, D(I;) = 0 V i. At the other extreme, if cell interarrival times are small
relative to the shaping parameter, that is I; < K, hard shaping is said to take
place. The probability that the shaper delays a cell is high, since K “encompasses”
most interarrival times. In this case, D (I;) = K V i. This, unfortunately, implies
an infinite shaper queue if cell arrivals occur while previously arrived cells are being
delayed.

Hence, D (I;) can be thought of as an “asymptotic” value of delay as the shaper
changes its characteristics between soft shaping and hard shaping. As shaping
becomes soft, the “trivial” solution for the shaping parameter results in D (I;) = 0,
in which case shaping no longer occurs. The interdeparture time variance is the
same as the interarrival time variance, with no queueing at the shaper. As the
shaping becomes hard, the trivial solution is D ([;) = oco. This has the effect of
reducing the interdeparture time variance to zero, but it requires an infinite length

queue.
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4.1.1.1 The Continuous Time MVS Algorithm

In order to bring these two conflicting solutions together, a compromise must be
made between hard and soft shaping. Thus, if the shaper is empty, cells are delayed
an amount of time equal to D (I;) given in Equation (4.1). If a cell arrives at the
shaper to find another cell being delayed, or cells queued, it is enqueued and its
delay set to D (I;) = K. The delay function now becomes

P

K-I, #L<K
if the shaper is empty,

D(L)=4 1o ifL>K (4.2)

LK if the shaper is non-empty.

As a result, when cells arrive with intervening gaps the shaper operates in the soft
mode, attempting to make D; = K, and when cells arrive in bunches the shaper
operates in the hard mode with D; = K. The underlying assumption is that cells
which arrive during hard shaping are “spread” into areas of the cell stream which
would have been shaped in the soft shaping mode. This may cause an increase in
queue length, and so the reason for the compromise: it is necessary to develop a
strategy to bound the queue growth. One such strategy is to introduce a heuristic
to allow the user to specify a maximum allowable increase in mean interdeparture

time. All that remains is to determine the value of K.

4.1.1.2 Determination of K

Consider a user traffic stream which can be characterized by a cell interarrival time

process with probability density function (pdf) i(¢) and cumulative distribution
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function (CDF)* I(t). After passing through the shaper, the cell interdeparture
time variance Vp; is given by

Vb, = E [(D: — E[Di])?]
= E [D}] - E[DiJ

=/0KK"'i(t) dt+/mt2i(t) dt — UOKI{i(t) dt+/°°ti(t) dt]z

K K (4.3)
= K?Pr{I < K}+/ t*i (t) dt — [KPr{I < K} +/ ti (t) dt] .
K K

assuming that cells always find the shaper empty; in other words, soft shaping mode.
in which no queueing takes place. The implicit error of this assumption has to do
with the f°ti(¢) dt and [ t% (t) dt terms in Equation (4.3). These terms deal
with the interarrival times of cells such that I; > K, but the shaper is operating in
soft mode instead of hard mode, by the above assumption. Since some of these cells
encounter a non-empty shaper queue, they are, in effect, hard shaped. Thus, these
terms in Equation (4.3) are too large and the terms j;K K?i(t) dt and j;K Ki(t) dt
are too small. Hence, this expression for the interdeparture time variance from the

shaper is an upper bound.

Now consider an optimization problem wherein the cell interdeparture time
variance Vp; of the stream leaving the shaper is to be minimized, subject to the

constraint that the mean interdeparture time, D;, is to be less than some multiple

4For definitions of the pdf and CDF, refer to [Pap84).
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7 of the cell mean interatrival time, +. The optimization problem can be stated as

min {Vp,} such that D; < 71

K>0 X: (4'4)

The solution of this problem is dependent upon the characterization of the traffic
stream. In the following section, this is performed for a Poisson source. and for a

on-off source in Section 4.1.1.4.

4.1.1.3 Minimization of Vp, for a Poisson Source
If the traffic source is Poisson, then cell interarrival times are exponentially dis-

tributed with

i(t) = e (pdf) (4.5)

I[(t)=1—-e"*  (CDF), (4.6)

for 0 <t < oco. After shaping, the interdeparture time variance Vp, is given by
the following equation, which is obtained by substituting Equations (4.5) and (4.6)

into Equation (4.3),

Q0 00 2
Vo, = K*Pr{I < K} + / t2de™ dt — [KPr {I<K}+ / tAe™M dt]
K

K
K 2
=K?*(1—e7 %) + K?e K + -2-:\—e-*" + ﬁe-""
_ ok . 1 k]?
—_ |:K (1—6 K) + Ke AK + XC AK] (47)

2 sk _ 1 _ax
X-z-e —Fe
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In order to allow the specification of a maximum tolerable delay added by shaping,
the mean interdeparture time D; of cells leaving the shaper can be bounded by, say

73, where

K a0
D;=/o Ki(2) dt+/K 6 (t) dt
— KPr{L<K}+ [ £i(t) dt (4.8)
K

=K+ :]i-e""‘K.

Therefore the problem of Equation (4.4) can be set up as a constraint optimization

with objective function

— 1
L=Vp +u (D,- - 'rx) , (4.9)

where yu is an arbitrary Lagrangian multiplier. Taking the first order partial deriva-

tives gives
oL — 1
i Di =7 (4.10)
0L _ (=2 _ix« -AK
- NG +p) (1—eK). (4.11)

Setting Equation (4.10) to zero yields

1 e 1
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which is the solution for the shaping parameter K. Bear in mind that Equation
(4.12) requires a numerical solution. Setting Equation (4.11) to zero results in
U= %e“‘K and K # 0. Observe that the constraint will be active only if & > 0.
which holds true for all K. Hence the constraint is always active and the solution
of Equation (4.12) minimizes Vp,. Notice that at K = oo, g = 0, so the constraint
becomes inactive. This solution is in agreement with the intuition developed under

hard shaping.

4.1.1.4 Minimization of Vp, for an On-off Source

The on-off traffic source described here is the same as that presented in [SW86]. It

can be characterized by®

i(t)=(1~al)d(t—A)+aABe P Ut - A) (pdf) (4.13)

0 for0<t< A
I(t)= (CDF) (4.14)

1 —aAeBt-8) for A<t< o

where a is the mean length of the geometrically distributed on period, 3 is the mean
length of the exponentially distributed off period, and A is the (deterministic) time
between cell arrivals in the on state.

After shaping, the interdeparture time variance is given by

Vo, = E [(D: — E [Di))’]

SNote that J (-) represents the impulse function, and U (-) represents the unit step function.
For definitions, refer to [Pap80].



152 CHAPTER 4. TRAFFIC SHAPING

=/KK2i(t) dt+/°°t=i(t) dt — [/KKi(t) dt+/°°ti(t) dtr.
a K A K @15)

The lower limit of the integrals is A since K < A implies that no shaping takes
place. Evaluating,

Vp, = K*Pr{I < K} + / t2ale Pt-2) 4t
K

- [KPT {I<K}+ /:O taAe Pt=4) dt] 2
= K2 {1 — aAePE-2)} 4 oA AE-A) {K2 + % + 52;}
- [K {1- aAe'ﬁ(K"A’} + alAe PE-4) {K + %}] 2
= i“ﬂée-ﬂ(x—“ (2 — ale PK-4)) (4.16)

and, as well,

K o)
D; = / Ki(t) dt+/ ti(t) dt
A K
=KPr{I<K}+ aA/ tBePt-2) 4t
K
= K {1 - ale K81} L qpeFK-4) {K + %}
=K+ %e‘ﬂtK'M. (4.17)

Solving Equation (4.4), as in section 4.1.1.3 by taking derivatives of the objective
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function, Equation (4.9), produces

oL — 1

2Dy (4.18)
% _ -2%4—(‘9”‘*“) + “) (1 - aleBE-2) (4.19)

Setting Equations (4.18) and (4.19) to zero yields
K + %A—e-ﬁ“‘-A) - 7l =0, (4.20)

which upon numerical solution, gives the optimum value for K. The constraint is

. : : — 1
active for A < K < co. With an on-off source, recognize that A = ver

4.1.2 Discrete Time Shaper Model

The discrete time model is analogous to the continuous time model of Section 4.1.1.
However, in this case the pdf of the cell interarrival distribution need not be con-
tinuous nor analytically tractable; in fact, the network provider can require only
a cell interarrival histogram. This is useful for sources where the arrival distribu-
tions are either difficult to obtain or unknown, such as those anticipated for future

applications.

Consider a cell generating process in which cell interarrival time is the random
variable, Iy € R*, where the subscript N emphasizes the fact that the interarrival

time can take on only N discrete values. Thus, a given realization of an interarrival
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time, I;(N), is taken from the interarrival time set

{I(N) | (N) e R*, 1 <i < N, and L(N) < [i(N), i <j}.
(4.21)

Note that the interarrival times are ordered in increasing value, with I;(N) the
smallest in value, and Iy () the largest. If Zy (Iy) is taken to represent the CDF
of the random variable Iy, and if py (I;(IN)) represents the probability that the

interarrival time I;(N) occusrs, then

pn (Ii{N)) = Pr{Iy = I(N)}
= Pr{Iy < I{(N)} — Pr{Ix < Ly (N)} (4.22)

= In (L(N)) — In (L (N)).

Thus the px (L:(N)),1=1,2,3, ..., N, specify the probability distribution® of I.
Figures 4.2(a) and 4.2(b) illustrate this. In order to provide a point of comparison
between the continuous time model of Section 4.1.1 and the discrete time model
of this section, consider a source with exponential interarrival times, such as that
of Equations (4.5) and (4.6). If the CDF of Equation (4.6) is partitioned into m
“sections,” that is discretized as shown in Figure 4.3, this would give rise to m + 1

interarrival times, I;(N), L(N) ..., Ins1(N), where Inpi(N) = In(N).

The reader should note that most continuous interarrival distributions are de-

fined for all positive times, that is I; € R*. However, from Equation (4.21), this

5See [Pap84].
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(a) Probability Distribution, py (Zx), of the Discrete Ran-
dom Variable Iy
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¥ :
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(b) Cumulative Distribution Function (CDF), Zn (Ix) of the Dis-
crete Random Variable Iy

Figure 4.2: Probability Distribution and Cumulative Distribution Function
(CDF) for the Interarrival Time Random Variable Iy.
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Figure 4.3: A Discretized Exponential CDF

discrete interarrival time distribution has a clearly defined maximum value, namely
In(N). Thus, in order to more accurately compare the results of the discrete model
and continuous model shapers, the continuous exponential source needs to be “trun-
cated” at a suitable value. For example, if £ is defined to be the truncation factor in
terms of probability, then the maximum value of a truncated CDF is Iy (N), that is
Pr{Iny < Iny(N)} =1-¢. Ifi(t) represents the truncated version of the pdf 7 (t),

then in order to keep the total probability in a truncated distribution unity, that is

f[N(N)

o i(t) dt = 1, (t) must be scaled. Thus, the truncated versions of Equations

(4.5) and (4.6) are

(pdf) (4.23)
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l_e—At

1-¢

i) = (CDF). (4.24)

The untruncated CDF [ (¢) and maximum probability of 1 — £ can be employed to

obtain an expression for the maximum value of the truncated distribution,

Pr{t<IN(N)}=1-¢

1—e~MwW) =1 ¢

—AIn(N)=In(§),

and so

In(N) = %m (-61-) . (4.25)

Further, assume that the m sections of Figure 4.3 occur with equal probability,

except for the last section which has £ less probability, and so
pr (L(N)) = ’ (4.26)

In general, given a truncation factor £, truncated pdf and CDF i(t) and [ (), and
an underlying continuous distribution divided into m sections of equal probability
py (Li(N)) = 5, except for py (IN(N)) = L — &, then the N = m + 1 discrete
interarrival times are given by L(N) = Z3* (Li_, pw ((N))),i=1.2, ... . N1,

and Iny(N) = Iy (1 — €), where Zy' represents the inverse of [ (t).
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The cell spacing model is almost exactly the same as that for the continuous
time sources of section 4.1.1, as Figure 4.4 shows. The only difference comes in a
slight change in notation due to the “sectioning” of the source interarrivals. Hence,
the discussion of section 4.1.1 applies equally well here. As with the continuous
time case, treating the shaper as a queue and server, the discrete time equivalent

of Equation (4.2) is given by

K(N,m)~I{N) ifi=1,2,...,m—1 if the shaper
D(I,(N)):{ 0 fi=m, m+1, ..., N is empty,
if the shaper

K(N,m
L ( ) is non-empty.

(4.27)

In this case, D (I;(N)) is the discrete time equivalent of D (I;), and K (N, m) is the
shaping parameter yet to be determined. In addition, be aware that K (N,m) is
dependent not only on the total number of sections N, but it will lie within one

particular section, m, as well.

Buffer

Arrivals __ Departures
I(N) D; (N, m)

Figure 4.4: Discrete Time Shaper Model
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4.1.2.1 Determination of K (N, m)

With the discrete time source characterized, it can be seen that after the cells pass

through the shaper, the interdeparture time variance Vp,(xm) is

m~—1

Voivm = 3_ Bi(N)K (N,m)? + \;,,,(N)I(N)z

=1

[E p(N)K (N, m)+2p‘(N)L-(N)] : (4.28)

=1

assuming that cells always find the shaper empty, that is a soft shaper. In order to

conveniently write these equations, define

a(N,m) & Zp,(N), b(N,m) & Ept JL(N),

a' (N,m) & .z”"(”” b (N,m) & Zp,-(N)L-(N),
and
N
¢ (N,m) £ _Zp.-(N)L-(N)*.
Then

VDi(Nm) = a(N,m) a’'(N,m) K (N,m)? — 2a(N,m)b(N,m) K (N,m)

+ ¢ (N,m) — b (N,m)>. (4.29)

Keeping in mind the same optimization problem as in the continuous time case.
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where the mean interdeparture time D; (N, m) is bound by 3, produces

(_
D;(N,m) < +3

i {Voiawm}  such that  § [_,(N) < K (N,m) < La(N)

(4.30)

2<m<N,

.

which gives the optimam K (N, m) for a given N, for all m. In addition. it can also

be shown that
D;(N,m) =a(N,m)K(N,m)—b(N,m)+ b (N,m). (4.31)
Forming the Lagrange equation results in

TN o 1
L= VD;(N,m) + p1 (Di (N, m) —_ 7K) +

p2 (In-1(N) — K (N,m)) + p3 (K (N, m) — [.(N)), (4.32)

where p;, w2, ps are arbitrary Lagrangian multipliers. Taking the partial deriva-

tives results in

L ——— 1
B = Di(N,m) -5 (4.33)
oL _ m1(N) — K (N,m) (4.34)
8[12
9L _ k(N m)~ Lay(N) (4.35)
Op2

aL

m = 2a(N,m)a’ (N,m) —2a(N,m) b (N,m)
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+a(N,m) g — p2 + pa- (4.36)

Setting these four equations to zero and evaluating the cases which arise from the
possible combinations of activity and inactivity of the three constraints results in

the general solution for K (N, m) as follows:

(
I.1(N) if a(N,m)(a’ (N,m) I, _1:(N) =¥ (N,m)) >0,
In(N) if a(N,m) (b (N,m) —a’ (N,m) [.(N)) >0,
K (N,m) = | . | )
B(Nm)—b'(Nm)+vL+ . a'(Nom b(N.m)-Py‘T
awmy - EY(Nym)~ a(Vm) = (4.37)
\sl,—g,"—::; otherwise.

The conditions must be checked in the order given for the constraints to be satisfied.
Unlike the continuous time case, this is as far as the derivation can proceed for
the discrete time model without being given the p;(N) and I;(N). The following

section presents results of shaping a few example sources.

4.1.3 Results

This section gives the results of the Continuous Time MVS (CT-MVS) in some
detail, since it is analytically tractable. In Section 4.1.3.1, sources that can be
characterized by the exponential distribution are studied, however some comments
are made about the on-off source introduced in Section 4.1.1.4 as well. Section
4.1.3.2 begins by comparing the results of the Discrete Time MVS (DT-MVS)

operating on a discretized version of an exponential source presented in Section
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4.1.3.1. Then, the more interesting cases of an MMBP, and PT sources follow.

A software suite, written in C, is utilized to calculate the optimum value of
K and K (N,m). Then, cell arrivals of the appropriate distribution are generated
and the operation of the shaper is simulated. In all the following, ten runs are
performed in order to obtain confidence intervals. However, in only the worst cases
are the intervals as large as five percent of the value in question. In addition, the
intervals do not increase. Hence, for clarity, confidence intervals are not included
on the graphs that follow. In addition, there are 10,000 arrivals per simulation run.

The arrival rates are measured in cells per unit time. Since both MVS algorithms
are concerned with interarrival time distributions and not actual interarrival times,
any time scale suffices. Thus, an arrival rate of i = 1.0 can be interpreted as, on
average, one cell arrives during a “normalized” unit of time. An example unit could

be one hundred ATM slots.

4.1.3.1 Continuous Time MVS

Figures 4.5-4.7 show how the shaper can effectively shape sources with exponen-
tially distributed interarrival times. In Figure 4.5, the increase in mean delay is
constrained to be one percent of the mean interarrival time, that is y3 = 1.01, since
1 = 1.0. This does not leave much room in which the shaper can operate, and as
can be seen, only about 17% of the cell arrivals are shaped to the optimum value of
the shaping parameter, K = 0.145 (time units). For the case where the mean delay
is allowed to increase to fifteen percent shown in Figure 4.6, the shaper operates

much better, with over 45% of the cell arrivals shaped. This means that almost half

of the time this stream resembles a deterministic stream, with a constant interval
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Figure 4.5: Poisson Source: ; = 1.0,y =1.01, K = 0.145

of K = 0.602. As can be seen from the figure, approximately 0.1% of the cell
interdeparture times are less that K. These represent cells at the tail end of a long
interarrival time in the cell stream which arrive at the shaper K time units or less

after the shaper has become idle.

When cells are queuned in the shaper during one of these long interarrival times,
they depart spaced equally with interval K. This has the effect of spreading cells
which arrive in bunches into the long interarrival times. However, for this small
percentage, the interarrival time is just long enough so that the queue empties, and
the shaper becomes idle. The cell arrival “just misses” encountering a non-empty

shaper by an amount of time less than K. Since a cell that encounters an empty
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Figure 4.6: Poisson Source: A = 1.0, v = 1.15, K = 0.602

shaper with I; > K is not shaped, as Equation (4.2) dictates, the interdeparture

time is this value less than K.

On the other hand, for the approximately 50% of the remaining interarrival
times, the interarrival time is so long that it is much greater than K. Nonetheless.
as shown by the interarrival times just to the right of K in Figure 4.6, since the
interdeparture time histogram values are less than the unshaped interarrival time
pdf values, some of the long interarrival times are shortened by the cell spreading
mentioned above. In fact, the area between the interarrival time pdf and the

interdeparture time histogram is a measure of the cell spreading.

Finally, Figure 4.7 shows the case where the mean delay is allowed to increase
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by thirty percent. In this case, almost 80% of the stream has an inter-cell spacing

of K = 0.888, and so perhaps this stream could be called pseudo-deterministic.

0.80
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Figure 4.7: Poisson Source: A =1.0, vy = 1.3, K = 0.888

Hence, for sufficiently large v, the shaper behaves as designed, and approximates
the Ideal Shaper. Additional information is summarized in Table 4.1 for each of
the three figures. Included is the shaping parameter K calculated, the squared
coefficient of variation” of the unshaped and shaped arrival stream, CV? and CV%
respectively, the decrease in the interdeparture time variance Vp, and increase in
the mean interdeparture time D; of cells leaving the shaper and the overall increase

in length of the cell stream that passes through the shaper. Also, various simu-

Y

CV?(z) = ;. See [Pap84].
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lation results pertaining to the shaper queue are tabulated, and as stated above,

all of these entries are over ten simulation runs. The table shows that for higher

Table 4.1: Summary of Simulation Results for Poisson Source, A = 1.0

[ Observation v=1.01|y=115]7=130 |
K 0.145 0.602 | 0.888
Ccv*® 0.993 0.993 0.993
CVs 0.995 0.699 0.291
Decrease in CV* (%) 1.940 29.540 | 70.700
Decrease in Vp, (%) 1.941 29.535 | 70.696
Increase in D; (%) 0.000 0.001 0.011
Increase in Stream Length (%) 0.000 0.001 0.006
Mean Queuing Time 0.001 0.143 2.435
Maximum Queuing Time 0.690 7.401 33.753
Mean Queue Size 0.060 0.653 3.762
Mean Maximum Queue Size 3.100 10.500 32.600
Maximum Queue Size __5.000 13.000 | 38.000

values of allowable mean delay increase, v3, the shaper very effectively reduces
the interdeparture time variance of the cell stream at an almost negligible cost of
increase in the mean interdeparture time. In fact, the length of the traffic streamn
hardly increases. This shows that the shaper is acting as planned, in that cells that
arrive in bunches are spread into areas of the stream that have long interarrival
times. Hence, for exponential interarrival times, the shaper is very effective. The
cost does show up, however, in queuing time and queue size. While the cell stream,
as a whole, does not increase in length, individual cells can be delayed as much as
34 time units for the case of v = 1.30. Nonetheless, for a corresponding shaper

buffer of maximum size 38 cells, this is not very large.
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The reader should note that as anticipated in Equation (4.3) of Section 4.1.1.2.
the two integral terms mentioned are overestimated, and thus the allowable mean
delay increase specified by « is overly pessimistic. This is caused by the assumptions
made when designing the MVS.

In considering implementation issues, a look-up table of $, v and their corre-
sponding value of K can be calculated off-line and accessed as the shaper operates.
This has the added advantage of allowing the network provider some flexibility as
experience is gained over time as the network (UNI) operates.

To complete the discussion of exponential interarrival times, refer to Figures

4.8-4.10. The first shows how the interdeparture time variance Vp, decreases with
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Figure 4.8: Poisson Source: A = 1.0
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increasing allowable delay, v3. The corresponding increase in mean interarrival
time is also plotted, but is almost zero throughout. As can be seen, for even
modest increases in allowable delay, Vp, can be decreased 30-40%, which could be
very beneficial in certain ATM network situations. Figure 4.9 shows the cost of

this variance reduction in terms of the mean maximum queue length observed at

35.0 . : . —
300 J
=2
3
5 250} ~
s
m
g 200 | -
2 J
150 |
g
Q
s
10.0 + 4
5.0 : —_— " :
1.05 1.10 L.15 1.20 1.25 1.30

Allowable Increase in Mean Delay

Figure 4.9: Poisson Source: A = 1.0

the shaper over the ten simulation runs. Finally, Figure 4.10 plots the decrease
in Vp, versus the mean maximum buffer size, showing that it is an approximately
linear function. For a unit increase in maximum buffer size, the interdeparture time
variance is decreased about two and a half percent.

Moving on to the case of the on-off voice source given by Equations (4.13) and
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Figure 4.10: Poisson Source: A = 1.0, v = 1.01-1.30

(4.14), refer to Figures 4.11-4.14. The on-off source used corresponds to that in
[SWS86], and so the parameters used are (aA)™ = 22.0, A = 16 ms and 8! =
650 ms. Figure 4.11 shows the interarrival time pdf to consist mainly of an impulse
of probability at A, which is the output of a voice burst from the codec discussed in
the reference. The silence period between the bursts is exponentially distributed,
but of such a low probability that it does not show up on the graph. Nonetheless,
it represents an area in the cell stream into which the cells can be spread. After
K = 0.032 ms is calculated, the interdeparture time histogram is as shown in the
figure. Only a few more percentage points are gained, so the shaped cell stream

i1s somewhat more deterministic. While the mean queueing time and maximum
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Figure 4.11: On-off Source: (aA)™ = 22.0, A =0.016, 8~! = 0.65, v =~ 1.3

queueing time are only 0.724 ms and 6.924 ms, respectively, the mean queue size
is 23.347, the mean maximum queue size is 173 and the maximum queue size is
217. Thus this seemingly minor increase in the deterministic nature of the stream is
coming at a high cost in queue sizes, and queueing time. In fact, the mean queueing
time represents about two times the average length of the burst period, a™! =
352 ms, and the maximum queueing time approximately twenty times. Hence, this
source most likely will not react well to being shaped. Nevertheless, examining
Figure 4.12 indicates that the Vp, is greatly reduced even for a small increase in
the allowable mean delay, whereas the D; increases negligibly. This shows that the

shaper is operating as expected. However, as Figure 4.13 shows, this comes at high
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Figure 4.12: On-off Source: (2A)™' = 22.0. A =0.016, 8~ = 0.65

cost in buffer size, especially for larger decreases in the variance. Lastly, Figure
4.14 indicates that the decrease in variance diminishes past v = 1.58. This is not
surprising, since the mean queuing time is 9.41 seconds, which represents many
multiples of the burst and silence periods. There is no doubt that this would cause
the voice decoder at the destination to fail in reproducing the analog voice signal.
Hence, this particular on-off voice source is a good example of those sources which

are not amenable to shaping.
This completes the presentation of results for the CT-MVS. Next, results of the

DT-MVS are presented. Since the DT-MVS shaper sources are nonparametric in

nature, a complete study as performed for the CT-MVS shaper and the exponential
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Figure 4.13: On-off Source: (aA)™ =22.0, A = 0.016, 8~! = 0.65

and on-off source is not possible. Hence, only a few interesting examples are given,

since in a simulation study, there are an infinite possibilities to be considered.

4.1.3.2 Discrete Time MVS

Before the main DT-MVS source examples are presented and in order to give an
example of truncating and discretizing a continuous time case, shaping results are
shown in Figure 4.15 which correspond to the discrete time case of Figure 4.6. As
with the continuous time case, A = 1.0, the interarrival and the interdeparture times
are given by a histogram in Figure 4.15. While the interarrival time histogram line

does not resemble the corresponding one in Figure 4.6, rest assured that it is a
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valid distribution, that is the probability sums to one. The difference arises from
the fact that in the continuous case, the pdf is plotted as a function, while in the
discrete case it is plotted as a histogram, and thus the factor of the sampling rate
must be taken into account. In addition, the pdf is truncated at a normalized
interarrival time of approximately 9.210, which represents 99.99% of the original
pdf. As expected, the results are nearly identical. In fact, the corresponding entry
in Table 4.1 for v = 1.15 is accurate to at least one decimal place. While the
CT-MVS calculates K = 0.602, the DT-MVS calculates K (5000,2264) = 0.603.
Recalling the notation of Section 4.1.2, this indicates that the optimum shaping

parameter value of 0.603 is obtained in section 2,264 of the discretized CDF that is
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Figure 4.15: Discretized Poisson Source: A = 1.0, vy = 1.15, K (N,m) =
0.603, £ = 0.0001

divided into 5,000 sections. As intuition implies, the larger the number of sections
N into which the CDF is divided, the more accurate the calculation of K (N,m).
To close this section, two more shaping examples are briefly presented. The first
1s an MMBP source, with two states. The mean arrival rate of cells in states one
and two are A; = 0.01 and A; = 20.8, respectfully. The normalized holding times
are H; = 1.0 and H; = 0.05. This gives an overall mean arrival rate of A = 1.0.
The interarrival and interdeparture time histograms are shown in Figure 4.16. The
optimum value of the shaping parameter is calculated to be (1000,22) = 0.603.
Since MMBP sources are similar in nature to poisson sources, it is not surprising

to see the DT-MVS shaper perform as well as in the case of the poisson source of
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Figure 4.16: MMBP Source: \; = 0.01, A, = 20.8, H; = 1.0, H, = 0.05.
v=13, K(N,m)=0.573

Figure 4.7, which also has A = 1.0 and v = 1.3. However, since the MMBP source is
burstier, the shaping algorithm takes this into account by observing the interarrival
time histogram, and reduces the optimum value from K = 0.888 as calculated in
the continuous time case. Summarizing the simulation results, the interdeparture
time variance is reduced 46.11% with an increase in the mean interdeparture time
of 0.003%. This comes at a cost of mean and maximum queuing times of 1.143 and
23.455, with mean queue size, mean maximum queue size and maximum queue sizes
of 2.806, 30.8 and 41, respectively. Again, note that over 70% of the cell arrivals
now leave the shaper with a deterministic cell spacing. Also, the increase in stream

length is a negligible 0.001%. Hence, the MMBP source with widely different arrival
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rates and holding times of its two states is shaped to a near deterministic source.
The final results presented are those pertaining to a packet train source, in par-
ticular one with geometrically distributed on and off periods. Using the notation
of Section 1.6.6.4, define PT¢ (z,y) = oo (G (2),0,G (y)). In particular. the in-
terarrival time and interdeparture time distributions of a PT¢ (2, 2) cell stream is

shown in Figure 4.17. For this source, the maximum interarrival time is seventeen
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Figure 4.17: PT¢ (2,2) Source: Mean burst size 2, mean silence size 2, vy =
1.3, K (N,m) = 0.451

cells, which implies eighteen sections in the optimization of K (N, m). As a result,
(18,2) = 0.451, which as can be seen increases the amount of deterministic cell
spacing from just over 65% to about 80%, corresponding to a 62.62% decrease in

the interdeparture time variance with just a 0.5% increase in the mean. The cost
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is a mean and maximum queueing times of 1.685 and 15.104, and a mean, mean
maximum and maximum buffer size of 4.589, 23.5 and 34, respectively. Thus, since
this source is burstier still than the MMBP the interdeparture time variance is
reduced more, with similar results at the shaper buffer.

Summarizing the results, then, of the Minimized Variance shaper, it can be
said that it is an effective tool in attempting to create a deterministic cell stream
from a probabilistic one. In particular, poisson, MMBP and PT sources are likely
candidates for this shaping scheme. In all three cases the original source is shaped
into a nearly deterministic source with interarrival times K or K (N,m). Of course.
the shaping has come at a price of the size of the buffer of the shaper, and the
slight increase in interarrival times. Both these can be increased or reduced by
varying . On the other hand, the voice source did not fair well when shaped, and
thus this method should not be employed in these cases. One interesting side-bar
that arises from the shaping of the on-off voice source is that shaping a near-
deterministic stream results in another near-deterministic stream. This intuitive
statement implies that after a point, further shaping results in diminishing returns,
especially with respect to the increased costs of queueing delays and buffer sizes at

the shaper.

4.1.3.3 Comparison with Other Shapers

For completeness, an attempt is made to compare the results of the MVS to other
methods found in the literature. However the comparisons made are necessarily
relative, since as previously stated, the goal of the MVS is to reduce the inter-cell

variance in a traffic stream to zero, whereas often the goal of shaping in the literature
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is to limit Cell Delay Variation (CDV). Other difficulties in comparison arise due
to the fact that no standard traffic stream is used as a point of comparison. and so

the recreation of the exact cell streams other methods employ is usually impossible.

Considering the results given in [Bra92|, it can be seen that a direct comparison
is impossible due to the fact that the results are normalized by the shaping param-
eter used. This is reasonable in the context of this work, since no optimization on
the shaping parameter is performed. In addition, the traffic stream shaped is an ag-
gregrate of on-off voice sources and data sources with cell arrivals obeying a Poisson
distribution. Unfortunately, a cell interarrival time histogram is not given. Hence,
the results of the MVS with respect to the shaping of a Poisson source are most
likely similar. Therefore, refer to the results given in Table 4.1. Considering the
best results of [Bro92], CV? is reduced by approximately 85% at a cost of increas-
ing the stream length by about 7%. This seems to arise from the fact that there
is an increase in mean interdeparture time of about 5%, and the mean queueing
time is just under 1 ms, which represents 365 cells at Cr = 155 Mbps. Therefore,
it appears that the MVS compares quite favourably to this shaping method, since
CV? is reduced only 15% less at no cost with respect to the increase in stream

length.

Comparison to the results of [BGSC92] is somewhat easier, since interarrival and
interdeparture time histograms are given (Figures 9 and 10). In this case seven CBR
traffic streams are perturbed by other arrival processes at a series of five nodes, and
then the aggregate of these processes is shaped at a sixth common node. Since the

perturbation is Bernoulli which results in an interarrival time histogram which has
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the characteristics of a Normal distribution, the Poisson source results of the MVS
are somewhat comparable. Because a Normal distribution can be considered to be a
“two sided” exponential distribution, there is a larger proportion of long interarrival
times in the case of the MVS results of, for example, Figure 4.7. Since a reduction
of long interarrival times and an increase in short interarrival times implies a move
from hard shaping to soft shaping, the MVS results for a Poisson source can be
considered to be a lower bound to the results for a Normal source. Figure 10 of
(BGSC92| shows that this shaping method is able to produce a deterministic source
just over 70% of the time, as compared to almost 80% of Figure 4.7 for the MVS.
Thus the MVS again compares very favourably, especially considering, as discussed
above, that the MVS results are even better when shaping the type of source used
in the citation. Unfortuantely, no other performance results are given. Therefore,
it can be stated with some confidence that the results of the MVS compare quite
favourably with some of the more established methods of the literature.

The following section presents the algorithm of a shaper which has the same goal
as the MVS, namely to create as deterministic a cell stream as possible. However,
its method for achieving this goal is quite dissimilar from that discussed in the
preceding sections. In addition, the Burst-oriented shaper has the ability to unshape

cell streams.
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4.2 The Burst-Oriented Shaper

There are two main goals of the Burst-Oriented Shaper (BOS). The first is to take
an arbitrary on-off cell stream and shape it to as near a deterministic cell stream
as possible. If traffic streams presented to the network are near deterministic, the
provisioning of downstream network devices is simplified, as mentioned in Section
1.3.2, since the inputs to these devices are well defined. As mentioned, this should
ease network management, since CAC, UPC and cell scheduling at ATM switches
is also simplified.

The second goal of the BOS is to provide the user with a network connection
which is as transparent as possible. Thus, the BOS presents the destination UNT’s
AAL with, ideally, the same bursty on-off traffic stream created by the segmentation
at the AAL of the source UNL In other words, the BOS algorithm is designed to
both shape and unshape the stream. By doing so, the problems encountered due
to Cell Delay Variation (CDV) are reduced. That is, since the destination AAL
presents higher network layers the same bursty stream that is shaped, any delays

caused by contention at ATM switches or shaping itself may be alleviated.

It should be noted that since the BOS is designed to operate after cellization of
the traffic stream at the AAL, as described in Section 1.6.4, it will most surely op-
erate only on on-off or packet train cell streams. This idea is basic to the operation
of the BOS, since it is based on a simple premise: if every burst can be uniformly
spread into the silence which follows it, then the traffic stream will be completely
deterministic, and so the BOS will behave like the Ideal Shaper.
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4.2.1 The Shaper Model

In order to achieve the first goal mentioned in the previous section, the BOS at-
tempts to maintain the shaped traffic stream at a target rate, Ry cells per unit time,
for as long as possible. This is accomplished by “spreading out” a burst into the
silence period which immediately follows it. Since the traffic stream to the shaper
is unknown, in order to determine where a burst starts and ends, a reference point
is required. This reference is implemented in the form of a “window” superimposed
on the traffic stream, as shown in Figure 4.18. Note that this is completely analo-

gous to the traffic window used in traffic classification, introduced in Section 2.1.4.

----------------------------------

..................................

le—— Window Size, W —|

Figure 4.18: The Burst-oriented Shaper Window

As mentioned at the beginning of this chapter, the experience gained with traffic
classification is directly applied to the BOS. In fact, since the idea of spreading
a burst into the following silence is based on an implied PT traffic primitive, one
could say that the BOS has traffic classification “built in.” This is the reason the
BOS does not require information about the type of traffic class it is operating
on: there is only one class, namely on-off. The window is “parsed” to locate the
first burst and the silence which immediately follows it. Of course, in order for the

window to be parsed, the cells contained in the window must have already arrived
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to the shaper; these cells are stored in the shaper’s queue.

To achieve the second goal, the BOS embeds unshaping information into the
shaped traffic stream. This takes the form of an unshaping parameter, A. Thus, the
transmission of the unshaping parameter is overhead to the data transmission inside

the network. Figure 4.19 zooms in on the shaping window of Figure 4.18 in order

Figure 4.19: Burst-oriented Shaper Parameters

to depict the parameters that are employed by the BOS shaping and unshaping

algorithms. The parameters are defined as follows.

B: The size of the first burst of the window, where the burst is defined to start at

the left-hand-side (LHS) of the window.

S: The size of the first silence period of the window, where the silence period is

defined to start immediately after the first burst, B.
K: The shaping period, usually K =B+ S < W.

5*: The size of the first silence period of the window, when the silence period starts

at the LHS of the window; that is, before the first burst. Note that S* < W.

W: The size of the shaping window.
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A: The unshaping parameter. For shaping period i, A; = (B;, S;:) is a doublet
representing the size of the burst and silence period of the unshaped (original)
traffic stream. This is utilized by the unshaping algorithm to restore the traffic

stream.
Ry: The target rate at which to shape the traffic stream, in cells per unit time.
@: The number of cells queued at the shaper.

If the payload field of an ATM cell is used to represent A, and assuming eight bytes
are reserved for internal use by the BOS, then evenly dividing the remaining 40
bytes between the representation of B and S will allow a maximum window size
of W = 220%8 = 1,048,576, which is greater than any window sized envisioned. If
Cr = 150 Mbps, this represents a maximum burst length of about 2.68 seconds,
which is a very long time — even for a low rate voice source. Additionally, one of
these unshaping parameter cells is required approximately every W cells, since in
general K’ < W. Thus, the larger the shaping window size, the lower the overhead

of the algorithm, which can be approximated by 7%

4.2.2 The Shaping Algorithm

Algorithm 4.2.1 states the Burst-oriented shaping method. Initially, the shaper
stores cells in its queue as it fills the shaping window, W, as shown in Figure 4.19.
As bursts and silence periods are parsed and the traffic stream shaped, and as new
cells arrive to the shaper as described in Step 2 of Algorithm 4.2.1, the shaping

window is updated to reflect these changes. In other words, the shaper keeps a
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“sliding window snapshot” of the traffic stream.

Algorithm 4.2.1 The BOS Shaping Algorithm.

1. Shaper setup.

(a) Determine the rate at which the traffic stream is to be shaped, Ry, from
UPC.

(b) Delay the traffic stream a minimum of K and a mazimum of W cells,
storing the cells in the shaper queue, Q.

(c) Initiakize the shaping period counter, i = 1.
(d) Parse the shaper window to determine the shaper state, and thus the
unshaping parameter for the first shaping period, A; = (B, S1)-
2. Shaper operation.

(a) Output the unshaping parameter for this shaping period, A; = (B, S:).

(b) Output queued cells at rate Ry for K cell times, while Q > 0. When
Q = 0, generate slots until time K cell times have elapsed. Store any
newly arrived cells in the shaper queue.

(c) Shift the shaper window along the traffic stream by K cells.
(d) Increment the shaping period, 1 = + 1.

(e) Parse the shaper window to determine the shaper state, and thus the
unshaping parameter, A; = (B;, S;).

3. Repeat step 2. until the traffic stream ends.
4. Output cells at rate Rt until Q = 0, if necessary.

5. Transmit the end-of-shaping marker.

The action of the shaper is to wait until a burst starts at the LHS of the shaping
window, and then compute B, S, and K. It then outputs the unshaping parameter
A before outputting the shaped burst. In order to better describe the operation of

the basic shaper, there are five states in which the shaper can be, enumerated below
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and depicted in State Diagram 4.2.1. Assume W = 10 in the following, and the

usual “1” and “0” notation introduced in Section 1.6.4. In each state, the shaper

outputs cells at the target shaping rate Ry until Q = 0, at which point the shaping

“breaks.” That is, since no new cells have arrived and the shaper has exhausted

its supply of cells stored in the queue, the BOS has no choice but to allow a long

interdeparture time result.

State 1:

State 2:

State 3:

State 4:

State 5:

Burst B and silence S defined. This is the “normal” or planned state of
operation of the shaper. The shaper outputs at rate Ry for K = B+S < W
cell times. ) may increase or decrease. Example window: 1111000110.

The unshaping parameter is A = (B, S).

B defined, S undefined. In this case the silence period is set to S = W —B,
and K = W. Q may increase or decrease. Example window: 1111000000.
A=(B,W —B).

B undefined, S defined. Here B = W and S = 0. In order to ensure
that the next shaping period starts with a burst, K = W — 1 (instead
of K = W, as one might expect from the preceding two states). Q will
increase. Example window: 1111111111. A = (W —1,0).

B undefined, S undefined. In this case B=0and S=W,andso K = W.
Q will decrease. Example window: 0000000000. A = (0, W).

Due to the actions of States 2 and 4, the window may not start with a

burst, as required, and so this state simply corrects the situation. K is
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set to S*, the time required for the next burst to start at the LHS of the

window. @ will decrease. Example window: 0001111000. A = (0, S™).

State Diagram 4.2.1 State Diagram for the BOS

Once the traffic stream comes to an end, the shaper maintains the transmission of
cells stored in its queue at the target rate Ry, until the queue is empty. Then it
transmit an “end of shaping” marker in order to inform the destination unshaper

that the stream has ended.

4.2.3 The Unshaping Algorithm

The operation of the unshaper is quite simple, as Algorithm 4.2.2 shows. Once the

unshaping parameter A; is received, the unshaper waits until B; cells are queued and
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then presents them to the AAL, followed by S; slots. If cells start to arrive before the
unshaping parameter, then the unshaping parameter has been lost.® In this case,
the best course of action is for the unshaper to presents cells to the destination
AAL as they are received. While a multitude of methods could be devised, such as
repeating the last A until the a new one is received, the reasoning here is that if
the correct source information is lost, it is better not to make assumptions about
the source characteristics. Also, note that in W slot times. another unshaping
parameter should arrive, and so this situation will not continue indefinitely. Hence.
the unshaping algorithm is quite robust in the face of lost unshaping parameter

cells, since each A applies to at most only W cells.

Algorithm 4.2.2 The BOS Unshaping Algorithm.

1. Unshaper setup.
(a) Initialize the unshaping period counter, : = 1.
2. Unshaper operation.

(a) Receive the unshaping parameter for this unshaping period, A; = (B;, S;).
If cells arrive instead of A, then the A has been lost. Present the cell
stream “as is” to the AAL, until a A arrives. Call this A;.

(b) Wait until B; cells have been queued.
(c) Present a burst of size B; cells followed by S; slots to the AAL.
(d) Increment the shaping period, i =1 + 1.

3. Repeat step 2. until the end of shaping marker has been received.

The unshaping period ¢ allows the use of sequence numbers for A, but this is not

8The cells cannot arrive out of order, since ATM offers connection-oriented service.
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necessary. As can be seen from Algorithm 4.2.2, after the loss of a A the method is
self-correcting. In addition, it is assumed that the transmission media in an ATM
network provides virtually error free transmission, as is the usual practice in the
literature, and so the only way that the unshaping parameters can be lost is due
to congestion at network nodes. In order to avoid this occurrence, the eight bytes
of the unshaping parameter cell reserved, as stated in Section 4.2.1, could be used
to identify the A cell as a high priority traffic management cell. The following
section discusses how the shaping window size W can be determined, and proposes

an algorithm based on traffic characteristics at the AAL to do so.

4.2.4 Determination of Window Size, W

As stated in Section 4.2.1, since the BOS is developed from the insights gained in
traffic classification, many of the factors determining the size of the traffic window
of the primitive classifier hold. Thus, recall the discussions of Sections 2.1.1 and
2.1.4, which state, in the case of the BOS, that the shaping window size represents
a trade-off between the ability to shape and the delay introduced into the traffic
stream. One major difference, however, is the consideration of training time. Since
the BOS does not use neural networks, W can be much larger than is the case with
the primitive classifier. Ultimately, an upper bound on the length of the shaping
window is the desire to store the unshaping parameter A (B, S) within one cell,
as mentioned at the close of Section 4.2.1. Perhaps a more telling bound is the
amount of computational power required to parse the shaping window. While it is

not in the scope of this thesis to make accurate judgements about the feasibility
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of implementing the BOS on a Very Large Scale Integration (VLSI) chip, it does
seem reasonable that very large shaping windows can be supported. Since the
BOS is divided into five states, separate modules could be implemented for each
state, with a sixth module for controlling logic, which determines the current state.
For example, to determine the length of the burst which starts at the LHS of the
shaping window, the module can be implemented with a cascade of AND gates. In
fact, all the parameters of the BOS can be determined in this way. Therefore. it
may well be that implementation issues do not limit the size of W. Thus, another
limit is required.

One such limit results from the fact that as long as W contains a complete burst
and silence period, as a consequence of the shaping algorithm, it need be no larger.
Thus it is possible, given knowledge of the source, to limit W in a statistical sense,
as follows. Given a mean burst length and mean silence length, this information
can be converted into a mean number of ATM cells in a burst and slots in a silence
period, after cellization at the AAL. With this information, the shaping window

can be dimensioned so that a property such as the following holds true,

Pr {burstlength + silencelength > W} < 0.01. (4.38)

In other words, this equation states the desire of the network provider to capture

99% of all burst and silence periods within the shaping window W.

To evaluate Equation (4.38) requires intimate experience with the AAL, since
burst and silence length distributions or at least histograms are required. Nonethe-

less, keeping these values variable, a method which can estimate the upper bound
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is given next, based on a burst and silence length histogram being available. Now,

Pr {burst length + silence length > W}

= 1 — Pr {burst length + silence length < W}

w-2
=1— (W —1)-)_ Pr{burst length =i} - Pr {silence length = W —i — 1}

=1

w
+ W( z Pr {silence length = j} - Pr {burst length =W — j}

=1

W-2 W-k-1 (4.39)
+ Yy [Pr {silence length = k} - Pr {burst length = i}

k=1 =1

- Pr {silence length =W —k — z}]) ,

which accounts for all three cases of a burst starting a window followed by a silence
period, a silence period starting the window followed by a burst, and a silence period
starting the window followed by a burst and yet another silence period. After some
thought, the reader should realize that these three situations are a result of the
states of State Diagram 4.2.1. Completing the method, begin with W = 3, or some
other suitably small number, based on the expected size of the shaping window.
Iterate Equation (4.39) until it evaluates to less than 0.01, incrementing W after

each iteration.

The following section discusses some of the results of shaping various sources

using the BOS.
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4.2.5 Results

This chapter concludes with a discussion of the results of the BOS. A software suite
written in C++ is used to implement the BOS shaping algorithm. As in Section
4.1.3, confidence intervals are omitted for clarity. For each simulation run, there are
1,000,000 cell arrivals. The BOS unshaping algorithm is not implemented, for two
reasons. Firstly, if the network does not drop any A, then the algorithm will operate
as designed. Thus, the shaped and unshaped cell streams are the same. One way
of measuring this could be by using the cross-correlation function.® Secondly. if
the network delays or drops A, or delays the cells of the shaped stream itself, then
obviously the unshaped cell stream will differ from the original. However, this is
an external effect on shaping, which all shapers must contend with, and thus is not
germane to this discussion.

Since the BOS is designed to shape on-off traffic streams, those with on and off
distributions which are geometrically distributed are presented. The general on-off
sources chosen are of the type PT¢ (z,y) = %00 (G (2),9,G (y)), using the notation
of Section 1.6.6.4. The results appear in Figures 4.20-4.23. For these results, the
shaping window size is W = 10 and the target shaping rate is Rt = 0.5, that is a
cell followed by a space, or “101010101,” using the notation of Section 1.6.4. In ad-
dition, for the four figures mentioned, the mean on burst length and mean off burst
length, or mean silence length, of the on-off sources is increased equally, so that
the mean arrival rate is kept constant. In particular, the PT¢ (5,5), PT¢g (10, 10),
PT¢ (15,15), PT¢(20,20), PT¢ (25,25) and PT¢ (30,30) on-off sources are stud-

9The cross-correlation function, Cxy (z,y), measures the “sameness” of two stochastic pro-
cesses, X and Y. Refer to [Hay88] for a definition.
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Figure 4.20: Effect of Increasing Unshaped Burst and Silence Lengths on
CV? and Maximum Shaped Silence Length, W = 10, Rr = 0.5

ied. Figure 4.20 shows the effect on the squared coefficient of variation,'® CV?,
when the mean on burst length and mean off silence period of the sources to be
shaped are increased. Note that when the mean is low relative to the shaping win-
dow size, as with the PT¢ (5,5), almost ideal shaping occurs. The value of CV? is
reduced to almost zero. Also shown in the figure, the mean off burst length is de-
creased by 70%. Since the goal of the BOS is to spread bursts into silence periods,
the decrease in the mean silence length that results after shaping is a good mea-

sure of performance. Figure 4.21 shows the effect of the BOS on the burst length

10See Section 4.1.3 for the definition of CV>. Note that CV? is denoted as SCV in Figure 4.20.



4.2. THE BURST-ORIENTED SHAPER 193

l-m L T L] LI L
Original Silence Length Histogram ——
090 | : Shaped Silence Length Histogam —— 7
080 | i -
070 f i i
> 060} i ]
£ os0p ]
=4 !
& 040} -
030 F 1
020 | ]
0.10 | -
0.(” L i I L —
0 5 10 15 20

Silence Length

Figure 4.21: PTg (5,5) Source: Original and Shaped Silence Length Distri-
butions, W =10, Rt = 0.5

distribution of the original'’ and shaped cell streams. As can be seen from the
figure, the results indicate that 99.98% of the silence periods are shaped to a value
of one, which indicates that the target shaping rate is satisfied. Thus. the shaped
cell stream is almost one hundred percent deterministic, with intercell spacing of
one slot. Note that this result holds true for the other sources as well; in no cases
do the shaped silence length distributions have less than 99.9% of the probability.
This, however, must come at some cost. Figure 4.22 shows the effect of increasing

the mean on burst length and mean silence length on the overall cell stream length.

1l1p this context, original is used instead of the usual unshaped, since unshaping has a particular
meaning with respect to the BOS.
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Figure 4.22: Effect of Increasing Unshaped Burst and Silence Lengths on Cell
Stream Length, W = 10, Ry = 0.5

As can be seen, the cell stream length is virtually unaffected by shaping, increas-
ing a modest 0.15% at most. Thus, the cost of shaping must appear elsewhere in
the BOS system. Finally, Figure 4.23 shows that fairly heavy queuing occurs at
the BOS, in terms of the maximum queue length, Q. The higher values may be
prohibitive for some applications.

Referring again to Figure 4.20, it is interesting to see the diminishing returns in
terms of CV? and maximum silence length, as the mean burst and silence lengths
of the original cell streams increase. This is counterintuitive, because as stated
above, the silence length distributions of the sources have almost all of their prob-

ability mass at one. Nonetheless, the discussion of the sizing of W in Section 4.2.4
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Figure 4.23: Effect of Increasing Unshaped Burst and Silence Lengths on
Maximum Shaper Queue Length, W = 10, Rt = 0.5

anticipates this result. The explanation is as follows, comparing the PT¢ (5,5) and
PT¢ (30, 30) source results. As the mean burst and silence lengths of cell stream
entering the shaper increase with respect to the shaping window size W, the shaper
tends not to operate in State 1, as described in Section 4.2.2, but rather in States
3, 4 and 5. This implies that the shaper is no longer operating as intended. During
the long bursts, the queue increases quickly, and during long silences, the queue
empties quickly — this is the heart of the problem. Notwithstanding the fact that
the queue is larger in the case of the PTg (30,30) source than in the case of the
PT¢ (5, 5) source, since the mean silence length is six times larger for PT¢ (30, 30)

source, there is a much higher chance of the queue emptying during a very long
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silence period; the mean maximum silence length of the PT ¢ (30, 30) source is 179,
or almost eighteen times W, whereas for the PTg (5,5) source, it is only 20, or
two times W. And herein lies the reason for the increase in shaped silence length
variance as the original silence length increases relative to W. In other words, the
variance in shaped silence length increases, even though the maximum queue size
is very large. The results bear this out. For the PT¢ (5,5) source, the mean shaped
silence length is 1.00097 as expected, and the variance is low, at 0.00776. However,
for the PT¢ (30, 30) source, the mean is also 1.00417 as expected but the variance
has increased to 0.271835, a thirty-five fold increase. The conclusion is this: for
best operation of the BOS, the shaper window size W must be at least on the same
order as the original mean burst length plus the original mean silence length, as

Equation (4.38) implies.

To verify this, additional simulation runs are performed in which only one source
type is used, PT¢ (5,5), but the shaping window is varied in the fashion of W =
5, 10, 15, 20, 50, 100, 200. The results can be summarized as follows; no figure is
necessary, since the output from the different cases is virtually identical. Increasing
the window size from W =5, 10, 15 caused an increase in maximum queue length
of @ = 268, 270, 272, after which further increases in W have no more effect on Q.
This is an expected result, since as explained above, as long as the shaping window
can capture a burst and silence period of the cell stiream, the shaper operates in
State 1. Therefore, all else being equal, an increase in the shaping window size
should have no effect on the shaped cell stream, as the results show. There is only

the minor variation in mazimum shaper queue size, which occurs due to the fact
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that larger windows have the ability to shape larger bursts, since they now occur
during State 1, whereas with a smaller window they would have occurred during

State 3.

4.2.5.1 Comparison with Other Shapers

Due to the fact that the BOS is designed to shape specifically PT sources, it is not
possible to compare the results here with any cited in the literature.

This section concludes the discussion and presentation of the Burst-oriented
shaper. as well as this chapter pertaining to traffic shaping. The next and final
chapter of this thesis reiterates the contributions of this work, as well as pointing

the reader in a few directions along which the contributions can be extended.






Chapter 5

Contributions and Future Work

The integration of services is the driving force behind the design of the high speed
data networks of today and tomorrow. These networks must be able to deliver a
broad range of services and be capable of carrying diverse classes of traffic with
very different source characteristics. In the case of ATM networks, the solution of
these conflicting requirements is to negotiate a Traffic Contract at the UNI, which
specifies a QoS level and the characteristics of the source. These characteristics are
used by CAC and UPC to protect existing connections.

Unfortunately, the determination of source characteristics by either the user
or network provider is difficult, or impossible in some situations. One method to
characterize sources it to employ traffic shapers, which have the benefit of creating
a more easily definable traffic stream at the cost of injecting delay into said stream.
Thus, there is a need for a method that can accurately provide a description of
traffic streams in a timely manner. Three contributions have been presented in this

thesis in order a satisfy these needs.

199
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The proposed traffic primitive classifier can be used to classify unknown traffic
streams. This is accomplished by defining characteristics traffic streams, assuming
they have undergone cellization at the AAL. The characteristics of the streams
identified are collectively called traffic primitives, and are used to define training
vectors in order for a neural network to learn the classification problem. The justifi-
cation for using neural networks over conventional methods is due to their ability to
generalize and their speed. Their generalization ability allows the training vectors
to be simple and deterministic, and still allow the classification of probabilistic traf-
fic streams. Their speed allows the classifications of the traffic primitive classifier

to be useful at the control points of high speed networks, such as ATM.

The traffic classification results presented show that the neural networks not
ouly can classify deterministic sources from which they are trained, that is DG,
CBR, CBR-RC and PT sources, but also they can classify a wide range of ran-
dom sources, such as the class of on-off sources. With the additional functionality
of Traffic Primitive Histogram Identification and Stream Transition Tracking, the
primitive classifier can be applied to characterize sources which are not on-off in
nature. As well, the primitive classifier can be integrated into a policer to perform
more complex policing actions, and to monitor traffic streams for a given set of
occurrences. These contributions make the primitive classifier and its application

useful at the source UNI, for CAC, UPC and shaping.

In addition to the traffic primitive classifier, two more contributions come in the
form of two traffic shapers, the Minimized Variance shaper and the Burst-oriented

shaper. Both shapers have the ability to produce near deterministic streams, given
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appropriate sources are shaped, at fairly low costs in delay and buffer size at the
shapers. In the case of the MVS, source information is utilized in order to find
an optimal shaping parameter that has the effect of minimizing the interdeparture
time variance of the shaped stream. In addition, two versions of the MVS are
proposed, one that operates on traffic sources with known and analytic pdfs. and

another which requires only an interarrival time histogram of the source.

On the other hand, the BOS does not require source information, since it as-
sumes that bursts and silences emerge from the AAL, and so it attempts to spread
a burst into the immediately following silence period. By doing so, it has the
ability to defire an unshaping parameter, which when embedded into the traffic
stream, can be used to unshape the source at the destination UNI. This has the
dual benefits of offering the network provider an ability to characterize sources and
also improve network efficiency, but also to allow users to treat the network as a
transparent connection. This is of importance to traffic sources which do not react

well to shaping delays within their cell stream.

As far as future work is concerned, there are a multitude of directions in which
this work can be extended and improved. In the case of primitive classification,
it would be interesting to define a different set of traffic primitives, perhaps based
on the requirements of an operating ATM network. It may be discovered that
certain of the existing primitives are useful, but others should be deleted. As well,
as noted from the results, while a underlying traffic pattern is valid, it should be
included in another primitive class in order to improve the sensibility of a sequence

of classifications. For the engine of the primitive classifier, the Backpropagation
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neural network, more speed-up methods should be investigated in order to allow the
training of larger networks. This would allow primitive classifiers with larger traffic
windows to be implemented. In addition, the neural networks could be pruned,
or be recurrent, or other methods could be employed to improve convergence and
thus reduce training time. The functionality of the UNI can be combined into
one control scheme, using neural networks, and thus the idea of Figure 1.6 in
Section 1.4.1 should be explored. As for the applications of traffic classification, the
two stated could be studied in more detail, and perhaps their feasibility studied.
especially the primitive histogram comparing method. Also, other applications
could be developed.

The MVS algorithm should be modified in order to take into account the overly
pessimistic estimation of the maximum allowable increase in interdeparture time
delay. Thus, the variance equation requires modification to take into account the

cell arrivals that encounter the shaper with a non-empty queue.

In the case of the BOS, its robustness in terms of its unshaping parameter should
be studied. It would be interesting to see how much the original and shaped cell
stream differ when affected by loss or delay of the unshaping parameter, as well
as delays of the cells of the shaped stream, that is cell delay variation. Additional
goals of the BOS can be studied. For example, instead of shaping to a target cell
spacing rate, the BOS could space cells so that the instantaneous rate of the stream
observed in the shaping window is maintained. Also, heuristics should be added to
bound the growth of the shaper queue, for example defining multiple shaping rates.

In any case, further investigation should be performed to obtain an optimal size of
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the shaping window over a wide range of traffic types.
With this, this thesis comes to a close. The author would like to thank the

reader for the time taken to examine the results of many years of original research.






Appendix A

Neural Network &

Backpropagation Primer

This appendix begins with a brief overview of multilayer feedforward neural net-
works. The advantages of neural networks over classical control schemes is sketched
in Section A.1.1. Section A.1.2 introduces the basic building block of any neural
network, the neuron, and Section A.1.3 describes the result of interconnecting many
neurons, namely a neural network. Finally, the Appendix closes with the presenta-

tion of the Backpropagation algorithm in Section A.2.

A.1 Multilayer Feedforward Neural Networks

Neural networks, as their name implies, are a collection of entities called neurons,
which are connected in a highly parallel manner. Both the neuron units and their

interconnections, biologically referred to as synapses, are loosely based on their
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counterparts in the human brain. The term “loosely” is used here, not because the
neural connections in the brain are too simple, but rather because those connections
are too complex! It is thought that the human brain contains on the order of 10!
neurons with 10'® synapses interconnecting them [Was89]. In fact, most of the
neural network paradigms use only the simplest, most basic models of the neurons
in the brain.

Despite the simplicity of the neuron model employed in the neural network field,
some very impressive results have been achieved. Applications include speech and
pattern recognition, weather forecasting, adaptive control, adaptive signal process-
ing, expert systems, system identification, decision making, and many others. An
extensive list of references can be found in [Hay94, Lip87, WL90]. These results are
made possible due to the fact that neural networks consist of computational units

which are connected in a massively parallel manner.

A.1.1 Classical and Neural Network Controllers

Neural networks have a number of important advantages over classical control
schemes. Both perform an input mapping function, however the classical controller

specifies the input-output relationship whereas the neural network learns it.

A.1.1.1 The Classical Controller

In classical control problems, where the mapping function may be very complicated
and computationally expensive, especially when the number of inputs is large, a

real time controller may not be realizable. In order to overcome the problems of real
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time input mapping, classical controllers can calculate a look-up teble. A look-up
table consists of the set of input-output relationships that the controller maps. By
calculating the required output for a given input off-line, computationally expensive
control functions can be performed. This is best suited for binary inputs to the
controller. However, if the number of inputs are large, or the inputs are real, then
the look-up table will be prohibitively large. Therefore in many situations classical

controllers are unsuitable.

A.1.1.2 A Neural Network as a Controller

A neural network is essentially an input transformation device. Figure A.1 shows

a neural network as a “black box” that accepts a number of inputs and maps them

—> S
Network > Neural ‘ > Network
Inputs : Network . Outputs
[ ] L
-—éj ———

Figure A.1: The Neural Network Control Device

into a number of outputs. There is no theoretical constraint on the number of inputs
that can map into a number of outputs. Inputs presented to the network are fed
forward from one layer of neurons to the next. As the inputs traverse the network,

they are transformed into the desired output mapping. This transformation is the
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topic of Section A.1.3. However, before a neural network can map a given input into
a desired output, it must learn the mapping function; when the network has learnt
the mapping function, it is said to be trained. How a neural network is trained is

the topic of Section A.2.

A.1.1.3 The Neural Network Advantage

There are two major reasons for choosing a neural network controller over a classical
controller: parallelism and generalization. Neural networks, as mentioned earlier,
are a collection of neurons connected in a massively parallel manner. They can
perform the same computation for different inputs simultaneously. Due to their
layered structure, these many computations are made available at the same time
from one layer to the next. For conventional von Neumann computers, which
compute sequentially, this type of problem is computationally expensive. As a
result, the neural network structure can be much more efficient for some problems.

In addition to their parallelism, neural networks have the ability to generalize.
Consider a situation in which a mapping function has been learnt by a neural
network. If an input is presented to the network for which no output has been
specified, the neural network acts to generalize the input to the nearest learnt
input, and produces a well behaved interpolated or extrapolated output. On the
other hand, while a classical controller may have this ability, it is more likely that
some random, “uneducated” output will be produced. In addition, if the classical
controller is implemented in software, then any unexpected inputs will most likely
be treated the same way, or may cause the controller to fail. With this brief

discussion of the advantages of neural networks over classical controllers complete,
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the next section will describe the basic building block of a neural network.

A.1.2 The Neuron Model

The neuron is the basic building block of a neural network. Consider the neuron

model of Figure A.2. It consists of a summation unit and a nonlinearity. The
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Figure A.2: A Simple Neuron Model

TN

summation unit is the terminus for a number of network connections. The connec-
tions represent synapses, and each has an associated weight w;.! The origin of each
connection is a network input z;.

The weights are variable, which allows neural networks to learn, or adapt. Ac-
cordingly, the summation block of Figure A.2 is sometimes referred to as an adaptive

linear combiner. It is adaptive, since the weights are variable, and it is linear, since

INote also that there is a bias “weight,” wp, which is considered to be a connection as well.
Imagine it is connected to an input that is always “on.”
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it performs a sum. The sum that the neuron model performs is given by

N
net = E w;x; + wo,

=1

where it is assumed that there are N inputs to the combiner. Hence net represents
the weighted sum of the network inputs to this particular neuron. This sum also
can be represented very compactly in vector notation. If the inputs are given by
the row vector?

xf = [z, z, --- z,] and the weights are given by the row vector w? =

[w; wy --- wy], then the output of the combiner is
net = wix + wp.

The neuron model of Figure A.2 also contains a nonlinearity, denoted by the func-
tion F. This function is usually referred to as an activation function. Figure
A.3 depicts two popular activation functions, a threshold function and a sigmoidal
function. The threshold fanction performs

out = sgn(net),

whereas the sigmoidal function performs

1
out = -]__-T-—e:;' (A.].)

2A vector a is assumed to be a column vector. Therefore, aT is a row vector.
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Figure A.3: Two Activation Functions

The form that the activation function takes, for the most part, determines the
nature of the neuron. For example, if the activation function is a threshold. then

the neuron is referred to as a perceptron.

Perceptron neural networks were studied as early as the 1940’s. The networks
consisted of just a single perceptron or just one layer of perceptrons. Initially, it
was thought that perceptron networks would have a wide range of applicability,
however as research continued they were found to be unsuitable for solving some
very simple problems [MP88]. The major problem is that of linear separability.
Since the perceptron performs a threshold on the weighted sum of its inputs, it is
in fact separating its inputs with a straight line. If the inputs cannot be separated
with a straight line, then the perceptron will not be able to learn the input-output

relationships presented to it. Much work has been performed to overcome the
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linear separability problem, such as mapping the inputs through nonlinearities and
combining the output of two separate perceptrons (with the same inputs) [Was89,
WLI0], but this work leads to multilayered networks. Nonetheless, perceptrons are
still an important topic in neural network research, and have laid the foundations
for multilayered feedforward networks.

The sigmoidal®, activation function of Figure A.3 has more utility than the
threshold function for two reasons: it acts to scale the inputs, and it is continu-
ously differentiable. If inputs to the network are both very small and very large. the
very large inputs will “swamp” the very small. To overcome this problem a gain is
required for the small inputs whereas no gain is required for the large inputs; the
sigmoidal function provides this. Small inputs pass through the linear portion of
the sigmoidal, while very large inputs are “clipped.” The second reason for the sig-
moidal activation function’s utility is the fact that it is continuously differentiable.
The derivative of the threshold function, on the other hand, contains an impulse.
The importance of this observation will be made clear in Section A.2, where the

Backpropagation method of neural network learning will be discussed.

A.1.3 The Neural Network

While a single neuron can perform some astonishing tasks, such as pattern recog-
nition, the neuron model’s real potential can be observed when many neurons are
connected into networks. Once again, the motivation for multilayered networks

is based on observations of their biological counterparts, the human brain. Until

3The sigmoidal function is also known as the logistic or squashing function in the literature.
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recently, these networks were limited to a single layer of neurons because methods
needed to train multilayered networks did not exist.
Consider the neural network of Figure A.4. This network is made up of one input

layer and two layers of neurons, and can be referred to as a two layer network.*
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Z3p wly outsp wly
Input Layer Hidden Layer Qutput Layer
(Layer 0) (Layer 1) (Layer 2)

Figure A.4: A Two Layer Neural Network

The first layer, or input layer, contains three input units to which the inputs to
the network are applied. The second layer, because it is “sandwiched” between
the first and third layers, is called a hidden layer. In the network of Figure A .4,

there is only one hidden layer containing three neurons. The third layer, or output

*Much of the literature would refer to the network of Figure A.4 as a three layer network. This
would seem intuitively pleasing at first glance, however it does not correctly describe the network.
The first layer does not contain any neurons at all, and so should not be considered in the naming
convention. If the first layer is to be considered, it would be more correct to count the “layers of
connections,” which would still result in a two layer network.
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layer, contains three output neurons. It is possible for a neural network to contain
any number of hidden layers, however there is only one input layer and one output
layer. Naturally, there is no constraint on the number of neurons in any layer or
inputs to the network, nor are there constraints on the number of connections a
neuron can terminate or initiate.

The input units are not really neurons. They are used to distribute the inputs
to the network to various neurons in the network; they do not perform any neural
computation, as described in Section A.1.2, of their own. Note also that the output
neurons, while they do perform computation, do not initiate any connections to any
neurons in the network.® Each layer in Figure A.4, except for the input layer, has a
connection from every unit in the preceding layer. For example, output layer neuron
one has a connection from each of hidden layer neurons one, two, and three. This
special type of network has been aptly named a fully connected network. Due to the
fact that there is very little theory on the number of connections required from one
layer to another, or for that matter on the number of layers required or the number
of neurons required in each layer, the fully connected network is widely used.® Each
neuron in Figure A.4 has the exact same structure as the basic neural building block
of Figure A.2, namely a summing unit with a bias value and a sigmoidal activation
function. The net and out values are calculated in the same manner. However.

since the weights can connect to more than one neuron, and since there is more

SIf they did have connections back into the network, this would be called a recurrent neural
network. If they had connections between each other, or any other neurons for that matter, then
this network would contain competition.

SIt turns out that, after training, connections between neurons that are not required will
usually have a very low weight w;, and so they could be deleted. The network resulting after the
connection deletions must then be retrained.
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than one set (layer) of weights, a new naming scheme must be developed. Label
a general connection weight w};, where i represents the neuron at the origin of
the connection, j represents the neuron at the terminus of the connection, and
represents the layer of the neuron at the terminus of the connection. As an example.
the weight connecting neuron one in the hidden layer to neuron two in the output
layer is denoted as w?,. In a similar manner, the quantities net and out are named
according to their network layer and their specific neuron. However, since net and
out also depend on the input vector x, and since any useful network has more than
one input vector, the naming scheme should be augmented to allow different input
vectors. Assume a possible network input vector x is chosen from a finite set of
P vectors. A particular input vector is denoted by x,, where p =1, 2, ..., P.
Therefore netf»p and outf.p denote the net and out values, respectively, for neuron 7
in layer { when the input vector x, is presented to the network. The net and out
values for the third neuron in the output layer when input vector x, is presented.

for example, are denoted as net}, and out:z,p, respectively. Some of these quantities

are shown in Figure A 4.

A.1.3.1 An Example: A 3-3-3 Network

Figure A.4 is an example of a 3-3-3 neural network. The shorthand notation “3-3-
3”7 indicates that this neural network has three input units, one hidden layer with
three neurons, and three output neurons. It is understood that the network is fully
connected. If a fully connected network under consideration had two hidden layers
with six and four neurons, respectively, and with the same number of input units as

above but only one output neuron, then its shorthand notation would be 3-6-4-1.
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With the naming terminology completed, expressions for the output of the net-

work can be obtained. Observing Figure A .4, the values net and out for the hidden

layer are
3
) S E: . 1
netlp = W Tip + Woy
=1
1 _ 1
out;, = F(nety,)
3
| 1. 1
netzp = S Wi Tip + Wy,
i=1
) S 1
out,, = F(net,,)
3
1 _ Z 1. 1
1z.¢=:1‘.3p = Wiy Tip + Wog
=1
1 _ 1
outy, = F(nety,),

and the net and out values for the output layer are

3
2 _ 141 2
nety, = E w;out;, + wy;
=1
2 _ 2
out;, = F(netj,)
3
2 _ 1 4l 2
net;, = E wjout;, + wy,
=1
2 _ 2
outy, = F(nety,)
3
2 _ 141 2
nety, = E wzouty, + wo,
=1
2 _ 2
outy, = F(nety,),

where wf,j represents the bias value for neuron j of layer [, p ranges over all possible

input vectors, and F' is the sigmoidal activation function given in Section A.1.2.
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Again, as in Section A.1.2, these sums can be conveniently written in vector

notation. Referring to Figure A.4, the row vectors of the weights that terminate

on neurons one, two and three in the hidden layer are

T

w{ = [wil "’;1 "":}1]
T

wi = [wiz w.f,z w:iz]
T

wy = [wi; wyy wy,

respectively. A weight matrix of these three weight vectors

- T 1 T -
W{ "’ix "’;1 "”;1
1 1T — 1 1 1
W= w3 = Wiy Wy Wiy
1T 1 1 1
W3 Wyg Wiz Wiy
1 1 1

2 2 2
Wy, W, Wis

2 _ 2 2 2
w Wy Wiy Was

can be constructed by

1T

3 L
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The neuron biases can also be written in vector notation as

F 1 2

Woy Woy

L - 1 2 _ 2
0" = Wog | » e° = Wy
1 2

Wos Wag

Finally, the net and out vectors for each layer of neurons in Figure A.4, and

for each input vector x,, can be written

netf,T = [net], n.etép net:l,p]
out;T = [out], out;, outy ]
netf,T = [net], net?, net3 ]
out:T = [out?, out], out] )],

where

net. = Wi'x, +0*
out, = F(net})
net? = WzTout; + 9?2

out} = F(net?).

A.1.3.2 The General Network: N°-((N},_,))-NM

The expressions for net and out of Section A.1.3.1 can be applied to any general

neural network. Consider a network that has M layers of neurons, where the
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input layer is layer [ = 0, there are M — 1 hidden layers, and the output layer is
layer | = M. Each layer consists of N' neurons, where N® denotes the number
of inputs to the network, not neurons. Thus, the shorthand notation for a fully
connected general network is N°-((Nj},_,))-N™, where N° represents the number
of input units, ((Nis_,)) represents the number of neurons in each of the M — 1
hidden layers, and N™ represents the number of output layer neurons. Now, if the

9

ip» then general net and out equations can be

network inputs z;, are renamed out

stated as

N! Il =12 ..., M
netl, = Z wf»jautf-; 1 +wf,,-

= j =1,2 ..., Nt (A.2)
outl, = F(netl) p = 1,2 ..., P

In general, the weight matrix W' for layer { is of the order N'~! x N'. the net,
out; and @ vectors are of the order N*. The following iterative matrix equations
represent the operation of the neural network:

net, = W‘Tout:,'1 + O Il =12 ....M
(A.3)

out, = F(net}) p = 1,2 ..., P
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where
- - - -
0 l !
net,, out,, ( Wo,
{ 1 1
net out w,
! _ 2p 1 _ 2p | 02
net, = ) s out, = _ , 0 = . .
! ! I
net out w J
L Np | | “T"Nip L oN!
and _
l 1 ! ]
Wy Wy Wt
! ! {
W = W21 W2 Wont
i 1 1
| WNt-y Witp 00 Wi |

Observing the set of matrix Equations A.3, it can be seen that the output of neurons
in a given layer [ can be calculated only after the output of neurons in layer [ —1 has
been determined.” In this sense, the output of the previous layer feeds the inputs

of the current layer, and hence the term feedforward neural network.

This concludes the discussion of how inputs are transformed into outputs in
a fully connected feedforward neural network. Equation (A.3) gives the iterative
matrix equations to perform the required mapping function. The next section
describes how the connection weights wf-j can be varied so that the neural network

learns the required input-output relationships.

"Note that outf, =xp = [T1p T2p -+ Tnop)T-
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A.2 The Backpropagation Algorithm

Section A.1.3 described how inputs propagate from one layer of neurons to the next,
and finally arrive as outputs. The connection weights of the various layers in the
network perform the transformations required to map a given input into a desired
output, as was discussed in Section A.1.1. In this section, the Backpropagation
algorithm required to “teach” the mapping function to the neural network is pre-
sented. The Backpropagation algorithm for multilayered feedforward networks with
sigmoidal activation functions is a relatively new development [RHWS86}. It involves
presenting an input to the network, observing the output the network produces,
comparing this output to the desired output, and then modifying the connection
weights wf-j in such a way as to minimize the squared difference between the network
output and the desired output. The following presentation of the Backpropagation
algorithm follows that given in [Hay94, RHWS86].

A.2.1 Statement of the Algorithm

The Backpropagation learning rule is a generalization of the Delta Rule or the
Widrow-Hoff Rule [WL90]. The delta rule is a simplification of the classical Hebbian

learning rule. Using the same notation and definitions as in Section A.1.3, the
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Backpropagation learning rule can be stated as

1 = 0, 1,...,N"1
j = 1,2 ..., N
Agly(n) = ndy(n) [L+ (1~ Z6)) (outi ) ~1)] d 1 = L2, .. M
p = 1,2, ..., P(A4)
| 7 = 1, 2, s

1 :=0

0 otherwise,

where Ajw};(n) is the change in connection weight from neuron i in the previous
layer to neuron j in layer [, n is the learning rate, 87,(n) is the instantaneous square

error dertvative of the network output error with respect to the net value of neuron

7 in layer I, and a'utf-; !(n) is the output of neuron % in layer  — 1. The index n
represents the iteration step of the algorithm; after all the network weights have

been updated, n is incremented.

The learning rate 7 is simply a constant coefficient which determines how fast
the neural network will learn the input-output relationships presented. If 5 is large,
then the network will learn quickly, but there will be a higher chance that the weight
changes oscillate. If 5 is small, the chance of weight oscillations will be decreased,
however the training time will increase. Typically, 0.1 < n < 1.0. The squared
error derivative, d, is calculated differently depending on whether the neuron in

question is an output layer neuron or a hidden layer neuron. For an output layer
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neuron, [ = M,

8 (n) = (tjp — outly(n)) F' (netli(n)) p = 1,2 .., P
no= 1,2 ... (A.5)

and for a hidden layer [ neuron,

i=12..,N
NH-!
Il = M-1, M-2 ...,21
Sp(n) = Y G (n)wit () F (netly(n)) |
k=1 p = 1,2 ..., P (A.6)
| n o= 1,2, ....

In Equation (A.5) for the output layer, t;, represents the desired network output of
neuron j in the output layer when the input to the network is x,,. In both Equations
(A.5) and (A.6), F' denotes the derivative of the activation function F with respect
to the appropriate net value. Also note that the quantities netj,(n) and out},(n)
are calculated with the same method given by Equation (A.2); their dependency
on n simply reflects the fact that they are calculated using weights w};(n) which

are updated after every iteration.

The bounds on ! in Equation (A.6) stress the fact that the weight changes
specified by the Backpropagation algorithm start from the output layer and back-
propagate through the network to the first hidden layer. In fact, this was the major
breakthrough that allowed multilayered feedforward neural networks to be trained.

The error observed at the output layer is used to train not only the weights ter-
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minating on the output layer, but also all other weights in the network. This is
accomplished by propagating the squared error derivatives calculated at each output
neuron back through the connection weights to all neurons in the network.

With the learning rule defined, which specifies the changes to the weights, the
Backpropagation algorithm can be stated

(i = 0,1,.... N*-?
7 = 1,2, ..., Nt
wlin +1) = whln) + Auli(n) 3 1 = L2,...,
p = 1,2 ..., P (A7)
= 1,2

In the above, the iteration step n is incremented after all weights w}; in the network
have been updated. Two methods of updating network weights are generally used
in the literature. The first method simply updates all the network weights after
a given input vector x, has been presented to the network. This is the method
that Equation (A.7) describes. A second method involves summing all the weight
updates calculated for each input vector, and then applying a single update to the
network weights after the entire training set has been presented. In this case, the

Backpropagation algorithm is modified to be

i = 0,1,..., N?
P ]
Jj =L2 ..,N
wii(n+1) = wij(n) + Y Apwli(n) L
=1 = y Ly - )
’ (A.8)
| n = 1, 2,
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While Equation (A.8) is closer to the true gradient descent method, it is seldom
used in practice, especially if the training set P is large. The assumption that the
error surface F in weight space is linear in the area of wﬁj is justified if the learning
rate 17 is small. As a result, Equation (A.7) is preferred over Equation (A.8). The
following section verifies that the Backpropagation of the squared error derivatives,

through the connection weights, minimize the output error in a sum square sense.

A.2.2 Derivation of the Algorithm

The Backpropagation algorithm is essentially a gradient descent method in connec-
tion weight space. It acts to minimize the overall network output error, E, which

is defined over all input vectors x, as

P
E(n) =) E,(n).

The output error of the network for a given input vector x, is defined as

NM
1 2
Byp(n) = 5 Y (tin — outii(n))’, (A.9)
j=1
forallp=1,2, ..., Pandn=1, 2, .... The quantity ¢;, represents the desired

output of neuron j in the output layer when the input to the network is x,. If
the values of t;, for all output neurons are assembled into a vector, this vector is
referred to as the training vector t,, where t, = [t1, tsp --- tyum,|T. Hence, a given
input vector x; has a corresponding training vector t,. Together, these two vectors

make up a training pair. As a result, to train a network to learn P input-output



»
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relationships requires P training pairs, which are called the training set.® Therefore,
E,(n) represents the sum square error of the output of the network with respect to
a particular training pair p, whereas E(n) represents the sum square error of the
output of the network over all training pairs. The following two sections will show
that the Backpropagation algorithm performs a gradient descent in E(n); that is
the overall network output error will be minimized with respect to the weights in

the network.

In order to show that the Backpropagation algorithm (generalized delta rule)
minimizes the output error of the network with respect to the network weights in
a sum square sense, it must be shown that the derivative of the overall network
error E(n) is proportional to the weight changes specified by the Backpropagation
algorithm of Equation (A.4), with a negative coeflicient of proportionality. Since

SE(n 0 (&
81155,) - dw}; (ZEP(n))
OE,(n
325

minimizing E,(n) minimizes Zp_l p(n) which is equivalent to minimizing E(n).

Therefore, it must be shown that

OE,(n)

l — O ————————
pr;j(n) o awl (n)

®In fact, more than P training pairs are required. After the network has learnt the P input-
output relationships, the training is usually validated using another set of V training pairs, %,
and vy, v =1, 2, ..., V, which is referred to as the validation set.
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forall p =1, 2, ..., P. Due to the fact that hidden layer neurons do not
obtain direct feedback of the output error E,(n), two measures of the instantaneous
squared error derivative 4 result: one for the output layer neurons, and one for the

hidden layer neurons.

A.2.2.1 ¢ for an Output Layer Neuron

To show? that the Backpropagation algorithm minimizes the network output error
with respect to the weights that terminate on the output layer neurons, that is
I = M, we note that when attempting to calculate ‘,%;g, the error E, does not
depend directly on the weights w¥. Invoking the chain rule results in

OE, _ OE, Jout}
dwM "~ Goutk fwM -

This gives an expression for the change in network error with respect to changes
in the weights terminating on neurons in the output layer, in terms of the change
in network error with respect to changes in the output of neurons in the output
layer and the change of the output of neurons in the output layer with respect to
changes in the weights terminating on neurons in the output layer. Unfortunately,
out} does not depend directly on wgi‘ , but it does depend directly on netﬁ . Using
the chain rule once more gives

3outj“,f _ 3outj‘;f 6netfp’

M = M 5, M
0w} Onetl, dw;

9For clarity, in this and the following section the dependence of the variables on the iteration
step n will be suppressed. Since the form of the Backpropagation learning rule does not depend
on the iteration step n, there is no loss of generality.
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and so

i =0,1,..., NM1
0F, _ 0B, dmtionet |
M = M J = b 7 "3
Owl  Oout)d Onetd Jwlf
p =12 ..,P (A.10)

Using Equation (A.9) the first partial derivative on the right hand side of Equation
(A.10) can be calculated as

oE o
acrut?-‘g - 3autM( Z(t — out; ))

j=t

= 5@t — outt)

= —(tjp - m"t::)v
forj=1,2, ..., NMandp=1, 2, ..., P. Using Equation (A.1) and the ex-

pression for out} in Equation (A.2) the second partial derivative can be calculated

as

HoutM 8
P = 5 tM (F(net )

Bnet%
7] M\ 1
—_ 1 ~net’
3net§g (( te ’p) )

e"“‘t}‘:

(1 + e‘““%)2

M
= outfg(l — out;,

= F'(nety),
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forj=1,2 ..., NMandp=1, 2, ..., P, and where the following relationships

were used

outdd = F(net})

_ 1
14 et
(outlf)™ = (L+e™),
1—outj“§ I
e = e,
outjp

As mentioned in Section A.1.2, it can be seen that for F’ to exist, F must be
continuously differentiable. This contributed to the reasons why the Backpropaga-
tion algorithm was not developed earlier. In the 1960’s, almost all neural network
research dealt with neurons with the threshold activation function of Figure A.3.

which is not continuously differentiable.

Lastly, using the expression for net; in Equation (A.2), and the definitions of
Equation (A.3), the third partial derivative of Equation (A.10) can be calculated

as
OnetM b Ly M
— - M
o (Z wijoutiy " +we;
i 7\ k=0
M M
_ a‘w;j wtl}{-l + 3100:»
= —awgf p awf’{
= 1+ (1 —-Z2()) (out ' -1),
fori=0,1, ..., NM' =12 ..., NM andp=1, 2, ..., P. Bringing

the expressions for the partial derivatives of the right hand side of Equation (A.10)
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together gives

9E, _
owl¥ -

~(tip ~ out} ) F'(netd) [1 + (1 — Z(3)) (outd* — 1)]

P

i = 0,1,..., NM-1

Now. for convenience, define
M _ M M
ij = (tjp - Outjp)F’(netjp),
which is equivalent to

OB, dmttt O,

T aout)}g 3net% = _anet% !

and is called the instantaneous squared error derivative, for neurons in the output

layer, as was introduced in Section A.2.1. This gives

= 6 [1+(1~Z() (owt¥* -1)],

or

B[+ (1= 56) (outht ™ —1)] =~ 2,

iJ
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fori=0, 1, ..., NM-1 Therefore, this shows that

dE
Awd x ——L,
I 3'wff

and so finally
Aywl =08 [1+ (1 —E@)) (outi ™ - 1)] j = 1,2, ..., NM

where 7 is a constant coefficient of proportionality.

This completes the verification of the Backpropagation algorithm for the neu-
rons in the output layer, that is { = M. The next section will briefly repeat this
verification for the remainder of the neurons in the network, namely those in hidden

layers [ =1, 2, ..., M —1.

A.2.2.2 ¢ for a Hidden Layer Neuron

The verification of the Backpropagation algorithm for the hidden layer neurons is

similar to that for the output layer neurons. Reconsider the equation

OE,  QE, Qout}
dw} - dout w) ’

which gives an expression for the change in network error with respect to changes
in the weights terminating on the neurons in the output layer. Also, refer to neuron

one in the hidden layer of Figure A.4. That is, consider the second to last layer in
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the network, the last hidden layer, layer = M — 1. The error E, does not depend
directly on w (w in Figure A.4) since the weights wM ~1 that terminate on
the hidden layer are not connected to the output layer. However, E, does depend
directly on mzt%‘l, j=1,2, ..., NM-1 since the outputs of the hidden layer

neurons affect the outputs of the network, namely out‘g,, k=1,2,...., N¥.

Rewriting the above partial differential equation for weights in the last hidden

layer gives

dE, dE, Odout¥
Jwl~! - dout¥ 6w31"1
JE, 3out§§ 3autg"l
dout¥ amztfz"l Bwf-;-“l
dE, dout)!

M-1 M-1 -
6mmtjp ow::

The partial derivative 5.%%7 represents the change in error given by a change in
the output of neuron j in the hidden layer, and this output is affected by changes to
the weights that neuron j terminates. That is, changes in wM ~1 will affect o'utM .
But since out;V -1 affects the net values to, and thus the out values from, every
neuron in the ontput layer through the weights w), it can be seen that "‘—ﬁ:f
must take into consideration all of the neurons in the output layer. Expressing tlus

mathematically,
i OnetM
=Y et 5ot
tM = < Onet Jout}t 1
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Substituting this into the above equation gives

0B, _ "Z" 8E, Onetld doutM~t
w1t Onet) doutM—1 w1
NM NM-1 M- M-
_ Z Z w out _1 +w aoutjp 1 anetjp t
- 3netM 3outM -1 nk ok Bnetg'l awff -1
= z 6net1;‘ wi F'(nethy ") [L + (1 ~ 2(3)) (out¥ > - 1)],
where7 =0, 1, ..., NM~2 and where some relations of Section A.2.2.1 were used

to arrive at the last line.

Now notice that the outputs o'ut?z ~1 of the hidden layer depend directly on the
output of the previous hidden layer au.t =2 through the weights wM ~1. Therefore.
through the weights a recursive relationship can be formed. In the general case, for
hidden layer {

Ni+t
2 5n el et [1+ (1~ 56) (ot - 1)
( T = 01 ]_’ __.’Nl—l
Ji= L2, N (A.11)
| = M_17M~27---,2,1
| P = 1,2 ..., P

In Section A.2.2.1, the definition for the instantaneous squared error derivative

of neurons in the output layer, é¥4 = — 2k, , was made. In a similar vein, &
P Bnet]l ip
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the instantaneous squared error derivative for neurons in the hidden layers can be

defined as
6l~ _ BEP

» 3net§p )

Thus, Equation (A.11) becomes

t+1
OE p , . )
ot = = Y Sl F(netl,) [1+ (1~ 26)) (outly ~ 1)],
i k=1
fori=1, 2, ..., N1 Notice that
J‘. = aEp - GE,, 3outfw
® Onet;,  Oout},Onet)’

so that a recursive equation in é can be formed by

Nl-{-l
o _ 41, 41 pr( ol
0 = _s_ Oy Wi Fl(net;,).
k=1

Observing this last equation, it can be seen that the instantaneous squared
error derivatives for neurons in a hidden layer depend on the instantaneous squared
error derivative for neurons in subsequent hidden layers, and ultimately of the
instantaneous squared error derivatives for neurons in the output layer. To conclude
the verification, as in Section A.2.2.1,

2E,

l =
Ow;

=&, [1+ (1 - 2@)) (out;* - 1)],
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or
p— i pa— aE
6;-,, 1+ -Z23) (outf-pl ~1)] = ‘—aw'-p-
i
fori=1, 2, ..., N*! and including a constant coefficient of proportionality, 7,

completes the verification,

i = Oa "°°7Nl-1

—_ - _ i =12 ..., N
prf-j-—:ng-p [1—{-(1-—.:.(1.)) (a'utf—pl—l)] ¢
l = M-1, M-2,...,21

p = 1,2, ..., P






Appendix B

Neural Network Training
Methodology

This appendix summarizes the methodology used to train the three neural networks
that implement the primitive classifier of Chapter 2. The method used to determine
the number of hidden layers and the number of neurons in each hidden layer is
heuristic, and strongly based on experience gained from training smaller sized neural
networks than those eventually used. However, some guidance is provided in the
literature, for example [Guy91]. The reason for starting with relatively small neural
networks is that, besides the obvious reason of requiring less time to train, it is
desirable in order to avoid problems of overtraining. Hence, the smaller the neural
network the better.

Unlike the usual neural network training methods where the training vectors can
be divided into a training set and a validation set, this cannot be performed here.

Once the neural network is trained so that it has a sufficiently low classification

237
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error rate on its training vectors, it cannot be presented with more PT vectors,
for example, since all the possible PT training vectors are specified in the training
set. This is due to the fact the the primitive classifier is designed to detect traffic
primitives of traffic streams from the probabilistic partition, as discussed in Section
2.1.2. Hence, for the three neural networks introduced in Section 2.2, they are
verified using the training set in Section 2.3, but the real test is how they perform
with unknown, probabilistic sources in Section 2.4.

The following section gives some results of attempting to train a few neural
networks, from which experience is gained with the training problem at hand. The
results of training neural networks of various sizes is provided in Table B.1. Section
B.2 develops a heuristic based on this experience which can be used to estimate the
number of neurons required for convergence in the larger neural networks which are
required to learn the traffic classification problem. Finally, Section B.3 concludes
this appendix with Table B.2, which shows the computer time involved in training

the three neural networks of Chapter 2.

B.1 Some Training Examples

In the following examples, the number of inputs and cutputs of the neural network
are ten and nine, respectively, and the training vectors given in Tables C.1-C.4
of Appendix C are used. In addition, one of the criterion for deciding if a neural
network is trained sufficiently is the value of the Mean Squared Error (MSE) over
its training set. The expression for calculating the MSE in Backpropagation neural
networks is given by Equation (A.9) in Section A.2.2 of Appendix A. Another test
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of convergence is the number of incorrect classification that the neural network
makes over its training and validation sets.

First, a small neural network is trained, with one hidden layer. As can be seen
from Figure B.1, this 10-10-9 neural network does not even begin to converge.

After 5000 presentations of the training set, the neural network misclassifies 71% of
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Figure B.1: Mean Squared Error for the 10~10-9 Neural Network

its training vectors. In order to increase the ability of the neural network to learn,
more neurons are added to the hidden layer. One training result in this process.
Figure B.2, shows the MSE of training a 10-50-9 neural network. In this case the
MSE has been reduced from its initial level, but as in Figure B.1 the training bogs
down. However, after 5000 presentations the error rate is reduced to 11%, with

approximately the same level of MSE. This shows the reasoning of adding more
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Figure B.2: Mean Squared Error for the 10-50-9 Neural Network

neurons to a neural network in order to increase its learning ability. Nonetheless.

this error rate is still too high.

After further experimentation, it is discovered that an additional hidden layer
is required for the neural network to converge. For example, Figure B.3 shows the
training performance of the 10-10~10-9 neural network. As can be seen, the same
training point is reached as with the two previous cases. As well, the classification
error has increased to 39%. However, this is not surprising when compared to
the 10-50-9 neural network, for it is considerably larger. Finally, if the number
of neurons are increased drastically, as with the 10-100-100-9 neural network, the
training results of which are shown in Figure B.4, the MSE breaks through the

barrier and the neural network trains successfully, that is 0% classification error of
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Figure B.3: Mean Squared Error for the 10-10-10-9 Neural Network

the training set. As the figure shows, this occurs in five times fewer presentations
of the training vectors than in the three previous cases.

These results and others are summarized in Table B.1. It tabulates the total
number synapse weights and biases in a neural network of the given size, the ratio
of this number to the number of training vectors in the training set, and finally the
classification error after training is thought to be complete. For the first portion
of the table giving the results for ten input neural networks. there is 435 training
vectors. For the second and last portions, for fifteen and twenty input neural
networks, there are 2,004 and 5,996 training vectors, respectively. It is from the
first third of data in the table that a heuristic is developed to help determine the

number of hidden layer neurons for larger neural networks.
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Table B.1: Training Results for Various Sizes of Neural Network

e

Neural | Number of Weights | Weights and Biases | Classification
Network and Biases per Training Vector | Error (%)
10-3-9 69 0.16 71.00
10-5-9 109 0.25 83.00
10-10-9 209 0.48 58.00
10-20-9 409 0.94 73.00
10-25-9 509 1.17 25.00
10-30-9 609 1.40 18.00
10-40-9 809 1.86 13.00
10-50-9 1009 2.32 11.00
10-80-9 1609 3.70 27.00
10-5-5-9 139 0.32 59.00
10-5-10-9 214 0.49 87.00
10-5-15-9 289 0.66 64.00
10-5-20-9 364 0.84 64.00
10-10-5-9 219 0.50 48.00
10-10-10-9 319 0.73 39.00
10-10-15-9 419 0.96 43.00
10-10-20-9 519 1.19 41.00
10-15-5-9 299 0.69 50.00
10-15-10-9 424 0.97 52.00
10-15-15-9 549 1.26 32.00

continued on next page
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continued from previous page

Neural Number of Weights | Weights and Biases | Classification

Network and Biases per Training Vector | Error (%)
10-15-20-9 674 1.55 18.00
10-18-15-9 627 1.44 12.00
10-20-5-9 379 0.87 39.00
10-20-10-9 529 1.22 21.00
10-20-15-9 679 1.56 12.00
10-20-20-9 829 1.91 12.00
10-22-22-9 955 2.19 2.53 |
10-35-35-9 1969 4.53 0.23
10-40-40-9 2449 5.63 0.23
10-50-50-9 3559 8.18 0.23
10-100-100-9 12109 27.84 0.00
15-50-50-10 3860 1.93 5.64
15-80-80-10 8570 4.28 0.00
15-100-100-10 12710 6.34 0.00
20-145-145-11 25821 4.26 0.63
20-200-200-11 46611 7.77 0.17

B.2 A Neuron Estimating Heuristic

Since much of the literature, for example [BH89, Hay94|, attempts to relate the

size of the neural network to the number of training vectors required to a specified
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classification error level,! the same type of reasoning is used in the heuristic pre-
sented next. Consider the entry for the 10~-35-35-9 neural network. This is the
first ten input two hidden layer neural network in which training is successful. The
ratio of the number of synapse weights and biases in the neural network (its size)
to the number of training vectors is enumerated, simply, by counting the weights
and biases and dividing by the number of training vectors. Progressing from input

layer to output layer,

10-354+35+352+35+35-9+9
435

~ 4.53, (B.1)

with units of “weights and biases per training vector.” Now, since this size neural
network converges with an acceptable classification error, if this ratio of network
size to training vectors is maintained, it stands to reason that larger neural networks
should also converge. Thus, the following quadratic equation is formed in estimat-
ing the number of neurons required in a fifteen input, two hidden layer and ten
output neural network with 2,004 training vectors, where z represents the number

of neurons sought.

15z + z + 2 + z + 10z + 10 ~ 4.53 - 2,004 (B.2)

2? + 27z — 9,060.98 ~ 0 (B.3)

!Unfortunately, these “rules of thumb” do not help in this particular situation, due to assump-
tions which do not hold.
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resulting in the solutions,

z; = 82.64 and z3 = —109.64 (B.4)

This leads one to expect that a 15-80-80-10 neural network presented with 2,004
training vectors based on the traffic primitives of Section 2.1.3 will converge, and
as show by the second portion of Table B.1, it does. Two other training results are

shown in the table for fifteen input neural networks.

Using a similar strategy for estimating the number of neurons required in a
twenty input, two hidden layer and eleven output neural network, with 5,996 train-

ing vectors gives

20z +z+z°+z+ 11z + 11 =~ 4.53 - 5,996 (B.5)

z? + 33z — 27,129.51 = 0 (B.6)

resulting in the solutions,

r3=149.03 and 1z, = —182.03 (B.7)

This leads one to expected that a 20-180-180-11 neural network would converge.
However, from experience with the fifteen input neural networks, and considering
the vast amount of time required to train a neural network of this size, the 20-145-
145-11 neural network is trained. The results for this and a 20-200-200-11 neural

network are stated in the third portion of Table B.1.
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One may ask why the number of neurons in each hidden layer is the same. As
can be seen in Table B.1, for the smaller networks some experimentation on varying
this number is performed. However, the first two hidden layer neural network to
converge contained the same number of neurons in each layer, and since this allows
the quadratic expressions above, the convention was adopted. As will be seen in the
next section, experiments in varying the number of neurons in the hidden layers of

larger sized neural networks becomes extremely costly in terms of computer time.

B.3 The Training Times

The training times of only the three neural networks studied are given in Table B.2.
The computer time is measured on a lightly loaded®* Sun Sparc 20/71, operating
in multi-user mode. These times are based on 3,000 presentations of the training

vectors to their respective neural network. As can be seen for the two smaller neural

Table B.2: Training Times for the Three Neural Networks Studied

Computer Time
Neural Network Seconds | Hours | Days
10-35-35-9 8,757 2434 0.10
15-80-80-10 209,460 | 58.18 | 2.42
20-200-200-11 | 3,312,660 | 920.18 | 38.34

networks, the training times are tolerable. However, for the larger neural network,

%Lightly loaded should be taken to mean that the SunOS 4.1.3 command rup returns a load
average of 1.0 for most of the training session. The training jobs run with a nice level of 19.
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due to the exponential increase of weights with size, the training times prohibit
much study of the 20 input case.

As a matter of interest, if a twenty-five input neural network is to be trained, the
corresponding W = 25 would define 14,122 training vectors, which would require
fourteen neural network outputs. Using the heuristic of the previous section, this
implies that approximately 233 neurons are required. If this information is used to
layout a 25-230-230-14 neural network, then the training time can be estimated
to be a minimum of 9,480,205 seconds, or 109.72 days if the training converges

within 3,000 training epochs.



Appendix C

Training Vectors and Primitive

Classification Numbers

This appendix contains the training vectors for the 10~-35-35-9 neural network.
Tables C.1-C.4 show the training vectors for the DG, CBR, PT and CBR-RC traffic
primitives, respectfully. Table C.5 summarizes the classifications performed by this
primitive classifier, which is a useful reference when considering the output of the
neural network. In addition, Tables C.6 and C.7 gives the primitive classification
numbers for the primitive classifier based on the 15-80-80-10 and 20-200-200-11
neural networks, respectively.

The training vectors for the DG, CBR and PT traffic primitives are fairly
straight forward, since they result in only one traffic classification each. In the
case of DG primitives, the output desired from the neural network is the vector

“000000000,” using the notation introduced in Section 1.6.4.
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Table C.1: Degenerate Training Vectors (11) for the 10-35-35-9 Neural Network

APPENDIX C. TRAINING VECTORS AND PRIMITIVE CLASS...

Primitive Input Output Primitive Input Output
DG 1000000000 000000000 DG 0100000000 000000000
DG 0010000000 | 000QO00Q0000 DG 0001000000 | 000000000
DG 0000100000 (000000000 DG 0000010000 | 000000000
DG 0000001000 | 000000000 DG 0000000100 | 000000000
DG 0000000010 | 0000000O0O DG 0000000001 | 000000000
| DG 0000000000 )| 000000000

The classification desired for the CBR. primitives is “010000000.”

Table C.2: Constant Bit Rate Training Vectors (25) for the 10-35-35-9 Neural

Network

mPMtive

Input

Output

Primitive

Input

Output

CBR

1111111111

10000000

CBR

1010101010

010000000

CBR

0101010101

010000000

CBR

1001001001

010000000

CBR

0100100100

010000000

CBR

0010010010

010000000

CBR

1000100010

010000000

0100010001

010000000

CBR

0010001000

010000000

CBR

0001000100

010000000

CBR

1000010000

010000000

CBR

0100001000

010000000

CBR

0010000100

010000000

CBR

0001000010

010000000

CBR

0000100001

010000000

1000001000

010000000

CBR

0100000100

010000000

CBR

0010000010

010000000

CBR

0001000001

010000000

CBR

1000000100

010000000

CBR

0100000010

010000000

CBR

0010000001

010000000

CBR

L00000Q0010

0106000000

CBR

0100000001

010000000

CBR

1000000001

010000000

et ————————————————————————————
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The classification desired for the PT primitives is “100000000.”
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Table C.3: Packet Train Training Vectors (156) for the 10-35-35-9 Neural Network

Primitive

Input

Output

Primitive

Input

Output

PT

1101101101

100000000

PT

1011011011

100000000

PT

0110110110

100000000

PT

1100110011

100000000

PT

1001100110

L00000000

PT

0011001100

100000000

PT

0110011001

100000¢a00

PT

1100011000

100000000

PT

1000110001

L00000000

PT

0001100011

100000uU0U

PT

0011000110

100000000

PT

0110001100

100000uo00

PT

1100001100

100000000

PT

1000011000

100000000

PT

0QQ0110000

100000000

PT

0001100001

100000000

PT

0011000011

100000000

PT

0110000110

100000000

PT

1100000110

100000000

PT

1000001100

100000000

PT

goo0o0011000

100000000

PT

0001100000

100000000

PT

0011000001

100000000

PT

0110000011

100000000

PT

1100000011

100000000

PT

1000000110

100000000

PT

0000001100

100000000

PT

0011000000

100000000

PT

0110000001

100000000

PT

1100000001

100000000

PT

1000000011

100000000

PT

0000QOQOC11l0

100000000

PT

0110000000

100000000

PT

1100000000

100000000

PT

0000000011

100000000

PT

1110111011

100000000

PT

1101110111

100000000

PT

10111011210

100000000

PT

0111011101

100000000

PT

1110011100

100000000

PT

1100111001

100000000

PT

1001110011

100000000

PT

0011100111

100000000

PT

0111001110

1000000060

PT

1110001110

100000000

PT

1100011100

100000000

PT

1000111000

100000000

PT

0001110001

100000000

PT

0011100011

100000000

PT

0111000111

100000000

PT

1110000111

100000000

PT

1100001110

100000000

PT

1000011100

1000400000

PT

0000111000

100000000

PT

0001110000

100000000

PT

0011100001

100000000

continued on next page
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continued from previous page

Primitive

Input

Output

Primitive

Input

Output

PT

0111110001

100000000

PT

1111100001

100000000

PT

1000011111

100000000

PT

0000111110

100000000

PT

0111110000

100000000

PT

1111100000

100000000

PT

Go00OO0Q01l1111

100000000

PT

1111110111

1006000000

PT

1110111111

100000000

PT

1101111110

100000000

PT

1011111101

100000000

PT

0111111011

100000000

PT

1111110011

100000000

PT

1100111111

100000000

PT

1001111110

100000000

PT

0011111100

100000000

PT

gi111111001

100000000

PT

1111110001

100000000

PT

1000111111

100000000

PT

0001111110

100000000

PT

0111111000

100000000

PT

1111110000

100000000

PT

0000111111

1000060000

PT

1111111011

100000000

PT

1101111111

100000000

1011111110

100000000

PT

0Ol111111101

100000000

PT

1111111001

100000000

PT

1001111111

100000000

PT

ooO11111110

100000000

PT

ogtitri11110a0

100000000

PT

1111111000

100000000

PT

oo0O0O1111111

100000000

PT

1111111101

100000000

PT

1011111111

100000000

PT

0111111110

100000000

PT

1111111100

100000000

PT

0011111111

100000000

PT

1111111110

100000000

s —————————

PT

0111111111

100000000

For the case of CBR-RC traffic primitives, instead of all the training vectors

returning the same classification, a group of CBR-RC morphisms return individual

classifications. For example, the first three rows of Table C.4 show six inputs to

the neural network which correspond to the situation which occurs when a source

transmitting at the full link rate C begins to transmit at half the link rate, $. This

transition is represented by the RC C — % traflic primitive, and given by a neural

network output of “110000001.”
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Table C.4: CBR Rate Change Training Vectors (243) for the 10~35-35-9 Neural

Network
Primitive Input Output Primitive Input Output
RCC—+$ |1111111010]110000001|RCC—£ |1111110101[110000001
RCC—+$ | 1111101010|110000001 | RCC~<|1111010101|110000001
RCC—+$ | 1110101010 110000001 | RCC—~£ {1101010101{110000001
RCC—+$ | 1111110010 110000010 |RCC—-£{1111100100{110000010
RCC—+§ [ 1111001001 |110000010{RCC—+£ [1110010010(110000010
RCC—+$ | 1100100100f110000010 | RCC—~$ |1111110100(110000010
RCC—+$ | 1111101001 110000010 | RCC—$|1111010010({110000010
RCC—+$ | 1110100100 |110000010 | RCC—-£ |1101001001/)110000010
RCC—+$ | 1010010010 110000010 | RCC~»$ | 1111100010|110000011
RCC—+£ | 1111000100[ 110000011 |RCC—<[1110001000[110000011
RCC—+% | 1100010001 (110000011 |RCC—-<[1111101000|110000011
RCC—+$ | 1111010001 |110000011|RCC—+% (1110100010 (110000011
RCC—+% | 1101000100 110000011 |RCC~£ |{1010001000|110000011
RCC—+% | 1111001000 110000011 | RCC—< 1110010001 [110000011
RCC—< { 1100100010 110000011 |RCC—+% |10010003:00 1163538011
RCC—< |1111000010(110000100|RCC—£ [1110000100{110000100
RCC—+$ {1100001000| 110000100 RCC—-£ |1111010000{110000100
RCC—+% (1110100001 [110000100} RCC—+£ |1101000010|110000100
RCC—+< (1010000100 110000100 RCC—+£ |1110010000(110000100
RCC—+< | 1100100001 110000100 | RCC—+£ [1001000010[110000100
RCC—~£ | 1100010000|110000100 | RCC—+< |1000100001{110000100
RCC—~+£ 11110000010 110000101 | RCC £ |1100000100)110000101
RCC—+< | 1110100000 110000201 |RCC—+$ /1101000001 |110000101
RCC—+< [ 1010000010 110000101 | RCC—+£ | 1100100000 |110000101
RCC—+< | 1001000001 110000101 |RCC—+£ [1000100000[110000101
RCC—+< | 1100000010 110000110 | RCC—+£ [1101000000 (110000110
RCC—+% | 1010000001 110000110 RCC—+$ [1001000000|110000110
RCC—+€ | 1010000000} 110000111 |RC$>5C|1010101011 110001010
RC$£—~+C (0101010111} 110001010(RC$3C|1010101111[110001010
continued on next page
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Primitive Input Output Primitive Input Output

RCS—+£/1001001010/110010011|RCE~+< | 0010010101 110010011
RC$—+£/0100101010/110010011|RCS < |[1001010101] 110010011
RC$—+£/0010101010[110010011|RCS~+< |1001001000] 110010011
RC$—+$ /0010010001 |110010011|RCE+<]|1001000101] 110010011
RCS—+£ 10010001010 110010011[RCE < | 0100010101 110010011
RCE—~+§ |1000101010]110010011|RCE~+< |0001010101 | 110010011
RC$—+C |0100100111]110010100( RCS—+C | 1001001111 |110010100
RC$—+C |0010011111{110010100| RCS~C [0100111111] 110010100
RC$—+C 11001001011110010100f{ RCE~C [0010010111 110010100
RC§—+C |0100101111110010100[RCE~+C 1001011111 |110010100
RC$—+C |0010111111110010100(RCE < [1001001100| 110010101
RC S —+$ |0010011000/110010101|RCS < | 0100110001 110010101
RCE—+$ 1001100010 (110010101 |RCS € (0011000100 110010101
RC £+ /0010010100[110010101|RCE~E|{0100101000] 110010101
RCS—+$ 11001010001 110010101 |RCE~< [0010100010| 110010101
RC$ < ]0010010000]110010101|{RCE < [0000010001 110010101
RC$—~+ ¢ 0100110000 110010110/ RCE < |1001100001) 110010110
RC$—+£ 10011000010 110010110|RCE~< |1001010000( 110010110
RC$ ¢ (0010100001 ]110010110|RCE-<|1001100000] 110010111
RC £ ~£]0010100000]110010111|RCS~E 0001000101 |110011100
RC £ —+£10100010100]110011100|/RCS$—+< [1000101001 (110011100
RC$—~§]0001010010)110011100| RCS < [0010100100| 110011100
RC$—~+$]0010001001]110011100|RCS < (1000100011 |110011100
RC$—+</0001000110{110011100|RCE~+E (0010001100 110011100
RCS—+§ 0100011001 110011100 RCS < |1000110010) 110011100
RC S~ < |0001100100| 110011100 RC$+$|0011001001 110011100
RCS—+$ 10100001001 |110011100|RCS S |1000010010] 110011100
RCS—+§ |0000100100110012100|RCE S| 1000001001] 110011100
RC$—+£ 0000010010 110011100 RC$—+$ 1000100101 110011101
RC$—+$ /0001001010 110011101 RC$—+$ 0010001101 (110011101
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Primitive Input Output Primitive Input Output
RC 0100011010}110011101 |RC$—+£ |1000110101 110011101
RC 0001101010[110011101 | RC$+£ 0010000101 110011101

0100001010 110011101 | RC£ £ 11000010101 110011101

3

=
Q

0000101010 110011101 | RC£5C | 0010001011 110011110

0100010111 /110011110 RCE5Cc 1000101111 |110011110

a

0001011111 [{110011110| RC£-C 0001000111 110011110

a

0010001111)110011110| RC£5C |{0100011111 110011110

x
Q

3
15}
d

Q

1000100111 }11001111¢0

a

0100010011 [110011110

a

1000101000 11001111t

8

0001001111 )3110011110

3

0001001000 1100121111

a

0001010000} 110011111

3

1000110000 | 110011111

8

0100011000 | 110011111

=
(o}

0000101000 | 110100101

a

1000010100 ) 120100101

3

0001000011 110100101

a

0001010001 | 110100101

=
Q

0100001100 |1110100101

8

0010000110 (110100101

=
(o}

0001100010 110100101

=
Q

0000110001 110100101

=R
Q

0000001001 | 110200110 0000101001 110100110

a

0000110010} 110100110

A

1000011001 }110100110

g

1000001010 1101001111

8

0100000101 }110100111

3

0000100101 | 110100111

a

0000010101 | 110100111

=
Q

1000011010 110Q0100111

a

0100001101 |110100111

8

0010000111 }]110101000

a

Q000110101 110100111

a

0000100011 |r10L010Q00

-
Q

0100001111}110101000

8

0000100111 |1101l01000

3

1000010011 110101000

-7/
o}

1000010111 §110101000

a

0100001011 | 110101000

w
Q

0000010100 | 110101110

o}
Q

00001011111110101000

3

0100000110 ) 110101110

a

0010000011 110101110

0000011001 )110110000 | RC 1000001101 )110110001

3

0000011010 110110001 | RC 0000010011 110110010

3

0000010311 };110110010

a

1000001011 }120110010; RC

S IOV T A R R IR T I A I T A P A (VI (U PR A A A A VR U O 1O T I I A T I I I
Q[Q phlwinf=in]QjaQ Q] aq [sasiasinisa jeio el sio o fso o lsalEa Q1 Q ] o Q [en sa ea sia

S0 (210 [ala {20 {ala (20 [alq fala [@la [aln fol [0 (@l (o [an (el [an [=n el [an (sia (o |
A QIQ MA@l Q| Q1 Q{Q [ s [sia feln [ula [sa (a0 [0 =0 [@n e en

AL RN RN AR R R R N R R AR NN !

1000000101 | 110110111

= =
(o) o)
2(q) [alq {210 {ola [2(0 {elq [wla [sio [aln jula (ala jala juin (oo Joln ein j@ia @0 jeia jaia (= [a)n ]s)q &0 |20 =0 =10 [*10 |=1a |0

0100000111 |110110010 | RC

continued on next page




258 APPENDIX C. TRAINING VECTORS AND PRIMITIVE CLASS. ..
continued from previous page

Primitive Input Output Primitive Input Output
RC £ —+£ [0000001010|110110111|RC$+$ 0100000011 110110111
RC£—+< [0000001101|110111011| RC$5C |0000001011110111100
RC<£ < (0000000101{111000000

The output of the primitive classifier is a binary coded classification, and hence
is not in a very human-readable format. Thus, each classification is given a number,
as summarized in Table C.5 for a classifier based on the 10-35-35-9 neural network.
This table is useful when observing the output graphs of the primitive classifier.

Table C.5: Summary of Primitive Classifications, including Classification Number

for the 10-35-35-9 Neural Network

Classification | Corresponding | Classification | Corresponding | Classification | Corresponding
Number Primitive Number Primitive Number Primitive
1| DG 2 | CBR 3|PT
4| RCC € s | RCC—+ < 6| RCC— £
T|RCC»E 8| RCC S 9|RCC— £
0|RCCH £ i1 |RCEHcC 12{RCS €
13|RCESE 4 |RCS £ 15| RCE+ €
16 | RCS € 7 [RC S+ £ 18|RCE~+C
19| RCSE+E 20| RCS+ £ 21{RCE—+ €
22 | RCS =€ 3 |[RCE4E 24 | RC £ »cC
25| RCE S 6| RCE+ & 27| RC £ €
2| RCE £ 29| RCSE o C 30| RCE~ £
31| RCE € 2|RCS € 33| RCEC
34 |[RCE+E 33| RCE £ 36| RC$—=C

3T|RCE £

The traffic primitive classifications are enumerated in Table C.6 for the 15-80-
80-10 neural network based primitive classifier. This table is useful when observing
the output graphs of the classifier.
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Table C.6: Summary of Primitive Classifications, including Classification Number
for the 15-80-80-10 Neural Network

Claassification | Corresponding | Classification | Corresponding | Classification | Corresponding
Number Primitive Number Primitive Number Primitive

1| DG 2 | CBR 3| PT
4|RCC £ 5| RCC—+ £ 6| RCC~ £
7|RCC £ S8|RCC—+ < 9| RCC~ £
10| RCCH £ 11| RCC+ £ 12| RCC~ &
13| RCCH £ 4 |RCCH & 15| RCC—+ &
16 | RC$ »C 17| RCS$ 4 € 18| RCE €
IS RCSE € 20| RCS € 21 | RCS$ - £
22 | RC$4 € 23| RCS » £ 24 | RCS 5 &
%[ RCES S 8 |RC S & 27| RCE~ £
28 | RCESC 29 | RCE - £ 3| RC S £
31 |RCE & 32|RCE S 33| RCS~ &
34| RCE4 S 35 [ RCE 4§ 36| RCSE4 &
37| RC£ 4 < 3| RCESE 3 [RCSHC
40 [RCESE 41 |RC$ S E 42| RCS 4 £
43|/ RCESES 44 |RC S 45| RCSES S
46 | RCE < 47| RCE 4 € 8| RCEE
49 |RCE4C 50 RCS S s1{RCE4 &
52| RCE4 S 53| RCE < s4 | RCS €
55 | RCSE 4 S s6 | RCS 4 € 57| RCES S
58 | RCE 40 59 |RCS + £ 60 | RCS £
61| RCS 4 € 62| RCE 4 & 63 | RCS €
64 | RCE 4 € 65 | RCE 4+ < 66 | RC £ +C
67 | RC$ 5 £ 68| RCE 5 £ 69 | RCS + €
70| RCE- £ 7L |RCS o€ 72| RCS 5 €
73 | RCE 4 £ 74 [RC S »C 75 | RCE €
76 | RC§$+ £ 77| RC§ 4 £ 78 | RCE =+ §
79| RCS £ 80| RC £ ~cC 81| RC &£
82| RCE - £ 83 | RC & ¢ 84 | RCS - £
continued on next page
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Classification | Corresponding | Classification | Corresponding | Classification | Corresponding
Number Primitive Number Primitive Number Primitive
85| RC & ocC 88 |RCE £ 87| RC £+ £
88 | RCE € 89| RC S ~C %0 | RC S+
91 | RCESE 92| RC S ~C 93| RCE+ S

The traffic primitive classifications are enumerated in Table C.7 for the 20-
200-200-11 neural network based primitive classifier. This table is useful when
observing the output graphs of the classifier.

Table C.7: Summary of Primitive Classifications, including Classification Number
for the 20-200-200-11 Neural Network

Classification | Corresponding | Classification | Corresponding | Classification | Corresponding

Number Primitive Number Primitive Number Primitive
1 | DG 2 | CBR 3| PT
4| RCC~ € 5| RCC— £ 6| RCC+ £
7| RCC+ € 8| RCC £ 9| RCC+ £
1| RCC < 11 |RCC =+ £ 12| RCC— &
13| RCCH & 14| RCC— £ 15| RCC o &
8| RCCH & 17| RCC > & 18 RCC—+ &
19| RCCH & 20| RCC—+ & 21| RCS —C
[of [ o} o4 c o} c
22 RC? 3 23 R.C-.:;—}T 24 Rc-z-—b-s—
2| RCSE~ & 26| RC§ + £ 27| RCS =+ §
28| RCS & 22 | RCE+ & 30| RCE + £
[of 24 C [og [of
B RCE S 32]RCE 25 33| RC S = &
(o4 C c [ [ o4 c
34 RC?_’I—.'; 35 RC-._,——»T; 36 RC:_,—-+I—7
7| RCES S | RC S ScC 3[RCE €
40| RCS € 41| RCE S € 42| RCE £
c c o4 c o4 [od
43 303—47 44 RC?—)—S‘ 45 Rc—s-—)ﬁ'
8 [RCEE 47| RC$ 4 & #8|RCS S
c C o} o4 o4 C
49 | RC 5 =+ o 50 RC-S-—)ﬁ 51 | RC 5 = 5
52| RCE € 53] RC$ € 4 | RCSE acC

continued on next page
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Classification | Corresponding | Classification | Corresponding | Classification | Corresponding
Number Primitive Number Primitive Number Primitive
55 | RCS & 56 | RCSE » £ 5T|RCS £
8| RC$ - £ 59| RCS o € 60 | RCS — &
61 [RCS - & 62| RCS o £ 63| RCS ~ &
64 |[RC$ - £ 65 | RCS - & 66 [ RCS 4 &
67| RCE 4 £ 68 [RC £ » £ 69 | RCE ~»C
70 |RCE € 7L|RCE 4 £ 72| RCES £
3|{RCESE 74 |RCE & B|RCES &
76 |RC§$ + £ 7 RCE 4 £ 8| RCE 4+ &
9 |RCE4E 80| RCS o € 81| RCSE 4 €
82 [RCE € 83 [RCEC 84| RCSEH £
85 | RCE £ 88 |RCE+ € 87| RCE 4 &
88 |RCE 4 £ 89 |RCE - £ %0 | RCE4 &
91 |RC S < 92 | RCE < 93| RC$+ £
94 [RC$+ € 5 [RCS$+ § % |RCSEsC
97 [RC$ =+ £ 8 |RCS S 98| RCS+ &
10 [RCE - £ 100 [RCE -+ £ 102{ RC$ 4 €
103 | RC$ € 104 | RCS - € 106 | RCE 4 £
106 | RC § =+ £ 107 | RC§ —+ £ 108 | RCS s
109 | RC £ =+ £ 1o | RCS =+ £ 11 | RC$ - &
1z {RC$ -+ £ 13 |RCS =+ £ 114 | RC§ » £
1s |[RCE 4+ £ e [RCS + < ur [ rRc 4 €
us |Rc <+ £ 119 | RC§ = C 120 | RC$ -+ &
121 fRCE + € 122 [ RCE 4 € 12| RCS 4+ £
124 | RC £ = £ 125 |RCE 4+ £ 126 | RC S =+ £
127 | RC 5 =+ £ 128 | RCS =+ £ 120 | RC £ +C
1BO|RC &= & 131 | RCE =+ € 132 | RCE =+ £
13| RCE £ 13¢ | RC S -+ £ 135 | RC S+ £
136 | RC S =+ £ 137 | RC £ + § 138 | RC S =+ C
139 [RC S+ £ 140 | RC S = § 11 | RCE - €

continued on next page
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Classification | Corresponding | Classification | Corresponding { Classification | Corresponding
Number Primitive Number Primitive Number Primitive

142 |RC S > € 43 [RCE -+ £ 144 |RCE S €
145 [RC S+ £ 146 | RCE =+C 147 |[RC &+ £
148 | RCE—+ € 149 [ RC £ =+ £ 150 | RCE S
151 |RC S —+ € 152 | RC S+ £ 153 | RC§ ~»C
154 | RC & —+ & 155 | RCE - £ 156 | RCE » &
157 | RC £ -+ £ 158 | RCE + £ 159 | RC E =+ C
160 | RCE - & 161 | RCE + £ 162 | RC £ ~+ €
163 | RC S -+ £ 164 [ RCE —~C 165 | RC & =+ £
166 | RC & —+ £ 167 | RC & + £ 168 | RC £ ~+C
169 | RC &+ £ 170 { RC & —+ & 171 { RC & = C
12 RCE 4 &
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