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Abstract 

 Rapid thermal annealing (RTA) is a low thermal budget high throughput method of crystallizing 

hydrogenated amorphous (a-Si:H) silicon films. This thesis had three principal goals: 1) to fabricate 

heterojunction solar cells by PECVD deposition of n-type a-Si:H without using an intrinsic a-Si:H buffer 

layer, 2) to use low thermal budget RTA to form highly crystalline emitters with sufficient lateral 

conductivity to eliminate the transparent conducting oxide, and 3) to investigate alternative 

heterojunction interface passivation layers such as silicon nitride which are suitable for high 

temperature processing. Thin a-Si:H films deposited on silicon wafer substrates were annealed by RTA at 

temperatures from 500oC to 1000oC. The crystalline emitter layers were characterized by transmission 

electron microscopy, Raman, UV-reflectance, ellipsometry, and scanning electron microscopy. Electrical 

characterization was performed by Hall Effect and temperature dependent current-voltage 

measurements. The RTA crystallization process was epitaxial, but the resulting films had a large enough 

defect density that their UV-reflectance and ellipsometry dielectric function curves were very similar to 

those of nanocrystalline silicon. However, as the RTA temperature was increased the quality of the 

epitaxial films greatly improved approaching that of bulk crystalline silicon. Preliminary simulations were 

performed approximating the epitaxial films as nanocrystalline material, and comparison was made with 

defect-free epitaxial and a-Si:H /c-Si heterojunction cells. Basic solar cells were fabricated on polished 

silicon wafers. Cells were analyzed by dark current-voltage, external and internal quantum efficiency, 

solar simulator, and spreading resistance profiling. Phosphorous diffusion at RTA temperatures above 

750oC reduced cell photocurrent. A cell efficiency of 15.1 % on a 1 cm2 sample was achieved for RTA at 

750oC for 5 minutes. The principal factor limiting the open-circuit voltage of the cells was recombination 

in the quasi-neutral region of the silicon wafer. Experimental results showed that the recombination 

velocity at the heterojunction interface was low (between 10 cm/s to 100 cm/s). Advanced simulations 

focused on quantifying the defect density at the heterojunction interface by capacitance spectroscopy 

and electroluminescence. Advanced cell architectures were also studied, and several additional 

processing steps were implemented. Wafers were thinned to reduce recombination losses in the 

absorber, and pyramid textured to decrease reflectance. A thin passivating layer of silicon nitride was 

introduced between the emitter and the substrate. A nanocrystalline p+ layer was deposited on the back 

side to reduce back surface recombination. Although the wide band gap of silicon nitride appeared to 

hinder charge carrier transport, a preliminary cell efficiency of 11.5% was achieved at an annealing time 

of 20 minutes at 1000oC.    
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1.1 Physics and Applications of Photovoltaic Cells 
 

 The first modern photovoltaic solar cell, converting sunlight to electricity with an efficiency of 

6%, was produced in 1954 at Bell Labs where it was discovered that a p-n junction generated a voltage 

in response to illumination. [1] Over the decades, photovoltaic cell efficiency has increased, cost has 

decreased, and cell fabrication has diversified beyond silicon wafer devices exploring thin film 

alternatives made, for example, from hydrogenated amorphous silicon (a-Si:H), polycrystalline silicon, 

CdTe, and CuInGaSe2. Multi-junction concentrator based photovoltaics are also being developed using 

III-V compound semiconductors such as GaInP, GaAs, GaAsP, and AlGaAs. Beyond the inorganic 

semiconductors, dye sensitized solar cells as well as polymeric conjugated semiconductor materials are 

being explored. As photovoltaic technologies have become more mature, the price has been reduced 

due to economies of scale and improvements in manufacturing methods. Between 1998 and 2008, the 

market for photovoltaic modules increased by a factor of 20. Although the cost of a module depends on 

many factors such as geographic location, cost of electricity, and support mechanisms such as feed-in-

tariffs, module costs are approaching 1 US $/W and have been reduced by more than a factor of 10 

since the 1970s. [2] Photovoltaics first found application in remote off-grid areas and in replacing 

batteries in satellites. Since then, its application has expanded to large scale power generation in many 

countries.     
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 The photovoltaic effect occurs when a semiconductor absorbs light. Photons with energy 

greater than the semiconductor bandgap, 𝐸𝑔, transfer their energy to electrons in the valence band 

elevating them to the conduction band. If the semiconductor has a small bandgap, then a large 

wavelength range of photons will be able to create electron hole pairs, producing a large photocurrent 

but a small voltage. If the bandgap is large, the photovoltage will be high but the current low. In an 

isolated semiconductor, an excited electron will eventually recombine with a hole either through the 

emission of a photon or phonon. In order to extract useful electrical energy, excited charge carriers must 

be collected before they recombine, typically by using the charge separating junction of a p-n diode. The 

passage of minority carriers (holes in the n-type region, electrons in the p-type region) prevents 

electron-hole recombination. Minority carrier electrons produced in the p-type region will have a limited 

lifetime in the presence of majority carrier holes, but after having passed across the junction into the n-

type side they become majority carriers with an essentially unlimited lifetime. A similar process occurs 

for minority carrier holes produced in the n-type region. For crystalline silicon the p-n junction is formed, 

for example, by furnace diffusion of dopant impurities or ion implantation creating two layers of 

different conductivity type. Diffusion of charge carriers across the junction occurs until equilibrium is 

established by an internal electric field. This built-in electric field acts as the charge separation 

mechanism and is critical for solar cell operation. Minority carrier electrons produced in the p-type 

region migrate to the junction and are swept across to the n-type side by the internal electric field. 

Similarly, minority carrier holes produced in the n-type region are swept by the field into the p-type 

region. In this way, light energy is absorbed and transferred to charge carriers from which energy is 

extracted as they travel through an external circuit.    

 A typical p-n junction solar cell consists of a front ohmic contact, bus bar and fingers, and a back 

ohmic contact (Figure 1.1). The junction depth is typically around 250 nm. Any photon energy above 𝐸𝑔 

is wasted as heat. Important recombination mechanisms in a solar cell include recombination through 

traps in the bandgap (Shockley-Read-Hall), radiative (band-to-band) recombination, and Auger 

recombination. Interface recombination may also be significant at the interface between two dissimilar 

semiconductors (heterojunction), and at metal-semiconductor contacts at the front or back of the cell. 

[3] As determined by Shockley and Queisser, a single bandgap silicon solar cell reaches a theoretical 

thermodynamic efficiency limit under 1 sun of 29%. [4] This limit is  
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due largely to the inefficient use of photons with energy above or below the bandgap. Photons with 

energy greater than the bandgap produce an electron hole pair whose excess energy is dissipated by 

thermalization (phonon vibrations producing heat within the crystal lattice). Thermalization is a 

spectrum blue loss involving photons of blue and ultraviolet wavelength. At the other end of the 

spectrum there is red loss: infrared photons whose energy is too low to bridge the bandgap to produce 

an electron hole pair. The ideal current-voltage behavior of a cell under illumination is given by equation 

1.1: 

 𝐼 = 𝐼𝑠𝑐 − 𝐼1(𝑒𝑞𝑉/𝑘𝑇 − 1) − 𝐼2(𝑒𝑞𝑉/2𝑘𝑇 − 1)  (1.1) 

The external current is 𝐼 and 𝑉 is the voltage, 𝑇 is the device temperature, 𝑘 is the Boltzmann constant, 

and 𝐼𝑠𝑐 is short-circuit current or light-generated current. [5] The short-circuit current is the sum of 

contributions from the n-type emitter, 𝐼𝑆𝐶𝐸, the depletion region, 𝐼𝑆𝐶𝐷, and the p-type absorber, 𝐼𝑆𝐶𝐴. 

The dark saturation current due to recombination in the quasi-neutral regions is 𝐼1 which is the sum of 

contributions from the emitter (assumed n-type), 𝐼𝐸, and base (assumed p-type), 𝐼𝐵, according to 

equation 1.2. 

 𝐼1 = 𝐼𝐸 + 𝐼𝐵  (1.2)  

The magnitude of  𝐼𝐸 and 𝐼𝐵 is given by equation 1.3 and equation 1.4 and depends on the intrinsic 

carrier concentration, 𝑛𝑖, the dopant concentration in the n-type and p-type regions, 𝑁𝐷/𝐴, the minority 

carrier diffusion coefficient and diffusion lengths for electrons and holes, 𝐷𝑝/𝑛 𝐿𝑝/𝑛, and the thicknesses 

of the depletion regions in the n-type and p-type layers (as shown in Figure 1.1).    

 

Figure 1.1: Schematic of a photovoltaic cell showing light-induced creation of electron hole pairs in the emitter and 
absorber. 
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 𝐼𝐸 = 𝑞𝐴
𝑛𝑖

2

𝑁𝐷

𝐷𝑝

𝐿𝑝
(

𝐷𝑝 𝐿𝑝⁄ 𝑠𝑖𝑛ℎ[(𝑊𝑁−𝑥𝑁) 𝐿𝑝⁄ ]+𝑆𝐹𝑐𝑜𝑠ℎ[(𝑊𝑁−𝑥𝑁) 𝐿𝑝⁄ ]

𝐷𝑝 𝐿𝑝⁄ 𝑐𝑜𝑠ℎ[(𝑊𝑁−𝑥𝑁) 𝐿𝑝⁄ ]+𝑆𝐹𝑠𝑖𝑛ℎ[(𝑊𝑁−𝑥𝑁) 𝐿𝑝⁄ ]
) (1.3)  

 𝐼𝐵 = 𝑞𝐴
𝑛𝑖

2

𝑁𝐴

𝐷𝑛

𝐿𝑛
(

𝐷𝑛 𝐿𝑛⁄ 𝑠𝑖𝑛ℎ[(𝑊𝑃−𝑥𝑃) 𝐿𝑛⁄ ]+𝑆𝐵𝑆𝐹𝑐𝑜𝑠ℎ[(𝑊𝑃−𝑥𝑃) 𝐿𝑛⁄ ]

𝐷𝑛 𝐿𝑛⁄ 𝑐𝑜𝑠ℎ[(𝑊𝑃−𝑥𝑃) 𝐿𝑛⁄ ]+𝑆𝐵𝑆𝐹𝑠𝑖𝑛ℎ[(𝑊𝑃−𝑥𝑃) 𝐿𝑛⁄ ]
) (1.4) 

The component of the dark saturation current due to recombination in the depletion region is given by 

equation 1.5 (where 𝑊𝐷  is the bias-dependent depletion width, 𝐴 is the device area, 𝜏𝐷 is the effective 

lifetime in the depletion region). [6] 

 𝐼2 = 𝑞𝐴
𝑊𝐷𝑛𝑖

𝜏𝐷
   (1.5) 

The equivalent-circuit of a solar cell consists of a constant current source in parallel with two diodes and 

a load resistance. The solar cell figures of merit are the efficiency, 𝜂, Fill Factor, 𝐹𝐹,  open-circuit 

voltage, 𝑉𝑜𝑐, and short-circuit current, 𝐼𝑠𝑐, for a given incident power, 𝑃𝑖𝑛. 

 𝑉𝑜𝑐 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝐼𝑠𝑐

𝐼1
)   (1.6)  

 𝜂 =
𝐹𝐹∙𝐼𝑠𝑐𝑉𝑜𝑐

𝑃𝑖𝑛
   (1.7)   

The fill factor is the power produced at the maximum power point divided by the maximum power 

rectangle as given by 𝐹𝐹 = 𝐼𝑀𝑃𝑉𝑀𝑃 𝐼𝑠𝑐𝑉𝑜𝑐⁄  and shown in Figure 1.2a). One of the factors that affect cell 

efficiency is series resistance of the front contacts (series resistance should be as close to zero as 

possible). Series resistance depends on the impurity concentrations of the n-type and p-type regions and 

the geometric arrangement of the front contact fingers and bus bars. Total series resistance is typically 

around 0.7 Ω or less for n+p cells, and around 0.4 Ω for p+n cells due to the lower resistivity of n-type 

substrates. [3]   
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1.2 Heterojunction Solar Cell State-of-the-Art 

 Silicon wafer heterojunction solar cells can be divided into two types: those with or without an 

intrinsic layer. The heterojunction solar cell is a bulk device because nearly all of the photocurrent is 

produced in the silicon substrate. However, the thin emitter layer and the heterojunction interface 

(both only a few nanometers thick) strongly affect charge transport, defect density, conductivity, and 

recombination. [7] In both homo and heterojunction solar cells, electrons and holes are produced 

throughout the bulk of the device and move in a direction dictated by diffusion/drift. In the bulk c-Si 

wafer the transport of charges is almost exclusively by diffusion. In an ideal solar cell, diffusion is the 

dominant transport mechanism, but since carriers are transported across the depletion region by the 

electric field there is also a drift (voltage-dependent) component. Both the homojunction and the 

heterojunction solar cell have recombination at the front and back contacts, and recombination within 

the depletion region and quasi-neutral regions. However, defects at the heterojunction interface and 

charge carrier trapping create a new recombination pathway not present in homojunction cells. For 

traditional solar cells, the series and shunt resistances (𝑅𝑠 and 𝑅𝑠ℎ) are extracted from the slope of the 

current-voltage curve close to short-circuit and open-circuit, but in a heterojunction solar cell interface 

recombination can sometimes influence these slopes making reliable extraction of 𝑅𝑠 and 𝑅𝑠ℎ 

problematic. [7] [8] 

 The classic example of the heterojunction solar cell is Panasonic’s (formerly Sanyo) 

heterojunction with intrinsic thin layer (HIT). The approximate structure of the cell is shown in Figure 

1.3. State-of-the-art efficiency for a laboratory HIT cell was recently reported at 24.7%, (𝑉𝑜𝑐 = 750 mV) 

 

Figure 1.2: a) Current-voltage characteristic for a 100 cm2 solar cell, b) corresponding double diode equivalent circuit. [6]  

 

a) b) 
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for a cell area of 101.8 cm2. [9] The HIT cell is a bifacial device consisting of an n-type wafer, PECVD 

deposited a-Si:H layers forming a p-i structure on the light-absorbing side, and a n-i structure for back 

surface field. The n-type wafer is favoured over the p-type wafer due to a reduced sensitivity to 

interface defects. [10] Because of the high sheet resistance of the a-Si:H layer, a transparent conducting 

oxide (TCO) is needed to minimize resistive losses from current flowing to the metal contacts. A TCO on 

both sides allows lateral charge collection and functions as anti-reflection and surface passivation. 

Finger electrode spacing is around 2mm (less than that of conventional diffused junction cells) to 

compensate for poor sheet resistance of the TCO. The HIT cell has a lower dark reverse current (by 2 

orders of magnitude) than a standard cell. Notable HIT cell advantages are:  

1) Due to the high open-circuit voltage, the temperature coefficient is better than conventional 

solar cells with higher output power at high temperatures.  

2) The a-Si:H intrinsic layer passivates dangling bonds and surface defects on the c-Si substrate.  

3) The entire cell is fabricated at temperatures below 200oC which provides two benefits: i) 

reduced mechanical stress allowing use of thinner wafers, ii) improved minority carrier lifetime 

because lifetime is sensitive to wafer thermal history (particularly for cheaper substrates with 

increased impurity concentration). [11]  

4) The thinness of the amorphous silicon layers used in the device means the Staebler-Wronski 

effect is negligible.  

The deposition conditions of the a-Si:H layers are very important and must be “soft” (low power, 

low substrate temperature) to prevent excessive ion 

damage to the wafer. Wafer cleaning methods are 

equally important to minimize interface 

recombination. In order to increase the cell open-

circuit voltage it is important to reduce the interface 

recombination at the a-Si:H / c-Si interface to 

suppress the backward saturation current. That can 

be done by the deposition of high quality a-Si:H 

layers with low surface damage and by optimizing 

the band offset between the various materials. In 

addition, continual improvements in other 

technologies such as TCO, and screen printing of 

 

Figure 1.3: Panasonic HIT solar cell. The thickness of 
doped a-Si:H is around 10-20 nm, and the intrinsic a-
Si:H passivation layers are around 5nm.   
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highly conductive metallic pastes also translate into further HIT cell performance advances. Other areas 

of improvement include optimization of the back surface field (improving spectral response in the high 

wavelength region and increasing short-circuit current) and development of large bandgap window 

layers like a-SiC. [12]  Also, enhanced chemical cleaning steps before layer deposition, combined with 

hydrogen plasma annealing to passivate remaining dangling bonds can further increase efficiency. The 

drawback of heterojunctions is the possibility of a new recombination pathway through defects at the 

interface. [8] Interface defects can refer to impurities but also unsaturated dangling bonds in c-Si and 

dangling bonds in a-Si:H which are within the tunneling distance of minority charge carriers coming from 

c-Si. [13] [14]  [15]. There are very few details on the wafer cleaning and surface preparation steps and 

PECVD deposition conditions. Only a few authors provide this information. [15] Table 1.1 summarizes 

some of the research groups investigating heterojunction cells based on amorphous and crystalline 

silicon emitters. 

Heterojunction  
with intrinsic layer 

Base material Solar Cell Figures of Merit Ref 

Wafer Texture  Doping  
(Ωcm)  

Area (cm2) Voc (mv) Isc (mA/cm2) FF (%) Eff (%) 

n+ a-Si:H/i a-Si:H/ 
n c-Si/i a-Si:H/p+ a-Si:H 

Cz (n) Yes  1 101.8 750 39.5 83.2 24.7 [16] 

n+ a-Si:H/i a-Si:H/ 
n c-Si/i a-Si:H/p+ a-Si:H 

Cz (n) No 1-10 Not 
Reported 

631 36.3 76.1 17.4 [17] 

p+ epi/i epi/n c-Si Cz (n) No 1  1  558 32 73 13.1 [15] 

p+ a-Si:H/i epi/n c-Si Cz (n) No 1  1  608 29 72 12.8 [15] 

p+ μc-Si/i a-Si:H/n c-Si Cz (n) No 1  1  638 28.1 76 13.7 [15] 

n+ a-Si:H/i a-Si:H/p c-Si  Cz (p) Yes, Al 
BSF 

1  2.3 600 37.1 76.3 17.0 [18] 

n+ a-Si:H/i a-Si:H/ 
n c-Si/i a-Si:H/p+ a-Si:H 

Cz (n) Yes 0.5-5 1  678 34 73.7 17.0 [19] 

Heterojunction without 
intrinsic layer 

Base material Solar Cell Figures of Merit Ref 

Wafer Texture Doping 
(Ωcm) 

Area (cm2) Voc (mv) Isc (mA/cm2) FF (%) Eff (%) 

n+ a-Si:H/p c-Si FZ (p) No 1x1016cm-3 7.9 654.5 26.65 88 14.1 [8] 

n+ a-Si:H/p c-Si/p+ a-Si:H FZ (p) Yes 1-2  1  629 34.9 79 17.4 [13] 

p+ a-Si:H/n c-Si/n+ a-Si:H FZ (n) Yes 1-2  1  639.4 39.3 78.9 19.8 [13] 

p+ a-Si:H/n c-Si/n+ a-Si:H FZ (n) Yes 1-2  1  612 35.3 74.3 17.1 [20] 

n+ a-Si:H/p-cSi/p+ a-Si:H FZ (p) Yes 1-2  1  631 37.25 79 17.6 [20] 

n+ a-Si:H/p c-Si Cz (p) No 0.5-5 1  568 31.3 71 12.6 [19] 

n+ a-Si:H/p c-Si/p+ a-Si:H Cz (p) No 0.5-5 1  634 30.3 81 15.5 [19] 

p+ a-Si:H/n c-Si/n+ a-Si:H Cz (p) Yes 0.5-5 1  641 36.5 78.2 18.3 [19] 

p+ a-Si:H/n c-Si Cz (n) No 1-10 0.76 530 31 54 13.5 [14] 

p+ μc-Si/n c-Si Cz (n) No 1-10 0.76 500 38 71.1 8.9 [14] 

Table 1.1: Summary of heterojunction solar cell efficiencies from different research groups. All semiconductor film deposition 
was performed by PECVD with the exception of reference [14] where radio frequency magnetron sputtering was used.   
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1.3 Rapid Thermal Annealing for Heterojunction Solar Cells 
  

 The classic heterojunction using amorphous silicon with thin intrinsic layers requires very careful 

deposition conditions for intrinsic a-Si:H because the layer is usually around 5 nm thick. The process 

window for depositing an ultrathin intrinsic a-Si:H is narrow because a high  deposition temperature (>

130oC) leads to partial epitaxial growth and a high dark saturation current due to interface defects. [21] 

The optimized deposition conditions are not widely available as illustrated by differences in HIT cell 

efficiencies in Table 1.1. 

 The goal of this thesis is to reduce the processing constraints for a heterojunction cell by: 1) 

deposition of n-type a-Si:H without using an intrinsic a-Si:H buffer layer and 2) using rapid thermal 

annealing (RTA) with a low thermal budget to create a highly crystalline emitter with sufficient lateral 

conductivity to eliminate the transparent conducting oxide, and 3) to investigate alternative 

heterojunction interface passivation layers such as silicon nitride which is suitable for high temperature 

processing. RTA is attractive for photovoltaics because it is rapid and can be scaled on an industrial level. 

 Creation of thin crystalline films can be done by many methods. Very high frequency PECVD has 

uniformity issues for deposition over large areas due to the formation of standing waves in the plasma. 

Crystallization by laser (for example, excimer) is expensive. [22] Annealing of spin on dopants by RTA can 

introduce contaminants into the chamber. By contrast, RTA of a-Si:H films minimizes the contamination 

issue (compared to spin on dopants) while still maintaining a small thermal budget. Furnace 

crystallization by regular furnace has a high thermal budget with long ramp-up and ramp-down times of 

several hours. The definition of thermal budget is the product of heating temperature and time 

(including ramp-up and ramp-down cycles). Phosphorous diffusion in a batch furnace occurs by bubbling 

nitrogen carrier gas through liquid POCl3 or by using solid diffusion sources. A representative processing 

condition for a solar cell phosphorous diffusion is an annealing temperature around 900oC for 30 

minutes with a ramp-up rate of 50oC per minute and a cool-down rate of 20oC per minute. [6] By 

contrast, a typical RTA cycle sufficient to produce a highly crystalline n-type emitter is a 750oC anneal for 

1 minute with a ramp-up rate of 10oC/s. In addition, the conventional furnace diffused junction solar cell 

requires steps of phosphorous silicate glass removal and edge isolation by laser grooving neither of 

which are required for RTA processed cells. Using a crystalline instead of an a-Si:H emitter also reduces 

parasitic absorption losses. The bandgap of n-type amorphous silicon is approximately 1.7-1.8 eV 

whereas the bandgap of nanocrystalline silicon is in the range of 1.1-1.5 eV. [23] Although a-Si:H has a 

higher bandgap than nanocrystalline silicon, a-Si:H is a direct bandgap semiconductor and thus has a 
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larger absorption coefficient. However, when an intrinsic a-Si:H layer is no longer used, consideration of 

the dopant concentration in the emitter becomes more important. The higher the dopant 

concentration, the greater the dangling bond density in the doped a-Si:H and the greater the 

recombination rate via gap states. A highly doped emitter will increase 𝑉𝑜𝑐 because of greater band 

bending. But as the dopant density increases beyond a certain concentration, enhanced recombination 

negates any further  𝑉𝑜𝑐 increase. The closer the Fermi level is to the conduction band the higher the 𝑉𝑜𝑐. 

But the highest doping concentration does not necessarily give the best efficiency. [20] The optimum 

doping for a heterojunction without intrinsic layer is obtained for a Fermi level which is as close to the 

conduction band as possible while still keeping the interface defect concentration relatively low. There Is 

a trade-off: increasing the dopant concentration in the emitter increases band bending but also raises 

the defect density at the interface and increases the number of gap states in the emitter. [20] For 

heterojunctions without a passivation layer, hydrogen dilution is also critical. A lower hydrogen dilution 

worsens the passivation ability of the emitter. [15] For example, Rizolli et al. note that that for epitaxial 

and microcrystalline emitter heterojunctions, a drop in hydrogen dilution from 99% to 96% can cause a 

decrease in 𝑉𝑜𝑐 of up to 300 mV. [15] 

 

1.4  Solid Phase Crystallization by Epitaxy 

 

 Methods for producing thin crystalline films can be divided into four families: 1) Liquid phase 

crystallization by laser, electron beam, or ion beam, 2) Solid phase crystallization by rapid thermal 

annealing or conventional furnace annealing, 3) direct deposition by VHF PECVD or LPCVD, and 4) solid 

phase crystallization by metal-induced crystallization. This review examines solid phase crystallization by 

RTA and conventional furnace. Although the photon spectra of RTA and conventional furnace are 

different, the underlying kinetics of crystallization are similar because they are both thermally activated. 

[24] Solid phase crystallization can be divided into two types: silicon epitaxy from a single crystal silicon 

substrate, and random nucleation and grain growth.  

 Solid phase crystallization of a-Si:H occurs because a-SiH has a higher free energy than c-Si. 

There is a driving force towards crystallization to lower free energy. Crystalline silicon and a-Si:H both 

have strong covalent bonds and tetrahedral bonding arrangements, but in a-Si:H there is no long range 

order beyond approximately two interatomic distances. During crystallization, thermal agitation 
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produces small clusters of ordered silicon atoms with low free energy. The bulk free energy of an 

ordered cluster is lowered, compared to the amorphous phase, because of a reduction in bond 

distortions. However, the free energy of atoms at the cluster surface may increase due to the distortion 

of bonds caused by the interface between a-Si:H and c-Si. [25] Solid phase epitaxy (SPE) occurs by the 

movement of the single crystal interface from the wafer plane to the film surface which gradually 

consumes a-Si:H (Figure 1.4). Epitaxy is first noticed at temperatures at and above 500oC. The SPE rate is 

critically dependent on concentration of impurities, crystal orientation, and the annealing temperature. 

[26] The epitaxy process shows a thermally activated behaviour with a crystallization rate that follows an 

Arrhenius behaviour given by equation 1.8: 

 𝑣 = 𝑣𝑜𝑒𝑥𝑝(− 𝐸𝐴 𝑘𝑇⁄ )  (1.8)    

                                                                                                                                                                                       

where 𝑣 is the SPE growth velocity, 𝑣𝑜 is a film dependent property,  and 𝐸𝐴 is the activation energy. The 

extracted value of the activation energy is more accurate the larger the temperature range over which 

the measurements are made. [25] [26]                                                                                

 Influence of substrate orientation: The epitaxy rate is dependent on substrate orientation. 

Epitaxy is fastest on (100) crystals and 2 and 20 times slower on (110) and (111) orientations 

respectively. Many other factors also influence epitaxy such as crystallization temperature, film 

thickness, type and  concentration of impurities, and the presence of capping layers. The best quality 

epitaxial films are obtained on (100) orientation silicon wafers with film thickness between 20-500 nm. 

[26] By contrast, epitaxy on (100) silicon is best for devices because it has fewer defects compared other 

orientations and can be performed on thicker films (20-500 nm), over a wider range of temperatures 

500-1000oC. Epitaxy dislocation density is around 102 – 103 cm-2, and is suggested to be due to 

imperfections from the substrate. The annealing temperature greatly determines whether or not the 

dominant crystallization mechanism will be epitaxy or random nucleation and grain growth. As the 

annealing temperature rises the competition between the two mechanisms increases. For example, 

investigation by Zotov et al. for epitaxy of vacuum deposited a-Si:H on Si wafers showed complete 

epitaxy throughout the film thickness at an annealing temperature of 600oC. However, Zotov states that 

for films thicker than 80 nm at an annealing temperature of 900oC, a thin polycrystalline layer formed at 

the surface which blocked epitaxy. [26]   
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 Influence of non-dopant impurities: Epitaxial growth on silicon requires a very clean interface 

and minimal contamination during growth. Deposited a-Si:H contains micro-voids which can further act 

as absorption centers for impurities. Low substrate temperature during a-Si:H deposition can increase 

impurity adhesion. Even exposure to clean room air can contaminate the a-Si:H layer which can absorb 

carbon, oxygen, and nitrogen up to a depth of 100 nm. [27] A high density of non-dopant impurities 

hinders the epitaxial growth front, causing epitaxy to proceed from isolated areas in a columnar growth 

pattern followed by lateral epitaxy. Film contamination will reduce the epitaxy growth rate, create high 

defect density, and may cause the dominant crystallization mode to switch to random nucleation and 

grain growth. The cleanliness of the interface is critical: For example, Zotov et al. have shown that as the 

atomic oxygen concentration on the surface decreases from 1015 cm-2 to 1013 cm-2, the crystallization 

changes from random crystallization to SPE. Ideally, both deposition and epitaxial growth should be 

performed under ultra-high vacuum conditions of around  (0.4 − 1) × 10−7Pa. Under worse vacuum 

conditions SPE is slowed. For example at 5 × 10−7Pa the SPE growth rate is slower by a factor of 2. [26] 

Alternatively, capping layers may also be used to protect the a-Si:H from exposure to impurities. Layers 

such as SiNx can cause hydrogen passivation of defects. PECVD deposited SiNx has a high concentration 

of hydrogen which is ejected into the crystallizing film during annealing. [25] 

 Influence of boron and phosphorous: dopant impurities added to an a-Si:H film will induce 

competition between random nucleation and grain growth and SPE. Dopant concentration also has a 

large influence on the epitaxy rate. Oxygen, nitrogen and carbon decrease the epitaxy growth rate, 

whereas dopants from groups III and V of the periodic table present in amounts greater than 0.1 atomic 

% can enhance or hinder depending on the concentration. Olson and Roth have shown that for intrinsic 

and lightly doped films there is a single 

activation energy, around 2.7 eV, over 

the temperature range from 470 oC to 

1350oC which is characteristic of epitaxy 

and independent of the method by 

which the a-Si:H film was deposited 

(whether PECVD, e-beam, sputtering, ion 

implantation). The fixed activation 

energy suggests that the interfacial 

process of bond breaking and 
 

Figure 1.4: Illustration of solid phase epitaxy from c-Si substrate. [25] 
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rearrangement is the same regardless of the microstructure of the precursor material. However, the 

pre-exponential factor, 𝑣𝑜 , in equation 1.8 will be different for films deposited in different ways which 

indicates a difference in the number of interface sites available for atomic rearrangement. [25] As the 

dopant concentration of phosphorous or boron is increased, the epitaxy growth rate increases until a 

limiting concentration is reached beyond which the dopant concentration decreases. The decrease in 

epitaxy growth rate is due to faulting and dopant segregation. Phosphorous and boron act differently in 

the epitaxy process. For phosphorous dopant concentrations beyond 3 x 1020 cm-3, for example, Zotov 

noted that phosphorous both speeds up the rate of lateral epitaxy, and slows down and suppresses 

random nucleation and grain growth. Having a high phosphorous dopant concentration (for example, 

1.7 x 1020 cm-3) can increase the growth rate up to a factor of between 6 to 8. [28] However, for 

comparable boron concentrations there is enhanced lateral epitaxy but no suppression of random 

nucleation. [26] Boron is shown to enhance SPE over a broad range of temperatures and annealing 

times, and so it is representative of a “simple” rate enhancement with other competing effects (random 

nucleation and growth, precipitate formation and segregation) being negligible. For boron, the SPE rate 

increases until boron concentration reaches   2 x 1020 cm-3. Dopant concentrations from groups III and V 

above 1019 cm-3 generally enhance the SPE rate, while non-dopant impurities generally slow SPE. The 

SPE rate enhancement is less for phosphorous doped films than for boron doped films. However, when 

boron and phosphorous are present in a-Si:H in equal concentrations there is no additive effect SPE and 

the epitaxy rate is driven back to that for intrinsic material. Epitaxy rate as a function of temperature for 

a given boron or phosphorous concentration shows Arrhenius behaviour with typical activation energies 

around 2.52 eV (B), 2.68 eV (P). In spite of the high dopant concentration, all of these activation energies 

fall very close to the activation energy of intrinsic epitaxially grown films (2.7 eV). [26] Most of the group 

V dopants when present in high enough concentration cause temperature dependent interaction 

between random nucleation and grain growth and dopant diffusion. [25] As the Fermi level moves 

towards either band edge there is an enhancement in SPE rate. One exception is at high temperatures. 

At high temperatures, the thermally excited carrier concentration overwhelms the ionized dopant 

carrier concentration making the semiconductor intrinsic and returning the Fermi level to midgap. 

However, under these conditions there is surprisingly no drop in SPE rate. [25] 

 Theoretical models: There are several models to predict the epitaxy rate while taking into 

account key crystallization factors such as the a-Si:H/c-Si interface, orientation of crystal substrate, and 

concentration of dopant-induced growth centers. However, the growth rate is also affected in 

complicated ways by the structure of the a-Si:H precursor which may contain micro-voids and crystal 
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defects. Currently, there is no complete theory of epitaxy which takes into account all of the factors that 

can affect crystallization. There are several models that try to predict the characteristic activation 

energy. [29] Ohdomari proposed a model for activation energy that is the sum of the energy required to 

break the bond and the energy associated with bond disorder. Germain proposed a model based on the 

movement and diffusion of charged dangling bonds in a-Si:H towards the c-Si / a-Si:H interface where 

they are collected/captured by atoms which then become incorporated into the crystal lattice. [30] 

Williams and Elliman built on these models and added an additional complexity by taking into account 

the affect of dopants on the SPE process. The premise of the Williams model is that the SPE rate is 

dependent on the density of charged nucleation sites at the interface, and that the density of these sites 

increases with increasing dopant concentration. [31] [32] Although it is clear that rate enhancement of 

SPE is affected by electronic changes at the c-Si / a-Si interface, the exact atomistic interpretation of rate 

enhancement is still unclear and a subject of active research. [26] [25] 

1.5 Solid Phase Crystallization by Random Nucleation and Grain Growth 

 Crystallization of a-Si:H to polycrystalline silicon by random nucleation and grain growth (RNG) is 

influenced by film defect density and microstructure and hydrogen content of deposited films. The 

amorphous incubation time, 𝑡𝑜 , is defined as the time before any crystallization occurs. During the 

incubation period there is nucleation of crystallization sites which act as centers of grain growth. The 

nucleation rate has an exponential dependence given by Lee et al. in equation 1.9. [33] 

 𝐼 = 𝐼𝑜𝑒𝑥𝑝(−𝐸𝑖𝑛𝑐 𝑘𝑇⁄ )  (1.9) 

The pre-exponential factor, 𝐼𝑜, accounts for the number of nucleation sites, and 𝐸𝑖𝑛𝑐  is the nucleation 

activation energy. Films with a large nucleation rate have a small final grain size. [33] The nucleation 

sites may be located at a material interface between the a-Si:H and the substrate (heterogeneous 

nucleation) or may be uniformly distributed throughout the film (homogeneous nucleation). Often, the 

nucleation in the film may be a combination of heterogeneous and homogeneous nucleation. The grain 

growth phase is defined by the crystal growth time, 𝑡𝑔, which occurs after the incubation period. The 

characteristic time of crystallization, 𝑡𝑐, is the sum of the incubation time and crystal growth time 

according to equation 1.10.  

 𝑡𝑐 = 𝑡𝑜 + 𝑡𝑔 = 𝜏 𝑒𝑥𝑝(𝐸𝑜 𝑘𝑇⁄ )  (1.10) 

The activation energy between the metastable amorphous state and the stable crystalline state is 𝐸𝑜, 

the characteristic time of microscopic interaction between neighbouring atoms is 𝜏 (approximately  
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10−14 seconds). The transformation of the film from amorphous to polycrystalline takes place by a 

displacement of silicon atoms from amorphous metastable sites by overcoming a potential barrier and 

reaching stable (crystalline) lower energy sites. [34] The time dependence of the crystalline fraction is 

given by equation 1.11. [33] 

 𝑋(𝑡) = 1 − 𝑒𝑥𝑝[−(𝑡 − 𝑡𝑜)3/𝑡𝑐
3]    (1.11) 

 For conventional furnace annealing, the total crystallization time by homogeneous RNG is not 

affected by the thickness of the film. As the annealing temperature increases, the crystal grain size 

decreases. The activation energy of the film differs greatly depending whether it was formed by RNG or 

SPE. Epitaxy has an activation energy around 2.7 eV whereas random grain growth films are around 4 

eV. In general, epitaxy dominates at low temperatures whereas RNG dominates at temperatures above 

1000oC. However, in reality the presence of defects and impurities cause RNG to become significant 

compared to epitaxy at temperatures below 1000oC. [25]      

 

 Influence of non-dopant impurities:  Films exposed to air showed a much slower crystallization 

time (5 to 10 times slower) than films crystallized in a vacuum. Studies have shown that it is not the 

grain growth rate that is affected by exposure but rather the nucleation rate (an oxide forms which 

makes nucleation sites at the surface unavailable). Under these conditions, crystallization proceeds by 

homogeneous nucleation rather than nucleation at the surface. [25]       

 Influence of Hydrogen: The key point proposed by Mahan is that the crystallization depends not 

on the disorder in the film due to hydrogen evolution, but rather on the spatial distribution of the 

hydrogen. [35] The ratio of isolated (unclustered) to clustered hydrogen in the film is particularly 

important. The density of clustered and isolated hydrogen was calculated and found to be an order of 

 

Figure 1.5: Illustration of random nucleation and grain growth in amorphous silicon. [25] 
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magnitude smaller for hot-wire CVD of a-Si:H films compared to PECVD films. Mahan proved that PECVD 

deposited films have a much larger ratio of clustered to isolated hydrogen. Crystallization kinetics 

depend on a critical crystallite size which requires a minimum number of silicon atoms. Mahan has 

shown that the  hydrogen-deficient regions in PECVD films are smaller than the critical crystal size and 

thus have great difficulty to crystallize whereas hot-wire CVD has hydrogen-deficient regions which are 

sufficiently large that crystallization is relatively fast. This explains the much longer incubation time of 

PECVD films compared to hot-wire CVD films. The films that nucleate the fastest also have the smallest 

grain size.  More recent work by Mahan [35] has provided further evidence for the influence of the 

critical crystal size. The regions with higher order (due to hydrogen deficiency resulting in isolated rather 

than clustered hydrogen) are the sites which act as nucleation centers (Figure 1.6). It seems that 

nucleation in thermally annealed a-Si:H depends critically on the hydrogen distribution (in isolated form 

or as clusters) and nucleation proceeds from the most well ordered parts of the film which are 

hydrogen-deficient and without clustered hydrogen. [36] [33] [37] It is hypothesized that the out-gassing 

of weakly bound hydrogen (1.4-1.6 eV activation energy) inhibits crystallization, but once the more 

tightly bound hydrogen (2.2 eV activation energy) leaves the film it creates defects (such as dangling 

bonds) that allow crystallization to proceed. [36] [38] 



16 
 

 

 Crystallization Comparison between RTA and conventional furnace: RTA has a faster growth 

time and faster crystallization time at a given temperature compared to conventional furnace. For both 

RTA and furnace, higher annealing temperatures yield smaller grain size. Due to longer crystallization 

time, conventional furnace gives larger grain size than RTA. The RTA spectrum contains highly energetic 

photons that create carriers that recombine. This can break weak or strained bonds in a-Si:H resulting in 

localized heating and rapid nucleation and grain growth. [22] [39] Compared to RTA, conventional 

furnace generally has a larger concentration of inter-grain defects such as micro-twins. The defect 

density inside the grains for conventional furnace annealing was estimated at 2 × 1011 cm-2, whereas 

RTA annealed films had a defect density of around at 3× 1010 cm-2. Micro-twins are electrically inactive, 

but when they terminate inside a grain and act as scattering centers they lower the effective grain size. 

For example, a 300 nm grain with micro-twins of 30 nm size is equivalent to a 50 nm grain free of micro-

twins. More than conventional furnace, RTA has the capability of improving polysilicon film 

characteristics by reducing the density of dangling bonds and in-grain micro-twins. [40] Doping 

concentration does not affect the grain size significantly for conventional furnace annealed films. But, 

higher doping concentration in RTA has a large influence by reducing the crystallization temperature and 

 

Figure 1.6: Illustration of clustered and isolated hydrogen. The dashed circles show regions of better ordered silicon 
network (isolated hydrogen) that act as nucleation centers for crystal growth. The shaded circles show areas of worse 
silicon atomic order due to clustered hydrogen. [35] 
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increasing grain size significantly. Such behaviour for doped RTA films has been explained by 

transformation of a silicon dangling bond from a neutral state to a charged state. [41] [38] 

 

1.6  Measurement Techniques 

 
 Optical Techniques (crystallinity of thin Si films): There are many techniques that can be used 

to assess the crystallinity of silicon films. X-ray Diffraction (XRD), UV-reflectance, Raman [33] [42], and 

ellipsometry are non-destructive, whereas transmission electron microscopy (TEM), Rutherford 

backscattering and ion channeling are more time-consuming and expensive. [36] [26] Additional 

techniques include low energy electron diffraction and electron backscattering diffractometry. For 

ellipsometry, the spectral dependence of the imaginary part of the dielectric constant distinguishes 

between the amorphous and crystalline silicon phase. The dielectric constant is given by real and 

imaginary components. [43] Ultraviolet and infrared reflectance is also suitable. Ultraviolet photons 

have a high absorption coefficient in silicon, less than 50 nm, which give information on surface 

crystallinity of the film. [44] Infrared reflectance gives information on bulk film crystallization and can 

distinguish between epitaxy and random nucleation and grain growth. [43] [37] [38] The refractive index 

of a-Si:H exceeds that of c-Si in the visible part of the spectrum which causes a change in reflectivity 

both at the surface and at the c-Si / a-Si:H interface [25]. XRD provides an average grain size estimate. 

Instrumental broadening has to be taken into account using standards for polycrystalline powder. Two 

sources of XRD line broadening are defect density and film stress. [36] [42] The final grain size is 

determined using the Scherrer formula, and the (111) diffraction peak full width at half maximum. [45]  

 Electrical Techniques (heterojunction interface defect density): There are many methods that 

can be used to extract information about the defect density. Defects can be indirectly measured by μ-

PCD and modulated photoluminescence. Other techniques can involve simulation studies to extract bulk 

device parameters. The best qualitative measurement techniques for assessing the interface are also the 

most common: external and internal quantum efficiency and current-voltage. It is not always clear how 

to interpret these results to derive information about the heterojunction interface because it can be 

difficult to separate interface states from bulk states and surface states. [7] Illuminated current-voltage 

gives information on the recombination and trapping when performed at low temperatures and low 

illumination levels. Capacitance measurements are also sensitive to interface defects. Gudovskikh and 

Unold outline two methods of capacitance analysis: one at low temperature in the dark, and the other 
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with the device under illumination and forward bias. [3] [46] Several authors have noted that a large 

step-like increase in capacitance occurs for a defect density threshold greater than 1012 cm-2. [47]  
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 The effect of rapid thermal annealing on thin n-type a-Si:H films deposited on Si wafers was 

studied by optical and electrical methods. Deposition of a-Si:H films by PECVD was optimized for high 

deposition rate and good film uniformity. Optical characterization was by transmission electron 

microscopy (TEM), Raman, ellipsometry, UV-reflectance, and defect etching followed by examination by 

scanning electron microscopy (SEM). Electrical characterization was by Hall Effect to examine carrier 

mobility, and dark current-voltage to clarify transport properties.  

 

2.1 Optimization of Thin Doped Amorphous Silicon Films by PECVD 

The conductivity, mobility, and uniformity of rapid thermally annealed amorphous silicon depends 

on establishing a recipe for high rate deposition of n-type a-Si:H. Optimization studies for this film were 

completed using Trion PECVD (13.56 MHz). The structure of the PECVD reactor is the parallel plate 

electrode with radial gas flow and pump for gas extraction. One electrode is grounded while the other 

electrode has an applied RF voltage. The system setup is shown in Figure 2.1. The grounded electrode is 
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heated by resistance heater. Plasma discharge occurs between the electrodes, and the deposition 

results depend on many variables including: temperature, pressure, gas flow rate, electrode power, and 

the flow rate ratio between different gases. All deposited films were doped n-type using phosphine 

(PH3) diluted to 1% concentration in hydrogen (PH3/H2). The pressure inside the reactor determined the 

mean free path of gas molecules, and whether reactions occurred in the plasma or at the surface of the 

growing film. The gas flow rate determines the residence time of gases, and ions from the plasma may 

cause defect formation in the film. [48] In general, the film hydrogen content decreases with increasing 

substrate temperature. Defect density in the film was lowest at low RF power, low temperature (200-

300oC), and high silane concentration. High silane dilution and high RF power generally produced poor 

films. Silane dissociates by many different reaction paths producing neutral radicals or ions (depending 

on the supplied RF power). Due to the small mean free path of gas molecules (10-3-10-2
 cm) there are 

many collisions and larger particles (mainly Si2H6, Si3H8) can be formed which has been shown to hinder 

film growth. [49] The concentration of radicals in the plasma is greatly affected by secondary reactions 

(which depend on silane concentration, radical reactivity, and concentration gradient). Highly reactive 

gases have a short lifetime and will likely not reach the growing surface before reacting with silane. 

However, one particular radical, SiH3, does not react with silane and is very long lived. [49]  

 

For conductivity measurement, n-type a-Si:H films were deposited on glass followed by 800 nm 

thick aluminum contacts deposited by electron-beam evaporation using a shadow mask. Film thickness 

measurements to determine uniformity across the wafer were done by reactive ion etching and Dektak 

profiling. Before film deposition, the chamber was cleaned, walls exposed to a hydrogen plasma, and a 

passivating layer of a-Si:H was deposited. The cleaning recipe used was: CF4/O2 flow rate of 100 sccm, 

 

Figure 2.1: a) Cross section of PECVD Trion chamber, b) Trion system showing left side chamber for PECVD, and right side 
chamber for inductively coupled plasma.   

 

a) b) 
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pressure 300 mTorr, top electrode power 200 W, bottom electrode power 15 W, and temperature 

180oC. After varying flow rates of SiH4, PH3/H2, and H2 it was determined that the best combination of 

high uniformity, conductivity and deposition rate for n-type a-Si:H was achieved under the following 

conditions: SiH4 flow rate 20 sccm, PH3/H2 flow rate 40 sccm, temperature 180oC, pressure 200 mTorr, 

electrode power of 5 W, deposition rate of approximately 8 nm/minute, and conductivity of 1.67 ×

10−2 S/cm. Unless otherwise stated, these were the deposition conditions used for all n-type films in 

this work.  

  

2.2 Sample Preparation and Thermal Profiles  

 For sample preparation, single side polished silicon wafers of thickness 500 μm and resistivity 

0.5-0.75 Ω-cm were RCA-1 and RCA-2 cleaned, and dipped in 2% hydrofluoric acid to remove the native 

oxide. Wafers were immediately placed into the Trion chamber and n-type a-Si:H was deposited by 

PECVD. Rapid thermal annealing was performed using a ramp-up rate of 10oC/s, and plateau 

temperatures of 600oC, 700oC, 800oC, 900oC, and 1000oC each at three different hold times of 1, 2.5, and 

5 minutes. RTA consists of three phases: ramp-up, a plateau period at fixed temperature, and cool-

down. Control factors in the software were used to adjust the rate at which lamp intensity increased and 

control how accurately the wafer temperature followed the programmed profile. During annealing, 

wafer temperature was within ±1oC of the programmed thermal profile with the exception of the cool-

down phase. During the cool-down, cooling rate was limited by radiation and convection and was 

around 150oC/minute for a nitrogen gas flow rate of 20 SLPM. A removable quartz tray with three quartz 

support pins was used to insert the wafer into the furnace. Temperature was measured by a 

thermocouple in contact with the underside of the wafer as shown in Figure 2.2 a). The interior of the 

RTA chamber consists of two banks of tungsten halogen lamps which uniformly illuminate the wafer 

from both sides (Figure 2.2 c)). The tungsten filaments radiate as a black body with a spectrum 

dependent on filament temperature. For temperatures between 600oC to 1100oC, the spectrum is 

infrared, visible, and ultraviolet and under typical processing conditions the emitted photons have a 

wavelength of less than 1 µm. As the filament is operated at higher temperatures, the ultraviolet 

portion of the spectrum will increase. During RTA, nitrogen gas was set to 20 SLPM for 2 minutes before 

turning on the lamps in order to purge air from the chamber. After, nitrogen flow was reduced to 3 

SLPM for the remainder of the process.  
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 It is typical for a-Si:H films deposited at 200oC to have a hydrogen content as high as 17 atomic 

%. [50] A critical problem that was encountered during RTA was the ejection of hydrogen gas from the 

film. Rapid thermal cycles under certain conditions caused fast and destructive out-gassing of hydrogen 

as the temperature of the wafer was ramped up. Hydrogen bubbles formed at the a-Si:H/c-Si interface 

and explosively ejected outwards through the emitter layer causing pin-hole formation which act as 

shunt paths in the solar cell. Numerous a-Si:H films were deposited on Si wafers in order to experiment 

with different RTA profiles to eliminate the pin-hole problem. In several samples the pin-holes were not 

immediately obvious but became evident only after the samples were processed into solar cells which 

exhibited very low shunt resistance. Although not solving the problem, initially it was assumed that 

dopant diffusion along crystal grains in the emitter was producing shunt paths and several experiments 

were performed to lower the phosphine flow rate to decrease the dopant concentration in the n-type 

layer. The next method to address pin-holes was to raise the deposition temperature for PECVD a-Si:H 

to reduce the hydrogen content before RTA. Films were deposited at 200oC, 250oC, 300oC, and 350oC 

and RTA processed using a ramp rate of 100oC/s followed by a hold at 900oC for 5 minutes. All of the 

films were visibly pin-holed (Figure 2.3) even when the annealing time was reduced from 5 minutes to  

 

Figure 2.2: a) Quartz tray for inserting wafer into RTA chamber, b) RTP 600S system, c) cross-section of RTA chamber 
with quartz tray and silicon wafer.  

a)  b) 

c) 
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30 seconds. Next, the ramp rate was maintained at 100oC/s with a 30 second annealing time but the 

plateau temperature was reduced from 900oC to 500oC. All films were still pin-holed. Thus, it was 

determined that most of the hydrogen out-gassing was happening during the ramp-up phase within the 

first minutes of RTA. Next, depositing a-Si:H at 200oC, four different ramp rates were used. The results 

are summarized in Table 2.1.  

 

Films that were RTA processed using a ramp rate of 10oC/s had pin-hole free surfaces regardless 

of the RTA plateau temperature. Thus, for all future RTA processes the ramp rate was fixed at 10oC/s. 

The hydrogen content in a-Si:H can be measured by Fourier Transform Infrared Spectroscopy (FTIR). In 

the infrared, a-Si:H has three absorption modes: a wagging mode centered at 640 cm-1, a doublet mode 

at 840-890 cm-1 due to a dihydride bending or scissor mode, and two stretching modes at 2000-2100   

cm-1 due to clustered monohydrides and polyhydrides. The FTIR procedure to determine the hydrogen 

 Ramp rate 

RTA plateau 100oC/s 50oC/s 25oC/s 10oC/s 

500oC ○ ○ ○ ● 

600oC ○ ○ ○ ● 

700oC ○ ○ ○ ● 

800oC ○ ○ ○ ● 

900oC ○ ○ ○ ● 

1000oC ○ ○ ○ ● 

Table 2.1: Summary of RTA thermal profiles. “○” denotes films that were pin-holed and cracked, “●” denotes films that were 
uniform.  

 

 

 

Figure 2.3: Microscope images of pin-holes and cracked RTA processed films on Si wafer using 2.5 x 10 and 10 x 10 
magnification. Surface feature size is on the order of 100 𝜇m. 
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content in a-Si:H follows the procedure of Brodsky, Cardona, and Cuomo where hydrogen 

concentration, NH, is related to the integrated absorbance of the film, I , by equation 2.1:  

 𝑁𝐻 = 𝐼(𝐴 𝑁𝑠𝑖⁄ ) (2.1) 

where A is a calibration constant which correlates the hydrogen content with the infrared absorption 

due to Si-H vibration, and 𝑁𝑠𝑖 = 5 × 1022 cm-3 is the atomic density of pure silicon. [51] [52] Although 

FTIR measurements were made for a-Si:H and RTA processed films, the results for hydrogen percentage 

were ambiguous due to the extremely low film thickness of 50 nm, and light scattering from the 

roughened wafer back-side which reduced the transmittance signal strength. Nevertheless, based on 

results from literature, it can be assumed that the hydrogen content in the films after RTA was less than 

1 atomic %. [53]      

 

2.3 Transmission Electron Microscopy 

 In TEM, electrons are accelerated to high voltages and are focused on to the sample by 

condenser lenses. A diffraction pattern is formed by transmitted and forward scattered electrons and is 

then projected onto a fluorescent screen. The three imaging modes are bright-field, dark-field, and high 

resolution. In high resolution mode, several diffracted beams are combined to produce an interference 

image which can display features on an atomic scale.  

 In order to gain insight into the crystallization mechanism for RTA annealed a-Si:H, a sample that 

had been annealed at 750oC for 5 minutes was thinned for TEM analysis by focused ion beam milling. 

Figure 2.4 shows the high resolution TEM displaying the c-Si wafer substrate and the 50 nm thick RTA 

processed film. The interface between the wafer and the substrate was visible as a thin region around 3-

7 nm thick. The micrograph clearly showed that RTA has crystallized the a-Si:H into an epitaxial film. The 

crystalline atomic order of the emitter extended throughout the entire film thickness with white dots 

representing columns of silicon atoms. There appeared to be no random nucleation and grain growth. 

Epitaxy was the dominant crystallization mechanism. Although defects and the high dopant 

concentration in the a-Si:H film can interfere with epitaxy and promote random nucleation of crystals, 

the film was so thin that random grain growth was an unlikely crystallization mechanism. If the film were 

thicker, the gradual accumulation of defects during epitaxy might eventually lead to random grain 

growth. For the film studied here, RTA did not seem to affect epitaxy by causing random grain growth. 

Highly energetic ultraviolet photons absorbed very close to the surface of the emitter did not seem to     
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form nucleation sites. Although it has not been proven by further TEM studies, the result for the 750oC 

RTA film implied that the a-Si:H films annealed at the other temperatures in this study (600oC, 700oC, 

800oC, 900oC, and 1000oC) were also epitaxial. As noted by Olsen and Roth [54], epitaxy is the dominant 

crystallization mechanism for films annealed in a conventional furnace at temperatures at or below 

1000oC. Also, as noted by Zotov [55], the thinner the film the greater the probability that epitaxy will 

occur and all the films annealed in this study were only a few tens of nanometers thick. Since the ramp 

rate was 10oC/s, for annealing temperatures of 800oC, 900oC, and 1000oC, it was highly likely that the a-

Si:H emitter had already completely crystallized by epitaxy before the plateau temperature was reached. 

Results for Hall Effect, UV-reflectance, and ellipsometry all showed that as the annealing temperature 

increased, the RTA processed films more closely approached the optical and electrical characteristics of 

bulk silicon. This was further evidence that epitaxy was likely maintained at higher RTA temperatures.  

 The micrograph in Figure 2.5 shows a closer view of the junction interface. Although the native 

oxide on the Si wafer was removed by a 2% hydrofluoric acid dip before PECVD, there was inevitably a 

 

Figure 2.4: TEM showing silicon wafer and 50 nm emitter. The amorphous material deposited on top of the emitter 
is a carbon coating.   

 



26 
 

small amount of contaminant particles from the air or from the interior of the Trion chamber that may 

have adhered to the surface of the wafer and created trap states at the junction interface. One way to 

decrease interface contamination would be to remove the native oxide during PECVD. Hydrogen plasma 

cleaning is considered an effective way to remove native oxide and hydrocarbon contaminants on a Si 

surface at low temperature. [56] Removing the oxide by a hydrofluoric dip exposed the wafer to clean-

room air, and the quality of the interface also depended on the purity of the etchant solution and the 

cleanliness of the beaker that contained it.   

  

 

2.4 Raman  Spectroscopy  

Many techniques can be used to assess the crystallinity of silicon films. For example,  X-Ray 

Diffraction, UV-reflectance, Raman, and ellipsometry,  are fast and non-destructive, whereas TEM, 

Rutherford backscattering, and ion channelling are more time consuming and expensive. [53] [55] 

Additional techniques include low energy electron diffraction and electron backscattering 

diffractometry. In Raman spectroscopy, a small fraction of incident photons (a few parts per million) 

 

Figure 2.5: Closer examination of the heterojunction interface between p-type c-Si wafer and epitaxial RTA emitter. 
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interact with the atomic lattice imparting energy by the creation of optical phonons. Such scattered 

photons have a down-shifted frequency referred to as Stokes shifted scattering which is detected by the 

photo-detector. The optical phonon energy for the crystalline silicon lattice is 0.067 eV which 

corresponds to a sharp Stokes spectrum (Gaussian shaped) with a peak centered around  

1 𝜆 = 520 ⁄ cm-1. The Stokes spectrum shifts, broadens, and becomes asymmetric for grain sizes less 

than about 10 nm then becomes very broad for amorphous silicon which exhibits a Stokes spectrum 

peak around 1 𝜆 = 480⁄  cm-1. [57] Because the Stokes spectra for amorphous silicon and single crystal 

silicon are so different, deconvolution of the spectrum into two Gaussian curves determines the crystal 

volume fraction. [58] While Raman is very effective in estimating volume fraction for crystalline films of 

several micrometers, it was necessary to determine if it was suitable for the thin emitter layers of 50 nm 

or less which were required for solar cells in this research. The suitability of Raman for thin silicon films 

depends on the absorption depth of laser light and on the material of the substrate. Experiments were 

carried out comparing three different films: 600 nm a-Si:H, 50 nm a-Si:H, and 50 nm a-Si:H which had 

been crystallized by RTA at 800oC for 5 minutes.  

 

All films were deposited by PECVD on the polished surface of (100) orientation Si wafers. 

Experiments were done using a Renishaw Mirco-Raman 1000 Spectrometer. The laser source was 488 

 

Figure 2.6: Raman spectra for three films on Si substrates. The laser intensity on the substrate was reduced to 10% of its 
maximum value to approximately 0.27 mW to avoid melting and crystallization of the silicon films.  The beam spot size 
was approximately 100 μm2.  
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nm Argon-Ion which was chosen over the 633 nm Helium-Neon excitation source due to smaller 

absorption depth. Figure 2.6 shows the Raman spectra for these three samples.  

 The Raman spectrum for the 600 nm a-Si:H film showed the expected broad peak at 480 cm-1 

and no peak at 520 cm-1 which indicated that there was no interference from the silicon wafer. 

However, for the 50 nm a-Si:H there was interference from the substrate. Although there was a low 

intensity shoulder around 480 cm-1 there was also a strong peak at 520 cm-1 caused by photons that had 

passed through the amorphous layer and interacted with the silicon wafer beneath. The spectrum for 

the RTA crystallized film showed the disappearance of the amorphous shoulder which implied that a-

Si:H had been consumed. There was a sharp peak at 520 cm-1 which was due both to the crystallized 

silicon film and the single crystal wafer beneath. It was impossible to separate these two contributions 

to the peak, and so calculation of the crystal volume fraction was inaccurate. The absorption depth for 

photons of wavelength of 488 nm in a-Si:H is approximately 61 nm, and for crystalline silicon is 

approximately 790 nm. [59] Thus, with 50 nm thick films, very little laser light was absorbed in the either 

the amorphous or the RTA crystallized layers and so Raman was therefore not a reliable method of 

characterization. Using thicker films was not an option because of the reduction in solar cell short-circuit 

current. A good alternative to Raman is UV-reflectance which operates between 200-400 nm.   

 

2.5 UV-Reflectance  

Ultraviolet reflectance is an ideal method to characterize the crystallinity of thin silicon films. 

The spot size is relatively large (≈1 cm2) compared to Raman (≈100 um2) and provides an area averaged 

indication of film crystallinity. A photo-spectrometer with integrating sphere was used to determine the 

total hemispherical reflectance between 200-400 nm for wafers processed by RTA at 1, 2.5, and 5 

minutes annealing times at 500oC, 600oC, 700oC, 800oC, 900oC, and 1000oC. Reflectance on polished 

crystalline silicon shows two characteristic peaks at 365 nm and 276 nm. The peaks are a measure of the 

crystal quality and are related to direct optical transitions. [60] Defects and disorder associated with 

amorphous silicon, grain boundaries, or crystalline defects cause a broadening and a reduction in peak 

intensity. The absorption depth, 𝑑, for 𝜆 = 400 nm in crystalline silicon is approximately 100 nm. At 365 

nm the absorption depth is 𝑑 = 11 nm, and at 276 nm 𝑑 = 4.2 nm. [61] Thus, for the crystalline films in 

this study, it was reasonable to assume that between 200-400 nm almost none of the incident light was 

reflected from the Si substrate. The interference from the crystalline substrate in the Raman analysis 
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was negligible in UV-reflectance measurements because the wavelength was lower and the deposited 

film was sufficiently thick.      

The UV-reflectance results for all RTA samples are shown in Figure 2.7. For the samples 

annealed at 500oC for 1, 2.5, and 5 minutes, the reflectance data were nearly identical and so the three 

spectra were plotted as a single curve for clarity. At 500oC, there were no peaks at 365 nm and 276 nm 

which confirmed that the film was still amorphous. At 600oC and 700oC, clear peaks formed indicating a 

transition from amorphous to crystalline silicon, and the reflectance for 700oC was higher than for 600oC 

indicating a better optical quality. However, there was no discernible difference between films annealed 

for 1, 2.5, or 5 minutes at 600oC or 700oC.  

   

For the a-Si:H films annealed at 800oC, 900oC, and 1000oC, there was again an increase in 

reflectance across the entire wavelength range, and the peak heights approached that of defect free 

crystalline Si. A reflectance dependence on annealing time became evident with the reflectance peak 

height at 800oC, 900oC, and 1000oC, increasing by approximately 2% as the annealing time was increased 

from 1 to 2.5 to 5 minutes. This was due to the fact that at high temperatures, RTA has the ability to 

anneal away crystalline defects. [62] The crystallinity of the films was qualitatively determined by 

comparison of the twin peak height to that of the c-Si reference. The samples annealed at 1000oC for 5 

 

Figure 2.7: UV-reflectance for wafers with a-Si:H thin film with RTA for 1, 2.5, and 5 minute annealing times 
from 500oC to 1000oC.  
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minutes showed the best optical properties that were most similar to c-Si. Although all of the films 

annealed from 600oC to 1000oC were likely epitaxial, the reflectance peak heights were still clearly 

below those of a c-Si wafer which can be explained by the fact that the epitaxially crystallized films 

contained a high density of crystalline defects which caused a reduction and broadening in the peaks.  

 The UV reflectance spectra of thin films are not only influenced by crystallinity but also by 

surface roughness, particle contamination, and surface layers such as SiOx. Surface roughness is believed 

to cause a wavelength-dependent reduction in reflectance, whereas contamination produces a uniform 

reduction in reflectance over the entire wavelength range [63].  

 

2.6 Ellipsometry  

Ellipsometry was used to determine the optical parameters and layer composition of the samples 

that had been processed by RTA. The annealing conditions are shown in Figure 2.9. Ellipsometry 

measures the change in polarization state of reflected light. If polarized light is reflected at the interface 

between two materials, the polarization state will be linear, circular, or elliptical depending on the 

properties of the sample. Elliptical polarization of reflected light is the most common. When plane-

polarized light is incident on an absorbing material, or undergoes multiple reflections within a thin layer 

between the air and the substrate, both the amplitude and the phase will be altered. The phase shift 

creates a component that is polarized 90o to the incident beam which transforms the light from plane-

polarized to elliptically-polarized. The property of light exploited by ellipsometry is the change from 

plane-polarized to elliptically-polarized light upon reflection. The principal variables used in ellipsometry 

measurements are the ellipsometric angles Ψ (0𝑜 ≤ Ψ ≤ 90𝑜), and Δ (0𝑜 ≤ Δ ≤ 360𝑜) which are 

mathematically related to the amplitude and phase of the reflected and incident electric field of the 

electromagnetic wave. The variables Ψ and Δ are a measure of the differential changes in phase and 

amplitude that occur when incident light interacts with a surface. The optical properties of the film are 

determined according to the complex reflectance, 𝜌 = 𝑡𝑎𝑛ΨeiΔ. To perform an ellipsometric 

measurement, the sample properties such as layer thickness and refractive index are approximated 

using models such as reference library materials data or dispersion formulae which allow the optical 

properties of the film to be calculated at each wavelength and angle of incidence. Based on the 

modeling, the Ψ and Δ values can be calculated from theory and then compared to the experimentally 

measured Ψ and Δ spectra. Next, the parameters of the model (such as film thickness, volume fractions, 
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or the variables in the dispersion formulae) are varied using optimization algorithms in order to 

minimize the difference between the measured and calculated values of Ψ and Δ. The better the 

agreement between theory and measurement the more accurately the model describes the layers of 

the actual sample. The goodness-of-fit is described by 𝜒2 which is a measure of the discrepancy 

between the experiment data and the best fit results calculated from theory. There is no clear definition 

of what is a “low” or “high” value for  𝜒2 because it is dependent on the type of film, the layer model, 

and the fitting conditions. As references, over the range of 1.5-5 eV, 2 nm of SiO2 on Si gives 𝜒2 < 0.2, 

200 nm of SiO2 on Si gives 𝜒2 < 2, and 550 nm TiO2 on Si gives 𝜒2 < 15.[67] The thicker the film the 

greater 𝜒2 because the spectra have more features.                                                                                                                               

 Ellipsometric measurements were performed on samples using a Horiba Joben Yvon UVSEL 

ellipsometer. The angle of incidence was 75o, and the wavelength range was from 250 nm to 830 nm 

(1.5 to 5 eV). The fitting algorithm used was the Marquardt routine, and integration time was 300 ms. 

Step size was 0.03 eV which was small enough to resolve spectral features (117 data points) while at the 

same time minimizing the collection time. Data were collected in units of electron volt. The spot size was 

approximately 1 x 4 mm2. Before measurement, all samples were dipped in 2% hydrofluoric acid to 

remove any SiO2 layer that had formed during RTA. Although the RTA chamber was purged with nitrogen 

before the start of annealing, there was some remaining oxygen which caused formation of SiO2 during 

heating and was determined by ellipsometry to be between 4 nm to 7 nm thick. RTA formation of SiO2 in 

nitrogen ambient has also been noted by Mohadjeri. [64] After RTA, a thin SiO2 layer did form due to 

exposure to air but this layer was less than 2 nm thick and had little impact on optical characterizations. 

Although the compositions of the RTA crystallized films were assumed to be epitaxial at RTA 

temperatures of 600oC and above, UV-reflectance analysis has shown that these films are defective. 

Several different models were used incorporating grain boundaries, amorphous silicon, and 

nanocrystalline silicon to approximate the defective states in the epitaxial emitter. The four models are 

shown in Figure 2.8. Model a) assumed defect-free solid phase epitaxy from the c-Si substrate. Model b) 

consisted of fine grained nanocrystalline silicon (nc-Si). Model c) assumed a two layer structure 

consisting of a-Si:H and c-Si in the bottom layer, and a-Si, c-Si, and voids in the top layer which was a 

surface roughness layer. The a-Si:H c-Si mixture is a common method of modeling nanocrystalline silicon 

for ellipsometry. Model d) was identical to model c) except the a-Si:H in both layers was replaced by nc-

Si. For the surface roughness layer, it was assumed that the feature size was less than the wavelength of 

light so that it was possible to define an average refractive index. All of the optical property data for the 

film components were taken from reference library data (crystalline silicon from [65], amorphous silicon 
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from [66], and nanocrystalline silicon from [61]). No dispersion formulae were required. In the fitting 

routine, the software was set to vary both the film thicknesses and percentage composition of a-Si:H, c-

Si, nc-Si, and voids. The substrate was assumed to be infinitely thick, and because it was back-side 

roughened reflections from the back were neglected.  

 

 

For layers consisting of several materials, the Bruggeman effective-medium-approximation was 

used to calculate the dielectric function. The approximation assumes a homogeneous distribution and 

combines the independent dielectric functions of the host materials with corresponding volume 

fractions. The layer is macroscopically homogeneous but microscopically heterogeneous on a length 

 

Figure 2.8:  ⧠ denotes Psi, ∎ denotes Delta, − denotes theoretically calculated values of Delta and Psi based on the layer material 
assumptions shown in the inset of each graph. This model comparison is for an RTA sample annealed at 900oC for 5 minutes. However, 
for all of the other samples annealed above 500oC, model d) consistently gave the lowest 𝜒2.    

 

a) 𝜒2 = 2.1 b) 𝜒2 = 8.2 

c) 𝜒2 = 1.2 d) 𝜒2 = 0.35 
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scale between 1 nm to 1 μm. [67]  In Figure 2.8, the model which gave the best fit to the data for RTA 

films processed at or above 600oC was the model consisting of a combination of nc-Si, c-Si, and a surface 

roughness layer containing voids. For samples annealed at 500oC, model d) gave a very poor fit to the 

data because these films were still highly amorphous. In this case, a model consisting of the silicon 

substrate, an a-Si:H layer, and a capping layer of SiO2 gave the best fit with 𝜒2 = 0.57 to 𝜒2 = 0.63 for 

annealing times of 1, 2.5, and 5 minutes.  

A measure of crystallinity is provided by the square of the refractive index which is the dielectric 

function 𝜀 = 𝜀𝑟 + 𝑖𝜀𝑖  composed of real and imaginary parts. The dielectric function is dependent on 

electronic band structure. The imaginary component, 𝜀𝑖  , is directly related to the joint density of 

electronic states  by two critical point peaks at 3.5 eV and 4.2 eV which are dependent on changes in 

crystalline atomic order. [68] Figure 2.9 shows the real and imaginary components of the dielectric 

function for n-type a-Si:H films RTA processed from temperatures of 500oC to 1000oC for annealing 

times of 1, 2.5, and 5 minutes. Ellipsometer sensitivities to changes in dielectric function in silicon can be 

as low as 10-3. However, the difference in dielectric function between amorphous, nanocrystalline, and 

single crystal silicon shown in Figure 2.9 was very large. The sensitivity in 𝜀𝑖  was particularly high around 

the critical point energy peak at 4.2 eV where the difference was greater than 10. The dielectric function 

is related to the properties of the crystalline film by effective medium theory. The effective medium 

theory assumes that the film is composed of a homogeneous mixture of phases that are large enough to 

retain their bulk properties but smaller than the wavelength of ellipsometric light thus avoiding 

scattering. For a mixture of two materials consisting of dielectric functions 𝜀𝑎 and 𝜀𝑏 a generalized form 

of the effective medium theory, the Bruggeman effective-medium-approximation, is used to calculate 

the effective dielectric function, 𝜀𝑓, which is given by equation 2.2.  

 0 = 𝑓𝑎
𝜀𝑎−𝜀𝑓

𝜀𝑎+2𝜀𝑓
+ 𝑓𝑏

𝜀𝑏−𝜀𝑓

𝜀𝑏+2𝜀𝑓
 (2.2)    

The model fit parameters are the volume fractions of the two materials, 𝑓𝑎 and 𝑓𝑏, where 𝜀𝑎 and 𝜀𝑏 are 

known and 𝜀 is calculated by altering 𝑓𝑎 and 𝑓𝑏. For wavelengths greater than 3 eV, light did not 

penetrate the emitter film, and so the dielectric function was representative of the emitter layer 

modified only slightly by surface layers such as roughness and native oxide. The crystallinity of the 

measured films was defined by the “position” of the real and imaginary components of the dielectric 

function between the upper and lower limits of crystalline silicon and amorphous silicon. In the visible  
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Figure 2.9: Ellipsometry results for RTA annealed a-Si:H films for annealing periods of 1, 2.5, and 5 minutes. RTA annealing 
temperatures were from 500oC to 1000oC. The dotted lines indicate reference optical parameters for c-Si and a-Si:H taken from the 
Horiba Jobin Yvon materials properties library.    
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Annealing                
temperature  

Layer 1: (nc-Si + c-Si) Layer 2: Surface roughness 
(c-Si + nc-Si + voids) 

Layer 3: Surface oxide, SiO2 

600oC, 1 min 
𝜒2 = 1.16 
 
 

Thickness: 27.4 ± 2.7 nm 
c-Si: 85.2 ± 4.5 % 
nc-Si: 14.8 % 
 

Thickness: 10.4 ± 1.0 nm 
c-Si: 48.0 ± 3.7 % 
nc-Si: 47.5 ± 3.5 % 
Voids: 4.5  % 

Thickness: 1.7 ± 0.1 nm 
 
 

700oC, 1 min 
𝜒2 = 0.97  

Thickness: 27.0 ± 2.3 nm 
c-Si: 84.0 ± 4.2 %  
nc-Si: 16.0 %   
 

Thickness: 10.7 ± 1.0 nm 
c-Si: 50.1 ± 3.2 % 
nc-Si: 45.9 ± 3.2 % 
Voids: 4 % 

Thickness: 1.7 ± 0.1 nm 
 
 

800oC, 1 min 
𝜒2 = 1.2 
 

Thickness: 27.9 ± 3.5 nm 
c-Si: 88.1 ± 4.8 % 
nc-Si: 11.9 % 
 

Thickness: 10.8 ± 1.2 nm 
c-Si: 54.9 ± 3.7 % 
nc-Si: 42.1 ± 3.6 % 
Voids: 3 % 

Thickness: 1.5 ± 0.1 nm  
  

900oC, 1 min 
𝜒2 = 0.7 
 

Thickness: 24.6 ± 2.7 nm  
c-Si: 89.1 ± 2.8 % 
nc-Si: 10.9 % 
  

Thickness: 10.8 ± 0.8 nm  
c-Si: 45.8 ± 3.0 % 
nc-Si: 51.2 ± 2.1 %  
Voids: 3 % 

Thickness: 1.6 ± 0.1 nm 
  
  

1000oC, 1 min 
𝜒2 = 0.58 
 

Thickness: 34.5 ± 5.4 nm 
c-Si: 94.4 ± 3.2 % 
nc-Si: 5.6 % 
 

Thickness: 9.3 ± 0.8 nm 
c-Si: 62.0 ± 2.8 % 
nc-Si: 36 ± 0.5 % 
Voids: 2% 

Thickness: 2.0 ± 0.5 nm 
 
 

Annealing                
temperature  

Layer 1: (nc-Si + c-Si) Layer 2: Surface roughness 
(c-Si + nc-Si + voids) 

Layer 3: Surface oxide, SiO2 

600oC 
2.5 min 
𝜒2 = 0.9  
 

Thickness: 26.3 ± 2.2 nm  
c-Si:  83.9 ± 4.1 % 
nc-Si: 16.1 % 
 

Thickness: 11.2 ± 1.0 nm 
c-Si: 49.6 ± 3.1 % 
nc-Si: 46.3 ± 3.1 % 
Voids: 4.1 % 

Thickness: 1.8 ± 0.1 nm 
 

700oC 
2.5 min 
𝜒2 = 0.9  
 

Thickness: 25.5 ± 2.0 nm 
c-Si:  83.1 ± 4 % 
nc-Si: 16.9 % 

Thickness: 11.8 ± 1.1 nm 
c-Si: 52.2 ± 3.0 % 
nc-Si: 44.0 ± 3.1 %  
Voids: 3.8 % 

Thickness: 1.6 ± 0.1 nm 
  

800oC 
2.5 min 
𝜒2 = 1.2 
 

Thickness: 28.5 ± 3.6 nm 
c-Si: 88.9 ± 4.7 % 
nc-Si: 11.1 % 

Thickness: 10.5 ± 1.0 nm 
c-Si: 52.6 ± 3.6 %   
nc-Si: 44.7 ± 3.6 % 
Voids: 2.7 % 

Thickness:  1.5 ± 0.1 nm 
  

900oC 
2.5 min 
𝜒2 = 0.43 
 

Thickness: 33.3 ± 8.9 nm 
c-Si: 96.2 ± 3.7 % 
nc-Si: 3.8  % 
 

Thickness: 8.2 ± 0.9 nm 
c-Si: 63.6 ± 4.2 % 
nc-Si: 34.6 ± 3.8 % 
Voids: 1.8 % 

Thickness:  2.1 ± 0.1 nm 
  
  

1000oC  
2.5 min 
𝜒2 = 0.56 
 

Thickness: 34.5 ± 5.4 nm  
c-Si: 94.4 ± 3.1 nm  
nc-Si: 5.6 % 

Thickness: 9.3 ± 0.8 nm  
c-Si: 62.0 ± 2.8 % 
nc-Si: 36 ± 2.1 % 
Voids: 2.0 % 

Thickness: 1.6 ± 0.1 nm 
 
 

Annealing                
temperature  

Layer 1: (nc-Si + c-Si) Layer 2: Surface roughness 
(c-Si + nc-Si + voids) 

Layer 3: Surface oxide, SiO2 

600oC 
5 min 
𝜒2 = 0.81  
 

Thickness: 25.4 ± 1.9 nm  
c-Si: 82.8 ± 3.7 % 
nc-Si: 17.2 % 
  

Thickness: 11.7 ± 1.0 nm 
c-Si: 50.0 ± 2.8 % 
nc-Si: 46.2  ±2.8 % 
Voids: 3.8 % 

Thickness: 1.7 ± 0.1 nm 
  
  
 

700oC 
5 min 
𝜒2 = 0.91  
 

Thickness: 26.0  ± 2.0 nm 
c-Si: 82.7 ± 4 % 
nc-Si: 17.3 % 
 

Thickness: 11.4 ± 1.1 nm 
c-Si: 52.1 ± 3.1 % 
nc-Si: 44.2  ± 3.1 % 
Voids: 3.7 % 

Thickness: 1.5 ± 0.1 nm 
  
  

800oC 
5 min 
𝜒2 = 0.99 
 

Thickness: 29.1 ± 5.1 nm 
c-Si: 92.7 ± 4.4 % 
nc-Si: 7.3 
  

Thickness: 11.0 ± 0.8 nm 
c-Si: 51.5 ± 3.2 %  
nc-Si: 46.7 ±3.2 % 
Voids: 1.8 % 

Thickness: 1.5 ± 0.1 nm 
 
  

900oC 
5 min 
𝜒2 = 0.35 
 

Thickness: 25.2  ± 4.5 %  
c-Si: 89.5 ± 3.2 % 
nc-Si: 10.5 % 
  

Thickness: 10.1 ± 1.5 % 
c-Si: 63.4 ± 3.0 % 
nc-Si: 35.9 ± 2.9 % 
Voids: 0.7 % 

Thickness: 1.9  ±  0.1 nm  
  
  

1000oC 
5 min 
𝜒2 = 0.56  
 

Thickness: 34.5 ± 5.4 nm 
c-Si: 94.4 ± 3.1 % 
nc-Si: 5.6 % 
 

Thickness: 9.3 ± 0.8 nm 
c-Si: 62.0 ± 2.8 % 
nc-Si: 36.0 ± 3.0 %  
Voids: 2.0 % 

Thickness: 1.6  ± 0.1 nm  
 
 

Table 2.2: Summary of RTA film characteristics for 1, 2.5, and 5 minute RTA.  
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and ultraviolet part of the spectrum, the main influence on the dielectric function is the electric 

polarizability which is due to the bonding configuration, short-range and long-range atomic order, and 

density. [69] Figure 2.9 shows the imaginary dielectric function for a-Si:H, which had no long-range 

order, and only a single peak around 3.5 eV. By contrast, crystalline silicon had perfect long-range order 

and exhibited peaks in  𝜀𝑖  at 3.4 eV (𝐸1 transition) and 4.2 eV (𝐸2 transition). Both amorphous and 

crystalline silicon are homogeneous on a length scale of 1nm – 1 μm. However, nanocrystalline silicon is 

inhomogeneous in this scale. The 𝜀𝑟 and  𝜀𝑖  spectra for the films annealed between 600oC, and 1000oC 

were very similar to the nc-Si dielectric spectra reported in literature. Thus, although the RTA processed 

films were epitaxial, their dielectric spectra similarity to nanocrystalline silicon implied that the epitaxial 

films were defective. Figure 2.9 showed that as the RTA temperature was increased, 𝜀𝑟 and 𝜀𝑖   became 

closer to that of single crystal silicon. However, there was a significant difference between 500oC and 

600oC film. The dielectric transition from amorphous to epitaxial phases occurred quite suddenly. 

 Using model c) consisting of a-Si:H, c-Si, and voids to describe defective epitaxial Si did not result 

in a good fit at the 𝐸1 and 𝐸2 transition points for  𝜀𝑖. The inadequacy of model c) to simulate the 

defective emitter may be due to difficulty the software encounters when trying to use amorphous 

silicon to account for the presence of crystalline defects. Model d) gave the best fit because the 

defective sites in the epitaxial layers were better modeled by the grain boundaries present in 

nanocrystalline silicon. The dielectric peaks at 3.4 eV for both 𝜀𝑟 and 𝜀𝑖  in the epitaxial films were 

believed to be due to direct optical transitions [70] and an interaction between heavy doping effects and 

the influence of crystal grain size on the density of states. [71] [59] The percentage composition of the 

two layers using the nc-Si + c-Si + voids model is given in Table 2.2 for all annealing temperatures. 

 Taking an average of the percentage compositions for nc-Si and c-Si for the three different 

annealing times at each RTA temperature, the average crystallinity was plotted in Figure 2.10. As the 

annealing temperature was increased, the percentage of c-Si in both Layer 1 and Layer 2 increased while 

the percentage of nc-Si decreased. This implied that at higher annealing temperature there was an 

annealing away of crystalline defects (in agreement with the results from UV-reflectance). The 

percentage composition results were consistent with the trends in dielectric constant towards 

increasing crystallinity as the RTA temperature increased (Figure 2.9). Another feature was that the c-Si 

content in Layer 1 was much larger than the c-Si content in Layer 2. There was a thickness-dependent 

increase in nc-Si percentage. This provided insight into the growth mechanism. It implied that epitaxial 

crystallization had a relatively low defect density near the c-Si interface (where the nc-Si volume fraction 
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was smallest) and epitaxy became progressively more defective further away from the interface (where 

the nc-Si volume fraction was larger). 

 

 

2.7 Defect Etching  and Scanning Electron Microscopy  

 Defect etches are typically used to reveal the size, type and density of defects on a 

semiconductor surface. By an etch-pitting process, the defect etch will make defects visible by creating a 

variety of etch patterns as a result of surface features such as dislocations or stacking faults. All defect 

etches have a common chemistry consisting of an oxidizing agent, a fluoride to dissolve silicon dioxide, 

and a dilution component such as acetic acid or water. Common oxidizing agents are nitric acid, 

hydrogen peroxide, and particularly chromium compounds like CrO3, and K2(Cr2O7).   

  The Secco etch is often used to reveal grain boundaries and defects in polycrystalline silicon in 

order to determine crystal grain size. Secco etch is based on a dilute solution of HF and K2(Cr2O7). [72] 

Other defect etching solutions introduced in the sixties and seventies such as Schimmel [73], Wright 

[74], Yang [75], Seiter [76], MEMC [77], and Dash [78] etch are also used. However, while the above 

recipes are well adapted to defect etches on Si wafers they are very difficult to apply to thin Si films only 

a few tens of nanometers thick. For this work, the Dash and Secco etch were attempted but difficulties 

 

Figure 2.10: Average crystallinity for RTA films processed at plateau annealing times of 1, 2.5, and 5 minutes. 
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were encountered with non-uniform etch removal, and in some cases complete etching away of the 

film. Due to the relatively high etching rates of μm/min, exposure times of only a few seconds were 

necessary which made the etching procedure unreliable. In order to overcome these difficulties, an 

organic peracid etch recently introduced by Kolbesen and Possner [79] was used called OPE-A. The 

mixture consists of acetic acid (100%, 143 ml), hydrofluoric acid (50%, 14.5 ml), and hydrogen peroxide 

(30%, 43 ml). The reaction proceeds with acetic acid and hydrogen peroxide forming peracetic acid 

according to equation 2.3.     

 CH3COOH + H2O2 ⟹ CH3COOOH + H2O (2.3) 

 Peracetic acid is the active species and oxidizes silicon according to equation 2.4. After oxidation, silicon 

dioxide is dissolved by hydrofluoric acid according to equation 2.5.  

 Si + 2CH3COOOH ⟹ SiO2 + 2CH3COOH (2.4) 

 SiO2 + 6HF ⟹ H2SiF6 + 2H2O (2.5)  

The etch rate of OPE-A is determined by the concentration of hydrogen peroxide and peracetic acid 

whereas the concentration of hydrofluoric acid will affect the diameter of the etch pits. The advantage 

of the OPE-A recipe is its homogeneous etching and low removal rate of 0.6 nm/min at 25oC. [79] For 

comparison, a diluted Secco etch has a removal rate a factor of 100 greater than OPE-A. In addition, 

OPE-A is found to be 10-20 times more sensitive to defects than Secco. For this work, OPE-A was 

prepared according to the above recipe, but was only used after a period of 24 hours in order to give 

enough time for the formation of a sufficient quantity of peracetic acid (3 mol/L). Samples with an n-

type 50 nm thick a-Si:H film that had been RTA processed at 750oC were dipped in OPE-A for 40 minutes 

in order to etch approximately half way through the film. Etching was performed at room temperature 

without physical agitation. Before OPE-A, samples were etched in 2% hydrofluoric acid to remove 

surface oxide. Samples were analyzed by SEM and the results are shown in Figure 2.11.  

 Etch pit formation is governed by many factors including strain fields in the film, the presence of 

impurities such as metals, and crystal defects which occur within crystal grains and grain boundaries. 

OPE-A has been shown to have very high etching selectivity between defect-free and defective regions 

of the crystal lattice. [80] As OPE-A etched through the films, regions containing crystallographic defects 

and impurities were etched faster than relatively low defect concentration areas. The SEM analysis was 

complicated by the fact that the film contained voids. Nevertheless, at higher magnifications of 75,000 

and 150,000, surface features became visible. As was shown earlier, at 750oC the film emitter was  
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Figure 2.11: OPE-A of RTA processed sample. N-type a-Si:H annealed at 750oC for 5 minutes. OPE-A etch was 40 minutes.   
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epitaxial. However, the OPE-A etched film surface was highly pitted and irregular which indicated that 

there was a high density of defect centers where the etch rate was increased relative to less defective 

crystalline areas. Some areas of the film appeared to be relatively smooth and defect free and these 

regions could be seen at the highest magnifications of 75,000 and 150,000. The SEM images reinforced 

the results of TEM, UV-reflectance, and ellipsometry which indicated that the crystalline emitters were 

epitaxial but also defective. 

 

2.8 Hall Effect 

 Hall Effect measurements were performed using an Ecopia 3000 HMS system at room 

temperature. The Hall Effect applies a magnetic field perpendicular to the direction of current flow. The 

magnetic field exerts a Lorentz force causing a deflection and accumulation of mobile charge carriers 

resulting in a downward electric field which balances the Lorentz force (the Hall Field). For a known 

magnetic field, film thickness, current flow, and Hall voltage, the resistivity, carrier density, and Hall 

mobility are calculated. Wafers processed by RTA at 1, 2.5, and 5 minute annealing times at 500oC, 

600oC, 700oC, 800oC, 900oC, and 1000oC were diced into 1.5 x 1.5 cm2 squares and aluminum contacts 

were deposited by e-beam evaporation at the corners of each sample using a shadow mask. The contact 

area of each of the four pads was approximately 0.75 mm2. The magnetic field strength was 0.54 T. A 

magnetic field reversal was made in order to cancel any unbalanced voltage due to the contacts not 

being exactly opposite to one another. Readings were averaged (100 measurements at each field 

direction). 

 The results for Hall mobility and resistivity for each RTA condition is shown in Figure 2.12. The 

software required the film thickness which was input from earlier ellipsometry measurements. There 

was a sharp increase in mobility from 500oC to 600oC, which was in agreement with the optical analysis 

showing that at 500oC the film was still amorphous whereas at 600oC it was crystalline. At 600oC and 

800oC, mobility gradually increased with annealing time. While the results at 700oC did not show a clear 

dependence on annealing time, the overall trend of increasing mobility at higher temperatures was 

clear. Particularly at temperatures of 900oC and 1000oC, increased mobility was evident as the annealing 

time was increased. The highest mobility was achieved at 1000oC for 5 minutes with 𝜇𝑛 = 67.2 ± 0.6 

cm2/Vs. The phosphorous dopant concentration for these devices was approximately 1020 cm-3. At room 

temperature, mobility was likely limited by a combination of impurity scatter, lattice scatter, and 
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scattering at defects. For single crystal silicon with an identical doping concentration at 300 K, the 

mobility is approximately 90 cm2/Vs which is the upper limit that the RTA mobility cannot surpass. [81] 

As the RTA plateau temperature increased, increasing mobility was likely due to the annealing away of 

defects in the epitaxial layer. Micro-twins are a commonly observed defect and can act as scattering 

centres. Micro-twin defects are unstable, and it has been shown that their density can be drastically 

reduced with RTA annealing temperatures at or above 750oC. [62] 

 

 

 Not all of the samples followed the trend of increasing mobility with higher annealing 

temperatures and this was due to measurement uncertainties and variability between samples. For thin 

films on substrates of opposite conductivity type, the active film thickness was not necessarily the same 

as the total film thickness due to depletion effects caused by surface charges and band bending at the 

interface with the substrate. This affected the Hall coefficient. It was also assumed that the doping 

concentration, and thus the mobility and resistivity, were uniform throughout the film thickness which 

was not exactly the case as is shown by spreading resistance profiling in Chapter 4. Lastly it was assumed 

that the samples satisfy the van der Pauw conditions: symmetrical point contacts located at the 

 

Figure 2.12: Hall Effect measurement for RTA processed samples. 
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periphery, and no pinholes in the film. In this way, device parameters could be determined without 

knowing the current pattern.     

 

2.9 Diode Transport Properties: Dark Current-Voltage Characteristics 

 Diodes were made on 4 inch diameter p-type silicon wafers (7-10 Ω cm). Wafers were RCA-1 and 

RCA-2 cleaned, followed by deposition of an n-type a-Si:H film on the polished surface by Trion PECVD. 

The thickness of the deposited films was approximately 50 nm. Samples were RTA processed at 600oC, 

700oC and 800oC for 5 minutes. Front and back contacts were deposited by electron-beam evaporation 

of aluminum. Photolithography followed by lift-off was used to define square contacts of four different 

areas: 0.25 x 0.25 mm2, 0.5 x 0.5 mm2, 2 x 2 mm2 and 1 x 1 cm2. Mesa etching was performed using Trion 

Phantom reactive ion etcher to electrically isolate all diodes by removing the emitter using gases O2 and 

SF6. Etching conditions were: DC power 40 W, O2 flow rate of 3 sccm, SF6 flow rate of 22 sccm, pressure 

of 50 mTorr, and etching time of 60 seconds. A Dektak surface profiler was used to measure the step 

height which indicated that approximately 450 nm of silicon had been etched.  

 The transport of charge carriers across the heterojunction is fundamental to understanding 

device operation. Dark I-V measurement as a function of temperature is a well established method to 

examine transport characteristics. Compared to transport in p-n homojunctions, transport in 

heterojunctions is complicated by: conduction and valence band offsets which act as charge transport 

barriers, trap states at the heterojunction interface, dipole layers, and discontinuous material 

properties. Anderson first described heterojunction transport paths in Ge-GaAs [82], and since then a 

wide variety of transport mechanisms have been identified. Despite several groups presenting analytical 

expressions for device currents [83], there is currently no universal analytical model that accounts for all 

transport paths. Several paths may be present simultaneously.  The two most common transport 

mechanisms in a typical diode are diffusion-limited transport in the neutral bulk, and recombination 

occurring in the space charge region. Recombination or diffusion may be present particularly in the low 

forward bias region (𝑉𝑎 < 0.4 V) where an exponential relationship exists between current and applied 

voltage as given by equation 2.6:  

 𝐼 = 𝐼𝑠(𝑒𝑥𝑝[𝛽𝑉] − 1) (2.6)  

where 𝐼𝑠 is the saturation current, and recombination or diffusion within the depletion region are 

identified by the temperature dependent exponent, 𝛽, according to equation 2.7. 

 𝛽 = 𝑞 𝑛𝑘𝑇⁄  (2.7) 



43 
 

The ideality factor, 𝑛, indicates whether the dominant transport mechanism is diffusion or 

recombination. If the diffusion of carriers across the junction is the dominant transport mechanism then 

the ideality factor is near 𝑛 = 1. If transport is controlled by recombination in the depletion region then 

𝑛 = 2. Two other important transport mechanisms in heterojunctions are thermionic currents and 

tunneling. Thermionic currents occur when charge carriers have sufficient energy to be transported over 

a band offset spike. Under low forward bias, tunneling current may exceed diffusion or thermionic 

emission currents by several orders of magnitude. To account for tunneling currents, models of Multi-

tunneling Capture Emission (MTCE) are used to account for numerous defect states in the band gap. 

Charge carriers can tunnel into the band gap via defect states, and even migrate between valence and 

conduction bands. To summarize these various transport mechanisms, Schulze’s depiction of transport 

pathways in a typical p-n heterojunction is reproduced in Figure 2.13. [84]  

 

 Dark I-V measurements, shown in Figure 2.14, were made at 30oC, 60oC, 90oC, and 120oC using a 

Cascade Microtech probe station with thermally controlled Temptronic 3000 chuck with an accuracy of 

±1oC. The voltage bias range was divided into three regions: reverse bias, low forward bias   (𝑉𝑎 < 0.6 V), 

and high forward bias (𝑉𝑎 > 0.6 V). In the reverse bias regime, all samples showed an increase in reverse 

 

Figure 2.13: Depiction of various transport mechanisms in a n+p a-Si:H / c-Si solar cell. The heterojunction is at thermal equilibrium. 
Transport pathways shown are: a) emission of carriers across a band spike created by the conduction band offset, b) tunneling 
through a band spike, c) recombination of an electron and a hole at an a-Si:H energy state in the forbidden gap, d) recombination 
occurring via states at the amorphous/crystalline interface, e) tunneling into interface states followed by hopping to higher energy 
interface states, f) recombination via deep defects in the crystalline substrate, g) multi-tunneling through successive capture and re-
emission, h) tunneling followed by hopping to various defect states in the band tail of amorphous silicon, i) band-to-band multi-
tunneling process. 
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saturation current with temperature which was due to thermally induced generation (drift) current with 

the number of thermally generated electron hole pairs increasing with device temperature. 

 Figure 2.15 shows the ideality factors for diodes from the three annealed wafers. There was a 

clear temperature dependence for all of the ideality factors meaning that tunneling was not the 

dominant transport mechanism (tunneling has a temperature independent ideality factor). For all three 

annealed wafers, the ideality factors increased with decreasing temperature, remaining within bounds 

of approximately 1 < 𝜂 < 2 . At the highest temperatures (90oC, 120oC) the ideality factors approached 

unity demonstrating that the high temperature zone was limited by diffusion current. In contrast to 

diffusion dominated current, at a temperature of 60oC, current was controlled by a mixture of both 

diffusion and recombination, as given by the ideality factors around 1.5. In the lower temperature zone,  

 

30oC, recombination current became the dominant transport mechanism as the ideality factors 

approached  𝜂 = 2. The temperature-dependence of the ideality factor also meant that thermionic 

current transport may be present, but more experiments are required to determine whether it is 

comparable to the diffusion/recombination current. 

 

Figure 2.14: Dark current-voltage curves for four diode types with reverse bias sweep. 
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2.10 Conclusions  

Optical and electrical characterization of RTA processed films showed good agreement. Films 

annealed at 500oC were amorphous, whereas films annealed between 600oC to 1000oC appeared 

epitaxial but defective as indicated by UV-reflectance, ellipsometry, and Hall Effect. Due to the defect 

density of the epitaxial layers, they were best modeled by ellipsometry not as a perfect crystalline film 

but as a homogeneous distribution of crystalline and nanocrystalline silicon. The RTA epitaxial films had 

a large enough defect concentration that their UV-reflectance and ellipsometry dielectric function 

curves were very similar to those of nanocrystalline silicon seen in literature. [63] [68] Hall Effect 

measurements confirmed that RTA films with good optical quality (near to that of c-Si) were also of good 

electrical quality. As RTA temperature increased, mobility of RTA films approached that of bulk silicon. 

Analysis of heterojunction transport mechanisms showed that carrier tunneling was not significant.   

 

Figure 2.15: Temperature dependence of ideality factor for RTA annealed films at measurement temperatures of 30oC, 
60oC, 90oC, and 120oC.   
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3 Simulations of Heterojunction Photovoltaic Cells with Crystalline and 

Amorphous Thin Films  
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In chapter 2, it was shown that solid phase crystallization of amorphous silicon on c-Si produced 

epitaxial but highly defective crystalline films. Ellipsometry results indicated that the epitaxial films were 

best modeled as a mixture of crystalline and nanocrystalline silicon. Because nanocrystalline silicon has 

defective grains and grain boundaries, it was used in this chapter to simulate the defective epitaxial 

emitter. This was a reasonable approximation particularly because RTA epitaxial films had a large 

enough defect density that their UV-reflectance and ellipsometry dielectric function curves were very 

similar to those of nanocrystalline silicon seen in literature. [85] [86] In order to better understand solar 

cell performance, simulations were performed to compare cells with three types of emitters: defect-free 

epitaxial silicon (epi-Si), nanocrystalline silicon (nc-Si), and a-Si:H (on Si wafer). The cell structures are 

shown in the inset of Figure 3.2. A model was established for the defect distribution at the 

heterojunction interface. Simulation was used to examine the optical and electrical properties of 

different emitter layers, and the influence of interface defects on solar cell open-circuit voltage.     

 

3.1 Simulation Settings and Solar Cell Thermal Equilibrium Band Structure 

 All simulations were performed using heterojunction simulation software AFORS-HET version 

2.4.1 from Helmholtz-Zentrum Berlin. AFORS-HET is capable of simulating heterostructures with ultra-

thin layers of several nanometers on top of thick c-Si wafers (300 𝜇m). An arbitrary number of layers can 

be simulated with user-specified distributions of defects within the bandgaps. Different models for the 
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transport of charge across interfaces such as drift-diffusion or thermionic emission are available. The 

software models the steady-state of the heterostructures by solving three one-dimensional coupled 

nonlinear partial differential equations: Poisson`s equation (equation 3.1) and hole and electron 

continuity equations (equations 3.2 and 3.3): 

 ∇ ∙ 𝜀𝐸⃑ = 𝑞(𝑝 − 𝑛 + 𝑁𝐷 − 𝑁𝐴 + 𝑁𝑇) (3.1) 

 ∇ ∙ 𝐽𝑝⃑⃑  ⃑ = 𝑞(𝐺𝐿 − 𝑅𝑝) (3.2) 

 ∇ ∙ 𝐽𝑛⃑⃑  ⃑ = 𝑞(𝑅𝑛 − 𝐺𝐿) (3.3) 

where 𝑛 and 𝑝 are the electron and hole concentrations, 𝐽𝑛 and 𝐽𝑝 are the electron and hole current 

densities, 𝐺𝐿 is the optical generation rate, 𝑅𝑛 and 𝑅𝑝 are the electron and hole recombination rates,  

𝑁𝑇  is the net charge of all the traps located in the bandgap, 𝑁𝐴 and 𝑁𝐷 are the acceptor and donor 

concentrations, and 𝜀 is the electric permittivity 

of the semiconductor. Recombination is 

modeled by Auger, direct band-to-band, and 

Shockley-Read-Hall recombination. Finite 

difference methods are used to discretize the 

equations on user-defined grid points. Using the 

appropriate boundary conditions, the 

semiconductor equations are iteratively solved 

to obtain carrier concentrations and electric 

potential at each grid point from which other 

device parameters can be computed.  

For the simulation of the silicon wafer, 

the parameters are well established. In AFORS-

HET, the dopant concentration and defect 

density of the wafer was required and the rest 

of the parameters were determined by various 

models as can be found in other solar cell 

simulation software such as PC1D. The 

impurities present in the wafer (mainly oxygen, 

carbon and transition metals) were modelled as 

 

Figure 3.1: a) Density of states for a-Si:H, b) density of states 
for nc-Si.  

 

a) 

b) 
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a single Shockley-Read-Hall defect state in the 

bandgap with temperature and doping 

dependent recombination. Models were 

implemented for bandgap narrowing, and 

charge carrier mobility. Auger recombination 

was calculated according to the model of Kerr 

and Cuevas [87]. More complicated was the 

simulation of amorphous and nanocrystalline 

silicon. As shown in Figure 3.1, for a-Si:H the 

defect states within the band gap were 

described by exponential tail states and 

Gaussian dangling bond states. For nc-Si, the 

exponential tail states had a steeper slope, and 

the Gaussian dangling bond states were 

replaced by a linear (constant) distribution of 

mid-gap states divided into donor-like states 

and acceptor-like states characterized by a 

switch-over energy half way through the 

bandgap. [88] Table 3.1 shows the electrical 

properties of each emitter type. For the 

nanocrystalline emitter, Table 3.1 also shows 

electrical characteristics for grain boundaries 

between crystal grains. Properties for the 

defective layer at the heterojunction interface 

(further discussed in section 3.2) are shown as 

well. 

 Figure 3.2 shows the equilibrium band 

diagrams for each of the three cell types as 

well as the cell structure. Because of the thin 

emitter layer, all three cells had an 80 nm thick 

ZnO layer to enhance lateral conductivity. The 

 

Figure 3.2: Band diagrams under thermal equilibrium for solar 
cells consisting of the following three emitters: a) epitaxial, b) 
nanocrystalline, and c) amorphous silicon. The various device 
layers are shown in the inset.  

 

 

 

 

a) 

b) 

c) 
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Fermi energy was set to zero. At the front and back cell contacts, a flat-band condition was specified 

with a high surface recombination velocity (107 cm/s). The cell surface was flat and the reflectance was 

assumed to be 20% which was typical for non-textured wafers. [88] 

Parameters and units (e and h for electrons and 
holes respectively) 

Epi-Si (n) 

(Epitaxial) 

nc-Si (n) 

(Nanocrystalline) 

a-Si:H (n) 

(Amorphous) 

Polycrystalline 
grain 

boundary 

Defective 
interface layer 

General electrical properties 
Dielectric constant [--] 
Electron affinity [eV] 
Band gap [eV]  
Effective density of states in the CB [cm-3] 
Effective density of states in the VB [cm-3] 
Electron mobility [cm2V-1s-1] 
Hole mobility [cm2V-1s-1] 
Ionized acceptor concentration [cm-3] 
Ionized donor concentration [cm-3] 
Thermal velocity of holes [cm/s] 
Thermal velocity of electrons [cm/s] 
Layer density [g cm-3] 
Effective minority carrier diffusion length [nm] 

 
11.9 
4.11 
1.12 

9.2x1018 
8.7x1018 

123.6 
160.4 

0 
9x1018 
1x107 

1x107 
2.33  
4000 

 
11.9 
4.05 
1.2 

3x1019 
2x1019 

40 
4 
0 

9x1018 
1x107 

1x107 
2.33  
20 

 
11.9 
3.9 

1.72 
1x1020 
1x1020 

20 
5 
0 

7.32x1019 
1x107 

1x107 
2.33 

5 

                                       
11.9 
4.05 
1.12 

2.8x1019 
1.04x1019 

1 
1 
0 

9x1018 
1x107 

1x107 
 2.33 
---- 

 
11.9 
4.05 
1.12 

2.8x1019 
2.7x1019 

1041 
413 

1.5x1016 
0 

1x107 

1x107 
2.33 
---- 

Band tail parameters 
Valence band tail donor-like states [cm-3eV-1] 
Valence band tail capture cross section, e [cm-2] 
Valence band tail capture cross section, h [cm-2] 
Valence band tail Urbach energy [eV] 
Conduction band tail acceptor-like states [cm-3eV-1] 
Conduction band tail capture cross section, e, [cm-2] 
Conduction band tail capture cross section, h, [cm-2] 
Conduction band tail Urbach energy [eV]  

 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

 
2x1020 
1x10-15 
1x10-17 

0.01 
2x1020 
1x10-17 
1x10-15 

0.01 

 
2x1021 
7x10-16 
7x10-16 
0.094 
2x1021 
7x10-16 
7x10-16 
0.068 

 
1x1021 
1x10-15 
1x10-17 
0.049 
1x1021 
1x10-17 
1x10-15 
0.021 

 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

Gaussian distribution parameters 
Gaussian acceptor-like states [cm-3eV-1] 
Maximum energy of acceptor Gaussian [eV] 
Width of acceptor Gaussian [eV] 
Acceptor-like capture cross section, e, [cm-2] 
Acceptor-like capture cross section, h, [cm-2] 
Gaussian donor-like states [cm-3eV-1] 
Maximum energy of donor Gaussian [eV] 
Width of donor Gaussian [eV] 
Donor-like capture cross section, e [cm-2] 
Donor-like capture cross section, h [cm-2] 

 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

 
1.3x1020 

0.6 
0.21 

3x10-15 
3x10-14 

1.3x1020 
0.5 

0.21  
3x10-14 
3x10-15 

 
5x1016 
0.49 
0.18 

1x10-15 
1x10-14 
5x1016 
0.63 
0.18 

1x10-14 
1x10-15 

 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

Flat band distribution parameters 
Density of donor-like midgap states [cm-3eV-1] 
Donor-like capture cross section, e [cm-2] 
Donor-like capture cross section, h [cm-2] 
Density of acceptor-like midgap states [cm-3eV-1] 
Acceptor-like capture cross section, e, [cm-2] 
Acceptor-like capture cross section, h, [cm-2] 
Switch over energy [eV] 

 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

 
3x1016 
1x10-14 
1x10-15 
3x1016 
1x10-15 
1x10-14 

0.6 

 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

 
8.9x1016-8.9x1022 

1x10-14 
1x10-14 

8.9x1016-8.9x1022 
1x10-14 
1x10-14 

0.56 

Table 3.1: List of layer parameters used in solar cell simulation with AFORS-HET. Effective minority carrier diffusion lengths were from R. Stangl 
[88]. Nanocrystalline materials properties were from AMPS 1-D materials library. [89] All other materials properties were from the AFORS-HET 
materials library.  

 There was a band gap offset exhibited at the junction interface for the nc-Si and a-Si:H 

heterojunctions while the epi-Si structure showed no offset. Because the bandgap of nc-Si was so close 

to that of crystalline silicon, the offset was small compared to the a-Si:H heterojunction. For any 

heterojunction solar cell, the bandgap of the emitter will affect the band gap offset, recombination, and 
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built-in potential [90]. Large bandgap offsets can be used to selectively control the transport of carriers 

across the junction. The bandgap of the emitter material is important for minimizing recombination 

losses in the emitter to improve the cell efficiency. Figure 3.3 shows the band diagram of an n+ p 

heterojunction with wide band gap (n+) a-Si:H emitter. 

 

Light-induced minority carriers produced in the absorber are swept by the junction into the opposite 

region where they become majority carriers and are collected at the contacts. Majority carriers that are 

injected into the opposite region become minority carriers and a source of recombination which reduces 

cell efficiency. For a wide bandgap heterojunction solar cell, as shown in Figure 3.3, the large barrier to 

majority carrier holes travelling towards the emitter reduces the number of holes that enter the emitter 

and recombine. [91] Ideally, the entire band offset between the two layers is entirely in the valence 

band. However, real heterojunctions will have offsets in both valence and conductions bands. The band 

spike in the conduction band will hinder the collection of electrons, but if the spike is small the charge 

carriers will pass through by tunneling, trap assisted tunneling, or thermionic emission. The 

improvement in cell efficiency for a wide bandgap emitter layer can also be seen in equation 3.4 which is 

the emitter component of the dark saturation current.   

 𝐼𝐸 = 𝑞𝐴
𝑛𝑖

2

𝑁𝐷

𝐷𝑃

𝐿𝑃
[
𝐷𝑃 𝐿𝑃𝑠𝑖𝑛ℎ[(𝑊𝑁−𝑥𝑁)/𝐿𝑃]⁄ +𝑆𝐹,𝑒𝑓𝑓𝑐𝑜𝑠ℎ[(𝑊𝑁−𝑥𝑁)/𝐿𝑃]

𝐷𝑃 𝐿𝑃⁄ 𝑐𝑜𝑠ℎ[(𝑊𝑁−𝑥𝑁)/𝐿𝑃]+𝑆𝐹,𝑒𝑓𝑓𝑠𝑖𝑛ℎ[(𝑊𝑁−𝑥𝑁)/𝐿𝑃]
]  (3.4) 

 𝑛𝑖 = √𝑁𝐶𝑁𝑉𝑒−𝐸𝐺/2𝑘𝑇  (3.5) 

From equation, 3.5, a wide bandgap emitter has a significantly smaller intrinsic carrier concentration 

which will reduce the emitter component of the dark saturation current, and thus reduce the net 

 

Figure 3.3: Heterojunction solar cell band diagram at thermal equilibrium. 
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recombination in the emitter. The bandgap of the emitter is also important in order to act as a window 

layer. Photons with energy less than the bandgap will pass through the emitter and be absorbed in the 

Si wafer rather than near the front surface where recombination in a homojunction cell would be high.  

 

3.2 The Effect of Heterojunction Interface States on Solar Cell Performance 

 The efficiency of a heterojunction solar cell depends critically on the defect density at the 

junction interface. Interface defects can consist of dangling bonds, or molecules that have been 

adsorbed onto the surface after the wafer cleaning procedure or during film deposition. Transport 

across the heterojunction interface is modeled by creating a thin defective layer between the p-type and 

n-type semiconductors. The modelling of 

the interface is complicated and many 

assumptions are required.  For example, 

the thickness of the defective layer is not 

precisely known (although estimations in 

the nanometer range are common). [92] 

The trap cross-section area for electrons 

and holes within the defective layer is 

difficult to measure but was estimated to 

be 10-14 cm-2. [93] The defective layer is 

likely present both on the emitter side 

and within the crystalline silicon absorber. 

However, such a scenario is difficult to 

implement in the simulation. It was 

assumed here that the defective layer was entirely on the side of the crystalline silicon and had a band 

gap of 1.12 eV with a doping density identical to that of the wafer substrate. The interface defect 

density was divided into two regions (Figure 3.4). The donor-like dangling bond states were in the lower 

half of the c-Si bandgap and the acceptor-like states were in the upper half, separated by a switchover 

energy, 𝐸𝐷𝐴, approximately half way through the band gap. The total density of states per unit area at 

the interface was 𝐷𝑖𝑡.  The interface states were modeled according to equation 3.6, where 𝑥𝑜 was the 

thickness of the defective layer and 𝐺𝑀𝐺𝐷 and 𝐺𝑀𝐺𝐴 were the constant donor-like and acceptor-like 

states per unit volume per unit energy, respectively.  

 

 

Figure 3.4: Density of states for 3 nm thick defective interface layer 
with a defect density concentration of 1 x 1010 cm-3eV-1. 
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 𝐷𝑖𝑡 = [𝐺𝑀𝐺𝐷(𝐸𝐷𝐴 − 𝐸𝑉) + 𝐺𝑀𝐺𝐴(𝐸𝐶 − 𝐸𝐷𝐴)]𝑥𝑜 (3.6) 

Assuming the density of donor-like and acceptor-like states were equal, equation 3.6 simplified to 

equation 3.7:  

 𝐷𝑖𝑡 = 𝐺𝑀𝐺𝐷(𝐸𝐶 − 𝐸𝑉)𝑥𝑜 = 𝐺𝑀𝐺𝐷 ∙ 𝐸𝐺 ∙ 𝑥𝑜 (3.7) 

where 𝐸𝑔 is the bandgap of the defective layer. In order to study the effect of 𝐷𝑖𝑡 on cell performance, 

𝐷𝑖𝑡 was varied between 1010 to 1016 cm-2 for all three emitter types. The results are shown in Figure 

3.5.  

 

From Figure 3.5, solar cell 𝑉𝑜𝑐 was extremely sensitive to interface defects for defect densities greater 

than a threshold of around 1012 cm-2. The 𝐷𝑖𝑡 threshold was approximately the same for epitaxial, 

nanocrystalline, or amorphous emitter layers. By contrast, solar cell 𝐽𝑠𝑐 (shown in the inset graph) was 

relatively insensitive to 𝐷𝑖𝑡, and remained nearly constant even for very large defect densities up to 1014 

 

Figure 3.5: Dependence of open-circuit voltage, Voc, on defect density at the heterojunction interface. Short-circuit 
current, Jsc, versus Dit is shown in the inset. The defective interface layer was assumed to be 3 nm thick and entirely on the 
c-Si side.    

 



53 
 

cm-2. All three emitter types exhibited the same dependence between 𝐽𝑠𝑐 and 𝐷𝑖𝑡 for the defect density 

concentrations typical of high efficiency heterojunction solar cells (where 𝐷𝑖𝑡 does not exceed 1012 cm-2). 

 

3.3 Influence of the Emitter: Light Absorption and Density of States  

 Because a-Si:H is a direct band gap semiconductor, whereas epitaxial and nanocrystalline silicon 

are indirect, an a-Si:H emitter has a significantly higher absorption coefficient than nc-Si or epi-Si over a 

wavelength range of approximately 350-800 nm. Figure 3.6 a) shows the absorption coefficients of a-

Si:H, nc-Si, and epi-Si as a function of wavelength. Thus, a-Si:H absorbed more light than nc-Si or epi-Si in 

spite of its larger band gap. Comparing the defect densities within the three emitter layers, the epi-Si 

emitter has significantly fewer defects. From literature, the defect density for highly doped n-type a-

Si:H, nc-Si, and epi-Si was approximately 1018 cm-3, 1017 cm-3 and 1013 cm-3 respectively. [88] The 

maximum hole minority carrier diffusion length in epi-Si was around 4000 nm. Charge carriers produced 

in the epi-Si emitter (for example by the absorption of ultraviolet light) will be able to reach the 

electrodes and contribute to the photocurrent. For nc-Si, the minority carrier diffusion length was 

substantially lower (20 nm) but minority carriers produced in the emitter should be able to reach the 

contacts if the emitter is less than 20 nm thick. The a-Si:H emitter was highly defective so the minority 

carrier diffusion length was only 5 nm. Thus, charge carriers generated in a-Si:H will not contribute to 

the photocurrent. The minority carrier diffusion lengths were calculated by AFORS-HET based on the 

electrical parameters and distribution of states in the gap. The values were approximate because they 

did not take into account the energetic location of defects within the gap (for example defects located at 

the midgap tend to be more effective as recombination centres than defects located close to the band 

edges). However, if an intrinsic buffer layer of a-Si:H or nc-Si is added between n-type and p-type 

materials, charge carriers produced in the buffer will contribute to the total current and be collected by 

the built-in electric field of the n-i-p structure. Furthermore, the activation energy of the dark 

conductivity of a-Si:H (defined as the energetic difference between 𝐸𝐶 − 𝐸𝐹) is limited to values greater 

than 200 meV. However, the activation energies for nc-Si and epi-Si junctions (as shown in the band 

diagrams of Figure 3.3) approached zero. This meant that the band bending and built-in potential could 

be greater in nc-Si and epi-Si than a-Si:H heterojunctions.   

 The optical and electrical quality of the three emitters was also examined by Internal Quantum 

Efficiency (IQE). The IQE is defined as the number of collected electrons per number of absorbed 

photons in the solar cell. The influence of reflection is eliminated. The IQE for the three emitters (Figure 
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3.6 b)) showed an increasing amount of 

parasitic absorption loss as the emitters became 

more defective and their minority carrier 

diffusion length decreased. The IQE response 

was highest for epi-Si, and lowest for the a-Si 

heterojunction, with the nc-Si IQE lying between 

these two limits. The illuminated cell efficiencies 

are shown in Figure 3.6 c), and confirm the 

results from IQE. The optical quality of the 

emitter can be gauged by the short-circuit 

current. The more defective the emitter, the 

greater was the parasitic absorption and the 

lower the current. The cell efficiencies ranged 

between 14.9 -15.9 %. When high efficiency 

features were added (pyramid textured surface 

with reflectance loss less than 3%, and back 

surface field), cell efficiency exceeded 20%.    

 One of the main goals of this thesis was 

to examine heterojunction cells without a thin 

passivating intrinsic layer. When the intrinsic 

layer was removed, the highly doped and 

defective emitter was in direct contact with the 

c-Si absorber and did not provide as good 

surface passivation to c-Si compared to an 

intrinsic buffer layer. Removing the intrinsic 

layer will increase 𝐷𝑖𝑡 and place more stringent 

requirements on the electrical quality of the 

doped emitter in terms of its dopant 

concentration and bulk defect density (which 

are interrelated). While it was assumed that the 

epitaxial emitter cell was a perfect crystal, the a-

Si:H and nc-Si emitters had a significant 

 

Figure 3.6: Comparison of optical and electrical properties of 
epi-Si, nc-Si, and a-Si:H on c-Si. a) absorption coefficients. b) 
internal quantum efficiency. c) Illuminated I-V using Air Mass 
1.5 at 25oC.  

 

a) 

b) 

c) 
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distribution of band gap defects which could be influenced by growth conditions. In a-Si:H, the total bulk 

density of states per unit volume was given by 𝑁𝐷𝐵. For intrinsic a-Si:H, 𝑁𝐷𝐵 varies from 1 × 1016 to 1 ×

1018 cm-3. For doped a-Si, it varies from 1 × 1018 to 2× 1020 cm-3. [94] However, in the AFORS-HET 

software there was no option to vary 𝑁𝐷𝐵 directly. 𝑁𝐷𝐵 is related to the acceptor-like and donor-like 

Gaussian density of states which are assumed to be equal and are defined as 𝑁𝑡𝑟. 𝑁𝐷𝐵 is related to 𝑁𝑡𝑟 

according to equation 3.8, where 𝐸 represents the energetic distribution of defects throughout the 

bandgap, 𝐸𝐷𝑂𝑁𝐺 is the donor Gaussian peak energy measured positive from 𝐸𝐶, 𝐸𝐴𝐶𝑃𝐺  is the acceptor 

Gaussian peak energy measured positive from 𝐸𝑉, and 𝑊𝐷𝐺 is the standard deviation of the donor and 

acceptor Gaussians which are assumed to be equal.      

 𝑁𝐷𝐵(𝐸) = 𝑁tr ∫ {𝑒𝑥𝑝 [−
1

2

(𝐸−𝐸𝑔 + 𝐸𝐷𝑂𝑁𝐺)
2

𝑊𝐷𝐺
2 ] + 𝑒𝑥𝑝 [−

1

2

(𝐸−𝐸𝐴𝐶𝑃𝐺)2

𝑊𝐷𝐺
2 ]}

𝐸𝑔

0
𝑑𝐸 (3.8) 

𝑁𝑡𝑟 was varied in the software, and equation 3.8 was simplified by integration from zero to 𝐸𝑔 which 

gave: 

  𝑁𝐷𝐵 = 1.14381 ∙ 𝑁𝑡𝑟 (3.9) 

 Figure 3.7 shows a comparison of simulations for a-Si:H and nc-Si heterojunctions. The Gaussian 

density of states for a-Si:H and nc-Si was varied from 𝑁𝑡𝑟 = 1 × 1018  to 2 × 1020 cm-3 for the a-Si:H /c-

Si heterojunction, and from 1.8 × 1016 to 2× 1019 cm-3 for the nc-Si / c-Si heterojunction. Information 

on the expected 𝑁𝑡𝑟 range for thermally annealed nc-Si was not available in the literature, and so the 

𝑁𝑡𝑟 range was increased from the baseline value until strong negative effects on cell efficiencies were 

achieved. In Figure 3.7, the red lines in the density of states distributions indicated the normal reference 

Gaussian and flat-band defect densities for a-Si:H and nc-Si that were taken from literature. The density 

of state distributions were then increased as indicated by the dashed lines by increasing 𝑁𝑡𝑟. At the 

same time, the interface defect density, 𝐷𝑖𝑡, was varied for each fixed 𝑁𝑡𝑟 , and the gradual drop in cell 

efficiency was plotted (Figure 3.7, bottom). For a-Si:H and nc-Si cells, as the interface defect density was 

increased the efficiency dropped off sharply which was to be expected. The defective interface layer was 

assumed to be 1 nm thick. For the reference (lowest) value of 𝑁𝑡𝑟, the a-Si:H cell was slightly less 

sensitive to interface defects than the nc-Si cell. The efficiency started to drop off at 𝐷𝑖𝑡 = 1013 cm-2 for 

a-Si:H and at 𝐷𝑖𝑡 = 1012 cm-2 for nc-Si. This might be because a-Si:H provided better surface passivation 

than nc-Si. As 𝑁𝑡𝑟 was increased above the baseline values for both emitter types, the cell efficiency 

dropped off more rapidly and the heterojunction became increasingly sensitive to interface defects with 

the efficiency drop off point occurring at lower values of 𝐷𝑖𝑡. For example, for a-Si:H, as 𝑁𝑡𝑟 was 
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increased from 1019 cm-3 to 1020 cm-3, the value of 𝐷𝑖𝑡 at which the efficiency started to reduce was 

lowered from 1013 cm-2 to 1012 cm-2. Similarly, as nc-Si value of 𝑁𝑡𝑟 was increased from 1017 cm-3 to 

1018 cm-3, the defect density at which the efficiency started to drop was lowered from 1012 cm-2 to 1011 

cm-2.  

 

Thus, simulations showed that the defective bulk of the emitter influenced interface recombination. For 

cells without a thin intrinsic passivating layer, as the emitter became increasingly defective the cell was 

less tolerant of interface defects.  

 

 

 

Figure 3.7: (Left, top): Density of states for (n) a-Si:H [89] by increasing the total density of Gaussian donor-like and 
acceptor-like defect densities, 𝑁𝑡𝑟 , where a) 𝑁𝑡𝑟 = 2 × 1020 cm-3, b) 𝑁𝑡𝑟 = 1.5 × 1020 cm-3, c) 𝑁𝑡𝑟 = 1 × 1020 cm-3, d) 
𝑁𝑡𝑟 = 1 × 1019 cm-3, and e) 𝑁𝑡𝑟 = 1 × 1018 cm-3 . (Left, bottom): Cell efficiency versus interface defect density for an a-
Si:H / c-Si heterojunction with five variations of 𝑁𝑡𝑟. (Right, top): Density of states for (n) nc-Si by increasing the total 
density of flat-band donor-like and acceptor-like defect densities. (Right, bottom): Cell efficiency versus interface defect 
density for an nc-Si / c-Si heterojunction with five variations of 𝑁𝑡𝑟.  
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3.4 Examination of Grain Boundaries in Nanocrystalline Silicon 

 As was shown in chapter 2, although RTA crystallized emitters were epitaxial, nanocrystalline 

silicon was needed to account for defects in the epitaxial film. Because nanocrystalline silicon has 

defective grains and grain boundaries, it was used to approximate the defective epitaxial film. Charge 

trapping in defect states within grain boundaries and particularly within band tails has been shown to 

create potential barriers to charge transport, which can be modeled by thermionic emission. [95] [96] 

The number of grain boundaries through which a charge carrier must pass before reaching the contacts 

depends on the direction of travel. For charge carriers travelling vertically (perpendicular to the 

substrate), the number of grain boundaries will be relatively small and have a negligible effect on device 

performance. However, if no transparent conducting oxide is used, charge carriers must travel 

horizontally (parallel to the substrate) to reach the front contact electrodes and will encounter far more 

grain boundaries compared to the case of vertical conduction. The difference between current 

conduction in the vertical and horizontal directions will depend on the grain size, the defect density 

within grains and at the grain boundaries, the height of the potential barrier at the grain boundary, and 

the spacing between the front electrodes if no transparent conducting oxide is used. A diagram showing 

the two paths for current conduction and the potential distribution in a polycrystalline film is shown in 

Figure 3.8. There is an anisotropic resistivity: 

high resistivity for transport parallel to the 

substrate, and comparably low resistivity for 

transport perpendicular to the substrate. The 

same anisotropic resistivity might be expected 

for the highly defective epitaxial layers 

produced by RTA. AFORS-HET was used to 

create a simplified one-dimensional simulation 

of charge transport through an emitter which 

had a varying number of grain boundaries. The 

material properties for the grain boundaries 

are given in Table 3.1. The movement of 

charge carriers across the grain boundary 

potential barrier was modeled by thermionic 

emission. Charge build-up in defect states 

creates a space-charge layer and a potential 

 

Figure 3.8: Illustration of grain boundaries in a nc-Si film on a 
wafer substrate and two directions of current transport. 
Corresponding band diagram shows energetic barrier, 𝐸𝑎, and 
defect states in the gap for grain boundaries.     
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barrier. The height of the potential barrier was the limiting factor for current transport in the emitter. 

The situation was modeled as shown in Figure 3.8 where ordered nanocrystalline grains defined by the 

specified film thickness were separated by highly disordered grain boundaries. The number of grain 

boundaries was altered between zero (defect-free epitaxial Si) and 250 (highly defective epitaxial Si). 

The height of the potential barriers [97] is given by equation 3.10:  

  𝐸a = 𝑒2𝑛𝑡
2 (8 𝜀 𝑁𝐻)⁄  (3.10) 

where 𝑒 is the electron charge, 𝑛𝑡 is the interface trapped charge per unit area, 𝜀 is the dielectric 

permittivity of silicon, and 𝑁𝐻 is the doping level. In the AFORS-HET simulation, a layer stack consisting 

of uniform grains of width 25 nm separated by grain boundaries 1 nm thick was implemented. The 

results of dark current-voltage for the diode are shown in Figure 3.9.  

 

The uppermost curve (red) approximated the case where the current conduction occurred in the vertical 

direction for an epitaxial emitter that was defect-free. To approximate a defective epitaxial layer, the 

number of grain boundaries was increased to 250. The dark forward current was severely reduced due 

 

Figure 3.9: Dark current-voltage characteristics of layer stack consisting of 25 nm grains separated by 1 nm grain boundaries 
on (p-type) c-Si. The inset graph axes have the same units as the main graph.  
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to the grain boundary barriers, and the distance the current traveled in the emitter reached 6.5 μm. The 

potential barrier used in simulation was 80 mV, and the trapped charge density was chosen to be 1012 

(from literature). [98] Much is not known about the exact nature of the defects in the epitaxial emitters: 

their precise density of states distribution, their behaviour under high temperature annealing, or their 

ability to act as shunts.  

 

3.5 The Effect of Band Gap Offsets and the Presence of an Inversion Layer  

 The thermal equilibrium band diagrams for epi-si, nc-Si, and a-Si:H heterojunctions (Figure 3.2), 

all had band offsets. The offset between epi-Si and c-Si was negligible and was only due to band gap 

narrowing caused by heavy doping. The offset for nc-Si was larger, approximately 0.1 eV, and was 

assumed to be entirely in the valence band. The a-Si:H heterojunction had by far the largest offset which 

was present in the valence band and conduction band. Band offsets are important in solar cell devices 

not only due to their ability to reduce recombination, but also for their effect on capacitance-voltage (C-

V) measurements. C-V methods are important for determining dopant concentrations and built-in 

voltage as well as for measuring band offsets. However, it was recently shown that a strong inversion 

layer in a-Si:H / c-Si heterojunctions exists due to band offsets which introduce significant uncertainty 

into these measurements. [93] [99] In an n+p heterojunction, the inversion layer is a thin electron layer 

located in p-type crystalline silicon very close to the interface, and manifests itself as an additional 

conductivity path as shown in Figure 3.10.  

 

 

Figure 3.10: Inversion layer in a-Si /c-Si heterojunction. Planar conductance measurements consist of three 
components: conductance from a-Si:H, from the inversion layer, and a conductance component from the c-Si 
wafer. The conductance of the p-type wafer is much higher than that of the a-Si:H, but the two layers are 
electrically isolated because of different conductivity types. The space charge region normally confines current flow 
to the emitter.  
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Although epi-Si / c-Si band offsets were too small to cause an inversion layer, was one to be expected in 

nc-Si heterojunctions? In order to assess whether or not an inversion layer was present in nc-Si / c-Si, 

AFORS-HET was used to examine the electron concentration, 𝑛(𝑥), and to calculate the electron sheet 

density, 𝑁𝑆, and conductance, 𝐺. The electron sheet density is given by equation 3.11, where 𝑛(𝑥) is the 

electron concentration as a function of position in the junction and is integrated across a device layer.  

 𝑁𝑆 = ∫ 𝑛(𝑥)𝑑𝑥
𝑑𝑐−𝑆𝑖

0
 (3.11) 

The conductance is given by equation 3.12, where 𝑞 is the electronic charge, 𝜇𝑛 is the electron mobility 

in the given layer, ℎ is the length of the electrodes, and 𝐿 is the distance between them.  

 𝐺 = 𝑞𝜇𝑛𝑁𝑆 ℎ 𝐿⁄  (3.12) 

For each device, the n+ emitter layer was defined to be 100 nm thick on a lightly doped p-type Si wafer. 

The temperature dependent mobility for lightly doped c-Si is given by the power law                       

𝜇𝑛(𝑇) = 𝜇300(𝑇/300)−𝛼 where 𝛼 = 2.4. [100]  Figure 3.11 shows the result for simulation of 𝑛(𝑥) at 

300K in the dark. The a-Si / c-Si junction showed a clear spike at the interface on the c-Si side of the 

junction while no spike in electron concentration was visible for nc-Si and epi-Si junctions.  

   

 

The conductance as a function of temperature from 100 K to 400 K was simulated by integrating the 

electron sheet density. Conductance was compared between two scenarios for a-Si:H, nc-Si, and epi-Si: 

1) films on glass, and 2) films on c-Si. For films on c-Si, if an inversion layer was present then the 

component of electron conductance from the c-Si would be relatively large as implied by Figure 3.11. 

For films on glass, 𝑁𝑆 was calculated at each temperature by integrating across the thickness of the 

semiconductor. For films on c-Si, 𝑁𝑆 was calculated at each temperature by integrating only across the 

 

Figure 3.11: Electron concentration as a function of position in the three heterojunctions.   
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thickness of c-Si and ignoring the emitter layer. The data for 𝑁𝑆 was then used to calculate the 

conductance according to equation 3.12. The results are shown in Figure 3.12. For nc-Si and epi-Si, the 

electron conductance of the films on glass was orders of magnitude greater than the corresponding 

electron conductance from the minority electrons in the c-Si wafer. However, for a-Si:H, the component 

of electron conductance from the c-Si wafer was larger than the conductance of the a-Si:H layer on 

glass. This was proof of the inversion layer in a-Si:H / c-Si structures. For the band offsets used here, it 

appeared that an inversion layer in nc-Si / c-Si was not possible.  

 The presence of an inversion layer and the calculation of the band offsets are interlinked. There 

are several methods to calculate band offsets including current transport techniques, photocurrent 

spectroscopic characteristics, and capacitance-voltage. A relatively simple and reliable method is 

capacitance-voltage intercept. To use this technique, the capacitance of the heterojunction is measured. 

It is assumed that the heterojunction is abrupt, and that the doping concentrations are uniform 

throughout all layers. The depletion capacitance, 𝐶𝐷, associated with the space charge region is 

modeled as a series contribution of capacitances on both sides of the heterojunction. [101]         

 

 

 The total capacitance per unit area is given by equation 3.13 (where 𝑁1 and 𝑁2 are the net free 

carrier concentrations in materials 1 and 2): 

 

Figure 3.12: Planar conductance comparison between films on glass and c-Si for three film types: a-Si:H, nc-Si, and 
epi-Si. 
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 𝐶𝐷
2 =

𝑞𝑁1𝑁2𝜀1𝜀2

2(𝜀1𝑁1+𝜀2𝑁2)(𝑉𝐷−𝑉)
 (3.13) 

A graph of 1 𝐶𝐷
2⁄  versus 𝑉 gives the free carrier concentration, and an intercept with the voltage axis 

gives the diffusion potential, 𝑉𝐷. Once the diffusion potential is known, it is possible to calculate the 

conduction band offset for any p-n heterojunction [101] according to equation 3.14:  

 ∆𝐸𝐶 = 𝑞𝑉𝐷 − 𝐸𝑔1 + 𝛿1 + 𝛿2 (3.14) 

where  𝛿1 is the difference in energy between the Fermi level and the valence band maximum in 

material 1 (p-type), and 𝛿2 is the difference in energy between the Fermi level and the conduction band 

maximum in material 2 (n-type). The conduction band offset, ∆𝐸𝐶 , has a linear dependence on 𝑉𝐷  which 

must be measured as accurately as possible. If the bandgaps of both layers are know then the difference 

in bandgap energies between materials 1 and 2 is given by equation 3.15:  

 ∆𝐸𝑔 = |𝐸𝑔2 − 𝐸𝑔1| = ∆𝐸𝑐 + ∆𝐸𝑣 (3.15) 

 It was recently discovered by Kleider et al. that the inversion layer evident for a-Si:H / c-Si 

heterojunctions makes the C-V intercept method inaccurate for band offset calculation. [99] However, 

equations 3.13, 3.14, 3.15 would apply for nc-Si / c-Si and epi-Si / c-Si devices because simulation 

showed there was no inversion layer. 

 

3.6 Conclusions 

 When a defective layer was introduced at the heterojunction interface, the approximate defect 

density threshold beyond which solar cell performance significantly started to reduce was around 𝐷𝑖𝑡 =

1012 cm-2 for epi-Si, nc-Si, and a-Si:H heterojunctions. However, these results were also dependent on 

the specified thickness of the defective interface layer. It was likely that a-Si:H heterojunctions were 

somewhat more tolerant of interface defects because a-Si:H was an excellent passivation layer. 

Regarding parasitic absorption in the emitter layer, epi-Si and nc-Si heterojunctions provided slightly 

higher short-circuit currents and better quantum efficiency in the blue and ultraviolet parts of the 

spectrum compared to a-Si:H heterojunctions. For nc-Si heterojunctions, the grain size and defective 

nature of the grain boundaries was a critical limiting factor for cell performance particularly when there 

was no transparent conducting oxide to reduce lateral current conduction. The relatively large bandgap 

of a-Si:H produced an inversion layer which affects the accuracy of capacitance-voltage measurements 
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of built-in potential, dopant concentration, and valence band and conduction band offsets. Simulation 

results showed that nc-Si did not have an inversion layer and so measurements of band offsets would be 

much more reliable for these heterojunctions compared to a-Si:H / c-Si.  
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4 Design, Fabrication, and Characterization of Basic Photovoltaic Cells 

with Crystallized Thin Films 
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Solar cell structures were fabricated and characterized consisting of n-type a-Si:H deposited on 

non-textured silicon wafers by PECVD followed by rapid thermal annealing. Annealing recipes 

established in Chapter 2 were used to minimize mechanical stress in the film in order to avoid peeling, 

cracking, and pinhole formation. The influence of the annealing temperature on cell performance was 

examined with an emphasis on establishing what regions of the device were limiting the device open-

circuit voltage and short-circuit current: the emitter, the bulk (silicon wafer absorber), or the 

heterojunction interface.   

 

4.1 Solar Cell Processing: Design and Fabrication  

 Thin n-type a-Si:H films of approximately 50 nm thickness were deposited onto the polished 

surface of (100) orientated p-type (1-2 Ω cm) Czochralski Si substrates. Prior to deposition, wafers were 

RCA-1 and RCA-2 cleaned and dipped in 2% hydrofluoric acid for one minute to remove the native oxide. 

N-type a-Si:H was deposited according to the optimized recipe in Chapter 2. The deposition conditions 

were: SiH4 flow rate 20 sccm, PH3 (diluted in 99% H2) flow rate 40 sccm, pressure at 200 mTorr, 

deposition time 5 minutes, substrate temperature 200oC, and RF power 10 W. The a- Si:H films were RTA 

processed at temperatures of 600°C, 650oC, 700oC, 750oC, 800oC, 900oC, and 1000°C for annealing 

periods of 5 minutes. The temperature ramp rate was approximately 10°C/s. The annealing period of 5 



65 
 

minutes at 800oC, 900oC, and 1000oC, although longer than necessary to completely crystallize the film, 

was chosen based on earlier results which showed that RTA a-Si:H films became progressively more 

crystalline with better optical and electrical properties as annealing time was increased. From 600oC to 

750oC, the annealing time of 5 minutes was sufficient to completely crystallize the a-Si:H films. For 

example, Kingi et al. have demonstrated that intrinsic a-Si:H PECVD deposited 100 nm thick films can be 

completely crystallized with annealing times that are several minutes shorter than what was used for 

the devices in this thesis. [102] After the wafers were annealed, a silicon nitride SiNx antireflection 

coating approximately 80 nm thick was deposited by PECVD using SiH4 (5 sccm) and NH3 (100 sccm), 

pressure 600 mTorr, a deposition time of 156 seconds, substrate temperature 350oC, and RF power 15 

W. The SiNx was patterned by photolithography to define the front contacts. Wafers were heated at 

110oC for two minutes to remove any moisture, then negative photoresist (AZ nlof 2035) was spin 

coated at approximately 3000 RPM for 70 seconds, producing a film thickness of approximately 3 μm. 

The photoresist was soft baked at 110oC for one minute then allowed to cool. The wafer was placed in 

the mask aligner and aligned to the mask along the major flat in the (100) direction for ease of dicing. 

UV lamp exposure was at 350 nm for 2 minutes with an approximate energy density dose of 200 mJ/cm2 

to cause polymerization of the photoresist. A post-exposure hard-bake was performed at 110oC for two 

minutes and then the sample was dipped into AZ300 MIF Photoresist developer in order to strip away 

the non-polymerized areas of photoresist. The sample was washed in deionized water, dried in N2, and 

inspected under the microscope to ensure the quality of the pattern transfer and sufficient undercut of 

the photoresist. Next, the wafer was dipped in buffered hydrofluoric acid for between 30-60 seconds 

until the SiNx was etched away revealing the emitter beneath. Samples were then immediately loaded 

into e-beam for deposition of the front and back contact. Metallization was performed using Intlvac 

electron beam evaporation of titanium (50 nm to promote adhesion) followed by silver (1 μm) for the 

front contact, and aluminum (1 μm) for the back contact. Lift-off was performed by immersing the 

samples in acetone for 10-30 minutes to define the front contacts. Solar cells were diced using a DAD-

2H/6TM Disco dicing saw into 1 cm2 squares. Finally, several samples were annealed in forming gas in 

order to improve the electrical quality of the contacts.  

 For comparison purposes, solar cell devices were also fabricated using PECVD low temperature 

epitaxial deposition of a 50 nm thick n-type emitter on p-type (1-2 Ω cm) Czochralski Si substrates. The 

PECVD optimization of the recipe for n-type epitaxial silicon will not be discussed in detail here as it was 

already the subject of a Ph.D. thesis in this research group. Deposition conditions were: RF power 15 W, 

200 mTorr, SiH4 flow rate 10 sccm, H2 flow rate 250 sccm, PH3 flow rate 80 sccm, and substrate 
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temperature of 300oC (no RTA processing). The cell processing for patterning, lift-off, SiNx and metallic 

contact depositions were identical to those for the RTA processed cells.  

       The sheet resistivity of the thin highly doped emitter of the p-n junction is an important 

characteristic of a solar cell. Four point probe sheet resistivity measurements gave a sheet resistivity for 

all RTA and epitaxial samples of between 𝜌⧠ = 90 − 120 Ω/⧠. The sheet resistivity of a typical diffused 

junction solar cell is 40-100 Ω/⧠. [103] The sheet resistance is an important figure of merit for the 

design of the front contacts, in particular the finger width and finger spacing. On the one hand, the 

finger design should minimize series resistance losses from lateral current flow and so the fingers should 

be sufficiently wide and close together. At the same time the finger area should minimize shading loss 

which reduces photocurrent. The fractional power loss due to series resistance in a cell is given by 

equation 4.1. 

 
𝑃𝑙𝑜𝑠𝑠

𝑃𝑔𝑒𝑛
=

𝜌⧠𝑠2𝐽𝑀𝑃

12𝑉𝑀𝑃
 (4.1) 

The maximum power point current density is 𝐽𝑀𝑃, the maximum power point voltage is  𝑉𝑀𝑃, the 

spacing between adjacent fingers is 𝑠, the total power loss is 𝑃𝑙𝑜𝑠𝑠, and the generated power at the 

maximum power point is 𝑃𝑔𝑒𝑛. [104] Assuming typical solar cell operating parameters of 𝐽𝑀𝑃 = 30 

mA/cm2, 𝑉𝑀𝑃 = 450 mV, and a lateral power resistance loss of 𝑃𝑙𝑜𝑠𝑠 𝑃𝑔𝑒𝑛⁄ < 1%, and a target sheet 

resistance 𝜌⧠ = 200 Ω/⧠, the resultant finger spacing should be 𝑠 ≤ 1 mm. A certain safety margin 

must be provided to account for different annealing conditions and small variations in film thickness                                         

  

which might produce a sheet resistivity larger than the targeted 100 Ω/⧠. For the solar cells with the low 

temperature epitaxial n-type layer, the sheet resistance was repeatable (around 100 Ω/⧠) and was on 

 

Figure 4.1: a) Front electrode design for solar cells processed by RTA. Spacing between fingers was 350 μm. Mask 
surface area covered 7.8 % of a 1 cm2 area cell. Both masks had the same finger width of 20 μm. b) Electrode 
design for solar cell with PECVD deposited epitaxial emitter. Spacing between fingers was 1 mm. Mask surface 
area covered 4.1 % of a 1 cm2 area cell.  

     

a) b) 
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average lower than that of the RTA processed films. Thus two different photo-mask designs were 

implemented as shown in Figure 4.1. A narrow finger spacing was used for RTA processed cells and 

wider finger spacing for the low temperature epitaxial emitter cells.  

 

4.2 Dark Current-Voltage 

 The dark I-V characteristics at 25oC for seven RTA processed cells were made using an Agilent 

4155C parameter analyzer. The current-voltage characteristics of a solar cell can be predicted with a 

single diode with ideality factor 𝑛1 = 1 that describes electronic conduction in the quasi-neutral region 

of the junction (diffusion and recombination). However, a double diode model is more accurate because 

it accounts for both the diffusion current in the quasi-neutral regions and the recombination current via 

traps in the space-charge region where the ideality factor of the second diode is 𝑛2 = 2. The dark 

current characteristic of a solar cell is given by equation 4.2 and 4.3: 

 𝐼 = 𝐼𝑔 + 𝐼𝑑 + 𝐼𝑠ℎ (4.2) 
 

 𝐼𝑔 = 𝐼1 ∙ [𝑒𝑥𝑝 (
𝑉−𝐼𝑅𝑠

𝑛1∙𝑉𝑡ℎ
) − 1] , 𝐼𝑑 = 𝐼2 ∙ [𝑒𝑥𝑝 (

𝑉−𝐼𝑅𝑠

𝑛2∙𝑉𝑡ℎ
) − 1] , 𝐼𝑠ℎ =

𝑉−𝐼𝑅𝑠

𝑅𝑠ℎ
 (4.3)                               

 

where 𝐼𝑔 is the voltage-dependent generation-recombination current, 𝐼𝑑 is the voltage-dependent 

diffusion current, 𝐼𝑠ℎ is the current passing through shunt resistance 𝑅𝑠ℎ, 𝑅𝑠 is the series resistance, 𝐼1 is 

the dark saturation current from recombination in the quasi-neutral regions, 𝐼2 is the dark saturation 

current due to recombination in the space charge region, and 𝑉𝑡ℎ is the thermal voltage at room 

temperature (25.6 mV).  

 Using the methods of Sigmund [105] and Kaminski [106], all six diode parameters (𝑛1 , 𝐼1 , 𝑛2 , 𝐼2 

,𝑅𝑠, 𝑅𝑠ℎ ) were derived directly from empirical data without the need for numerical simulations. The 

extracted diode parameters are shown in Figure 4.2, Figure 4.3, Figure 4.4, and Figure 4.5 which show 

the forward bias dark I-V characteristics for each cell. Substituting the diode parameters back into 

equation 4.2, the theoretically predicted dark I-V behaviour was compared to the empirical data. There 

was good agreement between measurement and theory. As an additional check to make sure the diode 

parameters extracted from the dark I-V data were accurate, the parameters were used to predict the 

solar cell open-circuit voltage, 𝑉𝑜𝑐, and short-circuit current 𝐼𝑠𝑐, under varying illumination intensities. 

Under illumination, a photocurrent is generated and must be added to equation 4.2. Under open-circuit 

conditions, equation 4.2 becomes equation 4.4: 
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 0 = 𝐼𝑝ℎ − 𝐼1 ∙ [𝑒𝑥𝑝 (
𝑉𝑜𝑐

𝑛1∙𝑉𝑡ℎ
) − 1] − 𝐼2 ∙ [𝑒𝑥𝑝 (

𝑉𝑜𝑐

𝑛2∙𝑉𝑡ℎ
) − 1] −

𝑉𝑜𝑐

𝑅𝑠ℎ
 (4.4) 

 

And under short-circuit current conditions the result is equation 4.5:  

 𝐼𝑠𝑐 = 𝐼𝑝ℎ − 𝐼1 ∙ [𝑒𝑥𝑝 (
𝐼𝑠𝑐∙𝑅𝑠

𝑛1∙𝑉𝑡ℎ
) − 1] − 𝐼2 ∙ [𝑒𝑥𝑝 (

𝐼𝑠𝑐∙𝑅𝑠

𝑛2∙𝑉𝑡ℎ
) − 1] −

𝐼𝑠𝑐∙𝑅𝑠

𝑅𝑠ℎ
 (4.5) 

 

In the inset graphs of Figure 4.2, Figure 4.3, and Figure 4.4 , equations 4.4 and 4.5 were used to calculate 

the theoretical relation between 𝐼𝑠𝑐 and 𝑉𝑜𝑐 under varying illumination, and this result was compared to 

the measured solar cell 𝐼𝑠𝑐 and 𝑉𝑜𝑐 obtained by using three different lamp intensities. There was a good 

agreement between theory and measurement both for dark and illuminated I-V measurements which 

confirmed the validity of the extracted diode parameters.  

 

 

Figure 4.2: Low temperature PECVD deposited epitaxial solar cell dark I-V results. The inset graphs show the 
theoretical short-circuit current versus open-circuit voltage compared to experimentally measured data 
obtained by varying light intensity. 
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Both dark and illuminated measurements 

were made using a four probe (Kelvin) 

arrangement. The Kelvin measurement 

was superior to the two probe 

arrangement especially under illumination 

where there was a substantial current 

increase causing significant parasitic 

voltage drops due to contact resistance 

between the probes and the contact pads. 

By the Kelvin arrangement, the voltage 

was measured with two additional 

contacts and the current flowing through 

this voltage path was negligibly small due 

to the high impedance of the voltmeter. 

[107] Several trends were evident from 

the diode parameters. The diode reverse 

current, 𝐼𝑟𝑒𝑣, decreased with increasing 

RTA temperature (In Figure 4.2, Figure 4.3, 

Figure 4.4, and Figure 4.5, reverse current 

was measured at a bias of -0.7 V). The 

shunt resistance seemed to increase 

slightly with RTA temperature, although 

shunt resistance was also influenced by 

fabrication defects which provided alternate current paths for light-generated charge carriers. The shunt 

resistance was on the order of 104 Ω for the devices annealed at 600oC and 650oC, and was 

approximately 105 Ω for the devices annealed at 700oC up to 1000oC and the low temperature epitaxial 

cell. The highest shunt resistance, 𝑅𝑠ℎ = 3.49 × 105 Ω, occurred at 1000oC RTA. The series resistance 

for all devices was less than 0.3 Ω. A typical n+p solar cell usually has a series resistance of 0.7 Ω or less, 

dependent on the junction depth, the impurity concentration in the n-type and p-type layers, and the 

geometry of front-side metal contacts. The space-charge region saturation current, 𝐼2, was on the order 

of 10-6 for annealing temperatures of 600oC and 650oC, and decreased by approximately an order of 

magnitude to 10-7 for annealing temperatures above 700oC. Also, the shape of the forward bias curve 

 

Figure 4.3: Dark I-V results for RTA processed samples at 600oC and 
650oC.   
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changed. The RTA annealed film at 600oC 

had two distinct diodes/slopes (one at 

low forward bias and the other at high 

forward bias), whereas the difference in 

these two slopes for devices annealed at 

700oC to 1000oC seemed to be reduced. 

This effect was attributed to the 

decrease in space-charge saturation 

current, 𝐼2, that occurred as the 

annealing temperature was raised. Also, 

the second diode ideality factor, 𝑛2, was 

between 2.5-2.7 for the epitaxial cell and  

the cells at annealed at 700oC to 1000oC, 

but  𝑛2 became greater than 3 for cells 

annealed at 600oC and 650oC.  

 The key device parameter 

affecting the efficiency of any 

heterojunction solar cell is the electrical 

quality of the junction interface. In the 

crystallization of amorphous silicon films 

by RTA or furnace, micro-twins are a 

commonly observed inter-grain defect. 

Micro-twins may terminate inside a grain and act as scattering centres. Micro-twin defects are unstable, 

and it has been shown that their density can be drastically reduced with RTA annealing temperatures at 

or above 750oC. [108] In the literature, the electron spin resonance technique has been used to measure 

the spin density which is correlated to the density of dangling bonds at grain boundaries, and defects 

within the grain. It has been shown that high temperature RTA reduces the spin density/dangling bond 

density (compared to regular furnace annealing) resulting in polysilicon films of good electrical quality 

(as confirmed by Hall mobility measurements). [108] Thus, RTA has the capability of greatly improving 

crystallized Si film characteristics by reducing the density of dangling bonds and in-grain micro-twins. For 

    

 

Figure 4.4: Dark I-V results for RTA samples at 700oC and 750oC.  
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the RTA annealed films, it is postulated that a 

high density of defect states such as micro-twins 

and grain boundaries may act as shunt paths 

which could explain the low shunt resistance at 

600oC compared to the much higher shunt 

resistances at temperatures above 700oC where 

the concentration of unstable micro-twins may 

be reduced by RTA. These trends would seem to 

suggest that higher annealing temperatures 

improved the electrical quality of the 

heterojunction interface by annealing away 

defects. In summary, the devices annealed at 

600oC and 650oC had larger reverse current loss 

by approximately a factor of 5 to 10, and had 

lower shunt resistance and larger second diode 

ideality factor compared to the low temperature 

epitaxial cell and 700oC to 1000oC annealed cells.  

 

4.3 Quantum Efficiency 

 External quantum efficiency (EQE) is 

defined as the number of electrons collected by 

the solar cell per incident photon. EQE will 

always be less than 100% due to a combination 

of optical (reflection and parasitic absorption) 

and recombination losses. In a monochromator 

based system, chopped monochromatic light 

illuminates a reference cell (for calibration), and 

then the sample for measurement. The current 

output is converted to a voltage which is 

amplified by a lock-in amplifier triggered by a 

chopper wheel. The illumination area was 

 

Figure 4.5: Dark I-V results for RTA samples at 800oC, 900oC, 
and 1000oC. 

 



72 
 

approximately 1 mm x 5 mm which was substantially smaller than the fabricated cells. The EQE was thus 

a local property, which varied slightly with location on the cell surface due to reflection from the finger 

contacts and bus bar. The internal quantum efficiency (IQE) is the number of electrons collected per 

incident photon absorbed in the solar cell and is related to EQE and reflectance, 𝑅, by 𝐼𝑄𝐸(𝜆) =

𝐸𝑄𝐸(𝜆) (1 − 𝑅(𝜆))⁄ . Reflectance measurements were made using a Perkin Elmer Lambda 950 

spectrometer with 150 mm InGaAs integrating sphere over the wavelength range from 300-1100 nm. 

From the combined EQE and reflectance, IQE was calculated. External quantum efficiency (EQE) 

measurements were performed using Model QEX7 Solar Cell Spectral Response system (PV 

Measurements Inc.) with a two probe configuration and a chopping frequency of 100 Hz. 

  Low temperature annealing is a common method of lowering resistance between metal layers 

and silicon. A forming-gas annealing at 350oC for ten minutes in an ambient of N2 and H2 was performed 

in order to promote ohmic contacts. It was an important step for creating ohmic contacts, especially for 

the back contact where the metal was contacting lightly doped p-type Si. A thin layer (30-50 nm) of 

titanium was used to minimize junction spiking and to improve the adhesion of silver to prevent peeling 

off the metallization layer during lift-off and dicing. However, it was possible that pinholes or film-stress 

cracks existed in the titanium layer and that silver was in direct contact with silicon in some small 

regions. Wherever it contacted silicon, silicon dissolved into silver during annealing. The amount of 

silicon dissolved depended on the annealing temperature, annealing time, solubility, and the volume of 

silver to be saturated with silicon. From a process of trial and error, it was determined that best solar 

cell results were achieved with a forming gas anneal of 10 minutes. Longer annealing increased the 

probability of junction spiking while shorter annealing times were sometimes insufficient to realize 

ohmic contacts.  

 The EQE, IQE and reflectance for the RTA and low temperature epitaxial samples were 

measured before and after forming gas annealing. Comparing the EQE results of Figure 4.6 and Figure 

4.7, the forming gas anneal caused a significant improvement in cell short-circuit current for all samples, 

and also reduced the standard deviation of the measurements substantially as can be seen in the 

reduction of the error bar magnitude. The short-circuit current increased with rising RTA temperature 

from 600oC to 750oC and reached a peak of 𝐽𝑠𝑐 = 31.1 ± 0.2 mA/cm2. For annealing temperatures of 

800oC, 900oC, and 1000oC, short-circuit current decreased with increasing RTA temperature reaching a 

minimum of 𝐽𝑠𝑐 = 26.4 ± 0.1 mA/cm2. 
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In Figure 4.7, the EQE of around 20% at 300 nm was substantially lower than the comparable EQE (60%) 

of typical diffused junction solar cells [113]. This indicated that although the n-type layer was crystalline 

it was defective. There was little difference in EQE results in the 300-400 nm range as RTA temperature 

was changed.  

 The results of IQE after forming gas anneal are shown in Figure 4.8. For high energy photons of 

approximately 𝜆 < 650 nm, IQE spectrum losses were mainly due to recombination in the emitter, at 

the heterojunction interface, and within the bulk of the silicon wafer near the interface. Optical losses 

were also incurred due to parasitic absorption in the SiNx anti-reflection coating. For low energy photons 

of approximately 𝜆 > 800 nm recombination of charge carriers produced by the red part of the 

spectrum were due to the limited minority carrier diffusion length in the silicon bulk (absorber losses). 

 

Figure 4.6: External quantum efficiency results for low temperature PECVD epitaxial, and RTA processed solar cells.  
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Examining the high energy photon losses, Figure 4.8 a) showed a steadily increasing IQE suggesting that 

 

 

 

Figure 4.8: Mean internal quantum efficiency versus wavelength for low temperature PECVD epitaxial, and RTA processed cells.  

 

 

Figure 4.7: External quantum efficiency results for low temperature PECVD epitaxial and RTA processed cells after forming gas anneal.   

 

a) b) 
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the electrical quality of the emitter was improved with higher RTA temperatures. Figure 4.8 b) showed a 

worse IQE with increasing annealing temperature above 800oC. From chapter 2, it was clear that higher 

annealing temperatures gave better electrical and optical quality emitters. Thus, the losses for 𝜆 <

650 nm were attributed to greater recombination at the heterojunction interface and within the Si 

wafer close to the p-n junction. In addition, while Figure 4.8 a) had an IQE of 20-30% at 1100 nm, Figure 

4.8 b) had a corresponding IQE of only 10-15 %. This loss could be attributed to enhanced recombination 

in the silicon absorber bulk, perhaps due to a reduced minority carrier diffusion length as a result of 

prolonged high temperature processing. The IQE response of the low temperature epitaxial cells 

between 300-400 nm was nearly zero which was due to a combination of high dopant concentration and 

defects in the emitter. 

 

4.4 Solar Simulator 

 Solar simulator measurements were performed using an Abet Technologies 2000 solar 

simulator. Cells were measured under standard test conditions at 25oC, and Air Mass 1.5G spectrum 

approximated by a Tungsten halogen and Xenon lamp. Load resistance was varied to sweep the voltage. 

Samples were contacted using a four probe arrangement. The cell results for the RTA processed and low 

temperature epitaxial devices before and after forming-gas anneal are shown in Figure 4.9 and Figure 

4.10.  

 In addition to increasing the short-circuit current, the forming gas also significantly increased the 

cell open-circuit voltage by as much as 20 mV to 100 mV. Although the forming gas anneal reduced the 

contact resistance of the front and back contacts, such a large increase in 𝑉𝑜𝑐 also revealed a defect 

passivation occurring within the emitter and at the heterojunction interface. Hydrogen was likely 

diffusing into the junction and passivating dangling bonds. The S-shaped illuminated I-V characteristics 

clearly seen in Figure 4.10 have been attributed to heterojunctions with defective interfaces by several 

research groups. [109]      
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 The variation in open-circuit voltage among forming gas annealed samples did not seem to be 

influenced by annealing temperature. As was confirmed by EQE, the cell short-circuit current showed a 

clear correlation to annealing temperature reaching a peak for RTA at 750oC and decreasing for 

temperatures above and below this inflection point. The correlation between device efficiency and 𝐽𝑠𝑐  

after forming gas anneal is shown in Figure 4.11. 

 

 

Figure 4.9: Solar simulator results comparison before and after forming gas anneal for cells processed by RTA from 
600oC to 750oC. Results shown in red are before forming gas anneal and results shown in black are after forming gas 
anneal. 
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Figure 4.10: Solar simulator results comparison before and after forming gas anneal for low temperature epitaxial emitter 
and RTA processed cells at temperatures from 800oC to 1000oC. Results shown in red are before forming gas anneal and 
results shown in black are after forming gas anneal.  

 

 

Figure 4.11: Cell efficiency with corresponding short-circuit current for all RTA processed cells after forming gas anneal. 
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4.5 Spreading Resistance Profiling 

Spreading resistance profiling is used to obtain resistivity and dopant density depth profiles. The 

sample is lapped using a diamond paste or other polishing compound, and a bevel angle is formed 

across which two carefully spaced probes are stepped. Figure 4.12 shows a beveled sample and probe 

setup. A current,  𝐼, flows from the probe and spreads out from the tip. The resistance between the 

probes consists of the probe resistance, 𝑅𝑝𝑟, contact resistance, 𝑅𝑐, and spreading resistance, 𝑅𝑠𝑝, as 

given by 𝑅 = 2𝑅𝑝𝑟 + 2𝑅𝑐 + 2𝑅𝑠𝑝. The measured spreading resistance is converted into silicon resistivity 

by calibration curves using reference samples of known resistivity. The resistivity profile is then 

converted to a carrier profile using mobility data. [107] It is assumed that the carrier profile of the 

beveled surface is identical to that of the vertical profile, and also that the carrier profile is identical to 

the dopant profile. For shallow junctions, for example n+p, there is some redistribution of mobile 

carriers (carrier spilling) when electrons in the highly doped n-type region migrate to the lightly doped p-

type substrate. [110]  

 

During rapid thermal annealing, the high temperatures caused phosphorous from the n+ layer to diffuse 

into the lightly doped p-type wafer. In order to assess to what extent phosphorous diffusion was 

occurring during annealing, samples were analyzed consisting of 50 nm n-type a-Si:H crystallized by RTA 

for a period of 5 minutes at the following temperatures: 600oC, 650oC, 700oC, 750oC, 800oC, 900oC, and 

1000oC. As was shown in Chapter 2, at these temperatures the films appeared to be defective, epitaxial, 

and best modeled as a combination of crystalline and nanocrystalline silicon. Spreading resistance 

profiling applied to nanocrystalline silicon requires approximations because single crystal calibration 

samples of known resistivity are used to convert spreading resistance profiles, and then resistivity is 

 

Figure 4.12: a) Principle of spreading resistance profiling. b) Two point probe showing contact resistance, probe resistance, and 
current spreading. [107] c) Resistivity versus dopant concentration for p-type single crystal silicon compared to polysilicon. [111]  

 

a) b) c) 
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converted to carrier concentration using mobility data for single crystal silicon. However, when 

nanocrystalline silicon is highly doped, the uncertainties associated with calibration and mobility are 

significantly reduced. For conversion from spreading resistance to resistivity, the calibration charts for 

doped silicon of different crystal orientations differ by very little at the low resistivity end, and so 

nanocrystalline silicon can safely be considered as an average of the two curves. Furthermore, Figure 

4.12c shows resistivity versus concentration data for polycrystalline and single crystal silicon. At doping 

concentrations greater than 1019 cm-3, the differences in resistivity are greatly reduced. [111]   

The results of spreading resistance profiling for the samples annealed at 600oC, 650oC, 700oC, 

and 750oC are shown in Figure 4.13. Spreading resistance measurements confirmed that the thickness of 

the n-type layer was around 50 nm. Moving away from the metallurgical junction, the phosphorous 

concentration increased abruptly by more than two orders of magnitude within a distance of 

approximately 4 nm, and continued to increase more gradually reaching a peak concentration at the 

emitter surface with 𝑁𝐷 ≈ 2 × 1020 cm-3.  

 

Figure 4.13: Spreading resistance profiling for RTA for 5 minutes at temperatures from 600oC to 750oC.  The uncertainty 
in depth scale is ±3% and the uncertainty in carrier concentration and resistivity near the junction is ±30% and ±15% 
respectively. These limits are regarded as typical for such measurements. 
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The results of spreading resistance 

profiling for the samples annealed at 800oC, 

900oC, and 1000oC are shown in Figure 4.14. For 

these samples, there was increasing amount of 

dopant diffusion from the emitter into the silicon 

wafer as the temperature increased. Instead of 

being abrupt, the junctions became slightly 

diffused and the wafer surface was compensated. 

The n-type depth substantially increased from 

approximately 50 nm where dopant diffusion was 

negligible (𝑇 ≤ 750oC) up to 400 nm (𝑇 =

1000oC). The diffused doping in the wafer will 

reduce the electric field strength at the 

heterojunction interface. Also, there will be a 

greater amount of recombination for high energy 

photons absorbed close to the cell surface which 

reduces the photocurrent. This explains why the 

blue part of the spectral response was poor at 

high RTA temperatures. In addition to dopant 

diffusion, high annealing temperatures may also 

cause electrical activation and diffusion of 

impurities. Impurities may be located at the 

heterojunction interface dependent on the 

chemical cleaning process, may have been 

incorporated into the amorphous film during 

PECVD deposition, or were introduced in the RTA 

nitrogen ambient gas or quartz annealing tube.   

Dopant diffusion during RTA was influenced by temperature but also by the spectrum emitted 

by the tungsten halogen lamps. For regular furnace annealing, when a host atom acquires enough 

vibration energy to leave its lattice site it creates a vacancy into which a phosphorous atom can diffuse. 

Phosphorous dopant migration can also occur due to interstitial diffusion. Typical diffusion of 

phosphorous by furnace requires temperatures between 900-950oC for at least 15 minutes. [112] In an 

 

Figure 4.14: Spreading resistance profiling for samples 
annealed at 800oC, 900oC, and 1000oC for 5 minutes.  
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idealized case, the solution of the diffusion equation for a constant surface concentration and the 

appropriate boundary conditions is the complimentary error function: (𝑥, 𝑡) = 𝐶𝑠𝑒𝑟𝑓𝑐(𝑥 2√𝐷𝑡⁄ ) . 

Where 𝐶𝑠 is the surface concentration, 𝐷 is the diffusion coefficient for phosphorous, and 𝑡 is the 

annealing time. [113] Figure 4.15 compares the measured dopant density to the theoretical dopant 

density assuming a phosphorous diffusion coefficient at 1000oC of 𝐷 = 5 × 10−14 cm2/s, an average 

surface concentration in the emitter of 𝑁𝐷 = 1.5 × 1020 cm-3, and an annealing time of 𝑡 = 300 s. 

Clearly, the theoretical diffusion profile underestimates the dopant concentration.    

 

The discrepancy can be examined from a thermal and spectral perspective. From a thermal 

perspective, the diffusion was either intrinsic or extrinsic depending on the dopant concentration and 

whether or not it was lower than the intrinsic carrier concentration. For example, at 1000oC, silicon has 

an intrinsic carrier concentration of 5 × 1018 cm-3. Under high doping conditions the standard solution 

to the diffusion equation no longer applies, and the diffusivity becomes concentration dependent. From 

the spectral side, dopant diffusion in silicon has been shown to be enhanced by high energy photons 

particularly in the ultraviolet leading to increased diffusion coefficients for phosphorous compared to 

regular furnace diffusion. [114] The question of what fundamental mechanism is causing the 

enhancement remains under debate. Ultraviolet photons are absorbed within the emitter, or very close 

to the silicon wafer surface, and may cause photochemical effects such bond breaking and layer 

densification. Rapid thermal annealing is characterized by a relatively fast ramp-up and cool-down rate. 

It has been suggested that transient effects due to temperature or interface equilibration between the 

phosphorous source and the silicon wafer during RTA can play a larger role in diffusion compared to 

 

Figure 4.15: Comparison between theoretical and measured impurity profile for RTA processed sample at 1000oC.  
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regular furnace annealing. Mathiot et al. have noted that ultraviolet light greatly increases phosphorous 

injection in silicon, creating an excess of phosphorous interstitials that are highly mobile compared to 

substitutional phosphorous. The interstitial phosphorous will dissociate with a time constant that, if 

comparable to the rapid thermal annealing time, will cause a significant enhancement in diffusion. [115]       

 

4.6 Recombination Mechanisms Limiting Open-Circuit Voltage   
  

 It is assumed that the solar cell open circuit-voltage was limited by three main recombination 

mechanisms: recombination in the quasi-neutral regions, the space charge region, and at the 

heterojunction interface. Beginning with the recombination in the quasi-neutral regions, the total dark 

saturation current, 𝐽0, due to recombination of minority carriers is the sum of the dark saturation 

current in the quasi-neutral region in n+ emitter, 𝐽𝐸, and the p-type base, 𝐽𝐵, as given by equation 4.6.   

 𝐽 𝑄𝑁𝑅 =  𝐽𝐸 + 𝐽𝐵 = 𝑞
𝑛𝑖

2

𝑁𝐷

𝐷𝑝

𝐿𝑝
𝐺1 + 𝑞

𝑛𝑖
2

𝑁𝐴

𝐷𝑛

𝐿𝑛
𝐺2 (4.6) 

Where 𝐷𝑛 and  𝐷𝑝 are the diffusion coefficients of the minority electrons and holes with associated 

diffusion lengths 𝐿𝑛 and 𝐿𝑝. The terms 𝐺1 and  𝐺2 are coefficients for the emitter and base which 

depend on front and back surface recombination velocity, emitter and base thickness, as well as 

minority carrier diffusion coefficient and diffusion length. The emitter was extremely thin and has a high 

probability for minority carrier recombination compared to the base, due to its large density of dopants 

and crystalline defects. The cell surface was well passivated due to the SiNx anti-reflection coating, and 

the effective surface recombination velocity should be low. Thus, the emitter component of the 

saturation current, 𝐽𝐸, was ignored since it was the silicon wafer absorber in which most of the 

photocurrent was produced. The electrical quality of the silicon wafer is critical to device performance. 

For the base component, 𝐽𝐵, assuming that the diffusion length in the base is much less than the base 

thickness, and that carriers created deeper than one diffusion length are unlikely to be collected (the 

long-base approximation), equation 4.6 simplifies to equation 4.7. 

 𝐽𝑄𝑁𝑅 = 𝑞
𝑛𝑖

2

𝑁𝐴

𝐷𝑛

𝐿𝑛
 (4.7) 

For diffusion and recombination of minority carriers in the quasi-neutral zone, the diode ideality factor is 

assumed to be 𝑛 ≈ 1. The limiting 𝑉𝑜𝑐 for quasi-neutral zone recombination is given by equation 4.8: 

[116] 
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 𝑉𝑜𝑐 𝑄𝑁𝑅 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝑠𝑐

𝐽𝑄𝑁𝑅
) =

𝐸𝑔

𝑞
−

𝑘𝑇

𝑞
𝑙𝑛 (

𝑞𝐷𝑁𝐶𝑁𝑉

𝑁𝐴𝐽𝑠𝑐𝐿𝑒𝑓𝑓
) (4.8) 

where the bandgap of the absorber is 𝐸𝑔, 𝑁𝐴 is the dopant concentration in the absorber,  𝐽𝑠𝑐 is the cell 

short-circuit current, and the effective diffusion length, 𝐿𝑒𝑓𝑓, has been substituted for the bulk diffusion 

length for electrons, 𝐿𝑛. The effective diffusion length, 𝐿𝑒𝑓𝑓, for minority charge carriers generated in 

silicon wafer solar cells is often determined by inverse internal quantum efficiency, 𝐼𝑄𝐸−1. Once the 

external quantum efficiency, 𝐸𝑄𝐸, and reflectance, 𝑅, are measured the internal quantum efficiency is 

obtained for each wavelength by 𝐼𝑄𝐸 = 𝐸𝑄𝐸/(1 − 𝑅). The plot of  𝐼𝑄𝐸−1 versus absorption 

coefficient, 𝛼−1, between the wavelengths of 800 to 1120 nm shows two linear regimes (Figure 4.16). 

[116] [117]  

 

In the first linear regime, photons are of wavelength 800-1000 nm and so absorption and recombination 

in the emitter is ignored. Also, photons are assumed not to reach the back surface if the wafer is 

sufficiently thick. It is the first linear region that is analysed here, where the relation between 𝐼𝑄𝐸−1 and 

𝐿𝑒𝑓𝑓  is given by equation 4.9. 

 𝐼𝑄𝐸−1 = 1 +
𝑐𝑜𝑠𝜃

𝛼∙𝐿𝑒𝑓𝑓
= 1 +

1

𝛼∙𝐿𝑒𝑓𝑓
 (4.9)  

The angle, 𝜃,  is zero for refracted light entering a non-textured cell. The effective diffusion length is 

given by equation 4.10. [116]   

 𝐿𝑒𝑓𝑓 = 𝐿𝐵
𝑆𝑏𝐿𝑛𝑠𝑖𝑛ℎ(𝑊 𝐿𝑛⁄ )+ 𝐷𝑛𝑐𝑜𝑠ℎ(𝑊 𝐿𝑛⁄ )

𝑆𝑏𝐿𝑛𝑐𝑜𝑠ℎ(𝑊 𝐿𝑛⁄ )+𝐷𝑛 𝑠𝑖𝑛ℎ(𝑊 𝐿𝑛⁄ )
 (4.10) 

 

Figure 4.16: Inverse internal quantum efficiency versus absorption depth in crystalline silicon from 
wavelengths from 800-1100 nm for a solar cell processed by RTA at 900oC for 5 minutes and forming gas 
annealed.  
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The effective diffusion length depends on the bulk diffusion length, 𝐿𝑛, the wafer thickness, 𝑊, the 

diffusion constant, 𝐷𝑛, and the back surface recombination velocity, 𝑆𝑏. For a sufficiently thick cell, 

where 𝑊 > 2𝐿𝑛, the effective diffusion length is approximately equal to the bulk diffusion length within 

an accuracy of 4% (within 1% if  𝑊 > 3𝐿𝑛). [116] Since the cells analysed in this chapter were 500 μm 

thick, the injected minority carriers in the neutral bulk were likely to recombine before reaching the 

back surface, and the back surface recombination velocity had little contribution to the dark saturation 

current. [118] For each of the RTA processed cells from 650oC to 1000oC, reflectance and EQE was used 

to calculate IQE, and 𝐿𝑒𝑓𝑓 was calculated from equation 4.9. The absorption coefficients for crystalline 

silicon over the relevant wavelength range were taken from literature. [119] The effective diffusion 

length at each annealing temperature was determined from the slope of the line and the results are 

show in Figure 4.17. 

    

 

The results for 𝐿𝑒𝑓𝑓 for the various RTA temperatures and for the low temperature processed epitaxial 

cell are typical of Czochralski silicon wafers.   

 

Figure 4.17: Inverse internal quantum efficiency versus absorption depth for solar cell heterojunctions prepared by 
RTA. Also included for comparison is the low temperature epitaxial emitter cell.  
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 In addition to recombination in the quasi-neutral regions there is also recombination in the 

space-charge region. If space-charge region recombination is the dominant recombination mechanism 

then open-circuit voltage is given by equation 4.11: 

 𝑉𝑜𝑐 𝑆𝐶𝑅 =
2𝑘𝑇

𝑞
𝑙𝑛

𝐽𝑠𝑐

𝐽𝑆𝐶𝑅
=

𝐸𝑔

𝑞
−

2𝑘𝑇

𝑞
𝑙𝑛 (

𝐷𝑘𝑇𝜋√𝑁𝐶𝑁𝑉

𝐽𝑠𝑐𝐿𝑒𝑓𝑓
2 𝐹𝑚𝑎𝑥

) (4.11)     

where 𝐹𝑚𝑎𝑥 = 2𝑞𝑁𝐴𝑉𝑏𝑖/𝜀 is the electric field which is dependent on the built-in potential, 𝑉𝑏𝑖. The 

diode ideality factor is assumed to be 𝑛 ≈ 2. The built-in potential is determined by measuring the 

capacitance, 𝐶, as a function of voltage. For an abrupt junction, there is a linear relationship between 

1 𝐶2⁄  versus 𝑉 which gives 𝑉𝑏𝑖 from the intercept with the voltage axis, 𝑉𝑖𝑛𝑡, and dopant concentration 

in the base from the slope. This analysis applied to homojunctions can also be applied to 

heterojunctions if the influence of interface states on capacitance is negligible. [120] [121] Furthermore, 

the value of the intercept voltage may be slightly shifted from the real built-in potential, but the 

technique can nevertheless provide an approximate value for 𝑉𝑏𝑖. [122] In order to measure the built-in 

potential, capacitance measurements were made at room temperature in the dark using a four terminal 

pair configuration and an Agilent 4200 SCS parameter analyzer. The signal was 100 kHz applied from the 

high current terminal, and measured by the ammeter at the low current terminal, while the voltage 

across the device was measured by the high potential and low potential terminals. Figure 4.18 shows a 

typical C-V result measured on a finished cell. 

    

 

Figure 4.18: Graph of 1/C2 versus V for an RTA processed cell at 750oC for 5 minutes. The built-in voltage was 0.8 V.  
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 With 𝑉𝑏𝑖 measured by C-V, the dopant concentration independently determined by spreading 

resistance profiling, and the short-circuit current determined by EQE, all the data were complete to 

calculate the  𝑉𝑜𝑐,𝑄𝑁𝑅 and 𝑉𝑜𝑐,𝑆𝐶𝑅 as a function of 𝐿𝑒𝑓𝑓 according to equations 4.8 and 4.11. The limiting 

voltages for both cases are shown in the inset of Figure 4.19. At low effective diffusion lengths (𝐿𝑒𝑓𝑓 < 2 

μm), open-circuit voltage was limited by recombination in the space-charge region. For 𝐿𝑒𝑓𝑓 > 2 μm, 

open-circuit voltage was limited by recombination in the quasi-neutral region of the absorber. The cross-

over point between the two recombination mechanisms was 𝐿𝑒𝑓𝑓 ≈ 2 μm. For each of the seven RTA 

processing conditions, an average minority carrier diffusion length and open-circuit voltage was 

experimentally determined as discussed earlier. The 𝑉𝑜𝑐  and 𝐿𝑒𝑓𝑓 pair corresponding to each RTA 

condition was plotted in the inset graph and shown in the expanded view of Figure 4.19. For all RTA 

processed samples, irrespective of annealing temperature, the open-circuit voltage was very close to the 

upper limit specified by the quasi-neutral zone recombination. The average  𝑉𝑜𝑐 for each of the seven 

annealing conditions was within 5% of the maximum 𝑉𝑜𝑐.  

 

The measured effective diffusion lengths were obviously far greater than the transition diffusion length, 

and so recombination in the space charge region of the devices was not a limiting factor. Since the 

device  𝑉𝑜𝑐 was limited by the electrical quality of the quasi-neutral region in the absorber, the most 

 

Figure 4.19: Space-charge and quasi-neutral zone recombination limited open-circuit voltage versus 
effective diffusion length. The red line indicates the quasi-neutral zone recombination limited voltage 
from theory.     
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immediate avenue to improve cell efficiency was to increase the dopant concentration in the p-type 

wafer, increase the effective diffusion length, and avoid a reduction in minority carrier lifetime. In order 

to achieve  𝐿𝑒𝑓𝑓 substantially higher than 300 μm, higher purity Czochralski wafers must be used and 

the dopant concentration optimized. Alternatively, devices could be fabricated on float-zone silicon 

which has a significantly lower concentration of impurities due to the absence of a crucible to contain 

the melt. Another approach which has been proven to give higher 𝑉𝑜𝑐 in a-Si:H / c-Si heterojunctions and 

may be applicable to RTA processed cells is to use a p+n structure where the absorber is lightly doped n-

type and the emitter is highly doped p-type.  

 Once the neutral zone recombination current becomes sufficiently small, the 𝑉𝑜𝑐 will now be 

limited by recombination at the heterojunction interface as characterized by the interface defect 

density, 𝐷𝑖𝑡. The saturation current density dominated by interface recombination is given by equation 

4.12 where the interface recombination velocity is 𝑆𝑖𝑡, 𝜙𝑏 is the effective barrier height for 

recombination of charge carriers in the absorber at the p-n interface, 𝑁𝑉 = 1.04 × 1019 cm-3 is the 

effective density of states in the valence band, and the diode ideality factor is assumed 𝑛 ≈ 1. The 

corresponding  𝑉𝑜𝑐 limit due to interface recombination is given by equation 4.13.   

 𝐽𝐼𝑁𝑇 = 𝑞𝑆𝑖𝑡𝑁𝑉𝑒−
𝜙𝑏
𝑘𝑇  (4.12) 

 

 𝑉𝑜𝑐 𝐼𝑁𝑇 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝑠𝑐

𝐽𝑜,𝐼𝑁𝑇
) =

𝜙𝑏

𝑞
−

𝑛𝑘𝑇

𝑞
𝑙𝑛 (

𝑞𝑁𝑉𝑆𝑖𝑡

𝐽𝑠𝑐
) (4.13) 

 

From equation 4.12, the effective barrier height (shown in Figure 4.20) should be as large as possible to 

ensure a large 𝑉𝑜𝑐 and to minimize interface recombination current.  
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Combining equations 4.8 and 4.12 to take into account both quasi-neutral zone recombination and 

interface recombination, open-circuit voltage is given by equation 4.14.  

 𝑉𝑜𝑐 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝑠𝑐

𝐽𝑁𝑍𝑅+𝐽𝐼𝑁𝑇
) (4.14) 

Using equation 4.14, the limiting 𝑉𝑜𝑐 as a function of 𝐿𝑒𝑓𝑓 was plotted for several different interface 

recombination velocities as shown in Figure 4.21.  

 The effective barrier height, as determined by C-V measurement, was assumed to be 𝜙𝑏 = 0.8 

V. The dopant concentration in the wafer was determined by spreading resistance profiling and was 

approximately 7.9 × 1015 cm-3. For 𝑆𝑖𝑡 = 10 cm/s, the interface recombination current only caused a 

noticeable reduction in 𝑉𝑜𝑐  for effective diffusion lengths larger than 40 μm. As the surface 

recombination velocity decreased below 𝑆𝑖𝑡 = 10 cm/s, interface recombination current became 

negligible compared to the neutral-zone recombination current. But, as 𝑆𝑖𝑡 increased, the reduction in  

𝑉𝑜𝑐 became severe as the interface recombination current far exceeded neutral-zone recombination 

current. The averaged data point for pairs of 𝑉𝑜𝑐   and 𝐿𝑒𝑓𝑓 for each of the seven RTA temperatures are 

shown in Figure 4.21. These seven data points were between interface recombination velocity lines of 

𝑆𝑖𝑡 = 10 cm/s and 𝑆𝑖𝑡 = 100 cm/s which was thus an estimate of the quality of the heterojunction 

interface for these cells. Values of 𝑆𝑖𝑡 within this range are common for amorphous silicon 

heterojunctions as reported, for example, by Wang et al. [123] and Jensen et al. [124] In a hypothetical 

best-case scenario, Figure 4.21 showed that the neutral-zone recombination limited 𝑉𝑜𝑐 for a float-zone 

 

Figure 4.20: Band diagram of a nc-Si / c-Si heterojunction. The valence band and conduction band offsets, ∆𝐸𝑉 
and ∆𝐸𝑐, are exaggerated for clarity.  
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wafer device of dopant density 4.5 × 1016 cm-3 could approach 700 mV once 𝐿𝑒𝑓𝑓 > 400 μm (assuming 

negligible interface recombination current).  

 

 

   

4.7 Conclusions 

 Rapid thermal annealing was used to crystallize 50 nm thick n-type a-Si:H films deposited by 

PECVD on Si substrates. The RTA processing conditions between 600oC to 1000oC indicated a clear peak 

in solar cell efficiency of 15.1% at 750oC with cell efficiencies decreasing at temperatures above and 

below this point. Although the best optical and electrical properties for the emitter layers were achieved 

at RTA temperatures above 750oC, improved quality came at the cost of dopant and impurity diffusion 

from the emitter into the substrate reducing short-circuit current. Limiting factors for cell open-circuit 

voltage were divided into three recombination mechanisms: the heterojunction interface, the space-

charge region, and the quasi-neutral zones in the emitter and the absorber. Analysis of minority carrier 

 

Figure 4.21: Limiting cell 𝑉𝑜𝑐 is shown as a function of neutral zone recombination in the absorber, and 
interface recombination velocity, 𝑆𝑖𝑡.  
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effective diffusion lengths for RTA processed devices indicated that 𝑉𝑜𝑐 was limited predominantly by 

minority carrier recombination in the absorber. Thus, the most direct pathway to improve cell 𝑉𝑜𝑐 was to 

optimize the doping concentration in the absorber and increase the minority carrier lifetime by careful 

choice of annealing temperature and time.    
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 Heterojunction solar cells have recombination of photo-generated carriers at the junction 

interface which can severely limit cell efficiency. The ability to characterize the defect density at the 

interface is a key step in fabricating high efficiency devices. In this chapter, AFORS-HET was used to 

simulate the effect of junction interface defects on cell performance by methods of capacitance 

spectroscopy and electroluminescence. Capacitance spectroscopy refers to capacitance measurements 

made over a range of frequencies or temperatures at a given voltage bias. There are two types of 

capacitance spectroscopy used to quantify the defect density at the interface that are applicable to solar 

cell structures: 1) capacitance measured in the dark as a function of temperature and frequency (C-T-f 

spectroscopy), and 2) capacitance as a function of frequency (C-f spectroscopy) at room temperature 

and under forward bias and illumination. These methods are applicable not only to a-Si:H / c-Si 

heterojunctions but to other device structures including polymorphous silicon and compound 

semiconductor materials.  Basic p-n junction theory is discussed to provide a basis for capacitance 

spectroscopy analysis.  

 

5.1 Theory of the p-n Junction and Bandgap Defects 

 The p-n junction is formed by contacting two oppositely doped semiconductors by diffusion, 

layer growth, or ion implantation. Before thermal equilibrium, a large carrier concentration gradient 
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exists as the p-type material has a large concentration of holes, and the n-type material has a large 

concentration of electrons. By diffusion, electrons migrate from the n-side to the p-side exposing 

positively charged donor ions, 𝑁𝐷
+, and holes migrate from the p-side to the n-side exposing negatively 

charged acceptor ions 𝑁𝐴
−. The ionized dopant atoms on either side of the junction cause the creation of 

a built-in electric field directed from n-type to p-type side. The electric field creates a drift current for 

electrons and holes which exactly counter the diffusion current. Hence, under equilibrium conditions, 

the net current flowing in the p-n junction is zero and the equations defining the intrinsic carrier 

concentration, 𝑛𝑖, and the position of the Fermi level, 𝐸𝐹, are given in equations 5.1, 5.2, and 5.3  

respectively.  

 𝑛𝑖
2 = 𝑝𝑜𝑛𝑜 = 𝑁𝐶𝑁𝑉𝑒𝑥𝑝 (−

𝐸𝑔

𝑘𝑇
) (5.1) 

 𝐸𝐶 − 𝐸𝐹 = 𝑘𝑇 𝑙𝑛 (
𝑁𝐶

𝑛𝑜
) (5.2) 

 𝐸𝐹 − 𝐸𝑉 = 𝑘𝑇 𝑙𝑛 (
𝑁𝑉

𝑝𝑜
) (5.3) 

The equilibrium electron and hole concentrations are 𝑛𝑜 and 𝑝𝑜 respectively, the effective 

density of states in the conduction band is 𝑁𝐶 , and the effective density of states in the valence band is 

𝑁𝑉. The device temperature is 𝑇, and 𝑘 is the Boltzmann constant. The total electrostatic potential 

difference, 𝑉𝑏𝑖, between the n-side and p-side neutral regions (at thermal equilibrium) is given by 

equation 5.4: [125]               

                                                                  𝑉𝑏𝑖 = 𝜓𝑛 − 𝜓𝑝 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝑁𝐴𝑁𝐷

𝑛𝑖
2 )         (5.4) 

where 𝜓𝑛  is the electrostatic potential difference between the intrinsic energy level and the Fermi level 

on the n-side, and 𝜓𝑝 is the electrostatic potential difference between the intrinsic energy level and the 

Fermi level on the p-side (as shown in Figure 5.1). The depletion region width is given by equation 5.5: 

 𝑊 = √
2𝜀𝑠

𝑞
(

𝑁𝐴+𝑁𝐷

𝑁𝐴𝑁𝐷
) 𝑉𝑏𝑖  (5.5) 

For an abrupt junction (𝑁𝐷 ≫ 𝑁𝐴) equation 5.5 can be simplified to equation 5.6. 

 𝑊 ≅ 𝑥p = √
2𝜀𝑠𝑉𝑏𝑖

𝑞𝑁A
 (5.6) 

 For a p-n heterojunction consisting of two different layers, with dielectric constants 𝜀𝑝 and 𝜀𝑛, 

the depletion region width on the p-type side, 𝑥𝑝, and the n-type side, 𝑥𝑛, is given by equations 5.7 and 

5.8 respectively. The total capacitance is the series addition of the capacitances in each of the two 
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semiconductors according to equation 5.9. An applied ac bias will cause variations in the space charge 

density at the depletion region edges.  

 𝑥𝑝
2 =

2

𝑞

𝑁𝐷𝜀𝑝𝜀𝑛(𝑉𝑑−𝑉𝑎)

𝑁𝐴(𝜀𝑝𝑁𝐴+𝜀𝑛𝑁𝐷)
  (5.7)  

 𝑥𝑛
2 =

2

𝑞

𝑁𝐴𝜀𝑝𝜀𝑛(𝑉𝑑−𝑉𝑎)

𝑁𝐷(𝜀𝑝𝑁𝐴+𝜀𝑛𝑁𝐷)
 (5.8) 

 
1

𝐶
=

1

𝐶𝑛
+

1

𝐶𝑝
 (5.9) 

Figure 5.1 shows the thermal equilibrium characteristics of an abrupt p-n junction. [125]  

 

 

Figure 5.1: a) p-n junction with abrupt dopant change at the metallurgical junction, b) energy band diagram at thermal 
equilibrium, c) space charge distribution, d) rectangle approximation of space charge distribution made by ignoring 
transition regions. [125]  
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 In contrast to the perfect band diagram illustrated in Figure 5.1, real semiconductors have 

defect energy levels within the bandgap. Impurities such as dopants create shallow level impurities 

which are energy levels near the conduction or valence band edges. Deep level impurities are at or near 

the middle of the bandgap and can act either as generation-recombination centers or traps. 

Unintentional impurities may include foreign interstitials (such as oxygen), foreign substitutionals, 

vacancies, precipitates, or crystal defects such as edge dislocations. The energy level band diagram of a 

real semiconductor is shown in Figure 5.2. There is an arbitrary deep level impurity at 𝐸𝑇 which may be 

involved in four possible processes: a) capture an electron from the conduction band characterized by 

capture cross section 𝑐𝑛, b) emit a captured electron back to the conduction band, c) capture a hole 

from the valence band characterized by capture cross section, 𝑐𝑝, d) emit a hole back to the valence 

band. Generation occurs when the carrier concentration is below equilibrium. A recombination event is 

the capture of an electron from the conduction band followed by the capture of a hole from the valence 

band. Recombination occurs when there are excess carriers. Generation occurs when a trap emits an 

electron into the conduction band and then emits a hole into the valence band. Trapping refers to when 

a carrier is captured and then subsequently emitted back to the band from which it came. What 

determines whether an impurity acts as a trap or a generation-recombination center is the energy level 

within the band gap, the location of the Fermi level, temperature, and trap capture cross-section. 

Shallow energy levels tend to act as traps, whereas deep impurity energy levels tend to act as 

generation/recombination centers. [126] 

 

If the device is cooled and reverse biased, the traps in the p-n junction are filled with majority carriers, 

and if the device is forward biased or exposed to optical injection then the traps are filled with minority 

carriers. [126]   

 

Figure 5.2: Recombination and trapping at defect states within the bandgap. [126] 
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5.2 Theory of Admittance Spectroscopy 

Admittance spectroscopy is a very useful tool to analyze the bulk and interface states in buried 

layers in diode-like devices such as solar cells. Electronic states associated with impurities can be divided 

into shallow states and deep states. Capacitance spectroscopy detects non-radiative transitions from 

deep states. Deep states often act as recombination centers, and can reduce minority carrier lifetime. 

The small signal capacitance is sensitive to the capture and release of charge carriers from traps. By 

definition, the small signal capacitance is the charge response, 𝛿𝑄 to a small change in voltage, 𝛿𝑉, 

where 𝐶 = 𝛿𝑄 𝛿𝑉⁄ . Charge may not vary linearly with applied voltage, but with the small signal 

approximation (𝑉𝑎 < 𝑘𝑇 𝑞⁄ = 25 𝑚𝑉) it is assumed that  𝛿𝑄 ∝ 𝛿𝑉. [127] [128] Admittance 

Spectroscopy uses an ac bias and ramps either the temperature and or frequency in order to obtain a 

response from deep states across a spectrum of activation energies. When a small ac voltage of 

frequency, 𝜔,  is applied there is a linear current response which can consist of two components: one in 

phase with the applied voltage and another 90o out of phase. For an ideal resistor and capacitor in 

parallel, the total measured current has a real and imaginary component that is represented by a phasor 

in the complex plane according to: 𝐼 = 𝑉(𝑅−1 + 𝑗𝜔𝐶). For a diode device such as a solar cell, a parallel 

circuit model with series resistance, 𝑅𝑠, is assumed as shown in Figure 5.3.   

 

The small signal response of the sample is defined by the complex admittance, 𝑌 = 𝐺 + 𝑗𝑌′, 

where 𝐺 is the conductance, and 𝑌′ is the susceptance. From the parallel circuit model of Figure 5.3, 

𝐶 = 𝑌′ 𝜔⁄ . For the parallel circuit model to be valid, 𝑅𝑆 ≪ 𝑅, and 𝜔𝑅𝑆𝐶 ≪ 1. Too high a series 

resistance can be caused by series resistance in the device contacts or spreading resistance from a large 

area sample size. Frequencies above 1 MHz can cause stray inductance. [129] In order to measure the 

admittance, the ac current response to an applied ac voltage signal is measured. The ac current consists 

of two components: one which is in phase and a second which is 90o out of phase.    

 

Figure 5.3: Parallel circuit model with series resistance, and phasor diagram for circuit model ignoring 𝑅𝑆. [130] 
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For capacitance-voltage profiling, the depletion approximation is used which states that the 

depletion region is precisely defined, abrupt, and completely depleted of free carriers. The capacitance 

response originates from the edges of the depletion region. However, error is introduced for 

semiconductor films that have a large density of deep states in the band gap. For admittance 

measurements, the depletion approximation is no longer true, and charge capture and release from 

deep states has to be taken into account. The activation of a deep trap, causing a transition from one 

charged state to another, is a thermally activated process which depends on the trap’s apparent 

(measured) cross section, 𝜎𝑛𝑎, and activation energy, 𝐸𝑛𝑎. The thermally activated electron emission 

from a deep trap is given by equation 5.10.                                                                                                                    

  𝑒𝑛 = 𝛾𝜎𝑛𝑎𝑇2𝑒𝑥𝑝 (
−𝐸𝑛𝑎

𝑘𝑇
) (5.10) 

It is assumed that deep traps do not interact with one another and obey the law of 

superposition (whereby each trap contributes a set of energy levels to the band gap which, added 

together, form the density of states). When a small signal voltage perturbation is applied, there is a band 

bending which causes a change in trap state occupation at a given location in the band gap. The 

occupancy of deep traps is related to the energetic location of the trap with respect to the Fermi level 

by a Fermi-Dirac distribution. [130] Traps will contribute to capacitance in two ways: i) modifying the 

space charge density in the depletion region and changing the depletion region width, ii) altering their 

charge state to dynamically follow the ac voltage contributing to 𝛿𝑄 𝛿𝑉⁄ .  

 The aim of admittance spectroscopy is to alter the sample temperature or frequency so as to 

cross the transition threshold where traps start to respond. If the sample is too cold, or the modulation 

frequency is too high, trap states in the bulk cannot respond to the applied voltage to move in and out 

of the depletion region edge. This is the freeze out zone. Under the freeze out condition, the 

capacitance will be that of the bulk dielectric given by  𝐶 = 𝜀𝜀𝑜 𝐴 𝑏⁄  , where 𝐴 is the device area, and 𝑏 

is the distance between the front and back contacts. Beyond the freeze-out regime, when the 

temperature is increased or the frequency lowered, a capacitance step forms increasing from  𝐶 =

𝜀𝜀𝑜 𝐴 𝑏⁄  to 𝐶 = 𝜀𝜀𝑜 𝐴 𝑊⁄   where 𝑊 is the depletion region width. This first capacitance step is due to 

the thermal activation of free carriers. As the temperature is further increased or the frequency 

decreased, the deep trap states can now start to respond. The demarcation energy determines the cut-

off energy at which traps will respond to the signal. Demarcation energy is given by equation 5.11, 

where 𝜎𝑛𝑎 is the trap cross-section area and 𝜔 is the frequency.  



97 
 

 𝐸𝑒 = 𝑘𝑇𝑙𝑛 (
𝛾𝜎𝑛𝑎𝑇2

𝜔
) (5.11) 

 When the trap’s apparent activation energy is less than or equal to the demarcation energy, the trap will 

respond to the ac voltage and contribute to the capacitance by changing its charge state. As the 

demarcation energy is increased, successively deeper trap states can respond to the signal. 

  

5.3  Capacitance Spectroscopy: C-T-f Method  

C-T-f spectroscopy measures the steady state capacitance as a function of temperature, and 

capacitance steps (or current peaks) are observed as traps emit their carriers by thermal activation. The 

capacitance is obtained by superimposing a small ac voltage typically in the range of 20 mV, with a 

frequency between 100 Hz to 1 MHz (although other frequencies and voltages are possible). C-T-f 

spectroscopy was applied to heterojunction solar cells (a-Si:H on crystalline silicon wafers) by several 

research groups to analyze the effect of interface defects. Kleider et al. used C-T-f to examine 

heterojunction cells with different surface treatments such as hydrofluoric acid dip or a layer of tunnel 

oxide. [131] Unold et al. used C-T-f spectroscopy on heterojunction devices with and without a thin 

intrinsic a-Si:H layer between the n-type a-Si:H and the substrate. [132] Vischetti et al. used C-T-f 

spectroscopy to analyze the interface quality of heterojunctions using amorphous and polymorphous 

emitter layers on p-type wafers. [133] C-T-f spectroscopy is performed in the dark and at zero bias or 

small reverse bias (up to -0.2 V is common to decrease leakage current). Under these conditions 

depletion capacitance must be considered. The depletion capacitance of a p-n junction per unit area is 

given by equation 5.12: 

 
𝐶

𝐴
=

𝑑𝑄

𝑑𝑉
=

𝜀𝑠

𝑊
   (5.12) 

where 𝑊 is the depletion region width. For an incremental change in the applied voltage, 𝑑𝑉, there is an 

incremental change in the depletion layer charge per unit area, 𝑑𝑄. Considering a voltage, 𝑉, applied to 

the n-side of a p-n junction, if the voltage is increased by an amount, 𝑑𝑉, then charge and field 

distributions will expand as the depletion region widens. [125] The depletion capacitance is a weak 

function of applied bias, and dominates under reverse bias. A p-n junction has a space charge region 

which contains stored charge given by  𝑄 = 𝑞𝑁𝐴𝑁𝐷𝑊, where 𝑁𝐴 and 𝑁𝐷 are the concentrations of 

ionized acceptors and donors respectively. It is assumed in equation 5.12 that 𝑁𝐴 and 𝑁𝐷 are constant 

and do not vary with distance. When an alternating voltage is applied to the junction, gap states due 

both to the emitter and traps at the heterojunction interface will respond to the modulation. However, 
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because the voltage drop on the emitter side of the interface is small, and the depletion zone extends 

much further into the more lightly doped side, the response of gap states in the emitter can often be 

ignored. A capacitance step will form when the temperature is increased, or the frequency is decreased. 

The position of the step will depend on the trap capture cross section for electrons and holes, and the 

magnitude of the step will depend on trap density per area at the heterojunction interface. 

 Figure 5.4 shows the AFORS-HET simulation for C-T-f spectroscopy of an amorphous silicon 

heterojunction for the capacitance density as a function of temperature at frequencies of 100 Hz, 1 kHz, 

10 kHz, and 100 kHz. Figure 5.5 and Figure 5.6 show C-T-f simulations for a nanocrystalline emitter and 

epitaxial emitter on a c-Si substrate respectively. In order to simplify simulation, all device structures 

had a 1 nm thick defective interface layer which was assumed to be entirely within the crystalline wafer. 

The device layers are listed beneath each figure. For all frequencies, an ac signal of 20 mV was used. 

Regarding the magnitude of the capacitance density, Figure 5.4, Figure 5.5, and Figure 5.6 all showed a 

similar trend: for a given interface defect density concentration, 𝐷𝑖𝑡 , the capacitance increased with 

temperature. The reason for the rise was that, as temperature increased, the built-in potential became 

smaller and thus the depletion region width decreased. Capacitance increased because of the inverse 

dependence on depletion region width (equation 5.12). 

 

 

Figure 5.4: C-T-f spectroscopy simulation for a-Si:H/c-Si heterojunction with intrinsic a-Si:H layer. Device 
was: TCO (80 nm) / (n) a-Si:H (10 nm) / (i) a-Si:H (5nm) / (p) c-Si (1 nm) / (p) c-Si (300 μm) / Al (1 μm).  
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Figure 5.6: C-T-f spectroscopy simulation for epi-Si / c-Si heterojunction. Device was: TCO (80 nm) / 
(n) epi-Si (15 nm) / (p) c-Si (1 nm) / (p) c-Si (300 μm) / Al (1 μm). 

 

 

 

Figure 5.5: C-T-f spectroscopy simulation for nc-Si:H/c-Si heterojunction. Device was: TCO (80 nm) / (n) 
nc-Si (15 nm) / (p) c-Si (1 nm) / (p) c-Si (300 μm) / Al (1 μm).  

 



100 
 

The C-T-f results for all three cell structures were divided into two regions: low interface defect density 

(typical of high efficiency cells) where 𝐷𝑖𝑡 < 5 × 1012 cm-2, and high interface defect density where 

𝐷𝑖𝑡 > 5 × 1012 cm-2.  

 For the low defect density region, for the nanocrystalline and epitaxial emitters (Figure 5.5, and 

Figure 5.6) there was a very small capacitance step at temperatures less than 100 K. At all frequencies, 

for very low defect densities the capacitance values were essentially the same and overlapped forming a 

single line. The a-Si:H emitter cell in Figure 5.4 showed at all frequencies three small low temperature 

capacitance steps around 140 K, and the location and magnitude of the steps remained independent of 

temperature as long as 𝐷𝑖𝑡 < 1012 cm-2. The capacitance steps in a-Si:H may have been due to 

amorphous silicon having a greater density of band gap defects (Gaussian defects and band tails) 

compared to nanocrystalline and epitaxial silicon. Some of the gap states in amorphous silicon at the 

heterojunction interface may have responded to modulation frequencies and acted as trap-and-release 

centers for charge carriers contributing to the junction capacitance. A more general explanation for the 

low temperature step increase in capacitance for a-Si:H, nc-Si, and epi-Si was the thermal activation of 

conductivity. For extremely low temperatures, there was a freeze-out regime where there was 

insufficient thermal energy to ionize dopants and the semiconductor was essentially intrinsic. The 

dielectric relaxation time is given by 𝜏𝑅 = 𝜌𝑠𝜀𝜀𝑜 where the resistivity, 𝜌𝑠, depends on the bulk 

conductivity which is thermally activated. [130] Once the temperature was increased beyond the freeze-

out zone, the carrier concentration increased and the semiconductor became extrinsic. Carriers in the 

bulk undepleted material could now respond to the applied ac voltage and shift in and out of the 

depletion region edges.   

 In the high interface defect density zone, where 𝐷𝑖𝑡 > 5 × 1012 cm-2  there was a much larger 

increase in capacitance density which could not be explained only by conductivity activation or 

depletion capacitance. All three cell types showed similar behaviour: there was a large non-linear 

increase in capacitance which had clear temperature dependence. As the interface defect density was 

increased, the capacitance step at all frequencies shifted to higher temperatures. Also, the magnitude of 

the step increased. Below the capacitance step at very low temperature, the capacitance per unit area 

was dependent on the sum of the depletion region width in the c-Si base, 𝑥𝑝, and the emitter, 𝑥𝑛, 

according to 
𝐶

𝐴
= 𝜀/(𝑥𝑛 + 𝑥𝑝). At the onset of the step, the capacitance density changed and was now 

larger than what could be attributed to the depletion capacitance alone. An additional capacitance was 

being added in series to the depletion layer capacitance which was the interface capacitance due to the 
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capture and release of charge carriers at interface 

traps. According to Kleider and Gudovskikh, the 

step increase in capacitance for non-negligible 

interface defect densities can be explained by the 

concept of the effective depletion length, 𝐿𝑓. The 

effective depletion length is a kind of Debye 

length that is a function of the density of gap 

states which cause a change in capacitance. [131]  

The smaller the effective depletion length is the 

larger the defect density at the heterojunction 

interface. Above the capacitance step, 

capacitance is now inversely proportional to the 

sum of the depletion region width in the base (c-

Si), and the effective depletion length, 𝐿𝑓, in the 

emitter according to 
𝐶

𝐴
= 𝜀/(𝑙𝑓 + 𝑥𝑝). [131] 

 In the literature, the effective depletion 

length has been applied to explain the C-T-f 

spectroscopy of a-Si:H / c-Si heterojunctions, but 

it can also be applied to C-T-f spectroscopy of 

junctions with nanocrystalline or epitaxial 

emitters (Figure 5.5 and Figure 5.6) which showed 

very similar capacitance steps when the interface 

defect density was sufficiently high. In all three 

cases, the rise in capacitance was due to the 

thermal activation of defects at the 

heterojunction interface. The interface capacitance was due to a combination of factors such as: 

trapping and release of electrons between the n-type emitter and the interface layer, and trapping and 

release of holes between the interface states and the crystalline wafer. The C-T-f simulations also 

provided a related parameter, the conductance, which when divided by frequency (normalized) and 

plotted as a function of temperature showed characteristic peaks. The temperatures at which the 

normalized conductance peaks occurred corresponded to the locations of capacitance step increase. 

The conductance results for a frequency of 100 Hz were normalized and plotted as a function of defect 

 

Figure 5.7: a) a-Si:H emitter, b) nc-si emitter, c) epi-Si 
emitter. The normalized conductance peaks shift to higher 
temperature as the defect density is increased.  

 

a) 

b) 

c) 

a) 
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density and temperature as shown in Figure 5.7 

for the three emitter types of a-Si:H, nc-Si, and 

epi-Si. Figure 5.7 showed clear peaks in the 

conductance at specific temperatures. The 

temperatures at which these peaks occurred 

corresponded to the onset of the interface 

defect induced capacitance steps shown in 

Figure 5.4, Figure 5.5, and Figure 5.6. For low 

defect densities, less than approximately 𝐷𝑖𝑡 =

1013 cm-2, the conductance peaks were either 

non-existent (in the case of nc-Si and epi-Si), or 

for the case of a-Si showed no peak shifting to  

higher temperature as defect density increased. 

However, the conductance peaks showed a clear 

shift to higher temperatures as the defect 

density was increased beyond approximately  

𝐷𝑖𝑡 > 1013 cm-2. Taken together, the C-T-f and 

normalized conductance versus temperature 

results seemed to indicate a similar response to 

interface defects regardless of whether the 

emitter was amorphous silicon or crystalline. 

When the interface defect density was between 

1012 − 1013 cm-2 or larger, strong changes were 

seen in the C-T-f and normalized conductance 

graphs in the form of temperature dependent 

shifts of capacitance steps and conductance 

peaks. 

  A plot of the normalized conductance peaks for a fixed interface defect density can provide 

information about the defect states themselves. Figure 5.8 a) shows the C-T-f diagram for a nc-Si emitter 

for an interface defect density of 2 × 1013 cm-2. In Figure 5.8 b), the corresponding graph of normalized 

conductance showed that the characteristic peaks tracked the onset of activation of the defect states at 

 

Figure 5.8: nc-Si emitter, a) C-T-f diagram for an interface 
defect density of 2x1013 cm-2, b) corresponding normalized 
conductance, G/ω, showing characteristic peaks, c) Arrhenius 
plot yielding activation energy.  

a) 

b) 

c) 
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the interface. The location of each normalized conductance peak corresponded to a given measurement 

frequency and turn-on temperature, 𝑇𝑜. At a given measurement frequency, 𝜔, there is a corresponding 

turn-on temperature at which trap states can begin to respond to the ac voltage signal by changing their 

charge state by the capture and release of charge carriers. The turn-on temperature is related to the 

frequency by equation 5.13,  

 𝜔 = 2𝜈𝑛𝑒𝑥𝑝 (
−𝐸𝑇𝐴

𝑘𝐵𝑇𝑜
) (5.13) 

where 𝐸𝑇𝐴 is the trap activation energy, and 𝜈𝑛 = 𝜎𝑛𝑣𝑡ℎ𝑁𝑐 is the attempt-to-escape frequency which is 

the product of the trap cross-section area, 𝜎𝑛, the root-mean-square thermal velocity of free electrons, 

𝑣𝑡ℎ, and the effective density of states in the conduction band, 𝑁𝑐. Figure 5.8 c) shows the Arrhenius 

plot frequency versus turn-on temperature. From the slope of the line, the activation energy was               

𝐸𝑎 = 0.28 eV. If the thermal velocity is known, the intercept with the vertical axis provides the trap 

cross-section area.    

  

5.4 Capacitance Spectroscopy: C-f Method  

 One drawback of C-T-f spectroscopy is that it is limited in its detection sensitivity of defect 

density and cannot detect 𝐷𝑖𝑡 < 1012 cm-2. However, most high efficiency heterojunction solar cells 

already have 𝐷𝑖𝑡 < 1012 cm-2. In this case, a useful alternative is C-f spectroscopy which has better 

sensitivity than C-T-f and has been used to analyze the interface defect density in a-Si:H / c-Si 

heterojunction solar cells by several research groups such as Unold and Gudovskikh. [134] [132] [135]. In 

addition to providing information about the interface, C-f spectroscopy can also be used to examine the 

effect of the front and back surface recombination velocity on low frequency capacitance. [132] [134]   

 Solar cell C-f spectroscopy is performed at Air Mass 1.5 illumination under a forward bias equal 

to the cell open-circuit voltage. Under open-circuit, no current flows through the device which 

minimizes the problem of series resistance. [135] C-f spectroscopy is based on diffusion capacitance. 

Capacitance refers to the stored charge in a device, as illustrated by the parallel plate capacitor where 

the capacitance is 𝐶 = 𝜀𝐴/𝑑, where two plates of area, 𝐴, are separated a distance, 𝑑, by a dielectric 

insulator with permittivity, 𝜀. The differential capacitance per unit area is the ratio of incremental charge 

variation, 𝑑𝑄, over voltage variation, 𝑑𝑉. Under forward bias, electrons are injected from the n-type to 

the p-type region where they become minority carriers and recombine with majority carriers in an 
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exponential decay with distance. Current flow occurs due to the minority carrier distribution gradient 

leading to charge storage in the p-n junction. By integrating the excess minority carrier hole 

concentration, 𝑝𝑛 − 𝑝𝑛𝑜, across the neutral n-region one can calculate the charge of injected minority 

carrier holes according to equation 5.14. [125]  

 𝑄𝑝 = 𝑞 ∫ (𝑝𝑛 − 𝑝𝑛𝑜)𝑑𝑥 = 𝜏𝑝𝐽𝑝(𝑥𝑛)
∞

𝑥𝑛
 (5.14) 

A similar equation can be derived for the stored electrons in the neutral p-region. Thus, the total stored 

charge is written in terms of the injected current, 𝐽𝑝. Under forward bias, the diffusion capacitance in 

the n-type neutral region of a p+n junction, 𝐶𝐷𝐹, is due to the rearrangement of stored charges in the 

neutral region and is given by equation 5.15. [125] 𝐿𝑝 is the diffusion length of minority carrier holes in 

the n-type region. Diffusion capacitance is dominant under forward bias conditions, whereas depletion 

capacitance has little dependence on the applied voltage and dominates mostly under reverse bias.  

 𝐶𝐷𝐹 =
𝐴𝑞2𝐿𝑝𝑝𝑛𝑜

𝑘𝑇
𝑒𝑞𝑉/𝑘𝑇  (5.15)  

 Figure 5.9 and Figure 5.10 a) show the simulation results for capacitance versus frequency for 

interface defect density concentrations from 𝐷𝑖𝑡 = 5 × 109  cm-2 to 𝐷𝑖𝑡 = 1 × 1013  cm-2 for the three 

different structures of a-Si:H, nc-Si, and epi-Si heterojunctions. Device structures were identical to those 

used in the C-T-f simulations and are shown in the inset of each graph. The defective layer was assumed 

to be entirely within the p-type Si wafer and had a thickness of 1 nm. For all three structures, at low 

frequencies (102-104 Hz), a capacitance plateau was present, but as the frequency increased beyond 

approximately 104 Hz the capacitance dropped and approached zero. Furthermore, as the interface 

defect density increased, the capacitance density, 𝐶𝐿𝐹𝑃, at which the low frequency plateau occurred 

decreased. This was the opposite of C-T-f spectroscopy where capacitance increased with increasing 

defect density.  
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 The reason the low frequency capacitance of a forward biased heterojunction decreases with 

increasing interface defect density is due to the diffusion capacitance. The diffusion capacitance is given 

by  𝑑∆𝑄 𝑑𝑉𝑎⁄  (where ∆𝑄 is the charge due to the minority (electron) concentration in the p-type silicon 

wafer, and 𝑉𝑎 is the applied voltage). The diffusion capacitance depends on the minority carrier charge 

which is obtained by integrating the excess minority carrier electron density over the quasi-neutral 

region of the base (in this case the p-type Si wafer). In the simulations, as the interface defect density 

was increased to non-negligible values (around 𝐷𝑖𝑡 > 109 cm-2), interface recombination reduced the 

concentration of excess minority carriers, ∆𝑛 ≡ 𝑛𝑝(𝑥) − 𝑛𝑝𝑜, close to the interface (as shown in Figure 

5.10 b). Increasing the interface defect density concentration caused a rearrangement in the minority 

carrier concentration which reduced the diffusion capacitance causing a reduction in low frequency 

capacitance,  𝐶𝐿𝐹𝑃. The defect density in the emitter layer should not cause an increase in 𝐶𝐿𝐹𝑃. The 

voltage drop across the emitter is relatively small and so the oscillating applied voltage should only 

change the occupation of defects by no more than a few percent. In addition, the minority carrier 

concentration is also affected by band offsets and the electrical quality of the back contact which 

depends on whether or not a back surface field is present. 

 

Figure 5.9: a) Capacitance versus frequency for a-Si / c-Si heterojunction. b) Capacitance versus frequency for nc-Si / c-Si 
heterojunction. 

 

a) b) 
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 For solar cells whose thickness, 𝑤, is less 

than the minority carrier diffusion length, 𝐿, a 

back surface field is important to reduce back 

surface contact recombination. The minority 

carrier back surface recombination velocity, 𝑠𝑛, is 

reduced if a back surface field is present (which 

can be formed, for example, by screen printed 

annealed aluminum or by forming a high-low 

heterojunction with a wider band gap material). 

The back surface field keeps minority carriers 

away from the back contact and increases their 

chances of collection. Figure 5.11 shows that as 𝑠𝑛 

is increased, the excess minority carrier electron 

concentration, ∆𝑛, was shifted down. For higher 

recombination velocities, ∆𝑛 decreased not only 

at the back contact, but also at the heterojunction 

interface which affected the diffusion capacitance 

and lowered the absolute value of the low 

frequency capacitance, 𝐶𝐿𝐹𝑃.  Thus, C-f 

spectroscopy was a measure not only of the defect 

density at the heterojunction interface, but also of 

the electrical quality of the back contact through 

the back surface minority carrier recombination velocity. The front surface contact recombination 

velocity had a negligible impact on 𝐶𝐿𝐹𝑃 due to the relatively large amount of recombination in the 

highly doped and defective emitter.  

 

Figure 5.10: a) Capacitance versus frequency for epi-Si / c-
Si heterojunction. b) Excess minority carrier concentration 
as a function of interface defect density for nc-Si / c-Si 
heterojunction. Conditions were: flat-band ohmic contact, 
AM 1.5 illumination, and forward bias equal to open-circuit 
voltage. 

 

a) 

b) 
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 Another factor that affected 𝐶𝐿𝐹𝑃 was the conduction band offset. As the conduction band 

offset was decreased, there was decreased band bending in the c-Si wafer at the heterojunction 

interface which resulted in reduced electric field strength. The reduced field strength in turn caused an 

increase in excess minority carrier electron recombination, ∆𝑛(𝑥), near the junction in c-Si which 

reduced the diffusion capacitance and the magnitude of 𝐶𝐿𝐹𝑃. Figure 5.12 a) shows ∆𝑛(𝑥) as a function 

of junction position for five different conduction band offsets for a nc-Si heterojunction. As ∆𝐸𝐶  was 

decreased, ∆𝑛(𝑥) decreased as well which was reflected in the reduction of 𝐶𝐿𝐹𝑃 shown in Figure 5.12 

b). Thus, the difficulty with C-f spectroscopy from an experimental standpoint is that the magnitude of 

𝐶𝐿𝐹𝑃 depends not only on 𝐷𝑖𝑡, but also on the band offset and the back surface recombination velocity 

(quantities that may not be well known). It is difficult to separate these three influences, although the 

situation is simplified if a back surface field is used to provide a low surface recombination velocity. If 

the interface defect density was extremely low (𝐷𝑖𝑡 < 1010 cm-2) then C-f spectroscopy could be used to 

analyze the back surface electrical contact quality.  

 

Figure 5.11: a) Variation of ∆𝑛 in c-Si as a function of position within the junction for six different back surface minority carrier 
recombination velocities, 𝑠𝑛. b) Reduction in low frequency capacitance, 𝐶𝐿𝐹𝑃, as 𝑠𝑛 increases.   

 

a) b) 
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5.5 Electroluminescence 

 In addition to the methods of C-T-f and C-f spectroscopy, electroluminescence is also an 

important method for quantifying the interface defect density in heterojunction solar cells. In this 

section, AFORS-HET was used to simulate the electroluminescence of a cell in the dark under forward 

bias. The interface defect density between p-type and n-type materials was assumed to be 1 nm thick, 

and was varied for a nc-Si / c-Si heterojunction. Cell structure was identical to that used in capacitance 

spectroscopy simulations. Electroluminescence probes excess carrier concentrations in crystalline 

silicon, and requires electrical contacts in order to forward bias the junction. The emitted spectral 

radiation provides information on quasi-Fermi level splitting. [136] The quasi-Fermi level splitting and 

excess carrier density are sensitive to the life time in the bulk, to the surface recombination, or (if the 

device is well passivated) to the interface recombination. For a silicon wafer passivated with, for 

example, a-Si:H or nc-Si, electroluminescence will reveal the effect of interface recombination between 

the wafer and the emitter. Of course, even a moderate interface defect density will reduce the cell 

open-circuit voltage. As the forward bias is increased, the amount of injected carriers increases which 

creates increasing recombination (and radiative recombination) which boosts the luminescence signal 

and causes the solar cell to operate as a light emitting diode. The more efficient the solar cell, the 

greater the amount of radiative recombination relative to other recombination pathways such as 

interface recombination. [137]  In AFORS-HET, the electroluminescence spectra were calculated using a 

 

Figure 5.12: a) Effect of conduction band offset on ∆𝑛(𝑥) for interface defect density of 𝐷𝑖𝑡 = 1 × 1013 cm-2. The device 
structure was nanocrystalline silicon emitter (n) on p-type wafer, and b) effect of conduction band offset on 𝐶𝐿𝐹𝑃 as a 
function of frequency. AC amplitude was 20 mV.   

 

a) b) 
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generalized Planck’s Law that takes into account quasi-Fermi level splitting and the optical absorption 

properties of the device layers. 

 The emitted photon flux density from the sample with a given thickness was calculated by 

accounting for the quasi-Fermi level splitting, 𝐸𝐹𝑛 − 𝐸𝐹𝑝, and the absorptivity, 𝐴𝑎, according to equation 

5.16. 

 𝑑𝑗𝛾(ℏ𝜔) =
(ℏ𝜔)2

4𝜋2ℏ3𝑐2 𝐴𝑎(ℏ𝜔)𝑒𝑥𝑝 (−
ℏ𝜔

𝑘𝑇
) 𝑒𝑥𝑝 (

𝐸𝐹𝑛−𝐸𝐹𝑝

𝑘𝑇
) 𝑑(ℏ𝜔) (5.16) 

The quasi-Fermi levels of the conduction band electrons, 𝐸𝐹𝑛, and valence band holes, 𝐸𝐹𝑝, are defined 

by 𝑛 = 𝑁𝐶𝑒𝑥𝑝 (−
𝐸𝐶−𝐸𝐹𝑛

𝑘𝑇
) and 𝑝 = 𝑁𝑉𝑒𝑥𝑝 (−

𝐸𝐹𝑝−𝐸𝑉

𝑘𝑇
). Figure 5.13 a) shows the sensitivity of the 

electroluminescence signal to the interface defect density concentration for the nc-Si / c-Si 

heterojunction. The larger the defect densities, the smaller the charge carrier concentrations became 

under forward bias conditions and the smaller 

the signal. Recombination at interface defects 

reduced the amount of radiative band-to-band 

recombination. The maximum luminescence 

intensity occurred at a wavelength of around 

1130 nm which corresponded to band-to-band 

radiative recombination in c-Si. For high defect 

densities, 𝐷𝑖𝑡 > 1013 cm-2 , the luminescence 

signal became extremely weak, and would be 

very difficult to measure. The integrated spectral 

photon flux from 900-1200 nm for two different 

values of 𝐷𝑖𝑡 is shown in Figure 5.13 b). There 

was an exponential increase in integrated flux 

with applied voltage. The cell with low interface 

defect density, 𝐷𝑖𝑡 = 1 × 1010 cm-2, was a more 

efficient light emitting diode than the cell with 

𝐷𝑖𝑡 = 1 × 1013 cm-2.  

 

 

b) 

 

Figure 5.13: a) Electroluminescence simulation for a nc-Si 
/c-Si heterojunction at room temperature under forward 
bias of 0.7 V, b) Integrated photon flux as a function of 
applied forward bias.    

 

a) 

b) 
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5.6 Conclusions  

 C-T-f spectroscopy and C-f spectroscopy are fundamentally different in terms of how the 

capacitance depends on interface defects. For C-T-f, the capacitance was determined by the capture and 

emission of charges at the interface. However, for C-f, the capacitance was dependent on the 

recombination of minority charge carriers in the crystalline wafer near the junction interface. 

Recombination of excess carriers depended on the magnitude of 𝐷𝑖𝑡, but was also dependent on the 

conduction band offset, ∆𝐸𝑐 (which determined the band bending in c-Si), and on the back surface 

recombination velocity. [135] It was clear that interface defects had a very different effect on the 

measured capacitance depending on whether the measurement was in the dark at zero or slight reverse 

bias (C-T-f), or at forward bias equal to open-circuit voltage under illumination (C-f). The former method 

showed an increase in capacitance with increasing interface defect density. The latter method showed a 

decrease in the absolute value of the plateau capacitance with increasing defect density. A limitation of 

C-T-f is that capacitance can only be distinguished from the crystalline silicon space charge capacitance 

when the defect density at the interface is higher than approximately 1× 1012 cm-2, and this is not 

sufficient sensitivity for the optimization of high efficiency solar cells. However, C-f spectroscopy and 

electroluminescence are much more sensitive down to at least 𝐷𝑖𝑡 = 1010 cm-2. For the three cell 

emitter types simulated consisting of epi-Si, nc-Si, and a-Si;H, there was no clear advantage between 

them in terms of tolerance to interface defects. In the literature, C-T-f and C-f studies have been applied 

to a-Si:H. This thesis extended these methods to nc-Si and epi-Si heterojunctions. 
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 To improve solar cell efficiencies achieved for the simple cell structure outlined in Chapter 4, 

several additional processing steps were implemented. Wafers were thinned to reduce recombination 

losses in the absorber and textured to decrease reflectance. A thin passivating layer of silicon nitride was 

introduced between the emitter and the substrate. A nanocrystalline p+ layer was deposited on the back 

side to form a back surface field and reduce back surface recombination.   

 

6.1 Interface Passivation Layer 

 Intrinsic a-Si:H is the most common interface passivation material for heterojunction solar cells. 

But for RTA processed devices, spreading resistance profiling in Chapter 4 showed significant diffusion of 

dopants into the c-Si wafer at temperatures above 800oC which resulted in a reduced photocurrent. In 

order to have the benefit of a high mobility low defect density emitter, high RTA temperatures are 

required. A thin passivating layer of SiNx can act as a diffusion barrier to impurities and dopants from the 

emitter, maintain an abrupt junction even at high RTA temperatures, and reduce the density of defects 

at the junction interface by passivating dangling bonds. However, large band-gap materials like SiNx or 

SiO2 have been noted to block charge carrier transport due to their high barrier potential which results 

in an S-shaped I-V curve. The band offsets between the passivation layer and the c-Si wafer create 

substantial barriers to transport of photo-generated carriers across the junction. [138] The band gap of 

SiNx is approximately 5 eV, and for SiO2 can be as large as 9 eV. A thicker buffer layer provides better 

surface passivation but is also a much greater barrier to charge carrier tunnelling. Lee et al. have used 
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rapid thermal oxides as passivation for HIT solar cells and have shown that the optimum passivation 

layer thickness is around 1 nm to 3 nm. [139] Chowdhury et al. have reported a native oxide surface 

passivation method with a thickness of 1 nm that yields a low surface recombination velocity of 8 cm/s. 

[140] 

  

6.2 Fabrication on Polished Silicon Substrates  

 Polished 400 μm thick silicon wafers were thinned using a solution of 30% potassium hydroxide 

(weight by volume in pellet form in deionized water). Before immersion, wafers were RCA-1 cleaned. 

Wafers were thinned individually by immersing the Teflon carrier into the thinning solution covered by a 

glass slide to prevent excessive evaporation. During etching, the temperature of the thinning solution 

was maintained at 80oC. The etch rate was approximately 2.6 μm/min. Wafers were thinned for 60 

minutes until wafer thickness was around 250 μm. Then, the wafers were placed immediately in 

deionized water for 10 minutes. Wafers were cleaned in a solution of 10 % HCL for five minutes followed 

by 10% HF for five minutes at room temperature, and then RCA-1 and RCA-2 cleaned again before 

deposition of device layers. A passivating layer of SiNx approximately 3 nm thick was deposited by 

PECVD under the following conditions: power 40 W, 200 mTorr, SiH4 flow rate 5 sccm, N2 flow rate 105 

sccm, NH3 flow rate 20 sccm, temperature 350oC, for 10 seconds. Without breaking vacuum, a 40 nm 

thick layer of n-type a-Si:H was deposited on top of the passivation layer. Next, the sample was flipped 

and a p+ nc-Si layer was deposited to form the back surface field. The deposition conditions for the p+ 

layer were: power 10 W, 600 mtorr, SiH4 flow rate 2 sccm, H2 flow rate 180 sccm, B2H6 flow rate 20 

sccm, and temperature 280oC for 20 minutes.  

 After the PECVD depositions were completed, the wafer was annealed by RTA. However, even 

using the slow ramp rate of 10oC/s that had earlier been established for damage-free annealing, the 

films were severely pin-holed after temperatures as low as 500oC for 30 seconds. The pin-holing was so 

extensive (Figure 6.1) that it was impossible to fabricate devices on these wafers. Lower RTA hold 

temperatures of 400oC, 300oC, and 200oC were used with a ramp rate of 10oC/s, 5oC/s, and 1oC/s but all 

devices were still pin-holed and cracked. Next, annealing at 200oC in a regular furnace with nitrogen 

ambient was performed using a very slow ramp rate of 6 hours but this did not solve the pin-hole 

problem. Because annealing at such low temperatures and ramp rates cannot cause explosive out-

gassing of hydrogen from a-Si:H or SiNx, it was assumed that the reason for the pin-hole formation was 

the mismatch in thermal expansion coefficients. The coefficient for SiNx is around 3.3 × 10−6 oC-1  
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whereas for a-Si:H it is 2.3 × 10−6 oC-1. [141] The thermal expansion mismatch in combination with a 

poor adhesion of a-Si:H to the SiNx resulted in delamination of the emitter even at low temperatures. A 

significant amount of time and effort was required to thin a single wafer and deposit all of the PECVD 

layers, but only one thermal profile could be tested on each sample. Dicing the wafers into five squares 

of 2.5 × 2.5 cm allowed multiple thermal profiles to be tested from a single wafer but the quartz tray in 

the RTA system was only designed to handle whole wafers. Thus, each square had to be mounted on a 

silicon carrier wafer. But, during the rapid heating cycles, a thin cushion of expanding air formed under 

the sample during ramp-up. The air cushion caused many samples to float off the carrier wafer and fall 

onto the bottom of the quartz tube. In order to prevent the samples from sliding during RTA, a silicon 

sample holder with a square hole was fabricated by laser micromachining (Figure 6.2). The depth of the 

counter-sunk border was approximately 250 μm. Because the samples were small and thin they were 

not heavy enough to form reliable contact with the thermocouple and so the holder was designed so 

that the sample was in the center with the thermocouple touching the periphery of the holder. Although 

the thermocouple measured the temperature of the holder rather than the sample itself, because both 

the sample and holder were in direct contact they quickly reached thermal equilibrium. The 

temperature of the sample and the holder was maybe a few degrees different during ramp-up but 

 

Figure 6.1: Optical microscope view of pinholes after annealing of thin film stack consisting of SiNx passivating layer 
and 40 nm thick emitter on Si wafer. a) 2.5 x 10, b) 10 x 10, c) 10 x 10, d) 20 x 10 magnification. Image b) shows pin 
holes that pass entirely through the emitter and the SiNx revealing the Si substrate.   

 

a) b) 

c) d) 
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reached equilibrium during the several minutes during the annealing plateau. 

 

 

6.3 Fabrication on Textured Silicon Substrates  

 Adhesion of a thin film to a substrate can be improved when the substrate is roughened. In 

order to solve the adhesion problem between the a-Si:H emitter and the SiNx passivation layer, the 

PECVD process was performed on thinned and textured Si wafers instead of polished wafers. Wafers 

were thinned as described earlier, and textured by anisotropic pyramid formation by etching in a 

solution of potassium hydroxide and 2-propanol. The purity of the potassium hydroxide greatly affected 

the uniformity of the pyramid coverage as well as the pyramid size. Texturing was initially performed 

using potassium hydroxide pellets but the pyramid coverage was non-uniform. Therefore, Sigma Aldrich 

potassium hydroxide solution (semiconductor grade, 45% in deionized water) was used with impurity of 

potassium carbonate less than 0.3%. The total volume of texturing solution was 1.5 L (67 ml potassium 

hydroxide and 105 ml 2-propanol in deionized water). The solution was stirred for one minute, covered 

with a glass slide and heated. Wafers were textured individually submerged in a Teflon carrier. By 

adjusting the temperature of the hot plate, the solution was maintained at 80oC. Etching time was 70 

minutes. After texturing, wafers were placed in an overflowing water bath for 10 minutes. In order to 

 

Figure 6.2: Laser machined Si wafer with square opening and detail of counter-sunk border. Laser cutting debris was 
removed followed by RCA-1 and RCA-2 cleaning.  
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remove potassium contamination, wafers were cleaned in a solution of 10 % hydrochloric acid for five 

minutes followed by 10% hydrofluoric acid for five minutes at room temperature, and then RCA-1 and 

RCA-2 cleaned before deposition of PECVD layers.  

 Reflectance measurements for three textured wafers are shown in Figure 6.3. The beam spot 

was located at the center of each wafer and had an area of approximately 1 cm2. Due to spatial 

constraints within the loading port, it was not possible to measure reflectance at locations along the 

wafer periphery. The reflectance at 950 nm was used to compare the reflectance spectra taken from 

different samples. The average reflectance (without antireflection coating) at 950 nm was 9.68 ± 0.08 %. 

The low standard deviation indicates that the texturing recipe gave repeatable results for different 

wafers. The reflectance values agree with those of textured wafers from literature.[142][143][144]  

 

The textured wafers were examined by SEM and the results are shown in Figure 6.4. The pyramid height 

was estimated to be between 5-10 μm. After RTA processing, the textured samples showed no pin-hole 

formation. It is suspected that the pyramid texture improved the adhesion of the emitter to the 

passivation layer.  

 

Figure 6.3: Averaged reflectance for three pyramid textured wafers, with the standard deviation given by the 
error bars. For comparison, the reflectance of a mirror polished and back side roughened Si wafer was also 
measured.  
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6.4 Solar Cell Processing and Performance 

 After RTA processing, an 80 nm thick layer of SiNx was deposited as anti-reflection coating. 

Negative photoresist AZ nlof 2035 was used for patterning, but with the standard recipe of 3000 RPM 

for 70 seconds the resist layer was too thin (3.5 μm) and did not uniformly cover the pyramids. During 

the lift-off process it was evident that tips of some of the pyramids protruded through the photoresist 

preventing removal of metal layers needed to form the front contact fingers and bus bar. A modified 

recipe of 1000 RPM was used for a photoresist thickness of 6 μm. Although coverage of the pyramids 

with this thicker film was improved, lift-off was unsuccessful. Next, a 10 μm thick photoresist was 

achieved using 500 RPM for 60 seconds which resulted in excellent pyramid coverage and successful lift-

off as shown in Figure 6.5. Pre-bake was for 3 minutes at 110oC, and UV-exposure was 3 minutes (dose 

of 300 mJ/cm2). Post-bake was 1 minute at 110oC followed by a 90 second immersion in AZ300 MIF 

photoresist developer. Before e-beam metal deposition, samples were dipped in buffered hydrofluoric 

acid for between 30-60 seconds to remove the SiNx anti-reflection coating. Front contacts were 30 nm 

titanium and 1 μm silver, and back contact was 1 μm aluminum.   

 

Figure 6.4: SEM results for anisotropically etched Si wafer with 3 nm layer SiNx and 40 nm n-type emitter. 
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 Solar cell efficiency was measured under standard test conditions at AM 1.5. The results are 

shown in Figure 6.7. Efficiency was below 1% for annealing temperatures less than 900oC. At 1000oC, 

efficiency started to show a significant improvement as the annealing time was increased. At 1000oC for 

1 minute cell efficiency was 1.7% which increased to 6.2 % at 2.5 minutes annealing time. At 1000oC for 

10 minutes, 20 minutes, and 30 minutes annealing the cell efficiency remained nearly unchanged at 

around 10.6 % to 11.5 %. From literature, it is known that the n-type a-Si:H film is completely crystallized 

at temperatures as low as 600oC for 1 minute.[145] Due to the SiNx passivation, epitaxy was not possible 

and the crystallization proceeded by random nucleation and grain growth forming a polycrystalline 

emitter. The reason for the low efficiency at RTA temperatures less than 1000oC may in small part be 

due to a higher density of defects in the polycrystalline compared to epitaxial silicon. However, a much 

 

Figure 6.6: Finished devices before dicing. There are two solar cells per square with addition patterns for planar 
conductance and Hall Effect measurement.      

 

 

Figure 6.5: Photoresist coverage at 500 RPM for textured samples. a) 2.5 x 10 magnification after UV-exposure, post-
bake, and developer, b) 20 x 10 magnification showing photoresist and under-cut necessary for lift-off, c) 20 x 10 
magnification showing metallization after successful lift-off.     

 

a) b) c) 
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more important reason for the low efficiency was likely the large band gap of SiNx which hindered 

minority charge carrier transport. It may be that the large increase in efficiency at RTA temperatures of 

1000oC was due to diffusion of phosphorous into the passivation layer which increased its conductivity 

and lowered the potential barrier for minority carrier electrons allowing them to more easily tunnel 

through the SiNx band spike.     

 

Another explanation for the low efficiency may be that the SiNx layer was too thick. If the thickness were 

reduced from 3 nm to 1 nm then charge carrier tunneling through the band spike would be greatly 

increased. 

  

6.5 Conclusions 

 Although SiNx is potentially an attractive passivation layer for RTA processed cells, more data are 

required to assess the defect density at the heterojunction interface to compare with the solar cells in 

 

Figure 6.7: Summary of textured cell efficiencies versus RTA plateau temperature and time. Better cell efficiencies 
were achieved for annealing temperatures of 1000oC for 10 minutes or longer.  
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Chapter 4 which were without passivation layer. A preliminary cell efficiency of 11.5% was achieved at 

an annealing temperature of 1000oC for 20 minutes. Further cell improvement could be achieved by 

reducing the thickness of the passivation layer and minimizing the thermal budget to increase minority 

carrier lifetime in the Si substrate. Additional investigations could be performed into optimized SiNx 

recipes with a reduced band gap. Also, increasing the hydrogen content in the SiNx layer could be 

beneficial. The hydrogen would be out-gassed into the crystalline emitter during RTA which would 

passivate emitter defects such as dangling bonds.   
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7 Conclusions and Summary of Research  
  

 Rapid thermal annealing of thin a-Si:H films was studied for use in photovoltaic cells. The 

objective of the research was to use RTA to crystallize thin a-Si:H emitters on silicon wafers while 

simplifying the manufacturing process by avoiding the use of a thin intrinsic silicon passivation layer and 

transparent conducting oxide. Electrical and optical characterization of the RTA crystallized films showed 

them to be epitaxial but slightly defective. The most suitable ellipsometric model for the defective 

epitaxial material was a homogeneous mixture of nanocrystalline and crystalline silicon. However, as the 

RTA temperature was increased the quality of the epitaxial films greatly improved approaching that of 

bulk crystalline silicon. Electrical and optical properties of 50 nm thick RTA crystallized n-type silicon 

films for solar cell applications are relatively unstudied compared to more common techniques of 

crystalline film formation such as conventional furnace annealing or direct deposition of nanocrystalline 

silicon by PECVD. The combination of optical and electrical characterization methods in this research 

provided insight into the epitaxial crystallization process by RTA. Within the context of the larger 

scientific field and body of knowledge in solid-phase crystallization and photovoltaics, this research 

provided quantitative information in the areas of epitaxial crystallization, defect density analysis, and 

photovoltaic cell recombination mechanisms and performance. The defect density type, magnitude, and 

vertical defect distribution within the crystallized emitter was elucidated by SEM, UV-reflectance, and 

ellipsometry measurements respectively. The epitaxial crystallization mechanism was clearly illustrated 

by TEM. Carrier mobility as a function of annealing temperature was provided by Hall Effect, and 

transport mechanisms of the heterojunctions were studied by dark current-voltage measurements at 

elevated temperature. Basic solar cells were fabricated on polished silicon wafers, and a cell efficiency 

of 15.1% was achieved for a 1 cm2 device for RTA at 750oC for 5 minutes. The principal factor limiting the 

open-circuit voltage of the cells was recombination in the quasi-neutral region of the silicon wafer. 

Experimental results showed that the recombination velocity at the heterojunction interface was quite 

low (between 10 cm/s to 100 cm/s). Simulations were performed by approximating the epitaxial films as 

nanocrystalline material, and comparison was made with defect-free epitaxial and a-Si:H / c-Si 

heterojunctions. Simulations also focused on quantifying the defect density at the heterojunction 

interface by capacitance spectroscopy and electroluminescence. While capacitance spectroscopy 

simulations for a-Si:H / c-Si heterojunctions have been performed by several groups, this research 

extended the capacitance simulations to nc-Si / c-Si and epi-Si / c-Si devices. For further research for the 

basic RTA solar cell devices it is important to reduce the thermal budget. The annealing temperature of 
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750oC provided the highest cell efficiencies compared to the other RTA temperatures. The 750oC 

annealing for 5 minutes was longer than necessary to completely crystallize the a-Si:H emitter. 

Exploration to reduce the annealing time should be carried out. It is highly likely that lower annealing 

times of less than 3 minutes could be sufficient to cause complete crystallization. Very high temperature 

treatments can cause minority carrier lifetime degradation in Czochralski silicon wafers. A reduced 

annealing time would have a benefit of a lower thermal budget, reduced film stress, and most 

importantly would improve the minority carrier diffusion length in the absorber leading to higher cell 

efficiencies. Additional areas of further research for the standard RTA solar cell structure would be to 

implement surface texturing and to use thinner wafers.           

 As a secondary research objective, advanced cell architecture was implemented. Wafers were 

thinned to reduce recombination losses in the absorber, and pyramid textured to decrease reflectance. 

A thin passivating layer of silicon nitride was introduced between the emitter and the substrate and a 

nanocrystalline p+ layer was deposited on the back side to reduce back surface recombination. 

Successful fabrication of these devices with efficiency reaching 11.5% (at an annealing time of 20 

minutes at 1000oC) showed that silicon nitride as an interface passivation layer was feasible. Further 

improvements that could be investigated for the advanced cell architecture include reducing the 

bandgap of the passivation layer to improve charge carrier transport, reducing the layer thickness below 

5 nm, and deposition of hydrogen rich SiNx films. During RTA, hydrogen ejection from the SiNx layer 

would passivate interface defects and dangling bonds.     
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