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Abstract 

The operation of industrial combustion devices to improve fuel efficiency 

and reduce emissions, is necessary in many respects. Increasingly stringent 

environmental regulations and the present volatility of the price of fossil fuels make 

it necessary to control a combustion device at an optimal operating point while 

accounting for changes in the environment, heater load, and fuel quality. 

In this study, an adaptive and predictive optimal control methodology is 

developed and tested on a 2.05 MW diesel fueled oilfield process heater. To date, 

the majority of previous developments and control methodologies have focused on 

combustion devices either a magnitude larger or smaller, or on gaseous-fueled 

combustion processes. The present work, which focuses on maximizing the 

thermodynamic efficiency of an oilfield process heater, is divided into two parts; 

the first of which is the development of an algorithm that continually regulates and 

predicts the operating state. The algorithm is comprised of three iterative 

components: (a) an artificial neural network for adaptivity and prediction; (b) a 

genetic algorithm for optimization; and (c) a refinement of the search space to 

complement and restrict the other components. The second part of this work is the 

physical implementation of the sensors, actuators, and computing hardware 

necessary for the algorithm. Several challenges encountered during the 

implementation on the experimental apparatus are discussed, namely involving the 

diesel flow rate sensor and the actuator for modulating the damper position. 

Two experiments were performed, and data were collected and evaluated 

offline. The first experiment was to initially evaluate performance of the control 

methodology, and the second was to evaluate the iterative and refinement 

capabilities of the algorithm. The algorithm optimizes the operating state of the 

heater and the results agreed with observed trends discovered through the 

experimentation. Additionally it was discovered that there is a correlation between 

the optimal operating state and increases to the quantity of heat transferred to the 

process fluid flowing through the inner coil.  
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Chapter 1  

Introduction 

The burning of fossil fuel is vitally important to industrial processes that rely upon 

combustion to generate mechanical or electrical power or energy in the form of 

heat. Despite recent drops in the price of oil, long term fuel prices are expected to 

increase globally; this, together with growing concerns about the impact of fossil 

fuel combustion on human health and the environment, have motivated 

improvements in the operation of industrial combustion devices. These 

improvements have focused on increasing thermodynamic efficiency [1], minimizing 

harmful environmental emissions [2], [3] or reducing negative combustion dynamics 

[4]; for example, to ensure stable operation of gas turbines near the lean limit of 

combustion. At present, there are two distinct strategies to accomplish these goals: 

(a) Altering the physical setup of a combustion device encompassing changes 

to the size and shape of the combustion chamber [5], fuel utilized, or 

method for fuel  introduction [6] and [7], and composition of combustion 

air including the use of technologies like exhaust/flue gas recirculation 

[8] and [9], among others. 

(b) Altering the controllable operating state(s) of a combustion device 

encompassing changes made with or without the feedback of relevant 

information [4], [10], [11]. 

This thesis is concerned solely with the second of these two strategies, 

namely the control of an industrial process heater in order to seek an optimal 

operating point of the process heater. 
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1.1 Control Classification 

Control within the context of an engineering process or system can be thought of 

as a methodology to affect a desired response within a system by altering one or 

more inputs [12]. This tacitly assumes an input-output and cause-effect relationship 

within these systems which may not always be accurate or apparent in complex or 

physical processes [12]. In all cases, the control of a process or system requires, at 

minimum, determinable input and output states, and an optional measurement of 

the process, or part thereof, to assess system performance.  

Control methodologies are classically separated into two categories, 

typically: open-loop and closed-loop methods. Within closed-loop control, there is 

a feedback mechanism whereby the process is measured and compared to the 

desired result. The input is then altered from the feedback of information arising 

from the comparison (open-loop control lacks this feedback mechanism). Classic 

signal diagrams of both open- and closed-loop control can be seen in Figure 1.1. 

Closed-loop control may be further categorized into online or offline schemas. 

Offline control entails a large temporal delay in the feedback mechanism, while 

online control entails a temporal delay on the order of magnitude of the process 

itself. A physical system, or mathematical representation thereof, to control is first 

needed to implement any of these control classifications. 

1.2 Physical Process Heater 

The industrial process heater used throughout this study is a 70M TEXHEATER, 

designed and manufactured by GenTex Oilfield Manufacturing Inc. (‘GenTex’) 

located in Red Deer, Alberta, Canada. These process heaters support a varied set 

of oilfield activities including heating fluids used for fracturization (i.e., “fracking”) 

and oil well stimulation.  
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FIGURE 1.1: Classic representations for (a) open and (b) 
closed-loop control. 

The diesel-fueled 70M heating unit, shown in Figure 1.2 with supporting 

systems, piping, and valving, has a theoretical maximum thermal output of 2.051 

MW ( 67.0 10  BTU/hr). A section view of the process heater is shown in Figure 

1.3. The heater itself consists of three interconnected coils through which the 

process fluid flows; the outer and inner coils are concentric while the intermediate 

coil is slightly staggered. The burner-assembly consists of a Y-type atomizer, fixed-

vanes for inducing swirling of the airflow/flame, and various other surfaces to 

control the input of combustion air flow. 

Desired
Response

Controller Actuator Process Output

Desired
Response

Controller Actuator Process

Sensor

Output

Measurement	output Feedback

ሺaሻ

ሺbሻ
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FIGURE 1.2: Rendering of a skid-mounted 70M heating unit. 

In a Y-type atomizer, the liquid to be atomized flows through a tube while 

a high pressure gas (in this case dry compressed air) flows through a passage 

annular to the tube. At the end of the main tube, the fuel and air passages are 

subdivided into smaller passages that transect to form mixing chambers; the high 

kinetic energy of the atomizing gas, combined with the increased shear present in 

the liquid as it is forced through a smaller passage, breaks up or “atomizes” the 

liquid into small droplets [13]. The geometry of the atomizer and the supply 

pressure/flow rates of the fluids controls the patternization and droplet diameter 

of the liquid fuel [13]. One port on a Y-type atomizer nozzle is illustrated in 

Figure 1.4.  

The process fluid flows sequentially through the outer, intermediate, and 

inner coils, and then exits the heater. Pumping of the process fluid is typically 

achieved using a centrifugal or reciprocating triple plunger positive displacement 

or ‘triplex’ pump.  
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FIGURE 1.3: Rendered section view of a 70M process heater. 

A horizontally-fired burner assembly generates a luminous flame within the 

innermost coil. Make-up combustion air (i.e., combustion air) is provided via a 

blower fan unit. The hot combustion gases impinge on a refractory surface opposite 

to the burner, which redirects the gases through an annular passage between the 

outer and inner coils and over the staggered intermediate coil loop. The combustion 

gases exit through a stack at the top of the heater to the atmosphere. A complete 

flow diagram of the process heater is provided in Figure 1.5. 

1.3 Operation of the Process Heater 

Prior to the beginning of this study, operation of the heating units was entirely 

manual. The human operator would increase the flow rate of the process fluid above 

a pre-set minimum flow rate and pressure, and, upon meeting these criteria, the 

operator would initiate combustion and begin heating. 
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FIGURE 1.4: Y-type atomizer operation, a single port of a 
typical nozzle [13]. 

The process heaters are controlled by adjusting three manual inputs: (a) 

regulation of air pressure into the atomizer through a rotary needle valve; 

(b) regulation of fuel pressure into the atomizer through a rotary needle valve; and 

(c) regulation of the combustion air mass flow via the angular position of a damper 

attached to the inlet of the blower fan. Both the diesel fuel pump and atomizing 

air compressor pressures are set to maintain preset maximum supply pressures into 

the needle valves. The blower fan operates at a preset rotational speed. 

Combustion control was accomplished by setting the fuel and air pressure 

for the atomizer to pre-determined recommended set points depending upon the 

required heating load, and adjusting the damper angular position to an  

Atomizing	Air

Liquid	fuel 
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FIGURE 1.5: 70M heating unit process flow diagram. 
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approximate stoichiometric operating point as visually indicated by the 

disappearance of soot from the exhaust gases leaving the heater. 

1.4 Objectives 

This study began with the interest of GenTex in upgrading their existing 

instrumentation on their production heating units after an experimental unit had 

been developed with digital controls. This included upgrading from analog 

mechanical gauges for pressure and temperature to a completely digital system 

with: a programmable logic controller (PLC); human-machine-interface (HMI) or 

screen; and sensors to measure temperature, pressure, and flow. The plan was to 

remove all manual controls for fuel and atomizing air-pressure and damper position 

and implement them digitally on the human-machine-interface. This centralized-

digital-control (CDC) upgrade project was the first-of-its-kind for any oilfield 

process heater. 

  The research described in this thesis aims to pioneer a disruptive solution 

that exploits the in-development CDC system to minimize operator involvement 

and automatically control the process heater to maximize thermal efficiency and/or 

minimize pollutant emissions. Building on existing industrial combustion control 

methodologies, this additional ‘layer’ of control was to be adaptive to changing 

environmental conditions and the ever-changing formulations of diesel fuel which 

varies both seasonally and by supplier. 

Within the context of industrial combustion, control methodologies vary 

from single pre-set control states, to sophisticated and integrated control systems, 

both with and without feedback mechanisms. One of the most rudimentary ways 

of achieving a ‘good’ operating state involves a human operator manually adjusting 

the operating parameters, usually in a heuristic way, based on the observation of 

sensor data combined with the operator’s experience. Past-operation of GenTex 

process heating units were operated in this manner. This can be considered an 

online method of control as data gathering and control changes occur virtually 
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simultaneously with combustion. It also can be considered a pseudo-closed-loop 

control method as the human operator observes and responds to changes in the 

operating state in such a way that reinforces positive changes (e.g., an increase in 

heat output) and counteracts negative changes (e.g., an unstable or sooty flame) 

[12]. With this simple, human operator-based control, however, the optimal 

operating point is discovered by accident, or by enumerating all possible operating 

states. Thus, this method usually results in suboptimal performance, and often 

regresses to an open-loop control state since an intuitive “feel” of the complex 

combustion physics is elusive.  

An alternative optimization method for combustor operation requires 

collection of operating data through extensive testing, usually through univariate 

parametric studies, and then offline post-processing of the gathered data to 

determine the optimal operating point. Unfortunately, these conclusions usually 

apply to a specific set of operating conditions and ignore changes that occur in the 

period of time between data collection and analysis, such as environment (air 

temperature, humidity), fuel composition, and combustion load. Consequently, 

there is a need for a control system that can make real-time adjustments to 

combustor performance to ensure that the device remains near an optimal 

operating state at all times and in all situations. This thesis focuses on the 

development, implementation, and testing of such a system through the use of an 

online predictive optimal control methodology.  

Intending to be an evolution from the CDC system, this methodology has 

two defined objectives/steps: 

(a) Implement automated control of the process heater to simplify and 

reduce operator involvement. 

(b) Design and test an adaptive algorithm capable of optimizing the 

performance (e.g., thermal efficiency) of the process heater. 
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1.5 Organization of Thesis 

The remainder of this thesis is divided into four main chapters.   

Chapter 2 is a survey of relevant scientific literature related to the control 

methodology and experimental apparatus. The chapter is subdivided according to 

the several aspects that comprise the predictive and optimal algorithm as well as 

the present-day technologies surrounding the setup of the experimental heating 

unit. 

With the existing and present day state-of-the-art established, Chapter 3 

focuses on the physical experimental setup of the process heating unit. Sensor, 

actuation, computational, and human interface technologies, the four primary 

components necessary to implement a control experiment, are discussed. Additional 

safety related features implemented on the heating unit are also included in this 

section. 

Chapter 4 focusses on the general methodology of the predictive-optimal 

algorithm. The use of neural networks and genetic algorithms and a search-

refinement method are presented and discussed. The overall theories of operation 

and combination together of these methods are examined and presented.  

Chapter 5 describes the results of two specific test cases: offline testing of 

the algorithm from collected data, and partial online testing of the predictive-

optimal control methodology. A discussion of these results follows, with operational 

trends and conclusions derived from the sensor data about the effects of the control 

algorithm upon combustion and heat transfer to the process fluid. 

Finally, Chapter 6 summarizes the outcomes of this study and contains 

general conclusions arising from this work. More importantly, suggestions for future 

research with similar opportunities or industrial partnerships is discussed. 
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1.6 Closure 

The thesis and containing subject matter was introduced. An overview of the 

heating unit and heater itself was discussed with a brief overview of the manual 

control methodology prior to the beginning of this study. The main objectives of 

this thesis were also introduced. 
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Chapter 2  

Literature Review 

2.1 Introduction 

Much has been written about control of industrial combustion and related 

technologies, both in a research setting and in engineering applications. The 

majority of these contributions can be categorized as: (a) premixed, gaseous fuel 

combustors, (b) of laboratory-scale (< 100 kW), (c) power generation-scale (> 100 

MW) applications, or (d) internal combustion (IC) engines. The experimental 

heating unit used within this work is outside of these specific categories, and, 

accordingly, literature pertaining to the control of these types of combustors is 

sparse. Nevertheless, past work from the above categories can provide a relevant 

and valuable insight into the present application; the following text will delve, as 

needed, into these areas.  

2.2 Combustion Control Classification 

This section provides a brief overview of the classification of combustion control 

and the differentiating factors between each class. These classifications are inclusive 

but otherwise separate from the earlier defined open- and closed-loop control 

methodologies. Docquier and Candel [11], through their thorough summary of other 

works in the combustion control field, categorize combustion control into three 

broad areas: operating point control, active combustion enhancement, and active 

instability control. Each of these classifications is differentiated based upon the 

level of control involvement as well as the intended outcome of the control strategy.  
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Table 2.1 summarizes the typical operating state variables (i.e., the variable 

or operating setting to be modified/controlled) as well as the typical performance 

index (i.e., the objective to be measured and/or optimized) for both active 

instability control and active combustion enhancement. Variables p , q , p , X  ,T ,

X , and T are, respectively, the pressure and heat release fluctuations, fluctuations 

of mole fractions, mean mole fraction, and mean temperature. The control 

classification and variable summary presented in Table 2.1 is not collectively 

exhaustive of the spectrum of state variables and performance indices used in 

combustion control. It does, however, differentiate the two active control 

classifications and presents a starting point for what are ‘typical’ controlled/state 

variables and performance indices for each classification. 

TABLE 2.1: Control classification summary by variable [11]. 

Active control classification  State Variables Performance Index 
Instability Control p  , q  2p  , 2q  , p q   

Combustion Enhancement X   , T  X  , T ,  2X  ,  2T  

2.2.1 Operating point control 

Operating point control is the most common of the three control classifications. 

Operating point control can be defined by the individual preset control points or 

states that are altered to achieve a specific outcome. For example, within an 

extremely basic single-input single-output (SISO) combustion control system, the 

adjustment of the quantity of fuel, an input, affects the equivalence ratio, an 

output. Other examples of this type of control for internal combustion engines and 

gas turbines are provided in [11] and [4], respectively.  

Operating point control does not exclude the use of sensor feedback, 

although, classically, this technique is an open-loop control method. Closed-loop 

control methodologies use sensor information into a feedback loop to improve the 

stability, regulation, and the temporal response of the controlled system [4] to 
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changing inputs as compared to instability or enhancement control where the goal 

is the improvement of the combustion itself. Examples concerning model 

development for homogenous charge compression ignition (HCCI) applications, to 

be discussed further in Section 2.3, can be considered operating point control under 

this definition [14]–[16]. 

2.2.2 Instability control 

Active instability control specifically deals with actively stabilizing a combustion 

system. This typically focuses on diminishing the magnitude of pressure oscillations 

within the system caused by the coupling between acoustic resonance modes and 

combustion [4], [11]. Controlling this coupling is a major concern and the subject 

of most advanced development due to the advent of low-nitrogen oxide (NOx) lean 

pre-mixed combustors, which are particularly susceptible to instabilities [4], [10], 

[11], [17].  

This control classification is directed towards affecting the relative phase 

between heat release and pressure oscillations within the combustor. Both [4] and 

[17] present a detailed review of techniques for active instability control with 

additional information for both sensor and control methodologies included in [11]. 

Additional examples can also be seen with a liquid-fueled low-NOx combustor [18], 

natural gas burner [19], a 4 MW pre-mixed single nozzle research burner [20], [21], 

and two simulated gas turbine combustors [22]. 

2.2.3 Enhancement control 

The final classification, active combustion enhancement, is concerned with actively 

altering the operation of the combustion process specifically by modifying the 

mixing of reactants to effect combustion efficiency, flame temperature, and 

pollutant formation as is described by Haile et al. [10]. The goal is not to improve 

stability of the combustion system necessarily (although it may be an ancillary 
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effect [18]), but to achieve improved and enhanced operation. Examples of active 

enhancement control are provided in work by Brouwer et al.  [22], Haile et al. [10], 

Docquier and Candel [11], McManus et al. [17], Paschereit et al. [23], and St. John 

and Samuelsen [2] among many others.  

Where active instability control is of interest in premixed combustors, 

instability is of lesser concern with diffusion flames and non-premixed combustors. 

Instead, combustion enhancement is the primary focus within the latter class of 

combustors because they are characterized by poor-mixing and long flames with 

large regions of elevated temperatures [10]. This is not always the case, however; a 

study by Cohen et al. [18] on a non-premixed combustor does have a dual focus of 

combustion stability and active combustion enhancement. 

2.3 Combustion Modeling 

System modeling plays an important role in combustion control. Combustion 

models can be used in a modified version of the closed-loop control seen in Figure 

1.1 (b) and further described with different applications in [1], [2], [4], [10] and [24]. 

As well, combustion modeling is useful for off-line analysis and optimization. 

System models may be categorized as white-box or black-box, based upon 

whether or not they rely on physical theory [25]. White-box models are built from 

equations describing the underlying physical phenomena, with model parameters 

that directly relate to physical quantities [25]. The governing physics include heat-

transfer and thermodynamics, fluid dynamics and turbulence, chemistry, and even 

quantum-mechanics [26]. The underlying physics of combustion phenomena are 

either computationally intensive or intractable to modeling, which usually disallows 

the white-box approach for an online control application.  

Black-box models abandon a physics-based interpretation of the system, and 

instead rely on abstract mathematical models built on testing data [8]. Techniques 

for black-box models generally utilize generic structures from system identification 
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theory, including online parameter estimation [25], [27] and are typically lower-

order and simpler models of the equations compared to those which would be used 

in the white-box approach, but lacking any direct physical interpretation. 

Between the white- and black-box models there is also a sub-category, a 

grey-box model, that makes use of lower-order parameters but remains loosely 

physics-based, where much of the higher-order dynamics of the combustion process 

is absent or replaced with approximations and functions fit to experimental data. 

2.3.1 Physics-based models 

A physics-based model using computational fluid dynamics (CFD) on a smaller-

1.47 MW GenTex heating unit was completed by Daun et al. [28] and Hajitaheri 

[29] in 2011. This previous study modelled the droplet spray pattern, flow 

characteristics, and temperature profile of a 60-degree planar section of the inner 

coil of the heater. Satisfactory results were obtained by the authors in comparison 

with experimental values; the cold-spray droplet distribution and centerline 

temperature distribution showed good agreement with predicted values [28], [29]. 

Despite only modeling the inner coil of the heater, the computational time was 

much greater than the typical operating time for the heating unit [29], thus 

rendering such an advanced physics-based model impractical in an online control-

related application. 

A standalone example of a white-box model control is presented by Shaver 

et al., who used their physics based model to operate a HCCI IC engine [14]–[16]. 

They utilize an Arrhenius-rate approach integrated with thermodynamic 

approximations and reactant concentrations to represent the lower order 

combustion physics [14], [16]. Utilizing a feedback linearization control, this method 

was able to successfully control the required engine outputs using propane, a 

relatively non-complex fuel compared to diesel. Widd et al. [15] also employ an 

Arrhenius-based approach for modeling that incorporated an in-cylinder heat 
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transfer model and wall-temperature prediction to link between each combustion 

cycle.  

2.3.2 Non-physics-based models 

Several approaches exist for modeling combustion processes without incorporating 

or having an understanding of the underlying physics. Model-predictive control is 

the standard method of advanced control for many chemical and petro-chemical 

processes [1], [30] and has also seen some limited use in combustion applications 

[1]. These models are generally lower-order linearized models of the controlled 

process and are based upon collected empirical data but have no direct true 

physical interpretation.   

Another black-box model in recent use is the artificial neural network 

(ANN).  Artificial neural networks are able to approximate any non-linear function 

by mapping the input-output relationship of the process and are trained using 

varied sets of collected data [31]. The complexity of the approximation is controlled 

by the structure of the neural network; higher-order functions and system behavior 

can be modelled and incorporated by increasing the complexity and 

interconnectivity of the ANN [31]. Blonbour et al. [24], Chu et al. [32], and Allen 

et al. [33] provide a varied collection of work where artificial neural network are 

utilized in combustion control applications. 

2.4 Combustion Diagnostics 

Both modeling and control require some indication of the state of the combustion 

process; for this heater these are provided by the sensors in a later figure, Figure 

3.1.  Determining the state, efficacy, or quality of combustion is an especially 

difficult task due to the high temperatures and/or pressures within and surrounding 

the combustion environment, as well as the timescale of the combustion events in 

some applications. Only a few flame parameters may be observed directly with 
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varying degrees of spatial and temporal resolution and accuracy [11] with any 

diagnostic method. Also, only a subset of these specific flame parameters are easily 

usable for control applications, and, even then, require filtration of the noisy signals 

recovered [2]. 

With the exception of ion-current sensors, a primarily upstream diagnostic 

technique, applicable diagnostics of the combustion process mainly infer the state 

of combustion from the data collected on the flue/exhaust gas downstream of 

combustion [11]. These downstream techniques are divided into the three primary 

categories as described below. 

2.4.1 Solid-state gas sensors 

Electrochemical solid-state sensors are extensively used in automotive IC engines 

to detect species mole fractions in the exhaust gases. The robustness and relatively 

low-cost of these sensors, has enabled widespread use at the sacrifice of some 

absolute measurement accuracy. Current sensor technologies are able to detect 

variable amounts of oxygen, nitrogen oxides, unburned hydrocarbons, or carbon 

monoxide [11], although they are mainly used to measure oxygen content in the 

combustion exhaust gases [11], [34]. 

Typical electrochemical solid-state sensors rely on some form of ceramic 

matrix, either zirconium, titanium, or tin oxides, doped with other oxides to effect 

species selectivity and performance of the diagnostic sensor. Past solid-state 

technologies utilized these metal oxides or pairs of catalyzed resistance temperature 

detectors but have since been replaced by Nernstian-driven zirconium cells due to 

their selectivity and robustness at elevated temperatures [11]. The multiple 

configurations of a zirconium-based solid-state sensor as well as the operation of 

such a sensor is explored in-depth by Benammar [34] and Ivers-Tiffée et al. [35]. 

As mentioned above, in addition to measuring oxygen, zirconium-based 

sensors can also be used to measure carbon monoxide and nitrogen oxide mole 
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fractions within the exhaust/flue gas [11]. This technology, however, is relatively 

immature, slower to respond, and more complex, as the measurement results have 

a cross-sensitivity to oxygen. 

 Oxygen sensors are ubiquitous in automotive applications, and are 

occasionally used in industrial combustion [36]. de Lima et al. [36] utilized both 

heated and unheated automotive oxygen sensors in the flue gas of a model 50 kW 

burner. The authors reported relatively good response and accuracy within the 

range required by industrial applications.  

2.4.2 Optical sensors 

Optical techniques feature good spatial and temporal resolution and are generally 

non-intrusive; all of which are excellent features for combustion diagnostics. Optical 

diagnostic techniques are based upon monitoring of the emission, absorption, 

scattered light, or fluorescence of both the flame or flue gas, depending upon the 

parameters of interest [11]. Docquier and Candel [11] provide an excellent overview 

regarding the placement, diagnostic principles, and detectable quantity of interest 

for optical diagnostic techniques.  

Optical techniques requires some form of optical access into the combustion 

process, either a window or sight-glass, and this may be difficult to incorporate 

into most combustion devices [11]. The optical sensors must be capable of 

withstanding the high temperatures and pressures typical of combustion, and, 

consequently, continual cooling of the window is usually required. The robustness 

of these solutions is also questionable due to fouling by soot and particulate matter. 

However, Demayo et al. [19] was able to compensate, within the control 

methodology, for highly fouled windows with their in-situ measuring of ultraviolet 

chemiluminescent intensity experiments. 
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2.4.3 Extractive techniques 

Extractive diagnostic techniques and devices, while not directly sensors, bear 

mentioning because they are an important category of continuous emissions 

monitoring systems. Typically, they are composed of electrochemical and optical 

sensors for individual flue gas species measurement where the flue gas is extracted 

from the in-situ process and analyzed simultaneously.  

Extractive techniques are highly precise and accurate, and consequently 

they are the method of choice for assessing regulatory compliance. They are not 

suited for most industrial control applications, however, as they are often large, 

expensive, and require a water trap, rendering them unsuitable for harsh-

environments, and often have slow response times [11]. 

2.4.4 Ion-current sensors 

Ion current sensors are a diagnostic technique developed to fill the niche where 

optical access or other measurement techniques are impractical or detection of 

exceptionally quick transient events are required [11]. Ion-current probes detect 

ions produced through chemi-ionization in flames; using a minimum of two 

electrodes, an electrical potential may be induced across at least part of the flame 

and the responding current may be measured [37]. Further work into the precise 

mechanism of operation and relevant chemical radicals are provided in [11] and 

[37]. This technique has seen use in laboratory-scaled burners, IC engines, and 

simulated gas turbine combustors [11], [37] and while the signals are difficult to 

interpret, correlations exist for equivalence ratio, pressure, and flame presence in a 

variety of applications. 
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2.5 Actuation Methods 

The actuator is critically important to the overall control methodology and the 

choice of actuator largely depends on the physical phenomenon or characteristic of 

combustion to be affected [10]. Actuators are similar to sensing/diagnostic 

technologies in that they are the physical link between the controller and the 

combustor but differ in that they affect a change instead of measuring an outcome 

of the combustion process. Their function within an overall control methodology 

can be seen in Figure 1.1. Within this study, actuation methods are subdivided 

into the three broad categories relevant to this study and are differentiated by 

what components they modify within the combustion process. 

2.5.1 Atomizing air modulation 

The first category, modulation of the atomizing air, involves directly changing the 

pressure or mass flow rate of the air going into the nozzle. Both Brouwer et al. [22] 

and Allen et al. [33] utilize a direct modulating actuator in a liquid-fueled model 

gas turbine combustor and a utility boiler respectively. Both sets of authors use a 

servovalve actuator to alter the air flow rate to air-assisted fuel nozzles; there are 

many similarities between these combustors and the combustion assembly within 

the GenTex 70M process heater. A similar example by St. John and Samuelsen [2] 

used magnetic valves to control the quantity of excess air and swirl intensity for 

an industrial natural gas burner. Delabroy et al. [3] actuated the atomizing air 

through the use of a rotary valve on the supply atomizing air line to pulse the 

atomizing air pressure at a frequency proportional to the rotary speed of the valve.  

2.5.2 Fuel modulation 

Differing from atomizing air modulating actuators, the fuel mass flow rate or fuel 

line pressures are modified. Büche et al. [38], [39] use a series of eight analog valves 

to control the fuel mass flow in an open-atmosphere model turbine combustor 
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can/chamber. Each of the valves controls a single adjacent pair of ports in the fuel 

nozzle (16 total ports) and to reduce the number of free variables for optimization 

in their experiment, the total fuel flow rate was fixed.  

Using the earlier control classifications, the control objectives from Büche 

et al. [38], [39] would be considered combustion enhancement control. However, 

fuel modulation is extensively used in instability control as well. This can be 

attributed to the sizable energy density of hydrocarbon fuels and that only a small 

portion of this energy is necessary to drive oscillations in susceptible combustion 

systems (i.e., weakly damped combustion chamber designs) [4]. One of the most 

studied instability control actuation methodologies is to pulse, with changeable 

frequencies, the fuel flow rate to counter the oscillations, which places the energy 

and pressure oscillation out of phase [6], [40]. Haile et al. [6], Hermann et al. [41], 

and Hantschk et al. [7] provide examples of this with a bespoke ‘electro-valve’ and 

‘piezo-actuator’, and direct-drive servo-valve actuators respectively.  

2.5.3 Other modulation 

As mentioned at the beginning of this section, actuator selection depends largely 

on the specific target outcome from the combustion system and the specific 

configuration of the combustor. While a wide range of potential actuators fall into 

this category, only flue-gas recirculation as a modulation/actuation method will be 

discussed in this research.  

Flue-gas recirculation (FGR, also called exhaust-gas recirculation or EGR 

in automotive/other applications) has a niche role in regards to actuation methods 

and bears mentioning here. It does have potential for future developments beyond 

this study and it was considered as a possible option at the beginning of the project. 

Ignoring the passive or inactive form of FGR, this actuation method is generally 

controlled by altering the position of a valve to alter the mass of already burned 

flue gas to be recycled into the combustor [42]–[44]. The incoming fresh air is 

diluted by the flue gases, effectively lowering the flame temperature and preheating 
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the incoming air. The resulting decrease in NOx emissions can be significant with 

an accompanying possible increase in thermal efficiency. 

2.6 Optimization 

A true optimization process requires the definition of a quantitative value or 

objective function that quantifies the performance of a state, and then seeks to find 

an extremum (maximum or minimum) of that value. A multitude of methods is 

available and can be performed in-situ with the process, for example as in [2], or 

ex-situ as with [32]. Relating to the employment of a control method, an 

optimization process may follow a series of steps as in Chu et al. [32] including: 

collection/acquisition of data, model creation, and then optimization which may or 

may not take place in a closed-loop as seen in Figure 1.1. 

As discussed in the Introduction, this study will presently be concerned with 

fuel efficiency as the sole objective function. Absolute thermal heat output, or 

equivalently the thermal rise of the process fluid across the heater, regardless of 

fuel input/efficiency, is important to the customer or operator of these process 

heaters will be given consideration as a secondary objective at a later time. 

Pollutants, while important within the global scope and within this project 

manifest, are reserved for future work. Examples of optimization within the realm 

of combustion control are included below. 

 Past research, such as work by St. John and Samuelsen [2] optimized both 

nitrogen monoxide (NO) levels and thermal efficiency. The authors minimized the 

objective function using a direction-set search algorithm, and separately a genetic 

algorithm, with similar conclusions. The control objective used by Delabroy et al. 

[3] was to minimize the pollutant levels, nitrogen oxides (NOx) and carbon 

monoxide (CO), in the exhaust gas of both a 20 kW single nozzle burner and an 

800 kW combustion system. Büche et al. [38], [39] and Paschereit et al. [23] use a 

multi-objective evolutionary algorithm to optimize both NOx levels and pulsation 

simultaneously. The two objectives within these studies are conflicting and 
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corresponding manifest as a Pareto front, a common occurrence in multi-objective 

optimization studies. Chu et al. [32] utilized an optimization method that married 

several different search and minimization concepts together to optimize thermal 

efficiency. These methods included, random searching, fuzzy c-means clustering, 

and the minimization of information free energy. Similar to the other examples, 

Padmanabhan et al.  [45] minimizes, using a downhill simplex algorithm, the 

pressure fluctuations of a laboratory scale combustor, but accordingly they also 

seek to maximize the volumetric heat release rate.  

2.7 Closure 

This chapter has covered a review of relevant past research relating to the subject 

of this study. A discussion of a few salient subject areas has also been completed 

in addition to explaining the categorization of these areas. 
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Chapter 3  

Experimental Apparatus 

3.1 Introduction 

This chapter discusses the intertwined experimental setup, components, and 

controls of both the centralized-digital-control (CDC) system and the optimal 

control methodology.  Both the CDC system and the optimal control strategy were 

developed simultaneously since these two systems are strongly interrelated. This 

development was guided based on the literature review presented in the previous 

chapter and internal GenTex industry experience. 

 The ‘components’ added to the existing process heater, to accomplish the 

two objectives outlined in Section 1.4, are divided into three functional groups:  

(i) computing, data storage, and human-interface hardware;  

(ii) sensor technologies used to measure the important physical 

quantities input/output to/from the process heater; and 

(iii) actuators which modify the operation of the process heater by 

effecting a change in the input operating state.  

This chapter is divided along these three broad categories. A complete 

diagram of all sensors/meters and actuators discussed and their placement on the 

process heater can be observed in Figure 3.1 on the next page.  
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FIGURE 3.1: Sensors and actuator on the experimental 
apparatus. 
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All sensors, actuator, and hardware technologies realized within this 

experimental apparatus must conform to three primary requirements defined by 

typical operating environments of the oilfield: 

1) an ambient temperature range of 233.15 K to 313.15 K (-40 °C to 

+40 °C); 

2) utilize 12 V DC power as it is a mobile platform. 24 V DC and 120 V 

AC power are available through the use of transformers and inverters 

respectively, but are greatly discouraged due to the added complexity 

and cost; and 

3) a minimum rating of IP651 with additional physical covering/shielding 

for water ingress during wash-down or IP67 without additional 

shielding. 

3.2 Hardware 

The computing and human interface hardware used on the 70M TEXHEATER 

heating unit and CDC system was selected prior to the commencement of the study 

and is considered as a constraint; all further work must make use of this or directly 

interchangeable hardware. However, the use of interfacing and complimentary 

hardware is possible. The reasoning for the constrained hardware and computing 

architecture is: 

 the CDC system hardware is currently standardized across a portion of 

GenTex production heating and pumping units with an eventual rollout 

for the full range of GenTex products; 

                                     

 

1 The Degrees of Protection Provided by Enclosures (IP Code) published as ANSI/IEC 60529, 
classifies the degrees of ingress protection for electronic enclosures to solid foreign objects (first 
designating number) and water (second designating number). 
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 the research and developments, or a portion thereof, that began within 

this study are to be utilized within future internal GenTex research 

projects; and 

 all safety controls, a necessary component of the process heaters, are 

implemented electronically within this architecture and cannot be 

overridden or displaced. 

The majority of this architecture is sourced from ifm electronic GmbH, a 

firm that provides automation hardware and technologies with a unique product 

line dedicated to mobile control applications.  

Data sheets outlining all of the hardware used within this study are included 

in Appendix A. The hardware is classified according to the function of the 

hardware: computing, human interface, and data acquisition/other uses. 

3.2.1 Computing hardware 

The backbone of the computing hardware is a programmable logic controller 

(PLC). The PLC utilized is an ifm electronic CR0232 mobile controller with a 32-

bit processor at 150 MHz with 32 digital and analog inputs, 48 digital outputs, and 

4 CAN (Controller Area Network) interfaces. The PLC is programmed using the 

CoDeSys 2.3 development environment, which conforms to the IEC 61131-3 

international programming standard, in the Structured Text (ST) and Function 

Block diagram (FB) languages.  

The majority of operating functions and all safety controls were 

implemented on the CR0232 controller, shown in Figure 3.2, which is a ‘hard’ real-

time system. This means that, inherent within the PLC in the underlying Linux 

operating system, there is a watchdog function that will hard-restart the controller 

if a single process unit exceeds the 100 ms execution time, which prevents stalling 

or ‘freezing’ of the PLC. Otherwise, the possibility of a stalled or slowed PLC 
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presents a serious safety hazard. All sensor input signals, both analog and digital, 

and actuator output signals were handled by the controller. 

 

FIGURE 3.2: ifm electronic CR0232 programmable logic 
controller (Source: ifm electronic GmbH). 

3.2.2 Human interface 

The human machine interface (HMI) provides the visual link between the operator 

and the PLC. Prior implementations of a touch-screen HMI on non-ifm hardware 

had been attempted by GenTex, but resulted in unsatisfactory feedback from 

operators. As a result, an ifm electronic CR1081 process and dialogue module with 

a 400 MHz 32-bit processor and 1 Gbyte internal storage was used. The HMI has 

a 7 inch colour display, nine programmable function keys, an additional four-way 

rocker switch, and pushbutton toggle. The CR1081 interface has no inherent input-

output capability with the exception of a USB interface and four CAN interfaces, 

one of which is used to facilitate 2-way communication with the CR0232 controller. 

A second CAN interface was used to communicate with the data acquisition device. 

A picture of the HMI is provided in Figure 3.3. 
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FIGURE 3.3: ifm electronic CR1081 human machine interface 
(Source: ifm electronic GmbH). 

 While all safety functionality, sensor, and actuator signal input/output 

(I/O) was handled by the CR0232, all user interface control was performed using 

the CR1081. As stated in Section 3.1, pursuant to the goals of the CDC, all analog 

gauges were replaced and made viewable on the CR1081 with digital readouts of 

temperatures, flow rates, pressures, and other measurement quantities. As well, all 

previous manual control functions were moved to the HMI and enabled by the 

function keys, toggle, and pushbutton. A user interface (UI) was designed by this 

author; sensor readouts and certain operating set points selectable by the operator 

are displayed in the HMI shown in Figure 3.4. 

3.2.3 Additional hardware 

Two other pieces of additional hardware are worth mentioning in this section: an 

electronic and wiring housing, and the data acquisition (DAQ) or data logger 

system.  

To ensure ingress protection from water, dirt, and oils, all electrical 

connections were made using M12 industry standard connectors to a housing used 

to distribute all of the connections. Inside the housing are one- and two-layer DIN 
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rail terminal blocks and fuse holders for individual actuator/hardware circuits. The 

housing also contains the PLC and all associated wiring, connectors, and signal 

converters. 

 

FIGURE 3.4: As-mounted configuration of the CR1081 screen 
with sample UI. 

Similar to the PLC and HMI, the data logger, a CR3101 or CANmem unit, 

was supplied by ifm electronics. Communicating with the PLC directly through 

another one of the CAN interfaces, the data was recorded directly to a 2 GB Secure 

Digital (SD) memory card with a programmable recording rate. While 

communicating between CANopen devices, an industrial automation 

communication protocol used by most ifm electronic devices, is theoretically 

simple, setting up the communication between the PLC and the CANmem unit 

required a large amount of time to resolve. In contrast, enabling CAN 

communication between the PLC and HMI was quick and relatively simple. 

Additional difficulties were encountered due to the undocumented and unknown 

(even by ifm electronic support) necessity of the CR3101 requiring a pre-2006 SD 
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card with a storage capacity of less than 4 GB instead of the newer and commonly 

available SDHC or SDXC memory cards. 

3.3 Physical Sensors 

Physical sensors convert physical quantities into signals useable by the PLC and 

are generally categorized by the physical quantities they measure: temperature, 

pressure, and fluid flow rate among others. Due to its robustness to outside signal 

noise and interference, ease of setup, and troubleshooting in comparison to non-

current loop methods, the output of most physical sensors use a 4-20 mA output. 

These became a desired feature for all sensors with any exceptions to this noted in 

the proceeding relevant sections. Table 3.1 displays the expected ranges for most 

of the relevant sensor quantities, based on the expected operating range of the 70M 

TEXHEATER. All sensors and their locations on the heating unit are summarized 

in Figure 3.1. 

TABLE 3.1: Expected physical quantity ranges for sensor 
selection. 

Physical Quantity  Lower Range Upper Range Units 
Process Fluid Pressure  0.0 1250.0 kPa 

Process Fluid Temperature  258.15 398.15 K 
Process Fluid Flow Rate  0.0 9.2 L s-1 

Fuel Flow Rate  0.000 0.095 L s-1 
Fuel Pressure  0.0 620.0 kPa 

Atomizing Air Pressure  0.0 520.0 kPa 
Exhaust Gas Temperature  258.15 1023.15 K 

3.3.1 Temperature 

Process fluid temperature is measured at three points on the heater: (a) at the inlet 

to the outer coil, (b) between the intermediate and inner coils and, (c) at the outlet 

of the inner coil/heater. All three of these sensors are PT1000 resistance 
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temperature detectors (RTD) with an ifm electronic model number TA3333. It has 

a measuring range of 255.35 K to 422.05 K (-17.8 °C to +148.9 °C). 

One item to note, a deviation from the above ranges, is the manufacture’s 

recommended minimum operating temperature is -25 °C for the TA3333. This is 

obviously higher than the required minimum temperature specification stated 

earlier and is a typical minimum operating temperature specification for the 

majority of ifm products. After telephone conversations with an ifm electronic 

representative, the product was assured to operate reliably beyond this 

specification; a fact that has been confirmed through several seasons of harsh 

Canadian winters on GenTex equipment operated by customers. These 

temperature measurement requirements are necessary as a water-glycol mixture 

typically replaces pure water during below 0 °C weather. 

Two additional temperature sensors are necessary on the process heating 

unit. The first is a probe on the process fluid outlet that extends inside of the inner 

coil, which is necessary for safety purposes (e.g., the presence of an ice plug within 

the heater). This sensor is referred to as a Kimray sensor and is named after the 

pneumatic-over-mechanical-over-temperature shutdown system it partially 

replaced. The second is a sensor on the exhaust stack to measure the temperature 

of the exhaust gases exiting the heater. These two probes are PT100 RTD sensors 

manufactured by Omega Engineering (model number PR-26B). An additional 

sending unit was required for these sensors to convert to a 4-20 mA signal with a 

user settable programmable range appropriate to the location of the probe (Omega 

Engineering, model TX-M12-RTD-C-1.) 

The above two temperature sensors were the second attempt at measuring 

temperature of the exhaust gas and process fluid within the heater. The first 

consisted of two Type K thermocouples in 9.5 mm stainless steel 

thermowells/sheaths. The temperature signal was resolved into a 4-20 mA signal 

with a PR Electronics 5334A transmitter. The sensors and transmitters were 

replaced after multiple failures which troubleshooting could not resolve. 
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3.3.2 Pressure 

Process fluid pressure was measured at the inlet and outlet to the heater and are 

used to determine correct operation of the process heater with additional safety 

concerns described in Section 3.5. PT3553 pressure transducers manufactured by 

ifm electronic were used with a measuring range of 0 kPa to 2500 kPa (0.0 to 362.6 

psi) gauge pressure. Similar to the TA3333 temperature sensors mentioned 

previously, extensive testing has proven that the PT3553 pressure transducers are 

able to operate beyond the stated ambient temperature range. 

The same pressure sensors were also utilized on the atomizer input fluids 

(diesel fuel and atomizing air). 

3.3.3 Process fluid flow rate 

The process fluid flow rate, together with the temperature measurements and fuel 

flow rate are needed to measure the thermal efficiency of the heater. A Simark 

38mm turbine flow meter mounted on the external piping between the intermediate 

and inner coils was initially considered and which has a measuring range of 0.95 to 

11.35 litres per second. A magnetic pickup on the flow meter body was used to 

receive and transmit a frequency signal to the PLC. Due to the small tolerances 

between the turbine and the housing of the flow meter, the meter was liable to 

become jammed with large particulates and choke the process fluid flow through 

the heater. This represented a significant safety hazard, and consequently another 

solution was necessary for development. 

 A less invasive flow meter was found in the GPI DP490 insertion-type 

paddlewheel flow meter with all high temperature options and a NPN open 

collector pick-up. This sensor proved more resilient to particulate matter, but 

outputs, at least in this configurations a noisier output signal. The combination of 

digital and moving average filters implemented on the PLC reduced the noise to 

acceptable levels. 
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3.3.4 Fuel flow rate 

Within this study, and of all of the sensors, the measurement of diesel flow rate 

proved to be the most troublesome, due to the changing viscosity of the diesel fuel 

within the typical operating temperature range of the process heater. The fuel 

viscosity (and other properties to a lesser degree) changes due to seasonal, 

geographic, and supplier variance of diesel fuel blends to ensure that the diesel fuel 

does not wax or crystallize at low temperatures.  Commercial data on diesel 

seasonal blends [46] as well as research by  Yuan et al. [47] illustrate the extremely 

wide range of diesel kinematic viscosities over the desired temperature range of 

233.15 K to 313.15 K (-40.0 °C to +40.0 °C). Using the data in the above works 

and extrapolating for the lower limit, the kinematic viscosity is estimated to be 

between 2.5 and 25 cSt. Most commercially-available flow rate meters cannot 

operate at these kinematic viscosities; the two typical sensor choices, turbine and 

gear-type flow meters, either have intolerably high errors bounds or excessive 

pressure losses at the lower and higher viscosity limits, respectively. These typical 

high error bounds may be reduced through the use of dimensionless numbers in the 

below analysis. 

 Traditionally turbine flow meters correlate the measurable signal of 

frequency, f , in units of Hz and the volumetric flow rate, Q , in units of L s-1 

through the use of a K-factor, K , with units of pulses or cycles per litre, 

 f
K

Q
   (1) 

 As mentioned above, the performance of the turbine flow meter is sensitive 

to the kinematic viscosity of the measured fluid. This is seen in Figure 3.5 [48], 

which displays significant deviations from linearized behavior at low flow ranges 

and an increasingly narrow linear flow range with increasing viscosities. 
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FIGURE 3.5: Plot of frequency versus K-factor at different 
fluid viscosities. 

A better method of representing the data, with practical uses in flow 

measurement, is through the use of a universal viscosity curve (UVC) shown in 

Figure 3.6 for the same data set. The UVC does not use frequency as the 

independent variable but instead uses a modified Reynolds number, in the form of 

a ratio of frequency and kinematic viscosity.  

The UVC accounts for changes in viscosity, usually performed through 

testing different fluids with different viscosities at a constant temperature. This is 

necessitated through the physical fact that, assuming a null change of viscosity 

with pressure and that it behaves as a Newtonian fluid, viscosity is a unique 

function of temperature. Accordingly the UVC does not account for temperature 
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changes in environment/fluid medium and previous studies have shown 

inaccuracies of 0.03% per 12.2 K from as calibrated temperatures [48], [49]. 

 

FIGURE 3.6: Universal viscosity curve (UVC) for flow 
measurement. 

These errors are significant for the temperature and viscosity range of this study 

when compared to the typical stated values of a turbine flow meter of 0.1%  and 

0.02% for absolute accuracy and repeatability, respectively. The use of two 

dimensionless numbers, the Strouhal Number (St) as a function of the Roshko 

Number (Ro), accounts for this effect in differing temperatures. The forms of these 

dimensionless numbers used for this purpose can are defined below where   is the 

coefficient of thermal expansion of the material comprising the body of the turbine 

flow meter and T  is the difference in degrees from the calibrated fluid temperature 

[48]–[50]. Sample calibration curves formed using the two dimensionless parameters 
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is shown in Figure 3.7, with the same data as before but with a reference 

temperature of 294.2 K.  

    1 3 1 3
f

St T K T
Q

         (2) 

  1 2
f

Ro T


     (3) 

 

FIGURE 3.7: Roshko versus Strouhal Number calibration 
curve. 

A Cox Exact Turbine Flow Meter, manufactured by Badger Meter, was considered 

for this application. This meter makes use of hydraulically coupled dual helical 

axial turbines to extend the usable range of the flowmeter as necessitated by the 

desired flow range and dynamic viscosity range of the diesel fuel. It is widely used 



 

39 

to measure the fuel flow rate to turbine jet engines [51], an application that requires 

slightly more stringent hardware standards than the present application. The 

expense of this system and the additional component count and cost through the 

necessary use of a secondary flow computer (making use of the Ro/St analysis 

above) and flow straighteners (both upstream and downstream of the turbine) 

excluded this method from practical use in this study. 

 The sensor ultimately chosen to measure the diesel fuel flow rate is a Model 

214 flow meter manufactured by Max Machinery. This flow meter meets all 

accuracy requirements regardless of the changeable dynamic viscosities and fluid 

temperature. The model 214 is a positive displacement flow meter with four 

axisymmetric pistons and connecting rods attached to a common crankshaft as is 

seen in Figure 3.8 below. As it is a positive displacement flow meter, the fluid 

volume measured is exactly the swept/displaced volume of the piston in the meter 

and the output signal is proportional to the rotational frequency of the crankshaft. 

The model used in this work has an analog transmitter, converting the rotational 

frequency to a 4-20 mA output. Additionally for further improvements in accuracy, 

it is possible to incorporate the above Roshko versus Strouhal analysis within future 

work. 

3.3.5 Exhaust composition 

As discussed in Section 2.4.1 the use of Nernstian solid-state oxygen cells is a 

proven technology to measure oxygen content in exhaust gas streams. An oxygen 

sensor operates as a solid electrolyte allowing the transporting oxygen ions across 

the cell; however this process only becomes effective above about 590 K [11]. The 

transport of the oxygen ions produces a measureable electromotive voltage while 

conversely providing a voltage to the cell causing the zirconium electrolyte to 

operate as an electrochemical oxygen pump [11]. 
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FIGURE 3.8: Max Machinery 214 piston flow meter.             
(Source: Max Machinery, Inc.). 

More complex oxygen sensors exist by combining two of these cells to maintain an 

oxygen balance in a reference chamber, allowing the sensor to measure exhaust 

gases with both excess and deficient oxygen contents, rich and lean combustion 

states respectively. 

Exhaust composition on the process heater was measured using a wide-band 

automotive oxygen sensor, a Bosch LSU 4.9 probe. The concept of using an 

automotive oxygen sensor as a reasonable cost, rugged oxygen sensor had been 

previously explored by de Lima et al. [36]. To control the electrical heater within 

the sensor and interpret the signal of the Nernstian oxygen cells, a LCU-One 

lambda controller manufactured by AiM Sports, typically used in automotive and 
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kart racing, was used. The converted units of measurement from this sensor within 

this study are percent excess-oxygen (%-EA). 

3.4 Actuation Methods 

Similar to the previous section on physical sensing, actuation methods are 

categorized according to what is being actuated, which, in this study are: the 

process fluid flow rate, atomization air pressure, diesel fuel pressure, and quantity 

of combustion air.  

While additional control/actuation may improve combustor performance 

(e.g., slow pulsation of the fuel pressure for alternating rich/lean combustion 

zones), using more actuators leads to increasing complexity in the control 

algorithm. For example, altering only the frequency and magnitude/position of an 

actuator, results in a minimum number of independent variable of 2n1 with n 

actuators [10]. Consequently, the selection of actuated parameters must be chosen 

with care in order to obtain a reasonable trade-off between performance and 

complexity. All actuators and their locations on the heating unit were summarized 

in Figure 3.1. 

3.4.1 Process fluid flow rate 

While the process fluid flow rate remains constant in typical operation, this 

parameter is controlled by the CDC system through the CR1081 and CR0232 

hardware modules. A pulse width modulated (PWM) signal from a high current 

H-bridge output on the CR0232 PLC was input to the Sauer Danfoss hydraulic 

motor that powers the centrifugal pump.  
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3.4.2 Atomization air pressure 

Sourcing an appropriate sensor for controlling atomizing air pressure, and 

implementing it on the heating unit, was a particularly challenging undertaking. 

An analog input signal was required for closed-loop control of the atomizing air 

pressure. However, the majority of analog pressure valves either did not conform 

to the minimum ingress protection rating, or would not operate at the lowest 

temperatures expected for oilfield operation. Ultimately, however, a Norgren VP10-

series electronic pressure regulator was identified that satisfied these requirements.  

While the CR0232 PLC does not have any direct analogue outputs with the 

exception a PWM signal, which is still technically a digital output, it can be 

programmed to output a desired current or voltage output. Attempts to have the 

PLC output a 4-20 mA signal failed as the valve functioned as an on-off valve when 

the desired current control signal was changed within the PLC. It was ultimately 

determined that the current output of the PLC, owing to transistor leakage within 

the PLC, does not allow the required fine control of a 4-20 mA signal. To overcome 

this challenge an Axiomatic Technologies AX130201 DIN rail mounted PWM to 

4-20 mA signal converter was placed within the housing containing the wiring and 

fuses. 

The atomizing air pressure was controlled using a closed-loop PID 

(proportional-integral-derivative) controller implemented within the PLC with 

input from the atomizing air pressure sensor. This allowed for selection of the 

atomizing air pressure directly, as opposed to controlling the output signal, either 

directly PWM or indirectly the current signal. Further benefits were observed in 

tolerance to error or ‘drifting’ of the output as the air pressure source fluctuated 

when the air storage tank was being charged by the on-board air compressor or 

being discharged. 
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3.4.3 Fuel pressure 

Actuating the fuel pressure was far less troublesome as an appropriate actuator 

was readily available to enable closed-loop control of the fuel pressure. A Sun 

Hydraulics Corporation FPCC-DBN normally closed electro-proportional flow 

control cartridge valve with a 212 coil was used. The cartridge valve was mounted 

in a 2-port stainless steel valve block and controlled with a PWM signal from the 

PLC with the manufacturer recommended control frequency and dither values. 

Similar to the previous section, a PID control loop was used in combination with 

the fuel pressure sensor. 

3.4.4 Combustion air 

The control of the amount of combustion air introduced into the heater was the 

most difficult actuator to implement in this study. All combustion air actuators 

altered the angular position of the butterfly damper on the inlet to the blower fan 

unit, from fully closed to fully open, a 90 degree rotation. Two actuators were 

implemented and were found to either work incorrectly or not meet the accuracy 

requirements before a solution was found and implemented with success. 

The first actuator trialed was the Electrak Pro-Series DC-powered linear 

actuator manufactured by Thomson Industries with a 150 mm stroke length and 

an integral linear potentiometer for absolute position sensing. As shown in Figure 

3.9, this actuator (blue) was mounted to the experimental apparatus using a clevis 

(green) mounted to the skid and actuator base and another clevis (yellow) on the 

damper shaft connecting to the rod-end on the actuator. 

The actuator is controlled by a dual pole input, controlling extension or 

retraction of the actuator rod and implemented using three relays controlled by 

the PLC. A form of bang-bang control [52] with a deadband was implemented by 

monitoring the position of the actuator through the potentiometer and disabling 

extension/retraction of the actuator rod when the deadband was reached. Due to 



 

44 

the significant inertia of the DC motor and actuator rod, the control would ‘coast’ 

outside of the deadband and then reverse direction. This process would complete 

several times before the actuator would stop moving and remain within the 

deadband. Increasing the size of the deadband did not completely solve the issue 

as the actuator possessed a large amount of hysteresis and would not ‘coast’ the 

same amount each time motion was triggered. The obvious solution of using PWM 

control to control the time averaged voltage and thus rotational speed of the DC 

motor was specifically not allowed by the manufacturer with warning that damage 

to internal electronics would occur. After much experimentation, the DC stopped 

responding to input commands from the PLC and would ‘stick’ at a given position. 

A new solution was necessary with a greater accuracy of operation and robustness. 

 

FIGURE 3.9: Rendering of the first combustion air actuator 
attempt. 

The second actuator evaluated was an IP65 rated stepper motor 

manufactured by Applied Motion Products, model number HW23-754, with an 

additional 5:1 planetary gearset to increase the torque output. The stepper driver 
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used was a Lin Engineering R1025 stepper motor driver. The motor and gearset 

were coupled to the damper shaft using a Lovejoy Jaw coupler and the motor was 

mounted to a vertical steel plate bolted to the heater skid. As this actuator does 

not have an absolute position sensor, it is necessary to determine a reference 

position first. An ifm electronic IFC246 inductive proximity sensor referenced a 

bolt perpendicular to the axis of rotation on the Lovejoy coupler to determine the 

fully-closed position each time the system was powered on. The rising trigger of an 

output from the PLC to the R1025 would cause the motor to step a single step or 

microstep with a second digital input to the R1025 controlling clockwise or 

counterclockwise rotation. Ultimately, the stepper motor was deemed unsuitable 

because it would constantly resonate about a given control point. Additional 

problems were encountered with hysteresis in stepping clockwise and then 

immediately counterclockwise. This manifested in missed steps or microsteps. 

Email conversations with Lin Engineering [53] determined that due to the high 

inductance of the motor, it may not commutate properly in the speed range of 0-

0.75 rotations per second. This is the desired operational range, so another solution 

was necessary. 

The final implemented method of controlling the combustion air damper 

position was with a Curtiss-Wright Exlar Tritex II RDG060 DC rotary servomotor 

with a 10:1 gearbox and the low-temperature grease option. The mounted solution 

can be seen in Figure 3.10. Very few issues were encountered with this method 

during implementation. The servomotor utilized the same style of mounting 

solution and reference point control as was used with the stepper motor solution. 

As well, the same rising trigger signal indicated that the servomotor should step a 

finite degree increment, programmable by the user inside the servomotor, with an 

estimated absolute rotary position tracking completed by the PLC.  

A third closed-loop PID controller was used with the combustion air 

actuator to set the desired quantity of excess oxygen in the exhaust gases. The 
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wide-band automotive lambda sensor was used to feedback the quantity of excess-

oxygen detected.  

 

FIGURE 3.10: RDG060 servomotor as installed to control 
combustion air. 

A steady state value of excess oxygen was not reached using a PID loop; 

the measured value instead oscillated about the desired value. This is hypothesized 

to occur due to the PID loop being inherently unable to compensate for the non-

linear effect a non-significant time-delay. Two specific contributors to the time 

delays are present: (1) the dwell time of the combustion air as it travels through 

the combustor until reaching the oxygen-sensor; and (2) the time delay of the two 

Nernst-cells within the oxygen sensor. 
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3.5 Safety Controls 

Several safety controls are implemented on the PLC for 70M TEXHEATER 

process heater. These controls are coded implementations of legacy guidelines and 

safety equipment that predate the CDC project described in this thesis. 

 These legacy safety limits, implemented in code, include an automatic 

shutdown of fuel to the process heater if a preset temperature of 394.25 K 

(121.1 °C) was exceeded, measured by the Kimray temperature sensor, or if the 

process fluid flow rate dropped below a specific set point, measured by the flow 

switch discussed below. Additional legacy operating guidelines implemented in the 

PLC include: (a) a maximum heater inlet pressure of 517.1 kPa (75 psi); (b) a 

minimum heater outlet pressure of 103.4 kPa (15 psi); and (c) a maximum inlet 

temperature of 333.15 K (60 °C)  to the heater. If any of the safety limits or 

operating guideline limits are violated, the PLC will cut all fuel supply if the heater 

is operating and/or not allow the fuel pressure to rise above 0 kPa. 

 The fuel cut-off was enabled using a Magnatrol Valve Corporation normally 

closed (NC) solenoid ‘guillotine’ valve on the diesel fuel line downstream from the 

fuel pump, but upstream from the fuel flow rate actuator. The mechanical flow 

switch redundantly verifies process fluid flow together with the pressure sensors 

limits, discussed earlier, in the case of a blockage or partial-blockage within the 

heater coils. In that case, the pressure limits on the heater inlet and outlet may 

not be violated but the mechanical flow switch would sense that there is no fluid 

flow. The mechanical flow switch is a FSW-41A solenoid switch with an adjustable 

fluid velocity set point as manufactured by Omega Engineering. 

3.6 Closure 

The complete sensor and actuation package on the experimental apparatus has 

been presented and is summarized in Figure 3.1. Challenges encountered during 
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implementation of specific sensing and actuation methods have been covered for 

use in future work subsequent to the conclusion of this study.  
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Chapter 4  

Algorithm Methodology 

4.1 Introduction 

While the sensor and actuator package alters and senses the physical operating 

state of the heater, an algorithm to predict and optimize the state of the heater in 

an ‘intelligent’ manner is required. This chapter describes the complete operation, 

setup, and specifics of the predictive-optimal algorithm employed to optimize the 

thermal efficiency of the process heater. The components were selected and 

incorporated based on the literature review presented in Chapter 2. 

Given the sensors and actuators selected in Chapter 3, Table 4.1 below, 

outlines the controllable inputs and responding output, which collectively define 

the operating state of the heater.  

TABLE 4.1: Expected physical quantity ranges for sensor 
selection. 

Physical Quantity  Symbol Units 
Fuel Pressure  fp kPa 
Atomizing Air Pressure  ap  kPa 
Exhaust Composition (O2)   %-excess air 
Thermal Efficiency  th   % 

The output state, the thermal efficiency, is calculated according to 
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where f  and w  are the density of the fuel and process fluid (generally water) 

respectively, fQ  and wQ  are the flow rates of the diesel fuel and process fluid 

respectively, fLHV  is the lower heating value of the diesel fuel, ,p wc is the specific 

heat capacity of the process fluid, and finally oT  and iT  are the respective outlet 

and inlet temperatures of the process fluid from the heater.  

The quantities in Table 4.1 and equation (4) are the respective input and 

outputs variables for all components of the algorithm. 

4.2 Algorithm Components 

Within the predictive-optimal algorithm, there are three primary components: 

(1) modeling of the process heater using a neural network; (2) optimization using 

a genetic algorithm; and (3) the refinement of the search space for both the neural 

network and the genetic algorithm. The iteration and process flow of the algorithm 

using these three components shall presented in Section 4.6. 

4.3 Neural Network 

An artificial neural network (ANN), is a black-box technique whose theory is 

motivated on the complex, nonlinear, and parallel computation capabilities [31] of 

the biological brain. The ANN functionality resembles that of the brain in two 

ways: knowledge/data can be acquired via a learning process; and knowledge/data 

can be stored [31]. Artificial neural networks offer many useful computational 

properties including: nonlinearity; input-output mapping; adaptivity; fault 

tolerance; and evidential response [31]. Despite these capabilities, they require fewer 

adjustable parameters compared to classical approximation methods like Fourier 

transforms, spline functions, and linear or polynomial regressions [54]. 

 The ANN itself is classified by: (i) the components and functions within the 

computational neuron (typically held constant within a given layer); (ii) the 
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number and size of layers (input, hidden, and output generally); (iii) how each 

layer is connected/structured; (iv) and finally, how the network learns [31]. It 

should be noted, however, that these classifications themselves are not always 

exclusively determined. For example, the structure and learning process of the 

network are intimately linked and if one is fixed, the other has a limited subset of 

available options [31].  

4.3.1 Computational neuron 

An ANN is composed of multiple layers of an interconnected, basic computational 

unit, the neuron. A computational neuron, (“neuron” or “node”), is composed of 

three parts as shown in Figure 4.1: (i) a set of synapses/connections, characterized 

by a weight value,  l
jiw , which connects neuron j  in layer l  which in turn receives 

inputs from neuron i  in layer 1l  ; (ii) a summation unit that adds the input 

signals together, weighted appropriately by their synaptic weights; and (iii) an 

activation/squashing function,  j  , which maps and/or limits the output signal 

of the neuron to a finite value. There is also an optional external bias,  l
jb , that 

increases or decreases the input to the activation function. The j th neuron (in 

layer l ) is described by 

      1

1

m
l l l
j ji i

i

v w y 



    (5) 

and 

     ( )l ll
j j j jy v b    (6) 

The activation function in equation (5) is typically either a sigmoid function, 

a piecewise- or straight- linear function, a threshold function, or a Gaussian 

function [31]. In all equations regarding artificial neural networks in this work, the 

subscript notation is that: (i) the jth subscript notation indicates the layer of current 

concern/calculation; and (ii) the ith and kth layers are immediately adjacent to the 
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left and right (or backwards and forwards), respectively, of the current jth layer 

assuming a signal propagation from left to right. 

 

FIGURE 4.1: Computational model of a neuron for an ANN. 

4.3.2 Network structure 

Neural networks are classified according to their structure or architecture, which 

ranges from a single neuron, as seen in Figure 4.1, to multiple neurons divided into 

more than one layer. The layer, l , of nodes that receive the input signal or input 

vector is known as the input layer and usually does not contain any computational 

neurons [31]. Conversely, the final layer, L , often consists of a singular 

computational neuron that outputs the response to the supplied input 

pattern/vector; this layer is known as the “output layer.” The layers between the 
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input and output layer are colloquially known as hidden layers. One or more hidden 

layers, not directly system inputs or outputs, enable the neural network to extract 

higher-order statistics which would otherwise be missed with simpler 

structures [31]. Figures 4.2 (a) and (b) illustrate a neural network with a single 

input layer with three neurons, a single hidden layer with five neurons, and an 

output layer with just one neuron. The lines connecting neurons represent a signal 

path or connection between neurons. 

Neural networks are also classified according to how the neurons are 

connected; they can connect to each and every neuron in the next adjacent layer 

(fully-connected) or be selectively connected, as shown in Figures 4.2 (a) and (b), 

respectively [31], [55]. Additionally the neurons can feedforward to the next layer, 

or be recurrently connected to a previous layer in a feedback loop as shown in 

Figure 4.2 (a) and (c), respectively. A recurrent ANN with feedback loops can 

involve the use of a unit-delay element/operator as denoted by 1z . Figure 4.2 (c) 

shows the feedforward of the input signal and the feedback of one of the output 

signals which is accordingly used as an input signal. 

With a feedforward type of network, the output from each preceding layer 

forms the inputs for the next adjacent layer of neurons. A common exception for 

this (which also holds for most network structure classifications) is the input layer, 

which does not transform the input signal as there is no previous layer. Instead the 

signal is received and transformed by the computational neurons in the next 

adjacent layer. 

In most ANN forms, the number of neurons in the hidden layer determines 

the learning ‘capability’ of the network [56]. Using too many or too few neurons in 

the hidden layer causes under- and over- generalization of the problem, 

respectively [56]. It therefore becomes a process of trial and error to determine a 

‘good’ number of neurons in the hidden layer although empirical formulae provide 

a starting point, as in  
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FIGURE 4.2: Classifications of neural network structures. 

 

   



 

55 

 
2 i

I O
N P


    (7) 

where N  is the number of neurons in the hidden layer, I  is the number of input 

nodes, O  is the number of output neurons and iP  is the number of training 

patterns [57]. 

 Within this work, all explanations regarding the operation and training of 

artificial neural networks will be performed with a fully connected feedforward 

neural network with one or more hidden layers; a type of structure that is more 

commonly known as a multi-layer perceptron (MLP). It is one of the most 

commonly used ANN structures [54]. 

4.3.3 Network learning 

Once the ANN architecture has been defined, the weights and biases, known as the 

free parameters, of each neuron must be adjusted so that that the ANN correctly 

relates the input to the outputs; this adjustment process is referred to as “training” 

the ANN. A large set of reference data must be generated, which is then divided 

into subsets of data for use in training. The division and use of these sets is further 

described in Section 4.3.4. The training data is presented to the network with each 

exposure/iteration of the complete set of training data is colloquially called an 

epoch.  

Training of the ANN amounts to finding the free parameters that minimizes 

the discrepancy between the desired output, from the reference data set, and the 

actual output observed from the ANN [31], [55]. One of the most common and 

efficient ways to train the network and allow the ANN to learn the patterns 

presented, is through back-propagation (BP) [31]. BP involves two distinct 

operations, proceeding forwards and then backwards through the layers of the 

network. The error is calculated (forwards) from the training data presented to the 

input neurons, and then later the output neurons, which is then transmitted 
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(backwards) through subsequent layers from the output neurons [31]. Typically the 

free parameters start as random values in an interval typically chosen to be 

primarily on the transition between the linear and saturated ranges of the 

activation functions with a unity input [31]. The forward pass is detailed below for 

a fully connected MLP. 

Given that vector  nx  is the nth training data pattern applied to the input 

layer,  nd  is the nth training data/desired output vector,  L
jy n  is the observed 

output signals (layer l L ) for pattern n , and  je n  is the error calculated for 

the jth neuron, then the mean square error (MSE) for the entire network, E , may 

be calculated by  

   2

1

1
, ,

N

j
j

E e
N 

 d w x   (8) 

and 

    , , L
j j je d y n d w x   (9) 

The root-mean-squared error (RMSE) or sum-squared error (SSE) may also 

be used in place of equation (8). Together these equations [31] define a multivariate 

minimization that can be solved by non-linear programming (NLP) or a 

metaheuristic.  

The simplest and most common form of the back propagation algorithm 

utilizes the first-order steepest descent algorithm to minimize the total error. Each 

free parameter may be thought of as a dimension in a multi-dimensional error space 

(with the number of dimensions equal to the number of free parameters), where 

each free parameter is an independent variable collectively producing an error 

hyper-surface given by equation (8) and the training data set [55]. A minimum 

error function can be found by translating along the vector produced by the 

negative gradient of the error function with respect to the free parameters. This 
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principle provides the basis for how to adjust the free parameters (backwards pass), 

in sequential training mode, and is given by  

      1ji ji jiw n w n w n      (10) 

and a simple version of the delta or Widrow-Hoff rule, 
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In equation (10) the local error gradient, ji  is calculated differently for the output 

layer and the hidden layers. 
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From these equations it becomes obvious that the activation function must 

be differentiable. These computations, both the forward and backwards passes, are 

performed iteratively for multiple epochs until a specific criterion, a minimum 

mean-square error or other quantity as discussed later, is satisfied.  

 The steepest-descent method is characterized by asymptotic convergence; in 

areas of low curvature (e.g., approaching the solution or an “error valley”) the speed 

of convergence is slow. However, convergence to minima is stable and guaranteed 

in unimodal functions. A logical and common evolution from the steepest descent 

method for resolving the error hyper-surface is in the use of the Levenberg-

Marquadt (L-M) algorithm, which can be thought of as a combination of the 

steepest descent and Gauss-Newton algorithms, the latter accounting for the 

second-order curvature of the objective function [55]. The Levenberg-Marquadt 

algorithm as extended to traversing the error space of an ANN is represented by 



 

58 

      11 ( )Tn n n    w w J J I Je   (13) 

where   is the regularization parameter and I  is the identity matrix. The matrix

J  Q Z  is the Jacobian as calculated by 
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w


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J   (14) 

for the q th training data set presented for the full set of Z free parameters [55].  

Training can occur in two distinct modes. Within each epoch, the training 

can occur sequentially with the weights being updated after each and every data 

point presentation [31]. Alternatively, in batch training (which is used throughout 

this work), the weights are updated only after presentation of the complete training 

data set [31]. 

The data used to train the ANN is contaminated with measurement noise, 

so it is important to avoid “over-fitting” the free parameters to noisy data/outliers 

when determining the weights [58]. A solution to both issues exists by incorporating 

some filtering into the L-M algorithm through Bayesian regularization, which adds 

very little computational overhead to L-M minimization. As proposed by MacKay 

[58] the cost function C is given by  

 d wC        (15) 

where d  is the “error function” term given by the SSE and w  is the “weight 

energy” term given the below equation.  

 21

2w z
z

w    (16) 

Both   and   are heuristics, and the latter should not be confused with 

the momentum term often included (but not shown) in equation (10). Similar to 

typical operation of a L-M algorithm, if the cost function decreases in a given 

epoch, the recently updated free parameters are discarded and the regularization 



 

59 

parameter in equation (13) is increased by a specified step and vice versa for if the 

cost function increases. However, instead of updating   from equation (13) using 

only a single error quantity, Bayesian regularization uses equation (15) with the 

non-constant   and .  Rules for updating   and  are provided by MacKay [58] 

and Poland [59]. 

 A complete flow chart for the L-M method with Bayesian regularization can 

be seen in Figure 4.3. 

4.3.4 Network training and verification 

As was mentioned earlier, the data collected to train the ANN may be split into 

three separate categories divided upon their purpose: training, validation, and 

testing.  

 The first of these, the training data subset, takes up the bulk of the collected 

data set, typically 70% or more. Utilized in the algorithms outlined in Section 4.3.3, 

the training data subset is used to compute the gradients of the error hyper-surface 

and to update the free parameters. The validation and testing data sets have 

similar functions and are used to “test” the performance of the ANN and/or to 

prevent over-training [31]. 

Lastly, some pre-processing (and accompanying post-processing) of the 

input and output data is required to increase the efficiency of the training described 

in Section 4.3.3. The input and output can be normalized to fall within the range 

of -1 and 1 or have a mean of zero and a unity variance. The post-processing stage 

is simply the inverse operation of the normalization calculation used in pre-

processing. 
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FIGURE 4.3: Flowchart for training an ANN using the L-M 
algorithm with Bayesian regularization. 
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4.4 Genetic Algorithm 

Once the ANN has been completely trained, it can then be used to simulate the 

industrial process heater in order to identify an optimal operating state; this is the 

predictive portion of the algorithm. While it is possible to choose an operating state 

from univariate parametric plots generated with the ANN model, this process can 

be computationally expensive for large dimension problems, and more importantly, 

neglects nonlinear effects between operating parameters. A more rigorous approach 

is to find the optimal operating point through nonlinear programming, such as the 

L-M algorithm, but convergence to a global optimum state is not guaranteed if the 

objective function is multimodal.  

Instead, metaheuristic algorithms provide a more thorough search of the 

operating state space, and are more likely to find the global maximum; the present 

work utilizes a genetic algorithm (GA). Whereas NLP algorithms update the 

operating parameters based on the curvature of an objective function at one point 

on the operating state space, GAs can analyze a large operating state space at each 

iteration [60], [61]. A GA begins with a population of N  possible randomly created 

solutions, subject to any constraints that define the search-space and corresponding 

valid operating states. Each iteration effectively searches  3N  actual 

solutions [60], allowing efficient searching of large solution spaces with a relatively 

small population. Randomness and random number operations, inherent in even 

the initial selection of the initial population, is a core process that continues 

throughout the entire genetic algorithm. 

 A genetic algorithm has roots in the real-world process of natural selection 

and the genetic make-up of organisms [60]. The processes described in the following 

sections parallels a biological process seen in nature and evolutionary theory.  
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4.4.1 Fitness function 

As discussed in Section 2.6, a quantitative value or objective function, to be 

minimized (or maximized), is required for optimization. This value, the thermal 

efficiency defined in equation (4), is one of the most important components of the 

genetic algorithm; it is used directly to determine the fitness of each member of the 

population during optimization [60]. The biological equivalent of the fitness 

function is the literal fitness to survive, as compared to peers of the same 

generation, in the sense of Darwinian natural selection. 

 From the aforementioned random initial population, the artificial neural 

network simulates the process heater, and for each set of input states that comprise 

one individual member of the population, a single predicted thermal efficiency is 

computed. As most genetic algorithms only minimize the objective function value, 

within this work it is therefore necessary to multiply the efficiency by 1 . 

While the fitness value can be simply set equal to the objective function, it 

is possible for a select few extraordinary individuals to immediately dominate future 

generations and thus blunt or undermine the searching capabilities of the genetic 

algorithm to locate the global optima [60]. Accordingly, scaling of the fitness values 

is necessary to slow down the possibility of premature convergence, which can be 

accomplished by mapping the fitness values linearly or with a specified statistical 

function. 

4.4.2 Phenotypes & Genotypes  

Before implementing the genetic algorithm on the population of each generation, 

each input and output state must be encoded in a form usable by the genetic 

algorithm. Continuing with the parallels with biological evolution, each input and 

output state, as real numbers or integers, is known as a phenotype and is encoded 

as genetic material or genotype. The system model provided by the artificial neural 
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network utilizes the decoded phenotypes while the genetic algorithm operates solely 

on the encoded genotypes.  

With some forms of genetic algorithms, there is no encoding process; 

genotypes and phenotypes are the same, and all operations are performed on 

real/integer numbers. Paralleling the work by Goldberg [60], and to simplify the 

explanation of the accompanying operations, this work will use binary strings to 

encode genetic information. Each input state to the artificial neural network is 

encoded separately to a binary string and is grouped in a genotype structure. All 

genetic algorithm operations are performed on this structure of individual strings 

and the resultant structure is decoded back to individual genotypes then 

phenotypes and used in conjunction with the neural network to output a predicted 

thermal efficiency. This process is observed in Figure 4.4 below. 

4.4.3 Operations 

Most genetic algorithms have three simple operations/operators used to create the 

children of the next generation from the current generation [60]. The three 

operations are: 

(a) Reproduction 

(b) Crossover 

(c) Mutation 

The reproduction operator selects parents from the current population that will 

go on to produce “children,” or members of the next generation. Typically, this is 

carried out in a manner proportional to the scaled fitness values described by  

 i
i

i

f
F

f



  (17) 

where iF  is the probability of selection for the ith member of the population and 

the denominator is the sum of all the scaled fitness values in a given generation. 
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FIGURE 4.4: Genotype and Phenotype conversion process. 

An example of this is seen in Figure 4.5 below with a roulette wheel style of 

reproduction as described by Goldberg [60]. In the figure, a small sample population 

of just four members is shown on the roulette wheel.  The roulette wheel is spun a 

given number of times, within the limits of the population, to satisfy an adjustable 

criterion, typically there is an elite count or a minimum number of ‘fittest’ members 

that are guaranteed to advance to the next generation (not shown in the example 

within Figure 4.5). The probability of selection, and ‘size’ of each member on the 

roulette wheel, is determined by equation (17) above. 

The crossover operator exchanges encoded genetic material between two 

members of the current generation to form a child for the next generation. The 

amount of information received by the child, the crossover point, from each parent 
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is randomly determined. The operation is rather simple for binary genotypes and 

can be observed in Figure 4.6 (a). 

 

FIGURE 4.5: Roulette wheel reproduction operation.  

The final operation, mutation, randomly perturbs the encoded strings of a 

random member/child of the current generation. For binary encoded strings, this 

is especially simple as can be seen in Figure 4.6 (b). Mutation and crossover 

operations are applied at random to members of the population, with a frequency 

that is set as a parameter of the genetic algorithm. 

A complete flow chart for the operation of the genetic algorithm is displayed 

in Figure 4.7 below. 
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FIGURE 4.6: Genetic algorithm (a) crossover and (b) 
mutation operations. 
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Both the parameters to be optimized and the data collected to train the artificial 
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has a known safe operational range of input values determined for equipment life 

and operator safety. Second, constraining the search space should make the ANN 
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model outside of data points that define neural network topology) where it may 

fail to capture the true problem physics. 

 

FIGURE 4.7: Genetic algorithm operations flow chart. 
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The efficacy of constraining the search space can improved by progressively 

constraining the search space and iterating the three components of the algorithm 

repeatedly. The control algorithm also adapts to changing environmental and 

operating conditions (e.g., ambient temperature, fuel composition, heating load), 

and the performance of the coupled ANN/GA should improve as the neural 

network is continuously re-trained and updated with new data. 

4.5.1 Global constraints 

The search space is defined by absolute global constraints, listed in Table 4.2, that 

cannot be exceeded and bound each stage of the search space refinement.  

TABLE 4.2: Global search space constraints 

Physical Quantity  Constraint Units 
Fuel Pressure   138, 414fp  kPa 
Atomizing Air Pressure   138, 448ap  kPa 
Exhaust Composition (O2)   1.15,1.30  %-excess air 

4.5.2 Refinement operation 

The refinement operation borrows a technique of constrained optimization within 

the response surface modeling (RSM) optimization methods [62]. At each iteration, 

the constraints imposed on the search space are reduced by a scale factor  0,1Q   

and re-centered about the predicted best solution, which is the current highest 

fitness genetic algorithm solution. The initial constraints remain as absolute limits 

to the problem, while the new constraints are composed of whichever is more 

restrictive of both the global and new constraints. An example of this is shown in 

Figure 4.8 for a two-dimensional search space. 
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FIGURE 4.8: Example constrained search space after a single 
iteration. 

4.6 Iteration 

The complete algorithm is run iteratively. A flow chart describing this iterative 

process is shown in Figure 4.9. Due to the large length of time necessary to gather 

data for one single iteration, the refinement operation stops after three iterations. 

Further investigation is necessary to evaluate alternative stopping criteria similar 

to that used in the genetic algorithm. 
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FIGURE 4.9: Complete algorithm process flow chart. 

4.7 Closure 
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continual refinement and adaption of the algorithm. The efficacy of this algorithm 

will be demonstrated with testing on the process heater in the next Chapter. 
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Chapter 5  

Testing & Results 

5.1 Introduction  

With the design and implementation of the experimental apparatus (Chapter 3) 

and the proposed algorithm operation outlined (Chapter 4), the operation and 

efficacy of both the apparatus and algorithm together requires evaluation. This 

chapter describes the implementation of the predictive-optimal algorithm and the 

resulting data recorded from the process heater operation. The algorithm is 

implemented on the ifm electronic GmbH hardware and evaluated in two distinct 

experiments. Within the first experiment, data is collected and a single iteration of 

the algorithm is implemented offline on a laptop computer. This step serves as a 

proof of concept of the control and optimization methodology before beginning 

complete implementation on the PLC controllers. The second experiment, evolving 

from the previous one and incorporating an online component in the search space 

refinement from Section 4.5, was carried out offline using a laptop computer.  

 Several physical parameters are needed to calculate the thermal efficiency 

of the process heater as given in Equation (4). These constants are summarized in 

Table 5.1. 

All testing was performed at GenTex’s facilities, located at an approximate 

elevation of 900 meters above mean sea level. 
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TABLE 5.1: Summary of physical constants. 

Parameter  Value Units 

w   989  kg m-3 
f    852.5 kg m-3 
fLHV    43.2  106 J kg-1 

5.2 Offline Experiment 

All heat generated from the first experiment was transferred to a 33.3 m3 tank 

filled with the process fluid consisting of water and an uncertain and varying 

quantity of glycol, which is modeled as pure water. The tank is located outdoors 

and the testing was performed in mid-April; it is worth noting that approximately 

half of the total volume of this tank was frozen at the beginning of testing. As the 

experiment progressed, the useable process fluid volume increased as the fluid was 

heated and the ice melted), but this also altered the water/glycol ratio of the tank. 

Accordingly, variation to the process heater operating physics is expected but not 

explicitly addressed in the algorithm. Nevertheless, varying conditions such as 

varying working fluid composition, as well as changes to the ambient temperature, 

pressure, and fuel composition, can be accommodated since the ANN is 

continuously retrained during optimization, as noted in Section 4.5.  

The ambient air temperature, atmospheric pressure, and relative humidity 

( ambT , ambP , and   respectively) are averaged across the entire experiment and 

displayed in Table 5.2 below. The temperature profile and relative humidity during 

the first experiment are shown in Figure 5.1; the atmospheric pressure remained 

approximately constant throughout the test and is not graphed. 

For this experiment, the testing was completed at a set of 8 random 

operating states, within the imposed constraints (see Table 4.2), and the process 

was allowed to reach a quasi-steady state before data collection. The process fluid 

flow rate was held approximately constant while the fuel pressure, atomizing air 

pressure and equivalence ratio were altered for each operating state. The control 
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TABLE 5.2: Averaged atmospheric conditions during first 
experiment [63]. 

Condition  Value Units 

ambT   272.31 K 
ambP    91.22 kPa 
   82.85 % 

 

FIGURE 5.1: Atmospheric conditions during testing, offline 
experiment [63]. 

inputs were done electronically on the HMI with the exception of the target excess 

air. At this point in the process heater development, the damper angular position 

was coarsely controlled by toggling the linear actuator digital inputs while fuel and 

air pressure were controlled with a PID loop. The linear actuator was controlled 

manually to obtain the desired exhaust excess air.  Data was collected at 10 Hz for 
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all values and an equal-weighted moving average filter of 25 and 300 data points 

was utilized for the fuel flow and process fluid flow rates. All other values remain 

unfiltered post-data acquisition. 

5.2.1 Artificial neural network 

Using the MATLAB Neural Network Toolbox [64], the artificial neural network is 

configured with a sigmoid activation function in the hidden layer and an 

unbounded linear activation function in the output layer. Each input operating 

state is formed by the three input variables to the neural network, fP , aP , and   , 

while the predicted output variables are fQ , wQ , oT , and iT . The intermediate coil 

temperature is the final predicted variable. The input and output data is 

pre-processed, as discussed in Section 4.3.2, to have a unity variance and a zero 

mean. The user controllable settings/parameters for the artificial neural network, 

as discussed in Section 4.3, are summarized in Table 5.3.  

TABLE 5.3: Artificial neural network configuration 
parameters. 

Parameter  Value 
Training data set percentage  80 

Validation data set percentage  10 
Testing data set percentage  10 
Maximum number of epochs  1000 

Stopping criteria (MSE target)  1.0 x 10-5 

For a neural network with 36 neurons in the hidden layer, the training 

performance with the above settings is plotted in Figure 5.2; it is observed that the 

training data did not reach the MSE target criteria and instead stopped after the 

maximum of 1000 epochs. This will be discussed later. 
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FIGURE 5.2: Example ANN training performance using 36 
neurons in the hidden layer. 

The number of neurons in the hidden layer affects the predictive capabilities 

of the ANN; Figure 5.3 (a) and (b) plots the measured and predicted thermal 

efficiencies using 4 and 36 neurons in the hidden layer respectively. As was 

mentioned in Section 4.3, larger numbers of neurons in the hidden layer enhance 

the ability of the ANN to capture higher order patterns, which is needed to emulate 

the combustion physics, and consequently the predicted thermal efficiency. The 

increase in prediction accuracy for 36 hidden neurons is shown in Figure 5.3. 

Through trial and error, 36 neurons in the hidden layer was chosen to provide a 

balance between computational time and the prediction accuracy.  
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FIGURE 5.3: Experimental and predicted efficiency with (a) 
4 neurons and (b) 36 neurons in the hidden layer. 

5.2.2 Genetic algorithm 

Now that the artificial neural network is completely trained, the genetic algorithm, 

making use of the global optimization toolbox in MATLAB [64], is initialized with 

a population of 75 candidate random operating states, determined to be sufficient 

through trial and error. Each member of the population is made up of the three 

individual input parameters of the trained artificial neural network. The output 

variables, from the prior trained artificial neuron network, are used to calculate the 

thermal efficiency defined in equation (4).  This is value is then optimized by the 

genetic algorithm. 

The genetic algorithm heuristics, as described in Chapter 4, are included in 

Table 5.4 below. Additionally, beginning with the initially generated population 
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and at all times after with every operation of the genetic algorithm, the input 

operating states are constrained to fall within the feasible region defined by 

Table 4.2. 

TABLE 5.4: Genetic algorithm configuration parameters. 

Parameter  Value 
Maximum number of generations  100 

Probability of crossover  0.7 
Probability of mutations  0.01 

Figure 5.4 displays the progress of the genetic algorithm in terms of the 

objective function,  F x , which is set equal to thermal , so the minimum of  F x

corresponds to the maximum thermal efficiency. Figure 5.5 presents the evolution 

of the input operating parameters as the optimization progresses. It is worth noting 

that the genetic algorithm is non-deterministic and the output of the optimization 

will vary with each optimization using a given or fixed ANN/data set. 

The first thing to note is that the predicted values exceed 1.0 (-1.0 in the 

figure due to the GA minimization), which is obviously nonphysical. The accuracy 

of the ANN is limited by the finite number of sampled values presented to the 

network, and, as noted above, is subject to uncertainties in operating parameters. 

This limitation has a minimal impact on the outcome of GA minimization, 

however, since the relative performance of the algorithm is important to improving 

the operating efficiency of the heater, and not the predicted absolute values. In 

other words, the true efficiency of the heater is not crucial; rather, only the relative 

magnitude of the efficiency at each operating point is required to ‘trend’ towards 

the real optimum efficiency. Regardless of the predicted thermal efficiency, the 

input operating states are still bound by the constraints outlined before. 

In an attempt to address the non-physical predicted thermal efficiency for 

later testing, it was hypothesized that there is a deficiency in the training data set 

and that the training data does not adequately cover the relevant state space. From 
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FIGURE 5.4: Progress of genetic algorithm optimization, 
offline results. 

gathered experiential knowledge, this first test had a relatively small number of 

unique data points relative to the number of free parameters within the ANN. 

Specifically, the 1600 data points being used for training only represents 8 unique 

operating states. While these operating state are each comprised of 200 data points, 

there are still only 8 unique operating states. Consequently, the hypersurface 

produced by the artificial neural network is being trained/fit to the 200 data points 

of noise/variance at each of the given 8 operating states. The ANN is therefore 

being trained to predict the variance at each of these unique operating states 

instead of the state itself. The above hypothesis and reasoning is supported by 

results obtained from the next round of testing in Section 5.3. The final optimized 

input parameters output from the algorithm, despite the deficiencies noted above, 

still trend with what is known by GenTex personnel to produce ‘good’ efficiencies 
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FIGURE 5.5: Evolution of the input parameters during 
optimization, offline results. 

based on empirical experience. Thus, it was decided to continue using the artificial 

neural network to predict the operation of the process heater. As noted above, 

however, both the predictive capabilities of the ANN and the quality of the optimal 

state identified with the genetic algorithm will improve by increasing the number 

of experimental operating states used for training per iteration.  

Testing time on the dynamometer is limited because the process heater is 

incorporated into a closed loop of working fluid (i.e., recirculating water to and 

from a tank) and due to the large thermal output of the heater, the process fluid 

increases in temperature rapidly. As was mentioned in the context of the safety 

controls, the process heaters have a maximum inlet temperature. Even with typical 

use in customer applications, there is a finite amount of time available to cycle 

through the three components of the algorithm. Thus, it is necessary to maximize 
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the number of training states in a fixed testing time period. The characteristic rise 

time for the process heater, as a whole system, to settle to an approximately steady 

state value when the input parameters change is unknown, but was previously 

estimated to be above 300 seconds. This is the range used to collect data up to this 

point in Section 5.2. Characterizing this time is necessary to maximize and/or 

validate the rate of data collection for the artificial neural network. 

5.2.3 Characterizing the time response 

The time for the process heater to reach steady state after the operating parameters 

have been changed must be established in order to maximize the number of distinct 

set of data available to train the ANN. Six operating states were selected for testing 

to produce five time responses for analysis. The input operating states for time 

response testing are shown in Table 5.5 below. The process fluid flow rate was held 

constant during this experiment at a typical value and the fuel and atomizing air 

pressures were set equal. The operating states change were performed sequentially 

in the order in Table 5.5, and the operating state was held for a minimum of 300 

seconds before changing to the next data point to allow the unit to reach an 

approximately steady state output.  

TABLE 5.5: Time response experiment input operating states. 

Operating 
State Number

 
fP  / aP  [kPa]   [%-EA] 

1  138 1.4 
2  207 1.19 
3  276 1.19 
4  207 1.19 
5  138 1.36 
6  276 1.16 

The calculated thermal efficiency was used as the system response to 

determine whether or not process heater had reached steady state. The time to 
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reach 95% of this value was taken to be the response time of the system. The 

results of these calculations are shown in Table 5.6; the mean response time is 

approximately 138 seconds.  

TABLE 5.6: Measured time response experiment results. 

Experiment 
Number 

 Response 
Time [s] 

1  145 
2  140 
3  117 
4  129 
5  161 

5.3 Offline-Online Experiment 

As mentioned at the beginning of this Chapter, this second experiment is 

an evolutionary step from the first described in Section 5.2; among other 

refinements, it incorporates an online component in the form of the search space 

refinement from Section 4.5. Experimentation was performed with the aid of an 

offline laptop computer to complete the artificial neural network calculations and 

genetic algorithm optimization. 

Originally, this experiment was to be performed fully online with the 

algorithm implemented on the ifm electronic GmbH CR0232 PLC. A PLC is not 

designed to be a computing engine and instead is setup to control industrial 

processes according to simple pre-programmed logical step instructions. At the 

onset of the project, the manufacturer claimed that the CR0232 PLC would be 

capable of the task of operating as a computing engine. Unfortunately, it was 

discovered, during implementation at this stage of the project, that the PLC is 

equipped with the watchdog function described in Section 3.2.1. This represents a 

serious impediment to implementing the ANN as all calculations performed within 

typical programming statements, including ‘for’, ‘while’, ‘do’, and ‘if’, must be 
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executed in less than the maximum time specified by the watchdog function. These 

statements are a necessary part of the repeated calculations performed in all three 

components of the algorithm. After conversations with ifm support personnel, it 

was discovered that the watchdog function could not be circumvented due to the 

necessary safety functionality it provides; it is an integral and inseparable part of 

the operating system on the PLC. 

Two potential solutions this issue were examined. The first involved 

implementing the algorithm within the Linux kernel on the CR0232, but outside 

of the PLC itself; this was where the algorithm was to be implemented during the 

early stages of the project. However, implementing any code on the Linux kernel 

but outside of the operating system on the CR0232 is not supported nor is there 

any clear method to do this. Because of the above reasons, and the proximity of 

this portion of the testing to conclusion of the project, it was decided to abandon 

this avenue.  

A second impediment to implementing the ANN is that the PLC does not 

store the measured operating parameters within its internal memory between loops. 

To overcome this, the second solution involves storing the data that is used within 

the aforementioned programming statements (e.g., ‘for’ loop statements) on 

retained global variables that hold and retain their value outside of a given 

program. This solution replicates the internal functionality of these programming 

statements using external global retain variables; each ‘loop’ is one occurrence of 

the program. Passing variables to and from memory like this was expected to slow 

computation time significantly but still allow implementation. Unfortunately, 

midway thorough implementation, it was discovered that the CR0232 only has 64 

kB of total allocated memory available to all retain variables, which precludes this 

second avenue as useful solution. At this point, it was decided to implement a 

partial offline solution of the algorithm instead and search for a way to implement 

the full algorithm online at a later date. 
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 The offline-online solution, differing from Section 5.2, was performed on a 

450 m3 water tank which was assumed to contain pure water. The experiment was 

performed over two days with the average environmental conditions summarized 

in Table 5.7 and the environmental condition profiles shown in Figure 5.6. 

TABLE 5.7: Averaged atmospheric conditions, offline-online 
experiment [63]. 

 Condition  Value Units 
Day 1 

 
ambT   285.61 K 

 
ambP    91.72 kPa 

    68.69 % 
Day 2 

 
ambT   285.22 K 

 
ambP    92.12 kPa 

    65.15 % 

For this experiment, the first iteration of testing was completed using 12 

random operating states, within the same imposed constraints as before. These 12 

data points were sampled randomly from user controlled limits on fuel pressure, 

atomizing air pressure, and exhaust composition. These limits were changed each 

iteration and new random data points were produced.  Each operating state was 

programed as the target state into the PLC, which automatically adjusted the 

actuators until the state was reached. Each subsequent online iteration of the 

search space component of the algorithm requires user intervention to input the 

optimum value calculated by the offline ANN and GA components. 

Data sampling collected for each state after 300 seconds based on the 

analysis described in Section 5.2.1, and only a single data point was collected 

consisting of a moving average from the most recent 5 seconds for each quantity. 

These twelve data points were pooled with values calculated from the 8 data points 

in the previous experiment. This total of 20 data points form the complete data 

set used to train the artificial neural network for the first iteration in this  
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FIGURE 5.6: Local atmospheric conditions during testing, 
offline-online experiment [63]. 

experiment. Data was collected at 2 Hz in this experiment, as the previous 10 Hz 

data rate offered no advantages to this study after post processing the acquired 

data from Section 5.2. All other setting remain the same as in the offline experiment 

unless noted. A graphical example of the input operating states and calculated 

thermal efficiency during the first iteration is shown in Figure 5.7. 

The first two iterations were performed on the first day and the third 

iteration was performed on the third day. All further experimentation was stopped 

after this point as the testing tank temperature, measured at the inlet of the process 

heater, had exceeded 323.15 K, a predetermined stopping criterion, since the 

increasing fluid temperature reduces the heat transfer between the hot combustion 

gases and the coils, which alter the operating physics of the heater trending towards 
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a safety limit. As noted above, however, these changing operating physics are also 

expected under operating conditions, and can be accommodated through the 

continuous ANN training. 

Two items are of note in Figure 5.7. The first is the calculated irregular 

‘spikes’ in the efficiencies. This is an artifact stemming from when the fuel flow 

rate suddenly drops between operating states, while the thermal output of the 

heater has a slower response, resulting in an abrupt ‘spike’ in the thermal efficiency. 

The second is the noisy exhaust composition signal. As was mentioned earlier in 

this work, the PID loop control signal on the blower damper position is the target 

excess air value. There is, however, a significant time delay between a change in 

the damper angular position at the ‘beginning’ of the process heater and the 

response from the exhaust probe at the ‘end’ of the process heater. The PID loop, 

as a linear control method, has great difficulty compensating for the non-linearity 

this rather large time delay causes. 

5.3.1 Artificial neural network 

Again using the MATLAB Neural Network Toolbox [64], the artificial neural 

network is configured as described in Section 5.2.1, with three exceptions. First, 

the efficiency was calculated within the PLC; in this experiment there are 3 input 

nodes (the same as before) but only 1 output node (the thermal efficiency). This 

structure would now allow the use of a radial basis function (RBF), a different 

form of the ANN not discussed within this work to model the process heater [31], 

[55]. However, it was decided to remain with the existing MLP architecture for 

direct similarity and continuity between the two experiments.  

The second departure from the previous experiment is the 80:20:0 split 

between the training, validation, and testing data sets. With such a small data set, 

the use of a testing data set may significantly detract from the overall performance 

of the artificial neural network by removing data from the training data set. The 

third departure is in the decrease of the number of hidden layer neurons to 
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FIGURE 5.7: Data for the first iteration, offline-online 
experiment. 
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16 in response to the decreased number of output nodes. This number was again 

determined through a trial and error process. 

The training performance of the artificial neural network with 16 neurons 

in the hidden layer is shown in Figure 5.8. It is noted that training was stopped 

before the maximum number of epochs and the target MSE value was reached. 

Another stopping criterion, the minimum gradient magnitude, was achieved when 

the gradient of the MSE value dropped below a threshold of 51.0 10x   for six 

consecutive epochs.  

5.3.2 Genetic algorithm 

Utilizing MATLAB as before, the genetic algorithm is configured with a reduced 

population size of 15, when compared to the offline experiment. When increasing 

the population size beyond this value it is observed that the evolution of optimized 

values, as in the earlier Figure 5.5, would remain perfectly flat across each 

generation. This indicates that the initial population size is too large, and that the 

genetic algorithm becomes an enumeration of candidate values instead of a heuristic 

optimization. 

The genetic algorithm progress and evolution of parameters are shown in Figure 

5.9 and Figure 5.10 below. The optimized values from this first iteration are 143.0 

and 157.0 for fuel and atomizing air pressure respectively and an excess air value 

of +15 percent. This aligns with two key observations made during the length of 

this study: 

(a) operating the process heater with atomizing air pressure higher than that 

of the fuel pressure increases thermal efficiency. 

(b) decreasing the total heat input directly correlates with a decreases in fuel 

flow rate and hence fuel pressure, which increases the thermal efficiency 

on the TEXHEATER 70M process heater. 
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FIGURE 5.8: ANN training performance during 1st iteration 
of offline-online experiment. 

5.3.3 Iterations 

With a scale factor Q  equal to 0.8 and with a linear reduction of each constraint, 

the new search space constraints for the next iteration are summarized in Table 

5.8. All further iterations are performed with the same algorithm parameters as 

discussed in Section 5.3.1 and 5.3.2. Each subsequent iteration collects an 

additional 12 random data points, subject to the updated constraints from the 

optimum value determined in previous iteration.  

The artificial neural network in these subsequent iterations is re-trained with full 

set of all data collected so far with one subtle difference. If the collected data point 

is within 20  kPa on both pressure values and 1  %-excess air of an already 

existing data point, that data point is replaced with the updated input values and 
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output thermal efficiency. This is a further evolution of the predictive nature of 

the algorithm to increase the efficacy and adaptivity to changing environmental 

conditions, process fluid(s), and fuel composition. 

 

FIGURE 5.9: Progress of genetic algorithm optimization, 
offline-online results. 

 

TABLE 5.8: Constraints after first iteration, offline-online 
experiment. 

Physical Quantity  Constraint Units 
Fuel Pressure   138, 253fp  kPa 
Atomizing Air Pressure   138, 277ap  kPa 
Exhaust Composition (O2)   15, 21   %-excess air 
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FIGURE 5.10: Evolution of input parameters during 
optimization, offline-online results. 

The final input operating state values and the final optimal predicted 

thermal efficiency calculated via the genetic algorithm and the updated artificial 

neural network after three iterations is summarized in Table 5.9. These input 

operating state values only varied slightly from those in the first iteration. The 

final predicted efficiency did vary over about a range of approximately 1 percent 

with the increased data density about the optimum input states. This is because 

of the increased predictive accuracy of the artificial neural network in that region 

as more data was collected about that optimum point as the search space was 

constrained. 
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TABLE 5.9: Summary of optimization results after three 
iterations. 

Physical Quantity  Value Units 
Fuel Pressure  139 kPa 
Atomizing Air Pressure  158 kPa 
Exhaust Composition (O2)  1.15 %-excess air 
Thermal Efficiency  87.35 % 

5.4 Additional Observations 

The optimum theoretical exhaust composition remains at the lower boundary of 

the global constraints. Lowering the boundary any further than this limit produces 

an intermittent sooty flame, observed through the flue gas color, due to the 

oscillatory nature of the damper angular position control. This in turn negatively 

affects the heat transfer to the process heater in the long term, known from 

experiential knowledge at GenTex. The coils become sooted from too rich of 

combustion, coating the surfaces of the three coils in carbon-rich 

partially-pyrolyzed diesel fuel. This increases the resistance to heat transfer of the 

coils and lowers the thermal efficiency of the process heater as well as fouling the 

atomizer nozzle and affecting the spray patternization. 

While it is currently not possible to know with absolute certainty what is 

occurring within the process heater during the optimization, a hypothesis can be 

formed from the data collected during the testing of the algorithm. 

 From data collected during a study [28] previous to this work and given that 

the operation of a Y-type atomizer is well documented [13], increasing the 

atomizing air pressure in this type of atomizer should lead to a smaller droplet 

diameter. The ‘classic’ D2-law [65], [66] simply states that the finer the droplet, the 

faster the rate of combustion. Logically, it then follows that this leads to a shorter 

and more intense/higher temperature flame within the process heater for 
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increasingly small droplet sizes and higher atomizing air pressures. This is, of 

course, given that all other settings remain constant. 

 An analysis of the heat transfer modes in another previous study on a 

GenTex 70M process heater [67] during typical operating conditions where the fuel 

and atomizing air pressures were held equal. This analysis determined that 

approximately 25 percent of the gross heat transfer is to the inner coil of the heater 

via radiation, with an additional 15 percent of the gross heat transfer occurring via 

convection to the inner coil. The remaining 60 percent of the heat transferred is to 

the outer and intermediate coils through convection. 

 An observation as to the internal physical operation of the process heater 

can be accomplished using the data reported in Sections 5.2 and 5.3 in conjunction 

with two cases that exist in the collected data: (a) the fuel pressure is higher than 

the atomizing air pressure; and (b) the fuel pressure is lower than the atomizing 

air pressure. With all else remaining equal and the fuel pressure remaining constant, 

the heat transferred to the outer coil, courtesy of the measured temperatures, 

decreases between the first and second case. Conversely, the heat transfer to the 

process fluid in the inner coil increases between the two cases. This leads to the 

observation that an increase in heat transfer to the inner coil correlates with an 

increase in efficiency. As the majority of heat transferred to the inner coil is 

radiative, this most likely represents an increase in the radiative properties of the 

flame and combustion gases (i.e., a more intense and/or luminous flame). Without 

additional sensor packages (e.g., an infrared indirect temperature sensor) or further 

testing, it cannot be known absolutely whether the increase in thermodynamic 

efficiency is through an increase in radiative heat transfer, convective heat transfer, 

or both. 

 The genetic algorithm seemingly encouraged the ‘shift’ in heat transfer to 

the inner coil by adjusting the atomizing air and fuel pressures. Further alteration 

of testing conditions and apparatus, outlined is Section 6.2, may support and more 

accurately define this conclusion. 
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5.5 Closure 

Two separate experiments were performed to test different implementations of the 

algorithm. The first test involved an offline implementation of the algorithm with 

a very limited data set collected from the process heater. The non-physical 

predicted efficiencies from this test, led to improvements to the second 

offline-online experiment. While some issues did occur during the completely online 

implementation of the algorithm, the second experiment, it was observed that the 

algorithm produces results consistent with experiential observations during the 

timeline of this work. Several conclusions and recommendations from the outcome 

of these experiments are covered in the Chapter 6. 
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Chapter 6  

Conclusions & Recommendations 

In this thesis, an adaptive and predictive optimal control methodology is developed 

and tested on a diesel-fueled oilfield process heater. The development portion of 

this body of work is divided into two key parts: development of an algorithm to 

predict and optimize the operating efficiency of the heater; and physical 

implementation of the sensors, actuators, and computing equipment needed to 

implement the algorithm. The algorithm developed is comprised of three iterative 

components: (a) an artificial neural network for adaptivity and prediction; (b) a 

genetic algorithm for optimization of the operating states participating with the 

artificial neural network; and (c) a refinement of the operating state search space 

to complement the other two components. This research is an important 

advancement on the state-of-the-art in industrial combustion control, since this 

marks the first attempt to implement an artificial neural network and genetic 

algorithm prediction/control strategy on liquid-fueled process heaters of this scale. 

Several challenges during the implementation on the experimental apparatus were 

also uncovered, namely the selection of the diesel fuel flow rate sensor and actuator 

used to modulate the combustion air damper position.  

Two experiments to test the performance of the algorithm were carried out. 

The first experiment was a wholly offline test that initially evaluated the 

optimization of the algorithm and synergy between the three components through 

one iteration of the algorithm. The second experiment, recovering from difficulties 

in the implementation on the PLC hardware, incorporated an online component 

and completed three full iterations of the algorithm including refinement 

operations. The algorithm and the iterative methodology were consistent with 
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empirical observations made throughout the duration of this study on the operating 

process heater. 

Additional analysis was performed to better understand the operating 

physics of the heater during the optimization. It was discovered that there is a 

correlation between the optimal operating state and increases to the quantity of 

heat transferred to the process fluid flowing through the inner coil. While radiation 

is the predominant mode of heat transfer to the inner coil, it is not understood, 

given the current sensor package, if this shift is an increase in the gross heat transfer 

to the inner coil or an increase in just radiative heat transfer within the inner coil. 

Additional testing with a different sensor selection is needed to better elucidate 

this observation. 

6.1 Recommendations 

The difficulties with implementing both the physical apparatus and the algorithm 

is well documented throughout this work. Given that the experimental apparatus 

and algorithm were intended to be released to customers on production process 

heaters, several recommendations are warranted. To refine the conclusions and 

continue with the research performed, recommendations and future work are 

separated into two categories: (1) further testing and; (2) alterations to 

experimental the apparatus and algorithm. 

6.1.1 Further testing 

Given the current form of the algorithm, a wider range and more extensive testing 

period is both necessary and recommended before this algorithm can be released to 

customers. Due to a limited experimentation time frame, and the length of time 

required to collect a single operating state, it is necessary to collect more data 

points to train the ANN. As was mentioned in Chapter 5, the twenty initial data 

points, used to train the artificial neural network, is quite small relative to what is 
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typical for ANNs of similar complexity. Further data points will allow the hyper-

surface, fit to this data by the artificial neural network, to be more accurately 

predictive of the process heater operation. This is especially critical as the 

optimized thermodynamic efficiency is maximized with the target exhaust 

composition input parameter at the lower global constraint. Further data collection 

about this optimized input parameter may allow a better prediction of the process 

heater operation. 

All testing was done at the same altitude and at similar ambient 

temperatures and humidity ranges. The fuel, while most likely not the exact same 

mixture, is also assumed to be from the same ‘batch’ and supplier. These two 

variables (environmental factors and diesel fuel blend), are expected to have an 

impact upon the results. The algorithm is designed to compensate for these factors 

and to optimize the operating state of the heater in spite of changes to these 

condition, but this capability has not been tested and completely proven. Testing 

under drastically different environmental conditions, especially at higher and lower 

ambient air temperatures, is recommended.  

To further test at drastically different input conditions for the process 

heater, it was planned (but not undertaken) during the duration of this work, to 

test the algorithm with Jet A or similar blend of fuel in place of diesel fuel. While 

the Jet A fuel is not used by customers or in industry for process heating, it was 

suggested that testing on an entirely different blend of fuel than what the process 

heater was designed for may carry merit to test the adaptive capabilities of the 

algorithm. This testing should still be performed and data collected to observe the 

response of the process heater and algorithm to this new fuel. Specifically, observing 

the predicted operating efficiencies with similar input operating states.  Testing 

could be performed entirely on the alternate fuel or by beginning with ‘pure’ diesel 

fuel and progressively blending additional quantities of Jet A fuel with the diesel 

over a long testing period. 
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Further testing is also needed to refine the global constraints on the 

algorithm. The algorithm operation ignores decreases in the life cycle of components 

within the process heater and the global constraints were determined from ‘typical’ 

input operating parameters for this process heater. As this study highlighted that 

the optimized thermal efficiency is at a non-typical input operating state, the long-

term effects of this on the process heater is unknown. 

Finally, this thesis dealt solely with a GenTex 70M TEXHEATER. The 

experimental apparatus and algorithm can be applied to other process heaters made 

by GenTex, each of which have different designs and operating physics. The 

capabilities of the algorithm can be further explored on these different heaters. 

6.1.2 Alterations to methodology 

The difficulties of implementing the algorithm on the ifm electronic PLC were 

expounded in Section 5.3. While this hardware is necessary for the safety controls 

of the heater, it is recommended that an additional controller/computer be added 

to the system to manage the operation of the algorithm. The existing PLC and 

HMI would remain to control sensor and actuator input and outputs and safety 

related operations; this would also continue with the modularity and upgradeability 

of customer systems for the algorithm and related hardware. Within this study, 

the new additional hardware would replace the offline computer component in the 

testing and allow a full online operation. Communication between the ifm CR0232 

PLC and the additional computer hardware is necessary, but is a minor concern as 

the PLC is CANopen, a CAN bus specification for automation and embedded 

systems, compliant. Initially, before the use of ifm electronic hardware was 

finalized, the National Instrument CompactDAQ system, specifically cDAQ-9132 

or similar, was considered in place of a PLC. With the option to expand with 

different input-output modules, this hardware may still be feasible as the 

additional/alternative computing hardware in this use. 
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Alternative algorithms for modeling the process heater and carrying out the 

optimization could also be explored. The artificial neural network is known to be 

computationally complex and resource heavy during training of the network. 

Increasing the number of inputs and outputs, the data set size, and/or the number 

of free parameters all contribute to increasing the computational difficulty. A 

possibility considered late in this study is the direct replacement of the ANN with 

a reduced-order proper orthogonal decomposition (POD) model. The use and 

development of a POD models has been covered in various other research areas 

with work by Chen et al. [68], Radermacher et al. [69], and Wang et al. [70]. Ideally, 

the use of a reduced-order POD model would optimize the capturing of the trend 

of the responses of the process heater to the varied input operating states at the 

sacrifice of absolute predictive accuracy. The computational workload of solving 

the model should decrease and the computational efficiency of the whole algorithm 

should increase.  

 Currently, the genetic algorithm only optimizes the thermodynamic 

efficiency of the process heater. Implementing, the originally planned multi-

objective optimization, including pollutant minimization and/or thermal output, is 

a possibility for future work. 

 Lastly, improving the control of the combustion air damper position and 

exhaust gas oxygen content control is necessary. As has been mentioned several 

times earlier in the work, the time delay between changes in the sensed oxygen 

content of the exhaust gas and changes made to the combustion air damper position 

causes a stable but oscillatory control application to the actuator of the damper. 

The optimized exhaust gas composition is at the lower constraint value which 

cannot be further lowered due to this oscillatory response. Improving the damper 

angular position control loop, or using an entirely different control method, may 

lead to even greater efficiencies by lowering the lower global constraint value on 

the exhaust gas composition parameter. 
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