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Abstract

We study a budgeted cut problem known as Graph Protection, where the goal is to
remove edges of a given graph in order to protect valuable nodes from stochastic, infectious
threats. This problem was recently proposed by Shmoys and Spencer to model challenges
associated with wildfire prevention when resources are limited and only probabilistic data
of ignition location is known. The input consists of a graph with node values and edge
costs, a budget, and probabilistic data signifying the likelihood a set of nodes will ignite;
the goal is to remove a set of edges with total cost at most the budget so as to maximize
the expected protected value unreachable from these stochastic ignition scenarios.

Our focus is on the design of approximation algorithms for Graph Protection when an
ignition scenario can contain an arbitrary number of nodes, a setting mostly left open in
the literature. Our main positive result is the design of constant-factor approximation
algorithms for Graph Protection when the input graph is a tree and each node has an in-
dependent chance of being an ignition point. We also show that in the general case when
ignition probabilities are defined by a distribution over subsets of nodes, the problem be-
comes at least as hard as the Densest k-Subgraph problem and thus, such an approximation
algorithm is unlikely to exist.
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Chapter 1

Introduction

1.1 Overview

The spread of infection through a network is a fundamental graph process spanning multiple
areas of combinatorial optimization and computer science. In this thesis, we focus on a
model that abstracts settings where the network represents a landscape, and the goal is to
protect this landscape against the spread of wildfires. In particular, we are interested in
preventative care, where actions based on probabilistic information are taken prior to an
ignition in the hopes of mitigating a potentially catastrophic spread. These actions usually
take the form of preventative fuel treatment, such as prescribing small, controlled fires or
mechanically thinning or removing fuels of the landscape. Naturally, these treatments are
constrained by limited resources due to, for example, location, time, or cost.

Recently, Shmoys and Spencer [40] proposed the Graph Protection Problem to model
the spreading of wildfires and the problems related to its prevention. In Graph Protection,
we are given a graph where the nodes and edges represent the spatial properties of the
landscape. Each node serves as some area within the landscape, and is associated with a
value as well as probabilistic data that signifies the likelihood the area will ignite. Once
an area ignites, fire spreads through the edges of the graph. Its prevention is modeled as
the removal of such edges, each of which has an associated cost of removal. The goal is
to maximize the expected value protected by a set of removed edges when knowing the
probabilistic data of source ignition, such that the total cost of removal does not exceed a
given budget. A formal definition of the problem appears in Section 1.2.

Graph Protection falls under the umbrella of stochastic optimization, a class of mathe-
matical optimization that attempts to model problems containing uncertainty in the input
data. The problem is also computationally intractable, and thus it is unlikely that there
exists efficient, exact algorithms for it. In such cases, an approach often taken is to de-
vise approximation algorithms for the problem, where a feasible solution is found that has
value at least a provable factor away from the optimal value. Shmoys and Spencer present
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approximation algorithms for different problem variants, most of which involve the special
cases where the input graph is a tree and all ignition scenarios consist of a single node.

This work is concerned with the more general Graph Protection problem where there
can exist an arbitrary number of ignition scenarios, each (possibly) containing multiple
ignition nodes. There are a variety of ways by which such ignition scenarios can take
shape, all of which were left open by [40]; the only setting considered in [40] that allows
for ignition scenarios to contain multiple nodes is the rather specialized case where there
are a constant number of ignition scenarios each containing a constant number of nodes.
Our main contribution (see Section 1.3) is the development of constant-factor approxima-
tion algorithms for this problem when the input graph is a tree and each node has an
independent chance of ignition. (Note that this succinctly captures a setting where there
are an exponential number of scenarios, each of which may contain an arbitrary number
of ignition nodes.) We also show that in the general case when ignition probabilities are
defined by a distribution over subsets of nodes, the problem becomes at least as hard as
the Densest k-Subgraph problem and thus, such an approximation algorithm is unlikely to
exist.

1.2 Problem Definition and Scope

In the Graph Protection (GP) problem, we are a given a landscape graph G = (V,E), where
V is a set of |V | = n nodes representing areas of the landscape, and E is a set of edges
(i.e. unordered pairs of nodes) that symbolize adjacency of these areas. Each node u ∈ V
has a non-negative value wu, and each edge e ∈ E has a non-negative cost ce. We are also
given a budget B, representing the maximum amount of resources available for prevention.
As is common practice, we will generalize the weight function w and the cost function c to
that of sets. That is, for S ⊆ V , let w(S) =

∑
u∈S wu and for Y ⊆ E, let c(Y ) =

∑
e∈Y ce.

In addition to the above information, GP consists of a set of ignition scenarios I, each
of which is a subset of nodes I ⊆ V that has probability pI of igniting. In other words,
with probability pI , I becomes the starting point of a wildfire in the landscape. Once
an ignition scenario is activated, all nodes reachable from the scenario nodes will burn.
Our goal is to remove edges from the graph in order to protect nodes from this burning,
knowing that it costs ce to remove edge e and that we can spend at most B on removal.
So, Y ⊆ E protects node u from scenario I if Y contains an edge of every path connecting
u and i, for all i ∈ I, and Y is a feasible solution of GP if c(Y ) ≤ B.

As previously stated, we will be mostly concerned with preventative action: we wish
to remove edges before an ignition occurs so as to maximize the expected value protected
by these edges. With this in mind, the objective of Graph Protection is to maximize the
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expected value of protected vertices. For Y ⊆ E, this can be stated as

max
Y⊆E :
c(Y )≤B

∑
I∈I

∑
u∈V :

Y protects
u from I

pIwu. (1.1)

We call the above the expected protected value of Y .

This preventative, stochastic version of Graph Protection is the main problem inves-
tigated in this work. We call this problem the single-stage stochastic Graph Protection
problem. As discussed in [40], one can also consider other reasonable variants of the prob-
lem. For instance, in the 2-stage version of the problem, actions are possible both before
and after an ignition occurs. In such a situation, actions taken subsequent to a fire are
representative of, for example, extinguishing the spread via firefighting resources. It is
clearly advantageous to implement such actions, as there is certainty in knowing which
nodes of which value are in danger. Therefore, this model becomes interesting when it is
costlier to make these responsive decisions (often called recourse actions), and the problem
then involves the trade-off between these actions and the less-expensive actions when only
stochastic information is available. This problem is known as the 2-stage Graph Protection
problem, and is one of the main focuses of [40].

Another variation of the problem is when edges can only be removed after the break
out of a fire, which may be the case if no probabilistic data is known, or no preventative
resources prior to ignition are available. In other words, this version is the special case
when there exists a single ignition scenario and the ignition probability of the scenario is
equal to 1. We call this the deterministic Graph Protection problem.

When the ignition scenario contains exactly one node, single-stage deterministic Graph
Protection is equivalent (in terms of exact optimization) to the Minimum-Size Bounded-
Capacity Cut problem introduced by Hayrapetyan et al. [24]. They showed that this
problem is NP-hard even when the input graph is a tree via a reduction from the Knapsack
problem. Thus, it is unlikely that an exact, polynomial-time algorithm for GP exists. For
such problems, a common approach is to construct approximation algorithms for them,
where optimality is compromised for efficiency by finding, in polynomial-time, a suboptimal
solution with value of provable quality (see e.g. [45]). Formally, for a maximization problem
with optimal value OPT, an α-approximation algorithm, with α ∈ (0, 1), is a polynomial-
time algorithm that returns a feasible solution with value at least αOPT; α is often called
the approximation ratio or approximation factor of the algorithm. In the case of GP and
similarly budgeted problems, we may also allow ourselves to violate the budget by a certain
factor. We say than an algorithm is an (α, β)-approximation algorithm, where β ≥ 1, if it
always returns a solution of value at least αOPT and cost at most βB.

3



1.3 Our Contribution

In this thesis, we investigate the general stochastic single-stage Graph Protection problem
where scenarios may contain an arbitrary number of nodes, a setting mostly left open by
the work of Shmoys and Spencer [40]. While we focus on the case where the graph is a
tree, some of our results also apply to general graphs (as pointed out below).

We consider two ways by which the underlying ignition scenarios may arise, which bring
about two variants of Graph Protection. In the first setting, the scenario distribution is an
explicitly given distribution over (a polynomial number of) arbitrary subsets of nodes; we
call this problem the Graph Protection with Polynomial Scenarios (GPwPS) problem. In
the second setting, each node has an independent chance of being an ignition point, and
this implicitly specifies the scenario distribution (which now has support of exponential
size); we call this the Graph Protection with Independent Activation (GPwIA) problem.

Our main positive result is the design of constant-factor approximation algorithms for
GPwIA on trees. A notable aspect of these algorithms is a novel use of a component-based
formulation of the problem. We develop a randomized rounding procedure that takes a frac-
tional solution of the LP relaxation of this formulation, and produces an integral solution
that achieves a bicriteria (O(1), O(1))-approximation guarantee with constant probability;
that is, the expected value of the integer solution is a constant fraction of the expected
value of the fractional solution, and its cost is a constant factor of the cost of the fractional
solution. We then show that this can be combined with an enumeration scheme to obtain a
unicriterion constant-factor approximation. Although our approximation algorithms only
apply to the GPwIA problem on trees, this limitation is a result of the difficulty in solving
the LP. The rounding scheme is oblivious to the underlying probability distribution or
graph structure, and thus may have future applications to related versions of the problem.

In contrast, for GPwPS, we show that the problem becomes rather hard to approximate,
even in the case when each scenario has 2 ignition nodes and the input graph is a tree.
More precisely, we show that GPwPS is at least as hard as the Densest k-Subgraph problem,
which is known in the literature as being notoriously difficult to approximate, by giving
an approximation-preserving reduction from Densest k-Subgraph to GPwPS.

We note that, as in [40, 14], our results for GPwIA can be extended from trees to
general graphs by using the cut-based tree decomposition of Räcke [35]. The main idea
of this extension involves constructing a distribution of trees based on the given graph,
such that the value of the cuts is approximately preserved. We then solve the problem on
each tree of the distribution and choose the best solution. The cost of the partition on the
graph is at most a O(log n) factor of the cost of the partition on the tree, and this yields
a (O(1), O(log n))-approximation.
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1.4 Related Literature

As previously mentioned, the Graph Protection problem we investigate was proposed in
[40]. In this section, we first discuss work related to GP in the area of optimization models
for wildlife management, and then more broadly in network diffusion and stochastic op-
timization. Finally, in Section 1.4.3 we discuss the previously known results for GP and
related problems.

The prevention and control of catastrophic wildfires is an increasingly important topic
in forestry and ecosystem management, and accordingly there exists extensive literature
pertaining to the area. In recent decades, the burning of wildlands has been uncharac-
teristically vast, severe, and destructive (see e.g. [1]), and is partly due to the seemingly
contradictory modern practice of fire elimination, which causes an unnatural buildup of
fuels within a landscape (see e.g. [2]). Various fuel reduction treatments have been imple-
mented to control the spread of such wildfires (see e.g. [34, 39]), and optimization models
have been proposed in the literature as a natural tool to gain insights in the strategic
allocation and placement of these treatments in the face of limited resources (e.g. [18, 44]).
Finney [18] introduces a model that interprets an optimal placement of treatments as those
which delay the rate of wildfire spread the most. The placement of these treatments is
focused on areas prone to “problem” fires, the fires that grow the largest and the fastest,
as these fires are, they argue, more likely to be pervasive and destructive. A notably dif-
ferent model, given by Wei, Rideout, and Kirsch [44], splits the landscape into cells, and
simulates fire growth via probabilistic information describing how likely a burning cell will
ignite adjacent cells. With this model, they formulate the problem as a mixed integer
program. As noted in [40], this formulation relies on a questionable assumption that the
conditional probabilities of spread can be represented by linear functions.

The models of Finney and Wei et al. both account for uncontrollable environmental
factors, such as wind direction and landscape composition. However, the models noticeably
differ in their simulation of wildfire spread: Finney focuses on the spatial properties of
growth, while Wei et al. prioritize the stochastic nature of transmission. Both of these
aspects are clearly important when considering wildfire progression, and thus it may be
beneficial to consider alternative models which combine these aspects in a more congruous
way. Establishing such a model was the main motivation of the Graph Protection problem
introduced by [40].

Graph Protection lies within the general area of computational sustainability, an in-
terdisciplinary field that attempts to apply the tools of computer science and operations
research to questions concerning sustainable development (see e.g. [21]). Computational
sustainability has contributed to the understanding of a large number of environmen-
tal and economical questions, including global warming, invasive species control, poverty
mitigation, and sustainable energy use. The spatial and stochastic properties of wildfire
management generalize to many problems in conservation, and it is straightforward to
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apply variants of the Graph Protection model in such cases. One comparable problem is
that of fragmenting a landscape graph in order to establish conservation regions that are
used to protect endangered species. This problem belongs to the broad class of spatial
conservation prioritization (see e.g. [32]).

1.4.1 Network Diffusion

Graph Protection also belongs to a class of problems associated with graph diffusion, where
the spread of an infectious process through a network is modeled within the language of
graph theory. There exists a large body of related literature on diffusive graph processes,
due in part to the variety of phenomena it models, including contagious diseases and word-
of-mouth spread of ideas. The study of such models within the framework of approximation
algorithms is also prevalent in the literature.

One well-studied problem similar to Graph Protection is the Firefighter problem (see e.g.
the survey by Finbow and MacGillivray [17]). Like in Graph Protection, the goal of this
problem is to prevent an infectious process (e.g. a fire) from spreading within a network.
The problem begins with the ignition of a node (or set of nodes). However, unlike in GP,
we protect adjacent nodes from burning by “vaccinating” such nodes. This vaccination
takes place during a sequence of time steps. At each such step, nodes adjacent to a fire
will ignite unless they are vaccinated, and this cascading burn continues until no more
spread is possible. Anshelevich et al. [5] present a number of approximation results for
various objectives within this model, including the maximization of nodes protected under
a budget and the minimization of cost of protecting a given set of nodes. Recently, Spencer
generalized these results to problems of computational sustainability involving the spread
of invasive species [42].

Rather than preventing an infectious process, it is sometimes of interest to maximize
the spread, for example if the goal is to have a large portion of a social network adopt a new
product via viral marketing. Domingos and Richardson [12, 38] pose the problem of maxi-
mizing such a spread, where the idea is to pick a set of initial “seed” individuals so that their
adoption influences others to adopt, resulting in a cascading effect of influence and usage.
The challenge is to pick a set of seeds that maximizes this influence. Kempe, Kleinberg,
and Tardos [28] showed that under a number of different cascading models, the objective
function of this graph problem is submodular and thus the well-known greedy algorithm
of Nemhauser, Wolsey, and Fisher [33] can be used to obtain a (1− 1/e)-approximation.

1.4.2 Stochastic Optimization

As previously mentioned, Graph Protection is a problem in stochastic optimization, a
paradigm of mathematical optimization that attempts to model problems involving un-
certainty (see e.g. [9]). In these problems, part of the input data is typically given as a
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probability distribution over a set of possible scenarios. A well-known model for stochastic
optimization is the 2-stage recourse model, where initial decisions are made based on prob-
abilistic data of the input (the fist stage), and recourse actions are taken once a scenario
is realized (the second stage). Recourse actions usually represent quick decisions made im-
mediately following a realized scenario, and are hence more expensive than actions taken
prior. Therefore, balancing decisions between the first and second stage is the main chal-
lenge of the problem. The goal is often to minimize the expected cost of a solution, which
is the sum of decision costs in the first stage and the expected cost of decisions for all
possible realized scenarios in the second stage. The 2-stage GP problem falls within this
framework.

There are a number of ways the scenario distribution can be represented. A straight-
forward approach is to assume the entire distribution is given as input, say, as a list of
scenarios paired with their non-zero probabilities of occurrence. However, this assumption
is not always practical as the support is often of exponential size; for example, in Graph
Protection, the scenario distribution is over subsets of nodes, and thus the support can
easily be of size exponential in n. We are generally interested in algorithms that have
running time polynomial in the non-stochastic input size, and therefore in order to have
full knowledge of the distribution, the support size must also be such a polynomial. Al-
though this assumption is quite restrictive, it has led to a number of results (see e.g. the
survey by Swamy and Shmoys [43]). One relevant example is the GP variant when each
ignition scenario is a single node, as studied in [40]. A more general way of modeling the
distribution is the black-box model originally given by Gupta et al. [23], where the only
access to the distribution is through an oracle which returns a scenario sampled according
to the distribution.

In this work, we consider the stochastic model of Graph Protection where each node
has an independent chance of ignition. Although this assumption fails to account for pos-
sible correlations between ignition scenarios (which may exist due to, for example, spatial
properties of the landscape), it does allow for a compact representation of an exponential
number of scenarios, and similar assumptions have appeared in the literature. For example,
Möhring et. al [31] investigate a scheduling problem in which the given jobs have indepen-
dently random processing times. Immorlica et al.[26] give approximation algorithms for a
number of stochastic combinatorial optimization problems with independent distributions,
including the stochastic variant of Vertex Cover. Recently, Agrawal et al. [4] investigated
how independence of probabilities contrasts with correlated distributions, and show that
in some cases assuming the former yields a good approximation of the latter. There are
various other works in Computer Science that use the independent-activation model; see
the Swamy-Shmoys survey [43] for examples.

Linear programs have proven useful in approximating a large number of stochastic
optimization problems. This application is analogous to the fruitful approximations of
deterministic problems provided by LP relaxations. However, often unlike their determin-

7



istic counterparts, 2-stage stochastic linear programs can be exponential in the size of the
non-stochastic input, due to their encoding of all stochastic information of the problem.
Because of this blowup in size, they are often more difficult to solve. In fact, Dyer and
Stougie [13] showed that such LPs are #P-hard to solve in the black-box model. Despite
this complexity, Shmoys and Swamy [41] provide a general framework that applies LP-
based approximation algorithms of deterministic problems to their stochastic analogue.

1.4.3 Prior Work on Graph Protection and Related Problems

Shmoys and Spencer [40] mainly focus on the 2-stage Graph Protection problem on trees
when each ignition scenario consists of a single ignition point. They present a bicriteria(
1−(1− 1

2d
)2d, 2

)
-approximation for this specific problem, where d ≤ n denotes the diameter

of the tree. (Recall that in the 2-stage problem, edges can be cut both before and after
(at an inflated cost) a scenario realizes, and the total cost of edges cut in each scenario
must be at most the given budget B.) Their result is based on rounding the solution of a
natural LP-formulation of the problem using pipeage rounding, a technique introduced by
Ageev and Sviridenko [3].

As observed by [40], the single-stage stochastic GP problem on trees (i.e. the above
problem when there are no second-stage decisions), where each ignition scenario contains a
single node, is actually a special case of the Maximum Coverage with a Knapsack Constraint
(MCKC) problem, and thus applying Ageev and Sviridenko’s result produces a

(
1 − (1 −

1
d
)d
)
-approximation [3]. They also observe that this algorithm can be combined with the

deterministic single-node PTAS of Hayrapetyan et al. [24] in order to obtain a unicriterion
0.387-approximation for the 2-stage problem. This algorithm works by spending all of the
budget in either the first or second stage and then choosing whichever solution yields the
better value. We note that neither the reduction to MCKC for the single-stage problem, nor
the above decoupling for the 2-stage problem, seem to work in the setting when ignition
scenarios contain multiple nodes. In this setting, the protection of a node can now require
multiple edges to be cut, and in the 2-stage setting a node may end up being protected
due to edges being cut in both stages, making it unclear how to attribute protection to a
specific decision.

We now discuss other budgeted cut problems that were considered in the approximation
algorithm literature prior to [40], and are similar to, or special cases of, Graph Protection.
Hayrapetyan et al. [24] introduced the Minimum-Size Bounded-Capacity Cut (MinSBCC)
problem, wherein we seek an s-t cut of cost at most B in an undirected graph that min-
imizes the size of the s-side of the cut. It is easy to see that MinSBCC is essentially the
deterministic GP problem with a single source, except that in MinSBCC we seek to minimize
the number of unprotected nodes. Hayrapetyan et al. obtained a bicriteria approximation
algorithm for MinSBCC as well as a PTAS for when the input graph has bounded treewidth.
This implies a PTAS for the deterministic GP problem when the input graph has bounded
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treewidth, as discussed in Theorem 1 of [40].
Engelberg et al. [14] introduced two budgeted versions of the Multiway Cut problem,

both of which generalize MinSBCC (when one considers the objective of maximizing the
size of the t-side of the cut). In particular, in the Weighted Budgeted Separating Multiway
Cut (wBSMC) problem that they introduce, we are given edge costs, a set D of terminals,
and a weight function w : D ×D → Z+, and the goal is to remove a set of edges of total
cost at most B so as to maximize the total weight of separated terminal pairs. Engelberg
et al. give a 1/3-approximation algorithm for this problem on trees. Observe that the
special case of stochastic single-stage GP where each scenario consists of a single node can
be reduced to wBSMC as follows: we simply create for each node u and ignition scenario
{i}, a terminal pair (u, i) with weight piwu, where pi is the probability of ignition of i and
wu is the value of node u.

Finally, using the tool of Räcke embeddings [35], the results for GP on trees and those
of Engelberg et al. on trees can be extended to obtain bicriteria guarantees for general
graphs, where the budget is violated by an O(log n) factor (in addition to any violation
incurred by the algorithm on trees).

9



Chapter 2

Approximation Results for Arbitrary
Ignition Scenarios

2.1 Introduction

In this chapter, we investigate the version of the single-stage stochastic Graph Protection
problem when each ignition scenario may contain an arbitrary number of nodes (specifying
the ignition points). Recall that the input of this problem is a graph G = (V,E) with
non-negative node values wu, u ∈ V , and non-negative edge costs ce, e ∈ E, a budget
B ≥ 0, as well as a description of the scenario distribution, that is, the ignition scenarios
and their probabilities. The goal is to find a set of edges of total cost at most B so that
the removal of such edges maximizes the expected value protected when a random subset
of nodes ignites. We may assume that ce ≤ B for all e ∈ E, as otherwise we can contract
e. We focus mostly on the case where G is a tree, but some of our results also apply to
arbitrary graphs (which we point out below).

An important detail left out of the above description is how we specify the scenario
distribution. This work focuses on two different ways of doing this, which yield the following
two variants of the Graph Protection problem.

� In the first model, an ignition scenario may be an arbitrary subset of V , and the
scenario distribution is specified by explicitly listing these subsets paired with their
probabilities of occurrence. As previously noted, while this model allows for igni-
tion scenarios with arbitrary combinatorial structure, one noticeable drawback is
that specifying a distribution with an exponential number of scenarios results in an
exponential blow-up in the input size, rendering the notion of “polynomial-time”
algorithm ineffective. This model is therefore restricted to the polynomial-scenario
model, where the input distributions are only those with polynomial support. We
call this variant of Graph Protection the Graph Protection with Polynomial Scenarios
(GPwPS) problem.
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� For the second model, we apply to Graph Protection the independent-activation model,
which in this context means that each node has an independent chance of ignition.
As previously mentioned, this model has often been considered in the Computer
Science literature (e.g. [31, 26, 4]), and allows for a succinct capturing of an expo-
nential number of scenarios. We call this resulting variant the Graph Protection with
Independent Activation (GPwIA) problem.

Our main contribution is the design of constant-factor approximation algorithms for
the GPwIA problem when the input graph is limited to a tree. As previously noted, the
only results known prior [40] were for the cases where (i) each scenario consists of a single
ignition point, or (ii) when there are a constant number of scenarios, each having a constant
number of ignition points. In contrast, notice that in GPwIA, we deal with an exponential
number of scenarios, and a scenario may contain an arbitrary number of ignition points.
Given an instance of GPwIA, let OPT be the optimal expected protected value. Our results
are summarized in the following theorems.

Theorem 2.1.1. There exists a randomized bicriteria approximation algorithm for the
GPwIA problem on trees that succeeds with constant probability and conditioned on success,
returns a solution with expected protected value at least 0.0095 ·OPT and cost at most 2B.

Theorem 2.1.2. There exists a randomized approximation algorithm for the GPwIA prob-
lem on trees that, when given ε ∈ (0, 1), succeeds with constant probability and conditioned
on success, returns a solution with expected protected value at least 0.0023(1− ε)OPT and
cost at most B.

We remark that our goal was not to optimize the constants in Theorems 2.1.1 and 2.1.2
above, but was instead focused on keeping exposition simple.

We also show that a similar approximation for GPwPS on trees is unlikely, as such
a result implies the same approximation for the notorious Densest k-Subgraph problem,
which is believed to not exist. This result is formally given below.

Theorem 2.1.3. An α-approximation algorithm for GPwPS on trees implies an α-approx-
imation algorithm for Densest k-Subgraph.

The outline of this chapter is as follows. In Section 2.2, we show that a natural linear
program relaxation of GP (which is the one used by [40]) admits a large integrality gap even
when there is only one scenario (i.e. the single-stage deterministic problem) containing 2
ignition points. This gap motivates a new configuration-style formulation of the problem
(valid for all graphs), which interprets a solution as a set of disjoint connected components.
Configuration linear programs have proven to be robust tools in the design of approximation
algorithms (e.g. [27, 6, 11, 15, 19]), although their usage is somewhat sparse; a possible
explanation for this is that the formulations may contain an exponential number of variables
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and/or constraints due to their set-partitioning nature. We discuss this formulation and
its LP relaxation in Section 2.3.

In Section 2.4, we design a randomized rounding scheme that rounds a fractional solu-
tion x of the component-based LP with objective value W to a random integer solution that
satisfies, with constant success probability, the following bicriteria guarantee (conditioned
on success): the expected protected value is Ω(W ) and the expected cost is O(B). This
guarantee is formally given in Theorem 2.4.3. The design and analysis of our rounding
algorithm builds upon some ideas from the work of Feige [15] in the disparate setting of
combinatorial auctions. A notable benefit of our scheme is that no structure of the graph
or underlining ignition probabilities is assumed, and thus if one can (approximately) solve
the linear program for any given class of graphs and/or distribution model, our rounding
result can be applied.

In Section 2.5, we focus on the GPwIA problem and show that we can obtain a PTAS
for solving the component-based LP on trees. This result allows us to apply our rounding
scheme, yielding the approximation algorithm of Theorems 2.1.1; we summarize this in
Section 2.6. In Section 2.7 we discuss how to modify this algorithm to obtain the uni-
criterion approximation of Theorem 2.1.2. In Section 2.8, we prove the inapproximability
result of Theorem 2.1.3 for GPwPS. Since, as noted above, our rounding algorithm works
for any graph and any scenario distribution, this inapproximability result also means that
it is hard to solve the component-based LP for GPwPS. This will also follow more directly
from the reduction we describe.

2.2 Integrality Gap of Natural LP

For the Graph Protection problem when arbitrarily sized ignition scenarios are allowed, let
I ⊆ 2V be the set of these scenarios and let pI be the ignition probability of scenario I ∈ I.
The natural linear program relaxation of this problem, assuming the input graph is a tree,
is given below; it is the generalization of the single-source LP used in Shmoys and Spencer
[40]. For each ignition scenario I ∈ I and each vertex v ∈ V , the variable xv,I represents
whether v is protected when scenario I ignites. Each edge e is assigned a variable ye which
corresponds to whether e is part of the solution, i.e. whether e is removed from the graph
for node protection. The set of edges in the path between nodes i and v is denoted as Pi,v.

maximize
∑
I,v

pIwvxv,I (LP1)
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subject to:
∑
e∈Pi,v

ye ≥ xv,I ∀i ∈ I, I ∈ I, v ∈ V (2.1)

∑
e∈E

ceye ≤ B (2.2)

1 ≥ xv,I ≥ 0 ∀ I ∈ I, v ∈ V
ye ≥ 0 ∀ e ∈ E

The following proposition shows that the integrality gap of the above LP is bounded below
by order |V | = n, implying that it is inadequate for our use in approximating the problem.
The example used to show this gap contains only one scenario that has two ignition points.
Thus, it remains a bad example for any scenario-distribution model that is rich enough to
capture this scenario.

Proposition 2.2.1. The integrality gap of (LP1) is Ω(n).

Proof. Consider the following instance of the problem, as shown in Figure 2.1. The graph
consists of a single path on n vertices whose endpoints are the two ignition points i1 and
i2 of the only ignition scenario I = {i1, i2} with pI = 1. Let B = 1, the value of all vertices
be 1, and the single edges incident to i1 and i2 be labelled e1 and e2, respectively. For a
single vertex v 6∈ I, let its two incident edges have cost 1/2, and let all other edges have
cost (1 + ε)/2.

Figure 2.1: Instance of the stochastic single stage problem with B = 1 that exhibits an
integrality gap of Ω(n).

Clearly the optimal integral solution consists of removing the two edges incident to
v, as choosing any other edge makes all other edges unaffordable, resulting in no nodes
being protected. This solution gives a protected value of 1. A feasible fractional solution,
however, consists of setting ye1 and ye2 to 1/(1 + ε), yielding an objective value of (n −
2)/(1 + ε) which proves the claim. �

2.3 Component Based Formulation

We now discuss a new configuration-style formulation of the Graph Protection problem,
based on the interpretation of a solution as a set of disjoint connected components of the
input graph; we emphasize that this formulation is valid for any arbitrary graph. Recall
that a feasible solution of GP consists of a set of edges of total cost at most B. The removal

13



of such edges partitions the graph into a set of connected components; these components
may contain nodes of different ignition scenarios. If a component contains a node of an
ignition scenario, and this scenario ignites, all nodes contained in the component will burn.
On the other hand, if no ignition occurs within a component, all nodes will be protected.
Thus, the expected protected value of a single component is the weight of the component
multiplied by the probability that no scenario intersecting with the component ignites.

We define this expected protected value of a connected component A as the follow-
ing weight function, where IA is the random event that no ignition scenario intersecting
component A ignites.

Π(A) := w(A) · Pr[IA]. (2.3)

Let Y ⊆ E be a feasible set of edges that achieves the optimal expected protected value
OPT, and let O∗ be the set of connected components of G formed by removing Y . Clearly,∑

A∈O∗ Π(A) = OPT.
The boundary of a component A is the subset of edges of G with exactly one endpoint in

A, and is denoted as δ(A). We call the cost of such a boundary, i.e. c(δ(A)), the boundary
cost of A. Let C be the set of components of G with boundary cost at most B. With our
component-based interpretation of the optimal solution, we formulate the following linear
program, where we have a variable xA for every component A ∈ C indicating if A is a
component of our solution.

maximize
∑
A∈C

Π(A)xA (P)

subject to:
∑
A∈C

(
c(δ(A))

2

)
xA ≤ B (2.4)∑

A:v∈A

xA ≤ 1 ∀ v ∈ V (2.5)

xA ≥ 0 ∀ A ∈ C

Constraint (2.4) encodes the budget constraint of the problem; a set of components is a
feasible integral solution only if their total boundary cost is at most 2B (the factor of 2 is a
result of each edge being in exactly two component boundaries). Constraint (2.5) enforces
an integral solution to consist of only disjoint components. Clearly, the optimal integral
solution O∗ is feasible for the above LP, and thus its value is at most the value of the
optimal fractional solution.

We note that if the set of components are not constrained to those of C, that is, if
variables xA are allowed for components A that have arbitrary boundary cost, then it can
be shown that (P) has a similar integrality gap as (LP1). Thus it is crucial for us to
consider components with boundary cost at most B. We also note that the number of
variables of (P) is exponential in n, implying standard techniques cannot be used to solve
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this LP in polynomial time. In Section 2.5 we discuss how to approximately solve (P)
despite this setback.

In devising our rounding algorithm, we will exploit the following useful property of the
weight functionΠ, which resembles that of fractional subadditve utility functions studied by
Feige [15]. A form of this property appears earlier in game theory and economics literature
as part of the classical Bondareva-Shapley Theorem [10, 30]. We show this property of Π
by first extending the function to arbitrary subsets of V . For a given set S ⊆ V , let C(S)
be the set of connected components of the subgraph of G induced by S. Then,

Π(S) :=
∑

S′∈C(S)

Π(S ′).

Lemma 2.3.1. Let A ⊆ V . Let z be a vector indexed by 2A such that zS ≥ 0 for all S ⊆ A
and

∑
S:v∈S zS ≥ 1 for all v ∈ A. Then,

Π(A) ≤
∑
S⊆A

zSΠ(S).

Proof. Clearly for any component S ′ ⊆ A, all ignition scenarios that intersect S ′ will
intersect A, and therefore Pr[IS′ ] ≥ Pr[IA]. So,∑

S⊆A

zSΠ(S) =
∑
S⊆A

zS
∑

S′∈C(S)

w(S ′) Pr[IS′ ]

≥
∑
S⊆A

zS
∑

S′∈C(S)

w(S ′) Pr[IA]

= Pr[IA]
∑
S⊆A

zS
∑
v∈S

wv

= Pr[IA]
∑
v∈A

wv
∑
S:v∈S

zS

≥ Pr[IA]
∑
v∈A

wv

= Π(A).

�

As previously stated, Lemma 2.3.1 shows that Π is a set function with a very simi-
lar property to fractionally subadditve set functions [15]. Note however that Π is not a
monotone function (since adding an ignition point can decrease Pr[IA]). We leverage the
above property of Π to build upon Feige’s 1/2-approximation algorithm for maximizing
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welfare in combinatorial auctions with fractionally subadditve valuations [15]. The follow-
ing proposition is a restatement of Proposition 2.3 of Feige, applying it to our set function.
The proof given below is essentially the same as the one found in [15], and is included for
the sake of completeness.

Proposition 2.3.2 ([15]). Let k ≥ 1 be an integer. For a set A ⊆ V , consider a distribution
over subsets of A such that each vertex of A is included in S ⊆ A with probability at least
1/k. Then, E[Π(S)] ≥ Π(A)/k.

Proof. Let pS be the probability (according to the distribution) that S ⊆ A is selected.
Note that

∑
S⊆A pS = 1. The probability that v is included in S is exactly the sum of the

probabilities of all sets containing v, and thus
∑

S:v∈S pS ≥ 1/k and
∑

S:v∈S kpS ≥ 1 for all
v ∈ A. Then from Lemma 2.3.1 we have that Π(A) ≤

∑
S⊆A kpSΠ(S) and the proposition

follows. �

The algorithms of Theorems 2.1.1 and 2.1.2 essentially consist of two parts: finding a
near-optimal fractional solution of (P), and rounding said solution to an integral solution
in such a way that not too much protected value is lost. The methods, techniques, and
tools used for actualizing these parts constitute a major portion of the remainder of this
work.

2.4 Rounding Fractional Solutions

We now describe a randomized algorithm that rounds a feasible fractional solution of (P)
to an integral solution. Let x be such a fractional solution and let W be its objective value;
we assume that x is polynomial in size (we show later that when we apply the rounding
routine, this will be the case). We will first give a randomized procedure that rounds x to an
integral solution that in expectation has expected protected value Ω(W ) and cost O(B).
However, this rounding does not guarantee that the actual integral solution meets both
bounds simultaneously, so we modify it in Section 2.4.1. Along the way, we will introduce
constants that govern the “success” of the algorithm. In Section 2.6, we instantiate these
constants, yielding the approximation algorithm of Theorem 2.1.1.

The rounding of x will consist of two stages. In this first stage, we pick a set of tentative
components based on x, some of which may intersect. Then, we convert this tentative set
to an integral solution by assigning each intersecting region to a single component. Let
A be the set of components corresponding to the entries of x. The initial rounding of
the fractional solution is as follows: Given a scaling factor σ ∈ (0, 1], add each A ∈
A to the collection of tentative components T independently with probability σxA. Let
XA be the random variable indicating the value component A contributes to this initial
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allocation. Then XA = Π(A) with probability σxA and XA = 0 otherwise. From linearity
of expectation, the expected protected value of T is

E

[∑
A∈T

Π(A)

]
=
∑
A∈A

E[XA] = σ
∑
A∈A

xAΠ(A) = σW.

Let {A1, . . . , A`} = T be the tentative components allocated with this randomized
rounding. As previously noted, the components of T are not necessarily disjoint, and
therefore may not be a feasible integral solution. Our goal is to modify these tentative
components so that afterwards each vertex is contained in at most one of them. We say
R is an atomic region of T if (i) R ∩ Ai ∈ {∅, R} for all i = 1, . . . , `; (ii) R ⊆ Ai for some
i = 1, . . . , `; and (iii) R is a maximal set satisfying (i) and (ii).

The final part of the rounding scheme is to “assign” each atomic region R to a single
tentative component. Let T (R) be the set of tentative components that contain R. Note
that |T (R)| ≤ n (i.e., it’s polynomially bounded) because the atomic regions are disjoint.
We assign R to a component of T (R) uniformly at random. This produces a set Si ⊆ Ai,
for each i = 1, . . . , `, where Si is the union of the atomic regions that were assigned to Ai.
The final integral solution x̃ consists of the components compromising S1, . . . , S`, that is,
we set x̃A = 1 for every component A contained in S1, . . . , S`.

Lemma 2.4.1. The expected value of the integral solution obtained by the above randomized
assignment scheme is at least σW/2.

Proof. Following Feige [15], we interpret the above randomized algorithm in the following
way. Assuming that A′ is a tentative component, the final assignment of subset S ′ to A′ can
be viewed as the following randomized process: First, pick A′ as a tentative component.
Then, pick all other tentative components, and assign each atomic region of A′ to a tentative
component as described above. The atomic regions assigned to A′ make up S ′.

For u ∈ A′, let nu be the number of tentative components that contain u. Then,

E[nu | A′ ∈ T ] ≤ 1 +
∑
A:v∈A

Pr
[
A is tentatively picked

]
= 1 + σ

∑
A:v∈A

xA

≤ 1 + σ, (2.6)

where the final inequality comes from constraint (2.5) of the LP. Recall that we assign
an atomic region R to a tentative component that contains R uniformly at random. In
other words, we assign a node u ∈ R to a tentative component containing u uniformly at
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random. So, conditioned on u being in A′, u is assigned to A′ with probability 1/nu. Thus,

Pr
[
u ∈ S ′ | A′ ∈ T

]
= E[1/nu | A′ ∈ T ]

≥ 1/E[nu | A′ ∈ T ] (2.7)

≥ 1/(1 + σ)

≥ 1/2,

where the inequality (2.7) is due to Jensen’s inequality. Then, applying the above to
Proposition 2.3.2 implies that E[Π(S ′)] ≥ Π(A′)/2. From this it is easy to see that the
final integral solution will recover at least 1/2 of the expected value of the tentative sets,
which is σW . �

Lemma 2.4.2. The expected cost of the integral solution is at most σ2B.

Proof. Let YA denote the random variable for the cost A contributes to the tentative
solution. So, YA = c(δ(A)) with probability σxA and YA = 0 otherwise. Then, similar to
before,

E
[
cost of T

]
= σ

∑
A∈T

xAc(δ(A)) ≤ σ2B, (2.8)

where the inequality comes from (2.4) of (P).
Let R be the set of all atomic regions obtained by the first step of the rounding scheme.

We claim that for everyR ∈ R, every e ∈ δ(R) is found in some δ(A) forA ∈ T (R). Assume
for contradiction that there exists some e = uv such that e ∈ δ(R) with u ∈ R, and that
there exists no A where u ∈ A and v 6∈ A. Then (R∪{v})∩A = R∪{v}, which contradicts
R being maximal. If there exists no A such that u ∈ A, then R is not an atomic region
by definition. Therefore, since every edge is in at most two atomic region boundaries, the
expected cost of our final solution is:∑

R∈R

c(δ(R)) ≤ 2 · c

(⋃
R∈R

δ(R)

)
≤ 2 ·

∑
A∈T

c(δ(A)). (2.9)

Combining (2.8) and (2.9) proves the claim. �

2.4.1 Probability of Success

From Lemmas 2.4.1 and 2.4.2 we know that the expected protected value and expected
boundary cost of our integral solution is at least a fraction of W and at most a multiple
of B, respectively. However, this does not guarantee that the actual solution returned by
this randomized scheme achieves both these bounds. Our goal is to show that the solution
does have this property with constant probability.

We show this by analyzing the tentative allocation obtained after the first step of the
randomized algorithm. The analysis makes use of the following version of the Chernoff
bound.
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Theorem (Chernoff Bound). Let X1, . . . , Xn be independent random variables such that
0 ≤ Xi ≤M for all i, and let X = X1 + · · ·+Xn. Then for any ε ≥ 0,

Pr
[
X ≤ (1− ε)E[X]

]
≤ exp

(
−ε

2

2
· E[X]

M

)
.

We assume that for each A ∈ C with xA > 0, the expected protected value of A is not a
significant portion of the fractional solution value. That is, we may assume there exists a
γ ∈ (0, 1] such that Π(A) ≤ γW for all A ∈ A. This is because if a component existed with
value greater than γW , choosing this single component as a solution already yields a good
approximation. We discuss this idea in more detail when we present our approximation
algorithm in its entirety.

As before, let XA be the independent random variable representing the value A con-
tributes to our rounded solution. So, XA = Π(A) with probability σxA and XA = 0
otherwise. Let X =

∑
A∈C XA; recall that E[X] = σW . Since 0 ≤ XA ≤ γW for all A, the

Chernoff bound implies, for ε1 ≥ 0,

Pr [X ≤ (1− ε1)σW ] ≤ exp

(
−ε

2
1

2
· σ
γ

)
. (2.10)

Similarly, if YA is the random variable for the contributed boundary cost of component A
and Y =

∑
A∈C YA, then for κ > 0, Markov’s Inequality together with (2.8) implies

Pr
[
Y ≥ κB

]
≤ 2σ

κ
.

After the initial randomized rounding of the fractional solution, the algorithm detects
if either of the above events occur. If so, the algorithm rejects the solution and returns
failure. Otherwise, we continue to the second stage of the rounding. So, from the union
bound, the probability of continuing is at least

φ1 = 1− exp

(
−ε

2
1

2
· σ
γ

)
− 2σ

κ
. (2.11)

One last detail that needs to be resolved is that because of this newly realized possibility
of failure, the second part of the rounding algorithm (when atomic regions are assigned to
tentative components) occurs conditioned on the probability of acceptance, and thus the
analysis of Lemma 2.4.1 does not entirely apply. In other words, if Ω1 is the event that
the initial component allocation is accepted, and ΩA is the event that component A is a
tentative component, then for u ∈ A, instead of bounding E[nu | ΩA] as we did in (2.6),
it is necessary to bound E[nu | ΩA,Ω1]. Let ΩC

1 be the event that the algorithm returns
failure. Then, because

E
[
nu | ΩA

]
= Pr

[
Ω1 | ΩA

]
· E
[
nu | ΩA,Ω1

]
+ Pr

[
ΩC

1 | ΩA

]
· E
[
nu | ΩA,Ω

C
1

]
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we have
Pr
[
Ω1 | ΩA

]
· E
[
nu | ΩA,Ω1

]
≤ E

[
nu | ΩA

]
. (2.12)

Our goal now is to find a lower bound for Pr [Ω1 | ΩA]. Let X ′ =
∑

A′∈A\{A}XA′ and

Y ′ =
∑

A′∈A\{A} YA′ . Then,

Pr
[
Ω1 | ΩA

]
≥ 1− Pr

[
X ′ +Π(A) ≤ (1− ε1)σW

]
− Pr

[
Y ′ + c(δ(A)) ≥ κB

]
. (2.13)

For the first probability, note that by linearity of expectation, E[X ′] = E[X]−σxAΠ(A).
Also, it is easy to see that

Pr
[
X ′ ≤ (1− ε1)σW −Π(A)

]
≤ Pr

[
X ′ ≤ (1− ε1)σ (W − xAΠ(A))

]
= Pr

[
X ′ ≤ (1− ε1)E[X ′]

]
. (2.14)

Then, by the Chernoff bound and the fact xAΠ(A) ≤ Π(A) ≤ γW , we obtain

Pr
[
X ′ ≤ (1− ε1)E[X ′]

]
≤ exp

(
−ε

2
1

2
· σ(W − xAΠ(A))

γW

)
≤ exp

(
−ε

2
1

2
· σ(1− γ)

γ

)
. (2.15)

For the latter probability of (2.13), if κ > 1, then again from Markov’s inequality we have

Pr
[
Y ′ ≥ κB − c(δ(A))

]
≤ E[Y ′]

κB − c(δ(A))

≤ E[Y ]

(κ− 1)B

≤ 2σ

κ− 1
. (2.16)

Therefore, combining (2.12)–(2.16) with (2.6) and setting

φ2 = 1− exp

(
−ε

2
1

2
· σ(1− γ)

γ

)
− 2σ

κ− 1
(2.17)

implies that

E
[
nu | ΩA,Ω1

]
≤ 1

φ2

· E
[
nu | ΩA

]
≤ 1 + σ

φ2

.

Thus, u ∈ A gets assigned to the final S ⊆ A with probability at least φ2/(1 + σ), and
Proposition 2.3.2 implies that E[Π(S)] ≥ φ2Π(A)/(1 + σ).

These results are summarized in the following theorem.
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Theorem 2.4.3. Let x be a fractional solution of (P) with objective value W . Let ε1, κ,
γ, and σ be constants such that ε1 ≥ 0, κ > 1, γ, σ ∈ (0, 1], and φ1 and φ2, defined as

φ1 = 1− e−ε21σ/(2γ) − 2σ/κ, φ2 = 1− e−ε21σ(1−γ)/(2γ) − 2σ/(κ− 1)

are greater than 0. Then, we can round x to a random integer solution x̃ with objective
value w̃ and boundary cost c̃, such that letting Ω1 denote the event that the algorithm
returns success, we have:

(i) Pr[Ω1] ≥ φ1,

(ii) E
[
w̃
∣∣ Ω1

]
≥ σ(1− ε1)φ2

(1 + σ)
W ,

(iii) Pr
[
c̃ ≤ κB

∣∣ Ω1

]
= 1.

As previously stated, in Section 2.6 we give values that make both φ1 and φ2 positive.
Before this, we discuss in the following section how we actually find a fractional solution
of the linear program.

2.5 Solving the Linear Program

As previously noted, the linear program (P) has an exponential number of variables, and
thus cannot be directly solved in polynomial time. However, as there are only a polynomial
number of constraints (namely, n + 1), we can solve the dual of the LP with the ellipsoid
method in polynomial time, as long as we meet certain criteria. The dual (D) is given below,
where the dual variable α corresponds to the budget constraint (2.4) and the variable βu
corresponds to the constraint (2.5) for each u ∈ V .

minimize Bα +
∑
u∈V

βu (D)

subject to: α · c(δ(A))
2

+
∑
u∈A

βu ≥ Π(A) ∀A ∈ C (2.18)

α, βu ≥ 0 ∀ u ∈ V

The ellipsoid method makes use of a separation oracle to check feasibility of a linear
program. A separation oracle is a procedure that, when given a potentially feasible solution
of a linear program, checks whether this solution is indeed feasible. Additionally, if the
solution is infeasible, the separation oracle returns a constraint of the LP that is violated.
The benefit of this method is that it finds an optimal solution in time independent of the
number of constraints. This property is formally described as the theorem below.
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Theorem 2.5.1 ([22]). Consider the following linear program for c ∈ Rn, b ∈ Rm, and
ai ∈ Rn, i = 1, . . . ,m,

min
x∈Rn

{
cTx : aTi x ≥ bi ∀ i = 1, . . . ,m, x ≥ 0

}
.

Suppose there exists a separation oracle for the above LP with running time N , and suppose
that the encoding length of each constraint aTi ≥ bi is at most M . Then, the ellipsoid
method finds an optimal solution of the LP in time poly(n,N,M). Furthermore, this
process yields an equivalent linear program whose constraints are the polynomial number of
violated inequalities found by the separation oracle.

Thus, the ellipsoid method can solve (D) in polynomial time as long as we have a
separation oracle for the constraints (2.18) that runs in polynomial time. To achieve this,
we first define the following density ρ for a component A for a given candidate solution
α, β:

ρ(A) :=
Π(A)− β(A)

c(δ(A))/2
, (2.19)

where β(A) :=
∑

u∈A βu. Note that α, β is feasible if and only if α ≥ ρ(A) for all A ∈ C.
Furthermore, if there exists any constraint that is violated, say ρ(A′) > α for some A′, then
the constraint corresponding to the component with maximum ρ is also violated. Thus,
if we can solve maxA∈C{ρ(A)} in polynomial time, we can check whether the maximum
density is at most α, resulting in a polynomial-time separation oracle.

Unfortunately, since ρ is essentially an arbitrary set function when we have arbitrarily
sized ignition scenarios, this maximization problem is NP-hard. However, in the special
case when the input graph is a tree and each node has an independent chance of igniting
(i.e. the GPwIA problem), after suitably scaling the input data, we can efficiently solve
the problem of maximizing ρ via dynamic programming; we describe this is Section 2.5.1.
However, for more general scenario-distributions, even on trees, both the Graph Protec-
tion problem (i.e. GPwPS on trees) and the above density-maximization problem become
Densest k-Subgraph hard, which we show in Section 2.8.

2.5.1 Independent Node Ignition on Trees

We now focus on the Graph Protection with Independent Activation (GPwIA) problem,
which is the special case when the ignition of each node is an independent event. Our
focus is also on the case when the input graph is a tree T = (V,E). Let pu be the
probability that u ignites, and let qu = 1 − pu be the probability that u does not ignite.
Then, the probability that no ignition occurs in a component A is q(A) :=

∏
u∈A qu, and

our Π function becomes Π(A) = w(A)q(A).
A main advantage of having independent probabilities over a distribution of ignition

scenarios I ⊆ 2V is that we can better approximate the maximum density ρ(A) over

22



all components A. Intuitively, this is because smaller sub-problems are capable of being
merged, as the probability of ignition in one component is independent of the probability
of ignition in another, disjoint component. We will be confining the input graph of GPwIA
to trees, and as such, we can use a dynamic program (DP) to search for components
containing a node u by merging components of the subtrees of u. The following section is
concerned with this algorithm.

Dynamic Program for Maximizing Density

Given an instance of GPwIA such that the input graph is a tree T = (V,E), the dynamic
programming algorithm works as follows. First, pick a root r ∈ V of the tree, and direct all
edges away from r. We process the nodes in a bottom-up fashion, processing all children of
a node before considering the node itself. We will argue that the maximum-density compo-
nent can be computed by keeping track of a bounded number of component-specifications
(i.e. tuples of parameter values) at each node; these component-specifications can be up-
dated using component-specifications of the children of the node. The subproblem at a
node u is to determine which component-specifications are achievable by a component con-
tained in Tu, the subtree rooted at u. More precisely, we will assign a table Du to each node
u such that each entry of Du corresponds to a component-specification, and the existence
of such an entry implies there exists a component in Tu that meets these specifications.
Moreover, these specifications will allow us to compute the density of a component meeting
these specifications. We say a component is rooted at u if u is the vertex in Au closest to
r (i.e. u ∈ Au and Au ⊆ Tu). As done above, we will signify that a component A is rooted
at u by placing u in the subscript of A.

The table Du will have three dimensions, indexed by the weight, probability of non-
ignition, and boundary cost of components rooted at u. So, a non-null entry Du

[
w′
∣∣q′ ∣∣c′]

signifies that there exists a component Au such that w(Au) = w′, q(A) = q′, and c(δ(Au)) =
c′. The value of each table entry is the minimum β-value of a component that has the
corresponding values. That is, if Du

[
w′
∣∣ q′ ∣∣ c′] = β′, then out of all components Au with

w(Au) = w′, q(Au) = q′, and c(δ(Au)) = c′, the one with minimum β-value has β(Au) = β′.
We call a set of components comparable if they are all rooted at u and have the same weight,
non-ignition probability, and boundary cost.

The algorithm starts by assigning to eachDu the component-specification corresponding
to when u is the single vertex of the component. So, for all u ∈ V , we set

Du

[
wu
∣∣ qu ∣∣ c(δ(u))

]
= βu.

We can then build all other valid components by merging these entries (starting with
the leaves), described in the following way. Notice that for s ∈ V , any component As
can be viewed as the composition of s and a set of components rooted at the children
u1, . . . , uk of s, say Au1 , . . . , Auk . Given that we have populated the entries of Du1 , . . . , Duk
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properly, such a component can be “created” by considering u1, . . . , uk in some order, and
“merging” the appropriate entries of Dui and Ds. In the algorithm, when considering ui,
each entry Dui

[
w′
∣∣ q′ ∣∣ c′] = β′, corresponding to say component Bui , is “merged” with

each entry Ds[w
′′
∣∣ q′′ ∣∣ c′′] = β′′, corresponding to say a component Bs. The new entry

is Ds

[
w′ + w′′

∣∣ q′ · q′′ ∣∣ c′ + c′′ − 2csui
]

= β′ + β′′, which corresponds to the component
Bs ∪Bvi ; see Algorithm 2.1 for more detail.

For the above example with s and children u1, . . . , uk, suppose we consider u1, . . . , uk in
the order 1, . . . , k. After considering u1, we have an entry in Ds corresponding to Au1 ∪{s}
(or something comparable with better β-value); when we consider u2, this will create an
entry in Ds for Au2 ∪Au1 ∪{u}, and so on. Claim 2.5.3 makes this argument rigorous. The
complete algorithm is presented as Algorithm 2.1.

Lemma 2.5.2. Algorithm 2.1 returns the value of maximum ρ(A) out of all components
A ∈ C. That is, the algorithm returns

max
A∈C

Π(A)− β(A)

c(δ(A))/2
. (2.21)

Furthermore, the running time of the algorithm is O(nM2), where M is the maximum
number of entries in a Du table.

Proof. We prove this by showing through induction that for each u ∈ V , there exists
an entry Du for each component of T rooted at u that has minimum β-value out of all
comparable components rooted at u. This is stated as the following claim.

Claim 2.5.3. Let Au be a component of T rooted at u and let w′ = w(Au), q′ = q(Au),
and c′ = c(δ(Au)). If

Au = arg min
A rooted at u:

w(A)=w′, q(A)=q′,
c(δ(A))=c′

β(A),

then Algorithm 2.1 assigns the entry Du

[
w′
∣∣q′∣∣c′] = β(Au) to the table.

Proof. For the base case, this claim is clearly true for the leaves of the tree, as the only
component rooted at u of a leaf u is the node u itself. Thus for each leaf u, the table Du

will have only one entry (which is assigned at line 3 of the algorithm). Now, pick some
non-leaf node s, and assume our claim is true for all nodes below s. Let As be a component
rooted at s that has minimum β-value out of all comparable components. Note that As is
a component made up of the node s as well as a set of components, each of which is rooted
at a child node. Let such children be u1, . . . , uj and the corresponding components be
Au1 , . . . , Auj . The values of As can clearly be computed via the values of these components
as follows.

1. w(As) = ws + w(Au1) + · · ·+ w(Auj)
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Algorithm 2.1

Input: T = (V,E), w, c, q, β

1: Pick an arbitrary r ∈ V as the root of the tree.

2: for each u ∈ V , processed in descending order of distance from r, do

3: Du

[
wu
∣∣ qu ∣∣ c(δ(u))

]
← βu.

4: for each child v of u do

5: for each non-null Dv

[
w(Av)

∣∣ q(Av) ∣∣ c(δ(Av))] do

6: for each non-null Du

[
w(Au)

∣∣ q(Au) ∣∣ c(δ(Au))] do

7: w′ ← w(Au) + w(Av)

8: q′ ← q(Au) · q(Av)
9: c′ ← c(δ(Au) + c(δ(Av))− 2cuv

10: if Du

[
w′
∣∣ q′ ∣∣ c′] = null then

11: Du

[
w′
∣∣ q′ ∣∣ c′]← β(Av) + β(Au)

12: else

13: Du

[
w′
∣∣ q′ ∣∣ c′]← min

{
Du

[
w
∣∣ q′ ∣∣ c′], β(Av) + β(Au)

}
14: end if

15: end for

16: end for

17: end for

18: end for

19: Searching through all u ∈ V , find the non-null entry

Du

[
w(A′)

∣∣ q(A′) ∣∣ c(δ(A′)] = β(A′)

that maximizes
q(A′)w(A′)− β(A′)

c(δ(A′))/2
(2.20)

such that c(δ(A′)) ≤ B.

Output: The maximum value of (2.20) obtained in step 19.
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2. q(As) = qsq(Au1) . . . q(Auj)

3. c(δ(As)) = c(δ(s)) + c(δ(Au1)) + · · ·+ c(δ(Auj))− 2
∑j

i=1 csui

4. β(As) = βs + β(Au1) + · · ·+ β(Auj)

So, to prove our claim, we will show that there exists a table entry in Ds with the above
values.

We know that for each i = 1, . . . , j, there exists the table entry

Dui

[
w(Aui)

∣∣ q(Aui) ∣∣ c(δ(Aui)) ] = β(Aui)

because of our induction hypothesis. We know that Auj exists, and if a comparable com-
ponent to Auj existed with lesser β-value, then component As would have had such a
component as a subcomponent instead of Auj (because per our assumption As has min-
imum β-value). From line 3 we know that the table entry Ds[ws, qs, c(δ(s))] = βs also
exists.

Now, consider the stage of the algorithm when s is the current node (line 2) and we
are processing each child of s (line 4), and assume we process the children of s in order
u1, . . . , uj. Note that there could be other children of s whose subtrees do not intersect
with As. These nodes will not affect the outcome, so without loss of generality assume
they are all processed after uj. The iterations of the loop will proceed as follows. In this
first iteration, when u1 is the current child, the entry corresponding to Au1 will be found
at line 5, and the entry Ds

[
ws
∣∣ qs ∣∣ c(δ(s))] = βs will be found at line 6. In lines 10–13 the

following entry will be created:

Ds

[
ws + w(Au1)

∣∣ qs · q(Au1) ∣∣ c(δ(s)) + c(δ(Au1))− 2csu1
]

= βs + β(Au1) (2.22)

If j = 1, we are clearly done. Otherwise, during the second iteration, when u2 is
the current child, the entry corresponding Au2 will be found at line 5, and the entry
corresponding to As ∩ Tu1 (the entry defined in (2.22)) will be found at line 6. In lines
10–13 the following entry will be created:

Ds

[
ws +

2∑
i=1

w(Aui)

∣∣∣∣ qs · 2∏
i=1

q(Aui)

∣∣∣∣ c(δ(s)) +
2∑
i=1

c(δ(Aui))− 2
2∑
i=1

csui

]

= βs +
2∑
i=1

β(Aui)

It is easy to see that this pattern repeats for the remaining j − 1 children, and that after
the jth iteration, an entry corresponding to As will be in Ds, which proves the claim. �
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Thus, for each u ∈ V , there exists an entry Du for each component rooted at u with
minimum β-value out of all comparable components. The component of C that achieves
the maximum density is such a component and therefore from line 19, we will find the
maximum density value and return it. �

Scaling Input Values

Now, our goal is to scale the input values for node weight, edge cost, and ignition probabil-
ities so that the table D created by Algorithm 2.1 has size polynomial in the input size. In
our final algorithm, we will scale the values before solving (P) and rounding the fractional
solution, allowing us to solve the LP in polynomial-time; we will argue that a near-optimal
solution to GPwIA with the scaled data remains a near-optimal solution to GPwIA with the
original data.

For scaling the vertex weights, we first guess1 a value W such that 1
2
OPT ≤ W ≤ OPT.

Then, for a fixed ε > 0, let µ = εW/n, and for each u ∈ V we scale wu to ŵu = bwu/µc.
Similarly, for the edge costs, let ν = εB/n and set ĉe = dce/νe and B̂ = bB/ν + nc (recall
that we may assume ce ≤ B). For scaling the probabilities of non-ignition qu, first let qmin

be the smallest non-zero non-ignition probability. We scale all qu ∈ (0, 1) to qmin(1 + ε/n)i,
where i is the largest integer such that qmin(1+ ε/n)i is less that qu. Essentially, the scaling
partitions [0, 1] into the `− 1 intervals[

0, qmin(1 + ε/n)
)
,
[
qmin(1 + ε/n), qmin(1 + ε/n)2

)
, . . . ,

[
qmin(1 + ε/n)`, 1

)
.

Then, for all qu ∈ (0, 1), if qu ∈
[
qmin(1 + ε/n)i, qmin(1 + ε/n)i+1

)
, the new q̂u is set to

qmin(1 + ε/n)i. If qu ∈ {0, 1}, we leave it as is.

Lemma 2.5.4. Algorithm 2.1 can be run in time polynomial of the input size when the
values are scaled as described above. That is, the running time of the algorithm is O(nM2),
and when the values are scaled, M is polynomial in the input size.

Proof. In order to show that the algorithm runs in time polynomial of the scaled input,
it is enough to bound the size of the table Du. Note that when the values are unscaled,
the maximum node value stored in the table is

∑
v∈V wv. Recall that W ≤ OPT. Clearly

OPT is bounded above by
∑

u∈V wu, and so the largest scaled value stored is:∑
u∈V

ŵu ≤
∑
v∈V

wu
εW/n

≤
∑
v∈V

n/ε = O(n2/ε).

1We can “guess” the correct value of W as follows. For each power of 2 not exceeding
∑

u∈V wu, we set
W to this power, scale the input values, and run Algorithm 2.1. Lemma 2.5.4 tells us that for the correct
W , the algorithm runs in polynomial-time. For arbitrary W , this may not be the case, but we can detect
if this running time is exceeded, and if so, stop and return a null solution. Then, running the algorithm
for all W still has polynomial running time, and we can return the best non-null solution.
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Similarly, the largest boundary cost stored in the table is
∑

e∈E ce, and so the largest scaled
edge cost stored is

∑
e∈E ĉe ≤

∑
e∈E( ce

εB/n
+ 1) = O(n2/ε).

For the scaled probabilities of non-ignition, recall that each qu ∈ (0, 1) is set to qmin(1+
ε/n)i for some positive integer i, and since we are multiplying these values, the only values
that are stored in the tables are of the form qjmin(1+ε/n)i where 1 ≤ j ≤ n. This means that
the dimension of the table can be indexed by these powers i and j. Therefore, in order
to show that this dimension of the table is polynomial in the input size, it is sufficient
to show that the largest power i is bounded by a polynomial of the input size. Let `
be such that qmin(1 + ε/n)` < 1 ≤ qmin(1 + ε/n)`+1. It is easy to see that this implies
` = O(n/ε · log(1/qmin)) which is clearly polynomial in the input size.

Thus, the maximum size of a table is M = O(n6/ε3 log(1/qmin)), and the lemma follows.
�

Lemma 2.5.5. Let ÔPT be the optimal expected protected value of the problem when the
data is scaled as described above, and assume we have an algorithm for the scaled problem

such that the solution returned has expected value at least ηÔPT and cost at most ζB̂. Then,
the same solution with unscaled values has expected protected value at least (1− 2ε)ηOPT
and cost at most (1 + ε)ζB.

Proof. Let Ô be an optimal set of components with the scaled values, and let O∗ be an
optimal set of components when the values are not scaled (so the expected value protected
with O∗ is OPT). First note that setting ŵu = bwu/µc implies that µŵu ≤ wu ≤ µ(ŵu+1)
and thus µŵu ≥ wu− µ. Likewise, for all u ∈ V , qu ≥ q̂u ≥ qu/(1 + ε/n). For a component
A, these scaled values together imply:

Π(A) =
∏
v∈A

qv
∑
v∈A

wv ≥
∏
v∈A

q̂v
∑
v∈A

wv ≥ µ
∏
v∈A

q̂v
∑
v∈A

ŵv. (2.23)

Assuming we have an algorithm for the scaled problem such that the solution returned

has value at least ηÔPT, (2.7.3) implies that the unscaled value of the solution is at least

ηµÔPT. Also note that for any component A,∏
u∈A

q̂u ≥
∏
u∈A

1
1+ε/n

· qu ≥ 1
(1+ε/n)n

∏
u∈A

qu ≥ (1− ε)
∏
u∈A

qu. (2.24)

Let Y ∗ be the set of boundary edges of the optimal solution, that is Y ∗ =
⋃
A∈O∗ δ(A).

Then, because B̂ = bB/ν + nc, we have B ≤ ν(B̂−n+ 1), and setting ĉe = dce/νe implies
that ĉe ≤ ce/ν + 1. Together these imply that O∗ is a feasible solution with the scaled
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costs and scaled budget B̂, as shown below:∑
e∈Y ∗

ĉe ≤
∑
e∈Y ∗

(ce
ν

+ 1
)

≤ 1

ν

∑
e∈Y ∗

ce + (n− 1)

≤ 1

ν
B + (n− 1)

≤ 1

ν

(
ν
(
B̂ − n+ 1

))
+ (n− 1) = B̂.

Then,

µ · ÔPT =
∑
A∈Ô

∏
u∈A

q̂u
∑
u∈A

µŵu

≥
∑
A∗∈O∗

∏
u∈A∗

q̂u
∑
u∈A∗

µŵu (2.25)

≥ (1− ε)
∑
A∗∈O∗

∏
u∈A∗

qu
∑
u∈A∗

(wu − µ)

≥ (1− ε)

( ∑
A∗∈O∗

∏
u∈A∗

qu
∑
u∈A∗

wu −
∑
A∗∈O∗

∑
u∈A∗

µ

)
= (1− ε) (OPT− nµ)

= (1− ε) (OPT− εW )

≥ (1− ε) (OPT− εOPT)

≥ (1− 2ε)OPT, (2.26)

where line (2.25) is a result of O∗ being a feasible solution with the scaled costs and budget.

Now, for the cost of the solution, we know that ce ≤ ĉeν and B̂ ≤ B/ν + n. Then, if Ŷ is

the set of boundary edges of the optimal scaled solution, i.e. Ŷ =
⋃
A∈Ô δ(A), the cost of

the unscaled solution is:∑
e∈Ŷ

ce ≤ ν
∑
e∈Ŷ

ĉe ≤ ν
(
ζB̂
)
≤ ζν(B/ν + n) = ζ(1 + ε)B. (2.27)

This completes proof. �

2.5.2 More General Distributions

Before describing our approximation algorithms, we note that there exist slightly more
general probability distributions that allow for a maximum-density approximation via a
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similar dynamic program as the one above. This distribution, introduced by Hayrapetyan,
Swamy, and Tardos [25], is defined by a distribution tree, a rooted tree whose leaves are
the nodes of a given graph G, such that each edge e of the tree is labelled with pe ∈ [0, 1].
A distribution is defined on the nodes of G by having each edge “activated” independently
with probability pe; this generates a scenario consisting of the nodes that are reachable
by the root of the tree using only activated edges. Note that GPwIA is the case where
the distribution tree is a star. Although this type of distribution is out of scope of this
work, we note that a similar DP to Algorithm 2.1 is possible, where the running time is
exponential in the depth of tree; this is work in progress.

2.6 Putting everything together: a bicriteria approx-

imation for GPwIA on trees

We now present an approximation algorithm for GPwIA on trees that meets the claims
of Theorem 2.1.1. Given an instance of GPwIA, the main parts of the algorithm are as
follows. First, choose ε > 0, and scale the given node values, edge costs, and non-ignition
probabilities as described in Section 2.5.1. Then, using the ellipsoid method (Theorem
2.5.1) with Algorithm 2.1 as the separation oracle, solve the dual linear program (D). This
produces a linear program with a polynomial number of constraints, whose dual is a linear
program equivalent to (P) with a polynomial number of variables. Solving this LP yields

a solution x∗ with value ÔPT. We then round as described in Section 2.4 to obtain a
(random) integer solution.

Assuming we have chosen suitable constants as described in Theorem 2.4.3 such that
φ1, φ2 > 0, we can boost this probability by repeating the experiment multiple times. Then,
this theorem combined with Lemma 2.5.5 implies our final solution with original values
and costs will have expected protected value at least (1− 2ε)(1− ε1)σφ2/(1 +σ) ·OPT and
expected edge cost at most (1 + ε)κB.

Now, we apply Theorem 2.4.3 and we give values for the constants which prove the
claims of Theorem 2.1.1. If we are allowed to exceed the budget by a factor of 4, setting
ε1 = 1/2, κ = 4/(1 + ε), σ = 1/(2 − 4ε), and γ = 1/10 (with sufficiently small ε) yields
φ1 ≈ 0.2147 and φ2 ≈ 0.0969, resulting in a (φ2/6, 4)-approximation algorithm. If instead
we only want a factor of 2 above the budget, then having ε1 = 1/2, κ = 2/(1 + ε),
σ = 1/(4 − 8ε), and γ = 1/30 results in φ1 ≈ 0.3583 and φ2 ≈ 0.0959 and a (φ2/10, 2)-
approximation algorithm; this proves Theorem 2.1.1.

2.7 Unicriterion Approximation for GPwIA on Trees

For the algorithm presented above, one may be tempted to contrive constants that result
in an approximate solution that satisfies the budget. However, the initial scaling of edge
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costs still prevents us from a unicriterion solution. To elaborate, recall that we scale the
edge costs in order to ensure that the DP described in Section 2.5.1 runs in polynomial-
time and hence, the component-based LP (P) can be solved in polynomial-time. Thus,

our components of consideration are those with scaled boundary cost at most B̂. While
we can ensure, by choosing constants suitably in the rounding process, that the rounded
solution also has scaled boundary cost at most B̂, we cannot escape the fact that due to
the edge-cost scaling, the actual boundary cost may be (1 + ε)B. We also note that it
is not necessary to scale the edge costs before solving the LP; one can apply such scaling
as part of the separation oracle of the ellipsoid method. However, this results in only
an approximate separation oracle, meaning that potential solutions may pass feasibility
without actually being within budget.

In this section, we explain how to convert this bicriteria approximation to an approx-
imation algorithm that does not exceed the budget. The main idea behind this approach
is that in an optimal solution there can only be a constant number of components with
relatively large boundary cost, and because of this, we can search for such components sep-
arately. Then, we can apply the main algorithm to the components that have relatively low
boundary cost. The key insight here is that we can extract a subset of the low-boundary
cost components whose total value is close to the total value of all the low-boundary cost
components, and whose total boundary cost is a fraction of B. Thus, by applying our
bicriteria approximation algorithm, we now obtain a near-optimal solution that does not
violate the budget.

Formally, consider an optimal solution of components O∗. For some λ ∈ (0, 1), let O∗1
be the components of O∗ with boundary cost at least λB, and let O∗2 be the components
of O∗ with boundary cost less than λB. Then because∑

O1∈O∗1

Π(O1) +
∑
O2∈O∗2

Π(O2) = OPT,

we know that either O∗1 or O∗2 will contribute at least 1
2
OPT to the optimal solution. Also,

notice that |O∗1| ≤ 2
λ
, which is a constant. Our goal will be to find an optimal solution

when restricted to components with either relatively large or small boundary cost. Then,
the better of those two solutions will be at least 1

2
OPT.

Section 2.7.1 deals with the latter case, where the goal is to find an optimal set of
components when we are restricted to only components with cost at most λB. We apply a
slightly modified algorithm to the one above. In Section 2.7.3, we consider the problem of
obtaining a maximum-value solution consisting of a constant number of components, and
show that this problem admits a PTAS. Running both the PTAS and this new algorithm,
and then choosing the better of the two solutions, results in an approximation algorithm
for GPwIA that returns a solution of cost within budget. We discuss this in Section 2.7.2,
which proves Theorem 2.1.2.
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2.7.1 Approximation for Inexpensive Components

We now assume each component has boundary cost at most λB. This assumption allows us
to modify the algorithm of Theorem 2.1.1 by restricting the variables of the linear program
(P) to only such components, which can be achieved by modifying line 19 of the dual
separation oracle Algorithm 2.1. This stronger bound on boundary cost has a number of
advantages. First, we can guarantee that the components of the solution have unscaled
boundary cost at most B. By limiting the search to components with scaled boundary
cost at most λB̂, we obtain components with unscaled boundary cost at most (1 + ε)λB.
So, if λ is at most 1/(1 + ε), each potential component will be within budget.

Another advantage is that since the boundary cost of each component is only a small
fraction of the total boundary cost 2B, limiting the budget by some fraction still results
in a relatively good approximation. This idea is given below as Lemma 2.7.1, where
OPT2 =

∑
A∈O∗2

Π(A).

Lemma 2.7.1. There exists a subset of O∗2 with total boundary cost at most 2B/α + λB,
for α ≥ 1, such that the expected protected value of these components is at least OPT2/α.

Proof. We show this by interpreting O∗2 as an instance of Knapsack. Let |O∗2| = k, and let
{A1, . . . , Ak} = O∗2 be the items of the knapsack, each item Ai having profit pi = Π(Ai)
and cost ci = c(δ(Ai)), such that they are sorted by the ratio of their values to their costs,
i.e. p1/c1 ≥ p2/c2 ≥ · · · ≥ pk/ck. Let the budget of this Knapsack problem be 2B/α.

Recall that an optimal fractional solution of Knapsack can be constructed by greedily
picking, in the above order, the first ` items completely as well as a fraction of the (`+1)-th
item, such that the total cost equals the budget. That is, we choose the first A1, . . . , A`
items such that

∑`
i=1 ci ≤ 2B/α, and then choose a fraction θ of item A`+1 such that

θ = (2B/α−
∑l

i=1 ci)/c`+1. Since
∑k

i=1 pi = OPT2, it is easy to see that
∑`

i=1 pi + θp`+1 ≥
OPT2/α. Since each component has boundary cost at most λB, this greedy solution with
all of item A`+1 has boundary cost at most 2B/α + λB, and thus {A1, . . . , A`+1} meets
the claims of the lemma. �

Note that by selecting a subset of O2, it is not guaranteed that the total edge cost of this
subset is half of the total boundary cost. We will discuss below that our goal is to produce
a fractional solution with total edge cost at most B/2 (so total component cost at most B),
and we therefore apply Lemma 2.7.1 with α = 2

1/2−λ and obtain a solution with protected

expected value at least 1−2λ
4

OPT2.

We now describe our algorithm for this problem, which is similar to that of Section 2.6.
Given an instance of GPwIA, we first replace the budget B with B/2. Then, as before, we
choose ε > 0, and scale the given node values, edge costs, and non-ignition probabilities
as described in Section 2.5.1. When using the ellipsoid method with Algorithm 2.1, we
now only search for components with boundary cost at most λB̂. Solving the compact LP
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(P) yields a fractional solution x∗, and from Lemma 2.7.1, we know the objective value of

this solution will be at least 1−2λ
4

ÔPT2 (where ÔPT2 is the fraction of the scaled optimal

solution value where each component has boundary cost at most λB̂). We then round x∗

as described in Section 2.4 to obtain a (random) integer solution.
Now, we apply Theorem 2.4.3 and give values for the constants which yield a unicrite-

rion approximation algorithm. Notice that because the components of this solution have
boundary cost at most B/2, setting κ = 2/(1+ε) now gives an integral solution within bud-
get. So, with small enough ε and λ, having ε1 = 1/2, κ = 2/(1+ε), σ = 1/(4(1−2ε)(1−2λ)),
and γ = 1/30 results in φ1 ≥ 0.3583 and φ2 ≥ 0.0959. Then, combining this with the above
yields a (φ2/40)-approximation of the optimal set of inexpensive components. This result
is summarized in the below theorem.

Theorem 2.7.2. Given an instance of GPwIA on trees, let O∗ be an optimal set of com-
ponents. Let O∗2 ⊆ O∗ be the set of those components with boundary cost at most λB, for
fixed λ ∈ (0, 1), and let

∑
A∈O∗2

Π(A) = OPT2. Then, there exists a randomized algorithm
for that succeeds with constant probability and conditioned on success, returns a solution
with expected protected value at least 0.0023 ·OPT2 and cost at most B.

We remark that the analysis can be significantly improved by using Chernoff bounds
to analyze the total boundary cost, due to the fact that each random variable representing
a component’s boundary cost is now bounded above by λB. As previously mentioned, this
work is not concerned with finding the best constants.

2.7.2 Proof of Theorem 2.1.2

Now, consider the components O∗1, which recall are the components of O∗ with boundary
cost at least λB. Our goal is to find a set of components that has expected protected value
close to OPT1 =

∑
A∈O∗1

Π(A). Because |O∗1| ≤ 2
λ
, which is a constant, we can achieve this

goal by applying the following theorem.

Theorem 2.7.3. Given an instance of GPwIA and a constant k, there exists a PTAS
for the problem of finding a maximum-value solution that uses at most k components and
whose total cost is at most B.

We defer the presentation and analysis of this algorithm to Section 2.7.3, and now show how
combining this algorithm with the algorithm in the previous section results in a constant-
factor unicriterion approximation algorithm for GPwIA.

Our algorithm works as follows: Given an instance of GPwIA, we choose a λ ∈ (0, 1),
and run the algorithm of Theorem 2.7.3 with this instance, a fixed ε ∈ (0, 1], and k =
b2/λc. This produces a solution A1 with value at least (1 − ε)OPT1. We also run the
algorithm of Theorem 2.7.2, and obtain a solution A2 with value at least φ2/40 · OPT2,
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where φ2 ≈ 0.0959. We emphasize that both of these solutions have total cost that does
not exceed the budget. Then, we return whichever solution has the larger objective value.

Note that because OPT1 + OPT2 = OPT, for each instance of GPwIA there exists an
α ∈ [0, 1] such that OPT1 = (1− α)OPT and OPT2 = αOPT. Since we are returning the
solution with larger objective value, the worst-case solution will be when

(1− α)(1− ε)OPT =
φ2

40
αOPT,

which is achieved when α = 40(1−ε)
φ2+40(1−ε) . Thus, this algorithm has an approximation factor

of φ2(1−ε)
φ2+40(1−ε) ≥ 0.0023(1− ε), which proves Theorem 2.1.2.

2.7.3 PTAS for Constant Number of Expensive Components

We now prove Theorem 2.7.3, that is, we devise a PTAS for the problem of finding a
maximum-value solution of GPwIA consisting of a constant number of components. We will
use a dynamic programming algorithm to find such a set of components, taking advantage
of the tree structure of the input graph. The dynamic program is similar to, and an
extension of, the one presented in Section 2.5.1. The main idea is that components within
the subtree Tu, u ∈ V , can be obtained by components within the subtrees of u’s children
nodes.

Like the dynamic program given as Algorithm 2.1, we pick a root r ∈ V of the tree
and process the vertices of T in a bottom-up manner starting from the leaves, so that we
process the children of a node u before processing u. The subproblem concerning node
u will consist of finding sets of at most k components in the subtree rooted at u. Each
u will be assigned a table Fu that will store the specifications of all possible k-tuples
of components from Tu; moreover, the specification for each k-tuple will contain enough
information so that we can calculate the expected protected value from this k-tuple. That
is, if A1, . . . , Ak are a set of components in Tu, if there exists an entry for this set in Fu,
this entry will contain the data needed to compute

∑k
i=1Π(Ai).

Each entry of Fu will be indexed by the following values. The first index will be an
integer ` where 0 ≤ ` ≤ k, which represents the number of components this entry encodes.
The three other entries will be indexed by the lists W , Q, and f , each of length `. These
three lists will store information for each component in a consistent way, so that the ith
entry of W , Q, and f will correspond to the same component. The list W will contain the
values of the components; the list Q will contain the probabilities of non-ignition of the
components; and the list f will contain Boolean values indicating which, if any, component
contains u.

Given a node u, a set of components O is compatible with the entry Fu
[
`
∣∣W ∣∣ Q ∣∣ f]

if O consists of exactly ` components whose values, non-ignition probabilities, and u-
membership have a 1-to-1 correspondence with W , Q, and f , respectively. We say that
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two sets of components are comparable in Tu or Tu-comparable if they are both compatible
with the same F entry. Intuitively, sets of components are comparable if they contain the
same number of components and protect the same expected value. However, we emphasize
that this notion of comparability is dependent on u: if exactly one of the two sets contains
a component containing u, these sets are never Tu-comparable.

Now, the information stored in each table entry will be the set of boundary edges of
a (≤ k)-tuple of components in Tu that is compatible with the table entry and that has
minimum total boundary cost among all comparable sets. For example, suppose we have
the following entry:

Fu

[
`

∣∣∣∣W = (w1, . . . , w`)

∣∣∣∣ Q = (q1, . . . , q`)

∣∣∣∣ f = (1, 0, . . . , 0)

]
= E ′.

This implies that in Tu there exists at least one set of ` ≤ k components A1, . . . , A` with
u ∈ A1 such that w(Ai) = wi and q(Ai) = qi, for all i = 1, . . . , `. Furthermore, E ′ is the set
of boundary edges with minimum cost out of all such sets of components comparable in
Tu. Clearly, it is possible to compute the expected value protected by these components:∑`

i=1Π(Ai) =
∑`

i=1wiqi.
We note that the table entries are not confined to only the components that have

boundary cost at least λB. This is fine, as O∗1 (or a set of components comparable to
O∗1 with smaller boundary cost) is a feasible entry as described above. The optimal set
of components will protect an expected amount of value at least that of O∗1, regardless of
their boundary cost.

The algorithm works by creating all valid table entries of Tu by combining the table
entries of the children nodes of u. Essentially we will be creating new sets of components
in Tu by merging smaller sets of components that are in the subtrees of Tu. To better
understand this process, consider the following scenario. For a non-leaf node u, let v be
a child of u. Suppose we have `1 components U = {U1, . . . , U`1} in Tu such that none of
the components intersect with Tv. We also have of `2 components V = V1, . . . , V`2 in Tv.
Assume also that `1 + `2 ≤ k + 1. Let wui = w(Ui), q

u
i = q(Ui) for all i = 1, . . . , `1, and

similarly define wvi , q
v
i for v.

We now give rules for how to “merge” the two sets U and V into a single set. There
are a few cases to consider, depending on whether u and/or v are part of a component.

1. If u is not in a component of U , or v is not in a component of V , then if `1 + `2 ≤ k,
our new set will simply be U ∪ V .

2. If both u and v are in components, assuming without loss of generality that u ∈ U1

and v ∈ V1, we will create the following two sets of components. One set will be
the same as case 1, U ∪ V , if `1 + `2 ≤ k. The other will be similar, except U1

and V1 will be merged into a single component, i.e. the second set will be {U1 ∪
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V1, U2, . . . , U`1 , V2, . . . , V`2}. Note that in this case, even if `1 + `2 = k + 1, the
resulting set of components is of cardinality k.

If we think of this situation as the creation of new entries for Fu by combining known entries
of Fu and Fv, it is straightforward to update the new values. The dynamic programming
algorithm for generating these values is given as Algorithm 2.2. In the algorithm, we
assume that the indexing of sets adheres to the notion of comparability, i.e. if two sets of
components are comparable in Tu, they will map to the same entry in Fu. Without loss
of generality, we also assume that if a component contains the root of the subtree, that
component’s values are first in the corresponding lists.

Before analyzing Algorithm 2.2, we note a subtle scenario that may occur when the
algorithm assigns a set of edges to an entry of the table. If an entry already corresponds
to a set of components, the edges within this entry will be replaced only if there exists a
comparable set with smaller boundary cost. So, if there exists multiple comparable sets
with equal boundary cost, the table entry corresponding to these sets will contain the
boundary edges of the set that was processed first. We say that a table entry equivalently
corresponds to a set of components if the entry either corresponds to the set or corresponds
to a comparable set with equal boundary cost.

Claim 2.7.4. Let nu be the number of nodes in Tu and Cu be the set of all components
in Tu. Then, for each u ∈ V , and for each set of components O = {A1, . . . , A`u} ⊆ Cu,
`u = 1, . . . ,min{nu, k}, such that O has minimum boundary cost among all Tu-comparable
sets of components, Fu will contain an entry that equivalently corresponds to O.

Proof. For the base case, this claim is clearly true for the leaves of the tree. If u is a leaf,
then the only valid set of components in Cu is the single component consisting of the single
vertex u. This component will have value wu, probability of non-ignition qu, and the single
boundary edge δ(u). The entry corresponding to this data is assigned to Fu in line 4 of
the algorithm.

For the induction hypothesis, given a node s, we assume that this claim is true for all
children of s. Let O = {A1, . . . , A`s} ⊆ Cs, 1 ≤ `s ≤ min{ns, k}, be a set of components
that has minimum boundary cost among all Tu-comparable sets of components. Our goal
is to show that there exists an entry of Fs that equivalently corresponds to O. There are
two cases to consider: when s is in a component of O, and when s is in no component of
O. We first assume the latter.

Because s is contained in no component of O, all components will exist in subtrees
of the children of s. Let s1, . . . , sj be the children of s that contain at least one of these
components, and assume without loss of generality that the algorithm processes these
children in the given order. Furthermore, let Oi be the set of components contained within
Tsi , that is Oi = O ∩ Csi . Note that for any si, there does not exist a set of components
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Algorithm 2.2

Input: Instance of GPwIA(T = (V,E), w, c, q, B), λ ∈ (0, 1)
1: k ← b2/λc
2: Pick an arbitrary r ∈ V as the root of the tree.
3: for each u ∈ V , processed in descending order of distance from r, do
4: Fu

[
1
∣∣ (wu)

∣∣ (qu)
∣∣ (1)

]
← δ(u)

5: Fu
[
0
∣∣ ∅ ∣∣ ∅ ∣∣ ∅]← ∅

6: for each child v of u do
7: for each non-null Fv

[
k′′
∣∣ (wv1 , . . . , w

v
k′′)
∣∣ (qv1 , . . . , q

v
k′′)
∣∣ fv] = Ev do

8: for each non-null Fu
[
k′
∣∣ (wu1 , . . . , w

u
k′)
∣∣ (qu1 , . . . , q

u
k′)
∣∣ fu] = Eu do

9: if k′ + k′′ ≤ k then
10: W1 ← (wu1 , . . . , w

u
k′ , w

v
1 , . . . , w

v
k′′)

11: Q1 ← (qu1 , . . . , q
u
k′ , q

v
1 , . . . , q

v
k′′)

12: E1 ← Eu ∪ Ev
13: f1 ← (0, . . . , 0)
14: if fu contains a 1-entry then
15: f1 ← (1, 0, . . . , 0)
16: end if
17: Y ′ ← Fu

[
k′ + k′′

∣∣W1

∣∣ Q1

∣∣ f1]
18: if Y ′ = null or c(E1) < c(Y ′) then
19: Fu

[
k′ + k′′

∣∣W1

∣∣ Q1

∣∣ f1]← E1

20: end if
21: end if
22: if k′ + k′′ ≤ k + 1 and both fu and fv contain a 1-entry then
23: W2 ← (wu1 + wv1 , w

u
2 , . . . , w

u
k′ , w

v
2 , . . . , w

v
k′′)

24: Q2 ← (qu1 · qv1 , qu2 , . . . , quk′ , qv2 , . . . , qvk′′)
25: E2 ← (Eu ∪ Ev) \ {uv}
26: Y ′′ ← Fu

[
k′ + k′′ − 1

∣∣W2

∣∣ Q2

∣∣ (1, 0, . . . , 0)
]

27: if Y ′′ = null or c(E2) < c(Y ′′) then
28: Fu

[
k′ + k′′ − 1

∣∣W2

∣∣ Q2

∣∣ (1, 0, . . . , 0)
]
← E2

29: end if
30: end if
31: end for
32: end for
33: end for
34: end for
35: Searching through all u ∈ V , find the non-null table entry

Fu
[
`
∣∣ (w1, . . . , w`)

∣∣ (q1, . . . , q`)
∣∣ f] = E ′, that maximizes

∑`
i=1wiqi subject

to c(E ′) ≤ B, and let A1, . . . , A|E′|+1 be the components defined by removing E ′.
Output: A1, . . . , A|E′|+1
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comparable to Oi whose boundary cost is less than that of Oi. Otherwise, this lower-
boundary cost set together with the other Oj’s would give a set of components comparable
to O with boundary cost less than that of O, which is a contradiction. Thus, by the
induction hypothesis, there exists an entry in Fsi that equivalently corresponds to Oi.

Consider the stage of the algorithm when we are building Fs, i.e. s is the current node
of the loop at line 3. We will discuss the j iterations of when the children of s are processed,
i.e. at the loop of line 6. During the iteration when we consider s1, the algorithm will
eventually consider the entry I1 of Fs1 that equivalently corresponds to O1, as well as the
entry Fs

[
0
∣∣ ∅ ∣∣ ∅ ∣∣ ∅] = ∅ (at lines 7 and 8, respectively). Note that the latter entry exists

via assignment to Fs on line 5. As there exists at most k components in O, the number of
components of I1 are at most k, and so the algorithm passes the “if” of line 9. Since this
entry’s fs-index is ∅, this iteration will keep the new f -index as the 0 vector, i.e. f1 is set
to (0) at line 13, and since this iteration fails the “if” statement of line 14, f1 remains (0)
(also note that it will fail the “if” of line 22). Then, the merging of these two entries (lines
10–12) simply results in a copy of I1, and this copy will be assigned as an entry to Fs (at
line 19).

If Ts1 is the only child subtree containing components of O, we are clearly done. Oth-
erwise, during the second iteration of the loop when s2 is the current child, the algorithm
will eventually consider the entry I2 of Fs2 that equivalently corresponds to O2, as well
as the copy of I1 in Fs. The merging of these two entries results in a new entry I1,2 that
equivalently corresponds to O1 ∪ O2. Note that per our definition of O, if there already
exists an entry in Fs corresponding to O1 ∪ O2, the edges of this entry have cost at least
the boundary cost of O1 ∪ O2 (otherwise, the components corresponding to this entry,
together with O \ (O1 ∪O2), form a set Ts-comparable to O with smaller boundary cost).
Therefore, either I1,2 is assigned to Fs or an equivalently corresponding entry remains in
Fs, and thus at the end of the iteration, Fs will always contain an entry equivalently cor-
responding to O1 ∪ O2. It is easy to see that this general pattern repeats for each of the
j−2 remaining iterations, and thus at the end of the jth iteration, Fs will contain an entry
that equivalently corresponds to O = O1 ∪ · · · ∪ Oj.

Now, we consider the case when s is contained in a single component of O, say A1. We
proceed similarly as before, defining the previous notation slightly differently in order to
mitigate the fact that A1 is no longer contained in a single child’s subtree. Let s1, . . . , sj
be the child nodes of s whose subtrees contain at least one component of O or intersect
with A1. Note that if Tsi intersects with A1, then Tsi ∩ A1 is a component of Csi and si is
contained in this component. Let Oi be the set of components of O that are contained in
Tsi plus the subcomponent of A1 that intersects with Tsi (if such a subcomponent exists).
So, Oi = (O ∩ Csi) ∪ {Tsi ∩A1}. As before, the induction hypothesis implies that for each
i, there exist an entry in Fsi equivalently corresponding to Oi. Note that for non-empty
Tsi ∩ A1, the edge sis is in the boundary of Oi but not in the boundary of O. However,
since this edge will also be in the boundary of any set Tsi-comparable to Oi, this edge has
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no effect on the minimum comparable set.
Like before, consider the stage of the algorithm when we are building Fs and processing

child node s1. During this iteration, the algorithm eventually considers the entry I1 of Fs1
that equivalently corresponds to O1, as well as the entry Fs

[
1
∣∣ (ws)

∣∣ (qs)
∣∣ (1)

]
= δ(s).

Note that the latter entry (call it J) exists via assignment to Fs on line 4. The values of
I1 depend on whether Ts1 intersects with A1; we consider these cases separately.

1. If Ts1 ∩ A1 6= ∅, then because |O1| ≤ k, this entry along with the J entry will
correspond to at most k + 1 sets, and so the first check of the “if” statement at line
22 goes through. Also, s1 ∈ Ts1 ∩ A1 (a component of O1) and so the f -index of
I1 will contain a 1-entry. Since the f -index of J also contains a 1-entry, the second
check of the “if” statement at line 22 goes through. Then, a new entry I1,s of Fs is
created by merging I1 and J , which clearly equivalently corresponds to a modified
O1 where the component containing A1 now also contains s.

2. If, on the other hand, Ts1 ∩A1 = ∅, then O1 must contain at most k− 1 components
(otherwise, O would contain more than k components, a contradiction). Thus, we
pass the “if” statement at line 9, and a new Fs entry I ′1,s, formed by merging I1 and
J , will be created at lines 10–12, and because J ’s f -index is (1), this new entry will
also have an f -index containing a 1 (by line 15). Thus, I ′s,1 equivalently corresponds
to {O1} ∪ {s}, as desired. Note that because Ts1 ∩A1 = ∅, the f -index of I1 will not
contain a 1-entry, and thus will not pass the “if” statement of line 22.

A similar argument can be made for the remaining j − 1 iterations, the result of which
implies that Fs contains an entry that equivalently corresponds to O, as desired. �

Scaling Values

In order for Algorithm 2.2 to have running time polynomial in the input size, we scale the
node values and non-ignition probabilities as we did in Section 2.5.1. Let OPT1 be the
optimal value of this problem. Clearly, OPT1 ≤

∑
u∈V wv. We first guess a value W such

that W ≤ OPT1. Then, for some ε > 0, let µ = εW/n, and for each u ∈ V , let the new
node weight be ŵu = bwu/µc. For qu ∈ (0, 1), we round down to q̂u = qmin(1 + ε/n)i, where
i is the largest integer such that qu ≥ q̂u, and keep q̂u = qu the same if qu ∈ {0, 1}.
Lemma 2.7.5. Algorithm 2.2 runs in polynomial time with the scaled values as described
above.

Proof. Consider the table entry Fu
[
k
∣∣ W ∣∣ Q ∣∣ f] for u ∈ V . Let ŵ =

∑
u∈V ŵv be the

sum of all node values. Clearly, the maximum value of an entry in W is ŵ, and thus the
maximum size of the table in the W dimension is at most ŵk. Then,

ŵk ≤

(∑
v∈V

wu
εW/n

)k

≤

(∑
v∈V

n/ε

)k

= O(n2k/ε).

39



For the Q index, recall from the proof of Lemma 2.5.4 that since each q̂(A) is of the form
qjmin(1 + ε/n)i, we can keep track of these values by indexing each entry of Q by indices
i and j. A single entry of Q was shown to have a polynomial maximum size, and thus
the maximum size of Q (the kth power of this polynomial) is also polynomial. Then,
since the possible number of values of f is constant, we conclude that Algorithm 2.2 is a
polynomial-time algorithm with these scaled values. �

Lemma 2.7.6. Let ÔPT1 be the optimal value of the problem when the initial values
are scaled as described above. Assuming we have an algorithm that computes such an
optimal solution Ô1, this solution with unscaled values has expected protected value at least
(1− 2ε)OPT1.

Proof. This proof is nearly identical to the proof of the similar result in Lemma 2.5.5.
First, for any component A,

Π(A) ≥ µ
∏
v∈A

q̂v
∑
v∈A

ŵv.

Then,

µ · ÔPT =
∑
A∈Ô1

∏
u∈A

q̂u
∑
u∈A

µŵu

≥
∑
A∗∈O∗1

∏
u∈A∗

q̂u
∑
u∈A∗

µŵu

≥ (1− ε)

 ∑
A∗∈O∗1

∏
u∈A∗

qu
∑
u∈A∗

wu −
∑
A∗∈O∗1

∑
u∈A∗

µ


≥ (1− ε) (OPT1 − nµ)

= (1− ε) (OPT1 − εW )

≥ (1− 2ε)OPT1,

which completes the proof. �

Lemmas 2.7.5 and 2.7.6 together with Claim 2.7.4 proves Theorem 2.7.3.

2.8 Approximability of Polynomial Distribution

In this section, we consider the Graph Protection with Polynomial Scenarios (GPwPS)
problem, where the ignition probabilities of scenarios are given as a distribution over subsets
I ⊆ V such that each I has a probability pI of ignition. Currently, there is no known
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approximation algorithm for this problem; our contribution is an inapproximability result
that partly resolves this lack of knowledge. Namely, we show that even in the simple case
when the input graph is a tree and each scenario has exactly two vertices, the problem
reduces to Densest k-Subgraph, a problem notorious for its evasiveness to approximation.

In the version of Densest k-Subgraph (DkS) we consider, we are given a graph G and
integer k, and the goal is to find a subgraph of G with at most (or exactly) k vertices
that maximizes the number of edges. This problem is clearly NP-hard, as it generalizes
the Maximum Clique problem. It is an important problem not only in applied settings
(e.g. finding communities within social networks), but also in the study of approximation
algorithms, as there exists a large gap between the current best known lower and upper
approximation bounds. The best known algorithm, due to Bhaskara et al. [7], achieves
an approximation factor of O(n1/4+ε). This result was the first improvement over Feige et
al.’s O(n1/3−ε)-approximation [16] from nearly 10 years prior. For inapproximability, Khot
[29] showed that assuming a standard complexity assumption (that NP does not have
subexponential-time randomized algorithms) there does not exist a PTAS for the problem.
More recently, Raghavendra and Steurer’s Small Set Expansion Conjecture was shown to
imply NP-hardness of approximating DkS to any constant factor [36, 37], and Bhaskara et
al. [8] provided evidence suggesting DkS may be even harder to approximate than Small
Set Expansion or Unique Games.

We now prove Theorem 2.1.3, which states that an α-approximation algorithm for
GPwPS on trees implies an α-approximation algorithm Densest k-Subgraph.

Proof of Theorem 2.1.3. We prove this by first showing that DkS reduces to GPwPS. Let
G = (V,E) be an instance of DkS. We convert this to an instance of GPwPS as follows.
The vertices of the tree V ′ are defined as one new vertex s as well as all vertices V , so
V ′ = {s}∪V . For the edge set E ′, we connect s to each u ∈ V . So our instance T = (V ′, E ′)
is a star graph with center s and leaves V . For each u ∈ V , we set the node value wu = 0
and the cost of each edge to csu = 1. We set ws = 1 and the budget to B = k. Finally,
the ignition scenario subsets are defined by the edge set E, with each scenario having the
same probability of ignition. That is, for each uv ∈ E, the subset {u, v} is a scenario which
occurs with probability p{u,v} = 1/|E|.

Consider a feasible solution to this GPwPS instance. Clearly the only component that
will contribute any value to the solution will be the one containing s. Let this component
be A, and let S be the set of vertices not in A. Then, the value of this solution is equal to
Π(A), and

Π(A) = ws · Pr
[
no scenario in A ignites

]
= 1 · Pr

[
a scenario strictly contained in S ignites

]
.

An ignition scenario {u, v} is strictly contained in S if both endpoints of the edge uv are
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contained in S, i.e. if u1u2 ∈ E(S). Thus,

Pr
[
a scenario strictly contained in S ignites

]
=

∑
uv∈E(S)

p{u,v} =
|E(S)|
|E|

.

Each removed edge of the GPwPS instance has cost 1, and removing an edge results in
adding a node (the endpoint which is not s) to S. Thus, if the GPwPS solution is within
budget k, the cardinality of S will be at most k. Therefore, feasible solutions of GPwPS
correspond to feasible solutions of DkS, and (since |E| is independent of S) their objective
values are proportional to each other. It follows that an α-approximate solution to GPwPS
yields an α-approximate solution to DkS, and vice versa. �

We note that although this result helps explain why no approximation algorithm for
GPwPS was found, we believe that the above reduction is interesting on its own merit.
When one considers a problem on graphs, it is often the case that confining the input to
trees simplifies the problem. In the case of GPwPS, however, even just allowing ignition
scenarios of size 2 results in such a confinement having no real benefit, as the underlying
structure encodes a significantly hard problem regardless.

We also note that the above inapproximability result, coupled with the fact that our
LP-rounding algorithm works for any scenario distribution, implies that the same inap-
proximability result holds for solving the linear program (P), and thus also for finding
a maximum-density component (as defined in Section 2.5). We can also infer the inap-
proximability of the maximum-density component problem from the reduction of Theorem
2.1.3. With the instance created in the proof of the theorem, we see that the maximum-
density component problem is equivalent to finding a set S with |S| ≤ k that maximizes
|E(S)|/|S|; this problem is known as Densest at-most-k-Subgraph, and Goldstein and Lang-
berg [20] showed that an α-approximation algorithm for it yields a 4α-approximation for
DkS.
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Chapter 3

Conclusion and Future Work

In this thesis, we presented approximation results for the Graph Protection problem when
ignition scenarios may contain arbitrary numbers of nodes. In particular, we devised a
rounding algorithm that, when given a fractional solution of a novel component-based
LP with value W , returns an integral solution with expected protected value Ω(W ) and
expected cost O(B). We showed that a near-optimal fractional solution of the LP can
be obtained for GPwIA on trees, and applying the rounding algorithm to such a solution
yields the approximation algorithms of Theorems 2.1.1 and 2.1.2. We also showed that a
similar approximation is unlikely to exist for the GPwPS problem, due to an approximation-
preserving reduction from Densest k-Subgraph.

There are a number of directions for future work on Graph Protection. As previously
noted, we did not focus on optimizing the constants of the approximation algorithms of
Theorems 2.1.1 and 2.1.2. Thus, it is unknown what the best factors achievable with
our methods are, and whether there exists different methods that produce better factors.
Furthermore, many open problems remain for Graph Protection when the input consists
of an arbitrary graph (and not exclusively a tree). Almost all results known for general
graphs use the cut-based tree decomposition of Räcke [35], which extends results on trees
to general graphs, but in doing so, violates the budget by an O(log n)-factor. To the best of
our knowledge, the only result that does not use this technique is that of Hayrapetyan et al.
[24], although this is for the deterministic, single-source problem when we seek to minimize
the number of unprotected nodes. Another direction for future work is to consider similar
problems in the stochastic 2-stage recourse model (instead of the stochastic single-stage
model we consider). For example, even the development of an approximation algorithm
for 2-stage GPwIA on trees is an interesting open problem.
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