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Abstract

Multi-state models provide a useful framework for estimating the rate of transitions between

defined disease states and understanding the influence of covariates on transitions in studies of the

disease progression. Statistical analysis of data from studies of disease progression often involves

a number of challenges. A particular challenge is that the classification of the disease state may

be subject to error. Another common problem is that there are many sources of heterogeneity

in the data in which situation the assumption of time-homogeneous for common Markov models

is not valid. In addition, it is common for discrete covariates subject to misclassification and the

panel data collected from disease progression studies is time-dependence in the covariates.

In Chapter 2, the progressive multi-state model with misclassification is developed to simul-

taneously estimate transition rates and account for potential misclassification. The performance

of the maximum likelihood and pairwise likelihood estimators is evaluated by simulation studies.

The proposed progressive model is illustrated on coronary allograft vasculopathy data, in which

the diagnosis based on the coronary angiography is subject to error.

In Chapter 3, hidden mover-stayer models are proposed to provide a solution to a type of

heterogeneity where the population consists of both movers and stayers in the presence of mis-

classification. The likelihood inference procedure based on the EM algorithm is developed for the

proposed model. The performance of the likelihood method is investigated through simulation

studies. The proposed method is applied to the Waterloo Smoking Prevention Project.

In Chapter 4, we propose estimation procedures for Markov models with binary covariates

subject to misclassification. We show that the model is not identifiable under covariate misclassi-

fication. Consequently, we develop likelihood inference methods based on known reclassification

probabilities and the main/validation study design. Simulation studies are conducted to inves-
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tigate the performance of proposed methods and the consequence of the naive analysis which

ignores the misclassification.

In Chapter 5, we consider two-state Markov models where time-dependent surrogate covariates

are available. We exploit both functional and structural inference methods to reduce or remove

bias effects induced from covariate measurement error. The performance of proposed methods is

investigated based on simulation studies.
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Chapter 1

Introduction

1.1 Multi-state models

Multi-state models provide a useful framework for estimating the rate of transitions between de-

fined disease states and understanding the influence of covariates on transitions in studies of the

disease progression (Andersen and Keiding, 2002; Commenges, 1999, 2002). Examples of medical

applications include breast cancer (Duffy et al., 1995; Chen et al., 1996, 1997, 2000; Hsieh et al.,

2002; Chang et al., 2007), cervical cancer (Kirby and Spiegelhalter, 1994), chronic myelogenous

leukemia (Klein et al., 1984), coronary occlusive disease after heart transplants (Sharples, 1993;

Klotz and Sharpless, 1994), dementia (Joly et al., 2002), diabetic complications (Andersen, 1988;

Marshall and Jones, 1995; Kosorok and Chao, 1996), Giardia lamblia (Nagelkerke et al., 1990),

hairy leukoplakia (Bureau et al., 2003), hepatitis C virus (Sweeting et al., 2010), human immun-

odeficiency virus (HIV) (Longini et al., 1989; Gentleman et al., 1994; Satten and Longini, 1996;

Aalen et al., 1997; Satten, 1999; Guihenneuc-Jouyaux et al., 2000; Alioum et al., 2005; Binquet

et al., 2009), hepatocellular carcinoma (Kay, 1986), human papillomavirus (Bureau et al., 2003;

1



Kang and Lagakos, 2007), liver cirrhosis (Andersen et al., 1991), psoritic arthritis (Cook et al.,

2004; Sutradhar and Cook, 2008; Tolusso and Cook, 2009; Chen et al., 2010; Farewell and Su,

2011; O’Keeffe et al., 2011; Tom and Farewell, 2011; O’Keeffe et al., 2013), screening for abdom-

inal aortic aneurysms (Jackson et al., 2003), and smoking prevention (Kalbfleisch and Lawless,

1985; Cook et al., 2002; Chen et al., 2011).

Continuous-time multi-state models are commonly used for characterizing disease processes

due to irregularly spaced observation times in the study. The continuous-time multi-state model

is a stochastic process, which is a family of random variables {S (t) : t ∈ T} taking values in a

discrete set of states {1, 2, . . . ,K} with the index set T = [0,∞). The survival model in Figure 1.1

is the simplest form of multi-state model, with two states and one possible transition from “alive”

to “dead”.

State 1:
alive

State 2:
dead

Figure 1.1: Survival model

Other multi-state models include the illness-death model in which individuals make transitions

from “healthy” to “dead” possibly via “diseased” (see Figure 1.2) and the unidirectional model

in which individuals move among the states sequentially and irreversibly until they reach an

absorbing state (see Figure 2.1). Both the illness-death model and the unidirectional model

are examples of progressive models in which individuals make irreversible transitions and finally

reach an absorbing state. The absorbing state is a state that once entered, is never left. If the

recovery from disease is allowed in the illness-death model, it is called the reversible illness-death

model (see Figure 1.4). It is an example of a bidirectional model. Such models allow transitions

between some transient states in both directions and contain an absorbing state. If the absorbing
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state “dead” is excluded from the reversible illness-death model, the model becomes a recurrent

two-state model, as in Figure 1.5, which is the simplest example of recurrent models that do

not contain an absorbing state but include recurrent states. State i is said to be recurrent if the

probability that, starting in state i, the process will ever return to state i is 1 and transient if that

probability is less than 1. More details about the model structure and its influence on statistical

modelling are summarized in Titman (2007, Section 1.3.1).

State 1:
healthy

State 2:
diseased

State 3:
dead

Figure 1.2: Illness-death model

State 1 State 2 · · · · · · State K

Figure 1.3: K-state unidirectional progressive model

It is of interest to determine the rate of disease onset or progression and identify prognostic

variables on transitions in the medical application. Transition intensity functions qij [t,H (t)] of

the multi-state model are used to describe the transition rate from state i to j at time t and the

history H (t) of the process up to time t. These functions are defined as

qij [t,H (t)] = lim
∆t↓0

Pr [S (t+ ∆t) = j | S (t) = i,H (t)]

∆t
, i 6= j,

3



State 1:
healthy

State 2:
diseased

State 3:
dead

Figure 1.4: Reversible illness-death model

State 1 State 2

Figure 1.5: Reversible two-state model

where S (t) is the state occupied at time t.

1.1.1 Continuous-time Markov models

The Markov property is usually assumed for simplifying the estimation of the intensity functions

in multi-state models; i.e., the conditional distribution of the future state S (t+ s) given the

present state S (s) and the past states {S (u) , 0 ≤ u < s}, depends only on the present state and

is independent of the past states. Mathematically, the Markov property is that for all s, t ≥ 0,

and states i, j, {x (u) , 0 ≤ u < s}:

Pr [S (t+ s) = j | S (s) = i, S (u) = x (u) , 0 ≤ u < s] = Pr [S (t+ s) = j | S (s) = i] ;

4



equivalently, for all nonnegative integersm, time points t1 < t2 < · · · < tm and states k1, . . . , km−2,

i, j,

Pr [S (tm) = j | S (t1) = k1, . . . , S (tm−2) = km−2, S (tm−1) = i]

= Pr [S (tm) = j | S (tm−1) = i] .

In terms of transition intensities, the Markov property implies

qij [t,H (t)] = lim
∆t↓0

Pr [S (t+ ∆t) = j | S (t) = i,H (t)]

∆t

= lim
∆t↓0

Pr [S (t+ ∆t) = j | S (t) = i, S (u) = x (u) , 0 ≤ u < t]

∆t

= lim
∆t↓0

Pr [S (t+ ∆t) = j | S (t) = i]

∆t

= qij (t) , i 6= j,

so that transition intensities are time-varying but independent of the past history of the process.

For convenience, we define qii (t) = −
∑

j 6=i qij (t) such that
∑

j qij (t) = 0.

Let P (t, u) denote the K ×K transition probability matrix with (i, j) entry

Pr [S (u) = j | S (t) = i] and Q (t) be the K×K transition intensity matrix with (i, j) entry qij (t),

where i, j = 1, 2, . . . ,K. As is well known (e.g. Cox and Miller, 1965, Chapter 4), the transition

probability matrix for continuous-time Markov models satisfies Kolmogorov differential equations:

∂P (t, u)

∂u
= P (t, u) Q (u) and − ∂P (t, u)

∂t
= Q (t) P (t, u) , (1.1)

subject to the condition P (t, t) = I, where I is the unit matrix. In most cases, the forward

and backward systems of differential equations cannot be solved analytically. But under certain

assumptions, such as time-homogeneity, which assumes transition intensities are independent of t,

5



transition probabilities can be expressed in a convenient way. In this case, transition probabilities

depend only on the length of the time interval and the present and future states:

Pij (t) = Pr [S (t+ s) = j | S (s) = i] = Pr [S (t) = j | S (0) = i] , i, j = 1, 2, . . . ,K.

That is, continuous-time homogenous Markov models are stationary. This also implies that the

sojourn time within state i, which is the amount of time that the process stays in state i before

making a transition into a different state, is exponentially distributed with mean −1/qii. When

the process exists from state i, it makes a transition to state j with probability −qij/qii, where

qij is the constant transition rate qij (t) from state i to j.

In the time-homogeneous case with constant transition intensity matrix Q, the equations

dP (t)

dt
= P (t) Q and − dP (t)

dt
= QP (t) ,

with the initial condition P (0) = I can be solved by the matrix exponential of the element-wise

scalar multiplication of the transition intensity matrix and the time interval t

P (t) = exp (Qt) =
∞∑
r=0

Qr t
r

r!

where the matrix exponential is defined by the power series of the matrix product and Q0 = I.

Instead of using the algorithm for the matrix exponential based on the Taylor series, other

algorithms are proposed based on the nature of transition intensity matrix Q. If Q has distinct

eigenvalues, the canonical decomposition for the computation of P (t) is available (Kalbfleisch

and Lawless, 1985). In this case,

Q = HDH−1
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where D = diag (d1, d2, . . . , dK) is a diagonal matrix of distinct eigenvalues of Q and H is the

K ×K matrix whose jth column is the eigenvector associated with dj . Then, P (t) is calculated

as

P (t) = H exp {Dt}H−1.

Thus, the computation of the transition probability matrix is easy if the eigenvalue decomposition

of Q is known. If Q has repeated eigenvalues, Kalbfleisch and Lawless (1985) suggested an

analogous decomposition of Q to the Jordan canonical form (e.g. Cox and Miller, 1965, Chapter

3). More recently, Jackson (2011) recommended a method based on Padé approximation with

scaling and squaring (Moler and van Loan, 2003) for cases with repeated eigenvalues. In certain

simple situations, the explicit analytic expression of transition probabilities is available (Chiang,

1980), such as the three-state progressive illness-death model (Omar et al., 1995), the three-

state reversible illness-death model (Tuma et al., 1979), the five-state progressive illness-death

model (Longini et al., 1989), the K-state unidirectional progressive model (Satten, 1999), and

several selected 2, 3, 4 and 5-state models (Jackson, 2011).

1.1.2 Hidden Markov models

The hidden Markov model (HMM) consists of two processes {(S (tk) , S
∗ (tk)) : k ≥ 0}: the un-

derlying process {S (tk) : k ≥ 0} is unobserved and satisfies the Markov property; conditional on

the state process {S (tk) : k ≥ 0}, the observed process {S∗ (tk) : k ≥ 0} is a sequence of inde-

pendent random variables such that the conditional distribution of S∗ (tk) depends only on the

current state S (tk). The conditional independence implies that

• for any integer p and any ordered set {t1 < · · · < tp} of indices, random variables S∗ (t1) , . . .,

S∗ (tp) are conditionally independent given S (t1) , . . . , S (tp);
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• for any integers k and p and any ordered set {t1 < · · · < tp} of indices such that tk /∈

{t1, . . . , tp}, random variables S∗ (tk) and {S (t1) , . . . , S (tp)} are conditionally independent

given S (tk).

The discussion of the conditional independence properties of HMMs can be found in Corollary

2.2.5 of Cappé et al. (2005).

Figure 1.6 uses a directed graph without loops to describe the dependence structure among

random variables in an HMM. The nodes in the graph represent the random variables, and

the arrows represent the structure of dependence, i.e. the joint probability distribution can be

factored as a product of conditional distributions of each node, given the node’s direct pre-

decessors. Figure 1.6 indicates that the conditional distribution of S (tm), given the process

history S (t1) , . . . , S (tm−1), is determined by the value of the previous state S (tm−1), which is

the Markov property. Likewise, the conditional distribution of S∗ (tm), given past observations

S∗ (t1) , . . . , S∗ (tm−1), and states S (t1) , . . . , S (tm), is determined only by the value of the current

state S (tm).

S∗ (t1) S∗ (t2) · · · · · · S∗ (tm)

S (t1) S (t2) · · · · · · S (tm)

Observed

Underlying

Figure 1.6: Graphical model for the dependence structure of a hidden Markov model

Given the state sequence {S (tk) : k ≥ 0}, observations {S∗ (tk) : k ≥ 0} are conditionally in-

dependent. But {S∗ (tk) : k ≥ 0} is not an independent sequence. Furthermore, {S∗ (tk) : k ≥ 0}

does not satisfy the Markov property in general, even though both {S (tk) : k ≥ 0} and
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{(S (tk) , S
∗ (tk)) : k ≥ 0} are Markov chains. In particular, Zucchini and MacDonald (2009,

Page 39) gave a counterexample to show that a two-state Bernoulli HMM does not satisfy the

Markov property. On the other hand, Spreij (2001) provided an answer to the question of condi-

tions under which a hidden Markov model satisfies the Markov property.

Because the state sequence {S (tk) : k ≥ 0} is not observable but satisfies the Markov property,

the term hidden Markov model is used to refer to such models. They are also called Markov-

dependent mixture models (Leroux and Puterman, 1992) in that the observation {S∗ (tk) : k ≥ 0}

is conditionally independent on the states {S (tk) : k ≥ 0}, which are generated from a mixing

distribution with a Markov property. Alternatively, HMMs can be considered as an extension of

Markov models, in which the observation {S∗ (tk) : k ≥ 0} of the state {S (tk) : k ≥ 0} is distorted

in some way that includes some additional, independent randomness. For example, the state of

cardiac allograft vasculopathy cannot be accurately assessed for patients due to the impossibility

of the golden standard test of intravascular ultrasound. Instead, the state is classified based on

coronary angiography (Sharples et al., 2003). For another example, the state of HIV progression is

not observable and therefore must be defined on the basis of CD4 cell count values (Guihenneuc-

Jouyaux et al., 2000).

1.1.3 Time-inhomogeneous Markov models

It is not necessarily realistic that transition intensities stay constant through time. For example,

as patients are likely to accept the new therapy to improve the quality of their life, transition

rates of the disease may change over time. Therefore, time-inhomogeneous Markov models in

which transition intensities depend only on the states and current time are utilized to model

time-dependent intensities.

A common method of fitting time-inhomogeneous Markov models is to allow the transition
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intensity matrix to be a piecewise constant function (Faddy, 1976) in that transition probabilities

are algebraically tractable. Change points 0 = b0 < b1 < · · · < bM < bM+1 =∞ are pre-specified

and for t ∈ [bk, bk+1), Q (t) = Qk, which implies the constant hazard in each interval. The

Kolmogorov differential equations (1.1) have solutions for s, s+ t ∈ [bk, bk+1),

P (s, s+ t) = exp (Qkt) ,

which remains the closed form as the time-homogeneous case but substitutes the transition in-

tensity matrix at time interval [bk, bk+1) for the common intensity matrix; transition probabilities

between times containing more than one time interval can be found via the Chapman-Kolmogorov

equation, such that for s ∈ [bi, bi+1) and s+ t ∈ [bj , bj+1),

P (s, s+ t) = P (s, bi+1)

j−1∏
k=i+1

[P (bk, bk+1)] P (bj , s+ t) .

Markov models with piecewise constant transition intensities provide considerable flexibility

in term of the time dependence. However, one limitation of these models is that the assumption of

homogeneity in each time interval results in deterministic discontinuities in transition intensities,

which may not be plausible for some applications (Titman, 2011).

A second approach is time transformation models in which the time-dependent intensity

matrix is of the smooth parametric form

Q (t) = Q0 · g (t;λ) ,

where Q0 is a fixed intensity matrix with unknown entries, and g (t;λ) is a known nonnegative

function of time with an unspecified parameter λ. For given λ, let s =
∫ t

0 g (u;λ) du and define

10



Y (s) = S (t). Then, the process {Y (s) : s ≥ 0} is a time-homogeneous Markov process with

intensity matrix Q0; transition probabilities have the solutions

Ps (t1, t2) = Py (s1, s2) = exp [Q0 (s2 − s1)] ,

where Ps and Py are transition probability matrices for {S (t) : t ≥ 0} and {Y (s) : s ≥ 0} re-

spectively and si =
∫ ti

0 g (u;λ) du is an operational time defined by g (t;λ) for given λ, i = 1, 2.

This class of models was first suggested by Kalbfleisch and Lawless (1985). Omar et al. (1995)

implemented the transformation g (t;λ) = λtλ−1 for a three-state progressive illness-death model

so that the sojourn time within each transient state follows the Weibull distribution with the

common shape parameter λ.

Compared with piecewise constant transition intensities models, time transformation models

require estimation of fewer parameters and thus observation of fewer times and provide the con-

tinuity for intensities, instead of the requirement of the homogeneity assumption in each time

interval. However, these models may be quite limited because all the intensities after trans-

formation must be monotonically increasing or decreasing depending on the choice of g and λ.

Recently, Hubbard et al. (2008) proposed nonparametric time transformation models using a lo-

cally weighted smoother to allow more flexibility in dealing with time inhomogeneity. However,

these models are still restrictive due to the requirement of a common time-varying multiplicative

change for all the intensities, i.e. the ratio of transition intensities qri (t) /qsj (t) for i 6= j, r 6= i,

s 6= j, remains constant through time. It may not be a realistic assumption, for instance, in

illness-death models, the transition intensity to death may be expected to increase more rapidly

with age than the rate of disease onset.

The third approach is general smooth intensity models (Titman, 2011) in which the intensity
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qij (t) takes the form of a quadratic B-spline with knots tij1, . . . , tijM :

qij (t) = qij

M∑
m=0

αijmBijm (t) ,

where Bijm (t) are spline basis functions, and αijm ≥ 0 are weights satisfying the identifiability

constrain αij0 = 1. To make models identifiable and estimable, the number of knot points needs

to be restricted so that there is sufficient information between knot points to estimate spline

weights. An upper bound for the number of knot points would be the average number of times

each patient is observed in the data, but in most cases fewer points than this would be necessary.

The transition probabilities are obtained by numerical solutions to the Kolmogorov differential

equations (1.1). Although these models are more flexible to feature the time dependence than

time transformation models, it is more computationally intensive than other models, particularly

in models with covariates.

1.1.4 Other extensions of Markov models

Mover-stayer models

The mover-stayer model (Blumen et al., 1955) is useful to describe a particular type of population

heterogeneity by assuming that the population consists of two types of individuals: the stayer

stays in the initial state, whereas the mover evolves according to a Markov process. Therefore, it is

a mixture of two independent Markov processes: one with degenerate transition probability matrix

equal to the identity matrix at any time and the other with unknown common transition intensity

matrix. Note that the proportion of stayers in each state is a time-independent parameter of the

model and the transition intensity matrix for each mover does not change over time so the mover-

stay model is still time homogeneous. The usual Markov model can be viewed as a special case
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when the stayer proportion is zero in each state.

Semi-Markov models

Continuous-time semi-Markov models (Pyke, 1961) are generalizations of Markov models in which

sojourn times between transitions have an arbitrary distribution rather than an exponential

distribution. In terms of transition intensities, it implies

qij [t,H (t)] = lim
∆t↓0

Pr [S (t+ ∆t) = j | S (t) = i,H (t)]

∆t

= lim
∆t↓0

Pr [S (t+ ∆t) = j | S (t) = i, ti]

∆t

= qij (ti) , i 6= j,

where ti ≤ t is the sojourn time in current state i. Equivalently,

qij (ti) = lim
∆t↓0

Pr (Sn+1 = j, τn+1 < t+ ∆t | Sn = i, τn+1 ≥ t)
∆t

, i 6= j,

where Sn denote the nth state occupied by the process and τn+1 represent the sojourn time

between the (n− 1)th and nth states, n = 1, 2, . . .. The semi-Markov process {S (t) : t ≥ 0} is

defined by

• the time-homogenous transition probability matrix P of the embedded Markov chain

Pij = Pr (Sn+1 = j | Sn = i) , i, j = 1, . . . ,K, n ≥ 0

with the constrain
∑K

j=1 Pij = 1 for i = 1, . . . ,K;

13



• the conditional distributions F (t) = {Fij (t) : i 6= j} of sojourn times

Fij (t) = Pr (τn+1 ≤ t | Sn = i, Sn+1 = j) , i, j = 1, . . . ,K, i 6= j, n ≥ 0.

If Fij (t) does not depend on the state next occupied, i.e. Fij (t) = Fi (t) and Fi (t)’s are expo-

nential distributions, then the semi-Markov model reduces to the Markov model. The statistical

challenge arises from analyzing censored data in which the exact sojourn time for the state is

generally unknown.

1.2 Measurement error models

Many variables of interest are difficult to measure precisely on individuals in clinical studies. For

example, the presence or absence of a disease is often assessed through an imperfect diagnostic

procedure, which can lead to false positives or false negatives; the covariates measured with self

report, such as dietary intake and drug use, are subject to error; the actual exposure to certain

pollutants is difficult to measure accurately.

In general, a measurement error problem consists of three main ingredients: a model for true

values, a measurement error model specifying the relationship between the true and observed val-

ues, and possibly additional data information that may be useful to characterize the measurement

error. The typical extra data and information include:

1. knowledge of parameters in the measurement error model;

2. replicate values for the error-prone measure of the true value;

3. estimated standard errors for error-prone variables;
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4. internal validation data in which true values of error-prone variables are observed on a

subset of the main study;

5. external validation data which contain true values of error-prone variables and are indepen-

dent of the data in the main study;

6. instrumental variables which are correlated with error-prone variables but not correlated

with the measurement errors or the errors in the model for true values.

These issues will be discussed in Section 1.2.3.

Two main objectives in a measurement error problem are to investigate the consequence of

naive analyses which ignore the measurement error and to carry out corrections for measurement

error to obtain valid inference results. These tasks can be carried out according to the inference

procedures and measurement error models.

1.2.1 Classical versus Berkson models

When specifying the relationship between the true and observed values, one way is the classic

measurement error model (Pearson, 1902; Cochran, 1968) which assumes the distribution of the

observed values given the true values, and the other way is the Berkson model which specifies the

distribution of the true values given the observed values. The Berkson model was first introduced

by Berkson (1950) in cases where the observations are fixed target values but the true values of

interest are not observed and random, such as protein levels in a diet in balance/intake studies

to determine nutritional requirements.

For the continuous variable, the most widely-used model is the additive measurement error

model X∗ = X + U , where U is a random variable with E (U | X) = 0. The Berkson version
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of the additive model is X = X∗ + U∗, where U∗ is a random variable with E (U∗ | X∗) = 0.

Therefore, there is no bias between the observed variable X∗ and the true variable X but the

true variable has more variability than the observed variable, var (X) > var (X∗) in the Berkson

model, in contrast with the classical model with var (X∗) > var (X). Note that the error structure

of U and U∗ in both models could be homoscedastic (constant variance) or heteriscedastic.

1.2.2 Misclassification

If both observed and true variables are discrete, the classical measurement error model is given

by Pr (X∗ | X) where X is the true variable and X∗ is the observed variable. This probability is

called misclassification probability or misclassification rate. On the other hand, the probability

model Pr (X | X∗) is called reclassification probability or reclassification rate. The reclassification

and misclassification probabilities are related via

Pr (X = xi | X∗ = xj) =
Pr (X = xi, X

∗ = xj)

Pr (X∗ = xj)

=
Pr (X∗ = xj | X = xi) Pr (X = xi)∑

k

[
Pr (X∗ = xj | X = xk) Pr (X = xk)

] ,
where xi, xj and xk are the possible discrete values of the variables.

1.2.3 Measurement error mechanism

The measurement error mechanism is an important assumption imposed when linking the model

for true values and the measurement error model (Carroll et al., 2006; Buonaccorsi, 2010). Let

Y denote the response variable.

• The measurement error model is non-differential (with respect to Y ) if the distribution of
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the observed variable X∗ given the true variable X and the response variable Y does not

depend on the value of Y . Otherwise, it is differential.

• The observed variable X∗ is a surrogate for the true variable X (with respect to Y ) if the

distribution of the response Y given the true variable X and observed variable X∗ does not

depend on X∗. In other words, given X, X∗ contains no information about Y other than

what is available in X.

• The response Y and the observed variable X∗ are conditionally independent given the true

variable X if f (y, x∗ | x) = g (y | x)h (x∗ | x), where f is the joint probability function of

Y and X∗ given X = x, g is the conditional probability function of Y given X = x, and h

is the conditional probability function of X∗ given X = x.

In fact, the three concepts, non-differential measurement error, surrogacy, and conditional

independence, are equivalent.

1.3 Existing methods for continuous-time Markov models

1.3.1 Sampling scheme

Longitudinal data collected from disease progression studies are often under panel/intermittent

observation in which the exact times of disease onset or progression are interval censored so that

the transition time is only known to lie in a certain interval. It may arise from the intermittent

follow-up visits, at which the disease information is collected, but the information between visits

is commonly unavailable. A regular balance observation schedule at times t, 2t, . . . , mt may be

specified in advance, but in practice times of visits may vary due to missing or changing scheduled
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times. An important exception is the observation time for death which is commonly recorded at

the exact time or within one day.

Figure 1.7 illustrates a possible sampling situation. The individual is observed at five visits

through four months. The available information is the occupation of states 1, 1, 2, 3, and death

at respective times 1.0, 2.0, 3.0, 3.5, 3.9. Except the death date, the entry time of each occupied

state and the state occupancy between observation times are unknown.

Time

0.0 1.0 2.0 3.0 3.5 3.9

State 1

State 2

State 3

Death

Figure 1.7: Example of panel observation of a multi-state process

Grüger et al. (1991) derived two conditions of the interrelationship between the disease process

and the sampling scheme under which a valid inference method is possible. Suppose the disease

process S (t) for a particular individual is observe at a finite number of times. Let M be the

number of observation times and T1, . . . , TM be the observation times. In fact, both observation

times T1, . . . , TM and their number M are random variables in applications. Therefore, the

observed disease states should be modelled along with the sampling scheme such that the joint
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likelihood of the states s0, s1, . . . , sm and the times t0 < t1 < . . . < tm is

L = Pr [S (t0) = s0, . . . S (tm) = sm, T0 = t0, . . . , Tm = tm,M = m] .

Then, Grüger et al. (1991) extended the non-informative censoring in survival analysis (e.g.

Kalbfleisch and Prentice, 2002) to the non-informative sampling scheme in multi-state models.

That is, the sampling scheme is stochastically independent of the disease process under observa-

tion. In terms of the factorization of the likelihood,

L = Pr [S (t0) = s0, . . . , S (tm) = sm | T0 = t0, . . . , Tm = tm,M = m]

×Pr [T0 = t0, . . . , Tm = tm,M = m] ,

the condition in the first factor is ignored, and the second factor is assumed to be free of any

parameters of

L0 = Pr [S (t0) = s0, . . . , S (tm) = sm] .

However, this treatment is not satisfactory, because the independence assumption may not

be valid in practice. On the other hand, the likelihood can be factored in a dynamic fashion,

conditional on the history Hj of disease states and observation times up to and including the jth

observation,

L = Pr (H0)


m∏
j=1

Pr [S (tj) = sj | Tj = tj , Hj−1]




m∏
j=1

Pr (Tj = tj | Hj−1)


where the history is defined as follows

Hj = {T0 = t0, S (t0) = s0, . . . , Tj = tj , S (tj) = sj} , j = 0, . . . ,m.
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Hence, Grüger et al. (1991) derived the following conditions for the non-informative sampling

scheme:

1. The probability of staying in state sj at time tj , given the history

Hj−1 = {T0 = t0, S (t0) = s0, . . . , Tj−1 = tj−1, S (tj−1) = sj−1}, is independent of whether

an observation is carried out at this time and the past observation times, i.e.,

Pr [S (tj) = sj | Tj = tj , Hj−1] = Pr [S (tj) = sj | S (t0) = s0, . . . , S (tj−1) = sj−1] ;

2. The conditional distribution of the jth observation time Tj , Pr (Tj = tj | Hj−1), is func-

tionally independent of parameters governing transition intensities of the disease process

{S (t) , t ≥ 0}.

The non-informative sampling schemes for monitoring the chronic disease progression include,

for example,

1. Observation at regular intervals: each patient is observed at regular intervals fixed in ad-

vance. Even if observation times are irregular, the sampling scheme is still non-informative

as long as it is specified in advance.

2. Random sampling: observation times are independent of the disease histories of individuals

under study.

On the other hand, if a patient self-selects the visit to the doctor based on the unwell feeling

or the unexpected symptom, this behaviour may violate the first condition and make the obser-

vation time informative. Moreover, the valid statistical inference method may not be possible

for the informative sampling scheme in general due to the non-identifiability issue, similar to the
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competing risk model (Tsiatis, 1975). Meanwhile, estimated transition intensities are subject to

potential biases when the informative sampling scheme is ignored. For illustration, Grüger et al.

(1991) demonstrated the biased estimation of transition intensities under the patient self-selection

sampling scheme by analyzing the simulated data.

1.3.2 Likelihood approach

Kalbfleisch and Lawless (1985) and Kay (1986) proposed maximum likelihood methods for the

analysis of panel data under continuous-time Markov models. Suppose n independent individuals

are under study. The data for individual i consist of observed states {si0, si1, . . . , simi} at the

times ti0 < ti1 < · · · < timi . The observation times are assumed to be non-informative. The

parameters related to transition intensities are denoted by β. Then, the likelihood for individual

i is

Li (β) =

mi∏
j=1

Pr [Si (tij) = sij | Si (ti,j−1) = si,j−1;β] ,

where the conditional probability

Pr [Si (tij) = sij | Si (ti,j−1) = si,j−1;β]

is the entry of the transition probability matrix P (t) at the si,j−1th row and sijth column,

evaluated at t = tij − ti,j−1.

However, if the death state is included in the multi-state model and recorded at the exact

time, then the transition probability from the previous state to the death state is different from

that calculated from the transition probability matrix. Suppose the last state of individual i,

simi , is the death state D which is recorded at the exact time. Then, the transition probability
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from state si,mi−1 to D is of the form

Pr [Si (timi) = D | Si (ti,mi−1) = si,mi−1;β]

=
∑
j 6=D

{
Pr [Si (timi) = j | Si (ti,mi−1) = si,mi−1;β] qjD

}
,

where the conditional probability Pr [Si (timi) = j | Si (ti,mi−1) = si,mi−1;β] is calculated from the

transition probability matrix and qjD is the transition intensity from state j to D.

Another important exception is that the last observation of individual is subject to adminis-

trative censoring in the case that the mortality of individuals is followed-up until the end of the

study. Typically, there is a gap between the last state observation time tmi , at which the disease

state is observed, and the end time tiE , at which no disease state is known except for the death.

In this situation, if individual i is alive at the end of the study, the censored observation has the

likelihood contribution ∑
j 6=D

Pr [Si (tiE) = j | Si (timi) = simi ;β] .

The likelihood L is the product of all the contributions from indidividuals

L (β) =

n∏
i=1

Li (β) .

For maximum likelihood estimation, Kalbfleisch and Lawless (1985) gave a computationally effi-

cient expression for the first derivatives of transition probabilities and presented a Fisher-scoring

algorithm, in which the second derivatives of the log-likelihood are replaced by estimated expecta-

tions and thus only the first derivatives are required. However, this procedure can not be used, if

the death time is not censored or the final observation does not provide the information of the dis-

ease state except the death, due to that expectations of the second derivatives of the log-likelihood
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require the second derivatives of transition probabilities. While similar expressions for the second

derivates are available in Kosorok and Chao (1995, 1996), they are so complex that it is not worth

the effort to supply for the optimization. Instead, the BFGS quasi-Newton method (e.g. Dennis

and Schnabel, 1996), in which the second derivatives are approximated by evaluations of the first

derivatives, is available to obtain maximum likelihood estimates. To protect against the possible

violation of the Markov or time-homogeneity assumption, one may use the sandwich-type robust

variance formula (Royall, 1986) to calculate standard errors of parameter estimates.

1.3.3 Extension to mover-stayer models

The likelihood method can be applied for the analysis of panel data under a mover-stayer model.

Let Z denote a mover-stayer indicator where Z = 0 if the individual is a stayer and Z = 1

otherwise. Let γ represent the parameters related to the mover-stayer probability, β represent

the parameters related to transition intensities in the mover process, and θ =
(
βT,γT

)T
. If all

the observed states of individual i are the same, then individual i is a susceptible mover or a

possible stayer. In this case, the likelihood contributed from individual i takes the form

Li (θ) = Pr [Zi = 0 | Si (ti0) = si0;γ]

+ Pr [Zi = 1 | Si (ti0) = si0;γ]

mi∏
j=1

Pr [Si (tij) = si0 | Si (ti,j−1) = si0, Zi = 1;β] .

Otherwise, individual i is a known mover and the likelihood from individual i is given by

Li (θ) = Pr [Zi = 1 | Si (ti0) = si0;γ]

mi∏
j=1

Pr [Si (tij) = sij | Si (ti,j−1) = si,j−1, Zi = 1;β] .

The likelihood can be written as the product over all the contributions from individuals.
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The maximum likelihood estimates can be obtained from the direct maximization of the like-

lihood function based on the Newton-Raphson method. Alternatively, the mover-stayer indicator

Z can be treated as a latent variable so the EM algorithm (Dempster et al., 1977) can be used

to maximize the likelihood function. The complete data likelihood for individual i is

Lc
i (θ) =

{
Pr [Zi | Si (ti0) = si0;γ]

}1−Zi

×

{
Pr [Zi | Si (ti0) = si0;γ]

mi∏
i=1

Pr [Si (tij) = sij | Si (ti,j−1) = si,j−1, Zi = 1;β]

}Zi

,

and then the complete data log-likelihood is given by

`ci (θ) = (1− Zi) log
{

Pr [Zi | Si (ti0) = si0;γ]
}

+Zi

{
log
{

Pr [Zi | Si (ti0) = si0;γ]
}

+

mi∑
j=1

log
{

Pr [Si (tij) = sij | Si (ti,j−1) = si,j−1;β]
} .

It can be divided into two parts: the first part

`ci1 (γ) = log
{

Pr [Zi | Si (ti0) = si0;γ]
}

contains only the parameters related to the mover-stayer distribution; the second part

`ci2 (β) = Zi

mi∑
j=1

log
{

Pr [Si (tij) = sij | Si (ti,j−1) = si,j−1;β]
}

contains only the parameters related to transition intensities in the mover process. In the expec-
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tation step (E-step), the expected complete data log-likelihood at the (k + 1)th iteration is

Q(θ,θ(k)) =
n∑
i=1

Qi1(γ,θ(k)) +
n∑
i=1

Qi2(β,θ(k))

where

Qi1(γ,θ(k)) = E
[
`ci1 (γ)

∣∣∣ si0, . . . , simi , ti0, . . . , timi ;θ
(k)
]

;

Qi2(β,θ(k)) = E
[
`ci2 (β)

∣∣∣ si0, . . . , simi , ti0, . . . , timi ;θ
(k)
]
.

Note that the parameters for the mover process are distinct from those for the mover-stayer

distribution. The maximization step can be carried out with respect to γ and β separately in

the M-step. Maximum likelihood estimation can be obtained through iterations between E and

M steps until convergence of θ(k).

The variance estimation in the EM algorithm can be obtained from Louis’ Formula (Louis,

1982)

E

[
−∂

2` (θ; S)

∂θ∂θT

]
= Eθ

[
−∂

2`c (θ; S, Z)

∂θ∂θT

∣∣∣∣ S

]
− Eθ

{[
∂`c (θ; S, Z)

∂θ

]⊗2
∣∣∣∣∣ S

}

+

{
Eθ

[
∂`c (θ; S, Z)

∂θ

∣∣∣∣ S

]}⊗2

,

where ` (θ; S) is the log-likelihood based on the observed states S of one individual, `c (θ; S, Z)

is the complete data log-likelihood based on the mover-stayer indicator Z and the observed state

S of one individual, and x⊗2 = xxT.
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1.3.4 Regression models

It is of interest to investigate the relationship between covariates of each individual and transition

intensities of the disease progression. Let x = (x1, x2, . . . , xp)
T denote the p×1 vector of covariates

for an individual. The proportional intensity model,

qij (t) = qij0 (t) exp
(
xTβijx

)
, i 6= j,

is of parametric form to describe the multiplicative effect of covariates on the transition intensity,

where qij0 (t) is the baseline intensity from state i to j at time t and βijx = (βij1, βij2, . . . , βijp)
T

is a p× 1 vector of regression coefficients.

For time-homogenous Markov models, baseline intensities can be specified as time-independent

constants, i.e. qij0 (t) = exp (βij0), and then the proportional intensity model becomes the log-

linear model. One advantage of this model is to ensure that transition intensities are nonnegative

for all x and βijx’s; other parameterizations may be more appropriate in particular situations,

such as the local equilibrium distribution model (Kosorok and Chao, 1996). For Markov models

with piecewise constant transition intensities, baseline intensities can be specified to be piecewise

constant of the form

qij0 (t) = exp (βijk0) , bk ≤ t < bk+1, k = 0, 1, . . . ,M,

where 0 = b0 < b1 < · · · < bM < bM+1 =∞ is a pre-specified sequence of times.

It is important to note that covariates can be time-varying. In this situation, time-dependent

covariates are observed at the same time points as the process but the values of covariates between

two observations are not known, except deterministic time-dependent covariates, such as age.

Therefore, further assumptions and approximations are often made to allow the calculation of
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the transition probability matrix and the likelihood. A widely-used assumption is that transition

intensities are piecewise constant. It is usually achieved by approximating the time-dependent

covariate as a step function which remains constant between its observation times, such that

z (t) = zi, ti ≤ t < ti+1,

where z (t) represents the value of the time-dependent covariate at time t and zi is the value of

z (t) observed at time ti. Then, transition intensities can be written as

qij (t) = qij0 (t) exp
[
xTβijx + z (t)βijz

]
, i 6= j,

where qij0 (t) is assumed to be either constant or piecewise constant.

1.4 Composite likelihood method

The composite likelihood, termed by Lindsay (1988), is a type of pseudo likelihoods constructed

by multiplying a collection of marginal or conditional distributions for subsets of response compo-

nents. The idea dates back to the pseudo likelihood proposed by Besag (1974, 1975) for making

statistical inference in spatial random fields and the partial likelihood of Cox (1975) for dimension

reduction in the nuisance parameter space. It has drawn increasing attentions in estimation and

inference for data with complex structures. Application areas include statistical genetics, spatial

statistics, time series, longitudinal studies, and panel surveys. More comprehensive reviews can

be found in Varin (2008), Varin et al. (2011), Larribe and Fearnhead (2011), and Lindsay et al.

(2011).

27



1.4.1 Formulation

Consider an m-dimensional random vector Y, with probability density function f (y;θ), where

θ ∈ Θ is a p-dimensional parameter vector of interest. Let {A1, . . . ,AK} denote a set of marginal

or conditional events with associate sub-likelihoods Lk (θ; y) ∝ f (y ∈ Ak;θ). The composite

likelihood is the weighted product

Lc (θ; y) =

K∏
k=1

[
Lk (θ; y)

]wk ,

where wk are weights assigned to each sub-likelihood. If all the weights are equal, then they can

be ignored; the unequal weights are chosen to improve efficiency of estimation.

Although the combination of marginal and conditional densities are allowed in the formulation,

composite likelihoods are typically distinguished to be conditional or marginal versions.

Composite conditional likelihoods

The composite conditional likelihoods date back to the pseudo likelihood proposed by Besag

(1974, 1975) for inference in spatial models. This pseudo likelihood is constructed from the

product of conditional densities of a single observation given its neighbours,

Lc =

m∏
r=1

f (yr | ys ∈ ∂yr;θ) ,

where ∂yr represent the set of neighbours of yr. It is further generalized by using blocks of

observations for both conditional and conditioned events in spatial data analysis (Vecchia, 1988;

Stein et al., 2004).

For stratified case-control studies, Liang (1987) suggested composite conditional likelihoods
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based on the product of conditional densities of a single observation in the case group given

the pairwise sum of that observation and an observation in the control group within the same

stratum. The further extensions include Hanfelt (2004) and Wang and Williamson (2005) for

sparse clustered binary data and Fujii and Yanagimoto (2005) for the exponential dispersion

model with multiple strata.

For repeated multivariate binary data, Molenberghs and Verbeke (2005) explored two types

of composite conditional likelihoods: one constructed from the product of univariate conditional

densities within one unit given all the other outcomes in the same unit, and the other constructed

from the product of conditional densities of all the outcomes for one occasion, given the outcomes

for the other occasions. Mardia et al. (2008, Chapter 12) considered composite conditional like-

lihoods based on the product of univariate conditional densities given all the other observations

in the same dimension for the trivariate von Mises distribution with application to protein fold

data.

Composite marginal likelihoods

The simplest composite marginal likelihood is the independence likelihood suggested by Chandler

and Bate (2007)

Lind (θ; y) =

m∏
r=1

f (yr;θ) ,

based on the working independence assumption for the analysis of the clustered data. However,

the within-cluster dependence is ignored and thus the inference is limited to marginal parameters

in the independence likelihood.
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The most popular type of composite marginal likelihoods is the pairwise likelihood

Lpair (θ; y) =

m−1∏
r=1

m∏
s=r+1

f (yr, ys;θ) ,

which models the second-order dependence explicitly without specifying the full joint distribution

and takes the correlation among observations into account. There has been increasing influence

of pairwise likelihood methods on spatial statistics since 1990, e.g., Hjort and Omre (1994), Hea-

gerty and Lele (1998), Varin et al. (2005), Guan (2006), Li and Lin (2006), and Bai et al. (2012).

Pairwise likelihood methods have also been applied to correlated data, including random set

models in image analysis (Nott and Rydén, 1999), correlated binary data (Kuk and Nott, 2000),

additive and multiplicative frailty models for multivariate survival data analysis (Parner, 2001),

correlated gamma frailty models for longitudinal count data (Henderson and Shimakura, 2003),

and multilevel models with binary responses and probit link (Renard et al., 2004). Their ex-

tensions include the construction from larger subsets of observations (Varin and Vidoni, 2005;

Caragea and Smith, 2007) and the combination of the independence likelihood and the pairwise

likelihood in some optimal way (Cox and Reid, 2004).

In addition to lower-dimensional marginal densities, composite marginal likelihoods can be

constructed based on the function of the lower-dimensional marginal densities, such as pairwise

difference,

Ldiff (θ; y) =
m−1∏
r=1

m∏
s=r+1

f (yr − ys;θ) .

This form was proposed by Curriero and Lele (1999) to semivariogram estimation in geostatistics

and further extended to estimation of covariance components by Lele and Taper (2002).
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1.4.2 Asymptotic theory

The composite likelihood can be viewed as a type of inference functions obtained from multiplying

a collection of marginal or conditional densities. Therefore, the derivative of the composite log-

likelihood is an unbiased estimating function.

Suppose n independent and identically distributed observations Y1, . . . ,Yn are obtained from

model f (y;θ). Large-sample properties of the composite likelihood can be derived under two

scenarios: one is the increment in the number of independent observations with fixed observation

times, i.e., n → ∞ with m fixed; the other is the increment in the observation times of few

realizations of the process, i.e., m→∞ with a small integer n. In disease progression studies, we

focus on the first asymptotic scenario in which the number of individuals is increasing while the

number of observations for each individual is fixed.

The consistency and asymptotic normality of the composite maximum likelihood estimator

hold under regularity conditions for the first scenario (e.g., Lindsay, 1988; Molenberghs and

Verbeke, 2005, Chapter 9): as n→∞,

1. The composite maximum likelihood estimator θ̃, which is the maximizer of the composite

log-likelihood, converges in probability to θ;

2.
√
n (θ̃−θ) converges in distribution to Np

[
0,G−1 (θ)

]
, where Np (µ,Σ) is the p-dimensional

normal distribution with mean µ and variance Σ, and G (θ) is the Godambe information

matrix for a single observation (Godambe, 1960), given by

G (θ) = H (θ) J−1 (θ) H (θ) ,
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with the sensitivity matrix

H (θ) = E

[
∂2 logLc (θ; Y)

∂θ∂θT

]
,

and the variability matrix

J (θ) = Var

[
∂ logLc (θ; Y)

∂θ

]
.

The validity of the composite likelihood method relies on the model assumption of lower

dimensional marginal or conditional densities, but not on the correct specification of the full joint

distribution. Therefore, the composite likelihood method is robust to the possible misspecification

of higher dimensional distributions. The investigation on robustness was carried out for several

scenarios, including the misspecification of the random effects distribution in a one-way random

effects model (Lele and Taper, 2002), the misspecification of the correlation structure in sparse

clustered binary data (Wang and Williamson, 2005), and the misspecification of the missing data

mechanism (Parzen et al., 2007; Yi et al., 2011b).

Another feature of the composite likelihood method pertains to computational efficiency. It

reduces computational burden by avoiding the high dimensional integration in many situations,

such as random effects models (Varin et al., 2005), analysis of clustered data (Li and Yi, 2013a,b;

Varin and Vidoni, 2008), and especially the cases with high dimensional covariance matrices. In

addition, the composite likelihood surface can be smoother than the full likelihood surface (Black-

well, 1985; Liang and Yu, 2003). It makes composite likelihood more robust to converge and

therefore is called “computational robustness” by Renard et al. (2004).
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1.4.3 Composite likelihoods and Markov chain models

Hjort and Varin (2008) discussed and compared the full likelihood, composite marginal likelihood,

and composite conditional likelihood methods of estimation for discrete-time Markov chain models

in the context of spatial statistics.

Let S0, . . . , Sm be an irreducible discrete-time Markov chain on a finite stat space with sta-

tionary transition probabilities. The traditional full likelihood is a product of all the transition

probabilities because of the Markov assumption with the distribution of the initial state ignored:

L (θ) ∝
m∏
i=1

Pr (Si = si | Si−1 = si−1;θ) ,

where si’s are observations, and θ is the p× 1 parameter vector for transition probabilities.

The composite conditional likelihood is formulated as a product over conditional densities of

a single observation given the rest of data:

Lcc =
m−1∏
i=1

Pr (Si = si | S0 = s0, . . . , Si−1 = si−1, Si+1 = si+1, . . . , Sm = sm;θ) . (1.2)

By the Markov property, the conditional distribution given all the rest observations is the same

as the conditional distribution given the nearest neighbours. Therefore, (1.2) can be simplified

into

Lcc =

m−1∏
i=1

Pr (Si = si | Si−1 = si−1, Si+1 = si+1;θ)

=

m−1∏
i=1

Pr (Si+1 = si+1 | Si = si;θ) Pr (Si = si | Si−1 = si−1;θ)

Pr (Si+1 = si+1 | Si−1 = si−1;θ)
.

The composite marginal likelihood is a product of all the bivariate distributions of adjacent
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observations:

Lcm =
m∏
i=1

Pr (Si−1 = si−1, Si = si;θ)

=
m∏
i=1

Pr (Si = si | Si−1 = si−1;θ) Pr (Si−1 = si−1;θ) ,

where the term Pr (Si−1 = si−1) is the equilibrium distribution with the assumption that the

chain starts out in its equilibrium distribution.

Hjort and Varin (2008) showed that the composite marginal and conditional likelihoods can

be interpreted as penalized likelihoods in Markov chain models. Both theoretical and numerical

analysis provided strong evidence that the composite marginal likelihood method is preferable to

the composite conditional likelihood method in terms of efficiency and robustness and is a robust

alternative to the full likelihood method.

1.5 Outline of the thesis

The structure of the remaining thesis is as follows. In Chapter 2, the progressive multi-state model

with misclassification is developed to simultaneously estimate transition rates and account for

potential misclassification. The performance of the maximum likelihood and pairwise likelihood

estimators is evaluated by simulation studies. The proposed progressive model is illustrated on

coronary allograft vasculopathy data, in which the diagnosis based on the coronary angiography

is subject to error.

In Chapter 3, hidden mover-stayer models are proposed to provide a solution to a type of

heterogeneity where the population consists of both movers and stayers in the presence of mis-

classification. The likelihood inference procedure based on the EM algorithm is developed for the
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proposed model. The performance of the likelihood method is investigated through simulation

studies. The proposed method is applied to the Waterloo Smoking Prevention Project.

In Chapter 4, we propose estimation procedures for Markov models with binary covariates

subject to misclassification. We show that the model is not identifiable under covariate misclassi-

fication. Consequently, we develop likelihood inference methods based on known reclassification

probabilities and the main/validation study design. Simulation studies are conducted to inves-

tigate the performance of proposed methods and the consequence of the naive analysis which

ignores the misclassification.

In Chapter 5, we consider two-state Markov models where time-dependent surrogate covariates

are available. We exploit both functional and structural inference methods to reduce or remove

bias effects induced from covariate measurement error. The performance of proposed methods is

investigated based on simulation studies.
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Chapter 2

Analysis of Progressive Multi-State

Models with Misclassified States

2.1 Introduction

Unidirectional progressive Markov models can be very powerful to model the processes of suc-

cessive events to reflect an accumulation of damage or deterioration. Satten (1999) considered a

conditionally time-homogeneous progressive Markov model for panel data, given random effects

which act on each conditional intensity multiplicatively. Cook et al. (2004) described a condition-

ally time-homogeneous progressive Markov model with discrete multivariate random effects for

clustered multi-state processes. Sutradhar and Cook (2008) generalized the model of Cook et al.

(2004) to allow continuous multivariate random effects and time non-homogeneity for clustered

progressive processes. Chen et al. (2010) proposed a progressive Markov model with piecewise

constant transition intensities to address non-homogeneity under informative examination times.

When analyzing disease progression data, one serious challenge is that the disease state may
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be misclassified. Misclassification of the disease state is frequently caused by sampling error,

due to the poor quality of a diagnostic test or the impossibility of the accurate assessment as

well as from reading error. To account for potential misclassification, hidden Markov models

(HMMs) are commonly employed. For instance, Nagelkerke et al. (1990) considered a two-state

Markov model with only one type of misclassification and constant transition rates. Bureau et al.

(2003) presented a continuous-time hidden Markov model with two types of misclassification

and covariate dependent transition rates. Rosychuk and Thompson (2003, 2004) investigated

identifiably issues and bias correction of parameter estimates for the two-state hidden Markov

process. Rosychuk et al. (2006) compared three variance estimation approaches for the two-

state hidden Markov process, and Rosychuk and Islam (2009) developed a Bayesian approach

for inference. Jackson et al. (2003) presented a general HMM in continuous time which allows

covariate-dependent transitions and misclassification rates. Recently, Jackson (2011) developed

the msm package in R for fitting continuous-time Markov and HMMs to panel data.

These methods are essentially likelihood based, and thereby are vulnerable to model mis-

specification. Furthermore, computation based on direct maximization of the likelihood can be

intensive when the number of states or the number of observations is large. In this chapter,

we propose an inference method to handle progressive models with misclassified states using the

pairwise likelihood formulation (Lindsay, 1988; Cox and Reid, 2004; Lindsay et al., 2011). This

method enjoys the robustness property where the dependence assumption of transition among

states can be relaxed compared to usual HMMs. In addition, we develop an EM algorithm, in

which the derivatives of the expected complete data log-likelihood are in the closed form, to

obtain maximum likelihood estimates under the progressive Markov model with misclassification.

The pioneering work of the EM algorithm in HMMs, known as Baum-Welch algorithm, in-

cludes Baum and Petrie (1966), Baum and Eagon (1967), and Baum et al. (1970). The pairwise
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EM algorithm was first proposed by Liang and Yu (2003) for network tomography, and Castro

et al. (2004) presented the pairwise EM algorithm in their review paper for recent developments

of network tomography. Gao and Song (2011) established properties of the composite likelihood

EM algorithm. The validity of those methods lies on the assumption that data are accurately

measured. This assumption, however, is commonly violated in application. Our development

here complements available work in that progressive models may contain error-prone states, and

broadens the application scope.

The rest of this chapter is organized as follows. In Section 2.2, we describe the progressive

Markov model with misclassification and the conditions for the non-informative observation pro-

cess. The inference procedures based on the likelihood and pairwise likelihood approaches are

developed in Sections 2.3 and 2.4, respectively. The performance of the proposed methods is

investigated and compared through simulation studies in Section 2.5. The proposed methods

are applied to the coronary allograft vasculopathy data in Section 2.6. Discussion is given in

Section 2.7. Technical details are presented in Section 2.8.

2.2 Progressive model with misclassification

2.2.1 K-state progressive Markov model

Suppose an individual moves amongK states, denoted by integers 1, 2, . . . ,K. Let S (t) denote the

true state at time t occupied by an individual. Assume that {S (t) , t ≥ 0} follows a continuous-

time progressive Markov process. Let P (s, s+ t) be the K × K transition probability matrix

with (i, j) entry Pij (s, s+ t) = Pr {S (s+ t) = j | S (s) = i} for s ≥ 0, t > 0, i, j = 1, 2, . . . ,K,
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where Pij (s, s+ t) = 0 if i > j. The transition intensity from state i to j at time t is

qij (t) = lim
∆t↓0

Pij (t, t+ ∆t)

∆t
, i 6= j,

and as a convention, define qii (t) = −
∑

j 6=i qij (t) = −
∑

j>i qij (t). Let Q (t) be the K × K

transition intensity matrix with (i, j) entry qij (t), i, j = 1, 2, . . . ,K.

State 1 State 2 · · · · · · State K

Figure 2.1: K-state unidirectional progressive model

With an unidirectional progressive model, shown in Figure 2.1, each individual passes through

the states consecutively and does not escape from state K. In addition, the process is assumed to

be irreversible and the transition only happens from one state to its consecutive state. That is, the

individual can only go to state i+1 after passing state i. In this case, for a given i = 1, . . . ,K−1,

qi,i+1 (t) > 0, qii (t) = −qi,i+1 (t) and qij (t) = 0, j 6= i, i + 1, and state K is an absorbing state

with qKj (t) = 0, j = 1, . . . ,K. For ease of notation, let qi (t) denote qi,i+1 (t), i = 1, . . . ,K, then

the transition intensity matrix takes the form

Q (t) =



−q1 (t) q1 (t) 0 · · · 0 0

0 −q2 (t) q2 (t) · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −qK−1 (t) qK−1 (t)

0 0 0 · · · 0 0


.

This chapter is primarily concerned with time-homogeneous progressive Markov models in

which transition intensities are independent of t. We therefore let qi (t) = qi, i = 1, . . . ,K and
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write Q (t) = Q. It follows that P(s, s + t) = P(0, t), which is then written as P (t). Transition

probability from state i to j can be analytically expressed in terms of transition intensities (Satten,

1999):

Pij (t) =


∑j

k=iCijk exp (−qkt) i ≤ j,

0 i > j,

where

Cijk =

∏j−1
l=i ql∏j

l=i, l 6=k(ql − qk)
, i ≤ k ≤ j,

Ckkk = 1, i, j, k = 1, . . . ,K, and qK = 0.

In application, transitions between states are associated with certain covariates, and interest

lies in understanding the relationship between these covariates and transition intensities. Let x

be a p× 1 vector of prognostic variables. Consider regression models

qi (x) = qi0 exp
(
xTβix

)
, i = 1, . . . ,K − 1, (2.1)

where qi0 is the baseline transition intensity out of state i, and βix = (βi1, βi2, . . . , βip)
T are

vectors of regression coefficients which are of primary interest. Often, qi0 are reparameterized as

qi0 = exp (βi0) (e.g. Kalbfleisch and Lawless, 1985; Jackson et al., 2003).

2.2.2 Misclassification model

It is common that the disease state is subject to misclassification. Let S∗ (t) represent the

observed state occupied at time t for t ≥ 0. Suppose some supplementary information, such as

clinical symptoms or measurements is associated with state misclassification. Let c (t) denote

the predictor vector associated with the misclassification process. For i 6= j, i, j = 1, . . . ,K,
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let πij (t) = Pr {S∗ (t) = j | S (t) = i, c (t)} denote misclassification probabilities at time t. By

the constraint
∑K

j=1 Pr {S∗ (t) = j | S (t) = i, c (t)} = 1, we define πii (t) = 1 −
∑K

j 6=i πij (t),

i = 1, . . . ,K.

We employ the multinomial logistic regression model to portray the relationship between

misclassification probabilities and c (t) (e.g. Agresti, 2002, Chapter 7):

log

{
πij (t)

πii (t)

}
= αij0 +αT

ijcc (t) , i 6= j, (2.2)

where αij0 and αijc are state-dependent regression coefficients.

In application, suitable constraints may be imposed on misclassification probabilities to reflect

a prior knowledge of the diagnosis process. For progressive multi-state models, probabilities of

misclassification may be negligibly small for those states that are far apart. For example, Jackson

et al. (2003) considered a scenario where misclassification probabilities are non-zero constants only

for some adjacent states.

2.2.3 Non-informative observation process

Let M denote the number of observations of an individual, which is a random variable, and m

be the realization of M . Suppose the disease process for an individual {S (t) , t ≥ 0} is assessed

at a finite number of times 0 ≤ t1 < t2 < · · · < tm, which may be subject to misclassifi-

cation. Let {S∗ (t) , t ≥ 0} denote the observed process and s∗i denote the observed state at

time ti, i = 1, . . . ,m. In addition to the observed states {S∗1 , . . . , S∗m}, the number of observa-

tions, M , and the observation times T1, T2, . . . , Tm are also random variables. Inferences are,

in principle, carried out based on the joint distribution of all the observed random variables,

Pr (S∗m = s∗m; Tm = tm;M = m), where S∗m = {S∗ (t1) , . . . , S∗ (tm)}, Tm = {T1, T2, . . . , Tm},
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s∗m = {s∗1, . . . , s∗m}, and tm = {t1, . . . , tm}. Our aim is to make inference on the parameters

associated with the true disease process in the presence of possible state misclassification. To this

end, a convenient factorization is invoked where the underlying true states are explicitly spelled

out:

Pr (S∗m = s∗m; Tm = tm;M = m)

= Pr (M = m | S∗m = s∗m; Tm = tm) Pr (S∗m = s∗m; Tm = tm)

= Pr (S∗m = s∗m; Tm = tm)

=
∑
sm

Pr (S∗m = s∗m; Sm = sm; Tm = tm)

=
∑
sm

{
Pr (S∗m = s∗m | Sm = sm; Tm = tm) Pr (Sm = sm; Tm = tm)

}
, (2.3)

where Sm = {S (t1) , . . . , S (tm)}, and sm = {s1, . . . , sm}. The second term inside the summation

of (2.3) is of primary interest, and this quantity is examined by Grüger et al. (1991) using the

factorization:

Pr {S (t1) = s1, . . . , S (tm) = sm;T1 = t1, . . . , Tm = tm}

= Pr (H1)

m∏
j=2

[
Pr {S (tj) = sj | Tj = tj , Hj−1}

] m∏
j=2

{
Pr (Tj = tj | Hj−1)

}
,

where Hj is the history of true disease states and observation times up to and including the jth

time point, defined as

Hj = {T1 = t1, S (t1) = s1, . . . , Tj = tj , S (tj) = sj} , j = 1, . . . ,m.

In the context of no misclassification, Grüger et al. (1991) introduced the following conditions for

conducting inferences in order to avoid modelling the observation scheme:
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1. The probability of staying in state sj at time tj , given the history

Hj−1 = {T1 = t1, S (t1) = s1, . . . , Tj−1 = tj−1, S (tj−1) = sj−1}, is independent of whether

an observation is carried out at this time and the past observation times, i.e.,

Pr {S (tj) = sj | Tj = tj , Hj−1} = Pr {S (tj) = sj | S (t1) = s1, . . . S (tj−1) = sj−1} ; (2.4)

2. The conditional distribution of the jth observation time Tj , Pr (Tj = tj | Hj−1), is func-

tionally independent of parameters governing transition intensities of the disease process

{S (t) , t ≥ 0}.

These conditions are useful to confine attention to studying the true state process. However,

they are not sufficient when states are subject to misclassification. Additional care should be

taken of the misclassification process. Note that the first term inside the summation of (2.3) can

be factored as follows

Pr (S∗m = s∗m | Sm = sm; Tm = tm)

= Pr {S∗ (t1) = s∗1 | Hm}
m∏
j=2

Pr
{
S∗ (tj) = s∗j

∣∣∣ Hs∗
j−1, Hm

}
,

where Hs∗
j is the history of the observed states up to the jth observation, defined as Hs∗

j ={
S∗ (t1) = s∗1, . . . , S

∗ (tj) = s∗j

}
, j = 1, . . . ,m. The additional condition for the non-informative

observation process in the presence of state misclassification is that the conditional probability of

the jth observed state, given the history of observed states, true states, and observation times,

is independent of all the observation times, i.e.

Pr
{
S∗ (tj) = s∗j

∣∣∣ Hs∗
j−1, Hm

}
= Pr

{
S∗ (tj) = s∗j

∣∣∣ Hs∗
j−1, S (t1) = s1, . . . , S (tm) = sm

}
. (2.5)
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This condition is as important as (2.4), since both conditions ensure that what we can estimate

from the data, Pr {S (tj) = sj | Tj = tj , Hj−1}Pr
{
S∗ (tj) = s∗j

∣∣∣ Hs∗
j−1, Hm

}
, is identical to what

we are interested in, Pr {S (tj) = sj | Sj−1 = sj−1}Pr
{
S∗ (tj) = s∗j

∣∣∣ Hs∗
j−1,Sm = sm

}
. Further-

more, in the HMM, the Markov property assumes that

Pr {S (tj) = sj | Sj−1 = sj−1} = Pr {S (tj) = sj | S (tj−1) = sj−1} , j = 2, . . . ,m,

and the output independence assumption in HMM suggests that

Pr
{
S∗ (tj) = s∗j

∣∣∣ Hs∗
j−1,Sm = sm

}
= Pr

{
S∗ (tj) = s∗j

∣∣ S (tj) = sj
}
, j = 1, . . . ,m. (2.6)

2.3 Maximum likelihood estimation via the EM algorithm

Suppose N individuals are under study and each individual independently follows an unidi-

rectional progression time-homogeneous Markov process. Let {S` (t) , t ≥ 0} and {S∗` (t) , t ≥ 0}

denote the true and observed process for individual `, respectively, ` = 1, 2, . . . , N . Let x` be

time-independent prognostic variables, and c` (t) represent misclassification predictors for indi-

vidual ` at time t ≥ 0, ` = 1, 2, . . . , N . Let t`1, . . . , t`m`
denote m` times at which individual ` is

observed. Let Hs∗
`r = {S∗` (t`k) = s∗` (t`k) : 1 ≤ k < r} and Hc

`r = {c` (t`k) : 1 ≤ k < r} denote the

history of the observed states and the predictor history at time t`r, respectively. For convenience,

we write S∗` (t`r), S` (t`r), and c` (t`r) as S∗`r, S`r, and c`r, respectively, where r = 1, . . . ,m`.

We employ models (2.1) and (2.2) to postulate the response and misclassification processes,

respectively. Let θ =
(
αT

1 , . . . ,α
T
K ,β

T
)T

, where αi =
(
αij0,α

T
ijc : j = 1, . . . ,K, j 6= i

)T
, and

β = (βk0, βk1, . . . , βkp : k = 1, . . . ,K − 1)T.

To conduct estimation of the model parameters, we employ the EM algorithm in which the
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underlying true states are treated as missing data. We now elaborate on the EM algorithm for

the progressive model with misclassified states and defer technical details to Section 2.8.

The log-likelihood for the complete data contributed from individual ` is

logLc
` (θ) =

m∑̀
r=1

[
log
{

Pr (S∗`r | S`r, c`r;αs`r)
}]

+

m`−1∑
s=1

[
log
{

Pr (S`,s+1 | S`s,x`;β)
}]

.

In the expectation step (E-step), the expected complete data log-likelihood at the (k + 1)th

iteration is Q(θ,θ(k)) =
∑N

`=1Q`(θ,θ
(k)), where θ(k) is the estimate of θ at the kth iteration,

and Q`(θ,θ
(k)) is given by

Q`(θ,θ
(k)) = E

{
logLc

` (θ)
∣∣∣ Hs∗

`,m`+1, H
c
`,m`+1,x`;θ

(k)
}

=
K∑
i=1

m∑̀
r=1

γ`r (i) log
{

Pr (S∗`r | S`r = i, c`r;αi)
}

+

m`−1∑
s=1

K∑
i=1

K∑
j=i

ξ`s (i, j) log
{

Pr (S`,s+1 = j | S`s = i,x`;β)
}

with conditional probabilities

γ`r (i) = Pr
{
S`r = i

∣∣∣ Hs∗
`,m`+1, H

c
`,m`+1,x`;θ

(k)
}
,

and ξ`s (i, j) = Pr
{
S`s = i, S`,s+1 = j

∣∣∣ Hs∗
`,m`+1, H

c
`,m`+1,x`;θ

(k)
}
,

which can be computed by the forward-backward algorithm (Baum et al., 1970; Rabiner, 1989).

As parameters for the progression model are distinct from those for the misclassification

model, we can carry out maximization with respect to α1, . . . ,αK and β separately in the M-

step. The maximizer of the expected complete data log-likelihood does not exist in a closed form,

and therefore, the Newton-Raphson procedure may be used to iteratively compute θ(k) in the
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M-step. The estimator, say θ̂, of the parameters θ, is obtained through iterations between E and

M steps until convergence of θ(k).

Let Lc (θ; S,S∗) be the complete likelihood based on the underlying true state S and the

observed state S∗ of one individual. Note that

∂ logL (θ; S∗)

∂θ
= E

{
∂ logLc (θ; S,S∗)

∂θ

∣∣∣∣ S∗
}
.

That is, the gradient of the log-likelihood can be approximated by the expectation of the gradient

of the complete data log-likelihood, and thus the Hessian of the log-likelihood is obtained by the

numerically differentiation (Jamshidian and Jennrich, 2000).

To protect against possibly invalid assumptions of the independence structures among the

states, the sandwich-type robust variance estimation (White, 1982) is used. Specifically, L (θ)

is constructed from a misspecified model, then θ̂ converges to θ∗ almost surely, where θ∗ is

the root of the expectation of ∂ logL (θ) /∂θ taken with respect to the true distribution. The

asymptotic normality of θ̂ from a misspecified model is
√
N (θ̂ − θ∗) d→ N {0,C (θ∗)}, where

C (θ) = A−1 (θ) B (θ) A−1 (θ) with

A (θ) = E
{
∂2 logL (θ; S∗)/∂θ∂θT

}
and B (θ) = E

[
{∂ logL (θ; S∗)/∂θ}⊗2

]
.

The matrix C (θ∗) can be estimated by Â−1 (θ) B̂ (θ) Â−1 (θ)
∣∣∣
θ=θ̂

, where

B̂ (θ) =
1

N

N∑
`=1

{
∂ logL` (θ)

∂θ

}⊗2

=
1

N

N∑
`=1

{
∂Q`

(
θ,θ′

)
∂θ

∣∣∣∣∣
θ′=θ

}⊗2

,

and Â (θ) =
1

N

N∑
`=1

∂2 logL` (θ)

∂θ∂θT
.
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Let s (θ) = ∂Q
(
θ,θ′

)
/∂θ

∣∣
θ′=θ

. The Hessian of the observed data log-likelihood, i.e.

∂2 logL` (θ)/∂θ∂θT can be obtained from the first-order Richardson extrapolation (Press et al.,

2007, Section 17.3) of the central difference for the gradient of the expected complete data log-

likelihood. That is, the jth column of the Hessian matrix is given by

s (θ − 2huj)− 8 s (θ − huj) + 8 s (θ + huj)− s (θ + 2huj)

12h
,

where uj is the jth co-ordinate vector with the jth element equal to 1 and others equal to 0 and

h is a small positive value.

2.4 Pairwise likelihood formulation

Although the likelihood method provides a convenient way of obtaining the asymptotically effi-

cient parameter estimators, the likelihood method relies on the validity of model assumptions. For

instance, the output independence assumption in (2.6) may not hold for some applications, then

the likelihood method would break down. To gain robustness to certain model assumptions, we

now propose the pairwise likelihood method based on the composition of bivariate margins, which

enjoys easier implementation and more robustness to misspecification of higher order association

structures.
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2.4.1 Non-informative observation process in the pairwise likelihood formu-

lation

The pairwise likelihood is the product of all the bivariate densities of each distinct pair of obser-

vations. The pairwise likelihood for an individual takes the form of

Lp =
m−1∏
r=1

m∏
s=r+1

Pr {S∗ (tr) = s∗r , S
∗ (ts) = s∗s;Tr = tr, Ts = ts;M = m} ,

where

Pr {S∗ (tr) = s∗r , S
∗ (ts) = s∗s;Tr = tr, Ts = ts;M = m}

=
∑
sr, ss

Pr {S∗ (tr) = s∗r , S
∗ (ts) = s∗s;S (tr) = sr, S (ts) = ss;Tr = tr, Ts = ts;M = m}

=
∑
sr, ss

[
Pr {S∗ (tr) = s∗r , S

∗ (ts) = s∗s | S (tr) = sr, S (ts) = ss;Tr = tr, Ts = ts;M = m}

×Pr {S (tr) = sr, S (ts) = ss;Tr = tr, Ts = ts;M = m}
]
.

Therefore, the conditions for the non-informative sampling scheme under the pairwise likelihood

formulation is as follows:

1. The conditional probability of the sth observed state, given the rth observed state, as well

as the rth and sth true states and observation times, is independent of observation times

and the number of observations, i.e..

Pr {S∗ (ts) = s∗s | S∗ (tr) = s∗r , S (tr) = sr, S (ts) = ss;Tr = tr, Ts = ts;M = m}

= Pr {S∗ (ts) = s∗s | S∗ (tr) = s∗r , S (tr) = sr, S (ts) = ss} , 1 ≤ r < s ≤ m; (2.7)
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2. The probability of staying in state ss at time ts, given the rth true state, is independent of

whether an observation is carried out at this time and the rth observation time, as well as

the number of the observation times, i.e.,

Pr {S (ts) = ss | S (tr) = sr, Tr = tr, Ts = ts;M = m]

= Pr [S (ts) = ss | S (tr) = sr} , 1 ≤ r < s ≤ m;

3. The conditional distribution of the sth observation time Ts,

Pr (Ts = ts | Tr = tr, Sr = sr,M = m), is functionally independent of parameters governing

transition intensities of the disease process {S (t) , t ≥ 0} and those related to the misclas-

sification of the true states.

Equation (2.7) can be further simplified into

Pr {S∗ (ts) = s∗s | S∗ (tr) = s∗r , S (tr) = sr, S (ts) = ss} = Pr {S∗ (ts) = s∗s | S (ts) = ss} .

2.4.2 Pairwise EM algorithm

The EM algorithm can be straightforwardly extended to maximization of the pairwise likeli-

hood in HMMs. We now introduce the pairwise EM algorithm for the progressive model with

misclassification. Technical details are described in Section 2.8.2.

The complete data pairwise log-likelihood for individual ` is

logLc
p` (θ) =

m∑̀
s=2

[
log
{

Pr (S∗`1 | S`1, c`1;αs`1)
}

+ log
{

Pr (S∗`s | S`s, c`s;αs`s)
}

+ log
{

Pr (S`s | S`1,x`;β)
}]
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+

m`−1∑
r=2

m∑̀
s=r+1

[
log
{

Pr (S∗`r | S`r, c`r;αs`r)
}

+ log
{

Pr (S∗`s | S`s, c`s;αs`s)
}

+ log
{

Pr (S`s | S`r,x`;β)
}

+ log

[∑
s`1

{
Pr (S`r | S`1,x`;β) Pr (S`1)

}]]
.

In the E step, the expected complete data pairwise log-likelihood at the (k + 1)th iteration is

given by Qp (θ,θ(k)) =
∑N

`=1Qp`(θ,θ
(k)), where

Qp` (θ,θ(k)) =

m∑̀
s=2

E

[
log
{

Pr (S∗`1 | S`1, c`1;αs`1)
}

+ log
{

Pr (S∗`s | S`s, c`s;αs`s)
}

+ log
{

Pr (S`s | S`1,x`;β)
} ∣∣∣ S∗`1, S∗`s, c`1, c`s;θ(k)

]
+

m`−1∑
r=2

m∑̀
s=r+1

E

[
log
{

Pr (S∗`r | S`r, c`r;αs`r)
}

+ log
{

Pr (S∗`s | S`s, c`s;αs`s)
}

+ log
{

Pr (S`s | S`r,x`;β)
}

+ log

[∑
s`1

{
Pr (S`r | S`1,x`;β) Pr (S`1)

}] ∣∣∣∣∣ S∗`r, S∗`s, c`r, c`s;θ(k)

]
.

Similarly to the EM algorithm in Section 2.3, maximization can be carried out with respect to

the parameters for the observation process and the underlying process separately in the M-step,

where Qp (θ,θ(k)) =
∑K

i=1Qpi (αi,θ
(k)) +Qp,K+1 (β,θ(k)). The function

Qpi (αi,θ
(k)) =

N∑
`=1

[
m∑̀
s=2

[
E

[
log
{

Pr (S∗`1 | S`1 = i, c`1;αi)
} ∣∣∣ S∗`1, S∗`s, c`1, c`s,x`;θ(k)

]

+E

[
log
{

Pr (S∗`s | S`s = i, c`s;αi)
} ∣∣∣ S∗`1, S∗`s, c`1, c`s,x`;θ(k)

]]

+

m`−1∑
r=2

m∑̀
s=r+1

[
E

[
log
{

Pr (S∗`r | S`r = i, c`r;αi)
} ∣∣∣ S∗`r, S∗`s, c`r, c`s,x`;θ(k)

]
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+ E

[
log
{

Pr (S∗`s | S`s = i, c`s;αi)
} ∣∣∣ S∗`r, S∗`s, c`r, c`s,x`;θ(k)

]]]

is maximized with respect to αi where i = 1, . . . ,K and

Qp,K+1 (β,θ(k)) =

m∑̀
s=2

E

[
log
{

Pr (S`s | S`1,x`;β)
} ∣∣∣ S∗`1, S∗`s, c`1, c`s,x`;θ(k)

]

+

m`−1∑
r=2

m∑̀
s=r+1

E

[
log
{

Pr (S`s | S`r,x`;β)
}

+ log

[∑
s`1

{
Pr (S`r | S`1,x`;β) Pr (S`1)

}] ∣∣∣∣∣ S∗`r, S∗`s, c`r, c`s,x`;θ(k)

]

is maximized with respect to β by the Newton-Raphson algorithm. The estimator of parameters

can be obtained through iterations between the E and M steps until convergence of θ(k).

2.4.3 Variance estimation in the pairwise likelihood formulation

Under some regularity conditions, the maximum pairwise likelihood estimators, θ̃, is asymptoti-

cally normally distributed:
√
N (θ̃−θ)

d→ N
{
0,G−1 (θ)

}
, where G (θ) is the Godambe informa-

tion matrix (Godambe, 1960), given by G (θ) = H (θ) J (θ)−1 H (θ) with the sensitivity matrix

H (θ) = E
{
∂2 logLp (θ) /∂θ∂θT

}
and the variability matrix J (θ) = Var {∂ logLp (θ)/∂θ}.

In the pairwise EM algorithm, the sensitivity and variability matrices can be estimated based

on the expected complete data pairwise log-likelihood. The sensitivity matrix can be estimated

by

Ĥ (θ) =
1

N

N∑
`=1

∂2Qp` (θ,θ(k))

∂θ∂θT

∣∣∣∣∣
θ=θ̃,θ(k)=θ̃

+
1

N

N∑
`=1

m`−1∑
r=1

m∑̀
s=r+1

E

[{
∂ log Pr (S`r, S`s, S

∗
`r, S

∗
`s;θ)

∂θ

}⊗2
∣∣∣∣∣S∗`r, S∗`s;θ

] ∣∣∣∣∣
θ=θ̃
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− 1

N

N∑
`=1

m`−1∑
r=1

m∑̀
s=r+1

[
E

{
∂ log Pr (S`r, S`s, S

∗
`r, S

∗
`s;θ)

∂θ

∣∣∣∣S∗`r, S∗`s;θ}]⊗2
∣∣∣∣∣
θ=θ̃

,

and the variability matrix can be estimated by

Ĵ (θ) =
1

N

N∑
`=1

 ∂Qp` (θ,θ(k))

∂θ

∣∣∣∣∣
θ=θ̃,θ(k)=θ̃


⊗2

.

Technical details of the information for the pairwise likelihood are placed in Section 2.8.2.

2.5 Simulation studies

Simulation studies are conducted to evaluate the performance of the MLEs and MPLEs for the

progressive model with misclassification, as opposed to that of the naive MLEs and MPLEs

obtained using the carry-backward method to adjust for the classification error (Couto et al.,

2002). For the transitions from a higher state to a lower one, the carry-backward method replaces

the higher state by the lower one, where the classification error is ignored in the analysis of the

progressive multi-state model.

2.5.1 Simulation setting

Simulation studies assess the progressive models with K = 3 states under the Markov assumption.

The number of individuals is N = 500 and a total of 5000 replications are used in the progressive

model with misclassification.

Each individual is assumed to start from state 1 at the initial time t`0 = 0 and be observed at

six equally spaced examination times, t`1 = 1, t`2 = 2, t`3 = 3, t`4 = 4, t`5 = 5, and t`6 = 6. One

unit uniformly distributed time-dependent misclassification predictor c (t), and a fixed prognostic
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covariate x following the standard normal distribution are introduced. In the transition intensity

model (1), we set β10 = −1.0, β11 = 0.6, β20 = −0.7, and β21 = 0.4, such that the mean sojourn

times from state 1 to 2 and from state 2 to 3 are 3.25 and 2.18, respectively (see Section 2.8.3).

For simplicity, we assume no misclassification for the initial state of each individual and non-

adjacent states and consider the misclassification models with the same regression coefficients.

Specifically, we set S∗`0 = 1 and in the misclassification model (2), α120 = α210 = α230 = α320 = α0,

α121 = α121 = α231 = α321 = α1, and α130 = α310 = α131 = α311 = 0. We consider three degrees

of the misclassification to investigate the effects of misclassification: (a) 5% misclassification rate

(α0, α1) = (−2.50,−1.50); (b) 15% misclassification rate (α0, α1) = (−1.50,−0.90); (c) 30% mis-

classification rate (α0, α1) = (−0.75,−0.55). More details on the setting of the misclassification

model can be found in Section 2.8.3.

2.5.2 Simulation results

Table 2.1 summarizes the results for the progressive models with misclassification obtained from

the EM and pairwise EM algorithms. For all three scenarios, the proposed MLEs and MPLEs

have little biases, while the naive MLEs and MPLEs are biased. The asymptotic standard errors

(ASEs) agree well with the empirical standard errors (ESEs), irrespective of the degree of the

misclassification. The proposed methods yield the estimators with larger standard errors than

naive estimators, showing the trade-off between the bias correction and the variance inflation as

commonly observed in the context of measurement error. On the other hand, the standard errors

of MPLEs are generally larger than those of MLEs regardless of the degree of the misclassification,

suggesting that the robustness of the pairwise likelihood is achieved at the price of some loss of

efficiency. When the degree of the misclassification increases, the ASEs and ESEs for the proposed

estimators become larger, as expected. In conclusion, the proposed methods perform satisfactorily
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to correct the misclassification effects.
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Table 2.1: Simulation results for progressive models with misclassification based on the EM algorithm

True States 5% Misclassification 15% Misclassification 30% Misclassification

Bias ASE ESE CR% Bias ASE ESE CR% Bias ASE ESE CR% Bias ASE ESE CR%

Naive MLEs

β10 .000 .048 .047 95.2 .019 .046 .050 90.1 .068 .043 .049 62.9 .178 .037 .048 2.2
β11 .001 .048 .048 94.2 −.028 .047 .052 86.4 −.095 .045 .052 43.4 −.210 .045 .054 1.2
β20 .000 .056 .054 95.2 .023 .055 .059 90.9 .042 .051 .056 84.4 −.026 .041 .058 77.7
β21 .001 .055 .055 94.9 −.049 .054 .060 80.8 −.154 .053 .058 18.0 −.298 .053 .062 0.2

Naive MPLEs

β10 .002 .052 .052 95.4 −.020 .051 .051 93.0 −.045 .048 .048 84.5 −.035 .044 .044 87.4
β11 .002 .057 .058 94.2 −.017 .056 .057 93.2 −.053 .052 .053 81.8 −.115 .047 .048 31.1
β20 .001 .061 .060 95.3 −.072 .057 .058 75.8 −.231 .053 .053 0.7 −.515 .051 .051 0.0
β21 .003 .066 .066 94.9 −.072 .061 .062 75.9 −.170 .053 .053 12.1 −.247 .049 .049 0.2

MLEs based on the EM algorithm

β10 — — — — .002 .051 .050 95.6 .002 .053 .052 95.1 .002 .061 .060 95.4
β11 — — — — .002 .055 .053 95.7 .001 .058 .057 95.5 .001 .067 .065 95.6
β20 — — — — .000 .060 .060 95.0 .000 .070 .070 95.2 .002 .105 .104 95.5
β21 — — — — .001 .066 .065 95.3 .002 .078 .075 95.7 .006 .109 .104 96.1

α0 — — — — −.037 .205 .214 93.8 −.016 .137 .146 92.2 −.003 .118 .127 92.4
α1 — — — — −.009 .441 .459 93.6 −.004 .262 .281 92.2 −.006 .208 .224 92.4

MPLEs based on the pairwise EM algorithm

β10 — — — — .002 .051 .050 95.4 .002 .054 .053 95.3 .002 .068 .064 96.3
β11 — — — — .002 .056 .055 94.9 .001 .060 .058 95.5 .003 .073 .070 95.6
β20 — — — — .000 .064 .062 95.4 .002 .078 .076 95.6 .005 .141 .130 95.7
β21 — — — — .001 .069 .068 95.3 .002 .084 .082 95.4 .005 .129 .121 95.5

α0 — — — — −.010 .249 .243 96.0 −.001 .169 .168 95.1 −.002 .142 .135 94.9
α1 — — — — −.014 .542 .533 95.3 −.010 .328 .322 95.4 −.012 .251 .241 95.1

500 individuals × 5000 replicates; X ∼ N (0, 1), C (t) ∼ U (0, 1)
parameter values in the transition intensity model: (β10, β11, β20, β21) = (−1.0, 0.6,−0.7, 0.4)
5% misclassification rate: (α0, α1) = (−2.50,−1.50)
15% misclassification rate: (α0, α1) = (−1.50,−0.90)
30% misclassification rate: (α0, α1) = (−0.75,−0.55)
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2.6 Application to post-heart-transplant cardiac allograft vascu-

lopathy

We apply the proposed methods to analyze the coronary allograft vasculopathy (CAV) data (Sharples

et al., 2003). The data contains 662 heart transplant recipients who survived at least one year

after transplant and had at least one coronary angiography. Each recipient underwent the an-

giogram approximately annually after transplant or biennially after the first angiogram, at which

CAV can be diagnosed. Recipients were followed up until death or until their most recent coro-

nary angiography if alive. Three hundred and twelve males (84.10%) out of 371 heart transplant

recipients survived at the end of the study. The unbalance between the number of males and

that of females causes the problem when we study the effect of the gender. To avoid this problem

and the heterogeneity caused by the gender, we restrict our attention to 312 male survivors. We

also drop 6 male recipients with missing primary diagnosis (reason for transplantation, variable

pdiag) from the data in order to investigate the effect of pdiag. Therefore, there are 1321 state

observations from 306 individuals in the data set we analyze.

CAV is a chronic disease which is regarded as irreversible. The gold standard for the diagnosis

of CAV, intravascular ultrasound, is prohibitively expensive. Therefore, coronary angiography

is commonly used to diagnose CAV. Based on the coronary angiography, each recipient was

classified as CAV-free, mild CAV and moderate or severe CAV, denoted as states 1, 2, and 3,

respectively. Since the performance of the angiography is not perfect, the classification of disease

states is subject to error. The first observation state is assumed to be correctly classified, since

each recipient is assumed to be CAV free at the beginning of the study. It is of interest to

simultaneously estimate the diagnostic accuracy of coronary angiography and explore the effects

of risk factors on CAV onset and progression. The following factors were assessed as risk factors
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for CAV onset and progression: recipient and donor age, and preoperative ischemic heart disease

(IHD). Whether the recipient experienced IHD before the heart transplantation is recorded in

the primary diagnosis for transplantation (pdiag). The recipient age (variable age) is a time-

dependent variable, and therefore we use the recipient age at the first observation as the covariate

for convenience. Both continuous covariates, the recipient and donor age (variable dage), are

standardized by the transformation (x− x̄) /sd (x), where x̄ is the sample mean of the covariate

and sd (x) is the standard deviation of the covariate.

2.6.1 Sensitivity analysis

We first conduct the analysis to evaluate the sensitivity of the likelihood and pairwise likelihood

methods. In particular, the parameters in the transition intensity models are estimated at three

different degrees of misclassification, in which the misclassification rates are fixed according to

the lower and upper bounds of 95% confidence intervals and MLEs obtained from the complete

data by Jackson (2011). Table 2.2 presents the results for the sensitivity analysis for the pro-

gressive model with all three covariates. The values of the specified misclassification rates are

listed at the end of the table. Both likelihood and pairwise likelihood methods suggest that the

recipient age has no significant effect on the CAV onset or progression at 5% significance level.

Therefore, we drop the variable age in the model and then investigate the effects of IHD and

dage. Table 2.3 summarizes the results for the sensitivity analysis of the progressive model with

covariates IHD and dage. The effects of both IHD and dage are significant on the CAV onset

according to the outputs of both methods. The pairwise likelihood approach gives the similar

results compared to the likelihood method in terms of estimates, standard errors and p-values at

the same degree of misclassification. As expected, the standard errors of the estimates obtained

by the pairwise likelihood method are consistently larger than those obtained by the likelihood
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method, irrespectively of the degree of misclassification. Furthermore, although the standard

errors for each parameters obtained by both methods become larger with the increment of the

misclassification, the difference among the estimates and the test results at different levels of mis-

classification rates is not substantial, suggesting that the parameter estimates are not sensitive

to the misclassification rates.

2.6.2 Progressive models with constant misclassification

We utilize the forward selection of risk factors for the progressive models with constant misclassi-

fication, in which we assume that the misclassification is independent of covariates. The results in

the sensitivity analysis reveal that the IHD and the donor age are significant factors for the CAV

onset, which agree with the conclusion drawn by Sharples et al. (2003). We start with the model

including IHD and donor age in the initial analysis, and then add recipient age. The results,

presented in Table 2.4, show that both IHD and dage have significant effects on the CAV onset

but the effect of recipient age is not significant on either CAV onset or progression. In particular,

recipients who were transplanted for IHD have a higher chance of CAV onset than recipients

transplanted for other reasons; the older donor increases the risk of CAV. The estimates of mis-

classification probabilities are given in Table 2.5. The results obtained by both likelihood and

pairwise likelihood methods agree that angiography is highly specific with CAV-free recipients.

However, the estimated accuracy of coronary angiography for classifying two other disease states

is different for different methods.
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Table 2.2: Sensitivity Analysis for Progressive Model with IHD, dage, and age

Likelihood Pairwise Likelihood

Transtion Covariates MLE SE p-value MPLE SE p-value

Mild Misclassification
1→ 2 Intercept β10 −3.220 0.217 0.000 −2.946 0.218 0.000

IHD β11 0.739 0.269 0.006 0.408 0.303 0.179
Donor age β12 0.517 0.125 0.000 0.296 0.157 0.060
Recipient age β13 −0.215 0.156 0.166 0.206 0.153 0.179

2→ 3 Intercept β20 −2.520 0.460 0.000 −2.914 0.563 0.000
IHD β21 0.448 0.544 0.411 0.553 0.641 0.388
Donor age β22 −0.089 0.239 0.711 0.251 0.258 0.330
Recipient age β23 0.031 0.275 0.911 0.045 0.264 0.865

Moderate Misclassification
1→ 2 Intercept β10 −3.205 0.218 0.000 −2.925 0.231 0.000

IHD β11 0.733 0.275 0.008 0.421 0.322 0.192
Donor age β12 0.537 0.126 0.000 0.304 0.170 0.074
Recipient age β13 −0.220 0.141 0.117 0.210 0.154 0.171

2→ 3 Intercept β20 −2.618 0.478 0.000 −3.122 0.673 0.000
IHD β21 0.500 0.555 0.368 0.672 0.746 0.368
Donor age β22 −0.093 0.284 0.742 0.289 0.290 0.318
Recipient age β23 0.109 0.538 0.839 0.063 0.572 0.912

Severe Misclassification
1→ 2 Intercept β10 −3.178 0.230 0.000 −2.865 0.247 0.000

IHD β11 0.729 0.289 0.011 0.431 0.338 0.203
Donor age β12 0.562 0.133 0.000 0.311 0.183 0.089
Recipient age β13 −0.224 0.146 0.124 0.217 0.163 0.182

2→ 3 Intercept β20 −2.713 0.550 0.000 −3.582 1.242 0.004
IHD β21 0.564 0.631 0.371 1.009 1.354 0.456
Donor age β22 −0.079 0.290 0.784 0.391 0.428 0.361
Recipient age β23 0.171 0.371 0.644 0.077 0.670 0.909

Mild Misclassification: π12 = 1.5%; π21 = 10.1%, π23 = 3.6%; π32 = 5.7%

Moderate Misclassification: π12 = 2.7%; π21 = 17.5%, π23 = 6.3%; π32 = 11.5%

Severe Misclassification: π12 = 4.5%; π21 = 28.7%, π23 = 10.7%; π32 = 21.8%
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Table 2.3: Sensitivity Analysis for Progressive Model with IHD and dage

Likelihood Pairwise Likelihood

Transtion Covariates MLE SE p-value MPLE SE p-value

Mild Misclassification
1→ 2 Intercept β10 −3.100 0.188 0.000 −3.081 0.205 0.000

IHD β11 0.568 0.232 0.015 0.566 0.284 0.046
Donor age β12 0.472 0.117 0.000 0.346 0.156 0.027

2→ 3 Intercept β20 −2.529 0.429 0.000 −2.934 0.560 0.000
IHD β21 0.460 0.500 0.358 0.570 0.638 0.371
Donor age β22 −0.086 0.235 0.714 0.253 0.266 0.343

Moderate Misclassification
1→ 2 Intercept β10 −3.084 0.216 0.000 −3.065 0.218 0.000

IHD β11 0.560 0.262 0.033 0.584 0.299 0.051
Donor age β12 0.493 0.123 0.000 0.355 0.164 0.030

2→ 3 Intercept β20 −2.633 0.491 0.000 −3.145 0.693 0.000
IHD β21 0.521 0.575 0.364 0.693 0.772 0.370
Donor age β22 −0.084 0.255 0.740 0.290 0.301 0.334

Severe Misclassification
1→ 2 Intercept β10 −3.055 0.210 0.000 −3.013 0.239 0.000

IHD β11 0.556 0.277 0.045 0.604 0.326 0.064
Donor age β12 0.521 0.130 0.000 0.364 0.179 0.042

2→ 3 Intercept β20 −2.737 0.566 0.000 −3.597 1.146 0.002
IHD β21 0.595 0.664 0.370 1.020 1.223 0.404
Donor age β22 −0.063 0.296 0.831 0.385 0.411 0.349

Mild Misclassification: π12 = 1.5%; π21 = 10.1%, π23 = 3.6%; π32 = 5.7%

Moderate Misclassification: π12 = 2.7%; π21 = 17.5%, π23 = 6.3%; π32 = 11.5%

Severe Misclassification: π12 = 4.5%; π21 = 28.7%, π23 = 10.7%; π32 = 21.8%

61



Table 2.4: Progressive Model with constant misclassification

Likelihood Pairwise Likelihood

State Covariates MLE SE p-value MPLE SE p-value

1→ 2 Intercept β10 −3.076 0.252 0.000 −2.642 0.227 0.000
IHD β11 0.561 0.255 0.028 0.525 0.275 0.056
Donor age β12 0.507 0.126 0.000 0.319 0.152 0.036

2→ 3 Intercept β20 −2.646 0.498 0.000 −3.273 0.706 0.000
IHD β21 0.488 0.527 0.354 0.752 0.699 0.282
Donor age β22 −0.095 0.242 0.694 0.337 0.296 0.254

Misclassification
1 7→ 2 Intercept α120 −3.280 0.342 0.000 −18.476 13.743 0.179

2 7→ 1 Intercept α210 −1.207 0.469 0.010 −0.341 0.324 0.293

2 7→ 3 Intercept α230 −2.812 0.487 0.000 −2.933 0.885 0.001

3 7→ 2 Intercept α320 −2.895 1.037 0.005 −1.159 1.120 0.301

1→ 2 Intercept β10 −3.191 0.302 0.000 −2.506 0.229 0.000
IHD β11 0.730 0.292 0.012 0.366 0.285 0.198
Donor age β12 0.550 0.134 0.000 0.269 0.155 0.083
Recipient age β13 −0.220 0.168 0.191 0.201 0.146 0.170

2→ 3 Intercept β20 −2.644 0.542 0.000 −3.231 0.732 0.000
IHD β21 0.475 0.558 0.394 0.722 0.796 0.364
Donor age β22 −0.099 0.228 0.663 0.329 0.309 0.287
Recipient age β23 0.080 0.316 0.801 0.066 0.511 0.898

Misclassification
1 7→ 2 Intercept α120 −3.298 0.416 0.000 −18.371 14.879 0.217

2 7→ 1 Intercept α210 −1.197 0.563 0.033 −0.331 0.345 0.336

2 7→ 3 Intercept α230 −2.802 0.490 0.000 −2.949 0.948 0.002

3 7→ 2 Intercept α320 −2.898 1.037 0.005 −1.135 1.224 0.354

a 7→ b: true state a is misclassified to observed state b, a, b = 1, 2, 3.
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Table 2.5: Estimated misclassification rates (in percent) for CAV states diagnosed by coronary
angiography

Observed state Observed state

True state 1 2 3 1 2 3

MLE MPLE
1 96.4 3.6 0.0 100.0 0.0 0.0
2 22.0 73.6 4.4 40.3 56.7 3.0
3 0.0 5.2 94.8 0.0 23.9 76.1

2.7 Discussion

This chapter focuses on modelling the progressive multi-state model with misclassified states to

understand the nature of the disease progression. Individuals under the disease progression study

are often under irregular and not equal-spaced observation, and the true disease states may be

subject to the classification error. In this chapter, we employ the continuous-time progressive

HMM to simultaneously estimate the transition rates and account for state misclassification. The

study of the relationship between the observed states and true states offers us a way to estimate

the sensitivity and specificity of the diagnostic test for the disease. The proposed model is not

limited to the scenario with the misclassified states; it can be applied to the case with discrete-

valued surrogates observed for true states, such as the multiple sclerosis/magnetic resonance

imaging lesion count data (Altman and Petkau, 2005).

To ensure the validity of the likelihood inference, the condition is derived for the interrelation-

ship between the observation process and the sampling scheme, in addition to two conditions of

the interrelationship between the disease process and the sampling scheme, discussed by Grüger

et al. (1991). We develop the EM algorithm to obtain MLEs under the progressive model with

misclassification. In the EM algorithm, Louis’s formula (Louis, 1982) is usually employed for
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the variance estimation. However, for hidden Markov models, it is difficult to evaluate the con-

ditional expectation of the outer product of the score vector for the complete data likelihood

due to the involvement of the conditional probabilities of pairs, triples and quadruples for the

underlying states given the observed states. Therefore, we introduce an approximate formula for

the Fisher information matrix (Jamshidian and Jennrich, 2000) and the sandwich-type robust

variance estimation to protect against the potential correlation among observations. In addi-

tion, the pairwise EM algorithm, which requires the conditional probabilities given the pair of

observed states instead of all observed states in the E-step, is proposed to obtain the MPLEs.

The conditions of the non-informative sampling scheme is also derived for the pairwise likelihood

approach. Although the pairwise likelihood method may incur certain efficiency loss due to the

minimal model assumption, simulation studies demonstrate that this method gives reasonably

comparable results to those obtained from the likelihood method.

Finally, identifiability can be a potential issue whenever fitting hidden Markov models. With

continuous-time hidden Markov models, Bureau et al. (2003) and Rosychuk and Thompson (2004)

discussed this problem for the two-state bidirectional model, while van den Hout et al. (2009)

investigated this issue for the illness-death model. To ensure identifiability, Jackson et al. (2003)

suggested that a rich source of data is helpful for fitting complex HMMs. The discussion of

identifiability issues for general HMMs can be found in Cappé et al. (2005, Section 12.4). In the

numerical studies we conducted, such an issue did not arise.
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2.8 Technical Details

2.8.1 The complete-data likelihood for the progressive model with misclassi-

fication

The likelihood of the complete data with the true states observed for individual ` is

Lc
` (θ) = Pr

(
S`1, . . . , S`m`

, S∗`1, . . . , S
∗
`m`

∣∣ Hc
`,m`+1,x`;θ

)
= Pr

(
S∗`1, . . . , S

∗
`m`

∣∣ S`1, . . . , S`m`
, Hc

`,m`+1;θ
)

Pr (S`1, . . . , S`m`
, | x`;θ)

=

m∏̀
r=1

[
Pr (S∗`r | S`r, c`r;αs`r)

]
Pr (S`1)

m`−1∏
s=1

Pr (S`,s+1 | S`s,x`;β)

∝
m∏̀
r=1

[
Pr (S∗`r | S`r, c`r;αs`r)

]m`−1∏
s=1

Pr (S`,s+1 | S`s,x`;β) .

Then, the log-likelihood of the complete data with the true states observed for individual ` is

logLc
` (θ) =

m∑̀
r=1

log Pr (S∗`r | S`r, c`r;αs`r) +

m`−1∑
s=1

log Pr (S`,s+1 | S`s,x`;β) .

2.8.2 Pairwise EM algorithm for the progressive model with misclassification

Complete data pairwise likelihood

The complete data pairwise likelihood with each pair of true states observed for individual ` is

Lc
p` (θ) =

m`−1∏
r=1

m∏̀
s=r+1

Pr (S∗`r, S
∗
`s, S`r, S`s | c`r, c`s,x`;θ)

=

m∏̀
s=2

Pr (S∗`1, S
∗
`s, S`1, S`s | c`1, c`s,x`;θ)

65



×
m`−1∏
r=2

m∏̀
s=r+1

Pr (S∗`r, S
∗
`s, S`r, S`s | c`r, c`s,x`;θ)

=

m∏̀
s=2

[
Pr (S∗`1 | S`1, c`1;αs`1) Pr (S∗`s | S`s, c`s;αs`s)

×Pr (S`s | S`1,x`;β) Pr (S`1)
]

×
m`−1∏
r=2

m∏̀
s=r+1

{
Pr (S∗`r | S`r, c`r;αs`r) Pr (S∗`s | S`s, c`s;αs`s)

× Pr (S`s | S`r,x`;β)
∑
s`1

[
Pr (S`r | S`1,x`;β) Pr (S`1)

]}

∝
m∏̀
s=2

[
Pr (S∗`1 | S`1, c`1;αs`1) Pr (S∗`s | S`s, c`s;αs`s) Pr (S`s | S`1,x`;β)

]
×
m`−1∏
r=2

m∏̀
s=r+1

{
Pr (S∗`r | S`r, c`r;αs`r) Pr (S∗`s | S`s, c`s;αs`s)

× Pr (S`s | S`r,x`;β)
∑
s`1

[
Pr (S`r | S`1,x`;β) Pr (S`1)

]}
.

Then, the complete data pairwise log-likelihood for individual ` is

logLc
p` (θ) =

m∑̀
s=2

[
log Pr (S∗`1 | S`1, c`1;αs`1) + log Pr (S∗`s | S`s, c`s;αs`s)

+ log Pr (S`s | S`1,x`;β)
]

+

m`−1∑
r=2

m∑̀
s=r+1

{
log Pr (S∗`r | S`r, c`r;αs`r) + log Pr (S∗`s | S`s, c`s;αs`s)

+ log Pr (S`s | S`r,x`;β) + log

{∑
s`1

[
Pr (S`r | S`1,x`;β) Pr (S`1)

]}}
.
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Godambe Information Matrix

Let θ̃ denote the maximum pairwise likelihood estimator for θ and S∗ be all m observations

for one individual, where Sr and Ss denote the rth and the sth observation. The Godambe

information matrix takes the form

G (θ) = H (θ) J (θ)−1 H (θ) ,

where

H (θ) = Eθ

[
∂2 logLp (θ; S∗)

∂θ∂θT

]
and J (θ) = Varθ

[
∂ logLp (θ; S∗)

∂θ

]
.

Note that

Var

[
∂ logLp (θ; S∗)

∂θ

]
= E

{[
∂ logLp (θ; S∗)

∂θ

]⊗2
}
−
{
E

[
∂ logLp (θ; S∗)

∂θ

]}⊗2

= E

{[
∂ logLp (θ; S∗)

∂θ

]⊗2
}
, (2.8)

and the expectation of the outer product of the score vector can be estimated by

Ê

{[
∂ logLp (θ; S∗)

∂θ

]⊗2
}

=
1

N

N∑
`=1

[
∂ logLp (θ; S∗` )

∂θ

∣∣∣∣
θ=θ̃

]⊗2

. (2.9)

Therefore, by (2.8) and (2.9), the variability matrix can be estimated by

Ĵ (θ) =
1

N

N∑
`=1

[
∂ logLp (θ; S∗` )

∂θ

∣∣∣∣
θ=θ̃

]⊗2

. (2.10)
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Furthermore, because

∂ log Pr (S∗r , S
∗
s ;θ)

∂θ
=

1

Pr (S∗r , S
∗
s ;θ)

∂ Pr (S∗r , S
∗
s ;θ)

∂θ

=
1

Pr (S∗r , S
∗
s ;θ)

∂

∂θ

[∑
Sr

∑
Ss

Pr (Sr, Ss, S
∗
r , S

∗
s ;θ)

]

=
1

Pr (S∗r , S
∗
s ;θ)

∑
Sr

∑
Ss

∂

∂θ
Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

=
∑
Sr

∑
Ss

{
∂

∂θ
[log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)]

Pr (Sr, Ss, S
∗
r , S

∗
s ;θ)

Pr (S∗r , S
∗
s ;θ)

}
= E

[
∂

∂θ
log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∣∣∣∣S∗r , S∗s ;θ

]
,

we have

∂ logLp (θ; S∗)

∂θ
=

m−1∑
r=1

m∑
s=r+1

∂ log Pr (S∗r , S
∗
s ;θ)

∂θ

=
m−1∑
r=1

m∑
s=r+1

E

[
∂

∂θ
log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∣∣∣∣S∗r , S∗s ;θ

]

=
∂Qp (θ,θ(k))

∂θ
. (2.11)

Thus, by (2.10) and (2.11), we get

Ĵ (θ) =
1

N

N∑
`=1

 ∂Qp (θ,θ(k))

∂θ

∣∣∣∣∣
θ=θ̃,θ(k)=θ̃


⊗2

.

On the other hand,

∂2 log Pr (S∗r , S
∗
s ;θ)

∂θ∂θT
=

∂

∂θ

[
1

Pr (S∗r , S
∗
s ;θ)

∂ Pr (S∗r , S
∗
s ;θ)

∂θT

]
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= − 1

[Pr (S∗r , S
∗
s ;θ)]2

∂ Pr (S∗r , S
∗
s ;θ)

∂θ

∂ Pr (S∗r , S
∗
s ;θ)

∂θT

+
1

Pr (S∗r , S
∗
s ;θ)

∂2 Pr (S∗r , S
∗
s ;θ)

∂θ∂θT

= −
[
∂ log Pr (S∗r , S

∗
s ;θ)

∂θ

]⊗2

+
1

Pr (S∗r , S
∗
s ;θ)

∂2 Pr (S∗r , S
∗
s ;θ)

∂θ∂θT
(2.12)

= −
{
E

[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

∣∣∣∣S∗r , S∗s ;θ

]}⊗2

+
1

Pr (S∗r , S
∗
s ;θ)

∂2 Pr (S∗r , S
∗
s ;θ)

∂θ∂θT
, (2.13)

and

1

Pr (S∗r , S
∗
s ;θ)

∂2 Pr (S∗r , S
∗
s ;θ)

∂θ∂θT
=

1

Pr (S∗r , S
∗
s ;θ)

∂2

∂θ∂θT

[∑
Sr

∑
Ss

Pr (Sr, Ss, S
∗
r , S

∗
s ;θ)

]

=
1

Pr (S∗r , S
∗
s ;θ)

∑
Sr

∑
Ss

∂2 Pr (Sr, Ss, S
∗
r , S

∗
s ;θ)

∂θ∂θT
. (2.14)

Similar to (2.12), we have

∂2 log Pr (Sr, Ss, S
∗
r , S

∗
s ;θ)

∂θ∂θT
= −

[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

]⊗2

+
1

Pr (Sr, Ss, S∗r , S
∗
s ;θ)

∂2 Pr (Sr, Ss, S
∗
r , S

∗
s ;θ)

∂θ∂θT
,

which yields

∂2 Pr (Sr, Ss, S
∗
r , S

∗
s ;θ)

∂θ∂θT
= Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

{
∂2 log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ∂θT

+

[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

]⊗2
}
. (2.15)
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Then, by (2.14) and (2.15), we have

1

Pr (S∗r , S
∗
s ;θ)

∂2 Pr (S∗r , S
∗
s ;θ)

∂θ∂θT
=

∑
Sr

∑
Ss

{{
∂2 log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ∂θT

+

[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

]⊗2
}

Pr (Sr, Ss, S
∗
r , S

∗
s ;θ)

Pr (S∗r , S
∗
s ;θ)

}

= E

[
∂2 log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ∂θT

∣∣∣∣S∗r , S∗s ;θ

]
+E

{[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

]⊗2
∣∣∣∣∣S∗r , S∗s ;θ

}
. (2.16)

Therefore, by (2.13) and (2.16), we get

∂2 log Pr (S∗r , S
∗
s ;θ)

∂θ∂θT
= −

{
E

[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

∣∣∣∣S∗r , S∗s ;θ

]}⊗2

+E

{[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

]⊗2
∣∣∣∣∣S∗r , S∗s ;θ

}

+E

[
∂2 log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ∂θT

∣∣∣∣S∗r , S∗s ;θ

]
= E

[
∂2 log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ∂θT

∣∣∣∣S∗r , S∗s ;θ

]
+Var

[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

∣∣∣∣S∗r , S∗s ;θ

]
. (2.17)

Thus, by (2.17), we have

∂2 logLp (θ; S∗)

∂θ∂θT
=

m−1∑
r=1

m∑
s=r+1

∂2 log Pr (S∗r , S
∗
s ;θ)

∂θ∂θT

=

m−1∑
r=1

m∑
s=r+1

{
E

[
∂2 log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ∂θT

∣∣∣∣S∗r , S∗s ;θ

]
+Var

[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

∣∣∣∣S∗r , S∗s ;θ

]}
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=
∂2Qp (θ,θ(k))

∂θ∂θT

+
m−1∑
r=1

m∑
s=r+1

E

{[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

]⊗2
∣∣∣∣∣S∗r , S∗s ;θ

}

−
m−1∑
r=1

m∑
s=r+1

{
E

[
∂ log Pr (Sr, Ss, S

∗
r , S

∗
s ;θ)

∂θ

∣∣∣∣S∗r , S∗s ;θ

]}⊗2

.

Hence, the sensitivity matrix can be estimated by

Ĥ (θ) =
1

N

N∑
`=1

∂2Qp (θ,θ(k))

∂θ∂θT

∣∣∣∣∣
θ=θ̃,θ(k)=θ̃

+
1

N

N∑
`=1

m`−1∑
r=1

m∑̀
s=r+1

E

{[
∂ log Pr (S`r, S`s, S

∗
`r, S

∗
`s;θ)

∂θ

]⊗2
∣∣∣∣∣S∗`r, S∗`s;θ

}∣∣∣∣∣
θ=θ̃

− 1

N

N∑
`=1

m`−1∑
r=1

m∑̀
s=r+1

{
E

[
∂ log Pr (S`r, S`s, S

∗
`r, S

∗
`s;θ)

∂θ

∣∣∣∣S∗`r, S∗`s;θ]}⊗2
∣∣∣∣∣
θ=θ̃

.

2.8.3 Effects of parameters in simulation studies

Transition intensity model

In the unidirectional progressive model, the sojourn time τi is exponentially distributed with mean

1/qi, i = 1, 2, where q1 = exp (β10 + β11X) and q2 = exp (β20 + β21X) are transition intensities.

If the prognostic covariate X is simulated from the standard normal distribution, then the

mean sojourn time is

E (τi) = E [1/ exp (βi0 + βi1X)]

=

∫ ∞
−∞

exp (−βi0 − βi1u)
1√
2π
e−u

2/2 du

= exp

(
1

2
β2
i1 − βi0

)
.
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The median sojourn time is M (τi) = log (2) · E (τi).

If we set β = (−1.0,−0.7, 0.6, 0.4)T and X ∼ N (0, 1), then the mean and median sojourn

times from State 1 to State 2 are 3.25 and 2.26 and the mean and median sojourn times from

State 2 to State 3 are 2.18 and 1.51.

Misclassification model

The misclassification probabilities are given by

Pr (S∗`r = 2 | S`r = 1, c`r;α) = Pr (S∗`r = 2 | S`r = 3, c`r;α) =
exp (α0 + α1c`r)

1 + exp (α0 + α1c`r)
;

Pr (S∗`r = 1 | S`r = 2, c`r;α) = Pr (S∗`r = 3 | S`r = 2, c`r;α) =
exp (α0 + α1c`r)

1 + 2 exp (α0 + α1c`r)
;

Pr (S∗`r = 3 | S`r = 1, c`r;α) = Pr (S∗`r = 1 | S`r = 3, c`r;α) = 0.

Note that the time-dependent misclassification covariate c`r follows a unit uniform distribution.

Then, if the true state is 1 or 3, then the misclassification rate is

∫ 1

0

exp (α0 + α1u)

1 + exp (α0 + α1u)
du =

1

α1

{
log
[
1 + exp (α0 + α1)

]
− log

[
1 + exp (α0)

]}
;

if the true state is 2, then the total misclassification rate is

∫ 1

0

2 exp (α0 + α1u)

1 + 2 exp (α0 + α1u)
du =

1

α1

{
log
[
1 + 2 exp (α0 + α1)

]
− log

[
1 + 2 exp (α0)

]}
.

We consider three degrees of the misclassification shown in Table 2.6 to investigate the effects

of misclassification. The proportions of misclassification for each state are calculated by the

expectation. In Table 2.6, we include the empirical overall proportions of misclassification which

are obtained based on the simulated sample with 10,000,000 individuals.
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Table 2.6: Proportion of misclassification for simulation study

Proportion

α0 α1 State 1 or 3 State 2 Overall

−2.50 −1.50 4.05% 7.74% 4.89%
−1.50 −0.90 12.73% 22.47% 14.93%
−0.75 −0.55 26.52% 41.83% 29.99%
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Chapter 3

Analysis of panel data under hidden

mover-stayer models

3.1 Introduction

Continuous-time, multi-state stochastic models provide a useful framework to analyze the longi-

tudinal data when the interest lies in understanding the influence of risk factors on transitions.

Parametric, nonparametric, and semiparametric methods can be used for the case where subjects

are under continuous observation, and the exact transition times between states (Andersen et al.,

1993) are known. In contrast, when the subjects are observed at a sequence of time points, exact

transition times may not be observed and thus interval-censored. In this case, the state occupied

at each assessment and the information of risk factors are typically collected. Such data are often

referred to as panel data (Kalbfleisch and Lawless, 1985; Cook et al., 2002). In the analysis of

panel data, the heterogeneity of the data and the state misclassification are two common issues.

For example, in the smoking prevention study (Cameron et al., 1999), a substantial number of
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children may be non-smokers and therefore they would never experience smoking; in the study of

cardiac allograft vasculopathy (Sharples et al., 2003), the gold standard is prohibitively expensive

and the disease is diagnosed by coronary angiography, so that the classification of disease states

is subject to error.

In this chapter, we propose continuous-time hidden mover-stayer models to analyze the panel

data, in which states may be subject to misclassification. Our proposed models provide a conve-

nient tool to feature a paritcular type of heterogeneity of the data, which results in the invalidity

of the time-homogeneous assumption in Markov models. This type of heterogeneity arises when

the population consists of two types of subjects: the stayer stays in the initial state, whereas the

mover evolves according to a Markov process. For example, in population studies of chronic de-

generative diseases, a substantial proportion of subjects may be disease free over the study period

so they may not experience degeneration (Cook et al., 2002). For the discrete-time version, Fry-

dman (1984) provided a recursive method for obtaining maximum likelihood estimates (MLEs)

and Fuchs and Greenhouse (1988) presented an EM algorithm for estimation of model param-

eters. In the framework of continuous-time models, Cook et al. (2002) developed a generalized

mover-stayer Markov model to accommodate heterogeneity in the patterns of movement between

states by allowing subject-specific absorbing states. Recently, O’Keeffe et al. (2013) considered

the use of various random effects distributions in the mover-stayer model.

In addition to handling the heterogeneous data, our proposed models simultaneously account

for potential misclassification. Our proposed models are not limited to model the scenario where

surrogate measurements are assumed to have the same range of values as the true covariate. We

consider a generic setting: the discrete-valued surrogates are observed and the number of levels

for surrogates can be different from that for the underlying state.

Hidden Markov models are commonly utilized in the analysis of panel data with misclassi-
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fied states. Applications include the estimation of parasitic infection dynamics (Nagelkerke et al.,

1990; Rosychuk and Thompson, 2003), the analysis of hairy leukoplakia and cervical human papil-

lomavirus infection (Bureau et al., 2003), and the study of abdominal aortic aneurysms (Jackson

and Sharples, 2002). Recently, the msm package in R was developed by Jackson (2011) to fit

continuous-time Markov and hidden Markov models in the analysis of panel data. However,

these papers, which mainly focus on estimating transition rates when the state classification is

imperfect, do not incorporate the feature of the heterogeneity in the panel data.

The rest of this chapter is organized as follows. In Section 3.2, we describe mover-stayer

models with misclassification. Our proposed models allow the effects of risk factors on both

the underlying mover-stayer process and the misclassification process. The inference procedure

based on the EM algorithm is proposed in Section 3.3. The proposed method is applied to a

smoking prevention data in Section 3.4. The performance of the proposed method is investigated

through simulation studies in Section 3.5. Discussion is given in Section 3.6. Technical details

are presented in Section 3.7.

3.2 Mover-stayer models with misclassification

3.2.1 Mover-stayer models in continuous time

To define a mover-stayer model in continuous time, we first introduce a Markov model in contin-

uous time with state space {1, 2, . . . ,K}. Let S (t) denote the realization of the Markov process

at time t. Let M (s, s+ t) be the K ×K transition probability matrix with (i, j) entry

Mij (s, s+ t) = Pr [S (s+ t) = j | S (s) = i]
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for s ≥ 0, t > 0, i, j = 1, 2, . . . ,K. The transition intensity from state i to j at time t is

qij (t) = lim
∆t↓0

Mij (t, t+ ∆t)

∆t
, i 6= j,

and as a convention, define

qii (t) = −
∑
j 6=i

qij (t) .

Let Q (t) be the K ×K transition intensity matrix with (i, j) entry qij (t), i, j = 1, 2, . . . ,K.

This chapter is primarily concerned with time-homogeneous Markov models in which tran-

sition intensities are independent of t. We therefore let qij(t) = qij , i, j = 1, . . . ,K and write

Q(t) = Q. It follows that M(s, s + t) = M(0, t), which can be written as M(t). By the re-

sult of the time-homogeneous Markov model (e.g. Cox and Miller, 1965, Chapter 4), transition

probabilities can be obtained from transition intensities by the matrix exponential, that is

M (t) = exp (Qt) =
∞∑
r=0

Qr t
r

r!
, (3.1)

where the matrix exponential is defined by the power series of the matrix product and Q0 = I.

The algorithm for the computation of M (t) can be referred to Section 1.1.1.

In applications, transitions between states in the movers and the probability of being a mover

are affected by certain covariates, and the primary interest lies in understanding the influence of

these covariates.
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Transition intensity model

Let x be a p× 1 vector of prognostic variables. Consider the multiplicative models

qij (x) = qij0 exp
(
xTβijx

)
, i 6= j, i, j = 1, . . . ,K, (3.2)

where βijx = (βij1, βij2, . . . , βijp)
T is the vector of regression coefficients of primary interest,

and qij0 is the baseline transition intensity from state i to state j, which is reparameterized as

qij0 = exp (βij0) with parameter βij0 (e.g. Kalbfleisch and Lawless, 1985; Jackson et al., 2003).

Logistic model for the mover-stayer distribution

Let Z be a Bernoulli variable where Z = 0 if the subject is a stayer, and Z = 1 if the subject is a

mover. Let ωk denote the conditional distribution of being a mover given the initial state k, i.e.

Pr [Z = 1 | S0 = k]. To model the covariate effects on the mover-stayer probability, we employ

the logistic model:

log

(
ωk

1− ωk

)
= γk0 + xTγkx, (3.3)

where γkx = (γk1, . . . , γkp)
T are regression coefficients.

3.2.2 Misclassification model

It is common that the underlying true state, S (t), can not be observed, but the surrogate state,

S∗ (t), is observed. Assume that the observed state, S∗ (t), takes the value from {1, 2, . . . , J},

where J can be identical to or different from K. Suppose a q × 1 vector of predictor variables

collected at time t, denoted by c (t), is associated with the observation process. For i = 1, . . . ,K,
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and j = 1, . . . , J , let

πij (t) = Pr [S∗ (t) = j | S (t) = i, c (t)]

denote misclassification probabilities at time t.

Here we employ the multinomial logistic regression model to portray the relationship between

misclassification probabilities and c (t) (e.g. Agresti, 2002, Chapter 7):

log

[
πij (t)

πiki (t)

]
= αij0 +αT

ijcc (t) , j 6= ki, (3.4)

where ki = min {j : πij (t) > 0} is assumed to be time-independent but a function of the under-

lying state i, and αij0 and αijc are state-dependent but time-independent regression coefficients.

Thus, misclassification probabilities can be written as

πij (t) =



1

1 +
∑
k 6=ki

exp
[
αik0 +αT

ikcc (t)
] , j = ki,

exp
[
αij0 +αT

ijcc (t)
]

1 +
∑
k 6=ki

exp
[
αik0 +αT

ikcc (t)
] , j 6= ki.

(3.5)

In applications, suitable constraints may be imposed on misclassification probabilities to re-

flect a prior knowledge of the observation process. For example, Jackson et al. (2003) suggested

that the probability of misclassification may be negligibly small for those states that are far apart,

such that misclassification probabilities are non-zero constants only for some adjacent states, in

the disease progression studies.
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3.3 Maximum likelihood estimation

Suppose n subjects are under study and a randomly selected subject either stays in its initial

state with a probability, or with a complementary probability, moves among K states according

to a time-homogeneous Markov process. For i = 1, 2, . . . , n, let 0 = ti0 < ti1 < · · · < timi < ∞

be the assessment times of subject i, and Sij and S∗ij denote the underlying and observed states

of subject i at time tij , respectively, j = 0, 1, . . . ,mi. Let xi and cij represent time-independent

prognostic variables and time-dependent misclassification predictors for subject i at time tij ,

respectively, i = 1, 2, . . . , n, j = 1, . . . ,mi. Assume that the first state Si0 is known. We employ

models (3.2) and (3.3) to postulate the underlying process and (3.4) to model the misclassification

process. Let θ =
(
αT

1 , . . . ,α
T
K ,β

T,γT
1 , . . . ,γ

T
K

)T
, where

αi =
(
αij0,α

T
ijc : j = 1, . . . , J, j 6= ki

)T
, i = 1, . . . ,K

β = (βij0, βij1, . . . , βijp : i 6= j, i, j = 1, . . . ,K)T ,

and γi =
(
γi0,γ

T
ix

)T
, i = 1, . . . ,K.

We are intersted in estimating β and γi’s.

3.3.1 Estimation via an EM algorithm

Both the mover-stayer Bernoulli variable and underlying states can be treated as latent variables,

and therefore the EM algorithm can be employed for parameter estimation. We now elaborate

how to implement the EM algorithm to deal with parameter estimation pertinent to the mover-

stayer models with misclassification. The complete data log-likelihood contributed from subject
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i is written as

`ci (θ) = log
{

Pr
(
Si0, Si1, . . . , Simi , S

∗
i1, . . . , S

∗
imi
, Zi

∣∣ xi, ci1, . . . , cimi ;θ
)}

= log
{

Pr
(
Zi
∣∣ Si0,xi;γsi0)}+

mi∑
j=1

log
{

Pr
(
S∗ij
∣∣ Sij , cij ;αsij)}

+Zi

mi∑
j=1

log
{

Pr (Sij | Si,j−1,xi, Zi = 1;β)
}
, (3.6)

where the output independence assumption is required, i.e.,

Pr
(
S∗i1, . . . , S

∗
imi

∣∣ Si1, . . . , Simi , Zi; xi, ci1, . . . , cimi ;θ
)

=

mi∏
j=1

Pr
(
S∗ij
∣∣ Sij , cij ;αsij) .

In the expectation step, the expected complete data log-likelihood at the (k + 1)th iteration

is

Q (θ,θ(k)) =
n∑
i=1

Qi (θ,θ(k)),

where θ(k) is the maximizer of θ at the kth iteration, Qi (θ,θ(k)) = E
[
`ci (θ)

∣∣∣ Si0,S∗i ;θ(k)
]
, and

S∗i = (S∗i1, . . . , S
∗
imi

).

From (3.6), we can see that the parameters αk, β, and γk, k = 1, . . . ,K, are distinct from each

other. Therefore, the maximization can be carried out separately using the following functions

Q (αk,θ
(k)) =

n∑
i=1

mi∑
j=1

µij (k) log
[

Pr
(
S∗ij
∣∣ Sij = k, cij ;αk

) ]
,

Q (γk,θ
(k)) =

∑
i∈{i : si0=k}

1∑
z=0

κi (z) log
[

Pr (Zi = z | Si0 = k,xi;γk)
]
,

and Q (β,θ(k)) =
n∑
i=1

mi∑
j=1

K∑
k=1

K∑
l=1

ξij (k, l) log
[

Pr (Sij = l | Si,j−1 = k,xi, Zi = 1;β)
]
,
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where conditional probabilities µij (k), κi (z), and ξij (k, l) are given by

µij (k) = Pr
{
Sij = k

∣∣∣ Si0,S∗i ;θ(k)
}

; (3.7)

κi (z) = Pr
{
Zi = z

∣∣∣ Si0,S∗i ;θ(k)
}

; (3.8)

ξij (k, l) = Pr
{
Si,j−1 = k, Sij = l, Zi = 1

∣∣∣ Si0,S∗i ;θ(k)
}
. (3.9)

The maximum likelihood estimates, θ̂, can be obtained through iterations between E and M steps

until convergence of θ(k).

3.3.2 Forward and backward probabilities

Now we describe the algorithm to calculate the conditional probabilities (3.7) and (3.9). Denote

the forward probability Pr (S0, S
∗
1 , . . . , S

∗
k , Sk = j, Z = 1) by λk (j), k = 1, . . . ,m, and the back-

ward probability Pr
(
S∗k+1, . . . S

∗
m

∣∣ Sk = j, Z = 1
)

by φk (j), k = 1, . . . ,m−1, where j = 1, . . . ,K.

For convenience, we define φm (j) = 1 for j = 1, . . . ,K.

Then, we have

λ1 (j) ∝ ωs0Ms0,j (t1 − t0)πjs∗1 (t1) , j = 1, . . . ,K,

where ωs0 is the conditional probability of being a mover given the initial state s0, modelled

by (3.3); Ms0,j (t1 − t0) is the transition probability for the mover, defined by (3.1); πjs∗1 (t1)

is the misclassification probability, defined by (3.5). Let λk be the row vector with the jth

component λk (j). It can be recursively calculated as follows:

λk = λk−1Nk, k = 2, . . . ,m,
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where the jth column of K ×K matrix Nk is {Mij (tk − tk−1)πjs∗k (tk) , i = 1, . . . ,K}.

Similarly, the vector φk with the jth component φk (j) can be recursively calculated as follows:

φm−1 = M (tm − tm−1)π·,s∗m (tm) ;

φk−1 = Nkφk, k = 2, . . . ,m− 1;

where π·,s∗m is a column vector whose jth component is πi,s∗m (tm).

Based on the properties of forward and backward probabilities in hidden Markov models (e.g.

Zucchini and MacDonald, 2009, Chapter 4), we have

Pr (Si = j, Z = 1, S0,S
∗) = λi (j)φi (j) , (3.10)

and

Pr (Si−1 = j, Si = k, Z = 1, S0,S
∗) = λi−1 (j)Mjk (ti − ti−1)πks∗i (ti)φi (k) , (3.11)

where φm (k) = 1. Then, the conditional probability ξij (k, l) can be calculated by (3.11) and the

conditional probability Pr
{
Sij = k, Zi = 1

∣∣∣ Si0,S∗i ;θ(k)
}

in µij (k) can be calculated by (3.10).

3.3.3 Variance estimation in the EM algorithm

To protect against possibly invalid assumptions of the independence structures among observed

states, the sandwich-type robust variance estimation (Huber, 1967; White, 1982; Royall, 1986)

is suggested. White (1982) showed that if the likelihood, L (θ), is constructed from a misspec-

ified model, then θ̂ converges to θ∗ almost surely, where θ∗ is the root of the expectation of

∂ logL (θ) /∂θ taken with respect to the true distribution. The asymptotic normality of θ̂ from
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a misspecified model is
√
n (θ̂ − θ∗) d→ N [0,C (θ∗)] ,

where

C (θ) = A−1 (θ) B (θ) A−1 (θ)

with

A (θ) = E

[
∂2 logL (θ; S∗)

∂θ∂θT

]
and B (θ) = E

{[
∂ logL (θ; S∗)

∂θ

]⊗2
}
.

The matrix C (θ) evaluated at θ∗ can be estimated by Â−1 (θ) B̂ (θ) Â−1 (θ)
∣∣∣
θ=θ̂

, where

B̂ (θ) =
1

n

n∑
i=1

[
∂ logLi (θ)

∂θ

]⊗2

=
1

n

n∑
i=1

{
∂Qi

(
θ,θ′

)
∂θ

∣∣∣∣∣
θ′=θ

}⊗2

;

Â (θ) =
1

n

n∑
i=1

∂2 logLi (θ)

∂θ∂θT
.

Let s (θ) =
[
∂Q
(
θ,θ′

)
/∂θ

]
θ′=θ

. The Hessian of the log-likelihood can be obtained from the first-

order Richardson extrapolation (e.g. Press et al., 2007, Section 17.3) of the central difference for

the gradient of the expected complete data log-likelihood. Then, the jth column of the Hessian

matrix is given by

s (θ − 2huj)− 8 s (θ − huj) + 8 s (θ + huj)− s (θ + 2huj)

12h
,

where uj is the jth co-ordinate vector with the jth element equal to 1 and others equal to 0 and

h is a small positive value.

85



3.4 Application to a smoking prevention study

In this section, we apply our proposed method to analyze the data arising from the Waterloo

Smoking Prevention Project 3 (WSPP3) (Cameron et al., 1999). This project is a seven-year

longitudinal study designed to investigate smoking behaviour among school children. A total of

100 schools in seven Ontario school boards was randomized to receive either the regular health

education program provided by the school, or one of four intensive anti-smoking programs de-

livered by either a specially trained teacher or a public health nurse. Questionnaires regarding

tobacco use and school policies and programs were completed annually from grade 6 to grade 12.

State 1:
never smoking

State 2:
regularly smoking

State 3:
quit smoking

Figure 3.1: Three-state mover-stayer model for the smoking prevention study

Three states are defined to model children’s behaviour. Children who have never smoked are

classified ‘non-smokers’, and are represented by state 1. Children who are either ‘regular smokers’

or are experimenting with smoking are classified in state 2, and children who have smoked but

are currently not smoking are classified in state 3. The model is represented by the three-state

diagram in Figure 3.1.

Along with the responses, the risk factors that may influence children’s smoking behaviour

include gender (0–female, 1–male), treatment status (0–control; 1–intervention), social models

risk score (0–none of parents, siblings or friends smoke; 1–one or more of parents, siblings or

friends smoke). We consider the log-linear model for the transition intensities to incorporate

three risk factors xi,

log (qij) = βj0 + βT
jxxi, j = 1, 2, 3.
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The forward selection procedure is implemented to identify the prognostic variables on the tran-

sitions.

The data set contains 5,200 subjects who have at least two observations. The total number of

state observations is 29,976. There are 1,774 subjects (34.16%) who stayed in state 1 during the

study, 503 subjects (9.67%) who stayed in state 2 during the study, and 82 subjects (1.58%) who

stayed in state 3 during the study. This motivates us to incorporate the mover-stayer feature in

the model. We consider that the subjects starting from state 1 may be a mover with probability

ωi1, or a stayer with the complimentary probability. The subjects starting from state 2 or 3 are

assumed to be a mover. We use the logistic model for the mover-stayer probability in state 1

log

(
ωi1

1− ωi1

)
= γ0 + γT

xxi,

where the covariate vector xi contains three risk factors: the gender, treatment status, and social

models risk score. We utilize the forward selection of risk factors in the logistic model for the

mover-stayer distribution.

On the other hand, the self-reported smoking states are subject to misclassification. Table 3.1

presents the frequencies of transitions between observed states at consecutive pairs of times. Note

that both the number of transitions from state 2 to state 1 and that of transitions from state 3

to 1 are zero. It implies that the chance of state 2 or 3 being reported as state 1 is negligible.

Therefore, we assume that the regular smokers in state 2 may report the smoking status as ‘quit

smoking in state 3, and the subjects who have quitted smoking in state 3, and the non-smokers

in state 1 will honestly report the smoking status. We consider the constant misclassification

probabilities, which are assumed to be independent of covariates. The parameter related to
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misclassification are reparameterized by the logit transformation,

π23 = Pr
(
S∗ij = 3 | Sij = 2

)
=

exp (α23)

1 + exp (α23)
,

where the time t is omitted due to time-independence of the misclassification probability.

Table 3.1: Frequencies of transitions between smoking states

Previous Smoking Frequencies of transitions
state status to the following states:

1 2 3

1 never smoking 12761 1813 985
2 regularly smoking 0 4751 1089
3 quit smoking 0 1383 1994

Table 3.2 presents analysis results for the WSPP3 data. The results show that the gender

has significant effects on the transition from never smoking to regularly smoking, but the gender,

treatment status and social models risk score have no significant effects on the other transitions

or the mover-stayer probabilities. In particular, males have significantly lower transition inten-

sities out of state 1 (p = 0.038); there is some evidence that female children are more likely to

smoke than male children (β̂1x = −0.082). The estimate of the proportion of stayers in state 1 is

1/ {1 + exp (γ̂0)} ≈ 2.19%. By the delta method, a 95% confidence interval of the ‘stayer’ proba-

bility in state 1 is (0.00%, 9.26%), which implies that there may not be essential difference between

the inference drawn from a mover-stayer model with misclassification. The estimate of the mis-

classification probability of state 2 being observed as 3 is exp (α̂23) / {1 + exp (α̂23)} ≈ 16.56%,

and the resulting 95% confidence interval is (0.144, 0.187). This appears to be some evidence

that state 2 could be mis-reported as state 3, suggesting that there would be significant difference

between the inferences drawn from the mover-stayer model with misclassification and an ordinary
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mover-stayer model without misclassification.

Table 3.2: Estimates of gender effects under the three-state HMSM for the smoking prevention
study

Covariates EST ASE p-value 95% CI

Transition
1 → 2 Intercept β10 −1.581 .068 < .001 (−1.715,−1.447)

Gender β1x −0.082 .039 .038 (−0.159,−0.005)
2 → 3 Intercept β20 −1.913 .074 < .001 (−2.059,−1.767)

Gender β2x −0.031 .097 .752 (−0.220,−0.159)
3 → 2 Intercept β30 −0.834 .076 < .001 (−0.983,−0.685)

Gender β3x −0.130 .106 .220 (−0.338,+0.078)

Mover-stayer
State 1 Intercept γ0 3.800 1.688 .024 (+0.492,+7.108)

Misclassification
2 7→ 3 Intercept α23 −1.617 .044 < .001 (−1.703,−1.531)

3.5 Simulation studies

In this section, simulations studies are conducted to evaluate the performance of proposed MLEs,

as opposed to the naive MLEs, which are obtained with misclassfication ignored. We consider

the three-state mover-stayer model with misclassification in Figure 3.1, which may, for example,

represents children’s smoking behaviour in Section 3.4. The naive MLEs are obtained by ignoring

the misclassification among states. In naive analyses, we replace the previous state, state 2, by

the lower state, state 1, to adjust the misclassification in the transitions from state 2 to 1.
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3.5.1 Simulation setting

The number of subjects is n = 5000 and a total of 1000 replicates are used. Each subject is

assumed to start from state k with the initial state occupying probabilities

{Pr (Si0 = k) , k = 1, 2, 3} = (0.95, 0.05, 0.05)

at the initial time ti0 = 0. For the mover-stayer distribution, we assume that the subject is a

mover if starting from state 2 or 3, i.e. ωi2 = ωi3 = 1; if the subject starts from state 1, the

probability of being a mover is generated from the logistic model (3.3),

ωi1 =
exp (γ0 + γxxi)

1 + exp (γ0 + γxxi)
,

where xi is a Bernoulli variable with probability 0.5. We consider two scenarios:

• γ0 = 1.0 and γx = 0.2 such that the proportion of movers among the subjects who start

from state 1 is 74.97%;

• γ0 = 2.5 and γx = 1.2 such that the proportion of movers among the subjects who start

from state 1 is 95.00%.

The effects of γ on the mover-stayer distribution are described in Section 3.7.2.

If the subject is a stayer, then the subject stays in state 1 during the study; otherwise, the

subject follows the three state time-homogeneous Markov process. The sojourn time in state

j follows an exponential distribution with mean 1/qjk (xi), where qjk (xi) = exp (βj0 + βjxxi),

j = 1, 2, 3. After staying in state j, the subject enters the next state as shown in Figure 3.1. We

set β10 = −1.0, β1x = −0.5, β20 = −0.7, β2x = 0.6, β30 = −0.8, and β3x = −0.4. The effects of
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β on transitions are summerized at Table 3.4. To mimic the data from the Waterloo Smoking

Prevention Project, we assume that the observation is carried out each year, but each observation

is subject to missingness with probability 0.15; the number of observations for each subject is

between two and seven.

For the misclassification process, we assume no misclassification in the initial state or state 1,

i.e., πsi0,si0 (0) = 1, and π11 (t) = 1, t = 1, 2, . . . , 6. If the underlying state is 2, we assume it can

be misclassified as state 1 or 3 with probabilities

π21 (t) =
exp (α21)

1 + exp (α21) + exp (α23)
and π23 (t) =

exp (α23)

1 + exp (α21) + exp (α23)
;

if the underlying state is 3, we assume that it can be misclassified as state 1 with probability

π31 (t) = exp (α31) / {1 + exp (α31)}. We set α21 = −3.0, α23 = −2.0, and α31 = −2.5 such that

15.62% of state 2 is misclassified and 7.59% of state 3 is misclassified.

3.5.2 Simulation results

We analyze the simulated data using both the naive method and the proposed method. The naive

method ignores the feature of misclassification, whereas the proposed method accounts for the

misclassification effects. Table 3.3 summarizes the averages of biases of point estimates and their

asymptotic and empirical standard errors (ASEs and ESEs), along with coverage rates (CRs) of

corresponding 95% confidence intervals.

The results show that the proposed method performs well in finite samples, and illustrate

the significant biases and the low coverage rates produced by the naive method. The biases in

the proposed MLEs of regression coefficients β are relatively small and negligible; the associated

ASEs agree well with their empirical counterparts; the resulting coverage rates are close to the
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nominal level. For the misclassification parameters α, the performance of the MLE of α31 is very

good while the estimates of α21 and α23 have slightly larger biases. The ASEs for the MLE of α

are slightly overestimated, resulting in coverage rates slightly higher than the nominal level. The

biases in the MLEs of α and β and their SE estimates tend to decrease, as the size of movers

increases. For the mover-stayer parameters γ, as the size of stayers increases, the biases in the

proposed MLEs tend to decrease, the ASEs and ESEs become closer, and the coverage rates

become closer to the nominal level. However, in the case of 5% stayers, the biases of estimating

γx by the naive and the proposed methods are large, which may cause relatively large biases in

the MLEs of β1x. This is not surprising because estimation of γx is more difficult with a smaller

sample size.
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Table 3.3: Simulation results for the three-state hidden mover-stayer model

True States Naive Method MLE

Bias ASE ESE CR% Bias ASE ESE CR% Bias ASE ESE CR%

25% stayers and 75% movers
β10 .000 .048 .049 93.9 .261 .033 .035 0.0 .002 .050 .049 94.2
β1x −.001 .093 .094 95.0 .250 .052 .054 0.0 −.003 .096 .095 94.8
β20 −.001 .032 .032 94.9 .455 .034 .037 0.0 −.003 .096 .095 94.8
β2x .000 .047 .047 94.7 −.133 .050 .056 27.4 .006 .068 .067 95.7
β30 −.001 .044 .043 95.7 .257 .046 .050 0.1 −.003 .065 .062 95.9
β3x .000 .068 .068 95.5 −.060 .075 .080 85.3 .002 .087 .086 95.1

γ0 .003 .078 .079 95.8 −.390 .050 .050 0.0 −.001 .080 .078 95.7
γx .021 .212 .208 96.2 −.442 .074 .073 0.0 .023 .217 .206 96.3

α21 – – – – – – – – −.014 .175 .170 96.7
α23 – – – – – – – – −.009 .200 .189 96.1
α31 – – – – – – – – −.002 .076 .073 95.9

5% stayers and 95% movers
β10 −.001 .043 .041 96.0 .280 .029 .028 0.0 −.001 .044 .042 96.4
β1x .036 .081 .065 95.6 .242 .045 .044 0.0 .048 .082 .062 94.9
β20 .001 .029 .030 94.8 .459 .031 .034 0.0 −.001 .079 .079 95.4
β2x −.001 .042 .041 95.0 −.137 .045 .049 16.6 −.000 .062 .062 94.7
β30 .001 .040 .040 94.9 .266 .042 .045 0.0 −.001 .061 .061 95.3
β3x −.000 .062 .063 94.2 -.063 .068 .073 82.2 −.001 .080 .080 94.5

γ0 .023 .218 .203 96.3 −1.008 .067 .065 0.0 .026 .226 .213 96.0
γx −.436 1.218 .625 83.9 −1.601 .095 .099 0.0 −.633 .951 .485 81.8

α21 – – – – – – – – −.013 .159 .156 96.0
α23 – – – – – – – – −.009 .180 .177 95.0
α31 – – – – – – – – −.000 .069 .068 95.6

5000 subjects, 1000 replicates
α21 = −3.0, α23 = −2.0, α31 = −2.5
β10 = −1.0, β1x = −0.5, β20 = −0.7, β2x = 0.6, β30 = −0.8, β3x = −0.4
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3.6 Discussion

In this chapter, we propose continuous-time mover-stayer models with misclassification. These

models provide a useful framework to simultaneously feature a special type of heterogeneity and

account for state misclassification. The underlying mover-stayer model is a mixture of two in-

dependent continuous-time Markov processes: one with the identity matrix as the transition

probability matrix at any time, and the other with an unspecified transition intensity matrix.

This mover-stayer model describes the heterogeneity of the data arising from the existence of two

sub-populations, the stayers that stay in the initial state, and the movers that evolve according

to a Markov process. The proposed misclassification model is not limited to the scenario with

misclassified states; it can be applied to the case with discrete-valued surrogates observed for un-

derlying states, such as the multiple sclerosis/magnetic resonance imaging lesion count data (Alt-

man and Petkau, 2005). Therefore, our proposed models can be viewed as hidden mover-stayer

models with discrete observation, which is an extension of hidden Markov models (Zucchini and

MacDonald, 2009).

We developed an EM algorithm to obtain maximum likelihood estimates in the analysis of

panel data under our proposed models. The forward-backward procedure (Baum and Eagon,

1967; Baum and Sell, 1968) is widely used in the estimation based on the EM algorithm for

hidden Markov models due to its efficiency (e.g. Zucchini and MacDonald, 2009, Chapter 4).

Therefore, this procedure is also adopted in our E-step to calculate the conditional probabilities.

However, special attention on the numerical underflow in forward and backward probabilities is

required in the implementation of the forward-backward procedure, especially when the number

of assessments is large (Rabiner, 1989). Our simulation studies show that the proposed method

performs well in finite samples and illustrate the consequence of ignoring the misclassfication in

the naive analyses. The simulation results also indicate that the effect of the risk factor on the
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mover-stayer distribution is difficult to estimate for small sample size and may cause considerable

biases for estimation of parameters in the transition intensity model.

In the analysis of the WSPP3 data, the probabilities of being a stayer or mover are described

by the logistic model. It may be interesting to use the idea of O’Keeffe et al. (2013) to introduce

a random effect to the mover-stayer distribution in order to account for unobserved heterogeneity

among different schools. After data fitting, it is intuitive to examine which model is the most

appropriate for these data. The likelihood ratio tests can be utilized to choose our proposed

model versus an ordinary mover-stayer model by testing H0 : π23 = 0 versus Ha : π23 > 0, and our

proposed model versus an ordinary Markov model with misclassification by testing H0 : ω1 = 1

versus Ha : ω1 < 1. The asymptotic distribution of the likelihood ratio statistic may not be the

chi-square distribution with one degree of freedom in either case, because the parameter value

under H0 is a boundary point of the parameter space. The investigation of this problem dates

back to Chernoff (1954), who studied the hypothesis test with the null on the boundary for a

multivariate normal distribution. This problem was also reported by Frydman and Kadam (2004)

for testing the continuous-time mover-stayer model versus an ordinary Markov model. The study

of the asymptotic distribution of the likelihood test statistic under H0 will be pursued in the

future work for our proposed models.
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3.7 Technical details

3.7.1 Transition probability matrix for the three-state Markov model

The transition probability matrix for the three-state Markov model in Figure 3.1 can be calculated

analytically from the transition intensity matrix


−q q 0

0 −u u

0 v −v

 ,

by the function MatrixExp in Mathematica. The corresponding transition probabilities for gap

time t are given by

P11 (t) = exp (−qt) ;

P12 (t) = −{1− exp (−qt)} v
q − u− v

+
q
[
u [exp {− (u+ v) t} − exp (−qt)] + v {1− exp (−qt)}

]
(q − u− v) (u+ v)

;

P13 (t) = u

[
q [1− exp {− (u+ v) t}]

(u+ v) (q − u− v)
− 1− exp (−qt)

q − u− v

]
;

P22 (t) =
v + exp {− (u+ v) t}u

u+ v
;

P23 (t) =
u− exp {− (u+ v) t}u

u+ v
= 1− P22 (t) ;

P32 (t) =
v

u+ v
− exp {− (u+ v) t} v

u+ v
;

P33 (t) =
u

u+ v
+

exp {− (u+ v) t} v
u+ v

;
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P21 (t) = P31 (t) = 0.

3.7.2 Effects of parameters in simulation studies

Transition intensity model

In the three-state Markov model in Figure 3.1, the sojourn time τi is exponentially distributed

with mean 1/qi, i = 1, 2, where q is the transition intensity modelled by (3.2).

The prognostic covariate X is simulated from the Binomial distribution with probability p.

Then, the mean sojourn time is

E (τi) = E [1/ exp (βi0 + βixX)]

= (1− p) exp (−βi0) + p exp (−βi0 − βix) .

The median sojourn time is M (τi) = log (2) · E (τi).

If we set β = (−1.0,−0.5,−0.7, 0.6,−0.8,−0.4)T and X ∼ BIN (0.5), then the mean and

median sojourn times from state 1 to 2 are 3.60 and 2.50, the mean and median sojourn times

from state 2 to 3 are 1.56 and 1.08, and the mean and median sojourn times from state 3 to 2

are 2.77 and 1.29.

Table 3.4: Parameter effects on transitions

Transition βi0 βix E (τi) M (τi)

1→ 2 −1.0 −0.5 3.60 2.50
2→ 3 −0.7 0.6 1.56 1.08
3→ 2 −0.8 −0.4 2.77 1.29
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Logistic model for the mover-stayer distribution

The stayer probability is given by

Pr (Zi = 0 | Si0 = 1, xi;γ) =
1

1 + exp (γ0 + γxxi)
.

If the prognostic covariate X is simulated from the Binomial distribution with probability p,

then the mean stayer probability is

E {Pr (Zi = 0 | Si0 = 1, xi;γ)} =
1− p

1 + exp (γ0)
+

p

1 + exp (γ0 + γx)
.

If we set p = 0.5, γ0 = 1.0, and γx = 0.2, the proportional of stayers among the subjects who

start from state 1 is 25.02%; if we set p = 0.5, γ0 = 2.5, and γx = 1.2, the proportional of stayers

among the subjects who start from state 1 is 5.00%.
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Chapter 4

Analysis of panel data with

misclassified discrete covariates

4.1 Introduction

It is not uncommon that discrete covariates are misclassified. In the case with binary outcomes,

various approaches have been proposed for the covariate misclassification problem. The inves-

tigation of the impact of misclassification on analysis and interpretation dates back to Bross

(1954). An overview of the development was given by Kuha et al. (2005), who described the

effects of misclassification and summarized the methods for adjusting misclassification effects.

Given that misclassification parameters are estimated from validation studies or repeated mea-

surements, consistent estimates of the relative risk and related parameters can be obtained from

the matrix method (Bross, 1954; Marshall, 1990; Morrissey and Spiegelman, 1999) or the max-

imum likelihood method (Espeland and Hui, 1987; Spiegelman et al., 2000). In addition, the

regression calibration approach (Carroll and Stefanski, 1990; Gleser, 1990) provides a simple and
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convenient way to reduce measurement error effects, in which the unobserved covariate is replaced

by its estimated value and then the standard analysis method can be performed. With internal

validation data, Spiegelman et al. (2001) proposed an efficient regression calibration method for

logistic regression, which combines the estimates from the regression calibration and the estimates

from the internal validation study using the true covariate value by a generalized inverse-variance

weighted average.

The simulation extrapolation (SIMEX) method (Cook and Stefanski, 1994; Stefanski and

Cook, 1995) is another useful approach to deal with measurement error problems. Recently,

Küchenhoff et al. (2006) developed the misclassification SIMEX method for parameter estima-

tion in the presence of misclassification in discrete covariates or responses in regression models

and Küchenhoff et al. (2007) derived the asymptotic variance estimation for the misclassifica-

tion SIMEX approach. However, the regression calibration is an approximate method, and the

SIMEX method relies on an extrapolation scheme that is uncertain. Therefore, the consistency

of estimators can not be guaranteed by either method.

There has been relatively less attention paid to the covariate misclassification in the analysis of

panel data. For the three-state progressive Markov model, White (2007, Chapter 3) investigated

the impact of misclassification of a binary covariate and proposed the correction methods based

on the likelihood and the SIMEX methods. However, transition intensities are required to remain

constant through time in the time-homogeneous Markov model. In practice, transition intensities

may be time-dependent. A common approach of fitting time-dependent models to panel data is to

use Markov models with piecewise constant intensities. This idea dates back to Faddy (1976) and

was suggested by Kalbfleisch and Lawless (1985). The discussion of Markov models with piecewise

constant intensities includes Lindsey and Ryan (1993), Gentleman et al. (1994), Chen and Sen

(1999), Hsieh et al. (2002), Saint-Pierre et al. (2003), van den Hout and Matthews (2009), Chen
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et al. (2010), and Tom and Farewell (2011). One issue of fitting models with piecewise constant

intensities is to determine cut points properly. Various criteria for the choice of change points

have been presented. For example, clinical reasons (Sharples et al., 2001; Alioum et al., 2005),

the change in the trend of transition intensities (Pérez-Ocón et al., 2001), division of the number

of data points into equal groups (Kay, 1986), selection of the only change point based on the

likelihood value (Mathieu et al., 2005), or the merging algorithm proposed by Ocañ-Riola (2005).

In this chapter, we present the maximum likelihood estimation procedure to analyze the panel

data under Markov assumption with misclassified discrete covariates. To highlight the idea, the

discussion is directed to binary covariates where extensions to accommodating discrete covariates

are straightforward. In Section 4.2, the Markov models with piecewise constant intensities are

described to account for the time-inhomogeneity. In Section 4.3, we show that the Markov models

with misclassified binary covariates are not identifiable. The maximum likelihood estimation

procedures are developed in Section 4.4, where two scenarios, known reclassification probabilities

and main study/validation study design, are considered. Simulation studies are conducted in

Section 4.5 to demonstrate the performance of the proposed method. Data arising from the

psoriatic arthritic (PsA) study are analyzed using the proposed methods in Section 4.6. A general

discussion is given in Section 4.7, and technical notes are presented in Section 4.8.

4.2 Model formulation

4.2.1 Piecewise constant Markov models

Suppose an individual moves among K states, denoted by integers 1, 2, . . . ,K. Let S (t) denote

the true state at time t occupied by an individual. The process {S (t) , t ≥ 0} is assumed to follow

a continuous-time Markov process. Let P (s, s+ t) be the K ×K transition probability matrix
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with (i, j) entry

Pij (s, s+ t) = Pr [S (s+ t) = j | S (s) = i]

for s ≥ 0, t > 0, i, j = 1, 2, . . . ,K. The transition intensity from state i to j at time t is

qij (t) = lim
∆t↓0

Pij (t, t+ ∆t)

∆t
, i 6= j,

and as a convention, define

qii (t) = −
∑
j 6=i

qij (t) .

Let Q (t) be the K×K transition intensity matrix with (i, j) entry qij (t), i, j = 1, 2, . . . ,K. In the

piecewise constant framework, a sequence of times 0 = b0 < b1 < · · · < bM < bM+1 = ∞ is pre-

specified and transition intensities are assumed to be constant within each interval Bk = (bk, bk+1],

where k = 0, . . . ,M . That is,

qij (t) = qijk, if t ∈ Bk.

Then, the transition intensity matrix Q (t) is written as

Q (t) = Qk, for t ∈ Bk.

Therefore, transition intensities can be defined as

qij (t) =

M∏
k=0

q
I(t∈Bk)
ijk =

M∑
k=0

qijkI (t ∈ Bk) ,

where I (·) is the indicator function and k = 0, . . . ,M . Models with piecewise constant intensities

are weakly parametric and provide flexible estimation of transition intensities and robust esti-

mation of regression coefficients, though other specification such as splines (e.g. He and Lawless,
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2003; Titman, 2011) can also be used for smooth estimates of intensities.

By the result of the time-homogeneous Markov model (e.g. Cox and Miller, 1965, Chapter

4), transition probabilities between two time points s and s + t within the interval of constant

transition intensities, where bk < s ≤ s+ t ≤ bk+1, are given by

P (s, s+ t) = exp (Qkt) .

If time points s and s+ t are in different intervals such that bi < s ≤ bi+1 and bj < s+ t ≤ bj+1,

then by the Chapman-Kolmogorov equation, transition probabilities are given by

P (s, s+ t) = P (s, bi+1)

j−1∏
k=i+1

[P (bk, bk+1)] P (bj , s+ t) ,

where 0 ≤ i < j ≤M and P (s, s) = I.

Each transition probability matrix within the time interval of constant transition intensities

can be calculated by the closed-form expression for the simple models (Tuma et al., 1979; Chiang,

1980; Longini et al., 1989; Omar et al., 1995; Satten, 1999; Jackson, 2011) or the decomposition

methods of evaluating the matrix exponential (Cox and Miller, 1965; Kalbfleisch and Lawless,

1985; Moler and van Loan, 2003; Jackson, 2011) discussed in Section 1.1.1.

4.2.2 Regression model for covariates

Transition intensity model

Let X be a discrete error-free time-independent covariate with two numerical levels x1 and x2

and z be a p× 1 vector of perfectly measured time-independent covariates. To model the effects
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of covariates on transitions, we consider the multiplicative intensity model

qij (t | X, z) = qij0 (t) exp
(
Xβijx + zTβijz

)
, i 6= j, i, j = 1, . . . ,K, (4.1)

where qij0 (t) is the baseline transition intensity out of state i to j at time t, and
(
βijx, βijz1 , . . . , βijzp

)T
are vectors of regression coefficients of primary interest. For Markov models with piecewise con-

stant intensities, the baseline transition intensities can be re-parameterized as

qij0 (t) = exp (βijk0) , for t ∈ Bk = (bk, bk+1) , k = 0, . . . ,M,

where βijk0 is a parameter.

Reclassification model

Let X∗ be a surrogate measure of X, which takes the same range of possible values as X. We

assume that misclassification is non-differential, that is, the observed measurement is independent

of the outcome given the true measurement. Let

λij (z) = Pr (X = xj | X∗ = xi, z) , i 6= j, i, j = 1, 2

be the reclassification probability of the true covariate given the observed surrogate; this can be

regarded as a discrete version of the Berkson model (Berkson, 1950). The logistic models

log

[
λ12 (z)

1− λ12 (z)

]
= α10 + zTα1z and log

[
λ21 (z)

1− λ21 (z)

]
= α20 + zTα2z (4.2)

can be used to model the effects of covariates on reclassification probabilities, where αi0 and

αiz = (αi1, . . . , αip)
T are regression coefficients and i = 1, 2.

104



Therefore, reclassification probabilities are given by

λ12 (z) =
exp

(
α10 + zTα1z

)
1 + exp (α10 + zTα1z)

, (4.3)

λ21 (z) =
exp

(
α20 + zTα2z

)
1 + exp (α20 + zTα2z)

, (4.4)

λ11 (z) = 1− λ12 (z) , (4.5)

and λ22 (z) = 1− λ21 (z) . (4.6)

4.3 Model identifiability

In this section, we show that the joint model for the state process and the reclassification process

is not identifiable.

Theorem 4.3.1. Consider a time-homogenous Markov process {S (t) : t ≥ 0} with the constant

transition intensity matrix Q. Suppose Q is modelled by (4.1), z is a vector of perfectly measured

time-independent covariates, and X is subject to misclassification with X∗ being a surrogate

measurement. Let S = (S1, . . . , Sm) denote the states of the process {S (t) : t ≥ 0} observed at

time points 0 ≤ t1 < t2 < · · · < tm. Suppose the reclassification model is given by (4.2). Let

α =
(
αi0,α

T
iz : i = 1, 2

)T
and

β =
(
βij0, βijx, βijz1 , . . . , βijzp : i 6= j, i, j = 1, . . . ,K

)T
be any given parameters associated with (4.2) and (4.1), respectively. Assume that the distribution

of the initial state, Pr (S1 | X∗, z), is free of α and β. Define

α∗ = −α and β∗ = (β∗ij0, β
∗
ijx, β

∗
ijz1 , . . . , β

∗
ijzp : i 6= j, i, j = 1, . . . ,K)T,
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with

β∗ij0 = βij0 + βijx (x1 + x2) , β∗ijx = −βijx, and β∗ijz = βijz.

Then, we have the probability identity:

Pr (S | X∗, z;α∗,β∗) = Pr (S | X∗, z;α,β) .

Proof. If α∗ = −α, then

αi0 + zTαiz + α∗i0 + zTα∗iz = 0, i = 1, 2,

which is equivalent to

exp
(
αi0 + zTαiz

)
1 + exp (αi0 + zTαiz)

=
1

1 + exp (α∗i0 + zTα∗iz)
, i = 1, 2.

By (4.3)–(4.6), we have

Pr (X = x1 | X∗, z;α) = Pr (X = x2 | X∗, z;α∗) . (4.7)

By the condition β∗ij0 = βij0 + βijx (x1 + x2), β∗ijx = −βijx, and β∗ijz = βijz, we know

β∗ij0 + β∗ijxx2 + zTβ∗ijz = βij0 + βijxx1 + zTβijz,

and β∗ij0 + β∗ijxx1 + zTβ∗ijz = βij0 + βijxx2 + zTβijz.

By (4.1), we have

qij (x1, z;β) = qij (x2, z;β∗) and qij (x2, z;β) = qij (x1, z;β∗) . (4.8)
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Thus, by (4.8) and the assumption that Pr (S1 | X∗, z) does not contain α or β, we know

Pr (S | X = x1, z;β) = Pr (S | X = x2, z;β∗) ; (4.9)

Pr (S | X = x2, z;β) = Pr (S | X = x1, z;β∗) . (4.10)

Note that

Pr (S | X∗, z;α,β) = Pr (S, X = x1 | X∗, z;α,β) + Pr (S, X = x2 | X∗, z;α,β)

= Pr (S | X = x1, z;β) Pr (X = x1 | X∗, z;α)

+ Pr (S | X = x2, z;β) Pr (X = x2 | X∗, z;α) . (4.11)

By (4.7), (4.9), (4.10), and (4.11), we know that there exist α∗ = −α and β∗ satisfying

β∗ij0 = βij0 + βijx (x1 + x2) , β∗ijx = −βijx, and β∗ijz = βijz,

such that

Pr (S | X∗, z;α,β) = Pr (S | X∗, z;α∗,β∗) .

This theorem says that two distinct sets of parameters can lead to the same probability mass

function, and thus, suggesting that the model is non-identifiable in the presence of misclassified

binary covariates. Consequently, in developing valid inference methods to account for covariate

misclassification effects, one needs to carefully address non-identifiability. One approach is to

impose some restrictions on the parameter space to ensure the identifiability of the model. In

particular, specifying reclassification probabilities to be known values can guarantee the model

identifiability. On the other hand, the availability of a validation data set is also helpful to

overcome the non-identifiability problem arising from the misclassification in binary covariates.
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4.4 Maximum likelihood methods

Suppose that the data are obtained from n independent individuals. Let Si (t) denote the state for

individual i at time t ≥ 0, i = 1, . . . , n. {Si (t) , t ≥ 0} is assumed to follow a common continuous-

time Markov process for each individual. Let ti0 < ti1 < · · · < timi denote the (mi + 1) times at

which individual i is observed. For simplicity, let Sij denote the state at the jth observation for

individual i. Let Xi represent the unobserved true covariate, X∗i denote the surrogate measure

of Xi, and zi, p×1 be the other precisely measured time-independent covariates for individual i.

In order to estimate parameters of interest in the transition intensity model, we propose

the likelihood inference methods for two practical situations: one is that the parameters in

reclassification probabilities are known from empirical studies; the other is in the presence of

an internal or external validation data.

4.4.1 Known reclassification probabilities

Conditional on known α, the likelihood function contributed from individual i is

Li (α,β) = Pr (Si | X∗i , zi;α,β)

= Pr (Xi = x1 | X∗i , zi;α) Pr (Si0 | Xi, zi)

mi∏
j=1

Pr (Sij | Si,j−1, Xi = x1, zi;β)

+ Pr (Xi = x2 | X∗i , zi;α) Pr (Si0 | Xi, zi)

mi∏
j=1

Pr (Sij | Si,j−1, Xi = x2, zi;β)

∝ Pr (Xi = x1 | X∗i , zi;α)

mi∏
j=1

Pr (Sij | Si,j−1, Xi = x1, zi;β)

+ Pr (Xi = x2 | X∗i , zi;α)

mi∏
j=1

Pr (Sij | Si,j−1, Xi = x2, zi;β) , (4.12)
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where Pr (Xi = xj | X∗i = xi, zi;α) is the reclassification probability λij (zi) defined by (4.3)–

(4.6), Pr (Sij | Si,j−1, Xi, zi;β) is the transition probability Psi,j−1,sij (ti,j−1, tij | Xi, zi;β) defined

in Section 4.2.1, and Pr (Si0 | Xi, zi) is the initial state occupation probability which is assumed

to be independent of Xi given zi. The overall likelihood is the product of all the contributions

L (α,β) =

n∏
i=1

Li (α,β) .

The maximum likelihood estimates, denoted by β̂, can be obtained by maximizing the log-

likelihood with respect to β. The gradient and Hessian of the log-likelihood function are described

in Section 4.8.1. When the explicit analytic expression of transition probabilities is available, it is

not difficult to obtain the analytic expression for the Hessian matrix. Then, the Newton-Raphson

algorithm can be directly used to maximize the log-likelihood. On the other hand, although

the second derivatives of transition probabilities obtained by the canonical decomposition are

available in Kosorok and Chao (1995, 1996), they are so complex that it does not seem worth

the effort to supply for the optimization. The quasi-Newton algorithm, such as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method incorporating the first derivatives, is then used.

From standard likelihood theory, under regularity conditions, the maximum likelihood esti-

mator β̂ is consistent for β and asymptotically normally distributed:

√
n (β̂ − β)

d→ N
[
0, I−1 (β)

]
, as n→∞,

where I (β) = E
[
−∂2 logL (α,β; S) /

(
∂β∂βT

)]
= E

{[
∂ logL (α,β; S) /∂β

]⊗2
}

, L (α,β; S) is

the likelihood based on the states S of one individual, and x⊗2 is the out production of the column

vector x, i.e. x⊗2 = xxT. By Bartlett’s identity and the Law of Larger Numbers, I (β) can be

consistently estimated by n−1
∑n

i=1

[
∂ logLi (α,β) /∂β

]⊗2
.
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4.4.2 Main study/validation study

In addition to the main study data {(X∗i , zi,Si) , i = 1, . . . , n1}, suppose the internal validation

study with data (Xi, X
∗
i , zi,Si) where i = n1 + 1, . . . , n1 + n2, n1 is the sample size of the main

study, and n2 is the sample size of the validation study. Typically, n1 is much greater than n2

due to the high cost of validating error-prone measurements. Let ∆i denote a selection indicator

for individual i where ∆i = 1 if individual i is in the validation sample and ∆i = 0 otherwise.

The likelihood for a main study/internal validation study design is

L (φ,α,β) =

n1+n2∏
i=1

(
LC
i

)∆i
(
LI
i

)1−∆i

where LC
i is the likelihood contributed from an individual in the internal validation study, and

LI
i is the likelihood contributed from an individual in the main study. In order to overcome

the identifiability issue, the information of reclassification process in the validation study is used

such that the covariate Xi is treated as a random variable instead of a constant. Specifically, we

calculate LC
i and LI

i as follows:

LC
i = Pr (∆i = 1, Xi,Si | X∗i , zi;φ,α,β)

= π (∆i = 1 | Xi, X
∗
i , zi;φ) Pr (Si | Xi, zi;β) Pr (Xi | X∗i , zi;α)

∝ Pr (Si | Xi, zi;β) Pr (Xi | X∗i , zi;α) ,

and

LI
i = Pr (∆i = 0,Si | X∗i , zi;φ,α,β)

= π (∆i = 0 | Xi = x1, X
∗
i , zi;φ) Pr (Si | Xi = x1, zi;β) Pr (Xi = x1 | X∗i , zi;α)
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+ π (∆i = 0 | Xi = x2, X
∗
i , zi;φ) Pr (Si | Xi = x2, zi;β) Pr (Xi = x2 | X∗i , zi;α)

∝ Pr (Si | Xi = x1, zi;β) Pr (Xi = x1 | X∗i , zi;α)

+ Pr (Si | Xi = x2, zi;β) Pr (Xi = x2 | X∗i , zi;α) ,

where π (·;φ) is the internal validation study selection model. We assume that

π (∆i = 0 | Xi, X
∗
i , zi;φ) = π (∆i = 0 | zi;φ) ,

i.e., the selection of individual i into the internal validation study does not depend on either

true or observed covariates given perfectly measured covariates. The log-likelihood for the main

study/internal validation study design takes the form of

logLIVS (α,β) =

n1∑
i=1

log
[

Pr (Si | X∗i , zi;α,β)
]

+

n1+n2∑
i=n1+1

log
[

Pr (Xi | X∗i , zi;α)
]

+

n1+n2∑
i=n1+1

mi∑
j=1

log
[

Pr (Sij | Si,j−1, Xi, zi;β)
]

(4.13)

where Pr (Si | X∗i , zi;α,β) is given by (4.12), Pr (Xi = xj | X∗i = xi, zi;α) is the reclassification

probability λij (zi) in (4.3)–(4.6), Pr (Sij | Si,j−1, Xi, zi;β) is the transition probability

Psi,j−1,sij (ti,j−1, tij | Xi, zi;β) defined in Section 4.2.1.

Suppose the external validation study with data (Xi, X
∗
i , zi) is available, i = n1+1, . . . , n1+n2.

The likelihood contributed from an individual in the external validation study is

LC
i = π∗ (∆i = 1 | Xi, X

∗
i , zi;φ) Pr (Xi | X∗i , zi;α)

where π∗ (·;φ) is the external validation study selection model, which is assumed ignorable. If the

terms in the third summation in (4.13) are deleted, the log-likelihood for the main study/external
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validation study design can be obtained as follows

logLEVS (α,β) =

n1∑
i=1

log
[

Pr (Si | X∗i , zi;α,β)
]

+

n1+n2∑
i=n1+1

log
[

Pr (Xi | X∗i , zi;α)
]
.

The maximum likelihood estimates α̂ and β̂ can be obtained by the Newton-Raphson method

when both gradient and Hessian of the log-likelihood function are available; alternatively, they

are obtained by the quasi-Newton method which is only required to specify the gradient. The

gradient and Hessian of the log-likelihood function are presented in Section 4.8.1.

Under suitable regularity conditions, the maximum likelihood estimator (α̂, β̂) is consistent

for (α,β) and asymptotically normally distributed:

√
n

α̂−α
β̂ − β

 d→ N
[
0, I−1 (α,β)

]
, as n→∞,

where

I (α,β) = E

−∂2 logLi (α,β) /
(
∂α∂αT

)
−∂2 logLi (α,β) /

(
∂α∂βT

)
−∂2 logLi (α,β) /

(
∂β∂αT

)
−∂2 logLi (α,β) /

(
∂β∂βT

)


= E


∂ logLi (α,β) /∂α

∂ logLi (α,β) /∂β


⊗2 ,

Li (α,β) is the likelihood based on the data of one individual from either main study/internal

validation study design or main study/external validation study design, and x⊗2 is the out pro-

duction of the column vector x, i.e. x⊗2 = xxT. By Bartlett’s identity and the law of larger
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numbers, I (α,β) can be consistently estimated by

1

n

n∑
i=1

∂ logLi (α,β) /∂α

∂ logLi (α,β) /∂β


⊗2

.

4.5 Simulation studies

Simulation studies are carried out to evaluate the performance of the proposed MLEs for the

Markov models with one misclassified binary covariate and the consequence of the naive MLEs

which ignore the covariate misclassification.

4.5.1 Simulation setting

Simulation studies access the three-state progressive time-homogenous Markov models. The

numbers of individuals are n1 = 500 in the main study and n2 = 50 or 100 in the validation

study, and a total of 1,000 replications are used to evaluate the performance of the proposed

methods.

Each individual is assumed to start from state 1 at the initial time ti0 = 0 and be observed

at eleven examination times, ti1, . . . , ti11. The gap between two adjacent examination times,

tij − ti,j−1, is uniformly distributed on the interval [0.5, 1.0], where j = 1, . . . , 11. A continuous

covariate is generated from the standard normal distribution. One observed binary covariate X∗

is generated from the Bernoulli distribution with possible values −1 and 1 and probabilities 2/3

and 1/3. Conditional on X∗, the true binary covariate X is generated based on reclassification

probabilities

α1 = Pr (X = 1 | X∗ = −1) = 1− Pr (X = −1 | X∗ = −1) = 0.3;
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α2 = Pr (X = −1 | X∗ = 1) = 1− Pr (X = 1 | X∗ = 1) = 0.1.

In the main study, we set Pr (X∗ = 1) = (0.5− α1) / (1− α1 − α2) such that the true binary

covariate X is uniformly distributed (see Section 4.8.3). In the validation study, we set the

numbers of individuals with different observed binary covariate values are equal, i.e.

# (X∗ = −1) = # (X∗ = 1) = n2/2.

In the transition intensity model

qi,i+1 = exp (βi0 + βixX + βizz) , i = 1, 2,

we set β10 = −1.0, β1x = −0.2, β1z = 0.6, β20 = −0.7, β2x = −0.3, and β2z = 0.5, such that the

mean sojourn times from state 1 to 2 and from state 2 to 3 are 3.97 and 3.08 if X = −1 and 2.66

and 1.69 if X = 1 (see Section 4.8.3).

The procedure for generating the panel data for each individual can be described by the

following procedure:

1. Simulate the continuous covariate zi from the standard normal distribution.

2. Simulate the observed binary covariate x∗i from a Bernoulli trial with probabilities

Pr (X∗ = −1) = 2/3 and Pr (X∗ = 1) = 1/3.

3. Conditional on the observed binary covariate x∗i , simulate the true binary covariate xi from

114



the Bernoulli trial with probabilities

Pr (X = −1 | X∗ = −1) = 0.7 and Pr (X = 1 | X∗ = −1) = 0.3, if x∗i = −1,

or

Pr (X = −1 | X∗ = 1) = 0.1 and Pr (X = 1 | X∗ = 1) = 0.9, if x∗i = 1.

4. Simulate the gap time tij− ti,j−1 from the uniform distribution on the interval [0.5, 1.0] and

calculate the examination times tij , where ti0 = 0, j = 1, . . . , 11.

5. Initialize the state Si0 = 1.

6. For the given covariates xi and zi, calculate the transition rates q12 (xi, zi) and q23 (xi, zi).

7. Simulate the sojourn times from state 1 to 2 and from state 2 to 3, τi1 and τi2, by drawing

from exponential distributions with mean 1/q12 (xi, zi) and 1/q23 (xi, zi) respectively.

8. According to the time of entering state 2 and state 3, τi1 and τi1 + τi2, calculate the

underlying states at each observation time: for j = 1, . . . , 11, if tij < τi1 then Sij = 1; if

τi1 ≤ tij < τi1 + τi2 then Sij = 2; if tij ≥ τi1 + τi2 then Sij = 3.

4.5.2 Simulation results

Table 4.1 presents simulation results for the three-state progressive model with one misclassified

binary covariate based on known reclassification probabilities. We consider three scenarios for

known reclassification proabilities:

• the reclassification probabilities are the same as the values in the simulation setting

• the reclassification probabilities are lower than the values in the simulation setting
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• the reclassification probabilities are larger than the values in the simulation setting

The results based on the true and observed binary covariates are also described for comparison;

they are obtained by fitting an ordinary three-state progressive model. The estimators based on

the exact relassificatoin probablities have negligible biases, and their aymptotic standard error

(ASE) estimates agree well with their empirical counterpars. Compared with the results based

on the true covariate, the standard error(SE) estimates, related to the intercepts (βi0) and the

parameters of the perfectly measured covariate (βiz), increase slightly; but the SE estimates for

the parameters of the misclassified covariate (βix) increase a little. However, the coverage rates

of the corresponding 95% condifience intervals are around the nominal level in both situations.

On the other hand, the misspecified reclassification probailities yield the biases in the estimates

of βi0 and βix, but the biases of the estimates for βiz are still negligible. In the situations of

misspecified reclassification probabilities, the ASE and emprical standard error (ESE) estimates

agree well with each other, although coverage rates are a little below the nomial level.

Table 4.2 summarizes the results for the three-state progressive model with one misclassified

binary covariate based on main study/validation study design. The proposed MLEs have negligi-

ble biases and their ASE estimates agree well with the ESE estimates except those for parameters

related to reclassification probabilities. As the sample size in the validation study increases, the

biases, ASE and ESE estimates of the estimators of the parameters become smaller. The covarage

rates of the corresponding 95% condifience intervals are close to the nominal level except those of

α10 and α20. Combining the results in Table 4.1 and 4.2, we conclude that the methods based on

the true reclassification probabilities and the main study/validation study design give comparable

results in terms of biases and coverage rates of the confidence intervals. However, the standard

error estimates obtained from the main study/internal validation study design are slightly less

than those in the sensitivity method based on the true reclassification probabilities, which are
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slightly less than the standard error estimates obtained in the main study/external validation

study design.
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Table 4.1: Simulation results for three-state progressive models with a misclassified binary covariate based on
known reclassification probabilities

True covariate Observed covariate

Bias ASE ESE CR% Bias ASE ESE CR%

β10 .005 .047 .047 94.6 −.045 .050 .050 85.4
β1x −.001 .047 .045 95.4 .085 .050 .051 59.7
β1z .004 .049 .048 95.3 .000 .050 .051 94.5
β20 .003 .051 .053 93.2 −.071 .054 .055 73.6
β2x −.002 .051 .050 95.2 .130 .054 .054 33.6
β2z .003 .054 .057 93.6 −.014 .056 .056 93.8

(α1, α2) = (0.3, 0.1) (α1, α2) = (0.2, 0.05) (α1, α2) = (0.4, 0.15)

Bias ASE ESE CR% Bias ASE ESE CR% Bias ASE ESE CR%

β10 .006 .049 .050 93.7 −.015 .048 .048 92.7 .032 .052 .054 90.5
β1x .004 .079 .080 92.9 .038 .069 .070 90.0 −.027 .089 .089 91.7
β1z .004 .050 .051 94.8 .002 .050 .050 95.0 .004 .051 .051 94.9
β20 .005 .054 .053 94.9 −.027 .052 .052 91.5 .046 .058 .058 89.7
β2x .003 .084 .082 95.0 .052 .077 .073 89.7 −.037 .089 .087 92.7
β2z .002 .057 .059 93.5 −.005 .057 .059 93.0 .006 .058 .060 93.7

1000 replicates; Pr (X = −1) = Pr (X = 1) = 0.5
(β10, β1x, β1z, β20, β2x, β2z) = (−1.0,−0.2, 0.6,−0.7,−0.3, 0.5)
(α1, α2) = (0.3, 0.1)
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4.6 Application to the PsA data

In this section, we apply our proposed methods to analyze the data arising from the psoriatic

arthritic (PsA) study, which are available in the msm package (Jackson, 2011). This data set

contains 305 subjects with 806 observations, which represent visits to a psoriatic arthritis (PsA)

clinic. Psoriatic arthritis (PsA) is a progressive disease, in which the progerssion is usually

reflected in the accumulation and severity of damaged joints. We consider a three-state progressive

model shown in Figure 4.1 to model the progression of PsA: subjects in state 1 have no damaged

joints, subjects in state 2 have 1 to 4 damaged joints, and subjects in state 3 have 5 or more

damaged joints. A risk factor, denoted by Xi, is taken as the presence or absence of five or

more effusions (coded by ‘hieff’, −1 for “no presence”, +1 for “presence”). This covariate, is

time-independent with 48 positive values and 257 negative values among all the subjects.

State 1:
no damage

State 2:
mild damage

State 3:
moderate or

severe damage

Figure 4.1: Three-state progressive model for the PsA study

In the three-state progression model, transition intensities are modelled by the log-linear

model

log (qi,i+1) = βi0 + βix ·Xi, i = 1, 2, (4.14)

where xi is the true covariate of subject i.

We conduct the following four analyses for the PsA data:

Analysis 1:

The three-state progressive Markov model (4.14) is fitted to the data {(Xi,Si) , i = 1, . . . , 305}.
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Table 4.2: Simulation results for three-state progressive models with a misclassified binary co-
variate based on the main/validation study

Naive Analysis

True covariate Observed covariate

Bias ASE ESE CR% Bias ASE ESE CR%

β10 .005 .047 .047 94.6 −.045 .050 .050 85.4
β1x −.001 .047 .045 95.4 .085 .050 .051 59.7
β1z .004 .049 .048 95.3 .000 .050 .051 94.5
β20 .003 .051 .053 93.2 −.071 .054 .055 73.6
β2x −.002 .051 .050 95.2 .130 .054 .054 33.6
β2z .003 .054 .057 93.6 −.014 .056 .056 93.8

Internal validation study

n2 = 50 n2 = 100

Bias ASE ESE CR% Bias ASE ESE CR%

β10 .006 .057 .052 96.5 .006 .049 .049 95.4
β1x .003 .076 .073 94.3 −.000 .067 .066 95.1
β1z .003 .048 .050 94.8 .001 .046 .046 94.2
β20 .007 .071 .062 97.2 .004 .058 .052 96.2
β2x −.003 .083 .079 94.9 −.001 .071 .068 95.3
β2z .000 .055 .055 94.9 .002 .052 .052 94.9

α10 −.034 .539 .407 98.7 −.016 .395 .276 99.2
α20 −.098 1.018 .574 100.0 −.062 .617 .439 100.0

External validation study

n2 = 50 n2 = 100

Bias ASE ESE CR% Bias ASE ESE CR%

β10 .004 .064 .057 95.8 .009 .055 .053 95.8
β1x .003 .088 .083 93.8 .002 .082 .084 93.3
β1z .004 .051 .051 94.8 .004 .050 .051 94.1
β20 .004 .080 .065 97.4 .006 .065 .064 95.4
β2x .000 .096 .087 94.2 .003 .089 .086 94.9
β2z .000 .058 .060 93.3 .001 .058 .061 94.0

α10 −.086 .502 .425 98.0 −.010 .330 .295 97.4
α20 −.091 1.174 .604 100.0 −.109 .633 .457 99.8
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Analysis 2:

To illustrate our methods in real application, we consider a scenario that the surrogate measure-

ment, denoted by X∗i , is available, but Xi is not observed. Specifically, the surrogate measurement

is related to the true covariate Xi in a way such that only one type of reclassifications, denoted

by + 7→ −, is present, i.e.

Pr (X = +1 | X∗ = −1) = 0 and Pr (X = −1 | X∗ = +1) > 0.

In particular, the surrogate measurement X∗i is generated by the following procedure:

1. Conditional on the true binary covariate Xi, simulate the surrogate measurement X∗i from

the Bernoulli trial with probabilities

Pr (X∗ = +1 | X = +1) = Pr (X∗ = −1 | X = −1) = 0.8.

2. If the value of the surrogate measurement is negative, i.e. X∗i = −1, then this value is

replaced by the corresponding value of the true covariate, i.e. X∗i = Xi.

The simulated surrogate measurements contain 107 positive values and 198 negative values. There

are 59 negative values in the true covariates out of 107 surrogate measurements with the positive

value.

The three-state progressive Markov model (4.14) is fitted to the data {(X∗i ,Si) , i = 1, . . . , 305},

with Xi replaced by X∗i . This is a naive method which ignores the misclassification.

Analysis 3:

The method described in Section 4.4.1 is applied to the data {(X∗i ,Si) , i = 1, . . . , 305}, where
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the reclassification probability is reparameterized as

Pr (X = −1 | X∗ = +1) =
exp (α)

1 + exp (α)
,

and the parameter α is assumed to be known as 0.5.

Analysis 4:

The method described in Section 4.4.2 is applied to the main/internal validation data, which

contain {(X∗i ,Si) , i = 1, . . . , 305} as the main study and 30 randomly selected subjects with a

positive surrogate measurement as the internal validation data.

The analysis results are summarized in Table 4.3. From these results, we have the following

findings.

Analysis 1 vs Analysis 2:

The point estimates and standard errors obtained from Analyses 1 and 2 are close, except the

estimate of β1x. The estimate β̂1x obtained from Analysis 2 is attenuated, compared with β̂1x

obtained from Analysis 1. The significant effect of hieff on the onset of PsA (State 1 → 2) is

detected in Analysis 1 but not detected in Analysis 2, showing the consequence of ignoring the

misclassification in Analysis 2.

Analysis 3 vs Analysis 4:

The point estimates in Analyses 3 and 4 agree well, and standard errors for the parameters related

to the disease progression (State 2→ 3) in both analyses are close. However, standard errors of

β̂10 and β̂1x in Analysis 3 are greatly larger than those obtained from Analysis 4. The inflated

standard error for β̂1x results in the failure of detecting the significant effect of hieff on the

onset of PsA (State 1→ 2) in Analysis 3.

Analysis 4 vs Analysis 1:
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The results obtained based on the main study/internal validation study design (Analysis 4) agree

well with the results obtained using the true covariate (Analysis 1). Both methods successfully

capture the significant effect of hieff on the onset of PsA (State 1 → 2), and give comparable

estimates and p-values for all the parameters.

Table 4.3: Analyses of PsA data under the three-state progressive model

Analysis 1 Analysis 2

Covariate EST ASE p-value EST ASE p-value

Transition
State 1→ 2 Intercept β10 −2.05 0.20 < .001 −2.14 0.21 < .001

hieff β1x 0.42 0.20 .036 0.29 0.22 .169
State 2→ 3 Intercept β20 −1.71 0.16 < .001 −1.70 0.17 < .001

hieff β2x 0.23 0.16 .135 0.25 0.17 .148

Analysis 3 Analysis 4

Covariate EST ASE p-value EST ASE p-value

Transition
State 1→ 2 Intercept β10 −1.87 0.72 .010 −1.93 0.27 < .001

hieff β1x 0.68 0.84 .418 0.58 0.29 .045
State 2→ 3 Intercept β20 −1.62 0.23 < .001 −1.62 0.21 < .001

hieff β2x 0.38 0.28 .177 0.37 0.23 .113

4.7 Discussion

In this chapter, we develop the maximum likelihood estimation procedure to analyze the panel

data with misclassified discrete covariates. The sequence of discrete time points, at which

the states occupied by the subjects under study were observed in the panel data, are com-

monly not equally spaced. In addition, the exact transition times are interval censored under

panel/intermittent observation. Therefore, continuous-time Markov models are utlized for the
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analysis of panel data, and the scientific interest lies in understanding the influence of variables

on transitions between defined states. On the other hand, many variables are difficult to measure

precisely and may be subject to measurement error. In this chapter, we restrict our attentions

to discrete variables subject to classification error.

To model time-dependent intensities in Markov models, we allow the transition intensity ma-

trix to be a piecewise constant function. This is usually achieved by specifying the baseline

intensity functions to be piecewise constant, or by the approximation of time-varying variables

as piecewise constant functions. In particular, time-varying variables are assumed to be constant

between the time points at which they were observed, and the baseline intensity functions can be

specified either to be constant or piecewise constant (Kalbfleisch and Lawless, 1985; Lindsey and

Ryan, 1993; Marshall and Jones, 1995; Saint-Pierre et al., 2003; Cook et al., 2008; van den Hout

and Matthews, 2008; Tom and Farewell, 2011). Markov models with piecewise constant transi-

tion intensities provide considerable flexibility in term of time dependence, compared with time

transformation models suggested by (Kalbfleisch and Lawless, 1985), in which all the intensities

after transformation must be monotonically increasing or decreasing. Although nonparametric

time transformation models proposed by Hubbard et al. (2008) allow more flexibility, they are

still restrictive due to the requirement of a common time-varying multiplicative change for all the

intensities. The general smooth intensity models are developed by Titman (2011) to allow more

flexibility than time transformation methods and offer more biologically plausibility in term of

time dependency than piecewise constant intensity models. However, it is more computation-

ally intensive of general smooth intensity models than other models, particularly in models with

covariates.

The covariate misclassification poses an identifiability problem in the Markov model. We

show that the model is not identifiable in the presence of misclassified binary covariates. The
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identifiability issue is going to be explored for the discrete covariate subject to misclassification

with more than two levels in the Markov model. However, the length and structure of the

observed sequences of states, which the joint probability function of the states depends on, bring

the challenges in investigating the identifiability of model parameters.

To address the identifiability problem, we propose the likelihood methods to make statistical

inference and ensure the model identifiability in two practical situations: one is to conduct the

sensitivity analysis based on the known reclassification probabilities; the other one is developed

based on the main study/validation study design. The maximum likelihood estimates can be ob-

tained by directly maximizing the log-likelihood function using the Newton-Raphson algorithm

if the explicit expression of transition probabilities is available, or using the quasi-Newton algo-

rithm with the first derivatives incorporated if the transition probabilities are calculated based

on the matrix exponential. The simulation studies evaluate the performance of our proposed

methods. The biases in the proposed estimates are negligible, and the coverage rate of confidence

intervals are close to the nominal level, although the asymptotic standard error estimates for the

reclassification parameters are larger than the corresponding empirical estimates.

4.8 Technical notes

4.8.1 Gradient and Hessian of the log-likelihood function

Known reclassification probabilities

The uth element of the score vector takes the form of

∂ logL (α,β)

∂βu
=

n∑
i=1

[
1

Li (α,β)

∂Li (α,β)

∂βu

]
,
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where

∂Li (α,β)

∂βu
=

2∑
i=1

Pr (Xi = xi | X∗i , zi;α)
∂

∂βu

mi∏
j=1

Pr (Sij | Si,j−1, Xi = xi, zi;β)


=

2∑
i=1

Pr (Xi = xi | X∗i , zi;α)

mi∏
j=1

[
Pr (Sij | Si,j−1, Xi = xi, zi;β)

]

×
mi∑
j=1

{
∂

∂βu
log
[

Pr (Sij | Si,j−1, Xi = xi, zi;β)
]}

=
2∑
i=1

Pr (Xi = xi | X∗i , zi;α)

mi∏
j=1

[
Pr (Sij | Si,j−1, Xi = xi, zi;β)

]

×
mi∑
j=1

[
1

Pr (Sij | Si,j−1, Xi = xi, zi;β)

∂

∂βu
Pr (Sij | Si,j−1, Xi = xi, zi;β)

] .

The detailed derivation of the first derivatives of transition probabilities in piecewise constant

Markov models is presented in Section 4.8.2.

The expression for the (u, v)th entry of the Hessian matrix is also available and given by

∂2 logL (α,β)

∂βu∂βv
=

n∑
i=1

∂2 logLi (α,β)

∂βu∂βv
=

n∑
i=1

∂

∂βv

[
1

Li (α,β)

∂Li (α,β)

∂βu

]

=

n∑
i=1

[
1

Li (α,β)

∂2Li (α,β)

∂βu∂βv
− 1

[Li (α,β)]2
∂Li (α,β)

∂βu

∂Li (α,β)

∂βv

]
,

where

∂2Li (α,β)

∂βu∂βv
=

2∑
i=1

Pr (Xi = xi | X∗i , zi;α)
∂2

∂βu∂βv

mi∏
j=1

Pr (Sij | Si,j−1, Xi = xi, zi;β)

 ,
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and

∂2

∂βu∂βv

mi∏
j=1

Pr (Sij | Si,j−1, Xi = xi, zi;β)

 =

mi∏
j=1

[
Pr (Sij | Si,j−1, Xi = xi, zi;β)

]

×


mi∑
j=1

[
∂2

∂βu∂βv
log Pr (Sij | Si,j−1, Xi = xi, zi;β)

]

+

mi∑
j=1

[
∂

∂βu
log Pr (Sij | Si,j−1, Xi = xi, zi;β)

] mi∑
j=1

[
∂

∂βv
log Pr (Sij | Si,j−1, Xi = xi, zi;β)

] .

Main study/validation study

The gradient and Hessian of log Pr (Si | X∗i , zi;α,β) with regard to β is given in the previous

part. Similarly, the first derivative of log Pr (Si | X∗i , zi;α,β) with regard to αuv can be written

as

∂ log Pr (Si | X∗i , zi;α,β)

∂αuv

=
1

Pr (Si | X∗i , zi;α,β)

∂ Pr (Si | X∗i , zi;α,β)

∂αuv

=
1

Pr (Si | X∗i , zi;α,β)

2∑
k=1

∂ Pr (Xi = xk | X∗i , zi;α)

∂αuv

mi∏
j=1

Pr (Sij | Si,j−1, Xi = xk, zi;β)

 ,
where u = 1, 2, and v = 0, 1, . . . , p. Note that ∂ log Pr (Si | X∗i , zi;α,β) /∂αuv = 0 if the value of

X∗i is not xi. The second derivative of log Pr (Si | X∗i , zi;α,β) with regard to αuv and αuw takes

the form of

∂2 log Pr (Si | X∗i , zi;α,β)

∂αuv∂αuw

=
1

Pr (Si | X∗i , zi;α,β)

∂2 Pr (Si | X∗i , zi;α,β)

∂αuv∂αuw
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− 1[
Pr (Si | X∗i , zi;α,β)

]2 ∂ Pr (Si | X∗i , zi;α,β)

∂αuv

∂ Pr (Si | X∗i , zi;α,β)

∂αuw
,

where

∂2 Pr (Si | X∗i , zi;α,β)

∂αuv∂αuw
=

2∑
h=1

∂2 Pr (Xi = xh | X∗i , zi;α)

∂αuv∂αuw

mi∏
j=1

Pr (Sij | Si,j−1, Xi = xh, zi;β)

 ,
u = 1, 2 and v, w = 0, 1, . . . , p. Note that ∂2 log Pr (Si | X∗i , zi;α,β) / (∂αuv∂αuw) = 0 if the

value of X∗i is not xi and ∂2 log Pr (Si | X∗i , zi;α,β) / (∂αuv∂αu′w) = 0 if u 6= u′. The second

derivative of log Pr (Si | X∗i , zi;α,β) with regard to αuv and βu is given by

∂2 log Pr (Si | X∗i , zi;α,β)

∂αuv∂βu

=
1

Pr (Si | X∗i , zi;α,β)

∂2 Pr (Si | X∗i , zi;α,β)

∂αuv∂βu

− 1[
Pr (Si | X∗i , zi;α,β)

]2 ∂ Pr (Si | X∗i , zi;α,β)

∂αuv

∂ Pr (Si | X∗i , zi;α,β)

∂βu
,

where

∂2 Pr (Si | X∗i , zi;α,β)

∂αuv∂βu

=
2∑

k=1

∂ Pr (Xi = xk | X∗i , zi;α)

∂αuv

mi∏
j=1

[
Pr (Sij | Si,j−1, Xi = xk, zi;β)

]

×
mi∑
j=1

{
∂

∂βu
log
[

Pr (Sij | Si,j−1, Xi = xk, zi;β)
]}

=

2∑
k=1

∂ Pr (Xi = xk | X∗i , zi;α)

∂αuv

mi∏
j=1

[
Pr (Sij | Si,j−1, Xi = xk, zi;β)

]

128



×
mi∑
j=1

[
1

Pr (Sij | Si,j−1, Xi = xk, zi;β)

∂

∂βu
Pr (Sij | Si,j−1, Xi = xk, zi;β)

] .

Note that ∂2 log Pr (Si | X∗i , zi;α,β) / (∂αuv∂βu) = 0 if the value of X∗i is not xi.

4.8.2 First derivatives of transition probabilities in piecewise constant Markov

models

If transition probabilities can not be analytically calculated from transition intensities, the canon-

ical decomposition for the computation of P (s, s+ t) is available when Qk has distinct eigenval-

ues (Kalbfleisch and Lawless, 1985). In this case,

Qk = HkDkH
−1
k , k = 0, . . . ,M,

where Dk = diag (dk1, dk2, . . . , dkK) is a diagonal matrix of distinct eigenvalues of Qk and Hk is

the K ×K matrix whose jth column is the eigenvector associated with dkj . Then, P (s, s+ t) is

calculated as

P (s, s+ t) =


Hk exp (Dkt) H−1

k , bk < s ≤ s+ t ≤ bk+1,

P (s, bi+1)

{
j−1∏
k=i+1

P (bk, bk+1)

}
P (bj , s+ t) , bi < s ≤ bi+1 ≤ bj < s+ t ≤ bj+1,

where the dependence of Qk, P (s, s+ t), Hk and Dk on β is suppressed for notational con-

venience. On the other hand, if Qk has repeated eigenvalues, Kalbfleisch and Lawless (1985)

suggested an analogous decomposition of Qk to the Jordan canonical form (e.g. Cox and Miller,

1965, Chapter 3). More recently, Jackson (2011) recommended the method based on Padé ap-

proximation with scaling and squaring (Moler and van Loan, 2003) for the case with repeated
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eigenvalues. However, for most models of interest, Qk (β) has distinct eigenvalues for almost all

β and therefore it is rarely necessary (Kalbfleisch and Lawless, 1985).

The first derivatives of transition probabilities can be computationally efficiently obtained by

∂P (s, s+ t)

∂βu
= HkVkuH

−1
k , if bk < s ≤ s+ t ≤ bk+1, (4.15)

where Vku is a K ×K matrix with (i, j) entry

g
(u)
kij

[
exp (dkit)− exp (dkjt)

]
/ (dki − dkj) , if i 6= j,

g
(u)
kii t exp (dkit) , if i = j,

and g
(u)
kij is the (i, j) entry in G

(u)
k = H−1

k (∂Q/∂βu) Hk. A derivation of this result for the time-

homogeneous case appears in Jennrich and Bright (1976) and Kalbfleisch and Lawless (1985). If

bi < s ≤ bi+1 ≤ bj < s + t ≤ bj+1, the first derivatives of transition probabilities can be written

as

∂P (s, s+ t)

∂βu
= P (s, bi+1)

j−1∏
k=i+1

[P (bk, bk+1)] P (bj , s+ t)×

{
1

P (s, bi+1)

∂P (s, bi+1)

∂βu

+

j−1∑
k=i+1

[
1

P (bk, bk+1)

∂P (bk, bk+1)

∂βu

]
+

1

P (bj , s+ t)

∂P (bj , s+ t)

∂βu

}
,

where the derivatives of transition probabilities within the interval of constant transition inten-

sities are given by (4.15).
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4.8.3 Effects of parameters in simulation studies

Measurement error model

The observed covariate X∗ is generated from the Bernoulli distribution with successive probability

p for value one. Then the true covariate X is generated based on α0 = Pr (X = 1 | X∗ = −1) and

α1 = Pr (X = −1 | X∗ = 1). Note that

Pr (X = 1) = Pr (X = 1, X∗ = 1) + Pr (X = 1, X∗ = 0)

= Pr (X = 1 | X∗ = 1) Pr (X∗ = 1) + Pr (X = 1 | X∗ = 0) Pr (X∗ = 0)

= (1− α1) p+ α0 (1− p)

= (1− α1 − α0) p+ α0.

If we set Pr (X = 1) = 0.5, then p = Pr (X∗ = 1) = (0.5− α0) / (1− α0 − α1) in the case that

α0 + α1 6= 1.

Transition intensity model

In the unidirectional progressive model, the sojourn time τi is exponentially distributed with

mean 1/qi, i = 1, 2, where q1 = exp (β10 + β1xX + β1zz) and q2 = exp (β20 + β2xX + β2zz)

are transition intensities; X is a surrogate binary covariate which follows the discrete uniform

distribution with values −1 and 1; z is a standard normally distributed error-free covariate.

Then, the mean sojourn time conditional on X is

E (τi | X) = E [1/ exp (βi0 + βixX + βizz) | X]

= exp (−βi0 − βixX)E [exp (−βizz)]
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= exp (−βi0 − βixX)

∫ ∞
−∞

exp (−βizu)
1√
2π
e−u

2/2 du

=
exp (−βi0 − βixX)√

2π

∫ ∞
−∞

exp

(
−1

2
u2 − βizu

)
du

=
exp (−βi0 − βix)√

2π

∫ ∞
−∞

exp

[
−1

2
(u+ βiz)

2 +
1

2
β2
iz

]
du

= exp

(
1

2
β2
iz − βi0 − βixX

)
.

If we set (β10, β1x, β1z, β20, β2x, β2z) = (−1.0,−0.2, 0.6,−0.7,−0.3, 0.5)T, then

X E (τ1 | X) E (τ2 | X)

−1 3.97 3.08

1 2.66 1.69
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Chapter 5

Statistical inference of two-state

Markov models for panel data with

time-dependent surrogate covariates

5.1 Introduction

A study of disease progression often involves longitudinal follow-up on a group of subjects. Many

diseases are measured by a binary outcome where the scientific interest lies in the inference

about the rate of transitions between the disease states and about the influence of covariates

on transitions. Examples include: (i) chronic bronchitis where subjects may transit between the

exacerbation of symptoms and a symptom resolution (Cook et al., 1999); (ii) parasitic infection

where subjects transit between the presence or absence of the parasite (Nagelkerke et al., 1990);

(iii) unipolar depression where subjects transit between periods of depression and periods of

normal mood (Frank et al., 1990); (iv) migraine where subjects transit between migraine attacks
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and pain free periods (Tfelt-Hansen and Olesen, 1985), and so on.

A feature of panel data collected from disease progression studies is the irregular spacing in

the observation times. Moreover, the observation times may be unique to each subject and the

exact times of disease onset or progression are interval censored. That is, the disease information

at the intermittent follow-up visits is known, but the information between visits is commonly

unavailable. For analyzing of such data, continuous-time Markov models play an important

role in handling the irregularly spaced observation times due to the feasibility of constructing the

likelihood in such models. A widely used approach to fit a time-homogeneous Markov model is the

Fisher-scoring algorithm proposed by Kalbfleisch and Lawless (1985) for obtaining the maximum

likelihood estimates and corresponding asymptotic covariance matrix. The applications of this

method can be found in HIV/AIDS studies (Gentleman et al., 1994) and rheumatology (Gladman

et al., 1995), among many others.

Another feature of panel data collected from disease progression studies is time-dependence

on covariates, such as, the blood pressure observed during every clinic visit and the fat and

calories intake records taken at every interview. A commonly used method, which allows for

time-dependent covariates in continuous-time Markov models, assumes that time-dependent co-

variates remain the same between two consecutive times, and then the contribution from time-

independent covariates is replaced with the contribution from the time-dependent covariates at

the specific time (Saint-Pierre et al., 2003). This method yields the piecewise-constant intensities

with the change points specified by the observation times of the time dependent covariate in the

Markov models. However, the discontinuities of transition intensities determined by the covariate

observation times may not be plausible for some applications. On the other hand, the long-term

average, instead of the time-dependent covariate, may be the true predictor in the regression

model, such as the long-term blood pressure and the long-term diet intake. Therefore, we use the
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measurement error model to compensate for the time-dependent covariate, in which the multiple

observations of the time-dependent covariate are treated as the surrogates of the unobserved true

predictor.

A number of approaches to reduce or correct the effects of measurement error have been

discussed previously. Yi and He (2006) proposed methods for bivariate survival data with mis-

measured covariates under an accelerated failure time model. Yi and Lawless (2007) developed a

corrected likelihood method for the proportional hazards model with covariates subject to mea-

surement error. Yi (2008) developed a simulation-based marginal method for longitudinal data

with dropout and mismeasured covariates. Yi (2009) reviewed some analysis methods handling

covariate measurement error for life history data. Yi et al. (2011a) developed likelihood method

to make simultaneous inference for longitudinal data with covariate measurement error and miss-

ing responses. Yi and He (2012) developed the simulation-extrapolation method for survival data

with covariate measurement error under parametric proportional odds models. Yi et al. (2012)

developed a functional generalized method of moments approach for longitudinal studies with

missing responses and covariate measurement error. Yi and Lawless (2012) developed likelihood-

based and marginal inference methods for recurrent event data with covariate measurement error.

Yi et al. (2015) developed Functional and structural methods for mixed measurement error and

mislassification in covariates. Yan and Yi (2015) developed a class of functional methods for

error-contaminated survival data under additive hazards models with replicate measurements.

However, relatively less attention has been paid to the covariate measurment error in the panel

data.

In this chapter, we describe both structural and functional modelling approaches for inference

about two-state Markov models where a time-independent covariate is unavailable but its time-

dependent surrogate measurements are collected. In Section 5.2, the two-state Markov model and
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the classic measurement error model are introduced. In Section 5.3, two functional modelling ap-

proaches, simulation extrapolation and regression calibration, are presented. Both approaches

make no distributional assumption on the unobserved true covariate. The simulation studies are

conducted to evaluate the performance of these methods in Section 5.4. In Section 5.5, the like-

lihood analysis is proposed via an Monte Carlo EM algorithm through the structural modelling,

which assumes a parametric distribution for the unobserved true covariate, and simulation results

are also presented. The discussion is given in Section 5.6 and technical details are presented in

Section 5.7.

5.2 Model setup

5.2.1 Two-state Markov model

Consider a two-state bidirectional Markov model with the states denoted by 1 and 2. Let u

denote the transition intensity from state 1 to 2 and v denote the transition intensity from state

2 to 1. Then, the transition intensity matrix is given by

Q =

−u u

v −v

 ,

and the transition probabilities take the following forms:

P12 (t) =
u

u+ v

[
1− exp {− (u+ v) t}

]
,

P21 (t) =
v

u+ v

[
1− exp {− (u+ v) t}

]
,

P11 (t) = 1− P12 (t) ,

P22 (t) = 1− P21 (t) ,
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where Pij (t) = Pr [S (t+ s) = j | S (s) = i], and S (t) is the state occupied at time t.

Let πi denote the stationary probability, i = 1, 2. That is, πP (t) = π, for all t, where

π = (π1, π2). Then,

π1 =
v

u+ v
and π2 =

u

u+ v
. (5.1)

5.2.2 Transition intensity model

Let X denote an unobserved time-independent continuous covariate and Z be a p × 1 vector of

perfectly measured time-independent covariates. For the time-homogeneous Markov model, we

consider regression models

u (X,Z) = u0 exp
(
βuxX + βT

uzZ
)
, (5.2)

v (X,Z) = v0 exp
(
βvxX + βT

vzZ
)
, (5.3)

where u0 and v0 are baseline transition intensities out of state 1 to 2 and state 2 to 1, respectively,

and
(
βux, βuz1 , . . . , βuzp

)
and

(
βvx, βvz1 , . . . , βvzp

)
are vectors of regression coefficients of primary

interest.

For the time-homogeneous model, the parametric form of the baseline transition intensity, i.e.

u0 = exp (βu0) and v0 = exp (βv0)

is considered (e.g. Kalbfleisch and Lawless, 1985; Jackson et al., 2003). The transition intensity

matrix Q incorporating the covariates is then used to calculate the likelihood.
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5.2.3 Measurement error model

Let X∗ (t) be the time-dependent surrogate measure of X at time t. The replicate measurements

{X∗ (t) : t ≥ 0} of X follow the additive error model

X∗ (t) = X + U (t) , (5.4)

where U (t) is independent of X and normally distributed with mean zero and variance σ2
u.

5.3 Functional methods of reducing measurement error effects

In this section, as opposed to the naive analysis which ignores measurement error, we develop

functional methods which reduce the effects of measurement error. Suppose n independent sub-

jects are under study. The data for subject i consist of the observed states si = {si0, si1, . . . , simi}

and the error-prone covariates x∗i =
{
x∗i0, x

∗
i1, . . . , x

∗
imi

}
at the times ti0 < ti1 < · · · < timi and

the time-independent covariates zi.

5.3.1 Naive maximum likelihood estimation

If the true covariate value xi were known for each subject, then the log-likelihood for subject i is

`i (β) = log
{

Pr (si0 | xi, zi;β)
}

+

mi∑
j=1

log
{

Pr (sij | si,j−1, xi, zi;β)
}
, (5.5)

where Pr (si0 | xi, zi;β) is defined to be the statinary probability πsi0 , and Pr (sij | si,j−1, xi, zi;β)

is the transition probability Psi,j−1,sij (tij − ti,j−1) defined in Section 5.2.1. The log-likelihood over
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all the subjects takes the form

` (β) =

n∑
i=1

`i (β) . (5.6)

The first and second order derivatives of the logarithms of stationary probabilities and transition

probabilities are presented in Section 5.7.2. The Newton-Raphson algorithm can be used to

obtain the maximum likelihood estimates.

5.3.2 Simulation extrapolation

The simulation extrapolation (SIMEX) method (Stefanski and Cook, 1995) is a simulation-based

functional method for measurement error problems, in which no distribution assumption is made

on the true covariate. The idea of the SIMEX method is to establish the trend of naive estimates

towards the variance of the induced measurement error by incorporating additional variability to

the observed measurement and then extrapolate the trend back to the case of no measurement

error to obtain parameter estimates for the true covariates. When replicate measurements are

available for each subject, Devanarayan and Stefanski (2002) developed the empirical SIMEX,

which allows for unknown measurement error variance. This method does not require the assump-

tion of homogeneity of error variance and uses the replicate measurements directly to compute

pseudo data.

The empirical SIMEX procedure consists of two steps, a SIMulation step and an Extrapolation

step. In the simulation step, naive estimates are obtained from the pseudo data generated with

the measurement error variance (1 + ξ)σ2
iu. Without knowing σ2

iu, the pseudo data are generated

by the linear combination of replicate measurements. For subject i, (mi + 1) independent and

identically distributed standard normal random numbers, {ybij : j = 0, . . . ,mi}, are generated
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and the empirical pseudo data are defined to be

xbi (ξ) = x̄∗i· +

√
ξ

mi + 1

mi∑
j=0

cbij x
∗
ij ,

where x̄∗i· = (mi + 1)−1
{∑mi

j=0 x
∗
ij

}
, cbij =

{∑mi
j=0 (ybij − ȳbi·)2

}−1/2
(ybij − ȳbi·), and

ȳbi· = (mi + 1)−1
{∑mi

j=0 ybij

}
, b = 1, . . . , B, i = 1, . . . , n. The naive estimates from the simulated

data, denoted by β̂ (b, ξ), are obtained from maximizing the log-likelihood (5.6) by replacing xi

with xbi (ξ). The corresponding covariance estimate, denoted by Ω̂ (b, ξ), is computed by the

matrix {
−

n∑
i=1

∂2`i {β; si, xbi (ξ) , zi}
∂β ∂βT

∣∣∣∣
β=β̂(b,ξ)

}−1

,

where `i {β; si, xbi (ξ) , zi} is determined by (5.5) with xi replaced by xbi (ξ).

To avoid the simulation variability, the estimation procedure is repeated a large number, say

B, times and then the following quantities are computed:

β̂ (ξ) = B−1

{
B∑
b=1

β̂b (ξ)

}
,

Ω̂ (ξ) = B−1

{
B∑
b=1

Ω̂ (b, ξ)

}
,

Ω∗ (ξ) = (B − 1)−1

[
B∑
b=1

{
β̂ (b, ξ)− β̂ (ξ)

}{
β̂ (b, ξ)− β̂ (ξ)

}T
]
,

and Γ̂ (ξ) = Ω̂ (ξ)−Ω∗ (ξ) .

The procedure is also repeated for a sequence of ξ, such as {0.0, 0.5, 1.0, 1.5, 2.0}, and the average

of resulting naive estimates β̂ (ξ) and Γ̂ (ξ) are plotted versus ξ. In the extrapolation step, a

regression model (e.g., a quadratic model) is fitted to the average of naive estimates as a function

140



of ξ. The SIMEX estimates and the associated covariance estimates are obtained by extrapolating

the regression model to the value ξ = −1. That is,

β̂SIMEX = lim
ξ→−1

β̂ (ξ) and v̂ar
(
β̂SIMEX

)
= lim

ξ→−1
Γ̂ (ξ) .

5.3.3 Regression calibration

The basis of the regression calibration (RC) method (Prentice, 1982; Rosner et al., 1989; Carroll

and Stefanski, 1990; Gleser, 1990) is to replace the true covariate X by the conditinal mean

E (X | X∗,Z), which can be obtained based on the regression ofX on observed covariates and then

perform the standard analysis. When replicate measurements of the error-prone covariate exist,

the best linear approximation is suggested to estimate the regression calibration function (Carroll

et al., 2006, Section 4.4.2).

Suppose that there are m replicate measurements X∗1 , . . . , X
∗
m of X. The best linear approx-

imation to X given
(
Z, X̄∗

)
is

E (X | z, x̄∗) ≈ µx +
(
σ2
x,Σxz

)σ2
x + σ2

u/m Σxz

ΣT
xz Σzz


−1X̄∗ − µx∗

z− µz

 ,

where µa and σ2
a denote the mean and variance of random variable A respectively, and Σab denotes

the covariance matrix between two random variables A and B. Based on observations (zi, x̄
∗
i·)

with replicate sample size mi + 1, those quantities can be estimated by

µ̂x = µ̂x∗ =

{
n∑
i=1

(mi + 1)

}−1


n∑
i=1

mi∑
j=0

x∗ij

 ,
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µ̂z = z̄· = n−1

{
n∑
i=1

zi

}
,

σ̂2
u =

{
n∑
i=1

mi

}−1


n∑
i=1

mi∑
j=0

(
x∗ij − x̄∗i·

)2 ,

Σ̂zz = (n− 1)−1

{
n∑
i=1

(zi − z̄·) (zi − z̄·)
T

}
,

ν =

{
n∑
i=1

(mi + 1)

}
−

{
n∑
i=1

(mi + 1)

}−1{ n∑
i=1

(mi + 1)2

}
,

Σ̂xz = ν−1

{
n∑
i=1

(mi + 1) (x̄∗i· − µ̂x∗) (zi − z̄i·)
T

}
,

and σ̂2
x = ν−1

[{
n∑
i=1

(mi + 1) (x̄∗i· − µ̂x∗)
2

}
− (n− 1) σ̂2

u

]
.

The resulting best linear approximation to the calibration function E (Xi | zi, x̄∗i ) is

µ̂x +
(
σ̂2
x, Σ̂xz

)σ̂2
x +

σ̂2
u

mi + 1
Σ̂xz

Σ̂T
xz Σ̂zz


−1x̄∗i − µ̂x∗

zi − µ̂z

 .

After replacing the true covariate xi by the estimated regression calibration function Ê (Xi | zi, x̄∗i ),

we can carry out the standard maximum likelihood procedure for parameters estimation. The

bootstrap method can be used to obtain standard errors for parameter estimators.

5.4 Simulation studies for functional methods

In this section, simulation studies are conducted to evaluate the performance of the SIMEX and

RC methods, and to illustrate the consequence of ignoring the measurement error by the naive

method.
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5.4.1 Simulation setting

A total of 2000 replicates are used and the number of subjects is n = 1000 in each simulated

dataset. The number of observation for each subject is generated from the uniform distribution

over the set {2, . . . , 6}, i = 1, . . . , n. The gap between two adjacent observation times, tij− ti,j−1,

is uniformly distributed over the interval [1, 2], where i = 1, . . . , n, j = 1, . . . ,mi.

The initial state for each subject at time ti0 = 0 is generated from a Bernoulli variable with

values 1 and 2 according to the stationary distribution (5.1), where transition intensities are

ui = exp (βu0 + βu1zi + βuxxi) and vi = exp (βv0 + βv1zi + βvxxi) , i = 1, . . . , n,

where zi is generated from N (0, 1), and xi is generated from the linear model

xi = γ0 + γ1zi + exi (5.7)

with exi generated from N
(
0, σ2

x

)
.

The time dependent surrogate measurements x∗ij is generated by the measurement error model

x∗ij = xi + uij ,

where uij is generated from N
(
0, σ2

u

)
.

The sojourn times from state 1 to 2 and from state 2 to 1, τi1j and τi2j , are simulated from

exponential distributions with mean 1/ui and 1/vi, respectively, where the subscript j denote the

jth transition. Then, the states {sij : j = 1, . . . ,mi} can be determined by the exact transition

and observation times, where i = 1, . . . , n.

We set βu0 = −0.8, βu1 = −0.5, βux = 0.3, βv0 = −0.9, βv1 = −0.4, βvx = −0.5 in the
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transition intensity model, and γ0 = 0.5, γ1 = 1.0 in the linear model, such that the mean sojourn

times from state 1 to 2 and from state 2 to 1 are 2.04 and 5.37, respectively (see Section 5.7.1).

In addition, we set σ2
u = σ2

x = 0.5.

5.4.2 Simulation results

We analyze the simulated data using the naive method and the proposed functional methods.

The naive method is carried out by subsituting the average of time-dependent covariates, x̄∗i·, for

the true covariate xi. In the SIMEX approach, the estimation procedure is repeated B = 500

times; the sequence of ξ is set to be {0.0, 0.5, 1.0, 1.5, 2.0}; the quadratic function is used in the

extrapolation step. In the RC approach, we generate 500 bootstrap samples to obtain the variance

estimates.

Table 5.1 summerizes the averages of biases of point estimates and their asymptotic and

empirical standard errors (ASEs and ESEs), as well as coverage rates (CRs) of corresponding 95%

confidence intervals. For comparison, we also display the results obtained using the true covariate

xi. The results show that functional methods perform well in finite samples, and illustrate the

relatively large biases and low coverage rates yielded by the naive method. Compared with the

RC method, the SIMEX method has relatively smaller biases. However, the associated ASEs in

the SIMEX method are slightly underestimated compared to ESEs, thus resulting in coverage

rates slightly lower than the nominal level. In the RC method, the associated ASEs agree well

with their empirical counterparts; the resulting coverage rates are close to the nominal level.

5.4.3 Robustness investigation

We further investigate the robustness of the SIMEX and RC methods to illustrate that the

functional methods, SIMEX and RC, do not require the correct specification of the model for X.
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Table 5.1: Simulation results for the functional methods in the two-state Markov model with a
time-dependent covariate

True Covariate Naive Method

Bias ASE ESE CR% Bias ASE ESE CR%

βu0 .006 .079 .078 95.70 .010 .075 .074 96.05
βu1 −.001 .115 .114 94.90 .073 .107 .107 88.20
βux −.001 .095 .096 94.40 −.065 .084 .085 87.00
βv0 .003 .079 .078 95.45 −.072 .076 .074 82.45
βv1 −.006 .116 .114 95.40 −.095 .108 .107 86.60
βvx .002 .096 .095 95.30 .109 .084 .085 73.45

SIMEX Regression Calibration

Bias ASE ESE CR% Bias ASE ESE CR%

βu0 .005 .080 .083 94.45 −.033 .083 .084 93.25
βu1 .005 .120 .125 94.40 .015 .121 .121 94.55
βux −.008 .102 .105 94.70 −.008 .102 .101 94.95
βv0 −.007 .082 .085 93.35 −.007 .083 .083 94.55
βv1 −.019 .120 .123 94.85 −.003 .121 .120 95.20
βvx .018 .102 .103 94.25 .018 .102 .101 94.65
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The same setting as in Section 5.4.1 is used to generate the data, except the linear model (5.7)

for X. Here, the error term exi in the linear model (5.7) is generated from the mixture normal

distribution suggested by Li and Lin (2003)

λN
{
− (1− λ)µ, σ2

}
+ (1− λ) N

(
λµ, σ2

)
,

such that E (exi) = 0 and var (exi) = λ (1− λ)µ2 + σ2. We set λ = 0.25, µ = 1.5, and σ2 =

0.5−λ (1− λ)µ2 = 5/64. This choice of λ, µ and σ2 allows the distribution of exi to be bimodal (Li

and Lin, 2003).

Table 5.2 summarizes simulation results based on the likelihood method using the true covari-

ate, the naive method by replacing the true measurement with the average of surrogate measure-

ments, the SIMEX method, and the RC method. The results show that the functional methods

perform well in finite samples, when the true covariate is simulated from a mixture distribution.

The SIMEX and RC method give comparable results, except that the bias of β̂u0 obtained using

the RC method is larger than that obtained using the SIMEX method. The coverage rates in the

SIMEX method are slightly lower than the nominal level due to the underestimated ASEs. In

the RC method, the associated ASEs agree well with their empirical counterparts; the resulting

coverage rates are close to the nominal level. The lower coverage rate of βu0 in the RC method

is caused by the large bias in the estimate.

5.5 Maximum likelihood estimation via an Monte Carlo EM al-

gorithm

In this section, we develop a likelihood method that yields consistent estimators under the cor-

rect model setup. Specifically, we propose an MCEM algorithm to obtain maximum likelihood
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Table 5.2: Robustness investigation of the function methods for the two-state Markov model with
a time-dependent covariate

True Covariate Naive Method

Bias ASE ESE CR% Bias ASE ESE CR%

βu0 .007 .080 .079 95.50 .008 .076 .075 95.60
βu1 .001 .111 .110 95.40 .064 .103 .102 89.45
βux −.002 .091 .091 95.45 −.058 .079 .079 88.80
βv0 .007 .080 .078 95.65 −.070 .077 .075 83.75
βv1 −.001 .111 .112 95.50 −.089 .105 .107 87.65
βvx −.002 .091 .092 95.00 .104 .082 .083 74.15

SIMEX Regression Calibration

Bias ASE ESE CR% Bias ASE ESE CR%

βu0 0.009 0.081 0.084 94.70 −0.040 0.084 0.083 91.25
βu1 0.010 0.114 0.118 94.15 −0.001 0.118 0.116 95.55
βux −0.013 0.096 0.098 94.35 0.004 0.099 0.098 95.05
βv0 −0.002 0.083 0.085 94.85 −0.006 0.083 0.083 95.55
βv1 −0.009 0.116 0.120 93.55 −0.004 0.118 0.117 95.55
βvx 0.007 0.098 0.102 93.85 0.017 0.099 0.101 94.00
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estimates. The true covariate X is postulated by the linear regression model

X = γ0 + γT
z Z + ex, (5.8)

where γ =
(
γ0,γ

T
z

)T
is an unknown parameter vector, and ex is independent of U (t) in the

measurement error model (5.4) and follow N
(
0, σ2

x

)
. We also assume that the measurement error

is non-differential and the measurement error variance σ2
u is known. Let θ =

(
βT,γT, σ2

x

)T
.

5.5.1 The MCEM algorithm

The complete data log-likelihood function contributed from subject i is

`c (θ; si, zi, xi,x
∗
i ) = log

{
Pr
(
si,x

∗
i , xi

∣∣ zi;β,γ, σ
2
x, σ

2
u

)}
= log

{
Pr (si | xi, zi;β)

}
+ log

{
Pr
(
x∗i
∣∣ xi;σ2

u

)}
+ log

{
Pr
(
xi
∣∣ zi;γ, σ

2
x

)}
= log

{
Pr (si0 | xi, zi;β)

}
+

mi∑
j=1

log
{

Pr (sij | si,j−1, xi, zi;β)
}

−mi + 1

2
log
(
2πσ2

u

)
+

1

2σ2
u

mi∑
j=0

(
x∗ij − xi

)2 − 1

2
log
(
2πσ2

x

)
−
(
xi − γTzi

)2
2σ2

x

, (5.9)

where zi =
(
1, zTi

)T
, Pr (si0 | xi, zi;β) is defined to be the statinary probability πsi0 , and

Pr (sij | si,j−1, xi, zi;β) is the transition probability Psi,j−1,sij (tij − ti,j−1) defined in Section 5.2.1.

The expected complete data log-likelihood at the (k + 1)th iteration is

Q (θ,θ(k)) =

n∑
i=1

E
{
`c (θ; si, zi, xi,x

∗
i )
∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

}
,

where θ(k) is the estimate of θ at the kth iteration.
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From (5.9), we can see the parameters β and
(
γT, σ2

x

)T
are disctinct from each other. The

estimates of γ and σ2
x at the (k + 1)th iteration take the form of

γ(k+1) =
{
ZTZ

}−1
ZTµk, (5.10)

{
σ2
x

}(k+1)
= n−1

n∑
i=1

E

[[
Xi −

{
γ(k+1)

}T
zi

]2
∣∣∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

]

= n−1
n∑
i=1

∫
X

[
x−

{
γ(k+1)

}T
zi

]2

f
{
x
∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

}
dx, (5.11)

where Z =
(
zT1 , . . . ,z

T
n

)T
, µk = (µ1k, . . . , µnk)

T,

µik = E
{
Xi

∣∣∣ si, zi,x
∗
i ;θ

(k), σ2
u

}
=

∫
X
x · f

{
x
∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

}
dx,

f
{
x
∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

}
is the conditional probability density function of Xi given the observed

data (si, zi,x
∗
i ), and X denotes the sample space for the latent variable Xi.

The estimate of β at the (k + 1)th iteration can be obtained by maximizing the function

Q (β,θ(k)) =
n∑
i=1

E
[
log
{

Pr (si0 | xi, zi;β)
} ∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

]
+

n∑
i=1

mi∑
j=1

E
[
log
{

Pr (sij | si,j−1, xi, zi;β)
} ∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

]
=

n∑
i=1

∫
X

log
{

Pr (si0 | x, zi;β)
}
f
{
x
∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

}
dx

+

n∑
i=1

mi∑
j=1

∫
X

log
{

Pr (sij | si,j−1, x, zi;β)
}
f
{
x
∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

}
dx.

(5.12)
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The E step is to calculate the expected complete data log-likelihood, and the M step consists

of updating γ(k+1) and
{
σ2
x

}(k+1)
as well as maximizing Q (β,θ(k)) with respect to β to obtain

the update β(k+1). The EM algorithm iterates between the E and M steps until the convergence

of the sequence {θ(k), k ≥ 1}. Wu (1983) showed that, under regularity conditions, the sequence

of values {θ(k), k ≥ 1} converges to maximum likelihood estimates θ̂.

To perform the integration in (5.10), (5.11) and (5.12), we use the Monte Carlo method. In

particular, we obtain a sample x
(k)
i1 , . . . , x

(k)
id from the conditional distribution

f
{
x
∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

}
,

and estimate µik and (5.11) by the Monte Carlo sum

µikd = d−1
d∑
t=1

x
(k)
it and

{
σ2
x

}(k+1)

d
= (nd)−1

n∑
i=1

d∑
t=1

[
x

(k)
it −

{
γ(k+1)

}T
zi

]2

,

as well as the quantity in (5.12) by

Qd (β,θ(k)) = d−1
n∑
i=1

d∑
t=1

log
[

Pr
{
si0

∣∣∣ x(k)
it , zi;β

}]
+ d−1

n∑
i=1

mi∑
j=1

d∑
t=1

log
[

Pr
{
sij

∣∣∣ si,j−1, x
(t)
it , zi;β

}]
, (5.13)

where the subscript d denotes the dependence of this estimator on the MC sample size.

By Law of Large Numbers, µikd and both estimators in (5.11) and (5.13) converge in proba-

bility to their corresponding theoretical expectations. Then, the EM algorithm can be modified

into an MCEM in which the expected complete data log-likelihood is estimated by the Monte

Carlo method. In the M step, γ(k) are obtained by substituting µikd for µik,
{
σ2
x

}(k)
is estimated
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by
{
σ2
x

}(k+1)

d
, and β(k) is obtained by maximizing the Monte Carlo sum (5.13) using the Newton-

Raphson method with respect to β. More details on the convergence of an MCEM algorithm can

be found in Chan and Ledolter (1995) and McCulloch (1997).

We now describe the independent Metropolis-Hastings algorithm (e.g., Robert and Casella,

2004, Section 7.4) to generate a random sample from the conditional density (target density)

f
{
x
∣∣∣ si, zi,x

∗
i ;θ

(k), σ2
u

}
. The algorithm can be summarized as follows: given x(t),

1. Generate y ∼ h (y), where h (y) is a proposal density.

2. Simulate u ∼ Uniform [0, 1] and let

x(t+1) =


y if u ≤ min

{
f
(
y
∣∣ si, zi,x

∗
i ;θ, σ

2
u

)
h (x(t))

f (x(t) | si, zi,x∗i ;θ, σ2
u)h (y)

, 1

}
,

x(t) otherwise.

To ensure the robust performance, it is recommended to chose the proposal density h (·) with a

relatively long tail (Liu, 2001). Here, we use the Cauchy distribution with location parameter

t = µ̂x and scale parameter s = 1 as the proposal density, where

µ̂x =

{
n∑
i=1

(mi + 1)

}−1


n∑
i=1

mi∑
j=0

x∗ij

 ,

and the probability density function of the Cauchy distribution is

h (y; s, t) =
1

sπ

{
1 +

(
x− t
s

)2
}−1

, −∞ < y <∞.
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5.5.2 Variance estimation in the MCEM algorithm

From the standard likelihood theory, under certain regularity conditions, the maximum likelihood

estimator θ̂ is consistent for θ and asymptotically normally distributed:

√
n (θ̂ − θ)

d→ N
{
0, I−1 (θ)

}
, as n→∞,

where I (θ) = E
{
−∂2` (θ; s, z,x∗) /

(
∂θ∂θT

)}
, and ` (θ; s, z,x∗) is the log-likelihood based on

the states s, time-independent covariates z, and time-dependent error-prone covariate x∗ of one

individual.

The variance estimation in the EM algorithm can be obtained from Louis’ Formula (Louis,

1982):

E

{
−∂

2` (θ; s, z,x∗)

∂θ∂θT

}
= E

{
−∂

2`c (θ; s, z, x,x∗)

∂θ∂θT

∣∣∣∣ s, z,x∗;θ, σ2
u

}
− var

{
∂`c (θ; s, z, x,x∗)

∂θ

∣∣∣∣ s, z,x∗;θ, σ2
u

}
,

where `c (θ; s, z, x,x∗) is the complete data log-likelihood of one individual.

For the MCEM algorithm, the Monte Carlo evaluation of Louis’ Formula can be divided into

two parts:

Êd

{
∂2`c (θ; s, z, x,x∗)

∂θ∂θT

∣∣∣∣ s, z,x∗;θ, σ2
u

}
= (nd)−1

{
n∑
i=1

d∑
t=1

∂2`cit (θ)

∂θ∂θT

∣∣∣∣
θ=θ̂

}
,

and

v̂ard

{
∂`c (θ; s, z, x,x∗)

∂θ

∣∣∣∣ s, z,x∗;θ, σ2
u

}
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= d−1

 d∑
t=1

[
n−1

{
n∑
i=1

∂`cit (θ)

∂θ

∣∣∣∣
θ=θ̂

}
− (nd)−1

{
n∑
i=1

d∑
t=1

∂`cit (θ)

∂θ

∣∣∣∣
θ=θ̂

}]⊗2
 ,

where `cit (θ) = `c (θ; si, zi, xit,x
∗
i ) is the complete data log-likelihoohd from the ith subject with

xit, generated from the conditional density f
{
x
∣∣∣ si, zi,x

∗
i ; θ̂, σ

2
u

}
, i = 1, . . . , n, t = 1, . . . , d, and

the subscript d denotes the dependence of the estimators on the Monte Carlo sample size.

5.5.3 Simulation results

Table 5.3 summarizes the averages of biases of point estimates and their asymptotic and empir-

ical standard errors (ASEs and ESEs), along with coverage rates (CRs) of corresponding 95%

confidence intervals for the likelihood method. The simulation setting is the same as Section 5.4.

In the MCEM algorithm, the first 2000 samples are thrown away and the Monte Carlo sample

size is set to be d = 3000.

The biases in the proposed MLEs of β are relatively small; the associated ASEs are slightly

less than their empirical counterparts; the resulting coverage rates are slightly lower than the

nominal level. However, the biases in the MLEs of γ and σ2
x are slightly larger; although the

ASEs agree well with ESEs, the coverage rates are less than the nominal level.

5.6 Discussion

In this chapter, we develop estimation procedures for the analysis of panel data with time-

dependent surrogate measurements under the two-state Markov model. The panel data of

each subject consist of a binary outcome, time-dependent surrogate measurements, and time-

independent covariates. The data are under intermittent observation and thus the exact tran-

sition times are interval censored. Therefore, the two-state continuous-time Markov model is
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Table 5.3: Simulation results for the likelihood method under the two-state Markov model with
a time-dependent covariate

True Covariate Naive Method

Bias ASE ESE CR% Bias ASE ESE CR%

βu0 .006 .079 .078 95.70 .010 .075 .074 96.05
βu1 −.001 .115 .114 94.90 .073 .107 .107 88.20
βux −.001 .095 .096 94.40 −.065 .084 .085 87.00
βv0 .003 .079 .078 95.45 −.072 .076 .074 82.45
βv1 −.006 .116 .114 95.40 −.095 .108 .107 86.60
βvx .002 .096 .095 95.30 .109 .084 .085 73.45

MLE

Bias ASE ESE CR%

βu0 −.009 .082 .083 95.10
βu1 .009 .115 .122 92.80
βux .003 .100 .108 93.40
βv0 .015 .082 .086 93.95
βv1 −.029 .115 .125 93.25
βvx .002 .100 .108 93.45
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used for the analysis. The time-dependent surrogate measurements are treated as surrogates of

the unobserved true covariate. The additive measurement error model is used to describe the

relationship between the surrogates and the unobserved true covariate.

First, we explore two functional methods, simulation extrapolation and regression calibration.

They do not require the distribution assumption on the unobserved true covariate and provide

convenient solutions to reduce the biases due to measurement error. The simulation studies

show that both methods perform well in finite samples. Furthermore, we develop the maximum

likelihood estimation via an Monte Carlo EM algorithm. The linear regression model is used to

model the relationship between the unobserved true covariate and time-independent covariates.

The independent Metropolis-Hastings algorithm is used in the Monte Carlo sample generation.

The simulation studies show that the biases of parameters in the transition intensity model are

relatively small, and their coverage rates are slightly less than the nominal level due to the

underestimated standard errors. However, the biases of parameters in the linear model for the

covariate are slightly larger and their coverage rates are poor.

In future, we will consider a two-stage method based on the likelihood to reduce the biases of

parameters in the linear model and provide consistent estimates. In the first stage, we consider

the following linear model

X∗ (t) = γ0 + γT
z Z + e∗ (t)

where

e∗ (t) = ex + U (t) and e∗ (t) ∼ N
(
0, σ2 = σ2

x + σ2
u

)
.

The standard linear regression model can be fitted to obtain γ̂ and σ̂2
x = σ̂2 − σ2

u, where σ2
u

is assumed to be known. In the second stage, we perform the maximum likelihood estimation

procedure described in Section 5.5 to obtain β̂ by assuming the known γ, σ2
x and σ2

u.

155



In the MCEM algorithm, it is inefficient to start with a large number of Monte Carlo samples,

when θ(k) at the first few iterations may be far from the true value. Therefore, it is recommended

to increase the Monte Carlo sample size as the EM algorithm iterates, in order that the previous

and current updates can be distinguished from the Monte Carlo error (Wei and Tanner, 1990).

Booth and Hobert (1999) suggested a rule for automatically increasing the Monte Carlo sample

size after iterations when random samples are directly generated from the target distribution

or by the importance weighted sampling from a candidate distribution “close” to the target

distribution. Levine and Casella (2001) presented another method based on central limit theorems

for increasing the Monte Carlo sample size, when random samples are obtained via Markov chain

Monte Carlo techniques. To improve the efficiency of our MCEM algorithm, it will be interesting

to develop a method to update the Monte Carlo sample size at each iteration.

5.7 Technical details

5.7.1 Effects of parameters in simulation studies

The mean sojourn time in state i conditional on the time-independent perfectly measured covari-

ate z is

E (τi | z) = E {exp (−βi0 − βixX − βizZ) | z}

= E [exp {−βi0 − βix (γ0 + γzZ + ε)− βizZ} | z]

= exp {−βi0 − βixγ0 − (βixγz + βiz) z}E {exp (−βixε)}

= exp {−βi0 − βixγ0 − (βixγz + βiz) z} exp
(
β2
ix/2

)
= exp

{
−βi0 − βixγ0 +

β2
ix

2
− (βixγz + βiz)Z

}
.
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By law of total expectation, the mean sojourn time in state i is

E (τi) = E {E (τi | Z)}

= E

[
exp

{
−βi0 − βixγ0 +

β2
ix

2
− (βixγz + βiz)Z

}]
= exp

(
−βi0 − βixγ0 +

β2
ix

2

)
E {− (βixγz + βiz)Z}

= exp

(
−βi0 − βixγ0 +

β2
ix

2

)
exp

{
(βixγz + βiz)

2

2

}

= exp

{
−βi0 − βixγ0 +

β2
ix

2
+

(βixγz + βiz)
2

2

}
.

5.7.2 Derivatives of transition probabilities in two-state Markov models

The first derivations of the logarithm of stationary probabilities are as follows

∂ log π1

∂βu0
= −∂ log π1

∂βv0
= − u

u+ v
and

∂ log π2

∂βu0
= −∂ log π2

∂βv0
=

v

u+ v
.

The second derivations of the logarithm of stationary probabilities are as follows

∂2 log π1

∂β2
u0

=
∂2 log π1

∂β2
v0

=
∂2 log π2

∂β2
u0

=
∂2 log π2

∂β2
v0

= − uv

(u+ v)2 ,

and

∂2 log π1

∂βu0∂βv0
=

∂2 log π2

∂βu0∂βv0
=

uv

(u+ v)2 .

The first and second derivations of the logarithm of transition probabilities from state 1 to 1
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are as follows

∂ logP11 (t)

∂βu0
= −u

[
1

u+ v
+

ut− 1

u+ v exp {(u+ v) t}

]
,

∂ logP11 (t)

∂βv0
= u

[
1

u+ v
− vt+ 1

u+ v exp {(u+ v) t}

]
,

∂2 logP11 (t)

∂β2
u0

= u

[
u (ut− 1)

[
1 + vt exp {(u+ v) t}

][
u+ v exp {(u+ v) t}

]2 − v

(u+ v)2 −
2ut− 1

u+ v exp {(u+ v) t}

]
,

∂2 logP11 (t)

∂β2
v0

= uv

[
exp {(u+ v) t} (vt+ 1)2[
u+ v exp {(u+ v) t}

]2 − 1

(u+ v)2 −
t

u+ v exp {(u+ v) t}

]
,

and
∂2 logP11 (t)

∂βu0∂βv0
= uv

[
1

(u+ v)2 +
exp {(u+ v) t} (ut− 1) (vt+ 1)[

u+ v exp {(u+ v) t}
]2

]
.

The first and second derivations of the logarithm of transition probabilities from state 1 to 2

are as follows

∂ logP12 (t)

∂βu0
=

ut

exp {(u+ v) t} − 1
+

v

u+ v
,

∂ logP12 (t)

∂βv0
= v

[
t

exp {(u+ v) t} − 1
− 1

u+ v

]
,

∂2 logP12 (t)

∂β2
u0

= u

[
t

[
1

exp {(u+ v) t} − 1
+

ut

2− 2 cosh {(u+ v) t}

]
− v

(u+ v)2

]
,

∂2 logP12 (t)

∂β2
v0

= v

[
t

[
1

exp {(u+ v) t} − 1
+

vt

2− 2 cosh {(u+ v) t}

]
− u

(u+ v)2

]
,
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and
∂2 logP12 (t)

∂βu0βv0
= uv

[
1

(u+ v)2 +
t2

2− 2 cosh {(u+ v) t}

]
.

The first and second derivations of the logarithm of transition probabilities from state 2 to 1

are as follows

∂ logP21 (t)

∂βu0
= u

[
t

exp {(u+ v) t} − 1
− 1

u+ v

]
,

∂ logP21 (t)

∂βv0
=

vt

exp {(u+ v) t} − 1
+

u

u+ v
,

∂2 logP21 (t)

∂β2
u0

=
∂2 logP12 (t)

∂β2
u0

,

∂2 logP21 (t)

∂β2
v0

=
∂2 logP12 (t)

∂β2
v0

,

and
∂2 logP21 (t)

∂βu0βv0
=

∂2 logP12 (t)

∂βu0βv0

The first and second derivations of the logarithm of transition probabilities from state 2 to 2

are as follows

∂ logP22 (t)

∂βu0
= v

[
1

u+ v
− ut+ 1

v + u exp {(u+ v) t}

]
,

∂ logP22 (t)

∂βv0
= −v

[
1

u+ v
+

vt− 1

v + u exp {(u+ v) t}

]
,

∂2 logP22 (t)

∂β2
u0

= uv

[
exp {(u+ v) t} (ut+ 1)2[
v + u exp {(u+ v) t}

]2 − 1

(u+ v)2 −
t

v + u exp {(u+ v) t}

]
,
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∂2 logP22 (t)

∂β2
v0

= v

[
v (vt− 1)

[
1 + ut exp {(u+ v) t}

][
v + u exp {(u+ v) t}

]2 − u

(u+ v)2 −
2vt− 1

v + u exp {(u+ v) t}

]
,

and
∂2 logP22 (t)

∂βu0∂βv0
= uv

[
1

(u+ v)2 +
exp {(u+ v) t} (ut+ 1) (vt− 1)[

v + u exp {(u+ v) t}
]2

]
.
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Chapter 6

Summary

This thesis focuses on analyzing the longitudinal data under panel observation from disease pro-

gression studies. The observation times are irregularly spaced in such sampling scheme. Another

feature is that the exact times of transitions are interval censored. The aim of the study is to

estimate transition rates and understand risk factor influences on transitions.

There are several challenges in the analysis of panel data. The first one is state misclassi-

fication. It may arise from poor quality of a diagnostic test, the impossibility of the accurate

assessment, or the reading error. The non-homogeneity of the data is another common issue.

In addition, it is not necessarily realistic that transition intensities stay constant through time.

Last but not least, the covariates are subject to measurement/classification error and may be

time-dependent.

This thesis consists of four projects. In the first project, we consider disease states subject to

misclassification and focus on progressive models. We derive three conditions for non-informative

sampling scheme. In the likelihood method, the EM algorithm with unobserved true states treated

as latent variables is used to obtain maximum likelihood estimates. However, the likelihood
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method relies on the validity of models assumptions, and the output independence assumption

may not hold in practice. To overcome the difficulty induced by the likelihood method, we pro-

pose the pairwise likelihood method. The conditions for the non-informative sampling scheme are

derived in the pairwise likelihood formulation. The EM algorithm is straightforwardly extended

to maximize the pairwise likelihood in progressive Markov models with misclassified states. The

performance of estimation procedures is evaluated by simulation studies. The proposed progres-

sive model is illustrated on coronary allograft vasculopathy data, in which the diagnosis based on

the coronary angiography is subject to error.

The second project is analysis of mover-stayer models with misclassified states. The state

misclassification is extended to a generic setting: discrete-valued surrogates are observed for true

states. In this project, we consider one particular type of non-homogeneity when the population

consists of two subpopulations. The stayer stays in the initial state, while the mover evolves

according to a continuous-time Markov process. We propose hidden Markov models to facilitate

heterogeneity for a population and to simultaneously account for state misclassification. The like-

lihood inference procedure based on the EM algorithm, which treats the mover-stayer indicator

and underlying states as latent variables, is developed for the proposed model to make statistical

inference. The performance of the likelihood method is investigated through simulation stud-

ies. The proposed method is applied to analyze the data arising from the Waterloo Smoking

Prevention Project.

In the third project, we investigate the covariate misclassification in the analysis of piecewise-

constant Markov models. In the piecewise constant framework, transition intensities are assumed

to be constant within each pre-specified interval. We show that the joint model for the state

process and reclassification process is not identifiable. To estimate parameters in the transition

intensity model, we propose the likelihood methods for two practical situations: one is that
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parameters in reclassification probabilities are known from empirical studies; the other is in the

presence of an internal or external validation data. Simulation studies are carried out to evaluate

the performance of the proposed MLEs. Our proposed methods are applied to analyze the data

arising from the psoriatic arthritic (PsA) study.

The fourth project is statistical inference of two-state Markov models for panel data with

time-dependent surrogate covariates. First, we introduce two functional modelling approaches,

SIMEX method and regression calibration. In these approaches, no distributional assumption is

made on the true covariate X. Although functional approaches enjoy the easy implementation

and reduce the effects of measurement error, they are approximation methods and do not yield

the consistent estimators. Therefore, we propose an Monte Carlo EM algorithm to obtain the

MLEs which is consistent under the correct model setup. The performance of proposed methods

is investigated based on simulation studies.
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