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Abstract

This thesis presents a model of fabric bending hysteresis. The hysteresis model is de-

signed to reproduce the fabric bending measurements taken by the Kawabata Evalua-

tion System (KES) and the model parameters can be derived directly from these prop-

erty measurements. The advantage to using this technique is that it provides the ability

to simulate a continuum of property curves. Results of the model and its components

are compared and constrasted with experimental results for fabrics composed of differ-

ent weaves and yarn types.

An attempt to incorporate the bending model as part of a fabric drape simulation is

also made.
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Chapter 1

Introduction

Do not seek to follow in the footsteps of the men of old; seek what they sought.

– Basho

Textiles have become more prominent in engineering applications in recent years,

with uses such as airbags and domes. Since the 1930s, there has been research reported

in the textile engineering literature regarding the mechanical properties of fabric, its

behaviour and, recently, on how to model its behaviour in computer graphics applica-

tions.

The initial goal of this thesis was to develop a model of fabric mechanics from prop-

erty curves to be employed as part of a computer simulation of fabric drape. Efforts

to model the shear and tensile behaviour were abandoned in favour of focusing on the

bending model. The decision to focus on accurately modelling the bending behaviour,

including hysteresis, was taken because bending rigidity and hysteresis were found to

be important in determining fabric drape [HC98, JP98].

1
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1.1 Previous Work

Work on models of fabric behaviour has been done in two fields, computer graphics and

textile engineering with little overlap. The work done in computer graphics is focused

upon a good visual approximation while the work in textile engineering focuses on a

model that is physically justified.

1.1.1 Research in Computer Graphics

The first paper on modelling fabric drape in the computer graphics field was done

by Weil [Wei86] at SIGGRAPH ’86. This model was purely geometric and as a result,

only provided a static representation. In that same year Nisselson gave a talk [Nis86]

on the relationship of computer graphics and fashion. This lead to a panel discussion

[NWGC87] on the same topic at SIGGRAPH ’87.

Over the years a large number of lumped parameter models (called particle models

in the literature) have been presented in the computer graphics literature for the dy-

namic simulation of fabric behaviour. Considerable work was done by N. Magnenat

Thalmann, D. Thalmann and their research groups using a linear elastic model for cloth-

ing on virtual actors [CYMTT92, MT98, VCMT95, VMT94, VMT95, VMTJT96, VT98].

The work of Dias et al. in the textile engineering literature appears very similar

[DGR00]. Also of note is the work of Breen et al. [BHG92, BHW94, HB98] whose model

is a grid of particles where energy potential functions (based upon results from the

Kawabata Evaluation System (KES) [Kaw80]) dictate the particle interactions. How-

ever, there is no physical justification given for the energy potential equations and only

the loading portion of the KES data is used (see Chapters 2 and 4 for information on

the KES). A similar approach is taken by Eberhardt et al. [EW97, EW99, EWS96, SE98]

who also used energy potentials but include both the loading and unloading KES data.

The difficulty with their approach is that polynomial fits to the loading and unloading
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curves are used and there no is discussion on how the transition from loading to un-

loading is handled. The work of Baraff and Witkin [BW98a, BW98b] is the basis for the

model in the Alias-Wavefront Maya Cloth software and for likely the basis for Pixar’s

cloth model used in Monsters Inc. [Rob01]. Their particle model gives no physical jus-

tification for the energy functions between neighbouring particles. In addition to the

particle models mentioned above, there are a number of other particle models in the

literature [Eis98a, LDG96, LKC96, LPC95, NGA95, Pro95, Pro96, VOVL92].

In addition to the work done in the computer graphics literature, work on computer-

aided design (CAD) with textiles has also been done. Work on garment design was done

by Hinds and McCartney [HM90, HM91], and Okabe et al. [OITN92] but their work is

strictly geometric. That is, their model does not account for differences due to fabric

properties. Aono et al. presented a useful framework [ABW93] which was fleshed out

with techniques for mapping fabric onto curved surfaces [ABW94] and handling darts

in fabric [ADBW96]. These papers do not present a mechanical model of fabric.

1.1.2 Research in Textile Engineering

There have been a number of fabric simulation models developed in the textile engi-

neering literature. The majority of the models are based upon standard engineering

approximation methods such as finite elements or finite volumes. A notable exception

is Postle and Postle’s model [PP99] which used techniques from non-linear dynamics to

analytically solve their equations. Note that this model does not include internal fric-

tion as part of the fabric model. Another exception is the model of Chen et al. [CSWY99]

which uses a multigrid approach to solve the energy minimisation. This model neglects

bending rigidity but adds a term they call ”wrinkling energy” to compensate.

One early model was that of Moskowitz et al. [MDS66] which considered uniform

lateral loads acting on two sets of plane, parallel elements superimposed at 90◦ to each
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other. This was done to represent the weave of the fabric. A finite difference approxima-

tion was used to solve the equations derived through the theory of minimum potential

energy. Later, Shanahan et al. [SLH78] presented a discussion of how the theory of

plates and shells could be applied to fabrics.

The majority of the models [CG95, GLS95, HC00a] found in the literature use an

orthotropic, linear elastic assumption for material behaviour. Where these models differ

is in their element choice. Gan et al. [GLS95] use a non-linear shell model as do Chen

and Govindaraj [CG95] while Hu and Chen [HC00a] use a finite volume method.

There have been some models that include non-linear effects. Bias-Singh et al.

[BSBG98] developed a non-linear finite element model for non-woven fabrics that in-

cludes a bi-linear tension model. Shigan Deng [Den94, EDC96, Eis98b] developed a

non-linear, orthotropic shell model that includes a polynomial fit to the KES bending

data. However, this model does not include bending hysteresis.

1.2 Layout of this document

The remaining portion of this thesis is divided into three main parts. The first part

(Chapters 2 and 3) details the background research done in developing the model. This

research includes background on fabric structure, fabric properties, and models of hys-

teresis. The second part presents the bending model (Chapter 4) and an effort to incor-

porate it into a fabric drape simulation (Chapter 5). The final chapter summarizes the

thesis. In addition, due to the number of unfamiliar terms used in this thesis a glossary

is provided in Appendix A.



Chapter 2

Fabric Mechanical Properties

Fabrics vary in type, fibre, geometric structure and their basic mechanical properties.

Using the classification system given by Hearle et al. [HGB69], fabrics and laminae can

be composed of material from five different classes. This system is described in Table

2.1.

Class Title Description

A Interlaced Yarns The traditional textiles. Once fibres with particular

properties are selected for the yarn, the arrangement

of fibres within the yarn and the arrangement of in-

terlaced yarns determine the properties of the fabric.

This class includes textiles such as: woven cloth, knit-

ted cloth, lace, and crochet.

B Non-interlaced Yarns This class is composed of bonded yarn sheets. A yarn

sheet is laid down without interlacing and a bonding

material is applied to the yarns, providing a coarse

network structure. This class includes a wide variety

of composite material (e.g., laminated composites).

5
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Class Title Description

C Fibre Assemblies These are materials where individual fibres are laid

down in a web. This class includes textiles such as felt,

bonded fibre fabric, and spun-bonded filament fabric.

D Fibrous Sheets This class of materials has fibres but they are not eas-

ily identifiable as separate entities, instead the whole

material is fibrous in form. Examples of this class of

materials are leather and paper.

E Non-fibrous Sheets This class of materials has no discernible fibres, and

includes materials such as plastic film, rubber sheets,

metal foil, and foamed plastic.

Table 2.1: Classes of Fabric

A fabric or laminae can be made of material from a single class or they can be also

composed of material from a combination of classes. For example, fur is composed of

materials from classes C and D while synthetic leather is made of materials from classes

C and E. While the results of this thesis can likely be applied to all classes of fabrics,

due to the use of property curves instead of a micromechanical model, only fabrics from

class A are considered herein.

2.1 Woven Fabric Structure

The geometric structure of woven fabric plays a significant role in determining the

mechanical properties of the fabric and therefore some discussion of the structure of

fabric is necessary. Initially, a purely geometrical model was done by Pierce (described

in Hearle et al. [HGB69]) which is illustrated in Figure 2.1 which shows the geometrical
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model in cross-section. The main components in Pierce’s model are, crimp height h,

θ

p

d

L/2

h/2

D

Figure 2.1: Pierce’s Geometrical Model [HGB69]

yarn length l, yarn spacing p, yarn diameter d, crimp angle θ, and the sum of the two

yarn diameters, D. With the exception of D, each of the model components can have

different values in each of the weft (1) and warp (2) directions. The basic equations for

the weave are:

p = (l − Dθ) cos θ+ D sin θ (2.1)

h = (l − Dθ) sin θ+ D(l − cos θ) (2.2)

D = h1 + h2 (2.3)

The basic model parameters are: h1, h2, l1, l2, p1, p2, and D (crimp angles are considered

to be dependent variables). If we have four of the parameters, the other three can be

calculated (and optionally the crimp angles).

Pierce’s model relies upon the assumptions that the bending resistance of the yarns

is negligible and that the yarns are circular in cross-section. These assumptions are

mutually consistent because if the yarn bending resistance is not negligible, then the

yarn cross-section will deform, producing a flatter cross-section. Alternative yarn
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cross-sections have been proposed to solve this problem (see Hearle et al. pp 325-326

[HGB69]). The most popular alternative is a race-track cross-section as shown in Figure

2.2 which was proposed by Kemp in 1958. This cross-section is used in the calculation

of the “jamming” condition of fabrics.

Figure 2.2: Race-Track Cross-section [HGB69]

Both of these models suffer from the problem that they ignore the internal forces in

the fabric and the deformation of the cross-section that results. To compensate for this,

Olofsson developed a model that calculates the yarn geometry from the point loads

acting at the intersections (see Hearle et al. pp. 326-330 [HGB69]). This approach gives

a better approximation to observed yarn geometry than Pierce’s model. If V is the point

load at the cross-section (see Figure 2.3) then the bending moment at any point is given

by:

Mx = −Vx (2.4)

and the radius of curvature of the bent yarn (ρ) is given by:

ρ = − m
Vx

(2.5)
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where m is the bending modulus of the yarn. We also have that:

ρdψ = ds (2.6)

dx = cosψds (2.7)

where ds is the infinitesimal arc length along a yarn. Therefore, the relationship between

the x coordinate and the yarn angle is:

m cosψdψ = −Vxdx (2.8)

Due to symmetry considerations it is assumed that the boundary condition at x = 0 is

ρ = 0. Therefore, integrating equation (2.8) we get:

V =
2m
x2 (sin θ− sinψ) (2.9)

which gives a relationship between the force and the yarn geometry. At the yarn inter-

section, x = p/2, and ψ = 0, therefore:

V =
8m sin θ

p2 (2.10)

To obtain the shape of the elastica, we also need the relationship between y and x:

dy = tanψdx (2.11)

The shape is determined by V, m, and θ. Equations for x, y, and s still need to be

derived. An equation for x can be obtained by rearranging equation (2.9):

x =
√

2m
V

√
sin θ− sinψ (2.12)
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Equations for y and s (arclength) are derived in Appendix B.1. The final results are:

y =
√

m
V

(F(
π

2
) − 2E(

π

2
) − F(φ0) + 2E(φ0)) (2.13)

s =
√

m
V

(F(
π

2
) − F(φ0)) (2.14)

where

E(v) =
∫ v

0

√
1 − k2 sin2 φdφ (2.15)

F(v) =
∫ v

0

1√
1 − k2 sin2 φ

dφ (2.16)

k = sin(
θ

2
+
π

4
) (2.17)

sinφ =
sin(ψ2 + π

4 )
k

(2.18)

with φ = φ0 when ψ = 0 so that sinφ0 = 1√
2k

Note that this model was extended by Leaf and Anandjiwala [LA85] to include a bi-

linear bending model for the yarn.
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V
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y

Figure 2.3: Forces on Olofsson’s elastica [HGB69]
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2.2 Tension

Consideration of the tensile properties of woven fabrics involves a number of different

problems because the cloth is orthotropic and its modulus varies considerably with

strain. Not only does the modulus vary in the two principal directions (warp and weft)

but extension in the 45 degree direction (the bias) involves a different mechanism than

extension in the principal directions. In addition, extension along the bias is usually

of a higher order of magnitude. The mechanism for extension in the bias direction is

determined by the shear behaviour.

The main mechanisms for extension in the principal directions [HGB69] are: crimp

redistribution (for the initial extension), fiber extension and yarn compression (after

decrimping). Generally, there are three stages to the extension mechanism (see Figure

2.4). First, a high initial modulus is observed until the frictional resistance to the yarn

bending is overcome. Next, a low modulus occurs while the yarns unbend. As the

crimp is decreased, the force needed to cause fibre extension increases. In the final stage,

the load extension behaviour of the fabric is governed by the extension properties of

the yarns.

One of the earliest models for fabric tension was done by Grosberg [Gro66a] who

developed a micromechanical model similar to Olofsson’s [HGB69]. Grosberg included

a tensile force U in addition to the crossing yarn force V (see Figure 2.5) and calculated

the change in yarn spacing for a given extension.

Another micromechanical model is that of Realff et al. [RBB97] which uses a simple

unit cell and derives its model from the constitutive yarn properties. Sun et al. [SSG97]

also developed a micromechanical model but their unit cell geometry allows for more

complex weaves than that of Realff et al., but uses a simpler model of the yarn mechan-

ics.

An alternative approach for the modelling of fabric tension was taken by Sinoimeri



2.2. TENSION 13

Decrimping

Inter-fibre
friction
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Figure 2.4: Generalised Tensile Load-Extension Curve [HGB69]

U

θ

ψ

V

V

U

Figure 2.5: Grosberg’s micromechanical model [Gro66a]
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and Dréan [SD97] using the energy methods of de Jong and Postle [DJP78] where con-

strained minimisation of the strain energy of the fabric structure is performed using

optimal control theory.

None of the the research discussed previously in this section has tried to include the

recovery process or examine how their models behave during the recovery process. In

addition, the micromechanical models are limited in their application to general fabric

mechanical behaviour (e.g., drape) since they do not consider interactions between fab-

ric properties. Energy methods are difficult to apply to complex deformations because

of they require new derivations for each loading condition.

2.3 Shear

Modes of deformation involve several forms depending on the degree of shear imposed

upon the fabric. These modes are (from Grosberg and Park [GP66]): Deformation due

to rigid intersections, when the shear cannot overcome the friction. Once the friction is

overcome, the yarns begin to slip at the intersection. Next, an elastic deformation of the

yarns occurs. Finally, jamming occurs in the fabric structure.

The mechanics of shear are highly dependent upon the geometric construction of the

fabric. For example, tightly woven fabric close to the jammed condition and will behave

elastically, while loosely woven fabric behaviour is more dependent on the frictional

resistance between the yarns (see Lindberg et al. [LBD61])

It is generally assumed that the hysteresis produced during shear is the result of

the frictional forces at the yarn intersections [GP66, LBD61, Ske76]. All of the models

in these papers assume a frictional resistance to the deformation proportional to the

normal force acting on the intersection.
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2.4 Bending

It has been difficult to characterise the mechanisms of fabric bending. Abbott [Abb51]

compares five different labratory tests for bending stiffness. These are: cantilever test,

heart loop test, Schiefer Flexometer, Planoflex, and the M.I.T. Drapemeter to subjective

measurements of stiffness. The cantilever test was preferred over the other methods

due to the simplicity of the test and the high correlation to the subjective measurements.

Grosberg and Abbott [GA66a] discuss the apparatus of Livesey and Owen that bends

the fabric in almost constant curvature. They also discuss [GA66b] the importance of

friction during the bending process and note that large errors are present if a linear

bending approximation is used.

One of the initial models of fabric bending was done by Grosberg and Swani

[Gro66b, GS66] which modelled bending with an initial frictional restraint Mo that must

be first overcome then a linear moment-curvature relationship. The Mo represents fric-

tional resistance to bending at the yarn intersections. Once this frictional resistance is

overcome, the yarns can be bent, hence the linear relationship once the initial resistance

is overcome.

One of the more developed models of fabric bending was done by Zhou and Ghosh

[ZG99] which represented the bending behaviour with a piecewise linear model that

includes hysteresis (see Figure 2.6). This allowed the authors to include cyclic bending

behaviour in their measurement system.

The work of Shi et al. [SHY00] used a rheological model of fabric bending that

includes a spring and frictional elements that are strictly functions of the curvature (see

Figure 2.7).

Other investigations of bending include the work of Hu and Chung [HC00b] which

examined the effect of vertical seams on bending stiffness (using a linear bending

model) and the work of Hu et al. [HLL00] which examined the bending hysteresis
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Curvature, K (1/cm)

Figure 2.6: Zhou and Ghosh Bending Model [ZG99]

fM(κ) M (κ)

Figure 2.7: Shi et al. Bending Model [SHY00]
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in various directions.

2.5 Kawabata Evaluation System

The Kawabata Evaluation System (KES) [Kaw80] is a widely used system of fabric me-

chanical tests that are designed to provide an objective measurement of fabric hand.

Unfortunately, the characterisation of hand does not yield data which is easily exploited

for an engineering characterisation of the material. However, since this system is used

for quality control of fabrics the KES is common. The various KES properties and the

associated testing procedures are described in the following sections.

2.5.1 Tension

The tensile force is applied to a 5 cm by 20 cm fabric specimen as shown in Figure

2.8. The standard [Kaw80] states that the test is conducted to a maximum loading

level of 500 gf/cm . It also states that the test is conducted at a constant strain rate of

4.0 × 10−3/sec.

20 cm
5 cm

ε

Tε = 0

Figure 2.8: KES: Application of Tension Force [Kaw80]

The system measures both the loading and unloading responses. Three values are

used to characterise the tension response. Linearity (LT), Tensile Energy per unit area
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(WT) (see Figure 2.9), and Resilience (RT) where they are defined as:

WT =
∫ εm

0
Fdε (2.19)

LT = 2WT/(Fmεm) (2.20)

RT = WT′/WT (2.21)

where WT′ is the WT value integrated over the unloading response as shown in Figure

2.9.

Fm500

F,
 g

f/
cm

ε

WT

ε m

Fm500
F,

 g
f/

cm

ε

WT‘

ε m

Figure 2.9: KES: Tension Measurements
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2.5.2 Shear

Shear tests are conducted with a constant tension W applied in the direction orthogonal

to the test (see Figure 2.10). The test is conducted at a velocity of 0.417 mm/s which gives

a rate of shear strain of approximately 8.34 × 10−3 s−1. In addition, the characteristic

values of G (shear stiffness), 2HG (hysteresis at φ = 0.5◦), and 2HG5 (hysteresis at

φ = 5◦) are calculated. See Figure 2.11 for the relationship between the recorded curve

and the characteristic values. G is defined as:

G =
Fs

φ
(2.22)

which is the slope of the recorded curve. This is measured in the region from 0.5◦ to

5◦. The standard also states that in the event that the curve is not linear, the mean slope

should be used. Note that this definition is not the same as shear modulus, and as

a result, Hu and Zhang [HZ97] performed finite element analysis of the process and

determined a conversion from the G given by the KES to a shear modulus.

20 cm
5 cm

φ
W = const

Fs

Figure 2.10: KES: Shear Process [Kaw80]
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2HG

0.5 5

G
1

2HG5

F 
, g

f/
cm

s

φ, degrees
Figure 2.11: KES: Shear Measurements [Kaw80]
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2.5.3 Bending

The bending moment is measured as a sample of fabric is bent through a range of cur-

vatures between 2.5 and −2.5 cm−1. Kawabata [Kaw80] states that the KES bending test

is conducted at a constant rate of 0.5 cm−1/s. However, acceleration transition regions

are necessary to achieve that speed from rest and back. No discussion of these transi-

tion regions is made in Kawabata [Kaw80]. The test sample is mounted vertically to

prevent the effect of gravity influencing the experiment. The system measures forward

and backwards bending as shown in Figure 2.12. The characteristic values recorded

by the system are: B, the bending rigidity per unit length, and 2HB, the moment of

hysteresis per unit length. Note that in addition to measuring these values for the weft

and warp directions, they are also measured in the forward and backward directions

as shown in Figure 2.12.

0 0.5 1.5 2.5-2.5

Bf

Bb

2HBb

2HBf

K, cm-1

M
, g

f.c
m

/c
m

Figure 2.12: KES: Bending Measurements [Kaw80]



Chapter 3

Previous Work on Hysteresis

In order to represent the hysteresis exhibited during fabric mechanical tests, it is first

necessary to understand hysteresis and how to model it. To that end, this chapter dis-

cusses a number of different models of hysteresis, some specific to mechanical systems,

others more general. Finally, one model of friction is discussed in-depth in Section 3.3.

3.1 Early Mechanical Material Hysteresis Models

Some of the earliest work in this area was done by Ramberg and Osgood [RO43], who

developed a three parameter model of stress-strain behaviour. The results are similar

to those of Dahl [Dah76] (who modelled dynamic friction) and Martin et al. [MTS71]

(whose model is used in fatigue research).

Martin, Topper, and Sinclair’s paper [MTS71] describes a hysteresis model used in

fatigue research. This paper details a simple, extensible model involving only springs

and frictional elements (Figure 3.1) which can provide a good approximation to the ex-

perimental stress-strain curve (see Figure 3.2). Each of the slider elements are set with

a yield value of σi+1 > σi such that the corresponding springs are added in sequence.

22
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Upon unloading each of the frictional elements lock up, and retain a residual stress.

However, in order for the residual stress to be retained, σmax (the maximum stress ex-

perienced during the loading) must be less than twice the stress value at which the

slider is activated. While this is true in the case of metals where the model is typically

used, this is not true of fabrics.

σ σ

E n

...
EE 2 1E

σ

F

n 2 1

Figure 3.1: Fatigue Mechanical Model [MTS71]

ith segment

δσ

σ

ε

*
i

σ*
i

δεi
*

εi
*

Figure 3.2: Piecewise Linear Approximation to Stress-Strain Curve [MTS71]
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3.2 General Hysteresis Models

A general mathematical framework for modelling hysteresis was presented by Kras-

nosel’skii and Pokrovskii [KP89]. They also describe lumped parameter models for

systems composed of plays (Figure 3.3), stops (Figure 3.4), and relays (Note that Mo

in Figures 3.3 and 3.4 indicates the initial condition of each system respectively). The

combination of these elements can represent a wide variety of hysteretic systems. In

addition, in the English translation [KP89] a section detailing graph-theoretic represen-

tations of the lumped parameter models is presented.

F=xF=x+
h

M

F

x

o

Figure 3.3: Ordinary Play [KP89]

Another type of hysteresis model is the differential automata model proposed by

Tavernini [Tav93]. This type of model discretises the continuous problem into a set

of continuous subproblems with possibly discontinuous transitions. The transitions
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F

x
Mo

h

-h

Figure 3.4: Ordinary Stop [KP89]

between the subproblems are described as a finite state machine where each of the

subproblems is represented by a state.

3.3 A Differential Model of Frictional Hysteresis

Bliman and Sorine [BS93a, BS93b, BS95] detailed a differential equation model for hys-

teresis arising from friction. Their model is capable of producing a subset of Dahl’s

friction models [Dah76] but is also able to model other types of friction as well. Note

that this model is built upon the hysteresis framework of Krasnosel’skii and Pokrovskii

[KP89].

The general form of their model is given in Equation (3.1) where x is a state vector

and u is the displacement from rest.
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ẋ = |u̇|Ax + Bu̇, x(0) = 0 (3.1)

F(u)(t) = Cx(t) (3.2)

For a form that reproduces a subset of Dahl’s model they use the following substi-

tutions [BS95] for A,B, and C. Note: This corrects an omission in their earlier paper

[BS93a] and is different than the parameter values used in [BS93b].

A = − 1
ε f
, B = f1

ε f
, C = 1 (3.3)

However, this model does not include static friction. To include both static and

dynamic friction we need a second order model. For this model we perform the sub-

stitutions given in Equation (3.4). Note: These substitutions also come from [BS95] and

are also different than those given in [BS93b].

A = − 1
ε f


 1
η 0

0 1


 , B = 1

ε f


 f1

η

− f2


 , C =

[
1 1

]
(3.4)

If we make the change of variables ds = |u̇|dt in Equation (3.1) we get the Linear

Space Invariant (LSI) system:

dxs
ds = Axs + Bus, x(0) = 0 (3.5)

ys = Cxs (3.6)
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From this point on we will only concern ourselves with the combined dynamic and

static friction model.

3.3.1 Physical Parameters and Their Model Equivalent

For the above model, Bliman and Sorine [BS95] defined the following relationships

between physical parameters and the model (see Figure 3.5). The dynamic friction fk is

defined as the friction asymptote when u̇ > 0:

fk = lim
u̇>0,u(t)

F(u)(t) (3.7)

and sp is the displacement above which F(u)(t) is within 5% of fk. For the systems of

concern, the static friction is given as:

fs = sup
u,t>0

F(u)(t) (3.8)

and se is the displacement value where this value of fs is reached. The minimal and

maximal slopes of the F versus u curves are given as:

kF
± = sup

u,t>0
±F(u)(t)

u̇(t)
(3.9)

These parameters, as well as the other parameters in Figure 3.5, are given in terms of

the model parameters in [BS95]. However, in re-deriving these results (see Appendix
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B.2) some errors were discovered in the original paper. The new results are:

fk = f1 − f2 (3.10)

fs = fk + f2

(
η f2

f1

) η
1−η

(1 − η) (3.11)

se =
ε f η

1 − η
log
(

f1

η f2

)
(3.12)

sp = 3ε f (3.13)

kF
− =

f2

ε f

(
η2 f2

f1

) η
1−η

(1 − η) (3.14)

kF
+ =

f1 − f2η

ηε f
(3.15)

Note: The kF
+ result given in the original paper (with the factor of 2 removed from the

appropriate equations) corresponds to the difference between the actual kF
+ and kF

−

given here. Also of note is that the kF
+ given here occurs at t = 0.

u > 0fk

fs

se sp

F

u
u < 0.

.

Figure 3.5: Bliman and Sorine 2nd order model
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3.3.2 Other Results

Bliman and Sorine [BS95] also give a few other results (also derived in Appendix B.2).

If u and u̇ are integrable, F(u) is given by:

F(u)(t) =
∫ t

0
CeA

∫ t
t′ |u̇(τ )|dτ Bu̇(t′)dt′ (3.16)

If s(0) = 0, making the substitutions for A, B, and C we can reduce the above to (see

Appendix B.2:

F(u)(t) = sign(u̇(t))( f1 − f2) + sign(u̇(0))
(

e
− s(t)

ε f f2 − e
− s(t)
ε f η f1

)
(3.17)

So, the only necessary components are the total distance covered s(t), the sign of the

displacement rate at the current time and at the start of the interval.

Finally, in order to ensure that the system is dissipative Bliman and Sorine [BS95]

give the following conditions:

f1 > f2 ≥ 0 (3.18)

ε f > 0 and 0 < η < 1 (3.19)



Chapter 4

A Model for Fabric Hysteresis

From the discussion of fabric bending in Chapter 2, it is clear that there are a number of

mechanisms that influence the bending behaviour. From Kawabata [Kaw80] hysteresis

is exhibited in the results from the KES. So, any model that purports to accurately repro-

duce the bending behaviour should contain elements that can model hysteretic effects.

There has been little work in modelling the hysteresis shown in fabric mechanics. As

a result, the current techniques used in fabric simulations are unable to capture all (or

even most) of the characteristics of the mechanical property curves. To remedy this it is

necessary to borrow modelling techniques from other fields.

This chapter focuses on a modification to the friction modelling technique by Bli-

man and Sorine [BS93a, BS93b, BS95] to model the bending behaviour of fabrics. The

specifics of the model as well as investigations in fitting parameters to experiments are

detailed in this chapter.

30
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M

d

3k κ +k κ1
3

ext

ε ,η,f ,f1 2f

Figure 4.1: Model of Fabric Bending

4.1 The Model

A simple model of linear elastic bending is a spring element. In order to capture rate-

dependent effects, a damper element is also necessary. Lindberg et al.[LBD61] intro-

duced both friction and damper elements in their load-deformation model of fabric.

The shape of the initial bending curve indicates that there is likely more than a linear

viscoelastic behaviour so we will also include a non-linear cubic spring element in the

model. Finally, we include a frictional element to model the hysteresis exhibited in the

experiment. This model is depicted in Figure 4.1. The equation for the model is given

in Equation (4.1) below. In Section 4.3, we investigate the effect of the different model

components.

mκ̈ = k1κ+ dκ̇+ k3κ
3 + Mf (κ) + Mext (4.1)

To model the frictional hysteresis produced during bending we use the second order

model of Bliman and Sorine [BS95] described in Section 3.3. We have two forms of

the frictional model that we can use. First, we have the differential equation form as

represented in Equation (3.1). Second, we have the integral form as shown in Equation
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(3.16). The first form is useful if the displacement history is to be calculated, the second

is useful if the displacement history is known. If we assume (or know) that there is

no initial displacement from rest, we can use Equation (3.17) to model the frictional

bending restraint. This form is useful for our purposes because the displacement is

controlled during the KES-FB test. Converting the notation into the moment-curvature

form we get:

Mf (κ)(t) = ( f1 − f2)sign(κ̇(t)) + sign(κ̇(0))
(

e
− s(t)

ε f f2 − e
− s(t)
ε f η f1

)
(4.2)

where s(t) is the total curvature that the fabric has experienced at time t as given in

Equation (4.3):

s(t) =
∫ t

0
|κ̇|dt (4.3)

4.2 Determining Model Parameters from Experiments

Now that the model has been determined, it is necessary to fit the model to experimen-

tal results. If we are trying reproduce the KES bending test we know the curvature

and its corresponding derivatives at each point in time and we are trying to calculate

the correlated external moment. Therefore, looking at a different problem to that in

Equation (4.1), and we can write the new problem as:

Mext = mκ̈− k1κ− dκ̇− k3κ
3 − Mf (κ) (4.4)

where Mf (κ) is determined by Equation (4.2). As was mentioned in Chapter 2, accel-

eration transition regions are needed between the points of rest and the constant rate

of 0.5 cm−1/s mentioned in Kawabata [Kaw80]. However, since they are not discussed

in Kawabata, they will have to be estimated. Given that the above model is dependent

upon the acceleration, velocity, and position these transition regions will be important.
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4.2.1 Modelling the KES Bending Test Position, Velocity, and

Acceleration Profiles

The KES Bending Test consists of three phases:

1. Bending to a maximum positive curvature K+;

2. Bending to a maximum negative curvature K−; and

3. Bending back to zero curvature.

Each of these phases consists of an initial acceleration to constant velocity, a period of

constant velocity, and deceleration to rest. Thus, we must define the position, velocity

and acceleration profiles for these nine regions. These are shown in Figure 4.2.

Nomenclature

In addition to the nine regions in Figure 4.2, we can also divide the curves into other

categories:

1. Initial Loading Path. Consists of the first three regions.

2. Unloading Path. Consists of region 4 and the portion of region 5 until the mo-

ment axis.

3. Reverse Loading Path. Consists of the remaining portion of region 5 and all of

region 6.

4. Reverse Unloading Path. Consists of the final three regions.

In the following subsections, displacement is used to mean curvature, velocity to

mean curvature rate, and acceleration to mean the second derivative of curvature with

respect to time.
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Figure 4.2: KES Bending Test Regions
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The Initial Acceleration Region (1)

In order to achieve a constant velocity, it is necessary to accelerate up to some maximum

value and then reduce the acceleration back to zero with the integral over that time

frame equal to the desired constant velocity value. However, there are a wide range of

acceleration profiles that acheive that task. The basic constraints are given below:

v(0) = 0 (4.5)

v(T) = 0.5 cm−1/s (4.6)

a(0) = 0 (4.7)

a(T) = 0 (4.8)

where T is the total time taken to reach constant velocity. The simplest equation that

can meet these constraints is a quadatric polynomial. The chosen polynomial is given

in Equation (4.9). A plot of the acceleration profile with a time period of one second

is given in Figure 4.3. Note that this does not give zero jerk at zero or at the transition

time T. While it may be possible to acheive the above constraints with zero jerk at the

transition points with a spline curve, polynomials of higher degree than quadratic must

have some negative acceleration region in order to meet the zero jerk requirement.

a1(t) = −3
t(t − T)

T3 (4.9)

The resulting velocity profile that arises is given in Equation (4.10). A plot of this

profile with a time period of one second is given in Figure 4.4.

v1(t) = −1
2

t2(2t − 3T)
T3 (4.10)
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The displacement in this region is given by the integral of the velocity profile. The

displacement equation is shown in Equation (4.11).

d1(t) = −1
4

t3(t − 2T)
T3 (4.11)

The total displacement in this region is T
4 .

The Constant Velocity Region (2)

In this region, we know that the acceleration is zero and that the velocity is 0.5 cm−1/s.

The displacement equation for this region (including the displacement from the previ-

ous region) is:

d2(t) =
t
2
− T

4
(4.12)

The Deceleration Region (3)

The acceleration profile used in this region is the negative of that given in Equation (4.9)

with the substitution of t = t − t2 where t2 is the time where deceleration begins. This

results in Equation (4.13).

a3(t) = 3
(t − t2)(t − t2 − T)

T3 (4.13)

Since we know the final displacement in this region from experiment, we can de-

termine the total time for the loading path Tf l. Knowing that the deceleration starts at

time Tf l − T we can make this substitution for t2 in Equation (4.13) and get:

a3(t) = 3
(t − Tf l + T)(t − Tf l)

T3 (4.14)

We know that the initial velocity is Vd and that the change in velocity is given by:
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vc(t) = −v1(t − t2) (4.15)

where v1(t) is the velocity profile in the acceleration region. Therefore, the velocity

profile in the deceleration region is:

v3(t) =
1
2

+
(t − Tf l + T)2(2t − 2Tf l − T)

2T3 (4.16)

Using the same approach, the acceleration, velocity, and displacement equations

can be derived for the remaining sections of the test curve. For complete details see

Appendix B.3.

4.2.2 Fitting the Model Parameters to Experiments

Optimisation techiques are used in order to determine the values of the model param-

eters that best approximate the experimental results. To facilitate the optimisation, the

position, velocity, and acceleration for the experiment were pre-calculated. Thus, one

can vectorise the solution for Mext in Equation (4.4). The design variables are f1, f2, ε f ,

η, k1, d, and k3. It is assumed that T (the acceleration time) is a constant for the test

equipment and will be set a priori.

Since the equipment to perform the experimental tests is not available at this uni-

versity, Deng’s experimental data [Den94] was used. Model fits were attempted for two

types of fabric with varying weaves and yarn types. The types of fabric are given in

Table 4.1. The basic fabric properties are given in Table 4.2.

Quantifying the Fit

In order to quantify the quality of the fit, a least squares criterion was used. The ob-

jective function to minimise is given in Equation (4.17). However, since Mexp is not
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Fabric No. Colour Weave Description
Fabric 1 White Satin 100% Polyester. Bleached, dyed, and

pre-shrunk in a resin finish.
Fabric 2 White Twill 100% Cotton. Bleached, dyed, and

pre-shrunk in a pure finish.

Table 4.1: Details of Fabrics Tested [Den94]

Fabric No. Thickness (cm) Weight Density (gm f/cm2)
Fabric 1 0.0254 0.01715
Fabric 2 0.0489 0.02665

Table 4.2: Fabric Properties [Den94]

defined as a continuous function, fourth order polynomials were fit to the loading, un-

load/reverse loading, and re-loading paths. These were substituted for Mexp for each

of the paths. While the total number of points varied depending upon the experimental

results, the model and polynomial fits to experiment were sampled at intervals of one

millisecond.

R(κ) = ∑(Mmodel(κ) − Mexp(κ))2 (4.17)

A portion of the objective surface for the weft direction of Fabric 1 is shown in Figure

4.5. We can see that this hyperplane has a line of optimal solutions. While this portion

of the surface could be optimised through SQP methods, there may be difficulties with

other parts of the objective surface.

Optimisation Techniques

Initially, the optimisation was attempted using a genetic algorithm implemented in

MATLAB by Ajay Seth [Set00]. A genetic algorithm was used because it is a global

search technique that has the possibility of finding the global optimum. Using this
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implementation, some difficulties were found. There was considerable difficulty in

describing what constitutes a converged solution. As a result, the genetic algorithm

never converged to the same solution.

Because of the above difficulties, MATLAB’s non-linear least squares solver,

LSQCURVEFIT (part of the Optimization toolbox) was used to find the optimal solu-

tion. Because this algorithm requires an initial guess, the best solution from the genetic

algorithm tests were used as a seed to the solver. In all cases, the results from the

genetic algorithm were improved.

Because of the difficulties in converging to a globally optimal solution with the

earlier methods, a MATLAB interface [Sak00] to publically available simulated an-

nealling code [Ing00] (described in [Ing89],[Ing92],[Ing93], [Ing96]) was also tried.

This approach produced better results than with either the genetic algorithm or

GA/LSQCURVEFIT combination. As such, the optimisation results in the following

section were produced with this technique.

4.3 Simulation Results

To understand some of the difficulties in capturing the behaviour of these fabrics we

present the +κ and −κ slopes and their differences for each fabric and direction. They

are shown in Table 4.3. In all cases, the slope of the moment-curvature graph shows

large differences between the bending directions. In addition, one direction showed a

increase in slope rather than a decrease.

The following cases were considered for each of the fabric types and directions.

1. Complete model including friction and a cubic spring;

2. As above, assuming no slowing to rest at the end of test;

3. Complete model but excluding friction;
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Fabric No. and Direction +κ slope −κ slope % Difference
Fabric 1 - Warp 0.322 0.264 18.0 %
Fabric 1 - Weft 0.199 0.125 37.2 %
Fabric 2 - Warp 0.598 0.477 20.2 %
Fabric 2 - Weft 0.145 0.196 -26.0 %

Table 4.3: Directional Slope Comparsion

4. Complete model but excluding the cubic spring;

5. A linear model that excludes both friction and the cubic spring.

4.3.1 Fabric 1 Results

Warp yarn

Weft yarns

Figure 4.6: Warp-float Satin (4x1) Weave Cross-section

Figure 4.6 shows a cross-section of a 4x1 warp-float satin weave while Figure 4.7

shows the pattern. The warp is represented in black while the weft is represented in

white.
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Figure 4.7: Warp-float Satin (4x1) Weave Pattern

Parameter Value
f1 6.184 × 10−1 gm f − cm
f2 6.164 × 10−1 gm f − cm
η 9.998 × 10−1

ε f 7.302 × 10−1 gm f − cm/cm
d 5.793 × 10−3 gm f − cm/s
k1 6.380 × 10−3 gm f − cm
k3 8.656 × 10−4 gm f − cm3

Table 4.4: Fabric 1 - Warp Direction: Model Parameters

Parameter Value
se 10.92 cm−1

sp 2.19 cm−1

fk 0.198 × 10−2 gm f − cm
fs 0.198 × 10−2 gm f − cm

Table 4.5: Fabric 1 - Warp Direction: Supplementary Friction Results
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Warp Direction

The final parameters determined through the optimisation procedure are given in Table

4.4. Examining Table 4.5 we see some interesting results. First, the curvature value se

required for reaching the maximum static friction value fs is greater than the value

sp required to reach the dynamic friction threshold fk. Second, there is no difference

between the static and dynamic friction values. These two observations combined,

indicate that only dynamic friction is present.

In Table 4.6 we can quickly compare the quality of the model fit for each of the dif-

ferent test cases. The complete model provides the best fit, as measured by the residual,

out of all the test cases and we can see that the cubic term is very important to the model

as the quality of the fit decreases significantly in the cases where it is not included.

Most figures in the remainder of this chapter show comparisons of three differ-

ent curves. The dash-dotted line is the digitised version of experimental results from

Deng’s thesis [Den94]. The dotted line is constructed from three separate fourth order

polynomial fits to the digitised data. One polynomial is fit to the loading path, another

to the unloading/reverse loading path, and the third to the reverse unloading path.

The solid line shows the model simulation results.

Examining Figure 4.8, we can see that the model provides an excellent fit throughout

most of the experiment. In the initial loading stage, the model provides a better fit

than the fourth order polynomial. The greatest disagreement in the model appears in

the final reloading path. The model result curves inwards due to the slowing of the

curvature rate.

Figure 4.9 shows the result if we assume that there is no final deceleration region.

While the final inward curvature from Figure 4.8 is not presenet, the path continues to

diverge from the experimental results, but nearly completes a cycle. This implies that

this model does not exhibit any hardening or softening behaviour. This behaviour is
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also shown with the weft direction and in both directions for the other fabric. As a

result, the plots of those results are not shown.

If we remove the friction term from the model and then try to fit the model to the

experimental data as is shown in Figure 4.10, it is not possible to acheive the final Mext

value. Instead, the model returns to zero external moment. In addition, the model is

unable to fit parts of the initial loading and final reloading paths as closely as in the full

model.

If we remove the cubic term from the model the best result is shown in Figure 4.11.

Without this term, the path followed is generally straight with the curves resulting from

the transition to and from a constant curvature rate.

Lastly, if we consider a linear viscoelastic model, that is a model without the cubic

or the friction term, we get the results shown in Figure 4.12 which is a very poor fit,

with a residual nearly 9x that of the full model.

Test Case Residual
Full Model 1.104 × 10−2

No Deceleration at End 1.545 × 10−2

No Friction Term 2.523 × 10−2

No Cubic Term 5.792 × 10−2

No Friction or Cubic Term 8.977 × 10−2

Table 4.6: Fabric 1 - Warp Direction: Model Comparision

To understand the relative contribution of the frictional component of the model in

Figure 4.8 we will separate the friction component from the other components of the

model resulting in Figures 4.13 and 4.14. From Figure 4.13 we can see that the model ex-

hibits first-order behaviour. That is, no static friction is observed, only dynamic friction.

Also of note is the fact that the maximum frictional moment is two orders of magnitude
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Figure 4.9: Fabric 1 - Warp Direction (No Slowing at End)
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Figure 4.10: Fabric 1 - Warp Direction (No Friction Term)



4.3. SIMULATION RESULTS 50

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Curvature (cm−1)

B
en

di
ng

 M
om

en
t (

gf
−

cm
/c

m
)

Kawabata Bending Test and Simulation for Fabric 1 − Warp

Model Fit               
Piecewise Polynomial Fit
Experimental Data       

Figure 4.11: Fabric 1 - Warp Direction (No Cubic Term)
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Figure 4.12: Fabric 1 - Warp Direction (No Cubic or Friction Term)
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less than the external moment exhibited in Figure 4.14. Yet, the friction plays a key role

in acheiving a good overall fit.

Initially, the inertial term dominates the behaviour of the model. This can be seen

from the similarities in the initial portion of the loading curve (Figures 4.8-4.12), even

without the cubic and friction terms. It is believed that the friction arises due to the

slipping of the yarns with respect to each other. In this case, we have the warp yarn

slipping over the weft yarns which act like ball bearings. This is consistent with the

frictional response given in Figure 4.13. The cubic term appears to arise from the jam-

ming of the yarns and their subsequent compression, although some of the response

may be due to a non-linear yarn bending response.
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Figure 4.14: Fabric 1 Warp - Non-linear Visco-elastic Contribution
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Weft Direction

In contrast to the warp direction, the weft direction for this fabric exhibits more compli-

cated behaviour. First, the maximum bending moment measured is approximately half

that of the warp direction. Second, the reverse bending portion (the negative half the of

graph) has a smaller loop width and slope. This would indicate that the fabric has dif-

ferent parameters for forward and reverse bending. This behaviour is not implemented

in the current model so it cannot accurately capture this behaviour.

Parameter Value
f1 2.173 × 10−1 gm f − cm
f2 2.161 × 10−1 gm f − cm
η 9.876 × 10−1

ε f 7.316 × 10−1 gm f − cm/cm
d 2.141 × 10−3 gm f − cm/s
k1 4.548 × 10−3 gm f − cm
k3 1.619 × 10−4 gm f − cm3

Table 4.7: Fabric 1 - Weft Direction: Model Parameters

Parameter Value
se 1.07 cm−1

sp 2.19 cm−1

fk 0.127 × 10−2 gm f − cm
fs 0.189 × 10−2 gm f − cm

Table 4.8: Fabric 1 - Weft Direction: Supplementary Friction Results

From Table 4.8 we can see that the maximum frictional moment fs occurs at 1.07

cm−1 (se) which is approximately halfway through the initial loading path. We only

approach the sp value at the end of the initial loading path. In addition, the static
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frictional moment fs is about 6 × 10−4 gm f − cm greater than the dynamic frictional

moment fk.

While none of the models provide an excellent fit, the full model still provides the

best fit. As with the warp direction, the model fits better than the polynomial for the

initial acceleration region. With respect to Figure 4.15, at a curvature of 1 cm−1 the

model underestimates the external moment. On the reverse bending portion of the

experiment, the model overestimates the external moment.

The magnitudes of the linear model parameters (d and k1) are roughly half to three-

quarters that of the warp direction (see Table 4.7). However, the magnitude of the

frictional restraint (Table 4.8) is close to that in the warp direction and the non-linear

stiffness k3 is considerably smaller than that in the warp direction. If the non-linear

stiffness is due to jamming of the yarns this behaviour could be due to a greater spacing

between yarns in the warp direction than the weft.

Test Case Residual
Full Model 1.974 × 10−2

No Deceleration at End 2.250 × 10−2

No Friction Term 3.879 × 10−2

No Cubic Term 2.138 × 10−2

No Friction or Cubic Term 4.474 × 10−2

Table 4.9: Fabric 1 - Weft Direction: Model Comparision

As shown in Figure 4.16, if we remove the friction term, we get an excellent fit for the

initial acceleration region, but a poorer overall fit. For the weft direction, the addition

of the friction term contributes more to the overall fit than the cubic term as is shown

in Table 4.9. As expected there is no external moment at the completion of the test.

If the cubic term is omitted from the model, there is little difference in the overall

quality of the fit. This could be expected from examining the parameter k3 parameter
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Figure 4.15: Fabric 1 - Weft Direction Full Model
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Figure 4.16: Fabric 1 - Weft Direction (No Friction Term)
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value in Table 4.7 since it is an order of magnitude smaller than the other parameters.
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Figure 4.17: Fabric 1 - Weft Direction (No Cubic Term)

The difference without the friction and cubic terms for the weft direction is not as

dramatic as in the warp direction case. However, as is shown in Figure 4.18, with

these effects absent the model is unable to capture the subtle curve exhibited during

the unloading portion of the experiment.

Unlike the warp direction, second order friction effects are observed. Examining

Figure 4.19, we see that during initial loading static friction is overcome, but does not
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Figure 4.18: Fabric 1 - Weft Direction (No Cubic or Friction Term)
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reach the dynamic friction value during the decay from the static friction peak. Using

the results from Chapter 3, we see that the value of se is 1.071 cm−1 and a value of 2.195

cm−1 for sp. We therefore see the decay to the dynamic friction during the reverse path.

In Figure 4.20 we can see that the loops are roughly half the width of the full model.

In fact, the size of the loop for reverse bending is roughly the size of the experimental

loop. This may indicate that there is little frictional restraint for reverse bending. Al-

ternatively, this may be due to the characteristics of the test as only dynamic friction is

present during the reverse loading path.
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Figure 4.20: Fabric 1 Weft - Non-linear Visco-elastic Contribution
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4.3.2 Fabric 2 Results

Warp yarns

Weft yarn

Figure 4.21: Twill (1x2) Weave Cross-section

Figure 4.22: Twill (1x2) Weave Pattern
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As stated in Table 4.1, this fabric is a twill fabric which means that there is a diagonal

pattern of alternating weft and warp floats. Figure 4.21 shows a cross-section of a 1x2

twill weave while Figure 4.22 shows the pattern. The warp is represented in black

while the weft is represented in white. In addition, this fabric is a 100 % cotton fabric.

From Meredith [Mer59], we know that cotton fibres during tensile tests show hysteresis

and that under cyclic loading conditions the slope of the curve (the modulus) becomes

progressively steeper from one step to the next. These observations combined indicate

that there are more factors than in the previous fabric, to consider in understanding the

fabric’s behaviour.

Warp Direction

Parameter Value
f1 7.836 × 10−1 gm f − cm
f2 7.810 × 10−1 gm f − cm
η 9.949 × 10−1

ε f 7.207 × 10−1 gm f − cm/cm
d 1.474 × 10−2 gm f − cm/s
k1 1.154 × 10−2 gm f − cm
k3 1.092 × 10−3 gm f − cm3

Table 4.10: Fabric 2 - Warp Direction: Model Parameters

Parameter Value
se 1.17 cm−1

sp 2.16 cm−1

fk 0.255 × 10−2 gm f − cm
fs 0.334 × 10−2 gm f − cm

Table 4.11: Fabric 2 - Warp Direction: Supplementary Friction Results
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As with the weft direction of fabric 1, from Table 4.11 the maximum frictional mo-

ment occurs about half way through the initial loading path. In addition, the static and

dynamic frictional moments are much greater than those exhibited by fabric 1.

Test Case Residual
Full Model 1.067 × 10−1

No Slow Down at End 1.200 × 10−1

No Friction Term 1.663 × 10−1

No Cubic Term 1.780 × 10−1

No Friction or Cubic Term 2.791 × 10−1

Table 4.12: Fabric 2 - Warp Direction: Model Comparision

Figure 4.23 shows that the model slightly underestimates the maximum loading

moment. In addition, the loading slope of the model is slightly less than the loading

slope of the experiment. However, the model does show a good fit for the the reverse

loading portion from 0 cm−1 through −1.6 cm−1. There is also a good fit for the region

from −2.25 cm−1 to −1.5 cm−1 on the reverse unloading portion of the test.

As with the other direction (and fabric), when we omit the friction term, as shown

in Figure 4.24, the model does not exhibit a final moment since both κ and κ̇ go to

zero. Therefore, only the friction term contributes to the final moment. The model has

a poorer fit on the initial loading curve and the final deceleration region.

If we omit the cubic term in the model (Figure 4.25), we have an excellent fit through

the reverse loading/unloading portion of the test. However, the model overestimates

the moment throughout most of the initial loading and unloading. If both of the fric-

tional and cubic terms are removed (Figure 4.26), the model is unable to provide a good

fit except during the initial loading regions.

The experimental curve is linear for most of the loading path which may result

from the close packing acting more like a continuous material. However, the cubic
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Figure 4.23: Fabric 2 - Warp Direction Full Model
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Figure 4.24: Fabric 2 - Warp Direction (No Friction Term)
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term appears to play an important role during the unloading path. The reasons for this

are not clear, but it is likely due to the recovery behaviour of the cotton yarns.
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Figure 4.25: Fabric 2 - Warp Direction (No Cubic Term)

Like the weft direction of Fabric 1, we see the participation of both static and dy-

namic friction in the model. Figure 4.27 shows the distinct static friction peak ( fs in

Table 4.11) followed by the decay to the dynamic friction value ( fk in the same table).

However, as mentioned earlier, we see larger values for static and dynamic friction

moments. This is not suprising as the experimental moments are greater than that of
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Figure 4.26: Fabric 2 - Warp Direction (No Cubic or Friction Term)
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Fabric 1. In addition, there is a larger separation between the static and dynamic friction

values.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Curvature (cm−1)

B
en

di
ng

 M
om

en
t (

gf
−

cm
/c

m
)

Kawabata Bending Test and Friction Simulation for Fabric 2 − Warp

Figure 4.27: Fabric 2 Warp - Frictional Contribution
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Figure 4.28: Fabric 2 Warp - Non-linear Visco-elastic Contribution
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Weft Direction

Examining Table 4.14, we can see that we have very little dynamic friction, and very

small curvatures to reach the maximum static friction se and to get within 5% of the

dynamic friction value. This indicates that the model is approximating Coloumb static

friction. This is verified by examing the friction contribution to the model in Figure

4.33. This would lead one to conclude that static friction does not play a large role in

the overall fit of the model. From Table 4.15 it appears that alone it does not, but it does

appear to couple with the cubic term in providing a better fit.

Parameter Value
f1 1.600 × 10−1 gm f − cm
f2 1.600 × 10−1 gm f − cm
η 9.932 × 10−1

ε f 7.646 × 10−4 gm f − cm/cm
d 5.637 × 10−3 gm f − cm/s
k1 3.722 × 10−3 gm f − cm
k3 5.436 × 10−4 gm f − cm3

Table 4.13: Fabric 2 - Weft Direction: Model Parameters

Parameter Value
se 7.62 × 10−2 cm−1

sp 2.29 × 10−1 cm−1

fk 2.120 × 10−6 gm f − cm
fs 4.045 × 10−2 gm f − cm

Table 4.14: Fabric 2 - Weft Direction: Supplementary Friction Results

Figure 4.29 shows the kind of compromises the model fit makes. Although the fit

is poor on the initial loading path, the model provides a good fit through parts of the

unloading/reverse loading path. It also predicts the correct shape of this path as well
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Test Case Residual
Full Model 4.479 × 10−2

No Slow Down at End 4.486 × 10−2

No Friction Term 4.482 × 10−2

No Cubic Term 5.367 × 10−2

No Friction or Cubic Term 6.683 × 10−2

Table 4.15: Fabric 2 - Weft Direction: Model Comparision

as the right shape for most of the reverse unloading path. Note that from Table 4.3, this

is the only direction for the two fabrics that has a increase in slope from +κ to −κ.

Without the friction term in the model (Figure 4.30), there is very little change in

the overall fit which is confirmed by the residual values in Table 4.15. Tight packing of

the warp threads may be preventing the movement of the yarns with respect to each

other. Without the cubic term (Figure 4.31) we can see noticeable differences in the

shape of the curve. As with the other fabric and direction, removing the cubic term

eliminates the inward sloping curve on the unloading/reverse loading path. Without

both the cubic and frictional terms (Figure 4.32) we have a poor fit throughout most of

the experiment.

Although the type of twill weave is not mentioned in Deng’s thesis [Den94] the large

asymmetry in the material behaviour suggests that this is a 1x2 twill weave. On load-

ing, the 2 warp threads on the back of the fabric move apart while only 1 is compressed.

On reverse loading, the 2 warp threads will be pressed together causing a jammed con-

dition. This would account for the large non-linearity in the reverse loading direction.
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Figure 4.29: Fabric 2 - Weft Direction Full Model
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Figure 4.30: Fabric 2 - Weft Direction (No Friction Term)
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Figure 4.31: Fabric 2 - Weft Direction (No Cubic Term)
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Figure 4.32: Fabric 2 - Weft Direction (No Cubic or Friction Term)
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Figure 4.33: Fabric 2 Weft - Frictional Contribution
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Figure 4.34: Fabric 2 Weft - Non-linear Visco-elastic Contribution



Chapter 5

The Fabric Drape Simulation Model

To demonstrate the utility of the constitutive model developed in Chapter 4, it will be

used in a simulation of fabric drape. The model from the previous chapter defined the

bending of a fabric using the equation:

mκ̈ = k1κ+ dκ̇+ k3κ
3 + f (κ̇) + Mext (5.1)

where f (κ̇) is the friction function and Mext is the external moment exerted on the body.

It is necessary to put this constitutive model into a form that can be discretised by the

FEM (or some other Ritz-based method) such that the deflections can be obtained.

The layout of this chapter is as follows: Section 5.1 of this chapter presents the dis-

cretisation method; Section 5.2 presents a model with the linear term of Equation (5.1)

in one dimension; Section 5.3 extends the model to a plate; Section 5.4 adds the cubic

term to the simulation model; Section 5.5 includes the frictional term in the simulation

model; and lastly, Section 5.6 the describes the problems in implementing the model.

80
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5.1 The B-spline Field Approximation Method

The B-spline field approximation model (FAM) used in this thesis is a technique de-

veloped by Allan Vermeulen in his PhD thesis [Ver95]. In the B-spline FAM, the field

variables u are discretised using B-splines, rather than the more traditional Lagrange

polynomials.

The governing variational principle for structural dynamics is Hamilton’s Principle:

δ
∫ t2

t1

(T(u̇) −U(u) + W(u))dt = 0 (5.2)

where T(u̇) is the kinetic energy of the structure, U(u) is the strain energy, and W(u) is

the work due to conservative forces. Non-conservative forces must be handled sepa-

rately as variational methods cannot be used for non-conservative forces. If we discre-

tise the field variables using B-splines we get:

û =
n

∑
i=1

Niui (5.3)

where Ni are the basis functions and ui are the control vertices (CVs) for the discretisa-

tion. Substituting this into Equation (5.2) gives:

δ
∫ t2

t1

(T( ˙̂u) −U(û) + W(û))dt = 0 (5.4)

From this equation, T( ˙̂u) gives rise to the mass matrix M, U(û) leads to the stiffness

matrix K, and W(û) the consistent force vector F. During the simulation model devel-

opment, in subsequent sections, each of the above will be handled separately.

5.1.1 Properties of the B-spline discretisation

The B-spline discretisation has a number of useful properties:
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1. Convex Hull Property: The degree m spline function is bounded by m + 1 CVs at

each point. Therefore, the CVs approximate the curve and provide a minimum

and maximum for the curve at each point.

2. Variation Diminishing Property. The spline crosses the line y = c for some con-

stant c, no more often than the polyline formed by the CVs.

3. Local Continuity Control. It is possible to control continuity at each point. This

allows one to have regions (or points) of different continuity than the rest of the

domain.

4. Numerically Stable. B-splines have a evaluation scheme that only requires convex

combinations of the CVs which has little computational error.

5. Completeness. B-splines are a complete basis for the space of all polynomials of

degree m.

5.2 A Linear Approximation: Pure Bending of a Beam

5.2.1 Formation of the Mass Matrix

The kinetic energy of a structure is given by:

T =
1
2

∫
V
ρḋTḋdV (5.5)

where ḋ is given by:

ḋ =
∂

∂t




u(x, y, z, t)

v(x, y, z, t)

w(x, y, z, t)


 (5.6)
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where u, v, and w the displacements in the x, y, z directions respectively. In the pure

bending case, we are assuming u = 0, v = 0 and w(x, y, z, t) = w(x, t), so in this case ḋ is

ḋ =
∂

∂t
w(x, t) (5.7)

Using a separation of variables,

w(x, t) = NT(x)w(t) (5.8)

where N(x) are the basis functions for the discretisation and w(t) are the undetermined

coefficients. Substituting into Equation (5.7) we get:

ḋ = NT d
dt

w (5.9)

Substituting this result into Equation (5.5):

T =
1
2

∫
V
ρ(ẇTN)(NTẇ)dV (5.10)

since ẇ has no spatial dependence, those entries can be moved outside the integral to

get:

T =
1
2

ẇT
∫

V
ρNNTdVẇ (5.11)

or,

T =
1
2

ẇTMẇ (5.12)

where,

M = ρ
∫

V
NNTdV (5.13)
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Taking the variation of T over ẇ leads to a system of equations (with consistent force

vector):

Mẅ = F (5.14)

5.2.2 Formation of the Stiffness Matrix

In general, the strain in the system is of the form:

ε = ε0 + zκ (5.15)

for pure bending, we assume ε0 = 0 and with a small deflection assumption,

κ = −d2w
dx2

Given that,

M =
∫ h

2

− h
2

zσdz = k1κ (5.16)

σ is of the form:

σ = E1ε

= zE1κ (5.17)

where we need to find E1 in terms of k1. From M compute

M =
∫ h/2

−h/2
z2E1κdz

=
h3

12
E1κ (5.18)
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For a rectagular cross section (which is what we have) recall

I =
bh3

12

so

k1 =
E1 I
b

(5.19)

or

E1 =
k1b

I
(5.20)

Now, the strain energy density is

U =
∫ ε

0
σdε =

1
2

E1ε
2

=
1
2

E1z2κ2 (5.21)

and integration of U over the cross section area (dydz) yields

Uyz =
∫ h/2

−h/2

∫ b/2

−b/2
Udydz =

1
2

E1 Iκ2

=
1
2

k1bκ2 (5.22)

and therefore the total strain energy is

U =
∫ L

0
Uyzdx =

1
2

∫ L

0
(bk1κ

2)dx (5.23)

For the discretisation introduce a trial function of the form (as was used in Equation

(5.8)):

w(x) = NT(x)w (5.24)
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where N is the matrix of basis functions and w is the vector of undetermined parame-

ters. From the definition of κ we find that

κ(x) = N′′T(x)w (5.25)

Substitution into (5.23) yields

U =
1
2

∫ L

0
bk1wTN′′N′′Twdx (5.26)

Taking the variation over w yields

δU = b
∫ L

0
k1δwT(N′′N′′T)wdx

= δwTb
∫ L

0
k1(N′′N′′T)wdx

= δwTb
∫ L

0
k1(N′′N′′T)dxw (5.27)

This will lead to a system of equations of the form (includes a consistent force vector):

K1w = F (5.28)

where

K1 = k1b
∫ L

0
N′′N′′Tdx (5.29)

5.2.3 Formation of the Consistent Force Vector

In order to form the consistent force vector F, we must first calculate the work done by

the applied surface tractions and the body forces. The formula for this is:

W =
∫

V
BTddV + ∑

s

∫
Ss

ST
s ddA (5.30)
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where B is the vector of body forces (e.g., gravity), Ss the vector of surface tractions,

and d a vector of displacements.

Ignoring in-plane displacements and assuming only gravity is acting on the body

(and substituting Equation (5.24)) we get:

W = ρg
∫

V
NTwdV (5.31)

Taking the variation of W with respect to w gives us the consistent force vector,

F = ρg
∫

V
NdV (5.32)

5.2.4 Application of Boundary Conditions

To apply a forced boundary condition, there are two main techniques:

1. Removal of the degrees of freedom from the system;

2. Modify the system of equations to enforce the constraint.

While the first is more computationally efficient, the second is easier to implement so

the second approach is used. Since the system of equations represents a deflection

from the original configuration, we will only consider the zero deflection boundary

conditions. The process for setting a zero deflection constraint is:

1. Ensure that a CV is set for the location of the boundary condition on the mesh;

2. Set the knot multiplicity for the point equal to the degree of the curve;

3. Zero the row and column corresponding to the CV;

4. Set the diagonal entry equal to -1.0;

5. Set the consistent force vector row equal to zero.
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5.2.5 Solution of the System of Equations

From subsections 5.2.1 through 5.2.3 we have developed the system of equations:

Mẅ + K1w = F (5.33)

we incorporate damping as proportional to the stiffness matrix K1 (Rayleigh damping)

so that the damping matrix D is:

D = db
∫ L

0
N′′N′′Tdx (5.34)

where d is the damping coefficient from Equation (5.1). We add this to the system of

equations to get:

Mẅ + Dẇ + K1w = F (5.35)

To facilitate solution of this system of equations, we reduce the system to first order

form using the technique described by Foss [Fos58]. Equation (5.35) can be written in

reduced form as:

RŻ + KrZ = Fr (5.36)

where

R =


[0] M

M D


 , Kr =


−M [0]

[0] K1




Z =


ẇ

w


 , Fr =


[0]

F




This is now a system of linear first-order differential equations that can be solved using

standard ODE methods.
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5.3 A Linear Approximation: Pure Bending of a Plate

The main difference between the beam and plate models is that we define the discreti-

sation as

w(x, y) = NT(x, y)w (5.37)

where,

N(x, y) =
[

N1x(x)N1y(y) N2x(x)N1y(y) ... Nnx(x)N1y(y) ... Nnx(x)Nny(y)
]

that is, w(x, y) is discretised using a tensor product of the B-spline basis functions in

the x and y directions. The development of the mass matrix M proceeds in the same

manner as Section 5.2.1 with the only difference being the definition of N. For curvature

κ we are now concerned with curvature in the principal directions κx and κy. They can

be obtained by taking the second partial derivative with respect to x and y respectively.

Nxx =
[

N′′
1x(x)N1y(y) N′′

2x(x)N1y(y) ... N′′
nx(x)N1y(y) ... N′′

nx(x)Nny(y)
]

Nyy =
[

N1x(x)N′′
1y(y) N2x(x)N′′

1y(y) ... Nnx(x)N′′
1y(y) ... Nnx(x)N′′

ny(y)
]

κx = Nxxw (5.38)

κy = Nyyw (5.39)

If there is no coupling between bending in the prinicipal directions, the stiffness matrix

calculations decouple resulting in,

K1 = K1x + K1y (5.40)
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where,

K1x = k1x

∫
A

N′′
xxN′′

xx
TdA (5.41)

K1y = k1y

∫
A

N′′
yyN′′

yy
TdA (5.42)

with the damping matrix D calculated in the same manner. We therefore have the

following equations:

M = ρt
∫

A
NNTdA (5.43)

K1 = k1x

∫
A

N′′
xxN′′

xx
TdA + k1y

∫
A

N′′
yyN′′

yy
TdA (5.44)

D = dx

∫
A

N′′
xxN′′

xx
TdA + dy

∫
A

N′′
yyN′′

yy
TdA (5.45)

F = ρgt
∫

A
NdA (5.46)

The reduction of the system of equations into first order form as done in Section 5.2.5

proceeds in the same manner.

5.4 Modelling the Non-linear Elastic Component

Since we assume separation of the bending behaviour in the principal directions, this

section will develop the behaviour for one direction only, with the recognition that the

same procedure will also apply for the other direction. Now, we have developed a

moment-curvature relation of the form:

M = k1κ+ k3κ
3 (5.47)
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Now, the moment can be determined from

M =
∫ h

2

− h
2

zσdz = k1κ+ k3κ
3 (5.48)

We can define σ as an odd polynomial of the form:

σ = E1ε+ E3ε
3

= zE1κ+ z3E3κ
3 (5.49)

Now, since we have handled the κ term in earlier analyses, we shall consider only the

κ3 term for the moment. From M compute:

M3 =
∫ h

2

− h
2

z4E3κ
3dz

=
h5

80
E3κ

3 (5.50)

Using the moment of inertia relationship, we get

E3 =
20k3b
3Ih3 (5.51)

Now, the strain energy density is:

U =
∫ ε

0
σdε =

1
4

E3ε
4

=
1
4

E3z4κ4 (5.52)
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and integration of U over the thickness yields:

Uz =
∫ h/2

−h/2
Udz =

1
4

3E3 Ih2

20b
κ4

=
1
4

k3κ
4 (5.53)

and therefore, the total strain energy for the cubic term is,

U3 =
∫

A
UzdA =

1
4

∫
A

k3κ
4dA (5.54)

Substituting the definition of κ from equation 5.25 we have:

U3 =
∫

A
UzdA =

1
4

∫
A

k3(wTN′′N′′Tw)2dA (5.55)

Variation over w yields:

δU3 =
∫

A
k3δwTN′′N′′Tw(wTN′′N′′Tw)dx

= δwT
∫

A
k3(N′′N′′T)(wwT)(N′′N′′T)wdx

= δwT
∫

A
k3(N′′N′′T)(wwT)(N′′N′′T)dxw (5.56)

which leads to a system of equations of the form:

K1w + K3(w)w = F (5.57)

where K1 is the linear stiffness matrix computed earlier and K3(w) is the non-linear

stiffness matrix.



5.5. MODELLING THE FRICTIONAL COMPONENT 93

5.5 Modelling the Frictional Component

It is necessary to use the integral form of the frictional model from Chapter 4 and not

the differential equation form since it is necessary to be able to integrate over the area.

The virtual work done by the moment Mf (κ̇) can be defined as

dW =
∫

Ss

ST
s dκdA (5.58)

with Ss a vector of Mf (κ̇) at each of the CVs. The frictional term is defined as (from

equation 4.2):

Ss = ( f1 − f2)sign[κ̇(t)] + sign[κ̇(0)]
(

e
− s(t)

ε f f2 − e
− s(t)
ε f η f1

)
(5.59)

where s(t) is the time integral of κ. Substitution of equation 5.25 yields:

dW =
∫

Ss

[
( f1 − f2)sign(N′′Tẇ(t)) + sign(N′′Tẇ(0))

(
e
− s(t)

ε f f2 − e
− s(t)
ε f η f1

)]
N′′TwdAdw

(5.60)

In an implementation integral s(t) can be accumulated at each of the CVs, then the

integral over the area can be performed.

5.6 Implementation Details and Problems

The above model was implemented in Fortran 95 using the B-spline software from the

SLATEC library [Law01]. NAG F77 stiff ODE routines [Num01] were used to solve the

system of ODEs.

The following results were found: without in-plane strains, the fabric deformation

was unrealistic; and, the inclusion of the frictional term sigificantly slowed the calcula-

tion time. On a Pentium III 600 Mhz machine running Linux, one millisecond of simu-
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lation time takes approximately five minutes of wall clock time. Without the frictional

term, a full second of simulation time can be completed in five minutes of wall clock

time.

There was considerable difficulty in finding a method of coupling in-plane and out-

of-plane deformation using this bending model. No satisfactory method was found

during the course of this research. As a result, we were unable to accurately model the

drape of fabric and therefore, no results of the simulations are reported.



Chapter 6

Summary

Most of the previous work on fabric mechanics has either used linear models or relied

upon micromechanical models. In Chapter 4 the problems of using linear models for

modelling bending have been explored. Micromechanical models use a unit cell to

represent the behaviour of the fabric which causes difficulty due to the idealisation of

the structure of the fabric. These idealisations do not account for the finish applied to

the fabric which is important in the overall properties [WKL+00], or variations in the

weave, either due to imperfections or by design.

6.1 Discussion of the Current Model

From Chapter 4 it is clear that the additional cubic term and frictional term have a sig-

nificant impact on the quality of the model (as measured by the fit to experiment). The

frictional term models the slip of the yarns with respect to each other while the cubic

term models the jamming behaviour and the non-linear yarn bending properties. How-

ever, to accurately determine the model parameters, it is important to have a detailed

understanding of the curvature rate profile throughout the experiment. This will assist

95
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in improving the model. From experimental results (Table 4.3) it appears that includ-

ing differing behaviour for forward and reverse bending would assist in improving the

model as well.

6.2 Discussion of Modelling for Simulation Purposes

The model presented herein relates moments and curvature. However, in order to in-

clude it as part of a simulation model, it is necessary to have a displacement relation.

If the experimental results were in terms of displacement, it would faciliate the mod-

elling for simulation purposes. In addition, there is currently no knowledge on how

tension, shear, and bending are coupled. Further research is needed to characterise this

coupling in order to include the model as part of a FE model.



Appendix A

Glossary

Fabric Hand The concept of fabric ”hand” is ill-defined. Fabric ”hand”

is examined mainly by the sense of touch. Fabrics with a

different ”hand” are used for different purposes and may

be judged to have a different quality. Kawabata [Kaw80]

tried to convert this subjective measurement to an objective

measurement. The qualities he considered are: smoothness,

crispness, stiffness, spread (or anti-drape), fullness, softness,

and the appearance of the surface.

Grey Fabric A term used to refer to fabrics that have just left the loom or

knitting machine (from Collier [Col70]). These fabrics usu-

ally undergo a finishing process before being used.

Jammed Condition A geometrical state of the fabric where there is no space be-

tween the yarns.

Micromechanical Model A model where the overall properties of the material are de-

termined by models of the micro-scale interactions.
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Relaxed Fabric A fabric which has released the stresses and strains occurred

during manufacture.

Satin Satin is a type of weave characterised by long floats (or runs)

on the face of the fabric. These floats are caught under cross

yarns as far apart as possible. Also of note is that at no time

do parallel yarns come in contact with each other. In satin

weaves, the warp yarns float. If the weft yarns float, the

weave is known as sateen. [Jos77]

Thread From Joseph (pp. 218) [Jos77], the term thread indicates “a

product used to join pieces of fabric together to create textile

products. ”

Twill Twill is a type of weave characterised by a diagonal line on

the face and possibly the back of the fabric. The warp yarn

floats (goes over) two weft yarns and under one in a 2/1

twill. In a regular twill, each succeeding float begins one

weft yarn higher or lower than the adjacent float. This cre-

ates the diagonal pattern on the surface of the fabric. Of note

is that the twill weave permits close packing and produces

strong, durable fabrics. Examples of common fabrics wth a

twill weave are denim and flannel.

Warp Yarns that run parallel to the selvage or to the longer dimen-

sion of a bolt of fabric are called warp yarns or ends.

Weft Yarns that run perpendicular to the long direction of the bolt

of fabric. Also yarns in this direction may be referred to as

the woof yarns, filling yarns or picks.
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Yarn From Joseph (pp. 203) [Jos77], “a generic term for a contin-

uous strand of textile fibres, filaments or material in a form

suitable for knitting, weaving, or otherwise intertwining to

form a textile fabric. Yarn occurs in the following forms:

• a number of fibres twisted together

• a number of filaments laid together without twist

• a number of filaments laid together with more or less

twist

• a single filament ... monofilament

• One or more strips made by the lengthwise divisions

of a sheet of material such as a natural or synthetic

polymer, a paper, a metal foil, used with or without

twist in a textile construction.”



Appendix B

Further Information

B.1 Equations of an Elastica

Rewriting Equations (2.6) and (2.5) respectively we get:

ρ =
ds
dψ

(B.1)

m
ρ

= −Vx (B.2)

Also, we have an equation for x (Equation (2.12)) repeated here for clarity:

x =
√

2m
V

√
sin θ− sinψ (B.3)

Substituting Equation (B.3) into Equation (B.2) we get:

ρ = − m
Vx

= −m
V

√
V

2m
[sin θ− sinψ]−

1
2

= − 1√
2

√
m
V

[sin θ− sinψ]−
1
2 (B.4)
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From Equation (B.1) we have:

ds = ρdψ (B.5)

Using Equation (B.4) in Equation (B.5):

ds = − 1√
2

√
m
V

[sin θ− sinψ]−
1
2 dψ (B.6)

ds = − 1√
2

√
m
V

[(1 + sin θ) − (1 + sinψ)]−
1
2 dψ (B.7)

From trigonometry:

sin(
θ

2
+
π

2
) = sin

θ

2
cos

π

4
+ cos

θ

2
sin

π

4

=
1√
2

(sin
θ

2
+ cos

θ

2
) (B.8)

Also, from Esbach’s Handbook (pp. 2-69) [Tap89]:

sin
θ

2
=

1
2

√
1 + sin θ− 1

2

√
1 − sin θ (B.9)

cos
θ

2
=

1
2

√
1 + sin θ+

1
2

√
1 − sin θ (B.10)

Combining Equations (B.8), (B.9), and (B.10):

sin(
θ

2
+
π

2
) =

1
2

√
1 + sin θ (B.11)

Defining k = sin( θ2 + π
2 ) we have:

2k2 = 1 + sin θ (B.12)

Similarly,

1 + sinψ = 2 sin2(
ψ

2
+
π

4
) (B.13)
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Using Equations (B.12) and (B.13) in B.7:

ds = − 1√
2

√
m
V

[2k2 − 2 sin2(
ψ

2
+
π

4
)]−

1
2 dψ

= − 1√
2

√
m
V

1√
2k

(1 − 1
k2 sin2(

ψ

2
+
π

4
)]−

1
2 dψ (B.14)

Also, define:

sinφ =
1
k

sin(
ψ

2
+
π

4
) (B.15)

Use Equation (B.15) in (B.14):

ds = − 1√
2

√
m
V

1
k

[1 − sin2 φ]−
1
2 dψ

= − 1√
2

√
m
V

1
k cosφ

dψ (B.16)

Implicitly differentiating Equation (B.15):

cosφdφ =
1
2k

cos(
ψ

2
+
π

4
)dψ

dψ
cosφ

=
2k

cos(ψ2 + π
4 )

dφ (B.17)

Similar to the simplifications that were done in Equations (B.8)-(B.10) we can simplify

cos(ψ2 + π
4 ):

cos(
ψ

2
+
π

4
) = cos

ψ

2
cosπ4 − sin

ψ

2
sinπ4

=
1√
2

(cos
ψ

2
− sin

ψ

2
)

=
1√
2

√
1 − sinψ (B.18)
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From Equation (B.13):

sinψ = sin2(
ψ

2
+
π

4
) − 1 (B.19)

and from Equation (B.15), Equation (B.19) can be written as:

sinψ = 2k2 sin2 φ− 1 (B.20)

Using Equation (B.20) in Equation (B.18) to get

cos(
ψ

2
+
π

4
) =

1√
2

√
1 + 1 − 2k2 sin2 φ

=
√

2√
2

√
1 − k2 sin2 φ

=
√

1 − k2 sin2 φ (B.21)

Using Equation (B.21) in Equation (B.17) such that

dψ
cosφ

=
2k√

1 − k2 sin2 φ
(B.22)

Using Equation (B.22) in Equation (B.16) produces

ds = −1
2

√
m
V

1
k

2kdφ√
1 − k2 sin2 φ

= −
√

m
V

dφ√
1 − k2 sin2 φ

(B.23)

Integrating Equation (B.23) such that

∫ s

0
ds = −

√
m
V

∫ φ0

π
2

dφ√
1 − k2 sin2 φ

(B.24)
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at ψ = θ, from Equation (B.15)

sinφ =
1
k

sin(
θ

2
+
π

4
)

=
1
k

k = 1

∴ φ =
π

2

From Equation (B.24)

s =
√

m
V

[F(
π

2
) − F(φ0)] (B.25)

Now deriving the elliptic integral for y, from Equation (2.11) we have:

dy = tanψdx (B.26)

From Using Equations (2.7) and (B.5) in Equation (B.26):

dy = sinψds = ρ sinψdψ (B.27)

Using ρ from Equation (B.4) in Equation (B.27):

dy = − 1√
2

√
m
V

[sin θ− sinψ]−
1
2 sinψdψ

= − 1√
2

√
m
V

[(1 + sin θ) − (1 + sinψ)]−
1
2 sinψdψ (B.28)
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Recall that,

from Equation (B.12) 1 + sin θ = 2k2 (B.29)

from Equation (B.13) 1 + sinψ = 2 sin2(
ψ

2
+
π

2
) (B.30)

from Equation (B.22) dψ =
2k cosφ√

1 − k2 sin2 φ
dφ (B.31)

from Equation (B.20) sinφ = 2k2 sin2 φ− 1 (B.32)

Using Equations (B.29) through (B.32) in Equation (B.28):

dy = − 1√
2

√
m
V

[2k2 − 2 sin2(
ψ

2
+
π

4
)]−

1
2 (2k2 sin2 φ− 1)

2k cosφdφ√
1 − k2 sin2 φ

= −
√

m
V

(
1
k

)[1 − sin2 φ]−
1
2 (2k2 sin2 φ− 1)

k cosφ√
1 − k2 sin2 φ

dφ

=
√

m
V

1
cosφ

(1 − 2k2 sin2 φ) cosφ√
1 − k2 sin2 φ

dφ

=
√

m
V

1 − 2k2 sin2 φ

(1 − k2 sin2 φ)
1
2

dφ

=
√

m
V

2(1 − k2 sin2 φ) − 1√
1 − k2 sin2 φ

dφ

dy =
√

m
V

2
√

1 − k2 sin2 φdφ−
√

m
V

1√
1 − k2 sin2 φ

dφ (B.33)

Integrate Equation (B.33) to get

∫ y

0
=

∫ φ0

π
2

2
√

m
V

√
1 − k2 sin2 φdφ−

∫ φ0

π
2

√
m
V

1√
1 − k2 sin2 φ

dφ
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y =
√

m
V

[(2E(φ0) − 2E(
π

2
)) + (F(

π

2
) − F(φ0))] (B.34)

B.2 Derivation of Bliman and Sorine results

This section provides derivations for the Equations (3.10) through (3.12) and Equation

(3.14). We start with the integral form of the system:

F(u)(t) = f1

(
1 − e

(
− s(0)+s(t)

εη

))
− f2

(
1 − e

(
− s(0)+s(t)

ε

))
(B.35)

Our definition of fk from Equation (3.7) is restated below:

fk = lim
u̇>0,u(t)

F(u)(t) (B.36)

which when applied to Equation (B.35) gives:

fk = f1 − f2 (B.37)

The definition of fs is given in Equation (3.8) is:

fs = sup
u,t>0

F(u)(t) (B.38)

Differentiate F(u)(t) with respect to time as the first step to finding the maximum:

∂F(u)(t)
∂t

=
(
∂

∂t
s(t)
) f1e

(
− s(0)+s(t)

ε f η

)

ε f η
− f2e

(
− s(0)+s(t)

ε f

)

ε f


 (B.39)

Since s(t) will always be positive, the second term must go to zero at the maximum.

Solving for the value of s(t) that results in that term going to zero (and assuming s(0) =
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0), results in se:

se =
ε f η

1 − η
log

f1

η f2
(B.40)

subtituting this into F(u)(t) and simplifying gives:

fs = fk + f2

(
η f2

f1

) η
1−η

(1 − η) (B.41)

Determining kF
± is slightly more complicated. Starting with kF

− we have the following

definition:

kF
− = sup

u,t>0
−F(u)(t)

u̇(t)
(B.42)

First, we form the ratio:

−F(u)(t)
u̇(t)

= − f1e

(
s(0)−s(t)
ε f η

)
− f2e

(
s(0)−s(t)

ε f

)
η

ε f η
(B.43)

Differentiating with respect to time and factoring the result:

− ∂

∂t
F(u)(t)

u̇(t)
=
(
∂

∂t
s(t)
)
(

f1e

(
− s(t)
ε f η

)
− f2e

(
− s(t)

ε f

)
η2

)

η2ε f
2 (B.44)

Which results in the following equation for the maximum:

(
f1e

(
− s(t)
ε f η

)
− f2e

(
− s(t)

ε f

)
η2

)

η2ε f
2 = 0 (B.45)

Solving for the value of s(t):

s− =
log
(

f1
f2η2

)
ε f η

1 − η
(B.46)
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Substituting this result into Equation (B.43) and simplifying:

kF
− =

f2

ε f

(
η2 f2

f1

) η
1−η

(1 − η) (B.47)

B.3 KES Bending Test Profile Equations

This section continues the derivation of the equations given Section 4.2.1 for the remain-

ing six regions of the curve in Figure 4.2.

B.3.1 Unloading/Reverse Bending Path (Regions 4-6)

This path consists of reversing the direction of bending after first unbending the fabric.

It is assumed that the test continues at a constant velocity through zero curvature.

Negative Acceleration (Region 4)

Initially, we have a total displacement d3 f , zero velocity, and zero acceleration. The ac-

celeration profile is given in Equation (B.48) and can be determined by taking the nega-

tive of the acceleration profile given in Equation (4.9) and shifting the time through the

substitution of t = t − Tf l where Tf l is the time at which the initial loading is complete.

a4(t) = 3
(t − Tf l)(t − Tf l − T)

T3 (B.48)

As with region 3, the change in velocity is given by the negative of the velocity

profile in region 1 v0(t), but in this case timeshifted as above to Tf l, resulting in a velocity

as given in Equation (B.49).

v4(t) = 3
(t − Tf l)2(2t − 2Tf l − 3T)

2T3 (B.49)
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The displacement profile over this region is:

d4(t) = d3 f +
(t − Tf l)3(t − Tf l − 2T)

4T3 (B.50)

Constant Negative Velocity (Region 5)

Since the acceleration and velocity are constant, the displacement profile is easily de-

termined to be:

d5(t) = d4 f +
Tf l + T − t

2
(B.51)

where d4 f is the displacement at the end of region 4.

Deceleration (Region 6)

Given that we are decelerating from a negative velocity, the acceleration and velocity

profiles from region 1 are correct if we timeshift the profile with t = t− (Tf u − T) where

Tf u is the time where we end this path. Performing this, we get the following equations:

a6(t) = −3
(t − Tf u + T)(t − Tf u)

T3 (B.52)

v6(t) = −1
2
− 3

(t − Tf u + T)2(2t − 2Tf u − T)
2T3 (B.53)

The displacement over this region is given by:

d6(t) = Tf l − T
4
− t

2
− (t − Tf u + T)3(t − Tf u − T)

4T3 (B.54)
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B.3.2 Re-Loading Bending Path (Regions 7-9)

The procedure for this region is the same as regions 1-3 except the profiles are

timeshifted with t = t − Tf u.

B.4 Polynomial Fit to Experimental Data

Power Value
x4 -1.034 ×10−18

x3 -2.744 ×10−5

x2 3.898 ×10−5

x1 1.212 ×10−2

x0 1.716 ×10−18

Table B.1: Fabric 1 - Warp Direction: Loading Polynomial Coefficients

Power Value
x4 2.956 ×10−4

x3 1.022 ×10−3

x2 -7.164 ×10−4

x1 6.131 ×10−3

x0 2.950 ×10−3

Table B.2: Fabric 1 - Warp Direction: Unloading/Reverse Loading Polynomial Coefficients
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Power Value
x4 -2.287 ×10−3

x3 -6.208 ×10−3

x2 -6.022 ×10−3

x1 3.605 ×10−3

x0 1.923 ×10−3

Table B.3: Fabric 1 - Warp Direction: Reverse Unloading Polynomial Coefficients

Power Value
x4 -9.201 ×10−19

x3 -2.028 ×10−4

x2 3.779 ×10−18

x1 8.059 ×10−3

x0 -3.219 ×10−18

Table B.4: Fabric 1 - Weft Direction: Loading Polynomial Coefficients

Power Value
x4 2.240 ×10−4

x3 4.910 ×10−4

x2 -4.607 ×10−4

x1 3.165 ×10−3

x0 -1.368 ×10−3

Table B.5: Fabric 1 - Weft Direction: Unloading/Reverse Loading Polynomial Coefficients

Power Value
x4 -4.661 ×10−4

x3 -1.096 ×10−3

x2 -4.812 ×10−4

x1 3.982 ×10−3

x0 8.17 ×10−4

Table B.6: Fabric 1 - Weft Direction: Reverse Unloading Polynomial Coefficients
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Power Value
x4 4.697×10−18

x3 -1.114 ×10−3

x2 -9.870 ×10−18

x1 2.558 ×10−2

x0 9.126 ×10−21

Table B.7: Fabric 2 - Warp Direction: Loading Polynomial Coefficients

Power Value
x4 1.193 ×10−3

x3 1.706 ×10−3

x2 -3.808 ×10−3

x1 9.244 ×10−3

x0 -6.849 ×10−3

Table B.8: Fabric 2 - Warp Direction: Unloading/Reverse Loading Polynomial Coefficients

Power Value
x4 -5.485 ×10−3

x3 -1.789 ×10−2

x2 -1.911 ×10−2

x1 3.703 ×10−3

x0 5.482 ×10−3

Table B.9: Fabric 2 - Warp Direction: Reverse Unloading Polynomial Coefficients

Power Value
x4 -7.839 ×10−19

x3 -2.793 ×10−4

x2 2.155 ×10−18

x1 6.759 ×10−3

x0 -9.275 ×10−19

Table B.10: Fabric 2 - Weft Direction: Loading Polynomial Coefficients
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Power Value
x4 1.996 ×10−4

x3 4.785 ×10−4

x2 -1.003 ×10−3

x1 4.132 ×10−3

x0 -3.115 ×10−3

Table B.11: Fabric 2 - Weft Direction: Unloading/Reverse Loading Polynomial Coefficients

Power Value
x4 -2.112 ×10−3

x3 -6.842 ×10−3

x2 -8.550 ×10−3

x1 -3.615 ×10−4

x0 1.329 ×10−3

Table B.12: Fabric 2 - Weft Direction: Reverse Unloading Polynomial Coefficients
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