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Abstract

Microelectronic market imposes tight requiremergsruthin film properties, including specific
growth rate, surface roughness and thickness diltheln the thin film deposition process, the
microscopic events determine the configuration feg thin film surface while manipulating
variables at the macroscopic level, such as bukcysor mole fraction and substrate
temperature, are essential to product quality. Dedpe extensive body of research on control
and optimization in this process, there is stikignificant discrepancy between the expected
performance and the actual yield that can be actisinga employing existing methodologies.
This gap is mainly related to the complexities agded with the multiscale nature of the thin
film deposition process, lack of practical onlimesitu sensors at the fine-scale level, and
uncertainties in the mechanisms and parametetseadytstem. The main goal of this research is
developing robust control and optimization stragsdor this process while uncertainty analysis
is performed using power series expansion (PSEg. déposition process is a batch process
where the measurements are available at the enleobatch; accordingly, optimization and
control approaches that do not need to accesseofiir-scale measurements are required. In
this research, offline optimization is performeddbtain the optimal temperature profile that
results in specific product quality characteristicshe presence of model-plant mismatch. To
provide a computationally tractable optimizatiohg tsensitivities in PSEs are numerically
evaluated using reduced-order lattices in the KM&lets. A comparison between bounded and
distributional parametric uncertainties has illastd that inaccurate assumption for uncertainty
description can lead to economic losses in thegs®cTo accelerate the sensitivity analysis of
the process, an algorithm has been presented ¢onmdae the upper and lower bounds on the
outputs through distributions of the microscopiemg. In this approach, the sensitivities in the
series expansions of events are analytically eteduaCurrent multiscale models are not
available in closed-form and are computationallphgbitive for online applications. Thus,
closed-form models have been developed in thisareketo predict the control objectives
efficiently for online control applications in th@esence of model-plant mismatch. The robust
performance is quantified by estimates of the itistions of the controlled variables employing
PSEs. Since these models can efficiently predetctimtrolled outputs, they can either be used
as an estimator for feedback control purposes enlabk of sensors, or as a basis to design a

nonlinear model predictive control (NMPC) framewogithough the recently introduced optical



in-situ sensors have motivated the development of feedbakol in the thin film deposition
process, their application is still limited in ptige. Thus, a multivariable robust estimator has
been developed to estimate the surface roughnedsgaowth rate based on the substrate
temperature and bulk precursor mole fraction. Tsues that the control objective is met in the
presence of model-plant mismatch, the robust estima designed such that it predicts the
upper bound on the process output. The estimatmupled with traditional feedback controllers
to provide a robust feedback control in the lackonfine measurements. In addition, a robust
NMPC application for the thin film deposition preésewas developed. The NMPC makes use of
closed-from models, which has been identified woéflito predict the controlled outputs at a
predefined specific probability. The shrinking tzam NMPC minimizes the final roughness,
while satisfying the constraints on the controliaed and film thickness at the end of the
deposition process. Since the identification isfqrened for a fixed confidence level, hard
constraints are defined for thin film propertiem improve the robust performance of NMPC
using soft constraints, a closed-form model has loweloped to estimate the first and second-
order statistical moments of the thin film propestiunder uncertainty in the multiscale model
parameters. Employing this model, the surface roagh and film thickness can be estimated at
a desired probability limit during the depositiothus, an NMPC framework is devised that
successfully minimizes the surface roughness aetiteof the batch, while the film thickness
meets a minimum specification at a desired proligbitherefore, the methods developed in this
research enable accurate online control of the @perties of a multiscale system in the

presence of model-plant mismatch.
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Chapter 1
Introduction
Nanotechnology, biotechnology, and micro-enginegine mostly characterized by coupled

chemical and physical phenomena occurring oveewdfft temporal and spatial scales. In these
applications, controlling the events that evolvelhet microscopic scale is essential to product
quality. Efficient operations, however, require npamated variables at the macroscopic scale for
real-time feedback control (Braatz et al., 2006)erefore, multiscale modeling and analysis
has emerged to improve the predicting capabiliigbese systems by linking various length and
time scales (Vlachos, 2012).

Microelectronics is a field where multiscale sintida, design and control has many
applications. Due to the wide range of applicatiafisthin film semiconductors, improving
manufacturing efficiency while minimizing the cosssrequired (Baumann et al., 2001; Datta
and Landolt, 2000). In industrial practice, thesecpsses are currently operated empirically,
without a deep knowledge of the underlying dynamidserefore, the development of efficient
control methodologies for thin film deposition igatded to satisfy the increasingly stringent
requirements in the semiconductor industry. Howetleee main obstacles hinder the progress
in this field: i) development of fundamental mathematical modekcrilging the system for
optimization and controlj) lack of practicaln-situ sensors that provide real-time measurements
for online control, andii) uncertainties in the deposition process thatratecaptured by the

prevalent, nominal models (Raimondeau and VIack@g2).

The microelectronic devices are composed of depasjiatterned, successive layers of silicon,
insulators and metals (Datta and Landolt, 2000)n Tilm deposition from the gas phase is the
key process in microelectronic fabrication where #toms of the precursor deposit on the
substrate to create a thin solid film (Dollet, 2R0fhe electrical and mechanical properties of
electronic devices depend on thin film microstroetu Spatial uniformity, thickness,
composition, the amount of internal defects, aso atterfacial roughness and slope are referred
to as critical thin film properties (Freund and &lr, 2004). While uniformity and composition
are macroscopic properties that can be modeledimseontinuum hypothesis, accurate control
of the thin film microstructure requires a compnesige hierarchical model that can integrate a
wide range of length and time scales (Armaou et2801). To control the film properties, the

thin film deposition process, and its interactioitmthe surroundings, need to be considered

1



(Braatz et al., 2004). Thin film microstructure dstermined through the surface microscopic
events that are strongly dependent on macroscd@ngnena; thus, multiscale modeling tools
are required to provide efficient control and optation frameworks. The evolution of the

growth process on a substrate can be modeled basex multiscale approach, coupling a
deterministic continuum model representing the wswopic scale events and a stochastic
lattice-based KMC model, which describes the mioopgc surface morphology (Lam and

Vlachos, 2001). Although multiscale modeling isatractive alternative tool compared to the
application of molecular modeling techniques fag dntire process domain, this approach often
requires computationally intensive simulations.sTresults in profound limitations towards the

development of real-time model-based control sfriatefor these systems.

Measuring the microscopic properties of the thimfduring the fabrication process is not
trivial since it is infeasible to have direct aczés the surface. Although the recently introduced
optical in-situ sensors have triggered research on feedback tadfttbe thin film deposition
process, their application is still limited in pti@e (Buzea and Robbie, 2005). The main
limitation of these optical devices is that theg aot capable of providing the measurement as
frequent as it is required for online applicatigNgyar et al., 1993). Hence, real-time estimators
are needed to estimate the controlled outputs tahe scale comparable to the real thin film
growth process while online measurements are raitadole. Although KMC models have been
adopted for estimation and control in a few casles,unavailability of a closed-form model
constrains their applications in model-based cordired optimization approaches (Lou and
Christofides, 2003a).

From the modeling point of view, the evolution dietthin film encompasses microscopic
processes that are subject to model parametertamtgr(Braatz et al., 2006b). The microscopic
model includes parameters that have to be eitheasumed or inferred through fine-scale
experimental data (Raimondeau et al., 2003). Thenason of these parameters is not
straightforward and most of the values are not knawith absolute certainty due to the limited
and noisy measurements (Ulissi et al., 2011). Tédopnance of model-based control and
optimization approaches is directly affected by #teuracy of the model; not accounting for
uncertainties can lead to significant losses iriggerance (Nagy and Braatz, 2003a). Therefore,
guantifying the influence of parameter uncertasba the process states and outputs is essential

to improve productivity in industrial application®espite the efforts made for parameter
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optimization, model-plant mismatch has mostly beeerlooked in control and optimization of

thin film deposition processes, mainly due to tbenputational costs of uncertainty analysis in
multiscale process systems (Prasad and Vlachos$,;, Foimondeau et al., 2003). The common
approach for uncertainty propagation is the appboaof a sampling-based technique on the
process model. In a thin film deposition processydéver, the current multiscale models are
computationally prohibitive to assess product \@liy using the traditional sampling-based

methods. Analytical techniques such as power sexgansion (PSE) and polynomial chaos
expansion (PCE) provide a practical approach te gmoblem since the complex multiscale

model can be approximated with a mathematical esipan

1.1. Objectives and contributions

Currently, the common form of process control agpin the semiconductor industry is a run-
to-run control scheme where the post pro@ssitu measurement data are used to update the
recipe for the next run. The recipe for the bataoh specifies the set points for inputs and states
to produce the desired device characteristics.dHt& obtained from each batch are employed to
adjust the recipe to reduce variability in the nfantured devices. In this approach, the control
actions are adjusted after the deposition procedgtee operating conditions cannot be modified
during the process. Recent advances in computatpmwer andin-situ sensors motivate the
development of efficient methodologies for the desand online control of these processes.
Despite the extensive body of research on mulessgstem analysis and design, there are still
many unresolved issues leading to a significant lgejgveen the real world and the current
methodologies. Model-plant mismatch is an importaspect in model-based control and
optimization frameworks. To provide a robust onlgentrol and optimization framework, the

effect of model parameter uncertainty in perforngaolojectives has to be considered.

Based on the above, the goal of this research make the control of multiscale processes
more realistic by addressing model parameter uaicgyt in control and optimization
applications. Therefore, assuming that the muliiscaodel captures the underlying structure
appropriately, the structural uncertainty is natsidered in this study. The specific objectives of

the current study are outlined as follows:

» Perform an uncertainty analysis to evaluate theceféf model parameter uncertainties
on thin film properties employing PSE. The PSE rodtls used to predict the deviation
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of the performance objective from the nominal perfance in thin film deposition
process in the presence of model parameter unagrtdihe evolution of the epitaxial
growth process on a substrate is simulated usimguliiscale approach, coupling a
continuum gas phase model and a KMC model thatritbescthe evolution of the
surface of the thin film.

» Develop an algorithm for open-loop optimizationtbin film deposition process under
uncertainty. The deposition process is considesed @atch process where open-loop
optimization can be performed offline. Systematgodathms are presented to determine
probabilistic bounds on thin film properties fortiopization purposes.

» Develop a robust estimator under model parametesrtainty to evaluate the controlled
outputs efficiently for online control applicatioms the lack of sensors. A real-time
multivariable estimator is developed based on ffime identification of models using
input-output data collected from the multiscale elod

* Develop a closed-form model for robust model prigggccontrol (MPC) framework.
Offline identification is performed to identify th@arameters of the closed-form model
that can predict the controlled outputs in the @nes of model parameter uncertainty.
This model can either be used as an estimatoretmifack control purposes in the lack
of sensor or as a basis for the design of a rddM#2C algorithm that controls the thin

film deposition process.

To design a robust optimization or control framekyat is essential to take model parameter
uncertainty into account. Specifically, when thef@enance objective of the system is highly
sensitive to unpredictable or sudden changes insyiséeem’s physical parameters, this model
inaccuracy or mismatch can significantly lead tsslan performance. Hence, this research
provides insight regarding the qualitative and duative effects of parameter uncertainty in
multiscale process systems. Moreover, the methessloped in this research enable accurate
online control of the key properties of a multigcalystem in the presence of model-plant

mismatch.

1.2.Outline of the thesis

The remainder of this thesis is organized as fatow



Chapter 2 reviews the literature pertaining to mo#tle analysis and design. The
importance of developing these models to bridgerasmpic and macroscopic domains
is indicated. The challenges associated with thitisnale modeling and control and the
proposed approaches to tackle these issues angbaelsat the end of this chapter.
Chapter 3 provides the detailed mathematical motigie thin film deposition process
which has been considered as a case study of thtseale process system in this
research. The mathematical formulation describivegmacroscopic modeling of the gas
phase and the microscopic modeling of the thin Slunface are presented. Moreover,
the dependence of the accuracy and fluctuatiortearresults on the lattice size in the
KMC simulation is illustrated in this chapter.

Chapter 4 presents a comparison between worst-@agedistributional uncertainty
analysis in a thin film deposition process in thesgnce of time-invariant model
parameter uncertainties. The worst-case deviatiothe film properties is obtained
under bounded parameter uncertainties while théaitistic bounds are estimated
under distributional uncertainties. This work hase published in ADCHEM
(International Symposium on Advanced Control of @feal Processes) (Rasoulian and
Ricardez-Sandoval, 2015a). Moreover, a systemiaiodwork is explored to obtain the
probabilistic bounds on the outputs in the presenfetime-varying parameter
uncertainties. These bounds are employed to deterthie optimal temperature profile
that maximizes the final thickness of the thin filmder end-point product constraints
and uncertainty in the model parameters. This waak been published i@hemical

Engineering Scienc@rasoulian and Ricardez-Sandoval, 2014).

Chapter 5 presents an algorithm to develop a nauléite robust estimator that predicts
the controlled outputs in a thin film depositioropess for online applications. In the
estimator, the issue of computationally intensivd® simulations is circumvented by

developing low-order models that are identifiediné based on data collected from the
thin film deposition multiscale model describeddhapter 3. The estimator predicts the
surface roughness and growth rate based on thdra@bsemperature and the bulk
precursor mole fraction during the deposition pssc& o provide robust estimates, the
estimator is designed to evaluate upper and lowentls on the outputs under model

parameter uncertainties. To assess the uncerg@opagation into the system’s outputs,
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the PSE method is employed in the presence ofildisivnal parametric uncertainties.
The estimator has been coupled with traditionatibeek controllers to evaluate the
performance of the system in the lack of online sneaments and under uncertainty in
the multiscale model parameters. Although the perémce of the estimator is
illustrated in the presence of parameter uncere&ahat are normally distributed around
their nominal values, the algorithm presented is ttapter is applicable regardless of
the probability distribution assigned to the unairt parameters. The framework
presented in this chapter has been publishebbumnal of Process Contr@Rasoulian
and Ricardez-Sandoval, 2015b)

Chapter 6 presents nonlinear model predictive cbidMPC) applied to a thin film
deposition process in the presence of model-plasiatch while ensuring constraints
on the control actions and thin film propertiesclased-form model is identified offline
to predict the surface roughness and film thickrdagsng the deposition process at a
predefined specific probability. The resulting @ddorm models are used as the
internal models in a robust NMPC framework that @itm minimize the final surface
roughness while satisfying constraints on the teatpee trajectory and film thickness
at the end of the deposition process. In this aagroconservative control actions are
predicted by the NMPC algorithm. This work has bgaublished in Chemical
Engineering SciencfRasoulian and Ricardez-Sandoval, 2015c). To ingtbe robust
performance using probabilistic constraints, cleketh models are extended to
estimate the statistical moments of the thin filmogerties. The parameters of the
closed-form model are determined offline based loen RSE method applied on the
multiscale model. To evaluate the model, a shrigpkmorizon NMPC framework is
designed to minimize the surface roughness at tideoé the batch by manipulating
substrate temperature in the presence of uncertmirthe multiscale model parameters.
However, probabilistic constraints are assignedilonthickness obtained at the end of
the batch to reduce the conservatism of the MP@dweork (Rasoulian and Ricardez-
Sandoval, 2015c). The model developed in this warébles the reformulation of the
stochastic NMPC as a computationally tractablerdatestic NMPC framework. This

work has been submitted @hemical Engineering Science

Chapter 7 provides the conclusions and recommendatierived from this research.
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Chapter 2
Background and Literature Review

Modeling tools for processes occurring at spedtifite and length scales have been extensively
explored in the literature. Recent emerging appboa in material, medicine and biology,
however, require the controllability of events la¢ tmolecular scale using process variables that
can be adjusted at macroscopic scales (Vlacho®)2B8€ficient multiscale modeling techniques
have been introduced by connecting the various tadderepresent phenomena occurring over
different length and time scales (Crose et al.,52Kdwon, 2015). Thin film deposition is an
industrially relevant process that can be decongo#e phenomena occurring at various scales

and multiscale modeling analysis are required sxdee this process (Baumann et al., 2001).

Thin film manufacturing through deposition of adead materials is widely applied in the
semiconductor industry. Strong dependence of teetrgtal properties of the devices on the
microstructure of the film has motivated researchnoodeling and control of the thin film
deposition process (Jensen et al., 1998; Rodgersdamsen, 1998). Despite the extensive body
of research, there are still many unresolved isdeading to a significant gap between the
expected and the actual performance achieved bguttient control methodologies (Christofides
and Armaou, 2006). This gap is mainly related ®d¢bmplexities associated with the multiscale
nature of the thin film deposition process, lackpodctical and reliable online-situ sensors at
the micro-scale level, and uncertainties in the masms and parameters of the system
(Ricardez-Sandoval, 2011).

The aim of this chapter is to review the reseaftdrts that have been conducted on multiscale
modeling and control. The next section presentsoeerview of the multiscale modeling
analysis. The current challenges in multiscale riiegeanalysis are discussed in Section 2.2. As
it was described in the Introduction, the uncettaanalysis is the focus of the present research
project. Despite the importance of this subjectdetgplant mismatch has mostly been ignored in
multiscale optimization and control approaches.rétoge, in Section 2.2, a thorough discussion
on the different approaches for uncertainty analysi continuum models is also presented.
Section 2.3 reviews the challenges in optimizatind control of multiscale process systems and
the proposed approaches in the literature to addiesse issues. Due to the relevance to this
work, the approaches proposed for thin film depmsitprocess are discussed in detail. A

summary of this chapter is provided in Section 2.4.
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2.1. Multiscale modeling

Chemical process systems are typically modeled rutige continuum hypothesis employing
momentum, energy and mass conservation laws. Howélvere exist processes where the
detailed modeling requires capturing phenomena olcatirs over multiple interacting scales
(Braatz et al., 2004). In microelectronic processeacroscopic phenomena such as heat and
mass transfer of the gas phase can be adequatelgledousing continuum modeling, whereas
the fine-scale is driven by physicochemical eveahet occur at time and spatial scales that
cannot be modeled using the laws of classical mmechdBraatz et al., 2006a). At fine-scale,
discrete models including Molecular Dynamic (MD) KMC are required to describe the
behaviour of individual entities such as atoms ammlecules. While discrete models provide
more insight on the fundamental behaviour of systetimey are computationally intensive and
cannot be used to simulate the entire process do(haeminen, 2002). To address this issue,
multiscale modeling and analysis has emerged aatteactive tool to improve the predicting
capabilities in these systems (Vlachos, 2012). flhdamental goal of multiscale modeling is to
develop a mathematical framework that bridges warigcales ranging from atomistic to

macroscopic.

A typical approach in multiscale modeling is evéalg the required information at a finer
scale and passing it to a coarser scale in the Imeadleinstanceab initio calculations of reaction
rate constants as functions of pressure and tempersequires no further knowledge from the
reactor scale. This unidirectional information pagsis usually effective when the time and
length scales are well separated and there is adapvbetween them. Accordingly, the model
does not provide any feedback from the coarse-sadiee-scale and this approach is referred to
as serial or sequential multiscale approach (Vlacl®05). However, when there is a strong
coupling between various scales, integration andulsition is more challenging. When
processes exhibit well separated length scalesdegtwhenomena, different models can be used
at each scale. This type of multiscale modelingictvhs based on domain decomposition, is
termed as multiscale integration hybrid (MIH) ammb. To bridge different domains, an
interfacial region can be adopted in which both eiedre solved and exchange the information.
This region is referred to as theerlapping subdomaiar thehandshaking regioand is shown
in Figure 2-1. The size of this region needs t@itmperly adjusted since both models are solved

at this interface region. On the one hand, thafate has to be small enough in order to reduce
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the computational costs of the microscopic scal® an the other hand, sufficiently large for

letting the macroscopic model to appropriatelyxalaer the domain.

Fine-Scale Overlapping Coarse-Scale
Subdomain Subdomain Subdomain

Figure 2-1. Schematic of the overlapping regiotheaMIH scheme.

In the MIH scheme, a solution strategy is perfornmaalving simultaneous advancement of
both fine and coarse-scale simulations. Two scalessolved independently and the quantities
that are required at theverlapping subdomaiare evaluated. In spatially homogeneous systems
where there are no spatial gradients at the irderfagion, the information is exchanged at
specific (coupling) time intervals. Following thidea, the fine-scale model has to evolve
multiple time steps for every macro time step & tipper scale model. This simultaneous time
evolution continues up until the final simulatiormé is reached. Processes that involve
interfacial regions with spatial gradients are atemmon in engineering such as flow along a
tubular reactor or growth on a large wafer with tupiformities across the substrate (Albo et al.,
2006). The gap-tooth technique has been proposecbipling the coarse and fine-scale in the
heterogeneous systems (Gear et al., 2003). As shofigure 2-2, this method applies a coarse
mesh over large scales while at each node of tlaeseomesh, fine-scale simulations using
discrete models are performed on a finer mesh. ,/Timsltiple fine-scale models are
simultaneously solved in this approach and the gntags computed from these simulations are

averaged and used to update the coarser mesh.

Concentration Gradient

Figure 2-2. Schematic of multigrid-type simulati@dopted from (Vlachos, 2005)).

As it will be discussed in detail in Chapter 3, #wslution of the thin film studied in this work
is modeled using nonlinear partial differential atjons (PDEs) embedded with lattice-based
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KMC simulations to capture the multiscale essenicéhe process (Lam and Vlachos, 2001).
Traditionally, Monte Carlo simulations are useckt@luate the system properties at equilibrium;
nevertheless, if the rates of the events occuirirtge process can be estimated, they can also be
used to study the transient evolution of the sysiiemrm one state to another. While continuum
modeling is a well-established area, the implenmtentaf stochastic KMC methods to describe
the evolution of phenomenological events occuranthe fine scales in non-equilibrium systems
has been recently developed. Therefore, mastertiequand KMC technique are reviewed in

detail next.

Master equation & KMC. Due to the stochastic nature of the processesggiece at the
fine-scale, the probability that the system is paaticular configuration or state can be described

using the so-called master equation (Kampen, 1992):

dP(k,t)
dt

wherex and k' denote two successive states of the systegr,t) is the probability that the

=YWk - )P, t) — Y W(k - k)P(k,t), (2-1)

system is in state at timet, andW (k — k') is the probability per unit time that the systemi w
undergo the transition from stateto statex’. The master equation is a system of first-order
ordinary differential equations (ODEs) where eaduation represents the probability of an
individual state in the system at a certain timdilé/the solution of the master equation can be
obtained using traditional numerical methods folvisg ODEs, the challenge of finding a
solution lies on the number of states that nedubtevaluated. For systems with even a relatively
small size, the master equation cannot be solvadesthe number of possible states is
prohibitively large, e.g., a surface lattice cotisgs of 100 sites with a maximum height of one
has21°? number of configurations. This imposes a limitattowards the direct application of the

master equation to obtain an estimate of the systatas.

A lattice-based KMC can be used as a representafiibe microstructure and the KMC
method provides a numerical solution to the undeglynaster equation (Gillespie, 2001). In this
method, the states of the system are defined byipacxy of lattice sites (Dooling and
Broadbelt, 2001). In contrast to MD where everyrailonal change is tracked, this method
assumes that the system consists of diffusive jufrpa one state to another (Gilmer et al.,
2000). That is, the entire system will be movedrfrone state to another as opposed to moving
atoms to new states as it is performed in MD sitig. Hence, the KMC simulations are not
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employed to determine the exact position of atooidd evaluate the statistical properties of the
microscopic system (Voter, 2007). These statedtedtransitions allow KMC to reach longer
time scales, typically in order of seconds. Thendidon rates in the KMC simulations are
independent from previous states and identify th@bability per unit time that the system
proceed from one state to another. Stochasticzegadns that describe the evolution of a system
can be obtained through KMC simulations since tmisthod reconstructs the probability

distributions of the system states and their cpording statistics.

The theoretical foundation of KMC shows that the & NMnethod can provide a stochastic
representation of the master equation if the falh@aconditions are satisfied (Fichthorn and
Weinberg, 1991):

* Dynamical hierarchy of transition probabilities tisatisfies the detailed balance criterion
is created.
* The events taking place in the system are indepgnde

* Time increments can be estimated precisely.

In the KMC algorithm, the microscopic rates of pdissible processes are evaluated from the
current state of the system. Based on the currefiapilities of occurrence of those processes, a
process is selected using a random number takendroniform distribution. Once the event has
been executed in the system, the time is increrdegrigloying a second random number taken
from an exponential distribution. Updating the siéion probabilities and modifying the
configuration appropriately is essential for thextnstep execution (Reese et al., 2001). The
generic flowchart of the KMC algorithm is preseniedFigure 2-3 (Chatterjee and Vlachos,
2007). The implementation of the KMC method for thim film deposition process is presented

in detail in Chapter 3.

Molecular simulations based on KMC models are dstfuink microscopic interactions to
macroscopic descriptions; however, they are stdichasionlinear and typically high
dimensional. In response, methodologies have bespoped to construct low-order
approximations of the master equation (Gallivan Ehuoiray, 2004, 2003). The model reduction
in these approaches is performed by grouping niogs configurations with similar overall
statistics that evolve in a fixed ratio, and renmgvihe states that are unlikely to occur. The low-

order model describes the evolution of these pntibab in time which are further used to
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update the surface properties. The main disadvarghthat approach is that the resulting model

Is constrained to a specific set of inputs andréiquéar range of time scales.

( start )

A4

Initialize

| Select & execute
the process

Increment time

Update configurations
& transition
probabilities

Final integration
time reached?

Figure 2-3. Flowchart for KMC algorithm (adoptedrn (Chatterjee and Vlachos, 2007)).

2.2.Challenges in multiscale modeling

The advances in computer science and optical serfsave resulted into a considerable
progress in multiscale modeling research duringotst decade. However, this field is still in its
elementary stages and presents a variety of clgaiée(Braatz et al., 2006b; Ricardez-Sandoval,
2011). Specifically, coupling between the macrdesead fine-scale models is challenging since
models at different scales are of different naamd their communication is not straightforward.
In spatially homogeneous systems, the temporal attdmbetween the continuum and non-
continuum codes can make the coupling of the maaletserically instable (Rusli et al., 2004).
To address this issue, filtering approaches haea Ipeoposed to reduce the fluctuations of the
data passed from the stochastic micro-scale codeet@ontinuum code (Drews et al., 2004b;
Lou and Christofides, 2003a). In another approacigbust feedback-feedforward controller is
designed to maintain the fluctuations bounded betwine KMC and finite difference codes
(Rusli et al., 2006). In heterogeneous systems, KMi@ulations provide the steady-state

conditions at the interface of the coarse and $icale models. However, due to fluctuations in
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the KMC solutions, the identification of steadytstas not trivial and filters are required to
suppress the noise in the data passing to theezeasde (Majumder and Broadbelt, 2006). In
this section, the challenges in the modeling aralyais of the multiscale systems are briefly
outlined.

2.2.1.Computational intensity

Simulation of microscopic models typically requiregh computational costs compared to
continuum models. There are two aspects in the Kikthod that makes it computationally
intensive: i) relatively short simulation time steps (in theder of microseconds), anii)
execution of only one event at each step of therakgn (Schulze, 2008). High computational
costs of KMC simulations have motivated significaetearch efforts to accelerate this method
(Chatterjee and Vlachos, 2007). To address thiseiss lattice-based KMC method, reduced-
order lattices can be applied in the KMC simulatwith periodic boundary conditions at the
edges as a representative of the process. This limgpdepproach enables capturing of the
statistical properties of a large scale stochgsticess using a limited lattice size in the KMC
simulation (Makov and Payne, 1995). Spatial cogrséned Monte Carlo is another approach
that has been proposed to overcome the computhtieqairements of this method. This
approach enables the simulation of larger lengith ttme scales at reasonable computational
costs by grouping the lattice sites into coarsds c@atsoulakis et al., 2003). This scheme

assumes that local equilibrium is acquired withooarse cell (Drews et al., 2004a).

One of the drawbacks in the conventional KMC metltsothat it executes only one event at a
time. This characteristic drastically limits thengoutational efficiency of the KMC simulation
(Gillespie, 2001). To tackle this issue, tempom@rse graining has been proposed for coarse-
grained lattices which is referred to aseaping method (Vlachos, 2008). Acceleration iis th
method is achieved by executing multiple procesgesnce on a coarse-grained lattice and
advance the time by a coarse amaunhder the-leap condition. In this approach, the sites with
the same transition probability are grouped int® shme class andleaping is applied to the
classes without violating the leap condition. Tbamdition restrictg to small values such that
the change in the population for all chemical psses is small. The main assumption of this

approach is that the transition probabilities ated and independent from each other.
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2.2.2.Sensitivity analysis

Parameter sensitivity analysis is a valuable tooidentify parameters that play a significant
role in system responses that have to be optimaedetermined more accurately through
experimental data (Saltelli et al., 2005). In ominexperimental design approaches, density
functional theory calculations usually provide tpeor estimates of the parameters and the
parameter estimations are improved using datarmddadrom experiments (Braatz et al., 2006Db).
Application of conventional sensitivity analyses omultiscale systems, however, is not
straightforward since most of the fine-scale moadeésnot available in closed-form (Gunawan et
al., 2005). That is, explicit expressions to eveduhe rate of change of the outputs of the system
with respect to the model parameters are not édaild his motivates the application of a black
box approach such as brute force sensitivity arslysing finite differences. Although the
application of finite differences method is strafghward, it is computationally demanding
especially for multiscale systems. Efficient gradiestimation methods have been proposed in
the literature for sensitivity analysis of theseqasses (McGill et al., 2012). In molecular
simulations, alternative approximation methodsergloyed to map the key parameters to the
simulation outputs (Rusli et al.,, 2007). That is,the parameter optimization algorithm, the
computationally intractable molecular simulations eeplaced with a PSE that relates the output
to the parameters (Braatz et al., 2006Db).

Another issue in multiscale parameter sensitivitalgsis is the inherent noise due to the
discrete microscopic simulations. Hence, employingte difference approaches requires
relatively large perturbations to isolate the res@ofrom the intrinsic noise provided that the
average of multiple runs is applied. A sensitiviapalysis study of the model parameters
involved in copper electro-deposition was conducatisthg finite differences (Drews et al.,
2003). Condor, a high throughput computing envirentn was utilized to perform this
computationally intensive investigation. It has melemonstrated that the outputs of the system
are sensitive to 7 out of 22 parameters studidtiab work. Owing to high number of states or
parameters associated with multiscale systemstecing is an attractive method to obtain a
reduced set of parameters for the system (Raimondeal., 2003). Moreover, experimental
design studies has gained attention for paramgt@mization at molecular scales (Prasad and

Vlachos, 2008). In this approach, the multiscaledehocan be reduced using clustering or
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principal component analysis to provide a compatetily tractable identification algorithm
(Subramanian et al., 2011).

Developing low-order models for optimization andnttol of multiscale systems can be
performed using sensitivity analysis techniques. rédger, many uncertainty analysis
approaches take advantage of sensitivity analgsigdpagate the uncertainties into the states

and outputs of the system.

2.2.3.Uncertainty analysis

In model-based control and optimization framewothks, process performance depends on the
accuracy of the model used to describe the reategso In process modeling analysis, the
discrepancy between the process and the model seebesthe rule rather than an exception.
Uncertainties can be classified as structured amdnpetric uncertainties. Structured uncertainty
arises due to incomplete knowledge about chemical physical processes, inadequate
numerical schemes and resolutions. Parametric taier, on the other hand, is the result of
inaccuracies in model parameters, initial condgi@nd boundary conditions. In the current
work, it is assumed that the multiscale model usedhe thin film deposition process captures
the underlying structure appropriately; thus, dtreed uncertainty is not considered in the
present study. Parametric uncertainty, however, patentially occur and hence will be
extensively studied here in the context of mulliscaodeling analysis. To quantify the effect of
parametric uncertainty on the system performanoeemainty analysis is required. There are
two fundamental steps for uncertainty quantificatio process systems: characterization of
parameter uncertainties, arn) propagation of uncertainties through the processdel.
Parameter uncertainty can be characterized using dallected from the actual process;
however, when access to plant data is not avajldhke uncertainty description is typically
assumed to be bounded or takes the form of a pildpatistribution function (PDF) centered at
a nominal value. Therefore, despite the importasfagncertainty characterization, in robustness
analysis the form of the parameter uncertainty figno considered as a prior knowledge

(Halemane and Grossmann, 1983; Rooney and Bi€dieg).

To guarantee closed-loop performance under boungdachmeter uncertainty, robust
formulations have been proposed based on the was&t-deviation in the process performance
(Braatz et al., 1994; Ma et al., 1999; Ma and Brada001). In a semiconductor manufacturing
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process, this method has been applied to obtaiogtimal rapid thermal annealing program that
minimizes the junction depth while maintaining aisfactory sheet resistance (Gunawan et al.,
2004). This approach has been applied in this relse@ determine the optimal temperature
profile using the worst-case deviation in the thilim properties. This method and its application
on the deposition process will be explicitly dissed in Chapter 4.

For distributional uncertainties, the classical Moi€Carlo method is the common approach
used to produce the PDFs of the states and outpthe system under uncertainty. Monte Carlo
is a sampling-based technique that takes advamthigdarge number of sample points chosen
randomly from the prior distribution of parametersd a model to propagate the uncertainties
into the model outputs. Despite the efficient sangplmethod proposed to reduce high
computational costs, this method is not suitable réal-time robust applications (Birge and
Louveaux, 2011; Niederreiter, 1978). In addition high computational costs especially for
complex systems, this method does not provide denadtical representation of the process.
Distributional uncertainty analysis of complex dymea processes such as multiscale systems
using Monte Carlo technique is computationally jodlve. Alternatively, for efficiency, the
original complex model can be approximated emplgwither PSE or PCE (Xiu, 2010). Taking
advantage of a prior knowledge about the distrdsutiof the uncertain parameters, a
distributional uncertainty analysis of the stated autputs can be performed using PSE or PCE.
Uncertainty analysis using these expansions hdmted significant advances in the robust
optimal control of batch processes (Mandur and Barn2014; Nagy and Braatz, 2004). It has
been shown that, while first-order expansions mevacceptable accuracy, higher order
expansions can improve the accuracy in the predist{Bahakim et al., 2014; Nagy and Braatz,
2007). The key advantage of the PSE approach isttlenot necessary to have the analytical
expression for the function since it only requitke function sensitivities with respect to the
uncertain parameters. Following this approach;iseae of absence of closed-form models can
then be addressed by deriving a low-order model.

An alternative tool for distributional uncertaingnalysis is the PCE (Ghanem and Spanos,
2003; Wiener, 1938). Uncertainty analysis using thethod has initiated significant advances in
the robust optimal control of batch processes (Marahd Budman, 2014; Nagy and Braatz,
2004). The PCE technique is appropriate for highbnlinear processes or when a large
variability in the uncertain parameters is expedcteaim, 2009).
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2.3.Challenges in control of multiscale processes

The majority of cutting-edge semiconductors are ufeetured through batch processes in the
microelectronics industry (Gorman and Shapiro, 20The objective of a generic process unit
operation is improving manufacturing efficiency Vehiminimizing plant costs. In batch
processes, systematic methodologies are needeutitoize product quality specifications under
tight operational constraints (Christofides et aD07). The film microstructure, however, is
determined by the surface microscopic events thangly depend on the macroscopic behaviour
of this process. As such, highly efficient contesld optimization frameworks are needed to
achieve specific thin film’s characteristics by npatating the macroscopic variables of the
process (Ulissi et al., 2013). As an illustratixample, an integrated circuit entails several layer
of thin films and the device performance dependshersharpness of these patterned thin films,
the interface between layers and the microstructondéiguration of the films (Datta and Landolt,
2000). Moreover, thin film deposition is sensitteeunmeasured disturbances, contaminants and
deposition on the reactor walls which affect prddieproducibility. Thus, advanced control
strategies are required to improve product quadipecifications (Braatz et al., 2006a). In
essence, the basis of an advanced control framewalclosed-form model that represents the
complex dynamics of the process under study. Rdatiy, in a MPC framework, which is the
most prominent advanced control strategy, a systesdel is required to predict the control
actions which optimize the performance index in pnesence of constraints (Allgower et al.,
2004; Garcia et al., 1989; Qin and Badgwell, 2008gre are, in essence, three major obstacles
that limits the performance of a control schem#émthin film deposition process:the lack of
practicalin-situ sensors that provide real-time, micro-scale megsents for online applications,
i) the lack of a closed-form expression for modesdasontrol and optimization purposes, and

iii) model-plant mismatch.

2.3.1.Lack of sensor

Thin film deposition has a wide range of applicatidn the microelectronic industry, optics
and photovoltaics. Real-time measurements at thiacgi of the thin film, however, are not
practical and usually offine measurements techesogare employed only at the end of the batch
process (Renaud et al., 2003). Implementation eflldack control approaches to design high-
quality nanostructures in a high-throughput manwiacg setting is impractical without real-
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time measurements (Su et al., 2008). In a methggolthe combination of online gas phase
composition measurements with offline roughnesssuegments has been applied for feedback
control of surface roughness (Ni et al., 2004). dddy, the development of modern
measurement techniques has enabled to obtain du@ed data in real-time. The availahie

situ thickness and deposition rate monitoring sensasshieen extensively reviewed (Buzea and
Robbie, 2005). Spectroscopic ellipsometry, and iggaimcidence small range X-ray scattering
are introduced to assess the microstructure ofthire films (Pickering, 2001). Particularly,
spectroscopic ellipsometry is a non-intrusive, gamstool that can provide the measurements in
real-time (Liu et al., 1999). The major limitatiaf this sensor is that it provides an indirect
measurement technique where model-based estimateraeeded to infer the film properties
from the data provided (Grover and Xiong, 2009; ngoet al., 2006). While these sensors
present novel techniques for monitoring and conpwtposes, they are not able to provide
measurement at a frequency that is required foinerdontrol applications. Hence, real-time
estimators are needed to estimate the controllgputsiat a time scale comparable to the real
thin film deposition process while online measurataeare not available. Efficient estimation
strategies are explored based on the reductiorhefKiMC model to control the thin film
properties that cannot be measured directly (Gailiv2005). A methodology for real-time
estimation of thin film properties during the gréwgrocess has been proposed based on lattice-
based KMC simulations, an adaptive filter and a sueament error compensator (Lou and
Christofides, 2003a, 2003b). In that methodolodihoagh state-of-the-art sensors are required
to improve the estimations, frequent measuremerdsnat available for an efficient online
control (Lou and Christofides, 2004). To provideanputationally tractable approach, reduced-

order lattices are employed in the KMC simulations.

2.3.2.Lack of closed-form model

Multiscale models are not available in closed-foand are computationally prohibitive for
online applications. In KMC simulations, the lagtisize determines the accuracy of the results
and the simulation time. Although employing reduceder lattices in the KMC simulations are
computationally efficient, the results obtainednfrdhese simulations are noisy compared to
high-order lattices. Computationally efficient essitors have been developed using the average

of responses from multiple reduced-order latticestie KMC simulations. The proposed

18



estimator has been coupled with a proportionalgnate(Pl) controller to control the surface
roughness manipulating the substrate temperatuwya dnd Christofides, 2003a). That control
methodology has also been extended to multivaritggdback control of surface roughness and
growth rate (Lou and Christofides, 2003b). To ftiate the effectiveness of the
estimator/controller structure proposed in (Lou @iistofides, 2003a), that technique has been
employed for closed-loop control {BaAsthin film deposition (Lou and Christofides, 2004).
KMC-based MPC scheme for film deposition has alsernb proposed in the literature
(Christofides et al., 2008).

While it is possible to employ KMC models for estition and control in a few cases, these
models are typically unavailable in closed-form awdlve by successively advancing the state
of the system by small incremental time steps (i @hristofides, 2005a). There are deposition
processes for which closed-form process modelsitdesg the surface morphology of thin films
can be identified in the form of stochastic PDEst Fstance, the surface height evolution in
one-dimensional thin film growth process can becdbesd by Edward-Wilkinson equation (Hu
et al., 2008; Lou and Christofides, 2006; Zhangakt 2010). In these approaches, the
construction and validation of the stochastic PDBdels are conducted through a set of
snapshots obtained from the KMC simulations thaecaohe complete operating region (Ni and
Christofides, 2005a). Taking advantage of thesehsistic PDEs, methodologies have been
developed for multivariable predictive control betdeposition process (Hu et al., 2009; Ni and
Christofides, 2005b).

Although multiscale models embedded with KMC sintiolas are computationally intensive,
these detailed models can be employed to deriveololer models that are practical for model-
based control techniques (Varshney and Armaou, &00Bhe input-output behaviour of a
coupled KMC and finite difference code is employedievelop a low-order model for copper
electrodeposition process (Rusli et al.,, 2006). Eontrol purposes, reduction of multiscale
systems is performed through proper orthogonal meosition (Raimondeau and Vlachos,
2000; Varshney and Armaou, 2008b). In (Varshney/mdaou, 2006a), the feedback control of
thin film microstructure has been achieved viaio#lidentification of a low-order model for a
finite set of coarse observable variables. Morecaeromputationally efficient methodology has
been proposed to maximize film uniformity and mirgenthe roughness in a thin film deposition

process (Varshney and Armaou, 2005). To efficieatlive a dynamic optimization problem in
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GaN film epitaxy process, model reduction techniqueweh been linked with the vector
parameterization scheme (Varshney and Armaou, 2006lbas been shown that an optimal
change in the precursor concentration reduces derably the thickness non-uniformity in a
GaN thin film. The low-order model developed througdduction of the master equation has
been used to estimate the optimal time-varying satpre profile offline (Gallivan, 2003; Oguz
and Gallivan, 2008). In another approach, compantatly efficient solution methodologies are
developed for optimal operation of spatially distied multiscale processes (Behrens and
Armaou, 2010).

To address the issue of absence of closed-formndgsa coarse time-steppers have been
proposed which enables the integration of macrasceystem level tasks to multiscale systems
without driving the required equations in the cthb$erm expression. The key assumption in this
method is that the macroscopic models are availablelosed-form for low moments of
microscopically evolving distribution. While mappirfrom microscopic to macroscopic scale
(restriction) is unique, mapping from macroscomcnticroscopic scale (lifting) is not. This
equation-free methodology provides a mean to empl@ji-established controller design
techniques, such as linear feedback control toiszale process systems (Armaou et al., 2004;
Siettos et al., 2003).

2.3.3.Model-plant mismatch

The performance of model-based control and optitimaaechniques can be deteriorated due
to inappropriate or unrealistic assumptions appliedthe model development and model
uncertainty. Specifically, when the performanceechbye is highly sensitive to changes in the
physical parameters of the system, model-plant misincan lead to significant loss in the
performance. Although multiscale processes mosttpmpass fine-scale features that cannot be
known with absolute certainty, model-plant mismatths mostly been overlooked in the
proposed multiscale modeling approaches in theatitee. To design a robust control or
optimization framework, it is therefore essential tatke model parameter uncertainty into
account. As a result, multiscale system tools aquired to account for uncertain mechanisms

and uncertainty in the model parameters.

In thin film deposition, Lou and Christofides hasteown that the coupled estimator/controller

proposed to control surface roughness is robustarpresence of uncertainty in one of the KMC
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parameters (Lou and Christofides, 2003a). Thislregs only validated using simulations, i.e. a

formal uncertainty quantification analysis was petformed in that study. Nagy and Allgéwer

have designed a robust shrinking horizon NMPC seh#mt aims to minimize the end-point

surface roughness and its variance using a seaualed-®SE technique (Nagy and Allgower,

2007). The deposition model considered in that wek low-order state-space model developed
through reduction of the chemical master equatinch describes the temporal evolution of the
surface (Gallivan and Murray, 2004). Therefore, éffect of macro-scale was not accounted for
in that model. Moreover, that study assumed tleesif-the-art sensors are available to provide
accurate measurements for the NMPC algorithm. Thexeeven though model-plant mismatch

is an important aspect of process control and apé#tion, it is still an open problem in

multiscale system design.

2.4.Summary

This chapter presented an overview of the recem¢ldpments in multiscale process systems
analysis. The multiscale modeling approaches pexpas the literature to capture coupled
phenomena over different length and time scale lmeen discussed. Since the focus of the
current work is on thin film deposition processe trelated works published on control and
optimization of this process are reviewed in thser. Model parameter uncertainty, lack of
closed-form model between manipulated variables eodtrolled outputs, computationally
intensive KMC simulations and sporadic sensor dae¢aamong the main challenges in this area.
Despite the extensive studies on multiscale systehes effect of model-plant mismatch in
control and optimization applications has mostlgmenored. The current study aims to fill this
gap by incorporating model parameter uncertainty multiscale modeling analysis. The next
chapter presents the detailed modeling of theftthmdeposition process which is considered as

a representative multiscale process in this study.
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Chapter 3
Thin Film Deposition Process

Thin film deposition is an industrially relevantogess which comprises phenomena that evolve
at different time and length scales (Gilmer et #998). The evolution of the film morphology
entails microscopic processes such as adsorptiotheofprecursor atoms on the surface or
migration of adsorbed atoms on the film surfaceilgime microstructure of the surface evolves
at the fine-scale level, the film deposition pracéakes place inside a chamber of macroscopic
dimensions at specific operating conditions. Thausation of the entire process requires the
coupling of micro-scale events, i.e., the surfagagion, with macroscopic phenomena, i.e., the
operating conditions in the chamber. Thin film d&ifon is considered as a simple yet effective
representative of a multiscale process system angseéd as the case study to evaluate the

methods proposed in the current research.

In this chapter, a multiscale model of the thimfitleposition is presented and described in
detail in Section 3.1. As it is shown below, convamal momentum, energy and mass balances
are used to describe the changes in the operatmdjtons inside the chamber whereas a lattice-
based KMC model is used to simulate the evolutibthe thin film on the surface. Section 3.2
provides the required formulations to determinettiie film properties. The coupling between
the continuum model and the KMC simulation, as veallthe solution strategy followed to

simulate the thin film multiscale model, are exiplyjcdescribed in Section 3.3.

3.1. Thin film deposition modeling

For many technological applications, high qualityn§ are produced by the process of vapor
deposition (Armaou and Christofides, 1999; Baumahal., 2001; Granneman, 1993) (Armaou
and Christofides, 1999). In a typical vapor depositchamber, the gas flow in the chamber
develops a uniform boundary layer of gas adjaaetité surface of the deposition. This uniform
boundary layer of widtl$ is shown in Figure 3-1. The precursor atoms défirem the bulk
through this boundary layer to create a thin shiid. In the present study, an epitaxial thin film
growth process in the stagnation point flow chambearonsidered (Gadgil, 1993). A schematic
of this chamber is depicted in Figure 3-2, whichptoys a gas distributer to provide a uniform
distribution in the chamber (Dollet, 2004). To hkndhe disparate length and time scales,

continuum momentum, energy and mass conservatitandes are employed to describe the
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boundary layer of gas whereas the evolution ofsilndace microstructure is captured through
KMC simulations (Lam and Vlachos, 2001).

Gas Distributor

Figure 3-1. Schematic of the boundary layer orstitestrate.

Gas Inlet

Gas Distributor

|

Figure 3-2. Schematic of stagnation point flow vageposition chamber.

Creating an axially uniform high velocity flow imeé inlet of the chamber is a prerequisite to
set up a stagnation point flow system. This coaditlso avoids the development of velocity,
temperature and concentration gradients along abalrdirection inside the chamber. Hence,
only the gradients in the axial direction are cdased in the analysis. This characteristic reduced

the spatial dimensions of the PDEs used to destiidbbenomentum, energy and mass balances.

Chamber scale model: modeling the macro-scaléAt the macroscopic level, continuum
descriptions of fluid flow, heat transfer and massisfer can be employed as follows (Sharma
and Sirignano, 1969; Song et al., 1991):
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The boundary conditions for the bulk{ «) are as follows:
T = Thuik
of _
uo1, (3-4)
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Likewise, the boundary conditions on the surface (0) are as follows:
T= Tsurface )
f=0, (3-5)
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=
ox _ Sc(Rg—Ry) . (3-6)
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In Egs.(3-1)-(3-6)f denotes the dimensionless stream functjas,the dimensionless distance

to the surfacep is the density of the mixtur&. is the temperature arma is the Prandtl number.

x andSc are respectively the mole fraction and Schmidt peinof the precursor. The parameters
u, andp, are the viscosity and the density of the bulkpeesively; X represents the bulk
precursor mole fractiony is the hydrodynamic strain rate ané 2at is the dimensionless time.

R, andR, are the rates of adsorption and desorption, réspéc As it will be described later in
this chapter, the coupling between the microscppicesses occurring at the surface and the gas

phase scale processes is accounted for in the Bouodndition indicated in Eq.(3-6).

Surface structure model: modeling the micro-scalein the KMC algorithm, the microscopic
rates of all possible processes or events arelagdcufrom the current state of the system. Based
on the current probabilities of occurrence of thgsecesses, a process is selected using a
random number taken from a uniform distribution.c®rthe event has been executed in the
system, the time is incremented through anothedawn number. Updating the transition

probabilities and modifying the configuration apprately is essential for next step execution.
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The temporal and spatial changes occurring at tinlace are dominated by the microscopic
processes. In this work, three microscopic processatribute towards the development of the
thin film: i) adsorption of atoms from the gas phase to thiaselii) desorption of atoms from
the surface to the gas phase, andmigration of atoms to an adjacent site on théaser The
surface of a simple cubic lattice is used to déscthe thin film deposition process. In the
present multiscale model, the KMC lattice at anyeti is represented as a mat®x,where each
element in this matrix represents the number omakocated on each site within the surface
lattice, i.e.,

S(t) 2 (h(i,j):i,j = 1..N}, (3-7)

whereN denotes the lattice size ahd;, j) is the number of atoms at sitgj). In the present
analysis, the surface of a simple cubic latticesed to describe the thin film growth. To reduce
the computational costs, the method has been inguited for a limited-size lattice assuming
periodic boundary conditions at the edges. Anothesumption is solid-on-solid (SOS)
approximation, based on which, overhangs and vaesiace not allowed and atoms are located
directly on top of other atoms on the surface. Triteractions among the surface atoms have
been considered between only first nearest neighldoreover, the present model assumes that
all the surface sites are available for adsorptf@shown in Figure 3-3, the adsorbed atoms can
be either desorbed to the gas phase or migrate amljacent lattice site depending on the energy

barriers and the number of neighbors surroundiagatom.

Gas phase

Adsorption (3 Migration O Desorption

Substrate

Figure 3-3. Schematic of a thin film growth processa substrate.

In the adsorption process, an incident atom froengiias phase comes into contact with the film
and is eventually incorporated in the surface. fidte of an adsorption event can be determined

from the kinetic theory of ideal gases :
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wheres, is the sticking coefficien®? is the total pressure of gas phasg,,, is the mole fraction

of precursor on the surfaceé,,; is the concentration of sites on the surfagas the precursor
molecular weightR is the gas constant ardis the substrate temperature. Macroscopic scale
affects the film growth on the surface througjhsince estimates fou,.,,, are obtained from the
solution of the gas phase mass transfer equatimex&cute an adsorption event, a site needs to
be randomly picked among the sites of the entiteeéaand eventually an atom will be added to
that site as shown in Figure 3-4.

Figure 3-4. Execution of an adsorption event onldktice by picking a site and adding an atom gndbthat
lattice site.

The first nearest neighbors assumption resultsrendlasses of surface atoms, which can have
from one (only a vertical bond) neighbor, up toefifall surface bonds and a vertical bond)
neighbors. In the present analysis, desorption raigfation events are considered to be site-
dependent. Therefore, atoms in each class hava&athe probability of desorption and migration

since they have the same number of nearest neighbor

In the desorption process, an atom overcomes teeyetarrier of the surface and returns to
the gas phase as shown in Figure 3-5. The ratesurdtion depends on the local configuration
on the surface and the activation energy. The ohesorption of a surface atom withfirst

nearest neighbors is as follows:

nE
Pp(n) = vye rr, n=1,..5, (3-9)
whereE denotes the energy associated with a single bortlesurface and, is the frequency

of events, which is determined as follows:
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Eq

Vo = kgoe RT, (3-10)

whereE, is the energy associated with desorption Bpdis an event-frequency constant. To
implement this event, a desorption class has fpiddeed among the five classes available. Then,
a site from that specific class is selected rangio@hce the site for desorption event is selected,

the atom at the top of that site is removed froendtirface.

Figure 3-5. Execution of a desorption event onldttice by picking an atom and removing it from wfthe
site.
In the migration process, an atom overcomes theggrimarrier of the site and jumps to one of
the neighboring sites randomly as shown in Figw&. Jhe surface migration process is
modeled as desorption followed by re-adsorptiore fidie of a migration event on the surface is

estimated from the following expression:

nkE

Py(n) =vede rT, n=1,..5. (3-11)
The pre-factord is associated with the energy difference that tamaon the surface has to

overcome in jumping from a lattice site to an adjg@ne and is given by:

Eg—Em

A=e RrRT | (3-12)

whereE,, is the energy associated with migration. To immatra migration event, one of the
five classes needs to be selected. Then, a Iaitesvill be picked randomly for the execution of
this event. The atom located at the top of that isitmoved (migrates) to one of its four nearest

neighbors. The selection of nearest neighbor sitalso performed randomly (Gilmer and
Bennema, 1972).
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Figure 3-6. Execution of a migration event on #itide via diffusing an atom to the neighbor site.

The execution of a KMC event, i.e., adsorption,odeon or migration, is accomplished based
on the total probabilities of the events. Since #usorption event is assumed to be site

independent, the total rate of adsorption is caleal as follows:

W, = P,N?, (3-13)
whereP, is calculated from Eq.(3-8). Likewise, the totates of desorption and migration are

estimated as follows:

Wy = 215=1 M;Pp (1) , (3-14)
W = 251 MiPy (D), (3-15)
whereM; is the number of surface atoms withearest neighbor®, (i) andp,, (i) are defined in
Eq.(3-9) and Eq.(3-11), respectively.
These rates are used to select an event througheMoarlo sampling method. That is, a

random number generated from a uniform distribytigns used to select the next event to be

executed on the surface according to the followirgs:

0< (< W,/ (W, + Wy +W,,) — adsorption
Wo /Wy + Wy + W) << (W, + Wy)/ (W, + Wy + W,,) — desorption
W, + W)/ (W, + Wy + W) <{ <1 —= migration
Then, a second random number is needed to pickitdevithin the lattice where the event will

be executed. Upon successful event executionjrtiee tvhich was needed to execute the Monte
Carlo event on the surface, is incremented usiaddlowing expression:

—In
dt = L S ,
Wa+W g+Wp,

(3-16)
wherec¢ is a uniform random number from a (0,1) interviadl @t is the time increment in the
KMC model. The evolution of the thin film growthqaress including the gas phase model and

KMC simulation is performed using MIH algorithm st in Figure 3-7.
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Figure 3-7. Flowchart of the MIH algorithm.

3.2. Surface roughness, film thickness and growth rate

In this study, the quantitative evaluation of thentfilm microstructure is assessed using
surface roughness. In thin film fabrication, sugfaoughness is a key factor that determines the
electrical and mechanical properties of microetattr devices. Surface roughness can be
determined based on the number of broken bondsersurface (Raimondeau and Vlachos,
2000):

Y j(hivrj—hij+|hiosj—hijl i jer—hi g+ hijo1—hi ] (3-17)
2N2 !

whereh; ; is the number of atoms deposited at the lattiee(si). Thin film deposition process

r=1+

is a batch operation where a desired film thickrgsecification is required to avoid an under-
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grown thin film at the end of the deposition praceghickness of the thin film at any time
during the deposition can be calculated from awemigthe surface height using the following

expression:

H=—%ih;. (3-18)

Another critical characteristic of the thin flmgmess that needs to be controlled is the growth
rate. A specific growth rate is needed during thpasition to meet manufacturing productivity
targets. Growth rate can be determined as follows:

Gr =Tty (3-19)
whereAh; ; = h; j(t + At) — h; ;(¢) is the change in the surface height at Gitg duringat. At

is a specific time interval at which growth rategimated.

3.3.Implementation strategy and coupling

In this simulation, the KMC lattice is representeda matrix where each element represents the
number of atoms located on each site within théasarlattice (e.g., in Figure 3-8, there are 3
atoms at sitg2,2)). As shown in Figure 3-8, besides this matrix, @duitional shadow data
structures are required to maintain important im@tion about the number of neighbors of sites.
The first data structure is a matrix of the sanze $hat stores the number of neighbors of each
surface atom. For example, if s{tgj) has one neighbor, this shadow matrix stores itea{is)).

The second shadow data structure is an array térbemts; thek™ element in that array stores
the number of surface atoms that h&aveeighbors (e.g., the first element representsitimeber

of coordinates with one neighbor). Local algorithhessze been implemented to accelerate the
process of updating these three data structuresary step of KMC. Local algorithms optimize
the search process using available information ath@uexecuted event and the site on which the
event is executed. This approach is more effidgrecomparison with the global algorithm where

it Is necessary to screen the entire lattice atye®IC step.
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(a) (b) (©) (d)
Figure 3-8. (a) Surface configuration, (b) Eachredat of this matrix indicates the number of atomshe
corresponding site, (c) Each element representsuhber of neighbors of the corresponding surface
atom, (d) The&" element of this array stores the number of surédems that havk neighbors.

To simplify the analysis, the accumulation termshia heat and flow transfer equations in the
gas phase model shown in Egs.(3-1)-(3-2) are negledhis reduces those two PDEs into
ODEs that can be solved along the direction using a finite difference scheme. The
concentration of the precursor in the gas phaseeher, fluctuates in time due to changes in the
microstructure of the surface. Therefore, the ni@sssfer equation is a PDE that is solved using
the method of lines. The spatial domains discretized resulting in a set of time-dependen

ODEs that are solved at every coupling time instanc

The transport phenomena in the gas phase infludgecdeposition on the surface via the local
supply of mass to the surface whereas the micrisqupenomena on the surface affect the
overall mass transfer taking place above the serfélat is, the amount of precursor available to
deposit on the surface depends on the macroscoppemies of the system. Conversely, the
consumption of the precursor on the surface affégxsamass flux above the surface. Hence, the
macroscopic model and the KMC model depend on e#tolr and are connected through the
boundary condition indicated in EQq.(3-6). The pastan of the adsorption rate at the
microscopic scale, i.e., the precursor mole fractm the surface,,,,,, is provided from the
mass transfer balance shown in Eq.(3-3). In additiee mass transfer boundary condition at the
surface depends on the microscopic processes. éwsnsim Eq.(3-6),R, andR, correspond to
adsorption and desorption events; the differencevden these values can be obtained as

follows:
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Ng—N
Ra =Rq = 2aN2A0:lr : (3-20)

where AT is the coupling time instance between the macmesc@and the microscopic

simulations.N, is the number of adsorbed atoms durddgandN, is the number of desorbed
atoms in the same time interval. The values ofpli@ameters used in this study are depicted in
Table 3-1.

Table 3-1. Model parameters and their correspondahges and units.

Parameter Value
a 51/s
Crot 1.6611 x 1075 sites. mol/m?
E 17000 cal/mol
Eq4 17000 cal/mol
En 10200 cal/mol
kao 1x10° 1/s
m 0.028 kg/mol
P 1 x 10° Pa
S 0.1
Sc 0.75
X 2x107°
HpPb 9 x 10 kg?/(m*.s)
pv/p 1

In the KMC simulations, the size of the latticersiggantly affects the accuracy of the results
and the simulation time. Extensive studies havenbmmnducted to investigate the effects of
lattice size on the surface roughness adoptingathiee-based KMC models (Huang et al., 2011,
2010). The accuracy of the results relies on theedasize used to simulate the evolution of the
thin film. Since KMC is a stochastic realization thfe so-called master equation shown in
Eq.(2-1), large lattice sizes produce results timaiverge to the solution of the master equation.
Nevertheless, the simulation of large lattice simesomputationally expensive and there is a
trade-off between accuracy in the system predistimmd computational cost. In Figure 3-9, the
evolution of the surface roughnessTat 800 K is demonstrated from KMC simulations using

150 x 150 and 100 x 100 lattices. The accuracy of the results is not $icgmtly improved
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employing a150 x 150 surface lattice. The computational time requiregimulate the growth
process are also indicated in Table 3-2 for diffedattice sizes in the KMC simulation. The
KMC simulation using al00 x 100 lattice provides a good approximation of the pssceith
relatively low computational costs. Accordingly,thre current study, 800 x 100 surface lattice

is used to represent the actual thin film depasiioocess. It is important to note that, to average

the results obtained from multiple simulations, KMC simulations are executed in parallel.

Surface roughness (mL)

Figure 3-9. Surface roughness trajectories obtdaimed different simulations usints0 x 150 and100 x 100

lattices.

Table 3-2. Computational cost of various latticeesiemployed in the KMC simulation.

Lattice size Computational Time (s)
N =150 2,448
N =100 747
N=30 47
Average of sixN = 30 135

Figure 3-10 shows the evolution of the surface hoags ar = 800 K from three independent
simulations employing @00 x 100 lattice for the KMC simulation. Due to the stodi@asature
of the method used to describe the evolution ofstivéace, i.e., KMC, the results obtained from

the simulations are slightly different. The rougbsevolution from three independ&ix 30
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lattices is depicted in Figure 3-11. When compadceBigure 3-10, the variability or noise in the
surface roughness in3@ x 30 lattice-based simulation is significantly largAs the lattice size
decreases, the fluctuation in the surface roughaessg different runs increases.

18

12F

Surface roughness (mL)

Figure 3-10. Surface roughness trajectories frametindependent simulations using x 100 lattice in the

KMC simulations.
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Surface roughness (mL)

0 20 20 60 80 100
t(s)
Figure 3-11. Surface roughness trajectories frametindependent simulations using(ax 30 lattice in the

KMC simulations.

Figure 3-12 shows the growth rate obtained from tleresponding simulations which
illustrates the small variability in the respons€hle film thicknesses estimated from different

simulations is shown in Figure 3-13. The variapilit the film thickness is so small that is not
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visible in this figure and the final 500 ms of tlfigure is magnified to provide a better
observation of its variability.
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Figure 3-12. Growth rate trajectories from thregeipendent simulations usind @0 x 100 lattice in the KMC

simulations.
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Figure 3-13. Film thickness trajectories from thigependent simulations usind @0 x 100 lattice in the KMC

simulations.

To implement an online scheme for the surface rnagh, the size of the lattice has to be
selected in such a way that the computational tieeded to obtain an estimate of the surface
properties be comparable to the real-time prodesthese simulations, when the lattice size is
reduced toN = 30, it captures the evolution of the responses wahsonable computational
efficiency. As depicted in Figure 3-14, the resaitained from reduced-order lattice simulation
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contains significant fluctuations in comparisorthie simulation which uses1®0 x 100 lattice;
however, the overall transient evolution of theface is captured by thed x 30 surface lattice.
To circumvent the issue of fluctuations, similar tiee approach presented in (Lou and
Christofides, 2003a), the responses obtained fraittipte independent KMC simulations using
reduced-order lattices can be averaged. Figure 8hbdvs that the roughness estimated from
averaging six30 x 30 lattices provides a suitable representation of abeial process, i.e., a
100 x 100 KMC-lattice model. According to Figure 3-14 andbl&a 3-2, averaging Si®0 x 30
lattices provides accurate results at low compuonali costs.

Surface roughness (mL)

. ———-N=30
........... Average of six N = 30
M= 100

0 20 40 50 80 100

t(s)

Figure 3-14. Surface roughness trajectories ohddfiren different simulations usingo x 100, 30 x 30 lattices

and average of si30 x 30 lattices.

3.4.Summary

As a common practice, a multiscale model is adoptedimulate the thin film deposition
process that augments PDEs, describing the maate-pbenomena, with a high-order lattice-
based KMC model, which aims to capture the evotutid the thin film microstructure. It is
important to note that, the multiscale model arel KMC parameters used in this work, have
been originally employed by Vlachos (Vlachos, 199%hat paper provides an extensive
sensitivity analysis to investigate the effect dtmscopic and macroscopic parameters on the
growth process. Moreover, Lou and Christofides hegyaied this model to propose an estimator
for feedback control of the process (Lou and Cbfides, 2003a, 2003b). The dependence of the

open-loop simulation results and the computatitined on the lattice size has been illustrated in

36



this chapter. Although increasing the lattice deads to convergence of the results to the so-
called chemical master equation, the computatidoald will be prohibitive for online
applications. Reduced-order lattices, on the ollaed, capture the evolution of the process yet
contain considerable stochastic fluctuations.
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Chapter 4 .
Open-loop Robust Optimization in a Thin Film Deposiion Process

Model-based optimization and control approacheg oal the accuracy and efficiency of the
process model used in the analysis to predict ggubs. While the model presented in Chapter 3
provides a fair representation of the depositiolmcess, the evolution of the thin film
encompasses phenomena that are subject to modehgiar uncertainty that can significantly
affect the performance objectives for this proc@$e film microstructure is directly shaped by
the stochastic microscopic events taking placehensurface. At this level, the surface can be
affected by changes in the rates of these micrasoeyents as a consequence of parameter
uncertainty. The effect of model parameter uncetyacan result in suboptimal operational
conditions that can lead to loss in performancehdlgh recently introduced opticai-situ
sensors motivate the feedback control of this mectheir application is still limited in practice.
In the industry, most of the measurements are aailat the end of the thin film deposition
process; accordingly, optimization and control apphes that do not have an access to online
fine-scale measurements need to be developed hirhélin deposition is a batch process where
open-loop optimization can be performed offlinesdxhon certain product quality specifications.
Thus, the focus of this work is to determine a stlaptimal control trajectory in the absence of
sensor. The aim of this chapter is to explore aropgse a systematic framework to analyze
model parameter uncertainty for robust optimizationmultiscale process models. Such an
analysis is challenging due tg the lack of a closed formulation between the essc
optimization objective and the model parametersignithe computational costs incurred in the

KMC simulation. To overcome these challenges, BSfriployed for uncertainty propagation.

In this chapter, worst-case and distributional utagety analyses are compared in the thin film
deposition process (Rasoulian and Ricardez-Sand@@aba). The parameters are assumed to be
constant unknown values during the deposition tlaat change randomly from batch to batch.
Model parameters with this description are congidess time-invariant parameters while the
true value is not known. Due to embedded KMC sitnhs, the sensitivity analysis required for
PSEs is computationally intensive and this metlsodppropriate for open-loop optimization. In

the second part of this chapter, to circumventiigitg analysis of the KMC simulations, the

" This chapter has been written based on the fotigwiublished papers: (Rasoulian and Ricardez-Sahdov
2015a, 2014)
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uncertainty is propagated into rates of microscagients, then probabilistic bounds on the
outputs are computed through KMC simulations. Agodathm is presented to determine the
probabilistic bounds on the thin film propertiesil@lihe model parameter uncertainties are time-
varying. This type of uncertainty description igeof assigned to those model parameters that
have high frequency contents so that their val@nghs during the operation of the process. The
potential application of these methods is illustdathrough an optimization problem that aims to
specify the robust optimal substrate temperatuodilprthat maximizes the endpoint thin film

thickness in the presence of uncertainty.

The remainder of the chapter is organized as fald®ection 4.1 presents the PSE method in
detail. Worst-case and distributional uncertaintalgsis of the thin film deposition process is
presented in Section 4.2. In Section 4.3, an dlgoris presented to determine the probabilistic

bounds on thin film properties using the distribatof rate of microscopic events.

4.1.Uncertainty analysis using PSE

PSE takes advantage of an expansion to describpeiti@mance of the process around the
nominal control trajectory. In this method, the erainty is quantified using a series expansion
that approximates the nonlinear complex behaviduhe system. The key advantage of this
approach is that it is not necessary to have thé/acal expression for the process since it only
requires the sensitivities with respect to the waoe parameters. Following this approach, the
issue of absence of closed-form models can be sskhleby deriving a low-order model.
Although the order of the series expansion depend$ie process nonlinearity and variability in
the uncertain parameters, first or second-ordeamsipns are usually sufficient for engineering
applications since the expansion needs to be aecuraa narrow neighbourhood around the

nominal values (Nagy and Braatz, 2004).

In uncertainty analysis, the perturbed model patameector,® € R™ can be defined as

follows:

0=0+460, (4-1)
where® is the nominal model parameter vector aads the perturbation abo@t The objective

is to analyse the deviation in the output fromrbeninal output, i.e.,
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Sy=y-9, (4-2)
wherey is the output when the system is operated witmtireinal model paramet@randy is
the output when parameter vectrs used. Employing PSE, the deviation from the imain

output,dy, is computed as follows:

8y = Ly(£)80 +-587L,(£)58 + -+ (4-3)
where L, (t) = (dy(t)/d8)s € R™ and L,(t) = (d?y(t)/d6%)y € R"6*" are respectively the

Jacobian and Hessian evaluated ardatia specific time,.

4.1.1.Worst-case deviation under bounded uncertainties

Analytical techniqgues have been proposed to cheriaet the worst-case deviation of the
control performance under bounded model parameteertainty in continuum models (Ma et
al., 1999; Ma and Braatz, 2003, 2001). In the woaste robustness analysis, the worst-case

deviation in the output is evaluated under boundszertainties in the model parameters, i.e.,

0={010,<06<80,}, (4-4)
where@, ande,, represent the lower and upper limits on the vestamcertain parameters. The
effect of parameter uncertainty on the output ef slgstem can be estimated from the following

optimization problem:

maxg,<g<a, |9Y|- (4-5)

Using first-order PSE, the worst-case variabilitythe process outpuby, is calculated as
follows:
SYw.e = maXelseseu|L159|- (4-6)

More accurate estimates of the worst-case varighiin be obtained by adding more terms
into the expansion and can be formulated in terfiBeoskewed structured singular value (SSV)
or u analysis (Braatz et al., 1994). For the secon@oREE 5y, . can be obtained as follows:

8Yw.c = Maxg <p<p,|L150 + 567L,50| © max,, my>y ¥, (4-7)

where,
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0 0 YW
M=| YL 0 yLlaz | (4-8)
z'L, +L;, W] zTL,z+L;z

TheO in M denotes a zero matrix of consistent dimensians; 0.5(6,, — 6;) andz = 0.5(0,, +
0,). A= diag(A,, A, 8,) is the perturbation block in theanalysis.é,. is a complex scalar while
A, consists of real scalars. Upper and lower boumdg ean be calculated using the worst-case
deviation from the nominal output in the positivedanegative directions, respectively, i.e.,

VP =9+ Ve YO =9 — Y.

4.1.2.Probabilistic bounds under distributional uncertainty

The probabilistic parameter description relaxes tastriction imposed by the bounded
uncertainty description and assumes that the wangrtin the parameter can be described by a
PDF. These types of uncertainties are usually destras a distribution around the point
estimate with a specific variability. The parameteicertainty can be characterized using the
data collected from the actual process; howeveemndccess to plant data is not available, the
uncertainty is typically assumed to be normallytridisited around the parameter’s nominal
values. Moreover, the available algorithms for pseter estimation from the experimental data
mostly result in a normal distribution (Nagy andaBiz, 2007). Therefore, the uncertainties in
the parameters can be described by a multivariatenal distribution around the nominal

parameter estimates as follows:

€o =1{0168"V5"50 < 2 (o)}, (4-9)

where Vo € R"6*" denotes the positive definite covariance matng, is a chi-squared
distribution withny degrees of freedom andis the confidence level. PSE presents an analytica
approach to approximate the PDFs of the contralgdctives when it is impractical to evaluate
them using the primary model. The distributionatentainty in the controlled outputs can be
guantified at low computational costs based onekgansions that describe the outputs as a
function of the uncertain parameters. Assuming that process can be accurately described
using a first-order PSE, the normal distributiontloé output can be obtained from (Beck and
Arnold, 1977):

41



1 -(y-9)*
= ex .
fra ) = T——exp (i)

For second and higher order PSEs, however, thehbdisbn cannot be estimated analytically

(4-10)

and random Monte Carlo realizations from the PDIFthe parameters are needed to propagate
the uncertainty (Nagy and Braatz, 2007). Once th&ui distribution is obtained either
analytically or through the Monte Carlo samplingthoel, the probabilistic upper and lower

bounds can be estimated at a specific probab#itiplbows:

y? = F ' (Prly) = {y: F()}, (4-11)
where b € {low,up} and F~1(Pr|y) represents the inverse of cumulative distributionction
(CDF) evaluated at a predefined probability,

4.2.Worst-case and distributional robustness analysisni a thin film deposition

process

The microelectronic market imposes stringent regnénts upon thin film properties including
specific thickness and surface roughness. Surfaeghness is referred to as an important film
quality variable that controls the electrical anceamanical properties of micro-electronic
devices. The thin film deposition process is a baiperation where a desired minimum film
thickness is required to avoid an under-grown fiim at the end of the deposition process.
Moreover, growth rate is an important factor whagtermines the manufacturing productivity.
To show the effect of parameter uncertainties esetproperties of the thin film, the PSE is used
next to obtain the PDF of the outputs.

4.2.1.Uncertainty propagation using PSE

The uncertainties in the process are assumed iertbegy associated with a single bond, and
the bulk precursor mole fraction, i.87 = [E,X]. In the case of parametric uncertainty, the

parameterg andX are described as follows:

E=E(1+wg), X =X0+ wy), (4-12)
where the nominal valueg @nd.X) are given in Table 3-1 and the uncertainties are:
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—02<wp <02, —02<wy <0.2. (4-13)
For a fair comparison between the worst-case siweaad probabilistic bounds, the covariance
matrix in the multivariate normal distribution isrstructed such that 99.7% of the uncertain

parameters are within the bounded uncertaintiesdtbtandard deviations rule); therefore,

_ ((0.2E/3)? 0 ]
Vo = ( 0 (0.23?/3)2> (4-14)

To determine the order of the PSE, an iterativaaggh is implemented. The commonly used
algorithm starts with the first-order PSE and eatd#s the approximation error using the brute-
force Monte Carlo method. The algorithm iterativelgreases the order of the PSE up until the
error reaches an acceptable value. This approachlba been previously suggested to determine
the order of the PCE (Nagy and Braatz, 2010, 200ige the algorithm converged, the resulting
PSE order will be used for approximating the PDRhe& event rates. The order of the PSE
depends on the nonlinearity of the function anduheability of the uncertain parameter. For
first-order PSEs, the PDF can be evaluated analltiwhile, for higher order PSEs, the Monte
Carlo sampling method is applied to the PSE mold&ined from Eq.(4-3).

To investigate the effect of probabilistic uncertgiand determine the order of the PSE for
each output, 1000 sample points have been generatedmly from a normal PDF with the
covariance matrix shown in Eq.(4-14). Then, apgyMonte Carlo method on the multiscale
model presented in Chapter 3rat 800 K, the PDF of each output has been obtained=a20 s.

The PDFs are also estimated using PSEs while theitisgties in the expansions have been
calculated using finite differences from the averad the outputs obtained through multiple
multiscale models employing reduced-order latticethe KMC simulations. Figure 4-1 shows
the PDF obtained using the Monte Carlo method adpgl the full multiscale model along with
the PDFs estimated using PSEs. As shown in thigdiga first-order PSE is not sufficient to
describe the variability in the surface roughnékswever, a second-order PSE has successfully

captured the nonlinearity observed in this PDF.
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A — Full multiscale model
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Figure 4-1. Roughness PDFsTat 800 K obtained using the multiscale model, first andseeorder PSEs at
t=20s.
To determine the order of the PSE for growth raté thickness, first-order PSEs have been
applied. As shown in Figure 4-2 and Figure 4-Ftforder PSEs has successfully captured the
variability in these outputs of the system.
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Figure 4-2. Growth rate PDFsTt= 800 K obtained using the multiscale model, first-ord8ERatt = 20 s.
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Figure 4-3. Thickness PDFsTat 800 K obtained using the multiscale model, first-ord8ERatt = 20 s.

4.2.2.Robust optimization based on worst-case and probalstic analysis

The key manipulated variable for this process & ghbstrate temperature since it affects the
outputs of the system significantly. In this optzadion problem, while the thickness of the thin
film needs to be maximized for a finite batch tirtteg surface roughness has to be minimized to
assemble high-performance electronic devices. Theséwo conflicting objectives since thick
films can be obtained at low temperatures whergasth film surfaces can only be realized at
relatively high temperatures. Moreover, uncertamiead to product quality variability resulting
in a potential loss in profits. Thus, the optimiaat problem aims to determine the substrate

temperature time-dependent profile that optimibesgrocess performance under uncertainty:
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Ty H )

Subject to:
Multiscale model presented in Chapter 3
hi =Tmin—T({) <0
hy =T(t) = Tpgx < 0
hy = 1P (t;) = Tpax < 0 (4-15)

hy = Grpin — Gr'®(t;) < 0

driP (ty)
- I _qw<o
5 dt =
dGriov (t;)
hy=——R<0
6 dt =

t=[0,¢]; vk =1.2,...K
where the constraints, andh, ensure that the temperature profile remains withenfeasible
operating region for the deposition process. Cairggh; andh, specify the maximum allowed
surface roughness at the end of the batgh, to satisfy market demands and the minimum
growth rate,Gr,,;, t0 ensure process productivity, respectivély.and h, ensure minimum
variability of these properties at the end of tlach. The superscriptsw andup correspond to
the end-point properties evaluated via the lowed apper bounds, respectively. At every
evaluation of the optimizationH'"(t;), r“?(t;) and Gr'®*(t;) are determined using either
probabilistic or worst-case scenario approachesoviBscome the infinite-dimensional nonlinear
optimization problem, the batch timeis discretized intd& equally spaced time intervals while
the temperature at each time interva(k) is kept piecewise constant between successive

intervals and is considered as one of the decigiables in the optimization problem.

Problem (4-15) has been solved under the assumeptibounded parametric uncertainty and
distributional uncertainty it andX, respectively. As shown in 4.2.1, a second-ord&E Ras
been employed to describe the effect of uncer&sntin the surface roughness whereas first-
order PSEs were sufficient to propagate uncergsnt thickness and growth rate. To estimate
upper and lower bounds, three different approaslese considered while solving optimization

problem defined in Eq.(4-15)) worst-case deviation in the outputs using desorip{4-12),ii)
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probabilistic bounds on outputs at 99.7% confidemderval (Pr =30 in (4-11)) andiii)
probabilistic bounds at 68% confidence internviat € o in (4-11)) using description (4-14). In
the case of the worst-case scenario, the rouglatéle end of the batch is estimated using SSV
analysis as shown in Section 4.1.1 while the weoase deviations in thickness and growth rate
can be calculated analytically since they are dlesdrusing first-order PSEs. On the other hand,
to propagate the uncertainty in surface roughnegka probabilistic-based approaches, Monte
Carlo sampling is applied to the second-order PSExplained in Section 4.1.2 whereas the
bounds on thickness and growth rate are obtainalytasally using first-order PSEs.

The batch time was divided into ten equally spaaed intervals. For better comparison of the
results, the initial temperature was fixed at 800HQure 4-4 shows the optimal temperature
profiles obtained from problem (4-15) using theethapproaches. These profiles correspond to
specifications in,,, andGr,,;, of 7 mL and 13 mL/s, respectively,,;, andT,,,, were set to
600 and 1200 K, respectively. As shown in this fiigguhe optimal temperature profile demands
low temperatures at earlier stages of the depospiocess to maximize the thickness by high
adsorption rates. However, close to end of thehbptocess, high substrate temperatures are
needed to promote migration on the surface and theetonstraints on surface roughness. The
profile obtained using 99.7% confidence intervalpmobabilistic approach is slightly different
from the profile obtained using the worst-case aoenapproach. However, the temperature
profile based on 68% confidence interval is the thapgimistic, since this approach estimates
less conservative bounds on surface roughness. tNat@ther reasonable product specification

constraints result in similar conclusions to thasented here.

Figure 4-5 shows the bounds evaluated for surfaoghness using the optimal temperature
profiles shown in Figure 4-4. As depicted in thigufe, the bounds obtained by the worst-case
scenario approach using the SSV analysis are momsecvative compared to the bounds
obtained using the probabilistic-based approacle. Wbrst-case bounds are computed using the
worst-case deviation from the nominal outputs. Mweeg, this figure also shows 100 random
open-loop variations of the surface roughness utmemded uncertainty (4-12) using the
temperature profile obtained from the worst-casenado. As shown in this figure, the
roughness during the batch is bounded within upyer lower bounds estimated based on the

worst-case deviation. The final film thicknessesptaying these temperature profiles are given
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in Table 4-1. As expected, the worst-case scergopwoach returned the most conservative film
thickness at the end of the batch.
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Figure 4-4. Robust optimal temperature profilesgglifferent approaches.
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Figure 4-5. Upper and lower bounds on surface rnag$ using different approaches and open-loop atioak

using the temperature profile obtained for worstecaerformance.

Figure 4-6 shows the final properties obtained uteinded parametric uncertainty using the
temperature profiles obtained from these threeagmgbres. As shown in this figure, regardless of
a few violations using the temperature profileraatied by the probabilistic approach with 68%
confidence interval, the three estimated optimahperature profiles satisfy the constraints
imposed on the optimization problem (4-15). Thattie final roughness of the thin film is

mostly less than 7 mL in reality, even if the mogtimistic temperature profile estimated by the
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probabilistic approach with 68% confidence interigabeing used. In essence, the measurable
benefits in using the worst-case scenario willibetéd since it results in an overly conservative
temperature profile that may eventually lead toneooic losses. In practice, the probabilistic
approach with 68% confidence interval not only agbs an acceptable roughness, but also
results in larger thickness and larger growth rates is a direct consequence of the optimistic
temperature profile identified from the presentrapgh.

Table 4-1. Optimal end-point thickness from differapproaches.

Approach Thickness (1000 mL)
Worst-case scenario 1.4595
Probabilistic at 99.7% 1.4759
Probabilistic at 68.0% 1.7293

+ \Worst-case performance
sb” Probabilistic bounds-99.7% . e *
* Probabilistic bounds-68%

~
-

-
)
E
=
0
i
E or -« ‘t .
* *
%’ * #* * "
5 ‘(" + * . "
. -
o e
S * % . i
*

t 4 oo % x + i
3 . £ 9 & * -
o #* ot * “* * ¥ *
= % il B ne o
© 3 & e * * . *
i=4 £ % * ,*‘0"; * e ¥
= ¥ a e 4 % °F . #*

5 PR T LT

1 i L i A

12 14 16 18 20 22

Final growth rate (mL/s)

Figure 4-6. Variation of final properties due tainded parameter uncertainties, obtained from opep-|

simulations applying various temperature profiles.

4.3.Probabilistic bounds in thin film deposition proces through uncertainty

propagation in the rate of microscopic events

Due to issues associated with the sensitivity amalgf outputs with respect to the uncertain
parameters, the uncertainty propagation is perfdrfoethe rate of the microscopic events. The

main reason for uncertainty quantification of thates is the availability of a closed-form
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formulation between these rates and the uncer@ianpeters. Therefore, PSEs are employed to
avoid the high computational load correspondinghwstmulation of the primary model for
multiple realizations of the uncertain paramet&stimation of the distribution of these rates
using the PSE-based approach is not sufficienétecution of KMC events. Accordingly, once
the distributions are obtained, specific values lbarselected based on a predefined confidence
level. The detailed description of the proposedh#aork to address the uncertainty analysis for

multiscale systems is described next.

4.3.1.Uncertainty propagation into event rates using PSE

Define the vector of uncertain paramet®s {,...,6,,..,6,} € R?, & as the vector of
nominal model parameters and the microscopic raezsor W = {W,,..,W,,..W;} € R, the
algorithm to obtain the distributional uncertairg§ rates of microscopic events at any time
during the process can be outlined as follows:

1. Specify the prior PDF of each uncertain paramefgigs,).

04 = {9q|9q € fp.d.(eq)}. (4-16)

2. Evaluate the sensitivities of rate of each of thieroscopic events with respect to the
uncertain parameters using the multiscale modeh apecific timet. The order of the
required sensitivities relies on the order of P8Br instance, the first and second-order

sensitivities are as follows:

oW

L = (5),_ 1® = (50, - (417)

3. Estimate the PDF a¥; using the following truncated PSE:

W, = W, +1,(6 ~8) + (0 ) L,(6 ) + -, (4-18)
whereW; is the nominal microscopic event rate. The PDR/ptan be obtained by solving
(4-18) for different Monte Carlo realizations ihthat comply with the prior distribution
assigned to each of the uncertain parameters.iistofder PSEs, the PDF of the rate can be
evaluated analytically while, for higher order PStee distribution is estimated by applying
the Monte Carlo sampling method to the PSE modelinéd from Eq.(4-18).

4. Estimate the upper and lower bounds/igrat a predefined confidence level,
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w,” = F7 (Priwy) = (Wi F(W)}, (4-19)
whereb € {low, up} andthe functionF~1(Pr|W,) represents the inverse of CDF evaluated at a
predefined probabilityPr. SettingPr in Eq.(4-19) toa/2 and1 — a/2 yields respectively

the lower boundw/°¥, and the upper bound;*?, for thei™ event ratey;.

In order to investigate the performance of PSE,RB¢ of rate of adsorption obtained using
the primary model and the PSE are compared. Thertancty analysis was performed with
respect to the bulk mole fractioo; which according to the multiscale model presented i
Chapter 3 is the boundary condition of the masssfea equation shown in EQq.(3-4). This
parameter has a significant effect on the tota odtadsorptionif,) and therefore on the overall
multiscale model. To that end, after a finite tim&rval in the open-loop simulation, the PDF of
the total adsorption rate were obtained from Mdbéelo simulations using the primary model
and the PSE. As it was previously mentioned, thentél&Carlo method requires a large number
of samples from the uncertain parameter distriloutiRarticularly for this system, more than 500
data points have to be generated to obtain a remiaEs/e distribution for the total rate of
adsorption while using the primary multiscale mode study the effect of uncertainty in the
bulk mole fraction, random numbers are generatesh fa normal distributiony’(2 x 1076,2 x
10~7). Employing these data points, the uncertaintyr@pagated into the total adsorption rate
using the multiscale model presented in Chapter73=a800 K. The PDF obtained at= 10 s is
presented in Figure 4-7. The variability is alsseased using a first-order PSE and the fitted
normal distribution is shown in Figure 4-7. As shmow this figure, the distribution obtained
from the PSE accurately describes the variabilitythe total rate of adsorption due to the
uncertainty inX. The required computational times are indicatedable 4-2. As shown in that
table, the Monte Carlo method is at least two ara@érmagnitude more intensive than the PSE,
which indicates the key benefit of the present apgin. Using the distribution obtained for total
rate of adsorption, then upper and lower boundshieradsorption rate at the current timee.,
wiow (), W, (t), can be estimated at a given confidence level. ddreesponding values at

a = 1% are shown in Table 4-2.
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Figure 4-7. PDF of the total adsorption rate frorrté Carlo applied to multiscale model using 50scand the
PDF obtained using first-order PSE.

Table 4-2. The probabilistic bounds of the totéé raf adsorption from different approaches at10 s and the

corresponding computational costs.

Approach whvw/s) wir(1/s) Computational Time (s)
Monte Carlo using the primary model 1.41 x 10* 2.33 x 10* 34,980
First-order PSE 1.38 x 10* 2.34 x 10* 390

The first-order PSE is not sufficient for uncertgianalysis in other parameters of the system,
e.g.,E andE,,. As shown in Egs.(3-9) and (3-11), the energy @ased with a single bond and
migration affect the microstructure through nondinérrhenius-type expressions of desorption
and migration rates. In this case, higher order &8 needed due to the existence of
nonlinearity between the uncertain parameters hadntticroscopic events. Therefore, second-
order PSE is applied to study the uncertainty pgapan in total rate of desorption and
migration due to variability in these parameters.study the effect of variability, the uncertainty
considered forx was similar to that described above, (2 x 107°,2 x 10~7) whereast and
E,, were assumed to follow normal distributions aroutheir nominal values|E,E,,] =
[17000,10200], with the standard deviation 600 cal/mol. The PDFs obtained using PSE for
the rate of microscopic events at different timessibown in Figure 4-8.
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Figure 4-8. PDFs obtained from PSE during depasitio

4.3.2.Computation of the probabilistic-based bounds
The algorithm described above to obtain the bodod®ach of the microscopic events at a
specific confidence level, produces a time-dependent hyper-rectangle tadormed by the

extreme values of each microscopic evént, considered in the KMC simulation, i.e.,

m(t) = {[m,(0), .. m;(©), ..., m;(O]:m;(®) = [W,°(©), ..., WL (©), .., W," (©)]}, (4-20)

where the block vectom(t) of length 2 includes all the possible combinations between the
upper and lower bounds of theotal rate of microscopic events at timeEach element ai,
e.g.my, is a vector of lengththat includes a particular combination betweenuiyger and lower
limits of thel microscopic events. Similarly, the surface desaglthe microstructure of the

system at any timeis defined as follows:

S(t,m) = {S;(t,my), ..., S;(¢t, m;), ..., S;(t, m;), Spom (t, Myom)}, (4-21)

where S;(t,m;) is a KMC lattice that represents the morphologytref surface as shown in
Eq.(3-7) at timet due to the combination in the upper and lower tBnspecified on the
microscopic events by the vectar;. Similarly, S, (t, m,,,) represents a surface describing

the evolution at time of the film using the nominal values in thenicroscopic events and is

defined as follows:
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My (£) = [WI (0, ..., WO (), oo, WO ()],
wherew/*°™(t) represents the nominal (expected) value oftrevent rate at time

Based on the abovel)+1l parallel lattice-based KMC models need to be shteal
simultaneously to compute the lower and the uppemts on the fine-scale properties of the
system. Each simulation describes the microstractoir the surface due to a particular
combination in the event rates. Accordingly, lowed upper bounds on the outputs of the thin

film deposition process at a given timean be obtained as follows:

P (t) = maxy(t),
y

y'ov(t) = ming(t), (4-22)
y

y(@) = [F1(6), ... 5 (@), .., F1 (0, From (D],

where y;(t) represents an output predicted from the KMC matiek is calculated using
properties of the microstructure of the surfaé, m;). The outputy(t) can represent the
roughness, growth rate or thickness of the filmaagiven timet, i.e., r(t),Gr(t) and H(t),

respectively.

In general, the number of parallel KMC simulatiafeppends on the number of microscopic
events. Specifically for the thin film depositioropess described in ChapterJ3; 2° since there
are three different microscopic processes occuromghe surface, i.e., adsorption, desorption
and migration. Nevertheless, the sensitivitiestiane-varying and correspondingly the lower and
upper bounds on microscopic events will change nduthe deposition process. When the
parameter uncertainties are time-varying, propagathe uncertainty using fixed upper and
lower bounds on microscopic events results in gvednservative bounds for the outputs. To
alleviate this problems,,,.(t,m,,,,) is used as the reference (nominal) surface usieg th
nominal values of events rates. This lattice isduse update other KMC simulations, every
sampling time instancat. That is, assuming that the uncertain parametehasging everyt
according to its PDF,, 4 (6,), all the KMC lattices to be used for the next shngpinterval, i.e.,
S(t + At,m;) are initialized withs,,,,,(t,m,,,) to compute the lower and upper bounds of
outputs for the next sampling time interval. Thisogedure continues up until the final
integration time is reached. Figure 4-9 summarites algorithm proposed in this work to

determine the probabilistic-based bounds for tiefihm deposition process.
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Figure 4-9. Flowchart of the algorithm used to appnate the upper and lower bounds of the outputs.
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The major limitation of the proposed algorithm ts computational cost for control and
optimization applications. To accelerate the simoites, reduced-order lattices are employed in
the KMC simulations which give rise to other chalies. The new issues arise due to higher
fluctuations encountered with smaller lattice siassshown in Figure 3-14. To eliminate the
fluctuations presented due to reduced-order la&ttidee probabilistic bounds are estimated based

on averaging the estimates obtained from multipilependent simulations.

4.3.3.Robust optimization based on the probabilistic bouds

In this section, problem (4-15) is solved assum@dg= [X,E,E,,] is the set of uncertain
parameters that are normally distributed around theminal values listed in Table 3-1 with
specific standard deviations¢ is assumed as a time-invariant uncertain parameitér a
standard deviation of x 10~7 whereast andE,, are assumed to change during operation every
At = 1s with standard deviations 600 cal/mol. The bounds on the rates of microscopic event
are calculated at 99% confidence level. The batoh ts discretized into 10 stages/af= 10s;
the substrate temperature at the initial time ef blatch is kept constant at= 800 K. In this
optimization,r,,, andGr,,;, are set to 5.25 mL and 10.5 mL/s wherégs, andT,,,, are 600

and 1100 K, respectively.

The optimal substrate temperature profiles for éhdpoint optimization problem using only
nominal values in the parameters, as well as thastoapproach under parametric uncertainty
are shown in Figure 4-10. Figure 4-11 shows thentsuwobtained using the optimal robust
temperature trajectory profile. The correspondipgreloop variations of the surface roughness
while using the robust temperature profile are alsown in that figure, i.e., random realizations
in the uncertain paramete#sthat follow their description given above were glated using the
robust temperature profile. As shown in this figuspen-loop simulations are bounded with the
upper and lower bounds obtained for roughness;aimaining constraints were also validated in

the same fashion and are not shown here for brevity
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Figure 4-11. The upper and lower bounds estimatedurface roughness and open-loop simulationgubim
robust optimal temperature profile obtained undeametric uncertainty.

Figure 4-12 shows the corresponding open-loop trans of the final surface roughness and
growth rate applying 100 Monte Carlo simulationsngsboth the nominal temperature profile
and the robust optimal temperature profile. As gmaw this figure, open-loop simulations
employing the robust temperature profile remaineithiw the feasible operational limits
specified for this process. On the other hand, dpen-loop variations of the final surface
roughness applying Monte Carlo simulations usirg nbminal temperature profile shows that
the surface roughness at the end of the batch gsabmes not meet the specification considered

for this variable £,,,,) most of the time, which results in a loss in perfance.
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Figure 4-12. Final properties due to parameter tairgies, obtained from the open-loop simulatiapplying
various temperature profiles. The dots are forthist temperature profile whereas the x-markdarthe nominal

temperature profile; the dashed lines indicatectivestraint on the final surface roughness and droate.

4.4. Summary

The main contribution of this research is to empiagher order PSEs for uncertainty analysis
of multiscale systems. Although series expansioamge hbeen employed in the literature for
sensitivity analysis of multiscale systems, PSBEsHaeen employed in this part of the research
for robust optimization of multiscale systems undecertainty. The uncertainty analysis of the
thin film deposition is performed applying worstseaand probabilistic-based approaches. The
optimal temperature profile that maximizes the Ifilackness of the thin film under end-point
product constraints and uncertainty in the modehpaters was determined. The results show
that employing the SSV analysis or probabilistisdzh approach based on the prior assumption
on type of the uncertainty affects the optimizatiesults. Thus, inaccurate uncertainty

description assumptions can lead to a loss in padoce and therefore economic losses in the
process.

A systematic framework was explored to analyze timee-varying model uncertainty
propagation based on the PSE. The uncertaintyeipénameters of the KMC simulations and in
the boundary condition of the mass transfer eqnasigropagated into total rates of microscopic
events using PSEs. That is, having the prior thgtion of the uncertain parameters and

estimating the sensitivities, the PDF of microscopivents are determined using the PSE.
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Subsequently, upper and lower bounds on the outpots estimated using the outputs
distributions. The computational feasibility forbrgst optimization has been achieved using
average of multiple multiscale models that applyuced-order lattices in the KMC ion. This
method has been used to obtain the optimal subdeatperature trajectory that maximized the
endpoint thin film thickness while meeting congttaion the roughness and growth rate in the
presence of uncertainty in the multiscale modetisameters. The proposed approach has been
evaluated through simulations that show that thstesy’'s outputs remained within their
corresponding feasible operational limits underentainty.

The implementation of the framework used in thispthr for online applications is still
challenging and even prohibitive due to the comiputal costs associated with the simulations
of the KMC model. The issue of computationally mire KMC simulations is addressed in the

next chapter by developing low-order models foir@nhpplications.
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Chapter 5
Robust Estimation and Control of Surface Roughnesand Growth Rate'

The production of high quality thin films is notafgble without a precise control framework.
However, measurements are not available at a freyuthat is required for effective control.
Therefore, real-time estimators are required tomedgé the desired thin film properties for
control and optimization approaches. The contrdltsitof the thin film growth process has been
extensively studied in the literature. Most of Huanced microstructure controllers proposed in
the literature for thin film deposition require nsegements at fine scale, while in practice, thin
film depositions are typically operated in opendo®oreover, model parameter uncertainty has
been usually neglected in those methodologies. ,Thastrol approaches that can operate
regardless of the measurements under model-plasinatch are essential for the efficient
operation of these processes. Methodologies fdrtirma estimation and control of thin film
deposition process have been proposed based ompleuleduced-order lattices in KMC
simulations (Lou and Christofides, 2003b). The iempéntation of KMC simulations for online
applications is still challenging and even prolinvgitdue to the computational costs. The issue of
computationally intensive KMC simulations is circuemted by developing low-order models
that are identified offline based on data obtaifi@sn the multiscale model. This approach
significantly reduces the simulation time over KM&hd makes the online control and

optimization feasible.

This chapter presents the development of an esimtatevaluate the surface roughness and
growth rate based on the substrate temperatureh@nblulk precursor mole fraction during the
growth process. Section 5.1 shows the open-looporees in the deposition process and
investigates the potential interactions betweemthaipulated variables and controlled outputs.
Section 5.2 presents an algorithm to constructtbkivariable robust estimator. In Section 5.3,
the performance of the estimator is evaluated hypliog the estimator with PI controllers to
simultaneously control the surface roughness aadytbwth rate under different scenarios. The

outcomes obtained from this implementation are sarmed at the end of this chapter.

T This chapter has been written based on: (RasoatidrRicardez-Sandoval, 2015b).
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5.1. Interaction between the manipulated variables and @ntrolled outputs

In order to design a multiple-input-multiple-outpzdntrol scheme for the thin film deposition
process, the effect of manipulated variables orctmrolled outputs must be analyzed first. For
this analysis, the multiscale model presented iapidr 3 has been employed to mimic the actual
process behavior. Egs.(3-8)-(3-15) reveal the Baamt role of substrate temperature on the
microscopic events that affect the surface micuastire, in thin film deposition, particularly
roughness. Eq.(3-8) shows that the precursor nralidn influences the deposition rate and
accordingly the surface roughness and growth rHbels, the effect of bulk precursor mole
fraction and substrate temperature on the surfagghness and growth rate, and their potential
interactions, are studied through open-loop sintat Figure 5-1 shows the surface roughness
and growth rate when the bulk mole fraction is remed constant a2 x 107¢ whereas the
substrate temperature is changed from 1000 to K180t = 50s. As illustrated in this figure,
the growth rate shows an instantaneous decreasegjpproximately 17.3 to 16.5 mL/s, i.e., with
a gain of -0.008 mL/(s.K). The surface roughnedlsvis a typical step response to overdamped
processes with a gain of -0.0125 mL/K, i.e., theglmess is decreased from 3.75 to 2.5 mL.
Therefore, although the temperature affects botfase roughness and growth rate, the surface
roughness is more sensitive to variations in teatpee. In Figure 5-2, the roughness and growth
rate profiles are shown when the bulk mole fracti®rthanged fron2 x 1076 to 3 x 107° at
t = 50 s while the temperature remained constant at 1008skshown in this figure, the growth
rate is instantaneously increased from approximat@l3 to 26 mL/s with a gain &7 x 10°
mL/s while the surface roughness follows a respotygegcally observed for overdamped
processes to step changes with a gaifisk 10° mL, i.e., the roughness increased from 3.75 to
4.3 mL. Although the bulk precursor mole fractidifeats both surface roughness and growth
rate, growth rate is more sensitive to variatianghis process variable. Therefore, the precursor
mole fraction and temperature simultaneously aftbet desired outputs and this interaction

needs to be considered in multivariable estimadioth control scheme.
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Figure 5-2. Surface roughness and growth rate e change in the bulk precursor mole fractiomfz x 1076 to
3x 10"°while T = 1000 K.

5.2.Real-time robust estimation of roughness and growthate

In Section 4.3, some uncertainties were considierée@ changing in time and an algorithm was

proposed to estimate upper and lower bounds on otitputs under uncertainties. The
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distributional uncertainty quantification was perfeed for the rates of the microscopic events
using PSEs; upper and lower bounds of the outpet® when obtained using the PSE-based
bounds on the rate of these events (Rasoulian &atdez-Sandoval, 2014). The main reason
for uncertainty quantification of the states wae #vailability of a closed-form formulation

between these rates and the uncertain parametezsefére, PSEs were employed to avoid the
high computational load corresponding with simwlatiof the primary model for multiple

realizations of the uncertain parameters. In theeec research, however, the uncertainty is
directly propagated into the outputs of the systeémere the closed-form model is not available.
This approach provides the distribution of the atgpinstead of only determining upper and
lower bounds for the system’s outputs. Uncertaigtyantification is studied in this work

employing PSEs to assess the variability resultethe outputs of the system due to model

parameter uncertainty.

5.2.1.Model construction

In this section, an algorithm is presented to dgved robust estimator that can mimic the
multiscale process efficiently for online contraidaoptimization purposes in the presence of
model parameter uncertainty. As a result of theuffgutput interactions illustrated in Section
5.1, multivariable identification is considered.flide system identification is performed to
determine the parameters of a reduced-order mo@eldescribes the surface roughness and
growth rate as a function of substrate temperaturd bulk precursor mole fraction. The
identified closed-form model is incorporated inestimator that predicts the controlled outputs

for online application. The algorithm comprises tbkowing steps:

1. Space discretizationDiscretize the operational region of temperatunte iequally spaced
intervalsAT, and the bulk precursor mole fraction region iedially spaced intervalsx.
T; = {Tin + AT |Tiin < T; < Taxs t = 0,1, ., (Tnax — Trmin) /AT,

(5-1)
‘X} = {Xnin + JAX | Xpin < ‘X:] < XmaxJ = 0,1, o, (Kpax — Xmin)/Ax}i

where T,,;, andT,,,, are respectively the minimum and maximum operatergperature
while X,,;, and X,,., are the minimum and maximum applicable bulk preocumole
fraction, respectively. The purpose of the diseedton is to derive a finite-dimensional
identification problem. Decreasing the discretiazatiresolution reduces the computational

costs but it also diminishes the model’'s ability nrake accurate predictions whereas
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increasing the number of discretization points ioves the accuracy in the model predictions
at the expense of higher computational costs.

Batch time discretizatiorDivide the batch time horizone [t,, tf] into equally spaced time
intervals,At, with discrete time stepg = t, + kAt; k = 0,1, ..., K.

Uncertainties descriptianDefine the vector of uncertain parameters {6, ...,6,, ...,0,} €

R?, ® as the vector of nominal model parametgrgs the output of the process using the
nominal parameter vectod, andy as its value for the perturbed vecter,Specify the prior

PDF of each uncertain parametgyr, (6,).

0q = {04104 € fp.a.(64)}- (5-2)

Although this method takes advantage of the prirmvedge about the distribution of the
uncertain parameters, the algorithm presented Ilser@pplicable regardless of the PDF
assigned to the uncertain parameters.

. Sensitivity evaluatianEvaluate the nominal outputs and sensitivitiesthaf outputs with
respect to the uncertain parameters for each pdirand.x;, at each discrete batch timg,
during the growth process. The sensitivities havéd estimated based on the average of
multiple multiscale simulation runs using high-ardtices in the KMC models. The order
of the sensitivities relies on the accuracy requioy the PSE to approximate the outputs’
PDFs of the primary multiscale model.

. Output’s PDF approximationEstimate the PDF of at each sampling time instance during

the deposition for each pair gf and.X; using the following truncated PSE:

Yijje = Vijk + L (0 —0) + % (06— G)TLZ,i,j,k(e -8)+-, (5-3)

where Ly;;, = (dy/d8)g € R and L,;;, = (d*y/d8%)g € R®*¢ are respectively the
Jacobian and Hessian evaluated;at; and sampling time instancg, around the nominal
values of the uncertain parameted (

. Calculation of output’'s bound€stimate the upper and lower boundsyoat a predefined

confidence levelg, during the entire batch time for each pairo&ndX;, y/7;
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viik = Fife(Prlyiji) = Wijn: FojeViju)} (5-4)

where the functionF~1(Pr|y) represents the inverse of CDF evaluated at a finede
probability, Pr. SettingPr in Eq.(5-4) toa/2 and 1 —«a/2 yields respectively the lower
bound and the upper bound on the output. Accordjpgtan be the upper or lower bound of
any output of the process, i.e. surface roughnegsowth rate.

. Model selectionSelect an appropriate model that can describetb&ition of the process
outputs with respect to time. According to thedcépries depicted in Figure 5-1 and Figure
5-2 and the discussions provided in Section 54 stirface roughness can be interpreted as
an overdamped process model whereas growth ratéeanodeled as a steady-state gain
process. Therefore, the following models are carsid to describe the surface roughness

and growth rate during the batch time for each gy and.X;:

t
r(Ti, X;,t) = By, jTixfz'i"' <1 —e ﬁ’au), (5-5)

Gr(Ty X;) = Bai, T, (5-6)
wherep,; ;(I = 1, ...,4) are the low-order model parameters that can beifgehthrough the
least-squares approach.

. Model identification:Estimate the parameters of Egs.(5-5)-(5-6) fordamset obtained for
each pair of7; and X; (i.e. B,;;) through minimization of the following least-squares

function:

d(Biy) = Zico 5k — Y2, (5-7)

wherey??¥ and yfjr,id

are respectively the bound on the process outpisireed using the
PSE-based approach and model prediction of theubatik" sampling time instance army
andX;. The identifiedg,; ;(I = 1, ...,4) represent the parameters of the models presemted i
Egs.(5-5)-(5-6) for each pair af andX;. That is, there exists one model for each pair of
temperature and bulk mole fraction considered @Sjbace discretizatiostep.

. Approximation of the low-order model parametefsie aim of this step is to use the model
parameters estimated from offline identificatioreath discrete point (i.g,; ;) to determine

a polynomial function that can be used to estinthése parameters at any temperature or

bulk mole fraction that is within the operationagion, i.e.8,(I = 1, ...,4). Regression can be
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used to correlate the estimated paramef(s= 1, ...,4), to the independent variablésand
X:

B = boy + Xg=1ba I3 (T, X), (5-8)
whererl,; represents a polynomial function of temperature laumé precursor mole fraction;
by, andbg, are the polynomial coefficients calculated usingression analysis arfd is the
number of independent terms considered in the aisalyhese polynomial correlations can
be used in closed-form models to predict the serfatighness and growth rate for online
applications.

10.Online robust estimatorOnce these polynomial correlations are obtainéahef they can be
used for online estimation of roughness and grawatl. According to Eq.(5-6), measuring
the temperature and bulk mole fraction is suffitiem estimate growth rate. On the other
hand, surface roughness at any sampling time dthegrowth process depends not only on
temperature and bulk precursor mole fraction bsb @n the roughness at a previous time

instance; thus,

_ = ik
T = Te_q +Sgn (BlTXﬁZ (1 —e B3> - rk_1>

wherer; is the estimated roughness at sampling time iostap while r,_, is the estimated

_ _ tk—l:tref tk_fref
(ﬁlTXBZ - rref) (e Bz —e B3 )

(5-9)

roughness at previous sampling time instange,. It is important to note that;_, is
obtained from the estimatot,, andt,.r respectively denote the reference roughness &nd th
reference time when the substrate temperature elsaoghe current temperatusgn is the
sign function whiles;, 5, andS; are the model parameters evaluated using the tamoper

and bulk mole fraction at time,.

5.2.2.Application to thin film deposition process

To determine the order of the required PSEs fotridigional uncertainty propagation, a
comparison has been made between the PDFs obtameohcertainty propagation in surface
roughness using the primary multiscale model an&sPSn this casef” = [E,E4, E,,] is
considered as the vector of uncertain parametes.assumed that the uncertainties are normally
distributed around their nominal values listed iable 3-1 with a standard deviation of 500
cal/mol. The standard deviation for the uncertain pararaeseset based on the sensitivity of the

model outputs to these parameters. Note that the tB&nique is applicable regardless of the
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variability in the model parameters. Therefore, d8&mple points were generated randomly for
the vector of uncertain parameters from their gpoading prior PDFs. The roughness PDF at
t = 20 s is obtained through the Monte Carlo technique ewiph these sample points in the
multiscale model described in Chapter Iat 800 K andX = 2 x 10~°. This PDF is plotted in
Figure 5-3 with the PDFs obtained using first aedosid-order PSE approximations. The normal
distribution resulted from the first-order PSE da@ estimated analytically whereas, for the
second-order PSE, the Monte Carlo sampling meteaapplied (Nagy and Braatz, 2007). As
illustrated in this figure, although first-order P&an adequately describe the distribution of

surface roughness, second-order PSE has captar¢gilthof the PDF more accurately.
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Figure 5-3. Roughness PDFsTat 800 K andX = 2 x 10~° obtained using the multiscale model, first ancdbsee

order PSEs at= 20s.

The computational times for these approaches aietdd in Table 5-1. As shown in this table,
the implementation of the Monte Carlo sampling teghe for uncertainty propagation in the
outputs using the multiscale model has a high caatjpmal cost compared to PSE-based
approaches. Upper and lower bounds obtained a#®68dhfidence interval are also shown in
Table 5-1. Comparing the bounds estimated using-lR8Ed approaches with those obtained
from the multiscale model reveals that, although ltbunds evaluated using first-order PSE are
acceptable, the second-order PSE provides higlveraxy. As shown in Table 5-1, the error of
the first-order PSE model is larger than 1% (ile7% and 1.024%) whereas the errors in the
second-order PSE are smaller than 1% (i.e., 0.2% @&@%). This confidence interval

corresponds to the upper and lower bounds thatitlen one standard deviation from the mean
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value. It is important to note that these bounds lma calculated using any other value for the

confidence interval.

Table 5-1. The probabilistic bounds of the surfameghness at 68.2% confidence interval from difiére

approaches and the corresponding computationad.cost

Approach rlov(mL) r*?(mL) Computational Time
Monte Carlo using the multiscale model 10.81 14.71 28 hr
First-order PSE 10.62 (1.7%) 14.56 (1.02%) 16.6 min
Monte Carlo using the second-order PSE 10.83 (0.2%) 14.82 (0.7%) 38 min

Figure 5-4 shows the roughness PDFs obtained dfesetht operating point, i.eT; = 1100 K
and X = 4 x 107%. Likewise, the second-order PSE is able to captheetails of the output
distribution more accurately. Although more accairaatput distributions may be obtained using
high-order expansions, the order of the PSE is Imattermined by the accuracy of the

approximation required while performing the robessanalysis.
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Figure 5-4. Roughness PDFsTat 1100 K andX = 4 x 10~¢ obtained using the multiscale model, first ancbaee
order PSEs at= 20s.
To investigate the effect of this set of uncerfaamameters on growth rate, the distribution of
growth rate is estimated using the Monte Carlo dengpnethod applied on 1000 sample points
randomly generated from the corresponding PDFhefuncertain parameters. Uncertainty is

propagated into the growth rate employing the racétie model, first and second-order PSE
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approximations af" = 800K and X =2 x 107¢. As shown in Figure 5-5, the variability in
growth rate as a result of uncertainty is small grath rate is not significantly sensitive to this

set of uncertainties.
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Figure 5-5. Growth rate PDFs7at 800 K andX = 2 x 10~¢ obtained using the multiscale model, first ancbaee
order PSEs at= 20s.

To develop the proposed robust estimator for tirefttm deposition presented in Chapter 3, it
is assumed that the substrate temperature can etfamrg 600 K to 1400 K7;(i =1,...,9),
whereas precursor bulk mole fraction can vary from107° to 7 x 10~°, X;(j = 1,...,7). For
this application, using more discrete points dagsimprove the accuracy of the estimations. To
discretize the batch time; = 100 s, 101 discretization points were used. As showhigure 5-3
and Figure 5-4, surface roughness is quite seaditithese uncertain parameters. Despite that
high-order PSEs provide more accurate distributmn®ughness, the first-order PSE is applied
here since it was accurate enough for control mepoTherefore, first-order sensitivities of
roughness with respect to the uncertain parametsgsgenerated offline for each pair of
temperature and bulk mole fraction along the batiche. Due to normally distributed
uncertainties assumption in the parameters and wsifirst-order PSE, the uncertainty in the
surface roughness will be normally distributed atsdmean and variance can be calculated
analytically (Nagy and Braatz, 2007). The mean #redvariance of the corresponding normal
distributions are used to obtain the lower and ujpoeinds on roughness at= 0.5%. This data
is used inModel identificationstep in the previous algorithm to estimate the eh@adrameters

for each pair of; andX;. The regression results for the upper bound oghoess ar = 600 K
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and T = 700K are presented in Appendix A. To provide a genenaldel for the whole
operational region (step 9 in the previous algamjththe operational substrate temperature
region is divided into three regions and the patamsen Eq.(5-5) are estimated assuming that

these parameters are functions of substrate tetoper@nd bulk mole fraction as follows:

By = bo;y + by T + by T? + by, TX + by T2X + bs T?X 2. (5-10)

Figure 5-6 shows the model fittings obtained fraagression for these parameters, which are
used to estimate the upper bound on surface rosghméien the operating temperature is
between 1100 K and 1400 K. It is important to nibia, for brevity, the regression results for
other regions of temperature are provided in theeXglix A. Moreover, the narrow confidence
bounds obtained for each regression is includesppendix A demonstrating that the regression
models are statistically significant. Although atp®lynomial functions or nonlinear functions
can be used, the estimations obtained by the fuamcthown in Eq.(5-10) are sufficiently

accurate for online control purposes.

To examine the performance of the estimator, uppdrlower bounds obtained for the surface
roughness from the robust estimator are shown guirEi 5-7. In this case, the bulk precursor
mole fraction is maintained constant3ak 10¢ whereas the substrate temperature is changed
according to the profile shown in this figure. Timow/ the effect of uncertainties, a set of 30
realizations were generated from the distributi@fisuncertain parameters and used in the
multiscale model to calculate the surface roughn&ssshown in Figure 5-7, these open-loop
simulations are bounded within the lower and theenfounds obtained by the robust estimator.
It is important to note that, in the presence ofleligplant mismatch, estimating the upper bound
on roughness from the multiscale model is not apple in online applications. That is,
calculating the bounds employing PSE takes couplboors while the closed-form models

developed in this work predict the bounds in neitisnds.
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while 1100 K < T < 1400 K.
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Figure 5-7. (a) Surface roughness due to paramatmrtainties, obtained by Monte Carlo simulatismg 30
open-loop simulations (solid lines), the upper bvader bounds on surface roughness by robust estimf@ashed
lines), (b) Substrate temperature profile.

To develop an estimator for growth rate, as showrrigure 5-5, the uncertain parameters
considered in the present analysis have no sigmifieffect on this output of the process.
Therefore, a nominal estimator was designed fowtiroate from the data collected using open-
loop multiscale simulations at each pairfpfand.X;. The input and output measurements along
with the model proposed in Eq.(5-6) are used istlsguares minimization to obtaf; ; for
each discrete point in the operational domain. Thenfollowing model is obtained for growth

rate through regression:
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Gr = (5.34 X 10* — 99.1T + 4.92 X 10*TX + 7.5 x 1072T? — 2.1 x 107°T3)TX, (5-11)
where the term in the brackets is the polynomialcfion used to approximate, for any

temperature and bulk mole fraction in the specipdrating region.

To show the performance of the nominal estimatorgiowth rate, the bulk precursor mole
fraction is maintained constant atx 10~ whereas the substrate temperature is changed
according to the profile shown in Figure 5-7(b).eTastimated profile and the growth rate
obtained from the multiscale model under unceryaimthe parameters are shown in Figure 5-8.
As shown in this figure, the estimator predicts grewth rate obtained from the multiscale

model.

Multiscale model
27 ——-Nominal estimator

Growth rate (mL/s)
[y}
=

0 20 40 80 80 100
t(s)

Figure 5-8. Comparison between the growth rateinddaby multiscale model and growth rate estimaisidg the
estimator.

5.3. Control of surface roughness and growth rate

In this section, the multivariable control of swdaroughness and growth rate is studied
adopting the estimator proposed in Section 5.2 leauwith PI controllers. The control scheme
block diagram is shown in Figure 5-9 and thin fiheposition is modeled based on the

multiscale model developed in Chapter 3 using@@x 100 lattice in the KMC simulation.

To justify the need for a robust estimator in tluateol applications and to demonstrate the

effectiveness of the proposed estimator, threewdifft case studies are investigated:

1. The nominal estimator is applied to control the m@hthin film deposition process.
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2. The nominal estimator is employed to control thead#tion process under model
parameter uncertainty.
3. The robust estimator is applied to control the d@pm process under model parameter
uncertainty.
Process

[ Thinfim |OUPUS
growth process

Estimator

Set points outputs
Pl Controllers Estimator —>
Substrate temperature and precursor
bulk mole fraction

Surface roughness and growth rate
estimates

Figure 5-9. Block diagram of multivariable contadlthin film growth process.

In the first case study, a nominal estimator wosidfice to estimate the controlled outputs
assuming that all the parameters of the procesgeanfectly known. To design the nominal
estimator, step 4-6 in the algorithm proposed wgtethe estimator in Section 5.2.1 is modified
as follows: instead of estimating bounds on thetrotled outputs, the responses from multiple
open-loop simulations are averaged for roughnesls gaiowth rate using the nominal model
parameters shown in Table 3-1. According to thalteshown in Figure 5-1 and Figure 5-2, the
surface roughness is paired with substrate temperathereas growth rate is paired with the
bulk precursor mole fraction. The set point of slieface roughness in these simulations is 2 mL
while the proportional gain in its Pl controllergst to 1.7 K/mL and its integral gain is set to 1
K/(mL.s). The set point for the growth rate is set to 40 snkhile the proportional gain and the
integral gain in the growth rate Pl controller ar¢ x 10~° mL™* and 8 x 10~° (mL.s)?,
respectively. As shown in Figure 5-9, the controlises the estimate of the outputs obtained
from the estimator to determine the control actionduding temperature and precursor mole
fraction. The controlled surface roughness and growate from the deposition process, their
corresponding estimations and also their controbas are illustrated in Figure 5-10. As shown
in this figure, the estimator is able to follow thaultiscale process resulting in a successful

regulation of the surface roughness and growthanaiend their desired set points.
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Figure 5-10. (a) Surface roughness and growthtrajiectories from the nominal process (solid liritbg roughness
and growth rate estimations from the nominal edtimé@dashed line), (b) Substrate temperature aiidgrecursor

mole fraction trajectories.

In the second case study, to make the study maidestie, the performance of the nominal
estimator is investigated when there is uncertaintthe model parameters of the system. To
incorporate uncertainty in the process, it is asirthate” = [E,E,, E,,] is the vector of
uncertain parameters that are normally distribiexind their nominal values with a standard
deviation of 500cal/mol. Since growth rate is not sensitive to these uaceparameters, the
results are only shown for surface roughness. imfttm manufacturing, the surface roughness
has to be less than a certain value since highgyhreess can deteriorate the conductivity of the
semiconductorAs shown in Figure 5-11, the surface roughnessnsisve to these uncertainties

and the estimated roughness is smaller than tHiacguroughness obtained from the multiscale
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model. Accordingly, underestimating the surfacegtmess by the nominal estimator has

hindered the performance of the control framewadiks result motivates the development of a
robust estimator for this process.

1500

Surface roughness (mL)

)
o
Substrate tem perature (K)

0 20 40 60 80 100

t(s)
Figure 5-11. Surface roughness trajectory from @seander uncertainty (solid line), the roughnssisnation from
the nominal estimator (dashed line) and the suesteanperature.

Based on the above, in the third case study, tharithm presented in the previous section is
implemented to design a robust estimator. To enthigreontrol objective at the end of the batch,
the robust estimator is designed such that it ptedhe upper bound on surface roughness. As
shown in Figure 5-12, the estimated roughness rigetathan the roughness obtained from
multiple multiscale simulations. Therefore, theusbestimator is able to ensure that the surface
roughness at the end of the batch is always belewet point limit under uncertainty in the
system parameters, which is a desirable featurengive robust approach pursued in this work.
The multiscale simulations shown in Figure 5-12 avgenerated under multiple realizations in
the uncertain parameters that follow the PDF dp8ons defined for these parameters.

To further investigate the performance of the robestimator, the set points for surface
roughness and growth rate were changed to 2.5 mL58nmL/s, respectively. As shown in
Figure 5-13, the coupled robust estimator and Rtrotlers have successfully regulated the

process outputs around their corresponding settgom the presence of uncertainty in the
multiscale model parameters.
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Figure 5-12. Surface roughness trajectories fromegss under uncertainty (solid lines), the rougbmestimation
from the robust estimator (dashed lines).

(a) (b)

10 T T T T 1400 T T T T 7

|
Y
(=]

1200

w

S

1000

Surface roughness (mL)
Growth rate (mL/s)

Substrate temperature (K)
Bulk precursor mole fraction

L
w

G 1 A A n G 800 i A i L 210
0 20 40 60 80 100 0 20 40 60 80
t(s) t(s)

Figure 5-13. (a) Surface roughness and growthtrajiectories from the process under uncertaintiid $ime), the
roughness and growth rate estimations from thestobéstimator (dashed line), (b) Substrate tempeyatad bulk

precursor mole fraction trajectories.

5.4.Summary

Although the cutting-edge sensors that are ablpetborm measurements online at the fine-
scale level can improve monitoring and control,pmactice, most of the industrial thin film
deposition processes are still operated in opep:-Ibtotivated by this, a methodology to design
a robust multivariable estimator has been preseiriethis chapter to assess the surface
roughness and growth rate efficiently under unaaan a thin film deposition process. To that

end, the uncertainty in the outputs of the systenguantified through the PSEs while the
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coefficients of these expansions are identifietiredfbased on the output data collected from the
multiscale model. Uncertainty in a few of the nmadtle model parameters has been added to
account for plant-model mismatch. To demonstrate performance of the estimator in
multivariable process control applications, thepmsed estimator is coupled with PI controllers.
To provide a robust control of surface roughndss,robust estimator predicts the upper bound
on this controlled output. As shown in the simuwatresults, the predicted surface roughness at
the end of the batch bounds the multiple realirstivom the multiscale model under parameter
uncertainties and prevents a loss in performandtoAgh the developed low-order model is
used to design a robust estimator, it is also epble for robust optimization purposes, or as a

basis for the design of an MPC algorithm.
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Chapter 6
Robust NMPC for a Thin Film Deposition Process

The economics in the microelectronics industry higdepend on the operating policies
adopted in the plant. Non-optimal strategies maylten undesired plant performance leading to
economic loss or environmental and safety hazdvidslel-plant mismatch, actuator constraints
and sporadic sensor data can potentially drive glexzess far from the optimum. Unlike
conventional feedback controllers, the main adgataf the MPC framework is the ability to
cope with the safety, operational or economic cam#ls in the presence of model-plant
mismatch (Mayne et al., 2000). MPC provides anc#ffe control framework employing the
system model to predict the control actions whiplimize a performance index in the presence
of constraints (Allgower et al., 2004; Garcia et 8989; Qin and Badgwell, 2003). Therefore, in
practice, a closed-form model is essential forcedfit and accurate forecasting of the process
behavior (Morari and H. Lee, 1999). To guarantesetl-loop performance under deterministic
parameter uncertainty, robust formulations havenb@®posed in the literature based on the
worst-case deviation in product quality (Gunawamlet2004; Ma et al., 1999; Ma and Braatz,
2001). Robust MPC addresses optimal control problevith hard constraints that must be
satisfied for all realizations of the parameter ertainty. Such a control design, however, can
become overly conservative when the realizationthénuncertain parameters that produce the
worst-case scenario have a low frequency of ocouegNagy and Braatz, 2004). Therefore,
distributional uncertainty analysis have been psegowhere the restriction imposed by the
bounded uncertainty description is relaxed usingbabilistic-based uncertainties (Nagy and
Braatz, 2003a, 2003b; Ricardez-Sandoval, 20123dtttion to probabilistic descriptions for the
uncertain parameters, the MPC formulation can Ibesdowith probabilistic constraints (Mesbah
et al., 2014; Nagy, 2009). Adopting a chance camstd approach, stochastic MPC allows an
acceptable level of risk where the constraints smésfied with a specific probability of
occurrence (Cannon et al., 2011; Li et al., 20@8n#&rm and Nikolaou, 1999).

Although the advent of multiscale modeling has #icgntly improved the prediction
capabilities in the thin film deposition proceskisttype of models are not appropriate for

advanced control strategies. Multiscale models @oé available in closed-form and are

* This chapter has been written based on (Rasoualigh Ricardez-Sandoval, 2015c) and S. Rasoulian, L.A
Ricardez-Sandoval, Stochastic nonlinear model ptizdi control applied to a thin film deposition pess under
uncertainty, Submitted to the Chemical EngineeBognce, CES-D-15-01118.
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computationally prohibitive for online applicatiorBarticularly, in an MPC framework, which
has been the most prominent advanced control giraée online optimization-based technique
is adopted where extensive online calculationgegaired. Nevertheless, the detailed multiscale
models can be employed to derive low-order modelsdre practical for an MPC framework. In
this chapter, the development of closed-form modelgresented that can predict the control
objectives in the presence of model-plant mismaidtese models will be efficient for online
applications, while being able to capture the rsaéile nature of the thin film deposition process
under uncertainty. Although PSE can be employedntayse the distributional uncertainties in
the controlled outputs under model parameter uvaceigs, the evaluation of the sensitivities is
not straightforward. Sensitivities change in timad aonline estimation of these sensitivities
through the multiscale model is not practical. Traffline identification is performed to identify

the parameters of the closed-form model.

This chapter presents an algorithm to develop seddrom model that is identified offline to
predict the controlled outputs at a predefined siggarobability for a robust NMPC application.
The identification is performed for a fixed confide level and hard constraints are imposed in
the robust MPC framework. In another approach,nmprove the robust performance using
probabilistic constraints, closed-form models azeafoped to estimate the first and second-order
statistical moments of the thin film properties anduncertainty in the multiscale model
parameters. Since, the closed-form models enaklgtédiction of outputs at any probability
limit, the probabilistic (soft) constraints in techastic MPC framework can be reformulated as
deterministic constraints. In Section 6.1, a PS&eHaframework is presented to identify a
closed-form model that can predict the controllathats based on the substrate temperature at a
predefined probability in the presence of modebpaater uncertainties. The model is employed
in an NMPC framework to minimize the final surfaceughness while satisfying the hard
constraints on the temperature profile and finat thickness. Section 6.2 provides the algorithm
used in this work to develop a closed-form modaet tbredicts the statistical moments of the
controlled outputs as a function of the controlat during the deposition process. This model
enables the reformulation of the stochastic NMPCaasomputationally tractable NMPC

framework. The performance of the stochastic NM®€vialuated under different scenarios.
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6.1. Robust NMPC with hard constraints for thin film deposition process

As mentioned previously, PSE is applied in thiskvas a practical tool for uncertainty analysis
since it only requires the computation of the dnses of the controlled outputs with respect to
the uncertain parameters. An approach to circumvbat inherent noise included in the
multiscale model due to the KMC simulations is ageng the estimates obtained from multiple
simulations which increases the computational c{3tews et al., 2003). Since this approach is
not practical for online applications, in the cumrewvork, the required sensitivities in the
expansions are assessed offline by central finifeerdnces through average of multiple
multiscale simulations describing the thin film deftion process. Subsequently, closed-form
models that can efficiently predict the probahitisbounds on the controlled outputs under
model parameter uncertainty are developed for enbontrol applications. The algorithm

developed to identify the closed-form model fromaltiscale process system is described next.

6.1.1.Model construction procedure

Specify the vector of uncertain paramet@rs: {6,,...,6,,..,6,} € R?, & as the vector of
nominal model parameterg;as the process output obtained from the nominanpeter vector,
0, andy as the output for the perturbed vec#rFrom a control point of view, the purpose of
this study is to manipulate the thin film propestiesing the substrate temperature. The PSE-
based algorithm to estimate the controlled outpsts function of the substrate temperature at
any time during the process under model parameirtainty can be outlined as follows:
1. Space discretizatiorDiscretize the operational region of substratepmture into equally

spaced intervalaT, i.e.,
T; = {Tmin + AT |Tipin < T; < Tran 8 = 0,1, e, (Trpax — Tmin)/AT}1 (6-1)

where T,,;, and T,,,, are respectively the minimum and maximum operasuagstrate
temperatures.
2. Batch time discretizationDivide the batch time horizone [t,, tf] into equally spaced time

intervals,At, as follows:

t = {to + kAt|ty <t < tp,k =0,1,...,K}, K = (t; — ty)/At. (6-2)
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3. Uncertainties descriptianDefine the prior PDF of each uncertain paramefgg(6,), as

follows:

8q = {64164 € fp.0.(6)}: (6-3)
The prevalent assumption in distributional uncettaianalysis is that uncertainty is
distributed around the nominal parameter with aiigevariability. When the nominal value
changes during the process, the variance can latsgge proportional to the nominal value.
4. Sensitivity evaluatianFor everyT;, evaluate the nominal outputs and sensitivitieshef t
outputs with respect to the uncertain parameteeaeh discrete batch tima,, during the
growth process around the nominal parame#s (
5. Output’'s PDF approximationEvaluate the PDF of at each sampling time instance during

the growth process for each temperature usingalfeafing truncated PSE:

Yik =Vix + L1 (0—0) + % (6 — G)TLZ,i,k (0—98)+-, (6-4)

whereL, ;, = (dy/d8)s € R? andL,;, = (d*y/d6%)s € R%*? are respectively the Jacobian
and Hessian at each temperat@reevaluated at the time instanag, and consist of the
sensitivities estimated from the previous step.

6. Calculation of output’'s bound&valuate the upper (lower) bound on the procesggub at a
specific confidence levek, during the entire batch time for eath Y*SE € RX. Thus, YPE
represents the upper or lower bound of any outpuhe process and each element of this
vector is calculated as follows:

vt = Fit (Prlyge) = i Foe(ik) ) (6-5)

where the functiorF; ;! (Pr|y; ) represents the inverse of the CDF at time instamcand
temperatureT; evaluated at a predefined probabiliBt. SettingPr in Eq.(6-5) toa/2 and

1 — a/2 yields respectively the lower and the upper bolandhe outputy. The bounds on
the controlled outputs can be directly determineéach sampling time during the growth
process by evaluating the sensitivities through tiplel multiscale models and applying
Monte Carlo sampling on the PSEs. However, thatraggh is not efficient for online
applications and motivates identification of clodetm models that can predict these bounds

at a time-scale that is practical for online apgimns.
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7. Model selectionSelect a model that can describe the time evelufdhe process output. In
the current study, the thin film properties of net& are the film thickness and surface
roughness. According to the trajectories depicteBigure 3-10 and Figure 3-13, the surface
roughness can be described as an overdamped proodsts whereas thickness is linear with
respect to time. Therefore, the models consideyetkscribe the surface roughness and film

thickness during the batch time for edglare as follows:

t
T'(Ti, t) = Al,iTi (1 —e AZJ’), (6-6)

H(T;,t) = A5,Tit, (6-7)
where,;; (I = 1, ...,3) are the parameters of the closed-form model thatbeaidentified via
least-squares.

8. Model identification:Estimate the parameters of Eqs.(6-6)-(6-7)fordat set obtained for

eachT; through minimization of the following least-squafesction:

AQY) = Tl = vi D, (6-8)
wherey/E andyi’,’,:ed are respectively the bound on the process outgatilated using the
PSE-based approach and the model prediction froenctbsed-form models shown in
Egs.(6-6)-(6-7) at th&" sampling time instance arfg. The identifiedA;” = [1;; 25, 13,]
represent the set of parameters of the models miesbén Egs.(6-6)-(6-7) for each discrete
temperaturdy, i.e., there exist one set of model parameterg&oh temperature considered
in theSpace discretizatiostep.

9. Approximation of the closed-form model parametdfsr model-based process control
applications, it is required to estimate the partanseat any temperature within the specified
operating regionTherefore, a polynomial function is required to retate the estimated
parameters to the independent variableising the model parameters estimated for each

discrete temperature in the previous step, i.e.,

A = boy + Xg=1ba Ty (T), (6-9)
wherer,;(T) represents a temperature-dependent polynomialifumethile b,; andb,,; are
the coefficients of the polynomial calculated thgburegressionD is the number of

independent terms considered in the analysis. Qhese polynomial correlations are
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obtained offline, they can be used to predict thdase roughness and film thickness in
online applications.

10. Closed-form modelAs shown in Eq.(6-6), surface roughness at anypBagitime during
the deposition process depends on temperaturehentbtighness at a previous time step.
Thus,

T, = Tg—1 + sgn(d) /117;# S, (6-10)
1
where,
7o = 1mL
tk—1—tref tktref

§=1T(e %2 —e %2 ),

wherer;, is the estimated roughness at sampling time iostap, whiler,_, is the estimated
roughness at sampling time instange, . In the present analysis,_, is evaluated from the
closed-form model since it is assumed there is remasurement available for surface
roughness during the process, andt,., respectively denote the reference roughness and
the time when the substrate temperature change®e tourrent temperaturggn is the sign
function while1;, and 1, are the model parameters evaluated based on thgetatare at
time, t;, obtained from the polynomial function shown in.@®eP). Following Eq.(6-7),
thickness depends on temperature and the thiclewvedgated at the previous time instance;

thus, this output can be calculated as follows:

Hy = Hy_q + 23T (t) — ty—1), Ho=0mL, (6-11)
where; is the model parameter estimated from Eq.(6-Qgqushe substrate temperature at
time, t;.

The models developed in this section can be use@smn a robust estimator for an effective
feedback control wherever the measurements arevalable and they can also be used for
model-based control applications, e.g., to desigNIsIPC algorithm. Moreover, this approach is
applicable in analyzing the effects of measuremeirge.

6.1.2.Application of robust NMPC to the thin film deposition process

To determine the order of the series expansionsifigertainty analysis of surface roughness

and film thickness, a comparison has been madeeeetwhe PDFs obtained by uncertainty
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propagation in these outputs applying the primanytistale model and PSEs. Monte Carlo
technique adopting the primary multiscale modet igivial method with no truncation error
caused by the PSE. However, due to high computdtioost, this approach is applied as an
index to validate the accuracy of the PSE methadthls case@” = [E,T] is the vector of
uncertain parameters that are normally distributgd mean8” = [17000 cal/mol, 800 K], anda
standard deviation of 2% of their mean values. Uieertainty analysis through the Monte Carlo
method was performed employing 500 sample pointeergeéed randomly for the vector of
uncertain parameters from their prior normal digttion functions and uncertainty is propagated
into surface roughness using the model describé&hapter 3. This PDF is shown in Figure 6-1
with the PDFs obtained using first and second-oISE approximations. As shown in this
figure, while first-order PSE can adequately démcrihe distribution of surface roughness,

second-order PSE captures the tails of the PDF amarerately.

B Full multiscale model
--------- Second-order PSE
+ First-order PSE
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Surface Roughness (mL)

Figure 6-1. Roughness PDFsTat 800 K obtained through the multiscale model, first aadosid-order PSEs at

t=20s.

Likewise, the PDF obtained for film thickness enynohg 500 data points in the multiscale
model atT = 800 K is presented in Figure 6-2. The variability iscaéssessed using a first-order
PSE and the fitted normal distribution is shownthis figure. As illustrated in this figure,
thickness is not significantly sensitive to the emainties inE andT, i.e., these uncertainties
resulted in small variability in the film thicknegs/-2%) whereas large variability was observed

in surface roughness due to these uncertaintiesSQ%).
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Figure 6-2. Thickness PDFsTat 800 K obtained through the multiscale model and firsteoPSE at = 20s.

To develop a closed-form model for the depositiancpss presented in Chapter 3, the
operational region for the substrate temperatureoissidered from 600 to 1400 K and is
discretized into 9 equally spaced temperaturgg; = 1,...,9). For this application, finer
discretization did not improve the accuracy of #stimations. The batch time; = 100, is
discretized into 101 pointg, (k =0, ...,100). As mentioned aboved” = [E,T] is the set of
uncertain parameters that are normally distribateadind their nominal values with the standard
deviations of 2% of their corresponding nominal ues. Therefore, since the substrate
temperature is the control action and is time vayythe variability will be considered as 2% of
the control action predicted by the controller. #fsown in Figure 6-1, second-order PSE is
accurate enough to capture the variability in thdage roughness; thus, first and second-order
sensitivities of roughness with respect to the tiage parameters are generated offline for each
temperaturd; during the batch time. Then, uncertainty is propedjan surface roughness using
the Monte Carlo sampling method applied to the seéawrder PSE to obtain the lower and upper
bounds on roughness using a confidence level0.5%. The data collected for each
temperature];, is then employed to identify the parameters of tin@del shown in Eq.(6-9)
using the least-squares formulation shown in E§)(6Fhis results in a set of model parameters,
each corresponding to a particular temperatureagroximate the parameters of the closed-
form model presented in Eq.(6-10), the operatiGudistrate temperature region is divided into
two regions. The parameters of the closed-form mathewn in Eg.(6-10) are estimated

assuming that they are functions of the substestgpérature as follows:
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Ay =boy + by T+ by T? + by, T3. (6-12)

The corresponding polynomial functions obtainearfn@gression fof; andl, to estimate the
upper and lower bounds on roughness for the tw@éeature regions are shown in Figure 6-3
and Figure 6-4, respectively. Although other polymals or nonlinear functions can also be

adopted, the estimations obtained by the functrmws in Eq.(6-12) are sufficiently accurate for

online control of the surface roughness as it glishown in the next section.
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Figure 6-3. Polynomial models used to determinandJ, to estimate the upper bound on surface roughness.
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Figure 6-4. Polynomial models used to deterniinand, to estimate the lower bound on surface roughness.
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Figure 6-5. Polynomial model used to determinéo estimate the film thickness.

As shown in Figure 6-2, thickness is not sensitovéhe uncertainties considered in this work
and accordingly a nominal model is sufficient tdireate the film thickness. To provide a
closed-form model for thickness, the nominal thessis calculated for each temperat@yeat
each sampling time;,. Subsequently, steps 3 to 6 in the algorithm prteskin Section 6.1.1 are
not required and identification is performed using nominal thickness to obtain the parameters

of the model at each temperature,Using these data points in regression analysmpdel is
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identified as a function of the substrate tempeeat’The model obtained to determine the

parameter of the film thickness in Eq.(6-14), is shown in Figure 6-5.

To show the accuracy of the closed-form model edmtion of surface roughness, upper and
lower bounds obtained for the surface roughnesssamvn in Figure 6-6. The substrate
temperature profile used in this validation stemlso shown in this figure. The dashed lines
correspond to the bounds evaluated using the climsed model presented in Section 6.1.1 and
the solid lines are obtained by calculating the rMasuusing the PSE-based approach. The
sensitivities are estimated by averaging the smistifrom three multiscale model applying
100 x 100 lattices in the KMC simulations. The bounds arenested properly using the closed-
form model in 140 ms whereas the other approack approximately 7 hrs on a Core i7-2600
with 8GB of RAM. This demonstrates the benefit bé tapproach proposed in this work to
address the online control of the thin film depositprocess while explicitly considering model

parameter uncertainty.
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Figure 6-6. (a) The upper and lower bounds on sarfaughness, and (b) Substrate temperature profile

6.1.3.NMPC applied in a thin film deposition process

The development of advanced sensors has provigepatential of feedback control for smart
operation of the deposition processes in the semdiottor industry. Despite the application of
spectroscopic ellipsometry for thickness and contipos control, precise control of the
microscopic properties such as roughness is ribpsdrctical since these sensors cannot provide
frequent measurements needed for online applica{igong and Grover, 2012). In the current

work, it is assumed that thickness can be measurguractice while measurements are not
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available for the surface roughness during thegsecWhenever a measurement is available for
the film thickness, the predictions of this filmoperty are corrected. Employing the proposed
closed-form models, model-based control approadaes be readily applied to improve the
closed-loop performance in the thin film depositijgmocess. Particularly, an NMPC technique
can be designed to simultaneously address perfaeneonsiderations and process constraints,
e.g., actuator constraints, while using nonlingaragnic models. To illustrate the benefits of the
approach presented in this study, the closed-formdeihdeveloped in the previous section is
used as the internal model in an NMPC algorithrelemsvn in Figure 6-7. Moreover, due to lack
of roughness measurements, the closed-form modebmsidered as an estimator for this
property of the thin film. The thin film depositiggrocess is assumed to be the multiscale model

presented in Chapter 3 using@0 x 100 lattice in the KMC simulations.

L - ( \ Surface roughness
Thin film specifications Substrate temperature Thin film deposition —g>

NMPC
J process —>

Estimated surface roughness (
Estimator

Film thickness

Figure 6-7. Block diagram of an NMPC structure dedpwith the estimator.

In the present study, the NMPC algorithm was sesugh that it minimizes the final surface
roughness while complying with a minimum film thrgss constraint requirement at the end of
the batch. In addition, temperature constraintsickided to ensure the feasible operation of
this process. Hence, the optimal control probletwesbat every sampling time interval in the

NMPC framework is as follows:
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minr(t

Ty ()

Subject to:
Closed-form model, Egs. (6-10)-(6-11)
hy = H(tf) —Hpin 20

hy(G) = Tmin = T(G) <0

(6-13)
hs(D) =T() = Tnax <0
dT(j
ha(j) = Romin _7(]) <0
L Adr@)
hS(]) - T_Rmax <0
j=12,..,]

where Tpin Tmaxr Rmin @NA R are respectively the minimum and maximum allowed
temperature and temperature ramp rates during dteh lprocess. The end-point constraint
ensures that the minimum thickness is satisfietth@tend of the batch time whereas constraints
h, — hs ensure that the temperature profile remains withenfeasible operating region for the

deposition process.

Thin film deposition is a batch process and acewydb problem (6-13), the objective is to
minimize the surface roughness at the end of thehbaherefore, a shrinking horizon approach
is implemented to calculate the control actionsnfrthe NMPC algorithm. The optimal set of
substrate temperatures is obtained from the soluifothe optimization problem of Eq.(6-13)
and only the first value of the temperature trajecis implemented on the thin film deposition
process until the next sampling time when the NM#@blem is solved to obtain the updated
temperature trajectory. The batch time is disceetimto 20 equal intervals considering the
temperatures at each sampling time interval asléleesion variables. Moreover, the temperature
profile is described as a constant piecewise ti@jgdetween successive time intervals. In this
study, Rper @andR,,;, Were set to 25 K/s whil&,,;, andT,,,, were set to 600 and 1400 K,
respectively. For closed-loop simulations, it isuased that the measurements for thickness are

available at every iteration of the NMPC algoritinhich is 5 s in these simulations.
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The overall performance of the NMPC algorithm defseon the accuracy of the model
describing the process. Therefore, to show thecieffcy of the control approach and the

importance of the robust model, three differentnac®s are presented and compared in this
study:

1. Nominal models are employed for surface roughnedsfiam thickness and control action is
applied to the nominal thin film deposition process

2. The nominal models are used to control the depwosiprocess under model parameter
uncertainty.

3. The robust model for surface roughness and nommoalel for film thickness are applied to
control the deposition process under model paranuetertainty.

In the first scenario, the nominal model is usegredict the controlled outputs, assuming that
the nominal closed-form model provides an accurgpeesentation of the process. In the NMPC
algorithm the nominal surface roughness is minichizéhile the nominal minimum allowed
thickness is constrained to be at least 1700 ntheaend of the deposition process. The surface
roughness predicted from the estimator is showrFigure 6-8 along with the roughness
trajectory obtained from the multiscale thin filnopess. As shown in this figure, the roughness
estimator has followed the process accurately. ddreesponding temperature profile is also
shown in this figure.

12 1300

--------- Estimator prediction
| — Process output
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Figure 6-8. (a) Surface roughness trajectory ftoennominal process (solid line), the roughnedsasion from

the nominal estimator (dashed line), and (b) Sabestemperature trajectory applying the nominal N\OVIP
To assess the effect of the thickness measuremir@sopen-loop optimal control of the
process is also performed and the results are aaahpa the nominal NMPC. Figure 6-9 shows
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the final properties of the thin film from 20 simatibns using the open-loop optimal control and
NMPC. As shown in this figure, when the optimal oeop control is used, the constraint on
film thickness is violated in 35% of cases. In cast, when the nominal NMPC approach is
employed, the thickness constraint is always satisf

1702

1700

Final film thickness (mL)

% Nominal NMPC
¢ Optimal open-loop control

7 1.8 1.9
Final surface roughness (mL)

169%

Figure 6-9. Surface roughness and thickness arttef the batch for 20 simulations obtained fromdpen-loop

optimal control and nominal NMPC. The dashed liog&sponds to the constraint on final thickness.

To illustrate the importance of the robust estimaitothe second scenario, the nominal model
is incorporated in the NMPC algorithm in the presenf model-plant mismatch. To incorporate
uncertainty in the process, it is assumed ®hat [E, T] is the vector of uncertain parameters that
are normally distributed around their nominal valweith standard deviations of 2% of their
nominal values. Sincg is a time-invariant parameter of the system, sess the performance of
the estimator, Monte Carlo simulations were perfamvith 20 random parameters generated
from the corresponding normal distribution. Sulistreemperature, on the other hand, is the
control action and changes during the process. eftwer, to account for the model-plant
mismatch, the applied temperature on the multisceldel is selected randomly from the normal
distribution around the control actions determibgdhe NMPC. These trajectories are shown in
Figure 6-10 with the roughness estimated from thinal estimator. As shown in this figure,
the trajectories obtained from the process devagmificantly from the nominal surface

roughness estimator.
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Figure 6-10. Surface roughness trajectories fromi2ilations using the process under model paramete

uncertainty (solid line), the roughness estimafiom the nominal estimator (dashed line).

To assess the performance of the nominal NMPC unugdel-plant mismatch, the final

properties of the thin films obtained under undatiaare compared to the properties obtained

from the nominal multiscale model. As shown in Feg6-11, the variance in surface roughness

and thickness is two orders of magnitude largereundcertainty and the nominal NMPC cannot

meet the end-point constraint on the film thickneBsese results show the importance of

developing robust strategies for this processcthataccount for process variability under model

parameter uncertainty.

Final film thickness (mL)
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Figure 6-11. Surface roughness and thickness @&rttief the batch for 20 simulations obtained ftbsmnominal

process and under model-plant mismatch applying¢iminal NMPC.
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To provide a robust control strategy under modehipater uncertainty, in the third scenario,
the roughness model in the NMPC is implemented s$hiahit predicts the upper bound on the
surface roughness. The roughness trajectoriesnalokdrom 20 multiscale simulations under
model parameter uncertainty are shown in Figur@;aHe surface roughness calculated from the
robust estimator is shown as a dashed line. As shavthis figure, the estimated roughness
bounds surface roughness trajectories obtained tinenprocess under uncertainty. The substrate

temperature profile is also shown in this figure.

The performance of the robust NMPC and nominal NM#®€ compared under model-plant
mismatch based on the end-point properties obtauoed 20 simulations using the multiscale
model. As shown in Figure 6-13, the robust NMPC ingsroved the control performance since
the constraint on the film thickness is met forth# simulations whereas violations to that end-

point constraint were obtained using the nominalNM
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Figure 6-12. (a) Surface roughness trajectories 20 simulations using the process under modehpatex
uncertainty (solid lines), the roughness estimatiom the robust estimator (dashed line), (b) Sualsttemperature

trajectory applying the robust estimator.
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Figure 6-13. Surface roughness and thickness @&rttief the batch for 20 simulations obtained ftbsmnominal

and robust NMPC under model-plant mismatch.

6.2. Stochastic NMPC with soft constraints applied to tin film deposition

In Section 6.1, to ensure the robust performanaga] bonstraints were imposed on the MPC
framework. The internal model used in the MPC atbar is a closed-form model that was
identified offline to represent the dynamic behaviof system under uncertainty in the model
parameters. The identification of this model wadgened such that it predicts bounds on the
outputs for a narrow confidence level, which mustspecified a priori. To that end, new offline
identification is required in that approach to Haeato estimate the outputs at a different

confidence level.

In this section, a systematic framework is presktit@t enables the identification of a closed-
form model to estimate the first and second-ortlistsical moments of the thin film properties.
The parameters of the closed-form model are deteunoffline through PSEs developed for the
multiscale model under uncertainty in the modebpeeters. The conservatism imposed by the
hard constraints is reduced by imposing proballisoft) constraints in the MPC. The closed-
form model identified from the algorithm proposedhis work enables the prediction of outputs
at any probability of satisfaction. Moreover, enyphg this model the probabilistic constraints in
the stochastic MPC framework can be reformulatededsrministic constraints, thus allowing
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the implementation of this control framework forethhin film deposition process under

uncertainty in the model parameters.

6.2.1.Statistical moments of the outputs using PSE

An advantage of the PSE is that it can be emplalyesittly to assess the statistical moments of
the outputs. When a multivariate normal distribntwith the covariance matri¥y can represent

the uncertain parameters:

~\T P
fpa(®) = Trmexp (-2(0-9)'vo(0-9)). (6-14)
PSE can be used to estimate the mean and the sa@éthe output. For a first-order PSE, the

expected values,, and the variance of the outpuf,can be determined as follows:

& =9, (6-15)

V, = L, VoLi. (6-16)

First-order PSE relates the output to the uncenairameters linearly; thus, the PDF of the
output can be estimated analytically. Accordingihe PDF of the output will take the form of a
normal distribution with mean and variance obtairfeam Eqs.(6-15)-(6-16), respectively.
Applying a second-order PSE, the expected valuevandnce of the outpyt, can be obtained
as follows (Nagy, 2009; Nagy and Allgéwer, 2007):

gy =9 +5tr(L,Vo), (6-17)

Vy = LyVoLL + 5 [tr(L, V)2, (6-18)
wheretr(.) is the trace of matrix. For higher order PSEsinalar approach can be applied to

analytically determine the expected value and Hreance of output.

To analyse the effect of distributional parametacartainties on the thin film deposition
process, the uncertainty propagation into surfacghness and film thickness is assessed using
PSE. The Monte Carlo method applied to the muligspzodel is used as an index to determine
the order of the truncated PSE. For the presemigiépn model®” = [E, E,,,, X] is the vector of
uncertain parameters that are normally distribatedind their nominal values listed in Table 3-1

with the following covariance matrix:
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72%x105 26x10°5 0
Vo = (2.6 x 105 2.6x105 0 ) (6-19)
0 0 1071

For the Monte Carlo method, 1,000 sample pointsranelomly generated for the vector of
uncertain parameters from the prior multivariatenmal distribution. The PDF of the surface
roughness is obtained by using these realizationhe multiscale model a = 1000 K. The
PDF obtained at = 20 s is shown in Figure 6-14 along with the PDFs estigdaising first and
second-order PSE approximations. The normal digidh resulted from the first-order PSE is
estimated analytically using EQs.(6-15)-(6-16) vdasr for the second-order PSE, the Monte
Carlo method is applied to the series expansion.shewn in this figure, the uncertainty
propagation in surface roughness using the fulltisagdle model has resulted in a PDF that
follows a lognormal distribution. The first-ordelSE cannot describe the nonlinearity of this

PDF while the second-order PSE has captured thdbdison more accurately.
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Figure 6-14. Roughness PDFs obtained using thdsoalk model, first and second-order PSEs.

The statistical moments of surface roughness oddairom Eqgs.(6-15)-(6-18) and the required
computational times are listed in Table 6-1. Conmgathe moments estimated from PSEs with
those evaluated using Monte Carlo method appliethéomultiscale model implies that the
second-order PSE provides more accurate resultshéwn in this table, the relative errors of
the mean and the variance of the first-order PSErespectively 0.8% and 8%, whereas the
relative errors of the second-order PSE are resedci0.2% and 4%. The computational times

listed in Table 6-1 indicate that both first and@®d-order PSEs are computationally efficient
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compared to the Monte Carlo method applied to titlenfiultiscale model. However, due to the
second-order sensitivities required in higher ofd8E, first-order PSE is more computationally

efficient than second-order PSE.

Table 6-1. The statistical moments of the surfacghness from different approaches and the cornelipg

computational costs.

Approach Mean (mL) Variance (mLZ) Computational Time (hr)
Monte Carlo applied to the
) 3.7824 0.4669 29.4
multiscale model
First-order PSE 3.7517 (0.8%) 0.4288 (8%) 0.6
Monte Carlo applied to the second-
3.7720 (0.2%) 0.4482 (4%) 1.9

order PSE

Figure 6-15 shows the PDF obtained for film thickhatt = 20 s employing 1,000 realizations
in the uncertain parameters and propagating thoseigh the multiscale model &t= 1000 K.
The PDF is also approximated using a first-ordeE;P8e fitted normal distribution shown in
this figure has successfully captured the varighih the film thickness. As shown in Table 6-2,
using first-order PSE, the mean and the variancéhiokness are assessed with respectively
0.02% and 0.6% errors. Thus, first-order PSE es@isndne moments of thickness with negligible
errors at low computational costs. Similar resuwise observed for the surface roughness and

thickness at other operating conditions and areshotvn here for brevity.
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Figure 6-15. Thickness PDFsTat 1000 K obtained using the multiscale model and first-ofI8E at = 20s.
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Table 6-2. The statistical moments of the film kimess from different approaches and the correspgndi

computational costs.

Approach Mean (mL) Variance (mL?) Computational Time (hr)
Monte Carlo applied to the 29.4
348.4 304.4
multiscale model
First-order PSE 348.5 (0.02%) 302.6 (0.6%) 0.6
(@)
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Figure 6-16. The evolution of roughness momentinduhe deposition processmat 1000 K from Monte Carlo

applied to the multiscale model and second-ordé& @% Mean, (b) Variance

The variation in the mean and variance in thespututariables during the deposition process
has also been investigated using both the MontéoQaethod applied to the full multiscale

model and PSE. For the Monte Carlo approach, 1s8@@ple points are applied to generate the
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PDF of the surface roughness during the depospiatess and then the moments of those
distributions with respect to time have been reedrdflhe moments were also estimated using
the second-order PSE shown in Egs.(6-17)-(6-18¢ 3énsitivities needed in the PSE were
obtained using the average from multiple multisecat®els. As shown in Figure 6-16(a), using
the second-order PSE, the roughness mean is estirmaturately during the deposition process.
The variance of surface roughness has also beenagstl with a small deviation from that
obtained from the Monte Carlo method. The largestiation between two trajectories for
roughness variance is about 0.12°mthich is observed at= 26 s. Considering the mean value
at this point (3.78 mL), this deviation results8% error in estimation. Although this error may
be negligible for control applications, a more aetel estimation for variance of surface

roughness can be obtained using higher order PSEs.

The changes in mean and variance of thicknessraatdrom the Monte Carlo applied to the
full multiscale model and a first-order PSE areidiegl in Figure 6-17. As shown in this figure,
the PSE has estimated the mean accurately whilgath@nce estimated using the PSE method
follows the variance obtained from Monte Carlo agwh with a small discrepancy. The
deviation observed at the end of the depositicabizut 580 mE; considering the mean value at
this point (1732 mL) the deviation in variance fesun 1.4% error in estimation of thickness
PDF. Therefore, the error observed in variancenadion for thickness through the PSE method
is negligible.

The computational time required to estimate theawmaes shown in Figure 6-16 and Figure
6-17 using the Monte Carlo approach was about 180However, the PSE method needed 10
hrs to assess the variances using the average tipleumultiscale simulations for the
computation of the sensitivities. While the PSE hmodt presents a more computationally
efficient approach for uncertainty analysis comgaethe Monte Carlo method, this method is
still impractical for real-time applications in ntigktale systems. Therefore, in the next section, a
PSE-based algorithm is presented to develop acdhmsen model that predicts the statistical
moments of the outputs as a function of substextgerature at minimum computational cost

for online applications.
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Figure 6-17. The evolution of thickness momentsrdudeposition ar = 1000 K from Monte Carlo applied to the

multiscale model and second-order PSE (a) MearVdbipnce.

6.2.2.Stochastic NMPC formulation

In this study, it is assumed that thickness, wingcl macroscopic characteristic of the thin film,
can be measured online while measurements forutiace roughness are not available during
the deposition process. Microelectronic market isgso tight requirements upon thin film
properties including specific thickness and surfemgghness. To assemble high-performance
electronic devices, optimal control strategies tbah accommodate actuator and economic
constraints in the presence of model-plant mismatetrequired. Therefore, an MPC framework
is designed to minimize the surface roughnesseattit of the batch by manipulating substrate
temperature in the presence of uncertainty in théiscale model parameters. Thus, the control
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objective is to minimize the surface roughnesshateénd of the batch while the film thickness

meets a minimum specification at a desired proligbil

The closed-loop optimal control formulation to belved at every sampling instant in a

shrinking horizon stochastic MPC with probabilistmnstraint is as follows:
R )
Subject to:

Multiscale model presented in Chapter 3

T(t) = Tyep(t) + K(E)(H() = Hyer () (6-20)
Pr{Hpm — H(te) <0] = B

Timin < T(t) < Tinax

dT(t)
:Rmin < T < :Rmax

In the above formulation, the performance objecisvéhe surface roughness at the end of the
batch, i.e.r(tf). As shown in Figure 6-14, in the presence of ifistronal parameter
uncertainty, a distribution can be determined foughness. Therefore, in the optimization
formulation, the performance index is the roughrtetermined at a specific probability limit. In
the feedback law, similar to the approach preseme@agy and Braatz, 2004} (t) is the
measured thicknes#,...(t) is the thickness reference vector obtained udiegnbminal open-
loop optimal substrate temperature trajectgy(t), andK(t) is the time-varying gain vector of
the feedback controlleH,,;, is the minimum allowed thickness at the end of ilatch which
will be specified by market considerations. To @lgonservatism, the probabilistic form of this
constraint is considered in the present MPC fortiariawherePr denotes probability and is
the desired probability of satisfaction of the doamist. Moreover,T,,in, Tmax Rmin @Nd Rpax
represent respectively the minimum and maximunmwedtb temperatures and temperature ramp
rates during the batch process.

To identify an optimal temperature profile in preivl (6-13), the PDFs of thickness and
roughness at the end of the batch are requiredseBhBDFs can be obtained through either by
Monte Carlo method applied to the full multiscaledal or employing the PSEs that describe
roughness and thickness as a function of the umngrarameters during the deposition process.
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As discussed in the previous section, even thobghRSE method is less intensive than the
Monte Carlo method, this approach is still compatelly intractable for online applications.

Therefore, it is desired to reformulate the probstic constraint and performance objective
function to deterministic expressions that canrbmediately evaluated. To achieve this goal, a
low-order model that can efficiently assess théstieal moments of surface roughness and film
thickness is employed in this work. The algorithmidentify such a model is presented in the

next section.

6.2.3.Closed-form model identification

Online identification of a closed-form model duritige deposition process is computationally
challenging. Thus, an algorithm has been develapéhis work to obtain the parameters of the
closed-form model offline. This PSE-based algoritestimates the parameters of the model that
predicts the statistical moments of surface rougbraad film thickness. This model predicts the
statistical moments efficiently as a function oé tubstrate temperature at any sampling instant
during the process under model parameter unceytdihe algorithm is outlined as follows:

1. Space discretizationDiscretize the operational region of substrate pemature,T, into
equally spaced intervalaT, to construct a finite-dimensional identificatioroplem.

T; = {Tpin + IAT | Trin < Ti < Tt = 0,1, ..., (Trax — Tmin) /AT (6-21)

It is important to note that the discretizationalesion determines the offline computational
costs.
2. Temporal discretizationDivide the batch time horizon into equally spatatk intervalsAt,

as follows:
ty = {to + kAt|ty <t < tr, k= 0,1,..., (t — to)/At}. (6-22)

3. Uncertainties descriptian Define the multivariate normal distribution of aartain
parameters based on Eq.(6-14).

4. Sensitivity evaluatianEvaluate the nominal outputs and sensitivitiesth& outputs with
respect to the uncertain parameters for eacat each discrete batch timeg, during the
deposition process. According to Figure 6-14 angufg 6-15, to capture the uncertainty
propagation in surface roughness, a second-ordeng@quired while film thickness can be

accurately approximated using a first-order PSEerd@tore, first and second-order
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sensitivities of roughness and first-order sensigs of film thickness with respect to the
uncertain parameters need to be estimated forrdsept deposition process.

. Approximation of the statistical momentdsing the PSEs, evaluate the statistical moments
of the outputy at each sampling time instange during the process for each discrete point in
the temperature domaifi. To assess the mean and the variance of surfaghmess,
Egs.(6-17)-(6-18) are employed whereas for the filiokness Eqs.(6-15)-(6-16) are used.

. Model selection:Select a model that can describe the time evolutb the statistical

moments of each output, i.e. the surface roughrasts thickness. According to the
trajectories shown in Figure 6-16, the evolutiontlué surface roughness and its variance
during the deposition process can be describeah averdamped process model. Therefore,
the models considered to describe the expecte \ald the variance of roughness during
the batch time for each can be described as follows:

t
& (T, t) = A1, T; <1 —e A”)- (6-23)

t
VT(TL" t) = A3,iTi <1 —e A‘”). (6-24)

Based on the trajectories depicted in Figure 6ti&,expected value of thickness is linear
with respect to time while its variance has an egmb form. Therefore, the models
considered to describe the mean and the variantdobhess during the deposition process

for each discrete point in the temperature domegraa follows:

ey(Ty, t) = A5, Tit, (6-25)

V(T t) = g Tith74, (6-26)

where,;; (I = 1, ...,7) represent the model parameters for egahat can be identified using
least-squares.

. Model identification:Estimate the parameters of EQs.(6-23)-(6-26) lierdata set obtained
for each discrete point in ttf&pace discretizatiostep through minimization of the following

least-squares function:
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2 -
A = BRoo(mERE = 1) (6-27)

whereu[F andyf,zed are respectively the statistical moment of thecess output calculated

using the PSEs in step 5 and the model predictiaimed from Egs.(6-23)-(6-26) at tk8
sampling time instance and for a specific discteteperatureT;. The identifiedA; represent
the vector of parameters for each discrete tempexrat;, i.e., there exist one set of model
parameters for each discrete point consideredepiace discretizatiostep.

. Approximation of the closed-form model paramet@&ise identified model parameteksare
only valid for a discretized set of temperaturesowldver, for model-based control
applications, it is required to estimate the stisié moments of the process outputs at any
temperature within the specified operating regidherefore, a polynomial function is
employed here to correlate the model parametetietananipulated variabld,, using the

model parameterd,;, estimated for each discreffein the previous step, i.e.,

Ay =boy+ X8 1bg, Iy(T),1=12,..7, (6-28)
wherer; (T) represents a temperature-dependent polynomialiumethile by, andb,, are
the coefficients of the polynomial calculated thybuleast-squares regression; D is the
number of terms considered in the analysis. Onesetlcorrelations are obtained offline, they
can be used to predict the statistical momentsact eutput for online applications.

. Closed-form modelAs shown in Egs.(6-23)-(6-24), the statistical neos of surface
roughness at any sampling time during the deposipiocess depend on the substrate
temperature and the statistical moments of roughaethe previous time step. Thus,

_ Ltk tk—l_tref tk__tref
&k = Erk-1 + sgn (/Tl,kT (1 —e€ Az"‘) - gr,k—l) (/Tl,kT - E‘r,‘ref) (e A2k —e€ A2k ) (6 29)
&0 = 1mlL,
__t_k tk—i_tref tk__tref
Vr,k = Vr,k—l +sgn <2-3,kT <1 —-€ 24"{) - Vr,k—l) (2-3,kT - Vr,ref) (e Aak —e fak )
(6-30)

Vo = 0mlL?,

where ¢, and V.., are respectively the estimated mean and variaficeoughness at
sampling time instancey, while ¢, ,_, andV, ,_, are the estimated values at sampling time
instance,ty_1. & ref Vrrer andt,., respectively denote the reference roughness nikan,

reference roughness variance and the referencevthrea the substrate temperature changes
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to the current temperaturegn is the sign function whilel,, (Il =1,..4) are the model
parameters evaluated employing the temperatulienat 4, in the model obtained in step 8.
Following Eq.(6-25), the expected value of thickheepends on the temperature and the
mean thickness evaluated at the previous timernsta.e.

g = -1 + AspT (b — tr—1);
(6-31)

SH,O - O mL,

wherels, is the model parameter estimated using the polyedoobtained in Eq.(6-28) and
the substrate temperature at timg, The variance of the film thickness at any timeiry
the deposition process can be estimated as follows:

- 7
Vitk = Vig—1 + Aep T(A7 e — 1)t " (t — te-1);
(6-32)

VH,O == O mLZ,
where 1, (I = 6,7) are the model parameters estimated from Eq.(6-8B)guthe substrate

temperature at time,.

Based on the above, a nonlinear discrete closed-foodel can be obtained to determine the
statistical moments of roughness and thicknessngutie deposition process for optimization

and control applications:

te = 9 (-1, T), (6-33)
whereuf = [&1, Ve €n Vx| 1S the vector of statistical moments at samplingett,, while

k-1 = [&r k-1, Vik-1, €nk-1, Vi x—1] is the vector of statistical moments at samplimgt;_;.

To show the effectiveness of this approach, theeldg@ed model has been applied to estimate
the upper and lower bounds on surface roughneséilanthickness at a predefined confidence
level, @, during the deposition process. Taking advantdgie form of PDFs, thickness and
roughness can be estimated at a specific probabitit. That is, as shown in Figure 6-14 and
Figure 6-15, the variability in surface roughnesd &lm thickness can be described respectively
using lognormal and normal distributions. The stefaoughness can be evaluated at a specific

probability Pr, as follows:
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0 = EY(Pr|eq i, Vig) = {rP: F-(rP |er s, Vri ) = Pr}, (6-34)

_(lnz—sr'k)z
L by (6-35)
Pr = Fr(Tlglgr,k; Vr,k) = 27V, fok - z Z’

where b € {low,up} and E~! represents the inverse CDF of surface roughnestsin@Pr in
Eq.(6-35) toa/2 and1 — a/2 yields respectively the lower boung?”, and the upper bound,
.7, for the surface roughnesst Likewise, the bounds on thickness can be obtaatezhy

sampling timet,, as follows:

HE = F*(Pr|eyy, Vi) = {HE: Fy (HE ey ) Vi) = Pr}, (6-36)
b 1 HP ‘(Z;H'k)z (6-37)
Pr = Fy(HP ey o Vie) = Jmf-‘” e Hk dz.

For the present deposition process, the operatregadn for the substrate temperature is from
600 to 1400 K that is discretized into 9 equallpacgd temperatures;(i = 1, ...,9). The batch
time, t = 100 s, is discretized into 101 equally spaced pointgk = 0, ...,100). 8" = [E, Ep, X]
is the set of uncertain parameters that are noyndatributed around their nominal values listed
in Table 3-1 with the covariance matrix shown in.(B€l9). The first and second-order
sensitivities of surface roughness with respecth® uncertain parameters and the nominal
surface roughness are generated offline for easbrate temperature during the deposition
process. These estimates are then applied in Ehg){@-18) to approximate the mean and the
variance of surface roughness during the batch fonesach temperaturd;. Likewise, the
nominal film thickness and first-order sensitivitief thickness with respect to the uncertain
parameters are generated offline during the deposiprocess for eaclt;. Then using
Egs.(6-15)-(6-16), the mean and the variance of filickness is estimated during the batch time
for each temperaturd;. The data collected for each statistical momerthén used in least-
squares approach as shown in EqQ.(6-8) to estinmteparameters of the models shown in
Eqgs.(6-23)-(6-26) for each temperaturg,To find a correlation between the model paranseter
and the substrate temperature, regression anadysgserformed for the vector of closed-form
model parameterd” = [1,, ...,1,]. These polynomials can be used to determine te#ficients

of Eqgs.(6-29)-(6-32) during the deposition procass function of substrate temperature.
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To obtain a general model fay(l = 1, ...,4), the temperature operational region is divided int
two regions. The polynomial functions obtained froagression to estimate the mean and

variance of surface roughness for the two temperategions are shown in Figure 6-18 and

Figure 6-19, respectively.
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Figure 6-18. Polynomial models used to determiinendl, to estimate the surface roughness mean.
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Figure 6-19. Polynomial models used to determinandl, to estimate the surface roughness variance.

The polynomial models obtained using regressionmf@r= 5,6,7) are shown in Figure 6-20

and Figure 6-21.
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Figure 6-20. Polynomial model used to determipéo estimate the film thickness mean.
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Figure 6-21. Polynomial model used to determinand2, to estimate the film thickness variance.

Upper and lower bounds estimated using the clogad-fmodel on surface roughness at
a = 0.5% are shown in Figure 6-22(a) as dashed lines usiagemperature profile shown in

Figure 6-22(b). As shown in this figure, the opend responses obtained from 20 simulations
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using random realizations in the uncertain pararaedee bounded within the estimated upper
and lower bounds. Likewise, Figure 6-23 shows fheneloop simulations for the film thickness
and the corresponding bounds (dashed lines). Wideupper and lower bounds are estimated
using the closed-form model in milliseconds, eagemloop simulation using @00 x 100
lattice in the KMC model takes approximately antou
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Figure 6-22. (a) Surface roughness due to pararoataErtainties, obtained by Monte Carlo simulatising 20
open-loop simulations (solid lines), the upper Eowier bounds estimated on surface roughness bgaiftsm

model (dashed lines), (b) Substrate temperaturiégaro
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Figure 6-23. Thickness due to parameter uncerésimtbtained by Monte Carlo simulation using 20 elpep

simulations (solid lines), the upper and lower dsiastimated on thickness by closed-form modehgth$ines).

6.2.4.Deterministic surrogate formulation of stochastic NMPC

Figure 6-22 and Figure 6-23 demonstrate the acgwhthe developed closed-form model and
its efficiency for online control of the depositigorocess under uncertainty in the model
parameters. Motivated by this, the computationathctable deterministic surrogate of the
stochastic NMPC scheme shown in Eq.(6-20) can beldeed by replacing the probabilistic

constraint on film thickness with the following deninistic constraint:

Hunin = Fir* (1= Blen(tr), Vu (7)) < 0, (6-38)

wheree, (t;) andvy(t;) are respectively estimated using Eqs.(6-11)-(6-Bjs formulation has
been derived considering that, the probabilistiost@int in problem (6-20) is a linear function
of final thickness, and the film thickness can lesatibed using a normal distribution as shown
in EQ.(6-36). The conversion of probabilistic coasits for efficient optimization has been
studied for a wide class of PDFs (Calafiore and dsha2006). Using Eq.(6-38), the shrinking

horizon stochastic NMPC scheme shown in Eq.(6-28)kbe reformulated as follows:
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rl?mF (

& (tr).V; (tf))

Subject to:

Closed-form model, Eqgs.(6-29)-(6-32)

T(]) = Tref(j) + K(])(H(]) - Href(j))
(6-39)

Hunin = Fir* (1= Bleu(tr), V(7)) < 0

Tinin < T() < Thax

Rnin <T(G) =T(G — 1) < Rinax

j=1,..].

The performance index in this optimization problerthe surface roughness evaluated at a

specific probability,B. To provide a finite-dimensional optimization plern, the batch time,
has been discretized into 20 equally spaced tinervals. Accordingly, the feedback gain
vector,K(t), which is the optimization variable for this prebi, is considered to be piecewise
constant between the sampling time intervalandt; ;. In this studyR,,,, andR,,;, were set
to 25 K whileT,,;, andT,,,, were respectively set to 600 and 1400 K, whichrespond to the
operational limits at which the closed-form modelsre identified. The nominal open-loop
optimization problem was solved offline to determitine reference trajectory of the substrate
temperature and the reference thickness. The merasuts for thickness are available at every
iteration of the NMPC algorithm, which has beenteéi s in these simulations. The closed-form
model shown in EQ.(6-33) is modified to estimate dtates of the system for the NMPC
framework. Although this model performs succesgfulinder model-plant mismatch, its
performance can be deteriorated in the presenasmwieasured disturbances. To improve the

predictions, a linear correction term has been @ado¢he model shown in Eq.(6-33) as follows:

i = g(1j-1,T) + G (e — H()), (6-40)
whereg is the gain vector.

To evaluate the performance of the NMPC algorithmowsn in (6-39), the following four

different scenarios are considered:
1. B=50% andp = 50%.
2. B=70% andpg = 70%.
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3. B=90% andp = 80%.
4. B =90% andp = 80% under disturbance
In the first scenario, the NMPC scheme minimizesfihal surface roughness estimated at 50%

probability while the minimum allowed film thickned1,,;,, has to be at least 1,700 mL in more
than 50% of the runs. To assess the effectivenésbeocontrol framework, Monte Carlo
simulations of the closed-loop control have beerfiopmed using 50 random realizations in the
uncertain parameters obtained from the joint maitable normal distribution previously
described in Eq.(6-19). The PDFs of the surfacgmoess and film thickness at the end of the
batch are shown in Figure 6-24. The mean valudefthickness PDF is 1,708 mL indicating
that the thickness obtained in more than 50% ofctbeed-loop simulations at the end of the
batch are more than almost 1,700 mL. ThereforeNiM&C scheme successfully complies with
the constraint defined on final film thickness fbis scenario. The PDF of surface roughness at

the end of the batch is also shown in this figure bas the mean value of 1.78 mL.
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Figure 6-24. PDFs obtained at the end of the biatch 50 Monte Carlo simulations f@& = 50% andg = 50% (a)
Surface roughness, and (b) Thickness.

In the second scenario, the final surface roughresstimated at 70% probability while the
film thickness has to be more than 1,700 mL ireast 70% of the runs. Figure 6-25 shows final
thin film properties obtained from 50 closed-loomuglations for the first and second scenarios.
Since in the second scenario, a higher probalofityatisfaction has been enforced on the film
thickness constraint, the number of thin films thas a thickness that is more than 1,700 mL is

14% more than the first scenario. The average tieis& in this scenario is 1,742 mL which is
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larger compared to the mean thickness obtaindakeiffitst scenario. As shown in this figure, due
to requirements to achieve a thickness larger ha@0 mL in 70% of the runs, the controller

has resulted in higher surface roughness at th@fktg batch with the mean value of 1.99 mL.
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Figure 6-25. Final properties at the end of thelb&étom 50 Monte Carlo simulations for the firsdasecond
scenarios.

The substrate temperature trajectory for the secmmhario is compared to the trajectory
obtained in the first scenario in Figure 6-26 udimg same realization in the uncertain multiscale
model parameters. As shown in this figure, a lomgerature profile in the second scenario
promotes adsorption on the surface to comply withfiim thickness constraint. The penalty of
the lower temperature is the larger average surfacghness obtained at the end of the
deposition process as indicated in Figure 6-25.
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Figure 6-26. The substrate temperature trajectopyying the first and the second scenarios in tbhehastic
NMPC.

To further demonstrate the applicability of the N®MBcheme, in the third scenario, the control
objective is to minimize the final surface roughsiesaluated at 90% probability while the film
thickness is required to be more than 1,700 mlt irast 80% of the runs. Figure 6-27 shows the
variation of the PDFs of surface roughness and fiilirckness during the deposition process for
the first and third scenarios. As shown in Figw276a), the variability in surface roughness is
described by lognormal PDFs during the process. mban and the variance of the PDFs are
changing during the batch due to variation in #m@gerature trajectories. As shown in Figure
6-27(b), the film thickness is normally distributeldiring the process in the first and third
scenarios; however, their mean and the varianeeslightly different since different confidence
levels were imposed in the stochastic MPC framewdnkthe third scenario, the average

roughness at the end of the batch is 2.25 mL whédeaverage film thickness is 1,770 mL.
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Figure 6-27. Variations of the PDFs along the bétchhe first and third scenarios (a) Surface fmags, and (b)
Thickness.

To show the effectiveness of the control schem#épresence of disturbances, in the last
scenario, a step change of -5% has been insertd igticking coefficients,, att = 50s. As
shown in Eq.(3-8), the sticking coefficient dirgcélffects the adsorption rate on the surface, and
consequently affects the surface roughness and thiokness. The final properties from 50
closed-loop simulations are shown in Figure 6-28 tfee third and fourth scenarios. The
disturbance introduced in the fourth scenario I®mee adsorption rate on the surface that can
lead to a low thickness at the end of the batchwé¥er, as shown in Figure 6-28, the film
thickness at the end of the batch is more than01iiD in more than 80% of the runs, which

satisfies the requirement specified in the stocb&VIPC framework. The average roughness at
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the end of the batch is 2.22 mL while the averagethickness is 1,766 mL. Thus, these values
are similar to the means obtained in the third agerfor the surface roughness and thickness,

which demonstrates the effectiveness of the praposetrol scheme.
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Figure 6-28. Final properties at the end of thelb&tom 50 Monte Carlo simulations for the thirdddourth
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Figure 6-29. Substrate temperature trajectory apglthe third and the fourth scenarios in the sastic NMPC.

The optimal substrate temperature trajectoriesterthird and fourth scenarios are compared
in Figure 6-29. To provide a fair comparison betwedese scenarios, the temperature
trajectories are obtained for a specific realizatid the uncertain multiscale model parameters.
As shown in this figure, the temperature profile floee fourth scenario is slightly lower in the

second half of the batch to meet the constrainthackness. This decrease in the temperature
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profile is performed by NMPC to compensate for shhedden drop in the adsorption rate due to

the step change in the sticking coefficient at50 s.

6.3. Summary

A robust NMPC algorithm has been presented indhégpter to minimize the surface roughness
in a thin film deposition process while satisfyiting constraints on applied substrate temperature
and the minimum film thickness required at the ehdhe process. To provide a model that is
efficient for NMPC, model identification is perfoad through data collected from a multiscale
thin film deposition model. A series expansion loé surface roughness is used to estimate the
distribution of this controlled output in the grédwprocess. A closed-form model is developed to
predict the surface roughness and film thicknesenduthe growth process under model
parameter uncertainty. Subsequently, this modelpjslied in the NMPC to provide a robust
control strategy under uncertainties in the KMCapagter and the control actions. As shown in
the simulation results, significant variability ithe film deposition process due to model
uncertainty can lead to economic losses, sinceptbeess cannot meet the desired product
specifications. Considering the uncertainties & mhodel have shown to significantly improve
the performance of the control approach; hencejvatoig the need to develop robust strategies

for the thin film deposition process.

Moreover, a closed-form model has been developad ith able to accurately predict the
statistical moments of surface roughness and filickhess during the deposition under model
parameter uncertainty. Employing PSEs, the expeettde and the variance of the surface
roughness and film thickness are estimated asdaifmof substrate temperature. This collected
data is used for offline identification of the adasform model parameters. The developed model
can efficiently predict the statistical moments @mline control and optimization applications.
Thus, the model is applied in a stochastic NMP®ravide a robust control strategy for the
deposition process under uncertainties in the sudle model parameters. The stochastic
shrinking horizon NMPC minimizes the surface rouggm in a thin film deposition process
while complying with the constraints on applied stwate temperature and the minimum film

thickness required at the end of the process asmeatl probability limit.
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Chapter 7
Conclusions and Recommendations

The focus of this research is on uncertainty amalgé the thin film deposition process using
PSE for robust optimization and control applicasiomhe disparity in length and time scales of
the physicochemical events occurring in thin filmpdsition is described using a multiscale
model that couples nonlinear PDEs with lattice-Hag@C simulations. Unlike continuum
models, the KMC model does not provide a closedifekpression and is also computationally
prohibitive for uncertainty analysis. Thereforer fobust control and optimization applications
in this research, the controlled objectives areclesd as a series expansion of the uncertain
model parameters. The Monte Carlo sampling metbaghiployed in this work as an index to
validate the accuracy of the approximations anddtermine the order of the truncated PSEs.
The analytical expressions obtained using the PS#haod can be used for an efficient
uncertainty propagation using Monte Carlo methotbatetermine the statistical moments of the

controlled outputs.

7.1.Conclusions

A fundamental step to design a robust optimizationontrol strategy is the characterization of
uncertainty in model parameters. However, whenetigeno access to data from the process, the
common assumption is that the uncertainties ateeremormally distributed or bounded. The
probabilistic approach based on normal distribufiesds to optimistic estimates whereas the
worst-case scenario via bounded uncertainties migitide realizations in the parameters that
will be very unlikely thus leading to overly congative results. The uncertainty analysis on the
thin film deposition is performed in Chapter 4 appl worst-case and probabilistic-based
approaches. To provide a computationally tractapkemization, the required sensitivities in the
PSEs are obtained from average of multiple muliisssamulations employing reduced-order
lattices in the KMC simulations. The optimal tengdere profile that maximizes the final
thickness of the thin film under end-point prodecinstraints and uncertainty in the model
parameters has been identified. The results shat ttke prior assumption on type of the
uncertainty affects the optimization results. Thoagccurate uncertainty description assumptions
can lead to a loss in performance and thereforeauo@ losses in the process.
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Sensitivity analysis of the stochastic computatiignatensive KMC simulations is not trivial.
However, closed-form expressions that describe stlages of the thin film deposition as a
function of KMC parameters are available. In Chapte to accelerate the distributional
uncertainty analysis of the rate of microscopicrésaising PSE, the sensitivities are calculated
analytically. The probabilistic bounds on thesesare employed to determine the probabilistic
bounds on outputs for optimization purposes. Moeeoan algorithm is developed to provide
less conservative bounds for time-varying paramateertainties. The method is used to obtain
the optimal substrate temperature trajectory thakimizes the endpoint thin film thickness
while meeting constraints on the roughness and throate in the presence of model-plant
mismatch. The proposed approach is evaluated threingulations that show that the system’s
outputs remained within their corresponding feasibperational limits under uncertainty. To
that end, neglecting the model-plant mismatch inaigation strategies may result in undesired

plant performance that is far from the optimum.

Offline optimization of the thin film deposition peess through multiscale model simulation is
computationally intensive. This motivates the depetent of data-driven models that can
efficiently predict the controlled outputs for ardi applications. The identified models can be
used either as an estimator in the lack of sermoas a basis of the MPC framework. Therefore,
a robust estimator is developed in Chapter 5 tdipré¢he surface roughness and growth rate as a
function of substrate temperature and bulk precumsale fraction in the lack of measurements
and under uncertainty in the system parametergrddde a computationally efficient estimator
for online applications, an algorithm is presented offline identification of a closed-form
model that describes the controlled outputs basedransient changes in the manipulated
variables. This algorithm is applicable regardletshe probability distribution assigned to the
uncertain parameters. To provide robust estimatitres estimator is designed to evaluate the
upper and lower bounds on the outputs under maaenpeter uncertainties. The closed-form
model is developed based on data collected frormthiéiscale model. The sensitivities of the
outputs with respect to the uncertain parametees amsessed offline at different substrate
temperatures and bulk precursor mole fractions.oAdiogly, upper and lower bounds on the
outputs are determined at a specific confidencelland employed to identify a closed-form
model for online applications. To assess the perémice of the estimator in multivariable

process control applications, the proposed estimstcoupled with Pl controllers. To provide a
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robust control of surface roughness, the robustnesir estimates the upper bound on this
controlled output. Results from this implementatizave shown that the robust estimator has

successfully predicted the process for control ivaultable control under model-plant mismatch.

Effective control of thin film deposition process@svolves accounting for model-plant
mismatch, operating under constraints and in tble ¢ key process measurements. Therefore, a
robust NMPC algorithm has been developed in Chdpterminimize the surface roughness in a
thin film deposition process while satisfying camastts on the applied substrate temperature and
the minimum film thickness required at the endhe process. A series expansion of the surface
roughness is used to estimate the distributiorhigf ¢ontrolled output in the growth process. A
closed-form model is developed to predict the sigrfeoughness and film thickness during the
growth process at a predefined probability. Subsetfy, this model is applied in the NMPC to
provide a robust control strategy under uncertasnin the KMC parameters and the control
actions. Moreover, to improve the robust perforneaoicthe NMPC framework, a closed-form is
developed to estimate the statistical moments efsthriface roughness and film thickness during
the deposition process. The closed-form model ptedhe expected value and the variance of
the thin film properties based on the substrateptgature during the deposition process. The
parameters of the closed-form model are determafftite employing power series expansion
(PSE). The closed-form model allows the reformaolatof probabilistic constraints into their
corresponding deterministic expressions thus englihe design of a computationally feasible
stochastic NMPC. To show the effectiveness of ther@ach, a shrinking horizon stochastic
NMPC framework is devised to minimize the final fage roughness while complying with
actuator constraints and a probabilistic constramthe final film thickness.

In process modeling and analysis, the discrepartyden the actual process and the model is
expected. The performance of model-based contral aptimization approaches can be
deteriorated due to inappropriate assumptions egph the model development and model
uncertainty. Specifically, when the system’s parfance objective is sensitive to unpredictable
or sudden changes in the system’s physical paraspdétes model-plant mismatch can lead to
loss in performance. This research provides insiggarding the qualitative and quantitative
effects of parameter uncertainty in multiscale pescsystems. The methods developed in this
research enable accurate online control of the fk@perties of a multiscale system in the

presence of model-plant mismatch.
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7.2.Recommendations

The current research can potentially be extendeldferent ways as explained below.

Control thin film porosity in the presence of modelplant mismatch: A key assumption in
modeling of the thin film deposition process irsthésearch is SOS approximation. Based on this
assumption, overhangs and vacancies are not all@awddatoms are located on top of other
atoms on the surface. Porosity can adversely affecielectrical properties of microelectronic
devices. Employing a triangular lattice in the KM{nulation, control of porosity under model

parameter uncertainty can be analysed.

Evaluate the methodologies in heterogeneous multele process systemsin the present
research, thin film deposition is considered asmplke yet effective case study for a multiscale
process system to evaluate the proposed methottwouggh the thin film deposition process is
spatially homogeneous, the application of the naghmresented in this work can be explored in
spatially heterogeneous systems. For instancee timethods can be applied to investigate the
effect of model parameter uncertainties on prodoatentration in catalytic reactors.

Sensitivity analysis using other methodsEfficient and accurate estimation of sensitivifies
stochastic KMC simulations is challenging. In tmsrk, the sensitivity analysis has been
performed using the average of results from mutiplltiscale simulations in finite differences.

Moving forward, the sensitivity analysis of the /& can be conducted using other approaches.

Uncertainty analysis using other methodsDespite its importance, uncertainty analysisils st
an open problem for optimization and control of isghle process systems. The difficulties in
considering uncertainty in such systems arise duthé computational intensity, the inherent
stochastic behavior and the lack of closed-form ehokh the current research, the uncertainty
analysis has been performed applying PSE. Movimgdal, the results can be compared to
other uncertainty quantification methods such a&.PC

Online identification of the closed-form model: The closed-form models presented in this
work for online applications have been developethguPSE-based algorithms. Sensitivity
analysis required for these expansions is comunally intensive, and online estimation of
these sensitivities through the multiscale modeldus this work is not practical. Thus, offline

identification is performed to identify the paraerst of the closed-form model. Having an
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efficient sensitivity evaluation approach, the aition can be modified as an adaptive model,
where the parameters of the closed-form model eaddntified online.

Extend the stochastic NMPC to other distributionaluncertainties: The algorithm presented
in Chapter 6 to predict the statistical momentsthef controlled outputs assumed a normal
distribution for uncertain parameters. The develepmof the closed-form model and the
stochastic NMPC can be extended to a general @gadiess of the form of distributional

uncertainty. This will strengthen the foundatiomshe algorithms presented in this research.
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Appendix A

Supplementary information for Chapter 5

For the multiple linear regressions required in(&®), the operational substrate temperature

region is divided into three regions and the patarseare estimated assuming that they are

functions of substrate temperature and bulk ma@letion as follows:

By = boy + by T + by T? + by TX + by T2X + bs T?X?,

where the parameters obtained from regression gpemuand lower bounds on roughness for

different regions in temperature are provided irbl€aA.1 and Table A.3 below. For each

regression, the corresponding confidence boundalaoepresented in Table A.2 and Table A.4,

respectively.

Table A.1. Parameters of Eq.(5-10) to estimate uppand on surface roughness.

Temperature 600 <T <800 800<T <1000 1000 < T < 1400
Parameter B1 B Bs B1 B Bs B1 B Bs

by, -8.5e-3 3.4e-1 5.3e-4 5.9e-2 -1.0 1.6e-2 3.4e-2 Te-G. 8.0e-3
by, 7.2e-5 -1.7e-3 9.4e-6 -1.0e-4 1.9e-3 -2.8e-5 -§.7e- 1.1e-3 -1.1e-5
b;, -6.6e-8 1.6e-6 -9.9e-9 4.7e-8 -8.6e-7 1.2e-8 1.7e-8-4.1e-7 3.9e-9
bs, 1.6 -3.5el 6.6e-1 2.8 -5.8el 3.6e-1 8.1le-1 -1.8e12.8e-1
by, 2.6e-4 -3.6e-3 -1.2e-4 -2.1e-3 4.2e-2 -1.2e-4 -8.2e 1l.le-2 -1.7e-4
bs, -1.6e2 3.3e3 -6.0el -5.1el 1.2e3 -1.6el -6.1 1.6e2 -2.8
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Table A.2. Confidence bounds of the parametersdist Table A.1.

Temperature 600 <T <800 800 <T <1000 1000 <T <1400
Parameter B1 B> B3 B1 B> B3 B1 B B3
Lower
-1.6e-2 1.7e-1 -1.2e-5 4.5e-2 -1.2 6.7e-3 3.1e-2 .4de-1 5.6e-3
Bound
by,
Upper
-1.0e-3 5.0e-1 le-3 7.2e-2 -8.5e-1 2.5e-2 3.6e-2 .le-6 1.1le-2
Bound
Lower
4.9e-5 -2.1e-3 8.0e-6 -1.3e-4 1.4e-3 -4.9e-5 -5.1e- 9.8e4 -1.5e-5
Bound
by,
Upper
9.3e-5 -1.2e-3 1.1e-5 -7.1e-5 2.3e-3 -6.2e-6 -8.1e- 1.2e-3 -6.7e-6
Bound
Lower
-8.1e-8 1.2e-6 -2.1e-8 2.9e-8 -1.1e-6 3.0e-10 &8.5e- -4.5e-7 2.2e-9
Bound
b,
Upper
-5.0e-8 1.9e-6 1.5e-9 6.4e-8 -6.1e-7 2.4e-8 1.9e-8-3.6e-7 5.9e-9
Bound
Lower
1.1 -4.5el 3.le-1 2.2 -6.5el 2.0e-3 6.7e-1 -2.1el .7e-1
Bound
b3,
Upper
2.0 -2.5el 1.0 3.2 -5.0el 7.1e-1 9.3e-1 -1.5el -B.9e
Bound
Lower
-4.5e-4 -1.9e-2 -1.7e-4 -2.6e-3 3.3e-2 -5.3e-4 ed.4 8.8e-3 -2.7e-4
Bound
by,
Upper
9.9e-4 1.2e-2 -6.5e-5 -1.4e-3 5.0e-2 2.9e-4 -4.1e-41.4e-2 -7.1e-5
Bound
Lower
-2.0e2 2.4e3 -9.0el -7.9el 8.2e2 -3.5el -1.2el 11.9e -9.8
Bound
bs,;
Upper
-1.1e2 4.2e3 -2.9el -2.3el 1.6e3 3.2 6.1e-1 31e2 9 1
Bound
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Table A.3. Parameters of Eq.(5-10) to estimate tdveaind on surface roughness.

Temperature 600 <T <800 800 <T <1000 1000 < T <1400
Parameter B1 B2 Bs B1 B Bs B1 B2 Bs
by, -3.3e-4 -8.0e-2 2.8e-3 3.9e-3 -2.2e-1 3.0e-3 3.5e-3-4.7e-1 2.9e-3
by, 1.2e-5 -9.5e-4 -1.6e-6 -3.1e-6 1l.1e-4 -2.6e-6 -B.7e 6.9e-4 -2.4e-6
b;, -1.1e-8 1.3e-6 -3e-11 7.2e-10 1.1e-7 8.7e-10 807e-1 -2.3e-7 8.4e-10
b3, 6.2e-1 -1.2e2 4.8e-1 2.9e-2 25 -2.6e-3 7.1e-2 ell.6 5.5e-2
by, -5.4e-4 1l.1e-1 -5.4e-4 5.1e-5 -1.5e-2 3.6e-5 -5.0e- 9.8e-3 -3.6e-5
bs, -2.2el 3.9e3 -6.1 -5.6 8.0e2 -1.9 -8.8e-1 1.2e2 3e-a.
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Table A.4. Confidence bounds of the parametersdist Table A.3.

Temperature 600 <T <800 800 <T <1000 1000 <T <1400
Parameter = = = = = = = = =
B1 B2 Bs B1 B2 Bs B1 B2 Bs
Lower
-7.1le-4 -l.4e-1 1.1e-3 3.5e-3 -5e-1 8.3e4 2.8e-3 5.3e-1 2.4e-3
Bound
by,
Upper
5.0e-5 -2.4e-2 4.4e-3 4.3e-3 5e-2 5.2e-3 4.2e-3 9e-B. 3.3e-3
Bound
Lower
4.2e-7 -1.1e-3 -2.3e-6 -4.0e-6 -4.9e-4 -3.5e-6 e-8.8 5.7e-4 -3.1e-6
Bound
by,
Upper
2.2e-5 -7.8e-4 1.0e-6 -2.1e-6 7.1e-4 -2.3e-6 -6.6e- 8.0e4 -1.6e-6
Bound
Lower
-1.9e-8 7.9e-8 -3e-11 2.3-10 -2.3e-7 5.9e-10 3®Be-1 -2.8e-7 5.2e-10
Bound
b;,
Upper
-3.2e-9 2.4e-6 3.0e-11 1.2e-9 4.5e-7 1.1e-9 1.3e-9 -1.8e7 1.1e-9
Bound
Lower
3.7e-1 -1.5e2 3.8e-1 1.5e-2 -7.4 -l.1le-2 4.1e-2 8ell. 3.6e-2
Bound
b3,
Upper
8.6e-1 -8.5el 5.8e-1 4.3e-2 1.2el 5.6e-2 9.9e-2 2ell. 7.4e-2
Bound
Lower
-9.1le-4 5.6e-2 -7.0e-4 3.4e-5 -2.7e-2 2.5e-5 -6.7e-  7.0e-3 -5.2e-5
Bound
by,
Upper
-1.6e-4 1.6e-1 -3.8e-4 6.8e-5 -3.3e-3 4.5e-5 -5.3e- 1l.2e-2 -1.8e-5
Bound
Lower
-4.3el 7.6e2 -6.9 -6.4 2.5e2 -4.4 -2.4 -3.2el -1.4
Bound
bs,
Upper
-1.0 6.9e3 -5.2 -4.8 1.3e3 6.3e-1 6.4e-1 2.7e2 -b.4e
Bound

The parameters obtained for nonlinear regressibosvis in Eq.(5-5) to estimate the upper
bound on the surface roughness while the substeatperature is 600 K and 700 K and the
corresponding confidence bounds are listed in TAdleand Table A.6, respectively. The rest of

the temperature regions were evaluated in the $ashen.
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Table A.5. Parameters of Eq.(5-10) to estimate uppand on surface roughness.

Temperature T =600K T=700K
Bulk precursor mole
B1 B2 B3 B1 B2 B3
fraction

X=1x10"° 3.13e-02 -9.97e-02 3.54e+02 1.92e-02 -7.85e-02 et®b
X =2x10"° 3.05e-02 -1.34e-01 3.66e+02 3.19e-02 -8.06e-02 e2(23
X =3x10"° 3.09e-02 -1.51e-01 3.45e+02 2.89e-02 -1.11e-01 e2(ZD
X =4x10"° 2.88e-02 -1.75e-01 3.81e+02 3.03e-02 -1.25e-01 ez2
X =5x%x10"° 3.56e-02 -1.66e-01 3.51e+02 3.22e-02 -1.32e-01 ez
X =6x10"° 3.74e-02 -1.74e-01 3.62e+02 3.00e-02 -1.51e-01 e2B3
X =7x%x10"° 3.77e-02 -1.82e-01 3.63e+02 2.71e-02 -1.68e-01 e2B3
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Table A.6. Confidence bounds of the parametersdist Table A.5.

Temperature T =600K T=700K
Bulk precursor mole
B1 B2 B3 B1 B2 B3
fraction
Lower
3.09e-02  -1.0le-01  3.41e+02  1.89e-02  -7.97e-02 ei(0B
B d
X=1x10"¢ o
U
ppe; 3.18e-02  -9.86e-02  3.66e+02  1.96e-02  -7.73e-02 et
Boun
Lower
3.01e-02  -1.36e-01  3.53e+02  3.13e-02  -8.18e-02 204
B d
X =2x10"¢ o
U
ppe; 3.10e-02  -1.33e-01  3.78e+02  3.24e-02  -7.94e-02 e2(®
Boun
Lower
3.05e-02  -1.52e-01  3.33e+02  2.84e-02  -1.12e-01 203
d
X =3x10"¢ Boun
U
ppet 3.14e-02  -1.50e-01  3.57e+02  2.93e-02  -1.10e-01 e20R
Bound
Lower
) 2.84e-02  -1.76e-01  3.68e+02  2.98e-02  -1.26e-01 e2(®
B
X =4%x10"¢ o
U
pRer 2.92e-02  -1.74e-01  3.93e+02  3.08e-02  -1.23e-01 ez
Bound
Lower
3.51e-02  -1.67e-01  3.39e+02  3.17e-02  -1.33e-01  e2(X
B d
X =5x10"¢ o
U
pRer 3.61e-02  -1.65e-01  3.63e+02  3.27e-02  -1.30e-01 e2(3
Bound
Lower
3.69e-02  -1.75e-01  3.50e+02  2.95e-02  -1.52e-01 ezed
B d
X=6x10"° o
U
ppe; 3.79e-02  -1.73e-01  3.75e+02  3.04e-02  -1.50e-01 e2@H
Boun
Lower
3.72e-02  -1.83e-01  3.50e+02  2.67e-02  -1.70e-01  ezed
B d
X =7x10"¢ o
U
ppet 3.83e-02  -1.80e-01  3.75e+02  2.75e-02  -1.67e-01 e2@5

Bound
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