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Abstract

In this thesis we consider the use of a linear periodic controller (LPC) for the control of
linear time-invariant (LTI) plants in the decentralized setting with an H∞-performance
criterion in mind. If a plant has an unstable decentralized fixed mode (DFM), it is well
known that no decentralized LTI controller can stabilize it, let alone provide good perfor-
mance, which is why we turn to more complicated controllers. Here we show that if the
graph associated with the plant is strongly connected and certain technical conditions on
the relative degree hold, then we can design a decentralized LPC to provide a level of H∞
performance as close as desired to the centralized H∞-optimal performance; this will be
the case even if the plant has an unstable decentralized fixed mode (DFM). The proposed
controller in each channel consists of a sampler, a zero-order-hold, and a discrete-time
linear periodic compensator, which makes it easy to implement.
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Chapter 1

Introduction

1.1 Background

The information flow of a system plays a vital role in the design of a feedback controller. If
the information flow constraints imposed that each disjoint subset of inputs of the system
has access to only one subset of the outputs and that the information fed back through the
local input only depends on the corresponding subset of outputs, then the system is said
to be in a decentralized setting and the overall feedback strategy is called decentralized
control. The information flow constraints may arise due to a geographical separation of
sensors and actuators, such as in a large power grid, or in a large chemical plant. Of course,
there are more complicated examples of restrictions on information flow, e.g., the input ui
depends not only on yi but also on a delayed version of yi−1, which may arise in specific
application problems such as controlling a platoon of vehicles or in networked control, e.g.
see [27], [23], and some of the cases considered in [24]. However here we are considering
only the classical constraint on information flow: input ui depends solely on output yi.

In the context of this classical decentralized control problem, a linear time invariant
(LTI) plant can be stabilized using a decentralized LTI controller if and only if the system
does not possess any unstable DFMs [7]; however, it has long been known that this is
not the case when using time-varying controllers. In [3] it has been proven that certain
time-invariant systems that cannot be stablized by a LTI decentralized controller can be
stabilized by a decentralized time-varying controller. Moreover the author of [28] showed
that sample-and-hold feedback strategy can be applied to eliminate some unstable-DFMs
with certain properties; the author of [29] expands the idea presented in [28] and [22] and
proposed a methodology to precisely identify the DFMs that cannot be moved by sampling.
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In [11], the authors propose decentralized control strategies to stabilize linear-periodically
time varying plants and it turns out that these decentralized controllers are linear periodic
in nature.

It is worth noting that the structure of the directed graph associated with the system
plays a significant role in designing a decentralized controller. In [1] the authors show
that by applying a decentralized generalized sample data hold functions (GSHF)(See [10])
to a LTI continuous time plant, the associated graph can be suitably modified to form a
hierarchical system model, for which the design of the controller is substantially simplified.
Indeed, [9] provides an approach to classify DFMs into those which are truly fixed and
those which can be moved using a sufficiently sophisticated controller by inspecting the
graph associated with the system; an associated ‘quotient system’ is defined and it is proved
that its DFMs, labelled QDFMs, are exactly those DFMs of the original system which are
immoveable by any form of nonlinear time-varying (NLTV) feedback.

In this document we are interested not only in closed-loop stability but also in H∞-
optimal (or near-optimal) performance. Carrying out optimal controller design in the
decentralized setting is difficult, and has only been solved in special situations. These
include:

(i) that of [5], in which the the plant has no unstable DFMs and is minimum phase;

(ii) that of [23], where a variety of cases are considered, including a classical one in which
there is a ‘triangular constraint’ on information flow;

(iii) that of [24], which discusses the central notion of quadratic invariance, and considers
which provides a detailed historical account of work on decentralized optimal control,
and where it is argued that the underlying concept in most of these approaches is that
of ’quadratic invariance’, and computational techniques are provided; a variety of cases,
including some of the classical kind, with followup work by the same author given in [26],
[13];

(iv) that of [25], in which a general class of systems having a poset structure is considered,
and an H2-optimal decentralized LTI controller is provided;

(v) that of [18], wherein a centrally controllable and observable plant with an associated
strongly connected graph is considered, and a linear periodic controller is designed which
provides a level of performance as close as desired to the centralized optimal LQR perfor-
mance.

We conclude that (a) the optimal decentralized control problem is difficult, and (b) in all
of the cases listed above except the last one, either the optimal performance is achieved by
an LTI controller or only LTI controllers are considered.

2



In this document our goal is to extend the approach of [18] on providing (near) LQR-
optimal performance discussed in (v) above to providing the more demanding goal of
providing (near) H∞-optimal performance. In [18] it was shown, under reasonably general
conditions, that LQR-optimal centralized performance can be recovered by a decentralized
linear periodic controller. In that paper the assumptions are that the plant is centrally con-
trollable and observable and the graph associated with the system is strongly connected. It
is important to note that the class of systems considered there does not have the quadratic
invariance property of [24] nor the poset stucture of [25]; however, it turns out that the
three required system properties are generic, which demonstrates that the result is typical
and not atypical (see Proposition 1 of [18]). The H∞ performance objective is much more
demanding than the LQR performance objective. Of course, since we will be using a linear
periodic controller we can no longer use the frequency domain interpretation of the H∞
performance index; instead we adopt the natural time-domain interpretation of the system
gain in the induced 2−norm sense. In contrast to [18] but in accordance with a typical H∞
optimal problem, both inputs and outputs of the plant are partitioned into two different
classes: a set of control inputs, a set of disturbance(reference) inputs, a set of outputs to
be controlled and a set of measured outputs. This added complexity of the problem re-
quires some additional assumptions, e.g., for our approach to work, certain relative degree
conditions are imposed.

Our approach is motivated by the earlier work on the robust control of linear (possibly
time-varying) centralized systems using linear periodic controllers [20], [15], and [19] and
[21] as well as the earlier work on decentralized LQR performance [18]. The first step
is to compute an LTI centralized controller Kcen which provides a level of performance
as close as desired to the centralized H∞-optimal performance. Next, we construct a
linear periodic sampled-data decentralized controller which emulates the behaviour of the
afore-mentioned LTI centralized controller Kcen; we impose a relative degree constraint to
ensure that the approach works. We make use of the strongly connected assumption to
pass information between channels, and we end up with a linear periodic decentralized
controller parametrized by the period T > 0; we show that as T → 0, the closed loop
performance tends toward that provided by the centralized LTI controller Kcen.

The periodic controller works as follows: with p channels, we place a copy of Kcen in
one of the channels - we somewhat arbitrarily choose the last one. In each channel i we
maintain an estimate of the corresponding output of the copy of Kcen, which we label ûi.
While at all times applying our estimate ûi in channel i, during the first part of each
period we probe the system with y1, y2, ..., yp−1, so that in channel p we can estimate these
quantities, which are then coupled with the measurement of yp to yield an estimate of
y, which can then be used to drive the copy of Kcen to update the ’near-optimal control
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signal’. In the last part of the period we probe the system in the pth channel to pass this
information to the first p− 1 channels. The relative degree assumption plays a critical role
in ensuring that the probing is successful.

We emphasize that the proof for the H∞ problem considered here is significantly differ-
ent from the earlier work on the LQR problem [18]: (i) first of all, the centralized controller
Kcen is now dynamic output feedback rather than static state feedback, (ii) second of all,
now the problem is tracking rather than stability, which significantly complicates the prob-
ing and estimation, which gives rise to the need for relative degree assumptions, and (iii)
now we need to use input-output operator norms rather than the norm of signals.

1.2 Mathematical Notation and Preliminaries

Before proceeding further, we will provide an overview of the mathematical tools and
the notations that are being used throughout the document. The natural numbers, real
numbers, non-negative real numbers, integers and non-negative integers are denoted by
N,R,R+,Z and Z+ respectively. The Euclidean norm is used for the vectors and the
corresponding induced norm is used for the matrices. The norm of a vector or matrix
is denoted by ‖.‖. The Lebesgue space L2(Rn) denotes the set of Rn valued, Lebesgue
measurable square-integrable signals x on [0∞) for which

‖x‖2 :=

[∫ ∞
0

‖x(τ)‖2 dτ

] 1
2

<∞.

On occasion we wish to measure the size of a signal on an interval: with x ∈ L2(Rn) and
t2 > t1 ≥ 0, we define ∥∥x[t1,t2]

∥∥
2

:= [

∫ t2

t1

‖x(τ)‖2 dτ ]
1
2 .

Throughout the thesis, we often use the size of the signal measured over a period of T > 0;
with x ∈ L2(Rn) and k ∈ Z we define

‖xk‖2 := [

∫ (k+1)T

kT

‖x(τ)‖2 dτ ]
1
2 .

A function f : R+ → Rn×m is said have an order of T j and is written as f = O(T j), if
there exist constants c1 > 0 and T1 > 0 such that

‖f(T )‖ ≤ c1T
j, T ∈ (0, T1).
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Here we consider the order notation for small T ∈ (0, T1). The order notation has several
properties that will be used in later sections. If functions f1, f2 : R+ → Rn×m are orders
of T j and T i respectively, i.e., f1 = O(T j) and f2 = O(T i), then the sum property implies
that

f1 + f2 = O(T j + T i)

and the product property implies that

f1f2 = O(T j+i).

Moreover, the order notation is used in conjunction with arithmetic operations. For exam-
ple if we write f1 = f2 +O(T k) for some k ∈ R, then we mean that there exist constants
ck > 0 and Tk > 0 such that

‖f1(T )− f2(T )‖ ≤ ckT
k, T ∈ (0, Tk).

Positive definite matrices are very useful when applying Lyaponov’s direct method of

stability analysis. Let M ∈ Rn×n be a symmetric matrix partitioned as M :=

[
A B
BT C

]
with A ∈ Rp×p, B ∈ Rp×q, and C ∈ Rq×q. The Schur complement SA of block matrix A
is written as

SA = C −BTA−1B,

and the Schur complement SC of block matrix C in M is given by

SC = A−BC−1BT .

From [31] the matrix M is positive definite if and only if A and its Schur complement SA
are positive definite:

M � 0⇔ A � 0, SA � 0.

Similarly both C and its Schur complement SC are positive definite if and only if M is
positive definite.

Let G ⊂ Rn be a euclidean subset. A continuous function h : G → G has a fixed point
if there exist x ∈ G such that h(x) = x. The Brouwer fixed-point theorem states that any
continuous function h will always have at least one fixed point if G is convex and compact.
We invoke this idea to find a root of a function in a later chapter.

A single-input-single-output(SISO) system with a state space representation of

ẋ = Ax+ bu

y = cx
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said to have a relative degree (rel.deg[c(sI − A)−1b]) of η, if

cAib = 0 for i = 0, 1, · · · , η − 2

and
cAη−1b 6= 0.

We assign a relative degree of∞ if the transfer function is identically zero. We extend the
idea to a multi-input-multi-output(MIMO) system by defining its relative degree to be the
smallest relative degree of all the possible SISO subsystems.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 is partitioned into three sub-sections. In the
first sub-section we formulate the decentralized setup and discuss the assumptions. In the
second sub-section, we discuss the control problem and provide a high level description
of the approach. Finally in the last sub-section we discuss a regularization step which
simplifies the controller description. We partition Chapter 3 into two sub-sections. First
we present a preliminary result on estimation, which is used to motivate the controller
description presented in the next subsection. Chapter 4 provides the detailed proof in
threefold: first we start off with a lengthy Preamble followed by a stability analysis for the
the closed loop system and finally we tie in our objective by analysing the performance.
Chapter 5 illustrates the simulation results using the proposed controller in a simple plant
with a DFM and a non-minimum phase zero. In Chapter 6 we provide a comprehensive
summary of this thesis and we recommend potential future expansions for this research.
In the Appendix we provide proofs for the preliminary Lemmas that are been used in the
main proof.
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Chapter 2

Problem Formulation

2.1 The Setup

The plant model P is modelled as follows:

ẋ = Ax+
∑p

i=1Biui + Er, x(t0) = x0

z = C1x+
∑p

i=1D
i
11ui +D12r

yi = Ci
2x, i = 1, ..., p,

 (2.1)

with x(t) ∈ Rn the state, ui(t) ∈ Rmi the ith control input, r(t) ∈ Rµ the disturbance (or
reference) signal, z(t) ∈ Rρ the output to be controlled and yi(t) ∈ Rli the measured ith

output for i = 1, ..., p; we set m =
∑p

i=1mi, and l =
∑p

i=1 li. Associated with this model
are

y =

 y1
...
yp

 , u =

 u1
...
up

 , C2 :=

 C1
2
...
Cp

2


B :=

[
B1 · · · Bp

]
, D11 :=

[
D1

11 · · · Dp
11

]
.

Notice that it is implicitly assumed that the disturbance r(t) does not appear directly
in the measured output u(t) (D21 = 0 in the centralized context). This assumption is
not overly restrictive as with any sample-data controller, it is the norm to pass the signal
through an anti-aliasing filter prior to sampling. On the other hand this assumption is
crucial for the implementation of the controller.
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Another implicit assumption is that in the decentralized context the channels are local-
ized, i.e. ui depends solely on yi, regardless of the type (LTI, linear time varying (LTV),
or non-linear time varying (NTLV)) of the controller used. This is assumption is not too
restrictive as it possible to reconfigure input-output map so that the resulting channels
are localized. For example, consider a plant with 4 channels and the following information
flow characteristics.

• u1 has access to y1 and y3

• u2 has access to y2 and y3

• u3 has access to y3

• u4 has access to y1, y2 and y4.

A set of new outputs can be implemented to ensure the system is fully decentralized.

Consider the outputs ȳ1 :=

[
y1

y3

]
, ȳ2 :=

[
y2

y3

]
, ȳ3 := y3 and ȳ4 :=

 y1

y2

y4

. With these

outputs the plant is completely decentralized as all four channels are localized.

The overall objective of this thesis to design a decentralized controller to closely match
the performance of the centralized H∞ optimal controller. In order to design a H∞ optimal
controller using the method of [8], it is required that

Assumption 1: (A,B) is stablizable and (C2, A) is detectable;

Assumption 2: (C1, A) is detectable.

These technical assumptions play a pivotal role in designing the centralized optimal con-
troller.

Before we talk about performance, it is crucial to discuss the issues surrounding closed-
loop stability in the decentralized setting. The notion of DFM was introduced in [7]; the
goal is to identify those eigenvalues that are immovable using LTI feedback which respects
the information flow constraints. It has been shown in [7] that an eigenvalue is movable
using dynamic output feedback if and only if it is movable using static output feedback.
In the decentralized setting the set of static output feedback gains is given by:

Kdec(A;B1, · · · , Bp;C
1
2 , · · · , C

p
2 ) := {K ∈ Rm×l :
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K = diag{K1, · · · , Kp}|Ki ∈ Rmi×li},

or simply Kdec for short is used to specify the unmovable eigenvalues known as DFM.

Definition 1 The decentralized fixed modes of (2.1) are given by

∩K∈Kdec
σ(A+BKC2).

Remark 1 As mentioned in the Introduction, for some systems, some of the DFMs are
moveable using non-LTI control laws, e.g. [3], [28], [22], [29] and [11]. The DFMs which
are immoveable by any NLTV control law are the QDFMs - see [9] and [17].

Graph theory can be used to study decentralized systems, and was used in [9] to identify
QDFMs. Following [4], one can build a directed graph of the plant (2.1) as follows: there
are p nodes representing the p control agents and p sensor agents, with an edge from node
i to node j iff Cj

2(sI − A)−1Bi 6= 0. Recall that a directed graph is said to be strongly
connected if there is path from every node to every other node in the graph.

Remark 2 It was proven in [9] that if the plant is centrally controllable and observable
and the associated graph is strongly connected, then the system has no QDFMs (though it
may have DFMs).

Hence, we can be assured that the system will not have any unstable QDFMs if we
insist that the directed graph associated with the plant is strongly connected. Hence we
impose

Assumption 3: Ṫhe directed graph corresponding to (2.1) is strongly connected.

We will be using ideas from the paper on decentralized control in the LQR setting [18]
as well as the earlier work on simultaneous stabilization in the H∞ context [16]. We will
be carrying out probing at each plant input ui and measuring the response at each plant
output yj; for this to work, we need to ensure that the effect of the probe overwhelms the
effect of the disturbance signal r. We do so by imposing a relative degree assumption.
The relative degree of a non-zero siso transfer function is the degree of the denominator
less the degree of the numerator, with the understanding that if the transfer function is
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identically zero then the relative degree is defined to be ∞; for a multivariable transfer
function the relative degree is the smallest relative degree of the scalar elements, with the
understanding that it is infinity if the multivariable transfer function is identically zero.
For our set-up we are interested in two distinct relative degrees, one associated with the
control input and one associated with the disturbance input:

η1 := max
i, j ∈ {1, · · · p}

rel.deg.(Ci
2(sI − A)−1Bj),

η2 := rel.deg.(C2(sI − A)−1E).

Assumption 4: η2 > η1.

The motivation of this assumption is as follows. Suppose for simplicity that li = mi = 1,
and that at time 0 we probe the input ui with a small test signal φ on a small interval
[0, h], with all other inputs zero and with the plant initial condition equal to zero. With η̂1

the relative degree of Cj
2(sI − A)−1Bi and η̂2 the relative degree of Cj

2(sI − A)−1E, after
the small time period h we have

yj(h) =

∫ h

0

Cj
2e
A(h−τ)[Biφ + Er(τ)] dτ

≈ Cj
2A

η̂1−1Bi
hη̂1

η̂1!
φ+O(hη̂2−0.5)(

∫ h

0

‖r(τ)‖2dτ)1/2.

From the definition of η̂1 we have that Cj
2A

η̂1−1Bi 6= 0, so

1

Cj
2A

η̂1−1Bi

η̂1!

hη̂1
yj(h) ≈ φ+O(hη̂2−η̂1−1/2)(

∫ h

0

‖r(τ)‖2dτ)1/2; (2.2)

but η̂1 ≤ η1 and η̂2 ≥ η2, which means that

η̂2 − η̂1 − 1/2 ≥ η2 − η1 − 1/2 ≥ 1/2.

This means that the LHS of (2.2) provides a good estimate of φ, even in the presence of the
disturbance r. Of course, the above is more complicated in the case of non-scalar inputs
and output, non-zero initial conditions, and when one is trying to carry out control at the
same time as estimation. These issues will be dealt with in due course.

2.2 The Problem

The objective of this thesis is to design a linear periodic controller that not only provides
closed loop stability, but also guarantees near optimalH∞ performance in the decentralized
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setting. To proceed, we need to make precise the notion of stability and H∞ performance.
We first consider a centralized LTI controller Kcen described by

v̇ = Fv +Gy, v(t0) = v0 ∈ R`

u = Hv + Jy.
(2.3)

By closed-loop stability we mean that, if r(t) is identically zero, then for every t0 and

every set of initial conditions x0 and v0, we have that

[
x(t)
v(t)

]
→ 0 as t → ∞. With

t0 = 0, x0 = 0, and v0 = 0, we let F(P,Kcen) denote the closed-loop map from r ∈ L2(Rµ)
to z ∈ L2(Rρ). The classical H∞-optimal control problem is to find the LTI controller
Kcen which stabilizes P and minimizes the cost ‖F(P,Kcen)‖. In general the minimizing
controller does not exist, but one can obtain an LTI controller which provides a level of
performance as close to optimality as desired [8]. So given a near optimal centralized
LTI controller Kcen, our goal here is to obtain a decentralized controller Kdec which
provides a level of performance close to this; to achieve this we use a linear periodic
sampled-data controller.

Here we consider decentralized sampled-data controllers Kdec of the form

ψi[k + 1] = Li[k]ψi[k] +Mi[k]yi(kh),

ψi[0] = ψi0 ∈ Rl̄i ,
ui(kh+ τ) = Qi[k]ψi[k] +Ri[k]yi(kh),

τ ∈ [0, h)

 (2.4)

with the controller gains Li, Mi, Qi, and Ri periodic of period q ∈ N for every i ∈
{1, 2, ..., p}; the period of the overall controller is T := qh, and we associate this system
with ((Li,Mi, Qi, Ri), i = 1, ..., p;T ; q). Note that for each i, (2.4) can be implemented
with a sampler, a zero-order-hold, and an l̄thi order periodically time-varying discrete-time

system of period q. We define the augmented controller state as ψ[k] :=

 ψ1[k]
...

ψp[k]

 and

ψ[0] := ψ0.

The state of the closed loop-system is a combination of discrete and continuous states,
defined by

xsd(t) :=

[
x(t)
ψ[k]

]
, t ∈ [kh, (k + 1)h);

the dimension of ψ is l̄ := l̄1 + l̄2 + · · ·+ l̄p. Now we make precise our notion of stability.
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Definition 2 The sampled-data controller (2.4) exponentially stabilizes (2.1) if
there exist constants γ > 0 and λ < 0 so that, with t0 = 0 and r = 0, for every
x0 ∈ Rn and ψ0 ∈ Rl̄, we have

‖xsd(t)‖ ≤ γeλt‖xsd(0)‖, t ≥ 0.

Suppose that the sampled-data controller (2.4) labelled Kdec exponentially stabilizes
(2.1); then with t0 = 0, x(0) = 0 and ψ[0] = 0, we let F(P,Kdec) denote the closed-loop
map from r ∈ L2(Rµ) to z ∈ L2(Rρ). The goal is to design a stabilizing controller Kdec so
that ‖F(P,Kdec)‖ is as close as desired to ‖F(P,Kcen)‖.

Before we proceed to the formal controller design, we will provide some intuition on
how to design such a controller. The centralized controller Kcen has access to all of y,
whereas in the decentralized case the controller in the ith channel can only measure yi. We
place a discretized version of Kcen in one of the channels - we somewhat arbitrarily choose
the pth one - which we drive with a running estimate ŷ of y and which generates a running
estimate of the control signal:1

ν[k + 1] = Fν[k] + Gŷ(kT )
u[k + 1] = Hν[k + 1] + Jŷ(kT ),

}
(2.5)

where F = eFT and G = (
∫ T

0
eFτ)dτ)G. On each period [kT, (k + 1)T ), we apply an

estimate û[k] of u[k], at the same time doing a small amount of probing to obtain a better
estimate of this quantity for use during the next period. We make use of the fact that
the graph associated with the plant is complete to pass information amongst the channels.
More specifically, first we carry out probing in channels 1, ..., p − 1, using scaled versions
of y1(kT ), ..., yp−1(kT ) so that an estimate of y1(kT ), ..., yp−1(kT ) can be constructed in
channel p, which is combined with the local measurement of yp(kT ) to construct an estimate
ŷ(kT ) of y(kT ) which can be used to drive (2.5) to generate v[k + 1] and hence u[k + 1].
Second of all, we then probe from channel p with elements of u[k+1] to provide an estimate
û[k+1] of the updated control signal for use in channels 1, ..., p−1 during the next period.
It turns out that we can do this in a linear periodic fashion, and end up with an overall
controller of the form (2.4). The ensuing control signal is of the form displayed in Figure 1.
With this controller implemented, we will show not only that the controller exponentially
stabilizes (2.1), but also that we can make the closed-loop performance as close as desired
to the level of performance provided by Kcen.

1In order to use the available information in constructing the control signal, we use ŷ(kT ) rather than
ŷ((k + 1)T ) in constructing the control signal u[k + 1].
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Probing, Estimation
and Control

kT (k + 1)T
t

ui(t)

� -

ûi[k]

?

Figure 2.1: A typical control signal over a period for the proposed controller.

2.3 Regularization

At this point it is convenient to put our system into a form which is amenable to analysis.
In particular it is desirable to have the graph associated with the system not only strongly
connected, but also complete; recalling that a graph is complete if and only if there exist
an edge between every two nodes, i.e. in our case

Cj
2(sI − A)−1Bi 6= 0,

for all i = 1, 2, · · · , p, j = 1, 2, · · · , p and i 6= j. As proven in [12] (and used in the earlier
work [18]), most static decentralized output feedback control laws of the form u = Ky+u0

will result in the graph associated with the new system

ẋ = (A+BKC2)x+
∑p

i=1Biu
0
i + Er,

x(t0) = x0

z = (C1 +D11KC2)x+
∑p

i=1D
i
11u

0
i +D12r

yi = Ci
2x, i = 1, ..., p,

 (2.6)

being complete. To avoid cumbersome new notation, instead of assuming that the graph is
strongly connected, we may as well assume that it is complete, since it can easily adjusted
if need be.

Assumption 5: Ṫhe directed graph corresponding to (2.1) is complete.

In order to implement the idea of the previous section, we will be passing information
from one channel to the rest. In order to do so, it is particularly convenient to convert the

13



system to one with single-input single-output (siso) channels. To this end, consider vectors
v ∈ Rl and w ∈ Rm partitioned in a natural way as

v =

 v1
...
vp

 , vi ∈ Rli , w =

 w1
...
wp

 , wi ∈ Rmi .

Proposition 1 [18] For almost all (v, w) ∈ Rl × Rm, we have that for every i, j ∈
{1, 2, ..., p}, the transfer function vTi C

i
2(sI − A)−1Bjwj is not identically zero.

It turns out that we can strengthen Proposition 1: there exist (v, w) ∈ Rl×Rm so that
for every i, j ∈ {1, 2, ..., p}, the transfer function vTi Ci(sI −A)−1Bjwj is not only non-zero
but also has the same relative degree as Ci(sI − A)−1Bj; so freeze such a v and w. We
now introduce the natural notation

C̄i
2 := vTi C

i
2, B̄i := Biwi,

ȳi = C̄i
2x = vTi C

i
2x, i = 1, ..., p.

During probing and estimation, we will carry out probing on one channel at a time, so the

following notation will prove useful: w̄j :=
[

0 wTj 0
]T ∈ Rm.

At this point we are ready to construct a controller to achieve our objective. This will
be carried out in the next chapter.

14



Chapter 3

Controller Design

In this chapter we design a controller achieve our objective.

3.1 Estimation

The underlying idea of the proposed controller is to apply an estimate û[k] of u[k], while
at the same time constructing a new estimate for use during the next time period. 1

The method we use in this thesis for estimation is similar to the one developed in [15]
and [18] with some modifications. To this end we choose n̄ ∈ {1, ..., n} and define two
(n̄+ 1)× (n̄+ 1) matrices and a vector of samples of ȳi:

S :=


1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2n̄

...
1 n̄ n̄2 · · · n̄n̄

 ,

H(h) := diag{1, h, h
2

2!
, ...,

hn̄

n̄!
},

1We partition û[k] =

 û1[k]...
ûp[k]

 and u[k] =

 u1[k]...
up[k]

.
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Ȳi(t) :=


ȳi(t)

ȳi(t+ h)
· · ·

ȳi(t+ n̄h)

 .
The following result illustrates how information can be passed from one channel to another.

Lemma 1 (Key Estimation Lemma) For every h̃ ∈ (0, 1) there exists a constant
γ > 0 so that for every t0 ∈ R, x0 ∈ Rn, h ∈ (0, h̃), ū ∈ Rm and φ ∈ R, the solution
of (2.1) with

u(t) =

{
ū+ w̄jφ t ∈ [t0, t0 + n̄h)
ū− w̄jφ t ∈ [t0 + n̄h, t0 + 2n̄h)

satisfies, for i = 1, ..., p and j = 1, ..., p:

‖H(h)−1S−1[Ȳi(t0)− Ȳi(t0 + n̄h)]− 2


0

C̄i
2B̄j
...

C̄i
2A

n̄−1B̄j


︸ ︷︷ ︸

=:Mi,j

φ‖

≤ γh(‖x0‖+ ‖ū‖+ |φ|) + γhη2−n̄− 1
2 (

∫ t0+2n̄h

t0

‖r(τ)‖2dτ)
1
2

+ γh
1
2 (

∫ t0+2n̄h

t0

‖r(τ)‖2dτ)
1
2

and

‖x(t)− x0‖ ≤ γh(‖x0‖+ ‖ū‖+ |φ|) + γh
1
2 (

∫ t0+2n̄h

t0

‖r(τ)‖2dτ)
1
2 ,

t ∈ [t0, t0 + 2n̄h].

Proof: See the Appendix (A.1).

Here we scale our probing signal by a factor of T δ with δ ∈ (0, 1
2
); the controller period

T is an integer multiple of the base sampling period h, so O(h) = O(T ). To see how this
lemma can be used, first consider the control signal

u(t) = û[k] +

{
T δw̄j[yj(kT )]1 t ∈ [kT, kT + n̄h)
−T δw̄j[yj(kT )]1 t ∈ [kT + n̄h, kT + 2n̄h),
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where [yj(kT )]1 is the first element of output signal yj(kT ). Using Lemma 1 (and the
definition of Mi,j provided there), observe that

T−δ

2
H(h)−1S[Ȳi(kT )− Ȳi(kT + n̄h)] =

0
C̄i

2B̄i
...

C̄i
2A

n̄−1B̄i


︸ ︷︷ ︸

Mi,j

[yj(kT )]1 +O(T 1−δ)(‖x(kT )‖+ ‖û[k]‖)+

O(T )‖yj(kT )‖+ [O(T
1
2
−δ) +O(T η2−n̄−δ− 1

2 )](

∫ kT+2n̄h

kT

‖r(τ)‖2dτ)
1
2 .

Now fix n̄ = η1; then the quantity

η2 − n̄− δ −
1

2
= η2 − η1 − δ −

1

2
≥ 1

2
− δ > 0,

which means that the last three terms of the above equation tend to zero as T tends to
zero; furthermore, this means that Mi,j 6= 0 for every i, j ∈ {1, 2, · · · , p}, in which case we
can construct an estimate of [yj(kT )]1 in channel i as follows:

T−δ

2
(MT

i,jMi,j)
−1MT

i,jH(h)−1S−1︸ ︷︷ ︸
=:M̄i,j

×

[Ȳi(kT )− Ȳi(kT + n̄h)] =: [ŷj(kT )]1,

Of course, we can adopt the same procedure to estimate [yj(kT )]2, [yj(kT )]3, and so on, in
channel p, and we can use the same technique to probe in channel p to pass information
about ui[k + 1] to channel i for i = 1, ..., p− 1. Therefore, at this point we freeze the
value of n̄ to be η1. Now observe that the error bound on [ŷj(kT )]1 is given by:

[ŷj(kT )]1−[yj(kT )]1 = O(T 1−δ)(‖x(kT )‖+
∥∥û[k]

∥∥)+O(T
1
2
−δ)(

∫ kT+2n̄h

kT

‖r(τ)‖2dτ)
1
2 . (3.1)

Since our objective is to obtain an estimate of yi(k) of dimension li, i = 1, ..., p− 1, in
channel p, and an estimate of ui[k] of dimension mi in channels 1, ..., p− 1, it is convenient
to define some new block diagonal matrices containing multiple copies of M̄i,j:

M̂p,i := diag{M̄p,i, ..., M̄p,i︸ ︷︷ ︸
li copies

}, i = 1, ..., p− 1,
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M̂i,p := diag{M̄i,p, ..., M̄i,p︸ ︷︷ ︸
mi copies

}, i = 1, ..., p− 1.

3.2 The Controller

Recall that we have fixed n̄ = η̂1 and δ ∈ (0, 1
2
). Let h > 0 and define h̄ := n̄h. Now we

set the controller period to be T := (2n̄(l +m− lp −mp) + 1)︸ ︷︷ ︸
=:q

h. As discussed above, we

designate channel p to be the channel where a copy of Kcen is placed. With ν[0] ∈ R` and
û[0] ∈ Rm, we define the controller in three steps - for k ∈ Z+:

(i) Estimate the output signals yi(kT ), i = 1, ..., p − 1, on [kT, kT + 2(l − lp)n̄︸ ︷︷ ︸
=:qp

h). We

probe yj(kT ) in channels j = 1, 2, ..., p− 1, in the following manner: with

T1 := kT
T2 := T1 + 2l1h̄
T3 := T2 + 2l2h̄

...
Tp := Tp−1 + 2lp−1h̄,

we apply û[k] while at the same time probing with weighted elements of y1(kT ), ..., yp−1(kT )
in sequence:

u(t) = û[k] +



T δw̄1[y1(kT )]1 t ∈ [T1, T1 + h̄)
−T δw̄1[y1(kT )]1 t ∈ [T1 + h̄, T1 + 2h̄)

...
T δw̄p−1[yp−1(kT )]lp−1

t ∈ [Tp − 2h̄, Tp − h̄)

−T δw̄p−1[yp−1(kT )]lp−1
t ∈ [Tp − h̄, Tp).

(3.2)

Now we form the estimate ŷi(kT ) in the channel p :

ŷi(kT ) := M̂p,i

 Ȳi(Ti)− Ȳi(Ti + h̄)
...

Ȳi(Ti + (2li − 2)h̄)− Ȳi(Ti + (2li − 1)h̄)
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for i = 1, ..., p− 1, and then form an overall estimate of y(kT ) in channel p:

ŷ(kT ) :=


ŷ1(kT )

...
ŷp−1(kT )
yp(kT )

 .

(ii) Update the control signal u on [Tp, Tp + h) using (2.5):

ν[k + 1] = Fν[k] + Gŷ(kT )
u[k + 1] = Hν[k + 1] + Jŷ(kT )

}
(3.3)

while applying the present estimate:

u(t) = û[k], t ∈ [Tp, Tp + h). (3.4)

(iii) Estimate the updated control signal u[k + 1] on channels 1, ..., p− 1 during the
time period [Tp + h, Tp + 2n̄(m−mp)h+ h): with

T̃1 = Tp + h

T̃2 = T̃1 + 2m1h̄

T̃3 = T̃2 + 2m2h̄
...

T̃p = T̃p−1 + 2mp−1h̄,

we apply û[k] while at the same time probing with weighted elements of the first m−mp

elements of u[k + 1] in sequence:

u(t) = û[k] +



T δw̄p[u1[k + 1]]1 t ∈ [T̃1, T̃1 + h̄)

−T δw̄p[u1[k + 1]]1 t ∈ [T̃1 + h̄, T̃1 + 2h̄)
...

T δw̄p[up−1[k + 1]]mp−1 t ∈ [T̃p − 2h̄, T̃p − h̄)

−T δw̄p[up−1[k + 1]]mp−1 t ∈ [T̃p − h̄, T̃p).

(3.5)

Now we form the estimate ûi[k + 1] of ui[k + 1] in channel i: for i = 1, ..., p− 1 we define

ûi[k + 1] :=
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M̂i,p


Ȳi(T̃i)− Ȳi(T̃i + h̄)

Ȳi(T̃i + 2h̄)− Ȳi(T̃i + 3h̄)
...

Ȳi(T̃i + (2mi − 2)h̄)− Ȳi(T̃i + (2mi − 1)h̄)


and then we define

ûp[k + 1] := up[k + 1]. (3.6)

The above controller given by (3.2)-(3.5) is a description of its behaviour on each period
of length T . It turns out that it has a desireable state-space representation of the form
(2.4), which we label Kdec(T ):

Lemma 2 There exists an LPC of the form (2.4) given by

(Li,Mi, Qi, Ri), i = 1, · · · , p;T ; q)

with the parameters and the state partitioned as

ψi[j] =

 ψ1
i [j]
ψ2
i [j]
ψ3
i [j]

 , Mi[j] =

 M1
i [j]

M2
i [j]

M3
i [j]


Li[j] =

 L11
i [j] 0 0

L21
i [j] L22

i [j] 0
L31
i [j] 0 L33

i [j]

 (3.7)

with the following properties:
(i) L11

i [0] = 0, L21
i [0] = 0, L31

i [0] = 0.
(ii) L33

i [j] = 0,M3
i [j] = 0 for all i ∈ {1, 2, · · · , p− 1} and ∀j ∈ Z+.

(iii) With ψ2
i [0] = ûi[0] and ψ3

p[0] = ν[0] the behaviour of this LPC is identical to
that of (3.2)-(3.5). Moreover,

ψ2
i [j] = ûi[k], j = kq, · · · , (k + 1)q − 1

and

ψ3
p[j] =

{
ν[k], j = kq, · · · , kq + qp
ν[k + 1], j = kq + qp + 1, · · · , (k + 1)q − 1

Proof: See the Appendix (A.2).
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Remark 3 The initial conditions of (3.2)-(3.5), namely ν[0] ∈ R` and û[0] ∈ Rm, are

connected to the initial conditions of ψi[0] =

 ψ1
i [0]

ψ2
i [0]

ψ3
i [0]

 via

ν[0] = ψ3
p[0]

and
ûi[0] = ψ2

i [0], i = 1, ..., p.

The remaining elements of ψi[0] are irrelevant, and play no role in the controller output.
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Chapter 4

Analysis

To prove that the proposed controller achieves our objective, we first analyse the the
closed-loop behaviour over a single period of T time units. More precisely, we prove that
the desired estimation of the plant output y and the passing of the desired control signal
from channel p to the rest of the channels works well while the inter-sampler behaviour of
the plant state x and the control signal u have acceptable upper bounds:
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Lemma 3 (One Period Lemma): For every δ ∈ (0, 1
2
) there exist constants γ > 0

and T̄ > 0 so that for every T ∈ (0, T̄ ), x0 ∈ Rn and k ∈ Z+, when the controller
(3.2)-(3.5) is applied to the plant (2.1), the closed loop system satisfies the following:

‖x(t)− x(kT )‖ ≤ γT (‖x(kT )‖+
∥∥û[k]

∥∥) + γT 1+δ ‖ν[k]‖+ γT
1
2 ‖rk‖2 ,

t ∈ [kT, (k + 1)T ),
(4.1)

∥∥u(t)− û[k]
∥∥ ≤ γT δ(‖x(kT )‖+ ‖ν[k]‖) + γT

∥∥û[k]
∥∥+ γT

1
2 ‖rk‖2 ,

t ∈ [kT, (k + 1)T ),
(4.2)

∥∥û[k + 1]− u[k + 1]
∥∥ ≤ γT 1−δ(‖x(kT )‖+

∥∥û[k]
∥∥) + γT ‖ν[k + 1]‖

+ γT
1
2
−δ ‖rk‖2 ,

(4.3)

‖ŷ(kT )− y(kT )‖ ≤ γT 1−δ(‖x(kT )‖+
∥∥û[k]

∥∥) + γT
1
2
−δ ‖rk‖2 . (4.4)

Proof: See the Appendix(A.3).

Lemma 3 provides a comprehensive outlook of the behaviour of the closed-loop system
over a single period. This result can be leveraged to prove that the proposed decentralized
linear periodic controller works very much like the centralized LTI controller:

Theorem 1 There exists a T̃ > 0 so that for every T ∈ (0, T̃ ), the linear periodic
controller Kdec(T ) exponentially stabilizes the plant (2.1) and satisfies

lim
T→0
‖F(P,Kcen)−F(P,Kdec(T ))‖ = 0.

Proof:

We will carry out the proof in three parts: we start with a lengthy preamble, then
move onto exponential stability and finish up with an analysis of the performance. We let
x(0) ∈ Rn, ψi[0] ∈ R

¯̀
i , r(t) ∈ L2(Rµ) and T > 0 be arbitrary and set h = T/q.
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Step 1: Preamble

Here we apply the controller (3.2)-(3.5), suitably rewritten in the form of (2.4) courtesy

of Lemma 2. Observe that ψi[0] =

 ψ1
i [0]
ψ2
i [0]
ψ3
i [0]

. Using Lemma 2 we can connect the intial

conditions of (3.2)-(3.6), namely x(0) ∈ Rn, ν[0] ∈ R` and û[0] ∈ Rm to that of the LPC
(2.4) via

ν[0] = ψ3
p[0]

ûi[0] = ψ2
i [0], i = 1, 2, · · · , p.

Before we proceed further let us introduce intermediate states

ζ[k] := û[k]−Hν[k]− Jŷ((k − 1)T ) ∈ Rm,

ξ[k] := ŷ((k − 1)T )− C2x(kT ) ∈ Rl,

and define xd[k] :=


x(kT )
ν[k]
ζ[k]
ξ[k]

. We define ŷ(−T ) := 0. Observe that we can write û[k] in

terms of these new variables:

û[k] = ζ[k] +Hν[k] + Jξ[k] + JC2x(kT ). (4.5)

We first prove that xd[k] is bounded by a decaying exponential and we use this to prove
the same for xsd(t). The first step is to obtain a bound on each sub-vector of xd[k+ 1]. We
start with plant state. Solving the plant equation 2.1 yields

x((k + 1)T )

= eATx(kT ) +

∫ (k+1)T

kT

eA((k+1)T−τ)Bu(τ)dτ +

∫ (k+1)T

kT

eA((k+1)T−τ)Er(τ)dτ

= (I + AT )x(kT ) +O(T 2)x(kT ) +

∫ (k+1)T

kT

Bu(τ)dτ +

∫ (k+1)T

kT

Er(τ)dτ

+

∫ (k+1)T

kT

(eA((k+1)T−τ) − I)Bu(τ)dτ +

∫ (k+1)T

kT

(eA((k+1)T−τ) − I)Er(τ)dτ . (4.6)
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The probing part of the control signal averages out on [kT, (k+ 1)T ), so from its definition
and equation (4.5) we have∫ (k+1)T

kT

Bu(τ)dτ = TBû[k]

= TB[ζ[k] +Hν[k] + Jξ[k] + JC2x(kT )].

Using the second equation (4.2) of Lemma 3 to bound ‖u(t)‖ on [kT, (k+ 1)T ) we see that∥∥∥∥∥
∫ (k+1)T

kT

(eA((k+1)T−τ) − I)Bu(τ)dτ

∥∥∥∥∥ = O(T 2)
∥∥û[k]

∥∥+O(T 2+δ)(‖x(kT )‖+ ‖ν[k]‖)

+O(T 2 1
2 ) ‖rk‖2 ;

using equation (4.5) for another representation of û[k], we have∥∥∥∥∥
∫ (k+1)T

kT

(eA((k+1)T−τ) − I)Bu(τ)dτ

∥∥∥∥∥ = O(T 2)(‖x(kT )‖+ ‖ν[k]‖+ ‖ζ[k]‖+ ‖ξ[k]‖)

+O(T 2 1
2 ) ‖rk‖2 .

Using the Cauchy Schwarz inequality, we have∥∥∥∥∥
∫ (k+1)T

kT

(eA((k+1)T−τ) − I)Er(τ)dτ

∥∥∥∥∥ = O(T
3
2 ) ‖rk‖2 .

We conclude that there is a constant γ1 > 0 and a function µ1(T ) so that (4.6) can be
rewritten as

x((k + 1)T ) = (I + AT )x(kT ) + TBHν[k] + TBJC2x(kT )

+ TBζ[k] + TBJξ[k] +

∫ (k+1)T

kT

Er(τ)dτ + µ1(T ) (4.7)

with µ1(T ) satisfying

‖µ1(T )‖ ≤ +γ1T
2(‖x(kT )‖+ ‖ν[k]‖+ ‖ζ[k]‖+ ‖ξ[k]‖) + γ1T

3/2 ‖rk‖2 (4.8)

for small T .

Now we turn to the controller state. By expanding the discrete controller states in
(2.5), we obtain
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ν[k + 1] = eFTv[k] +

∫ T

0

eF (τ)Gŷ(kT )dτ

= (I + FT )ν[k] + TGŷ(kT ) +O(T 2)ν[k] +O(T 2)ŷ(kT ).

We now use the bound from (4.4) of the One Period Lemma to rewrite the quantity ŷ(kT )
and equation (4.5) to obtain another representation of û[k] we conclude that there exists
a constant γ2 and a function µ(T ) so that

ν[k + 1] = (I + FT )ν[k] + TGC2x(kT ) + µ2(T ), (4.9)

with µ2(T ) satisfying

‖µ2(T )‖ ≤ γ2T
2−δ(‖x(kT )‖+ ‖ν[k]‖+ ‖ζ[k]‖+ ‖ξ[k]‖) + γ2T

3
2
−δ ‖rk‖2 . (4.10)

Now we obtain a bound on ‖ζ[k + 1]‖. From the definition of ζ[k] and the control
update law (2.5) we see that

ζ[k + 1] = û[k + 1]− u[k + 1].

Using this fact and the equation (4.3) from the One Period Lemma, we can write

‖ζ[k + 1]‖ = O(T 1−δ)(‖x(kT )‖+
∥∥û[k]

∥∥) +O(T )(‖ν[k + 1]‖) +O(T
1
2
−δ) ‖rk‖2 .

From equation (4.5) we see that

û[k] = O(1)x(kT ) +O(1)ν[k] +O(1)ζ[k] +O(1)ξ[k]),

from equation (2.5) observe that

ν[k + 1] = O(1)ν[k] +O(T )ŷ(kT )

and from Lemma 3 observe that

‖ŷ(kT )‖ = O(1) ‖x(kT )‖+O(T 1−δ)
∥∥û∥∥+O(T

1
2
−δ) ‖rk‖2 .

So we conclude that

‖ζ[k + 1]‖ = O(T 1−δ)(‖x(kT )‖+ ‖ν[k]‖+ ‖ζ[k]‖+ ‖ξ[k]‖) +O(T
1
2
−δ) ‖rk‖2 . (4.11)
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Now we derive the bound on ‖ξ[k + 1]‖. Using the definition of ξ[k + 1] it follows
immediately that

ŷ(kT )− C2x(kT )− C2(x(k + 1)T − x(kT )).

Using (4.4) and (4.5) we obtain

‖ŷ(kT )− C2x(kT )‖ = O(T 1−δ)(‖x(kT )‖+ ‖ν[k]‖+ ‖ζ[k]‖+ ‖ξ[k]‖) +O(T
1
2
−δ) ‖rk‖2 .

We use (4.7) and (4.8) to find a bound on C2(x(k + 1)T − x(kT )):

‖C2(x(k + 1)T − x(kT ))‖ = O(T )(‖x(kT )‖+ ‖ν[k]‖+ ‖ζ[k]‖+ ‖ξ[k]‖) +O(T
1
2 ) ‖rk‖2 .

Now combining these two bounds yields

‖ξ[k + 1]‖ = O(T 1−δ)(‖x(kT )‖+ ‖ν[k]‖+ ‖ζ[k]‖+ ‖ξ[k]‖) +O(T
1
2
−δ) ‖rk‖2 . (4.12)

Now we combine (4.7)-(4.12) to obtain the update equation for xd[k]. Since the con-
troller can be written as an LPC of period T , it follows that the map from (xd[k], r[kT,(k+1)T ))
to xd[k+1] is linear, so we can combine (4.7)-(4.12) and conclude that there exist functions
µx(T ), µν(T ), µζ(T ), µξ(T ) and a constant γ3 so that

x((k + 1)T )
ν[k + 1]
ζ[k + 1]
ξ[k + 1]

 =


I + (A+BJC2)T TBH O(T ) O(T )

TGC2 I + FT 0 0
O(T 1−δ) O(T 1−δ) O(T 1−δ) O(T 1−δ)
O(T 1−δ) O(T 1−δ) O(T 1−δ) O(T 1−δ)



x(kT )
ν[k]
ζ[k]
ξ[k]



+


∫ (k+1)T

kT
Er(τ)dτ
0
0
0

+


µx(T )
µν(T )
µζ(T )
µξ(T )

+O(T 2−δ)xd[k].

(4.13)

with
‖µx(T )‖ ≤ γ3T

3
2 ‖rk‖2 ,

‖µν(T )‖ ≤ γ3T
3
2
−δ ‖rk‖2 ,

‖µζ(T )‖ ≤ γ3T
1
2
−δ ‖rk‖2 ,

‖µξ(T )‖ ≤ γ3T
1
2
−δ ‖rk‖2 .

 (4.14)
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Before we proceed further, let us examine what the centralized closed loop system looks
like; we use the subscript ’c’ to differentiate them from the decentralized counterparts[

ẋc
v̇c

]
=

[
A+BJC2 BH

GC2 F

]
︸ ︷︷ ︸

=:Ac

[
xc
vc

]
+

[
E
0

]
︸ ︷︷ ︸

=:Ec

r,

zc =
[
C1 +D11JC2 D11H

] [ xc
vc

]
︸ ︷︷ ︸

x̄c

+D12r.


(4.15)

Now we return to the decentralized case, but now we will adopt some of the notation
of the centralized case. A careful examination of the closed loop system given by (4.13)
reveals that it has two time-scales: a slow one and a fast one. Hence, we partition the states

accordingly: the slow sub-system state is x̄[k] :=

[
x(kT )
ν[k]

]
while the fast sub-system state

is e[k] :=

[
ζ[k]
ξ[k]

]
. With this notation, (4.13) can be rewritten as

[
x̄[k + 1]
e[k + 1]

]

=

[
eAcT +O(T 2−δ) O(T )
O(T 1−δ) O(T 1−δ)

]
︸ ︷︷ ︸

=:Ad(T )

[
x̄[k]
e[k]

]
+

[ ∫ (k+1)T

kT
Ecr(τ)dτ
0

]
+


µx(T )
µν(T )
µζ(T )
µξ(T )

 . (4.16)

Step 2: Exponential Stability

In this part of the proof we assume that r = 0.

Claim 1 : There exist constants T̄ > 0, γ̄0 > 0 and λ̄0 < 0 so that for every
T ∈ (0, T̄ ) with r(t) = 0 we have

‖xd[k]‖ ≤ γ̄0e
λ̄0kT ‖xd[0]‖ , k ≥ 0

Proof: See the Appendix (A.4).

We leverage Claim 1 to prove that the sample-data controller (2.4) exponentially stabi-
lizes the system. At this point we will prove that x(t) is well-behaved on [kT, (k+1)T ). To
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this end, from the One Period Lemma we see that there exists a T1 ∈ (0, T̄ ) and a γ1 > 0
so that for T ∈ (0, T1):

‖x(t)− x(kT )‖ ≤ γ1T (‖x(kT )‖+
∥∥û[k]

∥∥+ ‖ν[k]‖),
t ∈ [kT, (k + 1)T ).

Using (4.5) to provide a bound on
∥∥û[k]

∥∥, we conclude that there exists a constant γ2 such
that for T ∈ (0, T ):

‖x(t)− x(kT )‖ ≤ γ2T ‖xd[k]‖ , t ∈ [kT, (k + 1)T ). (4.17)

The next step is to prove that xsd(t) decays exponentially to zero. First of all, from Lemma
2(iii), we see that

‖ν[0]‖ =
∥∥ψ3[0]

∥∥ . (4.18)

From the definition of ζ[0], we have

ζ[0] = û[0]−Hν[0]− Jŷ(−T ); (4.19)

but by Lemma 2(iii),
û[0] = ψ2[0]

and by definition ŷ(−T ) = 0, so combining (4.19) and (4.18) yields

‖ζ[0]‖ ≤
∥∥ψ2[0]

∥∥+ ‖H‖ ·
∥∥ψ3[0]

∥∥ .
Similarly, by the definition of xi[0], we have

‖ξ[0]‖ = ‖ŷ(−T )− C2x(kT )‖ ≤ ‖C2‖ · ‖x(0)‖ .

We conclude that
‖xd[0]‖

≤ ‖x(0)‖+ ‖ν[0]‖+ ‖ζ[0])‖+ ‖ξ[0]‖
≤ ‖x(0)‖+

∥∥ψ3[0]
∥∥+

∥∥ψ2[0]
∥∥

+ ‖H‖ ·
∥∥ψ3[0]

∥∥+ ‖C2‖ · ‖x(0)‖
≤ (3 + ‖H‖+ ‖C2‖︸ ︷︷ ︸

=:γ3

‖xsd[0]‖ .

Hence if we combine this with (4.17) and Claim 1, we see that there exists a constant γ4

so that for T ∈ (0, T1):

‖x(t)‖ ≤ γ4e
λ̄0t ‖xsd(0)‖ , t > 0, (4.20)
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‖xd[k]‖ ≤ γ4e
λ̄0kT ‖xsd(0)‖ , k ≥ 0. (4.21)

It remains to find a bound of the form (4.21) for ψ. Fix T ∈ (0, T1). We start with
ψ1: by Lemma 2 (i), we see that ψ1 provides a weighted sum over at most q samples of y;
clearly there exists a constant γ5 so that∥∥ψ1[kq + j]

∥∥ ≤ γ5 max
τ∈[kT,(k+1)T )

‖y(t)‖ , j = 1, 2, · · · , q,

so ∥∥ψ1[kq + j]
∥∥ ≤ γ5 ‖C2‖ max

τ∈[kT,(k+1)T )
‖x(t)‖ ,

j = 1, 2, · · · , q.

Using (4.20) we see that∥∥ψ1[kq + j]
∥∥ ≤ γ5 ‖C2‖ γ4e

λ̄0kT ‖xsd(0)‖ ,
k ≥ 0, j = 1, 2, · · · , q

so ∥∥ψ1[kq + j]
∥∥ ≤ γ5 ‖C2‖ γ4e

−λ̄0T eλ̄0(kT+jh) ‖xsd(0)‖ ,
k ≥ 0, j = 1, 2, · · · , q

If we set γ6 := max{1, γ5γ4 ‖C2‖ e−λ̄0T}, we see that∥∥ψ1[j]
∥∥ ≤ γ6e

λ̄0jh ‖xsd[0]‖ , j ∈ Z+. (4.22)

Now we turn to ψ2. We see from Lemma 2 (iii) that

ψ2[kq + j] = û[k], j = 0, 1, · · · , q − 1.

But (4.5) yields a formula for û[k] as a linear function of xd[k], so using (4.21) we conclude
that there exist a constant γ7 so that∥∥ψ2[kq + j]

∥∥ ≤ γ7e
λ̄0kT ‖xsd(0)‖ ,

k ≥ 0, j = 1, 2, · · · , q,

so ∥∥ψ2[kq + j]
∥∥ ≤ γ7e

−λ̄0T eλ̄0(kT+jh) ‖xsd(0)‖ .
k ≥ 0, j = 1, 2, · · · , q,
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setting γ8 = max{1, γ7e
−λ̄0T} yields∥∥ψ2[j]

∥∥ ≤ γ8e
λ̄0jh ‖xsd[0]‖ , j ∈ Z+. (4.23)

Finally we examine ψ3. We see from Lemma 2 (ii) that

ψ3
i [j] = 0, j ≥ 1, i = 1, · · · , p− 1.

From Lemma 2 (iii), we see that∥∥ψ3
p[kq + j]

∥∥ ≤ max{‖ν[k]‖ , ‖ν[k + 1]‖}
≤ max{‖xd[k]‖ , ‖xd[k + 1]‖},
k ≥ 0, j = 0, 1, · · · , q − 1.

Using (4.21) we see that∥∥ψ3
p[kq + j]

∥∥ ≤ γ4e
λ̄0kT ‖xsd(0)‖ ,

k ≥ 0, j = 0, 1, · · · , q − 1,∥∥ψ3
p[kq + j]

∥∥ ≤ γ4e
−λ̄0T︸ ︷︷ ︸

=:γ9

eλ̄0(kT+jh) ‖xsd(0)‖ ,

k ≥ 0, j = 1, 2, · · · , q.
If we define γ10 := max{1, γ9}, we have∥∥ψ3[j]

∥∥ ≤ γ10e
λ̄0jh ‖xsd[0]‖ , j ∈ Z+. (4.24)

If we combine (4.20),(4.22),(4.23) and (4.24), we conclude that

‖xsd(t)‖ ≤ [γ4 + e−λ̄0h(γ6 + γ8 + γ10)]eλ̄0t ‖xsd(0)‖ ,
k ≥ 0, j = 0, 1, · · · , q − 1.

Hence, the sampled-data controller provides exponential stability for T ∈ (0, T1).

Step 3: Performance

Here we set the plant initial condition x0 and the controller initial condition ψ[0] to
zero. To facilitate our analysis we apply a similarity transformation to decouple the slow-
moving sub-state x̄[k] from the fast-moving sub-state e[k]. To this end, we would like to
define the matrix W ∈ R(m+l)×(n+`) so that[

I 0
W I

]
Ad(T )

[
I 0
−W I

]
=

[
∗ ∗
0 ∗

]
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For this to hold, we need

W =
[
eAcT +O(T 2−δ)

]−1 [
WO(T )W +O(T 1−δ)W +O(T 1−δ)

]
=: f(W ). (4.25)

It is easy to see that for small T the continuous function f maps the closed unit ball
in R(m+l)×(n+`) to itself. Brouwer’s Fixed Point Theorem guarantees the existence of a
solution to (4.25); since f(W ) is O(T 1−δ) for all W in the closed -unit ball, it follows that
this solution (which we simply label W ) is also O(T 1−δ). So for T ∈ (0, T2), define[

x?[k]
e?[k]

]
:=

[
I 0
W I

] [
x̄[k]
e[k]

]
;

then (4.16) can be rewritten as[
x?[k + 1]
e?[k + 1]

]
=

[
eAcT +O(T 2−δ) O(T )

0 O(T 1−δ)

] [
x?[k]
e?[k]

]
+

[ ∫ (k+1)T

kT
Ecr(τ)dτ∫ (k+1)T

kT
O(T 1−δ)r(τ)dτ

]

+


[
µx(T )
µv(T )

]
W

[
µx(T )
µv(T )

]
+

[
µζ(T )
µξ(T )

]
 .

(4.26)

It is convenient to define

µx?(T ) :=

[
µx(T )
µv(T )

]
and

µe?(T ) :=

[
µζ(T )
µξ(T )

]
+W

[
µx(T )
µv(T )

]
;

it follows from (4.14) that there exists a constant γ11 so that for T ∈ (0, T2):

‖µx?‖ ≤ γ11T
3
2
−δ ‖rk‖2 ,

‖µe?‖ ≤ γ11T
1
2
−δ ‖rk‖2 . (4.27)

In the analysis we will occasionally measure the size of a discrete signal. Rather than
introducing new notation, which differs from the continuous time notation, we will simply
define the norm of such signal x[k] as ‖x‖2 = (

∑∞
k=0 ‖x[k]‖2)

1
2 . Now that the states are
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decoupled, we can obtain bounds on the size of the states. First of all, using frequency
domain analysis

‖e?‖2 = (
∞∑
k=0

‖e?[k]‖2)
1
2

= sup
ω ∈ R

∥∥∥(ejω −O(T 1−δ)
)−1
∥∥∥O(T

1
2
−δ)(

∞∑
k=0

‖rk‖2)
1
2 .

Observe that

(
∞∑
k=0

‖rk‖2)
1
2 = ‖r‖2 ;

hence it follows that
‖e?‖2 = O(T

1
2
−δ) ‖r‖2 . (4.28)

Using this bound and the same approach, we can obtain bound on ‖x?‖2:

‖x?‖2 = sup
ω ∈ R

∥∥∥(ejω − eAcT −O(T 2−δ)
)−1
∥∥∥

[O(T ) ‖e?‖2 +O(T
1
2 ) ‖r‖2 +O(T

3
2
−δ) ‖r‖2]. (4.29)

Using standard Lyapunov stability arguments, it is straight forward to verify that there
exist T3 ∈ (0, T2), β? > 0 and λ? < 0 such that for all k and T ∈ (0, T3), we have∥∥∥(eAcT +O(T 2−δ)

)k∥∥∥ ≤ β?(eλ
?T )k, k ≥ 0.

Using this fact with the matrix power series expansion of [ejω − eAcT − O(T 2−δ)]−1 we
obtain,

sup
ω ∈ R

∥∥∥(ejω − eAcT −O(T 2−δ)
)−1
∥∥∥ ≤ β? + β?eλ

?T + β?(eλ
?T )2 + · · ·

=
β?

1− eλ?T
= O(T−1). (4.30)

Substituting (4.30) and (4.28) into (4.29) results in

‖x?‖2 = O(T−
1
2 ) ‖r‖2 . (4.31)
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From (4.28) and (4.31) we can find bounds on the original variables:

‖x̄‖2 = ‖x?‖2

= O(T−
1
2 ) ‖r‖2 . (4.32)

and

‖e‖2 ≤ ‖Wx?‖+ ‖e?‖
= O(T

1
2
−δ) ‖r‖2 . (4.33)

Now we wish to compare the performance provided by this controller with the centralized
behaviour provided in (4.16). With

x̄c[k] :=

[
xc(kT )
vc(kT )

]
,

we see from (4.16) that

x̄c[k + 1] = eAcT x̄c[k] +

∫ (k+1)T

kT

eAc[(k+1)T−τ ]Ecr(τ)dτ

= eAcT x̄c[k] +

∫ (k+1)T

kT

Ecr(τ)dτ +

∫ (k+1)T

kT

[eAc[(k+1)T−τ ] − I]Ecr(τ)dτ︸ ︷︷ ︸
=:µx̄c (T )

; (4.34)

it easy to see that
µx̄c = O(T

3
2 ) ‖rk‖2 . (4.35)

If we define x̃[k] := x̄c[k] − x̄[k] = x̄c[k] − x?[k] and combine the above with (4.26), we
obtain

x̃[k + 1] = eAcT x̃[k] +O(T 2−δ)x?[k] +O(T )e ? [k]− µx?(T ) + µx̄c(T ).

But as proven above,
sup
ω∈R

∥∥(ejωI − eAcT )−1
∥∥ = O(T−1),

so using frequency domain analysis together with the bound on ‖x?‖2 given in (4.31), the
bound on ‖e‖2 given in (4.28), the bound on µx(T ) given in (4.27) and the bound on
‖µx̄c(T )‖ given in (4.35), we obtain
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‖x̃‖2 = O(T−1)[O(T 2−δ)O(T−
1
2 ) ‖r‖2 +O(T )O(T

1
2
−δ) ‖r‖2 +O(T

3
2
−δ) ‖r‖2

+O(T
3
2 ) ‖r‖2]

= O(T
1
2
−δ) ‖r‖2 . (4.36)

Now we will shift our focus to the output z. First we will find a bound on z(t) for
t ∈ [kT, (k + 1)T ; from the plant equation (2.1), we have

z(t) = C1x(t) +D11u(t) +D12r(t).

Using (4.1) to bound ‖x(t)− x(kT )‖ and (4.2) to bound
∥∥u(t)− û[k]

∥∥, we see that there
exist a constant γ12 and a function µd(t, T ) so that

z(t) = C1x(kT ) +D11û[k] +D12r(t) + µd(t, T ), t ∈ [kT, (k + 1)T ),

with µd(t, T ) satisfying

µd(t, T ) ≤ γ12T
δ

∥∥∥∥[ x(kT )
ν[k]

]∥∥∥∥+ γ12T

∥∥∥∥[ ζ[k]
ξ[k]

]∥∥∥∥+ γT
1
2 ‖rk‖2 ,

t ∈ [kT, (k + 1)T ). (4.37)

Using the expression for û[k] given in (4.5), we can rewrite the equation as

z(t) = C1x(kT ) +D11[ζ[k] +Hν[k] + Jξ[k] + JC2x(kT )] +D12r(t) + µd(t, T ),

t ∈ [kT, (k + 1)T ).

Now we stack the sub-states in a suitable manner to obtain

z(t) =
[
C1 +D11JC2 D11H

] [ x(kT )
ν[k]

]
+
[
D11 D11J

] [ ζ[k]
ξ[k]

]
+D12r(t) + µd(t, T ), t ∈ [kT, (k + 1)T ). (4.38)

Now we analyse the nominal centralized output. From (4.15) we have,

zc(t) =
[
C1 +D11JC2 D11H

] [ xc(t)
vc(t)

]
︸ ︷︷ ︸

=x̄c(t)

+D12r(t).
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If we sample x̄c(t) every T units of time we end up with a constant γ13 and a function
µc(t, T ) so that

zc(t) =
[
C1 +D11JC2 D11H

] [ xc(kT )
vc(kT )

]
+D12r(t) + µc(t, T ),

t ∈ [kT, (k + 1)T ),

(4.39)

with

µc(t, T ) ≤ γ13T

∥∥∥∥[ xc(kT )
vc(kT )

]∥∥∥∥+ γ13T
1
2 ‖rk‖2 , t ∈ [kT, (k + 1)T ). (4.40)

Next we form the output error z̃ := zc(t) − z(t) for t ∈ [kT, (k + 1)T . By subtracting
(4.39) from (4.38) we obtain

z̃(t) =
[
C1 +D11JC2 D11H

]
x̃[k]−

[
D11 D11J

]
e[k] + µc(t, T )− µd(t, T ),

t ∈ [kT, (k + 1)T ).
(4.41)

By taking 2-norm on both sides of equation(4.41) we end up with

‖z̃‖2
2 =∫ ∞

0

‖z̃(τ)‖2 dτ =
∞∑
k=0

∫ (k+1)T

kT

‖z̃(τ)‖2

≤ 2
∞∑
k=0

∫ (k+1)T

kT

∥∥[ C1 +D11JC2 D11H
]
x̃
∥∥2

dτ

+ 2
∞∑
k=0

∫ (k+1)T

kT

∥∥[ −D11 −D11J
]
e[k] + µc(τ, T )− µd(τ, T )

∥∥2
dτ

≤ 2
∥∥[ C1 +D11JC2 D11H

]∥∥2
T

∞∑
k=0

‖x̃[k]‖2

+ 4
∥∥[ D11 D11J

]∥∥2
T
∞∑
k=0

‖e[k]‖2 + 4
∞∑
k=0

∫ (k+1)T

kT

‖µc(τ, T )− µd(τ, T )‖2 dτ

36



≤ 2
∥∥[ C1 +D11JC2 D11H

]∥∥2
T

∞∑
k=0

‖x̃[k]‖2

︸ ︷︷ ︸
=:t1(T )

+ 4
∥∥[ D11 D11J

]∥∥2
T

∞∑
k=0

‖e[k]‖2

︸ ︷︷ ︸
=:t2(T )

+ 8
∞∑
k=0

∫ (k+1)T

kT

‖µc(τ, T )‖2 dτ︸ ︷︷ ︸
=:t3(T )

+ 8
∞∑
k=0

∫ (k+1)T

kT

‖µd(τ, T )‖2 dτ .︸ ︷︷ ︸
=:t4(T )

(4.42)
From (4.36) we see that

t1(T ) = 2
∥∥[ C1 +D11JC2 D11H

]∥∥2
TO(T 1−2δ) ‖r‖2

2

= O(T 2−2δ) ‖r‖2
2 .

From (4.33) we see that

t2(T ) = 4
∥∥[ D11 D11J

]∥∥2
TO(T 1−2δ) ‖r‖2

2

= O(T 2−2δ) ‖r‖2
2 .

From (4.40) we see that

t3(T ) ≤ 8T
∞∑
k=0

[2γ13T
2 ‖x̄c[k]‖2 + 2γ13T ‖rk‖2

= O(T 3)
∞∑
k=0

‖x̄c[k]‖2

︸ ︷︷ ︸
=‖x̄c‖22

+O(T 2) ‖r‖2
2 .

But from (4.34) we see that

x̄c[k + 1] = eAcT x̄c[k] +O(T
1
2 ) ‖rk‖2 .

By using frequency domain analysis we obtain

‖x̄c‖2 = O(T−1)O(T
1
2 ) ‖r‖2

so
‖x̄c‖2

2 = O(T−1) ‖r‖2 .

Hence,
t3(T ) = O(T 2) ‖r‖2

2 .
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From (4.37) we see that

t4(T ) ≤ 32Tγ2
12

∞∑
k=0

[
T 2δ ‖x̄[k]‖2 + T 2 ‖e[k]‖2 + T ‖rk‖2]

= O(T 2δ+1) ‖x̄‖2
2 +O(T 3) ‖e‖2

2 +O(T 2) ‖r‖2
2 .

Using (4.32) to provide a bound on ‖x̄‖2
2 and (4.33) to provide a bound on ‖e‖2

2, we conclude
that

t4(T ) = O(T 2δ+1)O(T−1) ‖r‖2
2 +O(T 3)O(T 1−2δ) ‖r‖2

2 +O(T 2) ‖r‖2
2

= O(T 2δ) ‖r‖2
2 .

If we substitute the bounds on t1(T ), t2(T ), t3(T ) and t4(T ) into (4.42), we obtain

‖z̃‖2 = O(T δ) ‖r‖2
2

We conclude that
‖F(P,Kcen)−F(P,Kdec)‖ = O(T δ),

and the right hand side tends to zero as T goes to zero as required. �

Remark 4 It turns out that our closed loop system is noise tolerant. By this we mean
that if we inject noise at the plant-controller interfaces, then the map from the noise to the
plant inputs and outputs are bounded in the induced L∞-norm sense.
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Chapter 5

An Illustrative Example

Here we consider the closed-loop configuration given below, where P0 plays the role of the
physical plant model and W plays the role of a filter shaping the reference signal r.

Figure 5.1: A typical tracking problem

The model of P0 is given by

ẋp =

 1 −1 1
0 0 1
1 −1 −2


︸ ︷︷ ︸

=:Ap

xp +

 0
0
1


︸ ︷︷ ︸

=:b1

u1 +

 1
0
0


︸ ︷︷ ︸

=:b2

u2

yp1 =
[

1 0 0
]︸ ︷︷ ︸

=:c1

xp

yp2 =
[

0 −1 1
]︸ ︷︷ ︸

=:c2

xp.

Here u = [u1 u2] andW is simply a low-pass filter with a transfer function of diag{ 1
(s+1)3 ,

1
(s+1)3};

with a minimal realization of 1
(s+1)3 be given by Cw(sI−Aw)−1Bw and a minimal realization
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of W is given by

ẋw =

[
Aw 0
0 Aw

]
︸ ︷︷ ︸

=:Āw

xw +

[
Bw 0
0 Bw

]
︸ ︷︷ ︸

=:B̄w

r

rw =

[
Cw 0
0 Cw

]
︸ ︷︷ ︸

=:C̄w

xw.

Last of all, the output signal to be controlled is z =

[
y

0.1u

]
. This yields an overall

state-space model of the plant P :[
ẋp
ẋw

]
=

[
Ap 0
0 Aw

] [
xp
xw

]
+

[
b1

0

]
u1 +

[
b2

0

]
u2 +

[
0
Bw

]
r

z =

 [ −c1

−c2

]
Cw

0 0

[ xp
xw

]
+

[
0
.1

]
u

yi =
[
ci 0

] [ xp
xw

]
, i = 1, 2.

The system has a decentralized fixed mode at 1, which means that no LTI controller can
stabilize it, let alone provide good performance; furthermore, Assumptions 1, 2 and 3 hold.
Our objective here is to design a controller which not only achieves closed loop stability
but also provides a desireable level of H∞ performance.

The optimal LTI centralized controller performance is 0.21 and the optimal controller
uses extremely large gains. To avoid this, we have designed a reasonable sub-optimal
centralized controller Kcen which yields a closed loop performance of ‖F(P,Kcen)‖ = 0.73.
In transfer function form, Kcen is described by[

1 K1(s)
K2(s) 1

]
with

K1(s) = 10

and

K2(s) = k

6∏
i=1

(s− bi)
(s− ai)
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with k = −15.43, ai ∈ {−24.47,−2.104±1.772j,−0.083,−1.001,−0.999} and bi ∈ {−2.00±
1.732j,−1.0058± 0.010j,−1.000,−0.988}.

Let us construct the controller outlined in this paper. We set n̄ = η1 = 2, δ = 0.25; q
turns out to be equal to nine, so that the controller period is T = 9h. For our simulation,
we choose h = 0.005. For the case of

r1(t) = sin(t), r2(t) = sin(0.5t),

xp(0) =
[

1 1 1
]T

, xw(0) = 0, ν(0) = 0, and û[0] = 0, we carried out a simulation and
display the results in Figure 5.2-Figure 5.7. We compare the results with that provided by
the centralized controller Kcen (the variables are denoted using a superscript of ‘c’). Figure
5.2 shows behaviour of the original plant states for both decentralized and centralized
settings. While Figure 5.3 shows the overall control signal through out the simulation,
Figure 5.4 shows a close-up of the control signal and clearly it is equal to its centralized
counterpart but with some dither added. Figure 5.5 and Figure 5.6 illustrates the similarity
between the centralized and decentralized outputs of the original plant. Observe that the
decentralized behaviour is nearly identical to the centralized performance as illustrated in
Figure 5.7.

Of course it will not be surprising that there are trade-offs for this exceptional behaviour.
First of all, as proven before the smaller the sampling period T , the closer the performance
provided by the decentralised controller compared to the performance provided by the
centralized controller. Consequently, the sample-data controller not only requires sensors
with fast sampling, but also potentially high-band width actuators for better performance.
Secondly, due to the large gains involved during probing we may have poor noise tolerance;
in Figure(5.9) we redo the simulation when the measured output is corrupted by noise of
the form

n(t) = 5× 10−4sin(30t);

we see that even though the performance is degraded from the nominal and it is still quite
acceptable.
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Figure 5.2: Plant state x(t).
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Figure 5.3: The control signal u.
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Figure 5.4: A close-up of the control signal u.
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Figure 5.5: The original plant output yp1.

45



0 2 4 6 8 10 12 14 16 18
−3

−2

−1

0

1

2

Time(s)

 

 
yp2 solid

yp2
c  dashed

0 2 4 6 8 10 12 14 16 18

−1.5

−1

−0.5

0

0.5

1

1.5

Time(s)

 

 

r2

Figure 5.6: The original plant output yp2.
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Figure 5.7: The 2-norm of the output z(t) and the 2-norm of r(t)
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Figure 5.8: The control signal u for the system with noise.
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Figure 5.9: The 2-norm of the output z(t) and the 2-norm of r(t) for the system with noise.
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Chapter 6

Summary and Conclusion

In this thesis we consider the problem of designing a controller to provide (near) optimal
centralized H∞ performance in the decentralized context. It is well known fact that de-
signing a controller in a decentralized setting is a challenging task. Indeed in the presence
of an unstable DFM, there is no LTI controller that stabilizes the plant, let alone provides
good performance. In [18] the authors showed that with the use of an LPC, near-optimal
LQR-type performance is achievable even at the presence of a DFM. Here we present a
methodology to design a decentralized LPC that achieves the stability and the near-optimal
centralized H∞ performance.

Since we are considering a more complex plant with the addition of an external ref-
erence signal, it is expected that there will be some conditions imposed on the plant for
this approach to work. We prove that if the graph associated with the plant is strongly
connected and certain technical conditions on the relative degree hold, then we can design
a decentralized LPC to achieve this objective. The approach works even in situations in
which the plant has an unstable decentralized fixed mode (DFM). The controller guaran-
tees stability for small sampling period; the centralized performance is recovered as the
sampling period tends to zero. This exceptional behaviour has its drawbacks; as we have
seen in the Example chapter, due to probing, the control signal has high frequency com-
ponents and to capture these high frequency components accurately we may need fast
actuators. Although the controller tolerates noisy measurements - it is actually Bounded-
Input-Bounded-Output (BIBO) stable - the gain on the noise may be large.

We would like to extend this approach to the situation in which the plant no longer
has a strongly connected graph. A possible starting point is make use of [4], where it is
proven that every decentralized system can be partitioned into a set of strongly connected
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subsets, inter-connected in a hierarchy. Perhaps recent work on handling hierarchical
decentralized systems could be of use. Furthermore it will be interesting to see what can
be achieved, instead of the H∞ performance measure if we consider optimal H2 performance
in a decentralized setting.
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Appendix A

A.1 Proof of Lemma 1

Fix n̄ ∈ N and h̄ ∈ (0, 1). Let h̃ ∈ (0, 1); t0 ∈ R, x0 ∈ R, h ∈ (0, h̃) ,ū ∈ R and φ ∈ R be
arbitrary. The state of the plant(2.1) satisfies

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ)

∫ t

t0

eA(t−τ)Er(τ)dτ .

For the interval t ∈ [t0, t0 + 2n̄h), using the Cauchy Schwarz inequality we can easily form
a bound

‖x(t)− x0‖ ≤
∥∥(eA(t−t0) − I)x0

∥∥+

∫ t

t0

∥∥eA(t−τ)B
∥∥ (‖ū‖+ |φ|)(τ)dτ)

+

(∫ t

t0

∥∥eA(t−τ)E
∥∥2

dτ

) 1
2
(∫ t

t0

‖r(τ)‖2 dτ

) 1
2

︸ ︷︷ ︸
‖r[t0,t]‖2

.

Clearly there exist a constant γ1 > 0 such that,

‖x(t)− x0‖ ≤ γ1h(‖x0‖+ ‖ū‖+ |φ|) + γ1h
1
2

∥∥r[t0,t0+2n̄h]

∥∥
2
,

t ∈ [t0, t0 + 2n̄h). (A.1)
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Using the fact that ȳi(t) = vT
i yi(t) for t ∈ [t0, t0 + n̄h) we have

ȳi(t) = vT
i C

i
2(eA(t−t0)x0 +

∫ t−t0

0

eA(τ)Bu(t− τ)dτ +

∫ t

t0

eA(t−τ)Er(τ)dτ))

=
n̄∑
k=0

C̄i
2A

k(t− t0)k

k!
x0 +O(hn̄+1)x0 +

n̄−1∑
k=0

C̄i
2A

k(t− t0)k+1B

(k + 1)!
(ū+ w̄jφ)

+O(hn̄+1)(ū+ φ) + C̄i
2

∫ t

t0

eA(t−τ)Er(τ)dτ)︸ ︷︷ ︸
µ1(t)

=
[

1 t− t0 · · · (t− t0)n̄/n̄!
]


C̄i
2

C̄i
2A
...

C̄i
2A

n̄

x0

+
[

1 t− t0 · · · (t− t0)n̄/n̄!
]


0
C̄i

2B
...

C̄i
2A

n̄−1B

 (ū+ w̄jφ)

+O(hn̄+1)x0 +O(hn̄+1)(ū+ φ) + µ1(t).

Before we proceed further, let us get a bound on the term µ1(t). Using the Cauchy-Schwarz
inequality µ1(t) can be written in following manner:

‖µ1(t)‖ ≤
(∫ t

t0

‖C̄i
2e
A(t−τ)E‖2dτ

) 1
2
(∫ t

t0

‖r(τ)‖2dτ

) 1
2

≤

∫ n̄h

0

∥∥∥∥∥
∞∑
k=0

C̄i
2A

kEτ k

k!

∥∥∥∥∥
2

dτ

 1
2

‖r[t0,t0+n̄h]‖2

Note that C̄i
2A

kE is identically zero for all k < rel.deg(C̄i
2(sI − A)−1E)− 1. However

rel.deg(C̄i
2(sI − A)−1E) ≥ rel.deg(C2(sI − A)−1E)

= η2,

so C̄i
2A

kE is zero for all k < η2 − 1. Using this fact we can easily show that

‖µ1(t)‖ = O(h)η2− 1
2‖r[t0,t0+n̄h‖2.
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If we sample ȳi in the interval of [t0, t0 + n̄h) and form Ȳi(t0) we see that there exists
a constant γ2 and a function µ2(h) so that

Ȳi(t0) = SH(h)[


C̄i

2

C̄i
2A
...

C̄i
2A

n̄

x0 +


0

C̄i
2B
...

C̄i
2A

n̄−1B

 (ū+ w̄jφ)] + µ2(h),

with

‖µ2(h)‖ ≤ γ2h
n̄+1(‖x0‖+ ‖ū‖+ |φ|) + γ2h

η2− 1
2

∥∥r[t0,t0+n̄h]

∥∥
2
. (A.2)

If we analyse ȳi(t) for t ∈ [t0 + n̄h, t0 + 2n̄h) in a similar fashion and form Ȳi(t0 + n̄h) we
see that there exists a constant γ3 and a function µ3(h) so that

Ȳi(t0 + n̄h) =SH(h)[


C̄i

2

C̄i
2A
...

C̄i
2A

n̄

x(t0 + n̄h) +


0

C̄i
2B
...

C̄i
2A

n̄−1B

 (ū− w̄jφ)] + µ3(h)

with

‖µ3(h)‖ ≤ γ3h
n̄+1(‖x(t0 + n̄h)‖+ ‖ū‖+ |φ|) + γ3h

η2− 1
2‖r[t0+n̄h,t0+2n̄h]‖2. (A.3)

Using the fact that B̄j = Bw̄j and subtracting Ȳi(t0 + n̄h) from ȳi we obtain

Ȳi(t0)− Ȳi(t0 + n̄h)− 2SH(h)


0

C̄i
2B̄j
...

C̄i
2A

n̄−1B̄j

φ

= SH(h)


C̄i

2

C̄i
2A
...

C̄i
2A

n̄

 (x(t0 + n̄h)− x0) + µ2(h)− µ3(h)

=: µ4(h).

We can form a bound on ‖x(t0 + n̄h)− x0‖ using (A.1) and bounds on µ2(h), µ3(h) using
(A.2) and (A.3) respectively. It follows that there exist a constant γ4 such that

‖µ4(h)‖ ≤ γ4h
n̄+1(‖x0‖+ ‖ū‖+ |φ|) + γ4h

η2− 1
2

∥∥r[t0,t0+2n̄h]

∥∥
2

+ γ4h
n̄+ 1

2

∥∥r[t0,t0+2n̄h]

∥∥
2
.
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Using the fact that H(h)−1 = O(h−n̄) we see that there exist a γ5 so that

‖Hn̄(h)−1S−1
n̄ [Ȳi(t0)− Ȳi(t0 + n̄h)]− 2


0

C̄i
2B̄j
...

C̄i
2A

n̄−1B̄j

φ‖
≤ γ5h(‖x0‖+ ‖ū‖+ |φ|) + γ5h

1
2

∥∥r[t0,t0+2n̄h]

∥∥
2

+ γ5h
η2−n̄− 1

2

∥∥r[t0,t0+2n̄h]

∥∥
2
,

as required. �

A.2 Proof of Lemma 2

We will model the proof on that of Lemma 2 of to [18]. Here our objective is to show the
existence of the controller outlined and we will not pursue the lowest order representation
of the controller.

Since the controller is LPC, it is sufficient to look at what happens on the interval
[kT, (k + 1)T ). In channel i we partition the state into three sub-states: ψ1

i ,ψ2
i and ψ3

i .
We will use ψ1

i of dimension qli to store {yi(kT ), yi(kT + h), · · · , yi(kT + (q − 1)h)}. The
second sub-stateψ2

i of dimension mi stores the estimation of the control signal (ûi[k]). The
last sub-state ψ3

i of dimension ` only comes comes to play in channel p. ψ3
i stores ν[k] in

channel p.

We will limit our analysis to the interval of [0, T ) as it can easily be extended due to
the periodic nature of the controller. Let ei denote the ith normal vector. We set

(L11
i ,M

1
i )[j] =

{
(0, e1 ⊗ Iri) j = 0
(I, ej+1 ⊗ Iri) j = 1, · · · , q − 1;

It is clear that the vector

[
ψ1
i [j]

yi(jh)

]
for j = 0, 1, · · · , q − 1 contains all the elements

{yi(0), yi(h), · · · , yi(jh)}. Next we set

(L21
i , L

22
i ,M

2
i )[j] =

{
(0, I, 0) j = 0, 1, · · · , q − 2
(L21

i [q − 1], 0,M2
i [q − 1]) j = q − 1

Since ûi[1] is a linear function of

[
ψ1
i [j]

yi(jh)

]
(See Key Estimation Lemma) we can choose

L21
i [q − 1],M2

i [q − 1], such that ψ2
i [q] = ûi[1]. With qp = 2n̄(l − lp) we set

(L31
i , L

33
i ,M

3
i )[j] = (0, 0, 0)

i = {1, 2, · · · , p− 1} , j = {0, 1, · · · }
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(L31
p , L

33
p ,M

3
p )[j] =


(0, I, 0) j = 0, 1, · · · , qp − 1
(L31

p [qp],F ,M3
p [qp]) j = qp

(0, I, 0) j = qp + 1, · · · , q − 1

Since ŷ(0) is a linear function of

[
ψ1
i [j]

yi(jh)

]
(See Key Estimation Lemma), we can choose

L31
p [qp] and M3

p [qp] such that

L31
p [qp]ψ

1
p[qp] +M3

p [qp]yp(qph) = ŷ(0).

So if we initialize ψ3
p = ν[0], we see that

ψ3
p[j] =

{
ν[0], j = 0, 1, · · · , qp − 1
ν[1], j = qp, · · · , q − 1.

At this point we define

φi[j] =

[
ψi[j]
yi(jh)

]
.

It is straightforward to verify that φi[j] contains {ûi[0], yi(0), · · · , yi((jh)}; for the case of
i = p, φi[j] also contains {

ν[0], j = 0, 1, · · · , qp
ν[1], j = qp + 1, · · · , q − 1.

At this point we have defined Li and Mi of Kdec. It remains to define the time varying
matrices Qi and Ri related to the outputs.

(i) For j = 0, 1, · · · , qp− 1 the control signal ui(jh) equals ûi[0] plus a linear combination
of the elements of yi(0). Since ûi[0] is contained in ψi[j] and yi(0) is contained in[
ψi[j]
yi(jh)

]
; we see that ui(jh) is a linear combination of φi[j] for j = 0, 1, · · · , qp− 1.

(ii) At j = qp ui(j) = ûi[0] and ûi[0] is contained in ψi[j], hence it is a linear combination
of elements in φi(j).

(iii) Now consider j = qp + 1, · · · , q − 1, the control signal ui(jh), i = 1, · · · , p− 1 equals
ûi[0], which is contained in ψi[j], so it is a linear combination of elements in φi[j].
The control signal up(jh) equals ûi[0] plus a scaled quantity of u[1], both of which
are contained in ψp[j], so it is a linear combination of φp[j].
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Using the fact that
u(t) = u(jh), t ∈ [jh, (j + 1)h), k ∈ Z+

we conclude for j = 0, 1, · · · , q−1 the control signal ui(jh) is a linear combination of φi[j],
which means that Qi and Ri can be defined so that the controller (2.4) is identical to that
of (3.2)-(3.5).�

A.3 Proof of Lemma 3

Suppose that the controller (3.2)-(3.5) is applied to the plant (2.1), and let x0 ∈ Rn,
ν[0] ∈ R`, û[0] ∈ Rm, k ∈ Z+ and T > 0 be arbitrary. With the estimate ŷ(kT ) of y(kT )
given by (3.1) we see that

ŷ(kT )− y(kT ) =


ŷ1(kT )− y1(kT )
ŷ2(kT )− y2(kT )

...
ŷp−1(kT )− yp−1(kT )

0

 .
We can use Lemma 1 to derive the estimation error of each individual quantity yi[k]j for
i ∈ {1, 2, . . . , p − 1} and j ∈ {1, 2, . . . , li}. More specifically, extending the error bound
provided in (3.1) to the general case, we have

‖ŷ(kT )− y(kT )‖ = O(T 1−δ) sup
τ∈[kT,kT+2n̄(l−lp)h)

‖x(τ)‖+O(T 1−δ)
∥∥û[k]

∥∥
+O(T

1
2
−δ)
∥∥r[kT,kT+2n̄(l−lp)h)

∥∥
2
.

For t ∈ [kT, kT + 2n̄(l − lp)h),

x(t) = eA(t−kT )x(kT ) +

∫ t

kT

eA(t−τ)Bu(τ)dτ +

∫ t

kT

eA(t−τ)Er(τ)dτ).

Therefore we can show that

‖x(t)‖ = O(1) ‖x(kT )‖+

∫ t

kT

[O(1)
∥∥û[k]

∥∥+O(T δ) ‖x(kT )‖]dτ

+

(∫ t

kT

O(1)2dτ

) 1
2

‖rk‖2

= O(1) ‖x(kT )‖+O(T )
∥∥û[k]

∥∥+O(T
1
2 ) ‖rk‖2 .
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Using this we can simplify the output estimation error as

‖ŷ(kT )− y(kT )‖ = O(T 1−δ) ‖x(kT )‖+O(T 2−δ)
∥∥û[k]

∥∥
+O(T

3
2
−δ) ‖rk‖2 +O(T 1−δ)

∥∥û[k]
∥∥+O(T

1
2
−δ) ‖rk‖2 .

It is clear that there exist constant γ1 > 0 such that

‖ŷ(kT )− y(kT )‖ ≤ γ1T
1−δ(‖x(kT )‖+

∥∥û[k]
∥∥) + γ1T

1
2
−δ ‖rk‖2 , (A.4)

which yields (4.4).

Now let us find a conservative bound for the signal u(t) in the interval t ∈ [kT, (k+1)T ).
Observe that∥∥u(t)− û[k]

∥∥ = O(T δ) ‖y(kT )‖+O(T δ) ‖u[k + 1]‖
= O(T δ) ‖x(kT )‖+O(T δ) ‖ν[k + 1]‖+O(T δ) ‖ŷ(kT )‖ ,

t ∈ [kT, (k + 1)T ).

Using (A.4) to bound ŷ(kT ) and using the fact that ν[k+1] = ν[k]+O(T )ν[k]+O(T )ŷ(kT ),
we can simplify this to

∥∥u(t)− û[k]
∥∥ = O(T δ) ‖x(kT )‖+O(T δ) ‖ν[k]‖+O(T 1+δ) ‖ν[k]‖+O(T 1+δ) ‖ŷ(kT )‖

+O(T δ)ŷ(kT )

= O(T δ) ‖x(kT )‖+O(T δ) ‖ν[k]‖+O(T )
∥∥û[k]

∥∥+O(T
1
2 ) ‖rk‖2 ,

t ∈ [kT, (k + 1)T ),

(A.5)

which yields (4.2).

Solving the state equation (2.1) yields

x(t) = eA(t−kT )x(kT ) +

∫ t

kT

eA(t−τ)Bu(τ)dτ +

∫ t

kT

eA(t−τ)Er(τ)dτ),

t ∈ [kT, (k + 1)T ).

Using (A.5) we can form a bound on

‖x(t)− x(kT )‖ = O(T )x(kT ) +

∫ t

kT

O(1)( ˆ‖u‖ [k] +O(T δ)(‖x(kT )‖+ ‖ν[k]‖)

+O(T )
∥∥û[k]

∥∥+O(T
1
2 ) ‖rk‖2)dτ +

(∫ t

kT

O(1)dτ

) 1
2

‖rk‖2

= O(T )(‖x(kT )‖+
∥∥û[k]

∥∥) +O(T 1+δ) ‖ν[k]‖+O(T
1
2 ) ‖rk‖2

(A.6)
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which yields equation (4.1). We can perform similar analysis as before to obtain a bound
on the quantity û[k + 1]− u[k + 1].We can use lemma 1 to obtain the estimation error of
each element of ûi[k+1]j for i ∈ {1, 2, · · · , p−1} and j ∈ {1, 2, · · · ,mi}. More specifically,
we use the bound in (3.1) with a minor change reflecting the fact that we are now probing
with T δŵpui[k + 1]j rather than T δŵi[yi(kT )]j. So (3.1) becomes (for i = j = 1):

O(T 1−δ)(‖x(kT + (2n̄(l − lp) + 1)h)‖+
∥∥û[k]

∥∥)

+O(T )|u1[k + 1]1|+O(T
1
2
−δ) ‖rk‖2 .

As a result we end up with∥∥û[k + 1]− u[k + 1]
∥∥ =O(T 1−δ) sup

τ∈[kT+(2n̄(l−lp)+1)h),(k+1)T )

‖x(τ)‖

+O(T 1−δ)
∥∥û[k]

∥∥+O(T ) ‖u[k + 1]‖+O(T
1
2
−δ) ‖rk‖2 .

(A.7)

It is easy to show that
u[k + 1] = O(1)v[k] +O(1)ŷ(kT ).

After we use the bound on ŷ(kT ) given by (A.4) to simplify this, we substitute the resulting
expression for u[k + 1] into (A.7) and use (A.6) to obtain a bound on sup

τ∈[kT,(k+1)T )

‖x(τ)‖

yielding (4.4):∥∥û[k + 1]− u[k + 1]
∥∥ =O(T 1−δ)(‖x(kT )‖+

∥∥û[k]
∥∥) +O(T ) ‖ν[k]‖+O(T

1
2
−δ) ‖rk‖2 .

�

A.4 Proof of Claim 1

Let k ∈ Z+ be arbitrary. By definition, the near optimal centralized controller guarantees
closed loop stability. Thus there exist constants γ0 > 0 and λ0 < 0 such that∥∥eAct

∥∥ ≤ γ0e
λ0t, t ≥ 0. (A.8)

To this end, freeze λ̄0 ∈ (λ0, 0) and consider the unique positive definite solution P1 of the
Lyapunov equation

(Ac − λ̄0I)TP1 + P1(Ac − λ̄0I) = −I (A.9)
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Using an expanded positive definite matrix P :=

[
P1 0
0 I

]
we can analyse the Lyapunov

stability of the decentralized system. First define ω[k] := eλ0kTxd[k]; it follows that

ω[k + 1] = Ad(T )e−λ̄0T︸ ︷︷ ︸
Ãd(T )

ω[k], k ≥ 0

Given the Lyapunov candidate function

V (ω[k]) := ω[k]TPω[k]

we would like to show

∆V [k] := V (ω[k + 1])− V (ω[k])

= ω[k]T(Ãd(T )TPÃd(T )− P )ω[k]

is negative definite. After some simplifications, we see that

P̄ (T ) := P − Ãd(T )TPÃd(T )

becomes [
IT +O(T 2−δ) O(T )
O(T ) I +O(T 2−2δ)

]
.

We partition P̄ (T ) as

[
P̄11(T ) P̄12(T )
P̄21(T ) P̄22(T )

]
in a natural way.

For sufficiently small T̄ , the term P̄11 is positive definite. Moreover the Schur comple-
ment of P̄11(T ) in P̄ (T ) is

P̄22(T )− P̄21(T )P̄11(T )−1P̄12(T ) = I +O(T )

is clearly positive definite. It follows that −P̄ (T ) is negative definite. Using standard
arguments, it follows that for small T there exists a γ̄0 > 0 such that

‖ω[k]‖ ≤ γ̄0 ‖ω[0]‖ , k ≥ 0.

Hence, it follows immediately that for small T ,

‖xd[k]‖ ≤ γ̄0e
λ̄0kT ‖xd[0]‖ , k ≥ 0. (A.10)

�
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