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Abstract

E-health systems are the information and communication systems deployed to improve
quality and efficiency of public health services. Within E-health systems, wearable sensors
are deployed to monitor physiology information not only in hospitals, but also in our daily
lives under all types of activities; wireless body area networks (WBANs) are adopted to
transmit physiology information to smartphones; and cloud servers are utilized for timely
diagnose and disease treatment. The integrated services provided by E-health systems
could be more convenient, reliable, patient centric and bring more economic healthcare
services.

Despite of many benefits, e-health systems face challenges among which resource man-
agement is the most important one as wearable sensors are energy and computing capa-
bility limited, and medical information has stringent quality of service (QoS) requirements
in terms of delay and reliability. This thesis presents resource management mechanisms,
including transmission power allocation schemes for wearable sensors, Medium Access Con-
trol (MAC) for WBANs, and resource sharing schemes among cloud networks, that can
efficiently exploit the limited resources to achieve satisfactory QoS.

First, we address how wearable sensors could energy efficiently transmit medical in-
formation with stringent QoS requirements to a smart phone. We first investigate how
to provide worst-case delay provisioning for vital physiology information. Sleep schedul-
ing and opportunistic channel access are exploited to reduce energy consumption in idle
listening and increase energy efficiency. Considering dynamic programming suffers from
curse of dimensionality, Lyapunov optimization formulation is established to derive a low
complexity two-step transmission power allocation algorithm. We analyze the conditions
under which the proposed algorithm could guarantee worst-case delay. We then investigate
the impacts of peak power constraint and statistical QoS provisioning. An optimal trans-
mission power allocation scheme under a peak power constraint is derived, and followed by
an efficient calculation method. Applying duality gap analysis, we characterize the upper
bound of the extra average transmission power incurred due a peak power constraint. We
demonstrate that when the peak power constraint is stringent, the proposed constant power
scheme is suitable for wearable sensors for its performance is close to optimal. Further,
we show that the peak power constraint is the bottleneck for wearable sensors to provide
stringent statistical QoS provisioning.

Second, WBANs can provide low-cost and timely healthcare services and are expected
to be widely adopted in hospitals. We develop a centralized MAC layer resource manage-
ment scheme for WBANs, with a focus on inter-WBAN interference mitigation and sensor
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power consumption reduction. Based on the channel state and buffer state information
reported by smart phones deployed in each WBAN, channel access allocation is performed
by a central controller to maximize the network throughput. Note that sensors have insuf-
ficient energy and computing capability to timely provide all the necessary information for
channel resource management, which deteriorates the network performance. We exploit
the temporal correlation of body area channel such that channel state reports from sen-
sors are minimized. We then formulate the MAC design problem as a partially observable
optimization problem and develop a myopic policy accordingly.

Third, cloud computing is expected to meet the rising computing demands. Both
private clouds, which aim at patients in their regions, and public clouds, which serve general
public, are adopted. Reliability control and QoS provisioning are the core issues of private
clouds and public clouds, respectively. A framework, which exploits the abundant resource
of private clouds in time domain, to enable cooperation among private clouds and public
clouds, is proposed. Considering the cost of service failure in e-health system, the first time
failure probability is adopted as reliability measures for private clouds. An algorithm is
proposed to minimize the failure probability, and is proven to be optimal. Then, we propose
an e-health monitoring system with minimum service delay and privacy preservation by
exploiting geo-distributed clouds. In the system, the resource management scheme enables
the distributed cloud servers to cooperatively assign the servers to the requested users under
a load balance condition. Thus, the service delay for users is minimized. In addition, a
traffic shaping algorithm is proposed, which converts the user health data traffic to the
non-health data traffic such that the capability of traffic analysis attacks is largely reduced.

In summary, we believe the research results developed in this dissertation can provide
insights for efficient transmission power allocation for wearable sensor, can offer practi-
cal MAC layer solutions for WBANs in hospital environment, and can improve the QoS
provisioning provided by cloud networks in e-health systems.
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Chapter 1

Introduction

E-health is defined as healthcare practice supported by information and communication
technologies (ICTs) [1]. The goal of e-health is to help physicians, hospitals and govern-
ments to provide healthcare services to patients in a more convenient, efficient, reliable and
economical way compared to current public heath services. The advancements of sensor
technologies, communication networks and computing technologies speed up this evolu-
tion process. Specifically, the advancement of wearable sensors enables vital physiology
monitoring not only in hospitals, but also anywhere anytime in our daily lives. Wireless
body area networks (WBANs) are proposed and developed to support real time medical
information transmission from wearable sensors to smart phones. Moreover, with the wide
adoption of cloud computing technologies, the data gathered from continuous monitoring
could be stored and analyzed for illness prediction and treatments.

Yet many benefits, E-health systems are required to meet the stringent Quality of Ser-
vice (QoS) requirements, such as reliability, delay and power consumption requirements,
of medical applications. However, limited available resources, such as the energy and com-
puting capability of wearable sensors and network bandwidth, pose challenges in designing
systems to meet QoS of medical applications.

1.1 E-health Systems

According to American Heritage Dictionary, Healthcare is defined as ” the prevention,
treatment, and management of illness and the preservation of mental and physical well-
being through the services offered by the medical and health professions” [2]. However,
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Figure 1.1: Illustration of e-health systems

current healthcare system does not provide satisfied QoS in all aspects. For example,
according to Ontario Ministry of Health and Long-term Care, the provincial average waiting
time and total time spent in emergency room for complex conditions are 4 hours and 9.6
hours, respectively [3]. What is more, as pointed out by the former president of the
Canadian Medical Association, Dr. Jeffrey Turnbull, current hospital centric healthcare
is inefficient in dealing with chronic conditions [4], such as heart diseases and diabetes.
Firstly, it lacks the ability to identify chronic diseases in the early stage. Secondly, chronic
conditions need to be treated in a long-term ward instead of shortly in hospitals.

E-health provides a promising solution to existing healthcare issues. The adoption
of ICTs helps to improve access to healthcare, reduce waiting and processing time, and
lower the cost. To realize these goals, communication is indispensable for real time health
information delivery, whereas computing is required for diagnoses and predictions through
signal processing and pattern recognition.

The e-health systems have been categorized into three domains: body area domain,
communication and networking domain and service domain [5]. Body area domain has
two tasks: one is to gather physiology information and the other is to store it in a smart
phone for transmission. As illustrated in Fig. 1.1, body area domain is made of WBANs.
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Each WBAN is composed of several sensors and a smart phone. The sensors can be either
wearable sensors or implant sensors. Sensors monitor different physiology signals. Thus,
the traffic generated by sensors are various in terms of rate and priority. Vital signals, such
as heart rate, blood pressure, respiration rate and peripheral capillary oxygen saturation
(SpO2), contain crucial information, thus should be given higher priority. Electromyo-
graphy (EMG), on the other hand, has less importance compared to vital signals, thus
can be given lower priority. The smart phone gathers medical information from sensors
through WBAN. IEEE802.15.6 [6] is proposed to serve as the communication technology
for WBANs.

In communication and networking domain, smart phones organize all personal medical
information and report to remote servers in a timely, reliable and security manner. Major
smart phone platforms have provided this function. Apple Inc. announced HealthKitTM

to collect physiology information and store it in remote servers. Google published Android
FitTM and Microsoft launched HealthTM . The communication and networking domain
adopts technologies, including wireless network, such as cellular networks and WiFi, and
wired Internet Protocol (IP) backbones. For medical traffic, QoS, in terms of delay and
reliability, is the most important design consideration. These requirements indicate the
needs for tailored designs for medical traffic transmission.

The tasks of service domain are to provide storage for massive health related data, real
time diagnoses and early stage diseases detection. Massive health related data services
require storage for huge amount of data and timely data access whenever needed. Real
time diagnoses and diseases detections could adopt learning algorithms with high comput-
ing complexity [7, 8]. To serve the computing intensive and storage intensive applications,
cloud computing is proposed to be utilized in e-health systems. Cloud computing is made
of shared network of configurable computing resources, such as servers, storage and appli-
cations, to enable ubiquitous and on-demand access [9]. Based on deployment methods,
cloud computing can be categorized into private clouds and public clouds. Private clouds
are clouds operated by a single organization, whereas public clouds are clouds that are
open for public usage. Both private clouds and public clouds have been adopted in e-halth
systems. Provincial governments in Canada opt to private clouds to suit local needs, such
as project E-health Ontario [10]. Federal government of U.S. intends to build national wide
electronic health record access systems with public clouds [11].

Several scenarios show the benefits of e-health systems. First is long term remote
monitoring [12, 13]. Consider a person with chronic heart diseases at home with a WBAN.
For such a patient, continuous monitoring is crucial for early stage heart failure detection. A
sensor on body collects heart related physiology data, such as Electrocardiography (ECG)
and blood pressure. Information is delivered to remote servers in real time. Through data
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analysis, heart arrhythmia, even heart failure, could be predicted by clouds using ECG
data[14, 15]. Medical interventions could be provided once heart performance deteriorates.
This application helps to reduce the harm caused by sudden heart failure, the cost for
frequent clinic visits and enable health services delivery in a continuous and long term
fashion.

Second scenario is the information collection in hospital environments. Consider a hos-
pital, where many patients move around, each carries a WBAN. In such scenario, it is
challenging to gather all necessary information from patients and provide timely instruc-
tions, such as determining the priorities of patients. With the help of e-health systems,
smart phones collect and forward information to local servers, which can determine patient
priority and direct patients to appropriate departments without waiting for instructions
from nurses. This application has the potential to reduce the workload of medical practi-
tioners, cut the waiting time and processing time in hospitals.

1.2 Resource Management in E-health Systems

The e-health systems can only be launched with provisioning of medical level QoS. The
metrics of requirements include lifetime of sensors [16], the transmission power, the delay
suffered by medical traffic. Compared to exiting data services, medical services have more
stringent requirements. However, the e-health systems suffer from dramatic changing net-
work topology and intermittent connectivity, making QoS provisioning a very challenging
task. As a result, proper management of the limited resources, including energy, band-
width and computing resources, is necessary in e-health systems. The following subsections
present the key ingredients of e-health systems and the challenges faced by them.

1.2.1 Transmission Power Allocation for Sensors

The limited size of wearable sensors leads to limited battery that can be carried. In the
mean time, for the purpose of continuous monitoring, a sensor is expected to work for a
long time. For example, wearable sensors are expected to sustain a weekend usage without
charging [17]. The expectation on long lifetime and the limited battery call for proper
power allocation [18].

Three features of wearable sensors make the energy efficiency transmission challenging.
Firstly, for health data, there is a need on stringent QoS provisioning in terms of delay.
Data includes vital signal information needs to be guaranteed with a worst-case delay [19].
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Secondly, different from mobile terminals, such as smart phones, tablets, which are capable
of cellular communication or WiFi communication, wearable sensors are extremely comput-
ing capability constrained. Thus, complex signal processing algorithms and transmission
scheduling algorithms are not suitable to be implemented on sensors. Thirdly, for the
safety of human skins, the peak transmission power is also limited, to prevent overheating
phenomenon, which causes skin irritations and burning [20].

Several methods have been devised to increase energy efficiency through transmission
power allocation [21, 22, 23, 24]. First, for wireless transmission over dynamic channels,
opportunistic transmission [25], which exploits the dynamics of channel states through
transmitting more bits when channel state is good and less when channel state is poor,
is widely adopted. For wearable sensors, two factors need to be considered to utilize op-
portunistic transmission. One is the trade-off between delay and energy efficiency, since
waiting a long duration for potential good channel could cause violations of delay re-
quirements. The other is the impact of peak transmission power. Based on water-filling
transmission policy, more energy should be allocated when channel is in good condition.
However, due to the peak transmission power constraint, a sensor may not be able to fully
utilize the good channel. Secondly, exploiting the fact that active radio system consumes
energy [26] and vital signals typically have low data rate, completely shut down the sensor
radio, also know as the sleep mode, is proposed [27]. This method raises the problems
when to put sensor to sleep and when to wake it up. We use the term sleep scheduling to
refer to the algorithms that addresses this problem. For medical traffic transmission over
wireless body area channel, we should consider the possibility that after a period of sleep,
a sensor wakes up, but have to face a long period of bad channel conditions that may cause
transmission failure and delay violations. In summary, energy efficient and low complexity
transmission power allocation schemes for wearable sensors are desired.

1.2.2 Medium Access Control for WBANs

In hospital, multiple WBANs coexist as each patient carries one WBAN. Each patient
gathers medical information through WBAN on the body with stringent QoS provisioning
[28, 29, 30]. Since nearby WBANs share the same wireless medium, the transmissions of
different WBANs could interfere with each other, resulting in packet loss and energy waste
for sensors, and more importantly, violation of delay requirements. Thus, medium access
control is needed.

Several factors make the MAC design for WBANs in hospital challenging [31]. Firstly,
considering the limited transmission power and the channel fading, not all sensors are
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within the communication range of each other. As a result, the network is distributed
in nature. In such a network, the notorious hidden terminal problem will likely exist.
Secondly, the body area channel is prone to errors due to the body movement. As a result,
even if a WBAN is granted access to wireless medium, the channel between the sensor
and the smartphone could be in bad state, resulting in waste of channel resources. MAC
design aiming at maximizing network throughput calls for the consideration of dynamic
channel. Thirdly, all patients share the same rights to access the wireless resources. Thus,
fairness is demanded in MAC layer resource management. In summary, MAC layer resource
management requires tailored design in hospital environments.

Existing MAC layer protocols have limitations when applied to WBANs [32, 33, 34, 35,
36]. Firstly, existing works on hidden terminal cancellation rely on control signal exchange
between transmitters and receivers, such as the black burst based scheme, which adopts a
busy tone to jam the channel in order to gain access. However, these schemes consume a
lot of energy for transmitters, thus not suitable for wearable sensors. Secondly, body area
channel dynamics call for consideration when allocating channel access. MAC protocol for
wireless terminals, such as laptops and tablets, does not take channel into account. With
channel dynamics, MAC needs to intelligently avoid allocating channel access to link with
poor channel condition. This increases the complexity of MAC layer design. Moreover, the
transmitter, namely the wearable sensors, and the receivers, namely the smartphones, have
asymmetrical capabilities in terms of energy supply and computational power. This feature
has not been explored by previous works where terminals on both sides are considered to
have similar capabilities. In summary, how to utilize the unique characteristics of WBANs
to design MAC for hospital environment applications needs to be investigated.

1.2.3 Resource Management in Cloud Networks

Cloud computing is expected to meet increasing computing demand, such as storage and
computing tasks, for e-health applications [37]. Based on targeted users, current computing
service providers can be classified into public clouds and private clouds, such as SIEMENS
Healthcare Private Cloud [38], which provides personal health information storage, mon-
itoring and access management. When it comes to medical applications, availability and
reliability of cloud computing services are of the utmost importance [38]. However, cur-
rent cloud service provider face delay and reliability issues in order to meet medical grade
requirements.

The deployment of public cloud is progressing dramatically due to several potential
benefits for users: easy to deploy, fast to scale and flexible to use [39, 40]. As the un-
avoidable communication delay from the backbone network hurts the revenue of the public
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service providers in an unacceptable manner, geographically deploy storage and computing
servers have become key technologies to improve QoS in cloud computing [41]. However,
to geographically deploy data centers and servers faces obstacles. Medical computing fa-
cilities are required to be built with a stringent standard [42], thus it is expensive for
public service providers to maintain suitable environments to accommodate these servers
at different locations.

At the same time, private cloud, referred as internal data centres and computing fa-
cilities of a business or other organizations provide specific services for targeted users,
suffers from under-utilization problem during off-peak periods and poor services during
burst periods. Service provisioning during burst period is particularly difficult since when
the burst will come and how large the burst will be are hard to predict. The IT administra-
tors face the dilemma between extremely expensive computing facilities capable of dealing
with burst requests and consequences from unsatisfactory services. Replacing all private
cloud with public cloud can help improve the reliability of service for enterprises. But this
approach wastes the resource of current private cloud facilities.

The reliability and availability of the computing systems are of critical importance
in medical application. The result of failure could be fatal. For example, when a user
with near heart congestion condition requests for diagnoses, late decision could result in
failure in heart congestion prevention. However, as discussed above, private clouds have
limited computing capability, which makes it unreliable when a burst of demand arrives
[43]. In fact, most private clouds in market are designed to have three times of computing
capacity compared to average demand. On the other hand, services provided by public
clouds suffer from communication delay due to distance. For public cloud, geo-distributed
cloud network has been considered as an effective way to reduce delay. However, geo-
distributed cloud requires proper load balancing among computing facilities [44]. Moreover,
for medical applications, privacy is considered as the top priority when using public cloud
[38]. Many attackers in the internet could violate the privacy of a patient and make profit
by exploiting the private information, such as targeted advertisement. One of the attack
that can harm the privacy of a patient is traffic analysis (TA) attack [45]. TA attack is a
type of inference attack that aims at determining traffic type through learning patterns of
the communication, even if all data is encrypted.

Previous works on improving the reliability of private cloud suggest to utilize public
cloud for burst demand arrival [46]. The idea is whenever local demand exceeds the com-
puting capacity of private clouds, the newly arrived requests are directed to public clouds.
This, however, does not fully utilize the abundant computing capacity of private clouds in
average sense. Thus, how to design proper resource management schemes to fully exploit
the resource of private clouds for reliability improvement needs investigation. For geo-
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distributed clouds, previous works [47, 48, 44] on load balancing are designed for less delay
sensitive applications compared to medical applications. Thus, a load balancing scheme
with delay taken into account is needed.

1.3 Research Contributions

The objective of this research is to devise resource management schemes to achieve reli-
able and efficient e-health systems. As discussed above, existing work has limitations in
applying to e-health applications. We focus on transmission power allocation for wear-
able sensors, MAC protocols for WBANs in hospitals and resource management schemes
for cloud networks. Specifically, we devote to investigate transmission power allocation,
which is to exploit the channel dynamics to reduce the average power consumption while
providing a worst-case delay guarantee, and to build understanding of the impacts of the
peak power constraint and statistical QoS provisioning; to incorporate channel dynamics
and utilize the capability of smart phone in MAC design to support medical information
collection in a hospital environment; to improve the reliability of private clouds through
cooperation with public clouds; and to preserve privacy against traffic analysis, and balance
load in geo-distributed clouds. The research contributions are discussed in the following.

1.3.1 Energy Expenditure Analysis of QoS Provisioning

To design proper transmission power allocation schemes for wearable sensors, we aim to
characterize the tradeoff between energy expenditure and QoS requirements, such as delay
requirements and peak power constraints. Specifically, our objectives are as follows:

• Analyze the tradeoff between worst-case delay and average transmission power for
vital medical information transmission over dynamic body area wireless channel, and
propose a low complexity algorithm suitable for wearable sensors [49].

• Analyze the impacts of the peak power constraint on energy efficiency and the impacts
of statistical QoS provisioning.

For vital signal, including heart rate, respiration rate, oxygen saturation and blood
pressure, whose data rate is much smaller compared to channel capacity, we investigate
how to utilize the sleep and opportunistic transmission to improve energy efficiency, while
guaranteeing a worst-case delay. For sensors, idle listening consumes comparable energy
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as transmission, thus sensors are to put radio off for energy saving. This requires a control
over when the sensor should be radio on and when the sensor should be radio off. Generally,
the longer a sensor is put to radio off, the larger the delay suffered by data in buffer. In
the meantime, if there is limited data in the buffer, a sensor is set to radio on and the
channel is detected in good condition, the good channel state could not be fully utilized due
to insufficient data. To achieve energy saving by exploiting propagation channel quality
with a worst-case delay requirement poses challenges in developing a scheduling policy. We
address this problem with a Lyapunov optimization formulation and propose a two-step
scheduling algorithm. We prove that the algorithm can provide worst-case delay guarantee
under certain conditions. Theoretical analysis and simulation results are presented to
demonstrate the tradeoff between the transmission delay and energy consumption.

For certain physiology monitoring, such as implant camera and EMG monitor, the
data rate is considerably larger than the data rate required for vital signal monitoring.
For theses applications, we investigate the impacts of the peak transmission power and
statistical QoS provisioning. With peak transmission power constraint, the good channel
state may not be fully utilized for insufficient power. We formulate the minimization of
average power with a peak power constraint and an average transmission rate constraint
problem as a convex optimization problem, derive an optimal solution and propose an
efficient calculation method. Applying duality gap analysis, we characterize the upper
bound of the extra average transmission power incurred due to a peak power constraint.
Further, we show that a constant power scheme is suitable for wearable sensors to support
application with large data rate. To support delay requirements, we incorporate a QoS
provisioning constraint, in the form of statistical delay guarantee, into our formulation,
and derive the solution accordingly. Through simulations, we shown that peak power is
the bottleneck for wearable sensors to support stringent statistical QoS provisioning.

1.3.2 MAC Solution with Partial Network States

The objective of studying MAC for WBANs is to reduce interference in an energy efficient
way to satisfy the QoS requirement of medical applications in hospital. Note that in a
hospital environment, due to the limited space, multiple WBANs would coexist in a region
and share the channel to support physiology information collection from wearable sensors
by smartphones. This inevitably incurs severe inter-WBAN interference which, if with-
out an appropriate design, would significantly reduce the network throughput and, more
importantly, incur high power consumption of wearable sensors. Therefore, an efficient
channel resource management scheme in MAC layer is crucial. On addressing this issue, in
this work, we develop a centralized MAC layer resource management scheme for WBANs,
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with a focus on inter-WBAN interference mitigation and sensor power consumption reduc-
tion. Based on the channel state and buffer state information reported by smart phones
deployed in each WBAN, channel access allocation is performed by a central controller to
maximize the network throughput. Note that sensors have strict limitations on energy and
computing capability and cannot timely provide all the necessary information for chan-
nel resource management, which deteriorates the network performance. We exploit the
temporal correlation of body area channel such that channel state reports from sensors
are minimized. We formulate the network design as a partially observable optimization
problem and develop a myopic policy accordingly. Simulation results are presented to
demonstrate the effectiveness of our proposed policy.

1.3.3 Cooperation Schemes for Cloud Networks

To improve QoS provisioning capability of cloud networks, we intend to enable cooperation
through proper incentive scheme design. Specifically, our objectives are as follows:

• Propose a scheme to enable the cooperation between private clouds and public clouds
such that the reliability of private clouds is improved and the delay suffered by public
clouds is reduced [50].

• Investigate the load balancing problem for geo-distributed clouds with delay mini-
mization and privacy preservation [51].

First, a cooperation framework is proposed through exploiting unique features of existing
clouds. First feature is that private clouds are geographically distributed, whereas the
second is public clouds can be regarded to possess infinite computing resources available
[41]. The cooperation contains two key ideas: 1) The geographically distributed private
clouds offer parts of their capacities to help a public cloud provide services to its nearby
users. The public cloud rewards this help. In other word, private clouds turn their resources
that can not be accumulated into rewards that can be accumulated through the cooperation
with a public cloud. 2) With sufficient reward, the public cloud offers to serve excess
requests to the private clouds to improve their reliability and scalability. To adopt reward
is to eliminate selfish private clouds. This cooperation scheme improves reliability of private
clouds and reduces the delay of public clouds at the same time.

Second, we propose a resource management scheme to achieve the minimized service de-
lay and the reduced communication costs. We first derive a sufficient condition in resource
management to ensure the stability of cloud servers. Considering this condition, we design

10



the resource management scheme: each server only redirects the requests to others who
have shorter queue lengths; and the number of redirected requests must be proportioned
to the difference of their queue lengths and reciprocal to the service delay between them.
We also prove the proposed resource management scheme satisfies the derived sufficient
condition in balanced state. In addition, we compare the scheme with two other alterna-
tives using joint the short queue (JSQ) and distributed control law (DCL), both of which
are proven to be stable. Through extensive simulations, we show that our scheme achieves
a much smaller average service delay than the JSQ-based and DCL-based schemes.

Third, we propose a traffic shaping algorithm to prevent the health data of users from
being detected by the TA attackers. We focus on the health data traffic generated by
e-health monitoring systems, such as heart rate and blood pressure, which are typically
modelled as deterministic processes [52]. We analyze the statistical differences between
health data traffic and non-health data traffic. Our proposed shaping algorithm is designed
such that the distribution of the shaped health data traffic is the same as the distribution
of the non-health data traffic; and the autocorrelation of the shaped health data traffic
is close to the autocorrelation of the non-health data traffic. Note that, the proposed
algorithm introduces a delay, referred as shaping delay, on the user side which is related to
the privacy requirement. We provide the numeric results on this relation. Then, we model
the shaping delay by the D/M/1 queue, and consider the shaping delay into the resource
management scheme. The simulation results show that our resource management scheme
is still efficient with the shaping delay.

1.4 Outline of the Thesis

Chapter 2 and Chapter 3 are devoted to the transmission power allocation problem. Chap-
ter 2 formulates the energy efficiency transmission with worst-case delay provisioning
problem. An algorithm is proposed and proven to be able to guarantee worst-case de-
lay. Chapter 3 investigates the impacts of peak power and statistical QoS provisioning
on transmission power allocation. Chapter 4 studies how to utilize the dynamics of body
area channel to maximize the network throughput in MAC layer. In this chapter, we show
that the proposed MAC could achieve satisfactory performance in terms of throughput
and fairness. Chapter 5 proposes a cooperation framework between private clouds and
public clouds. Through survival analysis, we show that the cooperation scheme enhances
the reliability of private clouds. Chapter 6 presents a traffic shaping algorithm to protect
privacy from traffic analysis and a load balancing algorithm, which is proven to be able to
stabilize cloud networks. The efficiency of the proposed scheme is evaluated by analysis
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and simulations based on the geographic and population of Canada. Finally, Chapter 7
summarizes the results of the thesis and outlines a number of potential avenues of future
research. Possible extensions include developing fully distributed MAC for WBANs, and
resource management in cloud networks.
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Chapter 2

Transmission Power Allocation with
Worst-case Delay Provisioning

Data collection from a single sensor is an important and common scenario of e-healthcare
applications in WBANs. Sensors with multiple functions are becoming popular nowadays.
For example, Apple Watch and Fitbit can monitor heart rate, count steps at the same
time. Most chronic patients need only one sensor to monitor his or her specific physical
condition. In developing communication protocols for this scenario, energy consumption of
the wearable sensor is an essential consideration. Meeting a worst-case delay requirement
for medical data transmissions makes the protocol development a challenging issue.

In the literature, two approaches for wireless communication and sensor networks have
been proposed for energy efficiency:

• Opportunistic communication [21]: The idea is to transmit as long as the channel is
in a good condition, through exploiting dynamic fluctuations of channel gain;

• Sleep scheduling [53]: With a low traffic load, radios of sensor nodes are turned off
to reduce idle listening.

Two facts motivate us to consider both approaches in WBANs: 1) The channel gain
of body area wireless channel varies over time; 2) A sensor on body consumes energy in a
listening state. The side effect of these approaches is extra the delay in data transmission.
For example, a transmitter using opportunistic transmission policy, holds data when the
channel is in a bad condition [54]. Thus, the transmission delay of data in buffer increases.
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For medical applications in WBAN, the tradeoff between delay and energy consumption
needs to be studied.

In this work, we investigate the problem of minimizing average power consumption over
a time varying wireless body area channel with a worst-case delay requirement and random
traffic arrivals. The minimizing average power consumption problem can be solved using
dynamic programming (DP). However, DP suffers from the curse of dimensionality. Its
computation complexity grows exponentially with the number of system states, including
channel states, buffer states, which causes difficulty in implementation on sensors. In
this work, we formulate the problem based on the Lyapunov optimization theory [55]. A
two-step power allocation algorithm is proposed, which utilizes both sleeping mode and
opportunistic transmission for energy efficiency. The algorithm is suitable for sensors
because: 1) it does not require a-priori information of the channel gain and data arrival
rate; and 2) it follows a fixed threshold policy for the first step, which has lower computation
complexity when compared with DP. In performance analysis, we study the conditions
under which the proposed algorithm can guarantee a worst-case delay and the tradeoff
between the worst-case delay and power consumption. Computer simulations results are
presented to demonstrate the performance of the proposed algorithm.

2.1 Literature Review

Research on sleep scheduling originates from sensor networks [27]. In a sensor network,
the power consumption in a listening state is comparable to that in a transmission state.
Sensor radios are thus turned off for energy saving. For sensor networks, the delay under
consideration is the time difference between the time instance a packet is generated to the
time instance the packet is received by a sink. Since routes from a sensor to a sink are
usually multi-hop, most work on controlling delay for sensors with sleep scheduling focuses
on ensuring the connectivity of the multi-hop networks [56]. Moreover, work for sensor
networks generally considers the channels to be time invariant. In summary, this line of
work approaches the sleep scheduling problem in MAC and routing layers, thus can not be
directly applied to WBANs.

The fundamental tradeoff between average power consumption and average delay over
a fading channel is investigated in [21]. It is concluded that any scheduling policy, requiring
transmission power smaller than O(1/V ) plus the minimum power, must have an average
queueing delay greater than or equal to Ω(

√
V ), where V is a weighting factor. The

power delay tradeoff problem based on a static-channel assumption under a worst-case
delay requirement is investigated in [57]. In [22, 23], time varying channel models and a
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worst-case delay requirement are considered. A suboptimal policy for Shannon capacity
based power consumption model is proposed in [22], while an optimal policy is developed
for a monomial power consumption model in [23]. Both work assumes data arrives at
the beginning of each time frame, and is required to be transmitted at the end of the
time frame. Both schedulers are controlled based on the observations of the instantaneous
channel gain, buffer length, and remaining time to deadline.

Existing policies with a worst case delay assume either the channel is static or the traffic
is static. In WBAN, the channel dynamics have been observed by extensive experiments
[58]. So does the traffic dynamics. Hence, dynamics of both channel and traffic are nec-
essary for practical formulation. However, randomness in channel and traffic makes the
problem complex. When DP is adopted, the computation complexity grows exponentially
with both the number of states for channel and traffic. Specifically, with channel dynamics,
an optimal scheduler shall consider both current channel information and future channel
states. Moreover, without the traffic dynamics, all the data in the buffer share the same
deadline. With dynamics of the traffic, data in the buffer have different remaining time to
go. As a result, a scheduler considers how much data from different urgent levels need to
be transmitted. This increases the complexity of the problem.

Delay constrained optimization problems are investigated in [59, 60] using a framework
to combine stability and optimization techniques, called Lyapunov optimization theory [55].
It takes account of both the stability of the system and other system utility maximization
objectives, such as fairness, and energy consumption. Based on the theory of Lyapunov,
which studies the stability issues, Lyapunov optimization theory further considers other
system utility maximization objectives, such as fairness, and energy consumption. This
framework can yield an algorithm is developed to stabilize the system and drive the utility
to an optimal value. The performance in terms of delay and other utilities is evaluated
in the form of upper bounds. Given a weighting factor V and a quadratic-form Lyapunov
function, it is shown that the algorithm designed can push the utility performance to an
optimal value within O( 1

V
) at the cost of an average delay increases within O(V ).

2.2 System Model

The WBAN system model under consideration is presented in this section. Elements in
the WBAN are described from the perspectives of their limitations and functionalities.
A medical traffic model with a worst-case delay requirement is introduced, followed by
channel models and an energy consumption model for reliable transmission.
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Figure 2.1: Model for continuous monitoring

Network Model

Fig. 2.1 illustrates the model for the remote monitoring application under consideration.
Consider a body area network, consisting of a smart phone and a wearable sensor, where
the sensor is the transmitter and the smart phone is the receiver. The sensor has a strin-
gent requirement on power consumption, and a maximum transmission power Pmax. In
comparison with the sensor, the smart phone has more power supply and more signal pro-
cessing capability. As a result, we assume that the smart phone is always turned on for
simplicity, and is in charge of the data collection.

The system time is partitioned into slots of constant duration, denoted by T . A narrow
band frequency channel is adopted. Assume the channel gain is reciprocal, constant over
each time slot, but changes independently from slot to slot [61]. At the beginning of each
time slot, smart phone sends out a pilot signal with constant transmit power for the sensor
to evaluate current channel state based on the received signal power level. The duration
of the pilot is αT , where α(α < 1) is the ratio of pilot duration to time slot duration. The
sensor can either listen to this pilot and then transmit some data or stay in sleeping mode.
During the sleeping mode, the sensor only inactivates its radio. Hence, a transmission
policy, denoted by µ, consists of two decision variables for each time slot. One is sleep
decision during time slot i, defined as

s(i) =

{
0, if the sensor sleeps;

1, if the sensor wakes up.
(2.1)

If the sensor decides to wake up, it makes the second decision, which is how much data the
sensor should transmit during time slot i, denoted by b(i).
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Data Traffic Model and Delay Requirements

The requirements for medical traffic are application based. To facilitate analysis, all differ-
ent medical data are assumed to have the same requirement in this work. Let A(i) be the
number of information bits arrived on time slot i, with a maximum Amax. The numbers,
A(i), are independently and identically distributed (i.i.d) and ergodic. The reason for the
random arrival rate is that to get accurate vital signal from raw data, such as obtaining
heart rate from Photoplethysmogram (PPG) signal, the complexity of the algorithm de-
pends on the quality of the PPG signal [62]. In general, the poorer the signal quality, the
higher the algorithm complexity. The difference in the algorithm complexity will result in
the difference in processing time, thus the difference in the arrival time of vital signal data.
In reality, the quality of the PPG signal is highly correlated with the motion status of the
person [63]. Since a person could move randomly, we assume a random arrival for vital
signal.

The delay experienced by data is the sum of the delay in the buffer of sensor and the
transmission delay. Compared to the delay in the buffer, the transmission time can be
omitted [21]. Thus we focus on the delay in the buffer. Let Q(i) be the number of bits in
the buffer of the sensor at the beginning of time slot i. The data in the buffer is processed
in the First Come First Served (FCFS) principle. The buffer backlog is empty at the time
slot 0, Q(0) = 0. We have

Q(i+ 1) = max[Q(i)− b(i)s(i), 0] + A(i) . (2.2)

The max operator ensures that the number of bits in the buffer is non-negative. The buffer
decreases b(i)s(i) bits is the buffer is not empty and increases A(i) bits in the end of each
slot.

A worst-case delay requirement is considered for time critical medical applications.
Worst-case delay is the maximum time that a data experiences in the sensor buffer. Let
Dµ
max be the worst-case delay experienced by any data in the buffer under policy µ. Let

Dmax be the worst-case delay allowed, typically from 100ms to 250ms for medical data.

Channel Models

Let h(i) be the channel state in time slot i, defined as the channel path loss between
transmitted signal power PT (i) and received signal power PR(i). Generally, the channel
path loss is a constant for a 10ms duration [61][64] in WBANs. Compared to the delay
requirements of medical traffic, the channel state variations can be utilized for opportunistic
transmission.
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The channel path loss consists of a distance between the transmitter and receiver de-
pendent component and a random component. The random component is ergodic, i.i.d
over time slots, and follows Gaussian distribution [61]. Both minimum hmin and maximum
value hmax of the path loss value are given. The statistical information of the channel
state including mean and variance is available to the sensor for decision making. Under a
Gaussian distribution model, the sensor has the probability density function (pdf) of the
random component based on its mean and variance.

Energy Consumption Model

Energy consumption of the sensor node contains two parts. One comes from a listening
state, and the other is the required transmission power for reliable communication. The
power consumption in the listening state is constant, denoted by PL. As a result, αPLT
energy is consumed for accessing the channel state during a waking-up time slot. Let m
be the ratio of PL to Pmax. To ensure reliable communication at rate r(i) in time slot
i, the required received signal to noise ratio is k′[r(i)]n, k′ > 0, n > 1, (n, k′ ∈ R), where
k′ is a scaling factor and n an index factor. This monomial type function gives good
approximation for most practical transmission [65]. Let PT (h(i), b(i)) denote the required
transmission power for the sensor to transmit b(i) bits of data for channel state h(i). At a
result, the required transmission power is

PT (h(i), r(i)) = k · [h(i)][r(i)]n, (2.3)

where r(i) = b(i)
(1−α)T

, k = k′ × Pn and Pn is the noise power at the receiver end. Let c(i)
be the total energy consumption during a time slot. It is the sum of the energy spent in a
listening state and transmission state during a waking-up time slot i

c(i) = s(i){αPL + (1− α)k · h(i)[r(i)]n}T . (2.4)

2.3 Problem Formulation

In this section, we first formulate the problem of minimizing the average energy consump-
tion of a sensor with a worst-case delay requirement. The formulation does not provide a
relationship between the decision variables, including sleeping decision s(i) and transmit-
ted bit b(i), and the delay constraints. Thus, we transform the worst-case delay constraint
into a buffer occupancy constraint.
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The problem is characterized by making decisions at each time slot to minimize a time
average cost. We transform the problem using Lyapunov optimization theory. The benefits
are two fold: 1) it decomposes a time average objective into objectives for each time slot;
2) it is capable of capturing the trade-off between different metrics.

Define c̄ as the time average of the expectation of the energy cost of a wearable sensor

c̄ , lim
I→∞

1

I

I−1∑
i=0

E{c(i)}. (2.5)

The problem of minimizing energy cost for the sensor with a worst-case delay requirement
is formulated as:

P1 min
s(i),b(i)

c̄ (2.6)

s.t. s(i) ∈ {0, 1}, b(i) ≤ bmax. (2.7)

Dµ
max < Dmax, (2.8)

where Dµ
max is the worst-case delay under a policy denoted by µ. In P1, the constraint (2.7)

describes the feasible region of each decision variable. The constraint (2.8) guarantees the
worst-case delay is finite and bounded. To describe the relationship between a worst-case
delay constraint and the transmission decision variables, we first transform the worst-case
delay constraint.

Worst-Case Delay Constraint Transform

The delay experienced in the buffer can be linked to the transmission decision variables
through the buffer occupancy. The little’s law describes the relationship between average
delay and average buffer occupancy. However, there is no direct link between maximum
buffer occupancy and maximum delay in the buffer. We follow the steps in [66] to construct
the relationship between queue occupancy and a worst-case delay. A virtual queue, denoted
by Z(i), is introduced. The virtual queue increases at a virtual arrival rate ε1(Q(i)>0), which
is a constant arrival data ε if actual queue Q(i) is not empty:

ε1(Q(i)>0) =

{
0, ifQ(i) = 0;

ε, otherwise .
(2.9)
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The virtual queue updates according to

Z(t+ 1) = max[Z(i)− b(i)s(i) + ε1(Q(i)>0), 0] . (2.10)

Ensure both the occupancies of virtual queue and actual queue having an upper bound
yields a worst-case delay.

lemma 1 [66] Suppose the system is controlled by a policy µ, so that Z(i) ≤ Zmax, Q(i) ≤
Qmax for all i, for some positive constants Zmax and Qmax. Then all data in the queue is
transmitted with a maximum delay of Dµ

max, given by

Dµ
max , d(Qmax + Zmax)/εe (2.11)

where function dxe is the minimum integer larger than x.

Based on Lemma 1, the worst-case delay constraint (2.8) can be transformed to a buffer
occupancy constraint as:

Q(i) < Qmax, Z(i) < Zmax, for any i. (2.12)

Lyapunov Optimization Formulation

The objective of P1 is time average minimization of an energy cost. To decompose this ob-
jective into optimization goals for each time slot, we adopt Lyapunov optimization theory
[55]. The Lyapunov theory studies the stability of a dynamical system through each dif-
ference in the time domain of a non-negative function of the buffer occupancy, called drift.
Through making decisions based on a drift-plus-penalty function, Lyapunov optimization
theory introduces a method to control the delay of such a system and other utilities at the
same time.

Define Θ(i) , [Q(i);Z(i)] as the vector of system states. Define a quadratic form
Lyapunov function of the system states

L(Θ(i)) ,
1

2
[Q(i)2 + Z(i)2] . (2.13)

Define the one-step Lyapunov drift, denoted by 4(Θ(i)), as the difference in time of
Lyapunov functions in the form of expectation given current system states Θ(i):

4 (Θ(i)) , E[L(Θ(i+ 1))− L(Θ(i))|Θ(i)] . (2.14)
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In the following, the upper bound of a drift-plus-penalty function for each time slot
is derived. According to Lyapunov optimization theory, delay constrained average cost
minimization problem can be transformed to a problem of minimizing the upper bound of
the drift-plus-penalty function for each time slot. The logic of transform is two fold:

• To minimize a Lyapunov drift in every time slot is to control the buffer occupancy,
thus the delay in the buffer;

• To minimize a penalty function in every time slot is to minimize the energy con-
sumption.

Let 4(Θ(i))sup denote the upper bound for Lyapunov drift 4(Θ(i)). It is obtained
through the derivation of the upper bound of Lyapunov function. To get the upper bound
of Lyapunov function, we first remove the max[ ] operator in (2.2) and (2.10) through
enlarging their right-hand items:

L(Θ(i+ 1)) ≤1

2
[Q(i)2 + A(i)2 + 2A(i)Q(i)− 2Q(i)b(i)s(i)

+ Z(i)2 + 2b(i)2s(i)2 + ε2 + 2Z(i)ε

− 2b(i)s(i)(z(i) + ε)] .

(2.15)

Using equation (2.15), we can obtain the upper bound for Lyapunov drift

4(Θ(i)) ≤E{Bmax −Q(i)[b(i)s(i)− A(i)]

− Z(i)[b(i)s(i)− ε]|Θ(i)} = 4(Θ(i))sup
(2.16)

where bmax = d(1 − α)T [ Pmax
k(1−α)hmin

]
1
n e is the maximum number of bits that can be trans-

mitted during a time slot, and Bmax = 1
2
[A2

max + 2b2
max + ε2] is a finite constant.

The upper bound of a drift-plus-penalty function is the summation of the upper bound
of a Lyapunov drift and a weighted cost function. Thus, the objective (2.6) under delay
constraint (2.12) is transformed to the following problem in every time slot:

min 4(Θ(i))sup + V E{c(i)|Θ(i)} (2.17)

where V is a non-negative weighting factor. The weighting factor is used to balance the
tradeoff between the delay and energy consumption. In practice, if a sensor gives higher
priority to delay over energy consumption, V should be set to be small. Otherwise, V
should be given a large value.
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Substitute 4(Θ(i))sup and c(i) in (2.17) with (2.16) and (2.4), respectively. The trans-
formation of P1 using Lyapunov optimization theory is:

P2 max
s(i),b(i)

E{Q(i)[b(i)s(i)− A(i)] + Z(i)[b(i)s(i)− ε]

− V s(i)(αPL + (1− α)kh(i)(
b(i)

(1− α)T
)n)T |Θ(i)}

(2.18)

s.t. s(i) ∈ {0, 1}, b(i) ≤ min[bmax, Q(i)]. (2.19)

Problem P2 is a nonlinear integer programming problem with two decision variables. Com-
pared with P1, the objective of P2 is a function of the decision variables s(i) and b(i).
The summation of the first two items is the upper bound for Lyapunov drift 4(Θ(i))sup,
and the second item is the weighted energy consumption.

2.4 Algorithm Design

Based on the objective in P2 for each time slot and the fact that a sensor makes decision
on s(i) first, we propose an online algorithm in the following. For an online algorithm,
when making the decision on whether or not to wake up, a sensor does not know current
channel state. Hence, we propose a two-step algorithm to solve P2.

Step 1 (Sleep Scheduling): Consider problem P3.

P3 max
s(i)

E{[−V (αPL + (1− α)kh(i)(
b(i)

(1− α)T
)n)T )

+ b(i)Q(i) + b(i)Z(i)]s(i)|Θ(i)} .
(2.20)

P3 is constructed by picking up items related to waking-up decision s(i) in P2. Solve P3
according to a threshold policy:

s(i) =

{
1, ifQ(i) + Z(i) ≥ VΥmin;
0, otherwise

(2.21)

where Υ = T
b(i)
{αPL+(1−α)k ·h(i)[ b(i)

(1−α)T
]n}, and Υmin is the expectation on the minimum

of Υ. To calculate Υmin, we first minimize Υ for every possible channel state by choosing
b(i). Then, we take expectation of the minimum of Υ on the sample space of the channel
states. The symbol Υmin is a fixed value for a given link. Thus, the sensor calculates Υmin
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once. The threshold VΥmin influences the upper bounds of Q(i) and Z(i), thus the worst-
case delay in buffer. Their relationship is shown in Theorem 1 in performance analysis
section.

Step 2 (Opportunistic Transmission): If s(i) = 1, the sensor determines b(i) after
acquiring the channel state h(i) based on the pilot signal. Consider problem P4:

P4 max
b(i)

b(i)[Q(i) + Z(i)]− V kh(i)[(1− α)T ]1−nb(i)n (2.22)

s.t. b(i) ≤ min[bmax, Q(i)]. (2.23)

Solve P4 to obtain b(i) by:

b(i) =

{
b(i)∗, if b(i)∗ ≤ min[bmax(h(i)), Q(i)];

min[bmax(h(i)), Q(i)], otherwise
(2.24)

where b(i)∗ = d(1−α)T [Q(i)+Z(i)
kV n·h(i)

]
1

n−1 e, and bmax(h(i)) is the maximum number of bits that

can be transmitted in a time slot given a channel state h(i).

2.5 Performance Analysis

Algorithm derived from P2, which minimizes the upper bound of drift-plus-penalty, does
not ensure a non-positive drift. Thus, whether or not the lengths of actual queue and virtual
queue increase to infinity can not be determined using the Lyapunov theory. Instead, we
investigate the queue occupancy problem by studying the evolution of the actual queue
and virtual queue under the proposed algorithm. We examine the conditions under which
the proposed algorithm can guarantee a worst-case delay. Also, the tradeoff between the
worst-case delay and energy consumption is presented in this section.

Lemma 1 states that a worst-case delay exists if both the actual queue and virtual
queue are bounded. Hence, an algorithm can provide a worst-case delay if it can ensure
the existence of upper bounds for both queues. Define two conditions as follows:

(1− α)T [
Υmin

kn · h(i)
]

1
(n−1) ≥ max[Amax, ε] (2.25)

bmax(h(i)) ≥ max[Amax, ε]. (2.26)
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theorem 1 If conditions (2.25)-(2.26) hold, then worst-case upper bounds exist for actual
queue and virtual queue as follows:

Q(t) ≤ VΥmin + Amax . (2.27)

Z(t) ≤ VΥmin + ε . (2.28)

Theorem 1 indicates that the proposed algorithm can provide a worst-case delay guaran-
tee under the conditions (2.25)-(2.26). We provide the proof by induction for the existence
of the upper bound for actual queue as stated in theorem 1. The proof for the virtual
queue bound is similar and is omitted.

Proof 1 The proof is achieved by considering all possible queue evolution situations:

(1) At i = 0, Q(i) = 0. This is due to our assumption that the sensor buffer is empty
at the beginning. Then Q(i+ 1) ≤ Amax. The upper bound holds.

(2) Suppose at time slot i, Q(i) ≤ VΥmin, then at time slot i+ 1, Q(i+ 1) ≤ VΥmin +
Amax. The upper bound still holds.

(3) Suppose at time i, VΥmin ≤ Q(i) ≤ VΥmin + Amax. In this case, s(i) is set to 1
by our algorithm, and b(i) is determined by (2.24). Suppose b(i) = b(i)∗, and consider the
assumption VΥmin ≤ Q(i), we have

b(i) ≥ (1− α)T [
Υmin

kn · h(i)
]

1
(n−1) . (2.29)

Condition (2.25) ensures the upper bound for this case.

Otherwise, suppose b(i) equals Q(i), then Q(i + 1) = A(i) ≤ Amax. The bound holds.
Or suppose b(i) equals bmax(h(i)), then condition (2.26) ensures the upper bound holds.

(4) Queue Q(t) evolves from zero. Thus Q(i) will not exceed VΥmin + Amax.

Theorem 1 indicates that, to combine opportunistic transmission and sleep scheduling
for energy saving with a worst-case delay requirement, there exists some prerequisites.
Condition (2.26) indicates that the maximum transmission amount, given any channel
state, should be no less than the maximum data arrival amount. It is a necessary condition
to guarantee a worst-case delay without data dropping for any algorithm. It is also a
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Figure 2.2: Queue evolutions

sufficient condition to prove such an algorithm exists. Given condition (2.26) is true,
condition (2.25) is a sufficient condition under which our proposed algorithm can benefit
from both sleeping mode and opportunistic transmission for energy saving, with a worst-
case delay constraint.

theorem 2 Given the minimum power consumption P ∗ that the system can achieve, the
average power consumption of our proposed algorithm Pave satisfies: Pave ≤ P ∗ + C/V ,
where C is a constant, at the cost of a worst-case delay increases within O(V ).

The proof is similar to that in [66] using Lyapunov optimization formulation, and is omitted
for brevity.

2.6 Numerical Results

In this section, numerical results are presented to demonstrate the performance of the
proposed algorithm via simulations. Simulation setup is first presented, followed by dis-
cussion on the numerical results. In addition to the delay and average power consumption
performance, we present a waking-up ratio, which is the fraction of time slots in which the
sensor wakes up among the number of total time slots.
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Figure 2.3: Impact of weighting factor on delay

For the channel model, we choose the model suggested by IEEE 802.15 task group 6
under the frequency band 2.4GHz [61]:

h(i)[dB] = a× log10(d) + b+N(i) (2.30)

where a and b are scaling factors, N is a Gaussian random variable with zero mean and
standard deviation σN , and d is the average distance between the sensor and the smart
phone. In each time slot, a value is chosen for N(i). The wearable sensor generates a data
flow according to a Poisson process with average rate λ. Simulation parameters are chosen
according to [20, 65, 61, 67, 68], given in Table 2.1. We choose a, b and σN based on the

Table 2.1: System Parameters
Parameter Value Parameter Value

a 29.3 b -16.8

σN 6.89 d 30 cm

α 1/8 n 2.67

T 10 ms Pmax 13 dBm

Pn -120 dBm λ 100 bps

k′ 0.043
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Figure 2.4: Impact of virtual arrival rate

body surface to body surface channel for 2.4GHz from the experiments in anechoic chamber
[20]. The distance is chosen to be 30cm based on the assumption that the wearable sensor
is on the left wrist and the smart phone is in the right hand side pocket. The slot duration
is chosen to be 10ms for experiments in [61] show that channels are stable within a 5-10ms
duration with a probability larger than 90% and less stable over 10ms. The peak power
constraint is chosen to be 13dbm, whereas the noise power is assumed to be -120dbm. The
power consumption parameters k′ and n are chosen based on [65].

Fig. 2.2 shows the queue evolution at the sensor buffer under the proposed algorithm. It
is observed that, when the queue is nearly empty, the sensor accumulates data, which saves
the energy in a listening state, corresponding to the data accumulation in Fig. 2.2. When
the summation of actual queue length and virtual queue length exceeds a threshold, the
sensor wakes up and attempts to transmit. Our algorithm controls the sensor to transmit
more data when the channel condition is good and less data when channel condition is
poor, corresponding to the sharp cliff and flat cliff in Fig. 2.2, respectively.

The impacts of the system parameters, weighting factor V and the ratio of the power
consumption in a listening state to the maximum transmission power m, on three delay
metrics (worst-case delay upper bound, actual worst-case delay, and average delay) are
shown in Fig. 2.3. As weighting factor V or ratio m increases, all the three delay metrics
increase at different rates. The reason is that, when ratio m increases, the threshold
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VΥmin increases while the queue depleting rate remains the same. When weighting factor
V increases, the threshold VΥmin increases linearly with V . At the same time, the queue

depleting rate decreases, at a speed slower than the order of V (− 1
n−1

) as in (2.24). In both
cases, the sensor accumulates more data before waking up, leading to a larger delay. The
results in Fig. 2.3, which show that the increase rate of the actual worst-case delay can be
bounded by a linear function of V , are consistent with Theorem 2.

The impacts of virtual arrival rate ε on the delay performance and waking-up ratio
are shown in Fig. 2.4. It is clear that the delay metrics decrease as ε increases. When ε
is larger, the virtual queue length increases faster while the threshold VΥmin remains the
same. Thus, the sensor wakes up more frequently, as shown in the waking-up ratio curve
in Fig. 2.4 (b), leading to a smaller delay.

The average power consumption performance of our proposed algorithm is shown in
Fig. 2.5. As the weighting factor V increases, the average power consumption Pave and
the waking-up ratio decrease. When weighting factor V increases, the worst-case delay
that the sensor can tolerate increases. Thus, the buffer holds more data before the sensor
wakes up. The reduction in waking-up ratio reduces the energy cost in a listening state.
After the sensor wakes up, it has more data to transmit when the channel is in a good
condition and can choose to transmit less otherwise, which utilizes the dynamics of channel
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gain. The minimal power P ∗ the system can achieve is not given in this work. Instead,
Fig. 2.5 show that Pave is bounded by O( 1

V
). It is a sufficient condition to ensure that the

inequality Pave ≤ P ∗ + C/V holds. The results are consistent with Theorem 2.

2.7 Summary

In this chapter, we investigate the energy efficient power allocation problem with a worst-
case delay requirement in a WBAN. A two-step power allocation algorithm is proposed
based on the Lyapunov optimization formulation. At the first step, the sensor decides
whether or not to wake up based on the current queue state and information of system
statistics. If the sensor is awake, it first estimates the channel condition based on a pilot
signal from the smart phone, then decides how much data it will transmit based on the
information of queue state and current channel state. We show the conditions for our
algorithm to have a worst-case delay limit. The tradeoff between energy consumption and
delay is demonstrated in performance analysis. Numerical results indicate the effectiveness
of our algorithm and the correctness of our analysis in two aspects: 1) The queue evolution
shows the proposed algorithm can utilize sleep scheduling and opportunistic communication
for energy saving; 2) A tradeoff [O(V );O( 1

V
)] between energy consumption and worst-case

delay constraint is achieved.
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Chapter 3

The Impacts of Peak Power
Constraints and Statistical QoS
Provisioning

In the previous chapter, we show that to provide the worst-case delay provisioning, the
peak power is required to support the maximum data arrival rate given any channel state
as shown in equation (2.26). Applications, such as EMG and EEG monitoring, consume
larger data rate compared to vital signal monitoring [69]. When the data rate increases,
the demand for peak power increases. For wearable sensors, a peak transmission power
constraint is imposed to protect human skins from burns and irritations caused by over-
heated sensors. In this case, peak transmission power could be the bottleneck to support
QoS requirements specified by EMG and EEG monitoring applications.

The peak transmission power constraint could reduce the energy efficiency, and lower
the supported transmission rate. Take the water-filling scheme [24, 70] for example. The
water-filling scheme, which is a threshold based policy, is proven to achieve maximal trans-
mission rate under average transmission power constraint. When the channel gain is larger
than a threshold, power is allocated based on the channel gain. The power allocated is a
non-decreasing function of the channel gain. When the channel gain is smaller than the
threshold, no power is allocated. The threshold, referred to as water-level, is calculated
based on the average power constraint and the channel statistics. With a peak transmis-
sion power constraint, water-filling scheme may not feasible. Firstly, when channel gain is
high, a transmitter may not have sufficient power to utilize the good channel. Secondly,
since the transmission rate obtained from channels with high channel gain is reduced, to
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support a targeted transmission rate, a transmitter is required to transmit over channels
with low channel gain, leading to further energy efficiency reduction. For a wearable sensor
with limited battery, it is desired to characterize the impacts of peak power constraints on
the average transmission power consumption.

QoS provisioning in terms of statistical delay provisioning is desired for applications,
such as EMG and EEG monitoring. These physiology information does not have the
same priority as vital signals, yet a large delay could bring unsatisfactory user experiences.
For example, EMG monitoring is utilized for gesture recognition, which can be used for
interaction with computer [71]. The statistical delay requirement can be formulated using
effective capacity [72]. Effective capacity of a service process is the maximum constant rate
that the service process supports given a statistical delay requirement. Statistical delay
provisioning has been shown to have significant impacts on energy efficiency, especially
when the requirement becomes stringent [72]. Yet, the impacts of peak power constraints
on the statistical delay provisioning has not been well understood.

Above facts motivate us to build qualitative and quantitive understanding of the im-
pacts of peak transmission power constraint and statistical delay provisioning. Our contri-
butions are three folds. Firstly, the optimal scheme for the power minimization problem
under a peak power constraint is derived, and an efficient calculation method is proposed.
Secondly, applying duality gap analysis, the impacts of the peak power constraint in terms
of the upper bound of the extra average power consumption incurred compared to the
water-filling scheme is characterized. We also propose a low complexity constant power
allocation scheme that is suitable for wearable sensors. Through simulations, we validate
the accuracy of the upper bound and show that the average power consumption of the
constant power scheme is close to the optimal one. Thirdly, the impacts of statistical QoS
provisioning is investigated. We show that peak power constraint is the bottleneck for
wearable sensors to support stringent statistical QoS provisioning.

3.1 Literature Review

The transmission power allocation under average power constraints has been studied exten-
sively. The optimal solution to the maximal transmission rate problem is the water-filling
scheme [24]. [73] summarizes and generalizes water-filling strategies to a class of resource
allocation problems, where multiple carriers are considered. Note that the water-filling
scheme is not a closed form solution, which contains a summation over all possible channel
states. The search for optimal water level could be too complex for wearable sensors to be
solved in a real time manner. Exploring the fact that in large SNR regime, the power-rate
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function is not sensitive to SNR, an interactive constant power based scheme is proposed
and analyzed in [74].

Peak power constraint has been considered for transmission power allocation.[75] presents
a geometric based approach to solve water-filling related problems. When the peak power
constraint is imposed, the method in [75] can avoid the computing complexity in finding the
optimal water level. This method depends on the formulation that average transmission
power is known and the objective is to maximize transmission rate. However, when the
transmission rate is a constraint and the objective is to minimize the average transmission
power consumption, the geometric based approach can not be applied directly. Moreover,
previous work has not investigated this question: given a peak power constraint, how much
more average transmission power is required. In this work, we intend to design low com-
plexity schemes for wearable sensors under the peak power constraint, and characterize the
extra average power consumption incurred due to the peak power constraint.

Statistical delay provisioning has been studied for transmission power allocation utiliz-
ing effective capacity concept. The optimal scheme for maximizing the transmission rate
subject to a given statistical QoS constraint is presented in [76]. [76] uses the formulation
that average transmission power is given and the objective is to maximize effective capac-
ity, thus the impact of statistical delay provisioning on peak power is not fully investigated.
In this work, we focus on how statistical delay provisioning impacts the peak power and
average power consumption.

3.2 System Model

Consider a link between a smart phone and a sensor. The sensor collects physiology
signals, such as EMG and ECG, and transmits these information to the smart phone. The
sensor has peak transmission power limit due to regulation. Let Pmax denote the peak
transmission power. The time domain of the system is slotted into duration with the same
size T .

Consider the channel gain is identically and independently distributed over time slots.
The channel power gain during the nth time slot is denoted by v(n). We assume a finite
state channel model with K channel states. Let vk, k ∈ {1, 2, ..., K} denote the channel
gain in the kth state. Without loss of generality, we place the vk in ascending order,
namely v1 ≤ v2 ≤ ... ≤ vK . The probability of channel gain to be vk is denoted by pk
with

∑K
k=1 pk = 1. The transmission channel is modeled as follows. Let Y (n), X(n) and

N(n) denote the received signal, transmitted signal and noise signal at the nth time slot,
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we have

Y (n) =
√
v(n)X(n) +N(n). (3.1)

The noise power at the receiver is denoted by σ2.

Let Ā denote the targeted average traffic rate. Consider traffic with large arrival rate.
Under this scenario, a wearable sensor does not have the luxury to be radio OFF for energy
saving. Thus, a sensor is always radio ON. At the beginning of each time slot, the sensor
obtains the channel condition through calculating RSSI of the pilot signal sent by the smart
phone. The energy cost of acquiring channel gain is omitted in this formulation for the
sensor is always radio ON. With channel gain information, the sensor decides how much
power to spend during current time slot. Since arrival rate is large, we assume the buffer
of sensor is always not empty. This approximation helps us focusing on understanding the
impacts of peak transmission power. Without the consideration of buffer, channel state
determines the power allocation decision.

Let the power allocated for channel gain vk denoted by Sk. When transmission power
is chosen to be Sk, r(Sk) bits information can be reliably transmitted. The function r(·)
is assumed to be a non-negative, increasing, strictly concave function, which is referred to
as power-rate function. In this work, we adopt r(Sk) = B log2(1 + Skvk/σ

2) [77]. Note
that log(x) is a concave function with respect to x. Thus, r(Sk) is a concave function with
respect to Sk.

3.3 An Optimal Scheme under a Peak Power Con-

straint

In this section, we formulate the transmission power allocation under a peak power con-
straint problem as an optimization problem. Since the sensor has limited energy, the
objective of the optimization problem is set to minimize average power consumption. We
show that the formulated problem is a convex problem, and use Karush Kuhn Tucker
(KKT) [78] method to obtain an optimal solution.

34



3.3.1 Problem Formulation

The objective of the problem is to minimizely the average transmission power. The average
transmission power can be written as

∑K
k=1 pkSk. Thus, the objective is

min
Sk

K∑
k=1

pkSk. (3.2)

There are two constraints: one is on the average transmission rate, and the other is
on the transmission power. First, the average transmission rate is required to be no less
than the average data arrival rate Ā. The average transmission rate is calculated over all
possible channel states, namely

∑K
k=1 pkr(Sk). Thus, the constraint on transmission rate

is
K∑
k=1

pkr(Sk) ≥ Ā. (3.3)

The second constraint is on the transmission power Sk, which needs to be nonnegative
and smaller than peak power Pmax. We have

Sk ≤ Pmax, for k ∈ {1, .., K}. (3.4)

Sk ≥ 0, for k ∈ {1, .., K}. (3.5)

Note that equation (3.4) and (3.5) each represents K constraints.

In summary, objective (3.2) and constraints (3.3), (3.4) and (3.5) constitute our opti-
mization problem. Note that, we assume

∑K
k=1 pkr(Pmax) > Ā. The assumption ensures

that there exists feasible solutions. Specifically, if the sensor uses the peak transmission
power over all channels, the sensor can provide the traffic rate as required. Without this
assumption, the formulated problem may be infeasible.

3.3.2 Problem Transformation Via KKT

In this subsection, we show that the formulated problem is a convex optimization problem
and adopt KKT method to transform the formulation. To start with, we show that the
formulated problem is a convex optimization problem. Firstly, the objective function,∑K

k=1 pkSk, is a piece-wise function with respect to control variable Sk, thus a convex
function.
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Transform the constraints (3.3), (3.4) and (3.5) in the form of f(x) ≤ 0 as follows:

−
K∑
k=1

pkr(Sk) + Ā ≤ 0. (3.6)

Sk − Pmax ≤ 0, for k ∈ 1, .., K. (3.7)

−Sk ≤ 0, for k ∈ 1, .., K. (3.8)

We show the left hand sides of constraints (3.6,3.7,3.8) are convex functions as follows.
Since r(Sk) is a concave function with respect to Sk, −

∑K
k=1 pkr(Sk) + Ā in (3.6) is convex

with respect to Sk. Note that a linear function is a convex function, thus Sk − Pmax in
(3.7) and −Sk in (3.8) are convex functions with respect to Sk.

The objective function and constraints are differentiable with respect to Sk. Based
on above convex and differentiable characteristics, we adopt KKT conditions to derive an
optimal solution.

Introducing Lagrange multiplier λ for constraint (3.6), multiplier µk, k = 1, 2, ..., K for
(3.7) and multiple ηk, k = 1, 2, ..., K for (3.8). The Lagrangian is

L(Sk, λ, µk, ηk) =
K∑
k=1

pkSk +
K∑
k=1

ηk(Sk − Pmax) +
K∑
k=1

µk(−Sk) + λ(−
K∑
k=1

pkr(Sk) + Ā).

(3.9)

The KKT conditions are constituted of stationarity, primal feasibility, dual feasibility
and complementary slackness [78]. The stationarity condition requires ∂L

∂Sk
= 0. Substitute

L with equation (3.9), we obtain

pk − µk + ηk − λpk
∂r(Sk)

∂Sk
= 0. (3.10)

Since ∂r(Sk)
∂Sk

= λpk
σ2

vk
+Sk

1
ln 2

when vk 6= 0, we have

pk − µk + ηk =
λpk

σ2

vk
+ Sk

1

ln 2 (3.11)

Transform equation (3.11), the transmission power that satisfies the stationarity con-
dition can be represented by

Sk =
λpk

pk − µk + ηk

1

ln 2
− σ2

vk
, (3.12)
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when pk − µk + ηk 6= 0.

Based on dual feasibility, all multipliers should be nonnegative. We have

µk ≥ 0, for k ∈ {1, ..., K} (3.13)

ηk ≥ 0, for k ∈ {1, ..., K} (3.14)

λ ≥ 0 (3.15)

Based on complementary slackness, we have

µk(−Sk) = 0, for k ∈ {1, ..., K} (3.16)

ηk(Sk − Pmax) = 0, for k ∈ {1, ..., K} (3.17)

λ[−
K∑
k=1

pk log(1 +
Skvk
σ2

) + Ā] = 0 (3.18)

Solve equations (3.12) to (3.18) for Sk, µk and ηk for k ∈ {1, ..., K} and λ. Note
that there are 3K + 1 unknown variables, and 3K + 1 equations by (3.12), and (3.16) to
(3.18). Inequalities (3.13), (3.14) and (3.15) constitute 2K + 1 constraints which regulate
the feasible region.

3.3.3 The Optimal Solution and Calculation Method

In this section, we derive the optimal solution to the transformed problem. We first solve
equations (3.12) to (3.18). The solution, containing summation operator, is not a closed
form solution. We then present an efficient calculation method.

The Optimal Structure

To start with, we argue that the optimal solution is achieved when
∑K

k=1 pkr(Sk) = Ā.

K∑
k=1

pkr(Sk) = Ā. (3.19)

The reason is that, based on the power-rate function, the required power is an increasing
function of transmission rate. Thus, the minimal transmission power is achieved when the
supported transmission rate equals to target rate.
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To obtain Sk, λ needs to be calculated first. Replace Sk in equation (3.19) with (3.12),
we have

K∑
k=1

pk log2[
vk

σ2 ln 2

λpk
(pk − µk + ηk)

] = Ā. (3.20)

Equation (3.20) contains 2K unknown parameters, namely µk and ηk, k = 1, ..., K. Next,
we use dual feasibility equations (3.13)-(3.14), and complementary slackness equations
(3.16)-(3.17) to remove µk and ηk.

The strategy to remove µk is presented as follows. According to (3.16), µk and Sk
cannot be nonzero for the same k. When Sk = 0, a sensor refrains from transmission, and
does not contribute to the transmission rate. When Sk 6= 0, we have µk = 0. In this case,
the item µk can be removed from (3.20). Since a sensor may refrain from transmission
when channel gain is small, and vk is placed in ascending order, we assume a sensor starts
transmission if channel gain is no less than vks . We refer to vks as cutoff threshold. As a
result, we can simplify equation (3.20) as

K∑
k=ks

pk log2[
vk

σ2 ln 2

λpk
(pk + ηk)

] = Ā. (3.21)

With above simplification, K unknown parameters are replaced by a single parameter
ks ∈ [1, K].

The strategy to remove ηk is presented as follows. According to (3.17), ηk and Sk−Pmax
cannot be nonzero for the same k. When Sk = Pmax, a sensor uses constant power for
transmission. In this case, the transmission rate equals to log2(1 + Pmaxvk

σ2 ). When Sk <
Pmax, we have ηk = 0. Assume a sensor uses peak transmission power if channel gain is
no less than vkm . vkm is referred to as Max-on threshold. Thus, we can simplify equation
(3.21) as

km−1∑
k=ks

pk log2[
vkλ

σ2 ln 2
] +

K∑
k=km

pk log2(1 +
Pmaxvk
σ2

) = Ā. (3.22)

With above simplification, K unknown parameters are replaced by a single parameter
km ∈ [2, K].

In summary, the optimal power allocation structure is given by:

Sk =


0, if vk < vks
λ

ln 2
− σ2

vk
, if vks ≤ vk < vkm

Pmax, if vk ≥ vkm ,

(3.23)
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where the multiplier λ, the cutoff threshold vks and the Max-on threshold vkm need to
satisfy the average transmission rate condition (3.22). We will present an algorithm to
obtain the value for them in next section.

The solution presented in equation (3.23) is segmented into three sections. The first
segment points out under what condition the sensor does not transmit. The third segment
illustrates under what condition the sensor transmits with peak power. The second segment
illustrates how much power a sensor uses otherwise. The second segment has a water-filling
structure, where the transmission power is determined by the gap between a water level
λ

ln 2
and an item reflects the channel gain σ2

vk
.

When Pmax is large enough that Sk is always smaller than Pmax. In this case, Sk−Pmax 6=
0. Based on equation (3.17), ηk = 0, for k ∈ {1, ..., K}. As a result, the transmission power
in equation (3.12) can be written as

Sk =
λ

1− µk
pk

1

ln 2
− σ2

vk
. (3.24)

Consider Skµk = 0, we have

Sk =

{
0, if vk < vks
λ

ln 2
− σ2

vk
, if vks ≤ vk.

(3.25)

Equation (3.25) can be considered as the solution to the problem, which has no constraint
on the peak transmission power. As expected, it is the same as the water filling scheme.

The structure (3.23) and condition (3.22) are insufficient to produce a unique solution.
The relationship between the water level λ and the max-on threshold vkm can be exploited
to produce a unique solution. First, for the transmission power in the second segment, its
value should be smaller than Pmax. Thus we have

λ

ln 2
− σ2

vk
< Pmax, for k = ks, ..., km−1. (3.26)

Since left hand side of inequality (3.26) is an increasing function of vk, we have

λ

ln 2
− σ2

vkm−1

< Pmax. (3.27)

Moreover, if the gap structure of the second segment is used to determine the trans-
mission power for channel with channel gain no less than vkm , the transmission power will
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be larger than Pmax. Based on this fact, we have

λ

ln 2
− σ2

vkm
≥ Pmax. (3.28)

The combination of inequalities (3.27), (3.28), and condition (3.22) provides a unique
solution with structure (3.23).

Calculation Method

In the following, we present an efficient algorithm to obtain the multiplier λ, the cutoff
threshold vks and the Max-on threshold vkm . We exploit the following characteristics: 1)
the average transmission rate constraint, namely equation (3.22), is to be satisfied; 2) the
water level should satisfy (3.27) and (3.28). The algorithm first determines the Max-on
threshold vkm , and then determines the multiplier λ. Note that, when the multiplier is
set, the cutoff threshold vks is determined due to the constraint that transmission power is
non-negative.

The search for Max-on threshold vkm is as follows. Set search range as [vs, ve], where
vs = v1 and ve = vK . Set vkm = vt with vt = b(vs + ve)/2cv, where bxcv is the largest
number in sequence vk smaller than x. Then the transmission power Sk for all k ≥ t is set
to be Pmax. We set the multiplier as λmaxt = ln 2(Pmax + σ2

vt−1
) and λmint = ln 2(Pmax + σ2

vt
),

respectively. If inequality (3.27) is satisfied, when the multiplier is λmaxt , the provided
average transmission rate should be no less than Ā, namely,

K∑
k=1

pkr(S
λmaxt
vt ) ≥ Ā, (3.29)

where S
λmaxt
vt is the transmission power scheme with multiplier λmaxt . If (3.29) does not

hold, it suggests more channels need to be utilized to support the target transmission rate
Ā. In this case, we can set vs = vt and test again.

When (3.29) is satisfied, we need to check inequality (3.28). If (3.28) is satisfied, when
the multiplier is λmint , the provided average transmission rate should be less than Ā, namely,

K∑
k=1

pkr(S
λmint
vt ) < Ā, (3.30)

where S
λmint
vt is the transmission power scheme with multiplier λmint . If (3.30) does not hold,

it suggests current allocation scheme produces more transmission rate than needed. As a
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result, peak power should be allocated to less channels. In this case, we can set ve = vt
and test again. Above procedures are summarized in Algorithm 1.

Algorithm 1: Determine the Max-on threshold

(1) Set search range as [vs, ve], where vs = vK and ve = v1.
(2) Set vkm = vt with vt = b(vs + ve)/2cv, where bxcv is the largest number in
sequence vk smaller than x.
(3) Set the multiplier as λmaxt = ln 2(Pmax + σ2

vt−1
) and check whether (3.29) holds.

(4) If (3.29) does not hold, update vs = vt and return to step (2). Otherwise, set the
multiplier as λmint = ln 2(Pmax + σ2

vt
), and check whether (3.30) holds.

(5) If (3.30) does not hold, update ve = vt and return to step (2). Otherwise, end
search and output vt.

The complexity of algorithm 1 consists of two factors: one is searching for next possible
Max-on threshold, and the other is judging whether criteria are met. Searching part shares
the structure of binary search, thus is logarithmic efficient with respect to the number of
channel states K, whereas judging part calculates the summation of the transmission rate
contributed by each channel, thus is linearly efficient with respect to the number of channel
states K. In summary, the algorithm executes in O(K logK) time.

So far, we have already obtained the optimal Max-on threshold vkm . The remaining
problem of determining multiplier λ is the same as the water filling scheme. In this case,
only those channels with channel gain smaller than vkm are considered. The required
transmission rate is Ā−

∑K
k=km

pk log2(1 + Pmaxvk
σ2 ).

3.4 Performance Analysis via a Constant Power Scheme

In the section, we present the analysis on the impacts of the peak power constraint under
the convex optimization framework. Specifically, we first characterize the upper bound of
the gap between the average power of any power allocation strategy and of the optimal
water filling scheme via duality gap analysis. The gap is referred to as average power loss
compared to water filling scheme. We then propose a constant power scheme given a peak
power constraint. Since it is suboptimal compared to the optimal scheme (3.23), the upper
bound of average power loss of the constant power scheme is also the upper bound of the
average power loss of the optimal scheme (3.23).
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3.4.1 Duality Gap Analysis

In this subsection, we characterize the gap between the average power of any power allo-
cation strategy and of the optimal water filling strategy via the duality gap analysis.

The duality gap, denoted by Γ, is the difference between the primal objective and the
dual objective. Here, the problem under investigation is the problem that gives water filling
scheme. It is the problem with objective (3.2) and constraints (3.6) and (3.8). So the primal
objective is

∑K
k=1 pkSk. The dual objective is given by replacing the stationary condition

into the Lagrangian equation. The Lagrangian equation and the stationary condition can
be obtained by setting ηk = 0 in (3.9) and (3.10), respectively. Then the dual objective
can be written as

g(λ, µk) =
K∑
k=1

(
λ

1− µk
pk

1

ln 2
− σ2

vk
)(pk − µk) + λ(−

K∑
k=1

pk log2(
λ

1− µk
pk

1

ln 2

vk
σ2

) + Ā), (3.31)

where g(λ, µk) is the dual objective function. Note that solving µk and λ to obtain the
lowest dual objective is equivalent to solving the original optimization problem. To find a
simple bound, our goal is to represent the duality gap Γ with power allocation decision Sk.
Γ is calculated as

∑K
k=1 pkSk−g(λ, µk). Assuming that the allocation strategy satisfies the

transmission rate constraint with equality, namely −
∑K

k=1 pk log2(1 + Skvk/σ
2) + Ā = 0.

Thus, we have

Γ =
K∑
k=1

Skµk

=
K∑
k=1

Skpk
(Sk + σ2

vk
) ln 2− λ

(Sk + σ2

vk
) ln 2

.

(3.32)

The dual gap Γ by equation (3.32) is a function of λ, where λ needs to be determined.
Since larger λ produces smaller Γ, a large λ is desired. At the same time, to satisfy dual

feasibility, we have µk ≥ 0, namely pk
(Sk+σ2

vk
) ln 2−λ

(Sk+σ2

vk
) ln 2

≥ 0. As a result, λ should be no larger

than (Sk + σ2

vk
) ln 2. Thus, the largest λ is

λ = min
k

(Sk +
σ2

vk
) ln 2. (3.33)

Substituting the λ in equation (3.32) with equation (3.33) gives the following:

Γ =
K∑
k=1

Skpk[1−
mink(Sk + σ2

vk
)

Sk + σ2

vk

]. (3.34)
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theorem 3 For the minimization average transmission power problem, if the transmission
rate constraint is satisfied with equality, then the average transmission power using Sk is
at most Γ w away from the optimal water filling solution, where Γ is expressed in (3.34).

Note that when the water filling scheme is used, Sk + σ2

vk
is a constant for channels

that are chosen for transmission. In this case, Γ = 0. The optimal scheme (3.23) is not
a closed formed solution. Thus, replacing Sk in (3.34) with (3.23) does not give intuitive
explanations on how Pmax influences the gap Γ. We address this issue via a constant power
scheme in the following.

3.4.2 The Upper Bound via a Constant Power Scheme

In this subsection, we propose a constant power allocation scheme under a peak power
constraint. The upper bound of the gap between the constant power scheme and the water
filling scheme is analyzed based on theorem 3. Since the constant power is suboptimal
compare to the optimal scheme (3.23), the upper bound also holds for the optimal scheme.

We turn to constant power allocation schemes not only for the convenience on analysis,
but also for the fact that they are appealing to wearable sensors. As pointed out in [74],
constant power allocation schemes can significantly lower the computation complexity and
simplify transmitter design.

A constant power allocation scheme is designed as such: the sensor uses constant power
Sc for transmission if the channel state is better than a cutoff threshold vkc ; otherwise, the
sensor does not transmit. It can be written as

Sk =

{
0, if vk < vkc
Sc, if vkc ≤ vk.

(3.35)

In [74], the cutoff threshold is chosen the same as that of water filling schemes. In this
work, to provide a target transmission rate, vkc is chosen such that its index kc satisfies∑K

k=kc
pk log2(1 + Scvk

σ2 ) = Ā.

Note that, the power rate function with form log2(1 + SNR) is sensitive to low SNR.
Thus, for power saving purpose, it is desired for a sensor refrained from transmiting over
the channels with low channel gain, especially those channels are not utilized by the water
filling schemes. When the peak power constraint Pmax is smaller than the water level,
the best strategy is to avoid channels with low channel gain is to use the peak power for
transmission. Thus, we set Sc = Pmax.
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Substituting the constant power scheme (3.35) into the dual gap equation (3.33) gives

Γ =
K∑

k=kc

Pmaxpk[1−
mink(Pmax + σ2

vk
)

Pmax + σ2

vk

]

=
K∑

k=kc

Pmaxpk[
σ2

vk
−mink(

σ2

vk
)

Pmax + σ2

vk

]

=
K∑

k=kc

pk(
Pmax

Pmax + σ2

vk

)(
σ2

vk
− σ2

maxk(vk)
).

(3.36)

Equation (3.36) characterizes the upper bound of the gap between the proposed average
transmission power of a constant power allocation scheme with a peak power constraint
and the water filling scheme without peak power constraint. Since Pmax

Pmax+σ2

vk

< 1, we have

Γ <
∑K

k=kc
pk(

σ2

vk
− σ2

maxk(vk)
). We can see that the smaller the kc, the larger the upper

bound for more items are summed. Moreover, since σ2

vk
− σ2

maxk(vk)
increases with decreases

of vk, the right hand side of the inequality increases faster when the channel gain vk is
smaller.

3.4.3 Numerical Results

In this subsection, we present the numerical results using body area channel to show: 1) the
proposed constant power scheme is close to the optimal scheme (3.23) in terms of average
transmission power consumption, especially when the peak power constraint is stringent;
2) the impacts of Pmax on average transmission power consumption.

For the channel model, we choose the same model used in previous chapter from the
IEEE 802.15 task group 6 [61]:

v(d) = −(a× log10(d) + b+N) (3.37)

where a and b are scaling factors, N is a Gaussian random variable with zero mean and
standard deviation σN , and d is the direct distance between the sensor and smart phone.
The target transmission rate A is set to 2.5Mbps. The range of Pmax is set as follows. The
upper limit is chosen as the maximal power used in the water filling scheme. When the
peak power constraint is larger than the upper limit, the water filling scheme can be used.
The lower limit is set as the minimal constant power needed when all channels are used.
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Figure 3.1: Constant Power vs Optimal Scheme with a Peak Power Constraint

When the peak power constraint is smaller than the lower limit, no constant power schemes
can provide required transmission rate. Remaining simulation parameters are chosen the
same as previous chapter given in Table 2.1.

Constant Power vs Optimal Scheme (3.23)

We compare the average transmission power consumption and the thresholds of the con-
stant power and the optimal scheme (3.23) in Fig. 3.1.

Fig. 3.1(a) shows the cutoff thresholds for the constant power scheme and the optimal
scheme, and the Max-on threshold for the optimal scheme. From the Fig. 3.1(a), firstly,
we can see that the cutoff thresholds of constant power scheme are larger than the optimal
scheme, namely the optimal scheme utilizes channels with smaller channel gain for trans-
mission. The reason is that, the constant scheme always uses the peak transmission power,
and thus has less channel usage. Secondly, the Max-on thresholds of the optimal scheme
are larger than the cutoff thresholds of the constant power scheme. With the decreases
of the peak power, the differences between the cutoff thresholds of the constant scheme
and the Max-on thresholds of the optimal scheme decrease. The reason is that, when
peak power is reduced, to support a target transmission rate, peak power is used for more
channels with small channel gain, reducing the differences between constant power scheme
and the optimal scheme.
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Figure 3.2: Impacts of Peak Power Constraint on Average Power

Fig. 3.1(b) shows the average transmission power of the constant power scheme, the
optimal scheme and the upper bound. From the Fig. 3.1(b), we can see that with the
decrease of the peak power, the average transmission power of the constant scheme and the
optimal scheme increases, and the differences between the constant scheme and the optimal
scheme decrease. The reason is that, with the decrease of peak power, more channels with
poor channel condition are utilized, leading to the increase of average transmission power.
And with the decrease of peak power, the optimal scheme uses peak power for transmission
over more channels. As a result, the average transmission power of the optimal scheme
is closer to that of the constant power scheme. This result suggests that when the peak
power constraint is stringent, constant power scheme is a good choice for wearable sensors
for its performance is close to the optimal one.

Impacts of Peak Power Constraint

We show the impacts of peak power constraint via the extra average power required com-
pared to the water filling scheme in Fig. 3.2. As we can see from Fig. 3.2, as the peak
power decreases, the extra average power required increases. Specifically, for the optimal
scheme, with 1 mw decrease in peak power, the percentage increases from zero to about
18%, whereas for the constant power scheme, the percentage increases from about 4% to
about 18%. Moreover, when the peak power is close to the upper limit, the extra average
power required increases at a slow pace, whereas when the peak power is close to the lower
limit, the average power increases at a fast pace. The reason is that, when approaching the
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lower limit, channels with low channel gain are to be utilized. Compare to channels with
high channel gain, channels with low channel gain require more power to generate the same
transmission rate. This result suggests that peak power constraint could cause significant
average power consumption increase, especially for applications which have utilized most
of channels for transmission.

Accuracy of the Upper Bound

The accuracy of the upper bound can be determined from Fig. 3.1(b) and Fig. 3.2. Firstly,
the upper bound can reflect the increase of average transmission power as a result of the
decrease of peak power. Specially, the upper bound can reflect the trend that when the
peak power is close to lower limit, the average transmission power increases at a fast pace.
Secondly, the upper bound applies to both the constant scheme and the optimal scheme.
The reason is that, the upper bound is derived based on constant scheme, which has larger
average power consumption than the optimal scheme. Thus, the upper bound also applies
to the optimal scheme. Thirdly, when compared to the average power of the water filling
scheme, the estimation error ranges from 10% to 20%. Above results suggest that the
upper bound we derived could be served as a guideline when designing transmission power
allocation schemes for wearable sensors.

3.5 The Impact of Statistical QoS Provisioning

In this section, we study the impacts of statistical QoS provisioning on peak power and
average power consumption. The QoS provisioning in this section refers to delay perfor-
mance provisioning. We first review the concept of statistical QoS provisioning, effective
capacity, and the optimal transmission power allocation scheme. Through simulations, we
show that peak power could be the bottleneck for wearable sensors to support stringent
statistical QoS provisioning. In the end, we discuss the possibility of reducing peak power
given statistical QoS provisioning requirements.

3.5.1 Statistical QoS and Effective Capacity

Statistical QoS provisioning means the tail distribution of the delay random process can be
bounded by an exponential distribution. For a dynamic queueing system with stationary
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and ergodic arrival and service processes, the queue length Q(t) converges such that

− lim
x→∞

log(Pr{Q(∞) > x})
x

= θ, (3.38)

where the parameter θ, a positive value, represents the exponential decay rate of the tail
distribution [79]. The larger the value of θ, the more stringent is the delay requirement.
In particular, when θ → 0, the system can be considered to have no delay constraint, as
the problem investigated in previous section. On the other hand, when θ →∞, any delay
is intolerable, meaning traffic needs to be transmitted once it arrives. In literature, the
exponential decay rate θ is referred to as QoS exponent [80].

Effective capacity is proposed to evaluate the maximum constant arrival rate that a
service process can support given a statistical QoS requirement specified by θ [81, 82]. We
present the definition of effective capacity according to [83, 80]. Let R[i], i = 1, 2, ... be a
discrete time stationary and ergodic stochastic service process and Rs[t] ,

∑t
i=1R[i] be

the partial sum of the service process R[i]. The effective capacity of the service process,
denoted by Ec(θ) is

Ec(θ) = − lim
t→∞

log(E{e−θRs[t]})
θt

. (3.39)

When the service process is an uncorrelated process, the effective capacity Ec(θ) can be
simplified to

Ec(θ) = − log(E{e−θR[i]})
θ

. (3.40)

To utilize the concept of effective capacity to characterize the statistical QoS require-
ment, we replace the average transmission rate constraint (3.3) by an effective capacity
constraint as

− log(E{e−θr[i]})
θ

≥ Ā. (3.41)

The expectation can be written as E{e−θr(i)} =
∑K

k=1 pke
−θr(Sk) under our finite state

channel model. Transform the constraints (3.41) in the form of f(x) ≤ 0 as

K∑
k=1

pke
−θr(Sk) − e−θĀ ≤ 0. (3.42)

Given a positive QoS exponent θ, the exponent of the first item −θr(Sk) is a convex
function with respect to transmission power Sk, thus the left hand side of (3.42) is a log-
convex function, also a convex function. As a result, we can apply KKT to obtain the
optimal solution.
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3.5.2 Power Allocation Schemes with Statistical QoS Provision-
ing

We derive the optimal transmission power allocation scheme with statistical QoS provision-
ing based on the above problem formulation. The derivation based on a KKT approach.

The Lagrangian changes to

L(Sk, λ, µk, ηk, θ) =
K∑
k=1

pkSk +
K∑
k=1

ηk(Sk − Pmax)

+
K∑
k=1

µk(−Sk) + λ(
K∑
k=1

pke
−θr(Sk) − e−θĀ),

(3.43)

According to the stationarity condition ∂L
∂Sk

= 0, we have

pk − µk + ηk + λpk(
∂e−θre(Sk)

∂Sk
) = 0, (3.44)

where
∂e−θre(Sk)

∂Sk
= (−θ ln 2)(

vk
σ2

)(1 +
Skvk
σ2

)(−θ ln 2−1). (3.45)

We use β to denote θ ln 2, and γk to denote vk
σ2 for simplicity. Thus, equation (3.44) can be

written as
pk − µk + ηk − λpkβγk(1 + Skγk)

(−β−1) = 0. (3.46)

Equation (3.46), together with complementary slackness and dual feasibility, can be
used to obtain the optimal transmission power allocation scheme with statistical QoS
provisioning.

The Impacts of Statistical QoS Provisioning

We first show the impacts of statistical QoS provisioning on average transmission power
consumption. To do so, we derive the optimal transmission strategy for the QoS provi-
sioning problem without peak power constraints. In other word, we consider Pmax → ∞,
namely the multiplier ηk = 0 for k = 1, ..., K.

Sk =


0, if vk < vks

γ
1

β+1
0

γ

β
β+1
k

− 1
γk
, if vks ≤ vk.

(3.47)
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Figure 3.3: Power Allocation with Statistical Delay Provisioning

where γ0 = λβ. λ and vks can be obtain through solving
∑K

k=ks
pke
−θr(Sk)− e−θĀ = 0. The

structure of the optimal solution has been revealed in [76]. Our goal here is to gain insights
on how to design power allocation scheme for wearable sensors.

With QoS provisioning constraint, the solution to the power minimization problem does
not have a fixed water level for different channel gain vk. Instead, the level is channel state
dependent. Fig. 3.3 shows an example of optimal transmission power with a fixed target
transmission rate, as a function of channel gain and QoS exponent. We can see the trend
that with increase of QoS exponent, channels with lower channel gain are utilized, and the
peak power increases. Specifically, when QoS exponent θ increases from 10−4 to 102, the
peak power increases from about 2×10−3w to about 103w. Moreover, when QoS exponent
is smaller than 10−4, peak power is allocated to the channels with highest channel gain,
whereas when QoS exponent is larger than 102, peak power is allocated to the channels
with lowest channel gain. It is reasonable, for when QoS exponent is large, data arrived
needs to be transmitted immediately and successfully. Thus, when channel is in a bad
state, high transmission power is needed.

We show the impacts of QoS exponent on average power and peak power in Fig. 3.4,
where Fig. 3.4(a) shows the average power and peak power v.s. QoS exponent, and Fig.
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Figure 3.4: Impacts of QoS Exponent on Average power and Peak Power

3.4(b) shows the peak to average ratio v.s. QoS exponent. As we can see from Fig. 3.4(a),
the difference between peak power and average power changes slowly when QoS exponent
θ is smaller than 10−1, and increases fast when QoS exponent θ is larger than 100. This
trend can also be observed from 3.4(b). As shown in Fig. 3.4(b), the peak to average ratio
increases from less than 2 to more than 103 when QoS exponent increases from 0.1 to 10.

We refer the section where average power and peak power increase slowly to as oppor-
tunity section. The reason is that with small increase of power, the QoS exponent can
be increased significantly. We refer the section where peak power increases considerably
as ineffective section. The reason is that to improve delay performance in terms of QoS
exponent, a system is required to increase peak power significantly. Based on above find-
ings, we suggest that a wearable sensor should be designed to operate near the junction
of opportunity section and ineffective section. Thus, the wearable sensor can provide QoS
provisioning in an energy efficient way.

Peak Power Reduction

In the ineffective section, peak power becomes the bottleneck for a wearable sensor to
provide statistical QoS provisioning. The potential strategy to reduce the peak power
is to use a constant power for transmission over all channels. Note that the constant
power is chosen as the minimal constant power required such that the statistical delay is
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Figure 3.5: Peak Power Reduction

guaranteed. Using this strategy, the peak power equals to average power consumption. In
fact, this strategy is the best a sensor can do to reduce delay when a peak power constraint
is imposed.

We show the possibility of reducing required peak power with high QoS exponents in
Fig. 3.5, where Fig. 3.5(a) shows the peak power of the minimal average power scheme
and of the constant power scheme, and Fig. 3.5(b) shows the percentage of peak power
reduction when the constant power scheme is adopted. We can see that, when QoS expo-
nent is close to 10, the constant power scheme can cut 50% peak power, and when QoS
exponent increases to 2 × 102, the peak power reduction decreases to less than 5%. The
reason is that, with the increase of QoS exponent, the statistical delay requirement con-
verges to a deterministic delay requirement. To guarantee a deterministic delay, the peak
power should be able to support transmission of the maximal data arrival rate. Thus,
the difference in peak power between the constant scheme and the minimal average power
scheme reduces under a high QoS exponent.

3.6 Summary

In this chapter, we have investigated the impacts of peak power constraint and statistical
QoS provisioning on transmission power allocation for wearable sensors. We characterize
the tradeoff between peak power and average transmission power consumption via duality
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gap analysis. An upper bound of the extra average power incurred due to a peak power
constraint is derived. Through the analysis of the upper bound, we conclude that when the
peak power constraint is stringent, constant power scheme is suitable for wearable sensors
for its performance is close to optimal. Further, we show that the peak power constraint
is the bottleneck for wearable sensors to provide stringent statistical QoS provisioning.
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Chapter 4

MAC for WBANs

WBANs in hospitals could provide continuous monitoring of the physical conditions of
patients, thus reducing the workload of medical practitioners and cost of healthcare[49, 16].
However, the wide adoption of WBANs in hospitals faces fundamental challenges to provide
the guaranteed communication services for critical medical traffic. As pointed out in [84],
to perform rapid medical response, the vital signals, including heart rate, blood pressure,
respiratory rate, temperature, pulse oximetry, and level of consciousness, are essential and
should be monitored in real time. This dictates that the medical traffic must be delivered
with short delays yet high accuracy [85, 86]. In addition, the wearable sensors are typically
power limited. This requires the communication protocols to be energy efficient with
minimal transmission errors and retransmissions. The sensors are also computing capability
limited. With limited data buffer size in the sensors, the real-time data that cannot
be transmitted in a given period would be dropped, leading to a high report dropping
ratio. In a nutshell, unlike traditional home networks, the e-health systems require more
efficient communication services due to the distinguished challenges imposed by the critical
medical traffic and resource limited sensors. Since the hospitals are typically space limited,
it is common that multiple WBANs deployed for different patients coexist in the same
region and inter-WBAN interference is severe. Therefore, an efficient MAC layer resource
management is crucial to provision the desired service quality as imposed by e-health
systems.

In this work, we aim to develop a centralized MAC protocol for WBANs in hospital
environment. In specific, we consider multiple WBANs coexist in a region and contend
the channel for transmissions. Each WBAN is composed of wearable sensors which con-
tinuously transmit the collected data via a smartphone. Note that due to the variations of
the body area channel, the transmission link between a sensor and the smart phone may
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not be always available. In order to maximize the network throughput and reduce packet
drop ratio, an intuition is to let the WBAN with good channel quality yet long cached
data in sensors transmit. However, this requires the real-time channel and buffer state
information of all WBANs. Since the on-body sensors are constrained in computing and
energy resource, such information cannot be always accurately measured and provided by
sensors, which inevitably leads to the inefficient use of channels.

To address this issue, we exploit the temporal channel correlations to guide the MAC
resource management. Specifically, we represent the channel state using a belief state,
and use this metric to manage the channel access. The belief state which is not chosen
for transmissions is updated according to the statistical information. Only the sensor
chosen from the WBAN needs to report its current state such that the total channel state
reports from sensors are minimized. Given the incomplete information, we formulate the
throughput maximization problem as a partially observable optimization problem. To
solve this problem, we first analyze the dynamics of the belief states and buffer states. We
then construct a myopic policy and investigate its drawbacks in incurring packet dropping.
We further propose a modified myopic policy through approximating the future impact
of current decision. Finally, we compare our proposed policy with Round Robin (RR) to
demonstrate its effectiveness.

4.1 Literature Review

In this section, we review works on resource management in MAC layer for WBANs, and
works on partial observable optimal control problem.

The resource management in MAC layer has long been a hot and important research
issue in WBAN. In a hospital environment, [87] develops a fuzzy logic learning algorithm
to adjust the MAC layer control parameters based on real time network information. To
support medical traffic transmission for coexisting WBANs, IEEE 802.15.6 is proposed to
eliminate inter-WBANs interference through either collaborative way or non-collaborative
ways, such as beacon shifting and channel hopping [88]. To support QoS provisioning
for emergency traffic, the IEEE 802.15.6 adopts two schemes [89]. First, it specifics an
Exclusive Access Period (EAP) for the traffic with the highest priority. Second, the stan-
dard adopts a scheme to freeze the procedure to double contention window for odd times
of failure, which aims to reduce the average delay. However, both schemes have limita-
tions in crowded hospitals. To adopt EAP in supporting emergency traffic, all the sensors
in the interference range should be synchronized and agree to the same frame structure.
The distributed and mobile natures of WBANs make it hard to achieve synchronization
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and consensus. Without this agreement, an emergency traffic during EAP from a WBAN
could collide with lower priority traffic from another WBAN. Moreover, the idea to freeze
contention window double procedure for odd times of failure favors low priority traffic
when network is near saturated. Considering low priority traffic has larger contention win-
dow, doubling contention window downgrades the performance of low priority traffic more.
Thus, emergency traffics do not benefit from the freezing scheme. In summary, to support
emergency traffic in hospitals, modifications and improvements of current standard are
needed.

Interference mitigation schemes designed for WiFi based network, such as busy tone
scheme [90, 91, 92], are not suitable for WBANs as the energy consuming control signals
would quickly drain up the battery power of sensors. To reduce energy consumption of
sensors, [93] formulates the scheduling problem using the game theory and proposes a
heuristic cooperative scheduling policy. Considering a network, which can tolerate concur-
rent transmission of multiple WBANs, [94] proposes a low-complexity scheduling scheme
inspired by the random incomplete coloring scheme. The variations of body area channel
are not considered in these works.

In this chapter, we formulate the throughput maximization problem as a partial observ-
able optimization problem due to the incomplete network state information available. The
partially observable optimization problem has been studied extensively. The researches
started from scheduling over a single random process. For a random process governed by
a Markov chain [95, 96] show that a sufficient statistic information for optimal scheduling
policy is the conditional probability distribution of current state given previous control
decisions and observations. Moreover, the convex property of corresponding value function
is proved in [95], which is the key to obtain an optimal policy. [97] studied the property of
optimal policies for scheduling over multiple random processes.

4.2 System Model

In this section, we first describe the system model from the aspects of network, channel
and traffic.

4.2.1 Network model

Consider a network consisting of Nw WBANs and one central controller, as shown in Fig.
4.1. The central controller is in charge of allocating the channel resources to WBANs,
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Figure 4.1: System Model
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and forwards the medical information through wired network. Each WBAN is equipped
on a single patient. Within each WBAN, there is a smart phone and one sensor. Only
one sensor is considered in this work since most vital signals can be monitored by a single
sensor nowadays [98]. The smart phone is in charge of collecting information from the
sensor in the same WBAN, and transmits those information to the central controller. The
sensors on body are power and computing capacity limited, whereas smart phones have
sufficient power supply and computing capacity. As a result, sensors are set to turn radio
on at predefined time instance, and put radio off for the most of time. In the contrast,
smart phone is always turned on. The time of the system is partitioned into slots. The
duration of each time slot is denoted as T .

4.2.2 Channel Model

The medical traffic is transmitted in two hops from the sensor to the central controller, as
shown in Fig. 4.1. Following the standard [99, 100], we denote the first hop body surface
to body surface channel as CM3 channel, and the second hop body surface to external
channel as CM4 channel. The CM4 channel is modelled as free space wireless channel, and
the transmissions of the second hop are error-free due to the ample transmission power
and clear channel conditions.

The CM3 channel is represented by following two features [99, 101],

• severe path loss and variations of loss due to the absorption of human body;

• temporal correlations of channel between neighbouring time slots.

To capture above features and without the loss of generality, in the work, we adopt the
Gilbert Elliot (GE) model [101, 102], as shown in Fig. 4.2, with two channel states: ON
channel state with error-free transmissions, and OFF channel state with unsuccessful trans-
missions.

Let Ci(n) denote CM3 channel state for the ith WBAN over the nth time slot. Ci(n) =
1 if the channel is in the ON state, and otherwise Ci(n) = 0. Let Rc

i and Πc
i denote

the probability transition matrix and stationary distribution of the CM3 channel for ith
WBAN, respectively. According to the GE model, the probability transition matrix Rc

i

can be represented as

Rc
i =

[
1− gi gi
bi 1− bi

]
, (4.1)
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Figure 4.2: ON-OFF wireless channel model

where gi is the conditional probability that the channel changes from the OFF state to the
ON state, and gi , Pr{Ci(n) = 1|Ci(n − 1) = 0} for n ∈ {1, 2...}. bi is the conditional
probability that the channel changes from the ON state to the OFF state, and bi ,
Pr{Ci(n) = 0|Ci(n − 1) = 1} for n ∈ {1, 2...}. The corresponding stationary distribution
is Πc

i = [ bi
bi+gi

, gi
bi+gi

]. In the GE model, the property that a channel tends to stay in its
current state means the channel is positively correlated, i.e., 1 > bi + gi.

4.2.3 Traffic Model

The medical data are collected and summarized as a report by the sensor and transmitted to
the smartphone at the end of each time slot. A report contains multiple health condition
information, as required by rapid medical response [12]. Let Np denote the number of
packets in a report. The transmission of reports from the sensor to the smartphone follows
the sum of Bernoulli process with the arrival rate λi for the ith WBAN. As health conditions
of patients change much slower than the channel variations, we only consider the scenario
with arrival rate λi smaller than 1

T
. Due to the limited computing capability of sensors, we

assume that the sensor buffer can only store limited packets. With the loss of generality, we
consider that a sensor can only cache one report at each time slot. If a new report arrives
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whereas the previous report is still cached in the buffer, the previous report is evicted from
the buffer and replaced by the new report. Let qi(n) ∈ {0, 1} denote the buffer state of
the ith WBAN at the beginning of time slot n, where qi(n) = 0 represents that the sensor
buffer of the ith WBAN is empty at the beginning of time slot n, and otherwise qi(n) = 1.

4.2.4 Channel Access Scheme

The goal of MAC is to maximize the network throughput with modest energy consumption
of sensors. The channel access scheme is described as follows. At the beginning of each
time slot, the central controller sends out a beacon to choose a WBAN for transmission
during this time slot. Since only one WBAN is scheduled, inter-WBANs interference is
avoided. Let the s(n) denote the index of the WBAN be chosen during time slot n.
Suppose s(n) = i. Then the smart phone of the ith WBAN sends a beacon to the sensor
in the same WBAN. If the CM3 channel is in ON state and there is one report available
for transmission, namely Ci(n) = 1 and qi(n) = 1, a successful transmission is made. If a
successful transmission from the sensor to the smart phone is made, the buffer of the sensor
is emptied. Then the smart phone forwards the report to the central controller. Otherwise,
only the channel state is reported to the central controller for future scheduling.

Two types of information about network state are available for the central controller.
One type is the statistics of the random processes of the CM3 channels and the medical
report event arrival. In practice, the central controller can obtain these statistics through
learning over a period of time. Specifically, the smart phone in each WBAN can learn
the channel statistics of that WBAN first, and then forward the statistics information to
the central controller. Adaptive learning algorithms could be applied to improve learning
accuracy in real time. In this work, we assume the central controller can obtain accurate
statistics information of the body area channels. We will consider the impact of imperfect
and delayed information on MAC design in the future. The other type is the partial real
time information of network state. As described in the channel access scheme, the central
controller has the information of the WBAN it chooses at the end of each time slot. Thus,
the real time information about the network state is partially available.

In order to make proper decision at each time slot, the central controller maintains belief
states of the channel and buffer states of all WBAN based on both statistical information
and partial real time information. Let Ω(n) , [ω1(n), ..., ωNw(n)] denote the belief states of
the channel states of all WBANs at the beginning of time slot n, where ωi(n) is the belief
state of the channel state of ith WBAN over time slot n. The belief states evolve as follows.
If real time information of the ith WBAN is available, the central controller updates its
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belief state on the ith WBAN based on real information. Otherwise, the central controller
updates its belief based on statistical information. In summary, the belief state evolution
can be written as

ωci (n+ 1) =


1− bi, S(n) = i, Ci(n) = 1;
gi, S(n) = i, Ci(n) = 0;

T (ωci (n)), S(n) 6= i,
(4.2)

where T ci (γ) is an evolution operator of the belief state of channel of the ith WBAN. For
ON-OFF channel model, the operator is

T ci (γ) = γ(1− bi) + (1− γ)gi. (4.3)

As shown in [95], above belief state is a sufficient statistic that depicts current channel
state given the channel state is a Markov process.

4.3 Problem Formulation

In this section, we formulate the problem as a partially observable optimization problem.
Then, we investigate the value function of the proposed problem for policy design.

4.3.1 Reward and Objectives

We first design a reward to facilitate decision making for the central controller. The reward
should favor higher throughput and disfavor packet drop. We design the reward as follows.
If the ith WBAN is chosen and a successful transmission is made, Bi(n) units of rewards
are collected by the network. Let Ri(n) denote the reward obtained in slot n given the ith
WBAN is chosen, we set Ri(n) as

Ri(n) = Ci(n)qi(n)Bi(n). (4.4)

The reward shown in equation (4.4) is designed as such: if the channel of the chosen
WBAN is in the OFF state or the buffer of the chosen WBAN is empty, the reward is set
to zero. Otherwise, Bi(n) amount of reward will be accumulate. We set Bi(n) equal to the
probability of exact one medical report arrival since last successful transmission. Thus, if
a WBAN is not given the channel access for a long time, the reward the WBAN can give
is small, for many packets may have lost.
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The control problem for the central controller is to choose which WBAN for channel
access at each time slot. A control policy for this problem can be denoted by π : Ω(n)→
s(n), a function that maps the belief state Ω(n) to the action s(n). The goal of the central
controller is to maximize the average reward of the network over infinite horizon, which
is a common measure in communication system [97]. Thus, the control problem can be
written as

P5 max
π

E[ lim
K→∞

1

K

K∑
j=1

Rπ(Ω(j))(j)|Ω(1)]. (4.5)

Let π∗ denote the optimal solution to P1, it can be written as

π∗ = arg max E[ lim
K→∞

1

K

K∑
j=1

Rπ(Ω(j))(j)|Ω(1)]. (4.6)

Since the real time full network state is not observable, the proposed problem P5 is
a partially observable optimization problem. If only the channel state is considered, P5
turns to a partially observable Markov decision process problem (POMDP) [95]. POMDP
has larger state space compared to its observable counterparts, making it generally difficult
to solve. Our problem is more difficult than POMDP since we consider a random traffic
arrival. Problem P5 falls into the dynamic programming problem category, thus we study
the value function of P5 in the next subsection for policy design.

4.3.2 Value Function

Value function analysis breaks an optimization problem over multiple periods into sub-
problems at different points in time. Let Vn(Ω(n)) denote the value function at time slot
n. It is the maximum expected reward that the network can gain at time slot n. Consider
the central controller choose the ith WBAN at the beginning of time slot n and update
the information state at the end of time slot n, the reward can be obtained from time
slot n consists of two parts: the expected immediate reward E[Ri(n)] and the maximum
expected reward from time slot n + 1, namely Vn+1(Ω(n + 1)|s(n) = i, Ci(n)). Thus, the
value function of P1 at time slot n can be written as

Vn(Ω(n)) = maxs(n)1,...,Nw{E[Ri(n)] +

ωi(n)Vn+1(Ω(n+ 1)|i, 1) +

(1− ωi(n))Vn+1(Ω(n+ 1)|i, 0}. (4.7)
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Figure 4.3: Evolution of belief state of channel

For a POMDP, the value function is piecewise linear and convex [96]. However, for a
general partial observable problem. This property of the value function may not hold. The
equation (4.7) can be solved backwards to obtain the value of V1(Ω(1)) and the optimal
policy π∗. However, due to the exponentially increased computation complexity, the value
function and the optimal policy can not be obtained in real time by the central controller.

4.4 Policy Design

Since obtaining the optimal solution to P1 is difficult, we first investigate the properties of
channel and buffer dynamics. Based on the analysis, we propose a policy.

4.4.1 Properties of the System Dynamics

To provide insights to this problem, we investigate the properties of the channel and buffer
dynamics.

64



0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

P
r{

N
(k

T
)=

1
}

 

 

λ = 5

λ = 10

Figure 4.4: Evolution of one event arrival probability

Firstly, we study, given the belief state of the ith WBAN is ωi at any time slot, what
the belief state will be after k consecutive time slots during which the ith WBAN is not
chosen by the central controller. Let (T ci (ω(n)))k , Pr{C(n+ k) = 1|w(n)}(k = 0, 1, 2, ...)
denote the belief state evolution for k consecutive unobserved time slots, we have [97]

T ci (ω(n)))k = gi
bi+gi

− (1−bi−gi)k(gi−(bi+gi))ω(n)
bi+gi

. (4.8)

Given positive correlation of CM3 channel, namely 1 − bi − gi > 0, we show an example
of how T ci (ω(n)))k changes over time in Fig. 4.3. As we can observe from Fig. 4.3, the
belief state will eventually converge to Πc

i(2), the stationary probability that the channel
is in the ON state. This result suggests that a proper policy should work in the following
way. If the ith WBAN is chosen and the channel of the ith WBAN is in the ON state, in
order to utilize the ON channel state, the central controller should prefer to choose this
WBAN again in near future. In contrast, if the ith WBAN is chosen and the channel of
the ith WBAN is in the OFF state, in order to avoid wasting channel resource, the central
controller should prefer not to choose this WBAN in near future.

Secondly, we study, given initial state qi(n) = 0, the probability of exact one report
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arrives during a duration of k consecutive time slots without transmission. This is the
reward we set for a successful transmission. Let N(kT ) denote the number of arrived
reports during a period of kT . For a sum of Bernoulli process, the probability of m

events arrive during a period of kT is e−λkT (λkT )m

m!
. Thus, given initial state qi(n) = 0, the

probability that exact one report arrives during a duration of k time slots is

Pr{N(kT ) = 1} = e−λkT (λkT ). (4.9)

We can derive from equation (4.9) that the probability has a maximum value, which is
achieved at the point 1

λ
. Since the system is slotted, the corresponding number of time slot

k can be either the minimum integer larger than 1
λT

or the maximum integer smaller than
1
λT

.

An example of how Pr{N(kT ) = 1} changes over time is shown in Fig. 4.4. As we can
observe from Fig. 4.4, the probability of exact one report arrival increases to its peak value
as time goes and then decreases. This result suggests that a control policy should have
the following property. If the central controller identifies the buffer of the ith WBAN is
empty, it needs to wait a period of time to revisit the ith WBAN for a new report arrival.
However, if the duration is larger than 1

λ
, the probability of report loss increases, leading

to smaller reward. Thus, the central controller should not wait too long for a revisit.

4.4.2 A Modified Myopic Policy

In this subsection, we first construct a myopic policy. Through analysis, we point out
the myopic policy will incur high report dropping. Based on the previous analysis on
system dynamics, we propose a modified myopic policy to address the report dropping
issue through approximating the expected future reward.

If only the dynamics of channel is considered, as shown in [97], the optimal policy is
to stick to the WBAN with the ON channel state. Specifically, if a WBAN is found to
be in the ON channel state, the central controller should keep choosing this WBAN until
the channel turns to the OFF state. With the consideration of random report arrival
in WBANs, above policy is no longer optimal. As shown in Fig. 4, after a successful
transmission, the probability that there is a report arrival is low. Thus, even with the ON
channel state in previous slot, the central control should prefer not to choose this WBAN.

Since obtaining an optimal policy requires high complexity, in this work, we first develop
a myopic policy. The objective of a central controller is simplified to maximize the expected
reward for current time slot based on the belief states, and ignores the impact of current
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decision on the future reward. Let πm denote the myopic policy. It can be written as

πm = arg max E[Rπ(Ω(j))(j)|Ω(1)]. (4.10)

The myopic policy πm has two issues. Firstly, since the belief states of the channel con-
verge, given a homogeneous network setting, where all WBANs share the same statistics,
the central controller needs a scheme to choose from multiple WBANs with the same ex-
pected rewards, which is not addressed in the myopic policy. Secondly, for a myopic policy,
once a WBAN has not be chosen for more than 1

λT
consecutive time slots, the chance that

the central controller will choose this WBAN decreases since the expected reward reduces.
This, however, will cause report dropping for that WBAN. This problem is rooted in the
myopic philosophy. In contrast, an optimal control policy, which considers future reward,
does not have such issue. The reason is that, when a WBAN is not chosen for more than
1
λT

consecutive time slots under an optimal policy, the central controller will have larger
tendency to choose this WBAN. Otherwise, the expected future reward will be smaller,
leading to a smaller total reward. In other word, after 1

λT
, the myopic policy significantly

deviates from the optimal policy.

We propose a modified myopic policy to address above issues. Firstly, when multiple
WBANs have the same maximum expected reward, the central controller chooses one based
on a random picker. A random picker is a picker chooses based on a random number it
generates from a probability density function. In this work, we use uniform distribution.
Secondly, the impact of future reward is considered. Since the complexity to obtain the
accurate future reward is high, the future reward is approximated heuristically. Specifically,
we increase the expected reward of current time slot for those WBANs have been waiting
more than 1

λT
time slots as

Ri(τ) =
wτλT + 1

λT
Ci(τ)qi(τ)Bi(τ), (4.11)

where τ is the number of slot that the ith WBAN has been waiting more than 1
λT

, and
w is scaling factor. The part wτλT+1

λT
increases as the time goes. Thus, the WBANs that

have been waiting more than 1
λT

time slots will have increasing chances to be chosen. This
helps solve the second issue introduced by the myopic policy.

4.5 Simulation results

This section evaluates the performance of the proposed MAC layer resource management
through simulations using Matlab.
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4.5.1 Simulation Setup

We simulate a scenario similar to that shown in Fig. 4.1. A central controller is placed
at the center of the network. There are total Nw patients, with each installed a WBAN
for health monitoring. The CM3 channels are simulated using the GE model, where as
the CM4 channels are simulated to be error-free for packet transmissions. The initial
channel states of the patients are generated randomly based on the stationary distribution
of the channel states. In practice, the arrival rates for vital signals, such as blood pressure
and heart rate, are usually less than 100kbps, whereas the arrival rates for ECG and
EMG signals could be near 1Mbps [85]. Thus, the network can be either in unsaturated
condition or congested condition. This motivates us to evaluate the effectiveness of the
proposed resource management under both unsaturated network condition and congested
network condition. Given the normalized service capacity, the congested network condition
can be represented as ∑

i

λiT > 1, (4.12)

whereas the unsaturated network condition as∑
i

λiT < 1. (4.13)

In the simulation, we varies the report arrival rate to change the network condition. Let
λc and λu denote the report arrival rate for congested network condition and unsaturated
network condition, respectively. Let N c

w and Nu
w denote the number of patients under

congested network condition and unsaturated network condition, respectively.

For simplicity, we consider a homogeneous network, where the report arrival rates and
the channel statistics of all WBANs are the same. As such, we omit the index of parameters
in the following. The detailed settings can be found in Table 6.2.

In each experiment, we compare our proposal with the round robin (RR) scheme [103]
and a myopic (Myo) policy [104]. The RR scheme is chosen since it is simple and starvation
free. In the RR scheme, the central controller assigns the channel access opportunity to
WBANs in a circular order. Let srr(n) denote the WBAN chosen in time slot n. It can be
written as

srr(n) = n mod N, (4.14)

where mod is the modulo operator. We set kN mod N = N, k ∈ {0, 1, 2, ..} since
the network index starting from 1 in our work. The myopic algorithm is chosen since if
only channel dynamics is considered, it has been proven to be optimal [104]. The myopic
algorithm is to choose the WBAN with the best belief state of channel.

68



Table 4.1: System Parameters for Simulation
Parameter Definition Value

b probability that channel turns good 0.15

g probability that channel turns bad 0.05

N c
w number of patients in cong. network 10

Nu
w number of patients in unsat. network 15

λu arrival rate for unsaturated scenario 5 per sec

T slot duration 10 ms

λc arrival rate for congested scenario 30 per sec

w scaling factor for modified reward 10

We denote our proposal as MyoMo throughout this section. In each simulation, we
report the number of successful transmissions, number of reports dropped and number of
wasted transmission opportunities using our proposal and existing proposals. An wasted
transmission opportunity event occurs if a WBAN is chosen but without any successful
transmission, either due to channel in the OFF state or empty buffer. The performance
improvements of MyoMo and RR over Myo are also reported. They are calculated as
ratio of comparing the performance differences between an algorithm and Myo to the
performance of Myo in percentage. Each simulation is conducted over a 1000s duration.

4.5.2 Performance Evaluation

We report the simulation results from the following three aspects: 1) network throughput
in terms of number of successful transmissions; 2) number of reports dropped; and 3)
channel utilization in terms of number of wasted transmission opportunities.

Unsaturated Scenario

The performance of three algorithms, namely RR, Myo and MyoMo, under unsaturated
network condition, is shown in Fig. 4.5. It can be seen from Fig. 4.5(a) that in terms of
the number of successful transmissions, Myo has the worst performance with about 450
less successful transmissions than RR and MyoMo. MyoMo performs slightly better than
RR with about 50 more successful transmissions in average. We can observe from Fig.
4.5(b) that Myo causes about 400 more dropped reports than RR and MyoMo, and most
WBANs drop less reports under MyoMo than under RR. The trends that Myo performs
worse than RR and MyoMo can also be observed from Fig. 4.5(c). The improvements
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of RR and MyoMo over Myo under unsaturated scenario are shown in Fig. 5(f). It can
be seen from Fig. 5(f), compared to Myo, MyoMo and RR have 82% and 77% more
successful transmissions, around 15% less dropped reports, and around 10% less wasted
transmission opportunities. The reason why Myo has the worst performance is that only
the channel state is considered by Myo. Thus, Myo always chooses the WBAN with the
best channel. However, the chosen WBAN could have an empty buffer, leading to a high
number of wasted transmission opportunities. With a low channel utilization, the number
of reports dropped is high and the number of successful transmissions is low. The reason
that RR performs very close to MyoMo is as follows. Under unsaturated network condition,
a wasted transmission opportunity is more likely caused by an empty buffer than a channel
in the OFF state. In RR algorithm, each WBAN needs to wait for Nu

w time slots for a
transmission opportunity. When Nu

w, the number of WBANs in the network, is sufficiently
large, the probability of an empty buffer is small. In other word, RR performs as an
algorithm that aims to avoid an empty buffer. As a result, RR can effectively reduce
the number of wasted transmission opportunities and improve the number of successful
transmissions. Meanwhile, under unsaturated network condition, the reward adopted by
MyoMo shown in equation (4.11) is dominant by the consideration of buffer. In this case,
MyoMo can be regarded as an algorithm that aims to avoid an empty buffer, which is
similar to RR. As a result, RR performs similarly to MyoMo under unsaturated scenario.

The differences among WBANs in terms of the number of channel in the ON state and
the number of report arrivals are shown Fig. 5(d) and Fig. 5(e), respectively. In Fig.
5(d), 0 in the y-axis represents the average number of channel in the ON state. It can be
seen from Fig. 5(d) that the differences in the number of channel in the ON state among
different WBANs can be more than 1000. The reason is twofold: 1) the initial channel
states are generated randomly based on the stationary distribution of the channel states;
and 2) the channel states evolve according to a probability transition matrix as shown
equation (4.2). It can be seen from Fig. 5(e) that the number of report arrivals is different
for different WBANs. These differences are the result of the random Poisson number
generation method we adopted using Matlab. The differences in the number of channel in
the ON state and the number of report arrivals cause the variations in performance among
WBANs under the same algorithm.

Saturated Scenario

The performance of three algorithms, namely RR, Myo and MyoMo, under congested
network condition, are shown in Fig. 4.6. It can be seen from Fig. 4.6(a), in terms of
the number of successful transmissions, MyoMo outperforms RR and Myo with about 300
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more successful transmissions, and Myo has the worst performance. But the performance
difference between Myo and RR is smalle. Above trends can also be seen in report dropping
performance from Fig. 4.6(b) and channel utilization performance from Fig. 4.6(c). The
improvements of RR and MyoMo over Myo under congested scenario is also shown in Fig.
6(f). It can be seen from Fig. 6(f), compared to Myo, MyoMo and RR have 20% and 8%
more successful transmission, 2% and 1% less report dropping event, and 6% and 3% less
wasted transmission opportunities. It can be concluded that MyoMo outperforms RR under
congested scenario. The reason is that, under congested scenario, the proportion of wasted
transmission opportunities caused by empty buffer reduces, whereas the proportion caused
by channel in the OFF state increases. Compare to RR, MyoMo exploits the temporal
channel correlation through utilizing the belief state of channel in making decision. Thus,
MyoMo is less likely to choose a WBAN with channel in the OFF state, leading to a better
performance.

From Fig. 4.6 and Fig. 4.5, we can see that the number of successful transmissions un-
der congested scenario is larger than that under unsaturated scenario, whereas the number
of wasted transmission opportunities under congested scenario is smaller than that under
unsaturated scenario. The reason is that, under congested scenario, the wasted transmis-
sion opportunities due to empty buffer are greatly reduced, leading to a higher number of
successful transmissions.

4.6 Summary

In this chapter, we have proposed a MAC layer resource management scheme for WBANs
[105]. Using both analysis and extensive simulation results, we have demonstrated the
effectiveness of the proposal in increasing network throughput and enhancing the channel
utilization under both the unsaturated and congested network conditions. In the future,
we intend to investigate distributed MAC protocol for WBANs. Due to the mobility nature
of WBANs, a centralized controller is not always available. This calls for development of
a MAC scheme that is able to handle the inter-WBAN interference and is operated in a
distributed manner.
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Figure 4.5: Performance comparison for unsaturated scenario
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Figure 4.6: Performance comparison for congested scenario
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Chapter 5

Reliability Enhancement for Private
Clouds

In this chapter, we propose a novel cooperation framework to solve the reliability issue
of private clouds and reduce the delay suffered by public clouds. Our contributions are
twofold.

First, a cooperation framework is proposed through exploiting unique features of exist-
ing clouds. First feature is that private clouds are geographically distributed, whereas the
second is public clouds can be regarded to possess infinite computing resources available
[41]. The cooperation contains two key ideas: 1) the geographically distributed private
clouds offer parts of their capacities to help a public cloud provide services to its nearby
users. The public cloud gives reward for this help. In summary, the abundant resources
of private clouds are utilized through investing them in a public cloud. 2) With sufficient
reward, the public cloud offers to serve excess requests to the private clouds to improve
their reliability and scalability. To adopt reward is to eliminate selfish private clouds. This
cooperation scheme improves reliability of private clouds and reduces the delay of public
clouds at the same time.

Second, considering the potential fatal results of failure in e-health systems, we adopt
a stringent reliability measurement, which is the probability that a failure never happens.
Based on the proposed framework, we develop an algorithm for private clouds to decide
how many computing resources to be shared at each time to avoid failure. Using stochastic
control theory, we prove that our designed strategy is optimal for this stringent reliabil-
ity requirements. Numerical results demonstrate that our proposed scheme improves the
reliability of private clouds over non-cooperation scheme significantly.
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5.1 Literature Review

In this section, we review related studies on QoS improvement of cloud computing in
e-health. Then, we introduce the basics of risk control using stochastic control.

5.1.1 Private Cloud for e-health

The state of cloud computing in e-health systems is summarized in [106]. QoS provisioning
is identified as one of the challenges faced by exiting cloud models [107]. The works on
improving QoS of public clouds consists focus on design geographically distributed clouds
and allocate contents among these clouds to reduce delay and provide consistent QoS.
An efficient resource management algorithm for distributed clouds is designed in [47] to
minimize the maximum latency between selected distributed clouds. To reduce the cost of
utility without degrading the QoS, an task allocation among distributed clouds problem is
studied in [44]. However, these approach cannot be applied to e-health. Medical computing
facilities are required to be built with a stringent standard [42], thus it is expensive for
public service providers to maintain servers at different locations under medical standards.

The challenges faced by private clouds are summarized in[43]. For medical services, the
losses associated with service agreement violation far outweigh any cost savings [43]. Thus,
for the private clouds, the primary goal is to reduce the probability of failure. In order to
improve the reliability of a private cloud, hybrid clouds model, which adopts public clouds
as the backup servers when the private cloud cannot provide sufficient resource by itself,
is studied in [46]. However, this scheme does not provide solution to delay problem of
public clouds. Within one clouds, the performance of services is analyzed in [108] using
a M/G/m/m+r queuing Systems. The security and privacy concerns on the cooperation
among clouds have been addressed in [109] through a scheme to partition works dependent
on their security levels.

5.1.2 Failure Probability Control

To minimize the failure probability under random demand process is a risk control problem.
For an insurance company, it needs to set a proper price of premium and invest its assets
to reduce the probability that the claims from the users surpass the cash the company
earned. This problem is critical to small insurance company with limited reserve. Two
methods have been applied to control the risk. One is to invest cash the company has. The
other is to reinsurance the contract to a bigger insurance company. Stochastic control can
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Figure 5.1: System model for clouds

be applied to solve the risk control problem. Under a proportional risk sharing scheme, an
optimal policy has been proposed in [110]. Further, the optimal policy for an excess loss
risk sharing agreement is derived in [111]. General results for risk control related stochastic
control are summarized in [112, 113].

5.2 System Model

We consider the resource management of clouds for medical applications in continuous time.
As shown in Fig. 6.1, a public cloud and Np private clouds locate in different geographic
regions. Each region has only one private cloud. Let Ei denote the ith private cloud.
To provide satisfactory services to end users, each cloud limits the maximum number of
virtual machine (VM) it can support simultaneously. The maximum number of VM is used
to depict the computing capacity of each cloud. The computing capacity of public cloud
is considered as infinity [41]. The computing capacity of each private cloud is limited.
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Figure 5.2: Reward Dynamics

Denote by Ci, i ∈ 1, ..., Np, the computing capacity of private cloud Ei.

The requests for each private cloud come from the region where the private cloud
locates. Let Ait be the number of requests for the jth private cloud in a time interval
(0, t]. Ait is a Poisson process with arrival rate λi. Each request consists of a series of
tasks from different users. Each user could have several tasks. Each task requires one VM.
In this work, tasks are regarded as flash jobs since we consider resource management in
continuous time. Let U i

j denote the number of tasks of the jth request for private cloud
Ei. U i

j , j = 1, 2, .., is a positive random i.i.d variable independent of Ait. In summary,
demand process is determined by two random variables Ait and U i

j , as shown in Fig. 6.1.
The requests for the public cloud originate from all regions. If the size of requests exceeds
the computing capacity of the private cloud, the extra part can not be served by current
private cloud.
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5.3 Resource Sharing among Clouds

5.3.1 A Cooperation Framework

We propose a cooperation scheme aiming at improving the reliability of private clouds,
as well as reducing the delay suffered by public clouds. The cooperation scheme is moti-
vated by the facts that: 1) private clouds are geographically deployed and have abundant
resources in average sense; and 2) public clouds can be regarded to possess infinite comput-
ing resources. Thus, we propose to store those abundant computing resources of private
clouds through public cloud and fetch them when the private cloud needs. The fact pub-
lic cloud have resources, which can be regarded as infinity, makes this storage concept
reasonable. Plus, public clouds are allocated with geographically distributed computing
resources, which helps to reduce delay.

To enable cooperation, the ith geo-distributed private cloud decides to share bi(t)
amount of resource to serve the requests to public cloud at its region at time t. The
decision for time t is made at time t−, and is an agreement between the private cloud and
the public cloud, which cannot be violated. In return, the public cloud rewards ρigb

i(t)
amount of resource, where ρig is a scaling factor. ρig reflects the cooperation inclination
between the public cloud and ith private cloud. Practically, the private cloud with larger
capacity has less incentive to cooperate, namely if Ci > Cj, ρ

i
g < ρjg. The accumulated

reward of ith private cloud at time t is denoted by Ri(t).

Given the randomness of the arrival process, the accumulated reward is random. The
failure probability is associated with accumulated reward. To minimize the failure probabil-
ity, the shared resource bi(t) shall be chosen according to the dynamics of the accumulated
reward. Thus, the decision can be represented as a feedback equation:

bi(t) = bi(Rbi

t−), (5.1)

where Rbi

t− is the reward process under strategy bi(t). The optimal strategy depends on
the cumulative reward the private cloud has at each time only and not on the history of
the cumulative reward.

Two situations could happen under the proposed framework. Suppose the jth request
arrives at time t, 1): when the size of the request U i

j(t) is smaller than the remaining
capacity after cooperation, the reward increases by ρigb

i(t), as shown by Situation I in Fig.
5.2; 2): When the size of the requests U i

j(t) is larger than the available computing capacity
Ci− bi(t) at time t, the private cloud uses U i

j(t)−min[U i
j(t), Ci− bi(t)s] amount of reward
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to serve the extra part, as shown by Situation II in Fig. 5.2. Conisder above situations,
the reward process evolves as

Ri
b(t) = Ri

b(0) + ρig

∫ t

0

bi(s)ds−
Ait∑
j=1

[U i
j −min(U i

j , C
i − bi(t))], (5.2)

whereRi(0) is the initial reward that the public cloud give to the ith private cloud, min(x, y)
is the minimum of x and y. Assume ρig is smaller than 1 for every i, (i ∈ 1, ..., Np), ρ

i
g < 1.

Otherwise, the optimal policy is to share all computing capacity with the public cloud,
which is not reasonable due to privacy and delay concerns. U i

j −min(U i
j , C

i− bi(t)) can be
written in the form of a sign function (U i

j − Ci + bi(t))+, where

x+ =

{
0, if x < 0;

x, otherwise.
(5.3)

5.3.2 Definition of Failure Probability

Consider the potential fatal results of failure in medical services, the probability of first
failure of a private cloud is adopted as reliability measurement. A private cloud provides
services to its users based on service level agreements. An event that the service agreement
is violated is called a failure event. Specifically, the event a task within a request to private
cloud cannot be served is considered as a violation in this work. Let τ be the first time a
failure event occurs. The failure probability is defined as the probability that τ is finite.
Without cooperation, the failure occurs when the capacity of a private cloud is not able
to serve requests. Let τ inc denote the first time a failure occurs without cooperation for ith
private cloud, we have

τ inc = inf{t ≥ 0 : Ui(t) > Ci}. (5.4)

Let P nc
fi denote the failure probability without cooperation for the ith private cloud, we

have:
P nc
fi = P{τ inc <∞}. (5.5)

Without cooperation, the only way to reduce failure probability is to increase the service
capacity Ci to infinity.

With cooperation, the ith private would experience a failure event at time t if the
cumulated reward is below 0 at time t, Ri

b(t) < 0. If Ri
b(t) > 0, even if the size of requests

is larger than the remaining resource, the private cloud can turn to public cloud.
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Let τ ib denote the first time of failure occurs for the ith private cloud under the proposed
framework. It is defined as:

τ ib = inf{t ≥ 0 : Ri
b(t) < 0} (5.6)

Then the corresponding failure probability is P{τ ib <∞}.

In the following, we formulate the minimize failure probability problem for the private
clouds. We adopt dynamic programming and derive the Hamilton-Jacobi-Bellman (HJB)
equation. Since each private cloud has the same reward updating equation, we omit the
index of private clouds for simplicity.

5.4 Objective of Private Clouds

The objective of private clouds is to minimize the failure probability under the proposed
framework as shown in P6.

P6 min
b

P{τb <∞} (5.7)

As stated in equation (5.1), the control variable in (5.7) is determined by how much reward
is left. The HJB equation derived from P6 is hard to solve. Instead, we consider survival
probability. Let δb(s) denote the survival probability given there is s amount of rewards
left and strategy b is adopted, we have:

δb(s) = P{τb =∞|R(t) = s} (5.8)

The minimization of failure probability can be transformed to the maximization of the
survival probability. Consider P7:

P7 max
b

δb(s). (5.9)

Let δ(s) denote the optimal value with δ(s) = supb{δb(s)}.

5.5 Derivation of HJB Equation

The objective is in the form of probability. We derive the HJB equation heuristically.
Consider reward update equation (5.2) within a short time interval (0,∆], during which a
fixed strategy b is adopted. Consider the arrival process, we have:
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1. With probability 1 − λ∆ + o(∆), there is no request in time interval (0,∆]. Then
the cumulated reward at time ∆ can be written as:

R∆ = s+ ρgb∆. (5.10)

2. With probability λ∆, there is exactly one request with size U in time interval (0,∆].
The cumulated reward is:

R∆ = s+ ρgb∆− E[(U − C + b)+]. (5.11)

The probability of more than one request come is within an order than the first infinites-
imal of time duration ∆, thus can be omitted. The survival probability under strategy b
can be calculate by taking expectations and averaging over all possible request sizes. We
have

δb(s) =(1− λ∆ + o(∆))δb(s+ ρgb∆) + o(∆)

+ λ∆{δb(s+ ρgb∆− E[(U − C + b)+)])}.
(5.12)

For ∆→ 0 we have

0 = λE[δb(s− (U − C + b)+)− δb(s)] + ρgbδb(s)
′. (5.13)

Maximizing over all possible values for decision b, we obtain the HJB equation of our
problems:

0 = sup
b
{λE[δ(s− (U − C + b)+)− δ(s)] + ρgbδ(s)

′}. (5.14)

Before solving the HJB equation, we investigate the property of the solution. Intuitively,
when the reward goes to infinity, the failure probability becomes zeros. In fact, as stated
in Lemma 2, the condition that reward goes to infinity is the necessary condition for the
failure probability to be nonzero.

lemma 2 For any strategy b, with probability 1, either failure occurs or Rb(t) → ∞ as
t→∞.

Lemma 2 can be stated as a joint probability of two events is zero. First event is the
reward process under a strategy b, Rb, is bounded. Second event is the first time of failure
τb under strategy b goes to infinity.
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Proof 2 Choose a constant B satisfies P{U > B} > 0. Assume a reward process Rb(t)
under an arbitrary strategy b is bounded by a constant M > 0, namely Rb(t) ≤ M . We
show the reward process Rb(t) goes to zero before time goes to infinity. In other word, the
first time of failure τb <∞. That is

P{Rb(t) ≤M for all t > 0 and τb =∞} = 0. (5.15)

Let n be the number of requests, whose size are larger than B, during an interval
of length 1. The probability of n satisfies n = dM+ρgC

B−C e is positive, where dxe is the
minimum integer larger than x. Given the request process is stationary and independent,
with probability 1 there are more than n requests during an interval [t, t+ 1]. Consider the
reward process Rb(t) ≤M ,

Rb(t) ≤M + ρgC − n(B − C) < 0. (5.16)

Thus, given the reward process is bounded, the first time of failure τb <∞. This proves
the lemma.

Since the reward increases to infinity is the necessary condition for the failure probability
to be zero, we only consider strictly increasing functions. To solve the equation (5.14) with
a strictly increasing solution, we rewrite the equation in a standard derivation equation
form as

δ′(s) = inf
b
{λδ(s)− δ(s− E(U − C + b)+)

ρgb
}. (5.17)

5.6 Strategy Design

In this section, we design a strategy for the problem and prove that the strategy we design
is the optimal solution for our problem defined. It consists of two steps: first to design
a strategy and to show the strategy is a solution to equation (5.17); second to prove the
strategy proposed maximizes the survival probability.

5.6.1 Existence of a Solution

In this subsection, we prove the existence of a solution of equation (5.17). To do so, we
construct a sequence and show the sequence converges to a function which is a solution.
To claim the sequence converges, we show the sequence is monotonous and bounded. We
refer previous work [114] [112],[111] for preliminaries.
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theorem 4 Assume the request size distribution Q is continuous. There exists a nonde-
creasing solution V (s) of the HJB equation (5.17), which is continuous on [0,∞), contin-
uously differentiable on (0,∞).

Proof 3 Define a sequence Vn(s) with V0(s) = δ0(s), which is the failure probability with
full cooperation. For full cooperation, the private cloud chooses b = C. And the sequence
is obtained through recursion as

V ′n+1(s) = inf
b
{Vn(s)− Vn(s− E(U − C + b)+)

1
λ
ρgb

}. (5.18)

We prove the the sequence V ′n(s) is a decreasing sequence through induction. We first
show the deceasing property holds for V ′1(s) ≤ V ′0(s). For n = 0, we have

V ′0(s) = λ
V0(s)− V0(s− E(U)+)

ρgC
, (5.19)

which is derived from equation (5.13).

Consider n = 1 for equation (5.18), we get

V ′1(s) = inf
b
{λV0(s)− V0(s− E(U − C + b)+)

ρgb
} (5.20)

Obviously, V ′1(s) ≤ V ′0(s). We then show given V ′n(s) ≤ Vn−1(s)′ for all s ≥ 0, V ′n+1(s) ≤
Vn(s)′ holds. For all b, we have

V ′n+1(s)ρgb ≤ λE[Vn(s)− Vn(s− (U − C + b)+)]

= λE[

∫ s

s−(U−C+b)+
V ′n(u)du]

≤ λE[

∫ s

s−(U−C+b)+
V ′n−1(u)du]

= λE[Vn−1(s)− Vn−1(s− (U − C + b)+)].

(5.21)

Divide ρgb on both sides, we have

V ′n+1(s) ≤ λE[Vn−1(s)− Vn−1(s− (U − C + b)+)]

ρgb
(5.22)
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Since b is arbitrary, we can conclude from equation (5.22) and equation (5.18) that V ′n+1(s) ≤
Vn(s)′. In summary, V ′n(s) is a decreasing sequence.

Now we show V ′n(s) > 0, for all n. Suppose

s0 = inf{s : V ′n(s) = 0 <∞}. (5.23)

Then, we have

0 = inf
b
{Vn−1(s0)− Vn−1(s0 − E(U − C + b)+)}. (5.24)

Thus, Vn−1(s0) = Vn−1(s0−E(U−C+ b)+). Vn−1 is continuous for [s0−E(U−C+ b)+, s0]
and differential for (s0−E(U−C+ b)+, s0). Based on Rolle’s theorem, there exists s1, s

′
1 ∈

[s0−E(U−C+b)+, s0], with Vn−1(s1) = Vn−1(s′1). Choose b such that s′1 = s1−E(U−C+b)+.
Then V ′n(s1) = 0, which is contradicted to the assumption s0 is the minimum value for
V ′n(s) = 0. Thus, we conclude V ′n(s) > 0.

Since V ′n(s) > 0, we conclude from bounded convergence g(s) = limn→∞ V
′
n(s) exists.

Define V (s) as:

V (s) = 1 +

∫ s

0

g(s)ds. (5.25)

Obviously, V (s) is a nondecreasing continuous function, which fulfills equation (5.17). So
far, we prove the existence of a solution to the HJB equation.

We now proof the derivation of g(s) is continuous. Consider x, y > 0, we have

|g(x)− g(y)| ≤ sup
b
|λ{E[V (x)− V (x− (U − C + b)+)]

ρgb

−E[V (y)− V (y − (U − C + b)+)]

ρgb
}|.

(5.26)

We conclude g(s) is continuous by the continuity of V (s).

5.6.2 Verification of the Optimal Strategy

Previously, we construct a function through recursion and prove the approach we construct
the function is a solution to the HJB equation. However, whether the solution is the
maximum survival probability one can obtain is not clear. In this subsection, we show that
the approach we construct can achieve the optimal. Specifically, we show that the strategy
derived from the minimizer b(s) in equation (5.17) maximizes the survival probability.
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Figure 5.3: Survival Probability

theorem 5 An optimal strategy, which maximizes the survival probability, is given by b∗ =
b(R∗), where b(R) is the strategy that minimize equation (5.17), and R∗ is the reward
process under the optimal strategy.

The detailed proof to this theorem is similar to that in [112] chapter 2, and is omitted
for brevity. The gists of the proof is to to show the solution to the HJB equation forms a
martingale and those process derived by arbitrary strategies are supermartingales.

5.7 Numerical Results

In this section, we present the numerical results to demonstrate the effectiveness of our
proposed framework and strategy in enhancing the reliability of private clouds for e-health
applications. Simulation setup is first presented, followed by discussion on the numerical
results.

Let request size U obeys exponential distribution, with mean 1
m

. Set m = 1. We
omit the magnitude in this work. This simplification does not influence the study on
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Figure 5.4: Optimal Cooperation Strategy

survival probability. Normalize the computing capacity and shared resource to the mean
of the request size. The cooperation inclination scaling factor ρg is a decreasing function
of computing capacity of each private cloud. In this work, we choose inverse function to
describe the relationship, ρg = 1

C
.

The impact of the computing capacity of private clouds, C, on the survival probability
δ is shown in Fig. 5.3. First of all, without cooperation, the survival probability of private
clouds with bounded computing capacity is zero. It is clear that, our proposed framework
demonstrates significant improvement with survival probabilities increase to at least 50%.
The survival probability δ under optimal cooperation strategy increases as the reward
amount s increases. When the computing capacity C is larger than average request size 1

m
,

survival probability under optimal strategy is always better than that of full cooperation.

The cooperation inclination scaling factor ρg is always smaller than 1, which discounts
the shared resource. It is reasonable for services provided by public clouds has longer
delay than those provided by local servers. The survival probability for private cloud with
computing capacity C = 1.5 is better than that with C = 4.5, namely, our strategy per-
forms better when computing capacity is scarce. The reason is that given the same request
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Figure 5.5: Delay Performance of Public Cloud

statistics, the private cloud with more computing resource values the service provided by
public cloud less, thus has less incentives to cooperate. Practically, the reason for less
cooperation inclination can be delay or privacy concerns.

The optimal strategies under different computing capacity amounts C, are shown in
Fig. 5.4. The optimal strategy demonstrates itself as a threshold policy. Given the request
process, a private cloud cooperates more when the reward amount s is below a threshold
and less when s is beyond the threshold. The reason for the threshold coincides for different
computing capacity C is that we choose the inverse function to describe the relationship
between computing capacity and cooperation inclination scaling factor.

The average delay performances of public clouds are shown in Fig. 6.8, with distance
between local region and the public cloud equal to 1500 km and 2500km, respectively. It
can be observed from Fig. 5.5(a) and Fig. 5.5(b), the average delay under the proposed
cooperation scheme is smaller than that without cooperation. It is the result that parts
of requests are served by local private clouds. As shown in Fig. 5.5(a), with cooperation,
the average delay decreases with the increase of the computing capacity of local private
clouds. This is reasonable for private cloud with larger capacity shares more resources as
shown in Fig. 5.4. Comparing Fig. 5.5(a) and Fig. 5.5(b), we can conclude that our
proposed scheme achieve more delay reduction when the distance between local region and
the public cloud is larger.
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5.8 Summary

In this chapter, we have proposed a framework to enhance the reliability of private clouds
in e-health applications. The framework exploits the time domain abundant resource
of private clouds to motivate the public clouds to cooperate in improving the reliability
of private clouds. Both private clouds and public clouds have proper incentives in the
proposed scheme. The problem of how to allocate resource for private clouds to minimize
failure probability has been investigated under random demands. A policy constructed
through recursion is proved to provide optimal solutions. Numerical results have been
provided to show the effectiveness of our proposed framework.
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Chapter 6

Resource Allocation in
Geo-distributed Clouds

In this chapter, we propose an e-health monitoring system supported by geo-distributed
clouds. The geo-distributed clouds consist of many cloud servers which are geographically
deployed over a large region [115]. The proposed e-health monitoring system consists of two
parts, a resource management scheme for servers and a traffic shaping algorithm for users.
The servers are initialized with the same resource management scheme. When users require
to connect to the system, the local server (geographically-close to the users) handles the
request and checks the workloads of other servers. It then runs the resource management
scheme and responds to the users with the assigned servers. After receiving the responses,
users apply a traffic shaping algorithm on their health data before transmitting the data to
the assigned servers. Traffic shaping algorithm hides the original health data and preserves
user privacy. Specifically, our contributions are twofold.

First, we propose a resource management scheme to achieve the minimized service delay
and the reduced communication costs. We first derive a sufficient condition in resource
management to ensure the stability of cloud servers. Considering this condition, we design
the resource management scheme: each server only redirects the requests to others who
have shorter queue lengths; and the number of redirected requests must be proportioned
to the difference of their queue lengths and reciprocal to the service delay between them.
We also prove the proposed resource management scheme satisfies the derived sufficient
condition in balanced state. In addition, we compare the scheme with two other alternatives
using joint the short queue (JSQ) and distributed control law (DCL), both of which are
proven to be stable. Through extensive simulations, we show that our scheme achieves a
much smaller average service delay than the JSQ-based and DCL-based schemes.
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Second, we propose a traffic shaping algorithm to prevent the health data of users from
being detected by the TA attackers [116]. We focus on the health data traffic generated
by e-health monitoring systems, such as heart rate and blood pressure, which are typically
modelled as deterministic processes [52]. We analyze the statistical differences between
health data traffic and non-health data traffic. Our proposed shaping algorithm is designed
such that: the distribution of the shaped health data traffic is the same as the distribution
of the non-health data traffic; and the autocorrelation of the shaped health data traffic
is close to the autocorrelation of the non-health data traffic. We propose to preserve
the autocorrelations of the target process. Note that, the proposed algorithm introduces a
delay, referred as shaping delay, on the user side which is related to the privacy requirement.
We provide the numeric results on this relation. Then, we model the shaping delay by the
D/M/1 queue, and consider the shaping delay into the resource management scheme. The
simulation results show that our resource management scheme is still efficient with the
shaping delay.

6.1 Literature Review

In this section, we review the related works in resource management and privacy preserva-
tion for e-health monitoring systems.

6.1.1 Resource management for Cloud Network

E-health monitoring systems have attracted great attention recently, and their applica-
tions have been developed widely [117, 118]. Due to the surging computing and storage
demands from these applications, geo-distributed clouds have been regarded as promis-
ing solutions[119, 120]. In geo-distributed clouds for e-health monitoring systems, resource
management acts as a critical component to provide timely and reliable services [106]. Pre-
vious works on resource management for geo-distributed clouds have two objectives: one is
to reduce the service delay for users and the other is to reduce the cost for service provider.
From a user’s perspective, paper [47] proposed a centralized resource management scheme
for geo-distributed clouds to minimize the service delay among selected servers, and a
heuristic algorithm to partition a requested resource among the chosen servers. By ex-
ploiting the characteristics of social influences, paper [48] proposed an online resource
management scheme to efficiently migrate contents, and redirect user requests to appro-
priate servers for timely responses. To reduce the operating cost for service providers, a
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scheme that distributes requests among geo-distributed clouds to utilize the spatial differ-
ences in electricity price is proposed in [44]. For service providers, load balance is also an
important requirement for its crucial role played to maintain the stability of all servers.
As pointed out by paper [121], without proper resource management, requests may be
redirected to a single server, leading to congestions. Paper [122] designed a distributed
scheme for geo-distributed clouds, which stabilizes all the servers. In this paper, we study
the resource management in geo-distributed clouds for e-health monitoring systems, where
both average service delay and stability of clouds are considered as design objectives.

6.1.2 Privacy Preservation

The flourish of e-health monitoring systems faces the challenges in privacy preservation
[123, 124]. TA attacks have been recognized as effective methods to reveal the type of users’
health data [45]. Two countermeasures have been proposed, one algorithm is padding and
the other algorithm is traffic shaping [125]. Padding algorithms obfuscate the packet length
and rate by padding random amount of plaintext. The drawback of padding algorithms
is that a large amount of bandwidth is required. In e-health monitoring systems, sensors
on human body have limited energy and communication capabilities [16]. Thus padding
algorithms are not suitable for e-health monitoring systems. Traffic shaping algorithm
shapes the distribution of a traffic [125]. The key of this algorithm is to randomly sample a
predefined matrix for the distribution transformation. As indicated by [126], this algorithm
is not effective in preserving a user’s privacy for it does not consider the time dependency
of a random process. In this paper, we plan to design an efficient traffic shaping algorithm
for e-health monitoring systems by addressing the above problems.

6.2 System Model

We consider geo-distributed clouds in e-health monitoring systems. As shown in Fig. 6.1,
N cloud servers locate in different geographic regions. Each region {1, · · · , N} has one
server. The server in i-th region is denoted by Si. The service capacity is evaluated by
the number of virtual machines (VMs) a server has. Thus, the service capacity is limited.
We consider time is slotted. At different time slot, servers have different available service
capability due to the dynamic allocation. Let µi(t), i ∈ {1, ..., N} denote the available
service capacity of server Si during time slot t.

The service requests for a server come from the users in the region that the server
locates. Let Qi(t) denote the number of waiting requests (queue length) of server Si at
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Figure 6.1: Geo-distributed Clouds Environment

the beginning time slot t. Let Ai(t) denote the number of arrival requests for the server
Si during time slot t. Ai(t) is considered as a Poisson process with arrival rate λi. For
each arrival request, it contains certain amount of traffic. We consider the traffic from one
request is a deterministic process with constant traffic arrival rate λm [52].

The service delay for any request includes two parts. One is the shaping delay due to
the traffic shaping algorithm. The other one is the communication delay. Let Dp denote
the shaping delay by the traffic shaping algorithm, and Dc

i,j denote the communication
delay between region i and region j. As indicated by [47], the communication delay in
geo-distributed clouds cannot be negligible. We consider the communication delay over
the Internet by measuring the geographic distance, i.e., communication delay increases
linearly with the geographic distance [44]. Let Li,j denote the distance between region i
and region j. From [44], we consider the slop of the linear function as

δ(time)

δ(distance)
≈ 0.02ms/km (6.1)

The communication delay Dc
i,j can be calculated as:

Dc
i,j(ms) = 0.02(ms/km)× Li,j(km) + 5(ms). (6.2)

We consider the TA attacks in the geo-distributed clouds environment. Such attacks
aim to analyze the traffic statistics to determine the specific type of the health data. We
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measure the capability of TA attacks by using the Kullback-Leibler (K-L) divergence [127].
K-L divergence is also referred as relative entropy to measure the difference between two
probability distributions. Let P denote the distribution of health data traffic and Q denote
the distribution of non-health data traffic. Let DKL(P ||Q) denote the K-L divergence. We
have

DKL(P ||Q) =

∫
ln{fp(x)

fq(x)
}fp(x)dx, (6.3)

where fp(x) and fq(x) are the probability density functions of distributions P and Q,
respectively. The K-L divergence reaches its minimum when fp(x) = fq(x). When two
distributions P andQ are the same, the capability of TA attacks is reduced to the minimum.

6.3 An E-Health Monitoring System

In this section, we propose an e-health monitoring system with minimum service delay
and privacy preservation. The system consists of two parts, the traffic shaping algorithm
and the resource allocation scheme. The traffic shaping algorithm converts the health
data traffic to non-health data traffic such that the capability of the TA attacks is largely
reduced. The resource allocation scheme considering load balance as a necessary condition
aims to minimize the service delay.

6.3.1 Traffic Shaping

In this subsection, we propose an effective traffic shaping algorithm to preserve users’
privacy against TA attacks. We choose voice traffic as target traffic for two reasons:
different from other common internet traffic, voice traffic is not heavy tailed and thus
consumes less bandwidth; and voice traffic is given higher priority than data traffic in
communication protocols [128], which helps health data to reduce the medium access time
when competing with other traffic.

We demonstrate why existing traffic shaping algorithm is not suitable for time depen-
dent random process. Consider a voice source. Due to its characteristics that voice source
could be divided into talk spurt and silent period, voice traffic is modeled using ON-OFF
model. Let α and β denote the average ON and OFF period of voice, respectively. During
the talk spurt, the voice source generates packets with length Lvoice with packet inter-
arrival time ta, whereas during silent period, no packet is generated. In existing traffic
shaping algorithm in use, the distribution of voice traffic is preserved in the following way.
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Whenever a packet is available for transmission, with probability α
α+β

the packet is trans-
mitted. Thus, the probability of the output traffic in ON state is α

α+β
, which is the same

as the voice traffic. However, the average length of ON period might not be α. Namely,
the time dependency feature of voice traffic is not shown in the shaped traffic. As a result,
a TA attacker could use autocorrelation to distinguish the shaped traffic from real voice
traffic.

Traffic Shaping Algorithm

Since the arrival rate of health data λm could be larger than that of a single voice source,
the target traffic could be a traffic containing multiple voice sources. Given a constant
health data arrival rate λm, a user first decides the number of voice traffic in the target
traffic, denoted by Nv. The choice of Nv shall satisfy the condition that the average traffic
rate of the target traffic should be no less than the average arriving rate of health data.
Otherwise, the shaping delay caused by this algorithm could not be limited, since the
departure rate is less than the arrival rate. Given the utilization factor ρv of a voice traffic
equals to α

α+β
and the traffic rate λv of a voice traffic during talk spurt, the number of

voice traffic should satisfy:

Nv > d
λm
ρvλv
e, (6.4)

where dxe is the minimum integer greater than x.

After choosing the number of voice sources Nv, the user accumulates traffic in its buffer
and then transmits them according to the traffic generation rate of Nv voice sources. The
traffic rate of Nv voice sources is a binomial process with each voice source in ON state
with probability α

α+β
. Thus, the probability of the traffic generating rate equals iλv is

Pr{r = iλv} = Ci
Nv(

α

α + β
)i(

β

α + β
)(Nv−i), (6.5)

where Ci
Nv

is equal to Nv !
i!(Nv−i)! . For each time slot, a user chooses a traffic generating rate

based on the probability described by equation (6.5), and uses the rate to transmit.

6.3.2 Resource Allocation

In this subsection, we design a resource allocation scheme for the e-health monitoring
systems with stabilized server queues and reduced service delay.
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A server receives requests from the users in the local region and performs the resource
allocations. Specifically, the server first collects the queue length Qj(t) from other servers
j ∈ {1, ..., N}. Considering the service delay and the queue length, the server then de-
termines the allocation strategy where some requests will be redirected to other servers.
Let AUi (t) denote the number of request arriving at server Si during time slot t after the
redirections are made. The queue length of server i ∈ {1, ..., N} at time slot t + 1 can be
represented as

Qi(t+ 1) = max[Qi(t) + AUi (t)− µi(t), 0]. (6.6)

Then, the local cloud feedbacks its decision to end users. Each user directs its traffic
directly to the assigned server.

Resource Allocation Constraints

We present the stabilization concept and explain the importance of stabilizing all servers.
Based on the stability condition, to ensure the stability of server Si, we need resource
allocation scheme such that

Et[A
U
i (t)] 6 Et[µi(t)], (6.7)

where Et[x] is the expectation of random process x over t.

In e-health monitoring systems, failure or overload of any server could cause fatal
results. Thus, the resource allocation scheme for health data must achieve the stability
condition for all servers, i.e., the equation (6.7) needs to be satisfied for any i ∈ {1, ..., N}.
To design resource allocation scheme satisfying above conditions is difficult. For each server
could redirect parts of its requests to other servers, which requires a scheme to consider
the interactions among different servers.

To solve this problem, we first investigate a sufficient condition to achieve stability.
Considering this condition, we then propose a delay aware algorithm.

A Sufficient Condition

We derive a sufficient condition, which ensures the stability for all servers in the geo-
distributed clouds environment. We start from the definition of stability.

Definition 1 Suppose a process q(t) has an equilibrium qe, if for every ε > 0, there exists
a δ = δ(ε) > 0 such that, if ||q(0)− qe|| < δ, then ||q(t)− qe|| < ε, for every t > 0.
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From definition 1, we can see that, if a process q(t) reaches qe at time slot n, namely
q(n) = qe, any scheduling policy that guarantees q(n + 1) − q(n) = 0 can stabilize q(t).
Thus, ∆q = q(n+ 1)− q(n) = 0 is a sufficient condition for a process to achieve stability.

Let a vector [Q1(t), ..., QN(t)]′ be the queue length of the interactive servers, denoted

by
−−→
Q(t)1×N . The sufficient condition could be represented as:

∆
−−→
Q(t) =

−−−−−→
Q(t+ 1)−

−−→
Q(t) = ~0, given

−−→
Q(t) =

−→
Qe. (6.8)

Since our purpose is to design a resource allocation scheme that makes decisions based
on current queue length, the change in queue length of all servers can be presented by

∆
−−→
Q(t) = U

−−→
Q(t), (6.9)

where U is a N × N matrix, and Ui,j represents the number of requests that server Si
redirected to server Sj. Based on this interpretation, the sufficient condition for multiple
interactive queues (6.8) can be written as

U
−→
Qe =

−→
0 . (6.10)

Equation (6.10) could also be written as a system of equations
U11Qe1 + U12Qe2 + ...+ U1NQeN = 0

...
U11Qe1 + U12Qe2 + ...+ U1NQeN = 0

(6.11)

To design a resource allocation scheme, which ensures the stability of all servers, is to
determine the value of each Uij such that the system of equations (6.11) is satisfied. The
system of equations (6.11) has N equations and N × N unknown. Thus, there is more
than one solution to equations (6.11). In other word, there are multiple schemes, which
can satisfy the constraints.

Resource Allocation Scheme

In this subsection, we design a resource allocation scheme satisfies equations (6.11). The
idea is based on the fact that 0 is an eigenvalue of any Laplacian matrix corresponding to
vector [1, 1, ..., 1]1×N [122, 129]. In addition, the resource allocation scheme is designed to
minimize service delay.
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In a resource allocation scheme, we need to design a matrix U to satisfy condition
(6.10). We present how eigenvalue could facilitate scheme design. An eigenvector of a
square matrix U is a vector −→eu satisfies:

U −→eu = mu
−→eu , (6.12)

where mu is the corresponding eigenvalue. For Laplacian matrix, 0 is always a eigenvalue
corresponding to

−→
1 . Consider an equilibrium state of all servers is balanced, namely−→

Qe = qe
−→
1 , then any U, which is a Laplacian matrix, can stabilize all servers in the

geo-distributed clouds. Thus, designing a resource management scheme such that U is a
Laplacian matrix can achieve load balance. Based on this observation, we design a resource
management scheme in the following.

The scheme design utilizes two facts: to stabilize all servers, the server with shorter
queue length shall serve more requests; to reduce delay, a request prefers servers with less
service delay. Thus, a good design should have two characteristics: requests should only
be directed to servers with shorter queues; and the amount of redirected requests shall be
an increasing function of queue length difference, and be a decreasing function of service
delay.

6.4 Performance Analysis

This section evaluates the performances of our proposed traffic shaping algorithm and
resource management scheme.

6.4.1 Performance of the Traffic Shaping Algorithm

In this subsection, we present the analysis of the shaping delay and the privacy preservation
of the proposed traffic shaping algorithm.

Shaping Delay Performance

The arrival rate of health data is a constant, whereas the departure rate of the shaping
algorithm is a random process obeys binomial distribution. Since the binomial distribution
converges to a Poisson distribution as the number of tests goes to infinity, we approximate
the service process as a poisson process in this work. Based on this approximation, the
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Algorithm 2: Resource Management Scheme

1) For each server Si: the server measures the communication delay Dc
i,j between

itself and server Sj for all servers j ∈ [1, N ], j 6= i;
2) Based on link information, each server Si sets the the privacy requirements Di,j

KL,
in terms of K-L divergence, for different link Li,j, then calculates the shaping delay
Dp
i,j incurred for privacy preservation requirements. Specifically, in our proposed

privacy preservation scheme, a server Si chooses the number of voice traffic Nv such
that

DKL(Nv) 6 Di,j
KL; (6.13)

a server Si uses the result from equation (6.13) to calculate the shaping delay Dp
i,j

for each link.
3) A server Si calculates the service delay for accessing each server Sj,
Di,j = Dc

i,j +Dp
i,j.

4) A server Si updates the buffer length information of other servers Qj(t), and
redirects request according to

Qi(t+ 1) = Qi(t) +
∑
j

Mi,j(t), (6.14)

where

Mi,j(t) =

{
(Qi(t)−Qj(t))Ai

Di,jMmax
i

Otherwise

−Mj,i for j ∈ (Qi(t) < Qj(t)),
(6.15)

where Mmax
i =

∑
j∈(Qi(t)>Qj(t))

(Qi(t)−Qj(t))
Di,j

.
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delay introduced by the traffic shaping algorithm could be analyzed through a D/M/1
queue. Based on the analysis in [130], the queue stationary distribution given utilization
factor ρ = λm

Nvλvρv
< 1 is given by

πi =

{
0, when i = 0;

(1− δ)δ(i−1), when i > 0,
(6.16)

where δ is the smallest absolute value of all solutions to equation

ρ = −1− δ
ln δ

. (6.17)

Further, the average shaping delay introduced by the shaping algorithm could be cal-
culated based on equation (6.16). Let Dm(Nv) denote the average shaping delay with Nv

voice sources; it can be calculated as[130]:

Dm(Nv) =
1

Nvρvλv

δ

1− δ
. (6.18)

Privacy Preservation

In the following, we present the analysis of the privacy preservation capability, which is
measured by K-L divergence, of our proposed traffic shaping algorithm.

To analyze the privacy preservation performance of our proposed traffic shaping algo-
rithm based on K-L divergence, we need to know the distribution of the target traffic and
the distribution of our algorithm output. The target traffic obeys Poisson as discussed
before, whereas the distribution of the output is unknown. We present the analysis on the
distribution of the output as follows.

The output of our proposed algorithm has the same distribution as that of the output
of D/M/1 queue. Given utilization factor ρ < 0.2, the output of D/M/1 queue is not
Poisson, namely the distribution of the time between two consecutive departure does not
obey exponential distribution [131]. Low utilization factor ρ represents a high service rate
compared to arrival rate, thus smaller average waiting time. However, in this case, the
leakage risk is high, since the output deviates from the target traffic significantly. As
utilization factor ρ goes from 0.2 to 1, the difference between the output and Poisson
process diminishes, and is 0 when ρ is 1 [131]. We do not consider the situation where
utilization factor ρ > 1, for the queue is stable under this condition. Motivated by above
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facts, we adopt Poisson process to approximate the output of our proposed traffic shaping
algorithm for utilization factor ρ ∈ (0.2, 1).

Based on above analysis, the privacy preservation performance of our proposed traffic
shaping algorithm can be described by the K-L divergence of two Poisson processes. Since
the inter-arrival time is the identity of a Poisson process, we consider the K-L divergence
of two exponential distributions, which represents the inter-arrival time of the algorithm
output and the target traffic, respectively. The average inter-arrival time of the algorithm
output is equal to that of the input, namely the average inter-arrival time of the health
data 1

λm
. The average inter-arrival time of the target process is 1

Nvρvλv
. The K-L divergence

between them is

DKL(P ||Q) =

∫ ∞
0

λpe
−λpx ln(

λpe
−λpx

λqe−λqx
)dx

=

∫ ∞
0

λpe
−λpx(ln(

λp
λq

) + (−λp + λq)x)dx

= ln(
λp
λq

)

∫ ∞
0

λpe
−λpxdx+ Ep[(−λp + λq)x]

= ln(
λp
λq

) +
−λp + λq

λp
,

(6.19)

where λp = λm and λq = Nvρvλv.

6.4.2 Performance of the Resource Management Scheme

In the following, we show that the resource scheme proposed could stabilize all servers.

theorem 6 If the network operates under our proposed algorithm 2, the network will stay
in balanced state.

Proof 4 We prove theorem 2 through showing the equation (6.14) satisfies the sufficient
condition (6.9).

Equation (6.14) could be written as

Qi(t+ 1)−Qi(t) =
∑
j

M ′
i,j(t)(Qi(t)−Qj(t)), (6.20)

where M ′
i,j(t) =

Mi,j(t)

(Qi(t)−Qj(t)) .
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The equation (6.20) could also be written in the form of equation (6.9). Thus, the
relationship between M ′

j,i and Ui,j could be described by∑
j

Ui,j(t)Qj =
∑
j

M ′
i,j(Qi(t)−Qj(t)). (6.21)

Solve equation (6.21), we obtain

Ui,j(t) =

{
−M ′

i,j, forj 6= i∑
j 6=iM

′
i,j(t) forj = i.

(6.22)

Based on equation (6.15) and equation (6.22), it is easy to verify the matrix U generated
under our propose scheme is a Laplacian matrix. As a result, condition (6.10) is satisfied
when the distributed clouds are in balanced state.

6.5 Performance Evaluation

In this section, we evaluate our proposed traffic shaping algorithm and resource manage-
ment scheme through simulations. We first choose to compare our proposed traffic shaping
algorithm with an existing traffic shaping algorithm. We are interested in autocorrelation
feature preservation, and the tradeoff between delay performance and privacy preservation
ability. Then we compare the proposed resource management scheme with the JSQ-based
approach [132] and DCL-based approach [122]. We are interested in delay performance
and the queue length performance.

6.5.1 Simulation Setup

We consider a geo-distributed clouds environment where cloud servers are deployed in
Canada. As shown in Fig. 6.2, the servers are placed on N = 17 cities (regions) in
Canada. The distance between any two regions Li,j for i, j ∈ {1, ...N} are measured using
Google Maps. The request arrival rate of i-th server λi is chosen to be proportional to
the population of the region, whereas the service rate is chosen to be proportional to the
number of hospital of that region. In order to evaluate our resource management schemes,
we initialize servers with different queue lengths. Note that, a saturated network is defined
[122] when ∑

λi =
∑

µi. (6.23)
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Figure 6.2: Map of Major Cities in Canada

We slightly increase the arrival rates such that the above equation (6.23) could be satisfied.
The detailed settings can be found in Table 6.1.

For each service request, we set the arrival rate as 30kbps [52]. For traffic shaping
target, we choose a coded version voice traffic according to GSM 6.10 codec. The average
duration of ON state, OFF state and the average arrival rate are listed in Table 6.2.

In existing traffic shaping algorithm, a matrix, which is designed based on the distri-
butions of the source traffic and target traffic, is sampled randomly to shape the traffic
distribution. To shape a medical traffic with a constant arrival rate into ON-OFF traffic,
a vector [1, 1] is sample based on probability [ α

α+β
, β
α+β

].

In the JSQ scheme [132], the server with the shortest queue is chosen to serve the users.
Specially, server i chooses the j∗th server to redirect its requests, based on

j∗ = argminj∈{1,··· ,N}Qj(t). (6.24)
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Figure 6.3: Autocorrelations of Voice, TM and TS

In the DCL algorithm, the amount of traffic from server j to server i is calculated as

Ui,j(t) =
(Qi(t)−Qj(t))Ai∑
j∈Ni−(Qi(t)−Qj(t))

. (6.25)

6.5.2 Traffic Shaping Algorithm Evaluation

In this subsection, we provide simulation results to show: 1) our proposed traffic shaping
algorithm can preserve the autocorrelation features of the target process; and 2) there is
a tradeoff between shaping delay and privacy leakage risk. We use TM and TS to denote
the traffic shaping algorithm in [125] and in this work, respectively.

Fig. 6.3 shows simulation results of the normalized autocorrelation of voice traffic, a
medical traffic shaped by TM, and shaped by TS with lags no larger than 20. The results
show that TS outperforms TM significantly in preserving the autocorrelation features of
voice traffic. As it can be observed that, the autocorrelation of the output of algorithm
TM is almost 0 when lag is larger than 0. That is to say, the time dependency feature of
a target process, in terms of autocorrelation, is not preserved in TM, as explained in Sec.
IV part A. In comparison, the autocorrelation of TS is similar to that of a target traffic.
The reason is that, TM shapes the traffic based on the time dependent features of a target
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Figure 6.4: Tradeoff Between Privacy Preservation and Shaping Delay

traffic. Specifically, TM shapes the medical traffic to mimic the ON-OFF behaviour of
voice traffic.

Consider a TA attacker runs a classifier, which chooses the changing rate of the auto-
correlation as the classification characteristic [133]. As we can observe from Fig. 3., the
decreasing rate of the autocorrelation of voice increases slowly and smoothly. The decreas-
ing rate of autocorrelation of TS is similar as that of voice only with small turbulences.
In comparison, the autocorrelation of TM decreases sharply and remains almost constant.
In this case, the TM could be identified by the TA attacker, whereas TS is hard to detect.
When a classifier is adopted by a TA attacker, the autocorrelation between the shaped traf-
fic and the voice traffic needs to have significant similarity to avoid being identified[134].
Thus, we can conclude the improvement of TS over TM in terms of autocorrelation is
important for privacy preservation.

Fig. 6.4 shows the tradeoff between shaping delay and privacy leakage risk using our
proposed traffic shaping scheme. The results are obtained through numerical simulation
based on the analysis on the average shaping delay and privacy preservation capability
in Section V. It can be observed that as the increase of the number of the chosen voice
source, the shaping delay of our proposed algorithm decreases, where as the K-L divergence
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increases. The reason is that, when the number of voice source adopted increases, the
number of voice traffic that are in ON state increases, leading to shorter time for the
health data waiting to be packeted and transmitted. However, in this case, the probability
of insufficient health data packets increases at the same time, leading to a larger K-L
divergence, i.e., higher privacy leakage risk.

6.5.3 Resource Management Scheme Evaluation

In this subsection, we provide simulation results to demonstrate two benefits of our pro-
posed scheme: 1) reduce the delay suffered by traffic; and 2) achieve load balance among
different servers. We use RAS denote the resource management scheme designed in this
work.

Average Service Delay

The service delay performances of three algorithms, namely JSQ, DCL and RAS, are shown
in Fig. 6.5. It can be seen from Fig. 6.6, the average service delay of all requests under three
algorithms are 120ms, 87ms and 56ms, respectively. The reason why our algorithm has
smaller average service delay is that, in our algorithm, the amount of requests redirected
to other clouds is reciprocal to the service delay among two clouds. This method limits the
number of requests to be redirected to a remote cloud server, thus introducing less delay
for the requests. The average service delay suffered by the requests to each cloud under
algorithm JSQ, DCL and RAS, are shown in Fig. 6.5(a), Fig. 6.5(b) and Fig. 6.5(c),
respectively. As we can observe that, the average service delay for requests to each cloud
under the JSQ is higher than that under DCL and RAS. The reason is that, JSQ always
pours all the requests to the cloud with smallest queue length. Thus, when the cloud with
smallest queue length is far away, the delay is significant large. In comparison, both DCL
and RAS redirect requests to all other servers with smaller queue length, thus avoid the
situation to direct all requests to the remote cloud.

Queue Length

The average queue length for all clouds under algorithm JSQ, DCL and RAS, are shown
in Fig. 6.7. It can be seen that, the average queue length under JSQ is higher than that
under DCL and RAS. The reason is that, JSQ is designed to maximize the throughput of
the distributed clouds. So its algorithm is designed to avoid the situation where any buffer
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is empty. Thus, the average queue length is the highest. We can also observe that, the
average queue length under RAS is comparable to the average queue length under DCL.
This proves the ability of our proposed algorithm in stabilizing the cloud networks.

The queue dynamics of all clouds under the algorithm JSQ, DCL and RAS, are shown
in Fig. 6.8. The queue dynamics over each iteration for cloud at St. John, Quebec, Toronto
and Regina are shown in Fig. 6.8(a), Fig. 6.8(b), Fig. 6.8(c) and Fig. 6.8(d), respectively.
In can be seen that, compared to JSQ, both DCL and RAS perform better in terms of
eliminating backlogs and ensuring the stability of all clouds. And our proposed algorithm
is comparable to DCL, in terms of maintaining the stability of all clouds.

6.6 Summary

In this chapter, we have explored geo-distributed clouds to propose an e-health monitoring
system with minimum service delay and privacy preservation. We have provided the nu-
merical analysis and simulation results to demonstrate the effectiveness of the system. For
our future work, we will extend this work by studying a more general and complicated case
where users have random medical requests and diverse privacy preservation requirements.
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Table 6.1: Network Parameters
City Name arrival rate service rate initial buffer
S.t. Johns 2 2 200

Charlottetown 1 1 100
Halifax 4 9 50

Fredericton 1 1 250
Quebec 6 7 200

Montreal 17 33 100
Ottawa 9 9 200
Toronto 55 24 100

Winnipeg 7 9 50
Regina 2 2 250

Saskatoon 3 3 100
Edmonton 11 12 100

Calgary 11 11 250
Vancouver 23 23 200
Victoria 3.5 8 100

Whitehorse 0.3 1 50
Yellowknife 0.2 1 150

Table 6.2: Traffic Parameters
Parameter Value Parameter Value

α 352 ms β 650 ms

Av 4kbps Am 30kbps
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Figure 6.5: Average Service Delay Performance
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(b) Server at Quebec

0 20 40 60 80 100
0

50

100

150

200

250

300

Time

Q
u

eu
e 

le
n

g
th

 

 

Server 8 under JSQ

Server 8 under DCL

Server 8 under RAS

(c) Server at Toronto
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Figure 6.8: Queue Dynamics
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Chapter 7

Conclusions and Further Work

In this final chapter, I will revisit and summarize the topics discussed so far, then discuss
a few ideas for moving the research on resource allocation in e-health systems forward.
Section 7.1 summarizes the main results of this thesis. Section 7.2 describes a few possible
avenues of future research that could grow out of the work presented here.

7.1 Major Research Results

Motivated by the importance and challenges of e-healthcare systems, this research seeks
to develop novel, practical and effective resource management schemes to provide efficient,
reliable and low-cost healthcare services. Three research topics have been studied, namely
energy efficient transmission power allocation for wearable sensors with QoS provision-
ing, medium access control for WBANs with interference management and throughput
maximization, and resource management in clouds networks for reliability improvements
and delay minimization. The proposed schemes are able to address challenges due to: 1)
the limited capability of wearable devices; 2) dynamic body area channel in WBANs; 3)
the randomness of computing requests and communication delay over in cloud networks.
Specifically, the main contributions of this research are summarized as follows.

• Transmission power allocation with worst-case delay provisioning: We have proposed
a transmission scheduling scheme for vital physiology signals with worst-case delay
provisioning. The proposed scheme achieves the delay provisioning by considering
a virtual queue, which increases when the actual queue is not empty. Meanwhile,
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the energy efficiency for sensor is improved through reducing energy consumption
during idle listening and utilizing opportunistic channel access through transmitting
over channel in good state. The proposed scheme is derived based on Lyapunov
optimization framework. The conditions for our algorithm to have a worst-case delay
limit are studied. The trade-off between energy consumption and the worst-case delay
is investigated in performance analysis and showed in numerical results. We expect
the algorithm developed to inspire the transmission scheduling for wearable devices
with vital physiology monitoring function.

• The impacts of the peak transmission power and statistical QoS provisioning: We
have derived the optimal transmission power allocation scheme under a peak power
constraint, and proposed an efficient calculation method. Applying duality gap analy-
sis, we characterize the upper bound of the extra average transmission power incurred
due a peak power constraint. Through the analysis of the upper bound, we conclude
that when the peak power constraint is stringent, a proposed constant power scheme
is suitable for wearable sensors for its performance is close to optimal. Further, we
show that the peak power constraint is the bottleneck for wearable sensors to provide
stringent statistical QoS provisioning.

• MAC for WBANs over Dynamic Body Area Channel: We have proposed a cen-
tralized MAC scheme for WBANs in hospital. Due to partial information of the
channel state of individual WBANs, we formulate a partial observable optimization
problem for network throughput optimization. We investigate two properties of the
network, namely time dependency of the channel states and buffer occupancy which
depends on traffic arrival and departure process. Based on above network character-
istics, a modified myopic policy is proposed to address the fairness issues of a myopic
policy. The performance of the algorithm is evaluated under both unsaturated net-
work and congested network conditions. Compared with existing approaches such as
Round Robin scheme, our proposed algorithm can significantly improve the network
throughput and enhance channel utilization.

• Reliability improvement of private clouds through cooperation: We have proposed a
cooperation framework to address the distinct challenger facing different clouds. It is
inspired by the fact that private clouds are geographically deployed and public clouds
can be considered to possess infinite computing resources. In our framework, private
clouds are designed to serve parts of local requests for public clouds, and rewarded
by receiving help with excess requests. We adopt stochastic control theory to address
the failure minimization issues for private clouds under random demand process. We
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prove the optimality of a policy constructed through recursion. Numerical and sim-
ulation results are presented to demonstrate that our proposed scheme can improve
the reliability of private clouds, as well as reduce average delay of public clouds.

• Delay minimization for geo-distributed clouds: We have proposed an e-health mon-
itoring system with minimum service delay and privacy preservation by exploiting
geo-distributed clouds. In the system, the resource management scheme enables the
distributed cloud servers to cooperatively assign the servers to the requested users
under the load balance condition. Thus, the service delay for users is minimized.
In addition, a traffic shaping algorithm is proposed. The traffic shaping algorithm
converts the user health data traffic to the non-health data traffic such that the
capability of traffic analysis attacks is largely reduced. Through the numerical anal-
ysis, we show the efficiency of the proposed traffic shaping algorithm in terms of
service delay and privacy preservation. Furthermore, through the simulations, we
demonstrate that the proposed resource management scheme significantly reduces
the service delay compared to schemes using joint the short queue stratagies.

7.2 Future Work

Resource management in e-health system is a broad and expanding research area. With the
advancement of wearable sensors and understanding of how to utilize continuous monitoring
results, more applications with new requirements will emerge. Thus, there are still open
issues to be investigated:

• Transmission power allocation: The statistics of body area channel have been shown
to be posture dependent. Channel gains under postures, such as running and row-
ing, have strong correlations and high variations, whereas channel gains under driving
have small variations. To support QoS provisioning for medical traffic and achieve en-
ergy efficiency for sensors, the impacts of posture state dependent body area channel
on transmission power allocation call for investigation. For example, since state-
of-art wearable sensors are equipped with activity monitoring function, the posture
dependent features of body area channel could be utilized to develop low complexity
and yet efficient transmission power allocation schemes for wearable sensors.

• Distributed MAC for WBANs: In this research, a centralized MAC is proposed
for WBANs with medical information transmission. Due to the mobility nature of
WBANs, a centralized controller is not always available. This calls for development
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of a MAC scheme that is able to handle the inter-WBAN interference and is oper-
ated in a distributed manner. It is well known that the CSMA/CA MAC scheme
suffers from severe unfairness and starvation problems in multi-hop wireless networks.
The starvation is not only caused by spatial bias referred to as Flow-in-the-Middle,
but also by a generic coordination problem of CSMA-based scheme referred to as
Information Asymmetry. For medical application, starvation could cause failure in
healthcare services, thus a distributed MAC protocol that could reduce starvation
and improve network throughput is desired.

• Geo-distributed clouds:In this research, the resource management scheme for geo-
distributed clouds is designed for homogeneous traffic. With the advancement of
sensors, various applications and monitoring data are expected to emerge in near
future. These applications could generate traffic in various rates and require het-
erogeneous QoS provisioning in terms of delay, jitter and privacy. How to provide
differentiated services to various applications in cloud networks is an importance
topic, which calls for further study.
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