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Abstract 

This thesis attempts to explain the apparent link between how we navigate the world around us and 

the physical properties that define that world. Despite a number of works indicating the substantial 

effect of the layout of the environment – both as a whole and within a viewpoint – no work to date 

has directly attempted to address how and what physical properties shape our navigation through 

space. This research question is examined in the context of a direct relationship between the physical 

environment and our movement choices – an affordance. To test this idea, the question is approached 

from the ground up using a combination of spatial analysis, mathematical modeling, and behavioural 

analysis, to reveal that a small family of local perceptual variables, but particularly that of mean 

surface depth, is capable for accounting for much of our movements in space, even when the 

environment is largely disorganized. Using Factor Analysis (Chapter Two), three studies using data 

drawn from both artificial and real-world spaces reveal a critical link between the local perceptual 

characteristics of the environment and properties and the complexity of space lying outside the local 

perceptual space. Chapter Three explores the capacity of these specific local perceptual variables to 

guide navigation behaviour in a way that is consistent with the concept of an affordance. Across all 

approaches, the variable of mean surface depth is shown to both systematically relate to the layout of 

the world around us and guide our movement choices within that world. In establishing this 

affordance – Depth Afforded Navigation – a novel link between studies of local perception and the 

layout of space can be established and built upon in future work. This work not only sheds new light 

on how common patterns of navigation behaviour occur, but also allows the often disparate 

approaches (i.e., space syntax, isovist analysis, angular segment analysis, etc.) used to understand the 

role of space to be understood under one unifying model. 
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Chapter 1 
Understanding How Spatial Variables Shape Movement 

1.1 Introduction 

For over a century, urban planners and architects have had an intuitive understanding that people 

navigate the world in common ways – most influenced by how an environment has been configured. 

One classic example of this can be found in the approach used to design Grand Central Station in 

Glasgow, Scotland (Matheson, 1909). Matheson noted that a mass of people showed a tendency to 

move through the space around them like the flow of water, traveling along the lines of least 

resistance. Resistance could take a number of forms – a reduction of the size of a walkway, the 

enclosure of an open space with walls, or the presence of other people. Critically, Matheson noted 

that the flow of water alone (that is, without considering the experience, abilities, or goals of the 

individual navigators) could accurately predict where people would move and where they would 

congregate. This observation suggested an essential link between the geometry of an environment and 

the behaviour of people within such an environment. This initial example was later confirmed in 

stochastic (Mayne, 1954) and physics-derived (Helbing, Molnar, Farkas, & Bolay, 2001; Helbing, 

1993; Helbing, 1992; Henderson & Jenkins, 1974) models that predict the movement of crowds by 

referencing the shape of surrounding space and momentum of movement.  

Recent work within a subfield of architecture and urban planning known as Space Syntax (Hillier, 

1996; Hillier & Hanson, 1984) suggests a more complicated picture of how the geometry of an 

environment might shape people's navigation and behaviour. Space Syntax includes a number of 

theories and techniques which are meant to quantify the structure of an environment by reducing the 

environment to simple mathematical descriptions of the unique paths and/or sight lines available 

within that environment. In contrast to the water flow technique employed by Matheson and the 

mathematical models derived from physical equations, both of which are greatly influenced by the 

discrete size and shape of space (such as the distance between two points in space or the area around a 

specific point) in determining the capacity for movement, the Space Syntax method instead focuses 

on describing an environment through the relationship between each unique pathway in an 

environment and all other pathways found nearby. To achieve this, open space in an environment is 

decomposed into two elementary features: (1) available pathways or lines-of-sight, defined by straight 

lines (termed: axial lines) between each discrete space in an environment and (2) the 

intersection/choice points created at the intersection of each axial line (Hillier & Vaughan, 2007; 
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Hillier & Hanson, 1984). This simple description of space – of paths and their intersections – is then 

examined using graph theory to assess the degree of local (as experienced from a local position in 

space) and global (drawing upon knowledge about the overall configuration of an environment) 

complexity of a location in space. For example, connectivity (sometimes termed degree) is defined as 

the number of intersections between each axial line and all others found within an environment. As 

connectivity only considers those lines directly intersecting with an axial line, ignoring all others 

present in the environment, it is a measure of the local complexity of a space. In contrast, integration, 

the average number of turns (or nodes that must be traversed) to go from one axial line to all other 

axial lines in environment, is a measure of the global complexity of a space. Figure 1.1 provides a 

concrete example of how these two measures can be computed for a simple environment.  

Early behavioural studies applying the Space Syntax approach were interested in how the 

complexity of an environment can shape how a crowd moves through space. Similar to the water-

based and mathematical models, these early studies counted the number of people at each location in 

an environment at various points of time (this approach is sometimes known as aggregate traffic 

analysis) in various cities and buildings. These studies of aggregate traffic revealed a strong 

correlation between the number of pedestrians (Hillier, Burdett, Peponis, & Penn, 1987; Hillier, Penn, 

Hanson, Grajewski, & Xu, 1993; Hillier et al., 1987) or vehicles (Penn, Hillier, Bannister, & Xu, 

1998a; Penn, Hillier, Bannister, & Xu, 1998b) passing through a location and the corresponding level 

of local and global measures derived by Space Syntax. Overall, the strongest correlations between the 

amount of traffic passing along roads and hallways were noted for the measures of connectivity and 

integration introduced earlier (see Penn, 2003 for a review). Further, when the overall complexity of 

an entire environment or neighbourhood was examined – an idea that can be captured by how well the 

global complexity of an environment correlates with the local complexity of space (termed 

intelligibility) – traffic was shown to follow the expected paths (that is, high connectivity and/or high 

integration) when the overall correlation between the local and global variables was high (e.g., Penn, 

2003). When the correlation between connectivity and integration was reduced in a complex 

environment, such as the winding streets of Rome or London, the movement of individuals was much 

more varied. Together, these studies of aggregate movement appear to suggest that individual 

navigators are driven by these local and global measures of spatial complexity. 
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Figure 1.1 A depiction of the Space Syntax method for axial analysis. The dashed lines and solid line 

represent potential lines-of-sight or available paths (i.e., axial lines) available within the environment. 

The solid line demonstrates how data is quantified relative to a specific axial line.  
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Studies of individuals navigating various real (Hillier & Iida, 2005; Haq & Zimring, 2003; Haq, 

2003; Peponis, Zimring, & Choi, 1990) and virtual (Barton, Valtchanov, & Ellard, 2014; Conroy 

Dalton, 2003; Conroy, 2001) environments have shown correspondence with this view. For instance, 

Conroy (2001) demonstrated that individual navigators followed more direct paths toward a goal and 

reduced route redundancy in highly intelligible environments versus less intelligible environments. 

The routes of individuals have also been shown to be more similar to each other in highly intelligible 

spaces than routes in low intelligibility spaces (Barton et al., 2014; Conroy, 2001). Individuals also 

show a tendency to follow paths with higher connectivity when they are unfamiliar with an 

environment, and shift toward using paths with higher integration as their familiarity with an 

environment increases (Hölscher, Brösamle, & Vrachliotis, 2012; Haq & Zimring, 2003; Haq, 2003). 

These findings are interesting because they strongly suggest that a considerable portion of human 

navigation can be accounted for by the complexity of surrounding space, independent of individual 

goals, spatial knowledge, or individual differences. Without factoring in individual differences, 

intelligibility and the topological measures of Space Syntax have been shown to account for between 

40-50%  (Barton et al., 2014) and 60-80% (Penn, 2003) of the variation in individual movement. It is 

these results that have caused many to argue (summarized in Penn, 2003) that navigation of 

individuals and crowds is directed by variables that capture the complexity of surrounding space.  

Taken as a whole, Space Syntax suggests that the ease with which a space can be perceived and 

represented strongly influences how we navigate. This position is supported by evidence that suggests 

that more directed and linear forward motion is observed when an environment is predictable, that is 

highly intelligible (Conroy, 2001). Across a person’s route through an environment, each turn has 

been shown to conserve linearity, minimizing the angle with which the route deviates at intersections 

or choice points (Conroy Dalton, 2003). Together, these studies suggest that we move toward 

locations that offer increased connectivity and integration as they conserve forward motion. 

Consequently, the influence of the complexity of space on behaviour is achieved by directly 

perceiving information about the configuration of space (both locally and globally) in the surrounding 

environment, an idea known as exosomatic visual architecture (Turner, 2006; Penn, 2003; Turner & 

Penn, 2002). Fundamentally, the influence of the local and global configuration of space must be 

found in the local environment in order to observe consistent, characteristic, patterns of movement.  

However, to date, little direct evidence exists to link the perception of local spatial information 

with the tendencies to follow paths that reduce local and global complexity such as in intelligibility 
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analysis (Montello, 2007). Despite this, many authors (e.g., Emo, Hölscher, Wiener, & Dalton, 2012; 

Wineman & Peponis, 2010; Maier, Fadel, & Battisto, 2009; Turner, 2006; Penn, 2003; Turner, Doxa, 

O'Sullivan, & Penn, 2001; Hillier, 1999) have attempted to account for consistencies in how people 

navigate or behave in space by proposing that a direct relationship must exist between the perception 

of visual space and the action of locomotion. Crucially, the basis for this relationship has been 

proposed to be direct, taking on the form of an affordance, part of the ecological theory of perception 

(Gibson, 1979). It is this presumption that my thesis will seek to examine to determine the sufficiency 

of the position that affordance and exosomatic visual architecture is capable of explaining how we 

move through complex urban environments. To achieve this, my thesis will examine whether 

common patterns of movement fit the constraints outlined by the ecological theory of perception.  

1.2 Ecological Perception and the Theory of Affordances 

The theory of perception was first put forward by J.J. Gibson (1950) as an explanation of the close 

fit between our perceptions of the world and our actions within the world. Gibson noted that there are 

stable characteristics of the physical world that provide useful information, allowing an organism to 

act upon the world. Gibson (1950) posited that this was achieved by an organism sampling the 

structure of the world around them for patterns, gleaned from consistencies in how light (or other 

sensations) are perceived as the organism moves and acts upon the world. In the case of light 

perceived through the visual system, the patterns formed by the texture that composes a surface and 

the contours that define its dimensions provide critical information about the arrangement of the 

physical world around the organism. In identifying systematic patterns in how the visual field 

appears, the organism can therefore identify the layout of surrounding space in a systematic way – the 

optic array. One reason for believing this was found in early observational studies of World War II 

pilots (Gibson, 1950). Gibson observed that pilots tended to orient themselves (and their aircraft) 

based on visual characteristics of the ground rather than based on other types of sensory feedback 

(such as the vestibular system). From this, he reasoned that the optic array was critical in determining 

how to orient and act upon the world, even when other forms of sensory information are available. 

The systematic patterns that are observed in nearby space and that compose the optic array were 

later elaborated to be the product of the perception of invariants (Gibson, 1978; Gibson, 1966). At the 

most basic level, vision can be thought of as a combination of static (viewing a specific location in 

space from a specific point) and dynamic (changes in the visual field observed through movement and 

action) information. Static viewing of the world, perceiving properties like texture, luminance, 
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contour, et cetera, can describe the perspective structure of the world around us. However, the 

usefulness of perspective structure is limited because it does not describe how the world is made up of 

objects but rather it simply describes visible surfaces. In contrast, each time you take a step in any 

direction, the perspective structure changes, sometimes quite radically, providing very different (but 

supplementary) information about the structure of the world around us. This is because as we move, 

certain consistencies can be perceived when examining how the perspective changes with each 

movement that were not available in the static perspective structure alone. These consistencies 

compose the invariant structure of the world around us. That is, we can understand the layout of the 

world around us (and its component objects) by perceiving those properties that remain stable, 

independent of our actions. Gibson reasoned that these stable characteristics of the world, termed 

invariants, are what guide behaviour and action, an idea that would form the basis of the theory of 

direct perception and ecological perception (Gibson, 1978; 1966). Many invariants have been 

identified, including perceived continuity, rectilinearity, margins between illuminated patches, and 

relative layout of surface structure, to name a few. In each case, one or more invariants provide a 

description of the location and shape of physical objects through the persistence of each visual 

property throughout action. Invariants are able to drive action by the organism mapping a physical 

capability that it has on to the structure of the world as defined by the perceived invariants. Certain 

perceived invariants, such as the size of an object or surface, will constrain the actions that are 

available to the organism. Gibson termed this idea affordance. A relatively simplistic example of 

these ideas can be understood by describing the affordance of grasping. The size and shape of a rock 

can be described by a number of invariant properties, independent of the perspective a person takes at 

viewing the rock. By mapping the invariants of size and shape onto action capabilities of a person, 

such as the diameter of your hand and the number of digits, you can determine whether that rock can 

or cannot be grasped. Thus, at the most fundamental level, the invariants of size and shape afford the 

act of grasping. This bottom-up view of action selection, where low-level visual information rather 

than top-down or cognitive processing drive action, are fundamental to affordance and direct 

perception (Gibson, 1978). 

The idea of affordance has been well studied outside of the field of human navigation. One 

classical example of this is in the visual cliff paradigm. In this paradigm, infants are placed in front of 

an apparent drop-off and their behaviour is passively observed. Infants that are not yet able to walk 

independently often will move toward the apparent drop-off. In contrast, infants that have acquired 

the capability to walk independently avoid the apparent drop-off. This suggests that the action 
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possibility of movement must be matched with the perception of the apparent cliff for the affordance 

of falling to be understood (and acted upon) by infants (Adolph, Ketch, & LoBue, 2014). Adults have 

also been shown to reference physical capabilities when performing actions. In one example, adults 

have been shown to climb stairs by referencing the fit between the length of their legs and the height 

of the riser, choosing stairs with the optimal fit between riser height and the length of their legs 

(Warren Jr., 1984). A similar affordance has been demonstrated for shoulder width and the diameter 

of a doorway (Warren Jr & Whang, 1987). In each case, affordance has been shown to be useful in 

understanding how relatively simplistic choices of actions are made by referencing the properties of 

the invariant structure in the surrounding world.  

To date, however, despite the presumption that affordance is guiding more complex behaviour – in 

this case, spatial navigation – no studies have examined whether affordance is a reasonable 

explanation for how we choose to move through urban spaces. In the present work, I will develop an 

account of navigation behavior from the ground up using an approach motivated by Gibson's theory 

of direct perception and affordance. To achieve this, and determine fit with the aforementioned 

implicit hypothesis that spatial information is directly perceived prior to navigating through the 

world, the space around a navigator will be described by isovists. 

1.3 Isovists As Capturing Directly Perceived Visual Properties 

Isovists were first conceived by Hardy (1967), and later named isovist analysis by Tandy (1967), as 

a method of describing the shape of nearby landscape features from a specific viewpoint. At the most 

basic level, isovist analysis provides a means to systematically describe the structure of surrounding 

space. This is achieved by casting rays out from the position of interest and recording points in space 

where the nearest physical (that is, occluding) surface is encountered. An isovist, therefore, reduces 

visible space to a description of space that is the product of relatively low-level visual features: the 

edges of surfaces and the textural gradients that define their position and shape in space. These 

features are considered easily perceivable by humans and were thoroughly investigated by Gibson 

(1979) in his theory of direct perception (and, indeed, ecological perception). As such, the isovist can 

be considered analogous to the perspective structure provided by the optic array. One example of an 

isovist and how it captures the structural properties of space is provided in Figure 1.2. Similar 

techniques to that of isovist analysis exist in other fields, such as viewshed analysis (Lynch, 1976; 

focusing on elevation of nearby landscape geometry) and geometric analysis (Gallagher, 1972; 

interested in intervisibility of two or more locations), are less parsimonious with an optic array.  
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Figure 1.2 A depiction of how an isovist described nearby space. The left pane shows a typical view 

of the world around a person. Black lines have been added at the base of the lower contour of each 

building to represent how the walls of each building constrain vision. The right pane presents how 

each of these edges corresponds to an edge in the visibility polygon, the part of the isovist lying 

within the viewing angle of the observer, depicted in grey. 

  



 

 9 

Isovists, therefore, represent a reasonable way to approximate how the world is perceived by 

individuals. Additionally, as the isovist is simplified to describe the location and size of unique 

incident surfaces, it effectively captures the invariant features of the surrounding world. This is 

because the layout of nearby surfaces relative to an organism is precisely what the optic array and 

patterns of invariance capture. 

Having established the isovist as an adequate tool for capturing how an organism may perceive the 

world, the question of how a person may perceive this information is made apparent. There are many 

different ways that a person may perceive the structure of their surrounding world, ranging from those 

capturing the approximate shape or size, to those describing how enclosed a space is. Benedikt (1979) 

proposed that the isovist polygon can be decomposed into the distinct properties, such as area, 

perimeter, occlusivity (the total perimeter lying in open space), and circularity (the ratio of the area of 

the isovist to the area of a circle with identical perimeter), each of which were demonstrated to be 

perceivable by individuals. Subsequent to this early work, a much wider variety of perceived spatial 

properties have been found to be influence both spatial preference and navigation choice. For 

example, compactness (termed jaggedness by the authors) and openness (ratio of occlusivity to total 

perimeter) have been shown to be associated with locations that offer the best hiding place and best 

overview of a room, respectively (Franz & Wiener, 2008; Wiener et al., 2007). Other work derived 

from principal components analysis (PCA) suggest that many isovist measures effectively describe 

how space conserves or restricts the viewing of nearby space (Stamps III, 2005). PCA has also been 

used to classify intersections based on their isovist shape. Meilinger, Franz, & Bülthoff  (2012) found 

a higher level of disorientation and poorer spatial memory performance at T-intersections versus non-

T intersections, as categorized by PCA. These data suggest that the shape of local visual space is both 

perceived and may be an important determinant in how we interact with the space around us. 

A number of studies place emphasis on measures of spatial extent as being a key determinant in 

spatial behaviour. Area has been found to be associated with a person's preferred route in both virtual 

(Emo, 2014; Franz & Wiener, 2008) and real urban environments (Dzebic, Perdue, & Ellard, 2013; 

Wineman & Peponis, 2010; Batty, 2001) environments. People have also been shown to prefer to 

move in the direction of longest sight lines (Wiener, Hölscher, Büchner, & Konieczny, 2012). That is, 

in making decisions about where to move, the size and not simply the shape of space appears to be 

influential.  
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Together, these findings provide sufficient evidence to consider measures derived from isovists to 

represent systematic properties in space that can be easily perceived as a function of the size and 

shape of space around a viewpoint. Consistent with affordance and direct perception, isovists appear 

to meaningfully capture the properties of space represented by the optic array and therefore may, 

critically, afford movement through urban environments. 

1.4 The Capacity of the Brain to Encode the Geometry of Space 

While a theoretical fit between an isovist's depiction of space and the optic array has been 

presented, navigation has traditionally been viewed as the product of a more complex network of 

systems in the brain. For example, spatial memory is considered crucial for finding one's way 

successfully between landmarks and in identifying which locations define landmarks, heavily 

influencing the type of strategy used to navigate the world (e.g., Golledge, 1999). However, often 

receiving less attention is the capacity for the brain to represent and understand space in purely 

geometric terms (such as those described by the shape of an isovist polygon) in the absence of spatial 

memory or strategic biases. This type of perception/encoding is both critical to the argument that 

affordances may drive navigation choice but also is essential to understanding how navigation 

behaviour may be driven in unfamiliar environments. 

Fundamentally, an isovist can be considered an abstraction of surrounding space into simple 

descriptions of the surrounding geometry alone, as in the optic array underlying affordance. The first 

evidence for the brain's capacity to encode purely geometric features of space was presented by Ken 

Cheng (1986). In one study, rats were trained in a rectangular enclosure with small panels in each 

corner, identifiable by texture and colour. Each rat was trained to find a reward that was located at 

one of the four corner panels through repeated exposure to food reward at specific locations. 

Interestingly, when the food reward was not placed at the learned locations, the rats were found to 

search for food at the corner where the food was previously located and the corner that was 

diagonally opposite to this position. This finding provided initial evidence that the geometry of the 

space was being encoded by the brain and, in Cheng’s procedure, even seemed to supersede purely 

visual or textural landmarks. Other work has demonstrated that the inclusion of a more explicit 

landmark feature did not reduce these errors, suggesting preferential encoding of geometric 

information in guiding navigation (e.g., Wall, Botly, Black, & Shettlesworth, 2004). This finding has 

also been demonstrated in experiments using monkeys, suggesting that the use of geometry to find a 

location is generalized beyond experiments with rats (e.g., Gouteux, Thinus-Blanc, & Vauclair, 
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2001). Furthermore, the influence of the geometry of space has been demonstrated to be independent 

of distant visual cues lying outside the experimental apparatus and to persist in the presence of other 

types of landmark information, such as that of the angle of the corner (Margules & Gallistel, 1988). 

This pattern of results has been demonstrated across a variety of different types of environments and 

paradigms, including the Morris water maze (Benhamou & Poucet, 1998), triangular maze (Pearce, 

Ward-Robinson, Good, Fussell, & Aydin, 2001) and hidden platform task (Hayward, McGregor, 

Good, & Pearce, 2003). The tendency to use geometric cues has, however, found to be diminished in 

aversive conditions (Golob & Taube, 2002; Gibson, Shettlesworth, & McDonald, 2001) suggesting 

that the importance of geometric information is only observed under appetitive conditions (i.e., 

exploring an novel environment or effortfully wayfinding to a goal location). The strength of these 

findings have caused some to argue that the brain must possess a geometric module for encoding 

geometric information (Cheng & Newcombe, 2005; Cheng, 1986). 

Rats have also been shown to be influenced by the overall configuration of an environment in a 

manner resembling experimental outcomes from manipulations of the space syntax measure of 

intelligibility. In one example, rats freely navigating an open field apparatus that contained a number 

of objects (uniform in shape) arranged in a uniform grid (evocative of high intelligibility 

environments) or a deformed grid (i.e., low intelligibility) were found to travel further, examine more 

objects, and follow a more orderly path when the overall environment was uniformly arranged than 

when it was deformed (Onsat, Portugali, & Eilam, 2011). This finding bears close similarity to the 

movement of humans in intelligible and unintelligible spaces (Penn, 2003) and suggests that both 

local and global geometry are important in guiding behaviour. 

Studies of human participants have also shown an influence of geometric cues. In a series of 

studies based on the earlier animal models, children have been shown to search either the correct or 

geometrically equivalent corner for a target item after becoming disorientated (Hermer, 1997; Hermer 

& Spelke, 1994). In a square room with one wall painted a distinctive colour, children were found to 

frequently examine geometrically equivalent corners regardless of how much experience they had 

with other types of cues that were also present in the room, such as the colours of the walls (Wang, 

Hermer, & Spelke, 1999). This result has also been replicated in a triangular shaped environment 

(Huttenlocher & Vasilyeva, 2003). Interestingly, adults who were normally able to make use of 

landmarks were found to revert to a geometric strategy when engaging in a verbal shadowing task but 

not a non-verbal shadowing task (Hermer-Vazquez, Spelke, & Katsnelson, 1999). Together, these 
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results suggest that both adults and children encode geometric and landmark information separately, 

with purely geometric information representing a default strategy.  

The encoding of geometric information has been demonstrated to be independent of self-motion 

information, suggesting that it is the direct perception of geometry itself that is encoded by the brain. 

Adults who performed a spatial updating task in a variety of virtual environments differing in their 

rotational symmetry (e.g., square, rectangle, trapezoid) were found to point more accurately toward 

the location of a learned landmark as a function of the number of corners of an environment. In a 

second experiment, the shape of the room was manipulated such that the angle of the walls behind the 

participant was changed when the participant moved away from them, thus preserving self-motion 

information but distorting visual information about the geometry of the space. A significant 

relationship was observed between the number of path segments made by the participant and a 

reduction in pointing accuracy. As self-motion in the forward plane was maintained, the authors 

contended that geometric information must have been encoded to support pointing-task performance 

(Kelly, McNamara, Bodenheimer, Carr, & Rieser, 2008). These and other results have subsequently 

been argued to suggest a capacity to encode local geometric space through purely visual means 

(Gallistel, 1990; Gallistel, 1980).  

The studies of both animals and humans outlined here (and many others in the literature) support 

the idea that we can encode the geometric properties of the environment as characterized by the 

isovist, quickly and efficiently. Isovists are therefore considered a plausible way to describe how 

people encode or perceive space. 

1.5 The Present Work 

Given the considerable body of evidence that supports the role of affordance and/or exosomatic 

visual architecture on navigation, the present work attempts to establish the sufficiency of direct 

perception and affordance in accounting for common tendencies in how we navigate space. This is 

considered essential, as it will both establish whether affordance is capable of explaining navigation 

and identify practical – testable – spatial properties for use in future models of these phenomena. This 

is achieved in two parts by establishing the theoretical (Chapter Two) and empirical (Chapter Three) 

fit of local visual variables for explaining common patterns in navigation using principles of direct 

perception.  The emphasis of this work is on explaining behaviour in novel, unfamiliar environments 

as these environments would be furthest removed from the influence of spatial memory and therefore 
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should be most affected by affordance. Additionally, by understanding how affordance may or may 

not drive navigation in unfamiliar environments, we may also gain insight into the underlying sources 

of bias that effect movement either fully (in the case of unfamiliar environments) or partially (as in 

familiar environments), essential to better models of navigation as a whole. 

First, Chapter Two establishes whether locally-derived properties may exist that can explain the 

apparent influence of local and global measures of the complexity of space. This is necessary to 

establish the local properties of space that may serve as a configurational affordance in the theory of 

exosomatic visual architecture and fit the definition of an affordance. Without evidence for a shared 

relationship between measures of the complexity of space (as captured by Space Syntax analysis) and 

local visual features, no present theory or mechanism can account for common patterns observed 

during spatial navigation nor explain how we navigate successfully in unfamiliar spaces. To describe 

these relationships, factor analysis was used to simultaneously classify local (through factor loadings) 

and global spatial variables into common emergent factors and to assess the strength of the 

relationship between these emergent factors (through correlation amongst latent factors), particularly 

between those factors found to influence the complexity of a space and the size and shape of local 

visual space. To elaborate on the character of these emergent factors, a number of novel variables 

were employed to evaluate the degree of overlap between different types of descriptions of local 

visual space. Data were derived from both synthetic and real-world environments, varying in their 

spatial complexity/intelligibility. The resulting model indicated the presence of one promising latent 

variable – that of the local extent of surrounding space – capable of accounting for a considerable 

proportion of the variation in space both locally and globally (lying outside the present field-of-view). 

In addition, a number of other emergent factors were observed, consistent with previous variables 

influencing prospect and refuge (Appleton, 1996) and their relationship with the complexity and 

extent of space was described. The robustness of the findings was confirmed by examining the fit of 

the identified factor model with two contrasting large-scale real-world spaces, New York City (USA) 

and the City of London (UK). For the first time, the results establish the presence of a fit between 

local perceptual properties of space and spatial information lying outside the present viewpoint, 

sufficient to ground an account of movement through complex urban spaces in terms of the invariants 

found in local visual space. 

Chapter Three builds on the finding of Chapter Two by explicitly testing whether local extent, as 

captured by area, perimeter, and mean surface depth, shapes movement through space in both 
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aggregate (Experiment 1) and individual navigators (Experiments 2 through 4). This chapter focuses 

specifically on establishing whether each invariant fits the definition of an affordance as outlined by 

Gibson (1979). Aggregate traffic is first examined using a number of mathematical models relating 

common patterns of movement to the use of invariants at a local (always maximizing the property 

with each ‘step’) and global (always steering toward locations with an ideal level of the property in an 

environment, regardless of local level) or a hybrid model. GPS data within the City of London were 

examined against each mathematical model to assess the efficacy of each model. Strong evidence is 

found to support the idea that traffic is actively drawn toward particular locally defined invariants, 

maximizing the level with each step. In particular, evidence is found for the novel parameter of mean 

surface depth in shaping general traffic and producing common behavioural preferences. Next, across 

three experiments (2 through 4), the fit for each invariant identified in Chapter Two was further 

established by assessing the core tenets of the theory of direct perception. That is, navigation 

behaviour is examined for a critical point (the point at which a property and navigational preference 

is maximized) and singularity (behaviour is maximized around a single, specific, level of the factor) 

in Experiments 2 and 3. The invariant of mean surface depth is shown to have optimal fit with the 

concept of an affordance (Experiment 3). This finding is notable because the affordance relationship 

not only was identified that can predict behaviour consistent, even in low intelligible spaces, where 

traditional measures have, so far, been insufficient. Finally, Experiment 4 assesses whether the 

affordance relationship is affected by accounting for a number of measures of spatial attention and 

cognitive ability. No significant relationship was observed between the affordance relationship 

defined by mean surface depth and navigational preference and psychometric variables, consistent 

with Gibson's definition of an affordance as a bottom-up process largely independent of cognitive 

processing. Cognitive variables were shown to influence some aspects of spatial behaviour (pausing-

in-place), but not the affordance relationship. Finally, participants were shown to direct their gaze 

preferentially toward the critical point as defined by the invariant of mean surface depth, supporting 

the idea that this factor is actively perceived and explored throughout navigation. 

Taken together, this body of work establishes experimentally that a single specific spatial 

affordance is capable of driving both individual and aggregate navigation through the world. This 

affordance is best informed by the invariant property of mean surface depth leading me to name this 

initial model of behaviour as Depth Afforded Navigation. Vitally, the effect of this affordance 

relationship is found to be consistent across spatial context, suggesting a common general mechanism 

that is independent of context. In achieving these findings, this thesis provides evidence to support the 
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idea that affordance drives navigation in a manner consistent with findings attributed to both local 

(isovist-derived) and global (Space Syntax-derived) measures of space. In doing so, the present work 

may serve as a bridge to span the gap between a number of different research approaches, allowing us 

to understand the mechanism(s) driving human navigation in concrete and testable terms. It is through 

this rigorous examination of the theory of ecological perception and affordance that the precise 

mechanisms underlying navigation may be better understood, allowing future work to establish the 

role of navigation-specific spatial affordance, spatial preference, and local visual search.  

In Chapter Four, the results are discussed within the context of the state-of-the-art understanding of 

spatial cognition within psychology. Future directions and limitations are also introduced in this 

chapter. 
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Chapter 2 
Can The Local Structure of Space Explain the Efficacy of Space 

Syntax? 

2.1 Introduction 

Over the years, various approaches have been used to examine and predict where people navigate 

toward or what routes they may use to get between an origin and a destination. Broadly, these 

approaches can be broken up into two categories: (1) those describing the global complexity of the 

surrounding environment and (2) those describing the importance of a location on a more local scale. 

While each type of explanation may seem self-contained, there is an inescapable link between the two 

because they are both shaped by how an environment has been arranged. By placing a town square on 

a specific road or by constructing buildings with slightly different offsets, both the local and global 

parameters defining how space is arranged are modified. It is this inexorable link between the two – 

driven by the morphology of space as a whole – that allows for the possibility that a small number of 

emergent properties may be capable of explaining how spatial properties are useful for a navigating 

person. Accordingly, the overarching goal of this analysis was to identify whether one or more 

emergent properties exist that can simultaneously explain the success of measures of global spatial 

complexity (i.e., Space Syntax) and more local ones (i.e., isovist-derived properties). 

As described in Chapter One, Space Syntax attempts to capture the complexity of an urban space, 

be it at the scale of an entire city or in the context of the interior of a single building, by examining 

the structure of the spatial system formed by the arrangement of roads and/or hallways (Hillier, 1996; 

Hillier & Hanson, 1984). At the core of this approach is the concept of an axial map, which has been 

defined as either the finite set of straight lines (axial lines) sufficient to explore an entire environment 

(Hillier, 1996) or the minimal or sufficient set of axial lines sufficient to describe the environment 

efficiently (Turner, Penn, & Hillier, 2005). The resulting depiction of space can be converted to graph 

form by quantifying how some or all of the other potential paths in the environment relate to each 

individual path within the environment. In this type of depiction, the complexity of space is therefore 

reduced to the number of available options each theorized path allows for. With this in mind, the 

complexity of space can be defined either locally (lying in immediate space) or globally (describing 

the environment as a whole or distinct neighbourhoods). Locally, complexity can be defined via 

connectivity (the number of intersections or available paths directly available from the present path). 
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Globally, mean depth can be used to capture the structure outside of the immediate area – the mean 

distance of one location to all other locations in an environment. Mean depth can further be 

decomposed into integration by assessing how much the mean depth varies from a symmetrically 

arranged environment (by dividing the mean depth of the graph by the ideal mean depth observed in a 

perfectly symmetrical diamond graph of identical size; for a complete description of this method, see: 

Park, 2005).  

Prior research has shown that a strong correlation exists between pedestrian and traffic flows and 

the level of connectivity and integration at a specific locations in an environment (Hillier et al., 1993; 

Peponis, Hadjinikolaov, Livieratos, & Fatouros, 1989). This finding has been widely established 

across a variety of different environments (Penn, 2003) indicative of the potentially powerful role of 

variables capturing environmental complexity in predicting behaviour. These effects have also been 

observed in the paths of both experienced and inexperienced navigators (Emo, 2014; Emo et al., 

2012; Hölscher et al., 2012; Haq & Zimring, 2003; Haq, 2003) and is enhanced if the complexity of 

the environment is assessed more locally, by only examining those axial lines within a radius of 3 

turns (Haq, 2003). Together, these findings and approaches support the idea that spatial complexity 

can influence navigation behaviour, forming the basis of the theories of exosomatic visual 

architecture and the role of affordance in urban navigation. In both cases, a general drive to orient 

toward areas of reduced complexity is strongly suggested. 

Several scholars have extended axial analysis by considering how each segment of an axial line 

conserves the direction of travel. Agent-based simulations (Penn & Dalton, 1994a) and behavioural 

experiments (Conroy Dalton, 2003; Conroy, 2001) have shown that individual navigators minimize 

their turning behaviour when navigating an environment. Agents specifically designed to minimize 

turning when navigating to a target have been shown mirror the behaviour of pedestrians and 

vehicular traffic (Penn & Dalton, 1994a). Individual navigators travelling to a destination have also 

been shown to prefer to minimize deviations in their trajectory when navigating toward a destination 

(Conroy Dalton, 2003). Likewise, the angle formed by adjoining axial lines has been demonstrated to 

be predictive of pedestrian densities (Hillier & Iida, 2005), forming the basis for a technique called 

angular segment analysis. The tendency to minimize angular deviation has also been demonstrated in 

the shape of planned routes (Bailenson, Shum, & Uttal, 2000) and in tasks measuring the accuracy of 

pointing toward an unseen landmark (Montello, 1991). One explanation for this effect is that 

individuals appear to encode space in inexact terms when it comes to the angle offered by individual 
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paths. For example, people show a tendency to straighten two paths to be more parallel than they are 

(Tversky, 1992; Tversky, 1981) or to believe turns consisting of acute angles are right-angled 

(Sadalla & Montello, 1989) when examining sketch-maps of environments. Taken together, these 

results suggest that space may be perceived and encoded in terms that are consistent with those 

derived from an axial map rather than simply and directly from local perceptual variables. 

However, this concept is inconsistent with the often cited idea that direct perception and 

affordance are driving these findings (e.g., Emo et al., 2012; Wineman & Peponis, 2010; Maier et al., 

2009; Penn, 2003; Turner et al., 2001; Hillier, 1999). To be an affordance, information must be 

directly perceived by an organism. Clearly, locally derived variables would have to be either partially 

or wholly involved in guiding the types of spatial behaviour observed to be influenced by the 

structure of space for an affordance to exist. Therefore, it should be expected that locally derived 

information – such as that of the isovist and its relation to the invariant structure of space – should 

influence navigation behaviour in a similar way to that of more global variables of complexity. 

A variety of studies support the idea that locally-defined information is capable of systematically 

driving a number of different types of spatial behaviours. The area of an isovist and its relative 

compactness (the degree to which the shape of an isovist approaches that of a circle of identical radius 

as a function of area) appear to be associated with both spatial preference (Franz & Wiener, 2008; 

Wiener et al., 2007) and are predictive of preferred routes (Meilinger, Franz, & Bülthoff, 2012; Franz 

& Wiener, 2008; Wiener et al., 2007). Isovist area alone has also been found to be strongly associated 

with how preferred a location is in virtual (Emo, 2014; Franz & Wiener, 2008) and real (Dzebic et al., 

2013; Wineman & Peponis, 2010; Batty, 2001) environments. The size and shape of local visual 

space has also been shown to influence overall appraisal of the relative value of specific locations. 

For example, in architectural practice, buildings that are more open and spacious are seen as more 

attractive than those that are not (Handlin, 2007). In picture studies, people have been shown to prefer 

pictures of locations that maximize the ability to perceive information and are embedded in easily 

understood locations (Kaplan & Kaplan, 1989; Kaplan & Kaplan, 1982). Locations that offer the 

potential to experience new information upon moving (termed: mystery) have also been shown to be 

preferred both behaviourally and emotionally (Kaplan, 1988; Kaplan & Kaplan, 1982). Together, 

these studies strongly implicate measures of the complexity of an isovist beyond those of area alone. 

Recently, building on the idea behind isovist analysis, Wiener, Hölscher, Büchner, and Konieczny 

(2012) showed that people are not only influenced by isovist variables but they also direct their gaze 
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toward specific characteristics of the environment. In their study, pictures were decomposed into 

isovists by tracing the lower contour formed by walls (identical to the method depicted in Figure 1.1). 

This approach places emphasis on the edges of surfaces as they define the change in contour, much 

like the vertices in a traditional two-dimensional isovist polygon. The authors found that participants 

tended to fixate on the vertical edges of surfaces (i.e., walls and other obstructions) when making 

wayfinding decisions. In contrast, when participants were asked to make a decision about which way 

to move, they chose the direction that afforded the maximum travel distance available within the 

visible spatial contour. These results show considerable similarity to those of traditional isovist 

analysis, but they better elaborate the mechanism through which the variables may be perceived by an 

individual as they navigate space. Moreover, the consideration of space as a set of edges formed by 

surrounding surfaces is consistent with the optic array of ambient visual information presented by 

Gibson as part of the process of perceiving an invariant spatial property. 

Here, I examine whether a core set of globally defined space syntax measures can be decomposed 

into a set of locally defined variables, suitable as configurational affordances in exosomatic visual 

architecture and affordances, in general. This is plausible because the placement of boundaries and 

walls that define an environment as a whole fundamentally shape both local and global space (Hillier 

& Vaughan, 2007; Hillier & Hanson, 1984). Despite the definitional overlap between such local and 

global variables, this pattern has not been shown previously, making it difficult to discern the role of 

affordance in driving patterns of movement during spatial navigation. As was stated in Chapter One, 

the assumption of such a relationship has often been stated as the mechanism behind both exosomatic 

visual architecture  (e.g., Penn, 2003), which proposes that we perceive configurational affordances 

from the environment, and direction perception, as a purely local mechanism driving movement 

through complex spaces. A description of the relationship between the role of local properties – those 

invariants that may inform behaviour – and more global descriptions of configuration are necessitated 

by a lack of evidence that we can perceive or represent configurational information without prior 

exposure. Considerable evidence both in my own work (Barton et al., 2014) and the work of others 

(Conroy, 2001) shows that the efficacy of Space Syntax extends to unfamiliar spaces – spaces where 

foreknowledge about the structure could not or should not exist. 

To place the relationship between the global structure and complexity of space and locally 

perceived space, the relative importance of a location in traversing the environment was assessed. The 

approach used here was to define how traversable or important a position is in space as a function of 
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how easily it supports movement to nearby space. I termed this graph an accessibility graph as it 

described how accessible each location is in an environment with respect to adjacent locations. To 

quantify the importance of each location in the graph, similar measures to that of space syntax were 

employed, assessing how central or important each location an environment is when distance rather 

than pure topology (as in space syntax analysis)  is evaluated. By analyzing this graph using the same 

types of measures of the importance of axial lines in traversing space, the importance metric distance 

in shaping the complexity of an environment can better be understood. While this form of analysis is 

considered new within this context, the general approach of treating adjacent locations as conjoined 

nodes in a graph has been well-established in the fields of robotics and computer science (for a 

general review: Murphy, 2000). 

Finally, building on the findings of Wiener, Hölscher, Büchner, and Konieczny (2012), two novel 

measures were investigated: the number of discrete surfaces present in the local space and the average  

depth to those surrounding surfaces (termed mean surface depth). Here, surfaces were considered to 

be any vertical obstructions, such as a wall or side of a building, that restricts movement. These two 

measures were considered critical as they may better represent the idea of an invariant property as 

outlined by Gibson. More specifically, the idea of the ambient optic array from which invariant 

properties are computed is considered to be made up of information describing shape (Gibson, 1966; 

Gibson, 1950) or edges and texture (Gibson, 1979), both of which are captured by considering 

discrete surfaces in nearby space. 

Therefore, the relationship between the complexity of space (Space Syntax’s axial analysis) was 

assessed in the context of accessibility, angular preservation, and local visual (isovists and surface 

measures) information, simultaneously. To do this, exploratory factor analysis (EFA) was used. EFA 

has been used extensively in psychological research to identify common patterns of variation amongst 

various types of measures (Fabrigar, Wegener, MacCallum, & Strahan, 1999). EFA can be contrasted 

with (and is often inappropriately confused for) principal component analysis (PCA), which instead 

attempts to identify clusters of variables that are redundant with each other. PCA has been used 

previously to examine a wide variety of different isovist measures with some success at 

demonstrating redundancy in the factors that they capture (Stamps III, 2005). However, the goal of 

this chapter was specifically to identify the presence of latent factors that shape local visual space and 

overall global spatial complexity rather than identify redundant measures, so PCA was considered 

inappropriate. Secondly, the strength of the relationship between latent variables can be assessed by 
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rotating the resulting factor model in EFA analysis. Factor rotation, while often used in PCA, has 

been argued to be inappropriate as it asymmetrically distorts the model, producing an artificial or 

distorted solution that no longer relates to the original variables nor has any tangible meaning 

(Jolliffe, 2002). As I specifically wanted to describe the properties of space as they relate to each 

other in meaningful terms, particularly with respect to the correlation between latent factors, EFA was 

considered an ideal technique for both classifying and describing how the variables of interest relate 

to each other. 

The analysis was run on a large number of variables taken from different classes (space syntax, 

isovists, and others) because this approach would allow any relationship between local invariant 

properties and global spatial complexity to be understood in the context of other the overall 

configuration in which these properties are embedded. If the analysis only included isovists and space 

syntax (axial) measures, potentially interesting patterns could be missed and the degree of shared 

variation attributed to each factor may be conflated. Accordingly, the inclusion of the five families of 

measures (axial measures, angular segment analysis, accessibility-graph derived measures, and 

isovist-derived measures) should – both theoretically and practically – increase the accuracy and 

reliability of the resulting models. Theoretical latent factors are identified in Study 1 and Study 2. The 

identified theoretical structure is examined in Study 3 using Confirmatory Factor Analysis (CFA) to 

determine the explicit relationship between variables. 

2.2 Study 1 Identifying Whether Local Variables Can Predict Global Ones 

In this initial study, the data were determined for two synthetic environments often used to depict 

highly intelligible and less intelligible environments. These environments are shown in Figure 2.1 

(upper panels) and were originally proposed by Hillier (1996) to represent the prototypical case 

wherein a high intelligible space is transformed into a considerably less intelligible by simply shifting 

the position of the buildings that composed the environment. The two environments consist of an 

identical set of buildings, arranged in different positions between the two spaces. By shifting each 

building, the overall complexity of the environment increases by increasing the number of paths and 

turns necessary to traverse the environment, reducing intelligibility. 

Together, these environments were considered optimal for a first glimpse into how each spatial 

variable may relate to the others. Cumulatively, the set of both environments describes a wide range 

of views of space that may be experienced in real-world environments. Additionally, as the buildings 
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are identical between the two environments, they describe how each variable may as influenced by 

the overall complexity with which an environment is arranged while controlling unrelated differences 

in spatial geometry (such as in the shape of buildings).  
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Figure 2.1 Plan views of the simulated environments used in Study 1 (upper panel) and Study 2 

(lower panel). Environments in the left panes represent highly intelligible spaces while environments 

in the right panes represent low intelligibility cases. 
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2.2.1  Methods 

2.2.1.1 Factor Extraction 

A total of 22 variables were examined to identify any common latent factors capable of explaining 

the similarities between axial, angular, accessibility, and isovist-derived measures. All variables were 

standardized to eliminate any effect of scale across variables. The unweighted least squares (ULS) 

extraction method was used as it has been shown to be a robust to potential violations of normality 

and outliers (Zygmont & Smith, 2014). The resulting model was rotated using an oblique Promax 

rotation method (κ=2) to assess the strength of association between latent factors because a non-zero 

correlation between any identified emergent properties is both unrealistic in most real data (Fabrigar 

et al., 1999; Gorsuch, 1997; Cattell, 1952; Thurstone, 1947) and is, in fact, how variables of space 

should function (changing properties in local space have a corresponding influence on more global 

properties by mere fact that the two are controlled by structure). Should latent factors actually be 

independent of each other, only small correlations would be expected to be found amongst latent 

factors and an orthogonal rotation scheme (one which assumes no relationship between factors) 

would instead be indicated. 

 The number of factors retained in the final model was determined by comparing the results of the 

traditional Scree test (Cattell, 1952), and the more modern techniques of the Hull method (Lorenzo-

Seva, Timmerman, & Kiers, 2011) and Comparison Data (Ruscio & Roche, 2012). For the Hull 

method, 500 permutations were employed. For the Comparison Data method, 10000 samples of 

comparison data were generated with 500 samples drawn from each factor population. By using a 

variety of methods the resulting model is much more likely to be reproducible and an accurate 

depiction of the true pattern of variation amongst the factors and variables. 

2.2.1.2 Data Collection 

Each environment was created to be 248 meters by 176 meters. An axial map was generated for 

each of the two environments using the UCL Depthmap (version 10) software package. A 1 meter 

square grid was imposed on each environment. From this grid, the axial map, angular properties of 

the axial map, accessibility graph, and isovist-derived measures were determined using the PyPy 

programming language for each of the 52365 positions lying in open space. Once the data were 

computed, the initial pool of data was trimmed to include only locations spanned by at least one axial 
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line and lying inside the border-region of the environment (deemed to be within 10% of the outer 

boundary for the environment). The exclusion of data outside of axial lines was chosen as the absence 

of an axial line was not considered the product of a true spatial relationship but is instead the product 

of how an axial map is determined. To avoid this issue, only points lying along axial lines were used 

in the present analysis. Bordering points were excluded due to their artificial character and biasing 

nature (Conroy, 2001). This resulted in 22428 data points being retained for analysis. 

Sampling spatial information on a consistent square grid, such as the one used here, is commonly 

used in spatial data analysis to assess the relationship between various types of spatial variables as 

they exist continuously in space. This type of analysis is termed raster factor analysis (see Demšar, 

Harris, Brunsdon, Fotheringham, & McLoone, 2013 for a review of the topic of factor analysis on 

spatial data). Raster analysis describes the pattern of variation across an entire space (or set of 

spaces), allowing the resulting model to describe a realistic range of variation across all variables, 

highlighting only those relationships with sufficiently large covariation (Thurstone, 1947). This is 

considered advantageous as it increases the likelihood of producing a robust factor model. One 

potential complicating factor is the situation in which a raster analysis can result in a biased model. 

This case arises when data points (locations) that are near each other are more related than those 

further away, spatial autocorrelation. The presence of spatial autocorrelation reduces overall variation 

across a data set, producing inflated factor loading estimates (though, this is far more pronounced in 

PCA than factor analysis). Two common measures of spatial autocorrelation, Moran’s I (Moran, 

1950) and Geary’s c (Geary, 1954), describe spatial autocorrelation as a function of distance. No 

evidence was found for the presence of statistically significant spatial autocorrelation in the present 

data set, both when considering linear distance (I=-0.025, c=1.30, p=0.99) and when considering 

inverse distance (I=0.13, c=1.05, p=0.92). As a result, the data were considered well suited to factor 

analysis. 

2.2.1.3 Data Aggregation 

The data sets were collapsed across each other to make one large set. This approach is known as 

heterogeneous or maximum variation sampling (Kline, 1993). Heterogeneous sampling, much like the 

raster analysis approach on spatially distributed points, is intended to better describe the range of 

variation experienced within variables across a wider range of spaces than are available in a single 

environment. By examining data from the intelligible and unintelligible environments together rather 

than separately, the sample better reflects the variation seen in real in urban space(s). While the 
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alternative approach of random sampling from a large number of interior or exterior urban spaces can 

provide a potentially more robust factor model under some circumstances, a true random sampling 

approach was considered impractical for the present purpose1. This is because the scale, particularly 

with respect to variables assessing the global properties of a space, varies arbitrarily with the size of 

the space from which the data are taken. The corresponding set of data would therefore risk 

describing scale rather than urban form. In addition, data sets sufficient to produce an adequately 

large randomly derived sample from a wide range of spaces either do not exist or would be too 

computationally intensive to analyze. Given these issues, the present heterogeneous sampling 

approach is considered a compromise between adequately describing urban spaces as a whole and 

meeting availability/computational demands. To further support this position, convergence across a 

variety of synthetic and real spaces is sought throughout this chapter, more rigorously testing the 

likelihood that the resulting latent factor models are a description of real-world variation brought on 

by architectural design and urban planning alone and not some idiosyncrasy of a specific environment 

or data set. 

2.2.1.4 Spatial Properties of Interest 

The physical basis for the measures in a hypothetical environment is presented in Figure 2.2. As 

described above, the data were computed on a 1-meter uniform grid across all open space in each 

environment. 

Axial Map Measures. For the present analysis, the axial map was algorithmically determined by 

connecting the vertices formed by each building with all other vertices that can be reached without 

being obstructed by a building surface (Turner et al., 2005). A depiction of the resulting axial map for 

each environment can be found in Figure 2.3. The measures of connectivity, mean depth, integration, 

mean depth (to a radius of 3 nodes) and integration (to a radius of 3 nodes) were computed. To better 

capture the relationship between other forms of spatial analysis and the axial map, the axial map was 

not reduced to fewest lines sufficient to describe the environment. This is because the all-line axial 

map is more independent of idiosyncracies in drawing technique or line placement. The axial map 

was collapsed on to convex space through the use of an anti-aliasing algorithm (Wu, 1991). The anti-

aliasing algorithm allowed the value of each axial measure at each discrete location to be determined, 
                                                      
1 Performing a factor analysis on the present data with a random set of locations (20% of the sample) within the 
present data was found to produce a near-identical factor model to that of heterogeneous/raster sampling. 
Consequently, no improvement in model specification appears to be gained by random sampling in this context 
and suggests that the heterogeneously sampled data should generalize to other data sets. 
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particularly for those locations lying on angled axial lines where an axial line may only partially 

intersect with a grid cell. In this case, the alpha value (depicted in Figure 2.2, center panel, as a range 

between black and white) was used as a scaling factor. Alpha therefore accounts for the influence of 

the resolution of the grid when determining the values of axial properties in convex space, where 

points that directly intersect with a grid cell are valued at 1.0 and points that grazed a grid cell were 

valued between 0.99 and 0.01, weighted by the relative distance from full intersection. For points in 

space that were spanned by more than one axial line, the values were averaged across all intersecting 

axial lines. 

Angular Segment Analysis. Prior work presenting angular segment analysis (Turner, 2007) 

further examines an axial map as the product of the individual segments between each intersection 

point. From these line segments, the angle necessary to move from one axial line to the next can be 

determined. Next, the average angular cost (the propensity for a line to require more sizable turns, on 

average) can be determined by weighting the mean angular deviation by the relative importance of the 

line in traversing the spatial system (most often through the property of betweenness centrality, 

described below). The resulting description yields a value for each angular segment that describes the 

interplay between the size of turn (captured by angular deviation) and likelihood that the turn will be 

made (via betweenness centrality). This approach was adapted to work with an all-line axial map by 

reweighting the angular cost of an axial line by the number of immediately overlapping segments 

within a radius of 3 units. This approach was used as it would weigh the relative importance of each 

line segment in a way that is more consistent with that of the other axial measures, also calculated to a 

radius of 3. The mean angular cost and mean angular variance were calculated for each line segment. 
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Figure 2.2 The basis for combining axial-map derived data with local, isovist-derived, space is 

described here. A hypothetical axial map is presented left with a line bolded. Right, an isovist 

computed at the center point of the bolded axial line is presented. Across all points on the axial line, 

isovists are determined and quantified. The axial line is subject to anti-aliasing to weight how much 

each line intersects with each distinct point in space, depicted as shades ranging from black (1.0; full 

weight) to white (0.0; no weight), allowing the properties of the axial line to be mapped on to discrete 

points in space. 
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Figure 2.3 Axial maps depicted for Study 1 (upper panes) and Study 2 (lower panes). Intersections of 

the axial lines highlighted using circles. 
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Accessibility Analysis. To bridge the gap between an axial depiction of space – where importance 

of an element in space is determined by how it relates topologically to all other lines in a space – to 

that of a view of space informed purely by considering local, metric, properties, an accessibility 

graph was used. The graph consisted of all positions in open space and described whether movement 

could occur in each cardinal or intercardinal directions (sometimes termed a King's case in spatial 

analysis, after the corresponding movement rule in chess). Using this graph, the relative importance 

of the node in supporting or constraining locomotion throughout the environment was determined 

using identical measures to that of an axial map, particularly those weighting shortest distance 

between nodes (Turner et al., 2001; Penn & Dalton, 1994a) and immediate connectedness (Jiang & 

Tao, 2011). Four measures were selected for analysis due to their importance in the analysis of axial 

maps: degree centrality (e.g., connectivity of an axial map), closeness centrality (e.g., mean depth of 

an axial map), eigenvector centrality (local weighting of the importance of the node), and 

betweenness centrality (global weighting of the importance of a node). This set of four variables 

describes how well each position in space allows for movement through the environment (Borgatti & 

Everett, 2006; Borgatti, 2005) as a function of the presence of occluding buildings and surfaces. All 

measures were normalized by a factor of n-1, where n is the total number of positions in the graph, to 

allow comparisons across environments. The accessibility measures were computed using traditional 

measures of nodal importance in graphs, many of which are also considered in axial analysis: 

Degree centrality. Degree centrality is the most basic measure of importance in the graph and 

forms the basis of many of the other measures of centrality used herein. This measure is 

simply the sum of the number of paths possible from each position to all immediately 

adjacent positions (Havel, 1955). Locations that are immediately accessible will display a 

higher degree centrality than those that are not.  

Closeness centrality. Closeness centrality is a globally-derived measure of accessibility 

(Sabidussi, 1978). The level of closeness centrality is determined as the mean length of the 

shortest paths from each position to all other positions in the graph. As a result, positions that 

have a low mean distance to all other nodes are considered more globally accessible than 

those that have a high mean distance to all other nodes. Closeness centrality is therefore the 

analogue to mean depth in axial map analysis. 

Eigenvector centrality. An alternate measure of the importance of a position is how well it 

connects with other highly connected positions in a graph (Bonacich, 1987). This is defined 
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as the sum of the centrality of the positions that each node connects to, to a radius 

proportional to the originating node’s centrality, and is termed eigenvector centrality. Nodes 

that often connect with other locally connected nodes demonstrate high eigenvector centrality 

while those that are isolated demonstrate low eigenvector centrality. 

Betweenness centrality. Betweenness centrality is the relative importance of a position can be 

determined by the extent to which that position is necessary to be traversed when reaching all 

other positions in the graph (Freeman, 1977). For the sake of computational efficiency, this 

can be approximated by determining the number of traversals necessary from a smaller 

number of positions in the graph, drawn from a uniform distribution, to a distance drawn 

from a uniform distribution (Alahakoon, Tripathi, Kourtellis, Simha, & Iamnitchi, 2011). In 

this method, k is the maximum distance to traverse, defined here as k = 5ln (n + m), where n 

is the total number of positions in the graph and m is the total number of paths in the graph. 

The number of positions to calculate from was specified by 2k2n0.6. The resulting value is 

highest when a position must always be used to reach all other locations in the accessibility 

graph and lowest when the position is never used to move through the accessibility graph. 

Isovist-Derived Measures. The isovist polygon was computed for each position in space lying on 

an axial line. The original four measures proposed by Benedikt (1979) as fitting the ideas of edge and 

texturally derived perception (Gibson, 1950) were examined: area,  perimeter, occlusivity (defined by 

the total perimeter lying on an surface), and circularity (how much the shape of a circle approximates 

that of a perfect circle with matching perimeter, a formulation that is functionally similar to that of 

compactness which instead considers area). Previous work has also suggested (Franz & Wiener, 

2008; Wiener et al., 2007; Stamps III, 2005) that the overall shape and jaggedness of the isovist 

polygon is associated with spatial preference. Accordingly, the total number of vertices, jaggedness of 

the isovist polygon (defined below as normalized entropy and tortuosity), rectangularity (ratio of the 

length to width of a minimum-bounding rectangle), and convexity (area of the polygon divided by 

area of the convex hull formed by the vertices of the isovist polygon) were selected to more fully 

capture all relevant properties of local geometry. As indicated above, jaggedness was defined in two 

ways: 1) as a measure of the degree of randomness in the distance of the vertices of the polygon from 

the originating point, determined by normalized entropy (for a general description, see: Shannon, 

1948;  for a description of normalized entropy, see: Sinai, 1959), and  2) as a measure of tortuosity, or 

square deviation in the curvature of the points in the polygon divided by the perimeter (Patasius, 
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Marozas, Lukosevicius, & Jegelevicius, 2005). This was done to capture the variability in the isovist 

edges and vertices while remaining distinct from the ideas of compactness and circularity (Franz & 

Wiener, 2008; Wiener et al., 2007). Circularity, rectangularity, convexity, entropy, and tortuosity 

were calculated such that 0.0 described no fit and 1.0 described perfect fit. 

A further two novel measures were proposed to better capture the perceptual parameters outlined 

by Gibson in the ambient optic array as invariant, stable elements of the structure of the environment 

(Gibson, 1979). Here, I propose that these measures can easily be derived from the isovist as the 

number of unique surfaces identified by the isovist and as a mean surface depth (area divided by 

number of surfaces) describing the unique arrangement of these surfaces. Mean surface depth was 

taken to capture both size and shape of space as the division of an isovist by the number of incident 

surfaces is influenced by both distance and symmetry (that is, an isovist lacking symmetry would be 

biased by either reducing or increasing the mean depth, accordingly). 

The exact formulation of each variable, a visual example of their calculation within a simple 

environment, and general summary of the interpretation of each variable are presented in Appendix 1. 

2.2.2 Results 

2.2.2.1 Data Preparation and Screening 

Prior to analysis, the data were examined for violation of normality and the presence of univariate 

and multivariate outliers. Univariate normality was assessed for each variable by examination of skew 

and kurtosis and by visual examination of Q-Q plots. While not strictly required for EFA (Tabachnick 

& Fidell, 2007; Amemiya & Anderson, 1990; Anderson & Amemiya, 1988), approximating the 

normal distribution has been demonstrated to provide more consistent model results under certain 

circumstances. Variables showing a skewness and kurtosis of greater than 3.0 were considered to 

deviate from the normal distribution (Kline, 2010). Skew and kurtosis were found to be within these 

limits for all variables. Data were next screened for the presence of univariate and multivariate 

outliers using the statistically robust methods of median absolute deviation  
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Table 2.1 Descriptive statistics For Study 1 
 Mean (SD) Minimum Maximum Skew Kurtosis 
Axial Maps      
    Connectivity 62.897 (28.717) 10.057 167.022 0.941 0.547 
    Integration 4.927 (1.321) 2.412 9.868 0.852 0.458 
    Mean Depth 1.929 (0.774) 0.385 5.531 1.345 2.711 
    Integration-3 2.116 (0.29) 1.459 3.185 0.433 -0.114 
    Mean Depth-3 5.127 (1.195) 2.905 9.868 1.016 0.815 
Angular Analysis      
    Mean Deviation 0.252 (0.049) 0.088 0.460 0.441 0.021 
    Mean Variance 0.789 (0.312) 0.011 2.026 0.632 0.924 
Accessibility Graph      
    Degree 7.52 (1.064) 3.000 8.000 -1.983 2.336 
    Closeness  0.01 (0.001) 0.007 0.012 0.000 -1.057 
    Betweenness 0.065 (0.012) 0.027 0.100 -0.053 -0.166 
    Eigenvector 0.003 (0.003) 0.000 0.018 1.725 3.106 
Isovist      
    Vertices 31.287 (16.115) 6.000 93.000 0.784 -0.196 
    Area 1409.956 (818.837) 109.500 4852.000 1.410 2.055 
    Perimeter 357.01 (138.441) 72.044 975.489 0.796 0.425 
    Occlusivity 144.279 (105.836) 0.000 527.276 1.327 0.851 
    Entropy 0.588 (0.346) 0.000 2.079 0.731 0.231 
    Tortuosity 0.266 (0.05) 0.110 0.502 0.337 0.124 
    Convexity 0.411 (0.143) 0.119 0.979 0.733 0.622 
    Circularity 0.15 (0.06) 0.037 0.395 0.926 0.617 
    Rectangularity 0.273 (0.116) 0.060 0.759 0.890 0.606 
    Surfaces 10.191 (4.083) 1.000 28.000 0.808 0.840 
    Surface Depth 149.34 (110.802) 23.143 1118.000 3.788 17.973 
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(MAD; Rousseeuw & Croux, 1993) and minimum covariance determinant (MCD; Rousseeuw & Van 

Driessen, 1999; Rousseeuw, 1985). MAD and MCD are advantageous in identifying whether data 

points are outliers as more traditional methods, such as the z-score, are less statistically robust. 

Identifying outliers is important as the presence of a disproportionate number or sufficiently aberrant 

data points can bias the resulting factor model, making the model less generalizable to other data sets. 

Cases found to exceed either 1.1925 median absolute deviations on one or more variables or to 

exceed the critical value, χ 2 (22, 22428) =48.26, p<0.001, on the minimum covariance determinant 

estimator were considered outliers and inspected visually. A total of 914 cases were identified as 

outliers and removed from subsequent analysis. Descriptive statistics for each variable for each of the 

remaining 21514 cases can be found in Table 2.1. 

Next, the data were screened for multicollinearity and singularity by examining the squared 

multiple correlation (SMC) for each variable and corresponding condition indices and variance 

proportion (VP) accounted for within the problematic dimension of variables. Data that are either 

identical (i.e., having singularity) or very similar to each other (i.e., having multicollinearity) can bias 

the factor model by making the model account for more variance than is reasonably possible (that is, 

two multicollinear variables can account for variation in each other; this artefact conflates their role in 

the overall model). Two sets of variables were identified as potentially multicollinear: 1) Integration 

(SMC=0.997; VP=0.940), Mean Depth (SMC=0.982; VP=0.850), Integration-3 (SMC=0.997; 

VP=0.900), and Mean Depth-3 (SMC=0.979; VP=0.800), CI=606.66; and 2) Degree Centrality 

(SMC=0.634; VP=0.670) and Betweenness Centrality (SMC=0.891; VP=0.890). CI=87.981. As a 

result, the variables of Degree Centrality and Integration and Mean Depth were removed from 

analysis. Retaining those measures to a radius of 3 units was selected as those variables have been 

most effective in explaining individual navigation behaviour in past studies). Data were re-examined 

for further potential cases of multicollinearity, but no further combinations were found.  The 

remaining 19 variables were examined for their appropriateness in a factor analysis. 

The factorability of the data was assessed by examining the Pearson product-moment correlations 

between each set of variables, Kaiser-Meyer-Olkin measures of sampling adequacy(KMO-MSA; 

Kaiser & Rice, 1974; Kaiser, 1970), and KMO sampling adequacy statistic (KMO-SAS; Kaiser & 

Rice, 1974; Kaiser, 1970), as presented in Table 2.2. The standard cut-off of 0.30 (Tabachnick & 

Fidell, 2007; Henson & Roberts, 2006; Hair, Anderson, Tatham, & Black, 1995) was used in 

determining the presence of important associations between variables and many acceptably large 
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associations were observed. The KMO-SAS and KMO-MSA describe the magnitude of common 

variation observed in the overall data and individual variables, respectively. It varies between 0 and 

1.0, where 1.0 indicates that all variation can be described through a latent factor model (Kaiser & 

Rice, 1974). Typically, a value less than 0.50 is considered inappropriate for factor analysis. This is 

because variables showing low KMO-SAS and KMO-MSA have considerable amount of unique 

variation, behaving very differently than variables with higher values of each statistic. Based on these 

criteria, the variables of mean angular deviation, isovist occlusivity, and isovist tortuosity were 

excluded from the analysis under the grounds that these measures were statistically inappropriate 

within common factor model. Without excluding these variables – despite their demonstrated success 

at predicting behaviour in previous work – the model would be much more likely to produce a 

spurious result, poorly describing the patterns in the data. After removal of these variables, the 

omnibus KMO-SAS was found to be 0.812 be indicative of 'meritorious' factorability of the 

remaining data. 
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Table 2.2 Bivariate correlations For Study 1 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1. Connectivity 0.80  0.98 -0.92 -0.20 0.89 0.44 0.29 0.23 0.57 0.37 0.55 0.02 0.22 -0.27 -0.30 -0.45 -0.29 0.50 -0.04 
2. Integration-R3  0.83 -0.92 -0.20 0.86 0.43 0.29 0.23 0.55 0.40 0.57 0.02 0.21 -0.26 -0.27 -0.45 -0.26 0.47 0.01 
3. Mean Depth-R3   0.96 0.26 -0.82 -0.49 -0.26 -0.20 -0.56 -0.34 -0.53 -0.03 -0.25 0.24 0.31 0.47 0.30 -0.47 0.04 
4. Ang.Deviation    0.57 0.00 -0.15 -0.15 -0.14 -0.22 -0.11 -0.13 0.00 -0.16 0.07 0.08 0.11 0.08 -0.13 -0.01 
5. Ang.Variance     0.86 0.37 0.18 0.17 0.48 0.27 0.48 0.02 0.18 -0.28 -0.32 -0.46 -0.30 0.43 -0.09 
6. Closeness      0.92 0.08 0.07 0.56 0.08 0.25 0.02 0.41 -0.23 -0.32 -0.31 -0.30 0.37 -0.20 
7. Betweenness       0.84 0.82 0.43 0.69 0.57 0.02 0.23 0.06 -0.04 -0.12 -0.06 0.48 0.36 
8. Eigenvector        0.82 0.40 0.64 0.53 0.01 0.20 0.02 -0.04 -0.11 -0.06 0.48 0.29 
9. Vertices         0.82 0.41 0.61 0.03 0.68 -0.23 -0.42 -0.49 -0.40 0.81 -0.16 
10. Area          0.70 0.83 0.01 0.10 -0.05 0.09 -0.25 0.06 0.44 0.70 
11. Perimeter           0.80 0.01 0.18 -0.15 -0.38 -0.67 -0.38 0.61 0.37 
12. Occlusivity            0.52 0.03 0.01 -0.01 0.00 -0.01 0.01 0.00 
13. Entropy             0.67 0.10 -0.21 -0.20 -0.20 0.45 -0.17 
14. Tortuosity              0.58 0.12 0.15 0.09 -0.10 0.09 
15. Convexity               0.75 0.72 0.95 -0.44 0.47 
16. Circularity                0.84 0.72 -0.45 0.10 
17. Rectangularity                 0.77 -0.40 0.40 
18. Surfaces                  0.81 -0.25 
19. Surf. Depth                   0.63 
Note. All correlations were significant at p<0.001. Correlations of potential theoretical importance according to standard cut-offs are highlighted in 

grey. The Kaiser-Meyer-Olkin measure of sampling adequacy for each variable is displayed on the diagonal of the matrix. 
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2.2.3 Exploratory Factor Analysis 

Of the original 22 spatial variables examined, a total of 16 were considered appropriate for the 

technique of EFA. The remaining 16 variables consisted of axial (Connectivity, Integration-3, Mean 

Depth-3), angular (Mean Angular Variance), accessibility (Closeness Centrality, Betweenness 

Centrality, Eigenvector Centrality), and isovist-derived (Vertices, Area, Perimeter, Entropy, 

Convexity, Circularity, Rectangularity, Surface Count, and Mean Surface Depth) measures. The 

number of factors sufficient to adequately encapsulate the latent factor structure of the data was found 

to be between 4 (Scree test; Hull method) and 5 (Comparison Data). As a result, 5 factors were 

retained for analysis as Comparison Data has been demonstrated in simulations to show reduced bias 

(Ruscio & Roche, 2012) and factor over-extraction is considered preferable to under-extraction 

(Wood, Tataryn, & Gorsuch, 1996) in producing reproducible factor models.  

The resulting 5-factor model is presented in Table 2.3 (the unabridged factor model is presented in 

Appendix 2) and accounted for 88.08% of the variance in the overall data. The eigenvalue of the last 

unretained factor was 0.548, accounting for 3.42% of the variance in the data. Factor 1 was described 

by Connectivity, Integration (radius=3), mean-depth (radius=3) and mean angular variance. Factor 2 

was found to be described by rectangularity, circularity, convexity and perimeter, and showed weak 

indirect effects on many of the experimental variables. Factor 3 was found to relate to betweenness 

centrality, eigenvector centrality, and the number of surfaces and showed strong indirect effects on 

accessibility measures. Factor 4 was associated with closeness centrality, number of vertices, entropy, 

and the number of surfaces, and showed moderate-to-strong indirect effect on virtually all other 

measures of interest. Finally, Factor 5 was associated with area, perimeter, circularity, and the mean 

surface depth, showing relatively weak indirect effects on the axial and accessibility family of 

measures.  
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Table 2.3 Exploratory Factor Analysis Models for Studies 1 and 2 
 Study 1   Study 2  
      
Factor: SC ENC IMP ACC LE h2  SC ENC ACC IMP LE h2 
Connectivity 0.91     0.98  0.99     0.97 
Integration-3 0.92     0.97  0.96     0.96 
Mean Depth-3 -0.92     0.87  -0.89     0.87 
Ang. Variance 0.93     0.79  0.88     0.74 
Closeness    0.55  0.39    0.57   0.42 
Betweenness   0.87   0.82      0.94  0.97  
Eigenvector   0.90   0.79     0.73  0.73 
Vertices    0.99  0.98    0.99   0.96 
Area     0.81 0.97      0.86 0.95 
Perimeter  -0.41   0.68 0.96   -0.35   0.68 0.98 
Entropy    0.88  0.50    0.91  -0.33 0.50 
Convexity  0.95    0.97   0.98    0.97 
Circularity  0.79   -0.31 0.77   0.70    0.74 
Rectangularity  0.92    0.90   0.98    0.90 
Surfaces   0.35 0.49  0.70    0.71   0.80 
Surface Depth     0.90 0.80    -0.57  0.88 0.60 
Λ 6.90 3.05 1.87 1.43 0.80   7.47 2.26 2.03 1.63 0.68  
% Variance 43.3 62.4 74.1 83.1 88.1   46.7 60.1 73.4 83.6 87.9  
              
Correlation Matrix      Correlation Matrix  
Factors: SC ENC IMP ACC LE   SC ENC ACC IMP LE  
SC - -0.48 0.31 0.58 0.36   - -0.41 0.53 0.11 0.54  
ENC  - -0.23 -0.57 -0.15    - -0.58 -0.16 -0.53  
IMP   - -0.50 0.56     - 0.32 0.58  
ACC    - 0.26      - 0.52  
Note. Factor matrix presented is the pattern matrix. All factor loadings below 0.30 have been suppressed.  Factor labels have been shortened to: SC 

(Spatial Complexity); ENC (enclosure); IMP (importance); ACC (Access); LE (Local Extent).



 39 

 

Factor 1 was labeled as “Spatial Complexity” as it captured the degree to which a location was 

embedded in an area with increased connectivity and integration, reduced mean depth (the inverse of 

integration, generally), and increased angular variance. That is, locations with high spatial complexity 

would be embedded in spaces that are easier to linearly navigate, such as at or nearby main roads. 

Factor 2 was labeled "Enclosure" as it described the tendency for increased fit with convexity, 

rectangularity, and roundness, as well as reduced perimeter. Together, these measures strongly 

indicate locations that are isolated from surrounding space and more fully enclosed by the 

surrounding walls. Factor 3 was labeled as "Importance" as it showed a tendency toward describing 

spaces that were more locally connected (i.e., eigenvector centrality) more likely to be traversed when 

fully exploring the environment (i.e., betweenness centrality), and surrounded by more unique 

surfaces, such as would be typical of locations serving to transport high volumes of traffic at 

intersections or junctions. Factor 4 was labeled as "Access" as it defined higher number of vertices, 

entropy, closeness centrality, and surfaces. The isovist measures of vertex count, entropy, and surface 

count together are descriptive of the overall jaggedness of local visual space, while closeness 

centrality identifies the most accessible location in the spatial system. Mutually, these characteristics 

should define highly accessible points like the central square of a city. Finally, Factor 5 was labeled 

as "Local Extent" as it captured changes in spatial extent (area and perimeter) and relative complexity 

(deviation from circularity and increased mean surface depth) of a viewpoint simultaneously.  

A number of moderate correlations were observed (found in Table 2.3). Spatial Complexity and the 

latent factors of Access and Local Extent were found to be moderately correlated. Enclosure was 

found to be moderately correlated with Access. Finally, Access was also found to be moderately 

correlated with the Importance of a location. 

2.2.4 Discussion 

EFA was used to explore the spatial properties of two prototypical environments, one consisting of 

a relatively consistently organized structure (typical of high intelligibility) and one that consisted of a 

much less organized structure (typical of a disordered, unintelligible, environment). Together, both 

environments were intended to capture a considerable variety of locations, both in terms of local 

geometry (i.e., a specific viewpoint) and in their role and position in the overall surrounding space. 

When space was examined in this way, a number of potentially meaningful and novel emergent 

properties were observed in the form of latent factors. Specifically, Spatial Complexity (primarily 

axially defined), Enclosure (isovist-defined), Importance (globally defined as how the shape of local 
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space interacts with the configuration of the environment), Access (degree to which the location 

approximates a central square), and Local Extent (degree to which the local space is systematically 

arranged) were identified as emergent properties of the design or urban space. 

The first and most notable finding is that no evidence was found to support the idea that a single 

common emergent property can explain how measures that describe the global structure of 

surrounding space can be predicted by properties that can immediately be perceived in local space. 

However, the complexity of the global structure, as defined by Spatial Complexity, was shown to be 

associated with corresponding changes in the locally derived factors of Enclosure and Local Extent. 

Therefore, general descriptions of local space can provide some degree of information about the 

distant and global visual space by some level of shared variation. This is a promising finding as it 

represents initial support for the theory that local visual information could be a driving force behind 

how we behave in and navigate through space, as posited within the theory of exosomatic visual 

architecture (Turner, 2006; Penn, 2003) and inferred by the body of scholarly work invoking 

affordances. This is also consistent with the efficacy of visual graph analysis, which shows an 

association between the integration of a visibility graph (one in which mutually visible locations are 

connected to each other) and the preferred paths of navigators (Turner, 2006; Turner et al., 2001). 

Specifically, people have been shown to prefer locations that are not only large themselves but also 

connect with other large, integrated spaces. Similar support can also be found in the relationship 

between the integration of axial maps, which have been argued to represent idealized lines-of-sight 

(Hillier, 1996), and the number of people moving through a space. While speculative at this time, 

should the relationship between Spatial Complexity, Enclosure, and Local Extent be shown to be 

consistent in other types of spaces, it would provide further grounding for the idea that the size and 

shape of the local space can predict environmental features outside of the immediate field of view, a 

key component of any affordance-based model.  

A second notable finding is that Enclosure and Access were found to be relatively independent of 

the Local Extent at a given point in space. Generally, Enclosure can be said to capture the relative 

symmetry of the shape of surrounding space via variables such as circularity and convexity. Access, 

on the other hand, was primarily defined by the complexity of the shape of local space (where 

vertices and entropy approximate the jaggedness of an isovist). Intuitively, this can be understood as 

the apparent link between the shape of a space and its overall size, insofar as the configuration of an 

overall environment allows. This finding also helps explain why when people seek out locations that 
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provide visual access to an environment but obstruct actual movement, such as behind a window 

overlooking some space (termed either visual permeability or prospect), the strongest single predictor 

is the horizontal span of an isovist (Stamps, 2010; Stamps III, 2005; Appleton, 1996). In the context 

of visual permeability theory, the size of a hiding space is irrelevant because the shape and general 

structure are the determining factors of whether a location is a good hiding place, an idea that is 

supported here. This pattern of results also provides additional support for the idea a small set of 

variables can be useful in summarizing and predicting behaviour in meaningful ways.  

Surprisingly, occlusivity, which has formerly been demonstrated to be a promising predictor of 

movement through an environment (Turner, 2006; Turner et al., 2001) and predictive of spatial 

preference in studies using picture stimuli (Kaplan, 1988), was not found to be strongly related to any 

systematic property of space measured or detected herein. This most likely explanation for the lack of 

the involvement of occlusivity in the present model is that occlusivity, simply, describes the world in 

a way that is very different from all the other included variables. This is because the degree of overlap 

offered between different viewpoints may be associated with the size of space but is also influenced 

by a number of other variables simultaneously, so occlusivity would not expected to be related to any 

axial, metric, or isovist measure, in a consistent way when all other factors are held constant (as is the 

case here). This does not mean, however, that occlusivity and how it relates to these variables is not 

of interest in future work. Using a similar approach to the one used here, but instead focusing on 

explaining how this unique variable behaves in the presence of other metrics of the structure of space, 

would help us understand if occlusivity itself is useful in predicting behaviour or if it is instead the  

relationship that occlusivity may hold with other, perceivable, variables. But this question extends 

well beyond the present analysis which was intended to relate and categorize local and global spatial 

metrics to identify common patterns in variation in a broader way. 

As a whole, the initial EFA provides ample support for the idea that specific emergent properties 

are capable of explaining and summarizing space in potentially useful ways, both when navigating 

and in determining spatial preference. Additionally, Local Extent was shown to meaningfully predict 

the level of Spatial Complexity, albeit moderately so, supporting the idea that properties perceived in 

local space can be useful in determining the structure of the environment outside the field of view. 

This association allows stable predictions to be made about global space from the local environment 

alone. This also provides support for the idea that local spatial variables alone may be useful in 



 

 42 

predicting patterns previously attributed to the variables influenced by the factor of Spatial 

Complexity. 

However, as was previously noted, the environments used in the present experiment may have 

limited the relationship between the observed variables and their latent factor structure. Central to this 

is the idea that an algorithmically defined axial map is derived from the location of the vertices in an 

environment, something that is inextricably linked with the number of surfaces and walls in a space. 

Additionally, the number and size of surfaces in the data set was shown to be influenced by 

Enclosure, Access, and Importance, suggesting that the surface geometry is influential in shaping the 

way space is configured as a whole, at least partially. To address this issue and further evaluate the 

relationship between variation in the properties defined by space and the configuration of space as a 

whole, surface geometry must be more rigorously controlled for. Should surface geometry (as 

opposed to the overall configuration of an environment) be playing a critical role in one or more of 

the factors, it might obscure the relationship between isovist and axial measures. If, however, surface 

geometry is not implicated in the shared variation between Spatial Complexity and Local Extent, no 

difference would be expected to be observed in the corresponding model. 

2.3 Study 2: The Influence of Occluding Surfaces 

Study 2 was designed to assess the role of occluding surfaces in influencing the local and global 

structure of space. In this case, only the walls composing each building were manipulated as no other 

occluding surfaces were present. Each of the prototypical environments used in Study 1 were 

manipulated to reduce the amount of variation in surface geometry while holding the general structure 

of the environment relatively constant. A significant reduction in the number of surfaces, t(25)=3.718, 

p<0.001, 95% CI [0.326, 1.146], was achieved by enforcing two rules: (1) each face of a building 

should be as straight as possible; (2) the corners of the buildings should approximate right-angles. In 

doing so, the same relative volume and position of each building was maintained. Figure 2.1 depicts 

the shift in the geometry of the buildings. The mean number of surfaces per building was reduced 

from 5.345 (SD=1.325) in Study 1 to 4.615 (SD=1.06) in Study 2. Due to the interrelated nature of the 

intelligibility analysis with the overall spatial configuration, this manipulation had an incidental effect 

on the intelligibility of the two environments. A general reduction in the complexity of the axial map, 

as depicted in Figure 2.3., was observed, with a reduction in the number of axial lines necessary to 

describe the structure of the overall space(s). This resulted in reduced intelligibility in the Intelligible 

environment and increased the intelligibility of the Unintelligible environment from those used in  
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Figure 2.4 Panel A through D show histograms of the connectivity of the all-line axial map from the environments used in Study 1 

(Intelligible and Unintelligible) and those constructed for Study 2 (Intelligible and Unintelligible, altered). Panels E through H present 

histograms of the integration of the all-line axial maps composing each environment. Panels I through L display scatter plots of the 

relationship between connectivity and integration for each environment. A convex hull defining the dispersion of data is presented in light 

grey. Pearson-product moment correlations are presented in the upper left corner of each scatter plot. 
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Study 1. The corresponding changes in connectivity, integration, and the correlation between the two 

(intelligibility) can be found in Figure 2.4. Cumulatively, the reduction in the complexity of the 

component buildings while maintaining relative isovist size and shape should represent a more 

stringent test of the relationship between local perceptual information and more global variables 

describing the surrounding environment. This is because a smaller set of potential isovist shapes 

should be available to describe the space, placing emphasis on only the key latent relationships 

among variables describing the surrounding environment. 

2.3.1 Methods 

2.3.1.1 Analysis Approach 

Each of the 22 variables considered in Study 1 were again examined for common latent factors in 

Study 2, broadly being drawn from the axial, angular, accessibility, and isovist-derived domains, and 

identical methods were used to assess the relationships amongst the variables (described fully in 

section 2.2.1 through to section 2.3). Factors were extracted using the Unweighted Least Squares 

(ULS) method and subjected to a Promax rotation (κ=2). The number of factors was determined by 

Scree test, Hull method of parallel analysis (n=500), and Comparison data techniques (n=1000, 

m=500). 

Likewise, data preparation and screening was achieved by assessing Q-Q plots to assess normality, 

and mean absolute deviation and minimum covariance determinant to examine the data for outliers. 

Multicollinearity was assessed by examining the squared multiple correlations (SMC), condition 

index, and variance inflation proportion (VIP). The overall suitability of each variable and the overall 

sample for a common factor model were assessed by KMO-MSA and KMO-SAS , respectively. 

2.3.1.2 Data Sample 

Each of the two modified environments was generated to be 248 meters by 176 meters. The spatial 

properties of each environment were determined for each of the 22 variables on a 1m square grid. Of 

the original 51618 samples lying in open space, the initial pool was trimmed to include only those 

locations bisected by at least one axial line and only those positions lying interior to the border of the 

environment (the outer 10% data points). A total of 22128 data points were retained for subsequent 

factor analysis after collapsing the data set across the two environments to maximize variation by 

developing a heterogeneous sample. 
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Table 2.4 Descriptive statistics for Study 2 
 Mean (SD) Minimum Maximum Skew Kurtosis 
Axial Maps      
    Connectivity 55.767 (22.37) 10.800 145.011 0.484 -0.150 
    Integration 4.821 (1.132) 2.450 9.840 0.545 0.264 
    Mean Depth 2.093 (0.272) 1.404 3.108 0.648 0.224 
    Integration (R3) 4.957 (1.043) 2.940 9.840 0.654 0.508 
    Mean Depth (R3) 2.032 (0.208) 1.404 2.651 0.226 -0.389 
Angular Analysis      
    Mean Deviation 0.272 (0.047) 0.116 0.500 0.229 0.329 
    Mean Variance 0.719 (0.286) 0.017 1.855 0.682 0.437 
Accessibility Graph      
    Degree 7.548 (1.044) 3.000 8.000 -2.034 2.433 
    Closeness  0.01 (0.001) 0.007 0.011 -0.009 -1.170 
    Betweenness 0.068 (0.013) 0.025 0.100 -0.197 -0.353 
    Eigenvector 0.004 (0.004) 0.000 0.019 1.408 1.337 
Isovist      
    Vertices 26.172 (14.165) 5.000 87.000 1.247 1.255 
    Area 1493.751 (740.593) 151.500 4173.000 0.944 0.627 
    Perimeter 364.053 (141.41) 89.987 949.853 0.893 0.824 
    Occlusivity 160.541 (100.879) 3.000 583.071 1.233 0.768 
    Tortuosity 0.486 (0.307) 0.000 1.991 0.912 0.837 
    Entropy 0.287 (0.052) 0.121 0.484 -0.040 -0.300 
    Convexity 0.415 (0.133) 0.092 0.892 0.299 -0.488 
    Circularity 0.156 (0.062) 0.036 0.426 0.834 0.583 
    Rectangularity 0.281 (0.115) 0.047 0.785 0.772 0.251 
    Surfaces 10.016 (4.094) 3.000 30.000 1.053 1.401 
    Surface Depth 151.459 (53.132) 23.222 432.938 0.935 1.658 
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2.3.2 Results 

2.3.2.1 Data Preparation and Screening 

No notable departures from normality were observed in the data. A total of 409 potential outliers 

were removed from analysis, each of which showed significant departure from both the univariate and 

multivariate distributions of the variables. The descriptive statistics for the remaining 21719 data 

points retained for analysis can be found in Table 2.4. 

Potential multicollinearity was observed for two sets of variables: (1) Condition index, 709.930: 

Integration (SMC=0.997;VP=0.920), Mean Depth (SMC=0.987;VP=0.820), Integration-Radius=3 

(SMC=0.997;VP=0.910) and Mean Depth-Radius=3 (SMC=0.985;VP=0.800); (2) Condition index, 

101.330: Degree Centrality (SMC=0.654VP=0.420) and Betweenness Centrality 

(SMC=0.883;VP=0.580). Integration, Mean Depth, and Degree Centrality were removed from the 

analysis and the data were re-examined for further cases of multicollinearity. No further cases are 

identified, rendering 19 variables for further examination. 

The data showed sufficient intercorrelation and KMO statistics amongst the individual variables, as 

is portrayed in Table 2.5. As in Study 1, mean angular deviation, occlusivity, and tortuosity were 

excluded from the analysis due to relatively poor fit with the common factor model. The omnibus 

KMO sampling adequacy statistic was also found to be 0.812, indicative of meritorious factorability 

of the remaining data. Accordingly, 16 variables were retained for the EFA. 

The data were examined for the presence of spatial autocorrelation by examining Moran's I and 

Geary's c statistics. No evidence was found for the presence of statistically significant autocorrelation 

between each location and neighbouring locations, both when considering the distance between 

locations linearly, I=0.15, c=1.08, p=0.91, and when using inverse distance, I=0.04, c=1.05, p=0.98. 

Locations that were nearer to each other were not shown to be more related to each other than those 

further away. 

Due to agreement across each family of statistics, the data were considered well suited for 

examination using factor analysis. 
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Table 2.5 Bivariate correlations for Study 2 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1. Connectivity 0.83  0.97 -0.92 -0.27 0.87 0.48 0.27 0.23 0.53 0.52 0.57 0.04 0.24 -0.16 -0.31 -0.46 -0.29 0.51 0.16 
2. Integration-R3  0.86 -0.92 -0.25 0.83 0.47 0.23 0.19 0.52 0.52 0.58 0.05 0.22 -0.19 -0.29 -0.47 -0.28 0.50 0.16 
3. Mean Depth-R3   0.95 0.33 -0.78 -0.50 -0.20 -0.16 -0.51 -0.47 -0.54 -0.05 -0.25 0.19 0.30 0.48 0.29 -0.48 -0.13 
4. Ang.Deviation    0.70 -0.04 -0.17 -0.15 -0.12 -0.26 -0.16 -0.14 0.01 -0.21 0.05 0.08 0.08 0.10 -0.17 -0.06 
5. Ang.Variance     0.88 0.38 0.21 0.19 0.35 0.46 0.52 0.04 0.13 -0.08 -0.26 -0.42 -0.25 0.40 0.18 
6. Closeness      0.94 0.10 0.10 0.56 0.33 0.38 0.06 0.42 -0.24 -0.24 -0.37 -0.21 0.45 -0.06 
7. Betweenness       0.82 0.84 0.44 0.69 0.52 0.00 0.17 0.12 -0.24 -0.11 -0.23 0.51 0.40 
8. Eigenvector        0.79 0.42 0.65 0.48 -0.02 0.20 0.13 -0.18 -0.11 -0.16 0.46 0.38 
9. Vertices         0.84 0.66 0.70 -0.01 0.66 -0.29 -0.44 -0.49 -0.39 0.84 -0.03 
10. Area          0.77 0.88 -0.01 0.19 -0.07 -0.38 -0.43 -0.37 0.75 0.54 
11. Perimeter           0.84 0.01 0.21 -0.11 -0.66 -0.74 -0.62 0.77 0.35 
12. Occlusivity            0.53 -0.02 -0.05 -0.02 -0.02 -0.01 0.00 -0.01 
13. Entropy             0.74 -0.12 -0.12 -0.19 -0.11 0.43 -0.21 
14. Tortuosity              0.53 0.03 0.11 -0.01 -0.07 -0.02 
15. Convexity               0.74 0.76 0.95 -0.50 0.04 
16. Circularity                0.83 0.75 -0.51 -0.01 
17. Rectangularity                 0.74 -0.45 0.00 
18. Surfaces                  0.76 -0.11 
19. Surface Depth                   0.41 
Note. All correlations were significant at p<0.001. Correlations of sufficient magnitude for factor analysis are highlighted in grey. The KMO-MSA 
for each variable is displayed on the diagonal of the matrix.
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2.3.2.2 Exploratory Factor Analysis 

A total of 16 measures were considered appropriate for the common factor model, consisting of the 

same axial, angular, accessibility, and isovist-derived measures as were assessed in Study 1. Parallel 

analysis and the Scree test again suggested the presence of 4 factors in the resulting factor solution 

while Comparison Data again suggested the present of 5. Consequently, 5 factors were retained in the 

final factor model to ensure model robustness. 

The resulting 5 factors identified by the ULS extraction and Promax rotation accounted for 87.90% 

of the variance in the data. The eigenvalue of the last, unretained, factor was 0.517 and accounted for 

3.23% of the variance in the data. The pattern matrix and factor intercorrelations are presented in 

Table 2.3 (the unabridged factor model can be found in Appendix 2). Factor 1 described Spatial 

Complexity (connectivity, integration, mean depth, and mean angular variance). Factor 2 described 

Enclosure (perimeter, convexity, circularity, and rectangularity). Factor 3 described degree of Access 

(closeness centrality, number of vertices, entropy, number of surfaces, and mean surface depth). 

Factor 4 defined nodal Importance (betweenness centrality and eigenvector centrality). Finally, Factor 

5 was found to define Local Extent (perimeter, entropy, mean surface depth).  

A number of potentially important correlations were found between the latent factors, as presented 

in Table 2.3. Spatial complexity was found to be moderately positively correlated with Local Extent 

and negatively correlated with Enclosure. Enclosure was also found to be moderately negatively 

correlated with Access and Importance. Finally, Local Extent was observed to be strongly associated 

with all other latent variables. 

2.3.3 Discussion 

Exploratory Factor Analysis of the two modified environments, controlling more for variation 

induced by the shape of buildings while holding the global complexity of space relatively constant, 

revealed a number of important results. 

A nearly identical structure of latent factors was identified, shaping the how space can be 

described. That is, evidence was again shown for the emergent properties of Spatial Complexity, 

Enclosure, Access, Importance, and Local Extent with a few minor differences in how the shape of 

space can be accounted for (particularly in the variables of circularity and surface count). These 

exceptions noted, a nearly identical pattern of relationships was observed between the latent factors 

and their component variables, providing stronger evidence for generalizability of the relationships in 

different environments. Particularly interesting is that the properties of Local Extent and Enclosure 
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were not shown to be influenced by a reduction in surfaces, despite both variables being explicitly by 

local geometry alone. This is evocative of the idea that the positioning of nearby buildings rather than 

their explicit geometry is highly influential in variables of both local and global space. 

Critically, Local Extent again was again found to be associated with measures of Spatial 

Complexity. Further, Local Extent was now found to have strong associations with all other latent 

factors, ranging from those of potential practical importance (i.e., Access; identifying the central 

square of an environment) to those that may offer a specific function (i.e., Enclosure; hiding and 

concealment). This pattern of results is strongly supportive of the idea that certain elements of Local 

Extent may serve as proxies for globally-derived measures such as those of axial maps and 

accessibility graphs. That is, affording variables of Local Extent such as mean surface depth (the best 

single predictor of spatial extent) may allow a person to make a variety of predictions about the 

structure of space around them. This is consistent with a previous investigation of navigation 

performance that showed that when participants were exposed to distinct vistas prior to navigating a 

path toward a goal landmark, performance was enhanced when the vistas were along the most direct, 

unambiguous, paths to the goal landmarks (Heft, 1996). As indicated here, in spaces outside of these 

direct paths, Local Extent, Enclosure, and Access would be expected to be more similar to each other, 

reducing their overall usefulness and potential for affordance, an idea that is consistent with this 

finding. 

This study also demonstrated a weak relationship between Enclosure and Access. This finding is 

consistent with the dichotomous relationship between the two factors and bears considerable overlap 

with visual permeability theory (Stamps III, 2005). In both cases, the placement of buildings rather 

than the explicit local geometry alone is important in identifying potential locations offering visual 

access or identifying locations that may serve as ideal hiding spots. This is also consistent with 

studies of the influence of isovist shape at intersections on spatial memory, where poorer spatial 

memory is observed at intersections of ambiguous shape, even when other types of visual cues (each 

building appearing visually distinct and unique) are present in the local environment (Meilinger et al., 

2012). Together, these studies provide further support for the idea that the interplay between the local 

isovist and overall configuration of the environment is sufficient to account for how we behave in 

space, not just when we are navigating space. 

These findings highlight the critical influence of the configuration of an environment above and 

beyond that of the influence of local geometry defined by the individual structures therein. By 
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controlling for variation in surface geometry, a stronger relationship between Spatial Complexity and 

Local Extent was observed, suggesting that local surface geometry (and by extension, potentially, the 

algorithmically-defined axial maps) is more heavily influenced by global rather than local features. 

This is because a reduction in the local complexity of space should also reduce the relationship 

between Local Extent and Spatial Complexity if local complexity or geometry was driving the effect 

alone. Instead, the opposite pattern was observed. Likewise, should local geometry be driving the 

effect of Access and Enclosure, a stronger effect should be observed between these two factors. 

Instead, the effect is weakened, suggesting dependence between Access and Enclosure on more than 

just the local space, particularly in the case of Access. While local surface geometry does influence 

how varied the isovist is on a local level, the overall pattern of variation appears much more related to 

global spatial variables, strengthening the argument that a stable, functional, relationship exists 

between the configuration of local space and global space. 

While the results of Study 2 provide a clearer picture of the interactions between spatial properties 

and their controlling latent factors, the modeled relationship between local and global properties is 

still only theoretical as the environments were both synthetic spaces and relatively small in size. To 

establish the consistency of the model described in Study 1 and 2, a much larger, real-world sample 

was evaluated using Confirmatory Factor Analysis (CFA), allowing both the strength and the fit of 

the model to be stringently assessed. 

2.4 Study 3: Confirming the Presence of Latent Factors 

Study 3 sought to test the hypothetical relationships established in Studies 1 and 2 through the use 

of Confirmatory Factor Analysis (CFA). That is, the adequacy of the 5 latent variables of Spatial 

Complexity, Enclosure, Access, Importance, and Local Extent at explaining how variables of local 

(i.e., isovists) and global (i.e., axial) scope may vary was explicitly tested here.  

Of particular interest in Study 3 was establishing the precise relationship between local perceptual 

characteristics (such as Local Extent) and those characteristics of a space that define its function, but 

which may lie outside present perception (namely, the properties of Access, Importance, and Spatial 

Complexity). Should local perceptual properties demonstrate inconsistent or poor fit with such more 

global variables, an affordance relationship as suggested by previous authors, such as in exosomatic 

visual architecture, would not be supported. Unless factors defined by isovists are predictive of other 

properties of space, particularly those lying outside the directly perceivable viewpoint, the argument 
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that the perception of invariant structure (Gibson, 1979) and its proposed role in spatial navigation 

would be considered weak at best. 

For the confirmatory factor analysis, two large-scale real-world spaces were examined. The first, 

defined by the City of London (UK), a distinct city and county within the city of London that was the 

product of planning and a variety of historical and growth forces. The resulting city structure shows 

the influence of both short-term and long-term planning influences. Additionally, this area and areas 

like it are prototypical of real-world spaces that demonstrate low intelligibility  (Bafna, 2003). To 

validate the model tested in London, a second environment was selected from a portion of Manhattan 

Island in New York City (USA). The area of Manhattan was chosen due to a much more stringent 

adherence to planned grid-like road networks – longterm planning alone, largely – enhancing the 

intelligibility of the overall space. New York City is also considered a classic example of a high 

intelligibility space (Bafna, 2003). By separately examining fit of the factor model in these two spaces 

– largely existing on opposite ends of the intelligibility spectrum – the generalizability of the model to 

other real would spaces is enhanced. This is because a successful model that fits both types of 

environments would be demonstrative of types of variation seen in space as a whole, independent of 

the influence of more generalizable influences on the planning and structure of space2. As such, this 

approach was considered ideal, as the finding of a consistent fit of the hypothetical model in two 

large, real-world and opposing spaces, would be a strong test of the robustness and fit of the latent 

factor model and its underlying patterns of association. 

2.4.1 Methods 

2.4.1.1 Data Collection 

The data for the two real-world urban environments was extracted from two sources. Plan views of 

both environments, those of the City of London and of New York City, can be found in Figure 2.6. 

The urban space for the City of London was adapted from the OpenStreetMap database 

(OpenStreetMap users, 2013), made available under the Creative Commons Attribution-ShareAlike 

2.0 license, using the Maperitive (Brejc, 2013) software package. An 1800-meter by 720-meter 

segment of the City of London region, centered on St. Paul’s Cathedral, was selected. This area was 

                                                      
2 It is worthwhile to note that a general factor of planning could potentially be extracted in a more hierarchical 
analysis, where any general factors are examined separate from more dynamic relationships. This was largely 
considered a different question than the relationship of local and global properties, though. 
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selected as it is one of the oldest counties in London, influenced largely by local, organic forces as it 

developed across time. This was considered ideal, as it would place emphasis on the reduction in 

intelligibility across the majority of the space. Of the area within this county, a total of 605137 data 

points were found to lie in open space when examined with a 1 meter square grid and included in the 

analysis.  

The urban space for New York City (NYC) was determined from the a LIDAR-based building 

footprint database retrieved as part of the NYC Open Data program (City of New York, 2013) and 

was adapted for analysis using arcGIS 9.3.2. The NYC data set consisted of a 1950m by 955m area 

centered on Washington Square Park on Manhattan Island. This region was selected due to the 

considerable influence of an adherence to a grid in development, while still retaining some individual 

variation among city blocks. From this region, a total of 882479 data points were found in open space 

and retained for analysis.  

Data were analyzed in parallel using the PyPy programming language and Stanford Network 

Analysis Platform (Leskovec, 2009). The axial map was generated and analyzed in Depthmap (UCL, 

version 10). Each of the sixteen variables identified in the previous EFAs were computed: axial map-

based (connectivity, integration, and mean depth), angular segment analysis (mean angular variance), 

accessibility (closeness, betweenness, and eigenvector centrality), and isovist-derived (vertices, area, 

perimeter, entropy, convexity, circularity, rectangularity, number of surfaces, and mean surface 

depth).  

2.4.1.2 Data Composition and Screening 

As the previous two experiments demonstrated a fairly consistent theoretical structure between the 

different types of measures, the CFA focused only on those measures found to be considerably 

impacted by the purported latent factors (Spatial Complexity, Enclosure, Access, Importance, and 

Local Extent). Descriptive statistics are presented for each of the two environments in Table 2.6. 

Univariate and multivariate outliers were identified by MAD and MCD, respectively. Cases found 

to exceed 1.1925 MAD on one or more variables or exceeded the critical value, χ 2 (15, 1447412) 

=39.25, p<0.001, were flagged as potential outliers and examined by visual inspection. None of the 

identified cases was considered sufficiently aberrant from the data to be considered a meaningful 

outlier, all data points were retained for analysis. 
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Figure 2.5 A plan view of the sections of real-world locations, City of London (UK) and the New 

York City (USA), used in Study 3.
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Table 2.6 Descriptive statistics for Study 3 
 Model Evaluation - London  Cross-Validation - NYC 
 Mean (SD) Skew Kurtosis   Skew Kurtosis 
Axial Maps        
    Connectivity 625.030 (522.453) 1.382 2.193  1071.532 (700.418) 0.854 0.542 
    Integration 6.210 (0.881) -0.405 0.004  6.987 (0.844) -0.574 1.314 
    Mean Depth 2.530 (0.111) -0.302 1.326  2.471 (0.125) -0.084 1.098 
Angular Analysis        
    Mean Variance 1.520 (0.789) 0.835 0.729  2.684 (1.36) 0.556 -0.037 
Accessibility Graph        
    Closeness  0.002 (0.005) 48.680 2910.0  0.002 (0.007) 58.359 4017.390 
    Betweenness 0.002 (0.001) -0.251 -0.463  0.001 (0.001) -0.254 0.242 
    Eigenvector 0.001 (0.001) 0.334 -1.282  0.001 (0.001) 0.242 -1.239 
Isovist        
    Vertices 73.060 (42.213) 0.819 0.617  96.304 (44.526) 0.686 0.155 
    Area 8104.118 (6691.101) 0.864 -0.022  18089.753 (13291.654) 1.140 1.266 
    Perimeter 923.512 (619.450) 1.091 1.375  1798.639 (968.166) 0.497 0.282 
    Entropy 0.820 (0.384) 0.659 0.865  0.829 (0.306) 0.363 0.301 
    Convexity 0.447 (0.175) 0.304 -0.355  0.451 (0.216) 0.039 -0.954 
    Circularity 0.147 (0.100) 1.634 3.464  0.091 (0.071) 2.652 9.970 
    Rectangularity 0.297 (0.146) 0.729 0.284  0.295 (0.167) 0.467 -0.579 
    Surfaces 18.400 (9.433) 0.610 -0.107  18.839 (7.425) 0.507 0.127 
    Surface Depth 420.674 (316.7) 4.678 2.118  976.557 (693.733) 2.034 2.703 
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Table 2.7 Bivariate correlations for Study 3(London) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1. Connectivity 0.83 0.88 -0.73 0.72 -0.02 0.04 0.22 0.47 0.58 0.68 0.04 -0.24 -0.51 -0.26 0.26 0.52 
2. Integration (R=3)   0.86 -0.65 0.70 -0.05 0.05 0.25 0.51 0.61 0.72 0.00 -0.29 -0.64 -0.31 0.32 0.57 
3. Mean Depth (R=3)     0.93 -0.56 0.01 -0.06 -0.18 -0.35 -0.45 -0.54 -0.03 0.19 0.40 0.20 -0.22 -0.42 
4. Angular Variance       0.95 -0.03 -0.12 0.11 0.33 0.46 0.57 -0.01 -0.15 -0.45 -0.16 0.17 0.44 
5. Closeness         0.64 -0.04 -0.03 -0.03 -0.02 -0.03 0.00 0.04 0.07 0.03 -0.04 -0.03 
6. Betweenness           0.71 0.76 0.43 0.19 0.06 0.32 -0.32 0.04 -0.29 0.58 -0.04 
7. Eigenvector             0.84 0.69 0.50 0.37 0.44 -0.38 -0.12 -0.35 0.72 0.20 
8. Vertices               0.83 0.76 0.63 0.54 -0.46 -0.32 -0.43 0.79 0.39 
9. Area                 0.79 0.86 0.13 -0.40 -0.43 -0.39 0.46 0.79 
10. Perimeter                   0.90 0.03 -0.49 -0.66 -0.48 0.37 0.73 
11. Entropy                     0.65 -0.14 0.14 -0.12 0.51 -0.14 
12. Convexity                       0.72 0.47 0.96 -0.41 -0.19 
13. Circularity                         0.84 0.50 -0.21 -0.42 
14. Rectangularity                           0.72 -0.38 -0.20 
15. Surfaces                              0.82 0.00 
16. Surface Depth                               0.78 
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However, as depicted in Table 2.7, the suitability of several variables was found to be lacking. 

Namely, Closeness Centrality was not found to demonstrate pairs of intercorrelation sufficient for fit 

with the common factor model outlined by the EFAs. This was further confirmed by poor KMO-

MSA for the variables of Entropy and Closeness Centrality. Due to both the violation of normality 

and poor empirical fit, the purported latent factor of Access was removed from the analysis as the 

prior hypothesized relationships were poorly substantiated here in the City of London data set. 

Following removal of this factor, the remaining data showed good fit with a common factor model 

(KMO-MSA=0.820). A nearly identical pattern of correlation was observed in the New York City 

data set, supporting the removal of Access from the factor model. 

2.4.1.3 Confirmatory Factor Analysis 

The CFA was performed in AMOS (Arbuckle, 2013) using the maximum likelihood estimation 

(MLE) with the covariance matrix providing initial estimates for the remaining four latent factor 

model defined by Spatial Complexity, Enclosure, Importance, and Local Extent. The fit of the factor 

model was evaluated by assessing convergence across the Goodness of Fit (GFI), Tucker-Lewis 

Index (TLI), Comparative Fit Index (CFI), Root Mean Squared Error (RMSEA) and Root Mean 

Squared Residual (RMSR) statistics. GFI, TLI, and CFI statistics greater than 0.90, RMSEA less than 

0.10, and RMSR approaching 0.0 were taken to indicate good model fit. 

2.4.2  Results 

2.4.2.1 Confirmatory Factor Analysis of the Naive EFA Model in the City of London 

After excluding the Access factor for the reasons described above, the four remaining factors that 

were extracted from the spaces studied in the EFA’s from Studies 1 and 2 – Spatial Complexity, 

Enclosure, Importance, and Perceptual Complexity were included in the initial factor model. Spatial 

Complexity was defined by connectivity, integration (radius=3), mean depth (radius=3), and mean 

angular variance (radius=3k). Enclosure defined convexity, circularity, rectangularity, and perimeter. 

Importance was defined by betweenness and eigenvector centrality. Perceptual importance 

characterized isovist area, perimeter, and mean surface depth. All latent factor intercorrelations were 

included in the model. The model was over-identified with 49 degrees of freedom. 

The initial, naive, model suggested by Study 1 and 2 was evaluated with the City of London data 

set. The model was considered naive as any pattern of variation that was unique to each variable 

could not be identified by the EFA and thus were left unconstrained. The resulting CFA showed 
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marginally poor fit, GFI=0.845, TLI=0.860, CFI=0.896, RMSEA=0.162, RMSR=0.043, for the naive 

factor model. Standard indices of good fit should either be greater than 0.90 (GFI, TLI, and CFI) or 

below 0.10 (RMSEA and RMSR). So the naive model proposed by the factor analyses was 

considered an inappropriate depiction of the true patterns in the data. 

To move beyond the naïve model, two modifications were made to the factor model. First, variance 

derived from similar data or calculation methods were allowed to covary, reflecting the shared 

variation between measures, which can be explained by calculation method (as opposed to latent 

factors) alone. Eigenvector centrality and betweenness centrality, area and mean surface depth, and 

integration and mean depth were each allowed to covary with each other, reflecting these underlying, 

previously uncaptured, relationships. Second, modification indices were evaluated to determine if any 

potentially important associations existed in the real data that were not adequately described in the 

smaller, synthetic data sets. One potentially important and previously unenclosed cross-loading was 

detected, χ 2(1)=148866.891, p=0.119, between the factor of area and Importance. That is, perimeter 

was shown to be influenced by both Importance and Local Extent, rather than simply by Local Extent 

alone. This was considered reasonable as the absence of cross-loadings, enforced in the original factor 

model, is rare in real models (Widaman, 1993), and was both theoretically and empirically supported. 

This new model showed good fit across the majority of fit indices, GFI=0.957, TLI=0.966, 

CFI=0.978, RMSEA=0.083, RMSR=0.015. The corresponding model was retained and is depicted in 

Figure 2.7. 

Spatial Complexity was revealed to influence connectivity, integration, mean depth, and mean 

angular variance. In contrast, the more local factor of Local Extent was found to influence perimeter, 

area, and mean surface depth. Enclosure was found to influence convexity and rectangularity. The 

Importance of a location in supporting traffic was defined by betweenness centrality, eigenvector 

centrality, and isovist area.  

Critically, Local Extent and Spatial Complexity were found to be highly positively correlated with 

each other. Strong positive correlations were also observed between Importance and Local Extent and 

Importance and Spatial Complexity. Moderate negative correlations were found between Enclosure 

and Importance, Spatial Complexity and Enclosure, and Enclosure and Local Extent. 
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2.4.2.2 Cross-Validation of the CFA Model with data derived from NYC 

To evaluate the consistency and robustness of the model tested in the the City of London, a 

comparatively low intelligibility space, the factor model was cross-validated with the novel data 

derived from NYC, a comparatively high intelligibility space (Bafna, 2003). This was considered 

ideal as the overall structure defining NYC is the opposite case to that of the City of London, is 

therefore a strong test of the sufficiency of the model. The CFA model was overidentified, having 45 

degrees of freedom. Good model fit was observed between the CFA model derived using the City of 

London dataset and the New York City dataset, GFI=0.956, TLI=0.966, CFI=0.978, RMSEA=0.086, 

RMSR=0.022. The result is presented in Figure 2.7  

A near identical pattern of factor loadings was revealed in the NYC data set. However, the pattern 

of association amongst latent variables was found to differ in two ways. First, the strength of the 

relationship amongst the Importance of a location and Spatial Complexity was now found to be 

weakly correlated instead of highly correlated. Second, the correlation between Spatial Complexity 

and Enclosure was now observed to be weakly correlated instead of moderately correlated. 

Otherwise, the results were consistent between the two datasets.
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Figure 2.6. The standardized solution of the accepted factor model representing the factors of Spatial Complexity (SC), Enclosure (EN), Local 

Extent (LE), and Importance (IM). Squared multiple correlations can be found to the right of each experimental variable. Correlations between 

factors are presented for each double-headed arrow. Relative involvement in each factor is depicted between each factor and its member variables. 

The amount of variance explained by the model is depicted in the top-right of each variable. 
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2.4.3 Discussion 

Through CFA and cross-validation, four latent causal variables were identified to account for 

variation in how space can be described. This account was further strengthened by examining two 

large-scale urban spaces that stand as counterpoints to each other: New York City, an organized city 

following a primarily grid-like structure and the City of London, an organic urban space. By assessing 

the fit of the factors in each environment separately, a strong case develops for the resulting 

description of their behaviour to extend to urban spaces as a whole. This inference is strengthened by 

the number of distinct locations that were examined (spanning 1447412 square meters in total), 

describing a sizable number of different shaped spaces, both within the field-of-view and in the 

surrounding configuration of the environment.  

In contrast to the previous models, Access was not found to be supported in the real spaces that 

were examined. A likely explanation for this effect is that these environments simply do not contain 

any locations that could be described by Access. Another possibility is that the algorithmic 

application of axial lines may not have spanned these open spaces as thoroughly as in the previous 

models. Likewise, the consideration of more varied street architecture revealed less effect on the 

variable of circularity, suggesting that the influence of street architecture is more prominent than that 

of a variable that largely described the enclosure of a space – opposing concepts. Smaller scale 

simulations would be helpful in establishing whether these proposals are the case but were considered 

beyond the scope of the present thesis. 

Prominently, the emergent properties defining the environment's construction were found to be 

highly associated with each other. Particularly strong was the relationship between Local Extent and 

Spatial Complexity in both the City of London and New York City datasets. A consistent but 

moderate association was also observed between Enclosure and Importance, as well as Spatial 

Complexity and Importance, strongly supporting the idea that the shape of an overall environment is 

core in determining the potential function of its component parts. At the same time, local geometry 

can be informative about the configuration of a city as a whole. While Local Extent was observed to 

be highly associated with Spatial Complexity, it was not, however, associated sufficiently to consider 

them the product of a single unitary factor. This is most easily explained by the construction of the 

measures themselves, as their statistical behaviour is considerably different, yet their variation is 

systematically and informationally related. 
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The association between Local Extent and Spatial Complexity is consistent with the idea that 

people move in directions that conserve linearity in their paths (Conroy Dalton, 2003; Conroy, 2001; 

Penn & Dalton, 1994a). It is through the interplay between the size of local visual space and the 

embedded spatial configuration that this sort of linearity could optimally be conserved. Without such 

an association between these two latent factors, linearity could only be conserved across short 

distances as following a path that is linear within the local view may incidentally lead to a location 

that obstructs linearity.  

The latent factors of Importance and Enclosure were found to be negatively associated with each 

other, supporting of their dichotomous nature in both permeability (Stamps III, 2005) and prospect-

refuge theory (Appleton, 1996). But, in this large-scale data set, a much weaker pattern of association 

was observed between factors reflective of spatial preference and that between more explicit 

movement-related factors of Local Extent and Spatial Complexity. 

The CFA models reveal a consistent and relatively simplistic picture of how the properties of local 

visual space may relate to and predict other types of descriptions. The precise character of the 

relationships amongst factors was better elucidated through the use of CFA and examination of fit 

across two distinct data sets.  

2.5 General Discussion 

Across three factor analyses derived from both synthetic (Studies 1 and 2) and real-world (Study 3) 

environments, a consistent picture of the behaviour of spatial variables emerges. These patterns cast 

light on properties that may serve as a potential underlying mechanism of how we navigate through 

space.  

At the core of this chapter is the goal of identifying how space may function in terms that are 

exosomatic to an individual person. That is, to identify properties that may drive behaviour simply by 

virtue of describing space in practical or useful terms. It is this idea that forms the basis for the theory 

of exosomatic visual architecture  (e.g., Turner, 2006; Penn, 2003), which posits that we perceive 

configurational affordances from the world around us in determining how we choose to move through 

space. The existence of a relationship between configuration and local perception would also allow 

testing of the hypothesis that the perception of invariant structure may generally be behind how we 

navigate space. To both understand and test these ideas, it is fundamental that we understand whether 

the structure of built spaces is systematic enough to fit these proposed mechanisms. Additionally, in 
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taking this approach, we are able to identify likely local perceivable properties of space that may be 

driving spatial behaviour, allowing these ideas to explicitly be tested in the experiments of the next 

chapter. 

Prior work, primarily in the form of agent-based analysis (Turner, 2006; Turner et al., 2001) has 

attempted to link traffic and pedestrian count data to the concept of a visibility graph, an approach 

that bears conceptual similarity to that of the measure of occlusivity proposed by (Benedikt, 1979). 

Both scholars have proposed that the fit between extant behaviour and the variable of occlusivity 

helps to explain our navigational tendencies. Yet, the present results show that occlusivity has very 

little in common with how space is structured as a whole. This does not, however, mean that 

occlusivity may not be useful for a person to navigate space successfully, as seeking out locations that 

offer more visual access is useful in certain contexts. But, it does suggest general navigation 

behaviour may be less driven by occlusivity and more driven by variables, such as those of local 

extent. By this, I mean that the strategy and goals of the participant may lead to two very different 

patterns of movement. This is something that a more advanced hierarchical analysis would be ideally 

suited to assess but is considered outside the scope of the present topic of the role of affordance in 

accounting for how we commonly navigate through space. 

Local Extent appears to be a promising factor in the affordance of movement. Across all three 

studies, each with progressively larger samples, the variation in the properties of area, perimeter, and 

mean surface depth were found to be moderately-to-strongly associated with information about the 

configuration of space lying outside directly perceivable space. In addition, as this association was 

enhanced when considering these larger samples, the relationship between the properties of the size 

and shape of space defined by Local Extent are considered to be very promising. This is because for 

the invariant structure of space to be useful in the affordance of movement, it must provide 

information about the world that is of practical importance to a person. If the size of space were not 

systematically related to anything outside the present viewpoint, it would be much harder to navigate 

the world consistently and effectively. Yet a large number of studies demonstrate that the opposite is 

seen, people seem to navigate space in similar ways to each other, even when they have no 

knowledge about the environment that they are navigating in. This gives strength to the idea that 

affordance of movement is informed by local variables, particularly those of extent. 

Some support for the view that we may perceive space in the way defined by Local Extent was 

recently described by Wiener, Hölscher, Büchner, and Konieczny (2012). The authors calculated a 
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depth profile using the pattern of distances from a viewer’s position to occluding surfaces (i.e., walls). 

Effectively, the shape of the space was defined by the contour created by the junction between visible 

walls and the floor, an idea that is similar to that of an isovist but more explicitly specified in direct 

perceptual terms. The authors showed that people appear to make movement decisions in a way that 

is consistent with metrics derived from this depth profile. This type of data has the advantage of being 

formed by the local geometry of space, and therefore approximates the isovist method used herein. 

Their measure also has considerable overlap with the factor of Local Extent that helps to describe the 

configuration of space as a whole. 

Evidence for the use of Local Extent-type cues has also been found in other experiments on spatial 

behaviour. For example, people have been shown to be able to accurately reconstruct distance and 

orientation from static views of an environment (e.g., Shelton & McNamara, 1997), a finding that 

suggests that space can be encoded using purely depth-based information. These findings have shown 

to be dependent on the degree of variation in the surrounding surfaces (Kelly et al., 2008). 

Participants showed task performance that varied as a function of the homogeneity of the surrounding 

views of the environment. These results suggest that purely depth information is behaviourally 

relevant to spatial behaviour, further supporting their promising role in explaining navigational 

tendencies. 

The importance of local extent has also been shown in studies requiring self-motion through an 

environment. Several classic studies of the encoding of heading and displacement have indicated that 

static depth cues are informative in integrating the route of travel through an environment (e.g., Best, 

Crassini, & Day, 2002; Wang & Cutting, 1999; Vishton & Cutting, 1995). One example of this is the 

relative invariants formed by the walls on either side of an observer. The presence of this type of self-

motion cue has been found to constrain judgments about position and to encourage the use of a fixed 

heading. This sort of pattern would help to account for movement along relatively fixed and linear 

paths (Conroy Dalton, 2003; Conroy, 2001; Penn & Dalton, 1994b), such as axial lines, as a function 

of depth and self-motion cues, as long as invariants are available to observer. 

Cumulatively, these findings provide ample evidence for the potential role of area, perimeter, and 

mean surface depth in guiding navigation behaviour. Building on this understanding, Chapter Three 

will test whether people use these properties in such a way that an affordance exists. In doing so, the 

sufficiency of direct perception and exosomatic visual architecture as the underlying mechanism 

behind navigation will be established. 
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Chapter 3 
Behavioural Evidence for the Affordance of Movement 

Chapter Two successfully identified a shared relationship between those properties describing the 

local shape of space (area, perimeter, and mean surface depth, to be specific) and those describing the 

overall configuration of the environment (namely, connectivity, integration, and mean angular 

deviation). Given this, the perception of the invariant structure of space can now be evaluated in more 

detail for their fit with the hypothetical affordance of movement. This type of mechanism has been 

hypothesized to be integral in guiding navigation through complex environments, both directly 

through affordances (e.g., Emo et al., 2012; Wineman & Peponis, 2010; Maier et al., 2009; Penn, 

2003; Turner et al., 2001; Hillier, 1999) and through other means based largely around similar 

concepts, such as Turner’s exosomatic visual architecture (Turner, 2006; Turner et al., 2001). In both 

cases, authors contend that we navigate space in systematic ways because invariant information (such 

as that of the perceived shape of the environment around us) in the environment informs our 

movement decisions. 

Affordances have been well studied outside of the field of navigation. Classically, affordances have 

been understood in terms of the interaction between people and some relatively simple property of 

their environment. For example, people have been shown to modify how they move through a 

doorway based on the interplay between their shoulder width and the diameter of the aperture being 

traversed (Warren Jr & Whang, 1987). Likewise, the length of our legs has been shown to influence 

what riser height we consider climbable when attempting to climb stairs (Warren Jr., 1984). In both 

cases, the affordance was understood by exploring the relationship between a person and their 

surrounding environment – an idea known as the theory of constraints. The theory of constraints 

specifies that optimal points should exist whereby a behaviour shifts from being practical to being 

impractical. In the case of the stair climbing study, the point at which a stair was judged as climbable 

was defined by the riser height (the local perceived property derived from invariance) and the 

individual's capability (i.e., leg length), distributed around a central point. That central point described 

the optimal point at which climbing was energetically useful to the person – around the optimal point, 

the frequency of climbability judgments declined steadily. A similar approach has been proposed by 

other authors in the form of critical points or affordance thresholds  (Franchak & Adolph, 2013). This 

type of approach describes an affordance by the probabilistic (rather than discrete) relationship 
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between a behaviour and an invariant. Fundamental to both optimal and critical points is that the ratio 

in the amount of observed behaviour to the physical properties of the environment or an object must 

be defined by a single, ideal, level between the two. These are consistent with Gibson's concept of an 

affordance as the presence of multiple ideal fits between the capacity of an organism and invariant 

would be difficult to rectify without interceding processing or cognition. 

This type of approach has been used extensively to explore a wide variety of behaviours, such as 

describing how we determine comfortable sitting positions (Mark & Vogele, 1987), whether a barrier 

can be traversed (Wagman & Malek, 2009), deciding whether we need to duck to pass an object 

successfully (Stefanucci & Geuss, 2010), and determining if a ball can be caught (Oudejans, 

Michaels, Bakker, & Dolné, 1996). In each case, a consistent relationship was observed between a 

specific perceived property of an object or environment and the capability for action by an individual 

within that environment. 

To establish the case that an affordance explains common patterns in navigation, I tested the fit 

between preferred route choice and the spatial properties of area, perimeter, and mean surface depth 

identified in the previous chapter as being potentially promising elements of the invariant structure 

for explaining navigation in both familiar and unfamiliar spaces alike. These properties were also 

demonstrated to show considerable overlap with measures of Spatial Complexity, representing ideal 

candidates for explaining patterns of navigation in the context of intelligible and unintelligible spaces 

and in explaining how people may navigate space when they have no existing experience or 

knowledge about the specific environment. As an initial approach into this topic, Experiment 1 sought 

to determine if aggregate traffic behaviour is determined by any of these spatial properties, or is 

instead simply associated with them. To achieve this, a number of mathematical models were 

developed to see if groups of navigators, varying in their goals and experiences, actively appeared to 

seek out optimal levels of measures of these spatial properties. This experiment not only determined 

initial suitability for affordance in describing human navigation but also helped to establish how these 

properties behave in a real world environment with a large, varied sample, typical of more traditional 

analyses used within the field. Next, across three experiments, individual behaviour was assessed for 

the presence of critical points (Experiments 2 and 3) and the independence of the use of affordance 

from general measures of spatial ability and attention (Experiment 4). As a whole, the results give a 

clearer picture of how a specific affordance, outlined by mean surface depth, may be responsible for 

shaping navigation behaviour. 
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3.1 Experiment 1 Evidence for Affordance in Aggregate Traffic 

Chapter One introduced a considerable volume of evidence to support the relationship between 

specific types of spatial information and how pedestrian and vehicular traffic appears to move 

through cities, neighbourhoods, and buildings of varying scale. Most commonly, the global variables 

of connectivity and integration have long been found to be correlated with both vehicular (Penn et al., 

1998a; Penn et al., 1998b) and pedestrian traffic  (Hillier et al., 1987; Hillier et al., 1993; Hillier et al., 

1987). Prior work by myself (Barton et al., 2014) and others (Penn, 2003) has suggested that the 

correlation between these axial measures and traffic counts ranges from moderate to substantial, 

depending on the sample the data was drawn from. This is consistent with studies of individual 

navigation and exploration behaviour, which have established a probabilistic relationship between 

axially derived descriptions of space and preferred routes (Hillier & Iida, 2005; Haq & Zimring, 

2003; Haq, 2003; Conroy Dalton, 2003; Conroy, 2001; Peponis et al., 1990). In both the aggregate 

and individual studies of navigation, the results suggest that people prefer to follow specific paths, 

consisting of maximal levels of connectivity and/or integration. 

I begin by establishing whether the key affordance-related variables proposed in Chapter Two can 

predict how we move through real-world spaces. This will both establish the suitability of the local 

spatial properties for driving behaviour in a real-world space but will also establish how well direct 

perception can account for these patterns of movement. This will be achieved by comparing two 

critical models (and a third intermediate to those models) designed to assess the degree to which 

traffic is drawn toward these spatial properties at both a local and a global scale. Should affordance be 

the primary motivator, little or no influence of the global level of variables should be observed. 

Additionally, this approach will represent a stronger test of whether the local extent of a space is 

related to the global structure of space, as the two factors will be simultaneously evaluated. For the 

present experiment, a real-world environment was selected, as it would best evaluate the influence of 

spatial variables on a variety of navigators, independent of individual differences. Specifically, the 

City of London environment described in Study 3 was employed due to its substantial variation in the 

variables of Local Extent (area, perimeter, and mean depth) and embedded Spatial Complexity 

(connectivity, integration, and mean angular deviation). To determine the relationship between spatial 

variables and the magnitude of traffic accounted for by each variable, the association between the two 

will be assessed while controlling for the potential influence of each other variable. The resulting data 
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therefore describes how each individual variable can independently predict the amount of traffic 

passing through a location. 

 Should traffic be best captured by a direct relation between a local visual property of space and 

movement, across the large real-world space of the City of London, evidence would first exist for an 

affordance-based explanation of navigation in a complex, built space3. If, on the other hand, the 

affordance hypothesis is spurious, considerable deviation would be expected between the variables of 

local extent and the dependent variable of traffic count.  

To assess the fit of the affordance model in accounting for common patterns in how people, 

regardless of their goals, navigate space, several mathematical models were employed. Each model 

was designed to assess whether traffic tended toward the spatial variables either locally (at each step, 

maximizing the value at the next step), globally (always steering toward the optimal level of the 

variable within the space as a whole), or a hybrid of the two, termed the: (1) Global Attractor, (2), 

Local Attractor, (3) and Simultaneous Attractor models, respectively. 

The Global Attractor model assumes that traffic is guided toward an optimal level of any potential 

factor regardless of what the level of the variable is within the local, visible environment. 

Accordingly, the Global Attractor model assesses whether groups of individuals tend toward high or 

low levels of the spatial properties with some level of fore knowledge or intuition about the layout of 

the space. The Simultaneous Attractor model, in contrast, assumes that traffic can best be accounted 

by assuming that the amount of observed traffic is the product of both the tendency toward steering 

toward the optimal level of the variable in the surrounding environment and some degree of random 

variation (such as that induced by different origins or destinations, individual differences in spatial 

knowledge, etc.). Hence, where the Global Attractor model is deterministic, the Simultaneous Model 

is probabilistic. Finally, the Local Attractor model is used to assess the degree to which purely locally 

visible levels of properties drive the magnitude of traffic. At each point in the environment traffic 

steers itself toward the next-best location without reversing trajectory. In this case, traffic is assumed 

to be driven only by locally defined invariants, rather than depending on knowledge outside the 

present field-of-view.  

                                                      
3 It is important to note that the majority of the samples used in this study were of vehicular traffic, which is 
fundamentally constrained by traffic regulations, the presence of other traffic, and other factors. This could, 
feasibly, reduce the amount of variation observed in the data. However, given the results, the effect of these 
limiting factors is considered negligible. 
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Should an effect of either the Global Attractor or Simultaneous Attractor models, poor support for 

the idea that affordance drives general patterns of navigation and spatial preference would be found. 

If, in contrast, the Local Attractor model is found to have efficacy in predicting traffic counts, a much 

stronger case for affordance in driving navigation behaviour would be revealed. 

Some initial support for these models was introduced at the beginning of this thesis. Crowds having 

a tendency to flow like water (Matheson, 1909) through a space can be thought of as being the 

product or either (or both) local or global influences of the structure of space. More recent models 

have used fluid dynamics equations to show that the tendency to flow through space is substantiated 

empirically (Helbing et al., 2001; Helbing, 1993; Helbing, 1992; Helbing, 1992). However, for the 

present analysis, this form of model is considered unnecessarily complex as it describes something 

more than just the attractiveness of a location. For example, Helbing's (beginning in Helbing, 1992) 

research postulates that the force driving navigation is the product of an interplay between the 

individual and all other individuals in a space. Accordingly, to estimate the influence of local, 

simultaneous, and global effects, a much more simplified, but conceptually related, diffusion model is 

employed. 

3.1.1 Methods 

3.1.1.1 Data Sample 

Publicly available GPS traces (OpenStreetMap users, 2013) for the area of the City of London 

(identical to that used in Experiment 3 and depicted in Figure 2.6) were used to produce an aggregate 

traffic map of area. Each GPS trace was submitted by users voluntarily for a variety of purposes, 

including pedestrian (i.e., joggers, mappers, etc.) and vehicular traffic, as documented in the XML 

files. In both cases, origins and destinations varied widely across the data set. A total of 232 GPS 

traces were found to be suitable for inclusion in the data set, having no missing points or extremely 

aberrant tracking errors. The mean GPS trace covered a displacement of 745 meters (SD=974 meters) 

as determined by the Haversine method and ranged between 10.433 km/h to 71.99 km/h.  

To account for potential errors in tracking accuracy, which are commonly between 10 and 15 

meters in urban centers, the data was convolved with a 15m linear filter. Instead of assuming perfect 

precision in tracking, any tracking points within 15 meters were summed to produce the estimate of 

the true volume of traffic at a location. In doing so, error should be minimized and locations of 

convergence should be emphasized. 
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3.1.1.2 Models of Movement 

Three distinct models were examined to assess what properties in the environment are likely 

attracting traffic and pedestrians. Each hypothesized attractor was derived identical to those variables 

used in Studies 1 through 3. The variables defined by the latent constructs of Spatial Complexity 

(connectivity, integration, and angular deviation) and Local Extent (area, perimeter, and mean surface 

depth) were subject to different modifications to evaluate whether traffic was directed toward the 

highest level of the purported attractor at all times (Global Attractor Model), steered toward the 

Global Attractor by seemingly random chance (Simultaneous Attractor Model), or were always 

steered toward the best level of the attractor within local space alone (Local Attractor Model). A 

graphical depiction of the different predictions of the models is presented in Figure 3.1. 

3.1.1.2.1 Global Attractor 

The traditional model of the success of Space Syntax holds that traffic generally tends toward 

optimal levels of axially-defined spatial variables, such as connectivity and integration (Hillier, 1996). 

It is considered important to evaluate whether this model is observed to fit the present data. This is 

most often demonstrated by showing a strong correlation between connectivity, integration, and 

traffic count.  

To achieve an estimate of how attractive each location is to a potential navigator, the Global 

Attractor model posits that a person has a reasonably accurate understanding of where to go in an 

environment to make optimal use of an attractor. That is, for example in the case of integration, traffic 

will always steer itself toward the highest level of integration available, environment-wide. A group 

of participants would therefore tend to show a linear relationship between the measure of the variable 

and the amount of traffic. This sort of model is implicit in traditional accounts of Space Syntax and 

places emphasis on understanding and representing the structure of an environment rapidly upon 

entering an environment (Hillier et al., 1993) an idea that is, to some degree, at odds with the 

affordance model proposed in this thesis and in that of exosomatic visual architecture.  

3.1.1.2.2 Simultaneous Attractor Model 

The Simultaneous Attractor model represents a modification on the Global Attractor model to 

account for individual differences in goals and degree to which a person may tend towards the ideal 

level of an attractor variable. In this model, traffic would be expected to steer itself toward an 
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attractor only part of the time (the amount of which can be manipulated directly). The remaining time, 

trajectories would be inherently unpredictable, showing up as random variation.  

This sort of tendency in can be estimated by diffusing the data in two-dimensions using a Gaussian 

function. In effect, the Simultaneous Attractor model is a blurry Global Attractor model to induce 

random, unpredictable, variations in individual trajectories. By making the Gaussian have a larger or 

smaller radius, the distance at which traffic steers toward the optimal level of an attractor can be 

manipulated. If traffic were to tend toward the optimal level of an attractor within the nearest 100 

meters (the approximate size of the average city block), and otherwise randomly vary, a Gaussian of 

100 meter width would be employed. In more explicit terms, the level of attraction (A) is the product 

of the Global Attractiveness (defined by g at each position, x and y in space), convolved with a two-

dimensional Gaussian (G) of width d with the slope of the function determined by  𝜕𝑥 and  𝜕𝑦: 

𝐴(𝑥,𝑦) =  𝑔(𝑥,𝑦)  ∗  𝐺(𝑥,𝑦) 

𝐺(𝑥,𝑦) =  
1

√4𝜋𝑑
 𝑒−

 𝜕𝑥
2+ 𝜕𝑦

2

4𝑑   

 

To account for the inability for traffic to disperse through buildings toward optimal levels, the 

Gaussian is bounded to extend only into nearby open space, stopping when it hits a building. This 

modification allows traffic to reduce near to buildings and move away from obstructions. 

This type of model would be expected to perform well under general conditions where a navigator's 

goals, knowledge and experience, and degree to which they seek out an attractor may differ amongst 

individuals. For the present analysis, people were expected to tend toward those locations within 100 

meters of their present location – the approximate length of an average road within the dataset. 

3.1.1.2.3 Local Attractor 

The Local Attractor model posits that traffic will always tend toward the most attractive point 

within eyesight. As a result, this model places no demands on the individual to know about the global 

level of properties outside the local visual space and instead purely considers the values offered by 

immediately adjacent locations. Consequently, it is the opposite case of that of the Global Attractor 

model, where navigation is not biased in a specific direction (at least locally).  

Accordingly, the local attractor model is fundamentally a model of directed flow. This can be 

represented numerically is as the product of anisotropic diffusion (where the Simultaneous Attractor 
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model is isotropic). In an anisotropic model, the attractiveness of a local attractor is the product of all 

other values within the local view and can vary with respect to each direction. This is because traffic 

will have a tendency to flow toward or along progressively increasing values until it reaches the 

optimal level within the local space. Intuitively, this can be understood as water flowing along a slope 

where the steepness or gradient of the slope is determined by the level of the spatial variable(s) while 

preventing movement across boundaries (such as buildings or walls). It can be contrasted with 

Simultaneous Attraction, where flow is equal in all directions due to random variation, outside of the 

case of occlusions. 

To approximate this model, Weickert diffusion (Weickert, 1998) was employed. To determine how 

much traffic should be driven in each direction – whether a higher level can be reached by traveling 

forward, turning, or moving diagonal – the amount of force (F) is determined at each point in space in 

each potential direction (the x, y, or x-y directions) using the structure tensor: 

𝐅 =  �
𝜕𝑥𝑥  𝜕𝑥𝑦
𝜕𝑥𝑦 𝜕𝑦𝑦

� 

The force is determined purely as the product of immediately adjacent locations. This can be 

represented by the partial derivative, 𝜕, in the x, y, and diagonal (xy) directions. To determine the 

average attractiveness of a location – how attractive that location is with respect to all incoming 

traffic – the eigenvalues, 𝜆1 and 𝜆2, of the structure tensor are computed such that: 

𝜆1,2 =
1
2

 ��𝜕𝑥𝑥 + 𝜕𝑦𝑦� ± ��𝜕𝑥𝑥 − 𝜕𝑦𝑦�
2 + 4𝜕𝑥𝑦

2� ,      𝜆1 ≥ 𝜆2 

The corresponding λ are the sum of a movement in the x or y-direction, reweighted with the amount 

of movement diagonally. Hence, the eigenvalues describe the amount of movement expected in two 

dimensions, decoupled from the somewhat arbitrary x and y planes (here they approximate typical 

compass bearings of North-South and East-West). The eigenvalues therefore describe force or 

attractiveness in general, rather than force with respect to a specific direction. The difference between 

the two eigenvalues is termed 𝛼, representing the general attractiveness of an individual location.  

Having established how attractive each location is as a function of the values of the property in 

nearby space, we can now determine how much traffic would be expected to move toward each 

location, depending on how long a person would be expected to follow the level with no deviation. To 

achieve this, 𝛼 is adjusted as a function of distance: 
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𝜅1 =  𝛼 

𝜅2 = �
𝛼, if 𝜆1 = 𝜆2 

𝛼 +  (1 +  𝛼 ) 𝑒
� −𝐶

(𝜆1−𝜆2)2�
�  

where α is the aforementioned relative amount of traffic expected to be attracted to a location (set to 

be 0.001; equal to 99.9% of traffic moving toward the most promising local level of the attractor) and 

C represents the locations at which random movement would be expected (such as at peaks/optimal 

levels of the variables; set to be 1e-10). In a sense, then, anisotropic diffusion is like the Gaussian 

diffusion scheme used above, but where the shape of the G varies at each location in the environment 

rather than being constant and symmetrical at all times. This is captured by the tensor D (representing 

the amount of change expected in each direction, κ, with respect to the amount of adherence that 

traffic is expected to have with this model, 𝛼, and willingness to accept random movement, C): 

𝑫 = �𝜅1 0
0 𝜅2

�  

This tensor is the product of the original expected amount of force or attraction in each direction, F, 

summarized in general terms (via each λ) and subject to specific assumptions guiding how well 

people follow the model (captured by κ).  

As before, data is convolved with the tensor D to determine how attractive each location is as a 

product of distance. In this case, data was diffused to a distance of 100 meters, the length of an 

average road within the environment and identical to that of the Simultaneous Attractor (isotropic) 

model. This resulted in the Local Attractor data describing how attractive each location is should a 

person choose the ideal amount of the attractor at each step for 100 meters before re-evaluating where 

to go next. In this formulation, individual differences in navigation are accounted for in rough terms, 

but people are expected to move toward the local level most of the time.  

3.1.2 Results 

3.1.2.1 Analysis Approach 

A set of linear multiple regression analyses were performed to assess the relationship between the 

aggregate traffic flow produced from crowd-sourced GPS traces and each of the three potential traffic 

models (Globally, Simultaneously, and Locally driven) for each of the hypothetically influential 

variables of interest: Spatial Complexity (connectivity, integration, and mean angular deviation) and 

Local Extent (area, perimeter, and mean surface depth). The result of these models therefore assessed 
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the degree of fit between traffic count at a given location and the level of attractiveness of each 

variable while controlling for the attractiveness of other types. Fundamentally, the regression models 

identify the degree of fit between traffic and each attractor, independent of each other. 

The data were assessed for their suitability to regression analysis. The variables were assessed for 

univariate normality and multivariate normality. The attractiveness of the variables of mean surface 

depth (skew=3.903, kurtosis=148.076) in the Global model, connectivity (skew=3.186, 

kurtosis=10.791) in the Local model, and raw traffic data (skew=3.448, kurtosis=13.259) were to be 

approximately non-normal. Each of the three variables was subject to a square root transform, which 

successfully ameliorated the non-normality. The corresponding descriptive statistics are provided in 

Table 3.1. 

Next, the data were assessed for multicollinearity. As in the factor analyses, mean depth (radius=3) 

was found to be highly related to that of integration (radius=3), showing a mean Variance Inflation 

Factor of 0.88. Accordingly, the variable of mean depth was removed from subsequent analysis. 
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Figure 3.1 Models of the expected traffic distribution as a function of Globally, Simultaneously, and Locally directed movement. Data presented 

here are a 400m by 750m subset of the data used in the overall analysis, surrounding St. Paul's Cathedral. Areas of confluence or attractiveness are 

depicted ranging from black (high) to white (no attraction).  
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Table 3.1 Descriptive statistics for Experiment 4 
Movement Data Mean (SD) Skewness Kurtosis 
      Traffic Count (sqrt) 2.463 (5.539) 2.198 3.810 
Global Attractor Model    
     Connectivity 286.068 (473.876) 2.152 5.210 
     Integration 1.71 (1.943) 0.388 -1.607 
     Mean Depth  1.928 (2.169) 0.351 -1.624 
     Mean Ang. Dev. 0.691 (0.926) 1.228 0.811 
     Area 3742.493 (6091.894) 1.795 2.520 
     Perimeter 429.893 (629.512) 1.675 2.749 
     Mean Surf. Depth (sqrt) 9.024 (10.872) 0.768 -0.504 
Simultaneous Attractor 
Model 

   

     Connectivity 0.086 (0.139) 1.844 2.764 
     Integration 0.236 (0.294) 0.706 -1.080 
     Mean Depth  0.299 (0.355) 0.475 -1.577 
     Mean Ang. Dev. 0.134 (0.186) 1.122 0.067 
     Area 0.059 (0.1) 1.927 3.080 
     Perimeter 0.073 (0.111) 1.672 2.381 
     Mean Surf. Depth 0.005 (0.007) 1.798 4.523 
Local Attractor Model    
     Connectivity (sqrt) 0.079 (0.179) 2.177 3.539 
     Integration 0.24 (0.283) 0.485 -1.503 
     Mean Depth  0.259 (0.294) 0.295 -1.854 
     Mean Ang. Dev. 0.133 (0.179) 1.110 0.195 
     Area 0.076 (0.124) 1.803 2.537 
     Perimeter 0.085 (0.122) 1.604 2.205 
     Mean Surf. Depth 0.007 (0.01) 1.888 6.119 
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3.1.2.2 Global Attractor Model 

A multiple linear regression analysis was used to test the model of aggregate traffic count data 

(square root transformed) as being predicted by connectivity, integration, mean angular deviation, 

area, perimeter, and mean surface depth, under a strictly globally defined model. Should traffic 

primarily be directed toward locations of maximum amplitude, environment-wide, good fit would be 

expected to be observed with this model.  

Pearson product-moment correlations were computed for each variable and can be found in Table 

3.2, along with the computed regression model. Each of the predictor variables significantly 

correlated with the aggregate traffic counts, but the correlations were found to be small in magnitude 

(ranging from 0.025 to 0.043). Together, the predictors accounted a small proportion of the variation 

in traffic counts, F(6,1129593)=593.406, p<0.001, R2=0.003. The residual plot was examined and was 

found to be well behaved, showing no clear bias or violation of homoscedasticity. 

One possible reason for the poor predictive performance of the model is due to the granularity of 

the data. Both diffusion models intrinsically compensate for granularity over time, but the basic 

Global Attractor model did not. Accordingly, each predictor value was summated by convolution 

with a 15m x 15m linear filter to produce identical resolution to that of the GPS traces, greatly 

reducing the granularity of the data. The adjusted variables were again tested using multiple 

regression, but only showed marginal improvement, F(6,1129594)=693.370, p<0.001, R2=0.004. The 

model showed significant predictive power of each predictor: Connectivity (β = -0.072), Integration 

(β= -0.131), Mean Angular Deviation (β = 0.086), Area(β = -0.01), Perimeter (β = 0.116), and Mean 

Surface Depth (β = 0.051); a pattern closely matching that found in the original regression model, but  

an R2 that strongly suggested the pattern was not meaningful. 

3.1.2.3 Simultaneous Attractor Model 

The Simultaneous Attractor Model was tested to evaluate the possibility that individuals tend 

toward preferred spatial variables at pseudo-random intervals across the entire sample of navigators. 

As such, areas of higher attractiveness would be formed by the confluence across between the closest 

global 
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Table 3.2 Zero order and multiple regression results under a Global Attractor model 
 Zero Order Correlation Regression Model 
Variable 1 2 3 4 5 6 7 β r2 t 
1. Connectivity  .797 .786 .837 .847 .764 .025 -0.023 .001 -10.887 
2. Integration   .866 .757 .817 .903 .026 -0.084 .001 -30.394 
3. Mean Ang. Dev.    .752 .774 .815 .033 0.033 .001 16.493 
4. Area     .920 .843 .039 -0.008 .001 -3.079 
5. Perimeter      .874 .040 0.034 .002 11.918 
6. Mean Surface Depth (sqrt)       .043 0.087 .002 30.650 
7. Traffic Count (sqrt)        R2 = 0.003 
Note. All correlations and regression weights were significant at p<0.01. 
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Table 3.3 Zero order and multiple regression results under an Simultaneous Attractor model 
 Zero Order Correlation Regression Model 
Variable 1 2 3 4 5 6 7 β r2 t 
1. Connectivity  .849 .849 .918 .931 .820 .520 -0.023 .270 -10.059 
2. Integration   .933 .818 .863 .812 .530 0.075 .281 33.237 
3. Mean Ang. Dev.    .835 .851 .785 .492 -0.079 .242 -36.557 
4. Area     .945 .886 .531 -0.404 .282 -157.56 
5. Perimeter      .896 .587 0.494 .345 171.31 
6. Mean Surface Depth (sqrt)       .621 0.556 .386 311.83 
7. Traffic Count (sqrt)        R2 = 0.410 
Note. All correlations and regression weights were significant at p<0.01.
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attractor and random chance (which can be introduced by either individual differences in behaviour or 

cognition).   

A multiple regression analysis predicting traffic count (square root transformed) from each of the 

aforementioned six spatial variables was performed and Pearson product-moment correlations were 

computed. The results of the model are presented in Table 3.3. The model was significant, 

F(6,1129594) = 130940.230, p<0.001, R2=0.410. Each predictor was significantly associated with the 

aggregate traffic count, but across the whole model, mean surface depth, perimeter, and area were 

found to contribute more than the other spatial variables, presented in order of descending magnitude. 

3.1.2.4 Local Attractor Model 

Local Attractor Model was formulated such that the attractiveness of each location would be 

formed by movement along the gradient with preference toward locations of least difference. 

Therefore, a location that is optimally attractive would be located nearby to other attractive locations 

(as determined by the local spatial properties assessed herein). Should a person always seek out the 

highest local level of the spatial property in their journey, at each step, it would be expected that they 

would show very close fit with this model. 

 The resulting Pearson product-moment correlations and multiple regression model predicting 

aggregate traffic count from diffused connectivity, integration, mean angular deviation, area, 

perimeter, and mean surface depth, are presented in Table 3.4. The result indicated a considerable 

proportion of traffic variation was accounted for by these six spatial variables, F(6,1129594) = 

853010.124, p<0.001, R2=0.820. The variables of connectivity and mean surface depth were found  

most strongly to predict aggregate traffic count. These two variables alone were capable of 

accounting for 80.9% of the variation in traffic count suggesting a strong tendency for traffic to seek 

out optimal levels of connectivity and integration, but also to a lesser degree that of area, on a local 

scale. To assess the degree of overlap between Globally determined traffic and Locally determined 

traffic, a step-wise regression was performed between aggregate traffic count and the predictors of 

connectivity and mean surface depth under both forms of diffusion simultaneously. The combined 

model accounted for a further 40% (in total, 71%) of variation in the data, F(4,1129595)= 

1581554.671, p<0.001, R2=0.848. Specifically, Local Attractor connectivity (β=0.891, t=1856.49, 

p<0.001) and Local Attractor mean surface depth (β=0.236, t=162.409, p<0.001) were found to 

predict traffic the most, with Simultaneous Attractor connectivity (β=-0.346, t=513.017, p<0.001) and 

Simultaneous Attractor mean surface depth (β=0.599, t=375.373, p<0.001) accounting for marginally 
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Table 3.4 Zero order and multiple regression results under the Local Attractor model 
 Zero Order Correlation Regression Model 
Variable 1 2 3 4 5 6 7 β r2 t 
1. Connectivity  .546 .523 .594 .638 .588 .895 0.864 .801 -1654.0 
2. Integration   .890 .748 .810 .754 .504 0.013 .254 13.085 
3. Mean Ang. Dev.    .761 .792 .716 .465 0.060 .216 -64.848 
4. Area     .935 .861 .541 -0.131 .293 -108.91 
5. Perimeter      .870 .586 -0.045 .343 -33.461 
6. Mean Surface Depth (sqrt)       .599 0.276 .358 319.48 
7. Traffic Count (sqrt)        R2 = 0.820 
Note. All correlations and regression weights were significant at p<0.01. 
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less variation. Accordingly, it appears, that under general conditions there is a tendency to seek out 

specific spatial properties, with the most promising local variable being that of mean surface depth. 

3.1.3 Discussion 

Several interesting results emerged from the mathematical modeling of behaviour. First, despite 

using several different forms of aggregation, the Global Attractor model was not found to be a good 

explanation of aggregate traffic data. This result was not anticipated, as prior investigations have long 

established a link between many of the specific spatial variables using in the study and emergent 

traffic counts of both vehicular and pedestrian movement (e.g., Penn et al., 1998a; Penn et al., 1998b; 

Hillier et al., 1993; Hillier et al., 1987). Several possibilities exist for the lack of effect. First, the 

Global model depends on the data being relatively noiseless. Sources of noise could include the 

resolution of the GPS traces; however, the smoothing employed to reduce this effect should have at 

least partially eliminated this noise. Second, it remains possible that more discrete methods of traffic 

count or use of a larger data source could improve performance, but this is considered unlikely due to 

the rather sizable number and displacement of the observed tracks. While it bears further 

investigation, no strong influence of the level of the axial and spatial properties of local visual space 

is assumed to exist based purely on the present data. 

In contrast, a significant effect was observed for the Simultaneous Attractor model. That is, traffic 

was well predicted by the local extent when the constraint for traffic to always seek out maximum 

values was relaxed. Under this model, traffic was inherently constrained by nearby geometry to some 

degree (as it defined both start and end points arbitrarily). Since the origin and destination of each 

navigator varied with respect to time and across space, many additional influences would be expected 

to contribute to the traffic data, not captured by the Global model. However, this does not fully 

account for success or failure of the Simultaneous Attractor model. This is because the much more 

stringent Local Attractor model showed significantly higher efficacy in accounting for traffic. 

Specifically, the Local Attractor model accounted for ~67% of the overall variation of the data. This 

finding is both consistent with classical (Matheson, 1909) and modern  (Helbing et al., 2001; Helbing, 

1993; Helbing, 1992; Helbing, 1992) fluid-dynamic approaches that suggest the critical influence of 

local geometry in predicting common patterns in how groups of people will navigate space. 

As was originally suggested in Chapter Two in theoretical terms, Local Extent showed substantial 

success in predicting overall traffic counts. Recent work investigating the relationship between global 

spatial variables, such as integration, and view-dependent properties lends further support to this 

finding. Specifically fixation patterns while selecting potential paths have been shown to be biased 
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toward areas of increased floor volume (Emo, 2014) and the edge of surfaces (Wiener et al., 2012). 

Together, these variables are conceptually related to connectivity (further supported by the incidental 

effects observed in Study 2 when controlling for surface), and adequately explain the finding that 

connectivity and mean surface depth are influential in predicting where people will navigate. 

More generally, some evidence was shown for the variables of Spatial Complexity and Local 

Extent to capture behaviourally relevant spatial preferences in explaining common patterns in traffic, 

an idea that has been implicitly part of exosomatic visual architecture and affordance proposals but 

not previously explicitly tested. These data also demonstrate that the tendency for movement is to be 

driven by the level of the variable in view at any given point in time, something that is consistent with 

affordances as directly perceived and employed. Having demonstrated this fit, the argument that 

affordance or exosomatic visual architecture is driving common tendencies in how we move through 

space is considered reasonable. 

These strengths noted, it is important to note that the data sample was derived from crowd-sourced 

data, which varied with respect to purpose and function. It is possible that individuals contributing 

data to OpenStreetMaps may differ from normal navigators in a number of ways. This possibility 

noted, crowd-sourced GPS data has been shown to be useful in consensus-based mapping. For 

example, the presence and timing of road impediments, such as stop lights and stop signs, has been 

shown to be reliably detected using a relatively small number of crowd sourced GPS traces (Carisi, 

Giordano, Pau, & Gerla, 2011). Additionally, as the data converged on a range of common locations, 

not simply optimal locations (which would have purely been captured by the Global Attractor model), 

the presence of strange patterns in route behaviour is considered less likely. That said, the results 

would need to be replicated in an independent and more controlled sample to ensure that the findings 

are consistent with real behaviour. 

3.2 Experiment 2 Does Local Extent Predict Individual Movement? 

Experiment 2 sought to further investigate the finding that the properties of Local Extent may 

represent the relevant stimuli sufficient to guide navigation, characteristic of an affordance. In doing 

so, we continue to develop an understanding of manner in which the apparent contributions of global 

spatial variables to navigation may come about as a consequence of concomitant local spatial 

invariant properties, such as area, perimeter, and mean surface depth. 
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To assess whether the local spatial properties of area, perimeter, and mean surface depth describe 

an affordance, the consistency of behaviour of each proposed property was assessed for the presence 

of a critical point around which movement toward the location diminishes rapidly (e.g., Warren Jr & 

Whang, 1987). To achieve this goal, participants were asked to perform two different tasks, first 

navigating into a virtual environment followed by effortful wayfinding out of the environment. This 

was meant to assess whether experience with an environment influences the observed affordance. 

Additionally, participants navigated in one of two environments (the same environments assessed in 

Study 1) representing prototypical levels of intelligibility and unintelligibility of  space  (Hillier, 

1996). The intelligible environment consisted of buildings arranged to preserve sight lines and 

maximize the correlation between connectivity and integration. The unintelligible environment 

consisted of the same general composition as the intelligible environment but the position of the 

buildings was shifted to reduce the correlation between connectivity and integration. The use of two 

environments allowed the influence of spatial context to be examined. 

Two different levels of intelligibility were examined because the strongest case of an affordance 

would be to show a pattern of behaviour that is consistent, regardless of the overall global 

organization of the space. Prior work has shown that route preference varied systematically with 

respect to the intelligibility of these two environments. Individuals were shown to follow more 

idiosyncratic routes in the less intelligible environment than in the more intelligible environment 

(Conroy, 2001). Similar findings have also been demonstrated across a wide variety of real and 

virtual environments (Barton et al., 2014; Hölscher et al., 2012; Haq & Zimring, 2003; Haq, 2003; 

Penn, 2003; Conroy, 2001). But, to date, no convergence has been demonstrated in predicting where 

an individual will move in both types of configured environments. 

One further stipulation was made to further examine behaviour in the face of direct perception. 

Recently, I demonstrated that navigation is largely achieved through the use of visual cues lying in 

local space within the central visual field rather than peripheral vision (Barton et al., 2014). When the 

availability of distant visual information was controlled for, a significant influence of syntactic 

variables (i.e., connectivity and integration) was observed on the preferred route of the participants. 

This suggests that the local visual space is useful in determining an effective route between familiar 

and unfamiliar locations and is, to some degree associated with intelligibility and Spatial Complexity. 

This paradigm of constraining the visual field can be useful in determining the precise source of the 

spatial information being used to drive navigation. Importantly, this manipulation also gives a 
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navigator-centric scale that can be used to assess the consistency of affordance. That is, the distance 

with which a person can perceive information clearly or usefully can be used to scale the variables of 

Local Extent, allowing comparisons to be made across a variety of spaces. In normal space, this 

would be controlled by the presence of walls, detection of edges, and ability to differentiate the 

textures defining nearby structures. Here, as many of these properties were controlled for to ensure 

precision, the manipulation of visibility (constrained or unconstrained) was meant to approximate this 

capacity to perceive nearby space clearly. 

Using such an approach, should the perception of the invariant structure be achieved in local 

space, as suggested by the mathematical and factor models, a reduction of visual range to that only of 

local space should have a consistent influence on the affordance relationship that is observed between 

variables of local extent and preference for movement. Such a finding would suggest that the driving 

mechanism behind the affordance is one of maximizing the perception of the local spatial property at 

all times, much like that of the Local Attractor model in the previous experiment. Here, this is 

manipulated by either allowing the navigator normal, unconstrained, vision or limiting the Visible 

Range of the central field by degrading it with virtually rendered fog. It was predicted that the 

navigator's perceptual capacity (as measured by the mean distance that a person can see without being 

obscured by fog) would scale but not drastically change the shape of the affordance relationship, 

showing that not only is the relationship between action and behaviour an affordance, but that it is 

also scaled by the extent to which a person can perceive the environment around them. As such, the 

following hypotheses were put forward: 

(1) For an action-behaviour relationship to be considered an affordance, the action-behavioural 

relationship must be described by a single inflection point (the critical point at which the action 

loses efficacy). Further, movement about this inflection point should be unimodal. That is, 

individuals should only move toward a specific optimal level of the perceptual stimulus, 

decreasing steadily away from this optimal point. 

(2) The affordance of movement through the perception of Local Extent will be scaled by the 

Visible Range of the navigator (as captured by maximum distance with which perfect visual 

distance is available at each location that the navigator moves), consistent with the idea that 

there is a relationship between the perceptual limits of the navigator and the physical 

constraints of the surrounding environment. 
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(3) The relationship should be consistent across environments, supporting the idea that the 

proposed affordance relationship is not dependent on more general context or spatial memory 

about the surrounding environment. This would indicate a common mechanism of the type 

purported to exist by other authors. 

3.2.1 Methods 

3.2.1.1 Participants 

45 participants (26 female) attending the University of Waterloo participated in the experiment in 

exchange for course credit. The mean age of the sample was 18.82 years (SD=1.56). All participants 

were fluent English speakers and had normal or corrected-to-normal vision.  

3.2.1.2 Apparatus 

Virtual Environments. Two virtual environments (high intelligibility and low intelligibility) were 

constructed using Sketchup Pro 6.0 (Google Inc., Mountain View, California), a 3D modeling and 

graphics package, matching two environments proposed to be prototypical examples in intelligibility 

analysis (Hillier, 1996; depicted in Figure 3.1). Each building was between 8 and 16 meters in height 

and textured identically, using a traditional apartment façade.  

 Both models were designed to be 248 meters by 176 meters and to consist of 26 buildings. The 

low intelligibility environment was identical to that of the high intelligibility environment, but 

buildings were shifted to reduce the intelligibility of the space. A target monument was placed in the 

central plaza of both environments and an identical copy was placed at the participant’s start location, 

located along the edge of the environment. The border of the environment consisted of an 8 meter tall 

wall with a distinctive brick texture. In the Vision condition, vision was either natural or constrained 

to the local environment by rendering fog with geometrically increasing density beginning at 22 

meters and reaching maximal density at 35 meters. 

Visual Displays. The navigation task was scripted using Vizard (Worldviz Inc., Santa Barbara, 

California), a Python-based virtual reality toolbox. The environment was stereoscopically rendered on 

an nVisor SX head-mounted display (nVis Inc., Reston, Virginia) which offered a 60-degree diagonal 

field-of-view and was rendered at 1280 x 1024 pixels per eye. A thick fabric shroud prevented 

participants from seeing the room around them, allowing them to focus exclusively on the virtual 

scene presented to them by the head-mounted display (HMD). Example views of the environment can 
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be found in Figure 3.2.The HMD was fitted with an InertiaCube2 (InterSense Inc., Billerica, 

Massachusetts) tracking device and was calibrated to update changes in viewpoint in real time. This 

allowed the participant’s true head orientation to be represented accurately in the virtual environment 

and allowed the participant to visually explore their environment without necessarily moving through 

space. 

Movement Control. Participants were asked to navigate through the virtual environments using a 

combination of wireless mouse control and changes in head direction. Movement was controlled by 

the wireless mouse, with depressing the left mouse resulting in forward movement at a typical 

walking pace, 1.2 meters per second (approximately 5 km/hr). Direction changes were made by the 

participant turning his or her head in the preferred direction of movement. The participant could also 

scan the local environment by ceasing forward movement and using head turns. The participant’s 

location within the virtual environment and their heading were recorded at a sampling rate of 50 Hz 

throughout the navigation task. 

3.2.1.3 Procedure 

The experiment consisted of four experimental conditions (Intelligibility: High or Low; Vision: 

Constrained or Unconstrained) administered as a between-participants design. Each participant was 

randomly assigned to one of the four experimental conditions. Prior to commencement of the 

experiment, each participant was provided with a detailed explanation of the experiment and 

procedures. The participant was then assisted in donning the HMD and provided adequate time to 

become familiarized with the controls necessary to complete the experiment. After the participant 

indicated comfort with the apparatus, the appropriate environment and visual condition was presented 

to the participant. Each participant started on the west edge of the environment (depicted in Figure 3.1 

with an (S)) next to an identifiable landmark. The participant was instructed to face the landmark and 

then was informed that an identical landmark could be found somewhere in the nearby city. The 

participant was informed that their task would be to navigate through the city to find an identical 

landmark and, upon finding the target landmark, to find their way back to the starting position. After 

the participant indicated that the instructions were understood, the experiment began, and the 

participant’s heading and location were digitally recorded. Each participant was allowed as much 

time as was necessary to complete the experiment. 
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Figure 3.2 Plan views of the two virtual environments used in Experiment 4. The start position of 

each participant is indicated by (S) and the target landmark indicated by (T). 
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Figure 3.3 Example views provided to the participants in Experiment 1 and 2. Left depicts the target 

monument in the unconstrained vision condition. Right depicts a the same location under the 

constrained vision condition. 
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Figure 3.4 The relationship between area (left panes), perimeter (middle panes), and mean surface depth (right panes) as a function of 

environment and visual condition. The top panes present the affordance relationship as the product of raw units. The bottom panes have scaled 

each affordance using the maximum possible visual range.
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3.2.1.4 Data Analysis 

The location and heading data for each participant was aggregated to provide a number of discrete 

measures of performance. To assess the fit between locomotive behaviour and perception of local 

geometry with an affordance function, the area, perimeter, and mean surface depth were determined 

for each distinct step rather than for each unit of time. Each step was defined as moving into unique 

space – dwelling explicitly ignored by this analysis. The critical points for each function were 

identified as local maxima in the affordance relationship. Data were then examined for the influence 

of Vision by scaling the affordance function to the visual range available at each location in space, 

rendering a dimensionless, scaled affordance function in the form of a π number. These scaled 

affordances were then examined for similarity to ensure that the presumed affordance depends on the 

perceptual capacity intrinsic to the navigator. The data were also examined for dependence or 

independence from context by comparing navigation behaviour across both environments and across 

both tasks (initial exploration and wayfinding phases).  

3.2.2 Results and Discussion 

The data were first analyzed with respect to the general nature of the affordance relationship 

described by the local properties of area, perimeter, and mean surface depth with respect to the 

individual participant's observed movement. The averaged results are plotted in Figure 3.4 in both 

real units and intrinsically scaled units (that of the limiting of incoming visual information). Each 

potential affordance was approximated from the data using the Freedman-Diaconis approximation 

(Diaconis & Freedman, 1984) of the overall distribution of behaviour in the context of the property. 

This approximation reduces the number of points necessary to represent a mathematical function 

while preserving the shape of the function using a calculated number of bins.  

Results indicated that Hypothesis 1 was not supported by the properties of area and perimeter. 

However, mean surface depth defined was shown to consist of a single peak – a single critical point – 

consistent with the concept of an affordance relationship. 

A 2 x 2 ANOVA (Intelligibility: High vs. Low; Vision: Constrained and Unconstrained) was 

performed on the mean movement data. A significant main effect of intelligibility, F(1,43)=6.193, 

ηp=0.126,  p<0.017,  was found across the two environment conditions such that people were found to 

spend more time in locations offering larger area in the highly intelligible environment (M=1516.77, 

SD=503.459) as compared to the low intelligibility environment (M=1272.276, SD=276.500). A 

similar effect was also observed for the effect of perimeter on navigation movement, F(1,43)=6.193, 
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ηp=0.126,  p<0.017, and perimeter, F(1,43)=22.893, ηp=0.347, p<0.001, with participants preferring 

locations offering larger mean perimeter in the high intelligibility environment (M=301.548, 

SD=22.300) versus the low intelligibility environment (M=250.658, SD=33.085). Critically, no 

significant difference was observed for mean surface depth F(1,43) =0.525, p=0.473. In both 

environments, participants preferred a mean surface depth distributed about 175 meters/surface. This 

suggests that Hypothesis 3 holds for the mean surface depth, but not area and perimeter. That is, the 

type of environment seemed to have negligible effect on the pattern of the mean surface depth-driven 

affordance of movement. 

Next, the influence of Task (Exploration vs. Wayfinding) was assessed to determine if the 

purported affordance was subject to, or shaped by, experience with the environment. Task was 

examined through repeated measures ANOVA, assessing the role of Vision (constrained and 

unconstrained) and Task (initial exploration vs. outgoing wayfinding) on the affordance function. No 

significant pattern was observed for task type on the use of area, F(1,45)=2.002, ηp=0.042, p=n.s., 

perimeter, F(1,45)=2.020, ηp=0.043, p=n.s., or mean surface depth, F(1,45)=1.954, ηp=0.042., p=n.s., 

nor was the interaction between Vision and Task significant, suggesting the lack of an influence of 

the demand on spatial memory on the preferred stimulus. Combined with the previous finding, neither 

the configuration of the environment nor the cognitive set of the participant appeared to shape the 

affordance.  

The degree of perceptual scaling was then examined by considering the maximum distance the 

environment and Vision manipulation would allow. Should a true affordance be observed, no 

difference would be expected to be found, reflecting that the navigator perceives the affordance in 

perceptually relative terms. These perceptually relative terms are quantified by π numbers (perceived 

property scaled by visual range) for each visited location (Warren Jr & Whang, 1987). Each 

affordance function was assessed for the influence of visual range in the context of raw data and π 

number. Constraining visual range was found to significantly impact the use of the local visual 

property of mean area, F(1,43)=249.484, ηp=0.853,  p<0.001, perimeter, F(1,43)=748.851, ηp=0.946,  

p<0.001, and mean surface depth, F(1,43)=132.981, ηp=0.756,  p<0.001. As is evident in Figure 3.4, 

scaling the affordance relationships to represent perceptual units adjusted both the constrained and 

unconstrained affordance relationships overlap or represent a single, common, affordance 

relationship. A significant Vision x Intelligibility interaction was observed for both the factors of 

area, F(1,43)=10.370, ηp=0.194, p<0.002, and perimeter, F(1,43)=22.907, ηp=0.348, p<0.001, but not 
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for mean surface depth. This is reflective of the fact that, as visual range of the participant and 

intelligibility of the space are manipulated, the complexity of the affordance increases for the 

properties of area and perimeter but not mean surface depth. In contrast, the character of the mean 

surface depth-defined affordance was shown to be relatively insensitive to these manipulations, 

appearing consistent across these two manipulations. This finding, combined with the lack of 

significant difference across the types of environments is further supportive of the idea that the 

affordance function defined by mean surface depth is relatively insensitive to manipulation, consistent 

with Hypothesis 3, and is scaled to be biologically meaningful, consistent with Hypothesis 2. 

Post hoc analysis was performed to assess statistically the presence of a critical point. Data were 

collapsed across environments and examined using a bootstrapped t-test with 95% confidence 

intervals. Significant convergence in the affordance was observed at a mean raw surface depth of 

188.330 (SD=42.560), t(45)=11.433, p<0.001, 95% CI [140.311, 200.317], and at the Vision-scaled 

point about 1.017 (SD=0.289), t(45)=-9.882, p<0.001, 95% CI [-1.007, -0.667]. 

Taken as a whole, Experiment 2 provided poor fit for the visual properties of area and perimeter 

with the concept of affordance as outlined by Gibson. Furthermore, these properties did not appear to 

be used in any consistent way after accounting for visual range when navigating through space. In 

contrast, a strong, stable fit was observed for the property of mean surface depth, suggesting that this 

property may be capable of driving the affordance of movement and navigation regardless of the 

structure of surrounding space. Mean surface depth was shown to be insensitive to task demands, the 

intelligibility of the environment, and visual range. Mean surface depth also consisted of one critical 

point about which the affordance was maximized. These findings joins the results of Experiment 1 as 

suggesting that mean surface depth may be critical in determining the routes with which we navigate 

space and suggest that affordance theory itself may be able to predict observed patterns of navigation. 

Furthermore, this suggests that the previous characterization of the effect of intelligibility on 

navigation as a preference for longer sight lines may not be accurate because the area variable was 

poorly suited to the idea of an affordance.  

3.3 Experiment 3 Do Surfaces Themselves Control the Affordance of 
Movement? 

Experiment 2 identified mean surface depth as a potential perceptual property capturing the 

invariant structure of space in a practical way, consistent with both the theory of an affordance and 
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the theory of constraints. The findings suggested that perception of mean surface depth was employed 

throughout the navigation process regardless of global intelligibility or task parameters (such as the 

requirement that spatial memory be used). This initial evidence strongly supported the idea that the 

affordance of movement does meaningfully drive both exploration and wayfinding behaviour in a 

consistent way. 

Given the relative importance of surface geometry in defining mean surface depth, the complex 

surface geometry was simplified by reducing the variation in angle of the walls and corners of each 

building (as is outlined in Study 2). The mean number of surfaces was significantly reduced from the 

original intelligible environment to the new environment, t(25)=3.718, p<0.001, 95% CI [0.326, 

1.146], from the mean number of 5.345 (SD=1.325) in the high intelligibility environment used in the 

previous experiment to 4.615 (SD=1.06) in the present one. The precise effect of this manipulation on 

other spatial parameters was described in Study 2, so will not be elaborated on here. Generally, it was 

effective in restricting the range of values that many of the spatial properties could take on, 

simplifying the visual properties perceived when navigating each environment. Should the affordance 

of navigation truly be the product of the use of local structurally-defined visual properties rather than 

the more global properties suggested by space syntax analysis, these more controlled environments 

should provide a stronger test of the presence and character of the affordance relationship. 

3.3.1  Methods 

3.3.1.1 Participants 

89 participants (51 female) attending the University of Waterloo participated in the experiment in 

exchange for course credit. The mean age of the participants was 20.65 (SD=2.47). All participants 

were fluent English speakers and had normal or corrected-to-normal vision. 

3.3.1.2 Apparatus 

Virtual Environments and the Visual Range Manipulation. Two virtual environments were 

adapted from the Intelligible and Unintelligible spaces used in Experiment 1 using Sketchup Pro 6.0 

(Google Inc., Mountain View, California). The buildings of each environment were manipulated to 

reduce the mean number of surfaces present by making the remaining surfaces more orthogonal. Each 

environment consisted of the same number of buildings and each environment was identical in their 
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overall dimensions – 248 meters x 176 meters. A plan view of each environment is presented in 

Figure 3.5. 

 

 

 

 

 

 

 

Figure 3.5 Plan views of the two virtual environments used in Experiment 5. The start position of 

each participant is indicated by (S) and the target landmark indicated by (T). 
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Figure 3.6 The relationship between area (left panes), perimeter (middle panes), and mean surface depth (right panes) as a function of 

environment and visual condition in Experiment 6. The top panes present the affordance function as the product of raw units. The bottom panes 

have normalized each function using the maximum possible visual range.
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An identical Vision manipulation to that of Experiment 1 was imposed on half the participants. 

3.3.1.3 Procedure and Analysis Strategy 

The procedure and data analysis strategy were identical to those of Experiment 1, outlined in 

3.2.1.3 and 3.2.1.4, respectively.  

3.3.2 Results and Discussion 

Data were first analyzed by characterizing the relationship between the local geometric properties of 

area, perimeter, and mean surface depth with respect to movement throughout the navigation task. 

Specific interest was paid to data that described common patterns of movement. The probability 

density function describing movement tendencies was computed under the Freedman-Diaconis rule. 

The affordance relationships in the presence of environment and visual range are depicted in Figure 

3.6. Distinct unimodal curves appear present in all three factors of Local Extent: area, perimeter, and 

mean surface depth. Furthermore, sharp decay functions can be observed, indicating the potential to  

meet the definition of critical points – defining the transactional relationship between spatial 

properties and their practical use to a navigating agent. 

The initial suitability of the affordance relationships was determined by 2x2 ANOVA 

(Intelligibility: High vs. Low; Vision: Constrained and Unconstrained). Results indicated a significant 

effect of the configuration of the environment on locomotion with respect to area, F(1,83)=11.618, 

ηp=0.123,  p<0.001, and perimeter, F(1,83)=23.399, ηp=0.227,  p<0.001. Specifically, locations that 

offered a larger area or perimeter in the high intelligibility environment were once again 

preferentially explored to those in the low intelligibility environment. However, similar to the results 

of Experiment 1, no effect was observed for mean surface depth, F(1,83)=0.619, p=ns. Across all 

three variables, a slight improvement of the effect size was observed, suggesting that the reduction of 

variation sought by the manipulation of the environments was effective and produced behaviourally 

relevant differences. As before, no significant effect of Task type or Task by Vision interaction was 

observed by mixed factors ANOVA, with area showing no main effect of Task, F(1,85)=2.202, 

ηp=0.025, p=0.142, or interaction with Vision, F(1,85)=0.198, ηp=0.002, p=0.657. A similar lack of 

effect was also observed in the other variables of perimeter, F(1,85)=2.185, ηp=0.025, p=0.143, and 

mean surface depth, F(1,85)=2.326, ηp=0.027, p=0.131. Combined with the lack of the influence of 

the overall structure of the environment, as captured by intelligibility, these data support the idea that 

while mean surface depth is behaviourally relevant as an affordance property, it is largely not subject 

to cognitive demands placed upon the navigator. 
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Constraining vision was found to have a sizable influence on all three variables. Mean area, 

F(1,83)=565.337, ηp=0.872,  p<0.001, mean perimeter, F(1,83)=1529.691, ηp=0.949,  p<0.001, and 

mean surface depth, F(1,83)=565.337, ηp=0.872,  p<0.001, were found to be significantly different 

when comparing constrained to unconstrained vision condition. As in Experiment 2, this finding 

suggests a link between the perception of the invariant properties and the ability for the individual 

navigator to perceive more or distant visual information. A significant 2-way interaction was 

observed between Vision and Intelligibility, such that area, F(1,83)=14.204, ηp=0.146,  p<0.001, and 

perimeter, F(1,83)=26.034, ηp=0.239,  p<0.001, showed a tendency toward a behavioural difference 

for the properties of perimeter and area. However, upon converting the affordance functions to the 

critical ratio of visual range and expanse (as captured independently by area, perimeter, and mean 

surface depth), the idea that perimeter and area are reflective of patterns of behaviour rather than an 

explicit behaviour-action relationship is further elaborated.  

The clarity with which the affordance of movement is controlled by mean surface depth alone 

speaks to both the effect of reduced complexity in the data and the corresponding effect that a simpler 

environment has on the observed affordance relationship. As before, post hoc analysis was performed 

to identify the critical point at which the two curves converged (that of raw mean surface depth and 

scaled mean surface depth) in the face of differing visual range. A significant difference was observed 

between the affordance of movement from the raw mean surface depth and scaled mean surface 

depth, t(85)=13.262, p<0.001, 95% CI [155.877, 210.859]. The critical point was found to be at 

196.854 (SD=43.712). Similarly, when the affordance was scaled to perceptually relevant units, a 

single critical point was observed, t(85)=-14.275, p<0.001, 95% CI [-0.950, -0.718], showing an 

inflection point about 1.07 (SD=0.250). These values, particularly the scaled units, are consistent with 

those found in the previous experiment, further supporting their relevance for guiding navigation 

behaviour.  

Accordingly, Hypothesis 1, 2, and 3, were each upheld for the measure of mean surface depth, but 

rejected for area and perimeter. Together, Experiments 2 and 3 are supportive of the property of mean 

surface depth as an visual property of the invariant structure that is consistent with affordance theory. 

However, it remains to be seen whether spatial preferences are influenced by overall spatial ability. 

This is important because affordances are generally expected to be independent of high-level or top-

down processing. Consequently, Experiment 4 was designed to test this idea. 
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3.4 Experiment 4 The Influence of Cognitive Variables on the Affordance of 
Movement 

Experiment 4 sought to investigate the contribution of cognitive variables to movement in 

navigation tasks in two different ways. First, the role of high-level cognitive functioning in 

influencing the preferred perceptual affordance was assessed directly. The perception of an 

affordance is purported to be the result of a direct perception of the relationship between an action 

and a perceptual characteristic (Gibson, 1966). This pattern of directly perceived affordance has been 

well established in a large body of work, such as when climbing stairs (Warren Jr., 1984), traversing 

doorways (Warren Jr & Whang, 1987), and selecting a sitting position (Mark, Balliett, Craver, 

Douglas, & Fox, 1990). In each case, the action is performed without substantial error, even when the 

stimuli do not conform to traditional expectations of the shape of an object or the environment. 

Should the affordance relationship described herein be influenced by high-level cognitive demands, 

the shape of the affordance function would be expected to change based on the individual cognitive 

capacities of the navigator. Traditional affordances are considered to be the product of direct 

perception, so would be expected to be relatively insensitive to cognitive demands (particularly, 

Gibson, 1979).  

Second, the influence of cognitive processing on other forms of spatial behaviour was assessed. 

Previous investigations have suggested that individuals tend to pause in-place and visually explore 

their surrounding environment when disorientated (e.g., Conroy, 2001). Pausing in place is therefore 

considered linked to a difficulty in spatial learning rather than in making explicit movement 

decisions. In this context, cognitive ability would be expected to have a pronounced influence on 

pausing behaviour (Garden, Cornoldi, & Logie, 2001) but not on movement itself. To further 

establish whether pauses represent a breakdown of the affordance or some other process (such as that 

of spatial learning), the locations that were looked at were assessed for fit with the idea of an 

affordance. That is, despite pausing due to a breakdown in cognitive ability, the individual would still 

be expected to look preferentially at locations that show fit with the affordance of movement itself. 

To investigate the role of cognitive processing on movement affordance, three high-level cognitive 

processes were assessed: the ability for Sustained Attention, the ability to maintain Mindfulness, and 

the possession of good General Spatial Ability in effectively navigating and in representing spaces 

mentally. Sustained Attention and Mindfulness have been widely understood to be important in 

avoiding task-related errors in cases where attention is necessary (e.g., Smallwood et al., 2004). 

Mindfulness has also been associated with increased cognitive flexibility, resulting in improved 
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performance on tasks that require attentional resources (Moore & Malinowksi, 2009). Prior work 

specific to navigation has demonstrated that the effectiveness with which a person can navigate is 

directly related to their ability to maintain a good sense of direction and to monitor and update 

wayfinding strategies (Kato & Takeuchi, 2003) both of which demand attention. Accordingly, if the 

pattern of behaviour observed as part of an affordance function depends on active processing, 

cognitive flexibility, or maintaining a sense of direction in real-time, it would be expected that the 

affordance would be impacted directly by the level with which the navigator can maintain Sustained 

Attention and Mindfulness. General spatial ability has previously been found to be the single best 

predictor of navigation performance (Hegarty, Richardson, Montello, Lovelace, & Subbiah, 2002). 

Should the affordance of movement depend on either effortful maintenance of attention or spatial 

ability, the impact of general spatial ability would be expected to change the relationship between 

visual properties and movement. 

At the same time, intentional perception of properties of the invariant structure like mean surface 

depth will be described. By examining whether people preferentially gaze toward locations offering 

similar levels of the properties linked to eventual movement, the capability to explicitly perceive 

these properties and apply them to movement can be assessed. Accordingly, gaze behaviour will be 

assessed, where gaze is defined by the range of head motion observed while each participant was 

paused in place. It is proposed that each time a person gazes to evaluate or re-evaluate the 

environment around him or her, the person's gaze should be biased toward the locations that afford 

movement if the visual property is to be understood to be directly perceived by the navigator. It is 

noteworthy that, while this is not an explicit requirement for an affordance, it would better elaborate 

affordance as a plausible mechanism of movement.  

3.4.1  Methods 

3.4.1.1 Participants 

16 participants (8 female) attending the University of Waterloo participated in the experiment in 

exchange for course credit. The mean age of the participants was 18.00 (SD=1.72). All participants 

were fluent English speakers and had normal or corrected-to-normal vision. 
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3.4.1.2 Apparatus 

Virtual Environments. The experiment consisted of identical high intelligibility and low 

intelligibility environments to those used in Experiment 1. Plan views for each environment are 

depicted in Figure 3.1. 

Virtual Reality. The same head-mounted display and movement controls were used in the present 

experiment as outlined in 3.1.2.3 and 3.1.2.4.  

3.4.1.3 Questionnaires 

Santa Barbara Sense of Direction Scale (SBSDS; Hegarty et al., 2002) is a 15-item Likert scale 

assessing self-reported environmental spatial ability. Items range between 1 (“Strongly Agree”) and 7 

(“Strongly Disagree”). A higher score indicates a greater self-perceived sense of effectiveness at 

maintaining direction and representing space as a whole. 

Mindful Attention Awareness Scale (MAAS; Brown & Ryan, 2003) is a 15-item Likert scale 

developed to assess mindfulness in everyday circumstances. The scale items ranging from 1 (“Almost 

always”) to 6 (“Almost never”) with a higher overall score indicating a relative increase in focus 

within a given task. 

Attention-Related Cognitive Errors Scale (ARCES; Cheyne, Carriere, & Smilek, 2006) is a 12-

item Likert scale which measures the relative frequency with which a person experiences a variety of 

cognitive failures related to attentional lapses. Each item is indicated by a Likert item ranging from 1 

(“Never”) to 5 (“Very Often”). A higher overall score on the ARCES is taken to indicate a higher 

frequency of attention-related cognitive errors in the participant’s day-to-day life.  

3.4.1.4 Procedure 

The experiment consisted of one experimental condition (Intelligibility: High or Low) administered 

in a between subjects design. Each participant was randomly assigned to one of the two virtual 

environments. The experiment consisted of two phases: 1) completion of the SBSDS, ARCES, and 

MAAS questionnaires, and 2) completion of a navigation task in the randomly selected environment. 

Half of the participants completed the questionnaires before the navigation task, while the other half 

of the participants completed the questionnaires following the navigation task. For the navigation 

task, the participant was immersed in the virtual environment in one of the four corners of the 

environment (counterbalanced across participants). The participant was instructed to complete all 

questionnaires according to the standard set of instructions included with each. Next, the participant 
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was instructed that the navigation task was for him or her to learn the surrounding environment as 

best as he or she could within 15 minutes. To encourage the participant to learn the environment fully, 

the participant was further instructed that he or she would be required to draw an overhead view of 

the environment upon completion of the navigation task. This instruction was meant to encourage the 

participant to be as efficient as possible in his or her exploration of the environment. The participant 

was monitored for simulator sickness throughout the experiment. After 15 minutes, the participant 

was removed from the environment. 

3.4.2 Results and Discussion 

As the purpose of the experiment was to investigate the sensitivity of the affordance of movement 

to spatial and cognitive ability, the data were pooled across both environments to render a general 

estimate of the relationship between ability and affordance. This is considered acceptable given the 

previously established lack of effect of environment as a whole on the general character of affordance 

observed. The general pattern of affordance is presented in Figure 3.9, scaled to the mean distance 

that the navigator can perceive. As with Experiments 1 and 2, the property of area again showed a 

tendency being bimodal, demonstrated two critically preferred levels of area in supporting movement. 

However, mean surface depth again was found to demonstrate relatively unimodal fit, consistent with 

the previously established pattern of affordance. It is noteworthy that the critical point was also 

similarly placed to that of Experiments 2 and 3. 

The data were first analyzed using multiple linear regression to establish the relationship between 

the mean and standard deviation of mean surface depth experienced through the course of completing 

the navigation task. The mean surface depth and standard deviation of mean surface depth and the 

total score on the ARCES, MAAS, and SBSDS were evaluated for the full 15 minutes of active 

navigation. No significant relationship was observed between mean surface depth and any of the 

cognitive factors, R2=0.193, F(3,20)=1.592, p=0.223. Similarly, no relationship was observed 

between the standard deviation of mean surface depth and the attention, mindfulness, or spatial 

ability scores, R2=0.127, F(3,20)=0.966, p=0.428. In both cases, the amount of change in the 

preferred level of visual property when moving was found to be relatively minute when accounting 

for cognitive variables. This is supportive of the idea that the perceptual property of mean surface 

depth largely does not depend on general comfort with and effectiveness at navigation as measured by 

the SBSDS nor sustained attention and mindfulness, as measured by the ARCES and MAAS, 

respectively. While it is likely that a larger sample would be statistically significant, the marginally 
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low effect size of the regression results suggests that the affordance of movement is not strongly 

influenced by cognitive variables. This is particularly noteworthy as the task the participants were 

asked to engage in – that of learning the surrounding environment as well as they could – was one 

that should place emphasis on the use of these cognitive faculties.  

To cast this result in clearer light, the effect of cognitive ability was evaluated in the context of 

another type of spatial behaviour – pausing. A pause was considered to occur if the participant 

remained stationary for two or more seconds and, during that time, the participant actively visually 

explored their surrounding environment. This criterion was used to ensure that pauses were 

meaningful in nature and not related to potential task fatigue, accidental halting by releasing the 

mouse button, etc., but were instead the result of a desire to re-evaluate the nearby environment 

toward some goal. First, data were assessed to determine if pauses were found to occur at sub-optimal 

levels of the local visual properties. This would be expected to occur if the capacity to remain 

oriented depended the specific level of the visual property. Hence, mean surface depth recorded 

during locomotion was evaluated against the mean surface depth during pauses to assess whether this 

was the case. No significant difference between the motion-oriented and pause-oriented data were 

observed t(23)=-0.698, p=0.498, suggesting that pauses were not the result of an inability to perceive 

optimal levels of the visual property to remain oriented but were instead the product of some other 

processing of space. Next, the total pause time and total number of pauses were examined using 

multiple linear regression to determine if they were instead the product of poor spatial ability, 

mindfulness, or ability to sustain attention. A significant relationship between the amount of time 

spent paused in-place and each of the cognitive variables, R2=0.596, F(3,20)=9.836, p<0.001. 

Specifically, a significant effect of the ability to sustain attention, B=0.542, t=2.973, p<0.008, 

mindfulness, B=-0.915, t=-5.099, p<0.001, and spatial ability, B=0.317, t=2.187, p<0.041, was 

observed on pause time. Likewise, a significant effect of the cognitive variables was found on total 

number of pauses, R2=0.457, F(3,20)=5.622, p<0.006, through attentional error, B=0.702, t=3.323, 

p<0.003, mindfulness, B=-0.711, t=-3.418, p<0.003, and spatial ability, B=0.364, t=2.167, p<0.042. 

Together, these results establish that the measures of spatial ability were effective in accounting for 

the approximate degree of difficulty in encoding surrounding space and not a result in a breakdown of 

the affordance relationship itself. 

The lack of a strong cognitive influence on the affordance of movement was followed up with an 

examination of how people's gazes varied when they were paused, something that should be 

considerably more driven by bottom-up influences if the affordance is understood to be directly 
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perceived by the navigator. This would be consistent with the idea that processing of low-level 

features is relatively independent from that of cognitive ability (Neisser, 1976; Gibson, 1979) and 

informs the actual movement decision. To establish if participants actively sought to perceive the 

critical level of the visual property in the world around them, individual gaze patterns were averaged 

across all pauses engaged in by the participant. To establish whether gazing around the environment 

was influenced by whether the gaze is to guide movement locally or more globally, gaze behaviour 

was separated into that which was directed toward the local environment (lying within 10 meters of 

the participant or half the span of the average intersection) from that of distant environment (lying 

beyond 10 meters). Data from this analysis are presented in Figure 3.8. A 2x(2x11) nested repeated 

measures ANOVA (Gaze distribution: Local or Global; Intelligibility: High or Low; By visual 

property level) was varied with respect to the environment and the location of the evaluated features. 

A significant main effect of Gaze Distribution was observed both for accessible space and distant 

features, F(1,22)=94.104, ηp=0.811, p<0.001, and F(1,22)=48.095, ηp=0.686, p<0.001, respectively. 

Across both local and global space, participants spent more time gazing at locations close to a mean 

value of 0.98 when paused in place, approximately equal to the critical point established earlier in the 

analysis and similar to that identified in the previous experiments.  This pattern was revealed to differ 

based on the overall intelligibility of the surrounding environment, F(1,22)=72.136, ηp=0.766, 

p<0.001. That is, gaze times were found to vary with respect to local visual property level more in the 

intelligible than the unintelligible environment, particularly beyond the preferred critical point. A 

significant interaction was also observed between Gaze Distribution and Intelligibility, 

F(1,22)=4.662, ηp=0.175, p<0.042. This reflected the tendency for individual navigators to visually 

examine less of the surrounding distant environment when the environment was intelligible than 

when it was unintelligible. In contrast, no significant difference was observed between gazes directed 

at the local environment, regardless of intelligibility. In all cases, however, gazes were found to be 

most directed toward locations lying between 0.79 and 1.19 scaled units of mean surface depth, 

evenly about the critical point, regardless of the distance at which gaze was directed. 

Together, this complex pattern of results reveals that gaze behaviour, independent of movement, is 

directed toward a behaviourally relevant critical point and is not simply distributed randomly 

throughout space. This pattern was demonstrated both when considering space that was immediately 

useful for navigation and when examining distant visual space. Combined with the previous data 

suggesting that pauses were most likely the result of disorientation or reduced spatial ability, this 
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suggests that the visual properties that are relevant to movement are also relevant when attempting to 

regain orientation.  
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Figure 3.7 The critical ratio of area (left), and mean surface depth (right) as scaled by visual range in 

a free exploration task. 
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As in the prior experiments, Experiment 4 demonstrated a consistent affordance relationship 

between the local visual property of mean surface depth and an individual's movement through space 

in a more general spatial learning task. As before, no evidence was observed for the suitability for 

area alone to subserve an affordance relationship as multiple optimal points were observed. These 

results further confirm the general finding that a consistent affordance relationship appears to exist 

independent of task demands, particularly when considering the property of mean surface depth. 

Of particular interest was the lack of effect of the variables of mindfulness, sustained attention, and 

sense of direction. This is consistent with the intuition that perception of such relatively simple spatial 

summary variables, captured by the rapidly perceived size and shape of space, is independent from 

more intensive types of navigation such as traditional studies of spatial learning and the acquisition of 

landmark knowledge. The present analysis did reveal a tendency for people to gaze toward optimal 

level of these properties primarily in the distant environment. Two eye-tracking studies of how isovist 

area (Emo, 2014) and the conceptually related idea of maximum distance-to-contour (Wiener et al., 

2012) have shown that people have a tendency to direct their gaze toward locations of maximum 

magnitude prior to navigation. This result is consistent with the present studies but must be taken with  

caution as neither of the aforementioned studies presented an analysis of the continuum of preceding 

visual properties that were explored prior to final movement. Instead, they tended to focus on the 

locations that captured attention the most, making a direct comparison between the present work and 

this past work more difficult to achieve. This is important because affordance was still hypothesized 

as the underlying cause, despite a lack of the assessment of the quality or fit of the affordance 

relationship. Therefore, the present data may instead serve to enhance these findings by suggesting a 

link between area and movement through the related variable of depth-informed affordance. 

This experiment also revealed an effect of the spatial cognitive variables on pause behaviour, but  a 

marginal influence, at best, on movement itself, something that is both intuitive and may serve to 

reinforce the idea that the affordance driving behaviour is relatively independent of individual ability. 

Prior work on the encoding of routes has suggested that when a person gives directions to another 

person, sustained attention and sense of direction are invoked to retrieve and describe the surrounding 

space (Michon & Denis, 2001). Hence, when the participant sought to better encode the environment 

rather than simply navigate it, a pause is often engaged in to better observe the surrounding 

environment. This is, in fact, precisely the pattern of data observed here, as the views observed during 

pauses were focused on critical points as predicted from the affordance account. The current data are 

also consistent with previous work that demonstrates that pauses occur at visually informative 

locations rather than at isolated locations (Conroy, 2001).  
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Figure 3.8 Gaze distribution across space as a function of task and proximity for Experiment 4. 
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Chapter 4 
General Discussion 

Understanding how we can navigate both familiar and unfamiliar environments is a topic that has 

received substantial interest within both scientific and applied fields. Of particular prominence is the 

subfield of Space Syntax, which attempts to predict how pedestrians and vehicles will move through 

an urban space by examining the spatial system formed by the environment as a whole (Hillier, 

1996). The Space Syntax approach has been used successfully to predict where we will go in an 

environment and how we might behave in a space based simply on how it is configured (Barton et al., 

2014; Penn, 2003). These effects have been demonstrated so reliably that many have proposed that 

we engage automatically with one or more of the spatial properties defined by space syntax in order 

to move adaptively. Some of the candidate possibilities suggested as the prime movers of human 

navigation in built spaces have been the connectivity provided by a view (Emo et al., 2012), the 

overall area of a space (Emo, 2014), the maximum visible distance (Wiener et al., 2012), the 

arrangement of attractors relative to each other (Wineman & Peponis, 2010), and the perception of 

more elaborative configurational cues (Turner, 2006; Penn, 2003; Turner et al., 2001), to name a few. 

But, despite the frequency with which affordances are invoked as the causal mechanism explaining 

how we move through space, particularly with respect to the overall configuration of spaces, very 

little direct evidence exists to account for the majority of findings. As a result, at present, we simply 

do not have a good model that explains how the configuration of space controls and guides behaviour. 

For this reason, the three initial studies (Studies 1 through 3) were used to determine whether any 

common patterns might exist amongst the considerable body of previously described spatial 

properties in explaining how we may move through space. At the core of this body of work is a drive 

to identify shared properties that can mutually account for the role of configuration in a way that is 

parsimonious with the findings of the field as a whole. In this endeavour, I have shown that the global 

configuration of space lying outside the perceived viewpoint is related directly to the properties of 

local space that have been associated with navigational behaviour. In doing so, I have argued against 

the primacy of configurational cues (i.e., exosomatic visual architecture) and instead taken the 

position that local perceptual information must be primary in accounting for behaviour. This is 

because there is simultaneously a relative lack of direct evidence supporting the view that people 

perceive complex configurational data in the surrounding environment, particularly those data outside 

the present field of view, and to ensure parsimony with the purest definition of affordance and direct 
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perception found in the literature. The result of this work was the identification of a simple collection 

of properties that describe how space is arranged, named Spatial Complexity, Enclosure, Importance, 

and Local Extent. Critically, a strong relationship is shown between the variation in local extent and 

the variation in the overall complexity of an environment across a variety of spaces. In identifying 

this link, the variables that define local extent can be understood as providing potential information 

content about the overall global structure of a space, providing initial fit with the idea that the 

affordance of configuration is driven by viewing local space itself (for example: Emo, 2014). 

In further testing this model, one in which the variables of local extent appear to be useful in 

describing space, a mechanism driving both aggregate and individual navigation is identified 

(Experiments 1 through 4). Throughout the experiments, I attempt to develop analytically a simple 

model of how the structure of space may drive behaviour based on the ideas underlying affordances 

alone (Gibson, 1979). In doing so, considerable evidence is found to correlate one particular variable 

of Local Extent, mean surface depth, and predicted patterns of movement and behaviour in various 

types of navigation. Accordingly, I name this model Depth Afforded Navigation as an account that the 

affordance of movement is guided by the concept of depth, independent of the role of landmarks and 

other potential attractors lying in space. These effects are also demonstrated to be relatively 

insensitive to task demands, environmental context, and general spatial cognitive ability. As the 

explicit fit of the variables with direct perception is assessed directly throughout, for the first time, the 

present work helps describe how local spatial properties may drive navigation in very specific and 

testable terms. 

4.1 Contributions of Depth Afforded Navigation 

This dissertation makes initial headway into developing a comprehensive model to account for 

naive tendencies in how we explore the world as a whole. The overarching principle put forward here 

is that Depth Afforded Navigation appears to be integral in navigation across a variety of contexts and 

tasks. This is shown in both the experimental evidence and the result of the aggregate traffic 

modeling. This is a novel account of how navigation behaviour in different types of intelligible spaces 

can be understood using a single mechanism. Traditionally, people were expected to steer toward 

ideal configurational or metric spatial cues, something that has largely only been useful in predicting 

behaviour in well-structured, intelligible environments (e.g., Penn, 2003). Instead, the present depth-

derived model proves informative in both well-organized and poorly organized spaces, as it is purely 

dependent on knowledge found in the nearby local environment alone. Studies 1 through 3 also 
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establish the case for mean surface depth providing information about the expected spatial structure 

beyond the present viewpoint, something that can be useful in planning how we will move through 

space, but placing little-to-no demands on the spatial knowledge or experience level of the navigator. 

The interplay between these two factors – the local extent of a location and the overall complexity 

of space, particularly between connectivity and mean surface depth – has potential to improve a 

number of agent-based and simulation techniques used in research and urban planning. Most notable 

is the approach put forward as the basis for exosomatic visual architecture – the visual graph. As the 

visual graph captures the relative value of a location as the sum of its potential to lead to other more 

connected/larger possible views, the visual graph captures a similar idea to that of Depth Afforded 

Navigation. However, the present work indicates that area itself is not consistently preferred by 

navigators, at least generally (as is shown in Experiments 1 through 4), suggesting that a 

consideration of depth may improve the predictive power of this type of modeling. This is because 

participants were shown to prefer multiple ideal levels of area and perimeter as they navigated space, 

something that was not revealed in Depth Afforded Navigation. 

Across a variety of different tasks, participants were also shown to attempt to preserve a relative 

level of depth when navigating, scaled by the size of the local view. This finding provides some 

evidence for the idea that Depth Afforded Navigation is the product of the capacity to perceive the 

nearby environment and its fundamental structure, captured by visual range and mean surface depth, 

respectively. Should these results be found to hold, in other types of environment or navigation tasks, 

these results suggest that traffic may best be predicted by considering a much simpler model of spatial 

perception and spatial complexity than have previously been suggested. 

Depth Afforded Navigation was also shown to be constrained by local viewpoint consistently 

across three different behavioural experiments, two of which (Experiments 2 and 3) explicitly 

manipulated the visual range offered locally and one of which showed a more general effect of visual 

range on both movement and gaze, without explicit manipulation (Experiment 4). This is reflective of 

the fact that the local spatial complexity, as captured by variables of local extent, is strongly 

influenced by both the layout of the local environment and the global environment. This can be 

understood as the direct product of the factor models and upon reflection on the makeup of local 

extent. Mean surface depth, for instance, which considers the approximate distance between a 

navigator and each nearby surface, is influenced both by the size of space and by its relative 

symmetry. This is because the mean would be biased toward lower values if compression of depth-to-

surfaces occurred asymmetrically in the visual field. Consequently, when mean surface depth is 
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scaled into relative π units, some degree of independence from area is highlighted. Thinking about 

space in relative terms such as these provides a novel way of understanding the visual complexity of 

space in terms that are related to the visual limits of the navigator. We know from work in scene 

perception that humans can recognize the general character of a visual scene rapidly and with ease 

(Greene & Oliva, 2009; Oliva & Torralba, 2001). Additionally, gaze behaviour has been shown to be 

directed toward properties of floor area (Emo, 2014) and surrounding surface geometry (Wiener et al., 

2012) when evaluating nearby space. Taken as a whole, these findings provide support for the view 

that affordance places emphasis on how space can be summarized into movement-relevant terms. 

Cumulatively, the pattern of results shown here, which support the idea of Depth Afforded 

Navigation, provides a novel way of thinking about how we may move through space, and provides 

novel parameters (i.e., mean surface depth and range-scaled mean surface depth) to describe space 

and the complex milieu within which behaviour may occur (Spatial Complexity as it relates to Local 

Extent). Therefore, at present, Depth Afforded Navigation is meant to augment rather than supplant 

existing theories. 

4.2 Why Associate Local Extent with Spatial Complexity? 

One question that arises from both the behavioural work and the factor analysis, suggesting a link 

between the properties of local spatial extent and the complexity outside the local viewpoint, is, what 

does the relationship capture? There is no simple answer to this question, but I will attempt to address 

it using a simple set of models. In doing so, I will demonstrate not only where the relationship 

between local extent and spatial complexity is strongest but also demonstrate where the relationship is 

no longer of practical use. Each model is depicted in Figure 4.1. 

We may begin to investigate this question by starting with an environment that attempts to 

eliminate the amount of information about the structure of space by controlling for the amount of 

variation across an environment. This is achieved by using an environment proposed by Conroy 

Dalton (2001), which consisted of a uniform arrangement of streets, controlling for the relative length 

of each road (depicted in Figure 4.1, top left). In this model a demonstrably low correlation is 

observed between local extent and spatial configuration, R=0.35. This is to be expected as the 

uniform arrangement of streets leaves very little variation that can be accounted for by local extent. 

This correlation can be enhanced by modifying the environment very slightly by including one or 

more spanning arterial road(s) (made to collect and transport traffic between distinct areas of an 
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environment), while otherwise preserving the road length and symmetry of the environment. When 

this is done, the association is found to be enhanced, R=0.45 and R=0.58, respectively. This suggests 

that at least part of the association may be driven the presence of functional roads designed to 

increase the efficiency at which a person can traverse the space. 

Having demonstrated the effect of arterials, two possibilities arise: (1) the relationship is a result of 

arterial roads spanning distinct sections of space, or (2) the relationship is instead a more pure 

measure of how to identify arterials in nearby space. The first position can be investigated by 

progressively rotating each distinct block (lying in the northeast, northwest, southeast, and southwest, 

quadrants) to manipulate how unique each adjacent neighbourhood to the arterial roads. When this is 

done, no change in correlation is observed, reflecting that the type of spaces to which the arterials 

connect is not captured by the shared relationship. Next, the second position was assessed by testing 

progressively larger models, otherwise preserving symmetry and consisting of a single arterial across 

the center of the environment. In this case, the correlation between local extent and spatial complexity 

was found to reduce as a function of the distance from the arterial road or roads. In the original 

environment, the arterial roads were found within 50 meters and showed a moderate correlation of 

0.58. When this distance is doubled to 100 meters, the observed association is found to be halved, 

R=0.30. When this distance is quadrupled to 200 meters, the correlation again is found to be reduced, 

R=0.25. This suggests that the relationship identified between extent and spatial configuration is not 

useful in identifying whether a road or path will take you to a different neighbourhood but instead is 

simply the product of how arterial roads function in space: spanning environments and allowing 

movement to be more efficient than would otherwise be possible. 

Therefore, this simple example strongly suggests that the variables of local extent can serve to 

guide a navigator toward arterial roads found nearby (but outside the scope of the present field). In a 

space lacking any arterial roads, this relationship simply cannot exist. This was observed most 

strongly in the environments of NYC and the City of London because each environment consisted of 

numerous arterial roads and paths spanning distinct regions of the spaces. In contrast, a weaker 

relationship was observed in small-scale space because less space was available to span. Based on 

these findings, the relationship is not a product of the function of all space but is instead a product of 

functional or designed space. 

Implicit in Space Syntax is the idea that people understand the function of space in some way 

(Hillier, 1996), and indeed the present findings are consistent with this view. However, the Depth 
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Afforded Navigation model differs from the configurational view of space by showing that 

individuals appear to be strongly guided by the extent of space itself rather than as a direct result of 

perceiving configurational affordances. Though the interplay between both factors is necessary to 

effectively describe and understand the layout of space, the perception of variables of local extent 

clearly provides some information about nearby spatial complexity within a reasonable distance. 

Elaborating on how this spatial information is perceived and acquired will need to be explored in 

future research. That said, the present data provides a convincing case for Depth Afforded Navigation 

to be a useful explanation for how we navigate familiar and unfamiliar spaces by recognizing the link 

between Depth and finding useful roads and pathways.
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Figure 4.1 How systematic changes in the structure of a simple model alter the association between 

the latent factors of local extent and spatial configuration. Generally, an increase in association is 

observed when adding one or more arterial roads. In contrast, increasing the distance between arterial  

roads by expanding the size of the space 2x and 4x results in a decrease in association. There is no 

effect of varying the degree of local complexity or symmetry of each city block. 
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4.3 Relationship of the Results to Other Fields of Research 

The results of the present work are relevant to a number of other complementary fields of research 

interested in accounting for how people may move through the world around them. While a number of 

areas could profit from the present work, I will highlight two: that of travel choices and that of desire 

lines. 

One key area on which the Depth Afforded Navigation proposal could shed light is in the area of 

transportation research. Within transportation research, travel choices are often considered the product of 

inertia. When a person is making a choice during any type of travel, habit is expected to play some role, 

particularly when determining the utility of a mode of transport. Previous work has shown that the 

addition of a term that accounts for the influence of habit – inertia – into a utility function resulted in 

more accurate predictions in the mode of transport selected (Mackie, Fowkes, Wardman, Whelan, & 

Bates, 2001). Others have argued that the effect of inertia on travel decision making is the product of risk 

aversion (Chorus & Dellaert, 2012). These effects can be contrasted with influences produced by more 

immediate demands on a traveler. The present work provides a way to consider transportation decisions, 

at least when physically moving through the world, as a product of inertia as well as risk aversion. In this 

case, the affordance of movement through mean surface depth could be considered an inertial influence 

on travel behaviour. That is, a person enters unfamiliar and familiar environments with the affordance as a 

default, guiding factor, driving them to navigate to distinct locations. The degree of adherence and 

resistance to change (as introduced by more immediate demands or expectations of the environment) are 

important variables to consider when describing how transportation decisions are made in the presence of 

inertia. Here, no data exists yet to adequately describe how the affordance changes, though the choice of 

task showed no effect on the observed affordance relationships, suggesting some degree of resistance to 

change. Should this be found to be consistent, models of discrete travel behaviour could be better 

understood by considering Depth Afforded Navigation as an inertial factor. This would allow further 

precision to be developed within these models and better establish how travel decisions and affordance 

can interact to produce the behaviours that we see in the world around us. 

A second area that could potentially profit from the present work is the study of desire lines in 

architecture and urban planning. Desire lines or desire paths created by foot travel, often deviating away 

from physical walkways, frequently increase the ease in navigating between an origin and a destination. 

These sorts of paths are commonly seen in a variety of areas, ranging from wilderness parks to university 

campuses. Only a few passages over a desire path are necessary to produce a distinct trail and attract 

further use from other travelers (Hampton & Cole, 1988). In the context of the present work, particularly 

in urban spaces, it is possible that desire paths are partially formed by a desire to maximize the Depth 
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Afforded Movement phenomenon described in this thesis. This would be particularly true in cases where 

the built walkways are either sparse or rigid in their placement. It is possible that desire paths are, in some 

way, steered toward mean surface depth and other properties of Local Extent when connecting an origin 

to a destination. Should this be the case, an even stronger understanding of the source of psychological 

drives like affordances and their influence on the creation of desire paths could be established potentially 

to improve design choices during the planning of urban spaces.  

4.4 Limitations of the Current Research and Proposed Future Directions 

The research presented in this thesis attempts to establish an understanding of how spatial navigation 

may be accounted for by affordance alone, from the ground up. As this work is an initial step into 

explaining the complex patterns of behaviours observed across space and attributed to its structure, a 

number of important limitations must be noted on the present findings. 

Gibsonian affordances are typically used to capture behaviourally relevant relationships with specific 

stimulus qualities, such as stair riser height, door width, degree of graspability, etc., that occur regardless 

of the ability for the individual to perceive the actual level of the property. To achieve this, the 

affordance-invariant relationship must initially be learned (e.g., Montesano & Lopes, 2009) in order to see 

a person engage in the appropriately scaled behaviour. For example, an infant learns that the diameter and 

make-up of their hands is what allows them to grasp objects such as rocks across a relatively short time 

span. By generalizing affordance into a more complex domain than that of simple motor behaviour – that 

of navigation – we have assumed that the same basic learning must occur at some point in life in order for 

Depth Afforded Navigation to be realized. While the present work supports the concept of the use of 

affordances in navigation, it remains possible that a better account of behaviour can be established by 

accounting for spatial learning and experience in some way. One way this could be achieved is by 

investigating whether prior expectations about the make-up of the environment accord with those 

predicted by the relationship between local extent and spatial complexity.  

Agent-based analyses could also establish the relationship between invariants and movements while 

controlling for or manipulating experience (and other factors) in specific terms to establish whether 

tendencies in how we navigate space are indeed the product of affordance. Studying the perception of 

specific visual properties more explicitly using visual search paradigms might shed light on how and 

when we pay attention to perceptual invariants in more explicit terms. In doing so, the fit between direct 

perception and navigation could be assessed even more concretely than was presented here, particularly 

with respect to the apparent relationship between Local Extent and Spatial Complexity. 
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Alternately, the perception of space could be studied ex situ to evaluate whether we intrinsically 

understand and engage the affordance of movement through depth or instead automatically engage in this 

process organically as we navigate physical space. One way this could be achieved is through picture 

studies prompting the participant to indicate preferred direction of movement without explicitly engaging 

in that movement. This would allow a more constrained test of the fit between the perceptual qualities of 

the environment and spatial preferences. This sort of decoupling has previously been used to establish 

whether aperture size alone could influence ratings of potential for movement without experiencing self-

motion cues (Warren Jr & Whang, 1987). A similar approach could be employed here to evaluate whether 

self-motion cues are in any way required to observe Depth Afforded Navigation. One reason to think that 

self-motion cues may play a role is because locomotion through space has previously been shown to be 

heavily influenced by optic flow  (Warren Jr., Kay, Zosh, Duchon, & Sahuc, 2001). As a person walks 

through space, the way that surfaces around him or her appear to translate provides meaningful 

information about the environment, such as which direction the person should head to maintain his or her 

heading (Wang & Cutting, 1999). While it is noteworthy that the demonstration of a tendency toward 

visually exploring depth when stationary was observed independent of movement, limiting the potential 

influence of gross self-motion cues, it remains possible that change in gaze alone could still provide 

adequate information to guide movement. Consequently, as a counterpoint to the study of affordance in 

more controlled and static cases, the evaluation of the influence of movement and optic flow must still be 

established. 

It also remains possible that the latent factors underlying the model developed in Chapter Two, such as 

that of local extent and spatial complexity, may better predict individual and aggregate behaviour than 

that of the individual variables. In this case, rather than Depth Afforded Navigation driving behaviour, 

Local Extent Afforded Navigation may be more useful, particularly in simulation studies. The present 

analysis did not investigate this possibility, as the goal of this thesis was to identify tangible properties of 

space and establish whether they are employed when navigating. A latent factor does not fit this goal as it 

represents a composite of all the measures that it predicts, thus is less likely to be directly inferred from 

the local environment alone. This stipulation noted, the use of factor scores could help to establish fit with 

the present theory in more general terms, allowing a potentially more robust model to be established. 

A stronger case for the lack of the effect of cognitive variables must also be established before this 

position can be fully accepted. While this is not essential to accept an affordance based model, it would 

help to elaborate on the precise psychological mechanism(s) participating in the affordance of movement. 

Experiment 4 did demonstrate that pause behaviour was influenced by individual differences in cognitive 

ability, but it is only a general test of the influence of cognition on the affordance process. A more 
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rigorous test of this relationship could be established through real-time psychophysiology during 

navigation to establish whether attention or cognitive demands are systematically related to visuospatial 

properties in any way. This sort of approach would help to determine the interaction between individual 

differences and Depth Afforded Navigation in more specific terms and would further highlight potential 

sources of error in the predictive power of the proposed model. 

Finally, the use of virtual reality may have produced behaviour that is not entirely descriptive of real-

world navigation. Several factors of virtual reality interfaces, including the size of the field-of-view 

offered by the head-mounted display, requirement for the navigator to cease movement to visually 

explore the nearby environment, and inability to vary movement speed, may result in the character of the 

findings not generalizing to real-world spaces, at least when considering how gaze related to the 

affordance function. Prior work on the efficacy of the properties of space syntax has shown considerable 

agreement with real-world data (Penn, 2003). Likewise, some agreement between the prediction that 

spatial preference is influenced by the property of area have been shown in the real world (Dzebic et al., 

2013). These studies provide some level of confidence that virtual reality studies do generalize to real-

world behaviour. However, to effectively rule out this limitation, real-world studies will be necessary. 

4.5 Concluding Comments 

The present body of work extends our understanding of spatial navigation by identifying a specific 

spatial property that appears to guide navigation in a variety of contexts and independent of the task being 

performed, characteristic of an affordance function. Prominently, it has been demonstrated that a great 

deal of navigation and spatial preference can be accounted for through the unitary spatial variable of mean 

surface depth, specified here as Depth Afforded Navigation. This finding is consistent with current 

research suggesting that expanse and complexity appear important in the way that we navigate and 

perceive the world around us, placing in question the earlier suggestions that we navigate space due to 

specific preferred sight lines or magnitude of area. The present work also identifies a potential for direct 

perception to be useful in the understanding of complex navigation behaviour by establishing a 

framework that progressively tests the assumptions required by ecological perception. While further 

testing would better elucidate the precise character of the relationship between the affordance of 

movement and mean surface depth, the common mechanism of depth and complexity are likely 

explainable by a common spatial mechanism – the inexorable link between the structure of local visual 

space and its predictive relationship with that of the overall configuration of the environment. Using this 

model, it is possible to account for a wide variety of movement choices in both intelligible and 

unintelligible spaces, shifting focus toward distinct spatial variables and away from that of explicit 

configuration. In doing so, future work will be better able to understand the success of previous 
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techniques, such as Space Syntax, agent-based analysis, and isovist analysis in predicting spatial 

behaviour, and allowing a potential unifying theory to account for findings derived from a wide variety of 

seemingly disparate empirical works. 

  



 

 120 

References 

Adolph, K. E., Ketch, K. S., & LoBue, V. (2014). Fear of height in infants? Current Directions in 

Psychological Science, 23(1), 60-66. doi:10.1177/0963721413498895 

Alahakoon, T., Tripathi, R., Kourtellis, N., Simha, R., & Iamnitchi, A. (2011). K-path centrality: a new 

centrality measure in social networks. Proceedings of the 4th Workshop on Social Network 

Systems. Sixth EuroSys Conference 2011 New York: ACM New York. 

doi:10.1145/1989656.1989657. 

Amemiya, Y., & Anderson, T. W. (1990). Asymptotic Chi-Square tests for a large class of Factor 

Analysis models. The Annals of Statistics, 18(3), 1453-1463. 

Anderson, T. W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in Factor 

Analysis under general conditions. The Annals of Statistics, 16(2), 759-771. 

doi:10.1214/aos/1176350834 

Appleton, J. (1996). The experience of landscape. London: Wiley. 

Arbuckle, J. L. (2013). Amos (Version 22.0) [Computer Software]. Chicago: SPSS. 

Bafna, S. (2003). Space Syntax: A brief introduction to its logic and analytical techniques. Environment 

and Behavior, 35(1), 17-29. doi:10.1177/0013916502238863 

Bailenson, J. N., Shum, M. S., & Uttal, D. H. (2000). The initial segment strategy: A heuristic for route 

selection. Memory and Cognition, 28(2), 306-318. doi:10.3758/BF03213808 

Barton, K. R., Valtchanov, D., & Ellard, C. (2014). Seeing beyond your visual field: The influence of 

spatial topology and visual field on navigation performance. Environment and Behavior, 46(4), 

507-529. doi:10.1177/0013916512466094 



 

 121 

Batty, M. (2001). Exploring isovist fields: Space and shape in architectural and urban morphology. 

Environment and Planning B: Planning and Design, 28(1). doi:10.1068/b2725 

Benedikt, M. L. (1979). To take hold of space: isovists and isovist fields. Environment and Planning B: 

Planning and Design, 6(1), 47-65. doi:10.1068/b060047 

Benhamou, S., & Poucet, B. (1998). Landmark use by navigating rats (Rattus novergicus): Contrasting 

geometric and featural information. Journal of Comparative Psychology, 112(3), 317-322. 

doi:10.1037/0735-7036.112.3.317 

Best, C. J., Crassini, B., & Day, R. H. (2002). The roles of static depth information and object-image 

relative motion in perception of heading. Journal of Experimental Psychology: Human 

Perception and Performance, 28(4), 884-901. doi:10.1037/0096-1523.28.4.884  

Bonacich, P. (1987). Power and centrality: A family of measures. The American Journal of Sociology, 

92(5), 1170-1182. doi:10.1086/228631 

Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55-71. 

doi:10.1016/j.socnet.2004.11.008 

Borgatti, S. P., & Everett, M. G. (2006). A Graph-theoretic perspective on centrality. Social Networks, 

28(4), 466-484. doi:10.1016/j.socnet.2005.11.005 

Brejc, I. (2013). Maperitive (Version 2.3.26) [Computer software]. Retrieved from 

http://maperitive.net/download/. 

Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: Mindfulness and its role in 

psychological well-being. Journal of Personality and Social Psychology, 84(4), 822-848. 

doi:10.1037/0022-3514.84.4.822 



 

 122 

Carisi, R., Giordano, E., Pau, G., & Gerla, M. (2011). Enhancing in vehicle digital maps via GPS 

crowdsourcing. Wireless On-Demand Network Systems and Services (WONS), 2011 Eighth 

International Conference (pp. 27-34). doi:10.1109/WONS.2011.5720196. 

Cattell, R. B. (1952). Factor analysis: An introduction and manual for the psychologist and social 

scientist. New York: Harper and Row. 

Cheng, K. (1986). A purely geometric module in the rat's spatial representation. Cognition, 23, 149-178. 

doi:10.1016/0010-0277(86)90041-7 

Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Psychological 

Bulletin and Review, 12(1), 1-23. doi:10.1037/a0016170 

Cheyne, J. A., Carriere, J. S. A., & Smilek, D. (2006). Absent-mindedness: Lapses of conscious 

awareness and everyday cognitive failures. Consciousness and Cognition, 15(3), 578-592. 

doi:10.1016/j.concog.2005.11.009 

Chorus, C. G., & Dellaert, B. G. C. (2012). Travel choice inertia: The joint role of risk aversion and 

learning. Journal of Transport Economics and Policy, 46(1), 139-155. 

City of New York. (2013). Building footprints. NYC, NY: Department of Information Technology and 

Telecommunications. Retrieved from https://data.cityofnewyork.us/Housing-

Development/Building-Footprints/tb92-6tj8. 

Conroy Dalton, R. (2003). The secret is to follow your nose: Route path selection and angularity. 

Environment and Behavior, 35(1), 107-131. doi:10.1177/0013916502238867 

Conroy, R. A. (2001). Spatial navigation in immersive virtual environments ( Unpublished doctoral 

thesis, Department of Architecture, University College London, England). 



 

 123 

Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A. S., & McLoone, S. (2013). Principal Components 

Analysis on spatial data: An overview. Annals of the Association of American Geographers, 

103(1), 106-128. doi:10.1080/00045608.2012.689236 

Diaconis, P., & Freedman, D. (1984). Asymptotics of graphical projection pursuit. The Annals of 

Statistics, 12(3), 793-815. 

Dzebic, V., Perdue, J. S., & Ellard, C. G. (2013). The influence of visual perception on responses towards 

real-world environments and application towards design. Intelligent Buildings International, 5(1), 

29-47. doi:10.1080/17508975.2013.807766 

Emo, B. (2014). Seeing the axial line: Evidence from wayfinding experiments. Behavioral Sciences, 4(3), 

167-180. doi:10.3390/bs4030167 

Emo, B., Hölscher, C., Wiener, J. M., & Dalton, R. C. (2012). Wayfinding and spatial configuration: 

Evidence from street corners. In M. Greene, J. Reyes, & A. Castro (Eds.), Eighth International 

Space Syntax Symposium. 

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of 

exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. 

doi:10.1037/1082-989X.4.3.272 

Franchak, J., & Adolph, K. (2013). Affordances as probabilistic functions: Implications for development, 

perception, and decisions for action. Ecological Psychology, 26(1-2), 109-124. 

doi:10.1080/10407413.2014.874923. Retrieved from 874923. 

Franz, G., & Wiener, J. M. (2008). From space syntax to space semantics: A behaviourally and 

perceptually oriented methodology for the efficient description of the geometry and topology of 



 

 124 

environments. Environment and Planning B: Planning and Design, 35(4), 575-592. 

doi:10.1068/b33050 

Freeman, L. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. 

doi:10.2307/3033543 

Gallistel, C. R. (1980). The organization of action: A new synthesis. Hillsdale, NJ: Erlbaum. 

Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press. 

Garden, S., Cornoldi, C., & Logie, R. H. (2001). Visuo-spatial working memory in navigation. Applied 

Cognitive Psychology, 16(1), 35-50. doi:10.1002/acp.746 

Geary, R. C. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5(3), 

115-145. doi:10.2307/2986645 

Gibson, B. M., Shettlesworth, S. J., & McDonald, R. J. (2001). Finding a goal on dry land and in the 

water: Differential effects of disorientation on spatial learning. Behavioral Brain Research, 

123(1), 103-111. doi:10.1016/S0166-4328(01)00196-6 

Gibson, J. J. (1950). The perception of the visual world. Boston, NJ: Houghton Mifflin. 

Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin. 

Gibson, J. J. (1979). The ecological approach to visual perception. Boston, NJ: Houghton Mifflin. 

Golledge, R. G. (1999). Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes. 

Baltimore: John Hopkins University Press. 



 

 125 

Golob, E. J., & Taube, J. S. (2002). Differences between appetitive and aversive reinforcement on 

reorientation in a spatial working memory task. Brain Research, 136(1), 309-316. 

doi:10.1016/S0166-4328(02)00184-5 

Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of Personality 

Assessment, 68(3), 532-560. doi:10.1207/s15327752jpa6803_5 

Gouteux, S., Thinus-Blanc, C., & Vauclair, J. (2001). Rhesus monkeys use geometry and landmarks to 

reorient in an open space. Journal of Experimental Psychology: General, 130(3), 505-519. 

doi:0.1037/0096-3445.130.3.505 

Greene, M. R., & Oliva, A. (2009). The briefest of glances: the time course of natural scene 

understanding. Psychological Science, 20(4), 464-472. doi:10.1111/j.1467-9280.2009.02316.x 

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis (4th ed.). 

Upper Saddle River, N.J.: Prentice-Hall Inc. 

Hampton, B., & Cole, D. (1988). Soth paths: How to enjoy wilderness without harming it. Harrisburg, 

PA: Stackpole Books. 

Handlin, D. P. (2007). The modern American house: Spaciousness and middle-class identity. American 

Studies, 48(2), 95-97. doi:10.1353/ams.0.0028  

Haq, S. (2003). Investigating the syntax line: Configurational properties and cognitive correlates. 

Environment and Planning B: Planning and Design, 30(6), 841-863. doi:10.1068/b2960 

Haq, S., & Zimring, C. (2003). Just down the road a piece: The development of topological knowledge of 

building layout. Environment and Behavior, 35(1), 132-160. doi:10.1177/0013916502238868 



 

 126 

Havel, V. J. (1955). A remark on the existence of finite graphs. Casopis pro pestování matematiky, 80, 

477-480. 

Hayward, A., McGregor, A., Good, M. A., & Pearce, J. M. (2003). Absence of overshadowing and 

blocking between landmarks and the geometrical cues provided by the shape of the test arena. 

The Quarterly Journal of Experimental Psychology, 56(1), 114-126. doi:10.1037/a0014536 

Heft, H. (1996). The ecological approach to navigation: GIbsonian perceptive. GeoJournal Library: The 

Construction of Cognitive Maps, 32, 105-132. doi:10.1007/978-0-585-33485-1_6 

Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a 

self-report measure of environmental spatial ability. Intelligence, 30(5), 425-448. 

doi:10.1016/S0160-2896(02)00116-2 

Helbing, D. (1992). A fluid-dynamic model for the movement of pedestrians. Complex Systems, 6, 391-

415. doi:10.1.1.242.7775 

Helbing, D. (1993). Stochastic and Boltzmann-like models for behavioral changes and their relation to 

game theory. Physica A: Statistical Mechanics and its Applications, 193, 241-258. 

doi:10.1016/0378-4371(93)90028-3 

Helbing, D., Molnar, P., Farkas, I. J., & Bolay, K. (2001). Self-organizing pedestrian movement. 

Environment and Planning B: Planning and Design, 28, 361-383. doi:10.1068/b2697 

Henderson, L. F., & Jenkins, D. M. (1974). Response of pedestrians to traffic challenge. Transportation 

Research, 8, 71-74. doi:10.1016/0041-1647(74)90019-7 

Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: 

Common errors and some comment on improved practice. Educational and Psychological 

Measurement, 66(3), 393-416. doi:10.1177/0013164405282485 



 

 127 

Hermer, L. (1997). Internally coherent spatial memories in a mammal. Neuroreport, 8, 1743-1747. 

doi:10.1097/00001756-199705060-00035 

Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. 

Nature, 370, 57-59. doi:10.1038/370057a0 

Hermer-Vazquez, L., Spelke, E., & Katsnelson, A. S. (1999). Sources of flexibility in human cognition: 

Dual-task studies of space and language. Cognitive Psychology, 39(1), 3-36. 

doi:10.1006/cogp.1998.0713 

Hillier, B. (1996). Space is the machine: A configurational theory of architecture. Cambridge, UK: 

Cambridge University Press. 

Hillier, B. (1999). The hidden geometry of deformed grids: Or, why space syntax works, when it looks as 

though it shouldn't. Environment and Planning B: Planning and Design, 26(2), 169-191. 

doi:10.1068/b260169 

Hillier, B., Burdett, R., Peponis, J., & Penn, A. (1987). Creating life: Or, does architecture determine 

anything? Architecture and Behavior, 3(3), 233-250. 

Hillier, B., & Hanson, J. (1984). The social logic of space. Cambridge, UK: Cambridge University Press. 

Hillier, B., & Iida, S. (2005). Network and psychological effects in urban movement. Lecture Notes in 

Computer Science, 3693, 475-490. doi:10.1007/11556114_30 

Hillier, B., Penn, A., Hanson, J., Grajewski, T., & Xu, J. (1993). Natural movement: Or, configuration 

and attraction in urban pedestrian movement. Environment and Planning B: Planning and 

Design, 20(1), 29-66. doi:10.1068/b200029 



 

 128 

Hillier, B., & Vaughan, L. (2007). The spatial syntax of urban segregation: Chapter 1 The spatial syntax 

of urban segregation. Progress in Planning, 67(3), 205-230. doi:10.1016/j.progress.2007.03.001 

Hölscher, C., Brösamle, M., & Vrachliotis, G. (2012). Challenges in multilevel wayfinding: A case study 

with the space syntax technique. Environment and Planning B: Planning and Design, 39(1), 63-

82. doi:10.1068/b34050t 

Huttenlocher, J., & Vasilyeva, M. (2003). How toddlers represent enclosed spaces. Cognitive Science, 

27(5), 749-766. doi:10.1016/S0364-0213(03)00062-4 

Jiang, B., & Tao, J. (2011). Agent-based simulation of human movement shaped by the underlying street 

structure. International Journal of Geographical Information Science, 25(1), 51-64. 

doi:10.1080/13658811003712864 

Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). New York: Springer. 

Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415. 

doi:10.1007/BF02291817 

Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark iv. Educational and Psychological Measurement, 34(1), 

111-117. doi:10.1177/001316447403400115 

Kaplan, R., & Kaplan, S. (1989). The experience of nature. Cambridge: Cambridge University Press. 

Kaplan, S. (1988). Perception and landscape: conceptions and misconceptions. In Theory, research, and 

application. New York: Cambridge University Press. 

Kaplan, S., & Kaplan, R. (1982). Cognition and environment: Functioning in an uncertain world. New 

York: Prager. 



 

 129 

Kato, Y., & Takeuchi, Y. (2003). Individual differences in wayfinding strategies. Journal of 

Environmental Psychology, 23(2), 171-188. doi:10.1016/S0272-4944(03)00011-2 

Kelly, J. W., McNamara, T. P., Bodenheimer, B., Carr, T. H., & Rieser, J. J. (2008). The shape of human 

navigation: How environmental geometry is used in maintenance of spatial orientation. 

Cognition, 109(2), 281-286. doi:10.1016/j.cognition.2008.09.001 

Kline, R. B. (1993). An easy guide to factor analysis. New York: Routledge. 

Kline, R. B. (2010). Principles and practice of Structural Equation Modeling (3rd ed.). New York: 

Guilford Press. 

Leskovec, J. (2009). Stanford Network Analysis Platform for C++ [Computer software]. Retrieved from: 

http://snap.stanford.edu/snap/index.html. 

Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. L. (2011). The Hull method for selecting the 

number of common factors. Multivariate Behavioral Research, 46(2), 340-364. 

doi:10.1080/00273171.2011.564527 

Mackie, P., Fowkes, T., Wardman, M., Whelan, G., & Bates, J. J. (2001). Three controversies in the 

valuation of travel time savings. European Transport Conference. 

Maier, J. R. A., Fadel, G. M., & Battisto, D. G. (2009). An affordance-based approach to architectural 

theory, design, and practice. Design Studies, 30(4), 393-414. doi:10.1016/j.destud.2009.01.002 

Margules, J., & Gallistel, C. R. (1988). Heading in the rat: Determination by environmental shape. Animal 

Learning and Behavior, 16(4), 404-410. doi:10.3758/BF03209379 



 

 130 

Mark, L. S., Balliett, J. A., Craver, K. D., Douglas, S. D., & Fox, T. (1990). What an actor must do in 

order to perceive the affordance for sitting. Ecological Psychology, 2(4), 325-366. doi:    

10.1207/s15326969eco0204_2 

Mark, L. S., & Vogele, D. (1987). A biodynamical basis for perceived categories of action: A study of 

sitting and stair climbing. Journal of Motor Behavior, 19(3), 367-384. 

doi:10.1080/00222895.1987.10735418 

Matheson, D. A. (1909). Glasgow central station extension. Minutes of the Proceedings of the Institute of 

Civil Engineers, 175, 30-137. 

Mayne, A. J. (1954). Some further results in the theory of pedestrian road traffic. Biometrika, 41(3/4), 

375-389. doi:10.1093/biomet/41.3-4.375 

Meilinger, T., Franz, G., & Bülthoff, H. H. (2012). From isovists via mental representations to behaviour: 

First steps toward closing the causal chain. Environment and Planning B: Planning and Design, 

39(1), 48-62. doi:10.1068/b34048t 

Michon, P.-E., & Denis, M. (2001). When and why are visual landmarks used in giving directions? 

Lecture Notes in Computer Science, 2205, 292-305. doi:10.1007/3-540-45424-1_20 

Montello, D. R. (1991). Spatial orientation and the angularity of urban routes: A field study. 23(1), 47-69. 

doi:10.1177/0013916591231003 

Montello, D. R. (2007). The contribution of space syntax to a comprehensive theory of environmental 

psychology. In Proceedings of the 6th International Space Syntax Symposium. Istanbul. 

Montesano, L., & Lopes, M. (2009). Learning grasping affordances from local visual descriptors. IEEE 

8th International Conference On Development and Learning (pp. 1-6). 

doi:10.1109/DEVLRN.2009.5175529. 



 

 131 

Moore, A., & Malinowksi, P. (2009). Meditation, mindfulness, and cognitive flexibility. Consciousness 

and Cognition, 18(1), 176-186. doi:10.1016/j.concog.2008.12.008 

Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1), 17-23. 

doi:10.2307/2332142 

Murphy, R. R. (2000). Metric Planning. In Introduction to AI Robotics (pp. 351-374). Cambridge: MIT 

Press. 

Neisser, U. (1976). Cognition and reality: Principles and implications of cognitive psychology. San 

Fransisco: W.H. Freeman. 

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial 

envelope. International Journal of Computer Vision, 42(3), 145-175. 

doi:10.1023/A:1011139631724 

Onsat, Y., Portugali, J., & Eilam, D. (2011). City rats: Insight from rat spatial behavior into human 

cognition in urban environments. Animal Cognition, 14(5), 655-663. doi:10.1007/s10071-011-

0400-y 

OpenStreetMap users. (2013). OpenStreetMaps database (Build 130925). Retrieved from: 

http://planet.openstreetmap.org/. 

Oudejans, R. R. D., Michaels, C. F., Bakker, F. C., & Dolné, M. A. (1996). The relevance of action in 

perceiving affordances: Perception of catchableness of fly balls. Journal of Experimental 

Psychology: Human Perception and Performance, 22(4), 879-891. doi:10.1037/0096-

1523.22.4.879  

Park, H. T. (2005). Before integration: A critical review of integration measure in space syntax. In A. van 

Nes (Ed.), Proceedings of the 5th International Space Syntax Symposium Delft: UCL. 



 

 132 

Patasius, M., Marozas, V., Lukosevicius, A., & Jegelevicius, D. (2005). Evaluation of tortuosity of eye 

blood vessels using the integral square of derivative of curvature. EMBEC'05: Proceedings of the 

3rd European Medical and Biological Engineering Conference: Vol. 11 (pp. 1-4). 

Pearce, J. M., Ward-Robinson, J., Good, M., Fussell, C., & Aydin, A. (2001). Influence of a beacon on 

spatial learning based on the shape of the test environment. Journal of Experimental Psychology: 

Animal Behavior Processes, 27(4), 329-344. doi:10.1037/0097-7403.27.4.329 

Penn, A. (2003). Space Syntax and spatial cognition: Or why the axial line? Environment and Behavior, 

35(1), 30-65. doi:10.1177/0013916502238864 

Penn, A., & Dalton, N. (1994a). The architecture of society: stochastic simulation of urban movement. In 

N. Gilbert & J. Doran (Eds.), Simulating Societies:The Computer Stimulation of Social 

Phenomena (pp. 85-125). London: UCL Press. 

Penn, A., & Dalton, N. (1994b). The architecture of society: Stochastic simulation of urban movement. In 

N. Gilbert & J. Doran (Eds.), Simulating Societies: The Computer Simulation of Social 

Phenomena (pp. 85-125). London: UCL Press. 

Penn, A., Hillier, B., Bannister, D., & Xu, J. (1998a). Configurational modeling of urban movement 

networks. Environment and Planning B: Planning and Design, 25(1), 59-84. 

doi:10.1068/b250059 

Penn, A., Hillier, B., Bannister, D., & Xu, J. (1998b). Configurational modeling of urban movement 

networks. In J. Ortuzar, D. Henshar, & S. Jara-Diaz (Eds.), Travel behavior research: Updating 

the state of play (pp. 339-362). Elmsford, NY: Pergamon. 

Peponis, J., Hadjinikolaov, E., Livieratos, C., & Fatouros, D. A. (1989). The spatial core of urban culture. 

Ekistics, 56(334/335), 43-55. 



 

 133 

Peponis, J., Zimring, C., & Choi, Y. K. (1990). Finding the building in wayfinding. Environment and 

Behavior, 22(5), 555-590. doi: 10.1177/0013916590225001 

Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. In W. Grossman, G. Pflug, 

I. Vincze, & W. Wertz (Eds.), Mathematical Statistics and Applications (pp. 283-287). 

Dordrecht: Reidel Publishing. 

Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the Median Absolute Deviation. Journal of the 

American Statistical Association, 88(424), 1273-1283. doi:10.1080/01621459.1993.10476408 

Rousseeuw, P. J., & Van Driessen, K. (1999). A fast algorithm for Minimum Covariance Determinant 

estimator. Technometrics, 49(3), 212-223. doi:10.1080/00401706.1999.10485670 

Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in exploratory factor analysis 

using comparison data of known factorial structure. Psychological Assessment, 24(2), 282-292. 

doi:10.1037/a0025697 

Sabidussi, G. (1978). The centrality index of a graph. Psychometrika, 31(4), 581-603. 

doi:10.1007/BF02289527 

Sadalla, E. K., & Montello, D. R. (1989). Remembering changes in direction. Environment and Behavior, 

21(3), 346-363. doi:10.1177/0013916589213006 

Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27(3), 

379-423. doi:10.1002/j.1538-7305.1948.tb01338.x 

Shelton, A. L., & McNamara, T. P. (1997). Multiple views of spatial memory. Psychological Bulletin and 

Review, 4(1), 102-106. doi:10.3758/BF03210780 



 

 134 

Sinai, Y. G. (1959). On the notion of entropy of a dynamical system. Doklady of Russian Academy of 

Sciences, 124, 768-771. 

Smallwood, J. S., Davies, J. B., Heim, D., Finnigan, F., Sudberry, M., O'Connor, R. et al. (2004). 

Subjective experience and the attentional lapse: Task engagement and disengagement during 

sustained attention. Consciousness and Cognition, 13(4), 657-690. 

doi:10.1016/j.concog.2004.06.003 

Stamps III, A. E. (2005). Isovists, enclosure, and permeability theory. Environment and Planning B: 

Planning and Design, 32(5), 735-762. doi:10.1068/b31138  

Stamps, A. E. (2010). Effects of permeability on perceived enclosure and spaciousness. Environment and 

Behavior, 42(6), 864-886. doi:10.1177/0013916509337287  

Stefanucci, J. K., & Geuss, M. N. (2010). Duck! Scaling the height of a horizontal barrier to body height. 

Attention, Perception, Psychophysics, 72(5), 1338-1349. doi:10.3758/APP.72.5.1338 

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (6th ed.). Boston: Pearson/Allyn & 

Bacon. 

Thurstone, L. L. (1947). Multiple-factor analysis. Chicago: University of Chicago Press. 

Turner, A. (2006). Isovists, occlusions and exosomatic visual architecture. In K.-F. Richter & U.-R. 

Ruetschi (Eds.), Cognitive Approach to Modeling Environments. Bremen: Universität 

Bremen/Universität Freiburg. 

Turner, A. (2007). From axial to road-centre lines: a new representation for space syntax and a new model 

of route choice for transport network analysis. Environment and Planning B: Planning and 

Design, 34(3), 539-555. doi:10.1068/b32067 



 

 135 

Turner, A., Doxa, M., O'Sullivan, D., & Penn, A. (2001). From isovists to visibility graphs: A 

methodology for the analysis of architectural space. Environment and Planning B: Planning and 

Design, 28(1), 103-121. doi:10.1068/b2684 

Turner, A., & Penn, A. (2002). Encoding natural movement as an agent-baed system: An investigation 

into human pedestrian behaviour in the built environment. Environment and Planning B: 

Planning and Design, 29(4), 473-490. doi:10.1068/b12850 

Turner, A., Penn, A., & Hillier, B. (2005). An algorithmic definition of the axial map. Environment and 

Planning B: Planning and Design, 32(3), 425-444. doi:10.1068/b31097 

Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13(3), 407-433. 

doi:10.1016/0010-0285(81)90016-5 

Tversky, B. (1992). Distortions in cognitive maps. Geoforum, 23(2), 131-138. doi:10.1016/0016-

7185(92)90011-R 

Vishton, P. M., & Cutting, J. E. (1995). Wayflnding, displacements, and mental maps: Velocity fields are 

not typically used to determine one's heading. Journal of Experimental Psychology: Human 

Perception and Performance, 21(5), 978-995. doi:10.1037/0096-1523.21.5.978  

Wagman, J. B., & Malek, E. A. (2009). Geometric, kinetic-kinematic, and intentional constraints 

influence willingness to pass under a barrier . Experimental Psychology, 56(6), 409-417. 

doi:10.1027/1618-3169.56.6.409 

Wall, P. L., Botly, L. C., Black, C. K., & Shettlesworth, S. J. (2004). The geometric module in the rat: 

Independence of shape and feature learning in a food finding task. Learning and Behavior, 32(3), 

289-298. doi:10.3758/BF03196028 



 

 136 

Wang, R. F., & Cutting, J. E. (1999). Where we go with a little good information. Psychological Science, 

10(1), 71-75. doi:10.1111/1467-9280.00109  

Wang, R. F., Hermer, L., & Spelke, E. S. (1999). Mechanisms of reorientation and object localization by 

children: a comparison with rats. Behavioral Neuroscience, 113(3), 475-485. doi:10.1037/0735-

7044.113 

Warren Jr, W. H., & Whang, S. (1987). Visual Guidance of Walking Through Apertures: Body-Scaled 

Information for Affordances. Journal of Experimental Psychology: Human Perception and 

Performance, 13(3), 371-383. doi:10.1037/0096-1523.13.3.371 

Warren Jr., W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of 

Experimental Psychology: Human Perception and Performance, 10(5), 683-703. 

doi:10.1037/0096-1523.10.5.683 

Warren Jr., W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to 

control human walking. Nature Neuroscience, 4, 213-216. doi:10.1038/84054 

Weickert, J. (1998). Anisotropic diffusion in image processing (ECMI Series ed.). Stuttgart, Germany: 

Teubner-Verlag. 

Widaman, K. F. (1993). Common Factor Analysis versus Principal Component Analysis: Differential bias 

in representing model parameters? Multivariate Behavioral Research, 28(3), 263-311. 

doi:10.1207/s15327906mbr2803_1 

Wiener, J. M., Franz, G., Rossmanith, N., Reichelt, A., Mallot, H. A., & Bülthoff, H. (2007). Isovist 

analysis captures properties of space relevant for locomotion and experiment. Perception, 36(7), 

1066-1083. doi:10.1068/p5587 



 

 137 

Wiener, J. M., Hölscher, C., Büchner, S., & Konieczny, L. (2012). Gaze behaviour during space 

perception and spatial decision making. Psychological Review, 76(6), 713-729. 

doi:10.1007/s00426-011-0397-5 

Wineman, J. D., & Peponis, J. (2010). Constructing spatial meaning: Spatial affordances in museum 

design. Environment and Behavior, 42(1), 86-109. doi:10.1177/0013916509335534 

Wood, J. M., Tataryn, D. J., & Gorsuch, R. L. (1996). Effects of under- and overextraction on principal 

axis factor analysis with varimax rotation. Psychological Methods, 1(4), 354-365. 

Wu, X. (1991). An efficient antialiasing technique. Computer Graphics, 25(4), 143-152. 

doi:10.1145/122718.122734 

Zygmont, C., & Smith, M. R. (2014). Robust factor analysis in the presence of normality violations, 

missing data, and outliers: Empirical questions and possible solutions. The Quantitative Methods 

for Psychology, 10(1), 40-55. 

 

 

  



 

 138 

Appendix 1 

This supplement presents a more in-depth account of each variable used in Chapter Two. This is intended 

to accentuate the mathematical basis of each measure, as well as provide a visual depiction of how each 

measure captures a property of the structure of space. A table is also provided at the end of the appendix 

that summarizes what each measure captures, in general terms. 

 

Describing Space Using Isovists 
 

An isovist describes the shape of local visual space using a visibility polygon. The visibility polygon can 

be described in a number of ways, broadly classified here as capturing the extent of the polygon, shape, 

and other more complex factors. The mathematical basis for each measure is presented below. A figure is 

presented that on Page 156 for visual reference of all the variables at once. Below, a simple environment 

is presented and will be used to demonstrate each variable. The location of a person is indicated by a 

black dot, the shaded grey region is the visibility polygon, and the shaded black region is the footprint of 

a building. 

 

 
 

Area 

 

The area of an isovist can be computed through the shoelace method: 

 

𝐼𝐴𝑅𝐸𝐴 =
1
2
�� 𝑥𝑖𝑦𝑖+1 + 𝑥𝑛𝑦1 −�𝑥𝑖+1𝑦𝑖 − 𝑥1𝑦𝑛

𝑛−1

𝑖=1

𝑛−1

𝑖=1

� 
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where n is the number of sides of the polygon and (xi, yi) are the vertices of the polygon. Below, the area 

of the visibility polygon is depicted as hatch marks. 

 
Perimeter 

 

The perimeter is calculated as the sum of the distance between each point and its immediate neighbour on 

the isovist. The perimeter of a polygon is presented as dashed lines.  

 

 
Occlusivity 

 

𝐼𝑂𝐶𝐶 =
𝑃𝑂𝐶𝐶
𝑃

 

 

where POCC is the perimeter lying on solid boundaries or occlusions and P is the total perimeter. The Pocc 

is depicted as solid lines. Lines lying in open space are depicted as dashed lines. Lines against a surface 

are depicted as solid. 
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Number of Vertices 

 

The number of vertices is a simple count of the number of vertices necessary to define the polygon. This 

is depicted as black dots. 

 

 
  

Tortuosity 

 

The tortuosity, or degree of angular variation experienced as one traverses the isovist polygon, is 

computed as follows: 

𝐼𝑇𝑂𝑅𝑇 =
∑ atan(𝑦𝑖+1 −  𝑦1

𝑥𝑖+1 − 𝑥1
)𝑖

𝑖=1

𝑛 𝜋
 

 

where n is the number of vertices and  (xi, yi) are the vertices of the polygon.  Each distinct angle is 

depicted as angular braces. 

 

 
 

Entropy 

 

The normalized entropy is computed as follows: 

 

𝐼𝐸𝑁𝑇 =  �𝑁𝑝𝑖  log (
1
𝑝𝑖

)
𝑖

 

 



 

 141 

where i is each distinct distance, N is the total number of vertices, pi is the probability of observing a point 

at that distance within the sample. It can be normalized by dividing by N. This is depicted by the dashed 

lines radiating out to each distance, depicting the pattern of distances observed in the isovist. 

 

 
 

Rectangularity 

 

The rectangularity is determined by first calculating the minimum bounding rectangle (depicted in light 

grey). Next, it is computed as: 

 

𝐼𝑅𝐸𝐶𝑇 =
𝐼𝐴𝑅𝐸𝐴
𝑅𝑤𝑅𝐻

 

 

where R is the is the width and height of the minimum bounding rectangle (depicted in light grey) against 

the 𝐼𝐴𝑅𝐸𝐴 where is depicted as hatched lines. 

 
 

Compactness 

 

The compactness is represented by the relation between the area of the isovist to the circumference of a 

circle (which itself is defined by the diameter of the isovist): 
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𝐼𝐶𝑂𝑀𝑃 =  
𝐼𝐴𝑅𝐸𝐴𝟐

2𝝅�𝑖𝑚𝑎𝑥 + 𝑖𝑚𝑖𝑛
 

 

where i represents the maximum and minimum span of the polygon. Within the thesis, the span was 

determined by computing the minimum and maximum antipodal distance through the rotating calipers 

algorithm but other methods also exist. The maximum and minimum span are depicted as dashed lines. 

Area is depicted as the hatched region. 

 
 

Circularity 

 

The circularity is an approximation of how much the isovist's shape matches that of a circle of matching 

perimeter (depicted, approximately, as a grey circle against the isovist as a visual analogue). The formula 

is as follows: 

 

𝐼𝐶𝐼𝑅𝐶 =  
4𝜋𝐼𝐴𝑅𝐸𝐴
𝐼𝑃𝐸𝑅𝐼2

 

 

 

where 𝐼𝑃𝐸𝑅𝐼  is the perimeter of the isovist, and IAREA is the area. This method is a basic form of the 

isoperimetric quotient, which describes how much a curve approximates a circle. 
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Convexity 

 

Convexity is the relation between the area of the isovist to that of a convex hull: 

 

𝐼𝐶𝑂𝑁𝑉 =  
𝐼𝐴𝑅𝐸𝐴
𝐼𝐻𝑈𝐿𝐿

 

 

where IAREA is the area of the isovist and IHULL is the area of a convex hull sufficient to enclose all points 

on the polygon. The convex hull was determined through rotating calipers. The convex hull is depicted in 

light grey against the hatched region, which is the area of the original isovist. 

 

 
 

Surface Count 

 

Surface count is simply the count of each unique surface that defines the isovist. These are depicted as 

dashed lines of different widths and have been numbered to highlight those which are unique.  
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Mean Surface Depth 

 

Mean surface depth is computed as: 

 

𝐼𝑀𝑆𝐷 =
𝐼𝐴𝑅𝐸𝐴
𝑆𝐶

 

 

where IAREA is the area of the isovist divided by the surface count (SC). Each unique suface depth is 

depicted as a triangular segment of the isovist. 
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Describing Space Using Space Syntax and Accessibility: 
 

The structure of the layout is again presented below but this time without an isovist: 

 

 
 

The axial map and accessibility graph of the simple environment are presented on the left and right 

respectively.  

 
 

Dots on the axial map indicate each axial line. Dots on the accessibility graph indicate nodes in the 

graph (locations that can be occupied). The lines connecting each dot depict movement possibilities. 

Many of these measures can be computed out to a certain distance (traversing a certain number of 

nodes), making the methods either more precise at predicting behaviour or reducing the computation 

time. 

 

Space Syntax Measures 

 

To the left of each axial map is a simplified depiction of the graph, where the shape of the path or 

edge has been discarded. This is sometimes termed a j-graph in space syntax analysis. 
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Connectivity 

 

Connectivity is the simple count of how many other paths each path intersected with. This is depicted 

in the figure where white is low and black is high. 

 

 
 

Mean Depth 

 

The mean depth of each unique path (each dot) is the distance of the shortest path necessary for to 

travel to reach all other paths in the graph divided by the number of paths traversed. This is depicted 

where white is low and black is high. 

 

 
 

Integration 

 

Integration is the mean depth divided by a diamond graph of matching size. This is not depicted in the 

figure. The method and its relation with the normalizing factor drawn from the diamond graph is 

thoroughly described elsewhere (Park, 2005). 
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Angular Deviation 

 

The angular deviation of the graph is defined as: 

 

𝐺𝐴𝐷𝐸𝑉 =  
1
𝑛

 � atan(
𝑦𝑖+1 −  𝑦1
𝑥𝑖+1 − 𝑥1

)
𝑛

𝑖=1

 

 

where n is the number of axial lines and (x, y) is slope of each line. This is depicted on the j-graph. 

Angular deviation is then weighted by mean depth. 

 

 

𝐺𝐴𝑉𝐴𝑅 =  �
∑ atan(𝑦𝑖+1 −  𝑦1

𝑥𝑖+1 − 𝑥1
)𝑛

𝑖=1 − 𝐺𝐴𝐷𝐸𝑉  

𝑛 − 1
 

 

where (x,y) is the slope of each axial line, GADEV is the mean angular deviation, and n is the total 

number of axial lines. 

 

All dots on the graph are depicted in black as the mean angular deviation is constant for this axial 

map. 

 

 
 

 

Accessibility Measures: 
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Degree Centrality 

 

The degree of each node in the graph is the number of edges incident upon the node. This is depicted 

where black is high and white is low. 

 

 
 

Closeness Centrality 

 

Closeness centrality is the reciprocal of mean depth. It is normalized by n-1. This is depicted where 

black is high and white is low. 

 

 
 

Betweenness Centrality 

 

Betweenness centrality is defined as the sum of the total number of shortest paths that traverse a 

particular node, divided by the total number of shortest paths. It is normalized by (n -1) (n – 2) / 2 

where n is the total number of nodes. This is depicted as black where betweennness is high and white 

when low. 
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Eigenvector Centrality 

 

For the accessibility graph, eigenvector centrality is determined as: 

 

𝑥𝑣 =  
1
𝜆

�
𝑡 ∈𝑀(𝑣)

 

𝑥𝑡 =  
1
𝜆
� 𝐴𝑣,𝑡  𝑥𝑡
𝑡 ∈𝐺

 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡,𝑨𝑡𝑥 =  𝜆𝑥 

where for graph G, each node t and v, the eigenvector centrality is determined for the neighbourhood, 

M(v) of t, with the adjacency matrix A and  (with 1s indicate an edge exists between nodes and 0 

indicates no edges), and eigenvalue of λ. As seen above, this is recursive, reducing the a graph to a 

weighted sum of the amount of connection between a node and its neighbours.  

 

This is depicted on the accessibility graph where black indicates locations of high eigenvector 

centrality and white low. 
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The general interpretation of each of these measures is as follows: 

 

 Scope Description 
Axial Maps   
    Connectivity Local Number of adjacent paths 
    Mean Depth Global space Mean distance traversed to reach all 

other paths 
    Integration Global space Mean depth weighted by a symmetric 

diamond graph 
    Mean Depth-3 Global space Mean depth, considering only those 

paths within 3 steps 
    Integration-3 Global space Integration, considering only those 

paths within 3 steps 
Angular Analysis   
    Mean Deviation Global space Mean turn angle necessary to reach all 

lines within a radius of 3 
    Mean Variance Global space Mean variance in the turn angle 

experienced when traveling to all lines 
within a radius of 3 

Accessibility Graph   
    Degree Local space (metric) Number of directions available to 

travel at a specific point 
    Closeness  Global space (metric) Mean number of meters traversed to 

reach all other locations by shortest 
paths 

    Betweenness Global space (metric) Mean number of paths crossing 
through the point when traveling to all 
other positions in the graph 

    Eigenvector Global space (metric) How well the position is connected to 
other equally connected positions 

Isovist   
    Vertices Local space Number of edges in the visible area 
    Area Local space Extent of the visual field 
    Perimeter Local space Size of boundary 
    Occlusivity Local space Relative amount of boundary lying in 

closed space 
    Entropy Local space Magnitude of randomness in the 

position of isovist vertices 
    Tortuosity Local space Angular variation per unit of 

perimeter 
    Convexity Local space Amount of deviation away from a 

perfect convex polygon 
    Circularity Local space Amount of deviation away from a 

perfect circle 
    Rectangularity Local space Amount of deviation from a rectangle 

of matching size 
    Surfaces Local space Number of discrete edges or surfaces 

lying in obstructed space 
    Surface Depth Local space The ratio of the surrounding area to 

the number of surfaces visible 
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Appendix 2 

Detailed results of EFA for Study 1 

 Unrotated Matrix Rotated Matrix h2 
  Pattern Matrix Structure Matrix  
Factor: 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5  
Connectivity 0.85  0.51   0.91     0.99 -0.43 0.31 0.55 0.34 0.98 
Integration-3 0.84  0.52   0.92     0.98 -0.41 0.31 0.53 0.38 0.97 
Mean Depth-3 -0.82  -0.45   -0.92     -0.93 0.44  -0.56 -0.33 0.87 
Ang. Variance 0.75  0.45   0.93     0.88 -0.44  0.46  0.79 
Closeness 0.50        0.55  0.46 -0.36  0.57  0.39 
Betweenness 0.51 0.60   -0.32   0.87     0.90 0.41 0.57 0.82  
Eigenvector 0.47 0.56 0.34  -0.35   0.90     0.88 0.38 0.51 0.79 
Vertices 0.83   0.46     0.99  0.60 0.56 0.53 0.96 0.31 0.98 
Area 0.56 0.77        0.81 0.38  0.72 0.36 0.96 0.97 
Perimeter 0.82 0.34  -0.32   -0.41   0.68 0.60 -0.61 0.62 0.57 0.84 0.96 
Entropy 0.41   0.49     0.88     0.67  0.50 
Convexity -0.55 0.64 0.42    0.95    -0.34 0.96  -0.45  0.97 
Circularity -0.67   0.39   0.79   -0.31 -0.50 0.83  -0.49 -0.33 0.77 
Rectangularity -0.53 0.58 0.41 0.30   0.92    -0.32 0.92  0.42  0.90 
Surfaces 0.75       0.35 0.49  0.52 -0.56 -0.60 0.78  0.70 
Depth  0.80  -0.33      0.90  0.32   0.75 0.80 
λ 6.90 3.05 1.87 1.43 0.80            
% Variance 43.3 62.4 74.1 83.1 88.1            
                 
Correlation Matrix               
Factors: 1 2 3 4 5            
1 - -0.48 0.31 0.58 0.36            
2  - -0.23 -0.57 -0.15            
3   - -0.50 0.56            
4    - 0.26            
Note. All factor loadings below 0.30 have been suppressed. 
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Detailed results of EFA for Study 2 

 Unrotated Matrix Rotated Matrix h2 
  Pattern Matrix Structure Matrix  
Factor: 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5  
Connectivity 0.82 -0.43 0.35   0.99     0.99 -0.41 0.55  0.54 0.97 
Integration-3 0.80 -0.44 0.34   0.96     0.98 -0.40 0.54  0.54 0.96 
Mean Depth-3 -0.76 0.45    -0.89     -0.93 0.41 -0.54  -0.49 0.87 
Ang. Variance 0.68 -0.37 0.31   0.88     0.86 -0.36 0.40  0.49 0.74 
Closeness 0.52       0.57   0.48 -0.32 0.59  0.31 0.42 
Betweenness 0.54 0.70   -0.35    0.94    0.41 0.98 0.60 0.97  
Eigenvector 0.48 0.63       0.73    0.40 0.84 0.57 0.73 
Vertices 0.81   0.54    0.99   0.50 -0.54 0.98 0.36 0.58 0.96 
Area 0.83 0.44        0.86 0.51 -0.50 0.67 0.63 0.98 0.95 
Perimeter 0.90      -0.35   0.68 0.58 -0.78 0.72 0.40 0.92 0.98 
Entropy 0.37   0.60    0.91  -0.33   0.62   0.50 
Convexity -0.63  0.70    0.98    -0.30 0.97 -0.46  -0.40 0.97 
Roundness -0.69  0.46    0.70    -0.49 0.83 -0.54  -0.50 0.74 
Rectangularity -0.60  0.67    0.98     0.93 -0.41  -0.39 0.90 
Surfaces 0.80   0.34    0.71   0.48 0.61 0.87 0.42 0.61 0.80 
Depth  0.39 0.39 -0.47    -0.57  0.88    0.40 0.56 0.60 
Λ 7.47 2.26 2.03 1.63 0.68            
% Variance 46.7 60.1 73.4 83.6 87.9            
                 
Correlation Matrix               
Factors: 1 2 3 4 5            
1 - -0.41 0.53 0.11 0.54            
2  - -0.58 -0.16 -0.53            
3   - 0.32 0.58            
4    - 0.52            
Note. All factor loadings below 0.30 have been suppressed. 
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